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Dedication

Forward into future times we go
QOver boulders standing in out way
Rolling them aside because we know
Others follow in our steps one day

Under deepest earth the gems are found
Reaching skyward till we grasp the heights
Climbing up to where the view surrounds
Hidden valleys offer new delights

Inch by inch and yard by yard until
Luck brings us to the hidden vale
Desiring a place to rest yet still
Returning home now to tell the tale

FEver knowing when that day does come
New hands will take up work left undone
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Using This Book

An early reviewer urged us to think of this book not as a primer in Bayesian
networks (there are already several good titles available, referenced in this
volume), but to focus instead on the application: the process of building the
model. Our early reviewers also thought that a textbook would be more useful
than a monograph, so we have steered this volume in that particular way. In
particular, we have tried to make the book understandable to any reasonably
intelligent graduate students (and several of our quite intelligent graduate
students have let us know when we got too obscure), as this should provide
the broadest possible audience.

In particular, most chapters include exercises at the end. We have found
through both our classes and the NCME training sessions, that students do
not learn from our lectures or writing (no matter how brilliant) but from
trying to apply what they heard and read to new problems. We would urge
all readers, even just the ones skimming to try the exercises. Solutions are
available from Springer or from the authors.

Another thing we have found very valuable in using the volume education-
ally is starting the students early with a Bayesian network tool. Appendix A
lists several tools, and gives pointers to more. Even in the early chapters,
merely using the software as a drawing tool helps get students thinking about
the ideas. Of course, student projects are an important part of any course
like this. Many of the Bayes net collections used in the example are available
online; Appendix A provides the details.

We have divided the book into three parts, which reflect different levels
of complexity. Part I is concerned with the basics of Bayesian networks, par-
ticularly developing the background necessary to understand how to use a
Bayesian network to score a single student. It begins with a brief overview of
the ECD. The approach is key to understanding how to use Bayesian networks
as measurement models as an integral component of assessment design and
use from the beginning, rather than simply as a way to analyze data once it
is in hand. (To do the latter is to be disappointed—and it is not the fault of
Bayes nets!) It ends with Chap. 7, which goes beyond the basics to start to
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describe how the Bayesian model supports inference more generally. Part II
takes up the issue of the calibrating the networks using data from students.
This is too complex a topic to cover in great depth, but this section explores
parameterizations for Bayesian networks, looks at updating models from data
and model criticism, and ends with a complete example. Part III expands
from the focus on mechanics to embedding the Bayesian network in an assess-
ment system. Two chapters describe the conceptual assessment framework
and the four-process delivery architecture of ECD in greater depth, showing
the intimate connections among assessment arguments, design structures, and
the function of Bayesian networks in inference. Two more chapters are then
devoted to the implementation of Biomass, one of the first assessments to be
designed from the ground up using ECD.

When we started this project, it was our intention to write a compan-
ion volume about evidence-centered assessment design. Given how long this
project has taken, that second volume will not appear soon. Chapters 2, 12,
and 13 are probably the best we have to offer at the moment. Russell has
used them with some success as standalone readings in his assessment design
class. Although ECD does not require Bayesian networks, it does involve a
lot of Bayesian thinking about evidence. Readers who are primarily interested
in ECD may find that reading all of Part I and exploring simple Bayes net
examples helps deepen their understanding of ECD, then moving to Chaps. 12
and 13 if they want additional depth, and the Biomass chapters to see the
ideas in practice.

Several of our colleagues in the Uncertainty in Artificial Intelligence com-
munity (the home of much of the early work on Bayesian Networks) have
bemoaned the fact that most of the introductory treatises on Bayesian net-
works fall short in the area of helping the reader translate between a specific
application and the language of Bayesian networks. Part of the challenge here
is that it is difficult to do this in the absence of a specific application. This
book starts to fill that gap. One advantage of the educational application is
that it is fairly easy to understand (most people having been subjected to
educational assessment at least once in their lives). Although some of the
language in the book is specific to the field of education, much of the develop-
ment in the book comes from the authors’ attempt to translate the language
of evidence from law and engineering to educational assessment. We hope that
readers from other fields will find ways to translate it to their own work as
well.

In an attempt to create a community around this book, we have created
a Wiki for evidence-centered assessment design (http://ecd.ralmond.net/
ecdwiki/ECD/ECD/). Specific material to support the book, including example
networks and data, are available at the same site (http://ecd.ralmond.net/
BN/BN). We would like to invite our readers to browse the material there and
to contribute (passwords can be obtained from the authors).
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Notation

Random Variables

Random variables in formulae are often indicated by capital letters set in italic
type, e.g., X, while a value of the corresponding random variable is indicated
as a lowercase letter, e.g., x.

Vector-valued random variables and constants are set in boldface. For
example, X is a vector valued random variable and x is a potential value
for X.

Random variables in Bayesian networks with long descriptive names are
usually set in italic type when referenced in the text, e.g., Random Variable.
If the long name consists of more than one word, capitalization is often used
to indicate word boundaries (so-called CamelCase).

When random variables appear in graphs they are often preceded by an
icon indicating whether they are defined in the proficiency model or the evi-
dence model. Variables preceded by a circle, O), are proficiency variables, while
variables preceded by a triangle, {/, are defined locally to an evidence model.
They are often but not always observable variables.

The states of such random variables are given in typewriter font, e.g., High
and Low.

Note that Bayesian statistics does not allow fixed but unknown quantities.
For this reason the distinction between variable and parameter in classical
statistics is not meaningful. In this book, the term “variable” is used to refer
to a quantity specific to a particular individual taking the assessment and the
term “parameter” is used to indicate quantities that are constant across all
individuals.

Sets

Sets of states and variables are indicated with curly braces, e.g., {High, Medium,
Low}. The symbol z € A is used to indicate that x is an element of A. The
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elements inside the curly braces are unordered, so {41, A2} = {A2, Al}.
The use of parenthesis indicates that the elements are ordered, so that
(A1, A2) #£ (A2, Al).

The symbols U and N are used for the union and intersection of two sets.
If A and B are sets, then A C B is used to indicate that A is a proper subset
of B, while A C B also allows the possibility that A = B.

If A refers to an event, then A refers to the complement of the event; that
is, the event that A does not occur.

Ordered tuples indicating vector valued quantities are indicated with
parenthesis, e.g., (z1,...,Z).

Occasionally, the states of a variable have a meaningful order. The symbol
> is used to state that one symbol is lower than the other. Thus High > Low.

The quantifier Vx is used to indicate “for all possible values of x.” The
quantifier Jdx is used to indicate that an element x exists that satisfies the
condition.

For intervals of real numbers a square bracket, ‘" (‘]’), is used to indicate
that the lower (upper) bound is included in the interval. Thus:

[0,1] is equivalent to {z: 0 <z < 1}

]
[0,1) is equivalent to {z : 0 < x < 1}
(0,1] is equivalent to {z : 0 < z < 1}
(0,1) is equivalent to {z : 0 < z < 1}

Probability Distributions and Related Functions

The notation P(X) is used to refer to the probability of an event X. It is also
used to refer to the probability distribution of a random variable X with the
hope that the distinction will be obvious from context.

To try to avoid confusions with the distributions of the parameters of dis-
tributions, the term law is used for a probability distribution over a parameter
and the term distribution is used for the distribution over a random variable,
although the term distribution is also used generically.

The notation P(X|Y) is used to refer to the probability of an event X
given that another event Y has occurred. It is also used for the collection of
probability distributions for a random variable X given the possible instanti-
ations of a random variable Y. Again we hope that this loose use of notation
will be clear from context.

If the domain of the random variable is discrete, then the notation p(X) is
used for the probability mass function. If the domain of the random variable is
continuous, then the notation f(X) is used to refer to the probability density.

The notation E[g(X)] is used for the expectation of the function g(X)
with respect to the distribution P(X). When it is necessary to emphasize
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the distribution, then the random variables are placed as a subscript. Thus,
Ex[g(X)] is the expectation of g(X) with respect to the distribution P(X)
and Ex|y[g(X)] is the expectation with respect to the distribution P(XY).

The notation Var(X) is used to refer to the variance of the random vari-
able X. The Var(X) is a matrix giving the Var(X}) on the diagonal and the
covariance of X; and X in the off-diagonal elements.

If A and B are two events or two random variables, then the notation
A 1 B and I(A|}|B) is used to indicate that A is independent of B. The
notations A 1l B | C and I(A|C|B) indicate that A is independent of B
when conditioned on the value of C' (or the event C).

The notation N(u,0?) is used to refer to a normal distribution with mean
p and variance 02; NT(u,02) refers to the same distribution truncated at
zero (so the random variable is strictly positive). The notation Beta(a,b) is
used to refer to a beta distribution with parameters a and b. The notation
Dirichlet(aq,...,ak) is used to refer to K-dimensional Dirichlet distribution
with parameters a1, ...,ax. The notation Gamma(a, ) is used for a gamma
distribution with shape parameter a and scale parameter b.

The symbol ~ is used to indicate that a random variable follows a par-
ticular distribution. Thus X ~ N(0,1) would indicate that X is a random
variable following a normal distribution with mean 0 and variance 1.

Transcendental Functions

Unless specifically stated otherwise, the expression log X refers to the natural
logarithm of X.

The notation exp X is used for the expression eX, the inverse of the log
function.

The notation logit z, also ¥(z), is used for the cumulative logistic function:

ew

1+er

logitx = ¥(x) =
The notation y!, y factorial, is used for y! = [[}_, k, where y is a positive

integer.
The notation I'(z) is used for the gamma function:

I'(z) :/ t" e tdt
0

Note that I'(n) = (n — 1)! when n is a positive integer.
The notation B(a,b) is used for the beta function:

! r
B(a,b) = / 21 —t)tat =
0
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The notation (Z) is used to indicate the combinatorial function (71:17"/’)'11'
The extended combinatorial function (
where >y = n.

The notation @(z) is used for the cumulative unit normal distribution
function.

" ) is used to indicate
YK

Y-
Y1 yilyr!?

Usual Use of Letters for Indices

The letter ¢ is usually used to index individuals.

The letter j is usually used to index tasks, with J being the total number
of tasks.

The letter £ is usually used to index states of a variable, with K being the
total number of states. The notation k[X] is an indicator which is 1 when the
random variable X takes on the kth possible value, and zero otherwise.

Ifx = (x1,...,2K) is a vector, then x< k refers to the first k—1 elements of
X, (1,...,25-1), and x > k refers to the last K — k elements (2g41,...,2K).
They refer to the empty set when £ = 1 or £ = K. The notation x_j, refers
to all elements except the jth; that is, (x1,...,Tk—1, Tkt1, -, TK)-
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Part 1

Building Blocks for Bayesian Networks



1

Introduction

David Schum’s 1994 book, The Evidential Foundations of Probabilistic Rea-
soning, changed the way we thought about assessment. Schum, a psychologist
cum legal scholar, was writing about evidence in the most familiar meaning of
the word, looking at a lawyer’s use of evidence to prove or disprove a propo-
sition to a jury. However, Schum placed that legal definition in the context
of the many broader uses of the term “evidence” in other disciplines. Schum
notes that scientists and historians, doctors and engineers, auto mechanics,
and intelligence analysts all use evidence in their particular fields. From their
cross-disciplinary perspectives, philosophers, statisticians, and psychologists
have come to recognize basic principles of reasoning from imperfect evidence
that cut across these fields.

Mislevy (1994) shows how to apply the idea of evidence to assessment
in education. Say, for example, we wish to show that a student having com-
pleted a reading course, is capable of reading, with comprehension, an article
from The New York Times. We cannot open the student’s brain and observe
directly the level of comprehension, but we can ask the student questions
about various aspects of articles she reads. The answers provide evidence of
whether or not the student comprehended what she read, and therefore has
the claimed skill.

Schum (1994) faced two problems when developing evidential arguments in
practical settings: uncertainty and complexity. We face those same problems in
educational assessment and have come to adopt the same solutions: probability
theory and Bayesian networks.

Schum (1994) surveys a number of techniques for representing imprecise
and uncertain states of knowledge. While approaches such as fuzzy sets, belief
functions, and inductive probability all offer virtues and insights, Schum grav-
itates to probability theory as a best answer. Certainly, probability has had
the longest history of practical application and hence is the best understood.
Although other systems for representing uncertain states of knowledge, such as
Dempster—Shafer models (Shafer 1976; Almond 1995), may provide a broader
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palate of states of knowledge that can be modeled, the greater flexibility incurs
greater computational cost.

The idea that probability can be used to model an uncertain state of
knowledge is often omitted from elementary statistics courses. However, the
idea dates back to Bernoulli and other early developers of probability. This
use of probability to represent states of knowledge is most often found in the
Bayesian approaches to statistics (Chap. 3). It is a powerful concept which
allows us to use probability theory to make complex inferences from uncertain
and incomplete evidence.

In complex situations, it can be difficult to calculate the probability of an
event, especially if there are many dependencies. The solution is to draw a
picture. A graphical model, a graph whose nodes represent the variables and
whose edges represent dependencies between them, provides a guide for both
constructing and computing with the statistical models. Graphical models in
which all the variables are discrete, have some particular computational advan-
tages. These are also known as Bayesian networks because of their capacity to
represent complex and changing states of information in a Bayesian fashion.
Pearl (1988) popularized this approach to represent uncertainty, especially
in the artificial intelligence community. Since then, it has seen an explosive
growth.

This book explores the implications of applying graphical models to edu-
cational assessment. This is a powerful technique that supports the use of
more complex models in testing, but is also compatible with the models and
techniques that have been developing in psychometrics over the last century.
There is an immediate benefit of enabling us to build models which are closer
to the cognitive theory of the domain we are testing (Pelligrino et al. 2001).
Furthermore, this approach can support the kind of complexity necessary for
diagnostic testing and complex constructed response or interactive tasks.

This book divides the story of Bayesian networks in educational assess-
ment into three parts. Part I describes the basics of properties of a Bayesian
network and how they could be used to accumulate evidence about the state
of proficiency of a student. Part II describes how Bayesian networks can be
constructed, and in particular, how both the parameters and structure can
be refined with data. Part III ties the mathematics of the network to the
evidence-centered assessment design (ECD) framework for developing assess-
ments and contains an extensive and detailed example. The present chapter
briefly explores the question of why Bayesian networks provide an interesting
choice of measurement model for educational assessments.

1.1 An Example Bayes Network

Bayesian networks are formally defined in Chap. 4, but a simple example will
help illustrate the basic concepts.
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Example 1.1 (Language Testing Example). (Mislevy 1995¢). Imagine a
language assessment which is designed to report on four proficiency variables:
Reading, Writing, Speaking and Listening. This assessment has four types
of task: (1) a reading task, (2) a task which requires both writing and read-
ing, (3) a task which requires speaking and either reading or listening, and
(4) a listening task. Evaluating the work product (selection, essay or speech)
produces a single observable outcome variable for each task. These are named
Outcome R, Outcome RW, Outcome RLS, and Outcome L respectively.

V¥ Outcome RW

@ Speaking V¥ Outcome RSL

/

Fig. 1.1 A graph for the Language Testing Example

@ Listening

A Bayesian network for the language test example of Mislevy (1995¢). Rounded
rectangles in the picture represent variables in the model. Arrows (“edges”) represent
patterns of dependence and independence among the variables. This graph provides
a visual representation of the joint probability distribution over the variables in the
picture. Reprinted with permission from Sage Publications.

Figure 1.1 shows the graph associated with this example. Following conven-
tions from ECD (cf. Chaps. 2 and 12), the nodes (rounded rectangles in the
graph) for the proficiency variables are ornamented with a circle, and the
nodes for the evidence variables are ornamented with a triangle. The edges
in the graph flow from the proficiency variables to the observable variables
for tasks which require those proficiencies. Thus the graph gives us the infor-
mation about which skills are relevant for which tasks, providing roughly the
same information that a QQ-Matrix does in many cognitively diagnostic assess-
ment models (Tatsuoka 1983).

The graphs used to visualize Bayesian networks, such as Fig. 1.1, act as
a mechanism for visualizing the joint probability distribution over all of the
variables in a complex model, in terms of theoretical and empirical relation-
ships among variables. This graphical representation provides a shared work-
ing space between subject matter experts who provide insight into the cogni-
tive processes underlying the assessment, and psychometricians (measurement
experts) who are building the mathematical model. In that sense, Bayesian
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networks have a lot in common with path analysis and structural equation
models.

However, an important difference between Bayesian networks and these
other models using similar graphical structures is the way that the Bayes
nets encode conditional independence conditions in the graph. Essentially,
variables that are separated in the graph are independent given the values of
the variables which separate them. (The exact rules depend on what evidence
has and has not been observed and are given in Chap. 4.) These conditional
independence constraints lead to efficient algorithms for updating probability
distributions (cf, Chap. 5; Appendix A lists readily available software packages
which implement those algorithms).

As the name implies, Bayesian networks are based on Bayesian views of
statistics (see Chap. 3 for a review). The key idea is that a probability dis-
tribution holds a state of knowledge about an unknown event. As Bayesian
networks represent a probability distribution over multiple variables, they
represent a state of knowledge about those variables.

Usually, the initial state of a Bayesian network in educational assessment is
based on the distribution of proficiency in the target population for an assess-
ment and the relationship between those proficiencies and task outcomes in the
population. The probability values could have come from theory, expert opin-
ion, experiential data, or any mixture of the three. Thus, the initial state of
the Bayes net in Fig. 1.1 represents what we know about a student who enters
the testing center and sits down at a testing station to take the hypothetical
language test: the distribution of proficiencies in the students we typically see,
and the range of performance we typically see from these students.

As the student performs the assessment tasks, evaluating the work prod-
ucts using the appropriate evidence rules yields values for the observable out-
come variables. The values of the appropriate variables in the network are
then instantiated or set to these values, and the probability distributions
in the network are updated (by recursive applications of Bayes rule). The
updated network now represents our state of knowledge about this student
given the evidence we have observed so far. This is a powerful paradigm for
the process of assessment, and leads directly to mechanisms for explaining
complex assessments and adaptively selecting future observations (Chap. 7).
Chapter 13 describes how this can form the basis for an embedded scoring
engine in an intelligent tutoring or assessment system.

The fact that the Bayes net represents a complete Bayesian probability
model has another important consequence: such models can be critiqued and
refined from data. Complete Bayesian models provide a predictive probability
for any observable pattern of data. Given the data pattern, the parameters of
the model can be adjusted to improve the fit of the model. Similarly, alterna-
tive model structures can be proposed and explored to see if they do a better
job of predicting the observed data. Chapters 9-11 explore the problems of
calibrating a model to data and learning model structure from data.
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Bayesian network models for assessments are especially powerful when
used in the context of ECD (Mislevy et al. 2003b) Chap. 2 gives a brief intro-
duction to some of the language used with ECD, while Chap. 12 explains it in
more detail. The authors have used ECD to design a number of assessment,
and our experience has caused us to come to value Bayesian networks for
two reasons. First, they are multivariate models appropriate for cognitively
diagnostic assessment (Sect. 1.2). Second, they help assessment designers to
explicitly draw the connection between measurement models and cognitive
models that underlie them (Sect. 1.3).

1.2 Cognitively Diagnostic Assessment

Most psychometricians practicing today work with high-stakes tests designed
for selection, placement, or licensing decisions. This is no accident. Errors
and inefficiencies in such tests can have high costs, both social and mone-
tary, so it is worthwhile to employ someone to ensure that the reliability and
validity of the resulting scores are high. However, because of the prominence
of selection/placement tests, assumptions based on the selection/placement
purpose and the high stakes are often embedded in the justification for par-
ticular psychometric models. It is worth examining closely the assumptions
which come from this purpose, to tease apart the purposes, the statistics, and
the psychology that are commingled in familiar testing practices.

First, it is almost always good for a selection/placement assessment to
be unidimensional. The purpose of a college admission officer looking at an
assessment is to rank order the candidates so as to be better able to make
decisions about who to admit. This rank ordering implies that the admissions
officer wants the candidates in a single line. The situation with licensure and
certification testing is similar; the concern is whether or not the candidate
makes the cut, and little else.

Because of the high stakes, we are concerned with maximizing the validity
of the assessment—the degree to which it provides evidence for the claims we
would like to make about the candidate. For selection and placement situa-
tions, a practically important indicator of validity is the degree to which the
test correlates with a measure of the success after the selection or placement.
Test constructors can increase this correlation by increasing the reliability of
the assessment—the precision of the measurement, or, roughly, the degree to
which the test is correlated with itself. This can lead them to discard items
which are not highly correlated with the main dimension of the test, even if
they are of interest for some other reason.

Although high-stakes tests are not necessarily multiple choice, multiple
choice items often play a large role in them. This is because multiple choice is
particularly cost effective. The rules of evidence—procedures for determining
the observable outcome variables—for multiple choice items are particularly
easy to describe and efficient to implement. With thoughtful item writing,
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multiple choice items can test quite advanced skills. Most importantly, they
take little of the student’s time to answer. A student can solve 20-30 multi-
ple choice items in the time it would take to answer a complex constructed
response task like an essay, thus increasing reliability. While a complex con-
structed response task may have a lower reliability than 20-30 multiple choice
items, it may tap skills (e.g., generative use of language) that are difficult to
measure in any other way. Hence the complex constructed response item can
increase validity even though it decreases reliability.

However, the biggest constraints on high stakes testing come from security
concerns. With high stakes comes incentive to cheat, and the measures to
circumvent cheating are costly. These range from proctoring and verifying the
identity of all candidates, to creating alternative forms of the test. The last of
these produces a voracious appetite for new items as old ones are retired. It
also necessitates the process of equating between scores on alternative forms
of the test.

Increasingly, the end users of tests want more than just a single score to
use for selection or placement. They are looking for a set of scores to help
diagnose problems the examinee might be facing. This is an emerging field
called cognitively diagnostic assessment (Leighton and Gierl 2007; Rupp et al.
2010). The “cognitive” part of this name indicates that scores are chosen to
reflect a cognitive model of how students acquire skills (see Sect. 1.3). The
“diagnostic” part of the name reflects a phenomenon that seeks to identify
and provide remedy for some problem in a students’ state of proficiency. Such
diagnostic scores can be used for a variety of purposes: as an adjunct to a high
stakes test to help a candidate prepare, as a guidance tool to help a learner
choose an appropriate instructional strategy, or even shaping instructions on
the fly in an intelligent tutoring system. Often these purposes carry much
lower stakes, and hence less stringent requirements for security.

Nowhere is the interplay between high stakes and diagnostic assessment
more apparent than in the No Child Left Behind (NCLB) Act passed by the
U.S. Congress in 2002 and the Race To the Top program passed as part of
the American Reinvestment and Recovery Act of 2009. The dual purpose of
assessments—accountability and diagnosis at some level—remains a part of
the U.S. educational landscape. Under these programs, all children are tested
to ensure that they are meeting the state standards. Schools must be making
adequate progress toward bringing all students up to the standards. This, in
turn, means that educators are very interested in why students are not yet
meeting the standards and what they can do to close the gap. They need
diagnostic assessment to supplement the required accountability tests to help
them identify problems and choose remedies.

When we switch the purpose from selection to diagnosis, everything
changes. First and foremost, a multidimensional concept of proficiency usually
underlies cognitively diagnostic scoring. (A metaphor: Whereas for a selection
exam we might have been content with knowing the volume of the examinee,



1.2 Cognitively Diagnostic Assessment 9

in a diagnostic assessment we want to distinguish examinees who are tall but
narrow and shallow from those who are short, wide and shallow and those
who are short, narrow and deep.) As a consequence, the single score becomes
a multidimensional profile of student proficiency. Lou DiBello (personal com-
munication) referred to such tests as profile score assessments.

The most important and difficult part of building a multidimensional
model of proficiency is identifying the right variables. The variables (or suit-
able summaries) must be able to produce scores that the end users of the
assessment care about: scores which relate to claims we wish to make about
the student and educational decisions that must be made. That is, it is not
enough that the claims concern what students know and can do; they must
be organized in ways that help teachers improve what they know and can do.
A highly reliable and robust test built around the wrong variables will not be
useful to end users and consequently will fall out of use.

Another key difference between a single score test and a profile score test
is that we must specify how each task outcome depends on the proficiency
variables. In a profile score assessment, for each task outcome, we must answer
the questions “What proficiencies are required?”; “How are they related in
these requirements?”; and “To what degree are they involved?” This is the
key to making the various proficiency variables identifiable. In a single score
assessment, each item outcome loads only onto the main variable; the only
question is with what strength. Consequently, assessment procedures that
are tuned to work with single score assessments will not provide all of the
information necessary to build a profile score test.

Suppes (1969) introduced a compact representation of the relationship
between proficiency and outcome variables for a diagnostic test called the @-
Matrix. In the @Q-Matrix, columns represent proficiency variables and rows
represent items (observable outcome variables). A one is placed in the cells
where the proficiency is required for the item, and a zero is placed in the other
cells. Note that an alternative way to represent graphs is through a matrix
with ones where an edge is present and zero where there is no edge. Thus, there
is a close connection between Bayesian network models and other diagnostic
models which use the @-Matrix (Tatsuoka 1983; Junker and Sijtsma 2001;
Roussos et al. 2007Db).

The situation can become even more complicated if the assessment includes
complex constructed response tasks. In this case, several aspects of a student’s
work can provide evidence of different proficiencies. Consequently, a task may
have multiple observable outcomes. For example, a rater could score an essay
on how well the candidate observed the rules of grammar and usage, how well
the candidate addressed the topic, and how well the candidate structured the
argument. These three outcomes would each draw upon different subsets of
the collection of proficiencies measured by the assessment.

Some of the hardest work in assessment with complex constructed response
tasks goes into defining the scored outcome variables. Don Melnick, who for
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several years led the National Board of Medical Examiners (NBME) project
on computer-based case management problems, observed “The NBME has
consistently found the challenges in the development of innovative testing
methods to lie primarily in the scoring arena. Complex test stimuli result in
complex responses which require complex models to capture and appropriately
combine information from the test to create a valid score” (Melnick 1996,
p. 117).

The best way to do this is to design forward. We do not want to wait for a
designer to create marvelous tasks, collect whatever data result, and throw it
over the wall for the psychometrician to figure out “how to score it.” The most
robust conclusion from the cognitive diagnosis literature is this: Diagnostic
statistical modeling is far more effective when applied in conjunction with task
design from a cognitive framework that motivates both task construction and
model structure, than when applied retrospectively to existing assessments
(Leighton and Gierl 2007).

Rather, we start by asking what we can observe that will provide evidence
that the examinee has the skill we are looking for. We build situations with
features that draw on those skills, and call for the examinee to say, do, or
make something that provides evidence about them—uwork products. We call
the key features of this work observable outcome variables, and the rules for
computing them, rules of evidence. For example, in a familiar essay test the
observable outcomes are the one or more scores assigned by a rater, and the
rules of evidence are the rubrics the rater uses to evaluate the essay as to its
qualities.

A richer example is HYDRIVE (Gitomer et al. 1995), an intelligent tutor-
ing system built for the US Air Force and designed to teach troubleshoot-
ing for the hydraulics systems of the F-15 aircraft. An expert/novice study
of hydraulics mechanics revealed that experts drew on a number of trou-
bleshooting strategies that they could bring to bear on problems (Steinberg
and Gitomer 1996). For example, they might employ a test to determine
whether the problem was in the beginning or end of a series of components
that all had to work for a flap to move when a lever was pulled. This strategy
is called “space splitting” because it splits the problem space into two parts
(Newell and Simon 1972). HYDRIVE was designed to capture information
not only about whether or not the mechanic correctly identified and repaired
the problem, but also about the degree to which the mechanic employed effi-
cient strategies to solve the problem. Both of these were important observable
outcomes.

However, when there are multiple aspects of proficiency and tasks can have
multiple outcomes, the problem of determining the relationships between pro-
ficiencies and observable variables becomes even harder. In HYDRIVE, both
knowledge of general troubleshooting strategies and the specific system being
repaired were necessary to solve most problems. Thus each task entailed a
many-to-many mapping between observable outcomes and proficiency vari-
ables.
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The solution for HYDRIVE was to draw a graph (Mislevy and Gitomer
1996). By drawing arrows from the skills required to the observable outcomes,
we could untangle the complex relationships. Furthermore, the joint proba-
bility distribution over the variables in the model could be represented with
a Bayesian network. This network is a graphical model whose graph repre-
sents the relationships between the skills and observations we just described.
Expressing our understanding of the problem as a Bayesian network brings
with it a number of computational advantages which are described in this
book.

ECD grew out of a desire to generalize what worked well about HYDRIVE
to other assessments. Since that time, the authors have participated in many
design projects using ECD and Bayesian networks, including DISC (Mislevy,
Steinberg, et al. 1999b; Mislevy, Steinberg, Breyer, et al. 2002d), Biomass
(Steinberg et al. 2003, Chaps. 14 and 15), NetPASS (Behrens et al. 2004),
ACED (this book, Chaps. 7 and 13; Shute 2004; Shute et al. 2005; Shute et
al. 2008), an alternative scoring method for ETS’s ICT Literacy assessment
(Katz et al. 2004), and a game-based assessment called SimCityEDU (Mislevy
et al. 2014).

1.3 Cognitive and Psychometric Science

The HYDRIVE experience taught us many lessons. Among them was the
amount of work required to build a diagnostic assessment that truly relates to
variables learners and educators care about. Building such assessments consis-
tently and in a cost effective way demands an approach to assessment design
that supports many kinds of assessments, both familiar selection assessments
and new kinds of diagnostic assessments. Furthermore, it requires a philosophy
of assessment design that would provide a framework for answering questions
when new problems inevitably arise.

As we based this new approach on the principle of finding evidence for
the knowledges, skills, and abilities we were testing, we called this approach
ECD. The basic approach can be laid out in four steps:

1. Gather together the claims we wish to make about an examinee, for exam-
ple, “An examinee who scores highly can pick up and read with compre-
hension a journal article written in English in their field of expertise.”

2. Organize these claims into a proficiency model, constructing variables rep-
resenting the knowledges, skills, and abilities required to meet the claims.

3. Determine what we could observe in a candidate’s work which would pro-
vide evidence that the candidate did (or did not, or did to what extent or
in what way) have a particular complex of proficiencies.

4. Structure tasks which will provide us with the opportunity to make those
kinds of observations.
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Note that this design philosophy has the validity argument built right in.
Ultimately, validity is how well the scores from an assessment support the
claims the assessment makes. In an ECD assessment, this argument is the
central core. Task results provide observable outcomes that provide evidence
about proficiency variables which support the claims of the assessment. Any
valid assessment obeys this principle, but ECD forces us to think about it
from the very start of the assessment design process. Other authors who have
thought about assessment design in similar ways include Susan Embretson
(Embretson 1998), who focuses on psychological measurement, Grant Wig-
gins (Wiggins 1998), who focuses on instructional assessment, and Ric Luecht
(Luecht 2012), who focuses on the re-usability of task design, delivery, and
scoring components.

The proficiency model for HYDRIVE was based on the cognitive theory of
the domain. This cognitive basis simplified the process of designing instruc-
tions to help learners acquire the knowledge, skills, and abilities underlying
the proficiency variables. It further ensured that reporting would be in terms
of concepts that were useful for the intended audience.

Contrast this to trait theories of psychology in which the latent trait being
measured is effectively defined in terms of how it is measured. Take for example
1Q tests, in which intelligence has been defined as being what the 1Q test
measures. This is unsatisfactory in that it is difficult to see how to provide
training to increase one’s intelligence.

Furthermore, the trait theory breaks down as we introduce multiple traits.
When the traits are defined after the fact, there is a question of identifiabil-
ity (rotational indeterminacy is the bane of factor analysis!). We can always
relabel the traits to create a new “theory.” Obviously, one needs a better way
to identify the variables in the proficiency model.

Bayesian networks and evidence-centered design support multidimensional
models in terms of cognitive theory—specifically, with models motivated by an
information-processing perspective, but posited as a working approximation
of proficiency in some domain rather than an authentic representation of the
details of cognition. Variables are introduced to stand for aspects of an exam-
inee’s proficiency—elements of knowledge, strategies and procedures, tenden-
cies to solve problems that have certain properties, and so on. By using prob-
abilities to represent the examiner’s uncertain state of knowledge about an
examinee’s proficiency variables, Bayesian networks can represent the theory
of the domain, modeling complex relationships among proficiency variables.
Bayesian networks can model quite complex relationships between observ-
able and proficiency variables. These evidence models allow us to update our
knowledge about a student’s proficiency as more evidences (in the form of
observations from tasks) arrive. The Bayesian network tracks our state of
knowledge about a particular student. It starts with general knowledge based
on the population of students that this individual is drawn from. Part I of
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this book describes how Bayesian networks can be used as a mechanism to
update our knowledge about that student as more and more evidence arrives.
Part IT discusses learning and revising models from data. When the model
is based on a cognitive theory, these activities take on additional importance.
Data which fit the model fairly well provide support for the underlying cog-
nitive theory. Data which do not fit well provide information about potential
gaps or weaknesses in the theory. The assessment designer is prompted to
consider revising the theory, the statistical model, or the way data are being
collected and interpreted. When the statistical model and cognitive theory
mirror one another, developments in one can be reflected in the other.

Often, the problem with cognitive theories is that it is difficult or expen-
sive to measure the knowledge structures they posit. In our experience there
are two types of expertise that test designers bring to bear on the assess-
ment design process. One is the knowledge of the cognitive processes of the
domain, that is, of the proficiency model. The second is the knowledge about
how to structure tasks, including what makes tasks easier and harder, and
which aspects of knowledge or skills they tap. Often it is difficult to make the
connection between these two types of expertise.

Evidence is the bridge between theories about tasks and theories about
proficiency. Asking “How can I get evidence that this subject has this profi-
ciency?” leads to designs for tasks to assess that proficiency. Similarly, by ask-
ing “What knowledge, skills, and abilities are required to perform this task?”
we can understand what it is that the task provides evidence for. By driving
forward and backward over this bridge we can iteratively build assessments
that reflect our cognitive theory.

Although we are excited about the potential of graphical models to model
a broad range of cognitive theories, we cannot get around some of the fun-
damental laws of psychometrics. First, no matter what we claim that the
assessment is measuring, it effectively measures the ability to perform tasks
like the ones in the assessment. Only if we have built the tasks with fidelity
to the construct(s) we are trying to measure will the assessment provide evi-
dence to support its claims. Furthermore, a certain amount of evidence is
required to support each claim we are trying to make. For example, it would
be very difficult to provide enough evidence to support a proficiency model
with 30 variables on a test that contains only 10 items (unless those items
represented large, complex tasks with many parts, and complex rules of evi-
dence were used to pull out many partially-dependent bits of evidence). Thus,
a fairly sophisticated knowledge of the strengths and limitations of the models
we are proposing is required to construct graphical models for use in educa-
tional assessment.
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1.4 Ten Reasons for Considering Bayesian Networks

Evidence-centered design, as set out in Mislevy et al. (2003b) and elsewhere,
is neutral to the measurement model. The principles apply whether Bayesian
networks, latent class analysis, classical test theory, factor analysis or item
response theory and its many extensions are used to score the assessment.
However, in applications, Bayes nets have been our first choice for the mea-
surement model. Bayes nets enjoy a number of advantages, some immediately
visible to test users, some under the hood. Other methods may share some of
the properties, but the combination offered by Bayes nets is unique.

1. Bayes nets report scores in terms of “Probability of Claim.” When built
using evidence-centered design, each level of each proficiency variable in
a Bayes net is associated with one or more ECD claims. Thus, the nat-
ural score report provides the probability that the claim holds. This is
exactly the kind of information that test users need to make instructional
planning decisions. It suggests that using the Bayes nets as a part of an
artificial intelligence planning system would make a powerful engine for an
intelligent tutoring system. However, even in the simpler world of human
instructional planning system, the kind of score reports described here
were thought to be useful by a focus group of score users (Jody Under-
wood, unpublished focus group results).

2. Bayes nets use a graphical representation for the proficiency model. Bayes
nets take their name from the network diagram or graph they use to
describe the relationship among the variables. This graph provides both a
rigorous mathematical description of the model and an informal schematic
description. This representation helps facilitate conversations between
cognitive and measurement experts. However, it goes deeper than that.
Daniel et al. (2003) suggest that even secondary school students find this
representation valuable, and it can be used to facilitate a dialogue between
the instructor and the learner.

3. Bayes nets can incorporate expert knowledge about the cognitive domain.
Expert input is needed in any model building exercise, particularly in the
difficult steps of defining the variables and the relationships among them—
the “graphical structure” of the Bayesian network. Bayes net modeling
encourages cognitive experts to get involved in the process. This means
the structure of the model can be well suited to a particular purpose; for
example, a proficiency model can be built to reflect a particular instruc-
tional theory about a domain. It also means that Bayes nets can take full
advantage of other information gathered during an ECD design process,
such as prior opinions about the difficulty of a task.

4. Bayes nets can “learn” from data. Bayes nets are probability models. This
indicates that they make probabilistic predictions about what will hap-
pen. It also means that there is a measure for how well observed data meet
the expectations of the model. This property can be used to improve the
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original model as more and more data become available. This learning can
be used to both adjust the parameters of the model and suggest changes
to the structure. The latter is instructive as it gives us feedback into the
cognitive models, which form the basis of the Bayes net. These last two
points taken together give many possible strategies for constructing Bayes
nets: from building networks entirely from expert opinion with no pretest-
ing, to building networks entirely from pretest data, and any number of
combinations of the two.

. Bayes nets handle complex models and tasks. Complex tasks (e.g., simula-
tions, multistep problems, and complex constructed response) are in high
demand for assessments because they both feel more authentic and they
can tap higher order, constructive, and interactive skills that are difficult
to capture with simpler tasks. Bayes nets tackle large problems by parsing
our reasoning about them as combinations of smaller more manageable
chunks. Specifically, Bayes nets can model multiple dependent observables
coming from complex tasks, each of which can provide evidence about dif-
ferent aspects of proficiency. All that is necessary to score such a task using
Bayes nets is to specify the model. Fitting data with such complex depen-
dencies is challenging for all measurement models, but Bayes nets offer
an approach which reflects the cognitive model based on what happens
during the task.

. Bayes nets are fast. By using only discrete variables, Bayes nets can obtain
exact, closed-form solutions to problems which would require numeric
approximations to difficult integrals using other methods. This means that
Bayes nets models can be updated very quickly, making them suited for
embedded scoring engines (Biomass, NetPASS and ACED are all proto-
type systems using Bayes net scoring; ACED is even adaptive, and SimC-
ityEDU is fully interactive). Paradoxically, Bayes net models have a rep-
utation for being slow because their speed tempts designers to try larger
models than they would using other methods.

. Bayes nets provide profile scores. Bayes nets will provide scores on as many
variables as are available in the proficiency model. This means that Bayes
nets can provide subscores on dimensions that are meaningful according
to the underlying cognitive model. It also indicates that Bayes nets can
handle integrated tasks which address more than one proficiency. Further-
more, Bayes net can assess higher-level skills (such as science inquiry skills
in Biomass) in ways that obtain evidence about lower-level skills, and par-
tialling it out to understand what can be learned about the higher-level
skills.

. Bayes nets provide real-time diagnosis. Because Bayes nets provide profile
information quickly, they can be queried at any time in an assessment
situation. In particular, an intelligent tutoring system can use Bayes nets
to make decisions about when to continue assessment, when to switch to
instruction and what instruction would be expected to provide the most
value.
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9. Building Bayes nets is natural in the context of evidence-centered design.
It seems like there is a lot of information that needs to go into the con-
struction of a Bayesian network. However, much of this information must
be generated in the context of the assessment design no matter which
measurement model is eventually used to score the assessment. This is
especially true in the context of complex tasks, where often ad hoc scor-
ing software must be built to either score the whole assessment or simplify
the observed outcomes so that the outcomes can be analyzed with an off-
the-shelf measurement model. Essential questions such as which proficien-
cies are relevant for which tasks, and what scores will be reported must
be answered no matter what the measurement model. Building Bayes
nets requires only that the questioning goes slightly deeper, asking the
experts questions about the strength of the relationships. With the ECD
design perspective and ECD design tools, much of the work of building
the Bayesian network flows from the process of designing the assessment.

10. Bayes net models are “useful.” The statistician George Box (1976) stated
“All models are false, but some models are useful.” Bayes nets built using
ECD fall into what Berliner (2005) called “Bayesian hierarchical mod-
eling.” In particular, they incorporate a probabilistic data model and a
process model built around our cognitive understanding of the domain
to be assessed. Berliner claims that “Simple models in conjunction with
Bayesian hierarchical modeling may be better than either ‘more faithful
models’ or ‘statistical models.” ” The most useful model for every purpose
may not be a Bayes net, but Bayes nets will often be a worthwhile place
to look for useful models.

1.5 What Is in This Book

This book gathers together in one place many of the ideas and structures that
form the psychometric underpinnings of evidence-centered design. It concen-
trates on the mathematical models underlying evidence-centered design, in
particular, the use of graphical models to represent cognitive models of a
domain. It talks about how to build the models, score assessments with them,
and refine them from data.

This book is not a complete description of ECD. In particular, it does
not deal with many of the aspects of how one designs a cognitive model of a
domain and then refines it for assessment. That part of the story will be left
for a future book, although much of it has been laid out in a series of papers
(Behrens et al. 2012, Mislevy et al., 1999b; Mislevy et al. 2003c; Mislevy et al.
2002c, 2003b; Mislevy et al. 2006). Chapters 2, 12, and 14 touch upon some
of these broader issues, but mostly in service of setting the context for the
more mathematical work.

The goal of this book is to give the reader enough familiarity with Bayesian
networks and other graphical models to be able to build models to mirror a
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particular cognitive theory and support it with an assessment. It deliberately
takes a model construction rather than computational emphasis. Many other
texts (e.g., Pearl 1988; Jensen 1996; Almond 1995; Cowell et al. 1999; Neapoli-
tan 1990; Neapolitan 2004) cover the computational aspects. Our goal is to
give enough background to discuss the implications for model construction
and understand the connections with other literature working with graphical
models.

The book is designed to be used as a textbook for a graduate student
in education or psychology. We have assumed that the student has taken at
least one course in probability and statistics, or a discipline-based course with
a strong statistical component. We also assume some familiarity with testing,
in particular, item response theory. Although this is not a prerequisite per
se, many of the examples and explanations draw on ideas from item response
theory. We have added exercises at the end of the chapters to facilitate its use
as a textbook. Chapters 6 and 11 concentrate on extensive data sets which
can be used for larger projects. Appendix A contains links to software tools
for working with Bayes nets and links to data sets which are available for
classroom projects, including an online glossary to provide quick reference to
definitions for terms relating to ECD and Bayesian networks.

The chapters are organized into three parts. Part I lays out the basic
definitions and key ideas from the theory of graphical models that will be used
throughout the rest of the book. Part II moves to the challenges of building,
estimating, and revising models from data. Part III brings these tools fully to
bear on problems of educational assessment.

Part I is not meant to be a complete course in Bayesian networks, but
we have included enough of the essential definitions and algorithms to enable
readers to follow the applications in educational testing. Readers looking for a
more complete introduction should see Pearl (1988) or Jensen (1996). Readers
looking for a more mathematical treatment should see Whittaker (1990) or
Lauritzen (1996).

Chapter 2 provides an overview of evidence-centered design both to moti-
vate the subsequent mathematics and to introduce some terms that will not be
formally defined until Chap. 12. Chapter 3 provides a review of probability and
Bayesian statistics, with careful attention to representing states of knowledge
with probability distributions. Chapter 4 provides some of the basic definitions
of graph theory and Bayesian networks, paying particular attention to the rep-
resentation of conditional independence with graphs. Chapter 5 describes the
basic algorithms for moving probability around graphs, and how we can use
them to draw inferences about students’ proficiencies based on the outcomes
of assessment tasks. Chapter 6 looks at some examples of the application of
Bayesian networks to educational testing. Chapter 7 defines the concept of
weight of evidence and how it can be used to both explain scores and select
items.

While Part I concentrates on models for a single learner, Part II discusses
what can be done with data from many learners. Chapter 8 describes the
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parameters used in these models, and introduces some models with reduced
parameters. Chapter 9 describes the EM algorithm and Markov Chain Monte
Carlo (MCMC) estimation, the techniques we have been using to fit models
to data. This is by no means a complete treatment for either of the two (e.g.,
Gilks et al. (1996) and Lynch (2007) provide good starting points for MCMC).
Chapter 10 looks at the problem of diagnosing problems with the model from
patterns in the data. Learning models from data is a natural extension of
model criticism, and the chapter includes a brief survey of the literature on
learning models. Chapter 11 looks at our experiences in applying these ideas
to one particular example.

While the first two parts primarily address the mathematical aspects of
using Bayesian networks as a measurement model for an assessment, Part III
ties the mathematics back to psychology and the assessment design. Chap-
ter 12 defines the basic design elements of evidence-centered design and
describes the construction of a model. Chapter 13 shows how to use the mathe-
matics to build a scoring engine for an online assessment or intelligent tutoring
system.

Chapters 14 and 15 explore a prototype assessment for high school trans-
mission genetics, named Biomass. Chapter 14 provides a sketch of how the
system was designed; in particular, how the proficiency model was constructed
from national science standards, how tasks were developed, and observable
variables were defined for assessing higher order skills that involve applying
the scientific method in the context of biology. Chapter 15 explores the con-
struction of the Bayesian network scoring engine for Biomass, both how it was
constructed from expert opinion and how pilot data could be used to update
the model parameters.

The last chapter reviews some of what we have learned in the course of
applying graphical models to educational assessment. This field is very new,
and there is a lot more to learn. Many parts of psychometrics that have been
well explored in the context of item response theory (IRT) and classical test
theory remain to be developed for graphical models. The final chapter surveys
some of these research frontiers.
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An Introduction to Evidence-Centered Design

Although assessment design is an important part of this book, we do not tackle
it in a formal way until Part III. Part I builds up a class of mathematical
models for scoring an assessment, and Part IT discusses how the mathemat-
ical models can be refined with data. Although throughout the book there
are references to cognitive processes that the probability distributions model,
the full discussion of assessment design follows the discussion of the more
mathematical issues.

This presents two problems. First, a meaningful discussion of the statistical
modeling of the assessment requires a basic understanding of the constraints
and affordances of the assessment design process. The second is that the dis-
cussion of the statistical models and processes requires certain technical terms,
in particular, proficiency model, evidence model, task model, and assembly
model, that are not formally defined until Chap. 12. This chapter provides
brief working definitions which will be sufficient to describe the mathematical
models, leaving the more nuanced discussion of assessment design until after
the mathematical tools have been defined.

Evidence-centered design (ECD) is an approach to constructing educa-
tional assessments in terms of evidentiary arguments. This chapter introduces
the basic ideas of ECD, including some of the terminology and models that
have been developed to implement the approach. In particular, it presents
the high-level models of the Conceptual Assessment Framework (see also
Chap. 12) and the four-process architecture for assessment delivery systems
(see also Chap. 13). Special attention is given to the roles of probability-
based reasoning in accumulating evidence across task performances, in terms
of belief about unobservable variables that characterize the knowledge, skills,
and/or abilities of students. This is the role traditionally associated with psy-
chometric models, such as item response theory and latent class models. Later
chapters will develop Bayesian network models which unify the ideas and pro-
vide a foundation for extending probability-based reasoning in assessment
applications more broadly. This brief overview of evidence-centered design,
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then, provides context for where and how graphical models fit into the larger
enterprise of educational and psychological assessment.

2.1 Overview

All educational assessments have in common the desire to reason from partic-
ular things students say, do, or make, to inferences about what they know or
can do more broadly. Over the past century a number of assessment methods
have evolved for addressing this problem in a principled and systematic man-
ner. The measurement models of classical test theory and, more recently, item
response theory (IRT), latent class analysis, and cognitive diagnosis modeling,
have proved quite satisfactory for the large scale tests and classroom quizzes
with which every reader is by now quite familiar.

But off-the-shelf assessments and standardized tests are increasingly unsat-
isfactory for guiding learning and evaluating students’ progress. Advances in
cognitive and instructional sciences stretch our expectations about the kinds
of knowledge and skills we want to develop in students, and the kinds of obser-
vations we need to evidence them (Pelligrino et al. 2001; Moss et al. 2008).
Advances in technology make it possible to evoke evidence of knowledge more
broadly conceived, and to capture more complex performances. One of the
most serious bottlenecks we face, however, is making sense of complex data
that result.

Fortunately, advances in evidentiary reasoning (Schum 1994) and in sta-
tistical modeling (Gelman et al. 2013a) allow us to bring probability-based
reasoning to bear on the problems of modeling and uncertainty that arise nat-
urally in all assessments. These advances extend the principles upon which
familiar test theory is grounded to more varied and complex inferences from
more complex data (Mislevy 1994).

We cannot simply construct “good tasks” in isolation, however, and hope
that someone else down the line will figure out “how to score them.” We
must design a complex assessment from the very start around the inferences
we want to make, the observations we need to ground them, the situations
that will evoke those observations, and the chain of reasoning that connects
them (Messick 1994). We can expect iteration and refinement as we learn,
from data, whether the patterns we observe accord with our theories and
our expectations; we may circle back to improve our theories, our tasks, or
our analytic models (Mislevy et al. 2012). But the point is that while more
complex statistical models may indeed be required, they should evolve from
the substance of the assessment problem, jointly with the purposes of the
assessment and the design of tasks to provide observable evidence.

ECD lays out a conceptual design framework for the elements of a coher-
ent assessment, at a level of generality that supports a broad range of assess-
ment types, from familiar standardized tests and classroom quizzes, to coached
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practice systems and simulation-based assessments, to portfolios and student—
tutor interaction. The design framework is based on the principles of evi-
dentiary reasoning and the exigencies of assessment production and delivery.
Designing assessment products in such a framework ensures that the way in
which evidence is gathered and interpreted bears on the underlying knowledge
and the purposes the assessment is intended to address. The common design
architecture further aids coordination among the work of different special-
ists, such as subject matter experts, statisticians, instructors, task authors,
delivery-process developers, and interface designers. While the primary focus
of the current volume is building, fitting, testing, and reasoning with statis-
tical models, this short chapter places such models into the context of the
assessment enterprise. It will serve to motivate, we hope, the following chap-
ters on technical issues of this sort. After that machinery has been developed,
Chap. 12 returns to ECD, to examine it more closely and work through some
examples.

Section 2.4 describes a set of models called the Conceptual Assessment
Framework, or CAF, and the four-process architecture for assessment delivery
systems. The CAF is not itself the assessment design process, but rather the
end product of the assessment design process. Although this book does not
cover the earlier stages of the design process, Sect. 2.3 touches on them briefly.
Mislevy, Steinberg, and Almond (2003b) present a fuller treatment of ECD
including connections to the philosophy of argument and discussions of the
earlier stages of design. Almond et al. (2002a) and Almond et al. (2002b)
amplify the delivery system architecture and its connection to the design.

One of the great strengths of evidence-centered design is that it provides
a set of first principles, based on evidentiary reasoning, for answering ques-
tions about assessment design. Section 2.2 provides a rationale for assessment
as a special case of evidentiary reasoning, with validity as the grounds for
the inferences drawn from assessment data (Cronbach 1989; Embretson 1983;
Kane 1992; Kane 2006; Messick 1989; Messick 1994; Mislevy 2009). ECD pro-
vides a structural framework for parsing and developing assessments from this
perspective.

2.2 Assessment as Evidentiary Argument

Advances in cognitive psychology deepen our understanding of how students
gain and use knowledge. Advances in technology make it possible to cap-
ture more complex performances in assessment settings, by including, for
example, simulation, interactivity, collaboration, and constructed responses
in digital form. Automated methods have become available for parsing com-
plex work products and identifying educationally meaningful features of them
Williamson et al. (2006b).

The challenge is in knowing just how to put all this new knowledge to work
to best serve the purposes of an assessment. Familiar practices for designing
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and analyzing single-score tests composed of familiar items are useful because
they are coherent, but the schemas are limited to the constraints under which
they evolved—the kinds of tasks, purposes, psychological assumptions, cost
expectations, and so on that define the space of tests they produce. Break-
ing beyond the constraints requires not only the means for doing so (through
advances such as those mentioned above) but schemas for producing assess-
ments that are again coherent, but in a larger design space; that is, assessments
that may indeed gather complex data to ground inferences about complex
proficiency models, to gauge multidimensional learning or to evaluate multi-
faceted programs—but which are built on a sound chain of reasoning from
what we propose to observe to what we want to infer. We want to design
in reverse direction: What do we want to infer? What then must we observe
in what kinds of situations, and how are the observations interpreted as evi-
dence?

Recent work on validity in assessment lays the conceptual groundwork
for such an approach. The contemporary view focuses on the support—
conceptual, substantive, and statistical—that assessment data provide for
inferences or actions (Messick 1989). From this view, an assessment is a spe-
cial case of evidentiary reasoning. Messick (1994) lays out the general form of
an assessment design argument in the quotation below. (We will look more
closely at assessment arguments in Sect. 12.1.2.)

A construct-centered approach [to assessment design] would begin by
asking what complex of knowledge, skills, or other attribute should
be assessed, presumably because they are tied to explicit or implicit
objectives of instruction or are otherwise valued by society. Next, what
behaviors or performances should reveal those constructs, and what
tasks or situations should elicit those behaviors? Thus, the nature of
the construct guides the selection or construction of relevant tasks as
well as the rational development of construct-based scoring criteria
and rubrics (p. 17).

This perspective organizes thinking for designing assessments for all kinds
of purposes, using all kinds of data, task types, scoring methods, and statistical
models. An assessment interpretation reasons from what we observe to what
we then believe about students’ proficiencies. Assessment design reasons in
the reverse direction, laying out the elements of an assessment in a way that
will support the needed interpretations.

For the purpose of the assessment, what are the proficiencies we are inter-
ested in? In what situations do people draw on them, to accomplish what
ends, using what tools and representations, and producing what kinds of out-
comes? Taking context and resources into account, we consider task situations
we can devise and observations we can make to best ground our inferences.
If interactions are key to getting evidence about some proficiency, for exam-
ple, we can delve into what features a simulation must contain, and what the
student must be be able to do, in order to exhibit the knowledge and skills
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we care about. We craft scoring methods to pick up the clues that will then
be present in performances. We construct statistical models that will synthe-
size evidence across multiple aspects of a given task performance, and across
multiple task performances. These decisions in the assessment design process
build the inferential pathway we then follow back from examinees’ behaviors
in the task setting to inferences about what they know or can do. From an
evidentiary reasoning perspective, we can examine the impact of these design
decisions on the inferences we ultimately want to make.

As powerful as it is in organizing thinking, simply having this concep-
tual point of view is not as helpful as it could be in carrying out the actual
work of designing and implementing assessments. A more structured frame-
work is needed to provide common terminology and design objects that make
the design of an assessment explicit and link the elements of the design to
the processes that must be carried out in an operational assessment. Such a
framework not only makes the underlying evidentiary structure of an assess-
ment more explicit, but it makes it easier to reuse and to share the operational
elements of an assessment. The evidence-centered design models address this
need.

2.3 The Process of Design

The first step in an assessment design is to establish the purpose of the assess-
ment. Many fundamental design trade-offs, e.g., assessment length versus reli-
ability, breadth across multiple aspects of proficiency versus depth in a single
proficiency, are ultimately resolved by deciding how to best meet the purpose
of the assessment. Fixing the purpose of the assessment early in the process
has a marvelous focusing effect on the design and development processes.

Fixing the purpose, however, is easier said than done. Different test users
may have different and competing purposes in mind for a proposed assessment.
Expectations can be unrealistic, and can change over time. The purpose of
an assessment often starts as somewhat vague in the beginning of the design
process and becomes further refined as time goes on.

The ECD framework describes the assessment design process in three
stages: domain analysis—gathering and organizing information related to the
cognitive background of the assessment as well as the purposes and constraints
of the design process; domain modeling—building a preliminary sketch of the
assessment argument as a general, reusable framework for a family of possible
assessments; and the conceptual assessment framework—filling in the details
of the initial sketch, particularly resolving design decisions to focus the prod-
uct on a particular purpose.

The lines between requirements-gathering, analysis, design, and implemen-
tation are difficult to draw (indeed, the authors have argued among themselves
about which of the steps of the ECD process correspond to which steps of the
general engineering workflow). Describing the ECD process in phases might
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seem to suggest a waterfall development process, where each stage flows into
the next and the flow is just one way. Real-world assessment design processes
are usually iterative, with prototypes and cycles; things learned at later stages
of design often prompt the designer to revisit, rethink, and revise work done
at the earlier stages. Mislevy, Steinberg, and Almond (2003b) discussed the
ECD design process in more detail.

For the most part, this book does not delve deeply into these design issues
so that it can focus on the theory, the roles, and the mechanics of Bayesian
networks in the assessment argument. Most of the examples assume that the
conceptual assessment framework has already been specified. Only with the
Biomass example of Chaps. 14 and 15 do we work through the design process
from the very beginning: from targeted educational standards, through the
CAF, to the innovative, interactive tasks, and a Bayes nets scoring model that
result from the unified design process. It does not hurt to say again, though,
that complex measurement models such as Bayesian networks will provide
the greatest value when they arise from a principled design process to serve
an evidentiary argument, rather than applied retrospectively to data that are
collected without clear hypotheses connecting proficiencies and the situations
and performances that reveal them (iteration and refinement notwithstand-
ing).

Section 2.4, then, describes the basic design objects of the CAF. The
domain-model design objects are basically lighter weight versions of their
CAF counterparts; detailed enough to support the assessment argument, but
not yet detailed enough to support implementation. In the domain modeling
phase, the design team are encouraged to think about how the assessment
argument would play out for multiple purposes and in multiple settings. It
helps to identify opportunities in which argument structures from one assess-
ment can be reused in another.

One kind of design object, developed in the early stages of the design pro-
cess but used extensively in the CAF, is the claim. A claim is a statement
about a participant that the assessment will provide evidence for (or against).
Claims are important because they give clarity to the purpose of an assess-
ment. One of the most important design decisions is deciding which claims will
be the primary focus of an assessment. Indeed, the whole question of validity
could be framed as determining to what extent an assessment really supports
its claims.

A simple example, used through the rest of the chapter, illustrates these
ideas.

Example 2.1 (Calculus Placement Exam). University C requires all stu-
dents to take 2 years of calculus, in the form of a two-semester freshman
sequence followed by a two-semester sophomore sequence. Typically a stu-
dent starts with the first semester in the freshman year, but some students
(particularly those who took an advanced calculus class in high school) start
with the second semester, or with the third semester with the sophomore cal-



2.3 The Process of Design 25

culus class. Some students do not have the necessary background to begin the
sequence, and should take a precalculus remedial course first. University C
administers a placement exam to all incoming freshmen to determine how to
best place them into the calculus sequence.

Claims in this assessment are based on the student having proficiencies that
are addressed in each of the courses in the calculus series. Examples include,
“Student can integrate functions of one variable,” and “Student can find par-
tial derivatives of multivariate functions.” Note that there may be competing
interest in the claims. For example, the Physics department may have more
interest in the claim “Student can solve integrals in two and three dimen-
sions” while the Math department is more interested in the claim “Student
can construct a valid mathematical proof.”

Often claims are arranged hierarchically. For example, the claim “Student
can integrate functions of one variable” involves the subclaims, “Student can
integrate polynomial functions” and “Students can integrate trigonometric
functions” as well as the subclaims “Student can use transformation of vari-
ables to solve integrals” and “Student can use partial fractions to solve inte-
grals.” “Student can construct a valid mathematical proof” will need further
specification with respect to the particular models and the kind of the proof at
issue (e.g., existence proof, induction, construction, proof by contradiction).
It will be seen that a set of claims is not sufficient to determine the proficiency
model for a given purpose. Composite claims that bundle finer-grained claims
dealing with skills in the same semester are good enough for course placement,
but the finer-grained claims would be distinguished for quizzes and diagnostic
tests during a semester.

In this particular case, the claims are relatively easy to establish. They will
fall naturally out of the syllabus for the calculus series and the calculus text
books. They are not simply a list of topics, but rather the kinds of problems,
proofs, and applications a student is expected to be able to carry out.

Another frequent source of claims is the educational standards published
by states and content area associations, such as the Next Generation Science
Standards (NGSS Lead States 2013). Grain size and specificity vary from one
set of standards to another, and often they need to be refined or clarified
to take the form of claims. They may not be phrased in terms of targeted
capabilities of students, or indicate what kinds of evidence is needed. It is
not enough say, for example, that “Student understands what constitutes a
valid mathematical proof.” Chapter 14 provides an example of moving from
standards to a framework of claims to ground an assessment.

Claims play two key roles in domain modeling: (1) including and excluding
specific claims clarifies the purpose of the assessment, and (2) laying them out
starts the process of developing an assessment argument. These roles are so
important that while most domain modeling design objects are refined and
expanded in the CAF, claims remain largely in their initial form.
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2.4 Basic ECD Structures

In an ECD, an assessment design is expressed through a collection of objects
called the CAF. In any particular assessment, the objects in the CAF models
described in general terms in Sect. 2.4.1 will need to have been designed to
address the purposes of that particular assessment. In line with the Messick
quotation cited above, the characteristics of tasks have been selected to pro-
vide the opportunity to get evidence about the targeted knowledge and skills
(i.e., the claims); the scoring procedures are designed to capture, in terms of
observable variables, the features of student work that are relevant as evi-
dence to that end; and the characteristics of students reflected as proficiency
variables summarize evidence about the relevant knowledge and skills from a
perspective and at a grain size that suit the purpose of the assessment. The
CAF models provide the technical detail required for implementation: speci-
fications, operational requirements, statistical models, details of rubrics, and
SO on.

CAF models provide specifications, but specifications are not an assess-
ment. As examinees and users of assessment ourselves, we see activities: Tasks
being administered, for example, and students interacting with task contexts
to produce essays or solve problems, raters evaluating performances or auto-
mated algorithms evaluating work, score reports being generated, and feed-
back being given to students in practice tests. We will organize all of this
activity in terms of processes, as described below. It is the CAF that specifies
the structure and the relationships of the all content, messages, and products
involved in the processes. In other words, the CAF lays out the structural ele-
ments of an assessment that embody an assessment argument. The delivery
processes described below bring the assessment to life. They are real-world
activities that interact with students, gather evidence, and support inference
using those structures.

In describing both the design and implementation of scoring models and
algorithms, it is useful to have a generic model of the assessment delivery
process. Section 2.4.2 describes the four-process architecture that forms a ref-
erence model for the delivery of an assessment. The four processes of the
delivery system carry out, examinee by examinee, the functions of selecting
and administering tasks, interacting as required with the examinee to present
materials and capture work products, then evaluating responses from each
task and accumulating evidence across them. The information in the CAF
models specs out details of the objects, the processes, and the messages that
are all interacting when an assessment is actually in play. Any real assessment
must have elements that correspond to the four processes in some way. Thus,
exploring how assessment ideas play out in the four process framework pro-
vides an understanding about how they will play out in specific assessment
implementations.



2.4 Basic ECD Structures 27

2.4.1 The Conceptual Assessment Framework

The blueprint for an assessment is called the CAF. To make it easier to rear-
range the pieces of the framework (and deal with them one at a time when
appropriate), the framework is broken up into pieces called models. Each
model provides specifications that answer such critical questions as “What
are we measuring?” or “How do we measure it?”
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Fig. 2.1 The principle design objects of the conceptual assessment framework
(CAF). These models are a bridge between the assessment argument and the oper-
ational activities of an assessment system. Looking at the assessment argument,
they provide a formal framework for specifying the knowledge and skills to be mea-
sured, the conditions under which observations will be made, and the nature of
the evidence that will be gathered to support the intended inference. Looking at
the operational assessment, they describe the requirements for the processes in the
assessment delivery system.
Reprinted from Mislevy et al. (2004) with permission from the Taylor & Francis
Group.

What Are We Measuring? The Proficiency Model

A proficiency model defines one or more variables related to the knowl-
edge, skills, and abilities we wish to measure. A simple proficiency model
characterizes a student in terms of the proportion of a domain of tasks the
student is likely to answer correctly. A more complicated model might char-
acterize a student in terms of degree or nature of knowledge of several kinds,
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each of which may be required in different combinations in different tasks. It
may address aspects of knowledge such as strategy use or propensity to solve
problems with certain characteristics in certain situations. Looking ahead, the
proficiency model variables will be the subset of the variables in a Bayesian
net that accumulate evidence across tasks.

A closer look at the proficiency model in Fig. 2.1 reveals two kinds of
elements. On the right is a graphical structure, a representation of the kinds
of statistical models that are the focus of this book. On the left are a number
of stars that represent claims. Claims are what users of assessments want to be
able to say about examinees, and are the basis of score reports. A reporting
rule maps information from probability distributions for proficiency model
variables to summary statements about the evidence a student’s performance
provides it to support a claim.

Example 2.2 (Calculus Proficiency Model; Example 2.1 Continued).
Given that the primary purpose of the assessment is placement, only one vari-
able is necessary in the proficiency model. This is a discrete variable whose
levels correspond to the various placement options: Remedial Class, 1st
Semester Freshman, 2nd Semester Freshman, 1st Semester Sophomore,
2nd Semester Sophomore, Junior Math Classes. Fig. 2.2 shows the graph-
ical representation of this model. If there were a secondary purpose of trying
to diagnose problems in low performing students, there might be a need for
additional proficiency variables that would accumulate evidence about more
specific skills. However, in a short test, the designers typically need to choose
between good reliability for the main variables and good differential diagno-
sis for problems in the assessment. University C could use two tests: This
placement test first, followed by a diagnostic test just for students placed into
the remedial class, addressing only claims concerning precalculus skills and
accumulating evidence at a grainsize that matches the instructional modules.

. Proficiency Level )

Fig. 2.2 The proficiency model for a single variable, Proficiency Level. The rounded
rectangle with the circle symbol represents the proficiency variable, and the square
bor with the table represents its probability distribution

Reprinted with permission from ETS.

Associated with each level of the proficiency variable are one or more claims.
Which claim is associated with which level depends on how the various
skills are taught in the calculus series. For example, the level 2nd Semester
Freshman would be associated with all of the claims that constitute the kinds
of performances in the kinds of tasks we would want a student successfully
completing that course to be able to do. If multivariate calculus is not taught
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until the sophomore year, then all of the claims associated with multivariate
calculus would be associated with the levels corresponding to the sophomore
year.

Completing the proficiency model requires the specification of a prior dis-
tribution for the proficiency variable. This distribution represents our state
of knowledge about a student who sits down to take the assessment before
we learn their responses to any of the problems they were given. In this case,
a uniform distribution does not seem appropriate as only a very few incom-
ing freshmen will be ready for junior level coursework. However, university
records for the past 5 years might provide a reasonable prior distribution.
This distribution is represented by the square box in Fig. 2.2.

The key idea of the proficiency model is that it represents our state of
knowledge about an examinee’s state of knowledge about calculus. Chapter 13,
which talks about constructing a scoring engine based on Bayesian networks,
talks about making a copy of the proficiency model that tracks our state
of knowledge as we gather more evidence about the examinee’s proficiency.
This copy is called the scoring model. When the examinee first sits down for
the assessment, it is identical to the proficiency model. However, as we see
the answer from each task the examinee attempts, the scoring model will be
updated to reflect our state of knowledge about this particular examinee. The
evidence models determine how that updating is done.

In succeeding chapters, we will look at proficiency models with several
variables, each representing some aspect of knowledge, skill, or ability posited
to influence students’ performance. In each case, the idea is the same as in the
simple placement test case: These variables are how we characterize students’
knowledge; we do not get to observe their values directly; we express what we
do know about them in terms of a probability distribution; and evidence in the
form of behavior in assessment situations allow us to update our knowledge,
by updating the probability distributions accordingly.

How Do We Measure it? The Evidence Model

FEvidence models provide detailed instructions on how we should update
our information about the proficiency model variables given a performance in
the form of examinees’ work products from tasks. An evidence model contains
two parts, which play distinct roles in the assessment argument. They are
the evidence rules for identifying information in students’ performances and
statistical machinery for accumulating information across tasks.

o Fuidence rules describe how observable variables characterize an exami-
nee’s performance in a particular task, from the work product(s) that the
examinee produced for that task. A work product is the capture of some
aspect(s) of a student’s performance. It could be as simple as a binary digit
conveying a response to a true—false item, or as complex as a sequence
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of diagnostic test orders and medical treatments in an extended patient-
management problem in a medical simulation. The observables are the
primary outcomes from task performances, and they provide both infor-
mation that will be used to update our beliefs about proficiency model
variables and information that will be used for task-level feedback. In
an operational assessment, evidence rules guide the evidence identifica-
tion process. Evidence rules concern the identification and summary of
evidence within tasks, in terms of observable variables.! Summary of evi-
dence across tasks will be the role of the statistical part of the evidence
model.

Example 2.3 (Calculus Evidence Rules; Example 2.1 Continued). A
prerequisite to specifying the evidence rules for the calculus placement test,
is specifying the form of the work product. If the test is presented as multiple
choice, then the work product would be the selection made by the examinee.
The evidence rule would match the selection against the key to determine
whether the outcome was correct or not. The observable variable would be
a binary variable indicating whether the answer was correct or not. If the
test is presented as a free response but the observable outcome variable was
correct or incorrect, then the evidence rule would be to compare the student
answer to the correct answer and code it correct if they are mathematically
equivalent. If the observable outcome variable has more than two values to
allow for partial credit, then the evidence rules would be the scorer’s rubric
used to determine partial credit. As typically there is an evidence model for
each task model in an assessment, an assessment could have a mixture of
different types of tasks with different evidence rules.

Evidence rules are indifferent as to whether the scoring is done by comput-
ers or humans. What is necessary is that they provide a clear set of instructions
on how to determine the value of the observables. The key-matching rule of a
multiple-choice test can be done by hand but lends itself readily to computer-
ization. A value of 0 or 1 for an observable variable based on a multiple-choice
item no longer depends on how that value was calculated. Short answer ques-
tions are more difficult for computers, as they need to be able to parse and
recognize equivalent mathematical expressions. Partial credit scoring can be
quite difficult even for human raters. The problem of achieving agreement
among multiple human raters is well studied, and we know that clearly writ-
ten evidence rules and worked-through examples are a big help. Sophisticated
automatic methods such as neural networks and multistage rules can be used
to evaluate observable variables from rich performances in, for example, prob-
lem solving in computer simulations Williamson et al. (2006b)

! Note the distinction between the conceptual notion of evidence about proficiency
and the “stuff” one sees in an operating assessment: The work product as a
capture of something the student has done in the task situation and the observable
variables as evaluated features of it. They do not constitute “evidence” absent
the assessment argument, and their embodiment of elements of it.
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e The statistical part of the evidence model provides information about the
connection between proficiency model variables and observable variables.
Psychometric models are often used for this purpose, including the familiar
classical test theory and item response theory, and the less familiar latent
trait models, cognitive diagnosis models, and Bayes nets. In an operational
assessment, the statistical part of the evidence model, together with the
proficiency model, structure the evidence accumulation process. The sta-
tistical part of the evidence model concerns the accumulation and synthesis
of evidence across tasks, in terms of proficiency variables.

The proficiency model together with the statistical part of the evidence
model constitute the measurement model of the assessment. The theory of
ECD is broad enough that the measurement model does not need to be a prob-
ability model. For example, if the measurement model was a sum of scores or
“number right” model, then the statistical part of the evidence model would
simply state how many points to give for each answer. However, if both the
proficiency model and evidence models are expressed in terms of probabil-
ity distributions, then we can use Bayes theorem as the update mechanism.
Chapter 3 (and most of the rest of the book) explains this in detail. In this
case, the statistical part of the evidence model is specified as a conditional
probability distribution providing the probability of the observable outcome
variables given the examinee’s state of proficiency. The familiar measurement
models from IRT, the logistic function and the normal ogive function, take this
form; that is, conditional probability distributions for a correct item response
given the proficiency variable 6.

Example 2.4 (Calculus Evidence models; Example 2.1 Continued).
Assume that according to the evidence rules, the observable outcome for a task
was a single variable isCorrect taking on values true and false. It is necessary
to specify for each of the possible levels of proficiency the probability that an
examinee at that level will get the item correct. This is shown as the square
box in Fig. 2.3. Note that this figure shows two kinds of variables: evidence
model variables (observables) labeled with a triangle, and proficiency variables
(borrowed from the proficiency model) labeled with a circle.

(. Proficiency Level V¥V Item j Outcome

Fig. 2.3 The measurement model for a dichotomously-scored item. Variables labeled

with a triangle are local to the evidence model, while variables labeled with a circle

are borrowed from the proficiency model (and hence shared across evidence models

for different tasks that provide evidence about them). The square boz represents the

probability distribution, which must be specified to make the model complete
Reprinted with permission from ETS.
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As there are six possible levels for the proficiency variable, six different proba-
bility values must be specified for each evidence model. This is a lot. Chapter 8
discusses some ways of reducing this work. Another possibility is to learn the
probabilities from data. This is called calibration; Part Il discusses this in
detail.

Where Do We Measure it? The Task Model

Task models describe how to structure the kinds of situations we need
to evoke the evidence we need for the evidence models. They describe the
presentation material that is presented to the examinee and the work prod-
ucts, which the examinee generates in response. They also contain task model
variables that describe features of tasks as well as how those features are
related to the presentation material and work products. Those features can
be used by task authors to help structure their work, by psychometricians to
help reduce the number of pretest subjects needed, and by test assemblers
to help ensure that a particular form of the assessment is balanced across
particular kinds of tasks. Mislevy, Steinberg, and Almond (2002c¢) explore the
myriad uses of task model variables.

A task model does not represent a single task, but rather a family of
potential tasks waiting to be written. Tasks are made from task models by
filling in the specification made by the task model, i.e., finding or authoring
presentation material and setting the values of the task model variables to
the corresponding values. A typical assessment may have several task models
representing different families of tasks.

Example 2.5 (Calculus Task Model; Example 2.1 Continued). Con-
sider the task model for a unidimensional integration task. The presentation
material for this type of task consists of the integrand, the limits of the inte-
gral, the instructions given to the examinee (could be shared by several tasks)
and, if the format is multiple-choice, the values of the options. Task model vari-
ables are related to this choice of material. For example, task model variables
might indicate the number of factors, whether or not trigonometric functions,
logarithms or exponential expressions are used, and what integration tech-
niques must be applied to solve the integral. Note that task model variables
could be set before or after the presentation material is authored: e.g., the
author could note that a particular task involves two factors with trigonomet-
ric functions, or be requested to write a task that requires using integration
by parts.

The task model also must contain the expected form of the work product. If
the format is multiple choice, the work product will be some form of capture of
the selection that was made, such as a 0-9 digit in a data file. If the response
is open-ended, the work product from a paper-and-pencil test might be the
student’s written production on the physical answer sheet (to be scored by a
human); from a computer-based test it might be the text in a rich text file
(.rtf) produced by the student’s interaction with the task.
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How Much Do We Need to Measure? The Assembly Model

Assembly models describe how the proficiency models, evidence models,
and task models must work together to form the psychometric backbone of
the assessment. The assembly model specifies what constitutes a valid form
of the assessment. This is especially important if not all examinees get the
same form (e.g., there are multiple forms for security reasons, or the test is
adaptive). The rules for constructing a form are specified through targets and
constraints. Targets describe how accurately each proficiency model variable
must be measured (see Chap. 7), and constraints describe how tasks must be
balanced to properly reflect the breadth and diversity of the domain being
assessed.

Example 2.6 (Calculus Assembly Model; Example 2.1 Continued).
In constructing the assembly model for the calculus placement test, it is impor-
tant that the range of tasks reflect the syllabus for the calculus sequence. This
is generally achieved through constraints. It is important that the test give
good information about whether or not the student is in the lower placement
categories for all students. Only for a few students will we be interested in the
sophomore and junior levels. This is easier to handle in an adaptive test. If the
delivery mode is computer-based, then we could use the techniques described
in Chap. 7 to make an adaptive test. If the delivery mode is paper-and-pencil,
we could use a brief self-scored routing test or put the advanced items into
a separate section at the end and instruct the students to work on this part
only if they feel confident of their performance in the earlier sections.

How Does It Look? The Presentation Model

Assessments today can be delivered through many different means; for
example, paper and pencil, standalone computer or through the web, on a
handheld device, read aloud over the phone, or as portfolios assembled by
the students. A presentation model describes how the tasks appear in various
settings, providing a style sheet for organizing the material to be presented
and captured.

A common use of this idea is to support presentation of the same assess-
ment in both paper and pencil and computer format. A more recent but
increasingly important use of the presentation model is alternative presenta-
tion modes to accommodate examinees with disabilities (Shaftel et al. 2005;
Russell 2011). This latter usage requires a careful examination of exactly
what is being claim and what constitutes evidence, as different students
may be able provide to evidence about the same capabilities despite dif-
ferent ways of accessing information, interacting with tasks, or producing
performances—in measurement terms, exactly what constitutes construct-
relevant and construct-irrelevant sources of variance (Hansen et al. 2003; Mis-
levy et al. 2013).
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Putting It All Together: The Delivery System Model

The delivery system model describes the collection of proficiency, evidence,
task, assembly, and presentation models necessary for the assessment and how
they will work together. It also describes issues that cut across all of the other
models, such as platform, security, and timing.

Breaking the assessment specification up into many smaller pieces enables
us to reassemble pieces in different configurations for different purposes. For
example, a diagnostic assessment requires a finer grain size proficiency model
than a selection/placement assessment. If we want to use the same tasks in
both the diagnostic and selection assessment, we can use the same task models
(written generally enough to address both purposes). However, we will want
different evidence models, each one appropriate to the level of detail consistent
with the purpose of the assessment.

2.4.2 Four-Process Architecture for Assessment Delivery

As we have noted, assessments are delivered in a variety of platforms, from the
more familiar paper-and-pencil tests, oral exams, and more recent computer-
based tests, to the newer ways of delivering tests through the Web, over the
phone, and with handheld devices such as minitablet computers and smart-
phones.

To assist in planning for all these diverse ways of delivering a test, ECD
provides a generic framework for test delivery: the four -process delivery archi-
tecture (Almond et al. 2002a; Almond et al. 2002b). The four-process deliv-
ery architecture shown in Fig. 2.4 is an ideal system; any realized assessment
system must contain these four processes in some form or other. They are
essential to making the observations and drawing the inferences that com-
prise an assessment argument. This is true whether some of the processes
are collapsed or degenerate in a given system, and regardless of whether they
are carried out by humans, computers, or human—computer interactions. The
IMS Consortium adopted this idealization as a reference model for use with
their standards on question and test interoperability (IMS 2000), although
they used different names for different pieces.

How Is the Interaction with the Examinee Handled? The Pre-
sentation Process

The presentation process is responsible for presenting the task and all
supporting presentation material, managing interaction with the student, and
gathering the work products. Examples include a display engine for computer-
based testing, a simulator which can capture an activity trace, a protocol for
a structured interview and the human administering it, and a system for dis-
tributing test booklets and capturing and scanning the answer sheets. In a
paper-and-pencil assessment, the presentation process concerns administering
preassembled test booklets to examinees and collecting and possibly scanning
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Activity

Selection Presentation
Administrator Participant
Task/
Evidence
Composite
Library
Evidence Evidence
Accumulation Identification
Summary Feedback Task Level Feedback

Fig. 2.4 The four principle processes in the assessment cycle. The activity selec-
tion process selects a task (“tasks” could include items, sets of items, simulation
problems, or learning activities, as examples) and directs the presentation process
to display it. When the participant has finished interacting with the task, the pre-
sentation process sends the results (one or more work products) to the evidence
identification process. This process identifies essential observations about the results
and passes them to the evidence accumulation process, which updates the scoring
record, tracking our beliefs about the participant’s knowledge. All four processes
add information to the Results Database. The activity selection process then makes
a decision about what to do next, based on the current beliefs about the participant
or other criteria
Reprinted from Mislevy et al. (2004) with permission from the Taylor & Francis
Group.

the answer sheets. In a computerized adaptive assessment, presentation con-
cerns presenting a sequence of tasks to an examinee one at a time (as directed
by the activity selection process), in each instance capturing a response. The
next processes will evaluate it on the spot and use the information to guide
the selection of the next task.

How Is Evidence Extracted from a Task Performance? The FEvi-
dence Identification Process

The evidence identification process (called response processing in the IMS
specification) is responsible for identifying the key features of the work prod-
uct that are the observable outcomes for one particular task. The observable
outcomes can go back to the participant for task-level feedback, be passed on
to the evidence accumulation process, or both. Examples include matching a
selected response to an answer key, running an essay through an engine, and
having a human rater score a student portfolio according to a rubric. The
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evidence rules from the CAF specify how this is to be accomplished. Evidence
identification can consist of multiple stages, as when lexical and syntactic fea-
tures are identified in an essay and a regression model is used to summarize
them into a single score for a response to this task.

A question sometimes arises as to whether a particular operation is part
of the presentation process or the evidence identification process. Often the
answer lies with how the system could possibly be reused or reconfigured, and
steps in a continuous process are parsed out in CAF models accordingly.

Consider a multiple-choice item presented on a computer for which the evi-
dence model calls for a binary observable isCorrect. The presentation process
must present the stem, key, and distractors to the examinee, and provide some
mechanism for making a selection. The examinees make some kind of gesture
(clicking the mouse, pressing a key) to indicate their selections. The assess-
ment delivery system must translate that gesture first into a code indicating
which option was selected, then match that against the key.

In this setup, the ideal division of labor is achieved when the work product
consists of a specified representation of the selection made by the examinee.
Using the raw mouse click as the work product is too detailed. It requires the
evidence identification process to know details of the formatting of the item
on the screen in order to interpret the raw data. We would like the freedom to
use an alternative presentation process that uses key presses to indicate the
selections without having to also change the rules of evidence. On the other
hand, having the presentation process match the selection to the key goes
too far in interpreting the raw response. We want the freedom to substitute
an alternative evidence identification process that uses which distractor was
selected to help diagnose misconceptions without needing to also change the
presentation process.

How Is Evidence Accumulated Across Tasks? The FEwvidence
Accumulation Process

The evidence accumulation process (called summary scoring in the TMS
specification) process is responsible for synthesizing the information from
observable outcomes across multiple tasks to produce section and assessment
level scores. Examples include the IRT engine used in GRE computerized
adaptive testing (CAT) testing, the Bayesian network evidence accumulation
process at the heart of this book, and simply counting up the number of right
answers. The measurement model in the CAF associated with a particular
task specifies how this is to be accomplished.

What Happens Next? The Activity Selection Process

The activity selection process is responsible for deciding what the next
task should be and when to stop the assessment. When making these deci-
sions, adaptive assessments consult the current state of what is known about a
student, in terms of the values of the proficiency-model variables as they have
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been updated thus far by the evidence accumulation process (Chap. 7 talks
about some possible measures). An instructional system will also make deci-
sions about switching between assessment and instruction (Shute 2003 April).
Examples of activity selection processes include simple linear sequencing (for
example, paper-and-pencil tests, although the student may chose the order in
which to answer items within each section as it is administered), and comput-
erized adaptive item selection (e.g., the GRE CAT), and student choice as to
when to move on in a self-paced practice system.

Where Do Processes Get the Information They Need? The
Task/Evidence Composite Library

All four processes require certain kinds of data in order to do their jobs:
The presentation process requires the text, pictures, and other material to be
displayed. The evidence identification process requires the “key,” the param-
eters for algorithms, or other evidence rule data with which to evaluate the
work products. The evidence accumulation process requires the parameters
that provide the “weights of evidence” for each task, such as scoring weights,
item response theory parameters, or the conditional probabilities in Bayes nets
discussed in this book. The activity selection process requires classification
and information codes to balance the assessment form. The Task/Evidence
Composite Library is a unified database that stores this information.

We have suggested, without detailing, the mapping between the Design
models in the conceptual assessment framework and the four processes. All of
the design decisions made in the blueprint are reflected either directly in the
implementation or in one of the processes leading up to the implementation.
Again, further discussion and examples are available in Almond et al. (2002a);
Almond et al. (2002b).

Example 2.7 (Calculus Test Delivery System; Example 2.1 Contin-
ued). Consider first a paper-and-pencil version of the calculus placement
test. The activity selection process consists of rules for assembling and dis-
tributing the paper-and-pencil forms. One possible mechanism is to group the
tasks into sections of increasing difficulty and instruct the examinee to not
attempt the next section unless they are fairly confident of their answers to
the previous section. The presentation process consists of the mechanism for
distributing the forms and collecting and scanning the answer sheets. In this
case, the work product for each task is a free response that has been scanned
and stored as bitmap image. The evidence identification process consists of
scoring system in which the work products are distributed to raters who mark
them as correct or incorrect, and record the scored outcomes. The evidence
accumulation process is a Bayesian network that incorporates the information
from the observable variables (i.e., “absorbs the evidence”) and calculates the
probability that the examinee is in each of the six possible groups.

Now, consider an alternative computer delivered version of the assessment
using multiple-choice versions of the tasks. In this case, the activity selection
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process is a version of the critiquing algorithm of Chap. 7 that tries to estab-
lish whether the examinee is at or above each of the possible levels in sequence
(ready for 1st semester, 2nd semester, and so on). The presentation pro-
cess displays the task and records the selection made by the examinee. The
evidence identification process matches the selection to the key and sets the
value of the observable outcome variable to correct or incorrect as appropriate.
The evidence accumulation process is again Bayesian network engine which
absorbs the evidence from the evidence identification process and calculates
the probability that the examinee is in each group based on the evidence so
far. Note that the activity selection process can query the Bayes net when
making the decision about which task to select or whether to stop or move on
to target the next level of proficiency.

2.4.3 Pretesting and Calibration

In order to score an assessment, the evidence identification process or the
evidence accumulation process (or both) may need to build in empirical infor-
mation from previous administrations of the tasks. In the case of evidence
identification, this information is incorporated into evidence rules. For exam-
ple, an automated essay-scoring system can be “trained” to match human
ratings given values of lower-level lexical and syntactic features of a partic-
ular essay (Deane 2006). (Calibration of evidence-identification processes is
not discussed in this book, but see Williamson et al. (2006b).) In the case of
evidence accumulation, it appears in scoring weights or task-specific evidence
model parameters. We refer to a start-up set of data from which to estimate
these values as pretest data, and the operation of determining the values as
calibration. An evidence model tuned to work with a specific task is called a
link model (Chap. 13).

If the measurement model for the assessment is a probability model, we can
use Bayes theorem to “learn” the task-specific parameters in the link model.
The original evidence model provides a prior distribution for the parameters,
based on the experts’ understanding of the domain and our previous experi-
ence with similar task models. We can then use Bayes theorem to refine those
priors with pretest data. Part II describes two methods for doing this with
Bayesian network models.

Using probability-based models has another advantage as well. The model
makes a prediction for what the pretest data will look like before they are
gathered. If the pretest data look “surprising” compared to the model, then
this suggests we might want to refine our model. This principle extends to
ways to compare models and to search for a best model. Chapter 10 looks
at some techniques for model criticism and model search. This is particu-
larly important when the measurement model has been built to reflect our
understanding of the underlying cognitive processes. In this case, critiquing
the model will help us refine our knowledge of the cognitive processes we are
trying to measure.
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2.5 Conclusion

Developments in statistical methodologies and new kinds of psychometric
measurement models hold the promise of supporting a wider variety of edu-
cational assessments than have been traditionally used. To capitalize on their
potential, however, one cannot think of using them in isolation from the other
components of assessment design. All must work in concert to create an assess-
ment that is at once coherent and practicable.

Toward this end, it will be of significant benefit to have a shared framework
for talking about the roles that each facet of the design elements and delivery
processes play in the support of a coherent assessment argument. Evidence-
centered design provides such a framework, and can thus prove useful for
understanding how graphical modeling techniques fit into assessment systems.

Exercises

2.1. The basic models of the ECD “conceptual assessment framework” are the
proficiency model, the evidence model, and the task model. In which of these
models are variables that concern characteristics of the situations in which
students say, do, or make things? In which are variables that concern charac-
teristics of the students? In which are variables that concern characteristics
of the particular things students say, do, or make?

2.2. What are the two submodels of the evidence model? How do their roles
differ from one another?

2.3. How are the proficiency model and the evidence model related to each
other, in terms of both shared or overlapping information and connections in
the assessment argument?

2.4. How are the evidence model and the task model related to each other,
in terms of both shared or overlapping information and connections in the
assessment argument?

2.5. How are the proficiency model and the task model related to each other,
in terms of both shared or overlapping information and connections in the
assessment argument?

2.6. How are the assembly model and the task model related to each other,
in terms of both shared or overlapping information and connections in the
assessment argument?

2.7. How are the assembly model and the proficiency model related to each
other, in terms of both shared or overlapping information and connections in
the assessment argument?
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2.8. An important part of the process of designing any assessment is selecting
items (or tasks) for a form. Which ECD model specifies what constitutes a
valid form?

2.9. A common task teachers use to assess a student is the book report, where
the student reads a book and then writes (or presents) a report based on the
contents. Consider the Book Report as a task model. What are the presenta-
tion material and work products? List some possible task model variables.

2.10. The Book Report is used across a large number of grades. How do
the values of the task model variables change when the Book Report task is
used in a 6th grade classroom as opposed to a 4th grade classroom? Which
ECD model(s) must be changed to ensure that a Book Report task is grade
appropriate?

2.11. If the form of the work product in the Book Report task model is
changed from a written report to an oral presentation, how much do the
other models change? (Changing the expected work product form variable
changes the evidentiary focus of the task. Often when changing a task model
variable changes the evidentiary focus of a task, it is helpful to split the task
model into two task models, in this case Oral Book Report and Written Book
Report task models.)

2.12. Decision analysts often use what is called the clarity test when defining
variables. A variable passes the clarity test if a person who had access to all
of the available data (referred to as a “clairvoyant” in this literature) could
unambiguously assign a value to the variable. A variable that does not meet
the clarity test must be refined in order to begin statistical modeling. For
example, “the SAT score of a candidate” does not meet the clarity test, but
“the most recent SAT score of a candidate” and “the highest SAT score of a
candidate” are both refinements that do meet the clarity test.

For each of the following variables, state whether or not they meet the
clarity test. If the do not, suggest how the definition might be revised to meet
the clarity test.

a. The Gender of a participant.

. The Race of a participant.

. The Socioeconomic Status of a participant.

. Whether or not a participant receives a free or reduced price lunch.
. Whether a participant lives in a high crime area.

f. Whether a participant lives in an urban, suburban or rural location.

o a0 O

2.13. What elements of ECD are used to ensure that proficiency variables
pass the clarity test? For observable variables?
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Bayesian Probability and Statistics: a Review

Our ultimate goal is to draw inferences about the state of a student’s profi-
ciency, which is unknown, from observations, which are known. We will press
probability theory into the service of modeling our uncertain knowledge about
the student’s proficiencies. Probability theory is one of the most studied mod-
els for uncertainty and the choice of probability theory brings with it all of
the tools of Bayesian statistics.

Although we assume the reader has had at least one course in probability
and statistics at the college level, typically such courses only dwell briefly on
the Bayesian formulation of statistics (and that unit is often omitted for time
reasons). This chapter, therefore, reviews some of the key differences between
Bayesian and Classical statistics. Section 3.1 discusses the basic definition
of probability and its use in representing states of information. Section 3.2
reviews conditional probability and Bayes’ theorem, tools we will use again
and again. Section 3.3 looks at the concepts of independence and conditional
independence, which will form the basic building blocks of our models; Chap. 4
on graphical representation will build heavily on this section. Section 3.4 pro-
vides a quick review of random variables and Sect. 3.5 looks at how Bayes’
theorem can become a paradigm for learning about unknown quantities.

A short chapter such as this one cannot cover all of the probability theory
and statistics necessary to understand in detail all of the models explored
in this book. We hope that this chapter will provide enough background in
Bayesian ideas of probability so that an educational researcher can at least
follow the arguments at a high level. Readers wishing to follow the more
mathematical parts in greater detail will need to be familiar with Bayesian
statistics at the level of Gelman et al. (2013a).

3.1 Probability: Objective and Subjective

Although all statisticians agree that a probability is a number between 0 and 1,
there are two main schools for interpreting that probability. Perhaps the best
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known uses the Relative Frequency definition (Sect. 3.1.1), based on objec-
tive properties of repeatable experiments. However, Bayesian statistics owes a
large debt to the Subjective school of probability (Sect. 3.1.2). For educational
testing, it is necessary to synthesize the two views into an Objective—Subjective
approach (Sect. 3.1.3).

3.1.1 Objective Notions of Probability

A random experiment is one whose outcome for a single trial is unknown
before the experiment begins, but for which we can make reliable predictions
about the collection of outcomes that comes from repeating the experiment
many times. To make this more definite, consider the following experiment.

Example 3.1 (Balls in an Urn). Consider an urn' that contains b black
balls and w white balls all of the same size and weight, thoroughly mixed
together (Fig. 3.1). Somebody reaches into the urn and draws out a ball
without looking. If the experiment is repeated many times, replacing and
mixing the balls each time, the proportion of black balls drawn will be Hiw.

We say the probability that a drawn ball is black is 6 = 3.

Fig. 3.1 Canonical experiment: balls in an urn
Reprinted with permission from ETS.

! The use of an urn instead of another type of container that might be easier to
draw from is a hallowed tradition in statistics.
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Example 3.1 is a canonical example of a Bernoulli experiment. While we
cannot say much about the outcome of a single experiment, if we have a series
of independent Bernoulli trials, we can say quite a lot about the behavior of
the series. Suppose we have n independent draws from our urn, and let Y be
the number of black balls we obtain in those draws. Combinatorial arguments
(see Ross 1988) show that there are (7)) = #'_y), distinet sequences of n
balls with y blacks and n — y whites. Therefore, we have,

(2)09(1 —0)" Y fory=0,...,n

p(Y =yl0,n) = {0 (3.1)

otherwise.

Equation 3.1 is the well-known binomial distribution with parameters 6 and n.
The mean of the binomial—the expected number of events in n trials—is nf
and the variance is nd(1 — 0). As test items are often scored dichotomously—
1 for right, 0 for wrong—the binomial distribution (and its close cousin the
multinomial distribution) will play a large role in the sequel.

Y/n is the proportion of black balls in a given sample of size n. The mean
of Y/n in repeated experiments is 0, and the variance is @. Note that
as n gets larger and larger, the variance of Y/n gets smaller and smaller. In
other words, the distribution of the proportion of black balls obtained in very
large samples is clustered closely around the true urn proportion 8. Thus, as n
goes to infinity Y/n goes to 6. This is known as the Law of Large Numbers. In
the frequency school of probability (the one most often taught in elementary
statistics courses) this limit is taken as the definition of probability.

Definition. Probability (Frequency Definition). Let {2 be the set of out-
comes from an experiment that can be repeated many times (such as black ball
and white ball). Let A C (2; that is, A is a subset of the outcomes (such as a
black ball). Then the probability of A, P(A), is the limiting proportion of the
times for which the outcome lies in A in an arbitrarily long sequence of trials.

Some important properties of probability come out of this definition. First,
probability is a measure in the same sense that we can measure the length of a
line segment in geometry: the probability of two disjoint (nonoverlapping) sets
is the sum of the probabilities. Second, the smallest possible probability is 0
and the largest is 1. It would be nice to say that probability 1 means definitely
certain and probability 0 means definitely will not occur. This is indeed the
case when {2 consists of a finite set of possible outcomes. However, when the set
of possible outcomes is continuous, such as all the points on the real line, there
are certain pathological cases (such as when A consists of a single point) that
can have probability 0. Therefore, probability 1 means “practically certain”
and probability 0 means “does not occur except in pathological cases.”

3.1.2 Subjective Notions of Probability

The definition of probability given above presents two problems when applied
to educational measurement. First, many of the experiments we wish to
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describe are not repeatable. If we present the same item to a student twice
we expect some learning will have taken place, which renders the two tri-
als no longer independent. Second, many of the quantities we wish to make
probabilistic statements about are not observable at all. For example, we can-
not directly observe a student’s calculus proficiency; we can only indirectly
observe the outcomes when she is asked to solve calculus problems.

Bayesian statistics often talks about probability distributions over unknown
parameters. It is customary in Bayesian statistics to take as the fundamental
definition of probability not the relative frequency but a degree of belief in
unknown events.

Definition. Probability (Subjective Definition). Let {2 be the set of out-
comes from an experiment which may or may not be possible to carry out. Let
A C 2. Then Your probability of A, P(A), is Your belief that the outcome
will be in A; numerically it is equal to Your belief that a black ball will be
drawn from an wrn with a proportion P(A) of black balls.

This phrasing defines probability in terms of analogies to simple, repeat-
able experiments. Furthermore, it emphasizes probability as a degree of belief
of some person. People with different information or different models for the
underlying situation can therefore have different probabilities for the same
event.

The definition of subjective probability can be derived from a set of axioms
describing properties of rational belief of an ideal decision maker?(Savage
1972; de Finetti 1990). These axioms provide the standard properties of prob-
ability as a measure between 0 and 1. They also can be used to show that in the
case of a repeatable experiment, a reasonable person’s subjective probability
will converge to the relative frequency.

The use of this subjective definition of probability has been one of the
reasons for the slow adoption of Bayesian statistical ideas (the second has been
computational difficulties). It has not helped that the axioms are often stated
in terms of “fair bets”; people’s attitudes both in favor and against games of
chance has hindered the appeal of the derivation. However, the ability to make
statements of probability about experiments that are only theoretical opens
up a great number of applications. In particular, using Bayesian statistics we
can make direct statements of probability about unknown parameters rather
than indirect statements about the property of estimators (take a look at the
definition of a confidence interval in most any statistics textbook).

When using the subjective definition of probability, assessing probabil-
ity distributions that model real-world phenomena can be a challenge. The
number of techniques for this particular task is large, and many of them
are somewhat controversial. Morgan and Henrion (1990), Walley (1991), and
Berger (1985) provide reviews. One problem in this field is that the lay percep-
tion of probability is not consistent and is subject to heuristic biases, such as

2 In this literature the ideal decision maker is often called “You.”
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ignoring base rates and mistaking representativeness for likeliness (Kahneman
et al. 1982). The fact that many subject matter experts are not also statis-
tical experts presents a major challenge when basing probabilities on expert
opinion.

One method that is universally agreed upon is the principle of an equal
probability space.

Definition. Principle of Equal Probability Space. Let © be a sample
space with N elements that are judged to be equally likely. Let A be an event

in ©. Then P(A) = #, where #(A) is the number of elements in A.

Example 3.2 (Playing Cards). Consider an ordinary deck of 52 playing
cards with ace, two, three, ..., ten, jack, queen, and king in each of the
four suits spades, hearts, diamonds, and clubs. The probability of drawing
a spade on a single draw is 13/52 = 1/4. The probability of drawing an ace is
4/52 = 1/13. The probability of drawing the ace of spades is 1/52.

This principle works well for simple games of chance like cards and dice.
However, in many experiments the elements of the underlying space are not
equally likely. Consider the experiment of giving a calculus exam to early
elementary students. It is quite unreasonable to assume that all scores are
equally likely! This same problem shows up in subtler ways when trying to
form a noninformative distribution for a binomial proportion (Sect. 3.5.5).
Notwithstanding these difficulties, this principle often provides a reasonable
starting place.

3.1.3 Subjective—Objective Probability

In educational testing, we want to be able to make objective statements about
learners. On the other hand, the subjectivist approach offers possibilities for
making interesting statements about unobservable proficiencies. Clearly we
need some kind of synthesis.

Good (1976) points out that even seemingly objective models have a sub-
jective component. For example, we may make a subjective judgment that
scores from a given test follow a normal distribution. Then we gather data
and create an “objective” estimate of the population mean. The “objective”
estimate of this model parameter is conditioned on the subjective choice of the
model. Good (1983) points out that the sensitivity of inferences to modeling
choices, such as the assumption of normality, is often much larger than the
sensitivity to obviously subjective prior opinion about the parameters in the
models.

Good’s philosophical approach essentially states that all models are sub-
jective. They become objective when many people agree on the model. In many
cases, the model may not be known precisely, or different peoples’ models may
differ in minor ways. In such cases a sensitivity analysis can reveal whether
critical decisions are dependent on these differences between candidate models.
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Dempster (1990) mixes the subjectivist and objectivist ideas in a different
fashion. He states that all probability judgments are subjective in the sense
that they are relative to a given body of evidence. However, he allows only
probabilities that are objective in the sense that they come from a readily
identifiable and objective data source.

This book takes an approach somewhere between Good’s and Dempster’s
blend of objectivism and subjectivism. Objective models come from consen-
sus between a group of decision makers on a relatively identifiable body of
information. The key here is the identification and publication of the sources
of information. It is critical that reviewers be able to examine and critique all
of the information sources. We therefore define probability as representing a
state of information about an unknown event.

Definition. Probability (Objective—Subjective Definition). Let (2 be
the set of outcomes from an experiment which may or may not be possible
to carry out. Let A C {2. Suppose that according to our best information, the

outcome A is analogous to drawing a black ball from an urn with a proportion
P(A) of black balls. Then our probability of A is P(A).

This definition differs from the Subjective definition of probability by
positing an agreement among people about the information and the models
that will be used to ground probabilistic inferences. Inferences in educational
testing can be consequential decisions such as employment and instruction.
In this context, fairness is an important value that goes beyond the statis-
tical property of objectivity. Candidates should know the criteria on which
they are being judged. If expert opinion is used, candidates and test users
must be able to learn who the experts are, what their qualifications are, how
they were selected, and what rationale the criteria are based on. In terms of
the evidence-centered design (ECD) models, this includes in particular the
evidence rules. Transparency ensures that aspects of the model are open to
challenge and eventually improvement.

3.2 Conditional Probability

The key to using subjective probability objectively is to identify the body of
information on which our probability judgments are based. It follows that if
that body of information changes, then so may our probabilities. The concept
of conditional probability formalizes this idea.

Definition. Conditional Probability. Let A and B be any two events such
that P(B) # 0. Define the conditional probability of A given B (written
P(A|B)) as follows:

P(AN B)

PAIB) = 575

(3.2)
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An important use of conditional probability in the physical and social
sciences is describing the probability of hypothetical situations. In particular,
the conditional probability of A given B, P(A|B), answers the question, “If
we knew B, what would we believe about A?” In the medical context, we
might let A represent a particular disease state and B represent a particular
symptom. P(B|A) says how likely we think the symptom would be if a person
actually had the disease. P(A|B) says how likely it would be that a person
has the disease if we were to observe the symptom.

In many respects, all probabilities are conditioned on our experience. Some
authors even write P(A|e), where e represents the body of our experience so
far.

Example 3.3 (Remedial Reading). Let R represent the proposition that
a student will benefit from a remedial reading program. Let e represent a
teacher’s experience with that student’s reading ability. Then P(R|e) would
represent the teacher’s probability that the student would benefit from the
program. If T represents the proposition that the student does well on a read-
ing test, then P(R|T, e) represents the teacher’s probability that the student
would benefit from the program given both the test score and the experience.

If we wish to be objective about our definition of probability, we must be
explicit about what we can and cannot include in e. From a purely scientific
perspective, the more information we have the better decision we can make.
However, there may be social reasons why we wish to restrict what information
we have. Suppose the experience of the teacher is that students from certain
racial groups are more likely to benefit from the reading program. Should the
teacher include race in e? Primary language spoken at the student’s home?
These are not easy questions to answer, and they involve complicated personal
and societal values about fairness.® The answer may be different if the decision
is admission to college rather than placement into a reading program.

The joint probability of AN B can be recovered from the conditional proba-
bility of A given B and the marginal probability of B. In this context, marginal
should be read as unconditional. We will see that it helps to think of this prob-
ability as the margin of a table. The multiplication rule does this recovery.

Definition. Multiplication Rule. Let A and B be two events such that
P(B) > 0. Then
P(ANn B) =P(A|B)P(B) . (3.3)

3 Let R represent the proposition that Jim robbed the convenience store, and I be
the fact that to the question “Did you rob the convenience store?” Jim responded
“I refuse to answer that question on the grounds that my answer may tend to
incriminate me.” Even though F empirically supports R—that is, P(R|F) >
P(R)—an American judge instructs the jury to ignore it in their deliberations.
The Fifth Amendment provides citizens this right in order to reduce the govern-
ment’s incentive to elicit confessions unscrupulously.



48 3 Bayesian Probability and Statistics: a Review

By applying this idea repeatedly, it is always possible to write a joint
probability as the product of conditional probabilities, with each event in the
list conditional on those earlier in the list. That is,

P(An, Ap_1,..., Az, Ay)

=P (An]An_1,..., A2, A1) x P (A 1]Ap 2, ..., Az, Ay) X -+ X
P(A2|A1) X P(Al)

ZI;IP(Ak|Ak—la---aAl)a

where the final term is understood to be simply P(A;). This is called a recur-
siwe representation. Such a representation holds for any ordering, but we will
see in Sect. 3.3.1 that some orderings are more useful than others.

Conditional probability provides ways of calculating probabilities that
would be otherwise difficult to judge. Two principal tools for doing this are
the Law of Total Probability and Bayes’ Theorem.

Definition. Law of Total Probability. Let Ay, ..., A, be a partition of an
outcome space §2 and let B be another event in (2. Then

n

P(B) =) P(B|A)P(4;) . (3.4)

i=1

This relationship is valuable because the conditional probabilities are often
easier to assess than the unconditional probability. The following theme comes
up over and over again in educational testing.

Example 3.4 (A Discrete Item Response Model). Suppose that the
students in a classroom can be divided in thirds on their mastery of a new skill,
S. One-third have completely mastered the skill, S = high; one-third have
partially mastered the skill, S = medium, and one-third have not mastered
the skill at all, S = low. Let X represent the event that a student (chosen
at random from the class) is able to solve a particular problem that uses
the skill in question. Further, we say that there is a 90 % chance a master
can solve the problem, a 50 % chance a partial master can solve it, and a
20% chance a nonmaster will stumble upon a solution. Then the expected
proportion of correct responses in the classroom as a whole is the weighted
average of the expected proportion for each mastery state, with the weights
being the proportion of students at each state:

P(X) = P(X|S = high)P(S = high) + P(X|S = medium)P (S = medium)
+P(X|S = low)P(S = low)
—0.9-1/3+0.5-1/3+.2-1/3 ~ 0.533.

Suppose that in another classroom, the conditional probabilities of a correct
solution are the same but the distribution of students in mastery states is
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different: 3/6 at S = high, 2/6 at S = medium, and 1/6 at S = low. The
expected percentage in this classroom is obtained by the same formula with
the same conditional probabilities, but the mastery distribution for the second
classroom:

P(X) =P(X|S = high)P(S = high) + P(X|S = medium)P(S = medium)
+ P(X|S = 1ow)P(S = low)
= 0.9-3/6+0.5-2/6+.2-1/6 = 0.650.

This example demonstrates an assumption that conditional probabilities
for item responses given latent proficiencies are stable, but distributions of
latent proficiencies can vary across groups or before and after instruction. It
is a hallmark of psychometric models such as latent class analysis and item
response theory.

We have just seen how we can build up the population proportion of correct
response from the conditional probabilities of students at the different levels
of mastery. The reasoning is in the opposite direction of the problem we face
in educational testing, however. It would be useful to reverse the direction of
the conditioning, that is, to calculate the probability of the skill state given
the result from solving the problem. Bayes’ Theorem allows us to do just that.

Theorem 3.1 (Bayes’ Theorem). Let Ay,..., A, be a partition and B be
an event such that P(B) > 0 and P(4;) > 0 for all i. Then:

P(BJA))P(Ai) _ P(B|A)P(4)

iP(BlAi)P(Ai) o)
i=1

P(4[B) =

(3.5)

Example 3.5 (Diagnostic Testing; Example 3.4 Continued). Suppose
that one of the students from the first classroom in Example 3.4 is able to
solve the problem. What is the probability that that student has completely
mastered the skill; that is, P(S = high|X)?

P(X|S = high)P(S = high)
P(X)

P(S = high|X) =

_09-1/3

~ 0.562
0.533 0-5629

This application of Bayes’ Theorem is so useful that its parts are given
special names. The unconditional probability, P(S = high), is called the prior
and the conditional probabilities P(X|S = s;) for s; = {high,medium,low}
are called the likelihood. The final (conditional) probability for the quantity
of interest, P(S = high|X) is called the posterior because it represents our
information about S after observing X. In general, both the likelihood and
the prior have an influence on the posterior. This next example shows this
dramatically.
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Example 3.6 (HIV Test; Almond (1995)). A common test for the HIV-1
virus (believed to be a principal cause of AIDS) is the Western Blot Test.
In 1988, the Morbidity and Mortality Weekly Report reported the analytic
sensitivity and specificity of the Western Blot test as reported by the Cen-
ter for Disease control in a 1988 evaluation. The analytic sensitivity is the
conditional probability of obtaining a positive test result from a positive sam-
ple; it was 99.3%. The analytic specificity is the conditional probability of
obtaining a negative result from a negative sample; it was 97.8 %. As a rough
guess, about 5 persons per 10,000 had HIV in the state of Washington in
1991. (Note: These figures were obtained by multiplying the AIDS prevalence
rate reported in the November 8, 1991 Seattle Times by 5. This fudge factor
should probably be increased for urban areas or other high risk populations.
For a discussion of more accurate methods for estimating HIV infection, see
Bacchetti et al. 1993.)

Define the following events:

HIV,—subject has HIV
HIV_—subject does not have HIV
T, —subject tests positive
T_—subject tests negative

The Western Blot test’s performance can be summarized by the follow-
ing two conditional probabilities: P(T_|HIV_) = 0.978 (specificity) and
P(T|HIV,) = 0.993 (sensitivity). In both cases higher values are preferred,
because specificity is the probability of a negative test result when the disease
is not actually present and sensitivity is the probability of a positive result
when it is.

If the hospital blood bank uses this test to screen blood donations, it wants
to know the probability that a randomly chosen sample of blood will have
HIV given that it tests negative with the Western Blot test.

P(T_|HIV,)P(HIV,)
P(T_|[HIV,)P(HIV,)+ P(T_[HIV_)P(HIV_)
.007 x .0005

= ~4x107°
.007 x .0005 + .978 x .9995

P(HIV,|T.)

If a doctor administers the test to patients to diagnose them for AIDS, she
wants to know the probability that a randomly chosen patient has HIV given
that he tests positive with the Western Blot test.

P(T,|HIV,)P(HIV,)
(T |HIV,)P(HIV,) + P(T.|HIV_)P(HIV_)
B 1993 x .0005 ~
~ 1993 % .0005 + 022 x .9995

PHIVL|T}) = 5

.022
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Or about 1 in 50! How could there be such a low probability of a correct result
when the test seems so reliable in terms of its sensitivity and specificity? The
picture starts to become clearer when we realize that the chance of test failure,
even though it does not happen often, is still much larger than that of the
disease (at least for low-risk populations).

Many people find this example, often called the Rare Disease Problem,
counterintuitive. Kahneman et al. (1982) talk about people’s heuristic biases
in evaluating probabilities. The result is puzzling if one ignores or discounts
the effect of the low background rate of occurrence of the phenomenon, and
puts too much weight on the test results. A false reading from the Western
Blot test is a rare occurrence; but so is having HIV (unless the patient belongs
to a high-risk population). In this case, a false positive is less rare than the
disease itself. That is why doctors do not recommend HIV tests unless the
patient is believed to be at risk a priori (before the test). Other information
that increases the background probability of HIV would reduce the probability
that a positive reading is false. Most doctors would not regard a positive result
on the Western Blot test as a definitive positive diagnosis; they would follow
it up with more specific (and expensive) tests.

Contrast this to the blood screening test done by the hospital blood bank.
Here the two rare events must occur together in order for the undesirable
outcome (HIV-positive blood put in the blood bank) to occur. The blood
bank is happy to throw out the blood on the “better safe than sorry” principle,
and the overall risk to the resulting blood supply is very small (about 4 in
1 million).

3.3 Independence and Conditional Independence

In the previous section we discussed how the knowledge about whether or not
B occurred can affect our knowledge about A. When there is no effect, we say
that the events are independent. Because B provides no information about A,
P(A|B) = P(A) and the multiplication rule reduces as in Eq. 3.6. We take
this as our definition.

Definition. Independence. Let A and B be two events. Then we say A and
B are independent if and only if

P(ANB) = P(4)-P(B) . (3.6)

This is also called Marginal Independence to distinguish it from the related
concept of Conditional Independence we will introduce shortly.

If P(A) > 0 and P(B) > 0, independence can be defined in terms of
conditional probability as shown below (Pearl 1988). We use the standard
definition because it works for events with zero probability.
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Definition. Alternative Definitions of Independence. If A and B are
two events such that P(A) > 0 and P(B) > 0, then the following three state-
ments are equivalent:

A and B are independent (Eq. 3.6),
P(A|B) = P(A) = P(A[B)
and _
P(B|A) = P(B) = P(B|4) ,
where A is the complement of the event A in 2.

Independence corresponds to the cases in which we can simplify the cal-
culation of the probability of complex events. This is a key result which we
will use over and over again when building complex models for educational
assessment. Often it is easier to determine that certain events are independent
than to assess their joint probabilities. Once we have laid out the pattern of
independence, we can simplify the probabilities we need to assess and com-
pute. This becomes more interesting when more events are involved, so we
need to expand our notion of independence to more events.

Definition. Mutual Independence. Let Aq,..., A, be a set of n events.
These events are mutually independent if P(A1N---NA,) =[], P(A;) and
any smaller subset of those events is mutually independent.

Pairwise independence does not imply mutual independence. The following
example demonstrates the difficulty.

Example 3.7 (Agreement of Two Random Statements). Consider a
psychological survey designed to test the attitude of subjects towards certain
topics. To see if the subjects’ attitudes are consistent, the survey asks two
questions about the same topic at different points in the survey. Let S; and
So be the events that a subject agrees with the two statements respectively and
let C' be the event that a subject’s attitudes on the topic are consistent, either
agreeing to both or disagreeing to both. Suppose one subject is answering the
survey by flipping a coin for every statement. In this situation, S and Ss are
independent. Also, P(S1) = P(S2) = 5

Now C' is functionally determined by S; and Ss; specifically, C = (S1NS3)U
(S1 N Sy). Therefore:

P(C) = P(S1)P(S5) + (1 = P(S1))(1 = P(S2))
11 11 1
“3'373°373

P(Cﬂ Sl) = P(Sl)P(Sg) = L

— P(S1)P(C) =

P(C'NSy) =P(S2)P(C) =

ol Bl B
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Therefore, C and Sy are pairwise independent, as are C' and S. But when
we look at all three events:

P(CNSi NSy =P(S1NS,) =
# P(C)P(51)P(S2) -

R

Thus C, S1, and Ss are not mutually independent.

Recall that we defined probability as a state of knowledge. Knowledge
about the response to one statement alone does not provide any knowledge
about the other statement or the agreement between the two. But knowl-
edge about one statement and the agreement between the two conveys exact
information about the other statement. Thus, every pair of events is pairwise
independent but the three together are not mutually independent.

3.3.1 Conditional Independence

As Example 3.7 shows, situations with more than two events can get quite
complex. Fortunately, the opposite situation sometime occurs. Learning that
an event C occurred can render two other events independent. We call this
conditional independence.

Definition. Conditional Independence. Let A, B, and C be three events.
Then we say A and B are conditionally independent given C if and only if

P(AN B|C) = P(A|C) - P(B|C) . (3.7)

If A and B are conditionally independent given C, we write I(A|C|B).
This notation is from Pearl (1988). The intuition is that C separates A from
B (Chap. 4 develops this intuition). The standard statistical notation (Dawid
1979) is A 1L B | C. The notation I(A|0|C), or A 1L B, refers to marginal
(unconditional) independence.

Conditional independence is a powerful tool for building models. By con-
ditioning on the right things, we can often build quite complex models
from smaller independent pieces. Consider for example the joint probabil-
ity P(A, B,C, D, E, F) under the following set of independence relationships:
I(F|D,E\A, B,C), I(E|C|A, B, D), I(D|C|A, B), and I(A|}|B). The recur-
sive representation of the joint probability simplifies to the product of smaller
factors as follows:

P(A,B,C,D,E, F) = P(F|D, E)P(E|C)P(D|C)P(C|A, B)P(B)P(A) .

The graphical models we develop in Chap. 4 combine conditional proba-
bility with representations and results from graph theory to support inference
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in even large collections of variables, if theory and experience suggest condi-
tional independence relationships among them. (Moreover, the independence
relationships are much easier to see in graphs than in the symbolic notation
of the preceding example!)

It will be helpful to review a few examples that give us more intuition
into how conditional independence works and where these conditional inde-
pendence relationships come from. The next few subsections provide some
illustrations that arise in educational testing.

3.3.2 Common Variable Dependence

Conditional independence is not the same as mutual independence. The fol-
lowing illustration, adapted from the ”accident proneness” example of Feller
(1968), illustrates the difference.

Example 3.8 (Accident Proneness). Imagine a population with two types
of individuals: N, normal, and N, accident prone. And suppose that 5/6 of
these people are normal, so that if we randomly select a person from this
population, the probability that the chosen person is normal is P(N) = 5/6.

Let A; be the event that an individual has an accident in year i. For each
individual, A; is independent of A; whenever i # j. Thus for each individ-
ual, whether or not that person has an accident, a Bernoulli process is fol-
lowed. The accident probability, however, is different for the two classes of
individuals.

P(A;|N) = .01 P(A;N) =1
The chance of a randomly chosen individual having an accident in a given year
follows from the Law of Total Probability, as a weighted average of the proba-
bility of an accident for normal individuals and for accident-prone individuals:

P(A;) = P(AN)P(N) + P(Ai|N)P(N)
05 .1 15
=% +6— 5 =.025.
That jS, P(Al) = P(Ag) =.025.

The probability that a randomly chosen individual has an accident in
both the first and second year follows from the Law of Total Probability and
the fact that A; and As are independent for a given individual. It too is
a weighted average, now of the probability of an accident in both years for
normal individuals and for accident-prone individuals:

P(A1 N Ay) = P(A, N As|N)P(N) + P(A; N A,[N)P(N)
= P(Ai|N)P(A2|N)P(N) + P(A:[N)P(A2|N)P(N)

5 1
=01x.0lx=-4+.1x.1x~-=
X X 6 +.1x X 6

.0005 .01 .0105
=——+ —=——=.00175.
6 + 6 6 00175

Note that
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P(A1NAy) 00175
P(Ag)Ay) = DAL 0 4a) =

.07 .
P(Ay) 025

But P(Ay) = .025, so P(Az) # P(Az2|A1). Therefore, A1 and Ay are not
(unconditionally) independent!

Fig. 3.2 Graph for Feller’s accident proneness example
Reprinted with permission from ETS.

Accident Prone

The explanation for this phenomenon lies with the interpretation of prob-
ability as a state of information. When we learn that the individual in ques-
tion has had an accident during the first year, it provides information about
whether or not he is accident prone, which in turn provides information about
what will happen during the next year. In general, whenever a variable (in
Feller’s example, accident-proneness) that determines the distribution of a
set of observations (whether an individual has an accident in each year) is
unknown, information about one sample value (accident in Year i?) pro-
vides information about the others (accident in Year j7) through the variable
(accident-proneness). This is the essence of common variable dependence.

A common example from educational testing is unidimensional item
response theory (IRT). Here the latent trait # accounts for all of the depen-
dence between the observations. This structure, shown as Fig. 3.3, is some-
times called the “naive Bayes” model. It does not always work well, like when
the underlying interrelationships among observable variables are complex,
such as medical symptoms that tend to appear in clusters. In assessment,
though, tasks can be engineered to make this model fit pretty well (Almond
and Mislevy 1999).

3.3.3 Competing Explanations

Conditioning on multiple events requires only a straightforward generalization
of the notation. It is worth exploring an example of a situation that arises in
diagnostic assessment.

Example 3.9 (Conjunctive Skills Model). Suppose 01 and 0 represent
two skills (e.g., reading and writing) and X represents performance on a task
which requires both (e.g., document-based writing task). Poor performance
on the task could be a sign of lack of either of the skills. Suppose we learned
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Fig. 3.3 Unidimensional IRT as a graphical model
Reprinted with permission from ETS.

(from an earlier reading test) that the reading skills of the examinee were
high; we would then conclude that there was a deficiency in writing. Thus,
observing the performance on the task induces a dependency in our knowledge
about the skill variables. (See Problem 3.6.)

Figure 3.4 shows this example graphically. Knowing the state of the agree-
ment allows us to “complete the knowledge circuit” between the two state-
ments. Conditioning on common descendents induces dependencies. This is
the Competing Fzxplanation phenomenon. This is the intuition behind the
concept of D-separation, defined in Chap. 4.

Fig. 3.4 Variables 0; and 02 are conditionally dependent given X. Even though 6;
and 62 are marginally independent, if X is known they become dependent
Reprinted with permission from ETS.
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3.4 Random Variables

Setting a variable on the basis of a random event produces random variables.
Random variables are very convenient to work with, and we will see numerous
examples in educational testing. For example, if we perform an experiment
that consists of selecting a student from a school and giving that student a test
and a questionnaire, we could define numerous random variables associated
with that event: the age of the student, the response given to item 3, an out-
come variable representing whether the response was correct or not. Naturally,
these variables will not be independent and characterizing that dependence in
educationally useful ways will be the subject of most of the rest of this book.

There are generally three types of random variables: categorical ran-
dom variables whose outcomes are members of a category, possibly ordered;
integer—valued random variables whose outcomes are members of a subset of
the integers; and real-valued random variables whose outcomes are members
of a subset of the real line. Categorical and integer-valued random variables
are called discrete and real-valued random variables are called continuous.

The topic of random variables is usually well covered in basic statistics
texts. This section provides some basic definitions to support the discussion
of Bayes theorem in Sect. 3.5.

3.4.1 The Probability Mass and Density Functions

For a discrete random variable, the probability of each atom—outcome with
nonzero probability—of the distribution completely characterizes the distribu-
tion. If the random variable X has range {z1,...,z,}, then we can reconstruct
the probability measure from:

p(z;)) =P(X =) . (3.8)

This is known as the probability mass function or p.m.f., and is usually written
p(+). We can think of the random variable as being generated by an urn filled
with balls with numbers printed on the side. The p.m.f. p(x;) indicates the
proportion of balls with z; written on them.

Consider any set A of possible outcomes for a discrete random variable X.
We can calculate the probability that the outcome will fall into that set as

follows:
P(X €A)= > pxi) . (3.9)
x,€EA
All p.m.f.s can be characterized by two properties:

1. 1>p(x) >0 YV
2. > L p(@) =1 (normalization)
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Any function p(-) satisfying these two properties is a p.m.f. for some random
variable. The second property is particularly important. It is known as the nor-
malization constraint. Any non-negative function g(x) defined on {1, ...,2,}
for which the normalization constant, )., . g(x), is finite can be normalized
to produce a p.m.f. by dividing through by the normalization constant. That
is, we can obtain a p.m.f. p(z) from g(x) as

p@)=g@) /> 9.

Continuous random variables present us with an additional problem. For
one thing, our canonical example of objective probability, balls from an urn, no
longer works. Example 3.10 presents a new canonical example for continuous
distributions.

Example 3.10 (Random Point on a Line Segment). Let © = [0,1] be
the unit line segment, and consider an experiment that consists of randomly
selecting a point from that line. Let A C © be any set consisting of a collection
of disjoint intervals. The probability of the Event A is the total of the length
of all the intervals making up the set A.

Note that this example only defines probability for collections of disjoint
intervals. This allows us to avoid some pathological cases. At the same time,
the collection of disjoint intervals covers the most practically useful cases, so
we lose little by doing this.

For continuous random variables, the mass associated with any specific
outcome is always zero (think of the length of a single point). But since the
set of outcomes is dense, we can consider the density of the probability in a
small region around the outcome of interest. Thus we define the probability
density function or p.d.f. by

f(z) = lim Pz < X <+ Ax)

AT0 Az (8.10)

The p.d.f. behaves very much like the p.m.f, except that in most of the

formulas, sums are replaced by integrals. Thus if X is a continuous random
variable and A is a set of possible outcomes for X then:

P(XeA) = / flz)de . (3.11)
A
Similarly, the normalization constant is defined by
P(X € ) :/ f(z)dx (3.12)
0

where (2 is the set of all possible values for X which have nonzero values of
f(©) (sometimes called the support of f). Normalizing a p.d.f. is analogous
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to normalizing a p.m.f. Thus, if g(-) is a nonnegative function whose integral
over the whole real line exists and is equal to m, the normalized probability
density function is f(z) = g(x)/m.

A third useful representation for probability measures is the (cumulative)
distribution function or d.f. (or c.d.f.). It is defined the same way for contin-
uous and discrete random variables:

F(z)=P(X <x). (3.13)
F(z) is thus the probability of all outcomes less than or equal to x. For a

discrete random variable
F(z)=> ply), (3.13a)
y<z

while for a continuous random variable
F@) = [ fwiy. (3.13b)

The distribution function uniquely defines the probability measure. The
term distribution is often used to represent any function (d.f., p.d.f., p.m.f,
or a probability measure) that uniquely defines the probability measure.

1.0+ — 1.0 4
0.8 1 0.8
S 0.6 . 0.6
e —_ X
[T
0.4 4 0.4
0.2 4 0.2+
004 —— 0.0 4
0 1 2 3 3 2 A1 0 1 2 3
a b

Fig. 3.5 Examples of discrete and continuous distributions. a Discrete distribution.
b Continuous distribution
Reprinted with permission from Almond (1995) with permission from Taylor &
Francis Group.

Figure 3.5a, b shows an example of both a discrete and a continuous dis-
tribution function. We can see some common features, in particular:
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1. Distribution functions are always nondecreasing: That is, x < y implies
F(z) < F(y).

2. They range between zero and one, that is, 0 < F(x) < 1 with F(—c0) =0
and F(4o00) = 1.

The discrete distribution (Fig. 3.5a) is a step function that takes jumps at
the atoms (points of nonzero probability) of the distribution. The jump of each
step is the probability associated with that particular atom, and the height
is the probability of observing a value less than or equal to the value of that
atom. For example, the mass associated with the atom 2 for the distribution
pictured in Fig. 3.5a is .375. Thus, there is a one-to-one relationship between
the p.m.f. and the distribution function for discrete probability relationships.

The distribution function of the continuous distribution (Fig. 3.5b) is con-
tinuous at every point in its domain (this is where it gets its name; this
property is called being absolutely continuous). We can recover the p.d.f. by:

f(z) =dF(z)/dz . (3.14)

Finally, independence can be characterized in terms of the probability mass
or density function.

Definition. Independence of Random Variable. A series of random
variables X1, ..., X, are independent if and only if

discrete case px(x) = px, (21) - px, (22) - px, (Tr) (3.15)

continuous  fx(x) = fx,(x1) - fx,(x2) - fx.(zr) .

3.4.2 Expectation and Variance

One of the most useful features of random variables is that we can calculate
expected values for functions of those variables.

Definition. Expected Value. Let X be a random variable and let h(z) be
a function defined on the range of that random variable. Define the expected
value of h(X), denoted E[h(X)], to be:

E[h(X)] = / | H@) () (3.16)

if the integral exists. This so-called Lebesque—Stiltjes* integral is a compact way
of writing analogous expressions for discrete and continuous random variables.

4 A Lebesque-Stiltjes integral is a generalization of ordinary integration that is per-
formed with respect to a measure (e.g., a probability distribution). If the measure
is continuous, then it becomes an ordinary integral with respect to the density.
If the measure is a counting measure (like a discrete probability) it becomes a
sum. Thus, it handily unifies a lot of statistical formulas that are integrals for
continuous distributions and sums for discrete distributions.
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If X is discrete random it expands to the sum

> h@)p(z)

all X

and if X is continuous it is the integral

/ hw) f(x) da.
all X

In the special case where h(x) = x, E[X] is the expected value of the random
variable X.

E[X] is also called the mean of X and is often written X. The mean is a
measure of location, the “center of gravity” of the distribution.

Example 3.11 (Resampling Distribution). We can create a probability
distribution corresponding to an observed sample as follows: Let x1,...,Tm
be the unique values observed in a sample of size N. Let n; be the number of
times x; is observed. Define the following p.m.f.:

ng

p(xi) = N

This is the resampling p.m.f. for “sampling from a sample.” Let X be a random
variable corresponding to the experiment. We draw a value at random from
the set of values in the sample. Then the expected value of X is the average
of the sample. The laws of probability theory say that if the original sample
size (N) was large enough, the resampling (bootstrap) distribution should
approach the original distribution function.

A second special expected value is the variance, which measures the
amount of uncertainty associated with a random variable (or a process whose
outcome is expressed in terms of the value of a random variable).

Definition. Variance. Let X be a random variable that has a finite mean
E[X] = u. Then the variance of variance of X is the expectation of (X — p)?
(if it exists), written Var(X).

The variance is a measure of spread of a distribution, specifically the
expected value of the squared distance from the mean. Its value is always
greater than or equal to zero. As the variance gets closer to zero, the state
of information about the random variable becomes more certain. The units
of the variance are the squared units of the original random variable, which
is not natural to think about. For that reason the standard deviation, which
is the square root of the variance, is often used instead of the variance to
describe the dispersion of a distribution. The reciprocal of the variance is
called the precision. The smaller the variance, the larger the precision of the
distribution. The precision turns out to be useful in calculations involving the
normal distribution (especially using Bayes theorem).
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Example 3.12 (Normal Distribution). Let X be a random variable with
the following probability density function:

f(@) = —a—e ()’ (3.17)
V2ro ' '
Then E[X] = p and Var(X) = o2. We say that X follows a normal distribution
with parameters p and o2, and write X ~ (u, 02).

A normal distribution is completely defined by its mean and variance. This
means we can approximate any distribution function by a normal with the
same mean and variance. Sometimes this is a good approximation and some-
times it is a bad one, but it turns out to be quite good in a large number of
important situations. In particular, the central limit theorem implies that the
totals and averages of reasonably well-behaved random variables are approx-
imately normally distributed. For a normal distribution, approximately 2/3
of the outcomes lie within 1 standard deviation of the expected value and
approximately 95 % of the outcomes lie within 2 standard deviations.

Example 3.13 (Monte Carlo Integration). Let X be a random variable
with distribution F(X). Let h(X) be a function whose expectation and vari-
ance over the distribution F(X) we would like to know. In general E[h(X)]
may be difficult to calculate. However, if we can take a sample X;,..., X,
from F(X) we can get an approximation to the expectation and variance:

i (M(Xi) — E[R(X)))?

n—1

Var(h(X)) =~

With this expectation and variance we can find the closest approximating
normal distribution for h(X).

This Monte Carlo Integration is a useful trick which we will use when
trying to learn parameters for educational testing models.

3.5 Bayesian Inference

Although Bayesian statistics centers around Bayes theorem, it really repre-
sents a statistical philosophy (or philosophies, see Good 1971). The central
pillar of this philosophy is that a state of information about an unknown
event, variable, or parameter can be represented with a probability distri-
bution. Although initially controversial because of this extra assumption,
Bayesian statistics has proved quite powerful. It provides a guiding princi-
ple for building and reasoning about complex models, and provides correct
solutions to problems that were not tractable under the classical approach
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(treating parameters as fixed but unknown quantities). Furthermore, modern
computing technology has made possible techniques like Markov Chain Monte
Carlo (MCMC) which can solve quite complex problems as long as they can
be cast in the Bayesian framework.

This book builds up a Bayesian discipline of psychometrics, with a par-
ticular focus on discrete observable variables and proficiency variables. In the
process of building that discipline it will use the fundamental ideas of Bayesian
statistics over and over. This section provides a brief review of those funda-
mentals. More thorough treatments can be found in Lee (1989), DeGroot
(1970), Box and Tiao (1973), Gelman et al. (2013a) or for a more mathemat-
ical treatment, Berger (1985).

3.5.1 Re-expressing Bayes Theorem

We introduced Bayes theorem in Sect. 3.2 in terms of probabilities of events.
Here is how it looks when written in terms of densities:

pyle™) = Kf (" [y)p(y), (3.18)

where p(y) is the density of the random variable y, f (z | y) is the conditional
density of another random variable z given y, x* is a particular value of =z,
p(y | z*) is the conditional density of y given that z = x*, and K is the
normalization constant needed to make p(y | z*) integrate or sum to one.
That is,
K= f@® [y)dP(y) =p(®) . (3.19)
all y
The value of K is not directly relevant to inference about = or y under the
Bayesian paradigm (although it is a consideration in calculations). Writing
Bayes theorem only up to proportionality focuses attention on the important
pieces:

*

plyla)ocp(y) f(™|y) (3.20)

or
posterior & prior x likelihood .

The next section walks through these pieces in detail.

3.5.2 Bayesian Paradigm

Example 3.14 (Propensity to Make Free Throws). Suppose that a cer-
tain individual has a probability 6 for making a basketball free throw.® Sup-
pose further that each time the individual attempts the shot, the outcomes

5 A free throw or foul shot in basketball is an attempt to throw the ball from a
fixed line into the basket. It is awarded for a penalty, so the player can always
attempt the shot without the interference of opponents. Thus, each attempt is
made under reasonably repeatable conditions.
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are independent given the probability of success and that the probability of
success remains unchanged. Our problem is to characterize what we believe
about 0 if we observe this individual have S successes in n attempts.

This situation is mathematically equivalent to the binomial model for test
scores: An assessment consists of n tasks, each student is characterized by a
single propensity variable 6 that gives probability of a correct answer to each
task, and all the responses are conditionally independent given 6.

Let us look first at how this problem would be handled under the “classical
statistical” approach. Recall that the probability of observing S successes in
n attempts for a given value of § is given by the binomial distribution:

Pr(S|6,n) = (Z) 6S(1— )" (3.21)

and its mean and variance are nf and 6 (1 — @) /n. The most common way
to estimate 0 is by the observed proportion of successes, or 6 = S/n. The
observed proportion 0 is the least squares estimate of 6, and it is also an
unbiased estimate. That is, if increasingly many samples of size n were taken,
the mean of the fs would be 6. Their variance would be 6 (1 — ) /n—which
would not be known in practice because it depends 6, so is usually approxi-

mated by 0 (1 — é) /n. The approximated standard error of estimation SEM

is the square root of this quantity. When n = 10 and S = 7, 6 = .7 and
SEM (é) = .145. An approximate 95% confidence interval, obtained by

adding and subtracting 1.96 times SEM around 0, is (.416,.984).

One obvious shortcoming with this approach is that it breaks down when
the observations are all failures or all successes. In these cases SEM is Z€ro,
which implausibly suggests there is no uncertainty associated with 0 or 1 as
an estimate of 6.

A bigger problem is that the reasoning is in the wrong direction. It tells us
what the distribution of the estimator 6 would be in repeated samples, given
that we know the true value of . But we are not taking repeated samples;
we generally have only the one realized sample. And we do not know 6; that
is what we want to make inferences about in the first place. The classical
approach does allow us to make some rather indirect statements such as “If 6
were .7 then the probability of observing an S > s would be ...” There is a
natural tendency of statistical consumers to misinterpret such statements as
probabilistic statements about 6.

Maximum likelihood estimation, developed by R. A. Fisher in the 1920s, is
a more sophisticated classical approach. Once we actually observe a particular
value of S for a given number of attempts, Eq. 3.21 is reinterpreted as a
function of 6 given the observed value of S. This is the likelihood, which
corresponds to the piece f (z* | y) in Eq. 3.20 with 6 playing the role of y and
the observed value of S playing the role of z*.



3.5 Bayesian Inference 65

From a Bayesian point of view, computing the likelihood function based
on the realized sample is a step in the right direction: It conveys the evidence
that the sample we actually observed holds about 6. Figure 3.6 shows the
likelihood that is induced for # when n = 10 and S = 7. Seven successes
could occur if # is any value of than 0 or 1, but it is more likely at some
values than others. The figure shows that seven successes are very unlikely
to occur for low values of § (we would usually see fewer successes) and also
unlikely for high values of 0 as well (we would usually see more successes).
The relative heights of the likelihood indicate just how likely 7 of 10 would
be at each possible value of §. It is about three times as great at .5 as it is
at .4, for example, and it takes its highest value when 6 = .7. The observed
proportion of successes is in fact the maximum likelihood estimate (MLE) of
0 under the binomial distribution. These are all statements that can be read
directly from the likelihood function. They concern only the observed sample,
not the distribution of .S or of estimates of 6 in repeated samples, and not an
unknown true value of 6.

@
o

likelihood
(6]

o
o

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
theta

Fig. 3.6 Likelihood for 6 generated by observing 7 successes in 10 trials
Reprinted with permission from ETS.

Of course MLEs can also be interpreted in terms of sampling distributions.
This is how Fisher used them, and most people do today. Their properties
under repeated sampling of S for known parameter values of 6 are derived,
and the problematic interpretation of estimates and standard errors noted
above return in full force.

The Bayesian paradigm uses the evidence in the likelihood function in a
different way. It allows us to coherently express our belief about €, conditional
on the observed sample, in terms of a probability distribution for 6. We might
plot a variable’s posterior density to give a full picture of what we believe
after obtaining the new information (especially useful if the shape is unusual
or it has multiple modes), or we might summarize the information in terms of
its mean or its mode, and its standard deviation, or an interval that contains
95 % of the posterior posterior. The posterior mean, sometimes used a point
estimate, is called an EAP or expectation a posteriori estimate. The posterior
mode is called an MAP or maximum a posteriori estimate.
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The key is that in order to express belief about 6 in terms of a probability
distribution after experiment, we must also express our belief about it before
the experiment. Classical statisticians are reluctant to do this, but as the
Bayesian statistician Jimmie Savage said, you do not get to enjoy the Bayesian
omelet unless you break the Bayesian eggs.

Let us take the gentlest possible step in the Bayesian direction: A uniform
distribution over the interval [0, 1] as the prior distribution; that is, p(9) = 1.
This says that before we see the player take the free throws, we have no reason
a priori to think that any possible value of 6 is more probable than any other.
(This would not be the case if we knew something about the basketball player,
and we will discuss this in the next section.)

Example 3.15 (Propensity to Make Free Throws; Example 3.14 con-
tinued). Substituting the uniform prior for 6 into Eq. 3.20, the proportion-
ality form of Bayes theorem, gives

p(@In=10,S=7)xp(@)P(S="T7|n=10,0)
x1x607(1-6)°
=07 (1-06)° . (3.22)

The normalizing constant is an instance of a general form called the beta
function. The resulting posterior distribution is an member of a family of
distributions called beta distributions—specifically, a Beta(8,4) distribution.
Beta distributions are central in Bayesian inference about binary data, and
will be discussed in greater detail in the following section. With a uniform
prior, the posterior for § has exactly the same shape as the likelihood function
(Fig. 3.6), although it is rescaled so it can be interpreted as a probability
density. For example, the mode of the posterior is .7. A calculator for the Beta
distribution tells us further that the mean is .667, the standard deviation is
.131, and the region containing the most probable 95 % of the posterior is
(.390, .891).

We can use the posterior density to express our belief about 6 after having
observed S. A person who misinterprets a classical 95 % confidence interval
to mean that there is a 95 % probability that theta is between its bounds is
implicitly making a Bayesian inference assuming a uniform prior. But this
is the correct way to interpret the Bayesian posterior credibility interval,
(.390, .891).

We used the uniform prior for expository reasons, but trying to understand
just where it comes from, and why it rather than something else, is a deeper
question. Rev. Bayes himself had so much difficulty with the uniform assump-
tion that he did not publish the paper from which the Bayes theorem takes
its name during his lifetime (it was published posthumously). The remaining
sections in this chapter say more about where priors come from and how to
construct them.
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One simple technique often used when there are questions about the prior
distribution is to perform a sensitivity analysis on the choice of priors. To
perform a sensitivity analysis, one simply redoes the analysis with several
different choices of prior. (See Exercise 3.2). If the results change substantially,
then they need to be viewed with some skepticism: Your inference depends
notably on Your choice of prior, which means that the data are not (through
the likelihood) providing enough information for a solid answer.

A thorough sensitivity analysis will check assumptions about the likelihood
as well as in the prior. The prior is not the only assumption in Example 3.14.
The independent, identically distributed assumption that underlies the bino-
mial distribution can also be questioned. We are assuming that the individual
is not learning how to perform the task better during the experiment. This
might be approximately true if the experiment is short in duration, but if the
experiment goes on for a long time it will become increasingly dubious. (Mod-
eling learning on the part of the test taker is a more difficult problem, which
we will not explore in great depth in this book.) Both the Bayesian and clas-
sical approach to this problem share the i.i.d. assumption, and the Bayesian
analysis is much more sensitive to this assumption than to reasonable choices
of prior.

3.5.3 Conjugacy

The distribution in Eq. 3.22 is an example of a beta distribution. The beta
distribution has the following p.d.f.:

Folo.) - |

a—1 _ p\b—1
B(ajb)}e 1—0)>", (3.23)

where the normalizing constant B(a,b) is the beta function’,

B(a,b) = /01 t7 11 —t)' L dt. (3.24)

The mean of the beta distribution is a/(a + b), the mode is ai;; and its

variance is Both a and b must be greater than zero for this to

be a proper distribution (otherwise the beta integral is infinite). Note that the
uniform distribution is a special case of the beta distribution, corresponding
to a Beta(1, 1) distribution (i.e., with a = 1 and b = 1).

Figure 3.7 shows several beta distributions. We see that when a is equal to
b, Beta(a,b) is symmetric and is centered at .5. When a > b, the distribution
shifts lower, and when a < b, the distribution shifts higher. The greater a + b,
the more concentrated it is (that is, the higher the central peak). When a
or b is less than 1, then it shoots up at the upper and/or lower tail. (This
would look flat if the z-axis was plotted on a logistic scale, as is often done
for probabilities.)

6 A beta function can also be written in terms of gamma functions: B(a,b) =
I'(a)I(b)/I'(a+Db).
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Fig. 3.7 A panel of sample beta distributions
Reprinted with permission from ETS.

The beta distribution is handy for representing knowledge about proba-
bilities because its range is restricted to the interval [0,1]. It is even handier
when the likelihood is a binomial distribution, because if the prior distribu-
tion is a beta and the likelihood is a binomial distribution, then the posterior
distribution will be a beta as well. Specifically, if the prior is Beta(a,b) and
the data consist of S successes in n trials, then the posterior is:

f(Bla,b,S,n) o prior x likelihood
o 0471 -0t xp5(1 — oS
o 9a+5’—1(1 _ 6.)b+n—S—1 ,

which is also a beta distribution, Beta(a + S,b+n — 5).
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Note the similarity in the functional forms of the beta prior and the bino-
mial likelihood. The difference is that in the beta distribution,  is variable
and a and b are the parameters, while the likelihood comes from the binomial
distribution with S is the observed variable and n and 6 are its parameters. It
follows that when the beta distribution is used as a prior for observations that
follow a binomial or Bernoulli distribution, it expresses information equivalent
to a hypothetical experiment with a + b — 2 observations, of which a — 1 were
successes and b — 1 were failures.

The beta and binomial distribution share a special relationship with each
other in Bayesian inference: When the prior is a beta distribution and the like-
lihood is a binomial distribution, then the posterior is always a beta distribu-
tion too. We will see that the normal distribution shares a similar relationship
with itself: If both the likelihood and the prior distribution for the mean are
normal (and the variance is known), then the posterior distribution for the
mean will be normal too. Distribution families for prior and likelihood with
this special property are known as conjugate families. The Beta-Binomial and
Normal-Normal we will see shortly are well-known examples.

Example 3.16 (Propensity to Make Free Throws; Example 3.14 con-
tinued). Consider the same individual from Example 3.14, and suppose that
individual will make another m attempts at the same free throw. Based on the
previous data, our prior distribution for success on the new set of attempts is
now a Beta(S,n — S). Suppose we observe T successes in the second set of m
attempts. Then our posterior for the individual’s success after the second set
will be a Beta(S +T,n — S+ m — T distribution.

Note that even if we had reversed the orders of the two sessions of testing
(the one with n trials and the one with m trials), we still would have reached
the same conclusion at the end. We also would have reached the same conclu-
sion if we did the testing in one large session and observed S + T successes in
n + m trials.

This property has an interesting application. It means that we can use
Bayesian inference as a model for our learning about the individual from
Examples 3.14-3.16. We start with a prior distribution for 6 representing our
knowledge about this individual if he “dropped out of the sky”—a very weak
prior such as Beta(1,1), for example. We then observe some data about the
individual and update our beliefs (using Bayes theorem) to generate a new
posterior distribution. That posterior then becomes the prior for new data.

Thus Bayesian inference is a powerful tool for keeping track of our state
of knowledge about the student as the student interacts with an assessment
task by task, or in a series of assessments.

There are other conjugate families beside the Beta-Binomial. Suppose our
task attempt produces a categorical outcome rather than the success/failure
of Example 3.14. An example would be rolling a possibly loaded die, with pos-
sible outcomes {1, ...,6}. Let @ = {01, ...,0k} be a vector of k probabilities of
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observing each of the K outcomes on a single trial. We observe a multinomial
outcome S = {S51,..., Sk} where Si is the number of outcomes in category k
in n trials. The likelihood induced by S would now be a multinomial distri-
bution:

p(S|n,0) x H@,‘j’“
k
In this case, the conjugate prior is a generalization of the beta distribution
called the Dirichlet distribution. The parameter is a vector of K random values
between zero and one, @ = {01, ...,0k}, with the restriction that Zszl O, =
1. The Dirichlet distribution then has the following density function:

K
fBlo)y =C [ op+", (3.25)
k=1

with Zszl 0 = 1, and normalizing constant C.

The mean and variance of each component of € in the Dirichlet are sim-
ple functions of the as. Let m = _, 0. Then E[6;] = o;/m and Var[f;] =
[a; (m — ;)] / [m? (m + 1)]. In analogy to the beta distribution, we can think
about the Dirichlet as the amount of information about the vector of multi-
nomial probabilities @ conveyed by observing a total of m trials, with ay
occurring in each category k.

If we then use a Dirichlet prior with parameters a = {a1,...,ax} and
observe a multinomial outcome S = Si,..., Sk where Sy is the number of
outcomes in category k in n trials, then the posterior will be a Dirichlet(a; +
S1,...,ak + Sk) distribution:

K
f(Oo,8) oc T o5+t
k=1
This distribution will come back again in Chap. 8 where we try to learn

Bayesian networks (which consist mainly of multinomial distributions) from
data.

Another convenient conjugate family is the Normal-Normal family. Sup-
pose our prior distribution for an unknown proficiency variable, 6, for an indi-
vidual is a normal distribution with mean y and variance 72, written N(u, 72).
Let X be the score of that individual on an assessment designed to measure
that proficiency. Under classical theory with normal errors, the probability
function for a student’s observed score X given her true score 6 is N(6, 02),
where ¢ is the error variance, which we will assume is known. In this situ-
ation the likelihood for @ induced by observing X is also normal, N(X, o?).
Then the posterior distribution for 6 is

p/T*+ X/o? 1
1/124+1/02 7 1/72+1/02 )"

0|X, 0%, 7% ~N (
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(In this context, the symbol ~ should be read, “is distributed as.”)

To avoid taking all those reciprocals, Bayesians often work with the preci-
sion (the reciprocal of the variance) rather than the variance. Let U = 1/72
and V = 1/02. Then

MXMJLVNN(U“+VX, L ).
U+V "U+V

The posterior mean is thus a precision-weighted average of the mean of the
mean and the mean of the likelihood. The posterior precision is the sum of
the prior precision and the precision from the likelihood; i.e., the information
about # from the prior and from the observations.

To extend this reasoning, suppose that we have another assessment, Y,
which measures the same proficiency. Let the error variance of Y be ¢ and
its reciprocal, or precision, be W. Then the posterior from observing both X

and Y will be

Up+VX+WY 1
MXKMMMWNN(M+ + )

U+V+W U+V+W

Thus the precision of the two assessments taken together is the sum of the
precision of the individual instruments added together. Continuing in this
fashion, we can see what happens as we gather more and more data (more
and more assessments). First, the precision of our posterior will get larger
and larger (i.e., its variance will get smaller and smaller). Second, the weight
of the prior will get smaller and smaller with respect to the weight of the
data, so if we have enough data it will eventually overwhelm the prior. (See
Exercise 3.9).

What if we do not know the variance for our assessment in the above
example? If both the mean and variance are unknown, we need to integrate out
over the unknown variance to draw inferences about the mean. The resulting
marginal posterior distribution for the mean will be a Student ¢ distribution. If
we knew the mean but not the precision, the natural conjugate prior family for
the precision would be the gamma distribution, which for certain parameter
values is also a chi-squared distribution. Gelman et al. (2013a) develop these
cases in greater detail.

The known-mean unknown-precision situation appears in MCMC estima-
tion for models that use the normal distribution such as estimating conditional
probabilities in Bayes nets (Chap. 9). The parameterization for the gamma
distribution that (Gelman et al. 2013a) and the WinBUGS (Lunn et al. 2000)
computer program use has the following p.d.f.:

ba

a—1_—bx
T (a)x e (3.26)

with both a and b positive. The support of gamma is the positive half-line, as
is appropriate for a prior for precision. Its mean is § and the variance is .

The mode is “b_21 for a > 1, but it asymptotes at zero when a < 1.
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Figure 3.8 shows several gamma distributions. All the examples in the left
column have a mean of 1, as a = b. Similarly, the examples in the right column
have a mean of 5. As mentioned, when a < 1 the gamma shoots up to zero
as x decreases. For a > 1, gamma distributions have a mode greater than
zero and are positively skewed. As a increases, the gamma looks more like a
normal distribution.

As with the Beta and Dirichlet distributions, one can interpret the param-
eters of the gamma as results from a previous hypothetical experiment, in
which the sample size was 2a and the sum of squares around the mean was
2b. For people who do lots of analyses of variance, this may be an intuitive
way to set a prior for precision. At least thinking about 2a as sample size
helps. Working backwards from a mean and standard deviation and looking
at graphs of representative gamma distributions is probably more helpful.
Reasonable mild priors for precision in psychometric applications are (.5,1)
or (1,1)—mot much weight, means around values that error variances and
population variances have when the latent scale is set so that populations
are roughly centered around zero and have variances that don’t differ dra-
matically from 1. for example, the 95 % credibility interval for gamma(1, 1) is
(.025,3.691).

3.5.4 Sources for Priors

The Bayesian paradigm has several advantages over the classical statistical
paradigm: Bayesian credibility intervals are easier to interpret than classical
confidence intervals, and the paradigm often gives us guidance for computa-
tional strategies in cases where the classical paradigm has difficulties. The
price we must pay for those advantages is specifying the prior distribution.

There are generally two approaches to specifying the prior information.
The strong prior Bayesian approach tries very hard to model the state of infor-
mation before data is observed, often eliciting priors from experts. The weak
prior Bayesian approach instead tries to minimize the impact of the prior,
building up a collection of noninformative priors. Section 3.5.5 describes non-
informative priors; the remainder of this section looks at eliciting informative
priors.

Consider what we know about the individual in Example 3.14. Because the
probability of making a free throw is a probability, it must be between zero and
one. However, anyone growing up in a culture where basketball is routinely
played has access to better information then that. Children on playgrounds
often make free throws, so a probability of 1 in 1 million would obviously
be too small, even 1 in 100 seems on the low side. On the other hand, even
professional players routinely miss free throws, so 999 times out 1000 seems
very high; even 90 % would seem like a remarkable feat. Using this knowledge
we would build a prior distribution that is high in the middle probabilities,
but tails off near the upper and lower ends, such as Beta(5,5).
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Fig. 3.8 A panel of sample gamma distributions
Reprinted with permission from ETS.

However, if we know the population that the individual comes from, we
might be able to say a lot more. For example, if the individual were a female
college student who was a member of her school team, we would have access
to a large collection of data about the performance of other student athletes
in her division on which to base our prior. Suppose the distribution of the
previous year’s players’ percentages across the division was .60 and had a
standard deviation of .15. We can work backwards to find the beta distribution
that has this mean and standard deviation. Let z be the sample mean of a
set of proportions and v be its variance. The method of moments estimates
of the beta parameters are

a:Z‘<j(1Tf)—1> and b_(1—i)<@—1>

For our college player, this translates to a prior of about Beta(6,4). If we
then observed her make 7 of 10 attempts, our posterior would be Beta(13,7),
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which has a mean of .65. and a standard deviation of .10. A teammate who
made only 2 of 10 would lead to a posterior of Beta(8,12), with a mean
and standard deviation of .40 and .11, noticeably higher than the observed
proportion of .2. If she continued to shoot at this rate, however, and made
20 of 100 the posterior would be Beta(26,84), with a mean and standard
deviation of .24 and .04.

When the prior for an individual case comes from a population distribu-
tion, the Bayesian paradigm has an interesting interpretation. The posterior
distribution is a mixture of the population information and the information
from the data specific to that individual. This is easiest to see in the case of
the Normal-Normal conjugate family. In this case, the posterior mean is a
weighted average of the population mean and the mean of the data (and the
posterior precision is the sum of the prior precision and the precision associ-
ated with the data). Thus, the estimate of the mean from the data is “shrunk”
towards the population mean. As the amount of data goes up, the amount of
shrinkage decreases. Such shrinkage estimators are generally more stable than
estimates taken purely from data, especially if the amount of data is low.
(Another common example of a shrinkage estimator is a linear regression,
where the information we get from the predictor X is “regressed” towards the
mean of the dependent variable Y.)

Population distributions are an ideal source for priors when they are avail-
able. In educational testing, the reference population is usually clear from the
specification of the assessment. However, when substantial prior data on this
population or assessment are not available, prior opinion may be the only
possible source of information about the unknown values.

The elicitation of prior information can be a difficult and time-consuming
task. Morgan and Henrion (1990), Walley (1991), Box and Tiao (1973) and
Berger (1985) review a number of methods. One problem in this field is that
the lay perception of probability is not consistent and is subject to heuristic
biases (Kahneman et al. 1982).

Our favorite method is to ask the expert for a mean for the unknown and
an “observational equivalence” for the expert’s information, or the number
of observations which would be equivalent to this expert’s opinion. We saw
that with Beta and Dirichlet priors (and less intuitively, the gamma) this can
be thought of in terms of the results of a hypothetical experiment. There is,
however, no evidence that experts are particularly better calibrated on this
scale than any other. Furthermore, this approach requires a choice of baseline
for zero information (noninformative priors).

3.5.5 Noninformative Priors

To build a model based mainly on data we would like a prior distribution that
has a minimal impact on the posterior. The weak prior Bayesian analysis uses
noninformative priors distributions—priors that, according to some criteria,
contain no information about the parameter. Such noninformative priors also
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play an important role in Bayesian data analysis. Even if the final analysis
uses stronger priors, the noninformative prior may be useful for sensitivity
analysis or in eliciting expert opinion.

The idea of the equal probability space introduced in Sect. 3.1.2 is the most
commonly invoked principle for construction probability distributions. It in
fact underlies the Canonical Examples 3.1 and 3.10. The result is a uniform
distribution over the primitive outcomes.

Applying this principle requires a subjective judgment, namely that each
primitive outcome is equally likely. This is not always reasonable in practice.
While it may be a good assumption for a simple game of chance, such as
tossing a coin or rolling a die, it obviously fails for more complex phenomena,
such as whether or not Los Angeles will experience a major earthquake next
year. Just because there are two outcomes does not mean, in and of itself, it
is reasonable to think they are equally likely.

Applying the principle of equal probability requires a second judgement
when assigning a distribution to a continuous random variable: which space we
should take to be uniform? Consider the beta-binomial model for the “propen-
sity to succeed” parameter, 6, in Example 3.14. In that example, we used a
uniform prior over the space, that is § ~ Beta(1, 1). If instead we take 6 to be
uniform in the logistic scale, we get 6 ~ Beta(1/2,1/2), and taking the dis-
tribution to be uniform in the natural exponential family parameter (Jaynes
1968) gives us 6§ ~ Beta(0,0). The first two priors give a marginal predic-
tion of 1/2 for the probability that the first observation will be a “success”
event. The third is not a proper probability distribution because it cannot
be normalized. This is a fair amount of information for a “noninformative”
prior. Dempster (1968) proposes a system of using upper and lower bounds on
the prior, however the resulting distributions are not probabilities but rather
belief functions (see Almond 1995).

Jeffreys (1961) argues that the noninformative prior should be invariant
under transformations of the variables. Using an information theoretic argu-
ment, he winds up with the principle that the prior should be proportional
to the reciprocal of the Fisher information. In the beta-binomial case, this
yields a Beta(1/2,1/2) prior. In the normal-normal case, it yields a uniform
distribution over the real line, which is not a proper probability distribution.

The use of improper priors (priors for which the normalization integral
is infinite) is a matter of controversy in Bayesian statistics. If we have a fair
amount of data, the choice of noninformative prior will not make much dif-
ference. For example, if used with a binomial likelihood, the improper Jaynes
prior Beta(0,0), for example, amounts to reducing the impact of the observed
data by one success and one failure. The posterior does not change much if
many successes and failures have been observed. However, the improper prior
could get us into trouble if we do not have enough data. The resulting poste-
rior distribution will be improper unless there is at least one success and one
failure in the observed data.
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One can get many of the benefits of noninformative priors without the
problems on noninformative priors by specifying a weak proper prior. Such
a prior should be flat or nearly so throughout much of the space of interest,
but can rapidly shrink outside the part of the sample space which is thought
to be likely. For example, you can take a normal distribution with a “large”
variance (where large is taken such that the 95% interval will have a high
probability of covering all meaningful values of the unknown quantity).

Sometimes stronger measures are needed. For example, in an uncon-
strained IRT model, the person ability variable, € is usually taken to be nor-
mally distributed. However, there is nonidentifiability in this model: You can
add a constant to all the abilities and item difficulties, and you can multiply
the population standard deviation by another constant and divide all of the
item slopes by the same constant, and get an equivalent model. Taking the
prior for the ability variable to be N(0, 1) resolves this ambiguity.

3.5.6 Evidence-Centered Design and the Bayesian Paradigm

Evidence-Centered Design is built around the Bayesian paradigm. Although it
will work with non-Bayesian measurement models (such as counting up item
scores to get the number right), it is at its best when the Proficiency and
Evidence Models (Chap. 2) are designed according to the Bayesian paradigm.
The proficiency model plays the role of the prior and the evidence model plays
the role of the likelihood. The Summary Scoring Process then simply applies
Bayes theorem to absorb the evidence coming in from the various task results.
Chapter 12 will explore this relationship more formally.

Calibrating the ECD Models (i.e., estimating the conditional probability
distributions) requires another application of the Bayesian paradigm. First, we
write prior distributions for the parameters of the Proficiency and Evidence
models. Then we apply Bayes theorem to update those parameters based on
the pretest data. At the same time we can do model checking to refine both
our mathematical and cognitive models.

A fundamental principal of ECD is that the mathematical model of the
assessment should reflect the cognitive theory of the domain being assessed
from a perspective and at a grainsize that suits the purpose of the assess-
ment. As a consequence, applications of ECD can use strong priors based on
the cognitive theory. This use of strong priors does not mean that the models
are subjective. The ECD process mandates documenting the sources of infor-
mation and decisions which go into the design of an assessment (Mislevy et
al. 2003b) of the knowledge that went into making decisions about both the
priors and, more importantly, the likelihoods is disclosed for others to view,
critique, and object to. More importantly, as we learn from our data what
parts of the model do and do not work well, we can refine the corresponding
parts of our cognitive model as well as our mathematical one.
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Exercises

3.1. (Subjective Probability) Bob, David, Duanli, and Russell are sitting in
Russell’s office. Russell takes a silver dollar out of his desk drawer and flips it.
For each step of this story, write down if Bob’s, David’s, Duanli’s, and Russell’s
probability that the coin has landed heads side up, is (a) 0, (b) between
0 and 1/2, (c) 1/2, (d) between 1/2 and 1, or (e) 1.

1. Russell has not yet flipped the coin.

2. Russell flips the coin where nobody can see, but does not look at the
result.

3. Russell looks at the result, and sees that it is tails. He does not show it
to anybody else.

4. Duanli remembers that Russell has a two-headed silver dollar he bought
at a magic shop in his desk.

5. Duanli asks Russell about what coins he had in his desk. He replies that
he has two normal dollars, a two-headed coin, and a two-tailed coin.

6. Russell shows Bob the result, but does not let anybody else see.

7. Bob announces that the result is tails. Duanli believes Bob always tells
the truth, but David remembers that Bob likes to occasionally lie about
such things, just to make life a little more interesting.

8. David tells Duanli that Bob sometimes lies.

9. Russell shows everybody the coin.

3.2. (Sensitivity Analysis) Example 3.6 (Almond 1995) is mostly based on
fairly reliable, if dated, numbers, except for the factor of 5 which is used
to inflate the number of reported AIDS cases to the number of HIV-positive
individuals. This could charitably be called a wild guess. Perform a sensitivity
analysis to this guess by using several different values for this fudge factor (e.g.,
1, 5, 10, 25, 50) and calculating the chance that a patient who tests positive
on the Western Blot test has HIV. How sensitive are the results to the prior?

3.3. In Example 3.6, the true rate of HIV infection is unknown. Suppose
we use a uniform distribution, P(HIV,) = .5, as a “noninformative” prior.
Calculate the chance that blood that passes the screening actually contains
HIV. Comment on the appropriateness of the uniform distribution as a prior.

3.4. (Subtest Independence) Suppose we have a 50-item assessment that fol-
lows the Unidimensional IRT model (Fig. 3.3). In particular, assume that all
of the item responses, X;, are conditionally independent given the latent trait,
0. Consider the score on two subtests, S; = Zil X, and Sy = 25’226 X, con-
sisting of the first and second halves of the test. Are S; and S3 independent?
If not, how could they be made independent? You may use the fact that if
Xi,...,X, are (conditionally) independent of Y, then ), X; is independent
of Y.
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3.5. (Conjunctive Model) A math “word problem” requires students to read
an English-language description of a problem, translate it into a mathematical
problem, and solve it. To solve a word problem, a student generally needs both
sufficient English reading proficiency, E, and the math skill, M. Let S be the
score (right or wrong) for a given word problem, and assume the probability
of a correct answer is 85 % for students who have mastered both skills and
15% for students who lack E, M, or both. (This is a conjunctive model.)
Assume that in a particular class 90 % of the students have sufficient English
proficiency to solve word problems of this type. Of the students that have
sufficient English proficiency 75 % of them have M. Of the students that lack
E only 50 % have M. Calculate the probability of mastery for the math skill
for the following students from this class:

a. A student for which we have not yet observed the performance on the
word problem.

b. A student who solves the problem correctly and is known to have sufficient
English proficiency.

c. A student who solves the problem incorrectly and is known to have suffi-
cient English proficiency.

d. A student who solves the problem correctly and is known to lack sufficient
English proficiency.

e. A student who solves the problem incorrectly and is known to lack suffi-
cient English proficiency.

f. A student who solves the problem correctly and whose English proficiency
is unknown.

g. A student who solves the problem incorrectly and whose English profi-
ciency is unknown.

What is the effect of a student’s lack of English proficiency on our ability
to measure her math skill?

3.6. (Competing Fzplanation) Presume the same situation described in Prob-
lem 3.5, except with E and M marginally independent, and P(E) = P(E) = .5
and P(M) = P(M) = .5. Show that E and M are not independent conditional

on S.

3.7. Suppose that we are trying to determine the ability of several students
to solve a particular kind of problem. Call the probability the student will
get the answer right on any particular problem 6. Use the Jeffreys prior
(Beta(1/2,1/2)), and calculate the posterior mean and variance for the fol-
lowing students:

a. A student who got 7 items right on a 10-item test.
. A student who got 9 items right on a 10-item test.
. A student who got 15 items right on a 20-item test.
. A student who got 18 items right on a 20-item test.

b
c
d
e. A student who got 30 items right on a 40-item test.
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f. A student who got 36 items right on a 40-item test.

Repeat this exercise with the uniform prior (Beta(1,1)). How sensitive are
the conclusions to the choice of prior?

3.8 (True Score Test Theory). Suppose that a student’s score on a test
X =T+ E, where T is the students true score (the score the student would
have obtained if the student did not make any mistakes) and E is the error.
Suppose that for a particular assessment instrument, the error is known to
be N(0,5?). Assume that the distribution of T for the student’s true score is
known to be N(70,10%). Calculate the mean and variance of the posterior for
the following students:

a. A student who got a score of 75.
b. A student who got a score of 90.
c. A student who got a score of 50.

What happens to those posteriors if the population variance gets larger?
smaller?

3.9 (Test Length). Suppose that an assessment is assembled from a collec-
tion of short tests. Let the score on Test ¢ be X; = T + E;, where T is the
true score and the error E; ~ N(0,0?); that is each short test has the same
measurement-error variance. Assume that the population distribution for the
true score is N(u,72). Let X = Zszl X}, be a student’s score on an assess-
ment consisting of K tests. Calculate the posterior mean and variance for the
true score for that student. What happens to these values as K increases?
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Basic Graph Theory and Graphical Models

One of the underlying principles in our approach to assessment design is that
the psychometric model should reflect the cognitive model, at a grain size
and in a manner that suits the job at hand (Mislevy 1994). This answers
the fundamental question from the previous chapter, “where do we get the
knowledge to construct prior distributions?” It comes from the experts in the
domain being modeled. However, experts in cognition, learning, and substance
of an assessment area will rarely be comfortable with mathematical notation
for expressing their ideas. To work with them, the psychometrician needs
a representation which is rigorous, but intuitive enough for the substantive
experts to be comfortable.

Enter the graphical model depicting variables with nodes in a graph and
patterns of dependency with edges drawn between them; the graphical model
is a representation of the joint distribution over all of the variables. However,
because this representation is graphical, domain experts can provide feedback
or even help construct the corresponding model. Bayesian networks share
the idea of using graphs to communicate with experts with other statistical
techniques, in particular, structural equation models. The difference is that
the graphical representation that structural equation models use is tuned to
building systems of simultaneous equations that represent functional relations
among variables, while the graphs used with Bayes nets are tuned to express-
ing conditional independence relationships, within a representation of their
joint distribution.

This difference is subtle but has important implications. First, the condi-
tional independence conditions lead directly to efficient computational algo-
rithms, in particular those discussed in Chaps. 5 and 9. Second, the factoriza-
tion properties of the graph lead to strategies for eliciting consistent probabil-
ity distributions. These advantages have led to a rapid rise of graphical model
techniques in the artificial intelligence community. In particular, Bayesian net-
works—graphical models in which all of the variables are discrete—are very
popular. This book arises out of our work in applying those techniques to
problems in educational testing.
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This chapter provides a basic foundation of graph theory and graphical
models to support the application to educational testing that is developed in
the rest of the book. Section 4.1 provides a brief introduction to graph the-
ory, providing definitions of all of the necessary terms. The focus is on ideas
rather than technical details. The chapter provides enough background for
the reader to work with experts to build directed graphs to express the sub-
stantively important relationships, and to understand the key ideas behind
how this representation is transformed to a representation that supports effi-
cient computational methods. Section 4.2 explores the relationship between
the graph and factorization and Sect. 4.3 explores the relationship between
separation in the graph and conditional independence. As Bayesian networks
are frequently built using causal arguments, Sect. 4.4 reviews the relationship
between graphical and causal modeling. Finally, Sect. 4.5 contrasts Bayesian
networks to a number of other techniques which use similar graphs.

4.1 Basic Graph Theory

The key feature of graphical models (including Bayesian networks) is that they
represent probability distributions that factor according to a graph. That is,
the joint probability distribution can be expressed as the product of factors
(such as conditional probability distributions) that each involve only subsets
of the variables, and those subsets correspond to the topology of the graph.
This graph thus provides a picture representing key aspects of the structure
of the distribution. The previous chapters have already used these pictures
informally. Defining graphical models more formally requires some terms from
graph theory.

A graph is a pair G = (N, E) where N is a set of objects called nodes or
vertices and £ is a set of edges with each edge being a nonempty set of nodes.
Usually, edges contain exactly two nodes, in which case the resulting graph
is a simple graph (Sect. 4.2 describes hypergraphs which allow more than two
nodes in an edge). In this book, we draw nodes with a label (a letter, word,
or abbreviation) in a circle or a round box. Simple edges are drawn as a line
connecting two nodes.

For graphical models in statistics, the nodes represent variables in a prob-
ability model. Each variable, A;, is associated with an outcome space, or set
of possible values. For most of the models in this book the outcome space will
be a finite set {a;1,...,a:n}, although for more general graphical models,
the outcome space can be an dense set such as the real line. For educational
applications, it helps to add an icon to the node to indicate the type of vari-
able represented. We will use node labels with circles to indicate proficiency
model variables and triangles to indicate evidence model variables.
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4.1.1 Simple Undirected Graphs

In a undirected graph all of the edges are unordered pairs (In this book, the
word graph will be used to refer to simple, undirected graphs unless another
meaning is clear from the context). Fig. 4.1 shows an example.

Fig. 4.1 A simple undirected graph
Reprinted from Almond et al. (2007) with permission from ETS.

For a graph G = (A4, &), two nodes, A1 and As are neighbors if there exists
an edge {A;, A2} (curly braces are used to represent unordered sets, so this is
equivalent to { Az, A1}) in €. That is, there is a line between A; and Az in the
representation. The set of all neighbors of a node A; is called the neighborhood
of A; in G. In Fig. 4.1, A and C are neighbors, but C' and F' are not. The
neighborhood of C' is {A, B, D, E}.

Let C be a set of nodes such that for all 4;, A; in C, A; and A; are
neighbors, i.e., there is a line between every two nodes in the set. Such as set
is called complete. {C, D, E, F'} in Fig. 4.1 is not complete, because it lacks a
{C, F'} edge. {A, B} is a complete set, but we notice that we could include C
and get a larger complete set. A maximal complete set is called a clique. The
cliques of Fig. 4.1 are {A, B,C}, {C, D, E}, and {D, E, F}. Cliques will be
important when we get to calculation, because they are subsets of variables
that we need to work with simultaneously.

There are two ways that one graph can be smaller than another: it can have
a smaller set of edges or it can have a smaller set of nodes. Let G = (41, &)
and Gy = (Az, &) be two graphs. If they have the same nodes but G; lacks
some of the edges in Go (i.e.,, A1 = Az and & C &) then Gy is a partial
graph of Go. If G; lacks some of the nodes and possibly some edges of G, and
does not have any additional edges (i.e., A1 C Ay and & C &), then G is a
subgraph Gs.

4.1.2 Directed Graphs

A directed graph (sometimes called a digraph) extends the idea of a undirected
graph in that its edges are ordered pairs. By convention the edges are drawn
as arrows. Figure 4.2 shows a typical directed graph. The arrow from D to F,
as an example, represents the directed edge (D, F) (parenthesis are used to
indicate ordered sets, so this is not equivalent to (F, D)).
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Fig. 4.2 A directed graph
Reprinted from Almond et al. (2007) with permission from ETS.

Let G = (A, E) be a directed graph. Let A be a node in G. All of the nodes
that have an arrow from them to A are called parents of A. More formally,
they are defined as {A* : (4*, A) € £}, and they are denoted pa(A|G) or more
simply pa(A) when the context is clear. Similarly, the nodes that A has an
edge going to are the children of A, or {A, : (4, A.) € £}. In a directed graph,
two nodes are neighbors if one is a parent of the other. In Fig. 4.2, C is a parent
of D. This language is often extended in the obvious way. For example, A is
an ancestor of D and F' is a descendant of C'. This terminology comes from
early applications in animal breeding, where nodes represent characteristics
of animals that are literally parents and children, ancestors and descendants.

4.1.3 Paths and Cycles

Let Ag, A1,..., A, be a series of nodes such that A; and A;;; are neighbors.
Such a series is called a path of length n. A path is simple if no node is repeated.
Two nodes in a graph are connected if there exists a path between them. A
graph is connected if all its nodes are connected.

A path whose first and last node are the same is a cycle. In the undirected
graph shown in Fig. 4.1, (C, D, F, E,C) is a cycle.

For directed graphs, what was defined as a path is called a chain, but
there is an additional condition: a path on a directed graph requires that for
each 4, the ordered pair (4;, A;1+1) is an edge. That is, all the directed edges
must point in the direction of travel. In the directed graph shown in Fig. 4.2,
(C,D,F,E,C) is not a directed cycle because the directions do not allow a
trip from C back to C' again. We sometimes call (C, D, F, E, C) an undirected
cycle, meaning that it would be a cycle if direction were ignored.

An undirected connected graph that contains no cycles is said to be acyclic,
and is called a tree. A node of a tree that is a member of only one edge is a
leaf. Figure 4.3 is a tree (in fact, it is a spanning tree of Fig. 4.1, which means
it is a subgraph that is a tree). In this graph nodes A, B, and F' are leaves.
The idea of a tree will also be important when we consider updating beliefs.
This is because in a tree, moving from an initial node to each of its neighbors,
then to each of their neighbors in turn which have not yet been visited, we
are ensured that each node will be visited exactly once.

Acyclic directed graphs—directed graphs containing no directed cycles—
play a special role in the construction of models. Figure 4.4b is an acyclic
directed graph (note that these graphs may contain undirected cycles).



4.1 Basic Graph Theory 85

Fig. 4.3 A tree contains no cycles
Reprinted from Almond et al. (2007) with permission from ETS.

Fig. 4.4a is cyclic. Acyclic directed graphs are often called by the euphonious
misnomer DAG. Technically speaking a directed acyclic graph is an acyclic
graph, a tree, whose edges are directed. However, most authors who use the
abbreviation DAG are talking about acyclic directed graphs, and we will do
so too.

a

Fig. 4.4 Examples of cyclic and acyclic directed graphs. a Cyclic, b acyclic
Reprinted from Almond et al. (2007) with permission from ETS.

Acyclic directed graphs play a key role in the theory of Bayesian net-
works. As the direction of the edges represents the direction of statistical
conditioning, the acyclic condition prevents the modeler from specifying the
distribution using circular dependencies, ensuring that the distribution is well
defined from the graph (In contrast, the graphing conventions used with struc-
tural equations models allow directed cycles, for example to convey reciprocal
causation).

Let Ag, Aq,..., Ay, Ag be a undirected cycle. A pair of nonadjacent nodes
that are contained in a common edge are called a chord of the cycle. If a cycle
contains no chords it is called chordless. Recall that (C, D, F, E,C) is a cycle
in Fig. 4.1; {D, E} is a chord in this cycle. An undirected graph that has
no simple chordless cycles of length greater than three is called triangulated.
If a graph is not triangulated, additional edges can be filled in until it is
triangulated.

Figure 4.5 shows an untriangulated graph, and one fill-in that will make it
triangulated. We will see in Chap. 5 how triangulation is used in the compu-
tation algorithms to avoid double counting evidence. Suppose that in Fig. 4.5
we are propagating evidence from D to A. There are two paths by which the
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Fig. 4.5 Filling-in edges for triangulation. Without the dotted edge, this graph is
not triangulated. Adding the dotted edge makes the graph triangulated
Reprinted from Almond et al. (2007) with permission from ETS.

evidence flows, one through B and one through C'. The triangulation reminds
us that the two evidence flows are not independent (they both come from D)
and we will have to take the joint effect into account.

4.2 Factorization of the Joint Distribution

Armed with our knowledge of graph theory, we can now define a graphical
model. A graphical model combines graphs and probability in such a way
that features of graphs help us better understand and work effectively with
probability models.

Recall that an integer can be written as the product of smaller integers,
such as 360 = 5 x 32 x 23. Basically, a graphical model is a probability dis-
tribution that can be factored into the product of pieces involving smaller
sets of variables, according to structure of the graph. However, the nature of
the pieces and the exact rules varies with the type of graph. Section 4.2.1
describes models using directed graphs and Sect. 4.2.3 describes models using
undirected graphs. Section 4.2.2 describes the factorization hypergraph which
links the two representations. As described in Sect. 4.3, the different types
of graphs also have different rules for reading conditional independence con-
straints, and it is often useful to work back and forth between the directed and
undirected representations. In particular, directed graphs are better for work-
ing with experts, building models around substantive knowledge, and eliciting
initial estimates of probabilities, while undirected graphs support key compu-
tational efficiencies.

4.2.1 Directed Graph Representation

We saw in Chap. 3 that a probability distribution can be written in a recursive
representation, and that terms simplify when conditional independences let
some variables drop out of the conditioning lists. This section shows how
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this phenomenon can be expressed in terms of directed graphs. Consider a
probability distribution over six variables, A, B,C, D, E, and F', that can be
factored as follows:

P(A, B,C, D, E, F) = P(A)P(B)P(C|A, B)P(D|C)P(E|C)P(F|E, D) .

To draw the directed graph that corresponds to this distribution, start with
a set of nodes, one for each variable. For every conditional distribution, draw
a directed edge from each conditioning variable to the consequence variable
in the distribution; for example, for P(C|A, B), draw edges from A to C and
from B to C. The result is Fig. 4.6. This is the basic idea of the directed
graphical model: the distribution for each variable is defined conditionally
on its parents in the graph. Note that this representation does not say any-
thing about the nature or the functional form of the dependence—just that
the dependence exists. This correspondence between direct dependence and
conditional probabilities is the starting point for all that follows. Here is the

formal definition.
D
———
®

Fig. 4.6 Directed Graph for P(A)P(B)P(C|A, B)P(D|C)P(E|C)P(F|E, D)
Reprinted from Almond et al. (2007) with permission from ETS.

Definition. Directed Graphical Model. Let A be a set of variables that
describe some problem space. Let G = (A, &) an acyclic directed graph whose
nodes correspond to the variables in A. The probability function Pg is called
the total probability and is defined by:

Pg = [] P(Alpa(4)) . (4.1)
AcA

Ifpa(A) is empty, then the conditional probability is taken as an unconditional
(marginal) probability.

The key idea is to use the law of total probability to break a big joint prob-
ability distribution up into many small factors. Although a joint probability
distribution can always be factored according to Eq. 4.1 (using a complete
graph—one where there is an edge between every possible pair of nodes—as
the base), more often than not the modeler gets a break from conditional inde-
pendence conditions. In fact, Pearl (1988) claims it is a characteristic of human
reasoning to organize our knowledge in terms of conditional independences,
and where they do not exist, invent variables to create them—syndromes in
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medicine, for example, or in our case, latent variables in educational mea-
surement. At any rate, if the edges are sparse in a graph, then the factors
in Eq. 4.1 will be small. This condition can be exploited to produce efficient
algorithms both for eliciting probabilities and carrying out computations.

4.2.2 Factorization Hypergraphs

It would be nice if the edges were in one-to-one correspondence with the fac-
tors of the joint distribution, but this only happens in special cases such as
chains. Graphs with more than one edge per distribution, as in the preced-
ing example, are the rule rather than the exception. It happens whenever a
variable has more than one parent. We can extend our graphical tool kit to
express these relationships with hypergraphs. If graph edges are allowed to be
arbitrary nonempty sets of nodes, not just pairs, then the resulting graph is
a hypergraph and the edges of the hypergraph are called hyperedges.

Using hypergraphs we can represent distributions with one hyperedge for
each factor in Eq. 4.1. This is a key step for moving from a directed graph,
which is easiest to build working with experts, to an undirected graph that
supports efficient calculation algorithms. To see the steps by which we move
from a directed graph that represents a joint distribution to an undirected
graph that supports computation on that distribution, we will need to define
hypergraphs, directed hypergraphs, and 2-sections.

A hypergraph is drawn with the nodes represented by points, numbers, or
letters and the edges represented by closed curves enclosing the elements of the
edges. Figure 4.7a shows an undirected hypergraph. {F'}, {F, W}, {A, D, S},
and {D, L, F, M } are some of its hyperedges.

For a hypergraph G = (A, &), two nodes, Ay, Ay are neighbors if there
exists a hyperedge that contains them both. F' and W are neighbors in
Fig. 4.7a, and the neighbors of S are A, D, W, and R.

If H is a hypergraph, then there exists a simple (undirected) graph G with
the same set of nodes such that every node A has the same neighbors in G
as it has in H. This graph is called the 2-section of H. We can construct
a hypergraph’s 2-section by starting with its set of nodes, and drawing a
simple edge between every pair of nodes that are neighbors in the hypergraph.
Figure 4.7b is the 2-section of Fig. 4.7a. A given hypergraph has a unique
2-section, but many hypergraphs can have the same 2-section. The idea of
a 2-section is a step in moving from a directed graph representation of a
joint probability distribution to a computing representation based on a simple
graph.

A directed hypergraph is made by partitioning each hyperedge into two
parts: a set of parents and a set of children. These are directed hyperedges.
For the most part, we will restrict ourselves to hypergraphs with one child
node per edge, and associate the directed hyperedges with marginal and con-
ditional probability distributions. This gives what is called the factorization
hypergraph of the directed graphical model—a representation that connects
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Fig. 4.7 Example of a hypergraph (a) and its 2-section (b)
Reprinted from Almond (1995) with permission from Taylor & Francis.

the factors of the probability distribution with the features of the graph. We
will draw directed hyperedges as rectangles, and later we will annotate them
with icons that signify the type of distribution they represent. Tentacles link
the hyperedge icons to the nodes; they look like arrows. Figure 4.8 shows an
example of a directed hypergraph.

Fig. 4.8 Hypergraph representing P(A)P(B)P(C|A, B)P(D|C)P(E|C)P(F|E, D)
Reprinted from Almond et al. (2007) with permission from ETS.

In this representation, variables are nodes in the graph, and hyperedges
are distributions. We see a directed hyperedge for each node, which is labeled
by the conditional or marginal probability distribution that is associated with
it. That is, for each variable X in Fig. 4.8 there is a directed hyperedge
(X, pa(X)). For example, P(F|E, D) is represented in the figure by the box
with that label and the tentacles from the parents D and E, through the
box, to the child F'. Recalling that a single node can be a hyperedge in a
hypergraph, we also see a directed hyperedge associated with A, which has no
parents; accordingly, the box representing this hyperedge is labeled with the
marginal distribution P(A).
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Shenoy and Shafer (1990) call this representation a valuation based system,
where “valuation” refers to the probability distributions and conditional dis-
tributions that add a layer of quantitative information to the structural rela-
tionships depicted in the hypergraph. The term valuation is actually broader
than just probabilities, and a number of kinds of relationships between vari-
ables can be modeled with valuation based systems (Sect. 4.5 lists a few).

As with the undirected hypergraph, we make an undirected 2-section by
connecting all nodes that are in the same hyperedge, for all hyperedges. Fig-
ure 4.9 shows the undirected 2-section of Fig. 4.8.

Fig. 4.9 2-section of Fig. 4.8
Reprinted from Almond et al. (2007) with permission from ETS.

Note what happens as we go from a directed graphical model, Fig. 4.6,
through its factorization hypergraph, Fig. 4.8, to its 2-section, Fig. 4.9. Nodes
that are the parents of common children are joined in the undirected version.
This process is called moralization and the resulting graph is the moral graph
because the parents are “married.” This is the principle way to go from the
directed to the undirected graphical representation of a probability distribu-
tion.

4.2.3 Undirected Graphical Representation

In an undirected graphical model, the factors of the joint probability distri-
bution are associated with the cliques of the graph. The graph in Fig. 4.9
has three cliques: {A, B,C}, {C,D,E}, and {D, E,F}. The factor associ-
ated with each clique is the product of the component distributions defined
over the variables in the clique, which we read from Fig. 4.8. The rule is to
include the conditional probability distribution for each variable in the clique
that has parents that are also in the clique, and the marginal probability
distribution for each variable in the clique that has no parents. Thus, the
factor associated with the clique {4, B, C} is the joint probability obtained
as P(C|A, B)P(A)P(B). The factor associated with {D, E, F'} is the condi-
tional probability P(F|D, E), and the factor associated with {C, D, E'} is the
product of conditional probabilities P(D|C)P(E|C).

As this example shows, the factors associated with the cliques can be either
a probability distribution, a collection of conditional probability distributions,
or complex combinations of probabilities and conditional probabilities. We call
such objects potentials. They are what we will use in Chap. 5 for updating
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probability distributions when values are obtained from a subset of variables.
Although potentials may or may not represent probability distributions, they
can usually be normalized and interpreted as probabilities. The collection of
variables over which a potential is defined is called its frame of discernment
(This term is adapted from Dempster-Shafer theory where it originally was
used to mean outcome space. See Almond 1995).

Whether the graph is directed or undirected, the key idea is the same. The
joint probability distribution is broken up into a collection of factors, C.

e Directed Graphs—Sets C correspond to each node A and its parents.
e Undirected Graphs—Sets C correspond to cliques in the graph.

Factorization, and the corresponding conditional independence conditions,
can be exploited when calculating probabilities for subsets of variables. Chap-
ter 5 explores some of the methods for making routine Bayesian updating
calculations much more efficient by using these ideas.

4.3 Separation and Conditional Independence

As mentioned previously, one important feature of the graphical model is
that separation of the variables in the graph implies conditional indepen-
dence of the corresponding variables. To formalize this intuition, we need to
formally define separation. Section 4.3.1 provides a definition for separation
in both undirected and directed graphs. Section 4.3.2 explores the relation-
ship between separation and independence. Finally, Sect. 4.3.3 describes the
important Gibbs—Markov equivalence theorem which states that factorization
implies independence and vise versa.

4.3.1 Separation and D-Separation

Directed and undirected graphs encode conditional independence conditions
differently. Consequently, the definition of separation is different in the two
different types of graph. For the undirected graph, separation corresponds
nicely to the intuitive notion of the concept. Fortunately, separation in undi-
rected graphs is not only easier to understand, it is the one that matters in
computing algorithms.

Definition. Separation. Let X, Y, and Z be sets of nodes in an undirected
graph, G. Z separates X and Y, if for every A, in X and for every A, in'Y,
all paths from Az to Ay in G contain at least one node of Z.

In Fig. 4.9, C separates {A, B} from {D, E'}. Taken together, {D, E} sep-
arates C' from F.
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An equivalent way to think about separation is that deletion of the nodes
Z from the graph disconnects the nodes of X from the nodes of Y. The
intuition is that if we remove the nodes Z by conditioning on the corresponding
variables, this renders the variables in X and Y independent.

For directed graphs, the “competing explanation” phenomenon compli-
cates the notion of independence. Recall from Example 3.9 that sometimes
making an observation can render two previously independent variables depen-
dent. These competing explanation cases will have a graphical structure that
looks like X — Z + Y, with converging arrows both pointing at Z (these are
sometimes called colliders). As there is no directed path from X to Y, they
are separated. However, when Z is observed there is still a dependence. For
that reason, reading independence conditions from a directed graph requires
definition of d-separation.

Definition. d-Separation. (Pearl 1988) Let X, Y, and Z be sets of nodes
in a acyclic directed graph, G. Z d-separates X and Y, if for every A, in X
and for every Ay in'Y, there is no chain from A, to Ay in G along which the
following conditions hold: (1) every node with converging arrows is in Z or
has a descendant in Z and (2) every other node is outside Z.

This somewhat obscure definition captures the fact that observing the
value of a common descendant can make ancestors dependent. Simply looking
at where there are edges is no longer sufficient, as it was with separation in
undirected graphs, because the same pattern of edges can lead to d-separation
in some cases and not in others, depending on their directions.

The intuition is as follows: A, and A, are d-connected if information can
“flow” from A, to Ay (or the other way). Assume we “know” the values for the
variables corresponding to nodes in Z; in some cases this blocks the flow and
in other cases it opens the flow. (1) Knowing intermediate steps along a path
from A, to A, (or A, to A,) blocks the flow of information along that path.
(2) Knowing common (direct) ancestors blocks the flow of information from
A, and A, through that ancestor (see Example 3.8). (3) Knowing common
descendants unblocks the flow of information from A, to A, through the
common descendant (see Example 3.9), although if the common descendant
is not known, then that path is still blocked. Figure 4.10 shows some examples.

The upshot of d-separation for our purposes is this: It is easiest to construct
directed graphs that reflect the local relationships that are cognitively and
substantively important. The competing explanations phenomenon, however,
can introduce some relationships that are not apparent in this representa-
tion, and have important implications for updating beliefs from observations.
Induced dependencies are important in two ways: conceptually, for sorting out
evidence in correct but subtle ways, and computationally, for making sure the
updating to all other variables is coherent. Because under some circumstances
knowledge about D renders B and C' dependent, then, B and C must be con-
nected in the undirected graph to represent the same pattern of dependencies.
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Fig. 4.10 D-Separation (Pearl, 1988). Here, { E'} d-separates D and F' (intermediate
step in chain). {A} d-separates B and C' (common ancestor), but {D} does not d-
separates B and C' (common descendant). Furthermore, {A, F'} does not d-separate
B and C even though {A} does by itself (common descendants must not be included
in the separator set)

Reprinted from Almond et al. (2007) with permission from ETS.

This is why, to go from the directed to undirected representations, B and C
must be married, producing the moral graph (A formal way of saying this is
that we need to work with the 2-section of the factorization hypergraph).

4.3.2 Reading Dependence and Independence from Graphs

Ideally, the separation properties of the graph should show all of the con-
ditional independence relationships in the probability model. This is seldom
possible. The terms I-Map and D-Map (Pearl 1988) categorize the relation-
ship between a model and a graph. The formal definitions are stated in terms
of separation in the graph and independence in the model:

Definition. D-Map, I-Map. Let M be a probability model and let G be
a graph with a one-to-one correspondence between the nodes of G and the
variables of M. G is a dependency map (or D-map) of M if for all disjoint
subsets X, Y, and Z of the variables such that X is independent of Y given
Z in M, Z separates X and Y in G. Similarly, G is an independence map
(or I-map) of M if Z separates X and Y in G implies X is independent of Y
gwen Z in M.

What this means is that in a D-map, wherever there is an edge there is
a dependence relationship between those variables in the probability model.
However, there may be dependencies that are not shown. This is the issue we
discussed in the previous section, where observing a descendant can induce a
dependency among ancestors that was not depicted in the original directed
graph. If we are thorough, the directed graphs we create with experts to depict
cognitive and substantive relationships will usually be D-maps.

An I-map, in contrast, can miss independence conditions. Everywhere
there can a dependency between variables in the model that cannot be
removed by conditioning on other variables, there will be an edge in the
graph—but there may be edges in the graph where there are not in fact
dependencies. The 2-section of a factorization hypergraph, like Fig. 4.9, is an
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I-map. The additional edges ensure that any induced dependencies will be
taken into account, but they might not have been needed. A key result is that
if the graph G is an I-map of the probability model M, then M is Markov with
respect to G, i.e., variables that are separated in the graph are conditionally
independent, given the variables that separate them.

If G is both a D-map and and I-map, it is a perfect map. Perfect maps are
unfortunately rare (again, chains provide examples). However, I-maps and
D-maps always exist. For example, the complete graph (all components con-
nected) is a trivial I-map, and the disconnected graph (no edges) is a trivial
D-map. Minimal I-maps (maximal D-maps) capture as many of the indepen-
dence (dependence) conditions as possible (see Pearl 1988).

In sum, directed graphs are good for making maximal D-maps, and undi-
rected graphs are good for making minimal I-maps. One reason to transform
the directed graph to the undirected graph is that it is easier to read the con-
ditional independence relationships from the undirected graph. However, the
added moral edges represent dependencies which are only realized in certain
circumstances. For the purpose of eliciting distributions we prefer D-maps,
and hence prefer to work with the directed graphs. The computational algo-
rithms of Chap. 5 require I-maps, and hence we transform the graph to the
undirected representation for calculation.

4.3.3 Gibbs—Markov Equivalence Theorem

Which comes first, the factorization or the conditional independence? We do
not need to think hard about this question because the two are equivalent
under fairly mild restrictions. This problem was addressed early in the world
of statistical physics under the name Gibbs—Markov equivalence. The term
Gibbs refers to the ability to factor the distribution into Gibbs potentials,
whose frames are given by the cliques of the graph. As noted above, the
term Markov means that variables which are separated in the graph are con-
ditionally independent. Moussouris (1974) provides sufficient conditions for
Gibbs—Markov equivalence in probabilistic models.

Theorem 4.1 (Gibbs—Markov Equivalence). Let G be a graphical model
for which the probability is strictly positive (there is no combination of input
variables which has zero probability). The model graph is an I-map of its graph-
ical model, or equivalently, a graphical model is Markov with respect to its
model graph. (For a proof, see Moussouris 1974)

In practice we usually use the Gibbs — Markov direction, i.e., given
the factorization we derive the conditional independence properties. Logical
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relationships! have zero probabilities and cause the Markov — Gibbs direction
to break down. However, such cases usually do not cause a problem because
we start with the factorization and go to the conditional independence state-
ments.

Practical model building usually goes back and forth between the two
representations. If we have a factorization, we ask experts about conditional
independence implications to verify the factorization. If we have independence
conditions, we draw an a appropriate factorization and try to elicit factors.
Eventually, we exploit the Markov conditions to derive efficient computational
techniques (Chap. 5).

4.4 Edge Directions and Causality

The directed graphical representation is often easier to use than the undirected
representation for building models. In the undirected graph, one must ensure
that all of the factors (associated with the cliques) make up a consistent
probability distribution. For the directed graph, if the graph is acyclic and
each factor is a consistent probability or conditional probability, then the
resulting distribution will be a proper joint probability.

When building such a graph the question, “what do the arrows mean,”
inevitably arises. The direction of an edge means the “direction of statistical
conditioning” —as a formal property, simply what is on the right and left of
the conditioning bar. Things become more interesting when we link graphs
and pictures to real-world relationships.

Edges can be drawn in either the “causal” (Fig. 4.11) or “diagnostic”
(Fig. 4.12) direction. Both are representations of the same joint distribution,
so formally they are equivalent.

Fig. 4.11 Directed graph running in the “causal” direction: P(Skill)
P (Performance|Skill)
Reprinted from Almond et al. (2007) with permission from ETS.

We can use Bayes theorem to translate between the two representations.
This is called arc reversal in influence diagram literature (Howard and Math-
eson 1984). However, arc reversal sometimes results in a more complex graph.
For example, if we were to reverse the edge between Language Proficiency

! For example, let A, B, and C be variables that take the values true and false.
Defining P(C|A, B) to be true with probability 1 if both A and B are true and
false with probability 1 otherwise is a logical, rather than stochastic relationship.
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Fig. 4.12 Directed graph running in the “diagnostic” direction: P(Performance)
P (Skill|Performance)
Reprinted from Almond et al. (2007) with permission from ETS.

and Reading in Fig. 4.13, then we would wind up drawing an edge between
Reading and the other three variables as well.

(O Language Proficiency )

Fig. 4.13 A graph showing one level of breakdown in language skills
Reprinted with permission from ETS.

Graphs whose edges run in the “causal” direction are generally simpler
than graphs whose edges run in the “diagnostic” direction. That is because
relationships are understood as events or observations that are conditionally
independent, given underlying factors of a situation or prior events, perhaps
from a substantively grounded understanding of the situation at hand. Pearl
(1988) and others have used that to build a theory of causal modeling (see
Sect. 10.7). Following this tradition, many authors call Bayesian networks
causal models. The influence diagram school, on the other hand, tends to
avoid the word “causal” because it is often misinterpreted by the lay public
(Sect. 10.7).

Causality is not necessary for building graphical models. Weaker notions
like “tendency to cause,” “influence,” or “knowledge dependence” are suf-
ficient. In Fig. 4.13 the meaning of the edges is a “part-of” relationship—
Reading is a part of Language Proficiency. Ultimately, the meaning of the
edges is knowledge dependence. An edge from A to B means that knowledge
about A affects our beliefs about B.

This does not mean that if our domain experts have a well established
causal theory, we should throw it away. Rather, the causal theory can help
build efficient models. In particular, cognitive theory about factors which go
into performance on an assessment task can be used to build a mathematical
model of that performance (Mislevy 1994). Psychometric models in general
posit latent variables that characterize aspects of students’ knowledge and
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skill, which are modeled as parents of aspects of their behavior. This is as
true for cognitive diagnosis models as it is for more traditional psychometric
models such as classical test theory, item response theory, and factor analysis.
But we should not wait until we have a universally agreed upon causal model
before building a graph. Any theory of the domain should be enough to get
us started.

In evidence centered design , domain experts and assessment designers are
encouraged to draw preliminary versions of the future proficiency and evidence
models before settling down to built the final statistical model of the test.
During this domain modeling phase, the edges in the graph are often labeled
with the type of relationship (e.g., prerequisite, part-of, induces, inhibits).
These labels are not used in the final Bayes nets, but help the experts think
about how to model the conditional probability tables.

4.5 Other Representations

One of the principle advantages of using graphical models for educational
assessment is that they provide a useful representation for discussing math-
ematical models with domain experts who may be less familiar with mathe-
matical notation. However, graphical models are not the only system to use
graphs as a means of conveying mathematical models. This section discusses
several of these other representations and their relationships to graphical mod-
els. Influence diagrams (Sect. 4.5.1) are a specific generalization of graphical
models which add decision variables to the mix. Structural equation models
(Sect. 4.5.2) also use graphs to represent complex models, but with some nota-
tional differences which are important to point out. Section 4.5.3 briefly lists
some other related models.

4.5.1 Influence Diagrams

Influence diagrams (Howard and Matheson 1984; Shachter 1986; Oliver and
Smith 1990) have had a strong influence on the modern development of graph-
ical models, especially the application in artificial intelligence. Influence dia-
grams differ from Bayesian networks in that they use both probabilities and
utilities which represent preferences among outcomes. Influence diagrams also
use three classes of nodes, one to represent random variables, one to repre-
sent decisions (under the control of the decision maker), and one to represent
utilities. The “solution” to an influence diagram is a strategy for making the
decisions involved in the problem to maximize the expected utility.
Figure 4.14 shows a typical influence diagram.

e Square boxes are decision variables. Arrows going into decision variables
represent information available at the time when the decision is to be
made.
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Select Test

Skill
Intervention

Intervention
Cost

Skill at
Testing
Time

Skill at
End of
Course

Fig. 4.14 Influence diagram for skill training decision
Reprinted from (Almond 2007b) with permission from ETS.

e Round boxes are chance nodes (random variables).
e Hexagonal boxes are utilities. Costs are negative utilities.

The example in Fig. 4.14 brings up some interesting issues so it is worth
exploring in a little more detail.

Example 4.1 (Value of Testing). Suppose that we are trying to teach a
certain skill to a certain student. We have a utility associated with this student
knowing the skill at the end of the course. The student’s probability of knowing
the skill at the end of the course will depend on both the student’s skill
level at the beginning of the course and what kind of instruction the student
receives. The instruction has certain costs (both monetary and student’s time)
associated with it (as does no instruction, but we can scale our utilities so that
that cost is zero). We do not know the student’s ability at the beginning of
the course, but we can give the student a pretest whose outcome will depend
on the student’s ability. This pretest also has a cost associated with it. We can
observe the outcome of the pretest when we make the decision about what
instruction to give.

The decision of what instruction to give depends not only on whether or not
the student seems to have the skill from the pretest, but also the value of the
skill and the cost of the instruction. If the instruction is very expensive and
the skill not very valuable, it may not be cost effective to give the instruction
even if we know the student does not have the skill. Similarly, the decision
about whether or not to test will depend on the cost of the test and the cost
of the instruction. If the instruction is very inexpensive (for example, asking
the student to read a short paper or pamphlet), it may be more cost effective
to just give the instruction and not bother with the pretest.

This example brings up the important concept of wvalue of information
(Matheson 1990). This will come up again, along with its close cousin weight
of evidence when we discuss explanation and task (item) selection in Chap. 7.
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An influence diagram with all chance nodes is called a relevance diagram
and is a Bayesian network. This fact, along with the efficient algorithms for
Bayesian networks (Chap. 5) has caused most of the current influence diagram
research to be cast in terms of Bayesian networks. If the number of decision
variables is low, then it is often efficient to represent them as random variables
in a Bayesian network and simply assign them distributions with probability
1 for a particular choice.

4.5.2 Structural Equation Models

Before graphical models, Wright (1921) (also Wright 1934) used graphs to
represent statistical models in his pioneering development of path analysis.
This technique has been a strong influence on many of the early developers of
Bayesian networks (Pearl 1988). Path analysis has been popular in the social
sciences because the pictorial representation of the model is often easier to
use than mathematical notation.

Bayesian networks are not the only models using a graphical representa-
tion to descend from path analysis. Structural equation models (Bollen 1989;
Joreskog and Sorbom 1979; Kaplan 2000), or SEMs, have been quite popular
in psychological and educational testing applications. Although they concen-
trate on modeling associations in populations rather than behavior of a single
individual, there are many similarities.

This book will not cover structural equation models, as they are covered
by many other authors. But it will be helpful to notice a few key differences
between structural equation models and Bayesian networks.

1. SEMs most often work with continuous variables which are assumed to
have a multivariate normal distribution, and Bayesian networks most often
use discrete variables that have a multinomial distribution. There are
exceptions on each side (see Whittaker 1990; Lauritzen 1996), but this
rule holds for many applications.

2. SEMs model the covariance matrix, while graphical models model the
inverse of the covariance matrix (Whittaker 1990). Zeros in the covariance
matrix imply marginal independence, while zeros in the inverse covariance
matrix imply conditional independence. This drives the next difference.

3. SEMs and Bayesian networks use slightly different graphical notations.
Some of these are obvious: SEMs allow bidirectional or undirected edges to
model correlations, while all edges in Bayesian networks must be directed
and the directed graph must be acyclic. Perhaps more subtle is what a
missing edge means. “The missing links in those statistical models [graph-
ical models] represent conditional independencies, whereas the missing
links in causal diagrams [SEMs| represent absence of causal connections

. that may or may not imply conditional independencies in the distri-
bution” (Pearl 1998, p. 237).
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4. SEMs frequently model error terms as nodes in the graph, while in
Bayesian networks, they are often implicit in the distribution locked in
the edges.

5. In practice, SEM modeling usually focuses on modeling the distribution of
a population, while Bayesian network modeling often focuses on calculat-
ing probabilities for an individual (see Part I). However, when estimating
the parameters of the Bayesian network, the population distribution must
be considered (Part II).

In short, SEMs and Bayesian networks are both rich notations for describ-
ing complex multivariate distributions and using graphs to visualize the rela-
tionships. However, the rules are slightly different, so not all SEMs and
Bayesian networks are equivalent (Pearl 1988, notes that the ones that are
equivalent are called recursive models in the SEM literature). So, when
faced with a graph, it is important to know which representation is implied.
Anderson and Vastag (2004) provide a side-by-side comparison of SEMs and
Bayesian networks.

4.5.3 Other Graphical Models

Although Bayesian networks are one of the most frequently used graphical
models, there exist other kinds of graphical models as well. Generally, a
graphical models is a representation of a probability distribution that factors
according to a graph. So a set of rules for associating graphs (or hypergraphs)
of various types with factorizations, and conditional independence conditions
produces a new kind of graphical model. This section provide a few pointers
into the rich literature on this topic.

The term graphical model comes from Darroch et al. (1980) where it is
used for modeling contingency tables. According to the definition, a model is
graphical if for every set of variables for which all two-way interactions are
included in the model (this would be a clique in the graph), all higher order
interactions are included as well. The implication of this definition is that the
joint probability distribution factors according to the cliques of the graph.
These models are particularly convenient computationally, and usually quite
easy to interpret.

The restriction to discrete variables is convenient because the integral
which is the denominator of Bayes’ rule turns into a sum. If that restric-
tion is lifted, then the denominator becomes, in some cases, an integral that
usually cannot be solved analytically. One exception is if all of the variables
are normal. In this framework, directed edges behave like regression models.
Whittaker (1990) provides a general reference for both discrete and multivari-
ate normal graphical models, as well as some cases of mixed models.

Edwards (1990) describes one class of mixed graphical model which is con-
venient to work with under the name hierarchical interaction model. Edwards
(1995) describes a system for fitting these models to data, realized in the
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software package MIM. Lauritzen (1996) describes a general case of condi-
tional Gaussian models in which normal variables are allowed to be children
of discrete parents, but discrete variables are not allowed to have continuous
parents (Contrast this to item response theory (IRT) models in which the
continuous latent trait, €, is a parent of discrete observable outcome vari-
ables). Lauritzen (1996) shows how conditional Gaussian models support the
algorithms of Chap. 5.

Cox and Wermuth (1996) describe an extension of these ideas called chain
graph models. Chain graphs use a mixture of directed and undirected edges.
The directed edges represent conditional relationships, i.e., the distribution
of the child is given conditioned on the parent. The undirected edges repre-
sent correlational relationships, i.e., the variables in question are given a joint
distribution given common parents.

To unify very similar work in Bayesian networks, influence diagrams,
discrete dynamic programming, and graphical belief functions, Shenoy and
Shafer (1990) developed a general framework they called valuation-based sys-
tems. Valuation-based systems associate quantitative information with rela-
tionships among variables. The probability potential introduced above is an
example of a valuation, as are utilities in influence diagrams. To support this
framework, valuations need to support a couple of operations and properties.
First, there needs to be some notion of conditional independence related to the
factorization of the model. Second, the valuations must support a combination
and a projection (changing the frame for the valuation) operation. Finally, it
must be possible at least under some circumstances to interchange the com-
bination and projection operators. Given these conditions the algorithms of
Chap. 5 can be used to solve problems.

Some examples of valuation based systems include: Bayesian Networks
(Shenoy and Shafer 1990; Almond 1995), Influence diagrams (Shenoy 1991),
Discrete Dynamic Programming (Bertele and Brioschi 1972), Graphical Belief
Functions (Shenoy and Shafer 1990; Almond 1995), and Mized Graphical Mod-
els (Cobb and Shenoy 2005). This last paper shows that if the distribution of
the continuous variables can be described through a mixture of exponential
distributions, then the Shenoy and Shafer (1990) algorithm can be used to get
exact solutions. Mixtures of exponentials can often provide good approxima-
tions to complex functional forms.

The computation schemes of Chap. 5 rely on the conditional independence
properties of Bayesian networks (or, by extension, the other graphical models
described here). In particular, Bayesian networks are suitable for the purpose
of gathering data, drawing inferences, and making decisions about individuals
as data arrive for each of them. This is the reason for our choice of Bayesian
networks as the basis of our models for educational testing.
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Exercises

4.1. The graph for the item response theory (IRT) model in Chap. 3 (Fig. 3.3)
has all of the arrows pointing from 6 to the observable item outcomes, X;.
Why did we choose to draw the arrows in that direction?

Fig. 4.15 Graph for use in Exercise 4.2
Reprinted from Almond et al. (2007) with permission from ETS.

4.2. Refer to Fig. 4.15. In each of the following scenarios state whether the
variables associated with nodes A and C are independent. In each case, if
they are not independent, indicate a set of additional variables such that
conditioning on these variables would render A and C' independent again.

a. No variable values have been observed.

b. Values for the variables F' and H are observed, but no other variables are
known.

c. A value for the variable G has been observed, but all other variables are
unknown.

4.3. In developing an assessment for algebraic sequences, the domain experts
identified four proficiency variables: overall sequence proficiency, arithmetic
sequence proficiency (sequences like 2,4, 6,8), geometric sequence proficiency
(sequences like 2,4, 8,16), and other recursive proficiency (sequences that do
not follow arithmetic or geometric rules, like the Fibonacci sequence). Accord-
ing to the experts the last three proficiencies are “part of” overall proficiency.
What direction should the edges representing this relationship be drawn?
Why? Are other edges needed between the remaining variables? What ques-
tion could be asked of the experts to see if additional edges are needed?
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4.4. Start with the language proficiency model on Fig. 4.13. Now add nodes
representing the scored outcomes from the following tasks:

a. A pure Reading Task.

b. A pure Listening Task.

c. A task which requires a written response based on textual stimulus which
the candidate must read.

d. A task which requires a spoken response based on a audio stimulus which
the candidate must listen to, with written instructions.

e. A task which requires a candidate to write a transcript of an audio stim-
ulus, with spoken instructions.

Connect the new outcome variables nodes to the proficiency variables
nodes already in the graph. Now connect the parents of each outcome variable
to form the moral graph. What is the size of the largest clique? What happens
to the conditional independence of the skills? (Mislevy 1995¢).

4.5. Suppose we have a proficiency model consisting of an overall proficiency
skill and several subskills. The experts tell us that we can model the subskills
as conditionally independent given the parent. Suppose further that our test
consists of a collection of items which tap each pair of the subskills, so that the
moral graph for the proficiency model will be saturated (there will be an edge
between every pair of variables). Given that the moral graph will be saturated,
why is it still better to have the arrows go from the overall proficiency to the
subskills? Hint: Assume all variables have four levels. The expert must then
specify three probability values per combination of parent states (because the
four probabilities in each conditional distribution must sum to 1). Thus, if a
node has two parents, the expert must specify 3 x (4 x 4) probability values.

4.6. Consider a dance performance competition in which there are three per-
formers and three judges. Draw a Bayesian network to represent this structure
in each of the following scenarios:

a. Each dancer gives a single performance which receives a single rating
agreed upon by all three judges.

b. Each dancer gives a single performance and receives a separate perfor-
mance from each judge.

c. Each dancer gives three performances, each performance is rated by a
different judge.

d. Each dancer gives three performances, each performance is rated by all
three judges.

For the models with multiple performances, should there be arrows between
the performances? For the models with multiple ratings, should there be
arrows between their ratings? Justify your answers.
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Efficient Calculations

The previous chapters have laid a foundation for building probability mod-
els and embedding them in a graphical structure. The graphical structure
reflects our knowledge bout interrelationships among the variables. Once we
have expressed all of the interrelationships in terms of a joint probability dis-
tribution, it is always possible in principle to calculate the effect of new infor-
mation about any subset of the variables on our beliefs about the remaining
variables (i.e., to propagate the evidence).

For even relatively small numbers of variables, however, the cost of updat-
ing the full joint distribution using the definitional expression of Bayes theo-
rem becomes prohibitive. A model with 15 variables with four values each
already means working with a joint probability table with over a trillion
entries. We have intimated that when the topology of the graph is favor-
able, we will be able to carry out calculations more efficiently. Mathemat-
ically speaking, topologies that are favorable for computing are those that
have small cliques, that is, low treewidth. Using the algorithms described in
this chapter, the cost of the computation only grows linearly in the total num-
ber of variables, but grows exponentially with the size of the largest clique.
More informally, if we have structured our understanding of the domain so
that the important interactions take place among small subsets of variables,
then we can exploit that structure to create an efficient calculation algorithm.

This chapter introduces efficient calculation in networks of discrete vari-
ables. The objective is to ground intuition with a simplified version of a basic
junction-tree algorithm, illustrated in detail with a small numerical example.
More complete descriptions of this so-called fusion and propagation algorithm
are available in Jensen (1996), Cowell et al. (1999), and Neapolitan (2004).
Practically, such calculations are done with computer programs rather than
by hand, and Appendix A describes how to get several commercial and free
research programs that support these calculations. The basic belief-updating
algorithm presented here is just one of a large number of variants on the
message-passing algorithm described in Pearl (1988); Sect. 5.6 describes some
of them.

© Springer Science+Business Media New York 2015 105
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Section 5.1 begins by reexamining probability updating in a simple two-
variable model, which corresponds to a graph with one variable Y depending
on a parent variable X. However, this simple example defines two operations,
combination and marginalization, which are key to the belief-updating algo-
rithm for more general graphs. Section 5.2 describes how the belief-updating
algorithm works in undirected graphs that have no loops, such as chains and
trees. This section adds the message operation. Section 5.3 notes that this
method of propagation breaks down when a graph contains a cycle, or mul-
tiple paths from one variable to another. It then describes how the method
can be generalized to propagating at the level of cliques of variables in what
is called a junction tree or join tree, rather than at the level of individual
variables. The construction of a junction tree and propagation of evidence
with a junction tree are illustrated with a simple example of how a junc-
tion tree is constructed. Section 5.4 discusses implications of this approach
for assessment, including the idea of distinguishing fragments of Bayes nets
that correspond to proficiency models and evidence models. These pieces can
be assembled dynamically to absorb evidence about students’ knowledge in
applications such as computerized adaptive testing. Section 5.5 presents an
alternative representation for the structure of an assessment, the Q-Matrix.
Section 5.6 briefly surveys alternative updating techniques, both exact and
approximate, for use in situations when the algorithm of Section 5.3 is not
viable.

5.1 Belief Updating with Two Variables

In its definitional form, Bayes theorem (Theorem 3.1) can be applied in prin-
ciple to any number of variables. However, the calculations soon become
intractable. The first steps toward efficient computation in large networks
of variables were developed for special structures such as chains and trees, in
which globally coherent updating could be accomplished by working through
the structure two variables at a time.

It is easy to understand probability updating and Bayes theorem in terms
of definitional, or what might be called “brute force,” calculation. In discrete
Bayes nets, one enumerates the probabilities of all the possible combinations
of values of all the variables, reduces the set to reflect news about the values
of some variables, and carries out some simple arithmetic to calculate the
probabilities of all the remaining possibilities. This is easy to understand and
easy to demonstrate, as we will do in this section—as long as there are not
too many variables and not too many combinations of values. But the basic
steps in the brute force calculation are the building blocks of more efficient
calculation in more complex networks.

Consider the case of just two variables, X and Y, and suppose that our
initial knowledge consists of marginal probabilities p(x) for the values of X
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and conditional probabilities p(y|z) for values of Y given values of X. The
graph takes the now-familiar form shown as Fig. 5.1.

Fig. 5.1 Graph for the distribution of X and Y
Reprinted from with permission from ETS.

As discussed in Chap. 4, this directed representation of the relationship
between the two variables supports updating our belief about either X or
Y given the values of the other. If we learn the value of X, we update belief
about Y directly via the conditional probability distribution p(y|z). If we learn
the value of Y, we update belief about X via Bayes theorem. The following
example begins by reviewing Bayesian updating in the context of a numerical
illustration.

We will then recast the problem in terms of operations on potentials on
this (very simple!) graphical structure. In general, we call a multiway array
of numbers where each dimension corresponds to a variable in our model,
a potential. Potential tables are probability distributions for which we have
relaxed the normalization constraint. That is, the numbers are nonnegative,
and they are in the right proportions to reflect relative probabilities of out-
comes and events. A potential could represent a probability distribution, a
product of a set of conditional probability distributions or another intermedi-
ate quantity in a probability calculation. If we want to interpret a potential
as a probability, we often must normalize it.

Example 5.1 (Dental Hygienist Assessment). Let X represent a dental
hygiene student’s proficiency in examining patients, and Y represent whether
a student takes an adequate patient history in a particular simulation task.
The single proficiency variable, X, can take two values, 1 = expert and o =
novice, and the observable variable, Y, can also take two values, y1 = yes and
y2 = no. In this assessment the work product is the examinee’s sequence of
actions in taking a patient history. Assume we can determine unambiguously
whether a given sequence is adequate or inadequate.

Suppose that it is equally likely that a student is an expert or a novice,
so p(expert) = p(novice) = .5. Suppose further that an expert’s probability
of taking an adequate history in such tasks is .8, and a novice’s is .4. Thus
p(yr|z)=28andp(y2 | z1) =2, and p(y1 | x2) = 4 and p (y2 | z2) = .6.

In an operational assessment we would want to observe an examinee’s per-
formance, evaluate its adequacy, and update our belief about the examinee’s
expert/novice status. We observe Jay take an adequate history in the task;
that is, Y = y; = yes. Bayes theorem updates our initial beliefs of (.50,.50)
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probabilities for expert and novice as follows:

p(y1 | x1)p(z1) 8x.5

yi|z)p(x)+p(yr | z2)p(z2) 8x.54+4x%x.5

p($1|yl)=p(

and p(z2 | y1) =1—p(z1 | y) = .33.

Now let us see how this example can be expressed in terms of potential
tables and operations on them. We will first work through the symbolic rep-
resentation, then show the corresponding numbers from Example 5.1.

There is one clique in this undirected graph, {X,Y}. From the information
about p(z) and p(y|x), we can construct a two-way table of the joint proba-
bilities p(z,y) for all possible (x,y) pairs. The results are shown as the top
panel in Table 5.1. This is a potential table for p(x,y), which at this point
conveys the initial beliefs. The margins for X and Y are shown at either side
of the joint distribution; both are consistent with the joint probabilities in the
center.

We now learn that Y = y;. Because Y and X are dependent, the value
we learned for Y provides evidence for X. This evidence can be expressed
as the vector [1,0]. In order to combine this new belief about Y with our
initial belief about the joint distribution of X and Y, we first replicate the
information about Y into a potential table for X and Y. This is shown in the
second panel of Table 5.1.

To instantiate the observed value of Y, multiply each cell in the initial
table for X and Y by the contents of the corresponding cell for the new
evidence. The result is the third panel in Table 5.1. The states that now
have zero probability (i.e., are impossible) are colored gray. Note that the
contents of the table are no longer a proper probability distribution as the
values do not sum to one, but rather sum to p(y;). Interpreting the values
as a probability requires normalizing the values in the table by dividing by
the sum of the elements. This yields the final panel of Table 5.1, a potential
table that represents the conditional probability distribution for X given that
Y = Y-

Example 5.2 (Dental Hygienist Assessment, Example 5.1, Contin-
ued). Table 5.2 gives the numbers for the Dental Hygienist example that
correspond to the symbolic representation of the potentials in Table 5.1. We
see that the operations on the potentials reflect the calculations we carried
out in the definitional application of Bayes theorem. Learning that a student
takes an adequate history means focusing attention on the yes column. The
ratio of the values is 2:1, and normalizing, we find that we have updated our
initial (.50,.50) probabilities for expert and novice to (.67, .33).
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Table 5.1 Updating probabilities in response to learning ¥ = y1
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Y1 Y2 P(X)
) p(y1lz1)p(z1) | p(yz|z1)p(z1) p(z1)
= p(z1,y1) = p(z1,92)
2 p(yilz2)p(z2) | P(Y2|22)p(22) p(z3)
=p(r2,91) | =p(x2,92)
P(Y)|  p(y) p(y2) 1

a) Table for initial joint and marginal probabilities.

$110
z2| 1|0

Y1 Y2

b) Potential table representing evidence, Y = y;.

Y1 Y2 P(X)
p(r1,y1) x 1| p(x2,41) X0
T p(mlvyl)
=p(r1,y1) | =0
p(r2,y1) x 1| p(2,y2) X0
T2 p(m%yl)
=p(z2,m1) | =
P(Y)|  p(y) 0 p(y1)
¢) Combine initial probabilities with evidence.
Y1 Y2 P(X)
x b
- p(z1,91)/p(y1) 0 )
= p(z1ly1)
p(z2,91)/p(y1)
T2 0 p(@2|y1)
= p(x2|y1)
P(Y)| 1 0 1

d) Normalize by dividing by the grand total, p(y1).

This example introduced most of the key operations on potentials we will
need to update Bayes nets in light of new evidence. They are projecting a
potential for one set of variables into a potential for an overlapping set of
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Table 5.2 Numerical example of updating probabilities

yes no P(X)

expert|.8 x .5 =.40[.2x .5=.10] .5
novice|.4 x .5 =.20|.6 x .5 = .30
P(Y) .6 4 1

a) Table for initial joint and marginal probabilities.

Y1 Y2
X1 110
X2 110

b) Potential table representing evidence, Y = y;.

yes no P(X)
expert|4x1=.4.1x0=0

novice|.2x1=.2 .3x0=0
P(Y)| 6 0 6

c¢) Combine initial probabilities with evidence.

yes no P(X)
expert|.4/.6 = .67 0 .67
novice|.2/.6 = .33 0 .33

P(Y)| .6/.6 =1 0 1

d) Normalize by dividing by the grand total, .6.

variables (both up to a larger set and down to a subset), and combining two
potentials over the same set of variables. (All we still need is an operation to
pass messages from one potential to another to update beliefs, which we will
get in Sect. 5.2.)

To go from a bigger space (like {X,Y}) to a smaller one (like {X}), sum
across the values of the unused variables. The resulting distributions are often
written in the margins of the joint table and hence they are called marginal
distributions. We already ran into the marginal distribution when talking
about joint probability distributions in Chap. 3. The process of calculating
the marginal distribution from the joint distribution is called marginalization.
We use the symbol |}, to denote marginalizing over the variable X, and define
it as follows:

p@y) b= p@y) =p) (5.1)

where the sum is taken over all possible values Y.
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To go from a smaller space (like {Y'}) to a larger one (like {X,Y}), simply
replicate the distribution over new dimensions. We did this in the example
because as the potential representing Y = y;, namely [1,0], is a potential
defined only over the variable Y. We just replicated it over X to get the
second panel in Table 5.2.

To combine the information in two potentials over the same variables,
multiply them together element by element. This is how we got the third panel
in Table 5.2, as we combined the potential representing the initial distribution
with the potential representing Y = y;. Note that the combination operation
was also used in constructing the initial table. This was the combination of
the potentials representing p(z) and p(y|z). The potential over p(z) needed
to be projected onto the larger space {X,Y} before the combination could
occur. The symbol ® is used to denote combination of potentials.

Finally, to interpret the potential as a probability, normalize the potential
by dividing by the sum of the elements. This was done as the last step of the
calculation. This calculation is often done last because (a) normalization is
only needed to interpret the results, and (b) delaying normalization as long
as possible increases the numerical stability of the results.

In principle, belief updating and marginalization as done in this section can
be carried out with an arbitrarily large number of discrete variables. All the
calculations are done with a large potential table over all the variables in the
problem. While the procedure is straightforward conceptually, the problem is
feasibility. Even with only ten dichotomous variables, there is a table of size
210 to work with. The cost grows exponentially with the number of variables in
the table associated with the largest clique; increasing the number of variables
beyond six or seven (or even fewer if each variable has many states) makes
computation impractical. The remainder of this chapter discusses a strategy
that exploits the conditional independence conditions in the model graph to
ensure all computations happen over tables of a manageable size.

5.2 More Efficient Procedures for Chains and Trees

Kim and Pearl (1983) introduce an updating algorithm for a chain of variables,
in which computation only grows linearly in the number of variables. Almost
all of the various algorithms for performing calculations in Bayesian networks
are variations on the basic Kim and Pearl approach. The variation presented
here is based on the junction-tree algorithm of Cowell and Dawid (1992).
Section 5.2.1 presents the basic algorithm on a very undirected graph, a
chain of variables. Section 5.2.2 extends the algorithm to polytrees, which
are basically directed graphical structures whose undirected graphs would be
trees. Finally, Sect. 5.2.3 talks about handling evidence that is not certain;
this will have some interesting applications later in the chapter. The simple
approach described in this section can be extended to more complex graphical
structures. Section 5.3 will take up the case of more complex models.
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5.2.1 Propagation in Chains
A chain is a set of variables whose joint distribution takes a form like this:
PW,X,Y,Z)=P(Z|Y) xP(Y|X) x P(X|W) x P(W) . (5.2)

That is, each variable except for the first depends directly on only the one
variable preceding it. The acyclic digraph for such is system is also a chain in
the graph-theory sense, as shown at the left of Fig. 5.2.

Fig. 5.2 The acyclic digraph and junction tree for a four-variable chain, correspond-
ing to Eq. 5.2. In the junction tree (in the middle right) the square boxes correspond
to cliques in the digraph (on the left). The round boxes correspond to intersections
between cliques. In the final version on the far right, the two “intersection” nodes
that only connect to a single node are dropped

Reprinted with permission from ETS.

Moving from the right to the left in Fig. 5.2 is a transformation of the
original graph called a junction tree. This junction tree has several notable
properties. First, its structure contains nodes for both variables themselves
and pairs of adjacent variables. The nodes for the pairs are where interrela-
tionships among variables that directly influence one another are manipulated.
These are called clique nodes and they correspond to the cliques in the digraph
(more specifically, as we shall see below, the cliques of the undirected graph
corresponding to the digraph). The nodes for individual variables are inter-
mediate areas where information common to adjacent cliques, necessary for
updating from one clique to the next, are stored. These are called intersec-
tion nodes. The junction tree in the middle contains two “intersection” nodes,
p(w) and p(z) which do not join two clique nodes. As these are not needed for
computation, they are commonly dropped (far right in the figure). Section 5.3
describes the properties of junction trees in more detail.
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In each node of the junction tree we will store a potential table defined
over the variables in the node. We would like this table to be proportional
to the joint probability distribution over the variables in the node. There are
several ways to initialize the values in a junction tree. In the case of the chain,
the easiest way is to follow the recursive definition of the joint distribution,
Eq. 5.2.

Start with the clique node {W, X}. From Eq. 5.2 the joint distribution
P(W,X) = P(X|W)P(W). Construct potentials corresponding to P(X|W)
and P(W) and combine them to create a potential corresponding to P(X, W).
Store this potential in the node {W, X }. Marginalize out the variable W to get
the potential P(X) and put that in the corresponding intersection node. We
will call the potential stored in the Node {W, X}, p(w, x), and the potential
stored in the Node {X}, p(z).

The next clique node is {Y, X}; it has the joint distribution P(X,Y) =
P(Y|X)P(X). The first term was specified in Eq. 5.2, the second term was
the value we just calculated and stored in the intersection node {X}. This
node is conveniently connected to the new clique node making it easy to find.
Combining these two potentials, we calculate the potential for the node {Y, X'}
and marginalize it to get the potential for the intersection node {Y}. A similar
procedure produces the initial potential for the last clique node {Z,Y}.

Even though the largest table contains only two variables, the junction tree
contains all the information necessary to reconstruct the full joint distribution
of all four variables. The conditional independence relationships that allowed
us to simplify the joint distribution in Eq. 5.2 also allow us to work with
smaller tables, rather than one large table for all possible combinations of all
variables.

Updating the distribution in response to new information can be carried
out with a generalization of the updating approach described in Sect 5.1. The
remainder of this section shows how to do this first in symbols, then with a
numerical example.

The initialization process stored a potential with each node of the junction
tree given in the right side of Fig. 5.2. Call these potentials p,q(w, ), poia(),
Dotd(®,y), Poia(y) and poia(y, z). Now suppose that evidence, eq, arrives about
X. We represent this new information as a potential over {X}, and denote it
¢(x). We now enter this into the system in the following steps:

1. Pick any clique node containing {X}, and update the potential in that
node by combining it with ¢(z). We will use {X,Y} because this choice
allows us to illustrate updating both up and down the chain. Call the
new potential in that node ppew(z, y) = poid(x, y) ® ¢(x) and note that it
represents P(X,Y'e;). This is done just as in Sect. 5.1. At this point, our
potential for {X, Y} correctly reflects our new belief about X, as obtained
directly in the form of ey, and about Y, as obtained by projection and
combining into the {X,Y} potential. However the nodes for all of the
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other cliques and clique intersections still contain the initial beliefs and
are inconsistent with the new state of information.

2. Next, update the potentials in the neighboring clique nodes by passing
messages from clique node to clique node. Note that the clique nodes
are connected through intersection nodes, and hence the messages will
be passed through intersection nodes. We will move down the chain first,
from {X,Y} to {Y,Z}. Denote the message from {X,Y} to {Y,Z} as
YX,Y}={Y,Z}” It takes the form of a potential over the clique inter-
section {Y'}. It is calculated as follows. Call the potential over {Y} already
in the intersection node pa(y). Then calculate phew(y) = Prew(,y) 4,
the marginal distribution over {Y'} of the new potential at {X, }. The mes-
sage sent to the {Y, Z} node will be ratio of the new intersection potential
divided by the old:

{X’ Y} :{Ya Z} = Pnew(y) @ Potd(y) , (5.3)

where @ is element by element division of potentials.

3. Adjust the potential in the node receiving the message by combining the
message with the potential currently in that node (after suitably extending
it to the set of variables in the node being updated):

Prew(ys 2) = Potd(y; 2) ® (Prew(y) @ Pora(y)) - (5.4)

This essentially scales the potential in the node {Y, Z} by the amount the
information about {Y} changed because of the added evidence.

4. Now, pass messages up the chain from the Node {X,Y} where the new
evidence was entered. In this case, calculate the message { X, Y} ={W, X'}
in the same manner as Eq. 5.3:

{X’ Y} = {VV’X} = (pnew ({E, y)le' ®pold ((E)) = Pnew (1’) @pold (1’)

5. Calculate the new value for Node {W, X} by combining the potential
already in the node by the just-received message as in Eq. 5.4:

pnew(wu :E) = pold(wu :E) & (pnew(x) @ pold(x)) .

6. If either Node {W, X} or {Y, Z} had additional neighbors then the process
would be repeated. In for each neighbor, an analogue to Eq. 5.3 would be
used to calculate the effect of the evidence on the variables in the intersec-
tion node. That would be combined with the information already in the
clique node using an analogue of Eq. 5.4. This process would be repeated
until all nodes in the junction tree have received a message containing the
information from the newly entered evidence.

If the evidence arrived about the Variable W, then the procedure would
have started with the node {W, X} and the messages flowed down the chain.
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Evidence about Z is entered in {Y, Z} and updating flows up the chain. In all
cases, other than the obvious changes of variable, the procedure is the same.
As with X, there are two choices of where to enter evidence about Y. The
messages flow outward from there to the edges of the junction tree, and the
same result is obtained with either choice.

After this procedure, the potentials in the tree now represent the joint
distribution P(W, X, Y, Z|e;). If additional evidence, ez were to arrive about
another variable, the same procedure would be applied a second time, now
using the current potentials as pyiq(+). Following Pearl (1988) we will call this
the belief-updating algorithm, although the algorithm given here is a variant
of Pearl’s algorithm. This variant is sometimes called the Hugin algorithm
because of its use in the software package HUGIN (Appendix A). A numerical
illustration of this algorithm is given in Example 5.8.

Note that it is not necessary that the values in the potential tables be
normalized to sum to one for the message passing; it is only necessary that
they reflect the correct proportions in the final joint probability. Normalizing
is necessary only when one wants to interpret the marginal distribution for one
or more variables. Delaying the normalization until just before the results are
interpreted improves both the speed and numerical stability of the algorithm.

Actually, the normalization constant may be of interest in its own right.
Recall that in Table 5.1 the normalization constant was p(y1), that is the
probability of the evidence. This holds with more complex patterns of evidence
as well. In particular, the normalization constant is the probability (likelihood)
of the observed pattern of evidence. This is useful when evaluating how well
the data fit the model (see Chap. 10 for more about this).

Example 5.3 (Updating in a Chain). Let the variables W, X, Y, and
Z in Fig. 5.2 all be dichotomous random variables defined on {0,1}. Let
P(W =1)=.6, and

P(X=1|W=1)=P(Y=1|X=1)=P(Z=1|Y=1)=.9
P(X=1|W=0)=P(Y=1|X=0)=P(Z=1|Y =0)=.2

This information produces the initial potentials in the junction tree shown
in Table 5.3a. Now suppose we learn that X = 1; thus, ¢(x) = [1,0]. This
evidence is entered into the potential poiq (x,y) to produce ppew (x,y), as
shown in Table 5.3b. At this point, we have updated the potential for {X,Y},
but the other potentials remain at their initial values and inconsistent with
our new beliefs as shown in Table 5.3c.

We obtain pnew(y) as pnew(z,y) |, , namely [.558,.062]. From the initial
status of the junction tree, p,ia(y) = [.634,.366]. The message to be passed
from {X,Y} to {Y,Z} is thus calculated as in Table 5.3d. This message is
interpreted as a signal to shift belief about Y in the ratio .880/.185, and
whatever this implies for the other variables in the receiving clique (in this
case, just Z) through their association with Y, as executed in Table 5.3e.
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Table 5.3f shows the potentials after e; has been propagated down the chain
but not yet up the chain.

Propagating evidence up the chain from {X,Y} requires calculating the
message {X,Y}={W, X}, which again takes the form of a potential over
the clique intersection, here {X}. The message is calculated in Table 5.4b.
Table 5.4c uses it to update the potential for {W, X }. Table 5.4d shows the
potentials after e; has been propagated both up and down the chain. At this
point, the junction tree is ready to receive and propagate evidence in the
form of values for W, Y, or Z (for example, e that Y = 0; see Exercise 5.4).
Normalizing the potentials in every node gives Table 5.4e.

5.2.2 Propagation in Trees

The approach of updating belief in chains can be easily generalized for updat-
ing belief about a set of variables when the undirected graph for their relation-
ships is a tree. A tree is a singly connected graph—there is never more than
one path from any variable to any other. A chain is a particularly simple tree.
(In Sect. 5.3.2, we will address the general question of moving from an acyclic
digraph, which represents a probability distribution as a directed graph, to an
undirected graph that will serve as the vehicle for updating belief. As we saw
in Chap. 4, an acyclic digraph that is singly connected does not necessarily
give rise to a singly connected undirected graph for computing purposes.)

A singly connected undirected graph supports a junction tree representa-
tion for updating, similar to the one the chain depicted in Fig. 5.2. An example
is shown in Fig. 5.3, for a joint distribution that factors as follows:

PUVXY,Z)=P(Z|X)PY [ X)P(X|V)PU|V)P(V).

Suppose new information arrived about X, in the form of ppew(x). This
information would be propagated through the rest of the network in the
update-and-marginalize steps in Sect. 5.2.1, but now in three directions: Down
and left to Y, down and right to Z, and up to V, and from V to U in the
same manner.

When Kim and Pearl (1983) first defined the belief-updating algorithm,
they restricted it to a kind of graph called a polytree. A polytree is basically
a directed graph that is a tree after the direction of the edges is dropped.
Figure 5.4 provides an example. Figure 5.4 gives the junction tree for this
graph. Note that two of the clique nodes, {T,W,U} and {W, X, Y}, have
size three, so this graph has a treewidth of three. The updating algorithm
described for chains in Sect. 5.2.1 works in essentially the same way. All the
clique intersections are still single variables, but the projections into cliques
and marginalizations down from them now sometimes involve more than two
variables.
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Table 5.3 Updating probabilities down a chain

Potd (W, ) pota(z)  Poa(T,y)  Pota(y)  Poia(y,2)
W X Y
X 1 0 X Y 1 0 Y Z 1 0
1{.540(.080 | 1| .620 1[.558(.076 | 1| .634 1[.571(.073
01.060(.320 | 0] .380 01.062]1.304 | 0| .366 | 0[.063]|.293

a) Potential tables for initial joint and marginal probabilities.

.558].076] _[1]0] _[.558]0

Prew (2,Y) = pota (,y) ® ¢ () = Femr=51® 1[0} [.062

o

b) Evidence X = 1 entered into poq (z,y) to produce prew (x,y).

Potd (W, ) Pota (T)  Pnew (T,Y)  Dota (Y)  Pota (Y, 2)
W% X Y
1 0 X Y 1 0 Y Z 1 0
.540].080 | 1| .620 1(.558( 0 1| .634 1[.571(.073
.060(.320 | 0| .380 0[.062| 0 0| .366 | 0/.063].293

o — M

¢) Potential tables after having updated only {X,Y}.

B _ [558] [634] [558/634] [380
(XY} =AY, 2} = pew () © Pota (V) = 56519 (3361 = [062,/.336| — [.185]

d) Calculating the message from {X,Y} to {Y, Z}.

Prew (y7 Z) = Pold (y7 Z) ® ({X7 Y} = {Y7 Z})
.571(.073 .880(.185| [.592|.014

~ [063]293 © .880[.185| ~ {.055.054[

e) Passing the message from {X,Y} to {Y, Z}.

Potd (W, ) Pota () Prew (T,Y)  Prew (Y)  Prew (¥, 2)

W X Y
X 1 0 X Y 1 0 Y Z 1 0
1/.540|.080 | 1| .620 | 1|.558| O | 1| .558 | 1|.592|.014
0/.060(.320 | 0] .380 | 0/.062] O | 0] .062 | 0{.055(.054

f) Status after e; has been propagated down the chain from {X,Y}.
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Table 5.4 Updating probabilities up a chain

Potd (w, ) pota (€)  Prew (2,Y)  Prew () Prew (Y, 2)
w X Y
X1 0 X Y1 0 Y Z 1 0
1[;540[-080 | 1[ -620 | 1[558] 0 | 1[ .558 | 1[592[.014
0[.060[.320 | 0] 380 | 0[.062] 0 | 0] .062 | 0[.055].054

a) Status after e; has been propagated down the chain from {X,Y}.

- _[:620] _[.620] _[1]
(XY} = (W, X} = pnew (2) @ pota () =571 2 3551 = g

b) Calculating the message from {X,Y} to {W, X}.

Pnew (wy ‘T) = Pold (’LU, :17) ® ({X7 Y} = {W7 X})
_1.540(.080 ® .540{.080
~1.060].320 010/

¢) Updating the potential for {W, X'}.

o] —]
(o] =]

Prew (W, )  Pnew (T)  Prew (T,Y)  Prew (¥)  Prew (¥,2)
W Y

X 1 0 X 1 0 Y Z 1 0

1[540] .080 | 1] .620 558] 0 | 1[ 558 | 1[.592].014

of o] o |of o 062] 0 |0[ .062 | 0[.055].054

>~

o~ =

d) Status after propagating e; both up and down the chain.

Prew (W, ) Prew (€)  Prew (£,Y)  Prew (Y)  Prew (, 2)

W X Y
X 1 0 X Y1 0 Y Z 1 0
11.871| .120 | 1 1 11.9 0 1 9 1{.810{.020
o O 0 |0 0 0.1 0 0 1 0{.090{.080

e) Status after normalizing.

This leads us to an important property of the junction tree. Look at the
three junction tree examples we have seen so far, Figs. 5.2, 5.3, and 5.4. In
each case pick out the nodes (both clique and intersection) in the junction
tree that contain X. Note that they are all connected. This is true for each
variable in the model. This so-called running intersection property is critically
important because every time we pass a message from a node that contains
the variable X to one that does not, we marginalize out the variable X. This
means that we will not pass messages about X through a section of the tree
that does not contain X. This property will be discussed further in Sect. 5.3.
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p(u,v) p(x.v)

p(x.y) p(x,z)

Fig. 5.3 A junction tree corresponding to a singly connected graph. As with Fig. 5.2
the intersection nodes that attach to only one clique node, p(u),p(y) and p(z) are
usually dropped for computational purposes

Reprinted with permission from ETS.

Fig. 5.4 A polytree and its corresponding junction tree
Reprinted with permission from ETS.

5.2.3 Virtual Evidence

Before we move to more complicated graphs, it is worth mentioning what to
do when the evidence is uncertain. This situation arises all the time when
human (or even computer) raters make a judgment about a performance. It
is well known that raters are not perfect. Suppose that we have information
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that the raters on a particular assessment give the correct rating say 90 % of
the time. How do we enter this information into the Bayes net?

The key to understanding how to incorporate this uncertain evidence in
our model is to think about the expert’s rating as another, implicit, node in
our graphical model. If in Fig. 5.1, X represents the examinee’s proficiency
variable and Y represents the true quality of the performance, we could add
Node Z to represent a rater’s noisy report about the quality of the perfor-
mance. Let us suppose that if the performance is truly adequate, or Y = yes,
the probability of the rater correctly judging it as adequate, or Z = yes, is
p(z1|y1). If the performance is truly inadequate, or Y = no, the probability
of the rater erroneously judging it as adequate, or Z = yes, is p (z1]y2).

Now Node Z is a child of Node Y. This produces a simple chain X —
Y — Z. The junction tree would have two clique nodes, {X,Y} and {Y, Z},
with a single intersection node, {Y'}. We can use the conditional probabilities
for z given y and the marginal probability of y, p (y) to construct the initial
potential table for {Y, Z}:

p(z1,y1)|p (22,91)| _ |p(z1 [y)p(y1)|p (22 [ y1) p (y1)
p(21,92)|p (22,92)| [P (21 |y2)p(y2)|p (22 | y2) p (y2)

A judgment from the rater takes the form of Z = 21 or Z = 2. Let us
use Z = z; as an illustration, and examine the message {Y, Z} ={X,Y}. The
denominator p,4(y) is the original marginal distribution for Y, [p(y1), p(y2)].
The numerator pye,(y) will have the the column from the {Y, Z} potential
that corresponds to observing Z = 1, namely [p(z1]y1)p(y1), p(21|y2)p(y2)].
Thus the message to {X,Y} will be

p(z1ly)p(y1) pz1ly2)p(y2)
ply1) 7 p(y2)

= [p(21ly1), p(21y2)] -

This message is precisely the likelihood of the observed evidence under the
various states of Node Y. These likelihoods form a potential that multiplies
the potential in Node {X,Y} to make the new distribution.

Pearl (1988) calls uncertain evidence, like the judgment from the rater,
virtual evidence and notes that statements of certainty about the evidence
should usually be treated as likelihood information. By the reasoning illus-
trated above, we can add virtual evidence directly into the Bayes net without
needing to explicitly add the node representing the statement (Node Z) into
the model. Form the likelihood vector, [p(z1|y1), p(21]y2)], as a potential over
the variables {Y'}. This can be combined with any clique node in the junction
tree which contains Y. The belief-updating algorithm can then propagate this
information to the other tables in the junction tree just as before.

This calculation extends smoothly to cases with more than one rater. We
assume that given the performance, all of the ratings are independent. There-
fore, we can simply multiply the likelihoods for the individual ratings together
to get the combined likelihood for the whole set of ratings, then update the
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Table 5.5 Updating with virtual evidence

yes no P(X)

expert|.8 x .5 =.40[.2x .5=.10] .5
novice|.4 x .5 =.20|.6 x .5 = .30
P(Y) .6 4 1

a) Table for initial joint and marginal probabilities.

yes no P(X)
expert|.4 x .9 = .36|.1 x .05 = .005] .365
novice|.2 x .9 = .18/.3 x .05 = .015] .195

P(Y)| .54 02 56

b) Information (likelihood) arrives for Y: .9 for yes and .05 for no.

yes no P(X)

expert|.643) 009 | .652
novice|.321] .027 [.348
P(Y)|.964] 036 1

¢) Normalize by dividing by the grand total, .56.

proficiency variable. If the ratings arrive one at a time, then we can apply the
belief-updating algorithm for virtual evidence sequentially, once for the first
rater, again for the second rater, and so on.

Example 5.4 (Dental Hygienist Assessment, Example 5.1, Contin-
ued). For a numerical example, suppose performances are evaluated by a
human judge who has the following characteristics. If the patient history is
truly adequate, the judge marks it yes 90 % of the time. If the history is not
adequate, then the judge marks it no 95% of the time. (Looking ahead to
Chap. 7, these numbers are called the sensitivity and specificity of the rater.)
A rater marking a performance as yes produces a virtual evidence likelihood
vector of [.9,.05]. This is a potential over Y, which will be combined with the
potential representing the prior distribution over X and Y given in the first
panel of Table 5.5.

The first panel of Table 5.5 is identical to the first panel of Table 5.2, as
the prior distributions are identical. The difference comes with the arrival of
the evidence in the second panel. In the middle panel the virtual evidence is
combined with the prior distributions to produce the posterior potential over
{X,Y}. In order to interpret this potential as probability distributions we
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need to normalize it. The sum of the entries in middle panel is .56, the prior
probability of this particular bit of evidence (judge gives a rating of yes). The
final panel shows the normalized distribution.

One way to think about how virtual evidence works is that the junction
tree is broken into two parts. The virtual evidence is the message passed from
the {Y, Z} part of the tree to the {X,Y} part of the tree. We could actually
make the split at any intersection node of the junction tree. Section 5.4 shows
an application of this idea that is important in educational assessment.

5.3 Belief Updating in Multiply Connected Graphs

As the graphical structure becomes more complex, so does the belief-updating
algorithm. However, we already saw that if the graph is shaped like a tree,
the belief-updating algorithm was just a simple extension of the algorithm for
chains. Thus, we can use the algorithm in any graphical structure if only we
could transform it into a tree: in this case, a tree where the nodes represent
groups of variables.

The tree we are looking for is the tree of cliques, a more general version of
the junction tree we have seen in chains and trees. By transforming the graph
into a tree whose nodes represent cliques in our original graph, we can deal
with much more complex graphical structures. There are a number of variants
on this basic algorithm (See Sect. 5.6). This section describes one approach to
doing this, and illustrates the procedures with a simple numerical example.

5.3.1 Updating in the Presence of Loops

A multiply connected graph is a graph with at least one loop, for instance,
where there is more than one chain (undirected path) from one variable to
another. Figure 5.5 shows an example of a loop. As a directed graph this graph
is acyclic. However, if we drop the directions of the edges, the underlying
undirected graph has a cycle, V' to X to Y to U and back to V.

Had there been only the path from V to X to Y, we could have built a
junction tree for pairs of variables that enables coherent updating across the
three variables. Likewise had there been only a path from V' to U to Y. But
with two paths, trying to use both of these variable-level structures to update
from information on Y does not generally provide the correct posterior for U,
V,or X.! The “competing explanations” phenomenon described in Sect. 3.3.3
(Example 3.9) is a clear example of the failure. Seeing an incorrect response

! Weiss (2000) attempts to characterize situations in which the algorithm will con-
verge and produce proper marginal distributions. This seems to depend on both
the network and the evidence (Murphy et al. 1999). Weiss (2000) does note that
the loopy-propagation algorithm will always produce the proper Maximum A
Posteriori (MAP) estimate, even if the margins are incorrect.
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means that at least one of the two required skills is probably lacking, and
learning that one was present or missing would influence our belief about
the other. This is a strong finding about the joint distribution of the two
skills that cannot be captured by updating belief about each of them them
independently.

Lauritzen and Spiegelhalter (1988) broke beyond the barrier of single
connectedness. The essential idea is this: One can carry out the coherent
propagation of information by passing messages between the cliques. It is
common practice to express this algorithm as message passing in a tree of
cliques. The junction tree, introduced in the previous section, takes the tree of
cliques and adds nodes corresponding to the intersections between the cliques.
The junction-tree algorithm described here is a variant of the Lauritzen—
Spiegelhalter algorithm.

As a look ahead, the cliques—maximal sets of connected nodes—for the
loopy digraph in Fig. 5.5 are {U,V, X}, {U,Y, X}, and {X, Z}, and the junc-
tion tree of cliques and clique intersections is shown as Figure 5.6. The key
implication is that if information arrives about Y, its implications for our
belief about X must deal with U and V jointly. Coherent reasoning around
the loop is achieved, although at the cost of working with groups of variables
rather than single variables.

Every acyclic digraph can be represented as a tree of cliques (or junction
tree). A key feature is its treewidth, or the size of the largest clique. The brute
force algorithm requires constructing a giant table with all of the variables
in the model, but the biggest table in the message-passing algorithm is the
size of the biggest clique, the treewidth. If the topology of the graph is favor-
able, meaning that the treewidth is small, calculation can be feasible for even
networks with very many variables. The muscle and nerve inference network
(MUNIN) Bayes net (Andreassen et al. 1987), for example, comprises about a
thousand variables, yet can support real-time calculation because of its sparse
treewidth. The sparse treewidth is achieved largely through conditional inde-
pendence assumptions from the substantive domain of the application. For
MUNIN, the domain is diagnosing neuromuscular diseases. Medical knowl-
edge and characteristics of test procedures imply independence of certain tests
given physical states, of symptoms given syndromes, and of syndromes given
disease states. If the topology of a graph is not favorable, large cliques can-
not be avoided; treewidth, and therefore computational burden, increases.
At worst, all variables are in a single clique and computation through the
Lauritzen—Spiegelhalter algorithm reduces to the brute force calculation with
all combinations of values of all variables.

5.3.2 Constructing a Junction Tree

This section walks through the steps from a joint distribution of variables to
a junction tree for efficient calculation, in the context of a simple example: an
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Fig. 5.5 A loop in a multiply connected graph
Reprinted from Almond et al. (2006a) with permission from ETS.

p(u,x,v) | |P(U,Xx,Vv)

p(u,x,y)| |p(u,x,y)

p(x,z)| | p(X,2)

Fig. 5.6 The tree of cliques and junction tree for Figure 5.5. Clique nodes are
represented with rectangles and intersection nodes are represented with ovals
Reprinted with permission from ETS.
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adaptation of a medical diagnosis example from Jensen (1996) to the context
of cognitive diagnosis.

Example 5.5 (Two Skills and Two Tasks). We are interested in learning
the proficiency that a student Pat has with literary terms. Skill A is literary
vocabulary, which we suppose can take only the two values High (H) and Low
(L). Skill B is the ability to infer the meaning of such words in context, which
again we suppose can take the values of High (H) and Low (L). Denote these
proficiency variables by 64 and 0p.

There are two sources of evidence, Task 1 and Task 2, both of which yield a
response that is evaluated as Right (1) or Wrong (0). Denote these observable
variables by X1 and Xs. Task 1 asks the meaning of “simile” and provides a
short essay about how poets use similes and metaphors to open readers’ eyes
to unexpected connections. A student is more likely to answer Task 1 correctly
if either she already is familiar with the word, or can infer its meaning from the
passage. Task 2 asks the meaning of “anaphora” with a sparse text illustrating
its use, so it is mainly prior familiarity with the term that will be likely to
produce a correct response. Figure 5.7 shows the graphical structure of this
problem.

Fig. 5.7 Acyclic digraph for two-skill example (Example 5.5)
Reprinted from Almond et al. (2006a) with permission from ETS.

Using this information about Skills, Tasks, and their relationships, we will
build a Bayes net, a junction tree, and a computational representation in the
form of an interconnected set of potential tables. Then we will observe Pat’s
response to Task 1, and use this machinery to update our beliefs about Skill A
and Skill B and to predict whether we will see a correct response to Task 2
as well.

The following sections describe six steps to building a computing repre-
sentation for problems such as these. The steps address these topics:

1. Recursive representation of the joint distribution of variables.
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. Acyclic digraph representation of the probability distribution.

. Representation as a “moralized” and triangulated undirected graph.
. Determination of cliques and clique intersections.

. Junction tree representation.

. Potential tables.

SO W N

At this point, the potential tables are ready to support calculations that
propagate the effect of new evidence.

Recursive Representation of the Joint Distribution

By repeatedly applying the definition of conditional probability, it is always
possible to write the joint probability distribution of a number of variables as
the product of conditional probabilities, each variable in the list conditional
on those earlier in the list. That is,

P(An, Apoy, ..., Az, Ay)
=P (An]An_1,..., A2, A1) X P (Ap_1]Ap_2,..., A2, A1) X -+ - X
P (43|A1) x P (A7) (5.5)
:l;IP(AklAk—lw"aAl)a

where the final term is understood to be simply P(A;). This is a recursive
representation of the distribution. Such a representation holds for any ordering
of the variables, but some orderings are more useful than others; a variable Ay
may be conditionally independent of some of the variables with lower indices,
and they drop out of its conditioning list. As in Chap. 4, we call those that
remain its parents and denote them by pa(Ag). Thus,

P (Ap, Ap1, ..., Az, A1) = [ [ P (x| pa (Ar)). (5.6)
k

We have already seen this equation in Sect. 4.2.1 as Eq. 4.1. There the par-
ents refer to the parents in the graphical structure. In general, exploiting the
conditional independence relationships modeled in the graph lead to an effi-
cient recursive representation. Examples of such relationships are effects that
are conditionally independent given causes, observations that are condition-
ally independent given parameters, and current events that are conditionally
independent given past events. In educational assessment, we typically model
observable variables from different tasks as conditionally independent given
proficiency variables.

The joint distribution we are interested in for the running example in
this section is P (64,05, X1, X2). The description of the setup asserts that
the observable variables X; and X5 are conditionally independent given the
proficiency variables 684 and 6p, and that the two proficiency variables are
independent with respect to one another in the absence of any observations.
This suggests the following recursive expression of the distribution:

P(64,05,X1,X2) =P (X1|04,05,X2)P (X2]04,05)P (04]05)P (65) .
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Note that the order of the nodes in the recursive decomposition (Eq. 5.5) follow
the graph in Figure 5.7 in the sense that the parents of each node in the graph
are always ahead of the child node in the order. Exploiting the conditional
independence relationships in the graph yields the following factorization:

P (04,05, X1, X2) = P (X1]04,05) P (X2064,05) P (04)P (05).  (5.7)

Example 5.6 (Numbers for Example 5.5). In order to illustrate calcu-
lations later in the section, we propose numerical values for the probability
distributions in the recursive representation. Part II addresses the issue of
where these numbers come from, but it suffices to say at this point that the
structures for the probability distributions and initial numerical values can be
provided by experts, and both the structures and the numerical values can be
refined in light of data that bear on the problem as an exercise in Bayesian
estimation. For now we will work with the values in Table 5.6.

Table 5.6 Probabilities for Example 5.5
O { P (9,4 = H) 11

P(0a=1)=
(B—H)
OB{ (HB:L):

P(X1=1|04=H0p =H) =.99; P(X; f0|9A:H,9B:H):.01
X P(X1:1|0A:H70}3 L) 90,P(X1—0|9A:H70}3:L):.10
"I P(X1=1]04=L,0g=H) =.90; P(X1=0]|04=L,0g =H)=.10

P(X1=1|04a=L0p=L)=.01;P(X;=0|04a=L,0p =L)=.99

P(X2:1|9A:H,932H):99;P(X2—0|9A:H,QB:H):.01
X P(X2:1|0A:H7OB:L) 05;P(X2—0|9A:H70}3:L):.95
*YP(Xo=1|04a=1L,0p=H)=.90; P(X2=0]|604 =L,0p =H) =.10

P(Xo=1|04a=L60p=L)=.01;P(X2=0|04=L,0p =L)=.99

We can make some observations in passing on the probative, or evidentiary,
value of X; and X; for inferences about 4 and 0. They are based on exam-
ining the conditional probability distributions of the observables given their
proficiency model parents. Suppose for example it is observed that X; = 1.
This could occur no matter what the values of 4 and fp are, since there are
nonzero conditional probabilities for X7 = 1 at each combination. But this is
a more likely occurrence under some combinations of 84 and 6p than others;
for example, the conditional probability of X3 = 1 is .99 if both skills are
high and only .01 if both are low. The column of conditional probabilities for
X1 =1 at each combination of its parents #4 and 0p is the likelihood function
induced for these proficiency variables by a realized observation of X7 = 1. In
this case, the likelihood is .9 or above for all combinations with at least one
skill at High, and only .01 when both skills are Low. Conversely, observing
X1 = 0 induces a relatively high likelihood for {#4 = Low,fp = Low} and
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a low likelihood for all the other skill combinations. To borrow a term from
medical diagnosis, X; provides good differential diagnosis for distinguishing
between “both skills at Low” and all other proficiency states. On the other
hand, it has no value whatsoever for differential diagnosis between the states
{04 = High,0p = Low} and {04 = Low,fp = High}. By similar reasoning,
X5 has differential diagnostic value for distinguishing between states with
fp = High from those with 6 = Low, but has little value for distinguishing
states that differ with respect to 64.

Acyclic Digraph Representation

As discussed in Sect. 4.2, we can draw an acyclic digraph to represent the
joint probability distribution of a set of variables straight from a recursive
distribution. Each variable is a node in the digraph, and for each node Ay,
there is a directed edge coming to it from each of its parents, or the variables in
pa(Ag). The digraph for our running example is shown as Fig. 5.7. The digraph
depicts the structure of the joint probability distribution with regard to the
conditional independence relationships that can be read from the recursive
representation of Eq. 5.7.

Moralized and Triangulated Undirected Graph

Starting with the acyclic digraph, we drop the directions of the edges and
add additional edges as necessary to meet two requirements. First, all the
parents of every given child must be connected by edges (i.e., the parents of
children must be “married”—hence the term moralized graph). Looking ahead,
we need to assign the factor in the recursive representation corresponding to
this child and its parents to one of the clique nodes in the junction tree.
Connecting the parents ensures that the child and its parents will either be a
clique or a subset of a clique in the moralized graph. It also ensures that any
dependencies caused by the competing explanations phenomenon (Sect. 3.3.3)
will be handled coherently, as they will be dealt with jointly in the potential
table for a clique in the junction tree. Figure 5.8 is the moralized undirected
graph for our example.

Note that it is the loops in the moralized graph that cause problems for
computation. Even our simple example now has loops; for example, one can
start a path at X, follow a connection to 4, then to X5, then to fp, and
finally return to X;. This loop did not count as a cycle in the directed graph
because it did not follow the direction of the arrows. However, it is the loops
in the undirected moral graph that cause problems for the simple updating
algorithm.

Another way to understand moralization is to think about the factorization
hypergraph. Each child variable and its set of parents in the recursive repre-
sentation corresponds to a hyperedge in the hypergraph. When we construct
the 2-section of the factorization hypergraph, the parents of the child variable
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O e, O )

(Vx, ) (Vx, )

Fig. 5.8 Moralized undirected graph for two-skill example (Example 5.5)
Reprinted from Almond et al. (2006a) with permission from ETS.

are in the same hyperedge and thus must be joined. Thus, the moralized graph
is the 2-section of the factorization hypergraph.

In addition to being moralized, the graph must be triangulated; that is,
any cycle (in the moral graph) consisting of four or more variables must have
a chord, or “short cut.” The graph in Fig. 5.8 is already triangulated; the
edge between 04 and 0p induced by moralization is a chord. The leftmost
graph in Fig. 5.9 is an example of a graph that is not triangulated. Although
triangulation is not a problem in our simple example, it can be a big issue in
larger problems.

Triangulation is necessary to express probability relationships in a way
that lends itself to coherent propagation of information under Lauritzen—
Spiegelhalter propagation and its variants. Without triangulation, the cliques
may form a graph with cycles. For example, the cliques of the leftmost graph
in Flg 5.9 are {Al,AQ}, {AQ,Ag}, {Ag,A4}, {A4,A5}, and {A5,A1}. These
make a cycle. Recall from Chap. 4 that an acyclic hypergraph was defined as
one whose 2-section is triangulated. Triangulating the moral graph guaran-
tees that a singly-connected clique representation can be constructed (Jensen
1988).

Although a given moral graph may not be triangulated, new edges can be
“filled in” to make it so. There can be more than one way to fill in a graph to
make it triangulated. Figure 5.9 shows two different ways to triangulate the
untriangulated graph.

Finding the optimal triangulation for a graph is a hard problem. Different
fill ins will create different sized cliques and hence will affect the treewidth of
the final graph. Almond (1995) summarizes some of the heuristics which are
commonly used to find the best triangulation.

Cliques and Clique Intersections

From the triangulated graph, we next determine cliques, or biggest subsets
of variables that are all linked pairwise to one another. Cliques overlap, with
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Fig. 5.9 Two ways to triangulate a graph with a loop
Reprinted from Almond et al. (2006a) with permission from ETS.

sets of overlapping variables called clique intersections. In the next step these
cliques and clique intersections will become the nodes of the junction tree. Fig-
ure 5.10 shows the two cliques in our example, {04,05, X1} and {04, 05, X2}.
The clique intersection is {64,0p}.

Although there can be multiple ways to produce a triangulated graph
from a given digraph, there is only one way to define cliques from a trian-
gulated graph. There can be multiple ways to arrange them in a tree, but
the computational cost is dominated by the size of the largest clique, that is,
the treewidth. For this reason a triangulation that yields many small cliques
is preferred to one that yields fewer but larger cliques. The HUGIN Bayes
net compiler (Appendix A) offers several alternatives for triangulation, and
on request reports the resulting cliques to the user. Strategies for increased
computational efficiency include adding variables to break loops, redefining
variables to collapse combinations of variable values that are not meaning-
fully distinct, and dropping associations when the consequences are benign.

O e, OGB)(OGA O 6

Vx ) Vx )@x ) Vx )

Fig. 5.10 Cliques for the two-skill example. The graph on the left shows the clique
{04,085, X1}; the graph on the right shows the clique {04, 05, X2}
Reprinted from Almond et al. (2006a) with permission from ETS.

Junction Tree Representation

Once we have the cliques and clique intersections, creating a junction tree is
straightforward. Start with any clique node, and connect it to clique intersec-
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tion nodes it contains. Taking each of these clique intersection nodes one at
a time, connect it to clique nodes that also contain it and have not yet been
addressed. Having done this with all the intersection nodes from the starting
clique, take each of the cliques that were added to the junction tree one at
a time and repeat the same process, in each case bringing in clique nodes
that have not yet been addressed. When no more cliques can be connected
through intersections in this way, either all the cliques are now connected or
some remain unconnected. Variables in cliques that are unconnected are inde-
pendent of the variables in the cliques that were connected thus far, and will
be in separate junction trees. The connecting process begins anew, starting
with one of the remaining cliques. When multiple junction trees result, evi-
dence about variables associated with one tree has no impact on belief about
variables associated with another tree, and they can be treated as separate
problems. In all, this process ensures that the graph(s) so constructed will be
trees and have the running intersection property.

Definition. Running Intersection Property. A junction tree (or other
tree containing sets of variables) has the running intersection property if for
every variable the subgraph which contains that variable is connected. A tree
with the running intersection property is called a Markov Tree.

The key to the efficiency of the belief-updating algorithm is that we can
marginalize out information that is no longer needed. The running intersection
property tells us when information can be safely marginalized out. When we
pass a message from a clique node which contains X to an intersection node
which does not, we can be sure because of the running intersection property
that there will be no nodes containing X on the other side of that intersection.
The running intersection property is a key part of the proof of correctness of
this algorithm (Shenoy and Shafer 1990; Almond 1995).

Figure 5.11 gives the junction tree for our example. Note that the two
clique nodes correspond to the two tasks and the clique intersection corre-
sponds to the proficiency variables. Thus the junction tree reflects our under-
standing of the conditional independence assumptions on which this model
is based, namely that the two observable outcome variables are independent
given the proficiency variable.

Potential Tables

As described in Sect. 5.2, each clique or clique intersection node in the junction
tree has a potential table, which is related to the joint probability distribution
of the nodes in that clique or intersection. Each of the factors in the recursive
representation is expressed as a potential and allocated to one of these tables.
As implied by the preceding steps, the variables in each factor will be together
in some clique, but depending on the topology, a clique may contain the
variables for multiple factors. The allocated tables are combined to make the
initial potential associated with that node.
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04, 08, X1

04, 05

04, 08, X2

Fig. 5.11 Junction tree for the two-skill example
Reprinted from Almond et al. (2006a) with permission from ETS.

To initialize the junction tree version of the belief-updating algorithm
requires that the table in each clique or clique intersection reflect the joint dis-
tribution of those variables (i.e., before adding evidence). The potential tables
in Table 5.7 indicate the initial status of the network for Example 5.5; that
is, before specific knowledge of a particular individual’s observable variables

states becomes known.

Table 5.7 Potential tables for the two-skill example

04 0B P(Xl = 1) P(X1 = 0)
H H .012 .000
H L .088 .010
L H .088 .010
L L .008 784

04 0p|Probability
H H .012
.098
.098
792

| = o
==l

04 05P(X2=1) P(Xz = 0)

H H 011 .001
H L .005 .093
L H .088 .010
L L .008 784
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There are a number of algorithms for initializing the junction tree. The
following example shows one.

Example 5.7 (Potential Tables for Example 5.5). Constructing poten-
tial tables can be accomplished in a number of ways. Starting with a recursive
representation of the probability distribution, it is easiest to work from root
nodes, or the one or more variables that have no parents, and successively use
their marginal distributions and the conditional distributions of their children,
as they appear in cliques further down the list. For example, the potential table
for the clique {04,605, X1} was calculated as follows: 64 and 05 are both root
nodes. Because they are independent, their joint distribution is calculated by
multiplying the prior probabilities of .11 for High and .89 for Low for all four
High/Low combinations the two variables can take:

POy =HOp=H =P (04 =HP (0 =H) = .11 x .11 = 012
POy =HOp=L)=P (04 =HP (0 =L) = .11 x .89 = .098
P(0y=L0g=H) =P (04 =L)P (05 = H) = 89 x .11 = .098
POy =L0p=L)=P (04 =L)P (5 =L) = .89 x .89 = .792.

X, is the child of 4 and 0g. Its conditional for each combination of values

of its parents was given in the recursive definition of the distribution. For
example, P (X1 =1]604 = H,0p = L) = .90, so

P(X,=1,04=H0p=L)
—P(Xy=1|04=H0p=L)P(0s=H0p=L)
= .9 x .098 = .010.

In a similar manner, the joint probability for every combination of {0 4,05, X1}
values can be calculated, and becomes the entry for that combination in the
potential table.

Once the potential table for a clique has been calculated, the table for any
clique intersection connecting it to another clique is obtained by marginaliz-
ing with respect to whatever variables are in the intersection. In this simple
example, the only clique intersection is {04,0p}. It can be obtained by col-
lapsing the {04,0p, X1} potential table over Xy, or p ({04,605, X1}) |y, . We
already know the result since we obtained the joint {0 4,05} along the way to
building the table for {04,605, X1}, but this does not generally happen.

Having started from root nodes, moving from a clique intersection to a
successive clique means that the variables in the clique intersection come
in with their joint marginal distribution. The new variables will have con-
ditional distributions given those in the clique intersection and possibly on
other variables in the clique. One computes joint distributions using the rule
of marginal times conditional distribution as above, variable by variable, in
the order they appear in the recursive representation. The second clique in
our two-skill example is {04,0p, X2}. We already have the joint distribution
for 4 and 0. The conditional distribution of Xo given 04 and 0p is given
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in the recursive representation of the full joint distribution. For example,
P(X2=0|9A=L,QB=L)=.99, SO

P(X;=0,04=L0g=1L)
=P(Xy=0|04=L0s=L)P(0s=L0s=L)
= .99 x .792 = .784.

The six steps used to move from the digraph representation of the proba-
bility model to the junction tree are sometimes called compiling the Bayesian
network (this term is used by many of the software packages described in
Appendix A, even if those packages do not use exactly the algorithm described
here). The digraph representation is most convenient for defining the condi-
tional independence relationships that will define the shape of the graph and
eliciting the conditional probabilities that will define the joint distribution (or
will serve as priors for distributions to be learned from data, as in Part II).
The junction tree is more convenient for answering queries, such as what is
the probability distribution of 64 after observing X;. Just like compiling a
computer program, compiling a digraph into a junction tree makes it ready
to go to work for us.

5.3.3 Propagating Evidence Through a Junction Tree

To absorb new evidence about a single variable, first express the evidence
as a potential. Pick a clique node containing the variable, and combine the
potential in that node with the potential representing the evidence. Now apply
the belief-updating algorithm described in Sect. 5.2.1 to propagate that infor-
mation throughout the tree. The only additional wrinkle is that for clique
intersections with more than one variable, we work with entries for the joint
combinations of all the variables in the clique intersection, rather than just
for the values of a single variable. When messages containing the evidence
have reached all clique nodes in the tree, then the posterior distribution of
any variable in the model given the evidence can be found by looking at the
potential of any node in the junction tree that contains that variable. The
single-connectedness and running intersection properties of the junction tree
assure that coherent probabilities result.

Example 5.8 (Evidence Propagation in Example 5.5). Suppose Pat
answers Item 1 correctly; that is, X1 = 1. How does this change our beliefs
about the other variables?

The process begins with the potential table for the clique {04,0p,X1}. In
the initial condition, we had a joint probability distribution for the variables
in this clique, as shown in the top table of Table 5.7. We now know with
certainty that X; = 1, so the column for X; = 0 is zeroed out (Table 5.8).
The remaining columns (in this case there is just one of them) reflect the
proportion of our revised belief about the values for the other variables in the
clique, 84 and 0p.
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That first column in the top table of Table 5.7, or [.012,.088,.088,.008],
is the updated potential in the clique intersection, or ppew{0a, 05}. The ini-
tial potential that was stored in {04,0p} was [.012,.098,.098,.792], which
is poia{fa, Op}. This is the information we need to calculate the message

{aAv oBa Xl} :>{0A7 erXQ}'

Message

Pold Pnew (pnew /pold)

0a=H 60p=H .012 .012 1.00
0a=H 0p=L .098 .088 .90
0a=L,0p=H .098 .088 .90
0a=L,0p=L .720 .008 .01

The values in the potential table for {04,0p, X2} are obtained with the
belief updating operation as shown in Table 5.7. The resulting values are
proportional to the new probabilities for the variables in this clique. The final
panel of Table 5.8 shows the values after normalizing. The highest probabilities
are for the combinations in which only one of the skills is High (a consequence
of the low prior probabilities for the skills) and X5 being right or wrong in
accordance with whether it is 04 or 0p, that is at High.

5.4 Application to Assessment

Chapter 2 described a general framework for assessments in terms of a num-
ber of models. Two of those models, the proficiency model and the evidence
model have components that describe a probabilistic relationship among the
variables. (That is not to say that the other models do not have a strong
influence on the statistical properties of the assessment, rather that these are
the two parts of the model that are conventionally modeled with direct state-
ments of probability). In this book, we are interested in assessments for which
those probabilistic parts of the model are expressed with Bayesian networks.

The proficiency models consist of proficiency variables—latent variables
that characterize the knowledge, skills, or other attributes of students—and
their distribution in a population of interest. The measurement component
of evidence models addresses the relationship of these proficiency variables
to observable variables—characterizations of the qualities of things students
say, do, or make. The proficiency variables are of persistent interest in an
assessment application. They are the level at which we conceive of the effects of
learning and the locus of decisions about instruction. The observable variables
that appear in evidence models are of interest mainly insofar as they provide
information about proficiency variables.

The total graphical model for an assessment consists of a Bayesian network
with all of the proficiency variables and all of the observable outcome variables



136 5 Efficient Calculations

Table 5.8 Updating the potential tables for {0a,05, X2}
Before belief updating

04 0B P(X2 = 1) P(X2 = 0)
H H 011 .001
H L .005 .093
L H .088 .010
L L .008 784

Belief updating (i.e., multiplication by message)

04 0p|P(X2=1) P(X2 =0)

H H|.011 x 1.00 .001 x 1.00

H L |.005x .90 .093 x .90

L H|.083x .90 .010 x .90

L L |.008 x .01 784 x .01
After belief updating

04 0p|P(X2=1) P(X2 =0)

H H .011 .001

H L .004 .084

L H .080 .009

L L .000 .008

After normalizing

04 0B P(X2 = 1) P(X2 = 0)

H H .056 .005

H L .020 426

L H .406 .046

L L .000 .041

from any task which could conceivably be given to a student. In an ongoing
assessment system, hundreds or thousands of test items are developed and
used, all providing information about the same small set of proficiency vari-
ables; the tasks (and the task model variables) are relevant during the time
they are used, but they are retired and replaced continually.

In such an environment, it is obviously of benefit to be able to update
proficiency models without having to build a single huge computational rep-
resentation for every student using all items that have been and may ever
be presented. Computation using a representation using only the tasks that
are or may be used in the present test would be preferable. Such a scheme
would be an example of what Breese et al. (1994) call knowledge-based model
construction: dynamic assembly of computational or representational mod-
els from preassembled fragments, according to the unfolding nature of the
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problem. Computerized adaptive testing (CAT; Wainer et al. 2000) with item
response theory (IRT) is a familiar example from psychometrics.

The key idea is that the Bayesian networks associated with the proficiency
model and the measurement component of the evidence models are only frag-
ments of the total graphical model for the assessment. These fragments can
be stored in a library and assembled on demand. This is related to the object-
oriented Bayesian network models of Koller and Pfeffer (1997) and Laskey and
Mahoney (2000). This section expresses this modular measurement framework
in the context of Bayes nets, defining proficiency model and evidence model
Bayes nets fragments. The focus is on the implications for assessment design
and analysis, with an eye toward adaptive applications.

5.4.1 Proficiency and Evidence Model Bayes Net Fragments

Two fundamental properties of psychometric models hold important implica-
tions for the recursive representation of the variables in psychometric mod-
els, and consequently for the Bayes nets and junction trees they induce. Let
(01,...,60m) be proficiency variables and (X1, ..., X,,) be observable variables.
The two properties are as follows:

Property 5.1. Observable variables are always children, and never parents, of
proficiency variables. Proficiency variables may be parents of other proficiency
variables, and generally will be when there are multiple proficiency variables
and they are associated in the examinee population. Proficiencies in Reading,
Writing, Speaking, and Listening, for example, tend to be correlated, and we
would probably model 8g, Oy, 0g, and 01 as either directly related among
themselves or as children of a common language proficiency, say 6y p.

Property 5.2. (Local Independence) Observable variables from distinct tasks
are conditionally independent, given proficiency variables. Observable vari-
ables from the same complex performance or from the same multipart task
may be parents of other observable variables in the same task, in addition to
their student-model parents, as when an answer to a multiple-choice question
is followed by “explain your answer.” (In graphical terminology, the profi-
ciency variables in the digraph d-separate the sets of observable variables
from different tasks.)

This second property is often called local independence. Yen (1993) describes
a number of situations in which local independence breaks down at the level
of individual observables; that is, local dependence occurs. Ratings of multiple
aspects of the same complex performance and items whose response depends
on previous responses are two examples. One of the most common testing
situations with local dependence is a testlet (Wainer and Kiely 1987) in which
several discrete items share a common stimulus, such as a reading passage or
a graph. But if observable outcome variables that exhibit local dependence
are placed within a single task and hence are scored by a single evidence
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model, then Property 5.2 is not violated at the level of tasks and we can use
the method in this section. This gives Bayesian network models a expressive
power to model situations that can be difficult to model with other methods.

The properties together imply first that the joint distribution of
(61,...,0m) and (X1,...,X,) can be written in terms corresponding to the
joint distribution of #s and the conditional distribution of Xs from distinct
tasks. We refer to the joint distribution of the és as the proficiency model Bayes
net fragment, or PMF for short; that is, P (61, ..., 0,,). To allow for conditional
dependence among observable variables from the same task, we introduce the
index j for such interrelated groups of observables, denote the observables
corresponding to Task j as (X Gl X jnj), and refer to the conditional dis-
tribution of (X1, ..., Xkn,) given its student-model parents as the evidence
model Bayes net fragment, or EMF, for Task j; that is, P (le, ooy Xijny | Qj)
where ©; is the subset of 0s that are parents of any of the Xs in Task k. We
refer to Oy as the footprint of Task j in the proficiency model. Thus, the joint
distribution can be written as

P (X1, Xjny 00, 0m) =P (01, 0m) [ TP (X1, X, | ©5).
J

(5.8)
An acyclic digraph corresponding to a recursive representation in this form
may have edges connecting s to one another, and Xs have as parents only
some set of fs and possibly other X's from the same task. Figure 5.12 represents
these relationships in terms of a Venn diagram for variables in the PMF
and EMFs for two hypothetical tasks. Note that ©1 = {63,03} and Oy =

{02, 05,66}

Fig. 5.12 Relationship among proficiency model and evidence model Bayes net
fragments
Reprinted with permission from ETS.
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5.4.2 Junction Trees for Fragments

Consider the total graphical model for an assessment consisting of a single
task. It is formed by joining the PMF to the EMF by connecting the footprint
variables. Now form the junction tree for this graph. We can arrange it so
there will always be a node in the junction tree corresponding to the footprint
(see Exercise 5.11), because moralization and triangulation will force edges
among at least some of them, and we can add edges if we need to in order to
connect them all. Split the junction tree at that node, producing two junction
trees, one for the proficiency model and one for the evidence model. The
virtual-evidence algorithm (Sect. 5.2.3) can then be used to pass information
between the two trees. Almond et al. (1999) use this as the basis of an efficient
algorithm for working with large assessments.

According to the Local Independence Property (Property 5.2), any impact
on belief about the observables of one task on the observables of another task
is mediated strictly through the influence on proficiency variables. This sepa-
ration of tasks by the proficiency variables allows us to precompute junction
trees and potential tables for PMFs and EMFs. These can be stored in a large
pool and only the PMFs and EMFs relevant to a particular assessment situa-
tion (the form of the assessment the examinee actually sees) need be consulted
to draw inferences.

More formally, the Proficiency Model-FEvidence Model ( PMEM) algorithm
(Almond et al. 1999) requires special construction procedures for the PMF and
EMF.

e For the PMF: The PMF is a Bayes net in itself, and potential tables
could be built following the procedure described above in Sect. 5.3. But
doing so from whatever structure of dependencies happen to reside in
the recursive representation for P (01, ..., 0,,) does not guarantee that the
footprint of each EMFs will appear in a clique. In addition to edges added
to moralize and triangulate the PMF, one must also add edges among
proficiency variables to ensure that the footprint of each EMF that will
be used to update the fs appears in at least one clique. After adding
the additional edges joining the proficiency variable, the junction tree and
potential tables for the PMF are then constructed as usual, starting with
the triangulation step.

e For the EMF for each Task j: The essential element of an evi-
dence model Bayes net fragment is a conditional distribution of observ-
able variables given the proficiency variables in its footprint, namely
P (Xj1,...,Xjn,;|Ok). The EMF does not have information about the
marginal distribution of the proficiency variables, @;. To produce the full
joint distribution to initialize the EMF, say P* (le, s Xjng s Qj,) assign
independent uniform distributions for the fs in ;. This implies the unit
potential, 1, in which every element is 1 (or, since only proportionality
matters in potentials, equal values at any other nonnegative value), over
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all possible combinations of values of the proficiency variables in ©;. Start-
ing from the acyclic digraph for this augmented EMF, produce an undi-
rected graph that first adds edges between all pairs of s in @;, as well
as whatever additional edges are needed to moralize and triangulate the
graph.

The junction tree and potential tables for the EMF for Task j are then
constructed as usual.

This procedure guarantees that every EMF k will share an identical clique
with the PMF, namely ©.

Example 5.9 (Bayes net fragments for Example 5.5).

The total graphical model in Example 5.5 can be expressed as one PMF,
over {64,0p5}, and two EMFSs, one for each task, over {04,0p,X:} and
{04,05, X2}. As before, {04,605} is initialized at [.012,.098,.098,.792] based
on the the marginal distributions for {64} and {0} and the fact that they
are independent. The EMF for Task 1 is initialized using the conditional prob-
abilities for Xy given 04 and 0p (as shown in the middle of Table 5.6) and
the unit potential over all possible combinations of the values of 04 and 0p.
The resulting initial potential in EM F} is thus

117 [P(Xi=1]64=H0s—=H P(X,=0]|04=H0p—H)
L1 | PG =1]0a=H05=1) P(X, =004 = K65 =1L)
11 P(Xlzl|6‘A—L,6‘B—H)P(X1=O|6‘A—L,93—H)
11 P(Xlzl|6‘A=L,6‘B—L)P(X1=O|6‘A=L,93—L)
.99 .01
_1.90.10
.90 .10
.01 .99

(5.9)
Note that the two columns of this result are the likelihood induced for 0 4
and 0p by observing X1 = 1 and X; = 0 respectively.
By similar calculation, the initial potential in EM F; is

99 .01
.05 .95
90 .10
.01 .99

(5.10)

To illustrate PMFs and EMF's in a more interesting example, consider the
case of five proficiency variables, 61, ..., 05, and three tasks. Task 1 and Task 3
contain one observable each, X717 and X3; respectively. Task 2 contains two
observable variables, Xo; and Xs2, and also an unobservable evidence model
variable Xo3 to account for conditional dependence between X5 and Xao
(more about this idea in Sect. 6.2. The acyclic digraph is shown as Fig. 5.13.
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Fig. 5.13 Total acyclic digraph for three-task test
Reprinted from Almond et al. (2010) with permission from ETS.
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Fig. 5.14 Proficiency model fragments for three-task test
Reprinted from Almond et al. (2010) with permission from ETS.

VX,

Fig. 5.15 Evidence model fragments for three-task test
Reprinted from Almond et al. (2010) with permission from ETS.
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The digraphs that corresponds to the PMF is shown as Fig. 5.14, and the
EMFs are shown as Fig. 5.15.

Because of independence and conditional independence relationships, the
digraph for the proficiency model fragment (Fig. 5.14) is quite sparse. A
junction tree for this digraph by itself consists of two cliques, {61,602} and
{0s,04,605}. The footprints of the three tasks are these: ©; = {63}, O =
{01,04}, and O3 = {02,05,04}. O1 requires no new edges in the proficiency
model fragment, but both ©@; and @3 do. For example, Task 2 demands an
edge between 62 and 64, which were independent in the original digraph. We
refer to this phenomenon as an induced dependency. The moralized and trian-
gulated undirected graph for the proficiency model fragment, with additional
edges required to conform with the footprints of the three evidence mode frag-
ments, is shown in Fig. 5.16. The moralized, triangulated, and conformable
undirected graphs for the evidence model fragments are shown in Fig. 5.17.

Fig. 5.16 Moralized proficiency model graph for three-task test
Reprinted from Almond et al. (2010) with permission from ETS.

Fig. 5.17 Moralized evidence model fragments for three-task test
Reprinted from Almond et al. (2010) with permission from ETS.
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5.4.3 Calculation with Fragments

Once junction trees and potential tables have been constructed for each frag-
ment in the manner described in the preceding sections, the PMEM algorithm
(Almond et al. 1999) can update the PMF with evidence coming from any
Task j in five steps:

Update Step 1: Start with the junction tree for the evidence model for Task j.
Calculate the marginal distribution over @, pyia(©;). If the
junction tree was calculated according to the method of the
previous section, this should be the unit potential, 1.

Update Step 2: Cast the obtained evidence in the form of potentials over
the observable variables and combine this evidence with the
existing potentials over the observable nodes. This produces
Prew (leu B 7xjnj)-

Update Step 3: Apply the belief-updating algorithm to obtain the new joint
distribution over the observables and footprint of Task j:

{LL’jl, . ,l'jnj,Qj} :>9k = Pnew (@J) .

Update Step 4: The message EMF = PMF will be ppew (0) @ poia (©5) =
Prew (©5) (as the denominator is the unit potential). Enter
this value as virtual evidence in any clique node in the junction
tree for the PMF which contains the footprint, ©;.

Update Step 5: Apply belief updating to update the remaining proficiency
variables outside @, if there are any.

At the end of the PMEM updating, the PMF contains the posterior dis-
tribution over the proficiency variables given the evidence from Task k. The
EMF is no longer needed and can be discarded (or recycled for use with
another student). In fact this gives us a simple Computer Adaptive Testing
(CAT) engine. To start, the PMF contains the prior distribution over the profi-
ciency variables for a student. As each observation arrives about an examinee,
the engine fetches the appropriate EMF for that task from a database. The
PMEM algorithm is then used to update the PMF. At any time the PMF
can be queried to give our current state of knowledge about the student’s
proficiency. Chapter 13 expands on this idea.

Occasionally, we want to be able to forecast the values for observable out-
come variables we have not yet seen. (Chapter 7 describes several applications
of this capability.) We can run the PMEM algorithm backwards to obtain the
predictive distribution for observables in another not-yet-administered task,
Task j':

Predict Step 1: Start with the distribution of the proficiency variables after
evidence from previous tasks has been entered. In the update
steps above, this is prew (01, . . ., O ). Marginalize down to ©;
to obtain ppeyw (©5).
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Predict Step 2: There will be a clique node in EMF j’ corresponding to ©;. It
will be the unit potential (unless some other source of evidence
has already been used to update it). Marginalize down to O
to obtain peig (©;7). Combine the result with ppey (07).

Predict Step 3: Apply the belief updating algorithm to update the remain-
ing variables in the EMF junction tree, including in particu-

lar the observable variables {X [EERRRRD. ST } Marginalizing

down to them gives the predictive distribution of the not-yet-
administered observable variables in Task j’.

This use of the PMEM algorithm has a big advantage over the procedure
of producing the total graphical model for the assessment that contains every
observable for every task. In the latter configuration, the belief-updating algo-
rithm propagates messages to all of the clique nodes to update these predictive
distributions even when they are not needed (although modern Bayes net soft-
ware usually uses lazy-propagation algorithms that only calculate messages
in response to queries). In the PMEM algorithm, only the PMF is updated
by default. The EMFs are only updated on demand, to answer a particular
question.

Example 5.10 (Example 5.9, continued). By the way it was constructed
in Example 5.9, Update Step 1 of marginalizing the initial potential in EM Fy
with respect to 64 and 0 does yield the unit potential for p,;4(6.4,05). When
evidence arrives that X; = 1, Update Step 2 tells us to zero out the right
column (for X1 = 0) in Eq. 5.9. Update Step 3 gives the left column as
Pnew(0a,08). In Update Step 4, the message prew(0a,0p) @ old(04,0p) is
simply prew(0a,05) since poa(04,05) = 1. It is combined with the initial
potential for for {04,05} to produce the new belief about 64 and 6g:

[.012,.098, .098,.792] ® [.99, .90, .90, .01] = [.012, .088, .088, .008].

This is the same updated potential for {0 4,05} we obtained in Example 5.9
using the message passing algorithm. There are no other proficiency variables
in the PMF, so nothing further needs to be done in Update Step 5.

We are now in a position to forecast the response to Item 2 in light of hav-
ing observed a correct response to Item 1. Predict Step 1 is to marginalize the
new status of the PMF down to the footprint of the task in question. Noth-
ing really needs to be done, since in this small example ©1 = Oy ={04,605}.
In Predict Step 2, we marginalize the potential in EM F5 down to the foot-
print and again obtain p,;4(04,0p5) = 1. We combine this with ppew(64,05)
to obtain [.012,.088,.088, .008]; this is the message to pass to EM F5. Predict
Step 3 combines the message [.012,.088,.088,.008] with the initial potential
in EMFy (Eq. 5.10) to produce an updated potential, which reweights expec-
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tations about X, in accordance with our new belief about 04 and 6p:

.012 .012 99 .01 .011 .005
.088 .088 90.10 | .004 .426
.088 .088 ® .90 .10 | | .080 .046
.008 .008 .01.99 .000 .041

Marginalizing down to X5 gives [.095, .518] and normalizing gives [.155, .845].
That jS, P(XQ =1 | X1 = 1) =.155 andP(Xg =0 | X1 = 1) = .845.

5.5 The Structure of a Test

In the previous section, we moved from viewing an assessment as a giant
Bayesian network to viewing it as a library of network fragments: a central
fragment based on the proficiency model and a collection of evidence models
for each task that could be potentially used. Another evidence-centered design
(ECD) model, the assembly model controls which tasks an examinee actually
sees, and thus, what constitutes a valid form of the assessment.

This view of the assessment is helpful for task design. As the test designers
focus on each task, they concentrate on the evidence provided by that task. By
the local independence property, they only need to worry about evidence from
one task; the evidence from other tasks should be conditionally independent,
given proficiency variables.

However, the library of fragments view is not as useful for considering the
evidence from an assessment as a whole. Assessment designers need to know
if a given form is properly balanced so as to provide evidence about all of the
claims to be made. To answer this question, the test designer must look across
many fragments all at once.

An alternative way of viewing a graph is to use a matrix. Each row rep-
resents an observable variable and column represents a proficiency variable.
Put a one in the matrix everywhere there is an edge in the graph; that is,
for each instance where a given proficiency variable is a direct parent of a
given observable. Doing that with the total graphical model of an assess-
ment leads in a straightforward way to the Q-matriz, a representation that
has been popular with many ways of modeling diagnostic assessment (Fischer
1973; Haertel 1989; Haertel 1984; Leighton and Gierl 2007; Rupp et al. 2010;
Suppes 1969; Tatsuoka 1983). The @-matrix provides the kind of view of the
assessment that does help the designer answer questions about the balance
and evidentiary properties of the assessment as a whole, or of one particular
form.

Section 5.5.1 defines the @-matrix more formally for an important sub-
set of assessments, those which consist solely of discrete items (e.g., multiple
choice), that each have a single, conditionally independent, observable out-
come. Section 5.5.2 talks about how to expand the basic @-matrix notation
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for assessments consisting of more complex tasks with multiple observables.
Chapter 7 will look at how to use this new notation to assess the amount of
evidence in a particular assessment.

5.5.1 The Q-Matrix for Assessments Using Only Discrete Items

This book has been careful to use the term task rather than item to remind
readers that assessment tasks can be more than just a collection of multiple-
choice items. However, tasks which yield only a single observable outcome
variable are easy to work with from a lot of different perspectives. In this
section, we will restrict our attention to tasks which have a single observable
outcome variable. The next section will talk about how to lift that limit.

Let © = {61, ...,0x} be the set of proficiency variables in our assessment.
Let X1,..., X, be the set of observable outcome variables associated with the
items. Note that by our assumption above each observable is associated with
a different task. In particular, that means by the local independence property
X is independent of X, given ©.

Now consider the footprint for Task j, that is, the parents of X;. Let
¢jm = 1 if 6, is a parent of X; and 0 if it is not. Tatsuoka (1983) calls the
matrix of g;s for a set of items the Q-matriz of a assessment. This matrix
provides an at-a-glance view of the assessment. For example, the column sum
> j @jm 1s the number of tasks that tap the proficiency variable 6,,. Section 6.4
shows an example. An assessment that has only a single proficiency variable
will have a @-matrix that consists of just a single column of ones.

Consider a @-matrix for which the sum of each row is 1; that is, each
observable has only a single proficiency parent. Such a test is said to have
simple structure. In particular, it can be thought of as a collection of unidi-
mensional tests, one for each proficiency variable, that are combined in some
way. Adams et al. (1997) refers to this as between items multidimensionality,
in contrast to within items multidimensionality where at least some observable
variables depend on more than one proficiency variable.

According to the construction algorithm in Sect. 5.4.2, the proficiency
variables indicated in each row of ) must appear in a common clique in
the final undirected graph for the proficiency model for the assessment. This
is forced at the level of the PMF digraph by drawing an edge between all
indicated fs in a row, where the edge is from the 6 earlier (i.e., closer to the
root) in the recursive representation to the one later. These are the induced
dependencies mentioned earlier.

An interesting if unpleasant consequence is that even EMFs with simple
structures in themselves can force many edges to be added to the graph for
the PMF, and increase the treewidth of the junction tree for the proficiency
model. For example, suppose there are five independent proficiency variables
and five items, each of which has only two parents, as indicated by the Q-
matrix in Table 5.9.
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Table 5.9 @)-Matrix for design leading to saturated model
|91 02 03 04 05

z11]1 1 00 0
z2,1/1 01 00
3,1 10010
241|100 0 1
5,1 01100
Z6,1 01010
271/0 1 0 0 1
8,1 00110
9,1 00101
z101/0 0 0 1 1

This design induces an edge between every pair of #s, and forces all the 0s
into a single large clique. This is called the saturated model, and the belief-
updating algorithm offers no computational advantage over the brute-force
algorithm for such models. This example is small enough that computational
demand of the brute force example would not be an issue. But with a larger
proficiency model, it is easy to imagine that allowing an unconstrained number
of EMFs with unconstrained patterns of proficiency variable parents could
easily lead to cliques and thus potential tables of an intractable size. Some
ways to avoid this problem include the following:

e Limit the size of the proficiency model. (This option is often quite practical
as limited test time forces test designers to concentrate on a few variables
of interest.)

Neglect minor 6-to-X edges.

e Predetermine a set of EMF structures and their footprints (i.e., motifs),
ensure its computability, and constrain task development to those struc-
tures.

If designs that would require large saturated or nearly saturated junction
trees for the PMF are desired nevertheless, the alternative approximations
discussed in Sect. 5.6 can be pressed into service.

Recall from Chap. 2 that many tasks can be generated from a single task
model. Usually, all of those tasks are scored using the same, or similarly struc-
tured, evidence models. This implies that the rows in the Q-matrix corre-
sponding to the tasks from the same evidence model will be identical. For the
purposes of determining the induced dependencies in the proficiency model,
it is sufficient to have a single row in the @-matrix for each motif.

5.5.2 The Q-Matrix for a Test Using Multi-observable Tasks

The @Q-matrix provides a nice compact view of the entire assessment when all
of the tasks are discrete items with only a single observable outcome variable.
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However, much of our interest in Bayes nets stems from their ability to model
more complex tasks with multiple observables. How do we extend the Q-
matrix notation to include tasks with multiple observables? There are basically
two options: (1) make the rows of the @Q-matrix correspond to tasks/evidence
models, and (2) make the rows of the Q-matrix correspond to observables.

Building a @-matrix of the first type is straightforward. Each row of the Q-
matrix becomes the representation of the footprint for that task. This version
of the Q-matrix is particularly useful for scanning through the dependencies
induced by a collection of tasks on a test form. The test designer can scan
through the list quickly and estimate the treewidth of the final model.

Using the one row per task representation, the (J-matrix for the network
depicted in Fig. 5.13 is:

Table 5.10 Q-Matrix for Fig. 5.13, one row per task
|91 02 603 04 05
Task 1{1 0 0 0 O

Task 20 1 0
Task 3|0 1 1

10
10

The alternative is to use one row for each observable in the task, giving
only the proficiency variables of that observable in the matrix. Table 5.11
depicts the Q-Matrix for the model in Fig. 5.13 using the one row per observ-
able representation. However, the variable Xo3, which is used to model local
dependence between X571 and X9 presents some problems. First it produces
a row with no “1”s, which is somewhat odd. Second, neither the relationship
between X3 and Xo1 nor the relationship between Xo3 and Xos are captured
in the Q-matrix.

Table 5.11 @-Matrix for Fig. 5.13, one row per observable
|01 02 03 04 05
11 1 0 O O 0

T21

22
23

oo O O
o =
o oo
=Oo = O
oo O O

31

Thus, we can see that in the tasks with multiple observables, we are bump-
ing up against the limits of the @-matrix representation. Bayesian networks
have a richer set of tools to describe complex relationships among variables.
That is a large part of our interest in using them. Still, the Q-matrix is good
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for providing an at-a-glance summary of an entire assessment form. For this
reason, we often compute the @-matrix for a given Bayesian network model
as a way of evaluating the assessment.

5.6 Alternative Computing Algorithms

The preceding sections introduced a method for efficient calculation in Baye-
sian networks. This is by no means an exhaustive treatment of the topic,
but it does lay a foundation for the use of Bayesian networks in the following
chapters. A large and active research community has grown up around the use
of Bayesian networks. This last section provides some pointers into the body
of literature that community has developed. In particular, Jensen (1996) and
Cowell et al. (1999) provide recent tutorial references. Pearl (1988) remains
a classic in the field and has many chapters that anticipated current research
trends. Lauritzen (1996) describes how to extend the algorithm to graphical
models which include normally distributed continuous variables and mixtures
of discrete and continuous variables.

The algorithm presented in the previous sections is a variant of the propa-
gation algorithm described in Lauritzen and Spiegelhalter (1988). That paper
spawned a large family of algorithms for propagating in Markov trees. The
variant presented here first appeared in Cowell et al. (1993).

Shenoy and Shafer (1990) show how the algorithm can be extended to
models which are not purely probabilistic, including influence diagrams and
graphical belief functions. They define a general version of the belief-updating
algorithm called the fusion and propagation algorithm, which is based on val-
uations. A valuation describes the relationship about the states of a set of
variables in a frame of discernment, the prime example being the probability
potential we have been working with. Valuations support the combination and
projection operations that are the basis of message passing. They, in combi-
nation with the running intersection property, provide for efficient updating
algorithms.

Section 5.6.1 notes variants on the basic algorithm and Sect. 5.6.2 explores
variations of the algorithm and approximation techniques that can be used
when the treewidth of the model gets too large.

The Uncertainty In Artificial Intelligence (UAI) community is constantly
doing research into better algorithms for computation with Bayesian networks,
and recent copies of the UAI proceedings are a good source for keeping up
with the latest developments Many software packages exist which implement
both variations on the basic Markov tree propagation algorithm and many
of the variants described here. Appendix A contains some pointers to online
resources for both software and articles.



150 5 Efficient Calculations

5.6.1 Variants of the Propagation Algorithm

By making small changes in the fusion and propagation algorithm we can
adapt it for a number of special purposes. In particular, we can use it to find
the most likely proficiency profile and to sample from the joint distribution
of all variables.

Most Likely Configuration

Pearl (1988) notes that by simply using maximization instead of summation
in the belief-updating algorithm, one can find the most likely configuration
of a set of nodes. The idea is that any time we perform a marginalization
operation (going from a clique node to an intersection node in the Junction
tree, we pick the value of of the eliminated variable(s) that maximizes the
probability. When one reaches the end of the Markov tree, pick the most
likely configuration for the remaining variables.

In the educational setting, we are usually interested in configurations of
proficiency variables. Thus the output of this algorithm is usually the pro-
ficiency profile which provides the most likely explanation for the observed
evidence. Section 7.1.2 takes up this idea.

Sampling Algorithm

A junction tree representation can be used to sample from the joint distribu-
tion of all of the variables in the model. First, pick any node in the Markov tree
as a root node. Draw a sample configuration from those variables, in accor-
dance with the probabilities its potential implies. Now condition the model on
the sampled values and start propagating out from the root. At each new node
in the junction as we move out, we have the correct conditional distribution
based on the sample so far. Sample the remaining variables in this node and
continue propagating outwards until all values are sampled.

This can be very useful for calculating the accuracy of a proposed assess-
ment design (Sect. 7.5). In a typical experiment, we start by simulating a set
of proficiency variables for a simulee. This produces a proficiency profile for
the simulee. Next, for each task in the assessment design we can sample a
set of observed outcomes given the conditional distribution of the observables
given the proficiency variables. The result is an observation vector for that
simulee. This kind of simulation experiment has a number of different uses,
such as calculating traditional reliability indices, item statistics, and expected
score distributions, and fitting alternative models to the generated data.

5.6.2 Dealing with Unfavorable Topologies
The Peeling Algorithm

If we are only interested the marginal distribution of a particular set of vari-
ables, we can sequentially eliminate the remaining variables one by one. At
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each step, we combine all of the potentials involving the eliminated variable
and project the result onto the remaining variables. The procedure is called
peeling. Hilden (1970) and Cannings et al. (1978) first developed the peeling
algorithm to answer questions about genetic probabilities in complex pedi-
grees.

The disadvantage of peeling compared to the Markov tree propagation
algorithm is that it can produce only one marginal distribution at a time;
producing other marginal distributions requires repeeling the model, possi-
bly many times. In such cases, it usually makes sense to transform to the
Markov tree. On the other hand, if we know precisely which query we want
to make peeling can take advantage of special structures in the model (Li and
D’Ambrosio 1994).

Cut Set Methods

In both the Markov tree propagation algorithm and the peeling algorithm, the
cost of the computation is largely determined by the treewidth of the graph.
What can we do when that largest clique gets too large for these algorithms to
be practical? One suggestion presented in Pearl (1988) is to choose a variable
or set of variables to “condition out” of the model. Because these variables are
typically chosen to cut loops, they are called a cut set. The best cut variables
are usually roots of the original directed graph (or close to the roots).

For example, suppose we have a proficiency model consisting of an Overall
Proficiency variable which has three levels and several subskills. We choose
the Overall Proficiency variable (usually the root in the model graph) as our
cut set. We make three new graphical models by conditioning on the three
possible values of the overall proficiency variable. Because we have conditioned
on this variable, it can be eliminated from the model. If, as typically happens,
the overall proficiency variable is the apex of a number of loops, the resulting
conditional models will have lower treewidth. We now build a junction tree for
each of those models. We weight the resulting trees by the original probabilities
of the overall probability model. The resulting model is a weighted mixture
of trees.

Not only do the conditional models eliminate the cut variable, but they
also could have different graphical forms (Heckerman 1991). For example,
there may be a dependency between certain skills at high levels of proficiency
which is not typically observed at lower levels of proficiency.

The update algorithm for the mixture of trees is straightforward. We start
by updating each tree in the normal fashion. We next update the weights.
This is done in the normal fashion using Bayes rule with the likelihood of
the particular observation. Any query we make is a weighted average of the
queries from each of the conditional models.

Loopy Belief Propagation

Pearl (1988) suggests that one could simply apply the propagation for trees in
loopy graphs iteratively with every node send a message to its neighbors every
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cycle. In the case of polytrees, this algorithm always converges. In the case
of graphs with loops, the algorithm may or may not converge. Weiss (2000)
attempts to characterize situations in which the algorithm will converge and
produce proper marginal distributions, and Murphy et al. (1999) attempt to
validate these situations empirically. Murphy suggests that when loopy belief
propagation does not converge it oscillates between two or more states. This
might correspond to the explaining away problem mentioned earlier, where the
system would oscillate between two modes indicating alternative explanations
for the observed evidence.

Variational Approximations

Jordan (1998) and Jaakkola (2001) describe an approximate inference method
for Bayes nets based on calculus of variations. The basic idea is that the
Bayes net is approximated by another Bayes net with a lower treewidth, and
calculus of variations is used to find the optimal approximation. The usual
approximation described is the mean field method, in which the approximating
graph assumes that all of the variables are independent. This approximation is
usually pretty close on the marginal distribution of the variables but sacrifices
information about the interactions.

Particle Filtering

Sequential importance sampling (Liu 2001), sometimes known as particle fil-
tering can also be used to calculate approximate posterior distributions. Par-
ticle filtering can be done in the following steps:

1. Sample a collection of skill profiles, configurations of proficiency variables,
according to the prior distribution (this is given by the proficiency model).
These are the “particles.” Assign each of them equal weight.

2. As each new piece of evidence arrives, adjust the weights by multiplying
by the likelihood of that evidence given the proficiency state described by
the particle.

3. After a period of time, the weights of some particles will become very
small. At this point in time, resample from the existing particles using
their current weights.

Koller and Learner (2001) and Murphy and Russell (2001) describe par-
ticle filtering to handle calculations in dynamic Bayesian networks (Bayesian
networks which capture changes to a system over time). There is an additional
step at each time point as we put the particles through a random growth oper-
ator. Thus in the dynamic Bayes net model, the particles represent trajectories
through the proficiency states at various points in time.
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Exercises

5.1. Assume that we have built a Bayesian network with proficiency vari-
ables S1,...,Sk and observable outcome variables X7, ..., X,,. For simplic-
ity, assume that all variables are binary. Assume that a learner about whom
we do not have information other than the fact that this learner is from the
population for whom the test is designed, has just walked into the test center.
For each of the following questions, write a symbolic expression that answers
the question.

a. Marginal Belief “What is the probability that the learner has skill §17”

b. Marginal Belief 2 “What is the probability that the learner will have a
good outcome on observable X;7”

c. Conditional Belief “What is the probability that the learner has skill Sy
given we have made observations on tasks X = {X1,..., X, }?”

d. Hypothetical Belief ” Given that we have made observations on tasks X =
{X1,...,X,}, if we observed a performance on Task Y, how would our
beliefs change?”

5.2. Reverse the direction of the arrow between W and X in Fig. 5.2. How
do the calculations in Sect. 5.2.1 change?

5.3. Reverse the direction of the arrow between Z and Y in Fig. 5.2. How do
the calculations in Sect. 5.2.1 change?

5.4. Starting from the final state of the junction tree in Example 5.3, calculate
the effect of evidence es that Y = 0. Does the marginal distribution for W
change? Why or why not?

5.5. Figure 5.3 gives the junction tree that corresponds to the factorization
of P(U,V,X,Y,Z). Draw the intermediate steps of a directed graph for the
distribution, the factorization hypergraph, and its 2-section.

5.6. Change the performance rating procedure for the Dental Hygienist assess-
ment in Example 5.4, by adding a second rater. Assume that the two raters
work independently, but all rate the same performance. What does the graph
look like (include nodes for the ratings)? How about for N raters?

5.7. Suppose that the rater in Example 5.4 instead of calling a history ade-
quate or not, gives a probabilistic rating, such as “the probability of this
history being adequate is 2/3.” How should that evidence be entered into the
model?

5.8. Consider the Dental Hygienist Exam of Example 5.4. Suppose that
through training we can increase the sensitivity and specificity of the raters,
so that we have a perfect rater that always rates adequate performances as
adequate and inadequate performances as inadequate. What is the maxi-
mum value for the posterior probability of the dental hygiene skill after the
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patient history task? Note that one way to increase the accuracy of the rat-
ing is to have more and more raters rate the same performance. What is the
maximum change in the posterior probability we can get by increasing the
number of raters?

5.9. Imaging that we want to add a task to the assessment described in Exam-
ple 5.6 (Table 5.6) that had good differential diagnosis for 64, but not 0p.
What would its conditional probability table need to look like?

5.10. In Fig. 5.4, replaced the directed edge T' — U with U — T and replace
X =Y with Y — X. What is the size of the largest clique in the moral graph
for the modified graph? What is the treewidth of the junction tree? Why is
the one smaller than the other?

5.11. When the PMFs and EMFs are constructed separately, after moral-
ization and before triangulation, additional edges are added to join together
proficiency variables that appeared together in the footprint of one or more
evidence fragments. This step was not included when constructing the total
graphical model for the assessment (that is the proficiency and evidence model
fragments are together in one big graph). Why was it not necessary there?

5.12. A design committee for a new assessment identifies six proficiencies,
01, ...,0q, which it wants to measure with a new assessment. The committee
structures the proficiency model so that all six proficiencies are independent
given an overall proficiency labeled 8y. They propose a collection of nine tasks,
each of which tap two proficiencies as show in Table 5.12.

a. Draw the graph for this example.

b. Calculate the treewidth for this assessment.

¢. How would you recommend the committee reduce the treewidth of the
assessment? Hint: Are all of the tasks necessary?

Table 5.12 @Q-Matrix for proposed assessment (Exercise 5.12)
01 02 03 04 05 Og

Task 12
Task 23
Task 34
Task 45
Task 56
Task 61
Task 14
Task 25
Task 36

—
—_
o
o
o
o

OO+ O OO oo
O—R OO OO o
— O OO0 OO~
OO+ OO H~HO
O, OO~ OO
OO~ F~FOOO
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5.13. Suppose that we have an assessment described by a PMF and a small set
of EMF's. Suppose further that the assessment design calls for each examinee
to see each task. Section 5.6 presents a simple algorithm for sampling from a
junction tree. Explain how that sampling algorithm can be extended to work
when the PMF and EMF's are maintained separately.

5.14. Let C be the set of clique nodes in a junction tree, and let Z be the set
of intersection nodes. Let p,(-) be the potential over Node n. The condition
for the junction-tree algorithm can be expressed as

P() = <H pc(-)> % <H pf(-)> :

CinC IinZ

That is, the joint probability of all the variables is the product of all of the
potentials over the clique nodes, divided by the product of the potentials over
the intersection nodes.

Use the simple chain graph in Fig. 5.2 and demonstrate that this is correct.
Hint: Use the fact that p(z,y)/p(z) = p(y|z) and use that to recover the
original recursive definition of the joint probability.



6

Some Example Networks

This chapter will illustrate the calculations shown in Chap. 5 with specific
examples. It shows the basic ways that belief updating, or propagation, is
used in discrete Bayes nets applications for assessment. The conditional prob-
abilities are taken as known for now, as subsequent chapters will address just
where they come from (to anticipate: theory, design, expert opinion, and data).

In educational assessment, the objective is to uncover the relationships
between the students’ unobservable characteristics and the observable out-
comes from students’ performance on tasks. The methods in the previous
chapters allow us to answer these questions. Once the probability models are
built and embedded in a graphical structure that reflects our knowledge about
interrelationships among the variables, we can propagate evidence through the
model and make inferences about a student.

As we discussed in Chap. 5, updating for the full joint distribution using
the definitional expression of Bayes theorem is often prohibitively expensive,
even for relatively small numbers of variables. A model with 15 variables and
4 values for each variable already means working with a joint probability table
with over a trillion entries. Several computer software packages exist to help
with this task. Appendix A presents a brief summary of several commonly
available software application for doing this task as well as instructions for
where to download some of the examples used in this chapter.

The goal of this chapter is to describe how, with the help of Bayes net soft-
ware, to build and use Bayesian networks as the scoring engine for an assess-
ment. Section 6.1 begins with a simple item response theory (IRT) model
example translated into its Bayesian network equivalent. Section 6.2 expands
the example in Sect. 6.1 to include a context effect that is similar to the
testlet-effect IRT model (Bradlow et al. 1999). In this model, some items in
a particular context are correlated with each other beyond their joint depen-
dence on the proficiency variable. Section 6.3 illustrates three combination
distributions for use when an observable outcome variable has more than one
parent: the compensatory, conjunctive, and disjunctive distributions. Parallel
models using the three distribution types provide a mechanism for studying
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the behavior of the three distributions in application. Section 6.4 shows a
more complicated educational assessment example drawn from real data, a
binary-skills measurement model with multiple, intercorrelated, proficiency
variables.

6.1 A Discrete IRT Model

A very common case in educational testing is an assessment designed to assess
a single proficiency. Usually the domain of tasks is restricted to the kind of
simple items that can be unambiguously scored as right or wrong. Multiple-
choice items are natural in this context, but short constructed-response tasks
such as fill in the blank items are often used as well (especially, if the evidence
rules are to be applied by a human rater). In this case, the rules of evidence
are very simple and most of the work in building an evidence model goes into
determining the strength of the relationship between the observable outcome
variable and the proficiency model.

As this simple case is very common, a large number of psychometric
approaches have been developed to model it. The most widely used is IRT
(Hambleton et al. 1991; Thissen and Wainer 2001). By convention, the single
proficiency variable! in the IRT model is called . The observable outcome
variables, one for each task or item?, are called X ; and usually take on the
values 0 (for incorrect responses) and 1 (for correct responses).

A fundamental assumption of the IRT model is the local item independence
property, that is, X; 1L X;/|6. Using this assumption, we can write the joint
probability distribution over both the proficiency and evidence variables as:

J
P(X1,....X,,0)=P0) [ P;(X;]0) - (6.1)

Jj=1

From the previous chapters, it is readily apparent that this factorization struc-
ture can be represented with a graphical model, such as the one in Fig. 6.1.
The IRT model is an example of the more general graphical model rather
than a discrete Bayesian network. This is because, typically, in IRT the profi-
ciency variable @ is continuous. Not only that, but the direction of the arrows
goes from the continuous to the discrete variables, so it does not fall into the
computationally convenient class of conditional Gaussian networks (Lauritzen
1992; Lauritzen 1996), for which all integrals involved in the the fusion and
propagation algorithm (described in Chap. 5) can be solved in closed form. Of
course this is old news in the field of psychometrics, where a large number of
approximate methods have been developed for working with the IRT model.

! This is sometimes called a proficiency parameter in the IRT literature, but in this
book we use wvariable to emphasize that the value is specific to a person.

2 In this context each task consists of a single discrete item and so the terms task
and item can be used interchangeably.
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Approximating the continuous proficiency variable, 8, with a discrete vari-
able, for example, restricting 6 € {—2, —1,0, 1,2}, makes all variables discrete
and creates a Bayesian network. As all variables are discrete, there are no inte-
grals that need to be solved numerically when scoring students. This approx-
imation may not even be that bad. Haberman (2005a) compares a five level
ordered latent class model (the simple Bayesian network model posed here is
essentially an ordered latent class model) to a unidimensional IRT model and
notes that both models fit the chosen data sets equally well. Furthermore,
an instructor using the inferences from the network may not be concerned
with finer distinctions. A student for whom 6 = 0 is doing about as well as
expected. A student for whom 6 = —2 is clearly in need of extra attention
and a student for whom 6 = 42 could benefit from extra curricular work.
Students for whom 6 = —1 should be watched closely to make sure they do
not slip further down and students for whom 6 = +1 could be stimulated to
try and move them further up the scale.

There are a number of different variants of the basic IRT model depending
on how the evidence model, P;(X|6), is parameterized. Technically speaking,
the evidence model also contains the rules of evidence, but those are often
quite simple, e.g., matching the key with the selected option. They are typi-
cally left in the background in the IRT literature, and attention focuses on the
more interesting part of the evidence model, namely, the probability of the
observable, given the proficiency variable. The example below uses the Rasch
model (Rasch 1960), which uses the following probability function:

1

PX310,8)) = T~ a -

(6.2)
The parameter f; is called the difficulty of the item. Note that the difficulty
paralmeter and the proficiency variable are on the same scale. A person whose
proficiency exactly equals the difficulty of the item would have a 50-50 chance
of getting that item correct.

Although the Rasch model was built to work with continuous proficiency
variables, we can use it to fill out the conditional probability tables (CPT)
which drive the Bayes net approximation to the IRT model. In particular, by
plugging the values § = —2,—1,0,1,2 into Eq. 6.2 we get the values for each
row of the tables for Fig. 6.1. For Item 3, for example, 83 = 0, so probabilities
of a correct response at the five 6 levels are .1192, .2689, .5000, .7311, and
.8088. The following example illustrates this idea.

Example 6.1 (Classroom Math Quiz). Consider a simple math quiz con-
sisting of five items scored to yield observable values of Right and Wrong. Let
0 represent a student’s proficiency in the math knowledge and skills that this
set of items taps. The teacher is interested in drawing inferences about the
math proficiency of each student based on the observed score patterns from
the quiz. Figure 6.1 shows the Bayesian network for this five item quiz.
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Fig. 6.1 Model graph for five item IRT model
Reprinted with permission from ETS.

To make the model discrete, restrict the proficiency variable to fall in the
set @ € {—2,—1,0,1,2}. Further assume that the proficiency of the students in
the class is distributed with a triangular distribution, with 40 % of the students
at the 0 level, 20 % of the students at both the +1 and —1 levels, and 10 %
of the students at both the —2 and +2 levels. Suppose further the chance
of a student answering the item correctly follows the Rasch model (Eq. 6.2)
and that the items and range from easy (Item 1) to hard (Item 5) with § =
—1.5,—-0.75,0,0.75,1.5. Table 6.1 contains the conditional probabilities of a
correct response for this Bayes net.

Table 6.1 Conditional probabilities of a correct response for the five-item IRT
model

0|Prior Conditional Probability

0 |Item 1 Item 2 Item 3 Item 4 Item 5
—2(0.1 ]0.3775 0.2227 0.1192 0.0601 0.0293
—1(0.2 ]0.6225 0.4378 0.2689 0.1480 0.0759
0[0.4 ]0.8176 0.6792 0.5000 0.3208 0.1824
1{0.2 ]0.9241 0.8520 0.7311 0.5622 0.3775
2|0.1 ]0.9707 0.9399 0.8088 0.7773 0.6225
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6.1.1 General Features of the IRT Bayes Net

Figure 6.1 and Table 6.1 provide enough information to specify the Bayesian
network for Example 6.1. Although this model is small enough that one could
do all of the calculations in this section by hand, it is much more convenient
to use a computer. As the software can react quickly to new data and other
changes in the model, properly designed Bayesian network software encourages
the modeler to explore the model by posing a large number of hypothetical
questions. Appendix A describes how to obtain many of the more popular
Bayes net software packages, many of which have free student or research ver-
sions which are suitable for following along with this example. The appendix
also lists where copies of the example network can be downloaded (although
this example is small enough to enter by hand).

Most Bayesian network software operates in two modes: a model construc-
tion/editing mode and a model manipulation or inference mode. In the model
construction mode, the analyst performs the following steps:

1. Construct a node for every variable in the model. The number and names
of the variables possible states must be specified. Various software pack-
ages provide places for specifying other details about the node (e.g., a
definition).

2. Draw edges between the nodes to represent the conditional dependence
relationships inherent in the model.

3. Specify a CPT for each node in the model, given its parents in the graph.
If a node has no parents, an unconditional probability table is used.

Although the modeling software offers considerable freedom in what order
those three steps are completed, they must be completed for every node in
the model before the model itself is “complete.” Once the model is complete,
the model is compiled, i.e., a junction tree is built from the completed model.
This junction tree is then used to support inference. If the model is later
edited (e.g., another node is added), the compilation step must be repeated
for the revised model.

After the compilation step, most Bayesian network software packages
immediately display the marginal distributions for all nodes (some packages
require you to specifically query the nodes you want to display). Figure 6.2
shows the result of compiling the Bayes net from Example 6.1 in the Netica
(Norsys 2004) software package. Table 6.2 gives the conditional probabilities
in a slightly more legible format.

These marginal probabilities represent our best predictions of how a stu-
dent who we know nothing about, other than that the student is representative
of the population for which the model was built, would do on this quiz. (They
are calculated from the conditional probabilities of correct response given 6
and the initial marginal distribution for €, using the law of total probability,
Eq. 3.4). These are the expected proportions correct (P+) on each item in a
population of students for whom this quiz is designed.
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Fig. 6.2 The initial probabilities for the IRT model in Netica. The numbers at the
bottom of the box for the Theta node represent the expected value and standard
deviation of Theta

Reprinted with permission from ETS.

Table 6.2 Initial marginal probabilities for five items from IRT model

Item 1 Item 2 Item 3 Item 4 Item 5
Right|{0.77 0.65 049 0.35 0.23
Wrong|0.23 0.35 0.51 0.65 0.77

6.1.2 Inferences in the IRT Bayes Net

One important reason for using Bayesian network software, instead of simply
doing these calculations by hand, is that the software will nearly instantly
(especially with such a small model) update the distributions to take the new
evidence into account. The basic operation is called instantiating the value
of a variable. To do this, select the variable in the model and chose a value
for that variable (The details of how this is done are similar but different
for different Bayes net packages. In particular, many packages have an “auto-
update” mode which will immediately propagate evidence to other nodes in
the model so that they immediately reflect the changes, and a “batch” mode
in which propagation of evidence must be requested manually). This basic
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facility can be used to both enter data and play “what-if” games for various
hypotheses.

The most basic application of this idea is the scoring procedure for
Bayesian networks. Out of the evidence identification process (item level
scoring) will come the values of a collection of observables (in this case,
right /wrong judgments) for the variables in our model. To score the student,
simply instantiate the nodes in the graph corresponding to the observable vari-
ables with the values from evidence identification. The updated graph shows
the posterior distribution for the proficiency variables, now conditional on the
responses that have been observed.

Example 6.2 (Absorbing Evidence from Simple Math Quiz, Exam-
ple 6.1 continued). Suppose that Ali, a student in this class, has observed
outcomes of Item 2 = Right and Item 3 =Right. Instantiating these value in
the network and propagating the information using the methods of Chap. 5
produces the posterior distribution for Ali’s 0 (Fig. 6.3a). It has shifted toward
higher probabilities for higher values of §. The probabilities for Ali to get the
other items “Right” also increase as a consequence.

Ali’s classmate Yuri also answers two items correctly, this time Items 3
and 4. The state of the network after instantiating the values of these observ-
ables is shown in Fig. 6.3b. The shift toward higher values of 0 is stronger
because the two items that Yuri answered correctly were more difficult than
the ones Ali answered. Although the story here is much the same as in Ali’s
case, we will see an interesting difference in the next section.

Although in practice, the proficiency variables are unobservable, the Bayes
net software allows us to hypothesize values for the latent variables in order
to play out various scenarios. The following example illustrates this idea.

Example 6.3 (Calculating Conditional Probabilities for Simple Math
Quiz (Example 6.1 continued)). In the class for which the quiz was
designed, consider the groups of students corresponding to the five proficiency
levels (We don’t actually ever know students’ proficiencies, of course, so we
can not form these groups for, say, small group instruction. The best we could
do is to form groups based on what we do know about their proficiencies—for
example, the modal value of their posterior distributions after they have taken
a quiz). Suppose that Group A corresponds to § = 2, Group B corresponds to
0 = 1, and so forth. What is the expected performance on each of the items
for a member of Group B?

In the IRT Bayes net, instantiate § = 1, then propagate the probabilities
through the Bayes net. This yields probabilities as in Fig. 6.4). This is the
fourth row of Table 6.1. Group A corresponds to the fifth row of that table
and Group C to the third row.
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Fig. 6.3 a Student with Item 2 and 3 correct. b Student with Item 3 and 4 correct
Reprinted with permission from ETS.
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Fig. 6.4 Probabilities conditioned on 6 = 1
Reprinted with permission from ETS.

Example 6.3 is a rather trivial application of this conditioning idea; Exer-
cise 6.3 extends the model a bit further. This technique is more interesting in
models with more than one proficiency variable. Here, conditioning on a sin-
gle proficiency variable will have subtle influence on both the values of other
proficiency variables and the implications of evidence from integrated tasks
that tap more than one proficiency.

One application of this technique is in validating a Bayesian network.
In this simple example, it can be used to verify that the probabilities from
Table 6.1 were correctly entered. In more complex models it can be used with
domain experts to validate properties of the model. For a given proficiency
profile—that is, instantiating values of all of the proficiency variables—look
at the predicted observables on each task and verify with the experts that this
distribution is reasonable.

Examples 6.2 and 6.3 also show how Bayesian networks support both
deductive and inductive reasoning. Example 6.3 is an example of deductive
reasoning: The network reasons from the known value of the proficiency vari-
able to deduce the likely consequences. Example 6.2, on the other hand, is
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an example of inductive reasoning: From the known values of the observed
outcomes, the network induces a posterior distribution for the unknown pro-
ficiency.

Another important application of conditioning on the unknown proficiency
variable is calculating the expected weight of evidence for an unobserved item
or task. Section 7.2 defines this idea formally, but in the context of the sim-
ple discrete IRT example, there is a simple short cut. In this case, we can
lean on a result from IRT theory that says that under the Rasch model, an
item for which a student has a 50-50 chance of getting right will provide the
most information.® Therefore, looking for the item whose predictive probabil-
ity, given the evidence so far, is closest to 50-50 produces a simple adaptive
testing mechanism (The situation become much more complex when there are
multiple proficiency variables, see Chap. 7).

Example 6.4 (Item Selection for Simple Math Quiz, Example 6.2
continued). Recall Ali from Example 6.2, who got Items 2 and 3 correct.
Now, what items should we give Ali next? The responses Item 2 = Right and
Item 3 = Right provide some evidence about Ali’s proficiency. Entering this
information into the Bayes net (Fig. 6.3a) has updated not only our posterior
distribution over theta, but also the predictive distributions for Items 1, 4,
and 5. The updated probability of getting a Right outcome is .87 for Item 1,
.48 for Item /4, and .33 for Item 5. Thus for what we currently know about
Ali, Item 4 appears to be the best choice; Item 1 is too easy and Item & is too
hard.

6.2 The “Context” Effect

The example in the previous section recreates results from IRT, or because 6
was made discrete, from a comparable structured latent class model. It shows
how results from more familiar testing models can be expressed in terms of
Bayesian networks. It does not yet highlight the strength of Bayesian networks,
which is their flexibility.

One way to put that flexibility to use is in modeling more complex tasks,
not just simple discrete items. Natural examples of complex tasks are plentiful:
reading passages followed by several multiple choice (or short answer) items,
multistep tasks, and simulation tasks which are scored on multiple aspects
of the same performance. In such contexts, it is more natural to think of a

3 It may seem counterintuitive that an item for which a student has 50-50 chances
of responding correctly provides the most information about her 6. The way to
think of it is, “Which item provides the biggest difference between the posteriors
that result if she gets it right or gets it wrong?”
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defined collection of material presented to the examinee and the work prod-
ucts obtained in the performance as a single task, with multiple observable
outcomes, as opposed to a collection of items that is somehow bound together.

A problem with such complex tasks is the observable outcome variables are
likely to be dependent, even after conditioning on the relevant proficiency vari-
ables. In the usual IRT framework, where all items are assumed to be locally
independent, given the proficiency variables, the observable variables from
these complex tasks violate that assumption (Yen 1993). However, because the
evidence-centered design (ECD) framework calls for a single evidence model
to score all observables coming from a single task, a more complex Bayes net
model can be built to account for the local dependence.

One source of local dependence is common stimulus material shared by
several items. A common example is a reading passage followed by several
multiple-choice items. Although the items are typically authored to minimize
the dependency among the items, the topic of the passage still might produce
an effect on the overall performance of the examinee. An examinee who is
unfamiliar with the topic of the passage is likely to have a more difficult time
with all of the items, where an examinee who is familiar with the topic will
be able to read it more quickly and retain more details in working memory.

One trick that can be used in such situations is to introduce a variable,
often called Context, that represents familiarity with the topic of the passage
(or other stimulus material). This variable is made a parent of all of the
observable outcome variables in just that task. Thus, even after conditioning
on the proficiency variable, the observable outcomes within this task are still
dependent. As the dependent outcomes are all within a single evidence model,
the local independence property in the Bayes net model is not violated at
the level of tasks (Note that Context is associated with the student, much
as a proficiency variable. We will discuss shortly why it is not included in
the proficiency model). The Context variable approach can also be used as a
mathematical device to induce dependency among observables even when the
cognitive model of topic familiarity is less appropriate. Examples are ratings
of the same performance by multiple judges, ratings of several aspects of the
same complex performance, and observables that share the same format or
come from the same work product.

Example 6.5 (Story Problem in the Math Quiz (Example 6.1 con-
tinued)). Story problems are popular with Math instructors because they
test the student’s ability to recognize and apply the mathematical principle
being tested in real world circumstances. On the other hand, the story of the
story problem also introduces irrelevant information, namely, the topic and
the details of the story, into the problem solving experience. If multiple prob-
lems depend on the same story, then how well the student comprehended the
background story can have an effect on all of the items related to the story.
Suppose that in the math quiz , Item 3 and Item / are story problem
items that depend on the same story. In this case, we can expect that if the
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student has trouble understanding the story, then both Item 3 and Item 4 will
be affected. To model this relationship, we add a node Contezt to the graph
of Fig. 6.1, and make it a parent of both Item 8 and Item 4. Figure 6.5 shows
the results. The Context variable takes two possible values U, or Unfamiliar,
for students who have difficulty relating to the content of the story, and F,
or Familiar, for students who do not. The CPT for Item &8 and Item 4 need
to be modified to take the new parent variable into account. The difference
between the probabilities for F and U for given 0 is the strength of the context
effect. For each level of 8, we made the conditional probability of a correct
response about .10 higher if Context = F and about .10 lower if Context = U.
Table 6.3 shows the modified values. Finally, we assign a 50-50 probability to
the two states of the Context variable.

O Context

Fig. 6.5 Five item IRT model with local dependence
Reprinted with permission from ETS.

Call the original version of the math quiz with no story problem (as
described in Example 6.1) Form A. Call the variant version with the added
story problem Form B. It is interesting to compare what the inference about
a student would be on the two forms.

Consider again the responses of the student Ali, who got Item 2 (not in
the set) and Item 3 (in the set) correct. Figure 6.6a shows the inferences
graphically. Note that when only one item from the set is observed, that the
effect of the Context variable is averaged out and the inferences are the same
on both Forms.

Now consider the response vector of Yuri, who got Item 3 and Item 4
correct. Figure 6.6b shows the inferences on Form B. Comparing the posterior
distribution of 6 here with the one from Form A with the same responses
(Fig. 6.3b), the posterior distribution in Form B is a little less concentrated
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Fig. 6.6 a Student with Item 2 and Item 3 correct with context effect. b Student
with Item 3 and Item 4 correct with context effect
Reprinted with permission from ETS.
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Table 6.3 New potentials for Item 3 and Item 4, conditioned on Context

Parents Item 3 Item 4
0 Context | Right Wrong| Right Wrong
-2 F 0.2192 0.7808|0.1601 0.8399
U 0.0192 0.9808 |0.0001 0.9999
-1 F 0.3689 0.6311(0.2480 0.7520
U 0.1689 0.8311(0.0480 0.9520
0 F 0.6000 0.4000 |0.4208 0.5792
U 0.4000 0.6000 |0.2208 0.7792
1 F 0.8311 0.1689|0.6622 0.3378
U 0.6311 0.3689|0.4622 0.5378
2 F 0.9088 0.9120(0.8773 0.1227
U 0.7088 0.2192(0.6773 0.3227

and has not moved quite as far from the prior distribution. The Context
variable here offers an alternative explanation for Yuri’s performance, thus
the amount of evidence that the two observations provide jointly about 6 is
less than it is in Form A.

This example makes sense from an evidentiary perspective. With the
two independent items, the only possible explanation for correct answers is
increased proficiency (higher #). Therefore all of the evidence goes toward
the proficiency. When the two items are part of the same larger task (in this
example, the story problem and its two items form a task), then the task
specific Context variable forms an alternative explanation. This diverts some
of the evidence and so the joint evidence from dependent observations is less
than that from independent observations. Chapter 7 talks about evidence in
a more formal way. For context effects specifically, Chap. 10 discusses testing
for their presence, and Chaps. 14 and 15 show how they arose naturally from
task design and are estimated from pilot data in the Biomass example.

The exact degree to which evidence is diverted depends on the relative
sizes of the influences from the proficiency (f) and Context variables on the
observable outcomes. If the Context variable has a large influence on the
outcomes then the decrease in evidence will be large. If the Context variable
has a more modest effect, then the decrease in evidence will be more modest
as well.

This example illustrates some of the flexibility that makes Bayesian net-
works attractive as a model for assessments. Grouping observables that depend
on common stimulus together into a task supports more complex models of
dependencies among those observables. Recall that standard IRT requires the
rather strong local independence property that all items (observables) are
conditionally independent given the single proficiency variable. The Bayes
net model illustrated here, like the IRT testlet model (Bradlow et al. 1999)
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uses the weaker local independence property that observables (items) from
different tasks are conditionally independent given the proficiency variable(s).
Within the evidence model for a single task, there is considerable freedom
as to how to model the dependence among observables. The Context variable
model described here is just one possibility; Almond et al. (2006b) compare
several possible models. Ideally, domain experts and psychometricians should
pick an evidence model for each task which is based on a theory about how
students solve the problem. In practice, the Context variable model is often
used because it is easy to articulate, and it has roughly the right effect of
decreasing the joint evidence from observables from the same task.

The Context variable has a peculiar place in the evidence-centered assess-
ment design (ECD) framework because it is neither a proficiency variable
residing in the proficiency model nor is it an observable outcome variable
residing in the evidence model for a particular task. Instead it represents
“proficiency” variable that is local to a particular task. As such it resides in
the evidence model for that task. Unlike conventional proficiency variables, we
are usually not interested in its value; rather it is a nuisance variable whose
value must be estimated along the way, then marginalized out, in order to esti-
mate the proficiency variables whose values form the basis of the assessment’s
claims.

The interpretation of the Contezt variable as a proficiency specific to the
task highlights the problems that can arise when the distribution of this vari-
able is not uniform across the tested population. For example, if the story in
the story problem was about boat racing, then students who lived near large
bodies of water and students from wealthy families who vacation near large
bodies of water would be expected to have F Context more often than poor
students living in inland communities. This would be a poor choice of story
for a large, standardized test because it raise issues of fairness. On the other
hand, a classroom teacher might reasonably expect all of the students to be
familiar with the story context because they had just completed reading a
nautical adventure story in their literature class.

In the math quiz example, there is another possible cognitive explanation
for the Context variable, namely that it represents reading comprehension. If
all the other items on the math quiz are expressed algebraically, then read-
ing comprehension would be a common skill between these two items. While
familiarity with boats is not a proficiency that is related to the claims of the
math quiz, the ability to recognize mathematical terms embedded in natural
language could be. As such, it is probably better placed as a second variable
in the proficiency model, which will be reported on, than as a variable local
to the task. Both interpretations have the same effect on the evidence for the
overall mathematics proficiency, but the latter supports inferences about the
specific skill of extracting mathematical information from natural language.
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6.3 Compensatory, Conjunctive, and Disjunctive Models

The simple IRT example was restricted to a single proficiency variable parent.
Part of the flexibility of the Bayesian network is that it allows for multiple
proficiency variable parents. However, as soon as there are more than one
parent variable, the question arises “how do the skills required for this task
interact to make the probability of a successful outcome?” There are three
commonly used models for CPT where there are more than one proficiency
variable as the parent of an observable outcome:

o (Conjunctive Distribution—This is the case where all skills are necessary
for a high probability of a successful outcome. Because this corresponds to
a logical “and” of the input proficiencies, this model is sometimes called a
noisy-and model. The “noise” comes because the relationship is not perfect
but probabilistic. If the proficiency variables have more than two levels,
then the conjunctive model assumes that the student behaves at the level
of the weakest skill. For this reason, the model is also sometimes called a
noisy-min model.

e Disjunctive Distribution—This is the case where the parent skills repre-
sent alternative ways to solve the task. Presumably examinees choose the
approach based on their strongest skills and the probability of success is
determined by the strongest skill. This is sometimes called a noisy-or or
noisy-max.*

o (Compensatory Distribution—In this model having more of one skill will
“compensate” for having less of another. In this case the probability of
success is determined by the sum of the skills, possibly a weighted sum.
This is sometimes called an additive model.

When using Bayesian networks, there is no need to choose a single model
for skill interaction that holds across all observable outcome variables. The
choice of model is determined for each obervable by how the CPT for that
variable is set up. The analyst can mix and match any of the three types
of distribution in a single Bayesian network, or build other distributions for
special situations. Chapter 8 describes some possible parameterizations for
this kind of model. This section compares simple examples of each type of
model to help develop intuition for when and where they should be used.

Figure 6.7 shows the three kinds of conditional probability distribution in
a series of simple parallel models. In this directed hypergraph notation the
variables are shown as rounded rectangles, and the CPT are shown as square
boxes. Each of the boxes is labeled with an icon depending on the type of

4 Although in educational testing conjunctive models are more common than dis-
junctive model, in other applications of Bayes nets noisy-or models are more
common than noisy-and, and there is a considerable literature on the topic (for
example, Diez 1993; Srinivas 1993; Pearl 1988). Fortunately, the two models are
symmetric so translating the results is fairly straightforward.
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Fig. 6.7 Three different ways of modeling observable with two parents
Reprinted with permission from ETS.

distribution. The plus sign is used for the compensatory (additive) model.
The symbols in the boxes for the conjunctive and disjunctive distributions
are the symbols used for AND-gates and OR-gates in logical diagrams. The
advantage of this directed hypergraph notation is that the type of relationship
is obvious from the picture; in the more usual directed graph notation, one
needs to open the CPT to determine the type of distribution.

The three models are designed to be close parallels of each other. They
have the following characteristics in common:

e There are two proficiency variables as parent nodes (P! and P2), and the
two proficiencies are independent of each other (before making observa-
tions).

e The priors for the proficiency nodes are the same for the three models
with a probability of 1/3 for each of the high (H), medium (M), and low (L)
proficiency states.

e The initial marginal probability for observable variable Obs is the same
for the three models (50/50). (Fig. 6.8)

The difference comes in how the conditional probability distribution
P(Obs|P1, P2) is set up. Table 6.4 gives the probabilities for the three dis-
tributions. The easiest way to approach this table is to start in the middle
with the row corresponding to both parent variables in the middle state. For
the compensatory distribution when either skill increases, the probability of
success increases by .2, and when either skill decreases, the probability of suc-
cess decreases by a corresponding amount. For the conjunctive distribution
both skills must increase before the probability of success increases, but a
drop in either skill causes a decline in probability. The opposite is true for
the disjunctive distribution. The probability of the middle category needs to
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Fig. 6.8 This figure shows the probabilities for all three models side by side. Each bar
represents the marginal probability of one of the variables in one of the models. The
length of the fragment give the probability of a particular state from best (highest
and lightest) to worst (lowest and darkest). The bars are offset so that the extent
below the line gives the probability of being in the lowest category and the extent
above the line give the probability of being above the lowest category. The y—axis
shows amount of probability of being below the line as negative and the probability
of being above as positive
Reprinted with permission from ETS.

be adjusted slightly to get the marginal probability of success to be .5 for all
three distributions.

Table 6.4 Conditional probabilities for the three distributions.

Parent state P(Obs = Right)

P1 P2 |Compensatory|Conjunctive|Disjunctive
H H 0.9 0.9 0.7
H M 0.7 0.7 0.7
H L 0.5 0.3 0.7
M H 0.7 0.7 0.7
M M 0.5 0.7 0.3
M L 0.3 0.3 0.3
L H 0.5 0.3 0.7
L M 0.3 0.3 0.3
L L 0.1 0.3 0.1

Obs is the observable outcome variable in each of the three models
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Effects of Evidence

Suppose we observe the value Right for the outcome variable Obs in all three
models. Figure 6.9a shows the posterior probabilities after adding this evi-
dence. In all three cases, the probability mass shifts toward the higher states,
however, more mass remains at the L level in the disjunctive model. While
the compensatory and conjunctive models have the same probability for the
low state, the effect is slightly different for the highest state, here the compen-
satory model shifts slightly more probability mass toward the highest state.
These minor differences are as much a function of the adjustments to the
probabilities needed to get the difficulties to match as they are differences in
the way the three distribution types behave.
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Fig. 6.9 a Updated probabilities when Observation = Right. b Updated probabil-
ities when Observation = Wrong
Reprinted with permission from ETS.

If the observed outcome value is Wrong instead of Right similar effects
work in the opposite directions. Figure 6.9b shows the posterior probabilities
for this case. Now the conjunctive model has the highest probability for the H
high states. Other conclusions follow as well with the H and L low proficiency
states and conjunctive and disjunctive distributions switching roles.
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Fig. 6.10 a Updated probabilities when P! = H and Observation = Right.
b Updated probabilities when P! = H and Observation = Wrong
Reprinted with permission from ETS.

Effect of Evidence When One Skill is Known

When there are two parent proficiencies for an observable outcome variable,
what is known about one proficiency will affect inferences about the other.
Suppose that PI is easy to measure and its state can be determined almost
exactly by an external test. How does knowledge about P1 affect inferences
about P2 under each of the three types of distribution?

Assume that we know (through other testing) that PI is in the H state.
Figure 6.10a shows the posterior distribution when the observable is Right
and Fig. 6.10b shows the posterior distribution when the observable is Wrong.
The most startling effect is with the disjunctive distribution. The fact that P1
is at the H is a perfectly adequate explanation for the observed performance.
As can be seen from Table 6.4, when P71 is at the H state, the probability of
success is the same no matter the value of P2. Therefore, if P/ = H the task
provides no information whatsoever about P2.

The effect of the additional information about P! in the conjunctive dis-
tribution is the opposite of its effect in the disjunctive distribution. Given that
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P1 is at the highest state, the second proficiency P2 governs the probability
of success. Therefore the distributions in Fig. 6.10a and b are very different.
The compensatory distribution shows a more moderate change, lying between
the posteriors of the conjunctive and disjunctive distributions.
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Fig. 6.11 a Updated probabilities when P1 =M and Observation = Right.
b Updated probabilities when PI =M and Observation = Wrong
Reprinted with permission from ETS.

Now assume that we know (through other testing) that P is only in the
M state. Figure 6.11a shows the posterior distribution when the observable is
Right and Fig. 6.11b shows the posterior distribution when the observable
is Wrong. Starting with the compensatory distribution, note that the effect is
similar to when the value of PI was H, only shifted a bit toward high values
of P2. The conjunctive distribution gives a big swing (between the posteriors
after the two different observable values) for the lowest state, but provides no
information to distinguish between the two higher states of P2. This is because
the state of M for P1 provides an upper bound on the ability of the student to
perform the task. Similarly, in the disjunctive distribution the evidence can
distinguish between the highest state of P2 and the others, but provides no
information to distinguish between the lower two states.
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6.4 A Binary-Skills Measurement Model

The examples in this chapter so far have been completely artificial. The final
section in this chapter explores a real example. Any real example starts with
a cognitive analysis of the domain, which is a lot of work. For this example we
will borrow an extensive cognitive analysis of the domain of mixed-number
subtraction found in Tatsuoka (1984) and Tatsuoka et al. (1988). This exam-
ple was used by Tatsuoka (1990) as part of the development of the rule space
method, but the description shown here comes from the Mislevy (1995b) adap-
tation of this problem to Bayesian networks.

Section 6.4.1 describes the results of the cognitive analysis of this domain
(Tatsuoka 1984; Tatsuoka et al. 1988). Section 6.4.2 derives a Bayes net model
based on the cognitive analysis. Section 6.4.3 describes how the model is used
to make inferences about students.

6.4.1 The Domain of Mixed Number Subtraction

Tatsuoka (1984) begins with cognitive analyses of middle-school students’
solutions of mixed-number subtraction problems. Klein et al. (1981) identified
two methods that students used to solve problems in this domain:

e Method A: Convert mixed numbers to improper fractions, subtract, and
then reduce if necessary.

e Method B: Separate mixed numbers into whole number and fractional
parts; subtract as two subproblems, borrowing one from minuend whole
number if necessary; then simplify and reduce if necessary.

The cognitive analysis mapped out flowcharts for applying each method
to items from a universe of fraction subtraction problems. A number of key
procedures appear, which any given problem may or may not require depend-
ing on the features of the problem and the method by which a student might
attempt to solve it. Students had trouble solving a problem with Method B,
for example, when they could not carry out one or more of the procedures
an item required. Tatsuoka constructed a test to determine which method a
student used to solve problems in the domain® and which procedures they
appeared to be having trouble with.

This analysis concerns the responses of 325 students, whom Tatsuoka
(1984) identified as using Method B, to 15 items in which it is not neces-
sary to find a common denominator. These items are a subset from a longer
40-item test, and are meant to illustrate key ideas from Bayes nets analysis in
a realistic, well-researched cognitive domain. Instructional decisions in oper-
ational work were based on larger numbers of items. Figure 6.12 shows the
proficiency model for the following skills:

5 Their analyses indicated their students tended to use one method consistently,
even though an adult might use whichever strategy appears easier for a given
item.
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Skill 1 Basic fraction subtraction.

Skill 2 Simplify/reduce fraction or mixed number.

Skill 3 Separate whole number from fraction.

Skill 4 Borrow one from the whole number in a given mixed number.
Skill 5 Convert a whole number to a fraction.

All of these skills are binary, that is a student either has or does not have
the particular skill. Furthermore, there is a prerequisite relationship between
Skills 8 and 4: a student must acquire Skill 3 before acquiring Skill 4.

In the rule space method (Tatsuoka 1984; Tatsuoka 1990) it is traditional
to express the relationship between the proficiency variables and the observ-
able outcome variables (in this case, whether each problem was correct or
not), through the use of a @Q-matrix (Sect. 5.5). Table 6.5 shows the Q-matrix
for the mixed-number subtraction test. All of the models in this example are
conjunctive—all skills are necessary to solve the problem. Note that several
groups of items have identical patterns of required skills. Following ECD nota-
tion, we call a common pattern an evidence model. The column in the table
labeled EM shows the items’ associations with the six evidence models that
appear in the example.

Table 6.5 Q-Matrix for the Tatsuoka (1984) mixed number subtraction test

Skills required

Item| Text 1 2 3 4 5|EM
6] 2-2 |x 1
8 3-2 |x 1
120 2-1% |Ix x 2
14] 32 —32 | x X 3
16] 42 —12 | x X 3
3 -2 |x X 3
3%—2% X X X 4
11] 42 — 23 | x X x 4
17 7%—% X X X 4
20| 45 —12 | x X x 4
18 4%—2% X X X 4
15 —% X X X 5
7 3—2% X X X 5
19| 7-13 |x X x 5
10 411‘2—2% X X X X 6
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With five binary skills there are 32 possible proficiency profiles—assignment
of values to all five skills. However, the prerequisite relationship reduces the
number of legal profiles to 24, since combinations with Skill & = No and
Skill 4 = Yes are impossible. Not all 24 profiles can be identified using the
data from the test form described in Table 6.5. For example, there are no tasks
which do not require Skill 1, therefore this form provides no evidence for dis-
tinguishing among the twelve proficiency profiles which lack Sk:ill 1. This does
not make a difference for instruction, as a student lacking Skill 1 would be
tutored on that skill and then retested. The test was designed to determine
which of the more advanced skills a student might need further instruction in.

Up to this point, the analysis for the Bayesian network model is the same
kind of analysis that is done for the rule space method (Tatsuoka 1990). It
is in accounting for departures from this ideal model that the two methods
differ. Rule space looks at ideal response vectors from each of the 24 skill
profiles and attempts to find the closest match in the data. The Bayesian
method requires specifying both a probability distribution over the possible
proficiency profiles (a proficiency model) and a probability distribution for
the observed outcomes given the proficiency parents. It is then in a position
to calculate a posterior distribution over each examinee’s proficiencies given
their observed responses. The next section describes how that is done in this
example.

6.4.2 A Bayes Net Model for Mixed-Number Subtraction

The ECD framework divides the Bayes net for this model into several frag-
ments. The first is the proficiency model fragment (PMF) containing only the
variables representing the skills. Then there are 15 separate evidence model
fragments (EMFs), one for each item (task) in the assessment. In order to
specify a Bayes net model for the mixed-number subtraction assessment, we
must specify both the graphical structure and the condition probability tables
for all 16 fragments.

We start with the proficiency model. There are only five binary proficiency
variables, making the total number of possible skill profiles 32. As this is a
manageable size for a clique, we will not worry about asking the experts for
additional conditional independence statements to try to reduce the treewidth
of the proficiency model. Instead, we will just choose an ordering of the profi-
ciency variable and use that to derive a recursive representation for the joint
probability distribution.

Mislevy (1995b) chose the order: Skill 1, Skill 2, Skill 5, and finally Skill 3
and Skill 4. We leave those two for last because of the prerequisite relationship
between them which requires special handling. Putting Skill 1 first makes
sense because normally this skill is acquired before any of the others. This
is a kind of a soft or probabilistic prerequisite, as opposed to the relation
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Fig. 6.12 Proficiency model for Method B for solving mixed number subtraction
Reprinted with permission from ETS.

between Skill 3 and Skill 4 which is a hard prerequisite; there are no cases
where Skill 4 is present and Skill 3 is absent.

This means that there are only three possible states of the two variables
Skill 8 and Skill 4. To model this, we introduce a new variable Mized Num-
ber which has three possible states: (0) neither Skill & nor Skill / present,
(1) Skill 8 present but Skill / absent, and (2) both Skill 3 and Skill 4 present.
The relationship between the MizedNumber variable and Skill 3 and Skill 4
are logical distributions which consist solely of ones and zeroes.

Figure 6.12 gives the graphical structure for the proficiency model. The
structures of the EMFs are given by the rows of Table 6.5. First note that
several rows in that table are identical, in that they use exactly the same
skills. Ttems 9, 14, and 16, for example, all requires Skills 1 and 3. We have
assigned each unique row an evidence model . Thus, we really only need to
create six EMFs to build the complete model for this short assessment. Items
9, 14, and 16 will all use EMF 3. Later on, we will assign different probability
tables to the EMFs for different tasks. When we do that we will create indi-
vidual links—task specific versions of the evidence model—for each task (see
Chap. 13 for details).

The @Q-Matrix (Table 6.5) provides most of the information necessary to
build the EMFs. In particular, the parents of the observable outcome variable
(correct /incorrect for the item) are variables checked in the Q-Matrix. The
one additional piece of information we need, supplied by the cognitive experts,
is that the skills are used conjunctively, so the conjunctive distribution is
appropriate. Figure 6.13 shows the EMFs for evidence models 3 and 4.

After constructing the six different evidence model fragments and repli-
cating them to make links for all 15 items in the test, we have a collection
of 16 Bayes net fragments: one for the proficiency model and 15 (after repli-
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Fig. 6.13 Two evidence model fragments for evidence models 3 and 4
Reprinted with permission from ETS.

cation)for evidence model fragments. We can catenate them to produce the
full Bayesian model for the mixed number subtraction test. This is shown
in Fig. 6.14. Although we could use the computational trick described in
Sect. 5.4.1 to calculate probabilities in this model just joining one EMF at a
time to the PMF, the full Bayesian model is small enough to be easily handled
by most Bayes net programs.

All that remains to complete the model is to build a CPT for each variable
in the model. First we must build a CPT for each variable in the proficiency
model. Then we must build a CPT for each observable variable in the Evidence
Model Fragments. (In this example, all variables in the evidence models are
either borrowed from the proficiency model, and hence do not require a CPT,
or are observable. If we had other evidence model variables, like the Context
variable above, they would require CPTs as well.)

There are basically two sources for the numbers, expert opinion and data.
In this particular case, Tatsuoka (1984) collected data on 325 students. As
mentioned above, Chap. 11 (see also Mislevy et al. (1999a)) tells that part
of the story. The numbers derived from those calculations are the ones used
below.

However, even with only the expert opinion to back it up, the model is
still useful. In fact, the version used in Mislevy (1995b) uses only the expert
numbers. At first pass, we could simply assign a probability of .8 for success
on an item if a student has all the prerequisite skills, and a probability of .2
for success if the student lacks one or more skills. Similarly, we could assign
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Fig. 6.14 Full Bayesian model for Method B for solving mixed number subtraction
Reprinted from Almond et al. (2010) with permission from ETS.

a prior probability of around 0.8 for students having all the parent skills and
a probability of around 0.2 when they lack one or more of the parent skills.
When there is more than one parent, or more than two states for the skill
variable (e.g., the MizedNumber variable) we interpolate as appropriate.

While such a Bayes net, built from expert numbers, might not be suit-
able for high stakes purposes, surely it is no worse than a test scored with
number right and a complicated weighting scheme chosen by the instructor.
In fact, it might be a little better because at least it uses a Bayesian scheme
to accumulate the evidence (Exercise 7.13). Furthermore, if there are several
proficiency variables being estimated, the Bayes net model will incorporate
both direct evidence from tasks tapping a particular proficiency and indirect
evidence from tasks tapping related proficiencies in providing an estimate for
each proficiency. This should make estimates from the Bayes net more stable
than those which rely on just subscores in a number right test.

To give a feel for the structure and the contents of the CPTs behind the
following numerical illustrations, let us look at two tables based on the analysis
in Chap. 11, one for a proficiency variable and one for an observable outcome
variable.
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Recall that there are associations among the proficiency variables. It suf-
fices here to say that the skills are positively associated—having high values
of parent skills makes it more likely that a student will have a high value
for a child skill as well—and to present one example. Skill 5 is modeled as
depending on Skill 1 and Skill 2. This means that there are four conditional
probability distributions for Skill 5, one for each combination of Skill 1 and
Skill 2 values. We estimated these conditional probabilities under the con-
straint that the distributions would be the same for both combinations in
which one prior skill is mastered but the other is not. The CPT for Skill 5
that is built into the network is shown in Table 6.6.

Table 6.6 Conditional probability table for Skill 5

Skill 1 Skill 2|P(Skill 5 = Yes) P(Skill 5 = No)
Yes Yes 0.748 0.252
Yes No 0.469 0.531
No Yes 0.469 0.531
No No 0.129 0.871

Item 16 is one of three items that uses evidence model 3: The parents of
the observable outcome are Skill 1 and 3, and the relationship is conjunctive.
Again the CPT is composed of four conditional probability distributions. We
estimated them under a constraint common in binary skills models, that there
would be one distribution when both Skill 1 and Skill 3 are Yes and a different
distribution common to all combinations in which one one or both required
skills are No. We expect the conditional probability of a correct response to
be higher in the first case (The equality constraint of probabilities across the
three profiles with a No can be examined using methods discussed in Part II).
Table 6.7 shows the CPT used in the example.

Table 6.7 Conditional probability table CPT for Item 16

Skill 1 Skill 3|P(Item 16 = Right) P(Iltem 16 = Wrong)
Yes Yes 0.910 0.090
Yes No 0.170 0.830
No Yes 0.170 0.830
No No 0.170 0.830

6.4.3 Inferences from the Mixed-Number Subtraction Bayes Net

Regardless of how the numbers get into the Bayesian network, the procedure
used to draw inferences from the Bayesian network is the same. There are
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two common cases: drawing inferences about proficiency variables given the
observed outcomes, and making predictions about observable outcomes given
the hypothesized proficiency levels. These are both described below. In both
cases, the first step is to enter the conditional probability tables into the
Bayesian network software and compile the network. The network will then
produce the prior probability for a student from this population having each of
the proficiencies as well as predictions for each observable variable. Figure 6.15
shows how this looks in the software package Netica (other packages have
similar displays).
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Fig. 6.15 Prior (population) probabilities
Reprinted with permission from ETS.

Scoring a Test

The most basic use of the Bayes net can be described as follows. For each
observed outcome, find the corresponding node in the Bayes net and instan-
tiate its value (The details of how to do this differ according to the Bayes
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net software, but it generally involves clicking on the node and selecting a
value from a list of possible states for the variable). The instantiated values
are then propagated to the nodes representing the proficiency variables whose
marginal distributions are then calculated with some variation of the algo-
rithm in Chap. 5 (Again, depending on the software and chosen options, the
propagation could be manual or automatic).

Example 6.6 (Mixed-Number Subtraction Complete Response). Sup-
pose that a student (whose class uses Method B) takes the mixed-number sub-
traction test, and gets Items 4, 6, 8, 9, 11, 17, and 20 correct and Items 7, 10,
12, 14, 15, 16, 18, and 19 incorrect (Items 1, 2, 3, 5 and 13 were dropped from
the shortened 15 item version of the test). Which skills does this student have?
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Fig. 6.16 Mixed number subtraction: a sample student
Reprinted with permission from ETS.

Figure 6.16 shows the network after instantiating these observed variables
into this network. From this picture, there is a high probability that the stu-
dent has Skills 1, 3, and 4, but low probability that the student has Skills 2
and 5. The second column of Table 6.8 summarizes the results.
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Table 6.8 Posteriors after two sets of observations

Node Initial probability|Example 6.6 |Example 6.7
Skill 1 0.883 0.995 0.999
Skill 2 0.618 0.172 0.587
Skill 3 0.921 0.950 0.991
Skill 4 0.396 0.929 0.839
Skill 5 0.313 0.032 0.215
Item 6 0.794 1.000 1.000
Item 8 0.705 1.000 1.000
Item 12 0.711 0.000 0.712
Item 14 0.731 0.000 0.849
Item 16 0.719 0.000 0.835
Item 9 0.686 1.000 1.000
Ttem 4 0.392 1.000 1.000
Item 11 0.393 1.000 1.000
Item 17 0.330 1.000 0.584
ITtem 20 0.332 1.000 0.606
Item 18 0.428 0.000 0.668
Item 15 0.369 0.000 0.356
Item 7 0.329 0.000 0.000
Item 19 0.262 0.000 0.251
Item 10 0.304 0.000 0.000

The test results need not be complete in order to draw inferences; any sub-
set of the observables can be used to draw inferences about the proficiencies
(including the empty set, but that will just reproduce the prior population
levels for the skills). For observable variables whose values are not observed,
we simply leave the node uninstantiated (or select the special value unknown
depending on the software package). The Bayes net updating algorithm auto-
matically uses only observed values. In fact, it will even provide predictions
for the remaining unknown values.

Example 6.7 (Mixed-Number Subtraction, Partial Data). Suppose
that the test is administered on a computer and that a student is midway
through completing the test. Suppose further, that the outcomes observed so
far are correct results for Items 6, 8, 9, 4, and 11 and incorrect results for
Items 7 and 10. Figure 6.17 shows the state of the network after entering this
information.

Even the first half of the test is sufficient to drive the probability of Skill 1
to close to 1.00. The probability for Skills 3 and 4 have increased over the
prior values, but the probabilities for Skills 2 and 5 have dropped slightly.
The third column of Table 6.8 summarizes the results.

Note that the software automatically produces predictive distributions for
the as—yet—unobserved observable variables. Section 7.2 shows an important
application of this idea in test selection.



188 6 Some Example Networks
Skill1
Yes  99.9 mm—m—
No .058
Skill2
Yes  58.3 . |
No 41.7 j—
§ Skill5
Yes 22.0 ;
No 78.0
o
MixedNumbers
0 0.67
1 154 m
2 84.0 m——
Skill3 Skill4
Yes  99.3 " Yes 84.0 —
No 0.67 No 16.0
Item12 Item10 \
Yes  71.0 Yes I
No  29.0 No 100

Itemé

Yes 1 DU
Item18 I(emZO Item19

Item8
Yes 100 57 8 E—l Yes 60 7 Yes 254 E

Fig. 6.17 Mixed number subtraction: posterior after 7 Items
Reprinted with permission from ETS.
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Predicting Test Results

Although the proficiency variables are not directly observable, we can use
the Bayes net software to instantiate them in order to answer hypothetical
questions. This is actually a good method for validating a Bayesian network.
Show the predictions made from the model to an expert in the subject of
the assessment and ask if they are reasonable. Any predictions which seem
unusual are potential problems with the model (The techniques discussed in
the next chapter can help debug the network).

Turning to the mixed-number subtraction problem which has been the
focus of this section, instantiate the value of Skill 1 to Yes. The result can
be seen in Fig. 6.18 and the second column of Table 6.9. The probabilities of
a correct response to all items increases. This is so for two reasons. First, we
know that a requirement for all tasks, Skill 1, has been met. Second, the high
value of Skill 1 increases our belief that the student also has the other skills
because the skills are positively associated in the proficiency model.
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Fig. 6.18 Mixed number subtraction: Skill 1 = Yes
Reprinted with permission from ETS.

Item6

89.2 —
No 108 m: : ¢

Item9

Yes 714w
No 266 jmm | i

[ Items |

76.0 [mmm——
No  24.0 i : :

Unsurprisingly, conditioning on Skill I = No has the opposite result. The
result can be seen in Fig. 6.19 and the third column of Table 6.9. Not only
does the predictive probability for each item drop, but so does the predictive
probability for the remaining skills.

It is possible to condition on any number of proficiency variables (or a
complete proficiency profile). As a simple example, consider a student who
has Skill 1 but lacks Skill 2. This result can be seen in Fig. 6.20 and the
last column of Table 6.9. The probabilities of getting correct responses on
Items 6 and 8 increase, as do the probabilities for Items 14 and 17. However,
the predictive probability drops for Items 19, 20, and 10. The probability that
the student has Skill 3 drops slightly from the value when conditioning only
on Skill 1=Yes, but there is a substantial drop in the predictive probabilities
for Skill 4 and Skill 5 decrease.
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Table 6.9 Predictions for various skill patterns Subtraction assessment

Node |Initial|Skill 1=Yes|Skill 1=No| Skill 1=Yes
& Skill 2=No
Skill 1 1 0.883 1.000 0.000 1.000
Skill 2 10.618 0.662 0.289 0.000
Skill 3 10.921 0.956 0.650 0.921
Skill 4 10.396 0.432 0.117 0.156
Skill 5 10.313 0.340 0.110 0.100
Item 6 |0.794 0.892 0.053 0.892
Item 8 |0.705 0.760 0.289 0.760
Item 12]0.711 0.745 0.452 0.452
Item 14]0.731 0.821 0.049 0.792
Item 16]0.719 0.807 0.049 0.779
Item 9 |0.686 0.712 0.488 0.703
Item 4 |0.392 0.421 0.178 0.265
Item 11]0.393 0.426 0.140 0.243
Item 17]0.330 0.358 0.117 0.204
Item 20 0.332 0.362 0.103 0.196
Item 18]0.428 0.456 0.220 0.305
Item 15]0.369 0.385 0.246 0.258
Item 7 10.329 0.343 0.223 0.234
Item 19]0.262 0.276 0.154 0.165
Item 10]0.304 0.331 0.098 0.098

6.5 Discussion

By this point in the book, we hope you have acquired enough understanding of
how Bayes nets work to try something for yourself. Many of the concepts that
are difficult to explain in words and equations are easy to understand with
the help of Bayes net software that allows you to manipulate the data and
rapidly see the results. We urge you to look at some of the software described
in Appendix A and try out the extended example presented in Appendix A.2.
The next chapter looks at some more advanced uses of the basic computa-
tion algorithms presented in the previous chapter: explaining scores, selecting
tasks in an adaptive test, and test construction. Part II turns to the more
difficult question of how to get the numbers into the Bayesian network.

Exercises
6.1. Suppose that a teacher has a classroom of 25 students, all of whom are

members of the population for which the model in Example 6.1 was built.
Answer the following questions about that model:
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Fig. 6.19 Mixed number subtraction: Skill 1 = No

Reprinted with permission from ETS.

1. For each of the five items on that quiz, how many students are expected
to get that item correct?
2. For each item, give a range of values for the number of students who
should get that item right such that the teacher should be surprised if the
number of right answers falls outside that range.

Hint: The variance of the binomial distribution with parameters n and p is

np(l —p).

6.2. Following Examples 6.2 and 6.3, suppose that Ali is a member of
Group B. Start with the network instantiated to § = 1 and enter the data
that Ali got Item 2 and Item 3 correct. What changes in this network? Why?

6.3. Suppose that for Example 6.1 the school district defines a student who
has a 6 value of 0 or higher as meeting the district standards. Add a node to
the model for Example 6.1 with two values, which represents whether or not
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Fig. 6.20 Mixed number subtraction: Skill 1 = Yes, Skill 2 = No
Reprinted with permission from ETS.

the student meets the standards. What are the expected response probabilities
for students who are meeting the standards?

6.4. A common practice in tests scored with IRT is to provide the maximum
likelihood estimate (MLE) for 6; that is, to find the value of # that maxi-
mizes P(X|0). Using the assessment and Bayesian network model of Exam-
ple 6.1, how can you compute the maximum likelihood estimate for § under
the assumption that 8 € {—2,—1,0,1,2}? Hint: You will need to change the
probability distribution in one of the nodes.

6.5. Suppose in Example 6.5 the teacher covers very similar story problems in
class before the quiz. The teacher therefore believes that 95 % of the students
should have the value High for Context. Modify the Bayesian network for
Example 6.5 to reflect this. First adjust the CPT for the Context node, and
then adjust the CPTs for Item 3 and Item 4 so that there marginal distribution
matches what is shown in Fig. 6.2. You can do this by adding the difference
between the observed marginal probability and the desired one to the numbers
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in Table 6.3. Compare the evidence from this new model to the complete
independence model and the model of Example 6.5.

6.6. Section 6.2 noted that Context variables are usually placed in the evi-
dence model because they are local to a specific task. Suppose that common
background material would render observables from multiple tasks dependent
(even after conditioning on the proficiency variables). How can this be mod-
eled without violating the local dependence property?

6.7. (van der Gaag et al. 2004) experts often believe that a Bayesian network
should be isotonic: as the observable variables move into better states then the
probability of a good outcome should increase. In particular, if e and e’ are two
instantiations of observable outcome variables such that for each component
er = e;’ then P(S|e) = P(S]e’) . In networks for educational assessment, this
means that if the “score” on a task (or item) increases then the probability
of proficiency variable being in a high state should also increase. Verifying
the monotonicity properties can be an important check that a model is build
correctly and accounts for all of the necessary latent variables.

Comparing two probability distributions is a bit tricky, but in the case of
the simple IRT Bayes net of Example 6.1 we can simply compare the expected
value for Theta. We can verify that this network is isotonic by picking a couple
of increasing sequences of probability assignments and verify that the expected
value increases for each assignment. Using 0 and 1 to represent Incorrect and
Correct observed outcomes, consider the two sequences:

1. (0,0,0,0,0) (1,0,0,0,0) (1,1,0,0,0) (1,1,1 ,o 0)(1,1,1,1,0) (1,1,1,1,1)
2. (0,0,0,0,0) (0,0,0,0,1) (0,0,0,1,1) (0,0,1,1,1) (0,1,1,1,1) (1,1,1,1,1)

Calculate the expected value for Theta for each response pattern in both
sequences. Is this network isotone in 07

6.8. Repeat Exercise 6.7 for the network with the context variable in Exam-
ple 6.5.

6.9. Section 6.3 described a simple example of each of three types of distri-
butions for tasks involving three skills. Suppose that through an external test
we have established that a particular student is low in P1. Figure 6.21 gives
the posterior distribution if the value of the task observable is Wrong. What
does the posterior distribution for P2 look like for each distribution when the
observed outcome is Right?

6.10. Recall that in Fig. 6.5 each of the items which has the Context variable
has a parent. Therefore it is necessary to choose a type for the CPT linking
Theta and Context to the observable. For each of the following scenarios,
tell whether it would be more appropriate to model the relationship with a
conjunctive, disjunctive, or compensatory distribution:
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Fig. 6.21 Updated probabilities when P! =L and Observation = Wrong
Reprinted with permission from ETS.

There is an alternative fast method for solving Items 3 and 4 which was
taught on a day in which many students were absent. Students who were
present that day, or did their make-up homework, should be able to use
either the usual or alternative method to solve the problem. The Context
variable represents knowledge of the alternative solution.

. Items 3 and 4 are part of an extended complex task with complex instruc-

tions. Students who do not understand the instructions are likely to be off
task for both problems. The Context variable represents understanding
the instructions.

. Items 3 and 4 are both story problems with the subject taken from the field

of physics. Students who have studied physics are likely to have previously
studied these problem types. Here Theta represents the student’s math
ability and Context represents the student’s physics ability.

6.11. Section 6.4.2 introduced the artificial MizedNumber variable to model

the

relationship between Skill 3 and /. What must the CPT linking Mized-

Number and Skill 3 look like? The CPT linking MizedNumber and Skill 47
Hint: As this is a logical probability all of the entries must be either 0 or 1.

6.12. In the mixed-number subtraction example, suppose that Skill 1 was a
hard prerequisite for the other skills instead of a soft one. Specifically, suppose
that in the CPT for that network we set the probability of having any of the
other skills given that Skill 1 to zero, but make no other changes. Describe
how the new model would differ from the one presented in Sect. 6.4 with
respect to the following queries:

1.

2.

3.

The probability that a student has Skill j, j > 1, given no other informa-
tion.

The probability that a student will get Item i correct, given no information
about proficiencies (or no inferences about other items).

The probability that a student has Skill 5, given that the student got
Items 7, 15, and 19 correct.
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4. The probability that a student has Skill 5, given that the student got
Items 7, 15, and 19 incorrect.

6.13. In Example 6.7, why do the predictive probabilities for Items 15 and 19
decrease slightly after observing the first seven items, while the predictive
probabilities for Items 14 and 16 increase?

6.14. Consider once again the student who has Skill I but lacks Skill 2
(Fig. 6.20). Why does the predictive probability for Item 16 go up, but the
predictive probability for Item 20 go down?

6.15. What is the expected number of correct score on the mixed-number
subtraction test for somebody who has Skill 17 Who lacks Skill 1?7 Hint: Use
the values in Table 6.9.

6.16. Pick one of the Bayesian network packages listed in Appendix A and
use it to build the accident proneness example, Example 3.8. Verify the com-
putations in that example.

6.17. Use your favorite Bayesian network package to build the following sim-
ple IRT Bayes net. Assume a single proficiency variable, § with which takes on
the values {—1.5,—0.5,0.5, 1.5} with prior probabilities {.125,.375,.375,.125}.
Let the test have three items with the conditional probabilities given in
Table 6.10.

Table 6.10 Potentials for Exercise 6.17

Ttem 1 Item 2 Item 3
0|Right Wrong|Right Wrong|Right Wrong
—1.5(0.378 0.622 |0.182 0.818 |0.076 0.924
—0.5(0.622 0.378 [0.378 0.622 |0.182 0.818
0.5/0.818 0.182 |0.622 0.378 |0.378 0.622
1.510.924 0.076 [0.818 0.182 |0.622 0.378

Use that network to answer the following questions:

1. What is the probabilities of getting a correct outcome for each item for a
student for whom 6 = —1.57

2. What is the most likely level of 6 for a student whose answer to Item 3 is
Right?

3. Is it possible for the student who got Item 3 Right to answer ltem 1
Wrong?

6.18. Appendix A.2 shows where to obtain a complete description of the lan-
guage assessment. Build this network using your favorite Bayes net package
and use it to score some possible response patterns.
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Explanation and Test Construction

For Bayesian network models to be useful in educational applications, they
must not only provide belief estimates for important proficiencies and claims
about the learner, but they must also explain the basis of those estimates.
Explanation transforms the model from a black box that pontificates an
answer to a question into a glass box, whose reasoning methods and assump-
tions can be evaluated. Contrast this to a neural network model that classifies
a learner without being able to explain the rationale behind its conclusion.
Usually, a preliminary model makes several unrealistic assumptions, which
result in unrealistic inferences. Models must be “debugged” like computer pro-
grams, to correct errors in assumption or specification (Almond et al. 2013).
The mechanisms used for explanation aid in the process of model validation,
criticism, and debugging.

For assessments constructed using evidence-centered design (ECD; Chap. 2),
it is only natural that the explanation would be in terms of evidence. Each
observed outcome from an assigned task provides “evidence” for or against a
claim represented by one or more proficiency variables. But how much? The
weight of evidence quantifies the evidence provided by a single observation,
a complete task, or a complete test. There is a close connection between the
weight of evidence and the reliability of an assessment.

If we have not yet seen the results from a task, we can calculate the expected
weight of evidence (EWOE) for that task. This gives a guide to test construc-
tion for both adaptive and fixed form tests. EWOE is always calculated with
respect to a hypothesis, so we can use it as a spot meter to determine where
an assessment has the most power. We can use expected weight of informa-
tion to make cost/benefit trade-offs and focus on the assessment for particular
purposes, even on the fly in adaptive tests.

Section 7.1 reviews some of the literature on explanation in graphical mod-
els, describing some simple textual and coloring techniques. Section 7.2 for-
mally defines weight of evidence and provides some of its key properties. Sec-
tion 7.3 describes EWOE as a metric for Activity Selection—selecting the
next task in an adaptive test. Section 7.4 expands on this idea to explore
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issues of test design and construction. Finally, Sect. 7.5 explores the connec-
tion between EWOE and the reliability of the test.

7.1 Simple Explanation Techniques

An expert system is a computer program that takes in information and pro-
duces predictions, solutions, or diagnoses. A key feature of an expert system
is its ability to explain its findings to a human decision maker. For example,
a rule-based system could “explain” itself by running through the chain of
rules it had followed to reach a conclusion. As Bayes nets are often thought
of as “statistical expert systems,” the explanation problem has been explored
in this literature as well. Suermondt (1992) offers a relatively comprehensive
discussion of metrics for influential findings and conflicts of evidence, arriv-
ing at Kullback—Leibler as his metric for explanation. Henrion and Druzdzel
(1990) also looked at qualitative propagation through a graph. Both of these
authors looked at natural language as a tool for communicating their findings
to users.

This section briefly looks at two proposed techniques. First, Sect. 7.1.1
looks at the technique of Madigan et al. (1997) for coloring the nodes in the
graph to provide an explanation. Second, Sect. 7.1.2 looks at an algorithm
for finding the most likely explanation for a given pattern of outcomes (Pearl
1988).

7.1.1 Node Coloring

One of the simplest explanation techniques is to simply color the nodes accord-
ing to the probability of occurrence (Madigan et al. 1997). Thus nodes with
a high probability of a noteworthy event would have a different appearance.
For proficiency variables, one would color them according to the probability
of mastery. For dichotomous observable outcome variables, one would color
them according to the probability of getting a correct outcome.

Example 7.1 (Simplified Language Test). Mislevy (1995c¢) creates a sim-
ple language test to illustrate sorting out evidence from integrated tasks in
language testing. In this test, reporting is on the basis of the four modalities
of language: Reading, Listening, Writing, and Speaking. There are four kinds
of tasks: a pure reading task; a pure listening task; two kinds of integrated
tasks, one involving reading and writing and another involving reading, speak-
ing, and listening. We increase the test length of this illustrative example by
making replications of the tasks. In this case, we have five replicates each
of the reading and listening tasks and three replicates each of the speaking
and writing tasks. Figure 7.1 shows the model graph. Appendix A.2 describes
where complete networks for this example can be found online.
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Fig. 7.1 Colored graph for an examinee who reads well but has trouble speaking.

This is a set of “typical” numbers taken from Example 7.1. The color of the node
depends on the probability that the student is in a high (blue) or low (red) state of
master, with the darkness indicating the strength of the belief. The black bars on the
sides of the nodes indicate belief of mastery before (left side) and after (right side)
observing the evidence from this test. This figure was generated by GRAPHICAL-
BELIEF.
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Figure 7.1 shows an example using the model of Example 7.1. The graph
is colored according to the trouble spots. The figure shows that this student is
doing fairly well in reading, but is having trouble with speaking and listening.

The program GRAPHICAL-BELIEF (Almond 1995) produced this graph
using the idea behind so-called heat maps. On a color screen, it uses a “tem-
perature” going from bright red (high probability of negative state) to bright
blue (high probability of positive state). It uses nine color levels rather than
trying to make fine distinctions with colors. The bar on the right side of the
nodes provides a more detailed estimate of the probability.

GRAPHICAL-BELIEF will display the colors for any binary hypothesis. In
this example, as in many others, the nodes can take on more than two states.
For each variable, we must pick one state (or set of states) as the positive state
(blue color or light gray); the rest of the states become the negative states
(red color or dark gray). Interactively changing which states are defined to be
positive provides a more complete picture of the model.

Daniel et al. (2003) uses this kind of graphical representation to facilitate
interaction between the teacher and the student. Both the teacher and the
student are given a view of the graph. The teacher can enter data through
assessment nodes and the student through self-assessment nodes (the data
entry form contains additional fields for justifications). The display shows
the joint information. Initial field trials in classrooms have yielded positive
responses.

7.1.2 Most Likely Scenario

Pearl (1988) suggests dividing the variables of the model into three categories:
observable variables whose values may or may not be observed; unobservable
hypothesis variables which cause the particular configuration of the obser-
vation variables; intermediate variables whose results are important only in
calculating the beliefs of the other variables. He considers the problem of
finding a pattern of the hypothesis variables that best (highest probability)
explains the configuration of the observable variables. Pearl (1988) calls this
task belief revision, as the idea is to possibly revise a current “best explana-
tion” when new evidence arrives. This approach contrasts with belief updating
using the fusion and propagation algorithm in Chap. 5 that produces marginal
probability distributions for the hypothesis variables.

Applying this approach to ECD terminology, the hypothesis variables cor-
respond to proficiency variables. Let S = {S1,...,Sk} be the set of profi-
ciency variables. A given assignment of values to all of the proficiency vari-
ables s = {s1,...,8K} is a proficiency profile. The goal of belief revision is
then to find the proficiency profile that is most likely to produce the given
pattern of observed outcomes. This is the most likely “explanation” for the
observed outcomes.

Belief revision is simple to carry out computationally using the same Bayes
net structures. One simply replaces a summation in the algorithm of Chap. 5
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with a maximization. Pearl (1988) gives the details (also Almond 1995; Shenoy
1991). Belief revision is an option on almost all of the free and commercial
software for manipulating Bayesian networks (Appendix A.1.1).

The most likely scenario or proficiency profile consistent with a particular
set of observations and hypotheses can provide insight into the behavior of
the model. At any point, the best explanation is just the pattern of proficien-
cies that best fits the pattern of observations. Henrion and Druzdzel (1990)
advocate this approach and suggest that scenario-based explanations mimic
the way one person would explain a model to another.

7.2 Weight of Evidence

Each outcome that we observe from each task provides evidence for whether
the learner has the proficiencies we are trying to assess. An important part
of explanation is understanding which observations were most influential in
estimating those proficiencies. The weight of evidence provides a metric for
influential findings.

When an observation is used to update beliefs in Bayes net built for a
profile score assessment, it usually changes the belief about all of the profi-
ciency variables. However, the same observation will cause a different strength
and even direction of change for each proficiency variable. Any collection of
proficiency variables defines a universe of possible proficiency profiles. We will
call any split of the set of all possible profiles into two groups a hypothesis,
H, and its negation, H. Typical hypotheses have to do with the mastery of
one of the skills, for example, Sy > proficient. More complex hypotheses
may also be of interest, for example, whether a given instructional program is
appropriate for a given learner might depend on several proficiency variables.

Good (1985) derives the weight of evidence as a measure of the amount of
information a piece of evidence E provides for a hypothesis H. The weight of
evidence for H vs H is:

W(H:E) = log P(E|£) = log P(£|E) — log P(E) . (7.1)

P(E|H) P(H|E) P(H)
Thus, the weight of evidence is the difference between the prior and posterior
log odds for the hypothesis. (Good recommended taking the logarithms to base
10, and multiplying the result by 100. He calls the resulting units “centibans.”
All the comparisons are the same; he just found the units easier to work with).

Just as our hypothesis may be compound, our evidence may be compound
too. In a typical testing situation, the evidence is in fact made up of the
observed outcomes from many tasks. In this case, Eq. 7.1 refers to the joint
evidence from all tasks. If we can partition the evidence into two sets of
observations, F and E», we can define the conditional weight of evidence:

P(E»|H, Ey)
P(E2|H, El)

W(HEQlEl) = 10g (72)
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These sum in much the way that one would expect:
W(HIEl,Eg) = W(HE;L) +W(HE2|E1) . (73)

In general, W(H:Fs|E,) = W(H:E>) only when E; and E» are indepen-
dent given both H and H. As typically either H or H is usually a com-
pound (consists of several different skill profiles), this independence usu-
ally does not hold. Instead, if F; and E3 both favor H, then typically
W(H:E2|E1) < W(H:E2). This makes intuitive sense. Suppose that we do
not know whether a learner has a particular skill. The first time we see the
learner solve a problem that requires that skill, we will get a great deal of
evidence that the learner has the skill. The second and third time we make
that kind of observation, we are confirming what we observed from the first
observation, so, we expect the evidentiary value of the replications to be lower.

7.2.1 Evidence Balance Sheet

Spiegelhalter and Knill-Jones (1984) present the weights of evidence in an
evidence balance sheet in simple logistic regression models. Madigan et al.
(1997) adapt the evidence balance sheet for graphical models. Figures 7.2,
7.3, 7.4, and 7.5 show a possible graphical interpretation from GRAPHICAL-
BELIEF.! The evidence is ordered according to when it arrives (for example,
the order of test items in a booklet, or presentation of tasks in a CAT). At
each point of time, the weight of evidence conditioned on all previous evidence
is displayed along with the current estimate of probability.

Example 7.2 (IRT with identical items). This example looks at a five
item test, where all of the items have identical item parameters. The model
used is essentially a discretized IRT model. The proficiency model has a single
variable 6 with five levels: {—2,—1,0,1,2}. The prior distribution is a trian-
gular distribution (similar to the normal, but with fatter tails). The evidence
models are made by calculating the 2PL likelihood with discrimination 1.0
and difficulty 0.0, and then filling the entries in the table. Figure 7.2 shows
the evidence balance sheet for the hypothesis 8 > 1 for a person who got all
five items right.

Note that in the example of Fig. 7.2, the only difference between observa-
tions X7 and Xj is the order in which they arrive. When X arrives, we know
little about the student, and the observation has a relatively large evidentiary
value. However, when later observations arrive, they are confirming what we
learned from the first observation. Their evidentiary value is smaller, and it
decreases as the number of replications go up. It is important to remember
this order effect as we look at the evidence balance sheet. If we had asked for

1 On a color screen, this rendering uses pale blue for positive evidence, and red for
negative evidence.
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Evidence Balance Sheet [Theta = 1 orxo 2]

WOE
Indicant State Target Probability
|\I 32 |/

Fig. 7.2 Evidence balance sheet for § > 1 (Example 7.2)

This shows the progressive influence of the five identical (in parameters) items on
the running probability that € is at the highest level. The column marked “WOE”
displays the conditional weight of evidence (given the previous evidence). (The num-
ber “32” at the top of the column indicates that the weight of evidence bar runs from
—32 to 432 centibans). The column marked target probability shows the cumulative
probability that 6 > 1 after each finding. This figure was generated by GRAPHICAL-
BELIEF.

Task 5 first instead of last, it would have had the biggest evidentiary value,
not Task 1. As the conditional weights of evidence are order sensitive, Madi-
gan et al. (1997) suggest interactively ordering the observations to promote
better understanding of sensitivity to the findings.

This order effect does not change the total evidence across all tasks; this
remains constant. What is changing is which variables are conditioned on when
we calculate the conditional weight of evidence observation by observation. It
is always the case that W(H:Ey)+ W (H:Es|E1) = W(H:E2)+ W (H:E1|Es).
If E; and F» point in the same direction, it is usually, but not necessarily, the
case that W(H:Ey) > W(H:E1|Ez).

For a richer model, we return to Example 7.1. The proficiency model has
four reporting variables. This give us the chance to observe the effects of both
direct evidence—evidence about proficiency variables that are parents of the
task—and indirect evidence—evidence about tasks which are children of other
correlated proficiency variables.

Figure 7.3 shows that the evidence against low reading ability is mostly
direct. The reading tasks are first, and relatively good performance on those
tasks (averaging at about the second highest state) quickly establishes a low
probability of Reading being at the novice state. Even though poor perfor-
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Evidence Balance Sheet [Reading = NOVICE]

WOE

Indicant State Target Probability
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Fig. 7.3 Evidence balance sheet for Reading = Novice (Example 7.1)

As the five reading tasks are first in this assessment, the assessment quickly estab-
lishes that this person reads fairly well (above the novice level). The other items have
relatively little influence. Note that hypothesis here is negative; it is a hypothesis
that reading is in its low state, so that evidence against this hypothesis is strong.
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mance on the later tasks provides some direct and indirect evidence in favor of
Reading being low, it is not enough to overwhelm the initial direct evidence.
In particular, there is an alternative explanation (poor Writing and Speaking
skills) that explains away the direct evidence from the latter tasks.

The story with Listening, shown in Fig. 7.4, is quite different. First, the
good performance on the five reading tasks provides a small bit of indirect
evidence against Listening being at the lowest level. Second, the poor perfor-
mance on the Listening tasks (4 out of 5 wrong) provides strong direct evidence
that the Listening proficiency is in the lowest state. Note that one listening
task that has a correct outcome has an effect in the opposite direction, but
it is quickly countered by the next task whose outcome is once again wrong.
Also, the first integrated Reading—Listening—Speaking task provides evidence
that Listening is at the Novice level. This is a combination of direct and indi-
rect evidence. Relatively strong evidence that Reading skills are good makes
poor listening skills a much more likely explanation for poor performance on
this task.

Figure 7.5 shows how the inferences about the Speaking variable pro-
gresses. First, the good performance on the Reading items provides indirect
evidence against Speaking being low (through its correlation with Reading).
Next, in contrast, the weak performance on the Listening items provides indi-
rect evidence that Speaking may in fact be low. However, the poor perfor-
mance on the three integrated tasks involving speaking provides much stronger
direct evidence than the preceding indirect evidence. Finally, the indirect evi-
dence provided by the Reading—Writing tasks is quite small.

A related way that the weight of evidence could be used is to select a
few tasks for more detailed feedback to the test taker. By giving feedback on
tasks that have the biggest negative weight of evidence for a skill mastery
hypothesis, one can focus the learner’s attention on problem spots. By giving
feedback on tasks that have the biggest positive weight of evidence, one can
reinforce students’ appropriate use of skills.

7.2.2 Evidence Flow Through the Graph

Madigan et al. (1997) suggest using the model graph to provide a picture
of the flow of information through the model. In particular, they suggest
coloring the edges of the graphical model to encode the strength of information
flow through the model. Working with probabilistic models, they create a
hollow edge whose width displays the strength of influence from a node to its
neighbor. Several metrics can be used to measure this strength; Madigan et
al. (1997) recommend the weight of evidence.

Madigan et al. (1997) demonstrate weight of evidence-based edge coloring
in simple chain graphs. For example, consider a model with three binary
variables: A, B, and C. Suppose that we know that A is true and want to
know what impact this information has on our belief that C' is true. For each
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Evidence Balance Sheet [Listening = NOVICE]

Indicant State WOE Target Probability
|\I lOOl/
Initial .:I 0.29

Fig. 7.4 Evidence balance sheet for Listening = Novice (Example 7.1)

The first five tasks are reading tasks which have good outcomes. They provide a
little bit of evidence against low listening ability. The next five tasks are listening
tasks with poor outcomes. They provide evidence for low listening ability, except for
L-4 which has a correct outcome. The first integrated Reading—Listening—Speaking
task (which has a poor outcome) also provides evidence for low Listening ability.
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Evidence Balance Sheet [Speaking = NOVICE]
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Fig. 7.5 Evidence balance sheet for Speaking = Novice (Example 7.1)

The first ten tasks are the reading and listening tasks. They provide a small amount
of indirect evidence for the Speaking skill being at the novice level. However, the
poor performance on two of the three integrated Reading—Listening—Speaking tasks
provides rather stronger direct evidence for low Speaking ability.
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possible value of B, say b;, the quantity W (C/C:B = b;) is the potential weight
of evidence for b;. The largest potential weight of evidence is the relevant
potential weight of evidence. As B is a binary variable, only one of W (C/C:B)
and W (C/C:B) is positive; that one will be the relevant potential weight of
evidence.

The following scheme encodes the weight of evidence (for the evidence
chain) via the width of the edge of a graphical model. Figure 7.6 displays this
idea for a simple graphical model. The arrow between nodes A and B shows
the weight of evidence A provides for B. As A is known, the actual weight of
evidence equals the potential and the edge is shown as a filled arrow. The outer
arrow between nodes B and C shows the relevant potential weight of evidence,
that is the maximum evidence B could provide for C if it were known. The
inner arrow shows the actual weight of evidence all findings upstream of B
(i.e., A) provides for C.

—
O (o <)

Fig. 7.6 Evidence flows using weight of evidence

Although edge coloring is an effective technique for tree-shaped graphical
models with binary variables, extending it beyond those special cases presents
some difficulties. In particular, if the intermediate variable B has many possi-
ble outcomes it may be difficult to show how each outcome contributes to our
overall beliefs about C'. Clustering variables to form a Markov tree presents
the same difficulty: the clustered nodes are effectively nonbinary variables.
Madigan et al. (1997) suggest selecting a set of positive states for each node
in the graph and using the positive states for determining color in the dis-
plays. All weight of evidence calculations are made with respect to the binary
proposition “The variables in the node take on one of the positive states.”
Interactively selecting the marked state (or set of states) for each node should
allow the modeler to build up a good picture of evidence flow. Nicholson and
Jitnah (1998) use mutual information instead of weight of evidence to similar
ends. This has the advantage of not requiring that the nodes be reduced to
binary ones.

The evidence-flow graphs are primarily useful in understanding how indi-
rect evidence flows through a system. In particular, they can help identify
evidence bottlenecks, places where no matter how much evidence we get down-
stream, the evidence has little effect on our inferences upstream. This could
mean that we need to redesign our test, to provide more direct evidence about
the skills of interest. It also could mean that there is an inhibitor effect, some
alternative explanation of the observed evidence that does not allow us to
make inferences about the quantity of interest.
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7.3 Activity Selection

The ECD framework is intended to describe both pure assessments (activities
whose goal is to assess the current proficiencies of the learner) and assessments
embedded in the more complex setting of a tutoring system, where students
can also be administered activities meant to increase their proficiencies. In
the latter case, we would have a large number of activities to choose from,
including activities whose purpose is primarily instruction, or instructional
tasks, and activities whose primary purpose is assessing the learner’s cur-
rent state, or assessment tasks. The process responsible for selecting the next
activity would also have the responsibility for deciding when to switch between
“instruction” and “assessment” modes, as well as criteria for terminating the
activities.

A teacher making an instructional plan for a student is very much like a
physician diagnosing a disease and prescribing treatment for a patient. Success
in both cases typically depends on the degree to which the teacher/doctor has
valid knowledge of the student/patient. As such, instructional planning goes
hand-in-hand with student modeling. In general, instructional planning refers
to the process of specifying instructional goals and actions that provide for a
learning experience that is coherent, complete, and valid.

Blending assessment and instruction is a big topic and this book cannot do
it justice. Instead, this section looks at the smaller problem of just selecting
assessment tasks. In particular, it develops an approach based on the weight
of evidence. Section 7.3.1 defines the related concept of value of information,
and Sect. 7.3.2 defines the expected weight of evidence. Section 7.3.3 provides
an analogous measure called mutual information that can be used in more
complicated situations. Section 7.4 goes on to show how these metrics can be
used in both fixed-form and adaptive test construction.

7.3.1 Value of Information

For a licensing agency, it is presumably more regrettable to award somebody
a license who is not fit to practice, than it is to fail to award the license to
somebody who is fit. The latter person only needs to take the test again, while
the former could do harm to the public. On the other hand, for a classroom
teacher, it is more regrettable to fail to identify a student who is having
difficulty than it is to mistakenly identify a student as needing extra help who
does not. Presumably this mistake will be uncovered and corrected during the
remediation.

This discussion gets at the idea of wutility. In these examples, we have a
decision we need to make: for instance, whether or not to license the candi-
date, or whether or not to assign the student to remediation. The utility of
a decision depends on both the decision, d, and the true values of the pro-
ficiency variables S, as well as the relative costs of decision alternatives and
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the expected outcomes. We can write the utility as u(d,S). This utility now
can be traded-off against the cost of the test, as in Example 4.1.

The decision theoretic approach to this problem would be to calculate the
value of information (Matheson 1990; Heckerman et al. 1993) with respect to
the instructional choices that are available. As the true proficiency state S is
unknown, it is considered a random variable under the Bayesian framework.
Thus, our expected utility is Egu(d, S), where Eg is the expectation taken with
respect to the marginal distribution P(S) before any evidence is observed. The
Bayes decision is to take the value of d that maximizes the expected utility.

Suppose, we had the result of some test T that is related to S. Then the
decision we would take is the one that maximizes expected utility with respect
to the posterior distribution P(S|T" = ti). The ezpected value of information
is the expected difference between the best decision we could make with the
test result and the best decision we could make without the test result. Thus,

VoIl(T') = Ep max Esjru(d,S) — mngsu(d, S)| , (7.4)

where Egr is the expectation taken with respect to the conditional distribu-
tion P(S|T") and Er is the expectation with respect to the marginal distribu-
tion of the evidence, P(T")—that is, before T is observed.

Now, we have a rule for deciding whether or not to test: If the expected
value of information exceeds the cost of the test, testing is worthwhile. Con-
sider Example 4.1. There the goal is to maximize the student’s ability at the
end of whatever instructional strategy is chosen. If almost all students need
the same instruction, it may not make sense to test because the test results
will not affect the optimal decision. Similarly, it does not make sense to test
if test is very expensive compared with the cost of the instruction. Only if the
test helps us make better instructional decisions is testing worthwhile.

If we have multiple tests, we would pick the one that maximizes the
expected value of information. Using the ECD framework, we can regard each
task as a “test” (in the sense we have been using the term in this section),
so the expected value of information gives us a principle for task selection
in adaptive testing. We can also consider the collection of tasks {71,...,T,}
that maximizes the expected value of information.

Suppose, during an adaptive test, we pick the task T, which maximizes
the expected value of information at every step, stopping when there is no test
whose expected value of information (given the results seen so far) exceeds
the cost of the test. This is called myopic search. It is sometimes possible to
find cases where there is a pair of tests 77 and 75 that together give more
information than T,. Thus, myopic search is not guaranteed to find the best
sequence of tests. Heckerman et al. (1993) explore this issue in more detail.

Example 7.3 (Value of Information for a Dental Hygienist Assess-
ment). This illustration extends Example 5.1. To be consistent with the
notation in this chapter, S represents a dental hygiene student’s proficiency in
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examining patients, which can take two values, s; = expert and s; = novice.
The proficiency model S consists simply of the single variable S. Initially
p(expert) = p(novice) = .5. Now there are three tasks available to adminis-
ter:

e Task 1 is a hard task. It yields an observable variable X, which can take
two values, v11 = yes and x12 = no corresponding to whether an examinee
takes an adequate patient history. An expert’s probability of taking an
adequate history in such tasks is .6 and a novice’s is .2, so p (11 ]s1) = .6
and p (z121s1) = .4, and p (z11 |s2) = .2 and p (z12|s2) = .8 .

e Task 2 is a medium task. It yields the observable variable Xo, with an
expert’s and novice’s probabilities of taking an adequate history .8 and .4;
that is, p (x21 |s1) = .8 and p (x21 |s2) = .4 . This is the task that appears
in Example 5.1.

o Task 3 is easy. It yields X3, where p (z31]s1) = .95 and p (z31 |s2) = .65.

Denote the possible decisions by dy = expert and dy = novice, and let
the utilities u(d, s) for deciding an examinee is an expert or novice given true
proficiency be as shown below. There are high utilities for deciding an expert
is an expert and a novice is a novice; there is a lower utility for deciding an
expert is a novice and the lowest utility for deciding a novice is an expert.

Decision Proficiency Utility

expert expert 100
novice expert 40
expert novice 0

novice novice 100

We can now use Eq. 7.4 to calculate the value of information of any of the
tasks. We will focus on Task 2.

Starting from the initial .5 probabilities for novice and expert, we first
determine the term maxq Esu(d, S). This is the expected utility of the decision
that gives the greatest expected utility before administering any tasks. This
expression is needed and is the same for calculating Vol for all tasks in the pool
at this point. If the decision is expert, the expected utility is the average of
the utility for expert if the true proficiency is expert, or 100, and the utility
for expert if the true proficiency is novice, or 0, weighted by their respective
current probabilities of .5. That is,

Egsu(expert, S) = u(dy, s1)p(s1) + u(d1, s2)p(s2) = 100 x .5+ 0 x .5 = 50.
By similar calculations,
Egsu(novice, S) = u(dz, s1)p(s1) + u(dz, s2)p(s2) = 70.

The decision maximizing expected information is therefore ds, novice, and
maxyg Egu(d, S) = 70.
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We next consider the expected value of the maximum-decision utility if
Task 2 were administered. Calculations similar to those above are first deter-
mined to evaluate maxq Eg|ru(d, S), where X5 plays the role of T. We need
to consider the cases of when Xo = x91 and Xo = x99, or when an adequate
or inadequate performance is observed, and determine the maximum-decision
utility in each case. For X9 = w1, recall from Example 5.1 that the posterior
probabilities for expert and novice given an adequate performance are .67
and .33. For the decision of expert, Egiru(d, S) becomes in this case

Eg|z,,u(expert, S) = u(di, s1)p(s1]|re1) + u(di, s2)p(s2|r21)
=100 x .67+ 0 x .33 = 67.

For the decision of novice,

Eg|z,,u(novice, S) = u(dz, s1)p(s1]|r21) + u(dz, s2)p(s2|r21)
=40 x .67 4+ 100 x .33 = 60.

Thus, when Xy = x9; deciding expert produces the maximal utility, 67.

If the performance to Task 2 is inadequate, or Xo = x99, the posterior for
S is .25 for expert and .75 for novice. By calculations similar to those above,
Eg|z,,u(expert, S) = 25 and Eg|,,,u(novice, S) = 85. Deciding novice pro-
duces the maximal utility of 85.

The final step is the outer expectation. This is the weighted average of
the maximizing utilities for the decisions when X, takes each possible value,
weighted by the current marginal probabilities for those outcomes before the
observation — from Table 5.2, .6 and .4 respectively. Thus

VoI(X3) = Ex, {mgx Egx,u(d, S) — mdaXESu(d, S)]
= {mngSXz_wzlu(d, S) — mC%XESu(d, S)] x .6

+ [mngSX%m%u(d, S) — mngsu(d, S)} X .4
=[67—70] x .6+[85—70] x .4=4.2.

Applying the same steps to Tasks 1 and 3, the hard and easy tasks, we
find their Value of Information to be 8 and 0. Task 1, the hard task, provides
the greatest expected Vol. If the cost of administering Task 1 were greater
than 8, however, it would be best to decide novice without testing.

Task 3 has zero Vol. The best decision before testing was deciding novice.
Test 3 is very easy, so practically all experts and even most novices get it right.
With the utilities favoring caution in deciding expert status, the expected
utilities for both an adequate and an inadequate performance to this task lead
to deciding novice. However, different utilities or different initial probabilities
for proficiency could produce circumstances under which administering Task 3
would increase expected utility.
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If a test is carried out, the same steps can be repeated with not-yet-
administered tests to see if a subsequent test provides sufficient Vol to then
apply, and if so which had the largest Vol. All of the calculations carried out
above would start with beliefs conditional on the observed value of the tests
already administered.

7.3.2 Expected Weight of Evidence

The decision-making approach described in the previous section requires expli-
cating utility functions for various states of proficiency on the same scale as
the costs of instructional and assessment tasks, in addition to establishing
the probabilities. Establishing such a mapping can be difficult, and different
stakeholders can disagree. In these cases, the optimizing machinery of deci-
sion theory can be pressed into service nevertheless by substituting a quasi-
utility (Glasziou and Hilden 1989) for the true utility. Quasi-utilities gauge
how close our estimated proficiency is to the actual proficiency. For example,
Lord’s (1980) “expected information” computerized adaptive testing (CAT)
algorithm in item response theory uses Fisher information as a quasi-utility.
Henson and Douglas (2005) suggest using a weighted sum of Kullback-Leibler
distances, and Madigan and Almond (1995) recommend the use of the weight
of evidence as a quasi-utility. This section explores the idea.

When discriminating between a single hypothesis H and its negation H,
Good and Card (1971) recommend the Expected Weight Of Evidence (EWOE)
as a quasi-utility:

n

EW(H:E) =Y W (H:e;)P(e; | H) (7.5)
j=1
where {e;,7 = 1,...,n}, represent the possible outcomes of the observation

E. W (H:e;) is the weight of evidence concerning H provided by the evidence
e;, log[P(e; | H)/P(e; | H)] (Eq. 7.1). Informally, EW (H:E) is the weight of
evidence that will be obtained from E “on the average,” when the hypothesis
H is true.

Example 7.4 (Expected Weight of Evidence for a Dental Hygienist
Assessment). This example is also based on the dental hygienist assessment
of Example 5.1, with the probabilities and the additional items introduced in
Example 7.3. We consider the hypothesis that an examinee is an expert, so
H:S =35, and H : S = sy, and initially focus on Task 2, so Xy plays the role
of E. Equation 7.5 then takes the form

n

EW(Slng) = ZW(Sl:,’EQj)P(:EQj | 81).

Jj=1
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Now P (a1 51) g
T21|51 .
W (s1: =log —————= =log — = .69.
(s1:021) = log P(221]52) 08
Similarly, W (s1:xa2) = log[P(z22]81)/P(x22|s2)] = log[.20/.60] = —1.10.

Then since p(xo1|s1) = .8 and p(x22|s1) = .2,
EW(s1:X2) = .69 x .8 + —1.10 x .2 = .332.

Similar calculations for Task 1 and Task 3 give EW (s1:X;) = .384 and
EW (s1:X3) = .259. Thus the hard task provides the greatest expected evi-
dence about whether an examinee is an expert, followed by the medium task,
then the easy task.

If applied directly to H and H, EWOE does not distinguish the values
of different outcomes, and thus does not use utility in a formal way. It is
however possible to adjust it for misclassification costs. Breiman et al. (1984)
have proposed the following approach (see also Glasziou and Hilden 1989).
Suppose that to misclassify as candidate for whom H holds as H is w times
as regrettable as the reverse. An effectively weighted EWOE formulation can
be applied using an artificial hypothesis H’, where a case of H is considered
to be w cases of H'; that is,

wP(H)

P = by + p(a)

A quasi-utility based on EWOE and valuing correct classifications of H as w
times as much as correct classifications of H is then obtained as

ZW(H’;ej)P(ejm/) (7.6)
with Pl ) )
P(e)lH') = Ple)| )i
and

W(H’:ej) = W(H:ej).

Incorporating the misclassification costs into the EWOE means that it is
assessing improvement in risk (the glass-half-empty view of expected utility)
instead of just probabilities. If the probability of a certain disease is relatively
low, but missing it would be serious and a simple test is available, a doctor
will usually order the test. A risk-based metric for test selection that includes
the costs of misclassification enables the procedure to reflect this reasoning.

Heckerman et al. (1993) note a close connection between the EWOE and
value of information. If our hypothesis is binary and we have two possible
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actions we can take, it is possible to define a value p* such that if p(H) > p*
then taking one particular action is always the best decision. This is called
the Bayes decision and is discussed in most standard texts on decision theory
(DeGroot 1970; Berger 1985). The formulation can be re-expressed in term
of the log odds. Because the EWOE represents changes to the log odds, it
is a metric for determining how much evidence is needed to reach the Bayes
decision.

7.3.3 Mutual Information

One problem with EWOE is that the hypothesis must be binary. Pearl (1988)
suggests using Mutual Information (MI) to select the best next observation.
The mutual information of two variables X and Y is defined as:

MI(X,Y) = P(z,y 1ogLy() . (7.7)

p” P(2)P(y)
This is the Kullback—Leibler distance between the joint distribution and the
distribution in which X and Y are independent. It can also be expressed as

S P ZP ) log P(|”;). (7.8)

Suppose, for example, that S is a proficiency variable with multiple values
and X1q,...,X,, are observable variables from n tasks that could be admin-
istered. A test selection procedure based on MI would choose the task that
maximizes MI(S, X;), say X;-. After the outcome ;- is observed, the pro-
cess is repeated by finding the maximizing value of M1(S, X;|x;«), where all
of the probabilities in Eq. 7.7 are calculated conditional on X« = z;-:

P(s,z|z;-)
slzj+)P(

MI(S, X|zj.) = > P(s, a|z;-)log B (7.9)

s,z

i)

Note that MI is a symmetric measure; Y provides as much information
about X as X provides about Y. A number of Bayesian network software
packages will calculate mutual information (Appendix A.1.1).

7.4 Test Construction

What has gone before has almost given us a theory of adaptive test con-
struction. Simply maximizing value of information, or in the absence of true
utilities, a quasi-utility such as weight of evidence, produces a test form that
is useful for a particular purpose. Indeed, Madigan and Almond (1995) pro-
pose such a theory of test selection, and much of the material both here and
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in the previous section is an adaptation of the methods described there to
the educational setting. Section 7.4.1 uses this perspective to explore relation-
ships between item response theory computer adaptive testing (IRT-CAT') and
Bayesian network CAT. Section 7.4.2 picks up on a technique called critiquing
recommended by Madigan and Almond (1995) to improve the coherence of
the test forms generated by such a procedure.

7.4.1 Computer Adaptive Testing

There is a large body of theory and practice associated with item response
theory (IRT) computer adaptive testing (CAT) (Wainer et al. 2000
and van der Linden and Glas 2010, present overviews). We briefly describe a
basic version of IRT-CAT to provide a feel for key ideas in adaptive testing.
The proficiency model consists of a single real-valued variable, 6. At any point
in time, our state of knowledge about a student taking the test consists of a
posterior distribution over . A simple way to make a selection of the next
item is to calculate a MAP estimate (posterior mode) estimate for # and pick
the item that maximizes Fisher information at that value of 6.

In this framework, CAT is essentially myopic search using Fisher informa-
tion as a quasi-utility. The search is myopic because we are only searching
for the single best task or item at each point of time. There may well be a
combination of tasks or items which does better than any single task. Further-
more, the best combination may not include the best single task. Generally
speaking, finding a single best task is a simpler search problem than finding
the best combination. One faces a time versus optimality problem.

As Fisher information is defined for continuous variables only, it is not
directly applicable when the proficiency model is a Bayesian network consist-
ing of discrete variables. However, we could use other measures, for example
weight of evidence on some hypothesis of interest, perhaps an overall profi-
ciency variable. Another suggestion by Henson and Douglas (2005) is to try
to minimize entropy over the proficiency model. This should have the effect
of trying to move the probability mass toward a single proficiency profile.

One issue with adaptive testing is when to stop. In IRT-CAT the stopping
rule can be based on the number of items presented or a target posterior vari-
ance (in practice, time limits, maximum and minimum test lengths, content
constraints, and exposure rates for items are considered jointly with an infor-
mation metric; van der Linden and Glas 2010). In a profile scored assessment,
a stopping rule analogous to target posterior variance can be based on the
target classification probability.

If we know the potential actions that could be taken on the basis of an
assessment, it would be even better to base the stopping rules on the conse-
quences of the decisions. For example, if it is known that assigning a student a
particular remedial treatment is an optimal decision if the probability that she
has mastered a skill is below 25 %, then as soon as her posterior probability
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for that skill falls below 25% we can stop testing and start providing that
instruction.

These kinds of stopping rules are particularly useful in the context of an
Intelligent Tutoring or e-Learning system. Such a system moves between two
modes: an assessment mode and an instructional mode. Presumably such a
system would start in assessment mode and continue assessing the learner’s
state of knowledge until the probability that a particular piece of instructional
material is useful exceeds a certain threshold. At this point, it would switch to
instructional mode until the learner completes that unit. It would then switch
back to the assessment mode to gauge the state of the student’s progress.
Such a system could be enhanced by including a model for student growth
and learning in the assessment model (Sect. 16.2.2).

7.4.2 Critiquing

Standard IRT-CAT is unidimensional, although the ideas have been extended
to multidimensional proficiency models in the context of both IRT
(Mulder and van der Linden 2010) and cognitive diagnosis (Cheng 2009).
Bayes nets are well-suited to multivariate proficiencies and amenable to adap-
tive testing as well. Sometimes there is a node in the model for overall profi-
ciency, but in some domains, there is no single dominant proficiency. Even if
there is a node for overall proficiency, presumably the multidimensional model
has been chosen because the other dimensions are of interest in addition to
the overall proficiency. Thus the activity selection algorithm must support
multiple purposes.

EWOE is attractive as a measure of test quality because it focuses on one
potential purpose at a time, as operationally defined by a particular H. The
EWOE is like a spot meter for a test, looking at how much power the test
has with respect to a particular purpose. An assessment design with multiple
conceivable Hs must then balance the design over each potential purpose of
interest.

Picking a single, main purpose has a marvelous focusing effect. In par-
ticular, choosing a quasi-utility focused on that purpose and maximizing it
produces a test design optimized for that purpose. This produces a univer-
sal rule for test construction. Maximizing weight of evidence for an overall
proficiency variable is one way to achieve this. The mutual information and
expected value of information principles are two others.

As an alternative, one could use a task selection strategy based on a global
measure of information calculated across all proficiencies. Suppose for example
there are n dichotomous proficiency variables and H, ..., H, are hypotheses
corresponding to mastery of each of the corresponding skills. A plausible task
selection strategy is to choose whichever task provides the greatest expected
information, looking across all items and all proficiencies. A criticism of this



218 7 Explanation and Test Construction

kind of automated test selection strategies is that they tend to meander. The
sequence of selected tasks can cycle rapidly through different topics, an item
for one hypothesis and the next item for a different hypothesis according to
where the maximum information happens to appear (Barr and Feigenbaum
1982, p. 82). This slows down the student who must mentally switch topics
for each new task.

Example 7.5 (Adaptive Content with the Evidence-Based Diagnosis
(ACED) Sequences Test). Shute (2006) and Shute et al. (2008) describe
an assessment system designed for a sequences unit of an eight grade algebra
system (also see Shute 2004; Shute et al. 2005). The proficiency model was a
Bayesian network with 42 nodes (Fig. 7.7). At the top level is a variable for
overall proficiency in sequences. Just below that are three variables measuring
proficiency in the three types of subsequences, arithmetic, geometric and other
recursive, as well as a proficiency for recognizing sequences. The lower level
nodes are skills corresponding to proficiency with tasks based on various ways
sequences can be presented and manipulated. Appendix A.2 shows where the
ACED models can be accessed online.

Suppose we used an activity selection model for ACED (Example 7.5) that
maximizes EWOE for the overall proficiency node. Suppose that the first item
chosen provided direct evidence about arithmetic sequences. If arithmetic,
geometric, and other recursive sequences provide equal input into the overall
proficiency construct, the next best item will come from one of the other two
branches. The third item will come from the remaining branch. Only at the
fourth item, we will potentially return to the arithmetic sequences. This will
force the student to switch contexts between each task. The minimum entropy
principle will exhibit this tendency even more strongly as it will attempt to
make sure we have roughly equal information about all corners of the model.

To counter this problem, Madigan and Almond (1995) suggest using the
critiquing approach (Miller 1983). First, elicit a suggested hypothesis from
the tutor, say S = sg, where S denotes a node associated with a skill, and
sp is one particular state of S. The system then selects tasks to maximize
the probability of quickly accepting or rejecting sg. Thus, once the tutor has
suggested a hypothesis, the system only selects activities that are of high
relevance (expected weight of evidence) to that hypothesis. If the hypothesis
is rejected, the tutor is prompted for an alternative suggestion, and so on. Once
a hypothesis has been chosen, EWOE for the chosen hypothesis becomes the
criteria for selecting a task. The sequence of hypothesis would come from the
instructional design of the course and could be related to the natural order of
learning.

The adaptive algorithm currently used in the ACED prototype of Exam-
ple 7.5 (Shute et al. 2008) consists of a two stage decision-making process:
(1) selection of a target node (what to assess), then (2) selection of a specific
task tied to that node (how the target is assessed). The first stage determines
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Fig. 7.7 Proficiency model for ACED assessment
Overall proficiency in sequences is divided into three branches and then further
divided into nodes corresponding to various skills related to series. To simplify the
presentation, only 32 of 42 nodes are displayed.

the appropriate proficiency, represented as a Bayesian network variable, as the
target of the proficiency for the adaptive process. Given the hierarchical nature
of the cognitive model, the main target variables map to one of the parent
nodes of three branches; i.e., solving/understanding (1) arithmetic, (2) geo-
metric, and (3) other recursive sequences. The highest node can also serve
as a general target variable: i.e., understanding sequences (which subsumes
the three branches). Once the target node (proficiency variable) is selected,
a cut point (“High” vs. “Medium or Low” or “High or Medium” vs. “Low”)
is selected as well. Together the target node and cut point make up a target
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hypothesis. The idea is that once the value of a target hypothesis is learned
to a given threshold of accuracy, then a new target will be selected.

The second stage commences once a target hypothesis (proficiency variable
and cut point) is identified as the assessment goal for the next cycle of task
administration. The second stage then selects the task from the pool which
maximizes the EWOE provided for the hypothesis represented by the tar-
get node and cut point. After the outcome from a particular task is received
from the learner, we update our beliefs about the learner’s proficiency as
represented in the Bayes net. If the target hypothesis has been learned to
the desired degree of accuracy, the selection process returns to stage one and
selects a new target hypothesis. Otherwise, it continues selecting tasks with
maximum EWOE (in the updated Bayes net) about the current target hypoth-
esis.

The critiquing strategy can be combined with a strategy of switching
between assessment mode and instructional mode mentioned above, to make
an activity selection engine for a intelligent tutoring or e-Learning system.
Here the instructional goals of the system would be described as a series of
goals which the system would try to achieve. Each goal would be formulated
as a hypothesis described as a variable and a cut state for that variable. For
each goal in turn, the system would first attempt to assess that the hypothesis
was true, and if it uncovered sufficient evidence that the hypothesis was false,
it would switch to instructional mode and attempt to remedy the problem.
The system would continue until all goals are met. Having models for student
growth and learning would be useful in this application (Sect. 16.2.2).

7.4.3 Fixed-Form Tests

In some ways, producing a form for an adaptive test seems easier than finding
a good form for a fixed-form test. In the adaptive test, choosing the next task
requires that at each step we maximize the EWOE for one item based on the
observations we have seen so far. Thus we are doing each step of maximization
with respect to the conditional distribution, and only calculating the weights
of evidence for the observations from one task at a time. This is the myopic
search strategy, which is not optimal, but is computationally simple.

For a fixed-form test, we need to maximize the joint expected weight of
evidence over all of the variables in the test. As we noted above, the joint
evidence as not necessarily the same as the sum of the marginal evidence for
each task. This is the nonmyopic search problem, and in general it is hard (at
a worst case involving iterations over both proficiency profiles and outcome
vectors). Thus, we need approximation methods to tackle this problem.

The problem of assembling optimal test forms from a bank of items has
been successfully addressed in the context of item response theory and clas-
sical test theory, using the machinery of combinatorial optimization (van der
Linden 2005). This approach is readily adapted to assembling optimal col-
lections of tasks for inference about proficiency variables in Bayes nets. This
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section describes how to express form assembly as a 0/1 linear programming
problem.

In a traditional test assembly framework, we have a collection of items
which can be selected for the use on a particular form. Let u; = 1 if item j
is selected to appear on the form, and let u; = 0 if it does not appear on the
form. Linear programming is a mathematical technique which seeks to find a
set of 0/1 values for the u;’s that gives the maximum value of an objective
function given a series of constraints.

In ECD, the rules for building a form of the assessment are determined by
the assembly model. First, the assembly model is a container which tells the
assessment assembler which student, evidence, and task models are available
to be used in this assessment. Second it contains a number of rules for the
optimization routine: target rules—rules that define the objective function,—
and constraints—rules that define other aspects of the tests.

Using the instructions in the assembly model, the assessment is assembled
from a collection of tasks and their corresponding links (Sect. 13.2.3)—versions
of the evidence model whose parameters are adjusted for a specific task. (For
high-stakes assessments, this usually involves pretesting and calibration, c.f.
Part II. For low-stakes assessments, often the default parameter values in the
evidence model are good enough.) Note that there is also a Q-matrix corre-
sponding to this collection of tasks. Let g;; = 1 if Task j taps Proficiency k&
(i.e., Proficiency j is in the footprint of the link for Task j).

The objective function is the heart of an optimization problem. It is the
quantity the designer wants to minimize or maximize, subject to constraints.
We will define objective functions in terms of the amount of information tasks
provide for hypotheses about skill profiles. The target rules of the assembly
model represent a series of hypotheses. Let Hi, ..., Hys be hypothesis con-
cerning the proficiency variables, S. For example, if there are K dichotomous
proficiency variables, we could define K hypotheses Hy, : S = 1. We could
define additional hypotheses about particular combinations of skills, such as
{Sr = 1 and Syr = 1}. If proficiencies have multiple states, we could define
hypotheses such as Sy > novice. In addition to the hypotheses, Hy,..., Hys,
we need a corresponding set of weights, wi,...,wys indicating the relative
importance of the hypothesis. An objective function for assembling a test
form is defined as the weighted sum of EWOE (or value of information), the
tasks in the assessment. In other words, the objective is to mazimize

J
SN wjwn EW (H,: X)), (7.10)

where X are the observable outcome variables associated with Task j.
Equation 7.10 has a trivial maximum: simply include every single task in
the collection on the form. This is not a very interesting solution, however. For
one thing, it is likely to require that the examinee spend far too much time on
the test. For another thing, it means that all of the items in the collection will
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be exposed and none will be saved for later use. A far more realistic solution
would be to maximize Eq. 7.10 subject to a constraint that no more than N
tasks be used.

In practice, there are a wide variety of constraints that the designers would

like to put on the test form. The constraints of the assembly model are how
these are recorded. Some typical constraints are:

Minimum and Mazxzimum number of tasks. Constraints of this type are
straightforward. Suppose the test design calls for between 30 and 60 tasks.
This can be represented with inequalities: 30 < > u; < 60.

Should be able to complete in specified time. Usually there is either a fixed
time limited or an expected time to complete an assessment. Let t; be the
75th percentile of the distribution of times required to complete the task
in pilot test attempts. The constraint that most students should complete
the assessment in 120 min is expressed with the inequality > u;t; < 120.
Minimum or mazimum number of tasks from a certain task model. Although
proficiency variables are defined by subject matter experts based on claims,
unless the set of tasks in the form supports the targeted set of claims, the
effective meaning of the proficiency variable might be different from the
intended meaning. Consider a proficiency variable with the interpretation
“Understands Tables and Graphs.” If the form consisted of all table tasks,
and no graph tasks, the effective meaning of that variable would differ
from its label. To avoid such problems, the assembly model could require
a minimum number of tasks from a certain task model. To avoid weighting
a claim or set of claims too heavily, it could also include a maximum from
that task model.

To express this as an inequality, let T'M;, = 1 if Task j comes Task
Model n and 0 otherwise. Let IV,, be the minimum number of tasks from
Task Model n and let N,, be the maximum. This adds one constraint for
each task model type of the form N, <37 u;TMj, < N,.

Spanning Contexts. Often the assessment needs to span content at a finer
grain size than that of the task model. Here, task model variables can
be used to describe that finer detail of content. For example, a language
test might require that there are a mixture of tasks spanning both formal
academic and informal non-academic contexts. Let Y; be a task model
variable that represents the context of the task and let Y}, be an indicator
variable that takes on the value 1 if task model variable Y; = v and 0 oth-
erwise. The constraint can be written in the form of a series of inequalities
for each possible value v of Y;, NY < Zj Y, < NY,.

Note that we can also consider constraints on task model variables nested
within tasks. For example, we could require an easy, medium and hard
variant of each task model by appropriately constraining a task model
variable in each task corresponding to difficulty.

Number of tasks tapping a given proficiency. Suppose that the proficiency
model has several proficiency variables, S, ..., Sk. Almost certainly the
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form should achieve some sort of balance among the amounts of evidence
gathered about each variable. If the objective function is written as the
sum of hypotheses about a number of proficiency variables, the optimiza-
tion will balance across proficiencies according to the provided weights. A
second approach is to write the objective function in terms of some over-
all ability variable, but to constrain the form so that there is a minimum
number of items with direct evidence about a particular proficiency. The
second approach has a certain advantage in that it supports reporting in
terms of number right scales on subtests. For example, a report that an
examinee got 7 out of 10 possible points in tasks which address Skill Sy
would provide a good explanation of a score report that said a student’s
probability of mastery of Sy is 65 %. For that reason, the assembly model
may constrain the minimum (or maximum) number of tasks that provide
direct evidence of a particular skill.

This is done through the @Q-matrix. In particular, ) ;5 Uidjk indicates the
number of tasks providing direct evidence for Skill Si. This sum then forms
the object of the constraint. Note that it might be better to work with the
version of the (Q-matrix that is focused on observables rather than tasks.
Then the constraint would be on the number of observations relevant to
Skill S;.

Simple versus complex tasks. Simple structure tasks—tasks that tap exactly
one skill variable—hold an important place in form design. Tasks that tap
multiple skills usually support competing explanations for poor perfor-
mance. Adding a few simple structure tasks usually helps disambiguate
the causes of the poor performance. On the other hand, complex tasks
that tap multiple proficiencies are important because they are often closer
to the kinds of authentic tasks that constitute valued work in the domain
of the assessment.

For each Task j, let QR; = >, qji be the sum of 1s in the row of the
@-matrix for Task j, indicating the number of proficiency variable parents
it has. This is a measure of task complexity. Let QR; == ¢ be an expres-
sion which evaluates to 1 if QR; = ¢ and 0 if not. Then an constraint
on the number of simple structure tasks could be expressed through the
expression Zj u;(QR; == 1). Similarly, the number of tasks providing
direct evidence for 2, 3 or more proficiency variables could be constrained.
Also, the overall complexity of the the assessment could be constrained by
putting upper and lower bounds on the expression Ej u;QR;.
Incompatible tasks. There are a number of cases where we might not want
two tasks to appear on the same form. For example, one task may contain
the solution to another in its background material. Or two variant tasks
from the same task model may be so close that they should not appear in
the same form. Or maybe both tasks have a similar context and familiarity
with that context might provide an unmodeled dependence among the
observables from the two tasks.
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This can be also handled with constraints. Often what is done is to create
an enemy list, E/, of tasks that should not appear on the same form. The
constraint is then > jep Ui = 1. Assessment designs often require many
such enemy lists. Note that enemy lists can be defined through task model
variables: Any task which has a particular task model variable set to a
certain value might appear in an enemy list.

e [Jtem sets. One problem that has long been difficult for conventional test

design is how to accommodate item sets: items that must appear together
on the same form because the share common stimulus material (e.g.,
a reading passage). Optimization algorithms that use a greedy function
to optimize the objective function (Eq. 7.10) can easily get into trouble
because once they pick one item from the set, the algorithm must then pick
several others from that set. This can lead to bad forms if the remaining
items in the set are too hard, too easy, or do not meet other constraints.
Although the problem is more noticeable in adaptive testing, it makes the
optimization problem more difficult in fixed form tests as well.
The ECD model avoids many of the difficulties by assembling forms from
tasks instead of items. Usually, an item set can be modeled as a single task.
As the selection algorithm considers the joint evidence from the task, it is
harder to get stuck by making a poor initial choice. However, there may
be other considerations here: tasks may be bound together in scenarios,
or some but all items from a set might be needed. Additional constraints
can be written to meet these conditions.

The assembly model must contain a target rule and at least one constraint.
There can be as many or as few constraints of each type as are needed to
express the intent of the designers and to ensure that sufficient evidence is
gathered for all of the claims. By expressing the target rule as a function
of the task indicators, u;, and the constrains as inequalities using the task
indicators, one can use standard 0/1 linear programming to assemble a test
form that resembles a previous form or to assemble multiple parallel test
forms. Standard optimization theory and software (e.g., Nocedal and Wright
2006) can be applied. Alternative approaches and many insights to particular
challenges and kinds of constraints in test-assembly more generally are found
in van der Linden (2005).

7.5 Reliability and Assessment Information

When we build the evidence model P(X|S) we are acknowledging that the
relationship between the proficiency variables, S and the observed outcomes,
X is a probabilistic one. In other words, the outcome pattern X is not a
pure measure of the proficiency variable S, but contains some noise that is
irrelevant to what we are trying to measure. In engineering terms, we could
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think about the signal to noise ratio for the assessment; in psychometrics we
speak of the reliability.

Note that not all sources of noise are actually irrelevant to the construct
we are trying to measure. Take for example an assessment of communicative
competence in a given language. By restricting the setting to the academic
environment, we remove one source of variability. However, other settings may
also be relevant to the kinds of inferences we are trying to make. For example,
if we are trying to understand how well a potential student is likely to be able
to get by living in a foreign country, settings related to shopping and inter-
acting with the local bureaucracy may be equally important. In assessment,
reliability is usually taken as a measure of the irrelevant sources of variability
given a specified domain of tasks and test procedures (Brennan 2001).

Our treatment of reliability with Bayes nets differs from that of classi-
cal test theory in two important respects. First, if our proficiency model is
expressed as a Bayesian network, then our scores will typically be either clas-
sifications of participants according their proficiency variables or posterior
distributions over one or more proficiency variables. The majority of the lit-
erature on reliability is devoted to continuous or integer valued scores. Even
when authors do talk about classifications, it is usually in the context of a
cut score on a continuous variable. Second, classical test theory relies on the
concept of a true score. Typically, the distribution of the true score in the
population is unknown and must be estimated from data. In our case, the
true score corresponds to the skill profile, S. The proficiency model provides
the population distribution for the skill profile, P(S).

For simplicity, we start with purely discrete scores, where the student
is classified as having the skill profile with the highest posterior probability
(the MAP estimate). Section 7.5.1 looks at some measures of accuracy, and
Sect. 7.5.2 looks at some measures of consistency between two test forms.
However, the Bayes net score is not just a single best proficiency profile, but
rather a probability distribution over possible profiles. These contain more
information than the point estimates, and hence are usually better scores.
Section 7.5.3 extends the discrete accuracy and consistency measures to this
continuous world.

7.5.1 Accuracy Matrix

We start with a classification score. We partition the space of skill profiles into
a series of disjoint hypotheses, Hy,..., Hg, which span the space of possible
skill profiles. A common case is to look at the value of one proficiency variable
ignoring the others; that is H; : S; = expert. A more sophisticated model
might look at a number of possible courses a student could be placed in and
what kinds of student would benefit from which course, yielding a partitioning
of all possible vectors in S according to placement based on proficiency profiles.
When there are exactly two hypotheses, this corresponds to the setup in the
weight of evidence calculation above. But when the students are to be classified
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into more than two categories, a new measure is needed which extends to
multiple categories.

Suppose that we observe a pattern of outcomes X from the collection
of tasks that appears on one form of the assessment. By Bayes’ theorem we
obtain the posterior distribution P(S|X), and the implied posterior probability
for each hypothesis in the partition, or P(hg|X). We can then define a point
estimate for H by H = maxp, P(hi|X). This is the Mazimum A Posteriori
or MAP estimate for H. It will be a function of X so we can write H(X).

Doing this assumes that the utility function associated with misclassifica-
tion is relatively symmetric. That might not always be the case. Again in a
licensure test it is more regrettable to license somebody who is not qualified
than to make the opposite mistake. Similarly, it may be much more regret-
table to fail to identify a student who needs remediation than the opposite. In
such case, instead of choosing the value of H which maximizes the posterior
probability, we would take the one which maximizes expected utility. This is
called the Bayes decision and is covered in standard texts on decision theory
(e.g., DeGroot 1970; Berger 1985).

We define the elements of the accuracy matriz® A as follows:

aij =P(H=h;, H=h;)= Y  PxH=h)PH=h). (711)
x:H(x):hj

This is the probability that when h; is the correct hypothesis, a response
vector x will be observed for which H = h; is the decision. The diagonal of
this matrix corresponds to the cases where the decision agrees with the true
classification. Perfect agreement would result in a diagonal matrix. Thus, we
can define the accuracy as the trace of the matrix, that is, >, apk.

The accuracy matrix A may be difficult to calculate analytically, especially
for a long assessment. In general, evaluating Eq. 7.11 involves iteration over
both the set of possible skill profiles and the set of possible outcome patterns.
This becomes prohibitively expensive as the number and complexity of the
tasks in the assessment increases. However, it can be easily estimated by a
simple simulation experiment. First randomly select a skill profile according to
the distribution of the proficiency model, P(S). We can then assign the value
of H based on the selected skill profile S. Next, we randomly select an outcome
pattern X according to the distribution of the evidence model P(X|S). We can
then classify the simulated outcome with an estimated value of the hypothesis
H (X). If we repeat this experiment many times, the observed frequencies will
converge to the accuracy matrix.

This experiment contains two important assumptions: The first is that the
model is correct, i.e., the model used to generate the data is the same as the
one used in the classification. In practice we can never know the true data
generation model. The second is that there is no accounting of the uncertainty

2 This is sometimes called a confusion matriz, referring to its off-diagonal elements.
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about the probabilities (or parameters from which they are obtained) used
to generate the Ss and the Xs. Part II takes up the issue of uncertainty
about the parameters. Taking these problems into consideration, calculating
the accuracy matrix estimate in this fashion is really an upper bound on the
true accuracy of the assessment.

Example 7.6 (Language Test Accuracy Matrix). Consider once more
the simplified language test from Mislevy (1995¢) described in Example 7.1,
(see also Appendix A.2). Suppose we perform the following experiment. First,
we simulate 1000 possible proficiency profiles from the proficiency model.
Next, we generate a response vector over 63 geometric sequence tasks for
each of the 1000 simulees. Finally, we score the test for all 1000 simulees
(ignoring their actual proficiency profiles). For each simulee, we should now
have both their “true” (from the simulation) value of the Reading, Writing,
Speaking and Listening nodes and the most likely (MAP) estimate for each
node from the scored response.

We can calculate the accuracy matrix as follows: First, set a;; = 0 for all
i and j. Next, for each simulee, if the true value of Reading is i and the MAP
estimate is j, add one to the value of a;;. Repeating this for all 1000 simulees
and dividing by 1000 (the number of simulees) yields a matrix like Table 7.1.

Table 7.1 Accuracy matrices for Reading and Writing based on 1000 simulated
students

Reading Writing
Novice Intermediate Advanced||Novice Intermediate Advanced
Novice 0.229 0.025 0.000 0.163 0.097 0.000
Intermediate| 0.025 0.445 0.029 0.053 0.388 0.065
Advanced 0.000 0.040 0.207 0.000 0.051 0.183

Some authors take the accuracy defined in this way as a measure of validity
rather than one of reliability. However, this contains the implicit assumption
that the set of hypotheses Hy,..., Hx and by extension the proficiency vari-
ables S represent the construct on which we wish to base our decisions. We
prefer to think of the accuracy as a measure of internal consistency under the
model, that is, of reliability, and reserve the term “validity” for measures which
take into account the use and consequences of the classification (Sect. 16.4).

Many other important measures of agreement can be derived from the
accuracy matrix. In defining those measures, it will be helpful to have notation
for the row and column sums. Let a;1 = ), a;; = P(H;) be the sum of all
of the elements in Row i. This is the marginal (population) probability of the
hypothesis. Let ay; = 3., a;; = P(H;). This is the marginal probability of
the classifications.
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Simply normalizing the accuracy matrix by dividing by the row sums pro-
duces interesting results. The matrix normalized in this way, a;;/a;; = P(H =
hj|H = h;), produces the operating characteristics of the assessment. If the
hypothesis is binary, then a11/a;4 is the sensitivity of the test, the probability
of asserting that the hypothesis holds when it is in fact true. Similarly, as2/as4
is the specificity of the test, the probability of asserting that the hypothesis
is false when in fact it is false. These terms are used frequently in medical
testing.

Often the multiple measures of the operating characteristics are more use-
ful than a single measure describing accuracy. This is particularly true because
most of the single number summaries depend on the population distribution
of H. The operating characteristics specifically condition out this distribution.
They are still a useful measure of the strength of evidence in the assessment
even when all of the members of the sample have the same value for the
hypothesis.

Normalizing by the column sums also has another interesting interpreta-
tion. Now we are conditioning on observed decision, a;;/at; = P(H = h;|H =
hj). The resulting conditional probability distributions answer the question,
“If the assessment classifies a participant as H , what is the probability that
this is the true classification?” This is the question that end users of the
assessment scores would very much like answered. As in the rare disease prob-
lem (Example 3.6), the probability of true classification depends on both the
operating characteristics of the test and the population distribution of the
hypothesis.

The accuracy, ), a;;, answers the question “What is the probability that
the classification assigned on the basis of this assessment will agree with
truth?” Note that it is possible to get a fairly large agreement by chance, even
if the classification and truth are independent. Consequently, some authors
recommend adjusting the accuracy for chance agreement.

One such adjusted agreement is Cohen’s k. Fleiss et al. (2003) note that
adjusting for chance agreement unifies a number of different measures of agree-
ment in a 2 by 2 table. If the true value of the hypothesis, H and the estimated
hypothesis, H were two raters acting independently, the probability of agree-
ment by chance would be ). a;ya,;. The coeflicient & is expressed as a ratio
of the obtained accuracy corrected for chance to the ideal accuracy:

o — D @i = D ik Gy

1-— Zl Aj4 A4

(7.12)

The chance term is based on the idea that the two classification mechanism
are independent. Thus Cohen’s k answers the question “How much better is
the classification given by this assessment than what we would expect if the
assessment was independent of truth?” Sometimes when the categories are
ordered, « is weighted so that classifications that are one category away are
worth more that classifications that are multiple categories away. In either
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case, K is easier to interpret as a measure of the consistency of two classifiers
(Sect. 7.5.2) than the accuracy of one classifier.

Goodman and Kruskal (1954) offer a different statistic, A, that using a dif-
ferent baseline, max(py ), for adjusting the agreement statistic (see also Bren-
nan and Prediger 1977). This is the agreement level that would be achieved
by simply classifying everybody at the most likely state.

= Zn An,n — maXp, Qn,+
1 —max, an+

The metric A corresponds to the question, “How much better do we do with
this assessment than simply classifying each person at the population mode?”
This index relates directly to the decision of whether or not to use the test.

Although less well known that Cohen’s x, Goodman and Kruskal’s A
is often a better choice when talking about the accuracy of an assessment
(regardless of the method used to obtain the estimates). In particular, the
question answered by A is often more interesting. While x answers how much
better is the agreement (between the truth and the classifier), A answer the
question how much better is it to use the classifier than not. In fact, neither
measure may be the ideal measure; Goodman and Kruskal (1954), offer a
number of alternatives that could be explored.

Example 7.7 (Simplified Language Test Accuracy Matrix, Kappa
and Lambda). Using the estimated accuracy matrix for the simplified lan-
guage test (Table 7.1, Example 7.6), we can calculate Cohen’s k and Good-
man and Kruskal’s . To begin, we find the diagonal of the Reading portion
of Table 7.1; this is 0.881. In other words, this form of the assessment clas-
sifies slightly almost 90 % of the examinees correctly on reading. Next, we
sum over the rows and columns to produce marginal distributions for the
true proficiency levels, (.254,.499,.247), and the estimated proficiency levels,
(.254, .510,.236).

To calculate k, we need to calculate the probability of chance agreement.
We get this by multiplying the two vectors of marginal probabilities and taking
the sum, which yields 0.377. Thus, about 1/3 of the time we are likely to get
the correct classification just by chance. The adjusted agreement is now kK =
(0.881—0.377)/(1—0.377) = 0.809, which means we are getting approximately
a 80% improvement over the agreement we would have gotten if we just
assigned everybody a label randomly.

To calculate A\, we note that the modal category is Intermediate, and that
the probability that a randomly chosen simulee has Intermediate ability is
.499. In other words, if we rated everybody as Intermediate we would get
approximately 1/2 of the ratings correct. The adjusted agreement is now \ =
(0.881—0.499)/(1—0.499) = 0.763, which means we are getting approximately
a 75 % improvement over the agreement we would have gotten if we just
assigned everybody the label Intermediate.
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Turning to the Writing variable, similar calculations show k = .567 and
A = .462. These numbers are smaller as a consequence of the test design.
In particular, of the 16 tasks in this assessment all but the 5 listening tasks
involve at least some Reading and hence provide evidence for Reading. Only
the three Writing tasks provide direct evidence for Writing, and because those
are integrated tasks that also involve Reading, their evidence is weaker. Thus,
both A\ and k are smaller.

Note that the Bayesian network does not actually assign each student to
a category, rather it gives a probability distribution over the categories. We
can do slightly better if we look at the probabilities rather than just the most
likely category. Section 7.5.3 explores this. In fact, this is one example of a
scoring rule for Bayesian networks; Chap. 10 explores other scoring rules.

7.5.2 Consistency Matrix

Suppose that we have two parallel forms of the assessment, Form X and
Form Y. We could produce two accuracy matrices Ax and Ay, one for each
form. The Consistency Matriz is the product of those two accuracy matrices,
C = A Ay. The normalized rows and columns represent conditional proba-
bilities which describe what we expect to happen when a person who takes
Form X later takes Form Y and wvisa versa. This is of practical importance to
testing program where the same assessment (with alternative forms) is given
over and over again to a similar population of examinees. In this case, large
shifts in the classification is likely to produce confusion among the test-takers
and score-users.

The consistency matrix can be estimated with a simulation experiment as
described above, it can also be estimated by giving both Form X and Form Y
to a sample of examinees. If the test is long enough, it could also be used
to form split-half estimates of reliability. However, this may be tricky with a
diagnostic assessment. In particular, there may only be a few tasks providing
direct evidence for each proficiency of interest. Hence, the half-tests may be
very unbalanced or have very low reliability.

The consistency is the sum of the diagonal elements of the consistency
matrix, ). ¢;;. This answers the question, “What fraction of examinees who
take both Form X and Form Y will get the same classification with respect
to hypothesis H?” Cohen’s « is frequently used with the consistency matrix
as well. It answers the question “How much better do the two forms agree
than two form which are independent, that is measuring different aspects of
proficiency?” Again, it may be worth exploring some of the other measures
described in Goodman and Kruskal (1954) as well.

7.5.3 Expected Value Matrix

One source of error in both the accuracy matrix and classification matrix is
that we are assigning a person to a class on the basis of the MAP estimate for
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the hypothesis. This gives equal weight to someone who we believe with high
confidence is in one category and someone who is on the border between two
categories. By reporting the marginal probability of classification rather than
the MAP estimate, we should better convey our uncertainty about the truth.

Suppose we simulate proficiency profiles and outcome vectors from N
simulees. Let S,, be the proficiency profile for Simulee n and let X,, be the out-
come vector. Then P(H|X,,) is the probabilistic classification that we would
assign to Simulee n on the basis of the outcome vector X,,. We can define
a probabilistic classification matriz for Hypothesis H by summing over these
classifications.

zp= . PH=hX,) (7.13)

n:H(S,)=h;

Here, z;; is the weighted number of individual whose true classification is h;
who are classified as h;, where their weights are the posterior probability of
classification in that class. In other words, in the simulation to estimate the
accuracy matrix we place a simulee from the ith category into the cell for the
jth decision category; to estimate the expected value matrix, we distribute
that simulee across all n cells in the jth column, according to its posterior
probabilities for each.

The sum of the diagonal elements, >, z;;, is another measure of accuracy
for the assessment. We can also look at Cohen’s x and A for the probabilistic
classification as well. In general, these should do at least as well as their non-
probabilistic counterparts.

Another way to treat the probabilistic scores, P(H|X,,) is to regard them
as predictions of the true value of the hypothesis. In this case within the
confines of the simulation experiment, we can use the scoring rules in Chap. 10
to evaluate the quality of the assessment for making this particular prediction.

Example 7.8 (Simplified Language Test Expected Accuracy Matrix).
The procedure is similar to the one used in Example 7.6. The initial simulation
proceeds in the same way. It differs at the scoring step, instead of calculating
the MAP score for Reading we calculate its marginal probability. This score
will be a vector of three numbers over the possible classifications (Novice,
Intermediate, and Advanced). The “true” value is still a single state.

We can calculate the expected accuracy matrix as follows: First, set z;; =0
for alli and j. Next, for each simulee, let the true value of SolveGeometricProb-
lems is i and the marginal estimate be {p1, p, ps}, which is a probability vec-
tor. We update the values of z;; by adding the probability vector to Row 1,
that is, let z;; <= z;; + p; for j = 1,2,3. Repeating this for all 1000 simulees
vields a matrix like Table 7.2. We divide the entries in this matrix by 1,000
to put all of the numbers on a probability scale.

The agreement measures k and X are calculated in the same way. In this
case, KReading - 73 AReading - 66 KWMting — 43 and AWmting = .28. These
are lower than the agreement rates based on the modal classifications (Exam-
ple 7.7), but are more honest about the uncertainty in the classifications.
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Table 7.2 Expected accuracy matrices based on 1000 simulations

Reading Writing
Novice Intermediate Advanced||Novice Intermediate Advanced
Novice 0.220 0.034 0.000 0.162 0.092 0.007
Intermediate| 0.037 0.413 0.050 0.091 0.331 0.084
Advanced 0.000 0.049 0.198 0.003 0.076 0.154

7.5.4 Weight of Evidence as Information

The preceding discussion has introduced many different possible measures for
reliability, not just one. That is because when a test user asks about the reli-
ability of an assessment, there are a number of possible motivations for that
question. She might be asking about how the results from the assessment
varies when sampling tasks from a pool of possible tasks. In this case, con-
sistency is the most appropriate answer. She might be asking about how well
the assessment captures the variability in the population; in this case accu-
racy, perhaps as measured by Cohen’s k is a reasonable choice. She might be
asking whether or not it is worthwhile to give the assessment to learn about
a hypothesis, H. In this case, A seems appropriate.

Smith (2003) presents another possible meaning for reliability, namely
“Sufficiency of Information.” Smith points out that a teacher may give an end
of unit quiz expecting all of the students to get all of the items correct. After
all, having finished the unit, the students should have mastered the material.
This quiz serves several important purposes: (1) it helps the student’s self-
assessment of their progress on this material, and (2) it identifies for the
teacher any students who have not yet mastered the material as predicted.
This assessment has value, even though by many of the reliability measures
posed above may have trivial values because all of the students are expected
to have mastered the material.

Note that the EWOE does not depend on the population distribution of
the hypothesis. The calculations for the EWOE are done with the conditional
distribution given the hypothesis. Thus, if an assessment has a high EWOE
for the hypothesis that the students have mastered the material of the unit
it will be appropriate. (It still may be difficult to estimate the task specific
parameters from the classroom population as there is little variability with
respect to the proficiency variables of interest, but that is a separate problem.)

We have seen that weight of evidence provides a useful mechanism for
explaining how certain patterns of evidence influence our conclusions about
certain proficiency variables. Furthermore, its ability to act like a spot meter
for specific hypotheses helps us to evaluate how much information is provided
by a proposed assessment design for a specific purpose. If the assessment does
not provide enough information, we could consider altering the assessment
design, that is the @Q-Matrix associated with the collection of tasks in an
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assessment form, to obtain more information about the proficiency variables
of interest. Lengthening the test is one mechanism for altering the @Q-Matrix;
replacing simple structure tasks that tap just one proficiency variable with
complex tasks that tap multiple variables, or vice versa, is another. How-
ever, careful test design requires balancing the cost (the biggest component
of which is usually the time the examinee spends taking the test) with both
the information gained and the complexity of the calculations (Sect. 7.4.3).

Exercises

7.1 (Order dependence of WOE). Recall the 5-item math quiz from
Example 6.1. Suppose that a student gets items 1, 2, and 4 correct and items 3
and 5 incorrect. Calculate the weight of evidence for Theta > 0 provided by
each item under the following assumptions:

1. The student works through the problems in order from item 1 to item 5.
2. The student works through the problems in reverse order from item 5 to
item 1.

7.2 (Context variable and WOE). To see what effect the Context variable
has on the weight of evidence, compare the five item IRT model without the
context variable (Sect. 6.1) to the model with the Context variable (Sect. 6.2).
Calculate the weight of evidence for Theta > 0 provide by the following evi-
dence for both models:

1. Item & and item 4 are both correct.
2. Item 3 and item 4 are both incorrect.

For the following exercises, consider a simplified version of the ACED
model (Shute 2004) given in Fig. 7.8. This simplified model uses the same
conditional probability table given in Table 7.3 for all proficiency variables
except for SolveSequenceProblems, which has a uniform distribution. Also,
attached to all nodes except for SolveSequenceProblems are three tasks meant
to tap that proficiency. There are three variants of the tasks, a Hard, Medium
and Fasy version. Each evidence model fragment adds one observable variable
with a conditional probability table given by one of the columns in Table 7.4.

7.3 (Direct and indirect evidence). Suppose that a person is assigned a
single medium difficulty task attached to the SolveArithmeticProblems pro-
ficiency and the person gets that item correct. Calculate the weight of evidence
provided for both SolveArithmeticProblems = H and SolveGeometricProblems =
H. Why is the first higher than the second?

7.4 (Chaining weight of evidence). Consider two medium difficulty tasks,
one attached to AlgebraRuleGeometric and one attached to InduceRulesGe-
ometric. Calculate the weight of evidence that getting a correct score on
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@ s01veArithmeticProblems>

@ so]veSequenceProblemS>—><O solveGeometricProblems

O induceRulesGeometric
O algebraRuleGeometric

@ solveOtherRecursiveProblems)

Fig. 7.8 Subset of ACED proficiency model for exercises

Table 7.3 Conditional probabilities for ACED subset proficiency model

Generated using regression distribution (Sect. 8.5.4) with correlation of .8. All of
the conditional probability tables in the proficiency model use this same table

Subskill
Skill |[H M L
High |0.83 0.09 0.08
Medium|0.40 0.20 0.40
Low 0.08 0.09 0.83

Table 7.4 Conditional probabilities for evidence models for ACED subset

Evidence model fragments that consist of a single dichotomous observable variable
attached to one of the proficiency nodes (except the overall proficiency). Depending
on the difficulty of the task, one of the three columns of this table indicates the
conditional probability for a correct response

Skill  |P(Easy = 1) P(Moderate = 1) P(Hard = 1)
High |0.88 0.72 0.49
Medium|0.73 0.50 0.27
Low 0.51 0.28 0.12

each of those tasks (with on other evidence) provides for the proposition
Solve GeometricProblems = H. Why is the one smaller than the other?

7.5 (Correlation and weight of evidence). Make an alternative model for
the ACED subset problem by substituting the conditional probabilities given
in Table 7.5 for the conditional probabilities for the nodes AlgebraRuleGeo-
metric and InduceRulesGeometric. (Both the original and alternative condi-
tional probabilities tables were produced using the Regression Distribution,
Sect. 8.5.4. The original has a correlation of 0.8, while the alternative has a
correlation of 0.9).
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Table 7.5 Alternative conditional probabilities for ACED subset proficiency model
Generated using regression distribution (Sect. 8.5.4) with correlation of .9.

Subskill
Skill |[H M L
High {0.90 0.07 0.03
Medium|0.39 0.22 0.39
Low 0.03 0.07 0.90

7.6 (Compensatory, conjunctive and disjunctive distributions). Con-
sider the compensatory, conjunctive, and disjunctive distribution models from
Sect. 6.3. Calculate the weight of evidence for the proposition P1 = H for all
three models under the following conditions:

1. The observable is Right.
2. The observable is Wrong
3. The observable is Right conditioned on the proposition P2 = H.
4. The observable is Wrong conditioned on the proposition P2 = H.

7.7 (Task difficulty and EWOE). Consider a test which assesses a single
proficiency, Skill, which can take on the values High, Medium and Low. Assume
that all tasks are scored with one of three different evidence models with
observable variables Fasy, Moderate, and Hard (one observable per evidence
model) which take on the values 0 (wrong) and 1 (right). Let Skill have a
uniform distribution and the conditional probability tables for the observables
follow the distributions given in Table 7.4. (Note, these distributions were
produced by using the DiBello-Samejima models, Sect. 8.5, with difficulty
parameters of —1, 0 and +1 for easy, moderate and hard tasks.)

1. Calculate the EWOE for Skill = High versus Skill € {Medium, Low} for
each kind of task. Which kind of task provides the best evidence for this
distinction?

2. Calculate the expected weight of evidence for Skill = Low versus Skill €
{Medium, High} for each kind of task. Which kind of task provides the best
evidence for this distinction?

7.8 (Effect of prior on EWOE). Consider the assessment described in
Exercise 7.7 using only the medium difficulty task. However, this time con-
sider three different prior distributions for Skill: (.33,.33,.33), (.6,.2,.2), and
(.6,.3,.1), for the states High, Medium, and Low respectively.

1. Calculate the weight of evidence for the proposition Skill = High when
the observable is correct under all three priors.

2. Calculate the weight of evidence for the proposition Skill = High when
the observable is incorrect under all three priors.
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3. Calculate the expected weight of evidence the medium task provides for
the proposition Skill = High under all three priors.

How do the weight of evidence and the expected weight of evidence change
with the change in prior?

7.9 (Value of information). Consider the assessment described in Exer-
cise 7.7. Assume that a certain school district has determined that having a
student in the High state for Skill at the end of the year is worth $ 1200,
having a student at the Medium state is worth $ 1000, and having a student
at the Low state is worth zero (we can always make one particular state worth
zero by subtracting a constant from all of the values). Calculate the value of
information for a Hard, Medium and Easy task.

7.10 (Additivity of WOE and EWOE). Consider a situation in which
neither H nor H is compound and hence X; 1 X5|H, H. Demonstrate under
those conditions that:

1. W(H:x1,z2) = W(H:x1) + W(H:x2)
2. EW(H:X1, X2) = EW(H:X1) + EW (H:X2)

7.11 (Test length and WOE). Consider a test with a single proficiency
variable, Skill, which takes on two values, High and Low, and let the prior
(population) probability for that task be (.5,.5). Suppose that there is a pool
of tasks to assess that skill, all of which have a single observable outcome X
which takes on values correct and incorrect. Assume that the link models
are identical for all the tasks in the pool and that P(X = correct|Skill =
High) = .8 and P(X = correct|Skill = Low) = .2. Calculate the EWOE for
Skill = High provided by a b5 task test, a 10 task test, and a 25 task test. Hint:
use the results from the Exercise 7.10.

7.12 (Reading passage topic). For a reading comprehension test for gradu-
ate students, the design team intends for there to be between 46 tasks calling
for a student to read a passage and then answer questions. The design team
would like the passages to be reasonably balance among topic chosen from
the natural sciences, the social sciences and the humanities. Describe how one
might set up constraints so that all forms will meet this criteria.

7.13 (Bayes net versus number right). Consider the assessment described
in Exercise 7.7 and a form that consists of 10 medium difficulty tasks. Suppose
we take this same assessment and score it with number right instead of the
Bayes net. How will the Bayes net and number right scores differ?

7.14 (Accuracy and task difficulty). Consider the assessment described
in Exercise 7.7 and two test forms, one consisting of 10 easy tasks and one
consisting of 10 hard tasks. Use a simulation experiment to calculate the accu-
racy matrix for both forms. What can be said about the difference between
the two forms?
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7.15 (Accuracy of language assessment). Modify the simplified language
assessment (Appendix A.2) by doubling the number of tasks of each type. Use
a simulation experiment to calculate the accuracy matrix for the modified test.

7.16 (Kappa and Lambda for Speaking and Listening). Calculate
Cohen’s k and Goodman and Kruskal’s A for Speaking and Listening pro-
ficiencies using the accuracy matrices in Table 7.6. Compare them to the
numbers from Example 7.7, and interpret what they say about the relative
information in the test for the four skills.

Table 7.6 Accuracy matrices for Speaking and Listening based on 1000 simulated
students

Speaking Listening
Novice Intermediate Advanced||Novice Intermediate Advanced
Novice 0.243 0.027 0.000 0.242 0.054 0.000
Intermediate| 0.044 0.390 0.030 0.054 0.290 0.059
Advanced 0.000 0.033 0.233 0.000 0.087 0.214
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Learning and Revising Models from Data
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Parameters for Bayesian Network Models

While Part I concentrated on models for one student at a time, Part IT expands
our horizons to include data from a population of similar students. The most
important result of this transition is that we can use experiential data to
improve our model. In particular, we can learn about the parameters and
structure of the model. Chapter 9 describes a method for learning parameters
from data, Chap. 10 introduces some measures of how well our model fits the
data and surveys a number of techniques for learning model structure from
data. Finally, Chap. 11 illustrates these ideas with an extensive analysis of a
single data set.

This chapter talks about various approaches to parameterizing graphical
models. There is a large and growing literature on parameterizing Bayes nets
and eliciting probabilities from experts more generally (e.g., Diez and Druzdzel
2006; Laskey and Mahoney 2000; O’Hagan et al. 2006; Zapata-Rivera 2002).
We bring some of these ideas to bear on the particular context of educational
assessment. Section 8.1 introduces basic notation for graphical parameters.
Section 8.2 discusses the hyper-Markov Laws, conditional independence rela-
tionships among parameters. Section 8.3 introduces the hyper-Dirichlet dis-
tribution, the natural conjugate distribution of the Bayesian network. As we
will see, the hyper-Dirichlet has many parameters as table size increases, and
it is often difficult to assess hyper-Dirichlet priors. The chapter thus explores
two different approaches to reducing the number of parameters in the model.
Section 8.4 describes models that add a layer of probabilistic noise to log-
ical functions. Section 8.5 describes a suggestion by Lou DiBello to model
probability tables using Samejima’s graded response model.

8.1 Parameterizing a Graphical Model

The standard directed graphical representation does a good job of hiding
the complexity of the graphical model. The edges in the model represent
probability tables that may have some internal structure. This hides the work
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we need to do in parameterizing the model. This chapter will look more closely
at the internal structure of conditional probability tables. The next chapter,
on estimation, will introduce a representation called plate notation to clarify
the independence and dependence relationships across tasks, parameters, and
multiple subjects.

The directed hypergraph representation starts to make the internal struc-
ture of conditional probability tables more explicit.

YV Taskl-Obs
V¥V Task2-Obs
V¥V Task3-Obs

Fig. 8.1 A simple latent class model with two skills
Reprinted from Almond et al. (2006a) with permission from ETS.

We'll start with a simple latent skill model with two skills and observable
responses from three tasks, all dichotomous, shown in Fig. 8.1. The symbol O
is used to denote Proficiency Model variables that are shared across evidence
models and the symbol V is used to denote evidence model variables that are
specific to a particular task.

V Task1-Obs
V Task2-Obs
YV Task3-Obs

Fig. 8.2 