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Preface

Nanofluid refers to a fluid containing small amount of uniformly dispersed
and suspended nanometer-sized particles in base fluid. When a small amount
of nano-sized particles is added to the base fluid, the thermal conductivity
of the fluid is enhanced and such a fluid is called nanofluid which was first
coined by Choi (1995). Due to this property of the nanofluid they have wide
range of industrial applications especially in the process where cooling is of
primary interest. Buongiorno (2006) was the first researcher who dealt with
convective transport in nanofluids. He noted that the nanoparticles absolute
velocity can be viewed as the sum of the base fluid velocity and a relative
(slip) velocity. He also discussed the effect of seven slip mechanisms: inertia,
Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid
drainage and gravity setting. He concludes that in the absence of turbulent
eddies Brownian diffusion and thermophoresis dominate the other slip
mechanisms. Tzou (2008a, 2008b) studied the on the onset of convection in
a horizontal layer of nanofluid heated from below on the basis of Buon-
giorno’s model. Nield and Kuznetsov (2009a, 2009b, 2011) and Kuznetsov
and Nield (2010a,2010b, 2010c) extended corresponding problem for porous
medium. The above study deals with nanofluid as Newtonian nanofluid.
There is growing importance of non-Newtonian visco-elastic fluids in geo-
physical fluid dynamics, chemical technology, petroleum, biological and
material industries. The study of such type of non-Newtonian nanofluid is
desirable. There are many visco-elastic fluids and one such class of visco-
elastic fluid is Maxwellian visco-elastic fluid. Maxwellian visco-elastic
fluid forms the basis for the manufacture of many important polymers and
useful products. The work on visco-elastic fluid appears to be that of Herbert
on plane coquette flow heated from below. He found a finite elastic stress in
the undistributed state to be required for the elasticity to affect the stability.
Using a three constants rheological model due to Oldroyd (1958), he dem-
onstrated, for finite rate of strain, that the elasticity has a destabilizing effect,
which results solely from the change in apparent viscosity. Vest and Arpaci
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(1969) have studied the stability of a horizontal layer of Maxwellian visco-
elastic fluid heated from below. Bhatia and Steiner (1972) studied the prob-
lem of thermal instability of a Maxwellian visco-elastic fluid in the presence
of rotation and found that rotation has a destabilizing influence in contrast
to its stabilizing effect on a viscous Newtonian fluid.

Although thermal instability problems in non-Newtonian nanofluid were
studied by Nield (2010), Sheu (2011a,2011b), Chand and Rana (2012,2015a)
and Rana, Thakur, and Kango (2014), Rana and Chand (2015a, 2015b) by
taking different non-Newtonian fluids.

The choice of the boundary conditions imposed in all these studies on
nanoparticles fraction is somewhat arbitrary, it could be argued that zero-
flux for nanoparticles volume fraction is more realistic. Recently Nield and
Kuznetsov (2014), Chand, Rana, and Hussein (2015), Chand and Rana (2014,
2015b), studied the thermal instability of nanofluid in a porous medium by
taking normal component of the nanoparticle flux zero at boundary which is
more physically realistic. Zero-flux for nanoparticles mean one could control
the value of the nanoparticles fraction at the boundary in the same way as
the temperature there could be controlled. The interest for investigations of
visco-elastic nanofluids is also motivated by a wide range of engineering
applications.

The objective of present work is to investigate theoretically the thermal
instability in a horizontal layer of Maxwellian visco-elastic nanofluid on
the basis of Buongiorno’s model for more realistic boundary conditions.
Galerkin weighted residuals method is used to find the solution of the eigen
value problem. The stability criterions for stationary and oscillatory convec-
tion have been derived and graphs have been plotted to study the effects of
various parameters on the stationary and oscillatory convection.

OVERVIEW OF THE BOOK

The Introduction provides the overview of the stability/instability, basic defi-
nition of stability/instability, Maxwellian visco-elastic fluids, nanofluids and
its applications and other basic concepts which are necessary to understand
the thermal instability in nanofluids.

Chapter 1 deals with theoretically investigation of thermal instability
in horizontal layer Maxwellian visco-elastic nanofluid. A linear stability
analysis based upon normal mode technique is used to find solution of the
fluid layer. The onset criterion for stationary and oscillatory convection is
derived analytically and graphically. The validity of ‘Principle of Exchange
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of Stability’ is examined and sufficient conditions for the non-existence of
overstability are investigated.

Chapter 2 studies thermal convectionin a horizontal layer Maxwellian visco-
elastic nanofluid in presence of rotation. A linear stability theory based upon
normal mode analysis is used to find the solution and eigen value problem is
solved by Galerkin weighted residuals method. The effects of rotation, Lewis
number, modified diffusivity ratio and concentration Rayleigh number on
the stationary convection are investigated both analytically and graphically.

Chapter 3 studies thermal instability in a horizontal layer of Maxwellian
visco-elastic nanofluid in the presence of uniform vertical magnetic field.
The model used for the nanofluid describes the effects of Brownian motion
and thermophoresis. Linear stability theory based upon normal mode analysis
is employed to find expressions for Rayleigh number and critical Rayleigh
number. The effects of magnetic field, Lewis number, modified diffusivity
ratio and concentration Rayleigh number on the stationary convection are
investigated both analytically and graphically. The influence of magnetic
field on the stability is found to be stabilizes the fluid layer.

Chapter 4 deals with the study of thermal instability in a horizontal layer
of Maxwellian visco-elastic nanofluid in the presence of both rotation and
magnetic field. The model used incorporates the effect of Brownian diffusion,
thermophoresis and magnetophoresis. The eigen value problem is solved by
employing the Galerkin weighted residuals method. A linear stability theory
based upon normal mode analysis is used to find expressions for Rayleigh
number for a layer of Maxwellian visco-elastic nanofluid. The influence of
rotation, magnetic field and other parameters on the stability is investigated
both analytically and graphically. It is found that rotation and magnetic field
both stabilizes fluid layer.

Chapter 5 studies thermal instability in a horizontal layer of Maxwellian
visco-elastic nanofluid in porous medium on basis of Buongiorno’s model.
Darcy model has been used for porous medium. The normal mode technique
is used to find the solution and the expression of Rayleigh number for sta-
tionary convection to find the effects porosity and other parameters for the
problem. The results are presented both analytically and graphically.

Chapter 6 deals with study of thermal instability in a horizontal layer of
Maxwellian visco-elastic nanofluid in porous medium. For porous medium,
Brinkman-Darcy model is considered. A linear stability analysis based upon
normal mode analysis is used to find solution of the fluid layer. The onset
criterion for stationary and oscillatory convection is derived analytically and
graphs have been plotted by giving numerical values to various parameters,
to depict the stability characteristics. The effects of the Brinkman Darcy
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number and other parameters on the stability of the system are investigated.
Regimes of oscillatory and non-oscillatory convection for various parameters
are derived and discussed in detail.

Chapter 7 studies the effects of variable gravity on the thermal instability
in a horizontal layer of Maxwellian visco-elastic nanofluid on basis of Buon-
giorno’s model. The expression of Rayleigh number for stationary convection
has been derived to find the effects of variable gravity and other parameters
for the problem. The results are presented both analytically and graphically.

Chapter 8 deals with the study of thermal instability in a horizontal layer
of Maxwellian visco-elastic nanofluid in the presence of ‘Hall effect’. The
model used incorporates the effect of Brownian diffusion, thermophoresis
and magnetophoresis. The eigen value problem is solved by employing the
Galerkin weighted residuals method. A linear stability theory based upon
normal mode analysis is used to find expressions for Rayleigh number for
a layer of nanofluid. The influence of ‘Hall effect’ and other parameters on
the stability is investigated both analytically and graphically. It is found that
‘Hall effect’” destabilizes the stationary convection.

Chapter 9 studies the effects of internal heat source on the thermal insta-
bility in a horizontal layer of Maxwellian visco-elastic nanofluid. A linear
stability analysis based upon normal mode analysis is used to find solution of
the fluid layer. The onset criterion for stationary and oscillatory convection is
derived analytically and graphs have been plotted by giving numerical values
to various parameters, to depict the stability characteristics. The effects of
internal heat source and other parameters on the stability of the system are
investigated. The results are also presented graphically.

Chapter 10 deals with the study of double diffusive convection in a horizon-
tal layer of Maxwellian visco-elastic nanofluid. The model used incorporates
the effect of Brownian diffusion, thermophoresis and magnetophoresis. The
eigen value problem is solved by employing the Galerkin weighted residuals
method. A linear stability analysis based upon normal mode technique and
perturbation method is used to find solution of the fluid layer. The influence
of Dufour parameter, Soret parameter and other parameters on the stability
is investigated both analytically and graphically.

Chapter 11 studies double diffusive convection in a horizontal layer of
Maxwellian visco-elastic nanofluid in porous medium. Brinkman-Darcy
model is used for porous medium. A linear stability analysis based upon
normal mode technique is used to find solution of the fluid layer. The onset
criterion for stationary convection is derived analytically and graphs have
been plotted by giving numerical values to various parameters, to depict the
stability characteristics.
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Introduction

Fluid dynamics is the science which deals with the properties of the fluids
in motion. Before dealing with fluid dynamics, we must know the terms
‘fluid’ and ‘dynamics’. Dynamics is the branch of science which deals with
the motion of bodies under the action of forces. Fluid is a substance that
undergoes deformation under the action of forces. If the deformation in the
material increases continually without limit under the action of shearing
forces, however small, the material is called fluid. This continuous deforma-
tion under the action of forces compels the fluid to flow and this tendency
is called “fluidity”.
As we know that the matter exists in four forms, namely

Solid
Liquid
Gas
Plasma

Liquids and gases taken together are classified as fluids. It has been be-
lieved by the physicists for a long time that there is no clear dividing line
between solids and fluids, since there are many materials which in some
respect behave like a solid and in other respect like a fluid. For example,
jelly, paint and pitch have dual character. However, a loose distinction can
be made between solids and fluids. A solid mass has a definite shape of
the container more or less instantaneously. The deformation in the piece of
solid is small even under the action of large external forces, whereas in the
case of fluids the deformation may be large under the suitably chosen forces
however small in magnitude.

Fluids are classified as liquids and gases. As aresult the distinction between
liquids and gases is much less fundamental so far the dynamical studies are
concerned. The most important difference between the mechanical properties
of liquids and gases is the compressibility. Liquids have strong intermolecular
forces whereas the gases experience weak intermolecular forces. As a result,
the liquids are incompressible fluid while gases are compressible fluids. It
should be mentioned that for velocities which are not comparable with the
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velocity of sound, the effect of compressibility on atmospheric air can be
neglected and it may be considered to be a liquid and in this sense it is called
incompressible air.

The fourth state of matter is called plasma. Plasma is essentially a highly
ionized matter. Therefore, in plasma we have to take into account the charges
on its particles and associated electromagnetic phenomena. We go to plasma
state when we deal with Earth’s molten core, ionosphere, stellar interiors
and atmospheres.

Fluid dynamics has several sub disciplines and its study is important to
physicist, whose main interest is to understand phenomena, study of fluid
mechanics is important to engineer, whose interest is to solve industrial
problems, aerospace engineer may be interested to designing the airplanes
that have low resistance and at the same time have high ‘lift’ force to support
the weight of the plane. Fluid dynamics has a wide range of applications,
including calculating force and moments on aircraft, determining the mass
flow rate of petroleum through pipelines, predicting weather patterns etc.
Some of its principles are even used in traffic engineering, where traffic is
treated as a continuous fluid.

Fluid dynamics offers a systematic structure that underlies these practi-
cal disciplines and that embraces empirical and semi-empirical laws derived
from flow measurement, used to solve practical problems. The solution of a
fluid dynamics problem typically involves calculation of various properties
of the fluid, such as velocity, pressure, density and temperature as functions
of space and time.

Fluid dynamics, like the study of any other branch of science, need math-
ematical analysis as well as experimentation. The analytical approach helps
us finding the solution of certain idealized and simplified problems and
understands the unity behind apparently dissimilar phenomena. The math-
ematical description of the state of a moving fluid is effected by means of
function which give the distribution of the fluid velocity v = v(X,y,z,t) and any
two thermodynamic quantities pertaining to the fluid, for instance pressure
p = p(X,y,z,t) and density p = p(x,y,z,t). All the thermodynamic quantities
are determined by the values of any two of them, together with the equation
of state; hence if we are given five quantities, namely three components of
velocity v, the pressure p, density p, the state of moving fluid is completely
determined.

It is very difficult to trace the origin of the science of fluid dynamics but
the systematic study of fluid dynamics started only after the Euler’s discovery
of the equations of motion of an inviscid fluid. Later on, Lagrange gave the
concept of velocity potential and stream function, Reynolds discovered the
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equation of turbulent motion, Prandtl put forward the boundary layer theory,
the theories of turbulence and stabilities are the created by Taylor and Rayleigh
respectively. The principle of resistance in flow in capillary tubes was given
by Poiseuille, the credit for the equation of motion of viscous fluids goes to
Navier and Stokes. Still later, some other good contribution were given by
many more famous scientists, which include Bénard, Kutta, Prandtl, Lord
Kelvin, Somemrfeld, Karman, Rayleigh and Zhukovski etc. Now a day, fluid
dynamics has become a very vast subject and has given birth to other subjects
like meteorology, Newtonian flows, non-Newtonian flows, gas dynamics and
Magnetohydrodynamics (MHD) etc.

The foundational axioms of fluid dynamics are the laws of conservation
of mass, conservation of momentum and conservation of energy. These are
based on classical mechanics and are modified in relativistic mechanics.
The central equations for fluid dynamics are non-linear differential equation
describing the flow of a fluid whose stress depends linearly on velocity and
pressure. In addition to the above, fluids are assumed to obey the continuum
assumption.

STABILITY OF AHYDRODYNAMIC SYSTEM

For nearly century now, hydrodynamic stability has been recognized as one
of the central problem of the fluid dynamics. It is concerned with how and
when laminar flow breakdown, their subsequent development and eventual
transition to turbulence. The system is stable with respect to small perturba-
tions only when certain conditions are satisfied. When the disturbances can
grow to finite amplitude and reach equilibrium and resulting in a new steady
state, the new state may then become unstable to other types of disturbances,
and may grow to another steady state, and so on. Finally, the system becomes
a superposition of various large disturbances of random phases, and reaches
a chaotic condition that is commonly described as turbulent.

Let us consider a hydrodynamic system, which in accordance with the
equations governing it is in a stationary state. Let us consider a set of n pa-
rameters, which define the system such as pressure gradients, temperature
gradients, rotation and magnetic fields and others parameters. If the system is
disturbed slightly and the disturbances gradually die down, it is considered to
be stable. If the disturbance grows in amplitude in such a way that the system
progressively departs from the initial state a never reverts to it, the system is
called unstable. A system cannot be considered as stable unless it is stable
with respect to every possible disturbance to which the system is subjected.
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Therefore, stability must imply that there exists no mode of disturbance for
which it is unstable.

States of marginal stability can be one of the two kinds. If the amplitudes
of a small disturbance can grow or be damped a periodically, the transition
from stability to instability takes place via marginal state exhibiting a station-
ary pattern of motions. If the amplitude of a small disturbance can grow or be
damped by oscillations of increasing or decreasing amplitude, the transition
takes place via marginal state exhibiting oscillatory motion with a certain
definite characteristic frequency. If at the onset of instability a stationary
pattern of motion prevails, then one says that the ‘Principle of Exchange of
Stabilities’ is valid and that instability sets in as stationary cellular convection,
or secondary flow. On the other hand, if at the onset of instability oscillatory
motions prevail then it is called the case of overstability.

The first major contribution on the study of hydrodynamics stability can
be found in the theoretical paper of by Helmholtz (1868). Twelve year after
the discovery of Helmholtz; Rayleigh (1880) developed a linear stability
theory. Thereafter the combined efforts of Reynolds (1883) and Kelvin (1880,
1887), Rayleigh (1892a, 1892b) produced a rich harvest of knowledge on
the subject. The first experimental investigations on thermal convection back
date to Thomson (1882). Early in 20" century, the studies on hydrodynamics
stability were connected with Bénard experiments on thermal instability in
thin fluid layers. The experiments by Bénard (1900, 1901), in particular, have
attracted great attention and are today considered classical fluid mechanics.
The Bénard stability problem was first formulated and mathematically solved
by Rayleigh (1916) for the idealized case of free boundaries with linear tem-
perature gradient and further elaborated by Chandrasekhar (1961).

MAGNETOHYDRODYANMICS

Magnetohydrodynamics (MHD) is the union of the two fields of science,
namely electromagnetic theory and fluid dynamics. Hydromagnetics is the
science which deals with the motion of electrically conducting fluids in the
presence of a magnetic field. The study of the interaction between magnetic
field and electrically conducting moving fluids is currently receiving consid-
erable interest. The field of MHD was initiated by Swedish physicist Hannes
Alfvén, who received the Nobel Prize in Physics in 1970 for fundamental
work and discoveries in Magnetohydrodynamics with fruitful applications
in different parts of plasma.



Xix

Because of its tremendous importance in the quest for thermonuclear
fusion, vast literature is available on the subject of hydromagnetic stability.

Fluid dynamics and electrodynamics theory were being developed in-
dependently of each other almost up to the first half of 20 century. The
systematic study of MHD started only after 1942 when Alfven combined the
two subjects by considering the motion of conducting fluids in the presence
of magnetic field. This study has now come to be known as Magnetohydro-
dynamics or Hydromagnetics. It is concerned with physical systems speci-
fied by the equations that result from the fusion of those of hydrodynamics
and electromagnetic theory. It is a well known fact that when a conductor
moves in a magnetic field, electric currents are induced in it. These currents
experience a mechanical force called the Lorentz force, due to the presence of
magnetic field. This force tends to modify the initial motion of the conductor.
Moreover, the induced currents generate their own magnetic field which is
added on to the applied magnetic field. Thus there is coupling between the
motion of the conductor and electromagnetic field, which is exhibited in a
more pronounced form in liquid and gaseous conductors. Lorentz force is
generally small unless inordinately high magnetic fields are applied. Thus
this force is incapable of altering the motion as a whole considerably, but if
it acts for a sufficiently long period, the molecules of gases and liquids may
get accelerated considerably to alter initial state of these types of conductors.

Alfven (1942) proved his famous theorem that magnetic lines of force are
glued to ideally conducting fluid. Every motion of the fluid perpendicular to
the lines of force is forbidden because it can give infinite eddy currents. Thus
the matter of the liquid is fastened to the lines of force. Alfven also discov-
ered the simplest example of coupling between the mechanical forces and the
magnetic lines of force in a highly conducting fluid moving in an external
magnetic field and showed that this interaction would produce a new kind of
wave which he called a Magnetohydrodynamic wave. The above discoveries
of Alfven led to systematic study of Magnetohydrodynamic (MHD). The
subject of MHD is, thus, comparatively of recent origin. It found its birth in
attempts to explain certain phenomena in cosmic physics; for example, the
generation and maintenance of original magnetic fields of Earth and Sun, the
variability of magnetic stars and production of sunspots which are associated
with magnetic fields.

Magnetic field introduces anisotropy, elasticity and lateral pressure in
the fluid. Anisotropy results in the difference of electrical conductivity and
diffusion coefficients along and perpendicular to the magnetic field. Elastic-
ity and lateral pressure are responsible for the propagation of MHD waves.
Attempts to show the existence of MHD waves in the laboratory were made



XX

by Lenhert (1954). Bullard (1949) and Batchelor (1950) pointed out that the
magnetic field imparts to the fluid certain rigidity along with certain prop-
erties of elasticity which enables it to transmit disturbances by new modes
of wave propagation. The experimental work of Lenhert (1954) concluded
that the behavior of a conducting fluid is a very different in the absence and
in the presence of magnetic field. For example, there is a tendency for all
motions to become uniform along the magnetic field, or in other words, a
tendency towards two-dimensional motion. These are some of the interesting
properties associated with the magnetic field. Generally the magnetic field
has a stabilizing effect on the instability. But a few exceptions are there. For
example, Kent (1966) studied the effect of a horizontal magnetic field, which
varies in the vertical direction, on the stability of parallel flows and showed
that the systems is unstable under certain conditions, while in the absence
of magnetic field the system is known to be stable.

Although the continuum approach is much simpler than the more rigor-
ous gas kinematic one, it is not without difficulty. This is due to the reason
that the hydrodynamic equations are basically non-linear even though the
electrodynamics equations are linear. The coupling of the two systems of
equations, hydrodynamic and electrodynamics causes the non-linear aspects
to be carried over into the resulting MHD equations. The new phenomena
which arise are interesting. For example, the coupling between longitudinal
and transverse fields provides the possibility of energy transfer between
the longitudinal and transverse modes of oscillations. This is of interest in
astrophysics as well as in technology.

Initially the problem connected with the origin and maintenance of Earth’s
magnetic field created considerable interest in the study of hydro magnetic
inertial waves. In the sequel we shall adopt a continuum picture. Plasma
is essentially a highly ionized matter. The suns as well as the stars are in
plasma state.

THE BASIC EQUATIONS OF STABILITY

For the mathematical description of hydrodynamics flow, we need some
equations governing hydrodynamics flow of a viscous fluid of varying den-
sity and temperature. These equations based upon the basic of conservation
laws of mass, momentum and energy together with the induction equation
for the magnetic field which are given as follows:
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Equations of state (one)
Equations of continuity (one)
Equations of motion (three)
Equations of energy (one)

These equations are mathematical expressions of basic physical laws.
These are six in number and therefore, determine the six unknowns of the
fluid motion viz., the three components of velocity v(u,v,w) the tempera-
ture T, the pressure p, and the density p, which are functions of both space
coordinates and time.

EQUATION OF STATE

Variables that depend only upon the state of a system are called variables of
state. The variables of state are pressure p, density p and temperature T. It is
an experimental fact that a relationship between these three thermodynamic
variables exists and can be written as F (p, p, T) = 0, which is commonly
called the ‘Equation of State’. For substances with which we shall be prin-
cipally concerned, we can write the equation of state as

p:p0[1—a(T—To)] (1)

where « is the coefficient of volume expansion and T is the temperature at
density p = p,.

EQUATION OF CONTINUITY

This equation expresses that the rate of generation of mass within a given
volume is entirely due to the net inflow of mass through the surface enclosing
the given volume (assuming that there are no internal sources). It amounts
to the basic physical law that the matter is conserved; it is neither being cre-
ated nor destroyed.

Assuming the fluid is incompressible, the equation of continuity is given by

V-v=0, 2)

where v is velocity of fluid.
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EQUATION OF MOTION

The equations of motion are derived from Newton’s second law of motions,
which states that “Rate of change of linear momentum = Total force”.

Equation of motion represents conservation of momentum. Thus equations
of motion for a viscous, incompressible fluid is given by

d
pd—jsz—prvv, 3)

where X is the external force acting on fluid, p is the viscosity of the fluid.
Since external forces are of non-electromagnetic origin (gravity) only, then
equation of motion can be written as

dv
pE:—VerngruV.v. “4)

EQUATION OF ENERGY

Equation of energy represents the law of conservation of energy. In the analy-
sis of convective flows, a thermal energy balance is necessary to define the
temperature field and the heat transport. Chandrasekhar (1961) the equation
of energy for an incompressible fluid, takes the form

pe, %—J; +pcv-VT =k VT, (&)

where ¢ , k _stand for specific heat at constant volume and thermal conductiv-
ity respectively. The viscous dissipation term, being very small in magnitude,
has not been included in the equation (5).

HYDRODYNAMIC AND HYDROMAGNETIC STABILITY

Hydrodynamics as well as magnetohydrodynamics are governed by non-
linear partial differential equations. However, in spite of the complexity of
the equations determining a fluid flow, some simple patterns of flow (such
as between parallel planes, or rotating cylinders) are permitted as stationery
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solutions. However, these patterns of flow can be realized only for certain
ranges of the parameters characterizing them, and cannot be realized outside
these ranges. The reason being their inherent instability or in their inability
to sustain themselves against small perturbations to which ever physical
systems is subjected. Problems of hydrodynamics instability thus originated
from the differentiation of the unstable flows from the stable patterns of
permissible flows.

Stability can be defined as a quality of being immune to small disturbances.
Thus, by stability we have permanent type of equilibrium state. An equilib-
rium state or steady flow, to be of permanent type, should not only satisfy
the mechanical equation, but must be stable against arbitrary perturbations.

Inrecent years, the class of such problems of instability has been enlarged
by the interest in hydrodynamic flow of electrically conducting fluids in the
presence of magnetic fields. This is the domain of hydromagnetics, as we
have discussed earlier, and there are problems of hydromagnetic stability
even as there are problems of hydrodynamic stability.

Let us consider a hydrodynamic or hydromagnetic system in which the
equations governing it are in stationery state. Let X, X, X3, . Xj, be a set of
parameters which define the system. These parameters include geometrical
parameters such as the characteristic dimensions of the system; parameters
characterizing the velocity field which may prevail in the system, magnitudes
of the forces acting on the system such as pressure gradient, magnetic fields,
rotation and others. While considering the stability of such a system, with a
given set of parameters X, Xz, e Xj, we seek to determine the reaction of
the system to small disturbances.

If the system is disturbed and the disturbance gradually dies down or if
the system never departs appreciably from this stationery state, the system is
said to be stable with respect to that particular disturbance. If the disturbance
grows in amplitude in such a way that the system progressively departs from
the initial state and never reverts to it, the system is called unstable with re-
spect to that particular disturbance. A system may be considered as unstable
even if there is only one special mode of disturbance with respect to which
it is unstable. A system cannot be considered as stable unless it is stable
with respect to every possible disturbance to which the system is subjected.
Therefore stability must imply that there exists no mode of disturbance for
which it is unstable.

If all the initial states are classified as stable, or unstable, according to
the criterion stated, then the locus which separates the two classes of states
defines the state of marginal stability of the system. By this definition, a
marginal state is a state of neutral stability. The locus of the marginal state
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in the (X, X, D, T Xj) space will be defined by an equation of the form
XX, X, Xys s Xj) = (. The determination of this locus is one of the prime
objects of an investigation on hydrodynamic stability.

In thinking of the stability of a hydrodynamic system, itis often convenient
to suppose that all parameters of the system, except one, are kept constant
while the chosen one is continuously varied. We shall then pass from stable
to unstable states when the particular parameter takes a critical value. We
then say that instability sets in at this value of the chosen parameter when
all the others have their pre-assigned values.

States of marginal stability can be one of two kinds. If the amplitude of a
small disturbance can grow or be damped a periodically, the transition from
stability to instability takes place via a marginal state exhibiting a stationary
pattern of motions. If the amplitude of a small disturbance can grow or be
damped by oscillations of increasing or decreasing amplitude, the transition
takes place via a marginal state exhibiting oscillatory motions of definite
characteristic frequency.

If at the onset of instability a stationary pattern of motions prevails, then
one says that the ‘Principle of the Exchange of Stabilities’ is valid and that
instability sets in as stationary cellular convection, or secondary flow. On the
other hand, at the onset of instability oscillatory motions prevail, and then it
is called the case of over stability.

THERMAL INSTABILITY

Convective phenomena are very common in nature and they hold a key role
in many fields namely scientific fields, engineering, astrophysics and me-
teorology etc. Convection is of three types

1. Thermal Convection (Natural Convection)
2. Forced Convection
3. Mixed Convection

Thermal convection is a term that refers to heat transport by fluid flow
generated by a thermal or solute concentration gradient. On the other hand,
the term forced convection refers to convection phenomena generated by
imposed pressure gradients. If both natural and forced convection occurs the
term mixed convection is used.

Thermal instability often arises when fluid is heated from below. If the
temperature difference between the two horizontal boundaries is sufficiently
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small, then the heat is transferred through the fluid by conduction alone. For
greater temperature differences the conduction state becomes unstable and
a convective motion is set up, or in other word when the temperature differ-
ence across the layer is great enough, the stabilizing effects of the viscosity
and thermal conductivity are overcome by the destabilizing buoyancy, and
an overturning instability ensures as thermal convection. We consider a hori-
zontal layer of fluid in which an adverse temperature gradient is maintained
by heating underside. Then the fluid at the bottom becomes lighter than
the fluid at the top and thus it becomes a ‘top heavy arrangement’, which is
potentially unstable. As a result of this there will be a natural tendency on
the part of the fluid to redistribute itself to make up the deficiency in the
arrangement. But this tendency is prevented to a certain extent by its own
viscosity and therefore instability sets in only when the adverse temperature
gradient exceeds certain critical value.

Convective instability seems to have been first described by the Thomson
(1882), the elder brother of Lord Kelvin, but the first quantitative experiments
were made by Bénard (1900). Simulated by the Bénard’s experiments, Ray-
leigh (1916) formulated the theory of convective instability of layer of fluid
between two horizontal planes. Rayleigh-Bénard convection originated from
the experimental works of Bénard (1900) and theoretical analysis of Rayleigh
(1916). Lord Rayleigh studied the dynamic origins of convective cells and
proposed his theory on the buoyancy driven convection. He approached the
analysis as a stability problem, searching for unstable modes and their growth
rates. He used Euler’s equation, the thermal energy balance and he worked
within the Oberbeck-Boussinesq approximation. Moreover, he performed a
linear stability analysis, neglecting all the non-linear terms, a hypothesis that
allowed him to solve analytically the problem. He showed that instability
would occur only when the adverse temperature gradient was so large that
afBgd*

VK

the dimensionless parameter R = exceeds certain critical value. This

parameter is called Rayleigh number. Here 5 is the uniform tem-

Z

perature gradient, which is to be maintained, g is the acceleration due to
gravity, d is depth of the layer, « is the coefficient of volume expansion, x is
the thermal diffusivity and v is the kinematic viscosity.

Bénard instability first analyzed by Rayleigh (1916) and subsequently
Jefferys (1928), Low (1929) and Pellow and Southwell (1940) extended
the Rayleigh’s work. Schmidt and Milverton (1935) verified experimentally
the prediction of the onset of Bénard convection in fluids confined between
horizontal isothermal solid surfaces.
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Alfven (1942) proved this famous theorem that magnetic lines of force are
glued to ideally conducting fluid. Every motion of the fluid perpendicular to
the lines of force is forbidden because it can give infinite eddy currents. Thus
the matter of the liquid is fastened to the lines of force. Alfven (1942) also
discovered the simplest example of coupling between the mechanical forces
and magnetic lines of force in a highly conducting fluid moving in an external
magnetic field and showed that this interaction would produce a new kind of
wave, which is called a Magneto Hydro Dynamic wave. The above discover-
ies of Alfven led to a systematic study of Magnetohydrodynamics (MHD).

For more detail and developments of the subject of stability one may refer
toJoseph (1976), Chandrasekhar (1961), Sherman and Sutton (1962), Oberoi
and Devanathan (1963), Joseph (1976), Drazen and Reid (1981), Zierep and
Qertel (1982) and Banerjee and Gupta (1991).

THERMOSOLUTAL INSTABILITY

In classical thermal instability problems, it has been assumed that the driving
density differences are produced by the spatial variation of single diffusing
property (heat). It has been seen that a new phenomena occur when the si-
multaneous presence of two or more components with different diffusivities
is considered. Such types of problems are known as ‘thermosolutal instabil-
ity problems or double-diffusive problems. The problem of thermosolutal
instability in a layer of layer of fluid heated from below and subjected to
a stable salinity gradient has been given by Veronis (1965), Nield (1968),
Turner (1974), Knobloch (1980), Sunil et al. (2005), Motsa (2008), Wang and
Tan (2008, 2011), Gupta and Sharma (2008), Nield and Kuznetsov (2011a),
Kuznetsov and Nield (2010c), Malashetty and Kollur (2011), Malashettty
et al. (2009b), Rana and Chand (2013b), Chand and Rana (2012e, 2014b),
Goyal and Goyal (2015), Rana et al. (2014b, 2014c), Umavathi and Mohite
(2014), Umavathi et al.(2015), Rana and Chand (2015¢), Rana and Thakur
(2016). Thermosolutal instability problems are of great importance because
of its application to oceanography, astrophysics and various engineering
disciplines and are well described in Turner (1973, 1974).

BOUSSINESQ APPROXIMATION

Boussinesq approximation has been used in the Rayleigh discussion, because,
in solving the hydrodynamic equations, we have difficulties regarding their
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non-linear character and the variable nature of the various coefficients due to
variations in temperature. The equations which were derived are, therefore of
quite general validity. Due to these complications it is extremely difficult to
solve these equations. So, there is a need for introducing some mathematical
approximation to simplify the basic equations. However, as was first pointed
out by Boussinesq (1903), there are many situations of practical occurrence
in which the basic equation can be simplified considerably. These situations
occur when variability in the density and in various coefficients is due to
variations in the temperature of only moderate amounts. Boussinesq (1903)
got rid of various coefficient variations by taking them to be constants by
applying some approximations which are given below. However, non-linearity
of equations still prevails under these approximations.

Boussinesq first pointed out that there are many situations of practical
occurrence in which the basic equations can be simplified. These situations
occur when the variation in the density and different coefficients is due to
variations in temperature of only moderate amounts. The origin of simplifi-
cation in these cases is due to the smallness of the coefficient of volume
expansiona, whose range is10*to10™*. For variations in temperature not
exceeding 10°C (say), the variations in density p are at most one percent. The
variations in the other coefficients (consequent to the variations in density)
must be of the same order. But there is one important exception that the vari-
ability of p in the term of external force in the equation of motion cannot be
ignored. This is because the acceleration resulting from (8p) Xi =aAT Xi
(where AT is a measure of the variations in temperature which occur) can
be quite large. Accordingly, we may treat p as a constant in all terms in the
equations of motion except the one in the external force. This is the ‘Bouss-
inesq approximation’. This approximation makes the mathematics simpler
and it has also gained a wide recognition in other problems of non-homoge-
neous fluids.

Oberbeck and Boussinesq introduced an extremely useful hypothesis that
allows a dramatic simplification in the approach to the convection studies.
They assumed that all the physical properties of the fluid are temperature
independent, except for the density in the gravitational body force term of
the momentum balance equation. Here the density is considered as a linear
function of the temperature which is given by

p=pfi=o(r-1).
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CONTINUUM HYPOTHESIS

The continuum hypothesis is basically an approximation, in the same way
planets are approximated by point particles when dealing with celestial
mechanics, and therefore results in approximate solutions. Consequently,
assumption of the continuum hypothesis can lead to results which are not
of desired accuracy. Thus under the right circumstances, the continuum hy-
pothesis produces extremely accurate results.

For fluids which are sufficiently dense to be a continuum, do not contain
ionized species, and have velocities small in relation to the speed of light, the
momentum equations for Newtonian fluids are the Navier-Stokes equations,
which describe the flow of a fluid whose stress depends linearly on velocity
gradients and pressure. The equations can be simplified in a number of ways,
all of which make them easier to solve. Some of them allow appropriate fluid
dynamics problems to be solved in closed form. In addition to the mass, mo-
mentum, and energy conservation equations, a thermodynamically equation
of state giving the pressure as a function of other thermodynamic variables
for the fluid is required to completely specify the problem.

NON-DIMENSIONAL PARAMETERS

Two fluids flows are said to be dynamically similar if the values of the di-
mensionless parameters in both the flows are remain the same. There are
two general methods of obtaining the dimensionless parameters associated
with a given problem:

1. Inspectional analysis
2. Dimensional analysis

The inspectional analysis method is possible only when we have acomplete
set of descriptive differential equations. The equations are made dimension-
less and in this process certain dimensionless parameters appear as the co-
efficient of the various terms in the equations. These co-efficient are called
non-dimensional parameters.

In the dimensional analysis method, the non-dimensional parameters are
found without knowledge of the governing differential equations. Instead, the
relevant variables are collected and combined together to give the maximum
number of independent dimensionless parameters. The complete set of rel-
evant variables must be known and no extraneous variables can be introduced,
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otherwise the final set of non-dimensional parameters may be meaningless.
The advantage of dimensional analysis is that the descriptive equations are not
necessary and one is rewarded according to insight and cleverness. A useful
role of thumb is that the number of independent non-dimensional parameters
is equal to the total number of independent variables in the problem and the
number of fundamental units, which may be taken as mass, length, time and
the fundamental electrical unit, such as charge, making a total of four. The
important dimensionless parameters are discussed below.

Rayleigh number Ra,

Concentration Rayleigh number Rn,
Prandt]l number Pr,

Magnetic Prandtl number Pr,,
Lewis number Le,

Taylor number Ta,

Chandrasekhar number Q,

Hall effect parameter M,

Darcy number Da etc.

METHODS USED TO DETERMINING STABILITY
Following methods are used to determine the stability/instability of the system.
Perturbation Method

The perturbation method is the most suitable method to find the stability of
the system. In this method, the hydrodynamic system whose instability one
wish to establish, is supposed to undergo a specific small trail displacement
and the effect of the additional forces brought into play is considered. If the
forces thus produced tend to increase the displacement, thereby enhancing
the deformation of the system still further, then system is unstable.

Energy Method

The more general method to discuss stability is the energy method. This is
the oldest method of stability analysis which can accommodate finite distur-
bances also. It has also been applied with some success to oscillating flows
between rotating cylinders.
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We make use of an energy principle in this method. In a mechanical sys-
tem for which there exists a potential energy function V', a stationery state
of the system will be unstable or stable according as V' is a strict maximum
or minimum. If T' the kinetic energy of the system, then in such a system
T' + V' = Constant.

Let V' attains astrictminimum V' forastationary configuration, and when
the system is disturbed slightly, then V'>V" 'in a neighboring configuration.

Since we must have T'+V'=T' +V' , where T' , T (T' >T") are the kinetic
energies of the system in the stationary and disturbed states.

From above, we get

TI — TIO _ (VI_VIO)’

<T,

this shows that kinetic energy is decaying. Thus system therefore does not
deviate further from the stationary configuration and remains in its proximity.
Hence the system is stable.

On the other hand, if V' denotes a strict maximum for a stationary con-
figuration, then T' > T' and the system will tend to depart more and more
from the initial state, hence the system is unstable.

In the modern formulation of the energy method one considers the global
energy of a difference motion. The global energy, boundary constraints and
kinetic condition are use in two line of deduction. The first of these leads to
a universal stabilities criterion, universal in the sense that specific details of
the flow geometry and details of the basis motion need not be completely
specified. A second line of deduction leads to the formulation of a maximum
problem and achieves a sharper result by making more efficient use to known
details of the basic flow; the procedure is elegantly developed by Serrin (1959)
These result are of importance because they apply to a difference motion and
so guarantee stability to finite disturbance. Serrin (1959) calculation of the
stability limits for coquette flow between rotating cylinders shows that this
method can give result which are not too conservative. Joseph (1965, 1966)
extensions of the method to accommodate convective motions governed by
the non-linear equations of Boussinesq demonstrate that even stronger results
are possible. This method has been used Straughan (1991) in his book “The
energy method, stability and nonlinear convection”.
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Normal Mode Method

In the instability problems normal mode method is applied, because it gives
the complete information of about the instability and rate of growth of in-
stability. Stokes, Kelvin and Rayleigh adapted the method of normal mode
to fluid dynamics. By giving an infinitesimal increment to various variables
describing the flow, the linearized equations are obtained and these linear-
ized perturbed equations are analyzed. Methods of analyzing the stability
of flows were formulated in Reynolds’s time. The method of normal modes
for studying the oscillations and instability of a dynamics system of par-
ticles and rigid bodies was already highly developed. A known solution of
Newton’s or Lagrange’s equations of motion for the system was perturbed.
The equations were linearized by neglecting product of perturbations. It was
further assumed that the perturbation of each quantity could be resolved
into independent components or modes varying with time t like e™ for some
constant n, which is in general complex. The values of n for the modes were
calculated from the linearnized equations. If the real part of n was found to
be positive for any mode, the system was deemed unstable because general
initial small perturbation of the system would grow exponentially in time
until it was no longer small. The essential mathematical difference between
fluid and particle dynamics is that the equations of motion are partial rather
than ordinary differential equations. This difference leads to many technical
difficulties in hydrodynamics stability, which have been overcome for only
a few classes of flows with very simple configurations.

“Normal mode analysis method” is used to determine the stability of a
stationary state of a hydrodynamic or hydrodynamic system. The beauty of
the method is that it gives complete information about instability including
the rate of growth of any unstable perturbation. This method has been used
by Chandrasekhar (1961), while discussing the various instability problems.

Here we assume that the perturbations are infinitesimally small and use
of the linear theory by retaining only linear terms in the equations governing
perturbations. To study these equations we assume further that the perturbed
quantities have time variation proportional to e". The parameter ‘n’ is in
general, function of the wave number ‘a’ and of other parameters defining
the system. If the value of n (complex number) determined by the dispersion
relation is:

1. Real and negative, the system is stable.
2. Real and positive, the system is unstable.
3. Complex, say n =n_+ in, where n_and n_ are real and
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3.1. n_< 0, the system is stable;
3.2. n_> 0, the system is unstable;
3.3. n_= 0, the instability is oscillatory.

4. Further, if n_= 0 implies that n, = 0, then the stationary (cellular) pattern
of flow prevails on the onset of instability. In other words, “Principle of
Exchange of Stabilities” is valid.

5. Ifn =0, does not imply that n. = 0, then overstability occurs.

6. From this it follows that if n is real, then n = 0 will separate the stable
and unstable modes and we will always have principle of exchange of
stabilities.

Thus normal mode depends upon time exponentially with complex ex-
ponent. It is the real part of the complex solution, whose real and imaginary
parts separately are the solution, because system is linear.

The main drawback of this method is that in some problems the disper-
sion relation becomes so much complicated that it is not possible to draw any
meaningful conclusions from it. Finally, normal mode analysis is based on
the liberalized stability theory and therefore, it has all the defects of linear
theory. A review in this regards has been given by Drazin and Reid (1981).

Galerkin Method

Galerkin Method invented by Russian Mathematician Boris Grigoryevich
Galerkin which is used to solve differential equation (second-order or fourth-
order) which are difficult, even possible to solve analytically. Finlayson (1972)
gave an extension of the Galerkin approximate method. The commonly used
Galerkin method involves the trial functions of the vertical coordinate only for
the onset of convection. It is one of the most popular and powerful numeri-
cal techniques that can be applied to many engineering problems which are
governed by a differential equations with boundary conditions.

BOUNDARY CONDITIONS

The fluid is confined between planes z = 0 and z = d. Regardless of the
nature of these boundary surface, we must require

O=0andw=0at z=0 and z = d.
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There are two further boundary conditions which, however, depend upon
the nature of the surface at z = 0 and z = d. Now if the surface is rigid then
there is no slip occurs on this surface implies that not only w, but horizontal
component of velocity u and v vanish. Thus u =0 and v = 0.

Since the condition must be satisfied for al x and y on the surface, it fol-
lows from the equation of continuity

du 0v w_
or Ody 0z ’

thus ow _ 0 on the rigid surface.
z

For the free surface both the normal stress and shearing stress are zero.

Thus @ = @ = 0 on the free surfaces.

z 0z
2

Also from equation of continuity, we have 1: =0.

The boundary condition on the normal component of vorticity

¢ = 0 on the rigid surface,

s
— =0 on free surface.
z

MORE REALISTIC BOUNDARY
CONDITION FOR NANOFLUID

Nield and Kuznetsov (2014) pointed out that this type of boundary condi-
tion on volume fraction of nanoparticles is physically not realistic as it is
difficult to control the nanoparticles volume fraction on the boundaries, and
suggested an alternative boundary condition that is, the flux of volume frac-
tion of nanoparticles is zero on the boundaries

Thus boundary conditions when the flux of volume fraction of nanopar-
ticles is zero on the boundaries

D
w=0T=T, DB8—¢+—T8—T =0atz=0
0z T, 0z

and
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0 D, or

w=0,T=T, D, =
0z T, 0z

NON-NEWTONIAN FLUIDS

Many materials such as polymer solutions or melts, drilling mud, clastomers,
certain oils and greases and many other emulsions and gel are classified as
non-Newtonian fluids. Most of these fluids used in industries. For these kinds
of fluids, the commonly accepted assumption of a linear relationship between
the stress and the rate of strain does not hold or the fluid that show distinct
deviation from “Newtonian hypothesis” (stress on fluid is linearly proportional
to strain rate of fluid) is called non-Newtonian fluids. Non-Newtonian fluids
are those in which viscosity at a given pressure and temperature is a func-
tion of velocity gradient. The non-Newtonian fluids have been modeled by
constitutive equations which vary greatly in complexity. The non-Newtonian
fluid considered described by the constitutive relations

"

pi/k =Py~ ’ijp >
d d
[1 + »Eink = 2%[1 +», a] €, >

1

Ou.  Ou,
€k =3
2

—+
ox,  0Ox
J

: (6)

,

where p/ p, e, ,", andp’ denote respectively the normal stress tensor, shear
stress tensor, rate of strain tensor, Kronecker delta and scalar pressure. Here

% is the convection derivative, A the relaxation time and, A (<)) is the re-

tardation time. If A = O the fluid is Maxwellian visco-elastic fluid; while for
A, =0, the fluid is referred as Oldroydian visco-elastic fluid and for A = A
= 0, the fluid is known as Newtonian viscous fluid. Non-Newtonian fluids
help us understand the wide variety of fluids that exist in the physical world.
Plastic solids, power-law fluids, visco-elastic fluids, and time-dependent
viscosity fluids are others that exhibit complex and counterintuitive relation-
ships between shear stress and viscosity/elasticity. These fluids help us un-
derstand the wide variety of fluids that exist in the physical world and char-
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acterized by power-law model. The visco-elastic fluid is one of many
models that have proposed to describe the non-Newtonian behavior of such
fluids. The first visco-elastic rate type model, widely used all over is due to
Maxwell (1866). Maxwell fluid is viscous in nature and has a great storage
of energy. The work on visco-elastic fluid appears to be that of Herbert on
plane coquette flow heated from below. He found a finite elastic stress in the
undistributed state to be required for the elasticity to affect the stability. Us-
ing a three constants rheological model due to Oldroyd (1958, 1965), he
demonstrated, for finite rate of strain, that the elasticity has a destabilizing
effect, which results solely from the change in apparent viscosity. There are
many visco-elastic fluids which cannot be characterized by Maxwell or
Oldroyd’s constitutive relations e.g. Rivlin-Ericksen and Water’s B' elastic-
viscous fluids. Ericksen (1953), Rivlin and Ericksen (1955) proposed a
model for Rivlin-Ericksen elastic-viscous fluid and Walters (1960, 1962) for
Water’s B' elastic-viscous fluids. The principles and applications of rheol-
ogy were given by Fredricksen (1964). A detailed study of convection in
Maxwell visco-elastic fluid is given by Tom and Strawbridge (1953), Green
(1968), Vest and Arpaci (1969), Seerin (1959), Bhatia and Steiner (1972,
1973), Srivastava (1971), Sokolov and Tanner (1972), Sharma (1975), Rosen-
blat (1986), Rudraiah et al. (1989), Sharma and Sharma (1990), Martinez-
Mardones (1990, 2000, 2002, 2003), Larson (1992), Sharma and Kumari
(1993), Sharma and Sunil (1994), Shenoy (1994), Sharma and Kumar (1996a,
1996b, 1997), Prakash and Kumar (1999a, 1999b), Sharma et al. (1999,
2000,) Prakash and Chand (1999, 2000, 2002), Sharma and Rana (2001),
Sharma et al. (2001), Sharma and Kishore (2001), Kaloni and Lou (2002),
Kim et al. (2003),Yoon et al. (2004), Sunil et al. (2005), Kumar and Singh
(2006), Malashetty et al. (2006, 2009a, 2009b), Sharma et al. (2006), Laroze
et al. (2007), Wang and Tan (2008, 2011), Gupta and Sharma (2008), Zhang
et al. (2008), Malashetty et al. (2009a, 2009b), Awad et al. (2010), Agarwal
(2010), Nield (2010), Chand (2010, 2011, 2013c, 2015a), Chand and Kango
(2011), Fakhar and Anwar (2012), Gupta and Agarwal (2011), Kang et al.
(2011,2014), Thakur and Rana (2013), Guptaetal. (2012), Khanetal. (2012),
Singh and Mehta (2013), Chand and Rana (2012d, 2012e, 2014b), Rana and
Thakur (2012b, 2012c, 2013a, 2013b), Agarwal and Verma (2014), Kango
et al. (2013), Rana and Chand (2012, 2013a), Kumar and Kumar (2013),
Chand et al. (2015¢) and Rana et al. (2012, 2014a, 2014b, 2015, 2016a,
2016b), Umavathi et al. (2015), Umavathi and Mohite (2016), Umavathi and
Kumar (2016) etc.
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NANOFLUIDS AND NANOFLUIDS TECHNOLOGIES

Nanofluid technology, anew interdisciplinary field of huge importance which
comprises nanotechnology, nanoscience and thermal engineering, has been
developed largely over the past few years due to the need of heat transfer en-
hancement in a variety of applications in transportation, electronics, nuclear,
medical, food and space. It is now possible to develop high-performance
coolants whose thermal properties are drastically different from those of
the conventional heat transfer fluids (water, ethylene glycol) because in the
nanoscale range, fundamental properties of nanofluids depend strongly on
particle shape, size and the surface/interface area. These fluids are colloidal
suspensions of solid nanoparticles into a carrier liquid. The presence of
nanoparticles in the carrier fluid increases the effective thermal conductivity
and thus enhances the heat transfer rate. Suspensions of solids in fluids are
used to improve thermal properties for more than century. In the 19th century
Maxwell (1881) proposed model for thermal conductivity enhancement in
suspensions. However, application of micro- and larger particles is connected
with many disadvantages, e.g. high concentrations of solid phase are needed
to achieve satisfying enhancement of thermal properties.

The flow of nanofluid is of great interest in many area of modern sci-
ence, engineering and technology, chemical and nuclear industries and bio-
mechanics. The term nanofluids are colloidal suspensions of nanoparticles
of size 100 nm in a base fluid. Nanoparticles taken as oxide ceramics (Al O,,
CuO), metal carbides (SiC), nitrides (AIN, SiN) or metals (Al, Cu) etc. and
base fluids mostly used in the preparation of nanofluids are the common
working fluids such as, water, ethylene or tri-ethylene- glycols, oil and other
lubricants, bio-fluids, polymer solutions, other common fluids. In order to
improve the stability of nanoparticles inside the base fluid, some additives
are added to the mixture in small amounts. The term ‘nanofluid’” was first
coined by Choi (1995) of the Argonne National Laboratory, USA in 1995.
Nanofluids are not naturally occurring but they are synthesized in the labora-
tory. The choice of base fluid and nanoparticles depends on the application
for which the nanofluid is intended. In the presence of a mere few percents
of nanoparticles, a significant increase of the effective thermal conductiv-
ity. Common fluids have limited heat transfer capabilities while some of the
nanoparticles (metals) have very high thermal conductivity in comparison
to these common fluids. Presence of these nanoparticles in the base fluids
may increase the thermal conductivity of the fluids by 15-40%.
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PREPARATION METHODS FOR NANOFLUIDS

Preparation of nanofluids is of very much important in the area of nanofluid
research due to its wide range of applications. Research papers and review
articles involving the preparation methods for nanofluids were published by
authors Williams et al. (2006), Yu and Xie (2012), Drzazga et al. (2012),
Taylor et al. (2013), Mukherjee and Paria (2013), Manimaran et al. (2014),
Quddoos et al. (2014) and Prakash et al. (2015). Based upon these studies it
is observed that nanofluids can be prepared by two-step or one-step method.

Two-Step Method

Two-step method is the most widely used method for preparing nanofluids.
Nanoparticles used in this method are first produced as dry powders by
physical or chemical methods e.g. grinding, laser ablation, sol-gel processing,
etc. and then, the nanosized powder will be suspended in base fluid Paul et
al. (2010) in the second processing step with the help of intensive magnetic
force agitation, ultrasonic agitation, high-shear mixing, homogenizing, and
ball milling. This method is the most economic method to produce nanofluids
in large scale, because nanopowder synthesis techniques have already been
scaled up to industrial production levels. Due to the high surface area and
surface activity, nanoparticles have the tendency to aggregate. The important
technique to enhance the stability of nanoparticles in fluids is the use of sur-
factants. However, the functionality of the surfactants under high temperature
is also a big concern, especially for high-temperature applications. Due to the
difficulty in preparing stable nanofluids by two-step method, several advanced
techniques are developed to produce nanofluids, including one-step method.

Eastman et al. (1997), Lee et al. (1999), Wang et al. (1999) used two-
step method to produce alumina nanofluids. Murshed et al. (2005) prepared
TiO,-water nanosuspension by the same method. Two-step method can also
be used for synthesis of carbon nanotube based nanofluids.

In spite of such disadvantages this process is still popular as the most
economic process for nanofluids production.

Though this method is economic, the problem of drying, storage, and
transportation exist. Also, the problem of agglomeration and clogging leads
to reduced thermal conductivity of nanofluids.
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One-Step Method

To get a more stable nanofluid single step preparation process is preferred,
as name indicates it is synthesisized in only one step. In the single step
method, the nanoparticles preparation and nanofluid preparation are carried
out simultaneously. The nanoparticles are directly prepared by a physical
vapor deposition technique or a liquid chemical method. In this method, the
processes of drying, storage, transportation, and dispersion of nanoparticles
are avoided, so the agglomeration of nanoparticles is minimized, and the
stability of fluids is increased. The method avoids the undesired particle
aggregation fairly well. However, this method only applicable for small
scale production and, at current stage, it is almost impossible to scale up to
industrial scale. Furthermore, this method is only applicable for low vapor
pressure base fluid which limits its application.

Eastman et al. (2001) developed a one-step physical vapor condensation
method to prepare Cu/ethylene glycol nanofluids. Zhu et al. (2004) presented
a single-step chemical process for the preparation of Cu nanofluids. Lo et
al. (2005) developed vacuum based submerged arc nanoparticle synthesis
to prepare CuO, Cu,O and Cu based nanofluids with different dielectric
liquids. Jwo et al. (2007) prepared CuO—water nanofluid using temperature
arc method and indicated about the improvement of thermal conductivity of
nanofluid by 9.6%.

This method also proved to be a good way to produce mineral oil based
silver nanofluids. One-step physical method cannot synthesize nanofluids
in large scale, and the cost is also high, so the one-step chemical method is
developing rapidly.

However, there are some disadvantages for one-step method. The most
important one is that the residual reactants are left in the nanofluids due to
incomplete reaction or stabilization. Itis difficult to elucidate the nanoparticle
effect without eliminating this impurity effect.

Anadvantage of one-step synthesis method is that nanoparticle agglomera-
tion is minimized. But prime problem is that only low vapor pressure fluids
are compatible with such a process.

Other Methods

There are some other literatures where different approaches (other than these
two procedures) were expressed. Feng et al. (2006) used aqueous organic
phase transfer method for preparation of gold, silver, platinum nanoparticles.
Phase transfer method can also be applied to prepare kerosene based Fe. O,
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nanofluids which do not show time dependent thermal conductivity. Graft-
ing of oleic acid onto the surface Fe,O, makes it compatible with kerosene.
Wei et al. (2010) established a continuous flow microfluidic microreactor to
synthesize copper nanofluids. The microstructure and properties of nanofluids
can appropriately be varied by adjusting parameters such as concentration,
flow rate, additives. Moreover a novel preparation of aqueous CuO nanofluid
can be done through novel precursor transformation method with the help of
ultrasonic and microwave irradiation. Here the precursor, Cu(OH), is com-
pletely converted to CuO in water under that process. The use of ammonium
citrate is to prevent the growth and aggregation of nanoparticles, resulting in
a stable CuO aqueous nanofluid with higher thermal conductivity than those
prepared by other dispersion methods.

POTENTIAL FEATURES OF NANOFLUIDS

Nanofluids have some special features that make them very special for vari-
ous engineering and industrial applications. Some of the special qualities of
nanofluids are:

e Rise in thermal conductivity beyond exception and much higher than
theoretical predictions,

Ultrafast heat transfer ability,

Better stability than other colloids,

Reduction of erosion and clogging in micro channels,

Reduction in pumping power,

Reduce friction coefficient,

Better lubrication,

Very high rise in viscosity of base fluid,

Increased thermal conductivity (TC) at low nanoparticles
concentrations,

Strong temperature-dependent TC,

Non-linear increase in TC with nanoparticles concentration,

Increase in boiling critical heat flux (CHF).

These characteristics, Heat transfer and other key features of fluid flow
and heat transfer behaviors of nanofluid was reported by researchers Masuda
et al. (1993), Choi (1995, 1999), Wang et al. (1999), Xuan and Lee (2000,
2003), Das (2003), Xie et al. (2001, 2002), Patel et al. (2003), Eastman et
al. (2001, 2004), Kim et al. (2004), Das et al. (2003, 2006, 2008), Wang and
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Majumdar (2006), Wang (2007), Cheng et al. (2008), Garg et al. (2008),
Abu-Nada et al. (2008), Kakac and Pramuanjaroenkij (2009), Hwang, et al.
(2009), Shima et al. (2009), Abu-Nada (2011), Parekh and Lee (2011), Mo-
hammed et al. (2011), Paul et al.(2011), Patel (2012), Prabhat et al. (2012),
Adil et al.(2014), Nerella et al. (2014).

These features make of nanofluid useful in many applications.

APPLICATIONS OF NANOFLUIDS

Nanofluids have been extensively used in a wide range of applications and
can be considered the next-generation heat transfer fluids as they offer excit-
ing new possibilities to enhance heat transfer performance compared to pure
fluids. Nanofluids applications in various fields are as follow

Heat Transfer Applications
o Industrial Cooling Applications
o Smart Fluids
o Nuclear Systems Cooling
o Extraction of Geothermal Power and Other Energy Sources
o Heating Buildings and Reducing Pollution
o Space and Defense
Automotive Applications
o Nanofluid Coolant
o Nanofluid in Fuel
o Brake and Other Vehicular Nanofluids
Electronic Applications
o Cooling of Microchips
o Microscale Fluidic Applications
Biomedical Applications
o Nanodrug Delivery
o Cancer Theraupetics
o Cryopreservation
o Nanocryosurgery
o Sensing and Imaging
o Nanofluid Detergent
o Antibacterial Activity
Energy Applications
o Energy Storage
o Solar Absorption
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Mechanical Applications
° Friction Reduction
o Magnetic Sealing

Other Applications
o Intensify Microreactors
o Nanofluids as Vehicular Brake Fluids
o Nanofluids-Based Microbial Fuel Cell
° Mass Transfer Enhancement.

Philip and Shima (2012) studied the thermal properties while Keblinski
et al. (2009) and Minsta et al. (2009) studied the thermal conductivity of
nanofluids and it was found that nanofluid exhibit enhanced thermal proper-
ties. The novel features of nanofluids make them potentially useful in many
applications ranging from use in the automotive industry to the medical arena
to use in power plant cooling systems as well as computers. Manna (2000)
described the detailed applications of nanofluid in automotive radiators,
lubrication, additives for fuels, shock absorbers replacing or along with the
traditional materials used for similar purposes. Routbort et al. (2008) that
employed nanofluids for industrial cooling that could result in great energy
savings and resulting emissions reductions. Nguyen et al. (2006) suggest the
use of nanofluids in cooling of micro-electronic components. Donzelli et al.
(2009) showed that a particular class of nanofluids can be used as a smart
material working as a heart valve to control the flow of heat. Buongiorno and
Hu (2005) suggested the possibility of nanofluid in advanced nuclear system
while Kleinstreuer et al. (2008) in the delivery of nano-drug system, Tsaia et
al. (2004) in electronics cooling, Hone (2004) in carbon nanotubes, Tzeng et
al. (2005), Buongiorno et al. (2008) safety of nuclear reactors, Wong and Leon
(2010) in radiators, Kole and Dey (2010) as car engine coolant, Gupta et al.
(2012a) toward green environment, Faiz and Zahir (2014) in filter operation,
Kasaeian et al. (2015) and Khanafer and Vafai (2013) in solar energy system,
Javadi et al. (2013) and Zhang et al. (2014) in solar collector etc.

Kim et al. (2007) assess the feasibility of nanofluids in nuclear applica-
tions by improving the performance of any water-cooled nuclear system
that is heat removal limited. Possible applications include pressurized water
reactor (PWR) primary coolant, standby safety systems, accelerator targets,
plasma diverters, and so forth. The use of nanofluids in nuclear power plants
seems like a potential future application. Engine oils, automatic transmis-
sion fluids, coolants, lubricants, and other synthetic high-temperature heat
transfer fluids found in conventional truck thermal systems-radiators, engines,
heating, ventilation and air-conditioning (HVAC)-have inherently poor heat
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transfer properties. These could benefit from the high thermal conductivity
offered by nanofluids that resulted from addition of nanoparticles Yu et al.
(2008). In the nanofluid research applied to the cooling of automatic trans-
missions, Tzeng et al. (2005) dispersed CuO and Al,O, nanoparticles into
engine transmission oil. The experimental setup was the transmission of a
four-wheel-drive vehicle. The transmission had an advanced rotary blade
coupling, where high local temperatures occurred at high rotating speeds.
Chaudhari and Walke (2014) reported the application of nanofluid in solar
energy while Chieruzzi et al. (2013) studied the heat capacity of nanofluids
for thermal energy storage. Applications of nanotechnology to improve the
performance of solar collectors were studied by Hussein et al. (2016a) and
Hussein (2016). Magnetic nanoparticles have recently got wide interest in
many fields. Nakano et al. (2008), Lai et al. (2009), Singh and Lillard (2009),
Zhang et al. (2010) reported the biomedical applications of nanofluids in
drug delivery and anticancer drugs system and Mahendran and Philip (2012)
used nanofluid based optical sensor for rapid visual inspection of defects in
structures such as rail tracks and pipelines.

The latest developments and various applications of nanofluids also reported
in detail by Wong and Leon (2010), Li et al. (2011), Saidur et al. (2011), Yu
and Xie (2012), Aybar et al. (2014), Bourantas et al. (2014), Sheikholeslami
et al. (2012, 2013, 2015a, 2015b, 2015¢, 2015d, 2015f), Rao et al. (2014),
Ravikumar and Goud (2014), Rashid etal. (2014), Sadique and Verma (2014),
Verma and Tiwari (2015), Sandeep et al. (2015), Sharma et al. (2015).

CONVECTION IN NANOFLUIDS

A comprehensive study of convective transport in nanofluids was made by
Buongiorno (2006). He dealt with almost all aspects of convective transport
in nanofluids. He noted that the nanoparticles absolute velocity can be viewed
as the sum of the base fluid velocity and a relative (slip) velocity. He took
seven slip mechanisms that show relative velocity between the nanoparticles
and the base fluid including inertia, Brownian diffusion, thermophoresis,
diffisiophoresis, the magnus effect, fluid drainage and gravity. He pointed
out that in the absence of turbulent effect, only Brownian diffusion; thermo-
phoresis are important mechanisms in nanofluids. Hence based on these two
effects, he proceeded to write down conservation equations.

Allouietal. (2010) studied the natural convection of nanofluids in a shallow
cavity heated from below. They observed that the presence of nanoparticles
in a fluid is found to reduce the strength of flow field, this behavior being
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more pronounced at low Rayleigh number. Also the temperatures on the solid
boundaries are reduced (enhanced) by the presence of the nanoparticles.
For completeness, it is to mention that a substantially different treatment of
Bénard problem for nanofluid is given by Kim et al. (2007). These authors
simply modified three quantities namely the thermal expansion coefficients,
the thermal diffusivity, and kinematic viscosity that appear in the definition
of Rayleigh number. Convection in nanofluids based on Buongiorno’s model
received attention of several researchers. Tzou (2008a, 2008b) studied the
Bénard problem for a nanofluid on the basis of Buongiorno’s model and
observed that nanofluid is less stable than regular fluid. Later, many authors
this problem was revisited by Nield and Kuznetsov (2010a) by taking dif-
ferent types of non-dimensional parameters. An extension to the problem
Nield and Kuznetsov (2010a) has been was made by many authors. Agarwal
(2014), Agarwal and Bhaduria (2011, 2014), Agarwal et al. (2011 2012,
2014), Bhadauriaand Agarwal (2011a,2011b,2012), Bhadauriaetal. (2011),
Chand (2013a, 2013b, 2015b), Chand et al. (2013a, 2013b, 2015a, 2015d,
2015f,2016a), Chand and Rana (2012a,2012b, 2012c, 20144a, 2014c, 2014d,
2014e), Dhananjay et al. (2010), Gupta et al. (2013, 2015, 2016), Kuznetsov
(2011a,2011b), Kuznetsov and Nield (2010a,2010b,2010c,2011), Nield and
Kuznetsov (2009a, 2009b, 2010a, 2010b, 2011a, 2011b, 2012, 2013), Rana
and Agarwal (2015), Rana et al. (2014b, 2014c), Umavathi (2015), Yadav
(2014), Yadav and Kim (2015a, 2015b), Yadav and Lee (2015a, 2015b),
Yadav etal. (2011, 2012a, 2012b, 2013a, 2013b, 2013c, 2014a, 2015, 20164,
2016b), Kiran et al. (2016), Mahajan and Arora (2013), Khan et al. (2013),
Shivakumara and Dhananjaya (2014), Kumar and Awasthi (2016), Rana and
Thakur (2016).

The above references mentioned deal with nanofluids as Newtonian
nanofluids.

Many investigators such as Chenetal. (2007a,2007b,2009), and Schmidt et
al. (2008) also dealt with Non-Newtonian rheological behavior of nanofluids.

Many investigations such as Chen et al. (2007, 2009), Shivakumara et
al. (2006, 2015), Schmidt et al. (2008), Sheu et al. (2008), Sheu (2011a,
2011b), Chand and Rana (2012c, 2015b, 2015¢), Rana and Chand (2015a,
2015c¢), Rana et al. (2014a, 2014b, 2015), Umavathi and Mohite (2016),
Yadav et al. (2014b) also deal with non-Newtonian rheological behavior of
nanofluid. The convection of non-Newtonian fluids in a porous medium has
a wide spectrum of applications; such as oil recovery, food processing, and
the spread of contaminants in the environment, and in various processes in
the chemical and material industries.
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All the study based upon the assumption that the value of the nanoparticle
fraction at the boundary could manage in the same way as the temperature.
But in due course, it turned out that physically the above boundary conditions
may be difficult to establish and the boundary condition for nanoparticles
needs to be more realistic.

Recently, Nield and Kuznetsov (2014), Chand and Rana (2015a, 2015d),
Chand et al. (2014, 2015b, 2015e¢), Rana and Chand (2015b, 2015c) sug-
gested that the value of the temperature can be imposed on the boundaries,
but the nanoparticle fraction adjusts so that the nanoparticles flux is zero on
the boundaries. In this respect, this model is more realistic physically than
that employed by previous authors. Under the circumstances, it is desirable
to investigate convective instability problems by utilizing these boundary
conditions to get meaningful insight in to the problems.

GOVERNING EQUATIONS FOR NANOFLUIDS

Buongiorno (2006) dealt with almost all aspects of convective transport in
nanofluids. The convective transport in nanofluids and proposed a model
incorporating the effects of Brownian diffusion and thermophoresis. On
the basis of the transport equations of Buongiorno (2006), the stability of
problems of the onset of convection in nanofluid layer has been studied by
many authors. The governing equations for the convection in nanofluids
based upon Buongiorno’s model are as follows

EQUATION OF STATE FOR NANOFLUID

Density p of nanofluids can be determined by using Buongiorno’s model
Buongiorno (2006) is given as

p=0op, +(1-9)p, (7

where @ is the volume fraction of the nanoparticles, P, density of nanopar-
ticles and pf density of base fluid.

Taking the density of the nanofluid as that of the base fluid, the equation
of state can be written as

p=(ep, + 1 =p){p(l—a(T - T)))}), ®)

where p is the coefficient of thermal expansion.
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EQUATION OF CONTINUITY FOR
NANOFLUID AND NANOPARTICLES

The equation of continuity for nanofluid is given by
V-v=0. 9)

The equation of continuity for the nanoparticles is

99 2y, Dr oo
—+v-V¢=DV¢+—LVT, 10
oy TV Ve=DVio+ - (10)

1

where D, is the Brownian diffusion coefficient and D, is the thermoporetic
diffusion coefficient of the nanoparticles and T is reference temperature.

EQUATION OF MOTION FOR NANOFLUID

Combing the equations (4) and equation (8), the equation of motion for
nanofluid is given by

p%:—Vp—F((;SpP+(1—¢){p(1—a(T—%))})g—l—uV%. (11)

EQUATION OF ENERGY FOR NANOFLUID

Equation of energy for nanofluid is given by

(pc)%—j +(pe) v-VT =k, V’T +(A) |D,VAE VT + %VT V|, (12)

1

where (pc) is heat capacity of fluid and (po), is heat capacity of nanoparticles
and km is thermal conductivity.
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EFFECT OF VARIOUS FACTORS ON STABILITY

The following factors effects the onset of convection in a horizontal layer of
Maxwellian visco-elastic nanofluid heated from below.

Rotation

The rotation has a significant effect on the onset of thermal instability. It
introduces a number of new elements in fluid dynamics, and some of its
consequences are unexpected, for example, the role of viscosity is inverted.
The origin of this and other consequences of rotation can be attributed to
certain theorems relating to vorticity, in the dynamics of rotating fluids.
The steady of rotating fluid for Bénard problem was experimentally demon-
strated by Rossby (1969) for wide range of Taylor number. Convection implies
that motions which, occur have necessarily a three dimensional character,
but Taylor-Proudman theorem doesn’t allow it for an inviscid fluid as long
as the non-linear terms in the equations of motion are neglected. Therefore,
in contrast to non-rotating fluids, an inviscid fluid in rotation is expected to
be thermally stable for all adverse temperature gradients. In fact, thermal
instability can arise only in the presence of viscosity, while Taylor-Proudman
theorem forbids any variations of the velocity in the direction of the angular
velocity of rotation. Chandrasekhar (1961) has obtained the following con-
clusions on the effects of rotation on the onset of thermal instability:

1. The onset of the instability is a stationary convection as long as the
Prandtl number p, exceeds a certain critical value p, .The precise value

of p, depends on the nature of the boundary surfaces.

2. Rotation inhibits the onset instability and extend of inhibition depends
2 74

and the Prandtl number Pr = 2 .
14 K

3. Itp, < pj, then two care arises
3.1. The onset of instability will be as overstable oscillations of the

on the Taylor number Ta =

Taylor number exceeds a certain limits Tﬁp ) depending on p, .

3.2. Theonsetofinstability will be as stationary convectionof 7', < Tgp 1

The above results can be formulated as the following general principle:
“Thermal instability as stationary convection will set in at the minimum
(adverse) temperature gradient which is necessary to maintain a balance
between the rate of dissipation of energy by viscosity and the rate of libera-
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tion of the thermodynamically available energy by the buoyancy force acting
on the fluid. Likewise, the onset of thermal instability will be as overstable
oscillation if it is possible to balance in a synchronous manner the periodi-
cally varying amounts of kinetic energy with similarly varying amounts of
dissipation and liberation of energy”.

The inhibiting effect of rotation on the instability of a fluid layer heated
from below has been recognized as a phenomenon of major importance in
Bénard convection as convection in a rotating system relevant to many indus-
trial and geophysical applications. Thermal instability problem in a rotating
micropolar fluid was studied by Qin and Kaloni (1992).

Magnetic Field

Bullard (1949) and Batchelor (1950) pointed out that the magnetic field
imparts to the fluid in certain rigidity. The experimental work of Lehnert
(1954) conducted the behavior of conducting fluids very different in the ab-
sence and in the presence of magnetic field. For example, there is tendency
for all motions to become uniform along the magnetic field, or other words,
a tendency towards two dimensional motions. These are some interesting
properties associated with magnetic field. Generally the magnetic field has a
stabilizing effect on the instability. But a few exception are there for example
Kent (1966) studied the effect of a horizontal magnetic field, which varies in
vertical direction, on the stability of parallel flows and showed that system
is unstable under certain conditions, while in the absence of magnetic field
the system is known to be stable.

We consider a fluid having electrical conductivity and under the influ-
ence of a magnetic field. The electrical conductivity and the prevalence of
magnetic field contribute to effects of two kinds. First, by the motion of the
electrically conducting fluid across the magnetic lines of force, electric cur-
rents are generated and the associated magnetic field contribute to changes
in the existing fields, and second, the fact that the fluid elements carrying
currents transverse magnetic lines of force contribute to additional forces
acting on the fluid elements. It is this two-fold interaction between the mo-
tions and the fields that is responsible for patterns of behaviors, which are
often unexpected and striking.

The interaction between the fluid motions and the magnetic fields are
contained in Maxwell’s equations and in the equations of hydrodynamics
suitably modified. Since we shall not be concerned with effects which are
related in any way to the propagation of electromagnetic waves, we can
neglect the displacement currents in Maxwell’s equation, closely related to
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this is the further possibility of avoiding any explicit reference to the charge
density. The reason for this is not that it is small in itself, but rather than its
variations affect the equation expressing the conservation of charge only by
terms of order v%/c?, where v is the fluid velocity and c is the velocity of light.
The terms of this order can be ignored. The interaction of the magnetic field
in hydrodynamics can be interpreted as follows:

Magnetic field has the effect of inhibiting the onset of instability by con-
vection. When a magnetic field is impressed on an electrically conducting
fluid, there will also be the dissipation of energy by Joule heating, in addition
to the dissipation by viscosity. As was to be expected, the effect of inhibiting
the onset of instability becomes more pronounced as the strength of magnetic
field increases and elongates the cells which appear at the marginal stability
for certain ranges of the concerned parameters. In the case of an inviscid fluid
of zero resistivity when external forces are derivable from the potential func-
tion v, the analogue of the Taylor-Proudman theorem states that “all steady
slow motions in the presence of a uniform magnetic field are necessarily
two-dimensional” It forbids variation of motion in the direction of the mag-
netic field. Convection implies that motions, which occur, have necessarily
a three-dimensional character. But such motions are forbidden for fluids of
zero resistivity as slow steady two-dimensional motions are only allowed. A
fluid of zero resistivity should therefore be therefore being thermally stable
for all adverse temperature gradients. In a steady state, the energy released
by buoyancy force acting on the fluid must balance the energy dissipated by
both means and this can be achieved at higher temperature gradient that are
sufficient in the absence of Joule heating, showing thereby the stabilizing
effect of the magnetic field. In the presence of a magnetic field, disturbances
can be propagated as Alfven waves.

Chandrasekhar (1961) analysis predicted another interesting point that
the marginal state could either be stationary or oscillatory in character. It was
found in agreement with the experimental results of Nakagawa (1955, 1957)
and others. It was shown that, when magnetic field is present and the mag-

netic Prandtl number p, = ” isless than the Prandtl number p, = v , which
K

is a requirement met by a large margin under most terrestrial conditions,
overstability cannot occur and the principle of exchange of stabilities is
valid.

Equation of motion for nanofluid in the presence of magnetic field are
given as
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p% = —Ver(z‘EAlp +(1—/E){Af (1—i<T—TO))})g+uV2v+Z—;(H.V>H’ -

where H is magnetic field and p_is the magnetic permeability.
Maxwell equations are

V.H=0, (15)

where 1, is the electrical resitivity.

The theoretical investigations of Bénard problem in the presence of mag-
netic field is given by Rainbow (1948), Alchaar et al. (1995), Ghasemi and et
al. (2011), Mahmoudi et al. (2012), Islam (2012), Chand (2013b), Mahajan
and Arora (2013), Yadav et al. (2013c), Gupta et al. (2013, 2015), Wakif et
al. (2016) etc.

Hall Effect

If an electric field is applied right angle to magnetic field, the whole current
will not flow along the electric field. The tendency of the electric current of
flow across an electric field in the presence of magnetic field is called ‘Hall
effect’. The Hall Effect is likely to be important in geophysical and astro-
physical situation. The study of MHD flows with Hall currents has important
engineering applications in MHD generators, Hall accelerators, refrigeration
coils, electric transformers etc. Recently, the study of Magnetohydrodynamics
(MHD) became important in engineering applications, such as in design-
ing cooling system with liquid metals, MHD generator and other devices
in the petroleum industry, materials processing, Plasma studies, nuclear
reactors, geophysics, astrophysics, aeronautics and aerodynamics. It serves
as the basis for understanding some of the important phenomena occurring
in heat exchanger devices. The study of MHD flows with Hall currents has
important engineering applications in flight MHD, MHD generators, Hall
accelerators, refrigeration coils, electric transformers etc. The theoretical
investigations of Bénard problem with Hall effect is given by Gupta (1967),
Sharma and Gupta (1993), Sharma and Kumar (1996a, 1996b),Prakash and
Chand (1999), Sharma et al. (2000), Sunil and Singh (2000), Rani and Tomar



(2010), and El-Aziz (2013), Chand and Rana (2014a), Gupta et al. (2016),
Yadav and Lee (2015b).
Maxwell equations in the presence of Hall effect are given by

%:<H.v>v+n1v2[{—47TN€V><(<V><H)><H),, (16)
V-H=0 (17)

where C, N, e, stand for the speed of light, electron number density and
charge of electron respectively.

Porous Medium

Flows through porous medium are very much prevalentin nature, and therefore,
the study of flow through porous media has attracted the attention of large
number of scholars because of its scientific and engineering applications.
Thermal instability in a porous medium is a phenomenon related to various
fields. It has many applications in geophysics, food processing, petroleum
industry, bio-mechanics, oil reservoir modeling, hydrology, chemical engineer-
ing, building of thermal insulations and nuclear reactors. Many researchers
have investigated thermal instability problems by taking different types of
fluids. Horton and Rogers (1945), Lapwood (1948), Wooding (1960), Nield
(1968), Patil and Rudraiah (1973), Vafai and Tien (1981), Palm and Tyvand
(1984), Scheidegger (1990), Sharma and Sharma (1991), Kaviany (1995),
Ingham and Pop (1981,2002), Vadasz (1997, 1998a, 1998b, 2000, 2006), Vafai
(2000), Vafai and Hadim (2000), Bejan et al. (2004), Leong and Lai (2004),
Basak et al. (2006), Nield (1968, 1987, 2008), Straughan (2008), Storesletten
(1998, 2004), Nield and Bejan (2013), Rana and Thakur (2012a), Sulochana
et al. (2015), studied in detail the convective flow in a porous medium.

1. Porous Media

Porous media may be defining as solid bodies that contain ‘pores’. ‘Pores’
are void spaces, which must be distributed more or less frequently through
the material if it is to be called porous. Extremely small voids in a solid are
called ‘molecular interstices’ and very large ones are called ‘caverns’. Pores
are void spaces intermediate in size between caverns and molecular inter-
stices. Therefore the limitation of their size is intuitive and rather indefinite.
The pore in porous medium may be interconnect or non-interconnect. Flow



of interstitial fluid is possible only if at least part of the pore space is inter-
connected. The interconnect part of pore system is called the effective pore
space. Many natural substances such as rocks, soils, biological tissues, and
manmade materials such as cements, foams and ceramics can be considered
as porous media. Flows through porous media are very much prevalent in
nature, and therefore, the study of the flows through porous media has at-
tracted the attention of a number of scholars because of its scientific and
engineering application. Such flows has shown their great importance in
petroleum engineering to study the movement of natural gas, oil and water
through the oil reservoirs; in chemical engineering for filtration and purifica-
tion processes. Further, in the fields of agriculture engineering to study the
underground resources, seepage of water inriverbeds, one needs to investigate
the flows of fluids through porous media. Two macroscopic properties of
non-ideal porous media, which may be used to describe fluid flow, are poros-
ity and medium permeability. As the fluid flow through a porous medium
the gross effect is represented by Darcy’s law. According to which the usu-

I

ally viscous term pV>v is replaced by the resistance term — q in the

1
equation of motion, where p is viscosity, v is fluid velocity and q is Darcian
(filter) velocity of fluid. The fluid velocity v and Darcian velocity q are con-

nected by relationv = 4 , where ¢ is porosity of porous medium.
€

3. Porosity

Porosity is defined as the ratio of volume of void to the total volume. It is
denoted by € (0 < € < 1). If the calculation of porosity is based upon the
interconnected pore space instead of on the total pore space, the resulting

. Poros-

quantity is termed as effective porosity, which is given by e = !
—€

ity macroscopically characterizes the effective pores volume of the medium.

Natural media have porosity usually less than 0.6, the sandstone lies in the

range 0.08 — 0.38, the soil between 0.43 — 0.54 and the leather between 0.56

—0.59. Artificial materials like fiberglass, mineral wool may have porosity

slightly less than the value 1 that corresponds to the limit of a clear fluid.
3. Permeability

The conductance of the medium is defined with direct reference of Darcy’s
law as the seepage velocity of the percolating water per unit drop of hydraulic



head. The permeability is related to pore-size distribution since the distribu-
tion of the size of entrances exists, and lengths of the pore walls make up
the conductance of the given pore-structure. The dimensions of permeability
are length squared. In oil industry, it is measured in ‘Darcy’ with 1 Darcy =
9.87x10 cm?. The permeability and porosity are related, since of the porosity
is zero, the permeability is zero.

4. Darcy’s Law

Darcy’s law named after a French scientist and engineer Henry P.G. Darcy.
Based on his pioneering work Darcy (1856) he formulated what is today the
well known Darcy’s law. He based his law on the results of experiments on
the flow of water through layers of sand. Darcy’s law refers to the case of
laminar flow in the porous medium and, moreover, it refers to a tight packed
solid with a fluid owing in very small pores. This low porosity regime allows
one to obtain a momentum balance equation that is dramatically simpler than
the Navier-Stokes equation. When fluid slowly percolates through the pores
of the rock, the gross effect is represented by the Darcy’s law. According to

which the resistance term — kﬁ q will replace the usual viscous term in the

1
equation of motion, p is viscosity of the fluid, k, is permeability of medium

and q is the seepage velocity of fluid.
Thus momentum equation for porous medium is

—§q=Vp (18)

1

A detailed account of the Darcy-Bénard problem in porous medium has
been studied by Horton and Rogers (1945), Lapwood (1948), Wooding (1960),
Ingham and Pop (1981), Poulikakos and Bejan (1985), Rees (2000), Vafai
and Hadim (2000) and Nield and Bejan (2013), Borujerdi et al. (2008) etc.

5. Brinkman’s Model

Darcy’s model is suitable for a relatively low porosity. Moreover it cannot
allow the assignment of no-slip conditions on a boundary surface. On in-
creasing the porosity of the medium, Brinkman (1947a, 1947b, 1949, 1952)
proposed a momentum equation adding, with respect to the Darcy equation,
a Laplacian term that appears in the equation of motion, namely



g =yt v, (19)

1

where [ is known as the effective viscosity.

A good account of convection problems in Brinkman porous medium
were given by Tong and Subramanian (1985), Kuznetsov and Nield (2010b),
Chand and Rana (2012b, 2012d), Mahajan and Sharma (2012), Rana and
Thakur (2012a, 2012b, 2012c, 2013a), Rana and Chand (2012), Bala and
Chand (2014), Sharma and Gupta (2015) etc.

6. Anisotropic Porous Medium

In geothermal system with a ground structure composed of many strata of
different permeabilities, the overall horizontal permeability may be up to ten
times as large as the vertical component. Processes such as sedimentation,
compaction, frost action, and reorientation of the solid matrix are responsible
for the creation of anisotropic natural porous media. Anisotropy can also be
a characteristic of artificial porous material like pelleting used in chemical
engineering process and fiber materials used in insulating purposes. The
review of research on convective flow through anisotropic porous medium
has been given by McKibbin (1985, 1992) and Storeletten (1998, 2004).
Nield and Bejan (2013), Malashetty and Basavaraja (2002, 2003), Malashetty
and Kollur (2011), Malashetty et al. (2009b), Agarwal et al. (2011), Chand
et al. (2013a), Shivakumara and Dhananjaya (2014), Chand et al. (2013a,
2014), Bala and Chand (2015b) studied the effect of anisotropy on the onset
of convection in a horizontal layer of fluid.

EFFECT OF INTERNAL HEAT

Convection induced by internal heat sources has wide range of applications
in geophysics, astrophysics, fire and combustion modelling, thermal ignition,
miniaturization of electronic components etc. In such flows the buoyancy
force is incremented due to heat source resulting in modification of heat/
mass transfer characteristics. The onset of convection in a Darcy porous layer
with a uniform heat source was studied by Borujerdi et al. (2008) and found
that a smooth monotonic variation in the critical Rayleigh number. Char and
Chiang (1994) studied the effect of a quadratic basic state temperature profile
caused by constant internal heat generation for Bénard-Marangoni convec-
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tion. Shivakumara and Suma (2000) have investigated the effect of through
flow and constant internal heat generation on the onset of convection using
rigid and perfectly conducting boundaries. Heat source at the bottom of a
nanofluid-filled enclosure was studied by Aminossadati and Ghasemi (2009).
The effect of uniform internal heat generation on the onset of Brinkman-
Bénard convection in a ferrofluid was studied by Nanjundappa et al. (2011)
and found that the effect of increase in the value of internal heat source,
magnetic Rayleigh number and nonlinearity of the magnetization parameter
is to hasten, while increase in the value of Biot number, the ratio of viscosi-
ties and reciprocal of Darcy number is to delay the onset of thermo-magnetic
convection in a ferrofluid saturated porous layer. Yadav et al. (2012) studied
the internal heat source effects on the onset of Darcy-Brinkman convection
in a porous layer saturated by nanofluid and found that both temperature and
volumetric fraction of nanoparticle distributions are having a destabilizing
factor to make the system more unstable.

VARIABLE GRAVITY

The idealization of uniform gravity assumed in theoretical investigations,
although valid for laboratory purposes can scarcely be justified for large-scale
convection phenomena occurring in atmosphere, the ocean or mantle of the
Earth. It then becomes imperative to consider gravity as variable quantity
varying with distance from surface or reference point. Pradhan and Samal
(1987), Pradhan et al. (1989) studied the thermal instability of a fluid layer
in a variable gravitational field while Alex and Prabhamani (2001), Alex et
al. (2001) studied the variable gravity effects on the thermal instability in
a porous medium with internal heat source and inclined temperature gradi-
ent. The other theoretical investigations of Bénard problem in presence of
variable gravity were given by Rionero and Straughan (1991), Prakash and
Chand (1999, 2002), Prakash and Kumar (1999a, 1999b), Sharma and Rana
(2001), Chand (2010, 2011, 2013c), Chand et al. (2013a, 2015d), Chand and
Kumar (2013) and Kango et al. (2013), Bala and Chand (2015a), Harfash and
Alshara (2015) and found that variable gravity play important role instability
of fluid layer.
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Chapter 1

Thermal Convection

in a Horizontal Layer

of Maxwellian Visco-
Elastic Nanofluid

INTRODUCTION

The fundamental stress-strain-velocity relations of the classical hydrodynam-
ics are not applicable to vast number of highly viscous fluids. The materials
such as paints, plastics, polymers, gel and more exotic one such as magma,
saturated soils and Earth’s lithosphere behaves as visco-elastic fluids. Visco-
elastic fluids have range of unlikely behaviors. There are many visco-elastic
fluids and Maxwell visco-elastic fluid is one of them. The investigation of
such fluids is desirable because of their applications in chemical engineering
and material industries. The problem of convective instability of visco-elastic
fluid heated from below was first studied by Green (1968). The stability
of a horizontal layer of Maxwellian visco-elastic fluid heated from below
was studied by Vest and Arpaci (1969). Thermal instability of a Maxwell
visco-elastic fluid in the presence of rotation was investigated Bhatia et al.
(1972) and found that rotation has a destabilizing influence in contrast to its
stabilizing effect on a viscous Newtonian fluid.
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The term ‘nanofluid’ refers to a fluid containing a suspension of nanoscale
particles. This type of fluid is a mixture of a regular fluid, with a very small
amount of suspended metallic or metallic oxide nanoparticles or nanotubes,
which was first coined by (Choi, 1995). Nanoparticles materials may be
taken as oxide ceramics (ALO,, CuO), metal carbides (SiC), nitrides (AIN,
SiN) or metals (Al, Cu) etc and base fluids are taken as water, ethylene or
tri-ethylene-glycols and other coolants, oil and other lubricants, bio-fluids,
polymer solutions, other common fluids. Typical dimension of the nanopar-
ticles is in the range of a few to about 100 nm. Due to the enhanced properties
of nanofluids as such as thermal transfer fluids for instance, these fluids can
be used in automotive industry, in medical sciences, in power plant cool-
ing systems as well as in computers. On the basis of Buongiorno’s model
Buongiorno (2006), the stability of problems of the onset of convection in
nanofluid layer has been studied by Nield and Kuznetsov (2010a, 2010b,
2011a), Kuznetsov and Nield, (2010a,2010b,2010c), Chand and Rana (2012a,
2012b, 2012c, 2014a) and Rana et al. (2014). The choice of the boundary
conditions imposed in all these studies on nanoparticles fraction is somewhat
arbitrary, it could be argued that zero-flux for nanoparticles volume fraction
is more realistic. Nield and Kuznetsov (2014), Chand et al. (2015a), Chand
and Rana (2014d, 2015d), studied the thermal instability of nanofluid by
taking normal component of the nanoparticle flux zero at boundary which
is more physically realistic.

Due to importance of Maxwell visco-elastic nanofluids, in this chapter an
attempt has been made to study the linear stability analysis of a horizontal
layer of Maxwellian visco-elastic nanofluids heated from below for more
realistic boundary conditions (by assuming nanoparticle flux to be zero
rather than prescribing the nanoparticle volume fraction on the impermeable
boundaries). The value of the temperature can be imposed on the boundaries,
but the nanoparticle fraction adjusts so that the nanoparticles flux is zero
on the boundaries. Stability is discussed analytically as well as numerically.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem
In this chapter we shall investigate the thermal convection in a horizontal

layer of Maxwellian visco-elastic nanofluid. The physical configuration of
the problem to be considered as:
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Figure 1. Physical configuration of the problem

Fluid Layer

Heated from below

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness ‘d’ bounded by horizontal boundaries z = 0 and z = d. Fluid layer
is acted upon by a gravity force g(0,0,-g) and is heated from below in such a
way that horizontal boundaries z = 0 and z = d respectively maintained at a
uniform temperature T, and T, (T, > T)) as shown is Figure 1. The normal
component of the nanoparticles flux has to vanish at an impermeable bound-
aries and the reference scale for temperature and nanoparticles fraction is
taken to be T, and @, respectively

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

N

NN AW
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9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

10. Eachboundary wall is assumed to be impermeable and perfectly thermal
conducting.

Governing Equations

The Maxwell visco-elastic fluid is described by the constitutive relations as

Tij = —péij +7,
1ALl —o 1.1
+ a Tij - Meij) ( . )
1|0u, N auj
e =—|—+—1,
o2 axi 8xi

where T ,7_.e 6 . p,v, x. and p denote respectively the stress tensor, shear
ij’7 17 i) i i

stress tensor, rate of strain tensor, Kronecker delta, scalar pressure, velocity

of fluid, position vector and viscosity of the fluid. m is the convection

derivative and A is the relaxation time. If A = 0, then fluid is known as New-
tonian viscous fluid.

According to the works of Chandrasekhar (1961), the basic hydrodynamic
equations that govern the above described physical configuration are as follows

1. Equation of Continuity: Since this equation represents conservation of
mass so the electromagnetic fields have no effect on it. Hence equation
of continuity for incompressible fluid, is given by

V-v=0, (1.2)

this implies that the density of a particle remains unchanged as we fol-
low it with its motion.

2. Equation of Motion: The equation of motion is derived from the prin-
ciple of conservation of linear momentum. Thus the equations of motion
for a viscous, incompressible fluid is given by
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p%:—Vp+pX+divT, (1.3)

where X is the external force acting on fluid and p is the density of fluid.
Since external forces are of non-electromagnetic origin (gravity) only,
then the equation of motion can be written as

d .
pE%:—Vp+pg+dwr. (1.4)

3. Equation of Energy: The equation of energy is derived from the law
of conservation of angular momentum, and hence equation of energy
for viscous compressible fluid is given by

oT

8@1) 0 : (1.5)

e

where c_is the specific heat at constant volume, T is the temperature
and k is the thermal conductivity. The viscous dissipation term, being
small in magnitude, has not been included in equation (1.5).

4. Equation of State: The equation of state for viscous compressible fluid
is given by

p=p,(1+a(T, - 1)), (1.6)

where a is the coefficient of the thermal expansion.

Using the constitutive relations (1.1) for Maxwell visco-elastic fluid, the
equation of continuity and equation of motion for Maxwellian visco-elastic
fluid are written as

V-v=0, (1.7)
8 dv 8 9

L+ A—|—= =1+ A= |(=Vp + pg) + uV’v. 1.8

P 8t]dt 81,‘]( p+pg)+ Vv (1.8)
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According to the works of Buongiorno (2006), the density p is written as
p=p,+(1-¢)p, (1.9)

where @ is the volume fraction of the nanoparticles, P, density of nanopar-
ticles and p, density of basefluid.

Taking the density of the nanofluid as that of the base fluid, the buoyancy
term is approximated by

o= (wn, + (1= ¢){p(1-a(T-T,)}Je. (1.10)

where a is the coefficient of thermal expansion.
Using equation (1.10), the equation of motion for Maxwellian visco-elastic
nanofluid is given as

1+ A2 =
dt

p ot

8]dv_

14 /\ﬁ] (—Vp + (<ppp +(1-¢) {pf (1-a(T- TO))})g) + Vv

ot
(1.11)

Due to Brownian motion and thermophoresis mass flux j of the nanopar-
ticles in base fluid is given by

D
i, =-p,D,Ve—p ?T VT, (1.12)
kT . . . . ..
where D, = —=- is the Brownian diffusion coefficient and
3T ,udp
= E 0-26k ¢ 1s the thermoporetic diffusion coefficient of the
AJ| 2k +k
nanoparticles.

Equation of continuity for the nanoparticles is

D
‘Z_fﬂ.w:_lv.jp:DszwTTvZT. (1.13)

P 1
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Equation of energy for Maxwellian visco-elastic nanofluid is given by

D
pc%—f—l—v-VT:kaZT—l—(pc) DBV¢-VT+?TVT-VT , (1.14)
p

1

where pc is heat capacity of fluid, (pc)_is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d and k _ is thermal conductivity.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions Chandrasekhar (1961), Nield
and Kuznetsov (2014) are

w=0,T=T, D,—+—— =0 at z=d. (1.15)

Introducing non-dimensional variables as

o 2
(X/vylaz/a) = =2 s V/(ll/,V/, W/,) =V 11,V—,W d7 tl = t—7 p/ = &7
d ? d? JI
— T-T k
@ = M, T = u, where x = — is thermal diffusivity of
SOO (TU - Tl) pC

Equations (1.7), (1.11), (1.13) and (1.14) in non-dimensional form can
be written as

Vv =0, (1.17)

/
{1+F8]18v_[ 0
ot

— | —— =14 F—=|(-V'p-Rmé_+ RaT’é —Rny'e |+ V"*V,
ot' | Pr ot’ ’]( P z . ¥ z)

(1.18)
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1 N

/
a@%—i—v/-vltp/ _ = VIZQOI—i-L—gV/QT/, (1.19)
/ N N N
aaf, +v VT = VT L—Bv’so’ VT + " VT VT (1.20)
] (S

Here the non-dimensional parameters are given as

Pr = s the Prandtl number,

PK

K . .
Le = — is the Lewis number,
B

A )
F = Z—2 is the stress relaxation parameter,

_ pgad3 (TU — T1)

Ra is the Rayleigh number,
UK
P,y +p(l-p, ) gd” . _
Rm = ( A ( 0)) is the density Rayleigh number,
UK
p, —p)e,ed’
Rn = @ is the nanoparticles Rayleigh number,
WK
. DT (To_Tl) . . e . .. .
. = —————= 1is the modified diffusivity ratio,
DBTl("D(]
(pe), %0 o .
5 = ﬁ is the modified particle-density increment.
pe).

In spirit of Oberbeck-Boussinesq approximation, equation (1.18) has been
linearized by the neglect of a term proportional to the product of ¢, and T.
This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.

The dimensionless boundary conditions are

/ /
w =0, T =1 6—¢+N or

5 P =0at 7z =0

and
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¢’ oT’

w =0, T'=0, o +N, o =0 at z/ =1. (1.21)

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

/ [ !/
v, (u,v,w)zO,
1

p' =p,(2),
T = T (z), (1.22)
o = gpb(z) and

p=p,(1+a(T-T,)).

Equations (1.17) — (1.20) reduce to

d
0=— dpl; “Rm + RaT, — Rng,, (1.23)
Z

T  N.de dT N.N.(dT )

by SR L Tae )|\ D) (1.24)
dz?  Le dz’ dz Le dz
d’p d’T
o TNy =0 (1.25)

Using boundary conditions (1.21), equation (1.25) gives

p,=-N,T, +(1-N, )z’ +N,. (1.26)
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On substituting the value of the ¢, from equation (1.26) in equation (1.24),
we get

dsz + (1_NA>NB dTb

=0. 1.27
dz’ Le dz’ ( )

On integrating equation (1.27) with respect to z’and using boundary
conditions (1.21), we get

1_ 6—(1—NA )Ny (1-2")/ Le

Tb = B 67(17N_4)NU/Le : (1'28)

1

According to (Buongiorno, 2006), for most nanofluid investigated so far
Le is large, is of order 10? - 10°, while N , 18 no greater than about 10. Then,
the exponents in equation (1.28) are small. By expanding the exponential
function into the power series and retaining up to the first order is negligible
and thus a good approximation for the solution is given by

/
Tb =1-—1z
and
¥ :¢u +NAZ/

PERTURBATION SOLUTIONS

Let the initial basic state described by (1.22) is slightly perturbed so that
perturbed state is given by

! ! !/ no__n "
(u v ,W)z()—i—(u VW ),

T =T + T, (1.29)
o' =9, +¢
p'=p, +p’,

10
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where T, =1—7', ¢ =¢, + N,z and (u”,v”,w”), T”, " and p” respec-
tively the perturbations in initial velocity, temperature, volume fraction of
the nanoparticles and pressure.

By substituting (1.29) in equations (1.16) — (1.20) and linearize by ne-
glecting the product of the prime quantities, we obtained following equations

V-v=0, (1.30)
0 1 Ov 0 2
1+ F—|——=|1+ F—|(-Vp+RaTé —Rnpé |+ Vv, 1.31
oo [ e R s v
g 1 oo N, oo
— 4+ wN, =—Vpo+—-VT, 1.32
ot B Le 4 Le ( )
N 2N, N
8_T_w:v2T+_B NA(?_T_(?_(Z) _#B_T. (1.33)
Le 0z 0z Le 0z
Boundary conditions are
w=0,T=0, 3_¢+N8_T =0 atz=0,1. (1.34)

0z 4 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (1.31) by operating with curl
twice on it, we have

a 1 a 2 2 2 4 _
[HFE][EEW w)—RaV: T + RnV¢| - V'w = 0, (1.35)
where V7, is two-dimensional Laplacian operator.

NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually.

11
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For the system of equations (1.35), (1.32)-(1.33) the analysis can be made in
terms of two dimensional periodic wave numbers. Thus, assuming that the
perturbed quantities are of the form

[w. 0] = [W(2),0(2),8(z)|exp (ik x + ik y + nt), (1.36)

where k ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (1.36), equations (1.35), (1.32) and (1.33) become

(D2 —a2> D?* —a’ —M W—(l—l—nF)(aQRa@—aan@) =0,
Pr
(1.37)
NW—ﬂ(Dz—aQ)@— i(DQ—aZ)—nrb:o (1.38)
A Le Le ’ '
W + DQ—aZ—n—NANBD -£D<I>:0, (1.39)
Le Le

d 5 . . )
where D = p and a = \k* + kj is the dimensionless resultant wave num-
Z e p

ber.
The boundary conditions of the problem in view of normal mode analysis are

W=0,D'W=00=0,DP+N,DO=0 at z=0,1. (1.40)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (1.37) — (1.39) with the boundary condi-
tions (1.40). In this method, the test functions are the same as the base (trial)
functions. Accordingly W, ® and ® are taken as

12
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N N N
W=> AW,0=3 86 2=3C2, (1.41)
p=1 p=1 p=1
whereW =0, =sinprz® =—N, sinpnz, A B and C are unknown

coefflclents p=123,. N and the base functlons Wp 0, and O satisfy-
ing the boundary COIldlthIlS (1.40). Using expression for W, © and ® in
equations (1.37) — (1.39) and multiplying the first equation by W, the second
equation by G)p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown Ap, Bp and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (1.37) - (1.39) together with the boundary conditions (1.40) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (1.41) into the system of
equations (1.37) -(1.39) and multiplying the first equation by W the second
equation by ®p and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

H
R
+
S
o+
[e]
s O =
I
o O O

o o o

(1.42)

The non-trivial solution of the above matrix requires that

13
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(** +’)
a’ (1 + nF )

2 2 2 2
(7 +a*) + Le(n* +a* +n)

n(l—l—nF)

Pr

Ra = (712+a2)+ (772—|—a2+n>—

(1.43)

(7T2 + aQ) + nle MR

The growth rate nis in general a complex quantity such thatn = _+ i, the
system with ®_ < 0 is always stable, while for ®_> 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (1.43), we have

Ra = A, +iwA,, (1.44)

where

A (7r2 +a2) (Tr2 —i—a2)2 —1—(,‘12F<7r2 +a2) W

! a’ 1+ W F? Pr
(1.45)

(772 + a2)2 (Le + 1) + Le ((7‘(‘2 + aQ)) + w'Le’

— 5 N, Rn
(7T2 + aQ) + W’Le’
and
A, = (772 —i—2a2)2 1—F(7r22+2a2) 1, Le* (Wj + az) N Ru. (146)
a 1+w'F Pr (7T2+a2) 1 WL

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (1.44) that either ® = 0 (exchange of stability, steady state) or
A, = 0 (w#0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary (non-oscillatory) convection n = ® = 0, thus equa-
tion (1.43) reduces to

14
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Ra :M— 1+ Le)N,Rn. (1.47)
(Ra) .

s a2

It is observed that stationary Rayleigh number is function of the Lewis
number, the modified diffusivity ratio and the nanoparticles Rayleigh but
independent of visco- elastic parameter, Prandtl number and modified particle-
density increment. Thus Maxwell visco-elastic nanofluid behaves like an
ordinary Newtonian nanofluid and instability is purely a phenomenon due
to buoyancy coupled with the conservation of nanoparticles.

To find the critical value of (Ra) , equation (1.47) is differentiated with

S

respect to ‘a*” and then equated to zero. The minimum of first term of right-

hand side of equation (1.47)is attained at a_ = " and minimum value found

V2

so the corresponding critical Rayleigh number given by

4

to

277
(Ra) = T (14 Le)N,Rn. (1.48)
In the absence of nanoparticles (Rn = Le = N, = 0), one recovers the
4
well-known results that the critical Rayleigh number is equal to (Ra) _ 2 .

This is good agreement of the result obtained by Nield and Kuznetsov
(2010a).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (1.48); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.

OSCILLATORY CONVECTION

For oscillatory convection A, = 0 and o = 0, thus equation (1.46) gives a
dispersion relation of the form

a, () +a,(w)+a, =0; (1.49)

0

15
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where
Lée*F?
a, = ,
Pr
2L 2F2
al:%NARrH—Lez(l—F(wQ+a2))+F(7r2+a2>+Lez,
™ 4+ a
a’Le’ 2 2 2 2 (7‘r2—|—a2)
a0:ﬂ2+a2NARn+(7T +a )(1—F<7T +a))+T.

Then equation (1.44) with A, = 0 gives oscillatory Rayleigh number at
the margin of stability as

71'2—|—a22 7 +a’ )+ W F 2
(Ra)m:( a? | 1+22F2 |

(71'2 —|—a2)2 <L€+1)+Le(7r2 +a2)+w2L62 - (1.50)

A

(7r2 + a2)2 + W’Leé’

For the oscillatory convection to occur, ®* must be positive. If there are
no positive roots of ®? in equation (1.49), then oscillatory convection is not
possible. If there are positive roots of w? the critical Rayleigh number for
oscillatory convection can be obtained numerically minimizing equation
(1.50) with respect to wave number, after substituting various values of
physical parameters for ®* of equation (1.49) to determine the various effect
of different parameter on the onset of oscillatory convection.

RESULTS AND DISCUSSION

To study the effect of Lewis number Le, modified diffusivity ratio N, and
nanoparticles Rayleigh number Rn on stationary convection, we examine the

i 8(Ra> B(Ra) 8(Ra>
behavior of = £ and
OLe ON ORn

A
From equation (1.47), we have

* analytically.

16
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) ((9Ra)
@ OLe =<0,
B (8Ra)
(i1) N £ <0,
(ii1) (aRa)"‘ <0
ORn

From these inequalities it is observed that Lewis number Le, modified
diffusivity ratio N, and nanoparticles Rayleigh number Rn have destabilizing
effect on the stationary convection.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon Lewis number, modified dif-
fusivity ratio and nanoparticles Rayleigh number. The computations are
carried out for different values of parameters considered in the range
10° < Ra < 10° (thermal Rayleigh number), 1 < N , <10 (modified diffusiv-

ity ratio), 10* < Le < 10" (Lewis number),10™" < Rn < 10' (nanoparticles
Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 - 4.

Figure 2 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It is
found that stationary Rayliegh number decreases as the values of Lewis
number increases, indicating that Lewis number destabilizes the stationary
convection. It is due to the fact that thermophoresis at a higher value of
thermophoretic diffusivity is more supportable to the disturbance in nano-
fluids, while both thermophoresis and Brownian motion are driving forces
in favor of the motion of nanoparticles. This is good agrement of the result
obtained by Chand and Rana (2014d).

Figure 3 shows the variation of stationary Rayleigh number for different
value of the modified diffusivity ratio N, and fixed value of other parameters
and it is found that Rayleigh number decreases with an increase in the value
of the modified diffusivity ratio N, which means that the modified diffusiv-
ity ratio N, destabilizes on the fluid layer. This may lead to an increase in
volumetric fraction, which shows that Brownian motion of the nanoparticles
will also increase, which may cause destabilizing effect. This is good agre-
ment of the result obtained by Chand and Rana (2014d).

Figure 4 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number Rn and

17
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Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of concentration Rayleigh number
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fixed value of other parameters and it is found that thermal Rayleigh num-
ber decreases with an increase in the value of the nanoparticles Rayleigh
number Rn, which means that the nanoparticles Rayleigh number Rn has
destabilizing effect on fluid layer. The destabilizing effect because the heavier
nanoparticles moving through the base fluid makes more strong disturbances
as compared with the lighter nanoparticles. This is the good agreement of
the result obtained by Chand and Rana (2014d).

PRINCIPLE OF EXCHANGE OF STABILITY

Multiplying equation (1.37) by W* (the complex conjugate of W) and inte-
grating over the range of z, i.e. 0 < z <1, we have

fW*(DZ —a2)2 Wdz—MjW*(Dz —aZ)WdZ-azRa<1+nF)jW 0 dz
0

0 r 0

+a’Rn (1 T nF) W *ddz = 0.

o

(1.51)
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Now integrating equation (1.51) a suitable number of times and using the
boundary conditions (1.40), we get

p 1—|—nF p
pwl +a' 2wl lz
f[\ ot W] +2* [pw| ]m f[\pwrﬂ i
0 I' 0

1

—aRa(1+nF fW*@dz—i—aan 1—|—an W *®dz = 0.
0

(1.52)
Taking the complex conjugate of the equation (1.39), we have
N, 2N, N
n*O*—W*=(D*-a?)0* +—L(N,DO* —D®*) - AL DO*.  (1.53)
Le Le

Multiplying the equation (1.53) by ® and integrating the over range of
z, a suitable number of times and using boundary conditions (1.40), we get

n*Z‘@‘Zdz—zW@dz:—i;f[‘D@r—|—a2‘@‘2]dz—|— .
N P oner—opo i - 2N Topes 0y
[ (V000 * -0D® *)i: . [ene .
o €

e

Taking the complex conjugate of the equation (1.38), we have

n*<I>*+NAW*:é(DQ-aQ)fI)*jL%(DQ-aQ)@*. (1.55)

Multiplying equation (1.55) by ®@ and integrating the range of z, a suitable
number of times and using boundary conditions (1.40), we get

* J\@f dz + NJW Pz = —Liej[\mf +a’ ‘(I)‘Z]dz

0 0 0 . (1.56)
- % f (D@D@ * 12’00 *)dz

From equations (1.54) and (1.56), we have
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]W Odz = n *J\@\2 dz+LiJ[\D@\2 ta’ \@f]dz
€ 0

; 1.57
TN, (1.57)

f@D@ *dz + zj@m *dz
0

NA]W Dz = —n * j\cbf dz — Li][\pcbf +a? \cbf]dz
0 0 € 0 .

) (1.58)
- % [ <D<I>D® * {2’00 *)dz

Using equations (1.57) and (1.58), the equation (1.52) reduces to the fol-
lowing form

J[‘DQW‘Z ta \W\Z +24? ‘DW‘Z}dz 4+ (1t nF) ]UDW\Z +a? ‘W‘Z]dz
0 Pr 0

—a’Ra (1 —+ nF) n*

1 . 1 1 . ) ) N N 1 N 1
{‘6‘2d2+5[[‘D6‘2 +a*[6) ]dz—}—ﬁ[@D@ *dz+72[90¢ *dz

—a’Rn (1 + nF) = 0.

n*l ) 1 1 s , . .

(1.59)

Now putting n = n_+ in,, in equation (1.59) and equating the imaginary
parts of resulting equation, we get

% 1 ‘DW‘Z +a’ ‘W‘Q]dz—o—nlaQRa J‘@rdz _ RaNANB Img J‘@D@ *dz
r 0 0 € 0
_NBEQRa Im g f@D@ *dz —O—azni% ﬂ@rdz "Tmg ](D@D@*Jra%b@ *)dz =0
€ 0 A 0 0
(1.60)
1 1
But Img f@D@ *y | < f@D@ %z,
0
1
< [lelloe 4

0
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1

< [lellvef

0

TmmImgLfQDG*ch <= fkjdz+jWD@Mu (1.61)

&mMWMngw*MS%]M%+Jpﬁ@, (1.62)
0 0 0

and

Img

j(DCDD@*+a2<I>® *) dz| < - f|Dq>| dz+f|D®| dz + a* f|<1>| dz + a* f|@| dz

0 0

(1.63)
Using inequalities (1.61) - (1.63) in equation (1.60), we get

n

o s St
P i

2Le 2Le 2Le

f ef ¢z

o)

+a Rn[——— f|<1>| dz
A
2 2 2
|a RaNANB n NBa Ra + Rn fD@dz B NBa Ra . a Rn fD@dz <.
2Le 2Le 2Le
(1.64)
Since W (0) = W (1) = 0, and using Rayleigh-Ritz inequality, we have
1 ) 1 1 )
ﬂmggijM@. (1.65)
0 0

Also ®(0) = 0 = ®(1) and O(0) = 0 = O(1), and using Rayleigh-Ritz
inequality, we have
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1 1 )
f 8 dz < = [ D] d=. (1.66)
0

3
OSH

]‘Q‘Zdz %j e dz . (1.67)
0 0

Using inequalities (1.66) - (1.67) in the inequality (1.64), we have

oo var) [ o

0
: : ) : : ; 1
+ na’Ra — aZRaNANB _ NBazRa o a'Rn 2 azRaNANB + NB a’Ra + a_fin f‘@rdz
! 2Le 2Le 2Le 2Le 2Le f
‘ 2 N a’R 2 r
tlatrn| B0 | e M@ fa  aRn f‘q)‘zdz <0.
NA 2Le 2Le 2Le f

(1.68)

For the validity of “PES” put n, = 0, (whatever may be the value of n_i.e.
positive, negative or zero) in (1.68), we get

a’RaN,N, N a’Ra a'Rn
2Le 2Le 2Le

) aQRaNANB n N, a’Ra N a’Rn
2Le 2Le 2Le

— T

12

flefe

0

a*Rn _
2Le

9 NB(IQRCL a’Rn
2Le 2Le

(1.69)

The inequality (1.69) holds and hence “PES” is valid for the problem.

CASE OF OVERSTABILITY

Here we examine the possibility of as to whether instability may occur as
overstability. Since we wish to determine the Rayleigh number for the onset
of instability via a state of pure oscillation, it suffices to find the conditions
for which equation (1.49) will admit the solution with real values of w. All
the coefficients a,a,a, in equation (1.49) are real.

0

Now the product of the roots of equation (1.49)= [a—
a

2

is positive.
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a, is always positive and a, is negative if

2 2
a’Le

e N‘4Rn+1—|—%<F(7r2+a2). (1.70)

2L62

. . 1 . ..
Thus inequality a—2 N,Rn+14+—<F (772 + az) is sufficient
(7_‘_2 4 a2) Pr

condition for the non-existence of overstability, the violation of which does

not necessarily imply the occurrence of overstability.

CONCLUSION

Thermal instability in a horizontal layer of Maxwellian visco-elastic nano-
fluid is investigated. The flux of volume fraction of nanoparticles is taken to
be zero on the isothermal boundaries and the eigen value problem is solved
using the Galerkin residual method. The results have been presented both
analytically and graphically.

The main conclusions derived from the present chapter are as follows

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Lewis number, modified diffusivity ratio and nanoparticles Rayleigh
number destabilize the stationary convection.

4. Principle of Exchange of Stabilities is valid for the problem.

Sufficient condition for the non-existence of overstability is

b

’Le* 1
a e QNARn+1+—<F(7T2+a2).
. Pr

<7T2 + az)
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Chapter 2

Effect of Rotation on
the Onset of Thermal
Convection in a Layer
of Maxwellian Visco-
Elastic Nanofluid

INTRODUCTION

The effect of rotation on the thermal instability is important in certain chemi-
cal engineering and biochemical engineering. Thermal instability in rotat-
ing non-Newtonian fluid has considerable interest due to its wide range of
applications in engineering, including rotating machineries such as nuclear
reactors, petroleum industry, biochemical and geophysical problems. To
attain the improved performance of such applications the use of nanofluids
with higher thermal conductivities can be considered as a working medium.
Thermal instability in rotating fluids about a vertical axis combines the
element of thermal buoyancy and rotation induced Coriolis and centrifugal
forces. Due to the Coriolis force on the thermal instability problem another
parameter namely Taylor number is introduced in this problem. Taylor number
is a non-dimensional number which is a measure of rotation rate. It is appar-
ent that thermal instability in rotating Maxwellian nanofluids will play an
important role in many physical phenomenon concerning with geophysics,
astrophysics and oceanography.

DOI: 10.4018/978-1-68318-006-7.ch002
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Thermal instability problem for a regular fluid with rotation or without
rotation was first discussed by Chandrasekhar (1961). Thermal instability
problem in rotating micro polar fluids have been studied by Qin & Kaloni
(1992) and found that rotation has a stabilizing effect for low values of Taylor
number. Thermal instability problems for nanofluid with rotation were stud-
ied by Yadav et al. (2011, 2013b), Chand and Rana (2012b), Chand (2013a),
Rana et al. (2014c¢), Chand et al. (2015d), Rana and Chand (2015b), Rana
and Agarwal (2015).

In the present chapter we have extend our study to find the effect of rota-
tion on the thermal instability of Maxwellian visco-elastic nanofluid layer
for more realistic boundary conditions. Stability is discussed analytically as
well as numerically using Galerkin-type weighted residuals method. It has
been observed that rotation has stabilizing effect on the fluid layer.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the effect of rotation on the onset of ther-
mal convection in a horizontal layer Maxwellian visco-elastic nanofluid. The
physical configuration of the problem to be considered as:

An infinite horizontal layer of Maxwell visco-elastic nanofluid of thick-
ness ‘d’ bounded by horizontal boundaries z = 0 and z = d. A Cartesian
coordinate system (X, y, z) is chosen with the origin at the bottom of the
fluid layer and the z- axis normal to the fluid layer. Fluid layer is rotating
uniform about z-axis with angular velocity (0, 0, ) and is acted upon by
gravity force g(0, 0,-g). Fluid layer is heated from below in such a way that
horizontal boundaries z = 0 and z = d respectively maintained at a uniform
temperature T and T, (T > T ). The normal component of the nanoparticles
flux has to vanish at an impermeable boundary and the temperature T is
taken tobe T atz=0and T at z=d, (T, > T)) as shown in Figure 1. The
reference scale for temperature and nanoparticles fraction is taken to be T,
and @, respectively

The following analysis is confined to a narrow and very long fluid layer.
Since the significance of the centrifugal acceleration depends on the offset
distance from the centre of rotation therefore for the layer which is adjacent
to the rotation axis (i.e. x =0, y = 0), the impact of the centrifugal accelera-
tion to be zero. Due to the fact that here a narrow and very long fluid layer
is considered, centrifugal effects can be neglected in the momentum equation.
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Figure 1. Physical configuration of the problem

Heated from below

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1.

2.

NN RAEW

10.

11.

Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

Each boundary wall is assumed to be impermeable and perfectly thermal
conducting,

Angular velocity of fluid layer is assumed to be constant.
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Governing Equations
The equation of continuity and equation of motion for Maxwellian visco-
elastic nanofluid in the presence of rotation under the Boussinesq approxi-

mation are given as

V-v=0, (2.1)

p

=g et

+uViv +2p (v X Q)

’

(2.2)

d 9 . o .
where T B + (v : V) represents the convection derivative; v is the veloc-

ity of fluid, p is the pressure, p, is the density of nanofluid at lower layer, P,
is the density of nanoparticles, \ is the relaxation time, ¢ is the volume
fraction of the nanoparticles, T is the temperature, « is coefficient of the
thermal expansion, g is acceleration due to gravity, € is angular velocity of
fluid and p is the viscosity.

Equation of energy for Maxwellian visco-elastic nanofluid is given by

D
pc%—f +v VT =k V'T+(pc) [D,Vy VT + —EVTVT, (2.3)
p

1

where pc is heat capacity of fluid, (pc)p is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d, and k _ is thermal conductivity.
Equation of continuity for the nanoparticles is given by

890 2 DT 2
2 4+v-Vo=DV+—LVT, 2.4
ot vy BY ¥ T 2:4)

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions Chandrasekhar (1961), Nield
and Kuznetsov (2014) are
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D
w=0,T=T, DB8¢ or =0 atz=0 and
0z T 62
D
w=0,T=T, 0,20 2107 _4 4 ,—a (2.5)
0z T1 82

Introducing non-dimensional variables as

o 2
(X/’y/7zl) N RSVEY 7 V,(u,,V/, W,,) —V u,v,w d, t = t_, p/ _ &7
K d? UK
o eme) o (r-T)
%o (To o T1)

k
where x = — is the thermal diffusivity of the fluid.
pc
Equations (2.1) - (2.5) in non-dimensional form can be written as

V'-v =0, (2.6)

1+ F i/] (—V’p'—Rméz + RaT’é — Rngo'éz)

1+F—
ot

0 1 av
at' | pr ot
+V"v ++Ta (V e -u éy)

. (@27

880, / /3N 1 n oy NA 12m/
v vy = Ly s Nagep 28
ot 4 Le 4 Le (28)
! N N.N
?9{’ VYT = VI 4 SR VT e YT VT (2.9)
€ €

Here the non-dimensional parameters are as follows

Pr = % is the Prandtl number,
PR
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Le = - is the Lewis number,
DB

AL .
F = /:1_2 is the stress relaxation parameter,

_ pgad® (TO — T]>

Ra is the Rayleigh number,
WK
Py +p (10, ) gd’
Rm = ( L ( °>> is the density Rayleigh number,
UK
p, —p)ped’ . :
Rn = @ is the nanoparticles Rayleigh number,
UK
2
2
Ta = 24 is the Taylor number,
1%
DT (TO_TI) . ‘o . .. .
N, = ———— is the modified diffusivity ratio,
Dy T,
(pe), o .
N, = ——— 1is the modified particle-density increment.

(ee),

In spirit of Oberbeck-Boussinesq approximation, equation (2.7) has been
linearized by the neglect of a term proportional to the product of ¢ and T.

This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.
The dimensionless boundary conditions are

! !
w =0, T =1, ggb/—l—NAaaT/ =0 at z' =0 and
Z Z
i !
w' =0, T =0, %H\Qg:om 2 =1. (2.10)
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THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

/ !/ !/
v, (u ,V,W)—_O,
1

p' =p,(2),
T = Tb(z)7
o = gpb(z) and

p=p,(1+a(T-T,)).

Equations (2.6) — (2.9) reduce to

_dp,

0=
dz’

-Rm + RaT, — Rnep, ,

2

&°T, N, dp, dT, N N, [dT, 0
dz”?  Le dz' d7 Le |dz ’
d’p d’T,

dz/; +NA dz/; =0,

Using boundary conditions in (2.10), equation (2.14) gives

¢, =N, T + (1 - NA)Z/ +N,.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

On substituting the value of the ¢, from equation (2.15) in equation (2.13),

we get
T, | (NN, a1,
dz’ Le dz’

(2.16)
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On integrating equation (2.16) with respect to z’' and using boundary
conditions (2.10), we get

_ —(1-N )N (1-2)/Le
polz¢ . 2.17)

b 6—(1—NA)NB/LR

1—

According to Buongiorno (2006), for most nanofluid investigated so far
Lewis number Le is large, is of order 10*-10°, while N N is no greater than
about 10. Then, the exponents in equation (2.17) are small. By expanding the
exponential function into the power series and retaining up to the first order
is negligible. Thus a good approximation for the basic solution is given by

/
Tb =1-—2z
and
¥ :¢u +NAZ/

PERTURBATION SOLUTIONS

Let the initial basic state described by (2.11) is slightly perturbed so that
perturbed state is given by

! ! / n __n "
(u vV ,W)z()—i—(u VW ),

T =T, +T", (2.18)
o' =9, +¢
p'=p, +p",

where T, =1—7', ¢, =¢,+ N,z and (u”,v”,w”), T, ¢" and p” re-
spectively the perturbations in the initial velocity, temperature, volume frac-
tion of the nanoparticles and pressure.

By substituting (2.18) in equations (2.6) — (2.9) and linearize by neglecting
the product of the prime quantities, we obtained following equations
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V-v=0, (2.19)

[1+F 8] Lov [ +F£](—Vp+RaTéz—Rnapéz)+v2v+ Ta(véx—uéy),

at| Pr ot ot
(2.20)
99 4N, = L v 4 Da g, (2.21)
ot Le Le
N 2N, N
O y—vry—z|y 9L 00 203, 0T (2.22)
ot Le 0z 0z Le 0z
Boundary conditions are
w=0,T=0, 282 _gaz=0.1 (2.23)

0z 4 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (2.20), we have

3 1 8 9 4 a 2 2 85
14 F—|——Vw—-Vw—|14+F—|(RaV,T-RnV VTa — =0,
[+8tPr8t W[+at<aH nHSO)JF oz
(2.24)
ok 0
where V7 = Py + 5o is the two-dimensional Laplacian operator and
Z Y
£ = ov _ou, is the vorticity.
ox Oy
Also from equation (2.20), we have
1yl L2 £ =T 2 ow. (2.25)
ot Pr ot

Now eliminating ¢ from equations (2.24) and (2.25), we have
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1+l oL L0y i plv - L2y )
ot Pr 0t)Pr 0t ot Pr 0t _Taa‘w_O
2 2 —2 =
. ) 10 ‘ d , 10 Oz
—RaV} |1+ F—| |V’ —=——=—|T+RuV} |1+ F—| |V  ———
“r 8t] [ Pr ot Y ot prot)”
(2.26)

NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually.
For the system of equations (2.19), (2.21), (2.22) and (2.26) the analysis can
be made in terms of two dimensional wave numbers. Thus, assuming that
the perturbed quantities are of the form

[, Tp| = [W(2),0(2),8(2) | exp (ik x + ik y + nt), (2.27)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (2.27), equations (2.26), (2.21) and (2.22) become

(D2 —a2)<1+nF)[D2 _ a2 —Pi] D? — a2 M 1 TaD*|W
T T

~(1+ nF)2 D —q® — i] (aQRaG) - aQRnfb) — 0,

Pr

(2.28)

NAW—JZ—Z(DZ —aﬁ)(a—[Lie(D2 —az)—n]fb -0, (2.29)
WDt —aton- s e-ﬁmzo, (2.30)

Le Le

d . . .
where D = - and a =, lkf + kj is the dimensionless resultant wave num-
Z v :

ber.
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The boundary conditions of the problem in view of normal mode analysis are

W=0,D'W=0" =0,D®P+N,DO=0 at z=0,1. (2.31)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (2.28) — (2.30) with the corresponding
boundary conditions (2.31). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and ® are taken as

N N N

W= AW 0=>"BO d=%Ca, (2.32)
p=1 p=1 p=1

whereW  =© =sinpnz® = —N sinprz, A B and C are unknown

coefficients, p =1, 2, 3,.. N and the base functlons W @ and R satisfy-
ing the boundary condltlons (2.31). Using expression for W, © and ® in
equations (2.28) — (2.30) and multiplying the first equation by Wp the second
equation by @p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown Ap, Bp and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (2.28) — (2.30) together with the boundary conditions (2.31) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (2.32) into the system of
equations (2.28) — (2.30) and multiplying the first equation by W the second
equation by @P and third equation by QDP and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation
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(7r9 + a*) s n(l + nF) . wTa a’Ra a’N, Rn
(1+nF) Pr (1+nF)"’ ™ +a +%] Wl [0
L (7- +a* +n) 0 6,|=10
| INE R T L
(2.33)
The non-trivial solution of the above matrix requires that
1 (W2 —|—a2) 1—|—nF) m'Ta 2 2
Ra = — o T 4a’ + P + (W +a‘+n)
2
a (+n ) r (1+nF) 772+a2+n]
Pr
(772 + 2)+Le(7r +a’ +n)
_ NARn.
(7r +a ) + nle
(2.34)

The growthrate nis in general a complex quantity such thatn = _+ i, the
system with o_< 0 is always stable, while for _> 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (2.34), we have

Ra = A, +iwA,, (2.35)

where

(7r2 —l—a2) (7r2 +a2)2 +w2F(7r2 + aQ) W

A1 = 2 1 2 2 T b

a + w'F Pr

el (1) ) - 2| o ) )
+ ; 5
: 22
[(1_w2F2)(W2+a2)_2;1F o zF(Wuaz)JlP“f)
2 2 2 2 2 2 2
_(71' +a> (Le—}—l)—i—fe((w +a ))—i—wLe N Rn
(7r2 —l—a2) +w'Le’
(2.36)
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and
(7r2—|—a2)2 1—F<7T2—|—a2) 1
A, = a’ 1+ W F? +E
7°Ta (1—w2F2)(7r2 —|—a2)— 2(;1}? —|—(7r2 —|—a2) 2F(7r2 —|—a2>—|—(1 _::FQ)
" 2 (l—wQFQ) ’
(1—w2F2)(7T2+a2)—2wrF 1 2F(7"2+a2)+T
Le’ (7‘1’2 —|—a2) N R
— n.
(7r2 + a2)2 + W’Le’ '
(2.37)

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (2.35) that either ® = 0 (exchange of stability, steady state) or
A, =0 (o # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary (non- oscillatory) convection, n = o = 0, thus
equation (2.34) reduces to

(7r2 +a’ )3 +7°Ta
(Ra)s = - —(1+ Le)N,Rn. (2.38)

Itis observed that stationary Rayleigh number Ra is function of the Taylor
number Ta (rotation), Lewis number Le, the modified diffusivity ratio N, and
the nanoparticles Rayleigh Rn but independent of visco- elastic parameter
F, Prandtl number Pr and modified particle- density increment N,. Thus
Maxwellian visco-elastic nanofluid behaves like an ordinary Newtonian
nanofluid and instability is purely a phenomenon due to buoyancy coupled
with the conservation of nanoparticles.

In the absence of rotation (Ta = 0) equation (2.38) reduces to
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(Ra) =>———"—(1+ Le)N,Rn, (2.39)

s 2

This is the good agreement of the result (1.47) obtained in Chapter 1.
To find the critical value of (Ra) , equation (2.38) is differentiated with

S

respect to ‘a*” and then equated to zero. The minimum of first term of right-

hand side of equation (2.38) is attained at a_ = ™ and minimum value found

J2

so the corresponding critical Rayleigh number given by

4

to

(Ra) =T 710 (11 po)N R, (2.40)

In the absence of rotation and nanoparticles (Ta = Rn = Le = N, = 0),

onerecovers the well-known results that the critical Rayleigh-number is equal
4
to(Ra) = 2.
e 4

This is good agreement of the result obtained by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (2.40); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.

RESULTS AND DISCUSSION

To study the effect of Rotation (Ta), Lewis number Le, modified diffusivity
ratio N, and nanoparticles Rayleigh number Rn on stationary convection,
0 (Ra) 0 (Ra) 0 (Ra) 0 (Ra)

we examine the behavior of 5. s, * and
0Ta OLe ON, ORn

* analyti-

cally.
From equation (2.38), we have
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((9Ra)

1 = > 0,

0Ta
(8Ra)

2. £ <0,

OLe
(8Ra)

3. £ <0,
ON,
(8Ra)s 0

ORn

These inequalities imply that Taylor number Ta has stabilizing effect while
Lewis number Le, modified diffusivity ratio N, and nanoparticles Rayleigh
number Rn have destabilizing effect on the stationary convection.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon Taylor number (rotation),
Lewis number, modified diffusivity ratio and nanoparticles Rayleigh number.
The computations are carried out for different values of parameters consid-
ered in the range 10° < Ra < 10° (Rayleigh number), 10 < Ta < 10" (Taylor
number),1 < N, <10 (modified diffusivity ratio), 10° < Le < 10" (Lewis
number),10™' < Rn < 10" (nanoparticles Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 - 5.

Figure 2 shows only the variation of stationary Rayleigh number with
wave number for different value of the Taylor number with fixed value of
other parameters and it is found that the Rayleigh number increases with an
increase in the value of the Taylor number, which imply that rotation delay
the onset of stationary convection. It is due to the fact Coriolis force due to
rotation drags the perturbed transverse motion and kinetic energy is dissi-
pated by the viscosity, which intern increases the critical electric strength
required for the onset of convection. Rotation acts so as to suppress the ver-
tical motion, and hence thermal convection, by restricting the motion to the
horizontal plane. The corresponding critical wave number a_ is plotted in
Fig. 2 and indicates that an increase in the value of Taylor number Ta tends
to increase a_. Thus its effect is to reduce the size of convection cells. This
is good agrement of the result obtained by Chand and Rana (2012b), Chand
(2013a), Yadav et al. (2011).

Figure 3 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It
is found that stationary Rayliegh number decreases as the value of Lewis
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Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Taylor number
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number
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number increases, indicating that Lewis number destabilizes the stationary
convection. It is due to the fact that thermophoresis at a higher value of ther-
mophoretic diffusivity is more supportable to the disturbance in nanofluids,
while both thermophoresis and Brownian motion are driving forces in favor
of the motion of nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d).

Figure 4 shows the variation of stationary Rayleigh number for different
value of the modified diffusivity ratio N, and fixed value of other parameters
and it is found that Rayleigh number decreases with an increase in the value
of the modified diffusivity ratio N, which means that the modified diffusiv-
ity ratio N, destabilizes on the fluid layer. This may lead to an increase in
volumetric fraction, which shows that Brownian motion of the nanoparticles
will also increase, which may cause destabilizing effect. This is good agre-
ment of the result obtained by Chand and Rana (2014d).

Figure 5 shows the variation of stationary Rayleigh number with wave number
for different value of the nanoparticles Rayleigh number Rn and fixed value of
other parameters and it is found that thermal Rayleigh number decreases with an
increase in value of the nanoparticles Rayleigh number Rn, which means that the
nanoparticles Rayleigh number Rn has destabilizing effect on fluid layer. It has
destabilizing effect because the heavier nanoparticles moving through the base
fluid makes more strong disturbances as compared with the lighter nanoparticles.

CONCLUSION

Effect of rotation on the thermal convection in a horizontal layer of Max-
wellian visco-elastic nanofluid is investigated. The flux of volume fraction of
nanoparticles is taken to be zero on the isothermal boundaries and the eigen
value problem is solved using the Galerkin residual method. The results have
been presented both analytically and graphically.

The main conclusions derived from the present chapter are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Rotation stabilizes the stationary convection while Lewis number Le,
modified diffusivity ratio N, and nanoparticles Rayleigh number Rn
destabilizes the stationary convection.
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Chapter 3

Thermal Convection in
a Layer of Maxwellian
Visco-Elastic Nanofluid
in the Presence of
Vertical Magnetic Field

INTRODUCTION

The effect of magnetic field on the thermal instability in nanofluids has its
relevance and importance in chemical engineering, biochemical engineer-
ing, industry and many physical phenomenon concerning with geophysics
and astrophysics. These applications include design of chemical processing
equipment, formation and dispersion of fog, distributions of temperature
and moisture over agricultural fields and groves of fruit trees and damage of
crops due to freezing and pollution of the environment etc. Magneto convec-
tion for the classical Rayleigh Bénard problem for a fluid layer combines
the element of thermal buoyancy and magnetic field induced Lorentz force.
Due to this Lorentz force term on the Rayleigh Bénard convection another
non dimensional parameter called Chandrasekhar number is introduced in
the problem. Investigation of the effects of magnetic field on the onset of
convection was started several decades ago. Chandrasekhar (1961) studied in
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detail the thermal convection in a hydromagnetics. Patil and Rudraiah (1973),
Alchaar et al. (1995) considered the problem of thermosolutal convection in
the presence of magnetic field for different boundary conditions. Magnetic
field plays an important role in the Rayleigh-Bénard convection in a layer
of nanofluid and finds applications in biomedical engineering such as MRI,
plethora of engineering, power plant cooling systems as well as in comput-
ers. Magnetic field plays an important role in engineering and industrial ap-
plications. Various problems on effect of magnetic field on nanofluids have
been considered by researchers in the past e.g. Chand (2013b), Mahajan and
Arora (2013), Yadav et al. (2013c), Gupta et al. (2013, 2015) and found that
magnetic field has stabilizing effect on the fluid layer.

In the present chapter we investigated the effect of magnetic field on
thermal instability of Maxwellian nanofluid layer for more realistic bound-
ary conditions. It has been observed magnetic field has stabilizing effect on
the fluid layer.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the effect of magnetic field on the onset of
thermal convection in a horizontal layer Maxwellian visco-elastic nanofluid.
The physical configuration of the problem to be considered as

Consider an infinite horizontal layer of Maxwellian visco-elastic nano-
fluid of thickness ‘d” bounded by horizontal boundaries z=0 and z =d. A
Cartesian coordinate system (X, y, z) is chosen with the origin at the bottom
of the fluid layer and the z- axis normal to the fluid layer. Fluid layer is acted
upon by a uniform vertical magnetic field H(0, 0, H) and is acted upon by a
gravity force g(0, 0,-g). Fluid layer is heated from below in such a way that
horizontal boundaries z = 0 and z = d respectively maintained at a uniform
temperature T and T, (T, > T ). The normal component of the nanoparticles
flux has to vanish at an impermeable boundary and the temperature T is
taken to be T atz=0and T atz=d (T, > T,) as shown in Figure 1. The
reference scale for temperature and nanoparticles fraction is taken to be T,
and @, respectively
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Figure 1. Physical configuration of the problem
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Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1.

2.

NN RAEW

10.
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Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

Each boundary wall is assumed to be impermeable and perfectly thermal
conducting.
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GOVERNING EQUATIONS

The governing equations of for Maxwellian visco-elastic nanofluid in the
presence of magnetic field under the Boussinesq approximation are given as

V-v=0, (3.1

g]t 1+ A= ](—Ver(sopp+(1—90>{Pf(1_0‘(T_T0))})g)

+uViv o (H V)

(3.2)

where d4_ % + (v . V) is stands for convection derivative while v, p, p, |, M,

and o stands for fluid velocity, hydrostatic pressure, density of nanofluid,
viscosity, magnetic permeability and the coefficient of thermal expansion
respectively and A is the relaxation time.

Equation of energy for Maxwell visco-elastic nanofluid is given by

f D
pe Tl v-VT =, VT + (pc) |D,Vip VT + 2L VT VT, (3.3)
P

1

where pc is heat capacity of fluid, (pc)1D is heat capacity of nanoparticles, T, is
the temperature of the fluid layer at z = d and k_ is the thermal conductivity.
Equation of continuity for the nanoparticles is

a‘P 2 DT 2
9 L v. V=D Vip+—LV'T, 3.4
5 TV Ve =D Vi o (3.4)

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.
Maxwell equations are

S (B V)v Ty, (3.5)
v-H-0, (3.6)
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where 1) is the electrical resitivity.
We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

w=0T=T, D8¢+ — =0 atz=0 and
B 9z az

8¢ D,oT
B Oz T@Z

w=0,T=T, D, =0 at z=d. (3.7)

Introducing non-dimensional variables as

d, ¢/ _t(.)7 /:p_dQ’ (’0,:(99_9%),

u,v, W]
d? HE ®,

(X/,y’,zl) _ [X,(};,ZJ’ V/(ll/,v/, W/) _ V[ -

T/ — (T_Tl) , H

(TO_T1)7 . 7|E

where x = K is thermal diffusivity of the fluid.
pc
Equations (3.1) - (3.7) in non-dimensional form can be written as

Vv =0, (3.8)

0|1 ov
1+ F—|——=

Bt’] Pr ot/
1+ F i, (-V'p’-Rmé, + RaT'e, — Rng' )+ Vv + Pro (0 V')H

ot Z Z Z Pr,

3.9)
850/ / ’or 1 2 1 NA 12mt
Vi =—V —£ VT, 3.10

ot v 7 Le v Le ( )
aT/ v VT = VT + B V' VT + MV’T/ VT, (3.11)
ot Le Le
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W o)+ vy, (3.12)
dt Pr,
v H =0. (3.13)

Here the non-dimensional parameters are given as follows

Pr = 2 is the Prandtl number,
PR

Pr, = 4~ is the magnetic Prandtl number,
PN

Le = Di is the Lewis number,
B

F= Z—j‘ is the stress relaxation parameter,

_ pgad'(T, - T))

WK

Ra

is the Rayleigh number,

(pp% + p(l-%))gdg
WK

Rm =

is the density Rayleigh number,

(p, —p)oed® | : -
Rn = e i the nanoparticles Rayleigh number,

H2 2 .
Q==L is the Chandrasekhar number,

4mpun
D, (T,-T) | e
N, = ——— is the modified diffusivity ratio,
DBTISO(J
(p C) L o . o
N, =—2= is the modified particle-density increment.

(ee),

In spirit of Oberbeck-Boussinesq approximation, equation (3.9) has been
linearized by the neglect of a term proportional to the product of ¢ and T.
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This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.
The dimensionless boundary conditions are

/ /
w' =0 T =1 %+NA%T/ =0 at 2z =0 and
Z Z
! !
w =0, T'=0, B—QS,+NA8T, =0 at 2/ =1. (3.14)
0z 0z

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

p' =p,(2),
H'=He ,
T =T, (2), (3.15)

/

¢ =@, (z) and

p=p,(1+a(TT,))

An approximate solution for basic state is given by

T =1-7 (3.16)
and
¢, =, + N2’ (3.17)
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PERTURBATION SOLUTIONS

Let the initial basic state described by (3.15) is slightly perturbed so that
perturbed state is given by

!/ ! n _n "
(u v ,W)ZO—I—(H VW ),

H' = He, + H"(H"xH"y H'"z),

T =T, +T", (3.18)
p'=p, +p",
o' =, +¢"

where T, =1-7/, 0, =¢, + NAZ/ and (u”,v”,w”), H’ (H”X,H”y,H”z) , T, 90”
and p” respectively the perturbations in the initial velocity, magnetic field,
temperature, pressure and volume fraction of the nanoparticles.

By substituting (3.18) in equations (3.8) — (3.13) and linearize by neglect-
ing the product of the prime quantities, we obtained following equations

V.-v=0, (3.19)
14 p 2| L i el (~Vp + RaTé, — Rngé )+v2v+iQa—H,

0t ) Pr ot 0t “ “ Pr, 0z (3.20)
Oy 1 o N, o
L4+ wN, =—Vip+ —AVT, 3.21
ot 4 Le v Le ( )
I _y—vryDuly 9T _00) NN, 0T (3.22)
ot Le 0z 0z Le 0z
OH Jw )
=S oviH, 3.23
ot 0z © ( )
V.-H=0, (3.24)
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0’ b . . .
where Vi, = 5 + 9 is the two-dimensional Laplacian operator.
z Y

2

[Dashes () have been suppressed for convenience]

It will be noted that the parameter Rm is not involved in these and sub-
sequent equations. It is just a measure of the basic static pressure gradient.

Now by eliminating pressure term p and magnetic field term H from equa-
tions (3.20) by making use of equations (3.19), (3.23) and (3.24), we have

Iy v , r T (3.25)
+1+F—||—V* ——|(RaV: T —RnV* ¢| = 0.
625] Pr, 6t]( o ! ”90)
Boundary conditions are
W=0,T=0, g—¢+NAa—T —0 atz=0L (3.26)
Z Z

NORMAL MODE ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the
perturbed quantities are of the form

W] = [W(2),0(2),8(2)] exp ik x +ik y +nt), (3.27)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (3.27), equations (3.29), (3.25) and (3.26) become

Pr : 9 . . <l—|—nF)n Pr ‘ : |
o L e I e (3.28)
_ ;D:[ (D2 —a2) -n (1 + nF)((fRa@ _ aanq)) _0,
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NA 2 2 1 2 2 _
N N N
W|D? —a? —n— 275 ple- B Do =0, (3.30)
Le Le

where D = 4 and a = [k + k: is the dimensionless resultant wave number.

dz
The boundary conditions of the problem in view of normal mode analysis are

W=0,D'W=00=0,DP+N,DO=0 at z=0,1. (3.31)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (3.28) — (3.30) with the corresponding
boundary conditions (3.31). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and @ are taken as

N N N
W = Z;prp, 0= Z;BPGD@ = Zcp<bp, (3.32)
p= p= p=

where W =0, =sinprz® =-N sinprz, Ap, Bp and Cp are unknown coef-
ficients, p = 1, 2, 3,..., N and the base functions Wp, G)p’ and d)p satisfying
the boundary conditions (3.31). Using expression for W, ® and ® in equa-
tions (3.28) — (3.30) and multiplying the first equation by W, the second
equation by ®p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown A , B and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (3.28) — (3.30) together with the boundary conditions (3.31) constitute
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a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (3.32) into the system of
equations (3.28) - (3.30) and multiplying the first equation by W, the second
equation by 0, and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

Pr ,
(TI'Q + a2> s , N (1 + ’VLF) Pr, e , )
7w +a’ + : A -a’Ra -a’N,Rn
(1+nF) Pr 1:1;1:’ (7r2+a2)+n W(, 0 .
1 (7" +a* +n) 0 9,/=0
1 —e(fr2+a2> - [Lie(wz—&-az)—t-n] &) 0
(3.33)
The non-trivial solution of the above matrix requires that
Pr , (7T2 + az)
1 (7r2—|—a2) n(1+nF) PirM7r (1—|—nF)
Ra = — ™ +ad + (7r2+a2+n)
a (1+nF) Pr E(71'2—|—(12)—|—n
Pr,
(7r2 + az) + Le(7r2 +a* + n)
— N,Rn.
(7r2 + a2) +nLe
(3.34)

The growth rate nis in general a complex quantity such thatn = _+iw, the
system with ® < 0 is always stable, while for ® > 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (3.34), we have

Ra=A +iwA,, (3.35)

where

56



Thermal Convection in a Layer of Maxwellian Visco-Elastic Nanofluid

A (71'2 +a2) (71'2 +a2)2 +w2F(772 +a2) W

1 a’ 1+ w'F? Pr
7T2QPPrL <7r2 +a2) (1—w2F2>(7T2 +a2)—% + o 2F(7r2 +a2)+(1_;f}72)
i . 2
[(1WQF2)(7T2 +a2)— 2‘;2:7 2 + o 2F<7r2 —|—a2)_|_<1Pw:FZ)
(7T2 + GQ)Q (Le + 1) + Le ((772 + aQ)) +w’Le’
) (7r2 4—(12)2 +W?Lé’ Naftn
(3.36)
and
A (7r2+a2)2 1—F(7r2+a2) 1
’ a’ 1+ W' F? Pr
WZQETL (1_”2F2)(772 + 2)_% +( ’ +a2) 2F(7T2 +a2)+(1_1jrzF2)
+
o) o o) - 27|y oo 1) )]
w ™ +a - w 2 4a =
Le <7T2 +a2) N,R
P n.
(7 + aQ)z bl
(3.37)

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (3.35) that either ® = 0 (exchange of stability, steady state) or
A, =0 (w # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary convection n = ® = 0, equation (3.34) reduces to
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(Ra) = w —(1+ Le)N,Rn. (3.38)
P

It is observed that stationary Rayleigh number Ra is function of the
Chandrasekhar number Q (Magnetic field), Lewis number Le, the modified
diffusivity ratio N, and the nanoparticles Rayleigh Rn but independent of
visco-elastic parameter F, Prandtl number Pr and modified particle-density
increment N,. Thus Maxwellian visco-elastic nanofluid behaves like an or-
dinary Newtonian nanofluid and instability is purely a phenomenon due to
buoyancy coupled with the conservation of nanoparticles.

In the absence of magnetic field (Q =0) equation (3.38) reduces to

(Ra) = ) (14 Le)N,Rn. (3.39)

2
i a

This is the good agreement of the result (1.47) obtained in Chapter 1.
To find the critical value of (Ra) , equation (3.38) is differentiated with

s

respect to ‘a* and then equated to zero. The minimum of first term of right-

hand side of equation (3.38) is attained at a_ = ™ and minimum value found

J2

so the corresponding critical Rayleigh number given by

4

to

27t + 7
) :_+Q_(

c

(Ra 1+ Le)N,Rn (3.40)

In the absence of magnetic field and nanoparticles (Q=Rn=Le =N, =

0), one recovers the well-known results that the critical Rayleigh number is
4

equal to(Ra)C = 27—7r.

This is good agreement of the result obtained by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (3.40); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of

nanoparticles flux in the thermal energy equation is zero.
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RESULTS AND DISCUSSION

To study the effect of magnetic field (Chandrasekhar number Q), Lewis
number Le, modified diffusivity ratio N, and nanoparticles Rayleigh number
Rn on stationary convection, we examine the behavior of

8(Ra>g 8(Ra)ﬁ 8(Ra)‘ 8(Ra)‘ )
90 S oLe oN +and 3R * analytically.
From equation (3.38), we have
ORa
(1) ( 5 Q)é >0,
(i) (oRa), _,
OLe ’
(i) (oRa),
oN,
v R,
ORn

These inequalities imply that magnetic field has stabilizing effect while
Lewis number Le, modified diffusivity ratio N, and nanoparticles Rayleigh
number Rn destabilizing effect on the stationary convection.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon magnetic field, Lewis number,
modified diffusivity ratio and nanoparticles Rayleigh number. The computa-
tions are carried out for different values of parameters considered in the range
10’ < Ra <10° (thermal Rayleigh number), 10 < @ < 10° (Chandrasekhar num-
ber),1 < N, <10 (modified diffusivity ratio), 10* < Le < 10" (Lewis number),
107" < Rn <10' (nanoparticles Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 — 5

Figure 2 shows the variation of thermal Rayleigh number for different
value of Chandrasekhar number and for the fixed value of other parameters.
It is found that stationary Rayliegh number increases as the values of Chan-
drasekhar number increases, indicating that Chandrasekhar number stabi-
lizes the stationary convection.

Figure 3 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It
is found that stationary Rayliegh number decreases as the values of Lewis
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Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Chandrasekhar number
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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number increases, indicating that Lewis number destabilizes the stationary
convection. It is due to the fact that thermophoresis at a higher value of ther-
mophoretic diffusivity is more supportable to the disturbance in nanofluids,
while both thermophoresis and Brownian motion are driving forces in favor
of the motion of nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d, 2015a).

Figure 4 shows the variation of stationary Rayleigh number for different
value of the modified diffusivity ratio N, and fixed value of other parameters
and it is found that Rayleigh number decreases with an increase in the value
of the modified diffusivity ratio N, which means that the modified diffusiv-
ity ratio N, destabilizes on the fluid layer. This may lead to an increase in
volumetric fraction, which shows that Brownian motion of the nanoparticles
will also increase, which may cause destabilizing effect. This is good agre-
ment of the result obtained by Chand and Rana (2014d, 2015a).

Figure 5 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number Rn and
fixed value of other parameters and it is found that thermal Rayleigh number
decreases with an increase in value of the nanoparticles Rayleigh number Rn,
which means that the nanoparticles Rayleigh number Rn has destabilizing ef-
fect on fluid layer. It has destabilizing effect because the heavier nanoparticles

Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number
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moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d, 2015a).

CONCLUSION

Thermal convection in a horizontal layer of Maxwellian visco-elastic nano-
fluid in the presence of vertical magnetic field is studied. The flux of volume
fraction of nanoparticles is taken to be zero on the isothermal boundaries and
the eigen value problem is solved using the Galerkin residual method. The
results have been presented both analytically and graphically.

The main conclusions derived from the present chapter are as follows

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.
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3. Magnetic field stabilizes the stationary convection while Lewis num-
ber, modified diffusivity ratio and nanoparticles Rayleigh number Rn
destabilizes the stationary convection.
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Chapter 4

Combined Effect of
Rotation and Magnetic
Field on the Thermal
Convection in a Layer
of Maxwellian Visco-
Elastic Nanofluid

INTRODUCTION

The effects of magnetic field and rotation on the thermal instability in
nanofluids have its relevance and importance in engineering and industry.
Magneto convection for the classical Rayleigh Bénard problem for a fluid
layer combines the element of thermal buoyancy and magnetic field induced
Lorentz force. Due to this Lorentz force term on the Rayleigh-Bénard con-
vection another non dimensional parameter called Chandrasekhar number
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Combined Effect of Rotation and Magnetic Field on the Thermal Convection

is introduced in the problem. Thermal instability in rotating fluids about a
vertical axis combines the element of thermal buoyancy and rotation induced
Coriolis and centrifugal forces. Due to the Coriolis force on the thermal
instability problem another parameter namely Taylor number is introduced
in this problem. Taylor number is a non-dimensional number which is a
measure of rotation rate.

The magnetic field in the presence of rotation is known as ‘Magnetohy-
drodynamic’ which has many applications in industry such as crystal growth,
metal casting and liquid metal cooling blankets for fusion reactors. Thermal
instability of a rotating nanofluid layer in the presence of magnetic fluid
is studied by Mahajan and Arora (2013) and found that magnetic field and
rotation stabilize the fluid layer. Some other aspects of magnetic nanofluid
are studied by Parekh and Lee (2011) and Patel (2012).

In the present chapter an attempt has been made to study the combined
effect of magnetic field and rotation on the thermal instability of Maxwellian
visco-elastic nanofluid layer for more realistic boundary conditions. It has
been observed that both magnetic field and rotation have stabilizing effect
on the fluid layer.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the combined effect of rotation and
magnetic field on the onset of thermal convection in a horizontal layer Max-
wellian visco-elastic nanofluid. The physical configuration of the problem
to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness ‘d’ bounded by horizontal boundaries z =0 and z = d. A Cartesian
coordinate system (X, y, z) is chosen with the origin at the bottom of the fluid
layer and the z- axis normal to the fluid layer. Fluid layer is rotating uniform
about z-axis with angular velocity (0, 0,€2) and is acted upon by a uniform
vertical magnetic field H(O, O, H). Fluid layer also acted upon by a gravity
force g(0, 0,-g) and heated from below in such a way that horizontal boundar-
ies z =0 and z = d respectively maintained at a uniform temperature T, and
T, (T, > T)). The normal component of the nanoparticles flux has to vanish
at an impermeable boundary and the temperature T is taken to be T at z =
0 and T atz= d, (T0 > T1) as shown in Figure 1. The reference scale for
temperature and nanoparticles fraction is taken to be T, and ¢, respectively
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Figure 1. Physical configuration of the problem

TH (0,0,H)

Heated from below

The following analysis is confined to a narrow and very long fluid layer.
Since the significance of the centrifugal acceleration depends on the offset
distance from the centre of rotation therefore for the layer which is adjacent
to the rotation axis (i.e. x = 0, y = 0), the impact of the centrifugal accelera-
tion to be zero. Due to the fact that here a narrow and very long fluid layer
is considered, centrifugal effects can be neglected in the momentum equation.

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy

force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and

thus, the heat flow has been described using one equation model,

Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when

compared with other modes of the heat transfer,

9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

N

NN AW
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10. Eachboundary wall is assumed to be impermeable and perfectly thermal
conducting,
11. Angular velocity of fluid layer is assumed to be constant.

Governing Equations
The governing equations for Maxwellian visco-elastic nanofluid in the pres-

ence of rotation and magnetic field under the Boussinesq approximation are
given as

V.ov=0, (4.1)
P 1+/\%J%— 1+/\%](—Vp+(g0pp—i—(l—go){pf (1—04(T—T0>)})g)
+1V2v +2p(vx Q) + 2o (H-V)H, 4.2)

47

where % = % + (v : V) is stands for convection derivative while g, p, p, i, 1,

and a stands for fluid velocity, hydrostatic pressure, density of nanofluid,
viscosity, magnetic permeability and the coefficient of thermal expansion
respectively.

Equation of energy for Maxwellian visco-elastic nanofluid is given by

D
pc(r;—f +v-VT =k _V°T+ (pc) D Vo VT + TTVT -VT|, 4.3)
p

1

where pc is heat capacity of fluid, (po), is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d and k _ is thermal conductivity.
Equation of continuity for the nanoparticles is given by

99

D
—~ +v-VE=D V¢ +—LVT, 4.4
Y BV (4.4)

1
where D, is the Brownian diffusion coefficient, given by Einstein-Stokes

equationand D_is the thermoporetic diffusion coefficient of the nanoparticles.
Maxwell equations are
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(ii_It{ = <H~V)q+nV2v, (4.5)

V-H=0, (4.6)

where 1 is the electrical resitivity.
We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

8¢ D, oT

w=0,T=T, D,—~+—L22 —0atz=0
0z T 0z
and
D
w=0,T=T, DBa—(b—i——Ta—T =0 at z=d. 4.7)
0z T, 0z

Introducing non-dimensional variables as

(X/ 1oy | X%Y2 rer oy | V,W /_t_/‘? /_p_C12
o,z = 1 , vV(u' v wh) = - d,t—dQ, =
S0/:((‘0_(‘00), T = <T_T1)’ H/zi

o (To_Tl) ‘H‘
where

k
k = —21is thermal diffusivity of the fluid.
pc

Equations (4.1) - (4.7) in non-dimensional form can be written as

V' -v =0, (4.8)
a1 ov 0
1+ F—|—-==|1+4 F—=|(-V'p’-Rmé_+ RaT’é —Rny'¢ |+ V'*v/
8t’]Pr ot az’]( P ,~ Rng'e, )+ 9"
Pr I/ / A A
+Pr Q(H .V)H + Ta(vex-u ey), 4.9)

M
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690/ / ’o L —p N 12/
+ v Vi = —V" '+ AV"T
ot’ 4 Le 4 Le ’
(‘;"fl/ n V’ ) v/T/ — vlle + %vlwl . v/T/ + NiNB V/T/ . V’T,,
e e
i
dH/ :(H/-V')V/—ﬁ-ivlzvl,
dt Pr,
V' -H =0.

Here the non-dimensional parameters are given as follows

pr = 2 is the Prandtl number,
PR

Pr, = 2 is the magnetic Prandtl number,
M

Le = Di 1s the Lewis number,
B

F = Z—z\ is the stress relaxation parameter,

1

_ pgad® (TO —-T )

Ra i is the Rayleigh number,

Rm = (pp% i pli(:% )> al is the density Rayleigh number,
Rn = (Pp_z% is the nanoparticles Rayleigh number,
Ta = 2{12/d2 2 is the Taylor number,

Q= % 1s the Chandrasekhar number,
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D, (T,-T) . e
. = ———— 1s the modified diffusivity ratio,
DBTI@O
(ec), 0 N
N, = —+— is the modified particle-density increment.

(ee),

In spirit of Oberbeck-Boussinesq approximation, equation (4.9) has been
linearized by the neglect of a term proportional to the product of ¢ and T.
This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.

The dimensionless boundary conditions are

!/ !/
w =0, T =1, %JrNA% =0at z/ =0
Z Z
and
! li
w=0.1 =0 2N a1 (4.14)
Z Z

THE BASIC STATE AND ITS SOLUTIONS
The basic state was assumed to be quiescent and is given by

!/ ! ! !/
v (u,V,W)ZO,

p'=p,,

H =He ,

T-T ) (4.15)
¢ = ¢, (2) and

=0, (1+a(T-TO)).
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Equations (4.8) — (4.11) reduce to

d
0=— 2 Rm + RaT, — Rng,, (4.16)

/
Z

2

d*T N_de dT. N N (dT
LISPRAL Bin & S AP G e ) 4.17)
dz’*  Le dZ’ dz Le |dz
d’e d’T
N =0 (4.18)

Using boundary conditions in (4.14), equation (4.18) gives

¢, =-N,T, +(1-N,)z/ + N,. (4.19)

On substituting the value of the ¢, from equation (4.19) in equation (4.17),
we get

&1 (1NN, dT
dlb+( LA) 4Ly, (4.20)
V4 c Z

On integrating equation (4.20) with respect to z’ and using boundary
conditions (4.14), we get

—(1=N, )N (1-2")/ Le

1-e
S T @.21)

1—

According to Buongiorno (2006), for most nanofluid investigated so far
Le is large, is of order 10%-10%, while N , 18 no greater than about 10. Then,
the exponents in equation (4.21) are small. By expanding the exponential
function into the power series and retaining up to the first order is negligible.
Thus an approximate solution for the basic state is given by

T, =1—2z' and

¢, =0, + N2’
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PERTURBATION SOLUTIONS

Let the initial basic state described by (4.15) is slightly perturbed so that
perturbed state is given by

! ! ! n_.n n
(u,V,w>:0+<u VW ),

H = He + H” (H”x,H”y,H”Z) ,

T =T +T7, (4.22)
p'=p,+p"
o' =, +¢",

where T, =1-2', ¢, =¢, + N,z and (u”,v”,w”), H” (H”x,H”y,H”z) , T, ¢
and p” respectively the perturbations in the initial velocity, magnetic field,
temperature, pressure and volume fraction of the nanoparticles.

By substituting (4.22) in equations (4.8) - (4.13) and linearize by neglect-

ing the product of the prime quantities, we obtained following equations

V-v=0, (4.23)
0|1 ov 0 . R )

1+ F—|——=|1+ F—|[{—-Vp+RaTe. — R +V
[ 6t] Pr ot [ 8t]< pvRale, mpez) Y

Pr OH P
+ Pr, QE ++/Ta (VeX -ue, ), (4.24)

N
92 v =Ly Nagrp (4.25)
ot Le Le
N 2N N

I o very ey 9T 06 2N, 0T (4.26)
ot Le 0z Oz Le 0Oz
OH Ow
— =—+0V’H, 4.27
ot 0z © ( )
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V-H=0. (4.28)

Boundary conditions are

w=0T=0 2248 _gaz=0.1 (4.29)
0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p and magnetic field term H from equation
(4.24) by making use of the equations (4.23), (4.27) and (4.28), we have

<1+nF) A VZ_M Pr 2 _ w2
Pr Pr PrM
/24
o Pr —, Pr 9 R /N (4.30)
+TaD” | —V* —n|— oD ||V: ——|V .
Pr, r, Pr
—(14nF) |V -2 Proe, (a’Ra® — a’Rn®) = 0.
Pr PrM

NORMAL MODE ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the
perturbed quantities are of the form

W, T 0| = [W(2),0(2),8(2)| exp (ik x + ik y), 4.31)

where k , ky are wave numbers in X and y direction.
Using equation (4.31), equations (4.30), (4.25) and (4.26) become

<l—|—nF) Dz_az_i Dz_az_n(1+nF) Pr (Dz_ao)_n(Dz_az)
Pr Pr Pr, W
+TaD’ PPr (D2 Z)—n — PP—rQDZ (D2 aQ)[D2 a’ —P—]
r, r, r
~(1+ nF)2 [D2 e Pi ;r (p* - a2> — n|(a’Ra® —a’Rnd) =
r || Pr
' (4.32)
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NA 2 2 1 2 2 _
N,N N
W + D—al—pn——ABD @__BD(I):()’ (434)
Le Le

where D = 4 and a = [k’ + k* is the dimensionless resultant wave number.
dz * 7

The boundary conditions of the problem in view of normal mode analysis are

W=0DW=00=0DP+NDO=0 at z=0,1. (4.35)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (4.32) - (4.34) with boundary conditions
(4.35). In this method, the test functions are the same as the base (trial) func-
tions. Accordingly W, ® and ® are taken as

N N N
W = 2prp, 0= 23p@p,c1> = X;cp@p, (4.36)
p= p= p=

where W, =0, =sinpnz,® =-N, sinpnz, Ap, Bp and Cp are unknown coef-
ficients, p = 1, 2, 3,..., N and the base functions Wp, G)p’ and d)p satisfying
the boundary conditions (4.35). Using expression for W, ® and ® in equa-
tions (4.32) — (4.34) and multiplying the first equation by W, the second
equation by ®p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown A , B and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (4.32) - (4.34) together with the boundary conditions (4.35) constitute
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a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (4.36) into the system of
equations (4.32) - (4.34) and multiplying the first equation by W, the second
equation by 0, and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

2
(th + a2> 4+ = Ta +7°Q -a’Ra -a’N, Rn
('rt2 + az) w, 0
1 —(”rr2 + az) 0 0,/=10
o
1 L(7(2—&—612) —L(ﬂz—l—aQ) 0
Le Le
(4.37)
The non-trivial solution of the above matrix requires that
o 1 2 2)? 2 2 2\ 2
Ra——z(ﬂ —|—a) —|—11Ta+(‘rt —|—a)ﬂQ-(l+Le)NARn. (4.38)
a

It is observed that stationary Rayleigh number Ra is function of the Tay-
lor number Ta (rotation), Chandrasekhar number Q (magnetic field), Lewis
number Le, the modified diffusivity ratio N, and the nanoparticles Rayleigh
Rn but independent of visco- elastic parameter F, Prandtl number Pr, mag-
netic Prandtl number Pr,, and modified particle-density increment N . Thus
Maxwellian visco-elastic nanofluid behaves like an ordinary Newtonian
nanofluid and instability is purely a phenomenon due to buoyancy coupled
with the conservation of nanoparticles.

In the absence of magnetic field (Q = 0) equation (4.38) reduces to

(1‘(2 + a2)3 + w’Ta

Ra = ~ (14 Le)N,Rn. (4.39)

a2

This is the good agreement of the result (2.38) obtained in Chapter 2.
In the absence of rotation (Ta = 0) equation (4.38) reduces to

Ra (1‘(2 + a2) + (2ﬂ2 + az)ﬁQQ B (1 N Le) N,Rn. (4.40)
a
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This is the good agreement of the result (3.38) obtained in Chapter 3.
In the absence of both magnetic field and rotation (Q = Ta = 0) equation
(4.38) reduces to

Ra = M ~(1+ Le)N,Rn. (4.41)
a

This is the good agreement of the result (1.47) obtained in Chapter 1.

To find the critical value of Ra, equation (4.38) is differentiated with respect
to ‘a®” and then equated to zero. The minimum value of the Rayleigh number
Ra occurs at the critical wave number a = a_ where a_satisfies the equation.

2 (af)g + 37’ (af )2 — (’ITZTCI + ’K4Q + 7(6) =0. (4.42)

It is important to note that the critical wave number a_depends on the
Taylor number Ta and Chandrasekhar number Q.
In the absence of Taylor number Ta and Chandrasekhar number Q (Ta =

Q = 0), minimum value of the Rayleigh number (Ra)_attained at a, = T

V2

4
and minimum value found to 277“ so the corresponding critical Rayleigh

number given by

(Ra) = 274“4 —(1+ Le)N,Rn. (4.43)

In the absence of rotation, magnetic field and nanoparticles (Ta = Q =
Rn = Le = N, = 0), one recovers the well- known results that the critical
277

Rayleigh number is equal to(Ra) =

This is good agreement of the result obtained by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (4.38); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero.
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RESULTS AND DISCUSSION

To study the effect of rotation (Taylor number Ta), magnetic field, (Chan-

drasekhar number Q), Lewis number Le, modified diffusivity ratio N, and

nanoparticles Rayleigh number Rn on stationary convection, we examine the
0(Ra) 0(Ra) O(Ra) IR d(R

behavior of ( a)‘ , ( a)s , ( a)s , ( a)s and ( a)

0Ta 00 OLe ON ORn

From equation (2.38), we have

* analytically.

. (aRa)s

M 0Ta >0
b (aRa)v

(i1) 50 > 0,
. (ORa),

(ii1) e <0,
1 (aRa)v

@iv) N, <0,

(8Ra>x
v) R <0.

These inequalities imply that rotation and magnetic field stabilize the fluid
layer while Lewis number Le, modified diffusivity ratio N, and nanoparticles
Rayleigh number Rn destabilizes the fluid layer.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon Taylor number (rotation),
Chandrasekhar number (magnetic field), Lewis number, modified diffusiv-
ity ratio and nanoparticles Rayleigh number. The computations are carried
out for different values of parameters considered in the range 10* < Ra < 10°
(thermal Rayleighnumber), 10 < 7a < 10" (Taylornumber), 10 < 0 < 10* (Chan-
drasekhar number), 1< N, <10 (modified diffusivity ratio), 10* < Le <10'
(Lewis number), 10" < Rn <10' (nanoparticles Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 — 6.

Figure 2 shows only the variation of stationary Rayleigh number with
wave number for different value of the Taylor number with fixed value of
other parameters and it is found that the Rayleigh number increases with an
increase in the value of the Taylor number, which imply that rotation delay
the onset of stationary convection. It is due to the fact Coriolis force due to
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Figure 2. Variation of the Rayleigh number with wave number for different value
of Taylor number
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rotation drags the perturbed transverse motion and kinetic energy is dissi-
pated by the viscosity, which intern increases the critical electric strength
required for the onset of convection. This is good agrement of the result
obtained by Chand and Rana (2012b).

Figure 3 shows the variation of thermal Rayleigh number for different
value of Chandrasekhar number and for the fixed value of other param-
eters. It is found that stationary Rayliegh number increases as the values of
Chandrasekhar number increases, indicating that magnetic field stabilizes
the stationary convection. This is good agrement of the result obtained by
Chand (2013b).

Figure 4 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It
is found that stationary Rayliegh number decreases as the values of Lewis
number increases, indicating that Lewis number destabilizes the stationary
convection. It is due to the fact that thermophoresis at a higher value of ther-
mophoretic diffusivity is more supportable to the disturbance in nanofluids,
while both thermophoresis and Brownian motion are driving forces in favor
of the motion of nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2015a, 2014d).
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Figure 3. Variation of the Rayleigh number with wave number for different value
of Chandrasekhar number
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Figure 4. Variation of the Rayleigh number with wave number for different value
of Lewis number
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Figure 5 shows the variation of stationary Rayleigh number for different
value of the modified diffusivity ratio N, and fixed value of other parameters
and it is found that Rayleigh number decreases with an increase in the value
of the modified diffusivity ratio N, which means that the modified diffusiv-
ity ratio N, destabilizes on the fluid layer. This may lead to an increase in
volumetric fraction, which shows that Brownian motion of the nanoparticles
will also increase, which may cause destabilizing effect. This is good agre-
ment of the result obtained by Chand & Rana (2015a, 2014d).

Figure 6 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number Rn and
fixed value of other parameters and it is found that thermal Rayleigh number
decreases with an increase in value of the nanoparticles Rayleigh number Rn,
which means that the nanoparticles Rayleigh number Rn has destabilizing ef-
fect on fluid layer. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles.

Figure 5. Variation of the Rayleigh number with wave number for different value
of modified diffusivity ratio
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Figure 6. Variation of the Rayleigh number with wave number for different value
of nanoparticles Rayleigh number
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CONCLUSION

Thermal convection in a horizontal layer of Maxwellian visco-elastic nano-
fluid is studied in the presence of both magnetic field and rotation. The flux
of volume fraction of nanoparticles is taken to be zero on the isothermal
boundaries and the eigen value problem is solved using the Galerkin residual
method. The results have been presented both analytically and graphically.
The main conclusions derived from the present chapter are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Rotation and magnetic field stabilizes the stationary convection while
Lewis number Le, modified diffusivity ratio N, and nanoparticles
Rayleigh number Rn destabilizes the stationary convection.
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Chapter 5

Thermal Convection in
a Layer of Maxwellian
Visco-Elastic Nanofluid

in a Porous Medium:
Darcy Model

INTRODUCTION

Thermal instability in a porous medium has many applications in geophysics,
food processing, oil reservoir modeling, petroleum industry, bio-mechanics,
building of thermal insulations and nuclear reactors. Many researchers have
investigated thermal instability problems by taking different types of fluids.
When a fluid permeates through an isotropic and homogeneous porous me-
dium, the gross effect is represented by Darcy’s law. According to which
when fluid slowly percolates through the pores of the rock, the gross effect
is represented by the Darcy’s law. According to which the resistance term

—kﬂq will replace the usual viscous term in the equation of motion, i is

1
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viscosity of the fluid, k, is permeability of medium and q is the seepage
velocity of fluid. The study of a horizontal layer of fluid heated from below
in a porous media is of importance in geophysics, soil sciences, ground wa-
ter hydrology and astrophysics. Lapwood (1948) and Wooding (1960) con-
sidered the stability of flow of a fluid through a porous medium taking into
account the Darcy’s law. A good account of convection problems in a porous
medium is given by Vafai and Hadim (2000), Ingham and Pop (1981), Nield
and Bejan (2013).

The thermal instability nanofluid in a porous medium has been a topic in-
terest due to its applications in fields of food and chemical process, petroleum
industry, bio-mechanics and geophysical problems. Owing the applications
of the nanofluid and porous media theory in chemical engineering to study
theory in drying and freezing of food, in cooling of microchips in computers
by use of metal foams and their use in heat pipes etc. study of nanofluid in
porous medium turns to be important to the researchers. Thermal instability
of nanofluid in a porous medium has been studied by Nield and Kuznetsov
(20092, 2009b), Nield and Kuznetsov (2010b, 2011b), Kuznetsov and Nield
(2010a, 2010b, 2010c), Chand and Rana (2012b).

In this chapter we studied the thermal instability of Maxwellian visco-elastic
nanofluid in a porous medium for more realistic boundary condition. For
porous medium Darcy model has been used and it is assumed that nanopar-
ticles are suspended in the nanofluid using either surfactant or surface charge
technology. This prevents the particles from agglomeration and deposition
on the porous matrix.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the thermal convection in a horizontal
layer Maxwellian visco-elastic nanofluid. The physical configuration of the
problem to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness‘d” bounded by plane z = 0 and z = d, heated from below in a po-
rous medium of medium permeability k, and porosity €. Fluid layer is acted
upon by a gravity force g(0,0,-g) and is heated from below in such a way that
horizontal boundaries z = 0 and z = d respectively maintained at a uniform
temperature T and T (T, > T,) as shown is Figure 1. The normal component
of the nanoparticles flux has to vanish at an impermeable boundaries and
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Figure 1. Physical configuration of the problem

l g (0,0-g)
T=T

1 -
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Fluid layer in
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the reference scale for temperature and nanoparticles fraction is taken to be
T, and @, respectively It is assumed that nanoparticles are suspended in the
nanofluid using either surfactant or surface charge technology. This prevents
the particles from agglomeration and deposition on the porous matrix.

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy

force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and

thus, the heat flow has been described using one equation model,

Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when

compared with other modes of the heat transfer,

9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

10. Each boundary wall is assumed to be impermeable and perfectly thermal
conducting,

11. Nanoparticles are suspended in the nanofluid using either surfactant or
surface charge technology.

N

NN AW
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GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in a porous
medium under the Boussinesq approximation are given as

V-q=0, (5.1)
P d |dq 9 B

1+ XN—|—=|1+X—|(—-V -—q, 52
e[ - ot) dt M 8t]( p+pg> k]q (5-2)

where q(u, v, w) is the Darcy velocity vector, p is the hydrostatic pressure,

p is viscosity, a is the coefficient of thermal expansion, A is the relaxation

time, ¢ is the volume fraction of the nanoparticles, k| is the medium perme-

ability, € is the porosity parameter, P, density of nanoparticles and p, den-

sity of base fluid and % = %4‘ l(q : V) is stands for convection derivative.
€

The equation of energy for nanofluid in porous medium is

(PC)m aa—f + (pc)]c q-VT = kaZT + e(pc)p D,V VT + %VT -VT|, (5.3)

1

where (pc)  is effective heat capacity of fluid, (pc)p is heat capacity of
nanoparticles and km is effective thermal conductivity of the porous medium.
The continuity equation for the nanoparticles is

Op 1 2 DT 2
TP 1 2q- V=D Vi+—LVT, 54
o “q ¢ =D, Vo T (5.4)

Where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

D
w=0,T=T, DBa—d)—l——Ta—T =0atz=0
0z T 0z

and
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D
w=0T=T, DB‘;¢ T‘Z_T —0 atz=d (5.5)
Z 1 yA

Introducing non-dimensional variables as

(X/’y/’z/) _ % , (u v ow ) [ll :;’W]d, r_ t;)lz ) I I;—l:a
¢:f¢7%)'V:<T71X
P, (To _T1>

where r (k—m) is thermal diffusivity of the fluid.
pe, ;

Equations (5.1) - (5.5) in non-dimensional form can be written as

v/ . q/ = O’ (5.6)
8 1 aq a 3N ~ 2 N /

1+ F— 1+ F —V'p’-Rme_+ RaT’e —R -q’, 5.7

[ or ]P o 6t]( pRmé, + RaT’é, ~Rno'¢,) —q -7)

1 8“(—-’/ 1, oy | NA 121

——+4+=q -V ' =—V"7p +—=-V"T, 5.8

o ot’ eq * Le * Le (5-8)
! N N

8T/ +q VT =V?T' +-2L B V’&p/ VT + 2 EV'T.V'T. (5.9)

ot Le Le

Here the non-dimensional parameters are given as follows:
k .
Da = -1 1s the Darcy number,
d2

Pr = 2 is the Prandtl number,
PR

Le = Di is the Lewis number,
B

X . .
F= Z_Q is the stress relaxation parameter,
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_ pgadk, (TO — Tl)

Ra is the Rayleigh Darcy number,
K,
+pl(l- dk
Rm = (p"% ol @0))g " is the density Rayleigh Darcy number,
K.
P, —P)pgdk, : .
Rn = M is the nanoparticles Rayleigh Darcy number,
UK.
o _De(nT) e
. = ———— 1s the modified diffusivity ratio,
DBTI@O

Yo . - . o
N, = ( ) * is the modified particle-density increment.
pe).

In spirit of Oberbeck-Boussinesq approximation, equation (5.7) has been
linearized by the neglect of a term proportional to the product of 4 and T.
This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.

The dimensionless boundary conditions are

!/ /
w =0, T =1, ai)/—i—NAa—T =0at zZ/=0
Z 0z
and
! !
w'=0, T =0, %+NA22,ZOM’:1. (5.10)

THE BASIC STATE AND ITS SOLUTIONS
The basic state was assumed to be quiescent and is given by
q (u’,v',w’) =0,

p' =p, (),
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T/ — Tb(Z), (5.11)
¢ =¢,(2) and

p=0, (1 + u(T-TO)).

Equations (5.6) — (5.9) reduce to

0:—%-Rm+RaTb R, (5.12)
VA

2

2
a1, | N, do, dT, | NN, | dT,

=0, 5.13
dz’*  Le dz’ dz Le |dZ ( )
d’p d’T

ZAR (5.14)

Using boundary conditions in (5.10), equation (5.14) gives

0, =-N,T, +(1-N, )z + N, (5.15)

On substituting the value of the ¢, from equation (5.14) in equation (5.13),
we get

dsz (1_NA>NB dTb
/ + 7
dz Le dz

0 (5.16)

On integrating equation (5.16) with respect to z" and using boundary condi-
tions (5.10), we get

_ ~(1-N, N (1-2")/ Le
r=1=¢ . (5.17)

b e—(l—NA)NB/Le

1—

For most nanofluid investigated so far Le is large, is of order 10? - 10°,
while N, is no greater than about 10. Then, the exponents in equation (5.17)
are small. By expanding the exponential function into the power series and
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retaining up to the first order is negligible and so as to get good approxima-
tion for the solution as

T, =1—2z" and

Py :cboJrNAZ/

PERTURBATION SOLUTIONS

Let the initial basic state described by (5.11) is slightly perturbed so that
perturbed state is given by

n._n

q/(u/,v’,w’):0+q (u VLW )

T =T + T, (5.18)
¢’ =¢, +9",
p'=p, +p",

whereT, =1-2', ¢, = ¢, + Nz’ and (u” v/ w' ) T”, ©"and p” respectively
the perturbations in initial velocity, temperature, volume fraction of the
nanoparticles and pressure.

By substituting (5.18) in equations (5.6) — (5.9) and linearize by neglecting
the product of the prime quantities, we obtained following equations

V-q=0, (5.19)
14 F 2109 1y p O Gps RaTe, — Ru ) —q, (5.20)
ot | Pr ot ot ‘ ‘
190 Loy, __vz Nagor, (5.21)
oot = Le
N 2N N

O o vrye|y 9T _00) 2NN, 0T (5.22)
ot Le 0z Oz Le Oz
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Boundary conditions are

w=0T=0, 278 _gaz=0.1 (5.23)
0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (5.20), by operating with curl
twice on it, we have

0
I+ F—
[ ot

19 K f K
[Eg(ww) —RaV; T+RaV; |- Vw =0, (5.24)

where V2, is two-dimensional Laplacian operator on a horizontal plane.

NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually. For
the system of equations (5.24), (5.21) and (5.22) the analysis can be made in
terms of two dimensional periodic wave numbers. Thus, assuming that the
perturbed quantities are of the form

[W,T,kp] = [W(Z),@(Z),‘I)(Z)] exp (ikxx + ikyy + nt) R (5.25)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (5.25), equations (5.24), (5.21) and (5.22) become

n(l+ nF
Dz—az—M Wf(lJrnF)(aQRa@—aan(I)):O, (5.27)
Va
1 N 1 n
“NW-—-4(D*—-a’|l0—-|—(D*-a’|—=|® =0, 5.28
e * Le( ) Le( ) o ( )
N N N
W+|D*—a’—n——22D|O+—LDd =0, (5.29)
Le Le
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where D = d and a = [k’ + &k is the dimensionless resultant wave number.
dz * y

The boundary conditions of the problem in view of normal mode analysis are

W =0,D’W=0,0=0,D&+NDO=0at z=0,1. (5.30)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (5.27) — (5.29) with the corresponding
boundary conditions (5.30). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and @ are taken as

N N N

W= AW.0=%BO &= Co, (5.31)
p=1 p=1 p=1

where W =0 =sinpnz® =-N, sinpnz, A B and C are unknown coef-

ficients,p=1, 2, 3,.... N and the base functlons W, @p and @ satisfying
the boundary condltlons (5.30). Using expression for W, ® and ‘® in equa-
tions (5.27) — (5.29) and multiplying the first equation by W, the second
equation by G)p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown Ap, Bp and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (5.27) - (5.29) together with the boundary conditions (5.30) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (5.31) into the system of
equations (5.27) -(5.29) and multiplying the first equation by W the second
equation by @p and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation
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(ﬁ2+a2) ni( 2 2 2
<1+nF) +E(ﬂ +a) -a“Ra -a"N, Rn -
0
1 —(‘n2+a2+n) 0 ©,/=10
l L(’ﬁ2+a2) _ [L(,ﬁeraz)JrE] CDO
€ Le Le o

(5.32)

The non-trivial solution of the above matrix requires that

. L .
o d[frd) afred)) L ) S )
a’ <1+nF) Pr (ﬂ2+02)+nE
(o2

(5.33)

The growth rate nis in general acomplex quantity such thatn=®_+iw, the
system with ® < 0 is always stable, while for ® > 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (5.33), we have

Ra=A +iwA,, (5.34)
where

(1‘:2 + a2)2 [E + 1} + Le((ﬂ2 + a2)) + wiLe’

(’KZ + aQ> e

(ﬂ2+a2)_ 2[1 F

»o - _ N Rn
1 2 22 22 2 A
a 14+ wF Pr 1+ W'F (ﬂ2+a2)2+w2%

(5.35)

and

e va) R R Gy
= a1+ W'F? +(“2 2)[Pr1+w2F2 2)2 Lée MR
(-nz—i-az) +w20—2

(5.36)
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Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (5.34) that either ® = 0 (exchange of stability, steady state) or
A, =0 (o # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary convection [n = @ = 0], equation (5.33) reduces to

(Ra) = M - [1 " %]NARH. (5.37)

It is observed that stationary Rayleigh number Ra is function of the Lewis
number Le, the modified diffusivity ratio N, the nanoparticles Rayleigh Rn
and porosity parameter € butindependent of visco- elastic parameter F, Prandtl
number Pr and modified particle- density increment N. Thus Maxwellian
visco-elastic nanofluid behaves like an ordinary Newtonian nanofluid and
instability is purely a phenomenon due to buoyancy coupled with the con-
servation of nanoparticles.

To find the critical value of (Ra)s, equation (5.37) is differentiated with

respect to ‘a*” and then equated to zero. The minimum of first term of right-
hand side of equation (5.37) is attained at a_ = Jr and minimum value found
to 4r° so the corresponding critical Rayleigh number given by

(Ra)u =4n® — {1 + 5] N,Rn. (5.38)

€

In the absence of nanoparticles (Rn = Le = N, = 0), one recovers the
well- known results that the critical Rayleigh-Darcy number is equal to
(Ra)c =47’ .

This is good agreement of the result obtained by Nield and Kuznetsov
(2009a).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (5.38); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.
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OSCILLATORY CONVECTION

For oscillatory convection A, = 0 and @ =0, thus equation (5.36) gives a
dispersion relation of the form

a, (w2)2 +a, (wz) +a,=0; (5.39)
where

(7‘(2 +d° )2 LEF?

a. =

? a’ o> Pr’
(ﬂ2+a2>3 F? 2 ) \ Le ) 2 1o Lo
aIZT—FF ('rr —I—a)?—('rr +a>1+??NARn,
_(‘K?+a2)31 YR , o\ Le o 2\ a LelLely r
aO—W< +(7r +a)<— r))—f—(ﬂ +a)?—(ﬂ +a) —0—?? Rn.

Then equation (5.34) with A, = 0 gives oscillatory Rayleigh number at
the margin of stability as

(Re) - (n2+a2) (w“ra‘z)wz[iL
ose a’ 1+ WF? Pr 14+ WF°
(1‘(2 —I—a2)2 %—I—l —|—L€((TYZ —|—az)) +w'Le’ (5.40)

—_ N Rn.

A

2

(112 + a2)2 +uw’ L—e;
o

For the oscillatory convection to occur, ®* must be positive. If there are
no positive roots of * in equation (5.39), then oscillatory convection is not
possible. If there are positive roots of w? the critical Rayleigh number for
oscillatory convection can be obtained numerically minimizing equation
(5.40) with respect to wave number, after substituting various values of
physical parameters for ®* of equation (5.39) to determine the various effect
of different parameter on the onset of oscillatory convection.
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RESULTS AND DISCUSSION

To study the effect of Lewis number Le, modified diffusivity ratio N, and
nanoparticles Rayleigh number Rn on stationary convection, we examine the

behavior of a(Ra)“' ,a(Ra)“' ,a(Ra)" and 8(Ra)
OLe ON ORn Oe

A
From equation (5.37), we have

* analytically.

1 (a;;a)‘“ <0,
e
2. ((2:\7) <0,
(ova)
a
3. 8Rn> <0,
4. (aRa>5 >0
Oe

These inequalities imply that Lewis number Le, modified diffusivity
ratio N and nanoparticles Rayleigh number Rn destabilize while porosity
parameter stabilizes the fluid layer.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon Lewis number, modified dif-
fusivity ratio and nanoparticles Rayleigh number. The computations are
carried out for different values of parameters considered in the range
—10° < Ra <10° (thermal Rayleigh number), 1 < N, <10 (modified diffusiv-
ity ratio), 10> < Le <10* (Lewis number), 10' < Rn <10" (nanoparticles
Rayleigh number), 10* <e <1 (porosity parameter).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 — 5.

Figures 2 — 5 demonstrate the neutral curve on the ((Ra), a) plane for
different values of the Lewis number Le, the modified diffusivity ratio N,
the nanoparticles Rayleigh Rn and porosity parameter €.

Figure 2 shows the variation of stationary Rayleigh number with wave
number for different value of Lewis number with the fixed value of other
parameters. It is found that stationary Rayliegh number decreases as the
value of Lewis number increases, indicating that Lewis number destabilize
the stationary convection. It is due to the fact that thermophoresis at a higher
value of thermophoretic diffusivity is more supportable to the disturbance
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Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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in nanofluids, while both thermophoresis and Brownian motion are driving
forces in favor of the motion of nanoparticles.

Figure 3 shows the variation of stationary Rayleigh number with wave
number for different value of modified diffusivity ratio with fixed value of
other parameters and it is found that stationary Rayliegh number decreases
with an increase in the value of modified diffusivity ratio, which indicate
that modified diffusivity ratio destabilize the stationary convection. This
may lead to an increase in volumetric fraction, which shows that Brownian
motion of the nanoparticles will also increase, which may cause destabiliz-
ing effect. This is good agrement of the result obtained by Chand and Rana
(20144, 2015a).

Figure 4 shows the variation of stationary Rayleigh number with wave
number for different values of nanoparticle Rayleigh number with fixed value
of other parameters and it is found that stationary Rayliegh number decreases
as the value of the nanoparticles Rayleigh number increases, which mean
that nanoparticle Rayleigh number has destabilizing effect on the station-
ary convection. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles.
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of porosity parameter
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To assess the effect of porous medium on the stability of the system, the
variation of the stationary Rayleigh number is shown in Figure 5 as a func-
tion of wave number a for different values of the porosity €. We found that
with an increase in the value of the porosity €, the stationary Rayleigh num-
ber increases, indicating that it delays the onset of convection in nanofluid
saturated in porous medium.

CASE OF OVERSTABILITY

Here we examine the possibility of as to whether instability may occur as
overstability. Since we wish to determine the Rayleigh number for the onset
of instability via a state of pure oscillation, it suffices to find the conditions
for which equation (5.39) will admit the solution with real values of w. All
the coefficients a , a , a, in equation (5.39) are real.
Now the product of the roots of equation (5.39) = [Z—O

2

is positive.

a, is always positive and

a,is negative if 1< FP, 1<

- E] e (5.40)

€ )0
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£ . .. ..
— 1is sufficient condition for the non-
(e)

14+ L2
€

existence of overstability, the violation of which does not necessarily imply
the occurrence of overstability.

Thus inequality 1 < FP, 1<

CONCLUSION

Thermal convection in ahorizontal layer of Maxwellian visco-elastic nanofluid
in porous medium is studied. Darcy model is used for porous medium. The
flux of volume fraction of nanoparticles is taken to be zero on the isothermal
boundaries and the eigen value problem is solved using the Galerkin residual
method. The results have been presented both analytically and graphically.
The main conclusions derived from the present chapter are as follows

1.  The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Lewis number Le, modified diffusivity ratio N, and nanoparticles
Rayleigh number Rn destabilizes while porosity parameter stabilize the
stationary convection.

4. Sufficient condition for the non-existence of overstability is

1422
€

1<FP, 1<

o
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Chapter 6

Thermal Convection in
a Layer of Maxwellian
Visco-Elastic Nanofluid

in a Porous Medium:
Brinkman Model

INTRODUCTION

Thermal instability in a porous medium is now regarded as a classical problem
due to its wide range of applications in geothermal reservoirs, agricultural
product storage, enhanced oil recovery, packed-bed catalytic reactors and the
pollutant transport in underground. It has many applications in geophysics,
food processing, oil reservoir modeling, building of thermal insulations and
nuclear reactors. Lapwood (1948) has studied the convective flow in a porous
medium using linearized stability theory. The Rayleigh instability of a thermal
boundary layer in flow through a porous medium has been considered by
Wooding (1960). The investigation in porous media has been started with the
simple Darcy model and gradually was extended to Darcy-Brinkman model.
A good account of convection problems in a porous medium is given by Vafai
and Hadim (2000), Ingham and Pop (1981) and Nield and Bejan (2013).

DOI: 10.4018/978-1-68318-006-7.ch006
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The study of flow, heat and mass transfer about natural convection of
non-Newtonian fluids in porous media has gained much attention from the
researchers because of its engineering and industrial applications. These ap-
plications include design of chemical processing equipment, formation and
dispersion of fog, distributions of temperature and moisture over agricultural
fields and groves of fruit trees and damage of crops due to freezing and pol-
lution of the environment etc. In the recent years, considerable interest has
been evinced in the study Rayleigh-Bénard convection problem for a nano-
fluid having relevance in engineering, automotive industries and biomedical
engineering etc. Nanofluids have novel properties that make them potentially
useful in wide range of engineering applications where cooling is of primary
concern. Nanofluid used as heat transfer, chemical nanofluids, smart fluids,
bio nanofluids, medical nanofluids (drug delivery and functional tissue cell
interaction) etc. in many industrial applications.

Thermal instability of nanofluid in a Brinkman porous medium has been
studied by Kuznetsov and Nield (2010b), Chand and Rana (2012b).

Due to importance of non-Newtonian nanofluids in Brinkman porous
medium an attempt has been made in this chapter to study the thermal insta-
bility of a horizontal layer of Maxwellian visco-elastic nanofluids for more
realistic boundary conditions in Brinkman porous medium.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the thermal convection in a horizontal
layer Maxwellian visco-elastic nanofluid in Brinkman porous medium. The
physical configuration of the problem to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness‘d” bounded by plane z = 0 and z = d, heated from below in a po-
rous medium of medium permeability k, and porosity €. Fluid layer is acted
upon by a gravity force g(0,0,-g) and is heated from below in such a way that
horizontal boundaries z = 0 and z = d respectively maintained at a uniform
temperature T and T, (T, > T)) as shown is Figure 1. The normal component
of the nanoparticles flux has to vanish at an impermeable boundaries and
the reference scale for temperature and nanoparticles fraction is taken to be
T, and @, respectively It is assumed that nanoparticles are suspended in the
nanofluid using either surfactant or surface charge technology. This prevents
the particles from agglomeration and deposition on the porous
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Figure 1. Physical configuration of the problem
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The mathematical equations describing the physical model are based upon
the following assumptions:

1.

N

NN AW

10.

11.
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Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

Each boundary wall is assumed to be impermeable and perfectly thermal
conducting,

Nanoparticles are suspended in the nanofluid using either surfactant or
surface charge technology.
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GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in Brinkman
porous medium under the Boussinesq approximation are given as

V-q=0, 6.1)
P 3 d 8 ~ 2 v

Blian= 1+ \Y Vig-+q, 6.2
E[+ ol It a]( p+og)+i Ty (6.2)

where q(u, v, w) is the Darcy velocity vector, p is the hydrostatic pressure,
p the is viscosity, i is the effective viscosity, A is the relaxation time, k| is
the medium permeability, € is the porosity parameter, « is the coefficient of
thermal expansion, @ is the volume fraction of the nanoparticles, P, density
of nanoparticles and p, density of base fluid and% = %4‘ l(q : V) is stands
€
for convection derivative.
The equation of energy for nanofluid in porous medium is

(pe). %_T +(pe) a- VT =k, VT +¢(pe) |DVip- VT + %VT -VT|, (6.3)

1

where (pc)  is effective heat capacity of fluid, (pc), is heat capacity of
nanoparticles and k_is effective thermal conductivity of the porous medium.
The continuity equation for the nanoparticles is

2]

1
B0 + - ~a Ve =D,V + TT VT (6.4)

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

D
w=0T=T, DB8¢+_3T =0 atz=0 and
0z T 0z
D
w=0T=T, DB8¢+_3_T =0 at z=d. (6.5)
0z T, 0z
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Introducing non-dimensional variables as

(X’,y/,z’) N RSNEY : q'(u/,V', Wl,) _ q[u’:w]d, t = :1_/:’ p, _ I;_l;l’
g leme) o [T-T)
Yo (To o Tl)
where
),

(pe), " loe),

Equations (6.1) - (6.5) in non-dimensional form can be written as

v/ . q/ — 0’ (6-6)
!/
1+ F%J%% =|1+F %](V/p/—Rméz +RaT’é, — Rny'’e )+ DaV"’q’ —q,
(6.7)

1 8kp/ 1 / /N 1 2/ NA 12/

2 4oV = — V" + AT 6.8

oot e E YT P Le ©8)
/ N N N

8l, +q VT =V°T + L2V . VT +2L2VT .VT, (6.9)

ot Le Le

here non-dimensional parameters are given as

Va = ebr is the Prandtl- Darcy Number (Vadasz Number),

Da

k .
Da = —1s the Darcy number,
dZ

Pr = 2 is the Prandtl number,
PR
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ik,
pd®

Da is the Brinkman-Darcy number,

KR . .
Le = —1is the Lewis number,
B

A .
F = /:1_2 is the stress relaxation parameter,

_ pgadk, (TU — T1)

Ra = is the Rayleigh Darcy number,
J

(o, + (16, ) &k,

Rm = is the density Rayleigh Darcy number,
J
p, —p)eedk, : .
Rn = M is the nanoparticles Rayleigh Darcy number,
[
o DT (TO_TI) . ‘o . .. .
. = ———— 1s the modified diffusivity ratio,
DT,
(e), 00 o -
N, = : is the modified particle-density increment.

t (e,

In spirit of Oberbeck-Boussinesq approximation, equation (6.7) has been
linearized by the neglect of a term proportional to the product of ¢ and T.
This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.

The dimensionless boundary conditions are

!/ !/
w =0, T =1, ai—kN or =0at z/=0

oz’ 107’

and
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! Tl
Y.
Z

A 82/

w' =0, T =0,

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

q’ (u/,V/,W/> =0,

p' =p, @,
T' =T, (2),
¢ = ¢, (2) and

=0, (1+a(T-TO)).

Equations (6.6) — (6.9) reduce to

0= g
= ——-Rm + RaT, —Rnyp,,

dz

2

2
T, Ny day T, NN (0]

dz’*  Le dz' d7 Le

ar,
dz’

d’e, d’T, 0
dz"* A dz"? ’

Using boundary conditions in (6.10), equation (6.14) gives

¢, =-N,T, +(1-N, )z + N,.

=0atz =1.

(6.10)

6.11)

(6.12)

(6.13)

(6.14)

(6.15)

On substituting the value of the ¢, from equation (6.15) in equation (6.14),

we get
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T, (1NN, dT,

b 1
dz’ + Le dz’ (6.16)

On integrating equation (6.16) with respect to z’ and using boundary condi-
tions (6.10), we get

—(1=N, )Ny (1-2")/ Le
1—
potze (6.17)

1—e

For most nanofluid investigated so far Le is large, is of order 10? - 10°,
while N, is no greater than about 10. Then, the exponents in equation (6.17)
are small. By expanding the exponential function into the power series and
retaining up to the first order is negligible and hence an approximate solution
for basic state is given by

T, =1—-2 and

kPb = ¢‘[) + NAZ/

PERTURBATION SOLUTIONS

Let the initial basic state described by (6.11) is slightly perturbed so that
perturbed state is given by

q/ (u/’v/’w/) -0+ q// (u”,V”,W”),

T = T, + T, (6.18)
o' =¢, +¢",
p/ —p, + p//’

/.

whereT =1-2/, ¢, =¢, + N,z and (u WV ,w”), T", ¢” and p” respectively the
perturbations in initial velocity, temperature, volume fraction of the nanopar-
ticles and pressure.
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By substituting (6.18) in equations (6.6) — (6.9) and linearize by neglecting
the product of the prime quantities, we obtained following equations

V.q=0 (6.19)
011 dq 0 . R R

1+ F—|——==[14+F—|(-Vp+RaTé¢ —R + DaV’q —q, 6.20
[ 8t]Va o a;]< p-+RaTé, —Rngé, ) + DaV'a - q (6:20)

N
190 Ly = Loy Daver (6.21)
oot = Le Le

N 2N, N

I T4 NAa_T,a_d’ _ 2NN, 9T (6.22)
ot Le 0z Oz Le Oz

Boundary conditions are

w=0T=0, —+N,— =0atz=0,l. (6.23)

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (6.20), we have

[1—1—F2
ot

19
Va ot

(v2w) —RaV? T + RnV ¢ | — DaV'w + Vw = 0, (6.24)
where V:, is two-dimensional Laplacian operator on a horizontal plane.

NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually. For
the system of equations (6.24), (6.21) and (6.22) the analysis can be made in
terms of two dimensional periodic wave numbers. Thus, assuming that the
perturbed quantities are of the form

[W,T,kp] = [W(z),@(z),@(z)] exp (ikxx +iky + nt) , (6.25)
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where k , ky are wave numbers in x and y direction and n is growth rate of

disturbances.
Using equation (6.25), equations (6.24), (6.21) and (6.22) become

(D2 faz) Da(D2 a2)1<1+v—nF)n W—<1+nF)<a2Ra6)—a2Rn<I>):0,
a
(6.27)
éNAW—%(DZ—az)@—[i(Dz—az)—§]¢:0, (6.28)
WD —a?—n-Nalsplgy Nopg g, (6.29)
Le Le

where D=3 and a — JKk + Kk is the dimensionless resultant wave number.
dz R

The boundary conditions of the problem in view of normal mode analysis are

W =0,D’W=0,0=0,Dd+N,DO=0 at z=0,1. (6.30)

Method of Solution

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (6.27) — (6.29) with the corresponding
boundary conditions (6.30). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and @ are taken as

N N N

W= A4W.0=%BO . =) Co, (6.31)
p=1 p=1 p=1

whereW =0 =sinpnz® =-N, sinpnz, A B and C are unknown coef-

ficients,p=1, 2, 3,.... N and the base functlons W, @p and @ satisfying
the boundary condltlons (6.30). Using expression for W, ® and ‘® in equa-
tions (6.27) — (6.29) and multiplying the first equation by W, the second
equation by G)p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
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3N unknown A , B and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (6.27) - (6.29) together with the boundary conditions (6.30) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (6.31) into the system of
equations (6.27) -(6.29) and multiplying the first equation by W the second
equation by 0, and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

~ 2
Da('ﬂ2+ag> +<7r2+a2) n(ﬁeraZ) R R
(1 n nF) + Va -a’Ra -a NARn - 0
1 -(TY2+02+VI) 0 @Z =10
é é(ﬂz +az> ~ [Lle(ﬂ_z +a2)+2] ‘I)o 0
(6.32)
The non-trivial solution of the above matrix requires that
Ra = i Da(ﬂz +a2)2 +(ﬂ2 +az) + n(ﬂz +a2) (,ﬁz + g —I—n)
a’ (1+nF) Va
(T(z + a2) —1—5(112 +d+ n)
— = N,Rn. (6.33)
)

The growthrate nis in general a complex quantity such thatn = _+ i, the
system with o_< 0 is always stable, while for ®_> 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where w is real and is a dimensionless frequency) in equation (6.33), we have
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Ra=A +iwA,, (6.34)
where

w4+ d [)a’nz—i—azQ—i—ﬁz—i—az
|( +a)) Da(w +a') +(x +a)

1 [)CI(TY2 —I—aZ)3 +(7r2 —|—a2)2

Al = 2 2 02 —w 2 2
a 1+wF Va 1+wF
(112 —i—a2)2 [Le—i—l]—i—Le((ﬂz —l—aQ))—&—u)zLe2
© N, Rn
(v +a) ru ke '
2
’ (6.35)
and
A 1 ﬁa(ﬁ2+a2)2+(ﬂ2+a2) (ﬂz—l—aQ)Q ﬁa(ﬂ2+a2)2+(ﬂ2+a2)
2T 1+ W F° N7 1+ F?
E(ﬂz +a2)—<ﬁ2 +a2)[1+Le]Le
€ e]o
+ ; I N,Rn
(112 —l—az) +w2—2
’ (6.36)

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (6.34) that either ® = 0 (exchange of stability, steady state) or
A, =0 (w # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary (non- oscillatory) convection [n = o = 0], equation
(6.33) reduces to

(Ra)s _ Da(ﬁz +a2)3 +(ﬁ2 +a2)2 _[1+Z

a’ £

N, Rn. (6.37)
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Itis observed that stationary Rayleigh number Ra is function of the Lewis
number Le, the modified diffusivity ratio N, and the nanoparticles Rayleigh
Rn but independent of visco- elastic parameter F, Vadasz number Va and
modified particle- density increment N_. Thus Maxwellian visco-elastic
nanofluid behaves like an ordinary Newtonian nanofluid and instability is
purely a phenomenon due to buoyancy coupled with the conservation of
nanoparticles.

For the case when Da = 0, minimum of first term of right- hand side of
equation (6.37) is attained at a = = and minimum value found to 47, so the

Rn.

Cc

corresponding critical Rayleigh number given by (Ra) = 4’ — [N L+ Le
€

This is same result which was derived by Kuznetsov and Nield (2014).
For the case when Da is large as compared to unity, minimum value of

first term of right- hand side of equation (6.37) is attained at a_ = = and

V2

s
27 Da, so the corresponding critical Rayleigh

minimum value found to

number given by

(Ra) =" pa- [NA " E]Rn. (6.38)
¢ €

This is well known result derived by Kuznetsov and Nield (2010b).

OSCILLATORY CONVECTION

For oscillatory convection A, = 0 and ® =0, thus equation (6.36) gives a
dispersion relation of the form

a, () +a,(w)+a, =0 (6.39)

where
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Da(ﬁz_'_az)?_’_(ﬁz_’_aQ)_Da(ﬂz+a2)3+(,ﬁ2+a2)2]+w

(v +a2)[1+5]5

fo¥)
Il
&~
a;|fe
—_—

a’Va

; 5\ Le
(v +at) = -

+F N Rn,

€ o

2 24 2 23 (W2+a2)3 B 2 22 2 2
a :a_ Da(ﬂ +a) +(1T +a) +T—Da(ﬂ +a) —l—(‘n —|—a)

(v +a2)%—(q{-’ +a2){1+%]%

N Rn.

A4

_|_

Now equation (6.34) together with A, = 0 gives oscillatory Rayleigh
number at the margin of stability as

DCITY2+CZ23—|—T(2—|—022 o +d° [)aﬂz—l—a?z—l—‘nz—i—cf
S Lt S (b N T R T

(7‘(2 + 02>2 Le +1]|+ Le((wz + az)) +w'Le’
— < - N, Rn.
(’Kz + a2)2 +uw L—?z

2
(0

(6.40)

For the oscillatory convection to occur, ®* must be positive. If there are
no positive roots of ®? in equation (6.39), then oscillatory convection is not
possible. If there are positive roots of w? the critical Rayleigh number for
oscillatory convection can be obtained numerically minimizing equation
(6.40) with respect to wave number, after substituting various values of
physical parameters for ®* of equation (6.39) to determine the various effect
of different parameter on the onset of oscillatory convection.

RESULTS AND DISCUSSION

To study the effect of Brinkmanship-Darcy number, Lewis number Le,
modified diffusivity ratio N, and nanoparticles Rayleigh number Rn and
porosity parameter on stationary convection, we examine the behavior of
3(Ra)Y a(Ra)Y 3(Ra)Y 8(R01)Y q a(Ra)
dDa ’ .

)

, * analytically.
OLe ON ORn Oe

A
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From equation (6.37), we have

1. (Z}Zl)’ >0,
a
2. (88RTa) <0,
e
3. (le:) <0,
A
(8Ra>x
ORn <0,
(Ora), .
Oe

These inequalities imply that Lewis number Le, modified diffusivity ratio
N, and nanoparticles Rayleigh number Rn have destabilizing effect while
Brinkman-Darcy number and porosity parameter have stabilizing effect on
the stationary convection.

Expression for stationary Rayleigh number, which characterizes the sta-
bility of the system, is found to be depend upon Lewis number, modified
diffusivity ratio and nanoparticles Rayleigh number.

The computations are carried out for different values of parameters con-
sidered in the range -10° < Ra <10’ (thermal Rayleigh number),
1< N, <10 (modified diffusivity ratio), 10° < Le <10'(Lewis number),
10" < Rn < 10" (nanoparticles Rayleigh number), 10" < Da < 1 (Brinkman-
Darcy number) and 10 <e <1 (porosity parameter).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures. 2 — 6.

Figures 2 — 6 demonstrate the neutral curve on the ((Ra), a) plane for
different values of the Lewis number Le, the modified diffusivity ratio N,
the nanoparticles Rayleigh Rn and porosity parameter €.

Figure 2 shows the variation of stationary Rayleigh number with wave
number for different values of the Brinkman-Darcy number. We found that
with an increase in the value of the Brinkman-Darcy number, the stationary
Rayleigh number increases, indicating that it delays the onset of convection
in Maxwellian visco elastic nanofluid saturated in Brinkman porous medium.
This is because; increase in the value of Brinkman-Darcy number is related
to increase in the value of effective viscosity and which has the tendency to
retard the fluid flow and hence higher heating is required for the onset of
convection in a nanofluid-saturated porous medium.
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Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Brinkman- Darcy number
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Figure 3 shows the variation of stationary Rayleigh number with wave
number for different value of Lewis number with the fixed value of other
parameters. It is found that stationary Rayliegh number decreases as the
value of Lewis number increases, indicating that Lewis number destabilize
the stationary convection. It is due to the fact that thermophoresis at a higher
value of thermophoretic diffusivity is more supportable to the disturbance

Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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in nanofluids, while both thermophoresis and Brownian motion are driving
forces in favor of the motion of nanoparticles.

Figure 4 shows the variation of stationary Rayleigh number with wave
number for different value of modified diffusivity ratio with fixed value of
other parameters and it is found that stationary Rayliegh number decreases
with an increase in the value of modified diffusivity ratio, which indicate that
modified diffusivity ratio destabilize the stationary convection. This may lead
to an increase in volumetric fraction, which shows that Brownian motion of
the nanoparticles will also increase, which may cause destabilizing effect.

Figure 5 shows the variation of stationary Rayleigh number with wave
number for different values of nanoparticle Rayleigh number with fixed value
of other parameters and it is found that stationary Rayliegh number decreases
as the value of the nanoparticles Rayleigh number increases, which mean
that nanoparticle Rayleigh number has destabilizing effect on the station-
ary convection. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles.

To assess the effect of porous medium on the stability of the system, the
variation of the stationary Rayleigh number is shown in Fig. 6 as a function
of wave number «a for different values of the porosity €. We found that with
an increase in the value of the porosity ¢, the stationary Rayleigh number
increases, indicating that it delays the onset of convection in nanofluid satu-
rated in porous medium.

Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 6. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of porosity parameter
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CONCLUSION

Thermal convection in a horizontal layer of Maxwellian visco-elastic nano-
fluid in a porous medium is studied. Brinkman model is used for porous
medium. The flux of volume fraction of nanoparticles is taken to be zero on
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the isothermal boundaries and the eigen value problem is solved using the
Galerkin residual method. The results have been presented both analytically
and graphically.

The main conclusions derived from the present chapter are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticles and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Brinkman- Darcy number and porosity parameter have stabilizing effect
while Lewis number Le, modified diffusivity ratio N, and nanoparticles
Rayleigh number Rn have destabilizing effect the stationary convection.
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Chapter 7

Effect of Variable
Gravity on the Thermal
Convection in a Layer
of Maxwellian Visco-
Elastic Nanofluid

INTRODUCTION

The idealization of uniform gravity assumed in theoretical investigations,
although valid for laboratory purposes can scarcely be justified for large-scale
convection phenomena occurring in atmosphere, the ocean or mantle of the
Earth. It then becomes imperative to consider gravity as variable quantity
varying with distance from surface or reference point. Pradhan and Samal
(1987), Pradhan et al. (1989) studied the thermal instability of a fluid layer in
a variable gravitational field while Alex et al. (2001), Alex and Prabhamani
(2001) studied the variable gravity effects on the thermal instability in a porous
medium with internal heat source and inclined temperature gradient. Rionero
and Strughan (1990) discuss the various type of variable gravity parameter
on the stability convection and recently Chand (2010, 2011, 2013c¢) studied
the variable gravity effects on the thermal instability in fluid layer. Effect
of variable gravity in layer of nanofluid in a porous medium is studied by
Chand et al. (2013a) and found that gravity parameter play significant role
on the stability of fluid.
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Effect of Variable Gravity on the Thermal Convection in a Layer

In this chapter an attempt has been made to study the thermal instability
in a horizontal layer of Maxwellian visco-elastic nanofluids in the presence
of variable gravity for more realistic boundary conditions.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate effect of variable gravity on the onset of
thermal convection in ahorizontal layer of Maxwellian visco-elastic nanofluid.
The physical configuration of the problem to be considered as:

An infinite horizontal layer of Maxwell visco-elastic nanofluid of thick-
ness ‘d’ bounded by horizontal boundaries z = 0 and z = d. Fluid layer is
acted upon by a gravity force g(0,0,-g) and and it is assumed that gravity
force vector is varies linearly with z i.e. g = (1 +8h (z)) g, where 8h(z) is the

variable gravity parameter. Fluid layer is heated from below in such a way
that horizontal boundaries z = 0 and z = d respectively maintained at a uni-
form temperature T, and T, (T, > T,) as shown is Figure 1. The normal
component of the nanoparticles flux has to vanish at an impermeable bound-
aries and the reference scale for temperature and nanoparticles fraction is
taken to be T, and @, respectively

Figure 1. Physical configuration of the problem

l g (0,0-g)

Heated from below
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Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy

force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and

thus, the heat flow has been described using one equation model,

Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when

compared with other modes of the heat transfer,

9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

10. Eachboundary wall is assumed to be impermeable and perfectly thermal
conducting.

N

PN AW

GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in the pres-
ence of variable gravity under the Boussinesq approximation are

V.v=o, (7.1)

(pr + (kppp + (1 - &p) {pf (1 —a (T = TO))})g) +uViv,

(7.2)

APENCATL N N
ot dt ot

where v(u, v, w) is the velocity vector, p is the hydrostatic pressure, i is
viscosity, a is the coefficient of thermal expansion, X is the relaxation time,
@ is the volume fraction of the nanoparticles, Py density of nanoparticles and

p; density of base fluid and % = %Jr (v : V) is stands for convection deriva-

tive.
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Equation of energy for Maxwellian visco-elastic nanofluid is given by

D
pot v VT =k VT 4 (pc] |D, Ve VT +LVT- VT, (7.3)
p

1

where pc is heat capacity of fluid, (po), is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d, and k _ is thermal conductivity.
Equation of continuity for the nanoparticles is

D
aa_f”'w ~D,Vip+ L V'T. (7.4)

1

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

9 , D, oT

w=0,T=T, D, =0atz=0
0z T, 0z
and
D
w=0T=T, 0,20 20T _ g 4 ,_4q (7.5)
0z T, 0z

Introducing non-dimensional variables as

x'y'z') = X,Y,Z
(xy.z',) [—d

@/:(@_@0)’ T — (T_Tl>’
2 (T,-T)

where k = Ky is thermal diffusivity of the fluid.
pc

Equations (7.1) - (7.4) in non-dimensional form can be written as

Vv =0, (7.6)
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~V'p"-Rm(1+8h(z))¢, + Ra(l+5h(z)) T'¢

!/
1+Fi/ ia_v/: 1+Fi, - |+ VI,
ot" ) Pr ot ot" || —Rn (1 +0 h(z))up €,
(7.7)
/ 1 N
aa% +v V/kp, _ L_evl2@/ + L_gvlzT/, (78)
! N N N
ai + V/ . v/T/ — V/2T/ + _Bv/ /. v/T/ + A~ B V/T/ ) VIT/. (7.9)
ot Le ® Le

Here the non-dimensional parameters are given as follows:

Pr = 2 is the Prandtl number,
pPK

Le = Di is the Lewis number,
B

X . .
F = ';—2 is the stress relaxation parameter,

_ pgad’ (TO — Tl)

Ra is the Rayleigh number,
VI
Ag, +All-p, ) |ed” . :
Rm = ( o0 A °>) is the density Rayleigh number,
[V
p, —p)o,ed’ : .
Rn = u is the nanoparticles Rayleigh number,
Vi
D, (T,T) . e
. = ———= 1s the modified diffusivity ratio,
DyTie,
(pc) @, - . o
N, = ( ") is the modified particle-density increment.
pe).

In spirit of Oberbeck-Boussinesq approximation, equation (7.7) has been
linearized by the neglect of a term proportional to the product of & and T.
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This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.
The dimensionless boundary conditions are

li !/
w'=0, T'=1, %—I—NAé;T/ =0at z/ =0
Z Z
and
ao’ or’
w =0T =0 —/—+N =0atz =1. 7.10
0z’ 4 9z’ ( )

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

! ! ! !/
\2 (u,V,W):O,

p' =p, (),
T =T (2). (7.11)
¢ = ¢, (2) and

=0, (1+u(T-T0)).

Equations (7.6) — (7.9) reduce to

d
O:—%—Rm—i—RaTb —Rngp,, (7.12)

2

d2Tb N, dy, di N, N, —0, (7.13)

. at,
dz’*  Le dz' d7 Le

dz'

2 2
4o, , 9L _y (7.14)

dz" A dz"?
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Using boundary conditions in (7.10), equation (7.14) gives

¢, =-N,T, +(1-N, )z + N,. (7.15)

On substituting the value of the ¢, from equation (7.15) in equation (7.13),
we have

dsz N (1-NA>NB dT, B

Bl S 7.16
dz’ Le dz’ ( )

On integrating equation (7.16) with respect to z’and using boundary
conditions (7.10), we get

NN (12 e
r—1z¢ (7.17)

b e—(l—NA)NB/Le

1—

For the most of nanofluid investigated so far Le is large, is of order 10*
- 10°, while N, is no greater than about 10. Then, the exponents in equation
(7.17) are small. By expanding the exponential function into the power series
and retaining up to the first order is negligible and so to a good approxima-
tion for the solution of basic state is given by
T, =1—-2 and

¢, =0, + N2’

PERTURBATION SOLUTIONS

Let the initial basic state described by (7.11) is slightly perturbed so that
perturbed state is given by

(u',v’,w') —0+ (u”,v”,w”),
T =T +T, (7.18)

o' =, +¢",
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p'=p, +p",

whereT, =17, ¢, =0, + N,z and (u"v'w"), T, ¢" and p"respec-
tively the perturbations in initial velocity, temperature, volume fraction of
the nanoparticles and pressure.

By substituting (7.18) in equations (7.6) — (7.9) and linearize by neglecting
the product of the prime quantities, we obtained following equations

V.-v=0, (7.19)
0|1 0v 0 . . 2
1+F5]Ea =1 +Fa](Vp +Ra(1+8h(z))Te, ~Rn(1+3 h(z))¢e2)+ Vv,
(7.20)
o I > N, o2
—~4+wN, =—V —A V7T, 7.21
ot R Le . © * Le ( )
T y—vry Dufy 0T _90) NN, OT (7.22)
ot Le 0z 0Oz Le 0z
Boundary conditions are
w=0T=0, 8_¢+NA8_T =0atz=0,1. (7.23)
0z Z
[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (7.20), we have
1+ iQ(Ww) - Ra(l +8 h(z))V2 T+ Rn(l +8 h(z))V2 e|—V'w =0,
ot || Pr ot " "
(7.24)

where V:, is two-dimensional Laplacian operator on a horizontal plane.
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NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually.
For the system of equations (7.24), (7.22) - (7.23) the analysis can be made
in terms of two dimensional periodic wave numbers. Thus, assuming that
the perturbed quantities are of the form

[W,T,kp] = [W(z),@(z),@(z)] exp (ikxx +ik )y + nt) , (7.25)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (7.25), equations (7.24), (7.21) and (7.22) become

(D* —a%)|D* —a® _M W—(1+nF)(a2Ra(1+6h(z))@—aan(l+6h(z))<I>) -0,
T
(7.26)
NAW—%(DZ_aZ)e_[i(Dz—aZ)_n]cp:o, (7.27)
WD —a?on-Nalaplg Napg g, (7.28)
Le Le

where D = d and a = [k’ + &k is the dimensionless resultant wave number.
dz * iy

The boundary conditions of the problem in view of normal mode analysis are

W =0,D*W=0,0=0,D&+N DO=0at z=0,1. (7.29)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (7.26) - (7.28) with the corresponding
boundary conditions (7.29). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and ® are taken as
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N N N

W= A4W,0=% B0, =% Co, (7.30)
p=1 p=1 p=1

where W, =0, =sinpnz® =-N, sinpnz, A B and C are unknown coef-

ficients,p =1, 2, 3,...., N and the base functlons W, @ and @ satisfying
the boundary condltlons (7.29). Using expression for W ® and @ in equa-
tions (7.26) - (7.28) and multiplying the first equation by W, the second
equation by @p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown Ap, Bp and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (7.26) - (7.28) together with the boundary conditions (7.29) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (7.30) into the system of
equations (7.26) - (7.28) and multiplying the first equation by Wp the second
equation by @p and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

2 2 2
—<E‘1 ::F)) + %(’Kz + a2) -a’Ra (1 + 9 h(z)) —azNARn (1 +9 h(z)) W .
1 -(ﬁ2+a2+n) 0 @: =10|.
! lred) [l
(7.31)

The non-trivial solution of the above matrix requires that

(ﬂz + a2)
a’ (14 #F)(1+5h(z))

n(1+nF)

Pr

Ra =

(T( +a2)+ (W2+a2+n>
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(1‘(2 + a2) + Le("rr2 +ad+ n)
- N Rn. (7.32)
(T(Z + az) +nlLe A

The growth rate nis in general a complex quantity such thatn = _+ i, the
system with ®_ < 0 is always stable, while for ®_> 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (7.32), we have

Ra=A +iwA,, (7.33)
where

(112 + a2) (th + a2)2 + EZF(WZ + az) E2

E3]

T (1 19 h(z)) 1+ E2F? Pr

_(ﬁ2+a2) (Le+1>+Le((W2+a2))+E2Le2N Rn (734)
(112 + a2)2 +ELe

and

_ (TTZ +az)2
@’ (1+5h(z))

1—F(ﬂ2+a2) 1 Lez(‘nz—i—az)

14+ W*F? Pr

N, Rn. (7.35)

(’IT2 + a2)2 + w’Lé’

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (7.33) that either ® = 0 (exchange of stability, steady state) or
A, =0 (o # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary convection [n = o = 0], equation (7.32) reduces to
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(@ e

(Ra), = a’ (1+6h(z))

— (14 Le)N,Rn. (7.36)

It is observed that stationary Rayleigh number Ra is function of the Lewis
number Le, the modified diffusivity ratio N,, the nanoparticles Rayleigh
Rn and variable gravity parameter dh(z) but independent of visco- elastic
parameter F, Prandtl number Pr and modified particle-density increment N_..
Thus Maxwell visco-elastic nanofluid behaves like an ordinary Newtonian
nanofluid and instability is purely a phenomenon due to buoyancy coupled
with the conservation of nanoparticles.

If gravity is constant (dh(z) = 0), then equation (7.36) reduces to

(Ra) = M —(1+ Le)N,Rn. (7.37)

This is the good agreement of the result (1.47) obtained in Chapter 1.
To find the critical value of (Ra)s, equation (7.36) is differentiated with

respect to ‘a*” and then equated to zero. The minimum of first term of right-

hand side of equation (7.36) is attained at a_ = = and minimum value found

J2
27w’

to N so the corresponding critical Rayleigh number given by

(Ra) = 274“4 —(1+ Le)N,Rn.

In the absence of nanoparticles (Rn = Le = N, = 0), one recovers the
4
well- known results that the critical Rayleigh number is equal to (Ra) = % .
Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N, does not appear
in the equation (7.36); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero with one-term

Galerkin approximation.
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OSCILLATORY CONVECTION

For oscillatory convection A, = 0 and @ =0, thus equation (7.35) gives a
dispersion relation of the form

a, (w2)2 +a, (wz) +a,=0; (7.38)

where

Lé*F?
a, = R
Pr

T e

& (1 +6h (z))Le2

2 2
T +a

(TYZ + ag)
Pr

2

NARn—I—(ﬁ2 —|—a2)(1—F(7r2 +a2))—|—

Then equation (7.33) with A, = 0 gives oscillatory Rayleigh number at
the margin of stability as

(TYZ + a2)2 (Le—i—l) +L6(’K2 + a2) + wiLe N Rn-
(TYz + a2)2 + wiLe? !

(‘rvz + 02) + W'F W2
1+ W2 F? Pr

Ra) — (TY2+02)2
R = T on()

(7.39)

For the oscillatory convection to occur, ®* must be positive. If there are
no positive roots of ®? in equation (7.38), then oscillatory convection is not
possible. If there are positive roots of w? the critical Rayleigh number for
oscillatory convection can be obtained numerically minimizing equation
(7.39) with respect to wave number, after substituting various values of
physical parameters for w* of equation (7.38) to determine the various effect
of different parameter on the onset of oscillatory convection.
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RESULTS AND DISCUSSION

To study the effect of Lewis number Le, modified diffusivity ratio N, and
nanoparticles Rayleigh number Rn on stationary convection, we examine the

. 3(Ra)v 3(Ra)v a(Ra)
behavior of s * and
OLe ON ORn

* analytically.

A
From equation (7.47), we have

! (aRa)S “0
’ OLe ’
2. ((2:\7) <0,
(ora)
a
3. aRn» <0.

These inequalities show that Lewis number Le, modified diffusivity ratioN .
and nanoparticles Rayleigh number Rn destabilizes the stationary convection.

Expression for stationary Rayleigh number, which characterizes the sta-
bility of the system, is found to be depend upon Lewis number, modified
diffusivity ratio and nanoparticles Rayleigh number.

The computations are carried out for different values of parameters con-
sideredintherange 10° < Ra < 10° (thermalRayleighnumber),1 < N, <10 (mod-
ified diffusivityratio), 10° < Le < 10" (Lewisnumber), 10" < Rn < 10' (nanopar-
ticles Rayleigh number).

The effects of variable gravity parameter on stationary convection have
been presented graphically. Stability curves for variable gravity parameter
are shown in Figures 2 — 3.

Figure 2 indicates the effect of variable gravity parameter on the station-
ary convection and it is found that fluid layer has stabilizing effect when
the gravity parameter varies as h(z) = z>- 2z, h(z) = -z, h(z) = -z*> and has
destabilizing effect when gravity parameter is h(z) = z. These results are
good agreements of the results obtained by Rionero and Straughan (1990)
and Chand et al. (2013a).

Figure 3 indicates the effect of Lewis number on stationary convection
and it is found that the critical Rayleigh number increases with an increase
in the value of Lewis number, indicating that the effect of Lewis number is
to inhibit the onset of convection. Also it is found that the value of station-
ary Rayleigh number increases when we taken decreasing gravity profile i.e.
when variable gravity parameter is h(z) = - z, while the value of stationary
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Figure 2. Stability curve for different values of variable gravity parameter
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Figure 3. Stability curve for different values of Lewis number
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Rayleigh number decreases when we take increasing gravity profile i.e. when
variable gravity parameter is h(z) = z. Thus decreasing gravity parameter has
stabilizing effect while increasing gravity parameter has destabilizing effect
on the stationary convection.
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Figure 3 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It is
found that stationary Rayliegh number decreases as the values of Lewis
number increases, indicating that Lewis number destabilizes the stationary
convection.

CONCLUSION

Effect of variable gravity on the thermal instability in a horizontal layer of
Maxwellian visco-elastic nanofluid is studied. The flux of volume fraction of
nanoparticles is taken to be zero on the isothermal boundaries and the eigen
value problem is solved using the Galerkin residual method. The results have
been presented both analytically and graphically.

The main conclusions derived from the chapter are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticles and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Stationary convection has stabilizing effect when the gravity parameter
varies as h(z) = z* - 2z, h(z) = -z, h(z) = -z* and has destabilizing effect
when gravity parameter varies as h(z) = z. In other word decreasing grav-
ity parameter has stabilizing effect while increasing gravity parameter
has destabilizing effect on the stationary convection.

4. Lewis number Le, modified diffusivity ratio N, and nanoparticles
Rayleighnumber Rn have destabilizing effect on the stationary convection.
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Chapter 8

Thermal Convection in
a Layer of Maxwellian
Visco-Elastic Nanofluid
with Hall Current

INTRODUCTION

Magnetic fluids (ferromagnetic fluid) are kinds of special nanofluids. They
are stable colloidal suspensions of small magnetic particles such as mag-
netite (Fe,0O,). The properties of the magnetic nanoparticles, the magnetic
component of magnetic nanofluids, may be tailored by varying their size and
adapting their surface coating in order to meet the requirements of colloidal
stability of magnetic nanofluids with non-polar and polar carrier liquids.
Recently, the study of magnetohydrodynamics (MHD) became important
in engineering applications, such as in designing cooling system with liquid
metals, MHD generator and other devices in the petroleum industry, materi-
als processing, Plasma studies, nuclear reactors, geophysics, astrophysics,
aeronautics and aerodynamics Chandrasekhar (1961) and Kent (1966). If
an electric field is applied right angle to magnetic field, the whole current
will not flow along the electric field. The tendency of the electric current of
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flow across an electric field in the presence of magnetic field is called ‘Hall
effect’. Researchers Sherman and Sutton (1962), Oberoi and Devanathan
(1963), Gupta (1967), Sharma et al. (2000), Sharma and Kumar (1996b)
have studied the Hall effect in thermal instability of different types of New-
tonian and non-Newtonian fluids. The Hall effect is likely to be important in
geophysical and astrophysical situation. The study of MHD flows with Hall
currents has important engineering applications in MHD generators, Hall
accelerators, refrigeration coils, electric transformers etc. The uncommon
properties of nanofluids as such as thermal transfer fluids for instance, these
fluids can be used in a plethora of engineering applications ranging from use
in the automotive industry to the medical arena to use in power plant cooling
systems as well as computers.

Due to importance Hall effect on the onset of thermal convection of Max-
wellian visco-elastic nanofluids, in this chapter an attempt has been made
to study the thermal convection in a horizontal layer of Maxwellian visco-
elastic nanofluid in the presence of Hall effect for more realistic boundary
conditions. Stability is discussed analytically as well as numerically using
Galerkin-type weighted residuals method. It has been observed that the Hall
effect parameter destabilize the fluid layer.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

The physical configuration of the problem to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness ‘d’ bounded by horizontal boundaries z =0 and z = d. A Cartesian
coordinate system (X, y, z) is chosen with the origin at the bottom of the fluid
layer and the z- axis normal to the fluid layer. Fluid layer is acted upon by
gravity force g(0, 0,-g) and a uniform vertical magnetic field H (0, 0, H).
Fluid layer is heated from below in such a way that horizontal boundaries z
= 0 and z = d respectively maintained at a uniform temperature T and T,
(T, > T)). The normal component of the nanoparticles flux has to vanish
at an impermeable boundary and the temperature T is taken to be T at z =
0 and T atz= d, (T0 > T1) as shown in Figure 1. The reference scale for
temperature and nanoparticles fraction is taken to be T, and @, respectively.
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Figure 1. Physical configuration of the problem

H (0,0,H)

Heated from below

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

2. The fluid phase and nanoparticles are in thermal equilibrium state and

thus, the heat flow has been described using one equation model,

Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when

compared with other modes of the heat transfer

9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

10. Eachboundary wall is assumed to be impermeable and perfectly thermal
conducting.

NN AW
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GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in the pres-
ence of Hall effect under the Boussinesq approximation are

V-v=0, 8.1)

0
1+X—
ot

dv

dt

12

- <pr +(@pp +(1 —@){Af (1-a(T fTO))})g)JruV?er%(H-V)H,

(8.2)

p

where % = % + (v . V) is stands for convection derivative while H, v, p, p,

Py M- M, g and a stands for magnetic field, fluid velocity, hydrostatic pres-
sure, density of nanofluid, density of the nanofluid at reference temperature
viscosity, magnetic permeability, acceleration due to gravity and the coef-
ficient of thermal expansion respectively.

Equation of energy for Maxwellian visco-elastic nanofluid is given by

D
pcg—T+V~VT = kaZTJr(pc) DBV@~VT+TTVT~VT , (8.3)
P

1

where pc is heat capacity of fluid, (pc)_is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d and k _ is thermal conductivity.
Equation of continuity for the nanoparticles is given by

D
%—erv-V@ = DBV2@+TTV2T, (8.4)

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.
Maxwell equations are

dH C
dt - <H'V)V+HVZH " 4xNe

Vx((VxH)xH), (8.5)

V-H=0, (8.6)
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where n, C, N, e, stand for the electrical resitivity, speed of light, electron
number density and charge of electron respectively.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

D
w=0T=T, DBa—d)Jr—Ta—T =0atz=0
0z T 0z
and
o6 D, or
=0,T=T, D —+—L"— =0 atz=d. 8.7
v ! B oz T, 0z az (8.7)

Introducing non-dimensional variables as

2
'y’ 2y = XY,z , Vi, W) = v u,v,w d, /:(ti_f’ /:g,
K [T
@/:<@_@0) T/:<T_T1> H,:i
?, (T0 —T1> H,
where

k= 7 is thermal diffusivity of the fluid.
pc

Equations (8.1) - (8.7) in non-dimensional form can be written as

Vv 0 (8.8)
o)1 ov 0 . R . Pr
[1 - Faz’]Prat’ = [1 + Fat/]<V'p'-RmeZ +RaT’e, — Rng'e, ) + Vv + aQ(H’ V) H
(8.9)
! 1 N
%%+v’-vl&p' = VAT (8.10)
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aa_’fl/ 4 V/ . v/T/ — v/2T/ + %VQP’ . V/T/ + NiNB v/T/ . VIT/.
(5] €
dH’ Pr

dt’ Pr,

= (H’.V’)v’+—V’2H’—Emv’x[(v’xH’)xH'],
Pr,

V' -H =0.

The dimensionless boundary conditions are

/ /
w=0, T=1 224 89T _ga =0
0z 0z
and
/ /
09 or =0 at 7z =1.

w =0, T'=0 —+N =
oz’ 49z

Here the non-dimensional parameters are given as follows:
Pr = 2 is the Prandtl number,
pPK

Pr, = * is the magnetic Prandtl number,

M

Le = Di is the Lewis number,
B

X . .
F = ';—2 is the stress relaxation parameter,

B pgoad’ (To — Tl)
- —um

(pptpo + A(l-kpo))gd3

m = is the density Rayleigh number,
VIS

Ra is the Rayleigh number,
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(p, —p)po2d’

Rn = is the nanoparticles Rayleigh number,
VI
Hd® . . .
179 s the nanofluid magnetic number,
411p01m

9 2
M= [ CH, ] is Hall effect parameter,

4mNen

DT (To'Tl) . . . .. .
N, = ——~ is the modified diffusivity ratio,
D;Tip,

1

pe) Py . . . o
N, = (()—")0 is the modified particle-density increment.
pc),

Equation (8.9) has been linearized by the neglect of a term proportional
to the product of ¢ and T. This approximation is valid in the case of small
temperature gradients in a dilute suspension of nanoparticles.

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

!/ ! ! !/
v (u,V,W)zO,

p' = p,(),

T' =T, ()

H -1 (2) (8.15)
¢ = ¢, (2) and

o =p, (1+a(T-T,)).
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Equations (8.8) — (8.13) reduce to

d
O:fﬁ—RerRaTb —Rngp,, (8.16)

2

d’T N dy dT. N, N (dT
b _Bil;_l; _A"'B _l; =0, (8.17)
dz?  Le d7Z’ dz Le |dz
d2apb dsz
?JFNA " =0, (8.18)

Using boundary conditions in (8.14), equation (8.18) gives

¢, =-N,T, +(1-N, )z + N, (8.19)

On substituting the value of the ¢, from equation (8.19) in equation (8.17),
we get

dsz (LNA ) NB dTb
7 + VD
dz Le dz

(8.20)

On integrating equation (8.20) with respect to z’and using boundary
conditions (8.14), we get

1— e—(l—NA)NB(l—z/)/Le

T = . (8.21)

1— e—(l—NA)NB/Le

The nanofluid investigated so far Le is large, is of order 10°-10°, while N,
is no greater than about 10. Then, the exponents in equation (8.21) are small.
By expanding the exponential function into the power series and retaining
up to the first order is negligible and hence an approximate solution is given
by T =1-zand ¢, =6, +N 2’
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PERTURBATION SOLUTIONS

Let the initial basic state described by (8.15) is slightly perturbed so that
perturbed state is given by

! ! ! n_.n n
(u,V,w>:0+<u VW ),

T =T 1", (8.22)
o =0, +¢",
p/ —p, + p//’

H'=H, +h(h_hh )

n . _n

where T =1-7, ¢ =o¢,+N,z and (v"v'w"), T”, " and p” respec-
tively the perturbations in the initial velocity, temperature, volume fraction
of the nanoparticles and pressure.

By substituting (8.22) in equations (8.8) — (8.13) and linearize by neglect-
ing the product of the prime quantities, we obtained following equations

V-v=0, (8.23)
0|1 Ov 0 N o 2 Pr Oh

1+ F—|——=|1+F—|(-Vp+RaTe, — R +Viv+0——, (8.24

[ 8!]Pr o [ 3t]< P+ RaTé, —Ragé,) + Vv Op 5. 824

O | N, o2

XL wWN, = — V3 + —A VT, 8.25

ot T e P e ( )

N 2N N

I e+ Du|y OT_00) NN, O (8.26)

ot Le 0z 0Oz Le 0Oz

a_h:a_w_,_ivzh_ﬁ\/ﬂvX%’ (8.27)

ot 0z Pr, Pr, 0z

V-h=0. (8.28)
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Boundary conditions are

w=0T=0, 278 _gaz=0.1 (8.29)
0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (8.24), (8.27) by making use
of equations (8.23) and (8.28), we have

ro e -fralia) ot o]
r t t)Pr r
N Y ) (8.30)
L R () (RaV2 T — RV ) — Prl oduvipe —o,
Pr, ot ot Pr,
ol1 0 ) Pr 0
I+ F =] — —5—0—¢£=0, 8.31
61]Pr o " |" b, %ot ®-31)
Pr °,££+$,£\/ﬂv2%:@ (8.32)
Pr, 0z 0z Pr, 0z
Prge 04, Pr o8 ow_ (8.33)
Pr, ot) © Pr, 0z 0z
oh  oh ]
where ¢ = v _Ou and ¢ = — — —= stand for the z-components of vortic-
Ox Oy Ox Oy

ity and current density respectively.
Eliminating, ¢ and h_from equations (8.30) - (8.33), we have

2
1—|—Fé ig_v2 iVQ_Q PTQ&V2_Q D?
ot )| Pr Ot Pr, ot Pr, ~|Pr, ot
I e pV2 | PR CC RS val 278 Viw
Pr, Ot ) Pr Ot
3
&VQ_Q VvV — 1+F§ lg —ﬁQDZ + i MQV2D4
Pr, 0 ot|Prot] Pr, r,
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2
1+F£ igfv? &v? ,2 +EQ EVQ ,g D?
Ot || Pr ot Pr, ot Pr, | Pr, ot
2
PRI DV | PR R ) LA
Pr, Ot ) Pr Ot
Pr _, 0 0 . )
—V? — —||1+ F—|(RaV:, T — RnV> ) = 0. 8.34
><PrM 8t[ 6t(a” n”@) (8.34)
H? o . . . .
where V2 = FJra—z is the two-dimensional Laplacian operator on the
X 'y
horizontal plane.
NORMAL MODE ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the
perturbed quantities are of the form

[w.T.¢] = [W(2).02).9(2)]exp (ikxx +ik,y + nt) , (8.35)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (8.35), equations (8.34), (8.25) and (8.26) become

2
(1+nF)[Pr(D2 2)] Pi; (p* —a*)—n +1%Q ;:;(DQaz)n]Dz
+ 1;1 M[(H—nF)r(DzaZ)](Dzaz)Dz
%(DQ_HZ)_n [(DZ_aZ)—(H—nF):r]— Pr]; oD? (Dz_a2>w
3
P 2
+ Pr; MQ(D* —a’) D'
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2

(1+nF) —r(D2a2)] :; (02 aQ)n]

Pr Pr/ 9 9
+ +EQ E(D —a )n]D

+ ;:4 M[(lJrnF)E(DQa?)](DQaZ)D?

PPT;(D2 - a2) —n|(1+nF) (—azRaVZT + aQRnVka) =0. (8.36)
NAW—%(DZ—a2>®—[i(D2—a2)—n]®—0, (8.37)
W[ —a?—n-Nalaplg Nopg g (8.38)

Le Le

where D=4 and a = Jk* + k> is the dimensionless resultant wave number.
dz A

The boundary conditions of the problem in view of normal mode analysis are

W=0,D’W =0 =0,D&+N,DO=0 at z=0,1. (8.39)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (8.36) — (8.38) with the corresponding
boundary conditions (8.39). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and @ are taken as

ﬁj 0= ZB@(I) ZC@ (8.40)

whereW =0 =sinpnz® =—N, sinpnz, Ap, Bp and Cp are unknown coef-
ficients, p = 1, 2, 3,..., N and the base functions Wp, @p and <I>lD satisfying
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the boundary conditions (8.39). Using expression for W, ® and ® in equa-
tions (8.36) — (8.38) and multiplying the first equation by W, the second
equation by G)p and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
3N unknown A , B and Cp; p=1,2,3,..., N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

Linear Stability Analysis

For the present formulation, we have considered the which system of equa-
tions (8.36) — (8.38) together with the boundary conditions (8.39) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance of the system. Substituting equation (8.40) into the system of
equations (8.36) - (8.38) and multiplying the first equation by W, the second
equation by 0, and third equation by @ and then integrating in the limits from
zero to unity and performing some integration by parts, we obtain expression
for stationary Rayleigh number Ra as

Ra = MO’ (ﬁz +d )2

iz (“2+“2)3+(“2+“2)“2Q* Pr

2
+
QWP

a M’ (’nz—i—az)—i—(’nz—i—az)z

Y

—(1+ Le)N,Rn.
(8.41)

Equation (8.41) expresses the thermal Rayleigh number Ra as a function
of dimensionless wave number a, Hall effect parameter M, magnetic field Q,
Lewis number Le, modified diffusivity N, nanoparticles Rayleigh number
Rn. It is also noted that parameter N, and stress relaxation parameter F does
not appear in the equation, thus Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid and instability is purely a phenom-
enon due to buoyancy coupled with the conservation of nanoparticles. It is
independent of the contributions of Brownian motion and thermophoresis
to the thermal energy equation. The parameter N, drops out because of an
orthogonal property of the first order trail functions and their first derivatives.

In the absence of Hall effect and magnetic field the Rayleigh number Ra
for steady onset is
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(= +a)
Ra = a—z—(1+Le)NARn. (8.42)

This is the good agreement of the result (1.47) obtained in Chapter 1.
To find the critical value of Raequation (8.42) is differentiated with respect
to ‘a®” and then equated to zero. The minimum of first term of right- hand

side of equation (8.42) is attained at a_ = ~ and minimum value found to

V2

4
2T 5o the corresponding critical Rayleigh number given by

(Ra) = 274“4 — (14 Le)N,Rn. (8.43)

The interweaving behaviors’ of Brownian motion and thermoporesis of
nanoparticles evidently does not change the critical size of the Bénard cell
at the onset of instability. As such, the critical size is not a function of any
thermo physical properties of nanofluid.

In the absence of Hall effect, magnetic field magnetic field and nanopar-
ticles i.e. for ordinary fluid, the critical Rayleigh number given by

(Ra)c _ 2747(2 .

This is well known result derived by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (8.41); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles. Thus average contribution of
nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.

RESULTS AND DISCUSSION

To study the effect of Hall effect parameter, Chandrasekhar number, Lewis
number, modified diffusivity ratio and nanoparticles Rayleigh number on
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Ra ORa OJRa ORa
" 0Q " dLe’ ON,

. . . . o
stationary convection, we examine the behavior of

ORa .
d — Iytically.
an 9Rn ana y 1Cally.

From equation (8.41), we have

SRa (Wz_’_az)QZﬂﬁ _’_(ﬁz +a2)3 Q”K4
oM o 2 Pr 2( 2 2 2 2\? ’ =
Qmn JrP—M'rr (1( +a)+(1r +a)

Ty

Thus Hall effect has a destabilizing effect on the layer of nanofluid fluid.
Equation (8.41) also yields

Pr

e (e v e ]

M(’]Tz +a2)

2
Qr’ +§—YMW2 (7T2 +az) +(’1T2 +a2)2] _

rM

oRa _

oQ

2
Qr’ +PPT;M'N2 (TYZ +a2)+(1r2 +a2)2]

Since M<<1, thus @> 0.
0Q
Also we have &<0, &<0 and @<0,
Le ORn

A
thus from these inequalities it is observed that magnetic field has stabiliz-

ing effect while Lewis number, modified diffusivity ratio and concentration
Rayleigh number have destabilizing effects on the stationary convection.

The computations are carried out for different values of parameters con-
sidered in the range 10° < Ra < 10’ (thermal Rayleigh number), 10 < M <10
(Halleffectparameter, 10 < 0 < 10" (Chandrasekharnumber),1 < N, <10 (mod-
ified diffusivity ratio), 10° < Le < 10" (Lewisnumber), 10~ < Rn < 10' (nanopar-
ticles Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2 - 6.

The convection curves in (Ra, a) plane for various values of Hall effect
parameter M and fixed values of other parameters is shown in Figure 2. It
has been found that the Rayleigh number decreases with an increase in the
value of Hall effect parameter M, thus Hall effect has destabilizing effect on
fluid layer.
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Figure 2. Variation of the Rayleigh number with wave number for different values
of Hall effect parameter M
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Figure 3 shows the variation of thermal Rayleigh number with wave
number for different values of Nanofluid magnetic number Q. It is found
that the thermal Rayliegh number increases as values of magnetic number Q
increases. Thus, magnetic field has stabilizing effect on fluid layer.

Figure 4 shows the variation of thermal Rayleigh number with wave number
for different values of Lewis number Le. It is found that the thermal Rayliegh
number decreases as the value of Lewis number Le increases. Thus, Lewis
number Le destabilizes the fluid layer. It is due to the fact that thermophoresis
at a higher value of thermophoretic diffusivity is more supportable to the
disturbance in nanofluids, while both thermophoresis and Brownian motion
are driving forces in favor of the motion of nanoparticles. This is good agre-
ment of the result obtained by Chand and Rana (2014d, 2015a).

Figure 5 shows the variation of thermal Rayleigh number with wave num-
ber for different values of modified diffusivity ratio N. It is found that the
thermal Rayliegh number decreases as value of modified diffusivity ratio N,
increases. Hence, modified diffusivity ratio N, has stabilizing effect on fluid
layer. This may lead to an increase in volumetric fraction, which shows that
Brownian motion of the nanoparticles will also increase, which may cause
destabilizing effect. This is good agrement of the result obtained by Chand
and Rana (2014d, 2015a).
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Figure 3. Variation of the Rayleigh number with wave number for different values
of Nanofluid magnetic number Q
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Figure 4. Variation of the Rayleigh number with wave number for different values
of Lewis number
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Figure 6 shows the variation of Rayleigh numbers with wave number for
different values of the nanoparticles Rayleigh number Rn and for the fixed
values of other parameters. Itis found that thermal Rayleigh number decreases
with an increase in value of the nanoparticles Rayleigh number Rn, which
means that the nanoparticles Rayleigh number Rn has destabilizing effect
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 6. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number
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on fluid layer. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d, 2015a).

CONCLUSION

A linear stability analysis for a horizontal layer of Maxwellian visco-elastic
in the presence of Hall effect is investigated. The flux of volume fraction of
nanoparticles is taken to be zero on the isothermal boundaries and Galerkin
residuals method is used for the stability analysis. Results has been depicted
both analytically graphically. The main conclusions of the present chapter
are summarized as follows:

1. The critical cell size is not a function of any thermo physical properties
of nanofluid.

2. Instability is independent of the contributions of Brownian motion and
is purely phenomenon due to buoyancy coupled with the conservation
of nanoparticles.

3. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

4. For the case of stationary convection the Hall effect, the Lewis number,
the modified diffusivity ratio and the concentration Rayleigh number
have has destabilizing effect while the magnetic field has stabilizing
effect on fluid layer.
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Chapter 9

Effect of Internal Heat
Source on the Onset of
Thermal Convection in
a Layer of Maxwellian
Visco-Elastic Nanofluid

INTRODUCTION

The study of the flow and internal heat generation in nanofluids is of spe-
cial interest and has many practical applications in manufacturing processes
industry. Effect of heat generation/absorption in thermal convection is sig-
nificant where there exists high temperature difference between the surface
and the ambient fluid. Possible heat generation also alters the temperature
distribution; consequently the particle deposition rate in nuclear reactors,
electronic chips and semiconductor wafers. The effect of internal heat source
on the onset of convection has been carried out for various types of fluids by
many researchers. Thermal instability induced by internal heat sources has
been widely studied because of its wide range of applications in astrophys-
ics and geophysics. The buoyancy force is incremented due to heat source
resulting in modification of heat/mass transfer characteristic in such type of
fluid flow problems. The internal heat source effects on the onset of thermal
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convection in a horizontal layer of ordinary Newtonian fluid were studied
by researchers Rionero and Straughan (1990), Char and Chiang (1994), Shi-
vakumara and Suma (2000), Alex et al. (2001), Nanjundappa et al. (2011).
The study was extended to the nanofluid by Nield and Kuznetsov (2013),
Yadav et al. (2012c, 2015), Kiran et al. (2016) and they observed that pres-
ence of constant internal heating makes both basic temperature distribution
and basic volumetric fraction of nanoparticles distribution to deviate from
linear to nonlinear. Due to wide range of applications in industry an attempt
has been made to investigate the effect of internal heat source on the thermal
instability in a horizontal layer of Maxwellian visco-elastic nanofluids for
more realistic boundary conditions.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the effect of rotation on the onset of ther-
mal convection in a horizontal layer Maxwellian visco-elastic nanofluid. The
physical configuration of the problem to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness ‘d’ bounded by horizontal boundaries z = 0 and z = d subjected
to a uniformly internal heat sources Q0 and heated from below, here, Q(J 1S
the overall uniformly distributed effective volumetric internal heat source.
A Cartesian coordinate system (X, y, z) is chosen with the origin at the bot-
tom of the fluid layer and the z- axis normal to the fluid layer. Fluid layer
is acted upon by gravity force g(0, 0,-g). Fluid layer is heated from below
in such a way that horizontal boundaries z = 0 and z = d respectively main-
tained at a uniform temperature T and T, (T, > T,). The normal component
of the nanoparticles flux has to vanish at an impermeable boundary and the
temperature T is taken to be T atz=0and T, at z=d, (T, > T,) as shown
in Figure 1. The reference scale for temperature and nanoparticles fraction
is taken to be T, and @, respectively.

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:
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Figure 1. Physical configuration of the problem

N

NN AW

10.

Heated from below

Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

Each boundary wall is assumed to be impermeable and perfectly thermal
conducting.

GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in the internal
heat under the Boussinesq approximation are given as:

A\VAR

v=o0, 9.1)
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0 |dv 0 ,
[ +>\5]E = 1+>\5 (—Vp—F(kppp +(l—ap){pf (l—a(T—TO))})g)+uV V.
(9.2)
Equation of energy for Maxwell visco-elastic nanofluid is given by
oT , D,
po v VT =K,V T—I—(pc)p D,V VT +—EVT-VT|+0,, (9.3)
1

where pc is heat capacity of fluid, (po), is heat capacity of nanoparticles, Q,

is the overall uniformly distributed effective volumetric internal heat source.

T, is the temperature of the fluid layer atz=d and k _ is thermal conductivity.
Equation of continuity for the nanoparticles is given by

D
%‘f +V Ve =D,V + LV, (9.4)

1

where DB is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

D
w=0T=T, DB8—¢+—T8—T =0atz=0
0z T, 0z
and
D
w=0T=T, 0,22 20T _ g 4,_4q 9.5)
0z T, 0z

Introducing non-dimensional variables as

x'y'z) =
K

X,V.,Z u,v,w
,(}1’, ], V'(u’,V/,w’):v[ »V,

v (T-T,)
(T,-T)
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where

K= Ky is thermal diffusivity of the fluid.
pc

Equations (9.1) - (9.5) in non-dimensional form can be written as

Vv =0, 9.6)
!/
1+ F%]Pi% - [1 + F%](V/p/—Rméz +RaT’é, ~Rng'e))+ V"', (9.7)
t T t
!/
N
aaf/ +v V’&p/ _ ivlzwl +L_2V/2T/ 4 Hs, (9.8)
! N N, N
8l _|_ V/ . v/T/ — vlzT/ + _Bvl@/ . v/T/ _|_ Mv/’r/ . V/T/. (9.9)
ot’ Le Le

Here the non-dimensional parameters are given as follows:

Pr = 2 is the Prandil number,
pPK

Le = Di is the Lewis number,
B

F = % is the stress relaxation parameter,

_ pgad’ (TO — Tl)

Ra is the Rayleigh number,
VI
+p(1- d’
Rm = (p"% ol %))g is the density Rayleigh number,
K
(A —Apgd : .
Rn = ~>—/-— is the nanoparticles Rayleigh number,

UK
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d’ . . .
Hs = _ad is the dimensionless constant of heat source strength,
km (To 'Tl)
DT (TO_T]) . . . .. .
. = ——= 1s the modified diffusivity ratio,
DBTIQPO
(pe

Yo . - . -
» ~° is the modified particle-density increment.

Equation (9.7) has been linearized by the neglecting term proportional to
the product of ¢ and T. This approximation is valid in the case of small

temperature gradients in a dilute suspension of nanoparticles.
The dimensionless boundary conditions are

0’ oT’

Wl:O, T/:]., ?-’—NAW :0at Z/ZO
Z Z
and
/ /
w=01=0 2248 _gas=1 9.10)
0z 0z

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

!/ ! ! !/
v (u,v,w)zO,

p' =p, (),
T/ — Tb(Z), (9.11)
¢ =¢,(2) and

p=p, (1+a(T-T,)).
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Equations (9.6) — (9.9) reduce to

dp,

O:fF—RerRaTb —Rngp,, (9.12)
z
T  N_dg dT. NN (dT |

b +_Bit/>_t; “ae | Znl 4 gy =), (9.13)
dz? Le dZz’ dz Le |dz
d’p d’T
2N, 0 9.14)

Using boundary conditions in (9.10), equation (9.14) gives

¢, =—-N,T +é, +N,. (9.15)

On substituting the value of the @, from equation (9.15) in equation (9.13),
we get

ST (1NN, 4T
d,b+< L*‘) S Hs =0 (9.16)
V4 c Z

On integrating equation (9.16) with respect to z’ and using boundary
conditions (9.10), we get

(NN w[(,m\, |, -+ Letise
e Le {—NB (—1+NA)—LeHs}—LeHs(_l_,_Z/)+e T N,
]; B —(1-N, )Ny
-1+ o L N
(9.17)
—(1-~, )N, ~(1-N, ),
N (14NN, ~ Letis]|-14+e = 42—z b
d)b =z + (1N )N, (918)
1+ L <71+NA)NB
1ae L

According to Buongiorno (2006), for most nanofluid investigated so far
Le is large, is of order 10°-10°, while N , 18 no greater than about 10, N, is
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of order 10 to 102 Then, the exponents ’(1’Z1>N” in equations (9.17) - (9.18)
are very small. By expanding the exponential function into the power series
and retaining up to the first order is negligible and so to a good approxima-

tion for the solution of basic state is given by

T = l(2 27"+ Hsz/-Hsz/)
2

b

and

Hsz’ Hsz'
+

¢b¢0+NA[Z )

In the absence of internal heat generation i.e. Hs = 0, then basic flow
distributions for temperature and nanoparticles volume fraction are:

T =1-2 and ¢ =¢, + N 2’ (9.19)

To see the effect of internal heat source strength Hs on the criterion for
the onset of thermal convection in nanofluids, the distributions of dimension-
less basic temperature and basic nanoparticles volumetric fraction are drawn
in the Figure 2 for different values of Hs. The discrete values of Hs are pur-
posely taken to see the behavior of both distributions. This plot shows the
behavior of basic temperature distribution which is parabolic in positive
direction and same behavior in negative direction for the basic nanoparticles
distribution as internal heat source strength Hs increases. That is increase in
the internal heat source strength Hs amounts to increase in energy supply to
the system. This gives large deviations in these distributions which in turn
improve the disturbances in the layer and thus system is more unstable.

PERTURBATION SOLUTIONS

Let the initial basic state described by (9.11) is slightly perturbed so that
perturbed state is given by

! ! ! " _n "
(u,V,w>:O+<u VW ),
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Figure 2. Basic state temperature and basic state nanoparticles volumetric distribu-
tions for different values of internal heat source strength parameter Hs

4

T(2)

*(z)

T'=T +T, (9.20)
o =, +¢",

p'=p, +p",

where T, = %(2 —27' + Hsz’—Hsz’) s 9, =0, + N, |2 - Hsz' n Hsz' and

(w"v"w"), T”, " and p” respectively the perturbations in the initial veloc-

ity, temperature, volume fraction of the nanoparticles and pressure.
By substituting (9.20) in equations (9.6) — (9.9) and linearize by neglecting
the product of the prime quantities, we obtained following equations

V-v=0, (9.21)
o|1 ov 0 .

14 F )= 14 P2 (—Vp + RaTé, — Rngé )+ V2 22

[ + 81]Pr o [ + 3t]< Vp + RaTé, napez>+V v, (9.22)
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N
a—‘”ﬂ wN | = LV211E+ —A VT, (9.23)
ot Le Le
2N N

8—T—w(72+H372Hsz):V2T+ A B(72+Hs72Hs2)8—T
ot Le 0z (9 24)

N.N 2N :
+ 24 1—E+2Hsz @+ = (—2+Hs—2Hsz)a—¢.

Le 2 z Le 0z

Boundary conditions are

w=0,T=0, 8_¢+NA8_T =0atz=0,1. (9.25)
0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (9.23) by operating the curl
twice on it, we have

0|10 0
1+ F—|——=V’w - V'w — |14+ F = |(RaV? T-RnV? o) = 0, 9.26
ajeroc [ 8t]( AV, TRV ¢) ©-26)
o 9
where V! = Pl +a—2 is the two-dimensional Laplacian operator on the
x 'y

horizontal plane.

NORMAL MODE ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the
perturbed quantities are of the form

[W,T,kp] = [W(Z),@(Z),‘I’(Z)] exp (ikxx +iky + nt) , (9.27)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (9.27), equations (9.26), (9.23) and (9.24) become
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(D2 - az) D —a’— M W —(1+nF) (azRa@ - aZRn<I>) =0, (9.28)
T
NAW—%(W—@&)~ —[%(Dz—az)—n]@'—o, (9.29)
e e
! Dz—az—n—|—NANB (—2—|—Hs—2Hsz)D
—=(~2+ Hs — 2Hsz) W + N Le -
2 - [1-7 + Hsz] D (9.30)
c

N (~2+ Hs —2Hsz) D} =0,
2Le

where D=3 and a — JKk + Kk is the dimensionless resultant wave number.
dz R

The boundary conditions of the problem in view of normal mode analysis are

W=0,D’W =0 =0,D&+N,DO=0 at z=0,1. (9.31)

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (9.28) — (9.30) with the corresponding
boundary conditions (9.31). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and ® are taken as

N N N

W= A4W,0=% B0 =3 Cd, (9.32)
p=1 p=1 p=1

whereW =0 =sinpnz® =—N, sinpnz, A B and C are unknown coef-

ficients,p =1, 2, 3,...., N and the base functlons W, @p and @ satisfying
the boundary COHdlthl’lS (9.31). Using expression for W, © and ‘@ in equa-
tions (9.28) — (9.30) and multiplying the first equation by W, the second
equation by 0, and third equation by @ and then integrating in the limits
from zero to unity, we obtain a set of 3N linear homogeneous equations with
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3N unknown A , B and Cp; p=1,2,3,...,N. For existing of nontrivial solu-
tion, the vanishing of the determinant of coefficients produces the charac-
teristics equation of the system in term of Rayleigh number Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equa-
tions (9.28) — (9.30) together with the boundary conditions (9.31) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (9.32) into the system of
equations (9.28) —(9.30) and multiplying the first equation by W the second
equation by 0, and third equation by @ and then integrating in the limits
from zero to unity and performing some integration by parts, one obtains the
following matrix equation

2 2 2
M +2 (‘Kz + az) -a’Ra -a’N,Rn
(14+nF)  Pr wl o
1-%+HSZ -(7(2 +d +n> 0 ©,/=10
d 0
N, %(ﬂeraZ) —NA[i(ﬂeraQ)Jrn !
(9.33)
The non-trivial solution of the above matrix requires that
9 2
Ra — 1 (ﬁz—i-a‘) +n(ﬁ2+a2) (“2+a2+n)
a’ [I-HS + Hsz] (1 * nF) Pr
2 (9.34)

[I-Hs + Hsz ('RZ +ad +n)+Le(7r2 +d +n)
2

N, Rn.

A

(7(2 + az) + nle

The growth rate nis in general acomplex quantity such thatn=®_+iw, the
system with ®_ < 0 is always stable, while for ® > 0 it will become unstable.
For neutral stability, the real part of n is zero. Hence, we now write n = i,
(where wis real and is a dimensionless frequency) in equation (9.34), we have
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Ra = A +iwA,, (9.35)
where
R s N L B
'@ 14 W F? Pr 14 W2 F?
(’Kz +d )2 [1 — % + Hsz] + (112 4 a?)z (9.36)
(112 I a2 )2 n szEZ NARI’I
and
., 1 (“2 +02>2 F(’Rz +a2) (112 —|—a2)2
2_a_2 Pr a 1+ WiF? +1+w2F2
(9.37)

(’Nz +a2)[11_2]S+Hsz (’Nz +a2)+('ﬁ2 +a2)Le
R (T(z +a2)2 + w’Le’ Nt

Since Ra is a physical quantity, so it must be real. Hence, it follows from
the equation (9.35) that either ® = 0 (exchange of stability, steady state) or
A, =0 (o # 0 overstability or oscillatory onset).

STATIONARY CONVECTION

For the case of stationary (non- oscillatory) convection [n = o = 0], equation
(9.34) reduces to

(Ra) = s I PO 7 S N Rn. 9.38)
az[l—];s—&—Hsz] [1—]—5+Hsz

It is observed that stationary Rayleigh number Ra is function of the Lewis
number Le, the modified diffusivity ratio N,, the nanoparticles Rayleigh
Rn and heat source strength parameter Hs but independent of visco- elastic
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parameter F, Prandtl number Pr and modified particle- density increment N ..
Thus Maxwellian visco-elastic nanofluid behaves like an ordinary Newtonian
nanofluid and instability is purely a phenomenon due to buoyancy coupled
with the conservation of nanoparticles.

In the absence of heat source strength parameter (Hs =0) equation (9.38)
reduces to

(Ra) = M —(1+ Le)N,Rn. (9.39)

This is the good agreement of the result (1.47) obtained in Chapter 1.
To find the critical value of (Ra) , equation (9.38) is differentiated with

s

respect to ‘a*” and then equated to zero. The minimum of first term of right-

hand side of equation (9.38) is attained at a_ = ™ and minimum value found

J2
27w’

to N so the corresponding critical Rayleigh number given by

(Ra) = 274“4 —(1+ Le)N,Rn . (9.40)

In the absence of heat source strength parameter and nanoparticles (Hs =
Rn = Le = N, = 0), one recovers the well- known results that the critical
277

Rayleigh number is equal to(Ra) =

This is good agreement of the result obtained by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (9.40); thus instability is purely phenomena due to buoyancy
coupled with conservation of nanoparticles.

RESULTS AND DISCUSSION

To study the effect of internal heat source strength parameter Hs, Lewis
number Le, modified diffusivity ratio N, and nanoparticles Rayleigh number
Rn on stationary convection, we examine the behavior of
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0 (Ra)
*and :
ON ORn

A

8(Ra)s 8(Ra)s 8(Ra)
OHs = OLe

)

analytically.

From equation (9.38), we have

1. (aRa)S <0,
OHs
2. (8Ra)5 <0,
OLe
3. (6Ra)5 <0,
ON
)
ORn ’

These inequalities shows that heat source strength parameter Hs, Lewis
number Le, modified diffusivity ratio N, and nanoparticles Rayleigh number
Rn have destabilizing effect on the stationary convection.

Expression for stationary Rayleigh number, which characterizes the stabil-
ity of the system, is found to be depend upon heat source strength parameter,
Lewis number, modified diffusivity ratio and nanoparticles Rayleigh number.
The computations are carried out for different values of parameters consid-
eredintherange 10° < Ra < 10’ (thermal Rayleigh number), 10 < Hs < 10° (heat
source strength parameter),1< N, <10 (modified diffusivity ratio),
10* < Le < 10" (Lewis number), 10" < Rn < 10' (nanoparticles Rayleigh num-
ber).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figs. 3-6.

Figure 3 shows the variation of thermal Rayleigh number for different
value of heat source strength parameter Hs and for the fixed value of other
parameters. It is found that stationary Rayliegh number decreases as the
value of heat source strength parameter Hs increases, indicating that heat
source strength parameter Hs destabilizes the stationary convection. The
temperature and volumetric fraction of nanoparticle distributions are having
a destabilizing factor to make the system more unstable.

Figure 4 shows the variation of thermal Rayleigh number for different
value of Lewis number Le and for the fixed value of other parameters. It
is found that stationary Rayliegh number decreases as the value of Lewis
number increases, indicating that Lewis number destabilizes the stationary
convection. It is due to the fact that thermophoresis at a higher value of ther-
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of heat source strength parameter
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Lewis number
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mophoretic diffusivity is more supportable to the disturbance in nanofluids,
while both thermophoresis and Brownian motion are driving forces in favor
of the motion of nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d, 2015a).

Figure 5 shows the variation of stationary Rayleigh number for different
value of the modified diffusivity ratio N, and fixed value of other parameters
and it is found that Rayleigh number decreases with an increase in the value
of the modified diffusivity ratio N, which means that the modified diffusiv-
ity ratio N destabilizes on the fluid layer. This may lead to an increase in
volumetric fraction, which shows that Brownian motion of the nanoparticles
will also increase, which may cause destabilizing effect. This is good agre-
ment of the result obtained by Chand and Rana (2014d, 2015a).

Figure 6 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number Rn and
fixed value of other parameters and it is found that thermal Rayleigh number
decreases with an increase in value of the nanoparticles Rayleigh number Rn,
which means that the nanoparticles Rayleigh number Rn has destabilizing ef-
fect on fluid layer. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles. This is good agrement of the result obtained
by Chand and Rana (2014d, 2015a).

Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 6. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number
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CONCLUSION

Effect of Internal heat source on the onset of thermal convection in ahorizontal
layer of Maxwellian visco-elastic nanofluid is studied. The flux of volume
fraction of nanoparticles is taken to be zero on the isothermal boundaries and
the eigen value problem is solved using the Galerkin residual method. The
results have been presented both analytically and graphically.

The main conclusions derived from the present chapter are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Heat source strength parameter Hs, Lewis number Le, modified diffu-
sivity ratio N, and nanoparticles Rayleigh number Rn destabilizes the
stationary convection.
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Chapter 10

Double Diffusive
Convection in a Layer
of Maxwellian Visco-

Elastic Nanofluid

INTRODUCTION

Double-diffusive convection or thermosolutal instability in a nanofluid
occurs when the base fluid of the nanofluid is itself a binary fluid. Binary
nanofluids such as when titanium dioxide nanoparticles (1% by mass) are
dispersed in the mixture of water and eutectic of chloride salts (KCI-CaCl -
LiCl). Double-diffusive convection is an important phenomenon that has
various applications in the fields of chemical science, food processing,
engineering and nuclear industries, geophysics, bioengineering and cancer
therapy, movement of biological fluid, oceanography and also used as solar
thermal applications. The onset of double-diffusive nanofluid convection in
alayer of a saturated porous medium (the Horton-Rogers-Lapwood problem)
was studied by Kuznetsov and Nield (2010a, 2010b, 2010c, 2011) and found
that the stability boundaries for both non-oscillatory and oscillatory cases.
The Cheng-Minkowycz problem for the double-diffusive natural convective

DOI: 10.4018/978-1-68318-006-7.ch010
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boundary layer flow in a porous medium saturated by a nanofluid was studied
by Nield and Kuznetsov (2009b). Yadav et al. (2012b) was examined the ef-
fects of boundary and internal heat source on the onset of Darcy-Brinkman
convection in a porous layer saturated by nanofluid and they have obtained the
critical Rayleigh number as well as critical wave number by using Galerkin-
type weighted residuals method.

Hence due to the importance of binary nanofluid, the main objective in
this chapter is to examine theoretically the double-diffusive convection of
Maxwellian visco-elastic nanofluid for more realistic boundary conditions.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

In this chapter we shall investigate the double diffusive convection in a hori-
zontal layer Maxwellian visco-elastic nanofluid. The physical configuration
of the problem to be considered as:

An infinite horizontal layer of Maxwellian visco-elastic nanofluid of
thickness ‘d’ bounded by horizontal boundaries z=0 and z = d. A Cartesian
coordinate system (X, y, z) is chosen with the origin at the bottom of the fluid
layer and the z- axis normal to the fluid layer. Fluid layer is acted upon by
gravity force g(0, 0,-g) and heated from below in such a way that horizontal
boundaries z = 0 and z = d respectively maintained at a uniform temperature
T,and T, (T, > T,). The normal component of the nanoparticles flux has to
vanish at an impermeable boundary and the temperature T is taken to be T, at
z=0and T atz=d, (T,>T)) as shown in Figure 1. The reference scale for
temperature and nanoparticles fraction is taken to be T, and @, respectively.

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1. Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,

2. The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,

3. Dilute mixture,

4. Nanoparticles are spherical,
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Figure 1. Physical configuration of the problem

Heated from below

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when

compared with other modes of the heat transfer,

9. Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

10. Each boundary wall is assumed to be impermeable and perfectly thermal
conducting,

11. The nanoparticles do not affect the transport of the solute.

® oW

GOVERNING EQUATIONS

The governing equations for Maxwellian visco-elastic nanofluid in the pres-
ence of solute particle under the Boussinesq approximation are given as

V-v=0, (10.1)

p[lJr)\a]dv

0
1+X—
ot | dt

ot

( Vp+(@pp +(1*kp){pf (l—uT (TfTO)foac (C7C0)>})g)+uvzv,

(10.2)
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where %: %+<V . V) is stands for convection derivative while v is the

fluid velocity, p is the hydrostatic pressure, p is the density of nanofluid, p,
is the density of the nanofluid at reference temperature, p is the viscosity of
the fluid, X is the relaxation time, g is the acceleration due to gravity, and
a is the coefficient of thermal expansion and a is the analogous to solute
concentration.

Thermal energy equation for Maxwellian visco-elastic nanofluid is given by

] , D ]
Aca—T+v-VT:k V2T+(Ac) D VA VT +—LVT-VT|+ AD._ V°C, (10.3)
8t m p B T TC

1

where pc is heat capacity of fluid, (pc)p is heat capacity of nanoparticles, T,
is the temperature of the fluid layer at z = d, D, is a diffusivity of Dufour
type and k_ is thermal conductivity.

The conservation equation for solute concentration Kuznetsov and Nield
(2010c) is of the form

9 VT =k'VC+ D, VT,
ot

wherer' is the solutal diffusivity and D, is the diffusivity of Soret type.
Equation of continuity for the nanoparticles is given by

¢

D
T 4+v.VE=D Vo +—LVT, 104
ot v By ¥ T ( )

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are

D
8_¢+_T8_T =0atz=0

w=0,T=T, D,
0z T, 0z

and
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0 D, or

w=0,T=T, D, =
0z T, 0z

=0 atz=4d. (10.5)

Introducing non-dimensional variables as

(X/’y/,z/) = %], V/(u/,V/, W/) _ V{%]d, t = :112, p/ _ 1;:/;1’2 , ) (@ ;0@0) ,
o (T-T)) o (c-¢)

<T0_Tl)’ <C0_C1)’
where

K= Ky is thermal diffusivity of the fluid.
pc

Equations (10.1) - (10.4) in non-dimensional form can be written as

Vv =0, (10.6)

/
m Fﬁ] LN (14 F)[—V'p'—RméZ +RaT'é —Rnp'e + ?C’éz + VY

ot' | pr o' s
(10.7)
8@/ TN 1 oy NA 12m1
—+v -V =—V + —=2VT, 10.8
ot’ ? Le i Le ( )
! N N N
88% v VT = VAT & L_Bv/wl VT & i BT . VT 4+ NTCVZC/ ,
© © (10.9)

oc’
ot’

1 )
+v-V/C = —V"*C' + N VT .
Ls
Here the non-dimensional parameters are given as follows:

Pr = 2 is the Prandtl number,
pPK
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Le = Di is the thermo-nanofluid Lewis number
B

o

Ls =
D

is the solute Lewis number,
S

= M is the Dufour parameter
 w(n,-7)

N, = M is the Soret parameter
k(C, - C)

0 1

F = Z—z\ is the stress relaxation parameter,

_ pgoy (TO - Tl)d3

Ra is the Rayleigh number,
1/2)
pgoL. (CO - Cl)d3 ) ]
Rs = X is the solutal Rayleigh number,
4
p,p, +p(1-0,))gd" : :
Rm = ( AL 1/<0 0)) is the density Rayleigh number,
4
P, —P)p,ed’ : .
Rn = @ is the nanoparticles Rayleigh number,
4
DT (To'T1) . . e . .. .
. = ——— 1is the modified diffusivity ratio,
DBT1@0
(be) 2 . . . .
N, =—-F is the modified particle-density increment.

t ),

Equation (10.7) has been linearized by the neglect of a term proportional
to the product of ¢ and T. This approximation is valid in the case of small

temperature gradients in a dilute suspension of nanoparticles.
The dimensionless boundary conditions are
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0o’ or’

W/:O, T/:].,C/:L F-’-NAF :0at ZIZO
Z yA
and
! !
w=0T=0¢C=0 2248 _gaz=1 (10.10)
0z 0z

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

!/ ! ! !/
\2 (u,v,w)zO,

p'=p,®,

T' =T,

C' =C, () (10.11)
¢ = ¢, (2) and

p=p, (1+a(T-T,)).

Equations (10.6) — (10.9) reduce to

dp Ra
OZ*T;'Rm+RaTb+ECb*M@bv (10.12)
@T N dp dT. NN (dT ) d’C
SR R e AERA ALY e o2 =0, (10.13)
dz Le dz' dz Le |dz dz
d’e d’T
dz’zb R dz_'; =0, (10.14)

Using boundary conditions in (10.10), equation (10.14) gives
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0, =-N,T, +(1-N, )z’ + N, (10.15)

On substituting the value of the ¢, from equation (10.15) in equation
(10.13), we get

2 I-N, |N
T, (NN an (10.16)
dz Le dz

On integrating equation (10.16) with respect to z’ and using boundary
conditions (10.10), we get

N N1 Le
r =Lz (10.17)

b e—(l—NA)NB/Lc

1—

For most nanofluid investigated so far Le is large, is of order 10%-103,
while N is no greater than about 10. Then, the exponents in equation (10.17)
are small. By expanding the exponential function into the power series and
retaining up to the first order is negligible. Thus an approximate solution for
basic state is given by

/
T =1-2,
Cbzl—z'
and
@b:¢[)+NAZ/

PERTURBATION SOLUTIONS

Let the initial basic state described by (10.11) is slightly perturbed so that
perturbed state is given by

!/ ! n._n "
(u,v,w)zO—&—(u VLW ),

T =T, +T, (10.18)
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c'=c, +C"
o' =¢, +¢",
p'=p, +p’,

" _.n

where T =1-2/, C, =1-2/, ¢, =¢,+ N,z and (u R% ,w”), T, ¢” and p”
respectively the perturbations in the initial velocity, temperature, volume
fraction of the nanoparticles and pressure.

By substituting (10.18) in equations (10.6) — (10.9) and linearize by ne-
glecting the product of the prime quantities, we obtained following equations

V-v=0, (10.19)

1+F§ LoV 1+F2 —Vp + RaTée_ — Rnyé. +&Cé, +Viv, (10.20)
Ot | Pr Ot ot ‘ * Ls *

Op Qe N, o

— 4+ wN =—V'po+—=-VT, 10.21

ot b Le b Le ( )

oT w N T 96| 2N, N_ T )

— —w=VT+-2L|N —— L |——A2 B 1+ N VC, 10.22

ot " * Le| * 0z az] Le Oz e ( )

€ - LvciN viT. (10.23)

ot Ls cr

Boundary conditions are

w=0T=0 C=0 259 _par=0.1 (10.24)
0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (10.20) by operating the curl
twice on it, we have

0

[1+F— L9

——V2W—V4w—[l+Fg RaVZT+IL{—:VZC-RnVka =0, (10.25)

ot | Pr Ot
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2 2

where V7 = % +§—2 is the two-dimensional Laplacian operator on the
X y

horizontal plane.

NORMAL MODE ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the
perturbed quantities are of the form

[w.T.C. ] = [W(z),@(z),r(z) ,@(z)] exp(ikxx +iky+ nt) , (10.26)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.
Using equation (10.26), equations (10.25), (10.21) — (10.23) become

(D* —a*)|D* -2’ —M W —(1+nF) #RaO + @ 5T a’Rnd | = 0,
Pr Ls
(10.27)
WD —a? —n-~22eple-Jepg N, (D —a?)T =0, (10.28)
Le Le
w+Lis(D2_a2 —n)T+ N, (D —a’)e =0, (10.29)
N W—&(Dz—a2>®— i(DZ —a2)—n d=0 (10.30)
A Le Le ’ ’

where D = 4 and a = [k’ + k* is the dimensionless resultant wave number.
dz * Y

The boundary conditions of the problem in view of normal mode analysis are

W=0DW=00=0T=0DP+NDO=0at z=0,1. (10.31)
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METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (10.27) — (10.30) with the corresponding
boundary conditions (10.31). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and ® are taken as

W= ZAW@ ZB@F Zcr@ ZD(I) (10.32)

p=1

where W =0, =sinpnz® =N, sinpnz, A B C and D are unknown

coefficients, p = 1, 2, 3,..., N and the base functlons W, @ F and _ sat-
isfying the boundary condltlons (10.31). Using expresswn for W ® and ®
in equations (10.27) — (10.30) and multiplying the first equation by W, the
second equation by @ third equation by I and fourth by @ and then Inte-
grating in the limits from zero to unity, we ’ obtain a set of 4N linear homo-
geneous equations with 4N unknown Ap, Bp and CP, p=1,2,3,.., N. For
existing of nontrivial solution, the vanishing of the determinant of coefficients
produces the characteristics equation of the system in term of Rayleigh num-
ber Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equations
(10.27) — (10.30) together with the boundary conditions (10.31) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (10.32) into the system
of equations (10.27) — (10.30), one obtains the following matrix equation

(“2 + az) w2 +d +M -a’Ra L -a’N,Rn

(1 n nF) Pr Ln w, 0
1 (7 +a ) N (7 +4') 0 %o
. 'NcT (_ﬁz + az) i (7;2 +at+ n) 0 2)2 8
NA %(ﬁz +a2) 0 -NA [Lie(’m -l-az)-i-n]

(10.33)
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The non-trivial solution of the above matrix requires that

2 2 2 2 2\?
[(’I\' +a +n) *(’TT +a) NCTNTCLS] (7:2+a2) , , n(1+nF)
Ra — —— 2 = - T T +a + Pr
TR e RN [
(ﬂz—l—az)NCT—(ﬂz—FaQ—FH) R
((’KZ +a + n) 7(7?2 + aQ)NTCLS)
5 ,
(ﬂ2+a2+n) w+(ﬁz+a2+n)
_ ‘ N, Rn.
T o ver e
(10.34)

The growth rate n is in general a complex quantity such thatn = o_+ iw,
the system with @_< 0 is always stable, while for ®_> 0 it will become un-
stable. For neutral stability, the real part of n is zero. Hence, for the case of
stationary (non- oscillatory) convection [n = 0], equation (10.34) reduces to

(Ra] — (7(2 + az>a (1= NN, .Ls) . Rs(N,, —1) - (LnN,. + NN, LsLe +1+ Le) N
s a’ 17LSNTC 17LSNTC 17LSNTC A

(10.35)

It is observed that stationary Rayleigh number Ra is function of the Soret
parameter, Dufour parameter, solute Lewis number Ls, nanofluid Lewis
number Le, Solute Rayleigh number Rs, the modified diffusivity ratio N,
and the nanoparticles Rayleigh Rn but independent of visco- elastic param-
eter F, Prandtl number Pr and modified particle- density increment N . Thus
Maxwellian visco-elastic nanofluid behaves like an ordinary Newtonian
nanofluid and instability is purely a phenomenon due to buoyancy coupled
with the conservation of nanoparticles.

In the absence of the Dufour and Soret parameters (N...= N = 0), equa-
tion (10.35) reduces to

2 2 3
(Ra) = M — Rs —(1+ Le)N,Rn.
y a
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In the absence of solute particle (N, = N.. = Rs = 0) equation (10.35)
reduces to

2 2 3
(Ra) = M —(1+ Le)N,Rn.
s a

This is the good agreement of the result (1.47) obtained in Chapter 1.
In the absence of solute and nanoparticles (N, =N, .=Rs=Rn=Le =
N, = 0), equation (10.35) reduces to

(Ra) = M : (10.36)

To find the critical value of (Ra) , equation (10.36) is differentiated with

S

respect to ‘a* and then equated to zero. The minimum of equation (10.36)

is attained at a_ = % and one recovers the well- known results that the
2

critical Rayleigh number is equal to

27~
(Ra) ==~ (10.37)

This is good agreement of the result obtained by Chandrasekhar (1961).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N does not appear
in the equation (10.35); thus instability is purely phenomena due to buoy-
ancy coupled with conservation of nanoparticles. Thus average contribution
of nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.

RESULTS AND DISCUSSION

Expression for stationary Rayleigh number, which characterizes the stability
of the system, is found to be depend upon solutal Rayleigh number, solute
Lewis number, Lewis number, Soret parameter, Dufour parameter, modified
diffusivity ratio and nanoparticles Rayleigh number.
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The computations are carried out for different values of parameters con-
sideredintherange 10° < Ra <10’ (thermalRayleighnumber),1 < N <10(Soret
parameter), 10 < N, <10° (Dufour parameter), 1< N, <10 (modified dif-
fusivity ratio), 10° < Le < 10" (nanofluid Lewis number), 1 < Ls < 10 (solute
Lewis number), 10" < Rn < 10' (nanofluid Rayleigh number).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2-8.

Figure 2 shows the variation of thermal Rayleigh number with wave
number for different value of solutal Rayleigh number and for the fixed
value of other parameters. It is found that stationary Rayliegh number in-
creases as the value of solutal Rayleigh number increases, indicating that
solutal Rayleigh number stabilizes the stationary convection.

Figure 3 shows the variation of thermal Rayleigh number with wave
number for different value of solute Lewis number and for the fixed value
of other parameters. It is found that stationary Rayliegh number increases
as the value of solute Lewis number increases, indicating that solute Lewis
number stabilizes the stationary convection.

Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of solutal Rayleigh number
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Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of solute Lewis number
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Ntc=0.001

Wave Number

Figure 4 shows the variation of thermal Rayleigh number with wave
number for different value of Lewis number Le and for the fixed value of
other parameters. It is found that stationary Rayliegh number decreases as the
value of Lewis number increases, indicating that Lewis number destabilizes
the stationary convection. It is due to the fact that thermophoresis at a higher
value of thermophoretic diffusivity is more supportable to the disturbance
in nanofluids, while both thermophoresis and Brownian motion are driving
forces in favor of the motion of nanoparticles.

Figure 5 shows the variation of thermal Rayleigh number with wave
number for different value of Soret parameter and for the fixed value of other
parameters. It is found that stationary Rayliegh number increases the value
of Soret parameter increases, indicating that Soret parameter stabilizes the
stationary convection.

Figure 6 shows the variation of thermal Rayleigh number with wave
number for different value of Dufour parameter and for the fixed value of
other parameters. It is found that stationary Rayliegh number first increases,
then decreases and finally increases with an incresae in the values of Dufour
parameter, indicating that Dufour parameter has stabilizes and destabilizing
effect on stationary convection depending upon certain conditions.

Figure 7 shows the variation of stationary Rayleigh number with wave
number for different value of the modified diffusivity ratio and fixed value
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanofluid Lewis number
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Soret parameter
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Figure 6. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Dufour parameter
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Figure 7. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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of other parameters and it is found that Rayleigh number decreases with an
increase in the value of the modified diffusivity ratio which means that the
modified diffusivity ratio destabilizes on the fluid layer. This may lead to
an increase in volumetric fraction, which shows that Brownian motion of
the nanoparticles will also increase, which may cause destabilizing effect.

Figure 8 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number and fixed
value of other parameters and it is found that thermal Rayleigh number de-
creases with anincrease in value of the nanoparticles Rayleigh number, which
means that the nanoparticles Rayleigh number Rn has destabilizing effect
on fluid layer. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles.

CONCLUSION

Double diffusive convection in a horizontal layer of Maxwellian visco-elastic
nanofluid is studied. The flux of volume fraction of nanoparticles is taken to
be zero on the isothermal boundaries and the eigen value problem is solved

Figure 8. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number
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using the Galerkin residual method. The results have been presented both
analytically and graphically.
The main conclusions derived from the present analysis are as follows:

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Solutal Rayleigh number, solute Lewis number, Soret parameter have
stabilizing effect on stationary convection while Lewis number, modified
diffusivity ratio and nanoparticles Rayleigh number have destabilizing
effect on stationary convection.

4.  Dufour parameter has both stabilizing and destabilizing effect on sta-
tionary convection depending upon certain conditions.
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Chapter 11

Double Diffusive
Convection in a Layer
of Maxwellian Visco-

Elastic Nanofluid in

a Porous Medium

INTRODUCTION

Double-diffusive convection is referred to buoyancy-driven flows induced by
combined temperature and concentration gradients. Double diffusive convec-
tion in a fluid layer in a porous medium heated from below is regarded as a
classical problem due to its wide range of applications in many engineering
fields such as evaporative cooling of high temperature systems, soil sciences,
enhanced oil recovery, agricultural product storage, packed-bed catalytic
reactors and the pollutant transport in underground. Thermal convection in
binary fluid driven by the Soret and Dufour effects has been investigated by
Knobloch (1980) and showed that the equations are identical to the thermo-
solutal problem except relation between the thermal and solutal Rayleigh
numbers. The study of flow, heat and mass transfer about natural convection
of non-Newtonian nanofluid fluids in a porous media has gained much atten-
tion from the researchers because of its engineering and industrial applica-
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tions. These applications include design of chemical processing equipment,
formation and dispersion of fog, distributions of temperature and moisture
over agricultural fields and groves of fruit trees and damage of crops due to
freezing and pollution of the environment etc. Double diffusive convection
in binary fluid layer in a porous medium was investigated by Malashetty
and Kollur (2011), Nield and Bejan (2013). The onset of double-diffusive
nanofluid convection in a layer of a saturated porous medium was studied
by Kuznetsov and Nield (2010c), Yadev et al. (2013a, 2016a) and Rana et
al. (2012, 2014b, 2014c).

In this chapter an attempt has been made to study the double diffusive
convection in a horizontal layer of Maxwellian visco-elastic nanofluid layer
in a Brinkman porous medium. Stability is discussed analytically as well as
numerically using Galerkin-type weighted residuals method.

MATHEMATICAL FORMULATIONS OF THE PROBLEM
The Physical Problem

The physical configuration of the problem to be considered as An infinite
horizontal layer of Maxwellian visco-elastic nanofluid in a porous medium
of medium permeability k, and porosity € and of thickness ‘d’ bounded by
horizontal boundaries z = 0 and z = d. A Cartesian coordinate system (X, y,
z) 1s chosen with the origin at the bottom of the fluid layer and the z- axis
normal to the fluid layer. Fluid layer is acted upon by gravity force g(0, 0,-g).
Fluid layer is heated from below in such a way that horizontal boundaries z
= 0 and z = d respectively maintained at a uniform temperature T and T,
(T, > T)). The normal component of the nanoparticles flux has to vanish
at an impermeable boundary and the temperature T is taken to be T at z =
0 and T atz= d, (T0 > T1) as shown in Figure 1. The reference scale for
temperature and nanoparticles fraction is taken to be T, and ¢, respectively

Assumptions

The mathematical equations describing the physical model are based upon
the following assumptions:

1.  Thermophysical properties of fluid expect for density in the buoyancy
force (Boussinesq Hypothesis) are constant,
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Figure 1. Physical configuration of the problem

N

NN AW

10.

11.
12.

Heated from below

The fluid phase and nanoparticles are in thermal equilibrium state and
thus, the heat flow has been described using one equation model,
Dilute mixture,

Nanoparticles are spherical,

Nanoparticles are non-magnetic,

No chemical reactions take place in fluid layer,

Negligible viscous dissipation,

Radiative heat transfer between the sides of wall is negligible when
compared with other modes of the heat transfer,

Nanofluid is incompressible, electrically conducting, Newtonian and
laminar flow,

Each boundary wall is assumed to be impermeable and perfectly thermal
conducting,

The nanoparticles do not affect the transport of the solute,
Nanoparticles are suspended in the nanofluid using either surfactant or
surface charge technology.

GOVERNING EQUATIONS

The governing equations for double-diffusive convection of Maxwellian
visco-elastic nanofluid in a Brinkman porous medium under the Boussinesq
approximation are
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V.q=0, (11.1)

122
ot

122
ot

dq

P
€ dt

(—Vp+(wpp +(1=¢){p (1=0, (T-T,) =0, (C*CU))})g)%ﬁIVqu%q,

(1 1.]2)

where % = %+ l(q : V) is stands for convection derivative while q is the
€

fluid velocity in porous medium, p is the hydrostatic pressure, p is the den-
sity of nanofluid, p, is the density of the nanofluid at reference temperature,
p is the viscosity of the fluid, {1 is the effective viscosity, X is the relaxation
time, g is the acceleration due to gravity and a_ is the coefficient of thermal
expansion and o, is the analogous to solute concentration.

Thermal energy equation for Maxwellian visco-elastic nanofluid is given by

(pe) S+ (A'c)/_ q-VT =k V’T+ (pc)p D, V- VT + DTITVT VT |+ (pc) D, VC,

(11.3)

where (pc)_ is heat capacity of fluid in porous medium, (pc)_is heat capac-
ity of nanoparticles, T, is the temperature of the fluid layer at z = d, D_. is
a diffusivity of Dufour type and k_ is thermal conductivity.

The conservation equation for solute concentration Kuznetsov and Nield
(2010c) is of the form

% 4+ L{q-9T) = 'V°C + D, VT, (11.4)
ot ¢

where «' is the solutal diffusivity and D, is the diffusivity of Soret type.
Equation of continuity for the nanoparticles is given by

dop 1 2 D, 2
< +>(q-Ve]=D V¢ +—LVT, 11.5
ot za(q @) n P Tr (11->)

1

where D, is the Brownian diffusion coefficient, given by Einstein-Stokes
equationand D_ is the thermoporetic diffusion coefficient of the nanoparticles.

We assume that the temperature is constant and nanoparticles flux is zero
on the boundaries. Thus boundary conditions are
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D
w=0,T=T, DB6—¢+—Ta—T =0atz=0
0z T, 0z
and
D
w=0T=T, 0,20 22T _ g 4,_4q (11.6)
0z T, 0z

Introducing non-dimensional variables as

° k
(X/:y/azl) = %Y 5 q/(u/avl7 W/) = ekl d> t' = t_za '= ha
d K d L
@/:<@_@0) T/:<T_Tl> C/:(C_Cl)
2 L-1) (G-
where
(oc) Ko e .
o=-+—",° =—2is thermal diffusivity of the fluid and.

e, o),

Equations (11.1) - (11.5) in non-dimensional form can be written as

V'.q =0, (11.7)

!
[1+Fi]i8—q— 1

Fﬂ’] [vjp/_Rméz +RaT’e, —Rne'e, + ?Cléz +DaV"”q’' —q’>
S

o' |Va o' ot
(11.8)
8@/ 1oy o 1 oy NA 1201
= 4 o(q V)= —V + AVT, 11.9
ot e(q kp) Le ® Le ( )
oT" 1/, o et Noor o, NaNg G o 2~/
(11.10)
’
%(t:/ +1(q/-V/C')=lelzcl-ﬁ-NCTvlzT/. (11.11)
€ S
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Here the non-dimensional parameters are given as follows

Pr = 2 is the Prandtl number,
PR

k .
Da = — is the Darcy number,
dZ

. ik, . .

Da = % is the Brinkman-Darcy number,
V!
D TC (Co - Cl) .

N .= —————=1s the Dufour parameter,

“ k(r,-1)

0 1

D, cr <To - Tl) .

N, = ————*1s the Soret parameter,
K <C0 - Cl)

Va = €D—Pr is the Prandtl- Darcy Number (Vadasz Number),
a

Le = Dl is the thermo-nanofluid Lewis number,
B

Ls = Di 1s the thermosolutal Lewis number,
S

X . .
F = ';—2 is the stress relaxation parameter,

_ pgoL, (TO — T1>k1d

Ra % is the Rayleigh number,

Rs = 20 <C:H/ G,)kd is the solutal Rayleigh number,

Rm = (pp% i pl(/;-%))gdkl is the density Rayleigh number,
Rn = m is the nanoparticles Rayleigh number,

S
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D, (T,T,) . e
. = ———— 1s the modified diffusivity ratio,
DBTI@O

pe) P . - . o
N, = ()—"0 is the modified particle-density increment.

T e,

In spirit of Oberbeck-Boussinesq approximation, equation (11.8) has been
linearized by the neglect of a term proportional to the product of & and T.
This approximation is valid in the case of small temperature gradients in a
dilute suspension of nanoparticles.

The dimensionless boundary conditions are

0o’ or’

W/:O, T/:LC/:L g—FNAazl =0 at Z/ZO

and
ae’ or’

w =0T =0C =0, —+N =0atz =1. 11.12
oz 49z ( )

THE BASIC STATE AND ITS SOLUTIONS

The basic state was assumed to be quiescent and is given by

! ! ! !/
\2 (u,V,W):O,

p'=p,@,

T = T, (2),

C':Cb(z), (11.13)
o = ¢, (z) and

=0, (1+u(T-T0)).
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Equations (11.7) — (11.11) reduce to

0= R+ RaT, + 2¢, - Ra, (11.14)
ZJQE_%E ﬂﬂ s N (11.15)
z e dz' dz Le |dz dz

LLS%+ CT”ZZT;ZO, (11.16)
‘;Z“pb A%:o. (11.17)

According to Buongiorno (2006), for most nanofluid investigated so far
Le is large, is of order 10*-10°, while N, is no greater than about 10. Using
this approximation and solving equations (11.14) - (11.17), we have the an
approximate solution of basic state is given by

!/ !/ !/
T,=1-2z,C =1-z and P, =0, + N,z

PERTURBATION SOLUTIONS

Let the initial basic state described by (11.13) is slightly perturbed so that
perturbed state is given by

! ! ! n_n "
(u,V,w>:0+<u VW ),

T =T, +T", (11.18)
c'=c,+C"
o =@, +¢"
p'=p, +p"
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whereT =1-27/, C, =1-2, ¢, =6, + Nz’ and (u”,v”,w”), T”, " and p”
respectively the perturbations in the initial velocity, temperature, volume
fraction of the nanoparticles and pressure.

By substituting (11.18) in equations (11.7) — (11.11) and linearize by ne-
glecting the product of the prime quantities, we obtained following equations

V.q=0, (11.19)
011 0q 0 . .  Rs . -,
1+ FZ | =S 14+ FZ||-Vp+ RaTé — Rnpé +—Cé |+ DaV’q—q,
e ) e L R RS AR
(11.20)

oT o No[ 0T 06| 2N,N_oT )

——w=VT+—|N, ———|—————+N_V_, 11.21

ot v Le[ 10z 0z Le 0z e ( )

10C 1 1, ,

—— —=w=—VC+N_VT, 11.22

50t e Ls cr ( )
N

100 1y = Lyp Dager (11.23)

oot ¢ Le Le

Boundary conditions are

w=0T=0 =0 22159 _gaz=0, (11.24)

0z 0z

[Dashes (") have been suppressed for convenience]
Eliminating pressure term p from equation (11.20), we have

o|1 0 ~ 0 Rs _.
14+ F=|——V’w —DaV'w + V’w — |1+ F —||RaV; T+ —V? C-RnV’ | =0,
ot )vaor - Y v ot s " i
(11.25)
o* 9. . . .
where V? = el + o7 is the two-dimensional Laplacian operator.
X v
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NORMAL MODE ANALYSIS

We shall now analyze an arbitrary perturbation into a complete set of normal
modes and then examine the stability of each of those modes individually.
For the system of equations (11.25), (11.21), (11.22) and (11.23) the analysis
can be made in terms of two dimensional periodic wave numbers. Thus, as-
suming that the perturbed quantities are of the form

[w.T.C. ] = [W(z),@(z),r (2) ,@(z)] exp (ikxx +ik,y + nt) , (11.26)

where k , ky are wave numbers in x and y direction and n is growth rate of
disturbances.

Using equation (11.26), equations (11.25), (11.21) - (11.23) become

(Dz—az) Da(Dz—az)—l—n(LnF) W—(1+nF) aQRa®+a2&F—aan<I> =0,
Va Ls

(11.27)
W+ DtataniivBD 6—%D@+NTC(D2—a2)F:O, (11.28)
1 1 n
EW+E[D2—a2—g]F+NCT(D2—aZ)G:O, (11.29)

N

b, = (0 s [ (o -st) 2o o (11.30)

where D = di and a = k2 + kf is the dimensionless resultant wave number.
. VK

The boundary conditions of the problem in view of normal mode analysis are

W=0,D'W=00=0,=0Db+N,DO=0at z=0,1. (11.31)
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METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate
solution to the system of equations (11.27) — (11.30) with the corresponding
boundary conditions (11.31). In this method, the test functions are the same
as the base (trial) functions. Accordingly W, ® and @ are taken as

N N N N
W:2APWP,®:23p®p,F:2CpFP,<I>:Z;Dp@p, (11.32)
p= r= r= p=

WhereW =0, = sinpnz,® = —N sinpnz, A B C and D are unknown

coefflclents p=1,2,3,..., N and the base functlons Wp @ F and ®_ sat-
isfying the boundary condltlons (11.31). Using expression for W ® and @
in equations (11.27) — (11.30) and multiplying the first equation by W the
second equation by @p third equation by L and fourth by @ and then 1nte-
grating in the limits from zero to unity, we obtain a set of 4N linear homo-
geneous equations with 4N unknown Ap, Bp and Cp; p=1,2,3,.., N. For
existing of nontrivial solution, the vanishing of the determinant of coefficients
produces the characteristics equation of the system in term of Rayleigh num-
ber Ra.

LINEAR STABILITY ANALYSIS

For the present formulation, we have considered the which system of equations
(11.27) — (11.30) together with the boundary conditions (11.31) constitute
a linear eigenvalue problem with variable coefficient for the growth rate of
disturbance n of the system. Substituting equation (11.32) in system of equa-
tions (11.27) — (11.30) and multiplying the first equation by Wp the second
equation by Op third equation by I'p and fourth by ®p and then integrating
in the limits from zero to unityand performing some integration by parts, one
obtains the following matrix equation

(“2 +az> ﬁa(ﬂz +a2)+1+ n(1+nF> -a’Ra 2R -a’N,Rn
(1+nF) Va | Ls | W,
1 -(’KZ +ad + n) N ('rrz + az) 0 0,
! Ny (‘nz +a2) - ﬁ [‘rrZ +d +§ 0 <11:“ - g
N 0
% %(ﬂz+a2> 0 -N, i(ﬂz+u2)+§

(11.33)
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The non-trivial solution of the above matrix for the case of stationary
convection (n = 0) requires that

LA B 14k 7%(1+LeNm)
. (v +a) (Da(w +a)+1)(1- N NpLn)  Rs(N., —1) - - er
( a)" B a’ (afLSNTC) * (EfLsNTC) - (afLSNTC)

(11.34)

It is observed that stationary Rayleigh number Ra is function of the Soret
parameter, Dufour parameter, solute Lewis number Ls, nanofluid Lewis num-
ber Le, Solute Rayleigh number Rs, Brinkman-Darcy number, the modified
diffusivity ratio N, and the nanoparticles Rayleigh Rn but independent of
visco- elastic parameter F, Prandtl number Pr and modified particle- density
increment N . Thus Maxwellian visco-elastic nanofluid behaves like an or-
dinary Newtonian nanofluid and instability is purely a phenomenon due to
buoyancy coupled with the conservation of nanoparticles.

In the absence of solute particle (N, = N.. = Rs = 0) equation (11.34)
reduces to

(Ra) = - [1 + E] N,Rn. (11.35)

€

This is the same expression for thermal Rayleigh-Darcy number as obtained
by Kuznetsov and Nield (2010b).

In the absence of nanoparticle and if the base fluid is one component,
then equation (11.35) gives

Da(w +a') +(x' +a)
(Ra), = 2 (11.36)

This is the exactly same result for regular fluid Nield and Bejan (2013).

Thus presence of the nanoparticles lowers the value of the critical Rayleigh
number by usually by substantial amount. Also parameter N, does not appear
in the equation (11.34); thus instability is purely phenomena due to buoy-
ancy coupled with conservation of nanoparticles. Thus average contribution
of nanoparticles flux in the thermal energy equation is zero with one-term
Galerkin approximation.
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RESULTS AND DISCUSSION

Expression for stationary Rayleigh number, which characterizes the stability
of the system, is found to be depend upon Soret parameter, Dufour parameter,
solute Lewis number Ls, nanofluid Lewis number Le, Solute Rayleigh num-
ber Rs, Brinkman-Darcy number, the Brinkman Darcy number, the modified
diffusivity ratio N, and the nanoparticles Rayleigh Rn.

The computations are carried out for different values of parameters con-
sideredintherange 10° < Ra < 10° (thermalRayleighnumber),1 < N, <10(Soret
parameter), 10~ < N,. < 10" (Dufour parameter), 1 < N, < 10 (modified dif-
fusivity ratio), 10’ < Le < 10" (nanofluid Lewis number), 1 < Ls <10 (solute
Lewis number), 10" < Rn < 10" nanofluid Rayleigh number), 10 <e <1
(porosity parameter).

The variations of the stationary thermal Rayleigh number with wave
number have been plotted graphically as shown in Figures 2-9.

Figure 2 shows the variation of thermal Rayleigh number with wave
number for different value of solutal Rayleigh number and for the fixed
value of other parameters. It is found that stationary Rayliegh number in-
creases as the value of solutal Rayleigh number increases, indicating that
solutal Rayleigh number stabilizes the stationary convection.

Figure 2. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of solutal Rayleigh number
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Figure 3 shows the variation of thermal Rayleigh number with wave
number for different value of solute Lewis number and for the fixed value
of other parameters. It is found that stationary Rayliegh number increases
as the value of solute Lewis number increases, indicating that solute Lewis
number stabilizes the stationary convection.

Figure 4 shows the variation of thermal Rayleigh number with wave
number for different value of Lewis number and for the fixed value of other
parameters. It is found that stationary Rayliegh number decreases with an
increase in the value of Lewis number increases, indicating that Lewis number
destabilizes the stationary convection. Itis due to the fact that thermophoresis
at a higher value of thermophoretic diffusivity is more supportable to the
disturbance in nanofluids, while both thermophoresis and Brownian motion
are driving forces in favor of the motion of nanoparticles.

Figure 5 shows the variation of thermal Rayleigh number with wave
number for different value of Soret parameter and for the fixed value of other
parameters. It is found that stationary Rayliegh number increases as the value
of Soret parameter increases, indicating that Soret parameter stabilizes the
stationary convection.

Figure 3. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of solute Lewis number
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Figure 4. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanofluid Lewis number
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Figure 5. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Soret parameter
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Figure 6 shows the variation of thermal Rayleigh number with wave num-
ber for different value of Dufour parameter and for the fixed value of other
parameters. It is found that stationary Rayliegh number increases with an
increase in the value of Dufour parameter, indicating that Dufour parameter
has stabilizing effect on stationary convection.

Figure 7 shows the variation of stationary Rayleigh number with wave
number for different value of the modified diffusivity ratio and fixed value
of other parameters and it is found that Rayleigh number decreases with an
increase in the value of the modified diffusivity ratio which means that the
modified diffusivity ratio destabilizes on the fluid layer. This may lead to
an increase in volumetric fraction, which shows that Brownian motion of
the nanoparticles will also increase, which may cause destabilizing effect.

Figure 8 shows the variation of stationary Rayleigh number with wave
number for different value of the nanoparticles Rayleigh number and fixed
value of other parameters and it is found that thermal Rayleigh number de-
creases with an increase in value of the nanoparticles Rayleigh number, which
means that the nanoparticles Rayleigh number Rn has destabilizing effect
on fluid layer. It has destabilizing effect because the heavier nanoparticles
moving through the base fluid makes more strong disturbances as compared
with the lighter nanoparticles.

Figure 6. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of Dufour parameter
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Figure 7. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of modified diffusivity ratio
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Figure 8. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of nanoparticles Rayleigh number

1900 4

Ls=10, Rs =500,

Rn=1,e=05 Na=58

Le =500, Ner =2,
Ntc =0.001

1700

1500

1300 A

1100 -

Rayleigh Number
O

-~
o
o

500

300 A

100 T T T |

Wave Number

217



Double Diffusive Convection in a Layer of Maxwellian Visco-Elastic Nanofluid

Figure 9. Variation of the stationary Rayleigh number with wave number for dif-
ferent value of porosity parameter
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Figure 9 shows the variation of stationary Rayleigh numbers with wave
number for different value of the porosity parameter and fixed value of other
parameters and it is found that thermal Rayleigh number decreases with an
increase in value of the porosity parameter, which means that porosity pa-
rameter has destabilizing effect on fluid layer.

CONCLUSION

Double diffusive convection in a horizontal layer of Maxwellian visco-elastic
nanofluid is studied. The flux of volume fraction of nanoparticles is taken to
be zero on the isothermal boundaries and the eigenvalue problem is solved
using the Galerkin residual method. The results have been presented both
analytically and graphically.

The main conclusions derived from the present analysis are as follows

1. The instability purely phenomenon due to buoyancy coupled with the

conservation of nanoparticles and is independent of the contribution of
Brownian motion and thermophoresis.
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2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Solutal Rayleigh number, solute Lewis number, Dufour parameter and
Soret parameter have stabilizing while Lewis number, modified dif-
fusivity ratio, nanoparticles Rayleigh number and porosity parameter
have destabilizing effect on the stationary convection.
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Conclusion

Thermal instability in a horizontal layer of Maxwellian visco-elastic nano-
fluid is investigated theoretically. The model used for nanofluid incorporates
the effect of Brownian diffusion, thermophoresis and electrophoresis. The
flux of volume fraction of a nanoparticle is taken to be zero on the isothermal
boundaries. Using linear stability theory, an expression for the Rayleigh
number is obtained for both stationary and oscillatory convection in terms
of various non-dimensional parameters. The stability criterions for stationary
and oscillatory convection have been derived and graphs have been plotted
to study the effects of various parameters on the on stationary convection.
In the present study we theoretically investigate the effect of rotation, mag-
netic field, porous medium, internal heat source, Dufour and Soret param-
eter on the onset of thermal instability of Maxwellian visco-elastic nano-
fluid. The main conclusions derived from the present study are as follows

1. The instability purely phenomenon due to buoyancy coupled with the
conservation of nanoparticle and is independent of the contribution of
Brownian motion and thermophoresis.

2. For stationary convection Maxwellian visco-elastic nanofluid behaves
like an ordinary Newtonian nanofluid.

3. Rotation, magnetic field, Brinkman-Darcy number, porosity, solutal
Rayleigh number, solute Lewis number, Lewis number, Soret parameter
stabilizing effect on the stationary convection.

4. Hall effect, Heat source strength parameter, modified diffusivity ratio
and nanoparticles Rayleigh number have destabilizing effect on station-
ary convection.

5. Dufour parameter has both stabilizing and destabilizing effect on sta-
tionary convection depending upon certain conditions.

6. Stationary convection has stabilizing effect when the gravity parameter
varies as h(z) = z* - 2z, h(z) = -z, h(z) = -z* and has destabilizing effect
when gravity parameter varies as h(z) =z. In other word decreasing grav-
ity parameter has stabilizing effect while increasing gravity parameter
has destabilizing effect on the stationary convection.
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FUTURE WORK SCOPE

In the present study the thermal instability in a horizontal layer of Max-
wellian visco-elastic nanofluid is investigated theoretically. The model used
for nanofluid incorporates the effect of Brownian diffusion, thermophoresis
and electrophoresis. The flux of volume fraction of nanoparticles is taken to
be zero on the isothermal boundaries and the eigen value problem is solved
using the single-term Galerkin method. The same work can be extended up
to the six terms Galerkin method to investigate the same study. Yadav et al.
(2012b) studied the boundary and internal heat source effects on the onset of
Darcy- Brinkman convection in a porous layer saturated by nanofluid by six
terms Galerkin method. The work can be extended by taking different type
of non-Newtonian fluids as base fluid. e.g. We can extend the work for Old-
roydian visco elastic nanofluid, Rivlin-Ericksen elastico-viscous nanofluid,
Walter’s (B’ model) visco-elastic nanofluid and couple stress nanofluids etc.
for more realistic boundary conditions. Authors Sheu (2011a), Chand and
Rana (2012c), Rana et al. (2014b) and Shivkumara et al. (2006, 2015) studied
some thermal instability in a horizontal layer of non-Newtonian nanofluid
by taking different type of non-Newtonian fluid as base fluid but work can
be extended for for more realistic boundary conditions. Recently Khan et al.
(2013), Kumar and Awasthi (2016), studied the triple- diffusive convection
in a nanofluid layer so this work can be extended triple- diffusive convection
in a Maxwellian visco elastic nanofluid layer or other non-Newtonian fluid
for for more realistic boundary conditions. Nonlinear stability analysis by
energy method and weakly nonlinear analysis of the problem can be explored.
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Appendix

LIST OF SYMBOLS

wave number

specific heat

specific heat at constant volume
speed of light

thickness of the horizontal layer
Brownian diffusion coefficient
thermophoretic diffusion coefficient
Darcy number

Brinkman Darcy number

diffusivity of Dufour type
diffusivity of Soret type

charge of electron

stress relaxation parameter
acceleration due to gravity

magnetic field

constant of heat source strength
mass flux

medium permeability

thermal conductivity of porous medium
Boltzmann constant

wave numbers in X- direction

wave numbers in y- direction

Lewis number

thermosolutal Lewis number

Hall effect parameter

growth rate of disturbances

electron number density

modified diffusivity ratio

modified particle -density increment
op Soret parameter
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N... Dufour parameter

p  pressure

Pr  Prandtl number

Pr,, magnetic Prandtl number
q Darcy velocity vector

Q Chandrasekhar number
Q, distributed effective volumetric internal heat source
Ra Rayleigh number

Ra_ critical Rayleigh number
Rm density Rayleigh number
Rn concentration Rayleigh number
Rs solutal Rayleigh number
time

temperature

temperature at lower layer
temperature at upper layer
a Taylor number

v velocity of fluid

Va Vadasz number

(u,v,w) velocity components
(x,y,z) space co-ordinates

Greek Symbols

thermal expansion coefficient

analogous to solute concentration

viscosity

effective viscosity

kinematic visco-elasticity

magnetic permeability

relaxation time

porosity

angular velocity

density of the fluid

density of base fluid

heat capacity of nanofluid

(pc),, heat capacity of nanofluid in porous medium
(pc)p heat capacity of nanoparticles

¢ volume fraction of the nanoparticles

@, volume fraction of the nanoparticles at reference scale

R K
- a

= T TE

@

m
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P, density of nanoparticles
ov  Ou . .
= ——— z-components of vorticity
Ox Oy

oh,  Oh . . .
¢ = — ——= thermal diffusivity
Ox 0Oy
k' solutal diffusivity
¢ thermal capacity ratio
® dimensionless frequency of oscillation
¢ z-components of current density
n  thermal anisotropy parameter

Oh(z) variable gravity parameter

Superscripts
' non- dimensional variables
perturbed quantity

"

Subscripts

particle

fluid

basic state
lower boundary
upper boundary
stationary
oscillatory
critical
horizontal plane
d

dz
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