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Preface

Since the seminal papers of Kalman (1960, 1961) and the early development in the
field of engineering, state-space models have become an increasingly important tool
for research in finance and economics in recent years. This book is a collection of
contributed papers that reflect this new phase of theoretical developments of state-
space models and their applications in economics and finance. We hope that the
breadth of research shared in this volume will serve as an inspiration and a valuable
reference for future users of state-space models in these two areas.

A generic state-space model consists of two equations. One describes how ob-
servable economic variables relate to potentially unobservable state variables, and
the other describes how state variables evolve over time. Both state and observable
variables can be either discrete- or continuous-time stochastic processes.

This book is divided into four parts. In Parts I and II, we mainly consider discrete-
time state-space models. Let Yt be an n×1 observable variable and Xt be a k×1 state
variable. Then, a state-space model can be written as follows:

Yt = f (Xt ,θ ,εt) (1)

Xt+1 = g(Xt ,θ ,ηt+1) (2)

where θ is an m× 1 vector of model parameters, and εt and ηt are independent and
identically distributed random shocks (or noises). f (·) and g(·) are n× 1 and k× 1
(non)linear functions, respectively. Because of its flexibility, many discrete-time
models in economics and finance can be represented in this state-space form. These
models include autoregressive moving average (ARMA) models, regression models
with time-varying coefficients, dynamic factor models (DFM), models with stochas-
tic volatility (SV), regime-switching models, and hidden Markov models (HMM).
In these models, the parameter θ is typically unknown. Therefore, one central ques-
tion in many applications is to estimate θ and to conduct statistical inferences of the
model (e.g., hypothesis testing). Researchers are also highly interested in obtaining
unbiased and efficient estimates of the underlying state variables Xt .

In Parts III and IV, we include models where the state variable, X(t), can be a
continuous-time finite-state Markov chain as that in hidden Markov or
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regime-switching models of Chaps. 8–11. X(t) can also be a general continuous-
time Markov process described by a stochastic differential equation as those in
Chaps. 12–15. The Markov processes include a geometric Brownian motion (GBM)
and a jump-diffusion process with regime switching among others. The observa-
tion process, Y (t), can be a continuous-path process (Chaps. 10 and 11), an equally
spaced time series (Chap. 14), or an irregularly spaced point process (Chaps. 8, 13,
and 15). These models have found many applications in finance such as pricing of
credit risk, optimal trading rules and hedging, optimal annuity purchasing or div-
idend policies, optimal learning in financial markets, and modeling (ultra) high-
frequency data.

Below, we provide a more detailed description of each part.

Part I includes three chapters on Particle Filtering and Parameter Learning in
Nonlinear State-Space Models. The introduction of particle filters has had a major
impact on the development of nonlinear and non-Gaussian state-space models. This
technique has expanded the range of practical applicability of state-space models to
cases with high-dimension state space.

In Chap. 1, Tze Leung Lai and Vibhav Bukkapatanam provide a review of the
estimation of the latent state variables using particle filters with known or unknown
model parameters. They also present a new adaptive particle filter that uses a compu-
tationally efficient Markov Chain Monte Carlo estimate of the posterior distribution
of the state-space model parameters in conjunction with sequential state estimation.
They describe several applications in finance and economics, including frailty mod-
els of portfolio default probabilities, SV models with contemporaneous price and
volatility jumps, and hidden Markov models for high-frequency transaction data.

In Chap. 2, Maria Paula Rios and Hedibert Freitas Lopes explore kernel smooth-
ing and conditional sufficient statistics extensions of the auxiliary particle filters (Pitt
and Shepard 1999) and bootstrap filters (Gordon, Salmond and Smith 1993). Using
simulated data from SV models with Markov switching, they show that the Liu-
West particle filter degenerates and has the largest Monte Carlo error, while their
auxiliary particle filter extended with sufficient statistics (APF + SS) has a much
better performance. Their APF + SS filter takes advantage of recursive sufficient
statistics that are sequentially tracked and whose behavior resembles that of a latent
state with conditionally deterministic updates. They also assess the performance of
the APF + SS filter in sequential estimation in examples with real data.

In Chap. 3, Alexandre J. Chorin, Matthias Morzfeld, and Xuemin Tu review the
implicit particle filter. The key idea is to concentrate the particles on the high-
probability regions of the target probability density function (pdf) so that the num-
ber of particles required for a good approximation of the pdf remains manageable
even if the state space has high dimensions. They explain how this idea is imple-
mented, discuss special cases of practical importance, and show the relations of
the implicit particle filter with other data assimilation methods. They further illus-
trate the method with examples such as SV, stochastic Lorenz attractor, stochastic
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Kuramoto–Sivashinsky equation, and data assimilations.

Part II includes four chapters on the application of Linear State-Space Models in
Macroeconomics and Finance.

In Chap. 4, Yulei Luo, Jun Nie, and Eric Young explicitly solve a linear-quadratic
macroeconomic model under model uncertainty (due to concerns of model misspec-
ification) and state uncertainty (due to limited information constraint). They show
that the model can be mapped to a state-space representation that can be used to
quantify the key parameters of model uncertainty. They demonstrate through exam-
ples how this framework can be used to study a range of interesting questions in
macroeconomics and international finance such as explaining current account dy-
namics and resolving the international consumption puzzle.

In Chap. 5, Pym Manopimoke estimates a state-space model of the inflation dy-
namics in Hong Kong. The model allows her to decompose Hong Kong inflation
into a stochastic trend and a stationary cycle component that can be driven by both
domestic and foreign economic variables such as output gaps. This empirical model
is consistent with economic theories of inflation and output, offering new insight
into the determination of trend and cyclical inflation in Hong Kong. This is an ex-
ample of the power of state-space models in empirical macroeconomic research.

In recent years, vector autoregression models (VARs) have become a primary tool
for investigating dynamic relationship between multiple economic variables. One
challenge, however, is that such relationships are often evolving over time as a result
of shifts in government policies or structural changes in the economy. In Chap. 6,
Taeyoung Doh and Michael Connolly show that the state-space representation is a
useful tool to estimate VARs with time-varying coefficients and/or SV. They show
that these models can better capture the changing relationships between important
macroeconomic variables.

Chapter 7 is an application to finance. Jun Ma nd Mark Wohar use a state-space
model to address one important issue regarding sources of stock market volatility.
They argue that the existing empirical studies have focused on point estimation and
lack robust statistical inference. The authors show that the small signal-to-noise ra-
tio has made the market data contain too little useful information for researchers to
reach robust conclusions about the relative importance of different sources of stock
market volatility.

Part III includes five chapters on Hidden Markov Models (HMM), Regime
Switching, and Mathematical Finance.

Chapters 8 and 9 are on hidden Markov models and their applications to finance.
In Chap. 8, Robert Elliott and Tak Kuen Siu discuss an intensity-based model of
portfolio credit risk using a collection of hidden Markov-modulated single jump
processes. The model is a dynamic version of a frailty model casted in state-space
form, able to describe dependent default risks among firms that are exposed to
a common hidden dynamic frailty factor. The authors develop filtering equations
and filter-based estimates of the model in recursive forms. They also obtain the
joint default probability of reference entities in a credit portfolio as well as the
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variance dynamics for both observations and hidden states. In Chap. 9, Xiaojing
Xi and Rogemar Mamon develop a weak hidden Markov model (WHMM) for the
term structure of interest rates where the means and volatilities of bond yields are
governed by a second-order Markov chain in discrete time. The authors use the
multivariate filtering technique in conjunction with the EM algorithm to estimate
the model parameters. They assess the goodness of fit of the model based on out-of-
sample forecasts and apply AIC to determine the optimal number of regimes in their
model. They apply the model to a data set of daily Treasury yields in the USA. The
empirical results show that their WHMM outperforms the standard HMM in terms
of out-of-sample forecasts.

Chapters 10 and 11 are applications of regime-switching models to insurance
risk and optimal trading rule. Models with regime switching usually don’t have an-
alytical solutions to the associated stochastic control problems. In Chap. 10, Zhuo
Jin and George Yin discuss numerical methods for solving stochastic optimization
problems involving regime-switching models. They propose a numerical solution to
the system of HJB equations based on Markov chain approximation. They show how
these regime-switching models can be applied to analyze optimal annuity purchas-
ing and optimal dividend payment strategy problems. In Chap. 11, Eunju Sohn and
Qing Zhang study an optimal trading rule problem where the underlying asset price
is governed by a mean-reverting process with regime switching. The investor’s ob-
jective is to buy and sell the asset so as to maximize the overall return. The authors
consider the case in which the jump rates of the Markov chain can go to infinite.
They study the asymptotic properties of the limit value functions and establish a
limiting problem which is easier to solve. They show that the solution to the limit-
ing problem can be used to construct a trading rule that is nearly optimal.

In Chap. 12, Mingming Wang and Allanus Tsoi discuss Constant Proportion
Portfolio Insurance (CPPI) problem with jump diffusion. They also consider the as-
sociated problem of hedging using both the PDE/PIDE and martingale approaches.
In particular, they consider the mean-variance hedging problem when the contingent
claim is a function of the CPPI portfolio value.

Part IV includes three chapters on Nonlinear State-Space Models for High-
Frequency Financial Data.

In Chap. 13, combining classical Kyle and Glosten–Milgrom models, Yoonjung
Lee proposes a new state-space modeling framework under asymmetric information.
The model is able to describe the interactions among some important variables in
financial markets such as the price impact of a trade, the duration between trades,
and the degree of information asymmetry. In the model, a private signal is partially
revealed through trades, while new public information arrives continuously at the
market. In order to set a competitive price that rationally incorporates these two
sources of information, the market maker utilizes Bayesian learning. The author
derives the corresponding nonlinear filtering equation using anticipative Girsanov
transformation. She further proves the existence and uniqueness of the ask and bid
prices using an SPDE approach. The pricing rule depends on the actual sequence
of order arrivals, not just the total number of buy/sell orders. The price impact of a
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trade tends to decrease when the duration between trades gets longer. The speed at
which the information gets incorporated into the price depends on the quality of the
private signal and the trading rate of informed traders.

Chapter 14 is concerned with volatility estimation and prediction. A popular ap-
proach is to use the high-frequency data to estimate volatilities and then fit a low-
frequency AR volatility model for forecasting. While the empirical performance
of this approach is good, there is a lack of theoretical foundation. In this chapter,
Yazhen Wang and Xin Zhang show that, for rather general underlying price and
volatility processes, the realized volatility estimators approximately follow a het-
erogeneous autoregressive model, hence providing theoretical justifications of the
popular approach. An important feature of the model is that the two- or multi-scaled
realized volatility estimators employed are based on a state-space model, where the
prices from high-frequency transactions may include market microstructure noise.

Chapter 15 is concerned with estimating models for ultra-high frequency data.
The class of models has a random-arrival-time state-space form that explicitly ac-
commodates market microstructure noises in asset price. Although the model is able
to capture stylized facts of tick data, the nonlinear state-space model structure makes
parameter estimation a challenge. Cai Zhu and James Huang apply particle Markov
Chain Monte Carlo (PMCMC) method to estimate a couple models when the un-
derlying intrinsic value processes follow a GBM or a jump-diffusion process. They
show that the PMCMC method is able to yield reasonable estimates of the model
parameters and further discuss numeric methods that are able to enhance the effi-
ciency of the algorithm.

We would like to express our gratitude to all the contributors of the book chapters
for their efforts in making their research accessible to a wide range readers. We hope
the book can lead to more interdisciplinary research among economists, mathemati-
cians, and statisticians. We also would like to thank Yaozhong Hu of University of
Kansas, Neng Wang of Columbia University, and Zhenxiao Wu of National Univer-
sity of Singapore for their generous help during the preparation of this book.

We want to thank Brian Foster, a former Springer editor, for his enthusiasm and
help in the early stage of this book project. We also want to thank Hannah Bracken,
Marc Strauss, Nicolas Philipson, and William Curtis of Springer New York. Their
continuing support and commitment throughout the project are highly appreciated.
We owe a special thanks to Hannah Bracken for her superb editorial assistance.
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Chapter 1
Adaptive Filtering, Nonlinear State-Space
Models, and Applications in Finance
and Econometrics

Tze Leung Lai and Vibhav Bukkapatanam

1.1 Introduction

The Kalman filter, which is applicable to linear Gaussian models, and its
modifications such as extended Kalman filters, Gaussian sum filters, and unscented
Kalman filters for nonlinear state-space models are widely used in engineering.
Without relying on local linearization techniques or functional approximations, par-
ticle filters are able to handle a large class of nonlinear non-Gaussian state-space
models and have become increasingly popular in engineering applications in the
past decade. Filtering in state-space models involves sequential computation of
the posterior distribution of the latent state xt given observations y1, . . . ,yt . Smooth-
ing involves the estimation of the hidden state xt given observations y1, . . . ,yn, with
1 ≤ t ≤ n. More details are given in Sect. 1.2.

State-space models typically involve unknown parameters that have to be esti-
mated from the data by either maximum likelihood or Bayesian methods. Replacing
these unknown parameters in a particle filter by their sequential estimates leads to
an adaptive particle filter; see Liu and West (2001) in [31], Storvik (2002) in [38],
Carvalho et al. (2010) in [9], Polson et al. (2008) in [35], and Andrieu et al. (2010)
in [2]. Section 1.3 reviews existing methods for sequential parameter estimation
in state-space models. Section 1.4 describes a new adaptive filter that combines a
novel Markov Chain Monte Carlo (MCMC) scheme for sequential parameter esti-
mation with an efficient particle filter to estimate the state xt . An important advan-
tage of the new approach is that it yields a consistent estimate of the Monte Carlo
standard error.
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4 T.L. Lai and V. Bukkapatanam

Particle filters have powerful and far-reaching applications in state-space models
in finance and econometrics, some of which are described in Sect. 1.5. Section 1.6
gives some concluding remarks.

1.2 Particle Filters in Nonlinear State-Space Models

A general state-space model, also called a hidden Markov model (HMM), is defined
by the evolution and observation density functions

xt |xt−1 ∼ f (xt |xt−1,θ ) (1.1)

yt |xt ∼ g(yt |xt ,θ )

with respect to measures μ and ν , respectively, where θ is a vector of parameters of
the model. In the Bayesian formulation, the initial state x0 has prior density f (x0|θ ),
and θ has the prior density π(θ ) with respect to some measure on the parameter
space. In the HMM, xt is the latent state and yt is the observed data at time t. The
filtering problem is to sequentially estimate the posterior distribution p(xt ,θ |Yt),
where Yt = (y1,y2, . . . ,yt) is the set of observations up to time t. Particle filters
approximate this posterior density by using a set of particles (xt ,θ )(i) with weights

w̃(i)
t (i = 1,2, . . . ,N) summing to 1, so that

pN(xt ,θ |Yt)(·) =
N

∑
i=1

w̃(i)
t δ(xt ,θ)(i) (·) (1.2)

in which δz is the Dirac delta function with point mass at z. We now describe dif-
ferent approaches for sampling xs (s ≤ t) sequentially to form the particle filter in

(1.2) when θ is fixed in advance. The weights w̃(i)
t in (1.2) can be converted to

w(i)
t = 1/N by a resampling step that samples with replacement N particles from

{(xt ,θ )(i) : 1 ≤ i ≤ N} with respective weights w̃(i)
t , as in the original proposal by

Gordon et al. (1993) in [23] reviewed below. This is called bootstrap resampling.
An alternative resampling scheme is introduced in Sect. 1.2.3. Resampling can help
to mitigate the degeneracy of particles, which will be discussed in Sects. 1.3 and 1.4.
Since resampling is optional and also can be used occasionally, we do not include
it in the description of the basic algorithm in Sect. 1.2.1. Moreover, we assume the
parameter vector to be known and therefore omit it in the rest of this section.

1.2.1 Bootstrap Filter

Originally proposed by Gordon et al. (1993) in [23], the bootstrap filter chooses
samples from the prior distribution of the states. The Bayesian update equation for
the posterior in a general filter can be written as
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p(xt |Yt) =
g(yt |xt)p(xt |Yt−1)

∫

g(yt |x′t)p(x′t |Yt−1)dμ(x′t)
(1.3)

where

p(xt |Yt−1) =

∫

f (xt |xt−1)p(xt−1|Yt−1)dμ(xt−1) (1.4)

The bootstrap filter samples from the filtering distribution p(xt |Yt−1) by first prop-
agating the particles which approximate p(xt−1|Yt−1) using the evolution den-
sity f (xt |xt−1), and reweighing the particles thus obtained by the likelihood ratio
weights, as summarized in Algorithm 1.

Algorithm 1 : Bootstrap Filter

Initialize particles {x(i)0 }N
i=1 and the corresponding weights {w̃(i)

0 = 1/N}N
i=1

for t=1, 2, . . . , T do
for i=1, 2, . . . , N do

a) Propagate particle x(i)t−1 to x(i)t using the evolution density f (xt |x(i)t−1)

b) Update particle weights according to w̃(i)
t ∝ w(i)

t−1 g(yt |x(i)t )
end for

end for

1.2.2 Auxiliary Particle Filter

The auxiliary particle filter proposed by Pitt and Shephard (1999) in [33] generates
samples from the filtering distribution with density function

p(xt ,xt−1|Yt) ∝ p(xt |yt ,xt−1)p(yt |xt−1)p(xt−1|Yt−1) (1.5)

Particles approximating p(xt−1|Yt−1) are first resampled using weights proportional
to the predictive density p(yt |xt−1), and the resampled particles are propagated for-
ward using p(xt |yt ,xt−1). This is convenient only if p(xt |yt ,xt−1) is not difficult to
sample from and p(yt |xt−1) is easily available, which is often not the case. Accord-
ingly Pitt and Shephard in [33] suggest to replace p(yt |xt−1) by p(yt |λ (xt−1)), in
which λ (xt−1) is the mean, median, or mode of the distribution of xt given xt−1,
and to propagate the resampled particles by sampling from the proposal density
f (xt |xt−1), instead of directly from p(xt |xt−1,yt). The method is summarized in
Algorithm 2.
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Algorithm 2 : Auxiliary Particle Filter

Initialize particles {x(i)0 }N
i=1 and the corresponding weights {w(i)

0 = 1/N}N
i=1

for t=1, 2, . . . , T do
for i=1, 2, . . . , N do

a) Resample particle x̃(i)t−1 from {x(1)t−1, . . .,x
(N)
t−1} using the weight w̃(i)

t ∝ p(yt |λ (x(i)t−1))

b) Propagate particle x̃(i)t−1 to x̃(i)t using f (x̃t |x̃(i)t−1)

c) Resample x(i)t from {x̃(1)t , . . ., x̃(N)
t } using the weight w(i)

t ∝ g(yt |x̃(i)t )/g(yt |λ (x(i)t−1))

end for
end for

1.2.3 Residual Bernoulli Resampling

Bootstrap resampling has been described in the paragraph preceding Sect. 1.2.1. In
fact, the name bootstrap filter in Sect. 1.2.1 came from bootstrap resampling that
Gordon et al. in [23] used to convert weighted particles to particles with equal
weights. Residual Bernoulli resampling has been proposed as an alternative to boot-
strap resampling and has been shown to often lead to smaller variance for the associ-
ated particle filter than the bootstrap resampling scheme. The method is summarized
in Algorithm 3.

Algorithm 3 : Residual Resampling Scheme

Input: A set of particles {(w̃(i)
t , ˜X

(i)
t ), i = 1,2, . . . ,M}

Output: A new set of particles {( 1
M ,X

(i)
t ), i = 1,2, . . . ,M}

Set R = ∑M
i=1�Mw̃(i)

t �
for i=1, 2, . . . , M do

– Set ŵ(i)
t =

Mw̃(i)
t −�Mw̃(i)

t �
M−R

end for
for j=1, 2, . . . , M do

– Sample N̂ j ∼ mult(M−R, ŵ(1)
t , ŵ(2)

t , . . . , ŵ(M)
t )

– Set Nj = �Mw̃( j)
n �+ N̂ j

– Set X
( j)

t = ˜X
(Nj)

t
end for

1.3 Particle Filters with Sequential Parameter Estimation

An important problem which has been studied extensively in recent filtering
literature is that of joint parameter estimation and filtering for general state-space
models. Traditional methods which incorporate the parameters as part of the latent
state vector suffer from severe degeneracy problems due to the absence of state evo-
lution dynamics for the subvector of latent states representing parameters. Methods
to address this issue have been considered in [2, 9, 31, 35, 38], and [34]. They are
summarized below.
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1.3.1 Liu and West’s Filter

Liu and West (2001) in [31] suggest to use a kernel smoothing approximation
to the posterior density p(θ |Yt−1) of the unknown parameter θ via a mixture
of multivariate normals and to combine it with an auxiliary particle filter de-

scribed in Algorithm 2. Let {x(i)t−1,θ
(i)
t−1}N

i=1 be a set of particles with weights

w(i)
t−1 (i = 1, . . . ,N), which approximate p(xt−1,θ |Yt−1). They approximate the

posterior density for θ by

p(θ |Yt−1) =
N

∑
j=1

w( j)
t−1N(θ ;m( j),Σt−1)

where

m( j) = aθ ( j)
t−1 +(1− a)θ̄

θ̄ =
N

∑
j=1

θ ( j)
t−1

N

Σt−1 = (1− a2)
N

∑
j=1

(θ ( j)
t−1 − θ̄)(θ ( j)

t−1 − θ̄)′

N

The constant a measures the extent of shrinkage of the individual θ ( j)
t−1 to the overall

mean θ̄ . It is a tuning parameter whose choice is discussed in [31]. The mixture
approximation generates new samples from the current posterior and attempts to
avoid particle degeneracy. The method is summarized in Algorithm 4.

Algorithm 4 : Liu and West’s Filter

Output: The filtering particles {(x(i)t ,θ (i)
t )}N

i=1 and the parameter posterior p(θ |Yt ), t = 1, . . . ,T
for t=1,2,. . . ,T do

for i=1,2,. . . ,N do
a) Resample (x̃t−1, θ̃t−1)

(i) from {(x( j)
t−1,θ

( j)
t−1)}N

j=1 with weights w(i)
t ∝ p(yt |λ (x(i)t−1),m

(i))

b) Propagate θ̃ (i)
t−1 to θ̂ (i)

t using N(·;m(i),Σt−1)

c) Propagate x̃(i)t−1 to x̂(i)t using p(xt |x̃(i)t−1, θ̃
(i)
t )

d) Resample (xt ,θt)
(i) from {(x̂t , θ̂t)

( j)}N
j=1 with weights w(i)

t ∝ p(yt |x̂(i)t ,θ̂ (i)t )/p(yt |λ (x̃(i)t−1),m
(i))

end for
end for
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1.3.2 Storvik’s Filter

Storvik (2002) in [38] considered sequential parameter estimation for a class of
state-space models in which the posterior parameter density p(θ |Xt ,Yt) can be
written as p(θ |st), where st is a low-dimensional set of sufficient statistics that
can be recursively updated by st = S (st−1,xt ,yt). The method is summarized in
Algorithm 5.

Algorithm 5 : Storvik’s Filter

Output: The filtering particles {(x(i)t ,θ (i)
t )}N

i=1 and the parameter posterior p(θ |st ), t = 1, . . . ,T
for t=1,2,. . . ,T do

for i=1,2,. . . ,N do
a) Propagate x(i)t−1 to x̃(i)t using q(xt |x̃( j)

t−1,θ ,Yt)

b) Resample (xt , st−1)
(i) from {(x̃t , st−1)

( j)}N
j=1 with weights w(i)

t ∝ p(yt |x̃(i)t−1,θ)p(x̃(i)t |x(i)t−1,θ)

q(x̃(i)t |x(i)t−1,θ ,Yt )

c) Compute sufficient statistics s(i)t = S (s(i)t−1,x
(i)
t ,yt)

d) Sample θ (t)
t from p(θ |s(i)t )

end for
end for

1.3.3 Particle Learning

Carvalho et al. (2010) in [9] propose the particle learning method which utilizes
a resample-propagate scheme similar to auxiliary particle filters and show that the
proposed method outperforms the filter of Liu and West of [31] in some comparative
studies. Assuming the availability of conditional sufficient statistics st to represent
the posterior of the parameter vector θ , and conditional sufficient statistics st,x re-
cursive state and parameter updates. The particles are now represented at each time

by z(i)t (xt ,st ,st,x,θ )(i) and the Bayesian updating equation can be written as

p(zt |Yt) =

∫

p(st |xt ,st−1,yt)p(xt |zt−1,yt)p(zt−1|Yt)dxtdzt−1 (1.6)

where

p(zt−1|Yt) ∝ p(Yt |zt−1)p(zt−1|Yt−1) (1.7)

Denoting the updating formulas for st and st,x by st = S (st−1,xt ,yt) and st,x =
K (st−1,x,θ ,yt), Algorithm 6 summarizes the resampling and propagation steps in
their filter.
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Algorithm 6 : Particle Learning

Output: The filtering density approximated by particles z(i)t and the parameter posterior p(θ |st )
for t=1,2,. . . ,T do

1) Resample: ẑ(i)t−1 from the particles {z( j)
t−1}N

j=1 using weights w(i)
t ∝ p(yt |z(i)t−1)

2) Propagate: x̂(i)t−1 to x(i)t using the distribution p(xt |ẑ(i)t−1,yt)

3) Propagate: Parameter sufficient statistics s(i)t = S (ŝ(i)t−1,x
(i)
t ,yt)

4) Propagate: Sample θ (i) from p(θ |s(i)t )

5) Propagate: State sufficient statistics s(i)t ,x = K (ŝ(i)t−1,x,θ
(i),yt)

end for

1.3.4 Particle MCMC

Hybrid methods that combine particle filters with MCMC schemes have been con-
sidered in the literature. Important recent developments in this direction are [2, 35],
and [34]. Polson et al. (2008) in [35] use a rolling window MCMC algorithm that
approximates the target posterior distribution by a mixture of lag-k smoothing dis-
tributions. They recast the filtering problem as a sequence of smaller smoothing
problems which can be solved using standard MCMC approaches as in [7] and [8].
They exploit, whenever possible, a sufficient statistic structure as in [19] and [38]
to perform parameter updates and develop an algorithm with linear computational
cost. Andrieu et al. (2010) in [2] introduce the particle MCMC (PMCMC) methods
to perform inference on the unknown parameter vector θ . Pitt et al. (2012) in [34]
provide further analytic results on PMCMC and show that using auxiliary particle
filters in PMCMC schemes may help reduce computation time.

1.4 A New Approach to Adaptive Particle Filtering

In this section, we describe a new adaptive filtering technique, recently introduced
in [11, 12], for joint parameter and latent state filtering in particle filters, which
provides substantial improvement over previous approaches. The authors in [12]
propose an efficient MCMC method to estimate the posterior distribution of the pa-
rameters, which can be used in conjunction with traditional particle filter methods
that assume the parameters to be known. Bukkapatanam et al. (2012) in [5] pro-
vide further development of the methodology and its applications to economics and
finance, which will be summarized in Sect. 1.5.

Chan and Lai (2012a) in [11] begin by considering the case where the parameter
vector θ is known so that it can be omitted from the notation for particle fil-
ters, as in Sects. 1.2.1–1.2.3. They consider more generally the estimation of ψT =
E[ψ(XT )|YT ] instead of E[ψ(xT )|YT ], where XT = (x1, . . . ,xT ). When bootstrap
resampling is performed at every stage, they show that the bootstrap filter estimate
̂ψT of ψT = E[ψ(XT )|YT ] has a martingale representation
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m(̂ψT −ψT ) =
m

∑
j=1

(ε j
1 + · · ·+ ε j

2T−1)+Op(1)

where {ε j
k , 1 ≤ k ≤ 2T − 1} is a martingale difference sequence for j = 1, . . . ,M.

They use this to derive the central limit theorem
√

M(̂ψT −ψT ) =⇒ N(0,σ2) as M → ∞

for the particle filter and a consistent estimate

̂σ2 =
1
M

M

∑
j=1

(

∑
i:Ai

T−1= j

w̃(i)
T

swT
[ψ(X i

T )− ̂ψT ]
)2

of σ2, where swt = M−1∑M
j=1 w̃( j)

t , and Ai
t denotes the ancestral origin of the particle

X i
t , thus Ai

t = j if the first component of X i
t is x j

1, recalling that the first generation
of the M particles consists of x1

1, . . . ,x
m
1 before resampling. Chan and Lai (2012a)

in [11] also extend these results to the case where occasional resampling is used.
Conditional on YT , the mean squared error of estimating ψT by the particle filter
̂ψT is

E[{ψ(XT )−̂ψT}2|YT ]

= E[{ψ(XT )−ψT}2|YT ]
︸ ︷︷ ︸

(I)

+E[{ψT − ̂ψT}2|YT ]
︸ ︷︷ ︸

(II)

(1.8)

The preceding discussion shows how (II) can be consistently estimated. To estimate
(I), write it as E[ψ2(XT )|YT ]−ψ2

T . The first term can be estimated by particle
filters (with ψ2 replacing ψ) and the second term is estimated by ̂ψ2

T .

1.4.1 A New MCMC Approach to Sequential Parameter
Estimation

As described in the previous section, several hybrid schemes that combine parti-
cle filters and MCMC schemes have been proposed in literature. A shortcoming of
most of the existing methods is the prohibitively lengthy computational time, which
makes it very difficult to carry out simulation studies of their performance. To sig-
nificantly reduce the computational burden of these hybrid schemes, Chan and Lai
(2012b) in [12] use the following state substitution method to carry out MCMC
iterations.

In what follows, we refer to the posterior density p(θ |Yt) of a parameter vector θ
given the observed data as the target density. Since Yt is observed, we shall treat it as
a constant and simply denote p(θ |Yt) by p(θ ). This distribution is approximated by
a sequentially selected set of n atoms and the weights associated with the atoms. The
MCMC scheme chooses these representative atoms by a Markov updating procedure
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Algorithm 7 : Efficient MCMC Algorithm involving State Substitutions
Output: Atoms SK = {θ 1

K , . . .,θ n
K} approximating the target density

for k=1,2,. . . ,K do
Sample θ n+1

k−1 from q(·,Sk−1)

Let Sk−1,i = (Sk−1 ∪{θ n+1
k−1 })\{θ i

k−1} i = 1,2, . . .,n+1
Generate Jk with the following distribution

P(Jk = i) =
λk.i

∑n+1
j=1 λk. j

(1.9)

where

λk.i =
q(θ i

k−1;Sk−1,i)

p(θ i
k−1)

(1.10)

if Jk = n+1 then

θ i
k = θ i

k−1 ∀ i = 1, . . . ,n

else

θ i
k =

{

θ i
k−1 for i = 1, . . .,n if i �= Jk

θ n+1
k−1 if i = Jk

(1.11)

end if
end for

involving state substitutions so that the associated distribution of the weights on the
atoms converges weakly to the target distribution. Let Θ = {θ : p(θ ) > 0} be an
open subset of Rd . Let q(·;S) be a proposal distribution whose form depends on a
given set of S of parameters. Let S0 = {θ 1

0 , . . . ,θ n
0 } be an initial set of n parameter

values. The method is summarized in Algorithm 7. Note that since (1.10) is a quo-
tient, the target density only needs to be specified up to a normalizing constant. The
substitution idea represented by (1.11) attempts to use θ n+1

k−1 that is newly generated

from the proposal distribution to substitute θ Jk
k−1 that tends to have a larger likeli-

hood ratio of the proposal density to the target density. The estimate of E(ψ(θ )|Yt)
is a weighted average of the form

̂ψ(k) =
∑n

i=1∑
K
k=1 λ̃

−1
k ψ(θ i

k−1)

n∑K
k=1 λ̃

−1
k

(1.12)

where

λ̃K =

(

1
n

n

∑
i=1

λ i
K

)

∨λ∗ (1.13)

and λ∗ is a positive number to ensure that the weights λ̃−1
k are not too large.
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1.4.2 Adaptive Particle Filters and Asymptotic Theory

Using the MCMC procedure of Sect. 1.4.1 for parameter estimation, Chan and Lai
(2012b) in [12] introduce an adaptive particle filter algorithm that is described in
this section. Consider the state-space model

Xt ∼ fθ (·|Xt−1)

Yt ∼ gθ (·|Xt)

where fθ (·|X0) = fθ (·), and the prior distribution of the parameter vector θ has
density function π . We initialize the adaptive filter by sampling θ 1

0 , . . . ,θ n
0 indepen-

dently from π . Let S0
0 = {θ 1

0 , . . . ,θ
n
0 }, p̂0(θ ) = π(θ ), wi

0,m = 1 for i = 1, . . . ,n, and
m = 1, . . . ,M and where M denotes the number of particles in the particle filter. The
parameter and state update steps are described in Algorithm 8, in which K denotes
the number of MCMC iterations and T is the number of time steps. The adaptive
particle filter estimate E[ψt(θ ,Xt)|Yt ] is given by

̂ψt =
1
n

n

∑
i=1

̂ψ i
t (1.14)

with

̂ψ i
t =

∑K
k=1

˜λ−1
k

(

∑M
m=1 ν i

t,mψt(θ i
k,X

i
t,m)

)

∑K
k=1

˜λ−1
k

(1.15)

where using the notation in Algorithm 8,

ν i
t,m =

w̃i
t,m

∑M
l=1 w̃i

t,l

(1.16)

We now focus on the case ψT =E[ψ(xT ,θ )|YT ], for ψ involving only xT instead
of the entire trajectory XT . For large T , the adaptive filter is computationally inten-
sive and the MCMC algorithm may also take a long time to converge. On the other
hand, under certain regularity conditions, the MLE converges to θ as T → ∞. We
propose to break the data into smaller batches of size T0 and carry out the preced-
ing algorithm for each batch, initializing with the prior density for the first batch
and using the kernel density, e.g. b−d∑n

i=1 φ((θ − θ i
K)/b), instead of the atoms to

approximate the posterior for the subsequent batches, where φ denotes the N(0, Id)
density, d = dim(θ ), and b = bK is the bandwidth such that bK → 0 as K → ∞.
After a certain number κ of batches (such that κT0 is large enough; the covariance
matrix of the atoms in SK of the MCMC algorithm gives a good diagnostic check
on whether that is the case), we can estimate θ by recursive maximum likelihood
(gradient-type EM involving particle filters for the E-step) and replace the unknown
θ in the particle filter that assumes θ to be known by the recursive estimate ̂θt at
stage t.
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Algorithm 8 : Adaptive Filter
Input: S0

0, p̂0,wi
0,n

Output: Atoms SK = {θ 1
K , . . .,θ n

K} approximating the target density and the filtered states
for t = 1, . . . ,T do

for i = 1, . . . ,n do
for m = 1, . . .,M do

Sample the new particles ˜Xi
t ,m as below and let ˜X i

t ,m = (X i
t−1,m,

˜Xi
t ,m)

˜Xi
t ,m ∼ fθ i

k−1
(·,Xi

t−1,m)

Update the weights w̃i
t ,m = wi

t−1,m ×gθ i
k−1

(Yt |˜Xi
t ,m)

end for
Compute the Effective Sample Size ESSi

t =
(∑M

m=1 w̃i
t,m)

2

∑M
m=1(w̃

i
t,m)

2

if ESSi
t < c and t < T then

Resample ˜X i
t ,m using bootstrap resampling with weights w̃i

t ,m to get X i
t ,m

else
Set X i

t ,m = ˜X i
t ,m and wi

t ,m = w̃i
t ,m

end if
Update the target density p̂t (θ i

k−1) = p̂τ i
t
(θ i

k−1)
∑M

m=1 w̃i
t,m

M where τ i
t is the most recent re-

sampling time before time t for atom θ i
k−1. τ i

t = 0 if no resampling has occurred
end for
for k = 1, . . . ,K do

Generate a new atom θ n+1
k−1 from q(·; γ̄k), where γ̄k = n−1∑n

i=1 γ(θ i
k−1) for some γ :Θ →Γ

with Γ ⊂ R
dΓ

for u=1,. . . ,t do
Perform particle filter update steps with atom set to θ n+1

k−1
end for
Update the target density p̂t (θ n+1

k−1 ) = p̂τ i
t
(θ n+1

k−1 )
∑M

m=1 wi
t,m

M using the weights of particles
generated for this atom
Substitute θ n+1

k−1 into some θ j
k−1 using the MCMC Algorithm (7)

end for
Get the set of atoms for the next particle update step Sk

end for

Bukkapatanam et al. (2012) in [5] have developed an asymptotic theory for the
adaptive filter described in Algorithm 8 using the results of [12] on the asymptotic
bias and asymptotic variance of the MCMC scheme in Sect. 1.4.1 as n → ∞ and
K → ∞, in the case of fixed T . For large T , they use the batch idea in the preced-
ing paragraph. The theory of stochastic approximation can be used to show that
the recursive maximum likelihood estimate ̂θT is asymptotically normal as T → ∞.
Analogous to (1.8), the asymptotic variance of the adaptive particle filter ̂ψ can be
decomposed as the sum
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VT +(1+ op(1))(σ
2/T + σ2

θ/M) (1.17)

where σ2
θ/M is the asymptotic Monte Carlo variance of the particle filter (with M

particles) when θ is known, σ2/T is the additional variance due to replacing θ in the
particle filter by ̂θT , and

VT = E
[{ψ(xT ,θ )−E(ψ(xT ,θ )|YT )}2|YT

]

(1.18)

1.5 Applications in Finance and Economics

We begin this section with an application of the adaptive particle filter in Sect. 1.4.2
to filtering in dynamic frailty models, introduced by [16] in the wake of the Fi-
nancial Crisis of 2007–2008, for corporate defaults. We then describe a variety of
other applications of nonlinear state-space models and adaptive particle filters in the
recent finance and economics literature.

1.5.1 Frailty Models for Corporate Defaults

In an influential study of default probabilities in corporate debt portfolios, Duffie
et al. (2009) in [15] find that conventional estimators of portfolio default probabil-
ities are downward biased and show that firms are exposed to a common dynamic
latent factor driving default even after controlling for observable factors, which are
used by conventional estimators to compute the firm-by-firm default probabilities.
This latent variable, which in essence captures the other factors that the modeler
may have failed to consider, is shown to cause a substantial increase in the condi-
tional probability of large portfolio default losses. An example of one such factor
which was not included in many of the mortgage portfolio default loss models, and
thereby contributed to a large loss in US mortgage portfolios (>$800 billion), is the
degree to which borrowers and mortgage brokers provided proper documentation
of borrower’s credit qualities. Duffie et al. (2009) in [15] model this unobserved
covariate, called frailty, as a dynamic process and use the stochastic EM algorithm
proposed in [42] to perform maximum likelihood estimation of the model parame-
ters, and MCMC methods to estimate the conditional distribution of the latent frailty
process.

Specifically, they model the intensity λi(t) of default of firm i at time t by

λi(t) = exp(η0 +η1 ·Vt +η2 ·Uit +ηFt) (1.19)

where · denotes the inner product of two vectors, Uit is a firm-specific observable
covariate vector at time t, Vt consists of the observable macroeconomic covari-
ates at time t, Ft is a dynamic frailty covariate that is not observable, and η0,η1,
η2,andη are unknown parameters. The latent frailty Ft is assumed to follow an
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Ornstein–Uhlenbeck (OU) process

dFt = κ(μ−Ft)dt + dBt , F0 = 0 (1.20)

where Bt is a standard Brownian motion, κ > 0 is the mean reversion parameter, and
μ is the steady-state mean of the OU process. The observations at time t are Yt =
{(Ti ∧ (t − ei)

+,δit ,Uit ,Vt)}I
i=1, where Ti = τi ∧ ci, with τi being the default time of

firm i (measured from the firm’s entry time ei into the study), ci being the censoring
variable caused by the firm’s exit from the study due to merger, acquisition, or other
failure, and δit is the default indicator (taking the value 0 or 1) so that δit = 1 if
Ti ∧ t = τi. It is assumed that τi and ci are independent.

The MCMC methods used in [15] to compute the posterior distribution of the
latent frailty process Ft involve both Gibbs sampling and random walk Metropolis–
Hastings steps [32]. Together with the stochastic EM algorithm used to estimate the
unknown parameters η0,η1,η2,η ,κ ,and μ , the procedure is very computationally
intensive. We use the adaptive particle filter in Sect. 1.4.2 instead in the following
simulation study. The adaptive particle filter involves n = 1,000 atoms, M = 5,000
particles, and K = 1,000 MCMC iterations. Because the adaptive filter is much faster
than the procedure of [15], we can indeed carry out the simulation study with 100
simulations with relative ease.

The simulation study considers I = 500 firms, with e1 = · · ·= eI = 0, and a time
period of T = 30 years. The parameters of the OU process (1.20) are κ = 0.125 and
μ = 1. We assume a scalar firm-specific covariate Uit and a single macroeconomic
variable Vt . Following [17], we assume that these covariates are observed only on a
monthly basis and are generated by independent AR(1) processes

Vt = 0.9Vt−1 + 0.6+ 1.8εt

Uit =Uit−1 + 0.04(μi−Uit−1)+ 0.3ξit (1.21)

with V1 ∼ N(6,1.82), μi ∼ N(2,0.52), εt ∼ N(0,1), ξit ∼ N(0,1), and Ui1 ∼
N(μi,0.32). The parameters in the default intensity (1.19) are (η0,η1,η2,η) =
(−2,−1,−0.3,0.5). In each of the 100 simulation runs, we generate Ft by (1.20),
(Uit ,VT ) by (1.21), and use the default intensity (1.19) to generate the firm’s de-
fault times using the thinning algorithm for nonhomogeneous Poisson processes
[37]. For simplicity we only assume “administrative censoring” by fixed time t in
Ti∧ t and no additional stochastic censoring variables ci. We assume the prior distri-
bution π of the parameter vector θ = (η0,η1,η2,η ,κ ,μ) to be N(μ0,Σ0), where
μ0 = (−3,−1.5,−0.5,0.8,0.15,1.3) and Σ0 = diag(1,0.82,0.42,0.52,0.12,0.62).
This yields p̂0 = π in Algorithm 8. Note that the observation density in this HMM is

gθ (Yt | Ft) =
I

∏
i=1

(λi(Ti ;θ ))δit exp(−Λi(Ti ;θ )) (1.22)

where Λi(ti ;θ ) =
∫ t

0 λi(s ;θ )ds is the cumulative hazard function that can be eval-
uated by numerical quadrature; we use λi(t ;θ ) to highlight the dependence on
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the parameter vector in (1.19) and (1.20). For the particle filters in Algorithm 8,
we perform bootstrap resampling only when the effective sample size ESS < 50.
Figure 1.1 compares the actual frailty path Ft (at times t = 1,2, . . . ,30), from one
of the simulated samples with the filtered frailty paths E(Ft | Yt) estimated by
two different particle filters: (1) the adaptive particle filter implemented by Algo-
rithm 8, and (2) the bootstrap filter that assumes the parameter vector θ to be known.
Figure 1.1 shows that the adaptive particle filter performs on par with the “oracle”
bootstrap filter and is able to retrieve the latent frailty estimate.
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Fig. 1.1 Filtered frailty paths of the adaptive and the bootstrap particle filters

Our simulation study also shows that the adaptive particle filter estimates the
parameter vector θ quite well. The following table gives the means and standard
deviations of the parameter estimates over the 100 simulations. The parameter es-
timates ̂θ are given by the weighted averages of the atoms at the termination of
the MCMC iterations in Algorithm 8 that also gives the weights through the target
density.

We can also use the adaptive particle filter to predict the default probabilities
for the subsequent time periods. In particular, our simulation study considers 1-year
ahead default probability forecasts of the adaptive particle filter and compares them
to the actual probabilities. We first apply Algorithm 8 to an expanding window of
training data from time t = 1 up to time t = 15,16, . . . ,29, respectively. Using the es-
timated parameters from the adaptive particle filter at time t, we simulate 10,000 OU
paths for the latent frailty, corresponding to the period [t, t + 1), for t = 15, . . . ,29.
We then estimate the probability of default π̂i,t+1 of each firm i in the time period
[t, t + 1) and compare it with the true value πi,t+1 obtained from the thinning algo-
rithm. For a single firm in one of the simulated data sets, we plot the 1-year ahead
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η0 η1 η2 μ κ η
θ −2 −1 −0.3 1 0.125 0.5

E(̂θ15) −2.583 −1.837 −0.386 0.997 0.123 0.485
SD(̂θ15) 0.883 0.445 0.105 0.104 0.005 0.031

E(̂θ20) −2.435 −1.859 −0.389 0.985 0.127 0.479
SD(̂θ20) 0.634 0.745 0.127 0.129 0.009 0.052

E(̂θ25) −2.396 −1.635 −0.368 1.028 0.124 0.493
SD(̂θ25) 0.608 0.593 0.095 0.073 0.004 0.046

E(̂θ30) −2.353 −1.467 −0.346 1.013 0.126 0.487
SD(̂θ30) 0.581 0.623 0.086 0.055 0.006 0.077

probability forecast of the adaptive particle filter, and the true default probability
over time t = 15,16, . . . ,29 in Fig. 1.2. The figure shows that the adaptive particle
filter produces good estimates for the 1-year ahead default probability.

1.5.2 Stochastic Volatility with Contemporaneous Jumps

Stochastic volatility models have been studied extensively in the recent literature.
There is strong consensus about the need to include discontinuities in asset prices
via return jumps, while incorporating stochastic time variation in the volatility of the
continuous shocks to returns, via stochastic volatility. While these features yield fat-
ter tails in the return distribution, they do not completely explain the rapid increases
in volatility experienced in history.

Duffie et al. (2000) in [16] propose adding jumps to both the returns and the
stochastic volatility which, as noted in [18], serves two different but complemen-
tary purposes. Jumps in returns generate large, sudden movements in asset prices
which are infrequently observed. On the other hand, jumps in volatility lead to fast
changes in the level of volatility, and hence the distribution of asset prices, due to
volatility persistence. An issue which has to be addressed in this case is that of jumps
in returns and volatility occurring contemporaneously. Duffie et al. (2000) in [16]
propose contemporaneous arrivals with correlated jump sizes. Jacod and Todorov
(2009) in [26] and Todorov and Tauchen in [39, 40] find evidence of a specification
with a high likelihood of contemporaneous jump arrivals using intraday observa-
tions on the VIX and the S&P 500 index.

A discrete-time version of the stochastic volatility model with contemporaneous
jumps (SVCJ) in both the returns and the volatility can be written as

(

yt

Vt

)

=

(

μ
κθ +(1−κ)Vt−1

)

+
√

Vt−1

(

εY
t

σV εV
t

)

+

(

ξY
t
ξV

t

)

Jt (1.23)
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Fig. 1.2 One-year ahead predictions

where
(

εY
t
εV

t

)

∼ N

(

0,

(

1 ρ
ρ 1

))

(1.24)

and

Jt ∼ Bernoulli(λ ) ξY
t ∼ N(μY ,σ2

Y ) ξV
t ∼ Exp(μV ) (1.25)

In this specification, yt is the observed asset log-return at time t, Vt is the latent
stochastic volatility, and the jumps in returns and volatility are contemporaneous
without any correlation in the jump sizes. The complete specification of the latent
state xt includes not just only the unknown Vt−1 but also any random variable gener-
ated in the process of obtaining the V that may have an influence on the distribution
of yt , in this case Jt and εV

t . We thus have the latent state vector xt = (Vt−1,Jt ,εV
t ).

The evolution density of the state-space model is given by (1.23)–(1.25), and the
observation density is given by

εY
t |εV

t ∼ N(ρεV
t ,1−ρ2) (1.26)

and

yt |xt ∼
{

N(μ+
√

Vt−1ρεV
t + μY ,Vt−1(1−ρ2)+σ2

y ) if Jt = 1

N(μ+
√

Vt−1ρεV
t ,Vt−1(1−ρ2)) if Jt = 0

(1.27)

Parameter estimation and sequential state filtering in this model can be performed
using the adaptive particle filter as given in Sect. 1.4.2, which is considerably more
efficient than the MCMC methods of [18] and [28].
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1.5.3 State-Space Models for High-Frequency Transaction Data

In the last decade, there has been an explosion of computer-based trading systems
which place quotes, make trading decisions, and manage existing orders after sub-
mission using automated computer algorithms. In the US equities market, Brogaard
(2010) in [4] and Securities & Exchange Commission in [41] estimate that 60–75 %
of the daily trading volume is due to the so-called high frequency traders (HFTs).
In addition to the complete automation of major financial exchanges, there has been
a proliferation of electronic communication networks and dark pools of liquidity in
the financial markets. With quote and trade update frequencies in the order of a few
milliseconds, an important issue facing an HFT is the online estimation of market
microstructure parameters. These estimates could feed into adaptive market making
algorithms that dynamically adjust the bid/ask prices and sizes quoted by the market
maker at the various levels of the order book, while adjusting for market liquidity
and existing inventory. Much of the literature on estimation of market microstructure
parameters has focused on nonparametric statistical methods. Notable exceptions
are Zeng (2003) and (2004) in [43, 44] and Hu et al. (2010) in [25]. They use
a nonlinear filtering framework with marked point process observations for high-
frequency transaction data and derive filtering equations to characterize the evolu-
tion of likelihoods, Bayes factors, and posterior probabilities. Most of the existing
models, however, do not consider limit order book dynamics and other features that
are of vital importance in implementing a market making system which needs to
adapt to changes in a large number of securities in real time. In the financial econo-
metrics literature on market microstructure [1, 3, 24, 45], it is customary to model
the latent efficient price process as being observed in the presence of additive mi-
crostructure noise also referred to as “market frictions.” These models assume that
the frictions are static throughout the day and do not take into consideration the dis-
creteness of observed prices and the dynamic nature of market frictions. In addition,
the assumption of additive microstructure noise severely restricts the scope of the
microstructure model.

Bukkapatanam and Lai (2012) in [6] have recently introduced a general nonlinear
market microstructure model that overcomes these limitations. Using the methodol-
ogy in Sect. 1.4, they have developed an efficient adaptive particle filter and used it
to update the spot and cross volatility estimates at each new transaction. Their mi-
crostructure model incorporates price discreteness and market information from the
live limit order book. The ability to adjust in real time to changes in the limit order
book is an important feature of their method and allows it to be applied to practi-
cal market making strategies. The filtering approach to estimating cross volatility is
compatible with asynchronous transaction data. Their simulation studies show the
effectiveness of their approach in estimating the underlying spot and cross volatili-
ties of the price process. They also apply the adaptive particle filter to NYMEX and
CME futures exchange data and demonstrate its superior real time performance.
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1.5.4 Other Applications in Finance and Economics

Carvalho and Lopes (2007) in [10] analyze a Markov switching stochastic volatility
model using the particle filter of [31]. Several Lévy-type stochastic volatility mod-
els are studied in [27, 30, 36] and [29]. DaSilva et al. (2009) in [14] model the
monthly Brazilian unemployment rate from March 2002 to December 2009 using a
dynamic beta regression model analyzed using MCMC. This is a special case of a
dynamic generalized linear model, where the observational distributions belong to
an exponential family. Flury and Shephard (2011) in [22] apply the particle MCMC
framework to problems arising in macroeconomics and finance. Creal (2012) in [13]
surveys sequential Monte Carlo methods in economics and finance. He points out
that building on the foundation of nonlinear microeconomic models for learning
and strategic interaction amount agents, “macroeconomists formulate their struc-
tural models as dynamic stochastic general equilibrium (DSGE) models,” and that
the recent popularity of particle filters in the economics literature began with their
applications to estimation in DSGE models by Fernandez-Villaverde and Rubio-
Ramrez (2005, 2007) in [20, 21].

1.6 Conclusion

Sequential Monte Carlo methods, also known as particle filters, have far-reaching
and powerful applications in modern time series analysis problems involving state-
space models. Without relying on local linearization techniques or functional ap-
proximations, particle filters are able to handle a large class of nonlinear non-
Gaussian state-space models and have become increasingly popular in engineer-
ing and econometric applications in the past decade. We provide a brief overview
of particle filters for state-space models and their applications in finance and eco-
nomics. We also introduce a new adaptive particle filter that uses a novel Markov
Chain Monte Carlo scheme to approximate the posterior distribution of the model
parameters.
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Chapter 2
The Extended Liu and West Filter: Parameter
Learning in Markov Switching Stochastic
Volatility Models

Maria Paula Rios and Hedibert Freitas Lopes

2.1 Introduction

Since the seminal chapter by Gordon, Salmond and Smith (1993) with its Bootstrap
Filter (BF), simulation-based sequential estimation tools, commonly known as
sequential Monte Carlo (SMC) methods or particle filters (PF), have been receiv-
ing increasing attention in its application to nonlinear and non-Gaussian state-space
models. There has been a particular emphasis on the application of such methods
in state estimation problems in target tracking, signal processing, communications,
molecular biology, macroeconomics, and financial time series (see compendium
edited by Doucet, De Freitas and Gordon (2001)).

Nonetheless, only recently sequential parameter estimation started to gain more
formal attention, with Liu and West (2001) (LW, hereafter) being one of the first
contributions to the area. Their main contribution was the generalization of the SMC
filter of Pitt and Shephard (1999), namely the Auxiliary Particle Filter (APF). LW
incorporated sequential parameter learning in the estimation. Amongst other recent
contributions in this direction are the Practical Filter of Polson, Stroud and Muller
(2008) and the Particle Learning scheme of Carvalho, Johannes, Lopes and Polson
(2010). The former relies on sequential batches of short MCMC runs while the
latter relies on a recursive data augmentation argument, both of which aimed at
replenishing the particles for both states and parameters. They also rely on the idea
of sequential sufficient statistics for sequential parameter estimation (Storvik (2002)
and Fearnhead, (2002)).

Implementation of the LW filter in various disciplines has shown that this
methodology produces degenerate parameter estimates as discussed in Carvalho
et al. (2010). Here we use volatility models to evidence the latter. One appre-
ciates that the LW parameter estimates collapse to a point as further discussed
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(see Figs. 2.4 and 2.5). Parameter degeneracy limits the applicability of the LW
methodology. In particular, without proper parameter estimates one cannot make
accurate forecasts, which are desired in many of the applications where filters are
implemented.

To overcome the limitations of the LW filter, we explore three more filters of
similar nature. Using the APF and BF as starting points for the propagation and re-
sampling of the latent state, we incorporate sequential parameter learning techniques
to extend these two filters to accommodate for parameter estimation. The first algo-
rithm relies on the kernel smoothing idea that LW present when introducing their
filter (see Liu and West (2001)). The second methodology relies on parameter esti-
mation via recursive computation of conditionally sufficient statistics. In short, we
construct four filters1 that are hybrids between the BF, APF, kernel smoothing, and
sufficient statistics.

Throughout the chapter we emphasize our analysis on two filters of particular
interest, the LW filter and the so-called APF + SS filter. The latter is the extension
of the APF filter that incorporates conditional sufficient statistics (SS) in the fixed
parameter estimation.

To highlight the shortcomings of the LW filter and the applicability and improve-
ments the APF + SS filter and the other two filters introduced, we focus only on
one of the many applications where this technique is relevant. In this chapter we
revisit the work of Carvalho and Lopes (2007). They used the LW filter SMC for
state filtering and sequential parameter estimation in Markov switching stochastic
volatility (MSSV) models. Using Carvalho and Lopes (2007) as reference, we im-
plement the filters to the estimation of MSSV models. We empirically show, using
simulated and real data, that LW filter degenerates, has larger Monte Carlo error,
and in general terms underperforms when compared to the other filters of interest.

2.1.1 Volatility Models

Bayesian filters are a general technique that have a broad application scope. As
shown in Carvalho et al. (2010), particle learning techniques can be implemented in
Gaussian dynamic linear models (GDLM) and conditional dynamic linear models
(CDLM). In this chapter, however, we focus only on one of the possible applications
of the filters of interest. In particular we estimate fixed parameters and latent states
in MSSV models.

Over the years, stochastic volatility models have been considered a useful tool for
modeling time-varying variances, mainly in financial applications where agents are
constantly facing decisions dependent on measures of volatility and risk. Bayesian
estimation of stochastic volatility models can be found Jacquier et al. (1994) and
Kim et al. (1998). Comprehensive reviews of stochastic volatility models can be
found in Ghysels et al. (1996).

1 Two of the filters we construct have been previously described by Liu and West (2001) and
Storvik (2002).
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2.1.1.1 Log-Stochastic Volatility

The building block for the MSSV models is the standard univariate log-stochastic
volatility model, SV hereon, (see, for example, Jacquier et al. (1994), or Ghysels
et al. (1996)), where (log) returns rt and log-volatility states λt follow a state-space
model of the form,

rt = exp{λt/2}εt (2.1)

λt = α+ηλt−1 + τηt (2.2)

where the errors, εt and ηt , are independent standard normal sequences. We also
assume the initial log-volatility follows λ0 ∼ N(m0,C0). The parameter vector, θsv,
consists of the volatility mean reversion parametersψ = (α,η) and the volatility of
volatility τ . It is worth mentioning that the model assumes conditional independence
of the rt , t = 1, . . . ,T variables.

2.1.1.2 Markov Switching Stochastic Volatility

Jumps have been a broadly studied characteristic of financial data (see, for example,
Eraker et al. (2003)). So et al. (1998) suggest a model that allows for occasional
discrete shifts in the parameter determining the level of the log-volatility through a
Markovian process. They claim that this model not only is a better way to explain
volatility persistence but is also a tool to capture changes in economic forces, as
well as abrupt changes due to unusual market forces.

So et al.’s (1998) approach generalizes the SV model to include jumps by
allowing the state space equation to follow a process that changes according to an
underlying regime that determines the parameters for λt . For this, assume that st

is an unobserved discrete random variable with domain {1,2, . . . ,k}. Assuming a
k-state first-order Markov process, we define the transition probabilities as

p j,l = P(st = l|st−1 = j) for j, l = 1, . . . ,k (2.3)

with ∑k
j=1 pi j = 1 for i = 1, . . . ,k. As suggested in So et al. (1998) (2.2) can be

generalized to include such regime changes in the α parameter. Carvalho and Lopes
(2007) suggest that α in this model corresponds to the level of the log-volatility
and in order to allow occasional changes the model introduces different values α’s
following the described first-order Markovian process.

Again, let rt be the observed process, just like it was defined for the SV model,
with observations r1, . . . ,rt conditionally independent and identically distributed.
To keep consistency with the previously defined SV model, same notation and the
normality and independence assumptions on the error terms will also be used here.
This means that the observation rt , t = 1, . . . ,T is normal with time-varying log-
volatilities λ1, . . . ,λT . More specifically,
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rt = exp{λt/2}εt (2.4)

λt = αst +ηλt−1 + τηt (2.5)

Let ξ = (α,η ,τ2), α = (α1, . . . ,αk), p = (p11, p1,2, . . . , p1,k−1, . . . , pk,1, . . . , pk,k−1),
then θMSSV = (ξ , p) is the set of (k2 + 2) parameters to estimate at each point in
time. For instance, in a two-state model, six parameters must be estimated. It is
common in the literature to refer to S = (s1, . . . ,sT ) and λ = (λ1, . . . ,λT ) as the
states of the model. The initial value of λ , λ0, is N(m0,C0).

To avoid identification issues in α , So et al. (1998) suggest to re-parameterize
it as

αsi = γ1 +
k

∑
j=1

γ jI ji (2.6)

where I ji = 1 when si ≥ j and 0 otherwise, γ1 ∈ R and γi > 0 for all i > 1. The model
described by (2.4)–(2.6) is known as an MSSV model. As previously discussed the
case where k = 1 reduces to the SV model presented above.

In this chapter we explore to cases of the MSSV model, k = 1 (or log-stochastic
volatility) and k = 2. We fit these two models to the simulated and real data that we
explore in Sects. 2.3 and 2.4.

2.1.2 Particle Filters: A Brief Review

Particle filters are SMC methods that basically rely on a sampling importance re-
sampling (SIR) argument in order to sequentially reweigh and/or resample particles
as new observations arrive. More specifically, let the general state-space model be
defined by

Observation equation : p(yt+1|xt+1) (2.7)

State equation : p(xt+1|xt) (2.8)

where, for now, all static parameters are kept known. The observed variables yt and
the latent state variables xt can be univariate or multivariate, discrete or continu-
ous. Nonetheless, for didactical reasons, we will assume both are continuous scalar
quantities.

Particle filters aim at computing/sampling from the filtering density2

p(xt+1|yt) =

∫

p(xt+1|xt ,y
t)p(xt |yt)dxt (2.9)

and computing/sampling the posterior density via Bayes’ theorem

p(xt+1|yt+1) ∝ p(yt+1|xt+1)p(xt+1|yt) (2.10)

2 To avoid confusion, yt makes reference to all the data observed up to point t , while yt refers to
the data observation at time t .
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Put simply, PFs are Monte Carlo schemes whose main objective is to obtain

draws {x(i)t+1}N
i=1 from the state posterior distribution at time t + 1, p(xt+1|yt+1),

when the only draws available are {x(i)t }N
i=1 from the state posterior distribution at

time t, p(xt |yt).
Recent reviews of PFs are Lopes and Tsay (2011), Olsson et al. (2008), Doucet

and Johansen (2010), and Lopes and Carvalho (2011).
In what follows we briefly review two of the most popular filters for situations

where static parameters are known. The BF or sequential importance sampling with

resampling (SISR) filter and the APF. For these filters we assume that {x(i)0 }N
i=1 is a

sample from p(x0|y0).

2.1.2.1 The Bootstrap Filter

Gordon, Salmond and Smith’s (1993) seminal filter basically uses the transition
(2.8) in order to propagate particles, which then are resampled from the model (2.7).
The BF can be summarized in the following two steps:

1. Propagation. Particles x̃(i)t+1 are drawn from p(xt+1|x(i)t ), for i = 1, . . . ,N, so the

particle set {x̃(i)t+1}N
i=1 approximates the filtering density p(xt+1|yt) from (2.9).

2. Resampling. The SIR argument converts prior draws into posterior draws by

resampling from {x̃(i)t+1}N
i=1 with weights proportional to the likelihood, ω(i)

t+1 ∝
p(yt+1|x̃(i)t+1), for i = 1, . . . ,N.

If the resampling step is replaced simply by a reweighing step, then the weights

are replaced by ω(i)
t+1 ∝ ω(i)

t p(yt+1|x̃(i)t+1), where ω(i)
0 is usually set at 1/N. The SIR

scheme samples from the prior and avoids the potentially expensive and/or prac-
tically intractable task of point-wise evaluation of p(xt+1|yt). The flexibility and
generality that comes with this blind scheme is the usually unbearable price of high
Monte Carlo errors. More importantly, it leads to particle degeneracy, a Monte Carlo
phenomenon where, after a few recursions of steps 1 and 2 above, all particles col-
lapse into a few points and eventually to one single point.

2.1.2.2 The Auxiliary Particle Filter

One of the first unblinded filters was proposed by Pitt and Shephard (1999), who
resample old draws with weights proportional to the proposal or candidate density
p(yt+1|g(xt)), for some function g, such as the mean or the mode of the evolution
density, and then propagate such draws via the evolution equation in (2.9). Finally,
propagated draws are resampled with weights given by step 2 below. Their argument
is based on a Monte Carlo approximation to

p(xt+1|yt+1) =
∫

p(xt+1|xt ,y
t+1)p(xt |yt+1)dxt (2.11)
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which is based on the one-step smoothing density p(xt |yt+1). Pitt and Shephard’s
(1999) APF can be summarized in the following three steps:

1. Resampling. The set {x̃(i)t }N
i=1 is sampled from {x(i)t }N

i=1 with weights {π (i)
t+1}N

i=1,

where π (i)
t+1 ∝ p(yt+1|g(x( j)

t )).

2. Propagation. The transition equation p(xt+1|x̃(i)t ) is used to draw x̃(i)t+1, whose

corresponding weight is ω(i)
t+1 ∝ p(yt+1|x̃t+1)/p(yt+1|g(x̃t)), for i = 1, . . . ,N.

3. Posterior draws. The set {x(i)t+1}N
i=1 is sample from {x̃(i)t+1}N

i=1 with weights

{ω(i)
t+1}N

i=1.

Our main contributions are twofold. Firstly, by comparing the four filters of
interest we highlight the limitations of the LW-type filters for two cases of MSSV
models. Secondly, we introduce an extension of the APF filter to overcome such
limitations and produce more accurate estimates. The remainder of the chapter is
organized as follows. In the next section we introduce the sequential parameter
learning strategies that we then incorporate in the two filters previously discussed to
extend them to allow for parameter estimation (the LW filter is one of such exten-
sions). Results are analyzed in two sections. Section 2.3 presents and analyzes all
the simulated data study while Sect. 2.4 presents real data applications. Section 2.5
concludes.

2.2 Particle Filters with Parameter Learning

We extend the BF and APF filtering strategies to allow for fixed parameter learning.
Incorporating two techniques to each of the filters we study the four resulting types
of Bayesian filters, which will be compared and evaluated in order to determine
which filter outperforms the rest.

2.2.1 Kernel Smoothing

The first strategy that we incorporate for fixed parameter estimation is kernel
smoothing, KS hereon, that was introduced in Liu and West (2001).

Liu and West (2001) generalizes the Pitt and Shephard’s (1999) APF to accom-
modate sequential parameter learning. They rely on West’s (1993) mixture of nor-
mals argument, which assumes that, for a fixed parameter vector θ ,

p(θ |yt)≈
N

∑
i=1

fN(θ ;m(i)
t ,h2Vt) (2.12)

where fN(θ ;a,b) is the density of a multivariate normal with mean a and variance–

covariance matrix b evaluated at θ . {θ (i)
t }N

i=1 approximates p(θ |yt), Vt approximates
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the variance of θ given yt , h2 is a smoothing factor, and mt(θ (i)) = aθ (i)
t +(1−a)θ̄t

for θ̄t an approximation to the mean of θ given yt and a a shrinkage factor, usually
associated with h through h2 = 1− a2.

The performance of filters that implement a KS strategy depends on the choice
of the tuning parameter a, which drives both the shrinkage and the smoothness of
the normal approximation. It is common practice to use a around 0.98 or higher.
Also, the normal approximation can be easily adapted to other distributions, such
as the normal-inverse-gamma approximation for conditionally conjugate location-
scale models.

2.2.1.1 APF + KS: LW Filter

The first filter we consider is the so-called LW filter. This filter incorporates the
KS strategy to the APF filter (see Liu and West (2001)). This is the filter used by
Carvalho and Lopes (2007) to sequentially learn about parameters and state in a
MSSV model.

Let the particle set {(xt ,θt )
(i)}N

i=1 approximate p(xt ,θ |yt), θ̄t and Vt estimates

of the posterior mean and posterior variance of θ , respectively, with g(x(i)t ) =

E(xt+1|x(i)t ,m(θ (i)
t )) and mt(θ (i)) = aθ (i)

t +(1−a)θ̄t, for i = 1, . . . ,N. The LW filter
can be summarized in the following three steps:

1. Resampling. The set {(x̃t , θ̃t)
(i)}N

i=1 is sampled from {(xt ,θt )
(i)}N

i=1 with weights

{π (i)
t+1}N

i=1, where π (i)
t+1 ∝ p(yt+1|g(x(i)t ),m(θ (i)

t ));
2. Propagation. For i = 1, . . . ,N,

(a) Propagating θ . Sample θ̃ (i)
t+1 from N(m(θ̃ (i)

t ),h2Vt),

(b) Propagating xt+1. Sample x̃(i)t+1 from p(xt+1|x̃(i)t , θ̃ (i)
t+1) ,

(c) Computing weights. ω(i)
t+1 ∝ p(yt+1|x̃(i)t+1, θ̃

(i)
t+1)/p(yt+1|g(x̃(i)t ),m(θ̃ (i)

t ));

3. Posterior draws. The set {(xt+1,θt+1)
(i)}N

i=1 is sampled from {(x̃t+1, θ̃t+1)
(i)}N

i=1

with weights {ω(i)
t+1}N

i=1.

2.2.1.2 BF + KS

The second filter that we analyze in this chapter is the extension of the BF when we
include the KS strategy in the fixed parameter estimation. The following algorithm
summarizes the BF + KS filter.

Let the particle set {(xt ,θt )
(i)}N

i=1 approximate p(xt ,θ |yt), θ̄t and Vt estimates

of the posterior mean and posterior variance of θ , respectively, with g(x(i)t ) =

E(xt+1|x(i)t ,m(θ (i)
t )) and mt(θ (i)) = aθ (i)

t +(1− a)θ̄t, for i = 1, . . . ,N.



30 M.P. Rios and H.F. Lopes

1. Propagation. For i = 1, . . . ,N,

(a) Propagating xt+1. Sample x̃(i)t+1 from p(xt+1|x̃(i)t , θ̃ (i)
t ).

(b) Propagating θ . Sample θ̃ (i)
t+1 from N(m(θ̃ (i)

t ),h2Vt).

(c) Computing weights. ω(i)
t+1 ∝ p(yt+1|x̃(i)t+1, θ̃

(i)
t+1).

2. Posterior draws. The set {(xt+1,θt+1)
(i)}N

i=1 is sampled from {(x̃t+1, θ̃t+1)
(i)}N

i=1

with weights {ω(i)
t+1}N

i=1.

2.2.2 Sufficient Statistics

The second method that we consider for sequential parameter learning is the recur-
sive sufficient statistics, SS hereon. This technique can be implemented in situations
where the vector of fixed parameters θ admits recursive conditional sufficient statis-
tics (Storvik, (2002), and Fearnhead, (2002)). That is the prior for θ is

p(θ ) = p(θ |s0) (2.13)

One of the main advantages of this estimation technique is that Monte Carlo
error is reduced by decreasing the number of parameters in Liu and West’s ker-
nel mixture approximation. In addition, tracking sufficient statistics can be seen as
replacing the sequential estimation of fixed parameters by the sequential updating
of a low-dimensional vector of deterministic states. This is particularly important
when sequentially learning about variance parameters. See Carvalho et al. (2010) for
further discussion. Furthermore, this methodology reduces the variance of the sam-
pling weights, resulting in algorithms with increased efficiency and helps delaying
the decay in the particle approximation often found in algorithms based on SIR.3

3 As an illustration, we present the SS for the MSSV k = 2 model.
The following two equations define the model.

rt |λ ∼ N(0,eλt )

λt |λt−1,α ,η ,γ ∼ N(α +ηλt−1+ γst ∼ N(α +ηλt−1+ γst ,τ2)

Priors and hyperparameter values are defined in Sect. 2.3. Let x′t = (1,λt−1, st) and θ = (α ,η ,γ).
Therefore, conjugacy leads to

(α ,η ,γ)|τ2,x)1:t ∼ N(at ,τAt)1γ>0

τ2|x1:t ∼ IG(vt/2,vtτ2/2)

p1,1|s1:t ∼ Beta(n11t ,n12t)

p2,2|s1:t ∼ Beta(n21t ,n22t)



2 The Extended Liu and West Filter: Parameter Learning in Markov Switching. . . 31

2.2.2.1 APF + SS

The main filter that we showcase in this chapter is the SS extension to the APF filter
which we describe below. We call this filter the APF+SS filter and will show its
ability to overcome many of the limitations present in other filtering strategies, like
the LW filter.

Let the particle set {(xt ,θ ,st )
(i)}N

i=1 approximate p(xt ,θ ,st |yt) with g(x(i)t ) =

E(xt+1|x(i)t ). The APF + SS can be summarized as follows:

1. Resampling. The set {(x̃t , θ̃ , s̃t )
(i)}N

i=1 is sampled from {(xt ,θ ,st )
(i)}N

i=1 with

weights {π (i)
t }N

i=1, where π (i)
t ∝ p(yt+1|g(x(i)t )).

2. Propagation. For i = 1, . . . ,N,

(a) Propagating xt+1. Sample x̃(i)t+1 from p(xt+1|x̃(i)t , θ̃ (i)).

(b) Computing weights. ω(i)
t+1 ∝ p(yt+1|x̃(i)t+1, θ̃

(i))/p(yt+1|g(x̃(i)t ), θ̃ (i)).

3. Posterior draws. The set {(xt+1,θ ,st)
(i)}N

i=1 is sampled from {(x̃t+1, θ̃ , s̃t)
(i)}N

i=1

with weights {ω(i)
t+1}N

i=1.

4. Update sufficient statistics. s(i)t+1 = S (s̃(i)t ,x(i)t+1,yt+1), for i = 1, . . . ,N.

5. Parameter learning. Sample θ (i) ∼ p(θ |s(i)t+1), for i = 1, . . . ,N.

Both APF + SS and particle learning algorithms (PL) presented in Carvalho
et al. (2010) are particle filters that resample old particles first and then propagate
them. While PL and APF + SS are quite similar when dealing with the parameter
sufficient statistics, PL approximates the logχ2 distribution of log squared returns
by Kim, Shephard and Chib’s (1998) mixture of seven normal densities while APF
+ SS uses Pitt and Shephard’s (1999) APF that approximates the predictive density
with the likelihood function. Further investigation comparing these algorithms for
more general classes of stochastic volatility models is an open area beyond the scope
of this chapter.

2.2.2.2 BF + SS

The last filter that we consider in this chapter is the SS extension to the BF, as
suggested in Storvik (2002). What we will refer to as the BF + SS filter can be
summarized with the following steps:

where x1:t = {x1, . . .,xt} and vt = vt−1 +1. At ,at , vtτ2 and ni jt are the sufficient statistics defined
recursively by

A−1
t = A−1

t−1 + xtx
′
t

A−1
t at = A−1

t−1at + xtλt

vtτ2 = vt−1τ2
t−1 +λ 2

t − x′t atλt +a′t−1A−1
t−1at−1−a′tA

−1
t−1at−1

ni j,t = ni j,t−1+1(st−1=i,st= j)
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Let the particle set {(xt ,θ ,st )
(i)}N

i=1 approximate p(xt ,θ ,st |yt).

1. Propagation. For i = 1, . . . ,N,

(a) Propagating xt+1. Sample x̃(i)t+1 from p(xt+1|x̃(i)t , θ̃ (i)).

(b) Computing weights. ω(i)
t+1 ∝ p(yt+1|x̃(i)t+1, θ̃

(i)).

2. Posterior draws. The set {(xt+1,θ ,st)
(i)}N

i=1 is sampled from {(x̃t+1, θ̃ , s̃t)
(i)}N

i=1

with weights {ω(i)
t+1}N

i=1.

3. Update sufficient statistics. s(i)t+1 = S (s̃(i)t ,x(i)t+1,θ
(i)
t+1,yt+1), for i = 1, . . . ,N.

4. Parameter learning. Sample η(i) ∼ p(η |s(i)t+1,θ
(i)
t+1), for i = 1, . . . ,N.

2.3 Analysis and Results: Simulation Study

The first part of the analysis presented is a simulation study that provides insight
into the behavior of the four filters discussed in this chapter. We are able to identify
limitations and benefits of using each approach. The particle filters are compared in
four ways: (1) degree of particle degeneracy and estimation accuracy; (2) accuracy
in estimating regime-switching parameters; (3) size of the Monte Carlo error, and
(4) computational cost. Completing the study we discuss the economic insight that
can be inferred from the Bayesian estimates and end with a robustness analysis to
control for data set-specific effects.

Our simulation analysis is based on 50, 5,000 particle runs. For each of the 50
iterations, we drew a new set of priors that was used to initiate each one of the
four filters of interest. In the two filters that use a KS technique we use a shrink-
age/smoothness factor of a = 0.9. For both the volatility process and the parame-
ters, the median particle is used as the estimate and the 97.5 % and 2.5 % percentile
particles are used as the upper and lower bounds of the 95 % confidence band,
respectively.

Robustness results are based on ten different data sets and ten runs of the filters,
each with a different starting set of prior draws.4

In the k = 1 case, all filters’ prior distribution for τ2 is inverse gamma, i.e.
τ2 ∼ IG(ν0/2,ν0τ2

0/2), with prior mean ν0τ2
0/(ν0 − 2). For the filter that use

sufficient statistics in the estimation (APF + SS and BF + SS), the prior distri-
butions for α and η are conditionally conjugate, i.e. η |τ2 ∼ TN(−1,1)(b0,τ2B0)

and α|τ2 ∼ N(a0,τ2A0), where T NA(a,b) is the normal distribution with mean a
and variance b and truncated at A. For the filters with kernel smoothing (LW and
BF + KS), the prior distributions are η ∼ TN(−1,1)(b0,B0) and α ∼ N(a0,A0).
The difference between these priors has negligible effect on our empirical study.

4 The same prior draws are used in one run of all four filters, thus ensuring that results in this run
are comparable across filter.
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Hyperparameter values are set up to ensure uninformative priors. In all application
scenarios presented in this chapter we used the following setup: m0 = 0, C0 = 1,
a0 = b0 = 0, A0 = B0 = 3, ν0 = 4.01 and τ2

0 = 0.01. Changes in hyperparameter
values were made and no significant change was observed in the results.

In the k = 2 case we use the same priors and hyperparameter values for τ2 and η
as the ones just described for the log-stochastic volatility model. Additionally for all
filters we have that pi ∼ Dir(ui0)

5 for pi = (pi1, . . . , pik), i = 1, . . . ,k. For the filter
kernel smoothing filters’ implementation in this scenario we set γ1 ∼ N(a0,A0) and
γi ∼ T N(0,∞)(g0,G0) i = 2, . . . ,k. Once more, for the sufficient statistic-based fil-
ters priors, we condition on τ2 for γi, i= 1, . . .k. That is, we have γ1|τ2 ∼N(a0,τ2A0)
and γi|τ2 ∼ TN(0,∞)(g0,τ2G0) i = 2, . . . ,k. All of the hyperparameter values that
were already defined for the SV remained unchanged, and the following new values
were added: ui0 = (0.5, . . . ,0.5) for i = 1, . . . ,k, g0 = 0 and G0 = 3.

2.3.1 Simulated Data

As mentioned before, we focus our investigation on MSSV models, one of the many
possible applications in which to implement the filters presented in Sect. 2.2. As
mentioned before, we consider two cases of the number of states, k, in the model:
(1) the log-stochastic volatility or k = 1 and (2) the two-state MSSV (k = 2).

These two models are simulated for a time frame of 1,000 time periods. For the
log-stochastic volatility case we use α =−1, η = 0.9, and τ2 = 1. Time series plots
for the return yt , latent state xt , and volatility processes are presented in Fig. 2.1.
In the k = 2 parameter values were chosen to match the values of the first data
set used in Carvalho and Lopes (2007). The parameter vector, Θ2, is determined
by α1 =−2.5,α2 =−1,η = 0.5,τ2 = 1, p11 = 0.99, and p22 = 0.985. A graphical
summary of the processes of interest, yt , xt , volatility and the state in which the
process is on, st , are presented in Fig. 2.2.

2.3.2 Exact Estimation Path

Given the Bayesian nature of the filters analyzed in this chapter, we use an exact es-
timation path as a reference for which the best estimation path should be. Likewise,
we use the confidence bands obtained in the exact path estimation as reference for
what sensible confidence bands are for the estimates of interest. The path and bands
are obtained by running one of the filters with a large enough number of particles
what ensures that both the path and the bands will be replicated by the filter regard-
less of the prior draws used to initiate the filter. In a non-time constrained world this

5 Dir(ui0) means that the prior distribution is Dirichlet with parameter ui0.
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Fig. 2.1 Time series of the simulated return, latent state, and volatility processes for the MSSV
model with k = 1. Details of the choice of model parameter values can be found in Sect. 2.3.1.

would be the ideal path to use; however, given the current computational capacity,
running the filters for sufficiently large number of particles is not time efficient.

Under the premise that these path and bands are perceived as the true path, the
choice of filter should be irrelevant. Here, the exact estimation path is calculated
by running a 100,000 particle APF + SS filter. For both the k = 1,2 simulated data
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Fig. 2.2 Time series of the simulated return, latent state, and volatility processes for the MSSV
model with k = 2. Details of the choice of model parameter values can be found in Sect. 2.3.1.

sets, the exact parameters and volatility paths and their 95 % confidence bands are
estimated. In this chapter setting the exact estimates and confidence bands paths
obtained will be regarded as the true paths and bands and as a result they will be
the benchmark used to compare the filters.
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2.3.3 Estimate Evaluation

2.3.3.1 Parameter Degeneration and Estimate Accuracy

The behavior of the filter estimates is first analyzed in terms of parameter degener-
ation and estimate accuracy. Determining how well the filters are able to correctly
replicate the volatility processes and estimate the parameter values is paramount to
the filters performance.

Correct latent state estimation is the ultimate goal of any filter. In order to evalu-
ate how well the filters presented in this chapter are replicating the volatility process
we compare the true simulated process with the filtered estimates. We use a mean
squared error (MSE) to measure the deviation between the real and estimated pro-
cesses. The MSE is defined by

MSE =
1
T

T

∑
t=1

(

Vt − V̂t
)2

(2.14)

where Vt is the real volatility process and V̂t is the filtered volatility process.
Table 2.1 presents the mean MSE, averaged across the 50 filter repetitions,6 for

all filters and both volatility models. Divergence from the real volatility process is
small and similar in all four filters for the two MSSV cases, showing that the filters
are able to accurately replicate the latent state xt , and thus produce good volatility
estimates.

Closer inspection of the behavior of the estimated paths reveals that the discrep-
ancies between the real and the estimated volatilities happen when there are sudden
increases in volatility. None of the four filters are able to completely capture these
peaks. The problem magnifies in the k = 2 case.

Table 2.1 Mean MSE between the real and the filtered volatility processes, averaged across the 50
repetitions of each filter.

k APF + SS BF + SS BF + KS LW

1 0.000520 0.000527 0.000578 0.000552
2 0.019394 0.019613 0.019155 0.020136

Another element that is worth exploring is the variability that exists within the
MSE of the 50 repetitions. From Fig. 2.3 one appreciates that the LW filter results
have a significantly wider spread. Moreover, we see that the two strategies that

6 The mean MSE presented in Table 2.1 is averaged across repetitions for each one of the filters.
That is:

Mean MSE =
1
50

50

∑
i=1

MSEi =
1

50

50

∑
i=1

1
T

T

∑
t=1

(

Vt −V̂t
)2

(2.15)

where MSEi is the MSE for repetition i of a given filter.
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involve an APF in the propagation and sampling of the underlying process are less
stable than the two filters that implement a BF strategy. As expected, the lower the
variability, the more powerful the claim we can make on the accuracy of the filters,
as any run will likely have the same deviations from the real process.

Fig. 2.3 Box plots of the MSE of the estimated volatility process compared to the real simulated
volatility process for each filter. The left plot presents the results for the MSSV with k = 1 and the
right plot presents the results for the MSSV with k = 2.

Switching to parameter accuracy we focus on parameter degeneracy, a phe-
nomenon that appears when the resampling weights concentrate on one or a few
mass points and make the parameter estimates and their confidence bands collapse
to very narrow ranges and sometimes even to a single point. Our filter compari-
son uses the exact path’s 95 % band as a benchmark for reasonable values of esti-
mate’s confidence credibility bandwidth. Furthermore, we use the effective sample
size (ESS) to complement this part of the study. ESS is defined as:

ESS =

(

T

∑
t=1

w2
t

)−1

(2.16)

where wt is the resampling weight at time t (see Lopes and Carvalho (2011) and
Kong, Liu and Wong (1994)). This measure is a good proxy for the number of
particles where the weights have mass, thus making them the most likely candidates
in the resampling step. As we will further explore, there arguably is a relationship
between parameter collapsing and ESS value.
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The first component of the parameter degeneration analysis is to understand
which filters, and in what proportion, present cases of the latter phenomenon. To this
end, we look at how many filter runs have parameter 95 % confidence bands’ width
narrower than two threshold percentages of the parameter exact 95 % confidence
band’s width. In particular, we are interested in confidence credibility bandwidths
narrower than 10 % and 20 % of the benchmark 95 % confidence band’s width.

Table 2.2 presents a summary of the results for the two volatility models dis-
cussed. In the k = 1 case, only the LW filter presents collapsing parameters, with at
least 20 % of the filter runs presenting this anomaly. In the k = 2 case all four filters
have at least one parameter for which the estimates degenerate. Yet, it is again the
LW filter the one that presents a more delicate situation with the most collapsing
cases. At least 20 % of the filter’s runs appear to produce defective parameter esti-
mates. The high proportions of cases with parameter collapses issues found in the
LW filter raise a flag on the accuracy and applicability of this widespread filter.

Table 2.2 The left side presents the number of runs that reveals parameter collapses in the 50 runs.
A collapsing case is a filter repetition in which the width of the 95 % credibility bands is narrower
than 10 % or 20 % of the width of the exact parameter path. The right side presents the 25 %, 50 %,
and 75 % percentiles for the effective sample size of the non-collapsing filters.

Parameter ESS
k Filter α α1 α2 η τ2 p1,1 p2,2 Collapse 25 % 50 % 75 %

0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
1 APF + SS 0 0 0 0 0 0 No 3,614.798 4,226.624 4,484.099

BF + SS 0 0 0 0 0 0 No 3,352.356 3,915.876 4,322.197
BF + KS 0 0 0 0 0 0 No 3,321.399 3,882.107 4,303.528
LW 13 19 13 20 16 28 Yes

2 APF + SS 0 0 0 5 0 0 0 0 0 1 2 44 No 3,616.132 4,151.599 4,422.509
BF + SS 0 0 0 0 0 0 0 0 0 0 4 45 No 3,352.903 3,937.380 4,293.923
BF + KS 0 0 0 0 0 0 0 0 2 16 25 32 No 3,317.990 3,919.167 4,301.583
LW 11 22 12 32 12 25 22 22 11 23 32 48 Yes

Graphical examples of the particle degeneration phenomenon for one run of the
LW filter for both k = 1,2 are presented in Figs. 2.4 and 2.5, respectively. The dotted
lines highlight the points where the minimum ESS happens in the analyzed run. In
the two showcased examples the minimum ESS obtained are 1.05 and 1.37 for the
k = 1,2 cases, respectively. In other words, it appears that for both cases the LW
filter reaches a point where it will give weight to only a very small set of particles,
thus only resampling from this limited set. The reader can see in the plots how this
clearly translates. To the right of the dotted lines, the estimates collapse to almost a
single point and the confidence bands become extremely narrow. Furthermore, for
both MSSV models the values where the estimates collapse to are different to the
true parameter values. Additionally, due to the band’s narrowness, the true value
does not lie within the estimates of 95 % confidence band, hence leading to erro-
neous conclusions about the parameter values. This is a critical estimation accuracy
shortcoming of the LW filter.
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Fig. 2.4 Parameter estimates for LW Filter, in an MSSV k = 1 repetition where parameters col-
lapse. Black lines represent parameter estimates (median particle for each time period); gray lines
represent the 97.5 % and 2.5 % quantiles for the particle estimates and the dotted line is the true
parameter value. The dashed line highlights the time period where the min ESS happens in that
particular run.

Exploring the ESS behavior for the non-collapsing parameters, Table 2.2
presents7 the 25 %, 50 %, and 75 % quantiles for the ESS values obtained in the

7 In spite of the fact that the APF + SS, BF + SS, and BF + KS filters show evidence of parameter
collapses in the p2,2 parameter of the k = 2 MSSV model, we still consider them as non-collapsing
filters. This is due to the fact that this phenomenon is only present in one of the parameters.
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Fig. 2.5 Parameter estimates for LW Filter, in an MSSV k = 2 repetition where parameters col-
lapse. Black lines represent parameter estimates (median particle for each time period); gray lines
represent the 97.5 % and 2.5 % quantiles for the particle estimates and the dotted line is the true
parameter value. The dashed line highlights the time period where the min ESS happens in that
particular run.

50 replications of each filter. The latter results show that for the most part, the three
filters of interest rely on healthy amounts of particles to resample from, ensuring
variability in the resampling weights which is critical to accurate estimation of the
parameters.
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2.3.3.2 Regime-Switching Estimation

Particular to the type of volatility models we are estimating in cases where k ≥ 2,
it is important to understand how the filters are able to capture regime changes and
track the states in which the model is at. For this we focus on analyzing the two-state
MSSV.

Following Bruno and Otranto (2008), Otranto (2001), and Bodart et al. (2005)
we use the quadratic probability score (QPS), developed by Diebold and Rudebusch
(1989), to evaluate the filters’ abilities to correctly determine the state in which the
economy is at. The QPS is defined by

QPS =
100
T

T

∑
t=1

[Pr(St = 2)−Dt ]
2 (2.17)

where dt is an indicator variable equal to 1 when the true process is in state 2 and
Pr(St = 2) is the estimated probability that the process is in the second state. The
index varies between 0 and 100. It is equal to 0 in the case of correct assignment of
the state variable for all time periods and equals 100 in the opposite case.

Table 2.3 Mean QPS for the k = 2 model.

APF + SS BF + SS BF + KS LW

8.96 8.10 7.94 17.95

Table 2.3 presents a summary of the results. For each one of the four filters, the
QPS averaged across the 50 replications is presented.8 The APF + SS, BF + SS,
and BF + KS filters all appear to have similar abilities of correctly estimating the
correct state. The LW filter, however, produces considerably less accurate estimates
of the regime where the economy is. This could be linked to the particle degeneracy
found in the LW filter, as inaccurate parameter estimates lead to erroneous state
estimates.

The SS-based methods are specially good at tracking regime changes. For cer-
tain scenarios and applications this is an extremely important feature. Thus this is
another aspect in which we can claim that the LW filter has shortcomings while the
APF + SS and BF + SS filters are outperforming.

8 The mean QPS presented in Table 2.3 is averaged across repetitions for each one of the filters.
That is:

Mean QPS =
1

50

50

∑
i=1

QPSi =
1

50

50

∑
i=1

100
T

T

∑
t=1

[Pr(St = 2)−Dt ]
2 (2.18)

where QPSi is the QPS for repetition i of a given filter.
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2.3.3.3 Monte Carlo Error

Next, the four filters are evaluated in terms of stability of the produced estimates.
In other words, how much Monte Carlo variability is found in the estimates. Under
ideal conditions we would like to have parameter estimates that perfectly replicate
the estimation paths regardless of the set of prior draws used to initialize the filters.
However, this is not a realistic scenario, and all four filters of interest have some
Monte Carlo variability, or as we like to call it Monte Carlo error.

In order to analyze the latter variability we once more use the exact estimate paths
described in Sect. 2.3.2 as benchmark. Assuming that the exact paths are what the
true estimate paths should look like, we analyze the deviations between the different
estimate paths that the filters produce and the so-called exact path.

A preliminary graphical exploration of the estimates allows to get a first impres-
sion of the way that the estimates behave. Figures 2.6–2.8 present the estimate paths
for the three parameters in the k = 1 MSSV model, while Figs. 2.9–2.14 show the
paths for the estimates of the six parameters in the k = 2 MSSV model. In these pan-
els, the solid black lines present the exact path and the gray lines are the estimate
paths for each one of the 50 runs of each filter.

The plots reveal that the two filters that have the least Monte Carlo variability are
the two using an SS approach in the fixed parameter estimation. On the other hand,
the filter that consistently appears to have the largest variability is the so-called LW
filter, which in the k = 2 model has considerably greater variation for η , p1,1, and
p2,2.

A more rigorous way to analyze the Monte Carlo error is to measure the deviation
between the exact path and the estimate path. To avoid confusion with the MSE
previously used, we here use the mean absolute error between the two paths, which
we call the Monte Carlo mean absolute error (MCMAE), defined by

MCMAE =
1
T

T

∑
t=1

|pt − p̂t | (2.19)

where pt is the exact parameter path and p̂t is the estimated path at time t. Given
that we are looking at 50 runs of each one of the filters we will focus on analyzing
the mean across runs of the MCMAE. A summary of the mean MCMAE results for
all the parameters in the two MSSV models is shown in Table 2.4.9

The results in the latter table corroborate the graphical findings. The APF + SS
and BF + SS filters have the smaller deviations. For most parameters the APF +
SS has slightly lower Monte Carlo error than the BF + SS. Analyzing the behavior

9 The mean MCMAE presented in Table 2.4 is averaged across repetitions for each one of the
filters. That is:

Mean MCMAE =
1

50

50

∑
i=1

MCMAEi =
1

50
=

1
T

T

∑
t=1

|pt − p̂t | (2.20)

where MCMAEi is the MCMAE for repetition i of a given filter.
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Fig. 2.6 Estimate paths for α in the MSSV k = 1 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

of the kernel smoothing related filters, one appreciates that the LW filter is consis-
tently more variable than the BF + KS filter. The largest deviations are significantly
greater; in some cases the LW filter MCMAE is twice as much as the APF + SS’
MCMAE. Once more, we see that on this dimension the LW filter appears to under-
perform the other filters.
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Fig. 2.7 Estimate paths for η in the MSSV k = 1 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

2.3.3.4 Computational Time

The last dimension on which we compare the filters in the simulation study is the
amount of time taken to complete one run. Table 2.5 presents the estimation times
in seconds, averaged across runs10 for the four filters and the two models of interest.

10 The MSSV with k = 1 model runs and the MSSV with k = 2 model runs were implemented in
different machines. In this chapter, the MSSV k = 2 was run in a more powerful computer.
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Fig. 2.8 Estimate paths for τ2 in the MSSV k = 1 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

The filters that implement an SS approach to parameter estimation take signif-
icantly more time. The reason for this is the complexity of the operations needed
to update the sufficient statistics. Furthermore, we run all of our simulations in R
which is known to struggle with loop calculations, which are, unfortunately, un-
avoidable in the SS updating. Operations that parameter estimation requires in the
kernel smoothing technique are considerably simpler, making the LW and BF + KS
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Fig. 2.9 Estimate paths for α1 in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

filters much more efficient in computation time terms. Unlike the other dimensions
that we have explored so far, the LW filter is one of the filters that outperforms.

There appears to be an interesting trade-off between accuracy and computation
time. The more accurate filters appear take longer to estimate. Therefore the ques-
tion is how much accuracy you are willing to give up for a faster estimation. An-
other perspective from which this issue can be analyzed is how many particles I will
implement. Accuracy and time are closely related to the amount of particles used.
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Fig. 2.10 Estimate paths for α2 in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

A good compromise to getting faster more accurate estimation could be to increase
the number of particles in the LW filter estimation. Another option is to use less
particles in an APF + SS filter. Preliminary analysis shows that this filter produces
accurate estimates with a smaller number of particles. Details on how the increases
in particles would affect accuracy and estimation time is beyond the scope of this
chapter.
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Fig. 2.11 Estimate paths for η in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

2.3.4 Economic Insight

Exploring in more detail the estimates we observe that they bring interesting eco-
nomic insight. At every point in time, the Bayesian nature of the results allows to
infer information about the distribution of the estimates.
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Fig. 2.12 Estimate paths for τ2 in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

Using the exact path estimates we can provide the economic interpretation based
on the posterior distribution of the parameter. In particular, τ2 provides interest-
ing information about the volatility process in the two-state MSSV. Figure 2.15
shows that τ2 moves along the volatility, i.e. when there are economy shifts between
regimes. From the two panels in Fig. 2.15 one appreciates that when the volatility
process shifts to a higher level state, the τ2 estimates arguably also switch to a higher
volatility of volatility level.
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Fig. 2.13 Estimate paths for p1,1 in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

2.3.5 Robustness

Using the same parameter values as the ones discussed in Sect. 2.3.1, ten new data
sets were simulated for the k = 1 and k = 2 cases. Each new data sets was estimated
for ten runs. Results were then analyzed on the four dimensions presented above.
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Fig. 2.14 Estimate paths for p2,2 in the MSSV k = 2 model for the 50 repetitions and the exact
estimation path. The solid black line presents the exact estimation path, the gray lines are each one
of the 50 repetitions of the filter, and the dotted line is the true parameter value.

A detailed exploration of the ten data sets and ten runs for each one of the mod-
els revealed findings consistent with the ones previously discussed. All the results
presented in Sects. 2.3.3.1–2.3.3.4 are robust to the data set chosen.

We see that in the additional tested cases, the APF + SS filter is the filter that
appears to outperform the other filters. Likewise, we observed that the LW filter con-
tinues to have the same shortcomings. It has collapsing parameters, has the largest
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Table 2.4 Mean MCMAE between the exact path and the estimated path for the parameters of
interest in the MSSV models where k = 1,2. The MCMAE are averaged across the 50 repetitions
of each filter.

k Parameter APF + SS BF + SS BF + KS LW

1 α 0.102 0.135 0.381 0.508
η 0.0109 0.0136 0.0396 0.0544
τ2 0.0959 0.123 0.845 0.921

2 α1 0.391 0.472 0.567 0.731
α2 0.172 0.253 0.392 0.568
η 0.0806 0.0928 0.1170 0.1550
τ2 0.185 0.225 0.207 0.199
p11 0.00627 0.00572 0.207 0.08460
p22 0.0185 0.0177 0.0364 0.0603

Table 2.5 Mean time in seconds taken to estimate the MSSV models with K = 1 and 2 by the four
different filtering strategies. Computational times are averaged across the 50 filter repetitions.

k APF + SS BF + SS BF + KS LW

1 5429.02 5447.22 31.58 39.15
2 4432.43 4244.95 159.62 220.55

Monte Carlo error, and has the biggest discrepancies when capturing the regime
switches. The latter evidence reassures our previous findings on the applicability
and accuracy of the four filters of interest.

2.4 Analysis and Results: Real Data Applications

In the second part of the analysis we use two equity indices and analyze their volatil-
ity processes using the outperforming filter, that is the APF + SS filter. The first is
the IBOVESPA index11 which is presented in order to replicate the results presented
in Carvalho and Lopes (2007). The second series that we use is the S&P 500 index,
where we explore a short and a long series allowing us to explore and highlight more
properties of the Bayesian filtering estimation techniques, and the APF + SS filter
in particular.

All data analyzed here was obtained from Bloomberg using the last price as a
proxy for the day’s trading price and only including data from days where trading
took place. Table 2.6 presents summary statistics of the three analyzed series.

11 IBOVESPA is an index of about 50 stocks that are traded on the Sao Paulo Stock, Mercantile
and Futures Exchange (BOVESPA).
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Fig. 2.15 Top panel shows the exact parameter estimate for τ2. Bottom panel shows the exact
volatility estimate for the MSSV k = 2 model.

Table 2.6 Summary statistics for the three real data sets used in the applications in Sect. 2.4.

Series Start date End date Obs Mean SD Min Max Kurtosis Skewness

IBOVESPA 01/02/1997 01/16/2001 1000 0.000878 0.0294 −0.172 0.288 15.920 0.597
S&P 500 (short) 9/1/2006 8/31/2011 1258 −5.791e−05 0.0163 −0.0947 0.110 10.665 −0.280
S&P 500 (long) 9/1/1971 8/31/2011 10094 0.00024 0.011 −0.229 0.110 29.272 −1.075

2.4.1 IBOVESPA

We implement the proposed filter on the IBOVESPA stock index from 01/02/1997
to 01/16/2001. Figure 2.16 shows the log returns of the index from 01/02/1997 to
01/16/2001 (1,000 observations). This period includes a set of currency crises, such
as the Asian crisis in 1997, the Russian crisis in 1998, and the Brazilian crisis in
1999, all of which directly affected emerging countries, like Brazil, generating high
levels of uncertainty in the markets and consequently high levels of volatility.

Starting with priors similar to the ones used in Carvalho & Lopes (2007) we
estimate the parameters both in the log-linear stochastic volatility and in the two-
state MSSV. Model selection was done using Bayes factors that revealed strong
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Fig. 2.16 Panel A: log returns for the IBOVESPA stock index between 01/02/1997 and 01/16/2001
for a total of 1,000 observations. Panel B: volatility estimates for the IBOVESPA fitting an MSSV
k = 2 model. Dotted lines highlight the following dates: (1) 07/02/1997: Thailand devalues the Baht
by as much as 20 %; (2)12/02/1997: IMF and South Korea set a bailout agreement; (3) 08/19/1998:
Russia officially falls into default; 02/02/1999: Arminio Fraga is named President of Brazil’s
Central Bank.

evidence in favor of the two-state MSSV (log Bayes factor of 10.579). The estimated
volatility times series is presented in panel B of Fig. 2.16 where one appreciates,
like in Carvalho and Lopes (2007), the structural changes that result in periods of
higher volatility. The dotted lines in plot highlight four key dates12 mentioned in
Carvalho and Lopes (2007), which appear to coincide with the regime switches in
the model and that agents perceive as moments that started or ended a crisis. This

12 The following key dates are highlighted in Fig. 2.16 panel B that are presented in Carvalho and
Lopes (2007)

(a) 07/02/1997: Thailand devalues the Baht by as much as 20 %
(b) 12/02/1997: IMF and South Korea set a bailout agreement
(c) 08/19/1998: Russia officially falls into default
(d) 02/02/1999: Arminio Fraga is named President of Brazil’s Central Bank
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behavior matches the one found in Carvalho and Lopes (2007) and corroborates the
fact that the sequential estimation is able to identify the structural changes through
the discrete state prediction.

Our fixed parameter estimates present behavior similar to the findings by
Carvalho and Lopes (2007). Again, the persistence parameter η is not overesti-
mated. The discrete shifts in volatility level the posterior mean for η is no longer
close to once. Likewise, the diagonal elements of the transitions probability matrix
for the discrete states are high. In our estimation we obtained13 E(p11|Dt) = 0.994
and E(p22|Dt) = 0.974, matching the observation of Carvalho and Lopes (2007) that
the duration in each regime is quite long with a predominance of the low volatility
regime.

2.4.2 S&P 500

As mentioned before, for the S&P 500 exploration we look at two series: (1) a
short, 5-year series between 9/1/2006 and 8/31/2011 and (2) a long 40-year series
between 9/1/1971 and 8/31/2011. The shorter series is used as second example of
the applicability of the filters and for this one we do a backtest to highlight the
accuracy of the estimates in a real data setting. The longer series is used to highlight
the benefits of using the APF + SS in more extensive data sets.

Both the log linear stochastic volatility model and the two-state MSSV model are
implemented for the two time series. The filters are run using uninformative priors
with the same hyperparameter values as the ones implemented in the simulation
study. Again a Bayes factor will be used to determine which model better fits the
data.

2.4.2.1 Short Time Series

The shorter S&P 500 series that we explore in this chapter is summarized graphi-
cally in Fig. 2.17 top panel. Here, the reader can appreciate that at the end of 2008
and in the middle of 2011 there are periods with particularly high variability in the
returns. This is consistent with the economic climate, as they coincide with the tim-
ing of the Lehman Brothers bankruptcy and the European credit crisis, respectively;
5,000 particle APF + SS filters are run for the two stochastic volatility models.
Latent state and parameter estimates are obtained fitting k = 1,2 MSSV models.
Evaluating the results, we obtained a log Bayes factor of 15.52 in favor of the two-
state MSSV model, implying that there are periods of time where the substantial and

13 E(.|Dt) is the conditional expected value given the data up to time t .
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Fig. 2.17 Panel A shows the log returns for the S&P 500 stock index between 09/01/2006 and
08/31/2011. Panel B shows the volatility estimate obtained fitting an MSSV with k = 2. Panel C
presents a graphical summary of the MSSV k = 2 estimates backtest. The black line is the true
return process and the dark gray lines are the 95 % predictive intervals.

sustained volatility increases. Panel B of Fig. 2.17 shows the k = 2 MSSV volatility
estimates. From the volatility estimates, it is somewhat clear when regime-shifting
takes place, which in turn match periods of increased volatility. Dotted lines in the
volatility estimate plots highlight an important date around the Lehman Brothers
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Bankruptcy filing (September 7, 200814) and a key date on the European credit
crises (May 10, 201015).

The sequential strategy used here is able to capture the structural changes in
the volatility, by accurately identifying the moments of higher volatility through
the discrete state prediction. The diagonal elements of the transition probability
matrix for the discrete states are estimated to be high, with E(p1,1|Dt) = 0.981
and E(p2,2|Dt) = 0.994. This implies that the duration in each regime is quite long
which is a fact also encountered by So et al. (1998) when analyzing the US S&P
500 series.

Further assessment of the parameters reveals, as expected, that there is no
evidence of parameter degeneracy. Point estimates and 95 % credible intervals for
the components of the ΘMSSV are presented in Table 2.7. To test the accuracy
of the parameter estimates we run a backtest of the data. Panel C of Fig. 2.17
presents the 95 % predictive intervals compared to the real returns. To test the accu-
racy of the predictions, we calculate the percentage of observations that lie outside
the predictive interval. In this case we have 9.308 % of the observations outside the
interval. This means that the estimates are underestimating the volatility. This is
consistent with the observations of the simulation study that revealed that all filter-
ing strategies had limitations with correctly estimating the latent process when there
were sudden large increases.

Table 2.7 APF + SS fixed parameter estimates and 95 % credible intervals for the k = 2 MSSV
models fitted to the short S&P 500 data set. E(.|Dt) is the conditional expected value given the
data up to time t .

Parameter 95 % credible interval E(.|Dt)

α1 ( −2.733, −1.892) −2.313
α2 (−2.289, −1.609) −1.948
η (0.734 , 0.814) 0.775
τ2 (0.493, 0.656 ) 0.592
p11 (0.961, 0.994) 0.982
p22 (0.982, 0.998 ) 0.994

14 The Federal Housing Finance Agency (FHFA) places Fannie Mae and Freddie Mac in govern-
ment conservatorship. The U.S. Treasury Department announces three additional measures to com-
plement the FHFAs decision: (1) preferred stock purchase agreements between the Treasury/FHFA
and Fannie Mae and Freddie Mac to ensure the GSEs positive net worth; (2) a new secured lending
facility which will be available to Fannie Mae, Freddie Mac, and the Federal Home Loan Banks;
and (3) a temporary program to purchase GSE MBS.
15 The Federal Housing Finance Agency (FHFA) places Fannie Mae and Freddie Mac in govern-
ment conservatorship. The U.S. Treasury Department announces three additional measures to com-
plement the FHFAs decision: (1) Preferred stock purchase agreements between the Treasury/FHFA
and Fannie Mae and Freddie Mac to ensure the GSEs positive net worth; (2) a new secured lending
facility which will be available to Fannie Mae, Freddie Mac, and the Federal Home Loan Banks;
and (3) a temporary program to purchase GSE MBS.
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2.4.2.2 Long Time Series

To further assess the applicability of the APF + SS filter we implemented the filter
on a significantly longer data set. We use a 40-year or 10,094 observation data set to
explore the performance of the filter of interest on longer time series, as the likeli-
hood of parameter collapses increases with the length of the data. We implemented
5,000 and 10,000 particle APF + SS filters and evaluated the results. In both cases
we observed that the filter performed well with no collapses or parameter degener-
acy present in either setting which corroborates the wide applicability scope of the
APF + SS filter.

Fig. 2.18 Panel A shows the log returns for the S&P 500 stock index between 09/01/1971 and
08/31/2011. Panel B shows the volatility estimate obtained fitting an MSSV with k = 2.

Here, we present a summary of the 10,000 particle estimation, given that results
are very similar regardless of the amount of particles used. Figure 2.18 panel A
presents the log returns of the S&P 500 in the analyzed period. After fitting the
k = 1,2 MSSV models, a Bayes factor analysis revealed strong evidence supporting
the two-state MSSV. Panel B of Fig. 2.18 shows the volatility estimates for this
model. Again, it is interesting to observe how in the return and volatility plots the
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periods of high variability match. Once more, this proves that the sequential learning
characteristic of the filter allows to detect the structural changes in the data through
the discrete state prediction.

A summary of the parameter estimates and 95 % credible intervals is presented
in Table 2.8. Like in the short series, the diagonal elements in the transition
probabilities are quite high, again being consistent with the So et al. (1998) find-
ings. Furthermore, by allowing discrete shifts in the volatility level the posterior
mean for η is no longer close to one which means that the persistence parameter is
not being overestimated as discussed in Carvalho and Lopes (2007).

Table 2.8 APF + SS fixed parameter estimates and 95 % credible intervals for the k = 2 MSSV
models fitted to the long S&P 500 data set. E(.|Dt) is the conditional expected value given the data
up to time t .

Parameter 95 % credible interval E(.|Dt)

α1 (−4.488, −4.151) −4.321
α2 (−4.013, −3.710) −3.863
η (0.559, 0.592) 0.576
τ2 (0.410, 0.435) 0.422
p11 (0.997, 0.999) 0.998
p22 (0.997, 0.999) 0.998

2.5 Conclusions

Our main contribution is to extend the APF and BF filters to accommodate sequen-
tial parameter learning via conditional sufficient statistics. We showed that, among
a group of four filters, the APF + SS filter outperforms while the LW filter under-
performs for the standard MSSV models. Our APF + SS filter also avoids or at
least reduces the dependence of the PF on the somewhat arbitrariness of selecting a
shrinkage/smoothness parameter. This is particularly important when dealing with
variance parameters, such as the volatility of the volatility parameter in the SV and
MSSV models.

The simulation study highlighted some of the important shortcomings in the LW
filter. As expected, there is strong evidence of collapses in the parameter estimates
and high Monte Carlo error. The only dimension in which this filter appeared to be
efficient was in computational time. On the other hand, the APF + SS filter produces
accurate parameter estimates that have the lowest Monte Carlo variability and show
no evidence of particle degeneracy. Furthermore, for the two-state MSSV this filter
is able to correctly track the regime changes. Nonetheless, given the complexity
of the calculation of the conditional sufficient statistics, the APF + SS filter is not
efficient in terms of computational time. As such we believe that compared to the
other filters considered for analysis here the APF + SS the arguably the best.
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Using real data examples we confirmed the applicability of the Bayesian filtering
strategies presented here. We were able to fit and estimate the MSSV models with
the APF + SS filter for both long and short return series. Results strongly suggested
fitting two-state MSSV model in the three analyzed cases. For the IBOVESPA and
S&P 500 analyses regime shifts matched key economic dates linked both to rises
and decreases in market volatility.

Despite our concentration on stochastic volatility models, the APF + SS filter
can be useful for many other statistical problems, such as (dynamic) factor models,
space–time models, hierarchical models and several classes of time-series models,
to name but a few. We believe that the flexibility of the APF + SS filter should
be combined with careful (and potentially optimal) choice of resample-propagate
proposal distributions (see Carvalho et al., 2010) for efficient sequential learning in
large and/or more complex dynamic systems.

One of the drawbacks of the SS estimation technique is that its application is
highly dependent on fixed parameters admitting recursive conditional sufficient
statistics. To overcome this a hybrid parameter learning technique can be imple-
mented in situations where the vector of fixed parameters can be divided into two
vector components, θ and η , where η , conditional on θ , admits recursive condi-
tional sufficient statistics. More specifically, the prior for (θ ,η) is

p(θ ,η) = p(θ )p(η |x0,θ ) = p(θ )p(η |s0,θ ) (2.21)

and st =S (st−1,xt ,θ ,yt) is a vector of recursive sufficient statistics, for t = 1, . . . ,n.
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Chapter 3
A Survey of Implicit Particle Filters for Data
Assimilation

Alexandre J. Chorin, Matthias Morzfeld, and Xuemin Tu

3.1 Introduction

In many problems in science and engineering, e.g. in statistics, statistical signal pro-
cessing, oceanography, meteorology, geomagnetics, econometrics, or finance, one
wants to identify the state of a system from an uncertain model supplemented by a
stream of noisy and incomplete data (see, e.g., [12, 34] for recent reviews in eco-
nomics). The model is typically a Markovian state space model (often a discretiza-
tion of a stochastic differential equation, SDE) and describes the state sequence
{xn; n ∈ N}, where xn is a real, m-dimensional vector. For simplicity, we assume
that the noise is additive, so that the model equations are

xn = f n(xn−1)+ vn−1, (3.1)

where f n is an m-dimensional vector function, and {vn−1, n ∈ N} is a sequence
of independent identical distributed (i.i.d.) m-dimensional random vectors which,
in many applications, are Gaussian vectors with independent components. One can
think of the xn as values of a process x(t) evaluated at times nδ , where δ is a fixed
time increment. The probability density function (pdf) of the initial state x0 is as-
sumed to be known.
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The model (3.1) is supplemented by an observation (or measurement) equation,
which relates observations {bn; n ∈ N}, where bn is a real, k-dimensional vector
and k ≤ m, to the states xn; we assume the observation equation is

bn = hn(xn)+wn, (3.2)

where hn is a k-dimensional vector function, and {wn, n ∈ N} is a k-dimensional
i.i.d. process, independent of vn. The model and the observation equations together
constitute a hidden Markov state space model (HMM). To streamline our notation,
we denote the state and observation sequences up to time n by x0:n = {x0, · · · ,xn}
and b1:n = {b1, · · · ,bn}, respectively.

Our goal is to estimate the state sequence x0:n, based on (3.1) and (3.2) and we
propose to use the minimum mean square error estimator E

[

x0:n|b1:n
]

(see, e.g.,
[5]). If f n and hn are linear functions and if, in addition, vn and wn are Gaussian
random variables, this conditional mean can be computed by the Kalman filter (KF)
[22, 27, 28]. The ensemble Kalman filter (EnKF) [19] uses the KF formalism but
updates the covariance matrix using an “ensemble of particles,” i.e. by Monte Carlo
simulations of the model (3.1). Because EnKF uses this ensemble approach, it can
give good results even with nonlinear models (3.1), provided the nonlinearity is not
too strong. Variational data assimilation methods find the mode of the target pdf,
i.e. the most likely state given the data, and often use linearizations and Gaussian
approximations to streamline the computations (see, e.g., [2, 10, 11, 33, 48–50, 56]
and Sect. 3.4 for more details on KF, EnKF, and variational data assimilation).

In nonlinear, non-Gaussian situations, one can approximate the conditional mean
using sequential Monte Carlo methods, called particle filters. Particle filters follow
replicas of the system (called particles), whose empirical distribution weakly ap-
proximates the pdf p(x0:n | b1:n) (called the target density), and approximate the
conditional mean by the weighted sample mean [1, 14, 16]. A standard particle fil-
ter, also called the sequential importance sampling with resampling (SIR) filter,
first generates a set of particles {xn

i } from the model equation (3.1) and then weighs
these particles by the observation equation (3.2) [16, 17, 23]. The empirical distri-
bution of the weighted particles forms a weak approximation of the target density
at the current time step. One then removes particles with small weights (which con-
tribute very little to the approximation of the target density) by “resampling,” (see
[1, 16] and the references therein for efficient resampling algorithms). The SIR filter
is easy to implement, however after several time steps, often only a few of the par-
ticles carry a significant weight, which means that the weak approximation of the
target density is poor. A cure here is to increase the number of particles (so that at
least some carry a significant weight); however, it has been shown that the number
of particles required can grow catastrophically with the state dimension m [3, 47].
Various strategies have been proposed to ameliorate this difficulty, and most of them
focus on finding a better way to generate the samples [13, 16, 45, 51, 52, 54].

In what follows, we explain how implicit particle filters [7–9, 39–41] tackle this
problem. The basic idea is to first look for regions of high probability in the tar-
get density and then focus the particles onto these regions, so that only particles
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with significant weights are generated and the number of particles required remains
manageable even if the state dimension is large. The high probability regions are
identified by particle-by-particle minimizations, and the samples are obtained by
solving data-dependent algebraic equations. The solutions of these equations define
a high probability sample from the target density. Related work can be found in
[42, 53].

The remainder of this chapter is organized as follows. In Sect. 3.2 we present
the mathematical formulation of implicit particle filters and highlight special cases
of interests. Several implementations of implicit particle filters are discussed in
Sect. 3.3. In Sect. 3.4, the relations with other data assimilation methods are stud-
ied. We present six examples in Sect. 3.5 to demonstrate the efficiency and broad
applicability of the implicit particle filter. Conclusions are offered in Sect. 3.6.

3.2 Implicit Particle Filters

The implicit particle filter is a sequential Monte Carlo method for data assimilation
that uses importance sampling. In importance sampling one wants to find a weak
approximation of the pdf, f , of a continuous random variable (called the target pdf),
by generating weighted samples from a known density f0 (called the importance
function), see, e.g., [5]. The weight of the sample Xj (obtained by sampling f0),

w(Xj) =
f (Xj)

f0(Xj)
,

is the ratio of the target pdf and the importance function. The N weighted samples
Xj, j = 1, . . . ,N, with their weights wj normalized so that their sum equals 1, form
a weak approximation of the target pdf f such that

E f [g(x)] =
∫ ∞

−∞
g(x) f (x)dx ≈

N

∑
j=1

g(Xj)w(Xj),

for all sufficiently smooth, scalar functions g, where E f [g(x)] denotes the expected
value of the function g with respect to the pdf f . The key to making importance sam-
pling efficient is choosing a suitable importance function f0, such that the weights
vary little from one sample to the next. In data assimilation, the target density is the
conditional pdf p(x0:n | b1:n). We now present the importance function generated
by the implicit particle filter and describe why it produces samples with a small
variance in the weights.

For simplicity of presentation, we assume that the model equation (3.1) is syn-
chronized with the observations (3.2), i.e. observations bn are available at every
model step (it is not hard to drop this assumption, see Sect. 3.2.2). Using Bayes’
rule and the Markovian property of the model, we obtain the recursive expression:

p(x0:n+1 | b1:n+1) = p(x0:n | b1:n)p(xn+1 | xn)p(bn+1 | xn+1)/p(bn+1 | b1:n). (3.3)
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At the current time n+1, the first term in (3.3) can be assumed to be known, because
it is the result of our calculations at time n. The denominator is common to all
particles and thus drops out in the importance sampling scheme (where the weights
are normalized so that their sum equals 1).

Suppose that at time n, we have M samples X j = X0:n
j with weights wn

j , j =

1, . . . ,M, whose empirical distribution weakly approximates p(x0:n | b1:n). For each
sample (particle), define a function Fj by

Fj(Xn+1
j ) =− log

(

p(Xn+1
j | Xn

j)p(bn+1 | Xn+1
j )

)

, (3.4)

where we obtain the first term from the model equation (3.1) and the second from
the observation equation (3.2). Note that the arguments of the functions Fj are the
state variables of the jth particle at time n+1. The previous state of the jth particle,
Xn

j and the current observation bn+1 are merely parameters.
By definition of the Fj’s, the high probability region of the target density corre-

sponds to the region around the global minimum of Fj. Thus, searching for the high
probability region in the target density is equivalent to minimizing the functions Fj.
We first assume that the functions Fj are convex and carry out this minimization
with standard techniques (e.g., Newton’s method, quasi-Newton methods, gradient
descent, see [20, 43]) and obtain samples within these regions by solving the data-
dependent equations

Fj(Xn+1
j )−φ j =

1
2
ξ T

j ξ j, (3.5)

where

φ j = minFj(Xn+1
j ),

and where ξ j is a realization of an easy-to-sample Gaussian reference variable
ξ ∼N(0, I), where N(μ ,Σ) denotes a Gaussian pdf with mean μ and covariance ma-
trix Σ , and I is the m-dimensional identity matrix. A Gaussian reference variable is
chosen for simplicity of presentation and is by no means necessary (it may be
suboptimal in some applications). More importantly, a Gaussian reference variable
does not imply a Gaussianity or linearity assumption. All that is needed here is a
reference variable with a high probability close to the origin, so that (3.5) maps the
high probability region of the reference density to the high probability region of the
target pdf.

The solutions of (3.5) define the samples Xn+1
j ; however, the solutions are

not unique because (3.5) connects the m-dimensional samples Xn+1
j to the m-

dimensional reference variable ξ j. The samples we find thus depend on the map
ξ j → Xn+1

j we choose to solve (3.5). To obtain a high probability sample Xn+1
j ,

we choose maps that satisfy the following conditions (see [7] for detailed expla-
nation): the map should be (1) one-to-one and onto with probability one (so that
the whole sample space is covered); (2) smooth near the high-probability region of
ξ (so that the weights do not vary unduly from particle to particle); and (3) there
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should be an easy way to evaluate the Jacobians J =
∣

∣

∣det
(

∂Xn+1
j /∂ξ j

)∣

∣

∣ (for effi-

cient implementation).
We will present specific choices for these maps in Sect. 3.3, but for now assume

that we can compute these Jacobians. The probability of the sample we obtain is
p(Xn+1

j ) = p(ξ j)/J, so that, using (3.5) and (3.4), the weight of the sample can be
computed to be

wn+1
j ∝ wn

j exp(−φ j)J. (3.6)

With these M samples Xn+1
j and the samples X j = X0:n

j from the previous time step,

we can form a sample X̂ j = X0:n+1
j from p(x0:n+1 | b1:n+1) with weight wn+1

j as
in (3.6). Once one has samples and weights, one can resample the pdf they define so
as to remove some of the low probability particles and reset all the weights to 1/M,
see, e.g., [1].

If the functions Fj are not convex, one can use the degeneracy of (3.5) to replace
these functions by convex functions F0

j in (3.5) in such a way that the focusing effect
is maintained; the weights have to be recomputed so that there is no bias, see, e.g.,
[7].

Before focusing our attention on implementing the implicit particle filter (see
Sect. 3.3), we give more details on the functional form of Fj for some cases of inter-
est.

3.2.1 Linear Observation Function and Gaussian Noise

To illustrate the method on a simple example, we assume that the observation equa-
tion is linear, i.e. hn(x)=Hx, where H is a k×m matrix, and that the noise processes
wn and vn in (3.1) and (3.2) are Gaussian with zero mean and known covariance, i.e.
vn ∼ N(0,G), wn ∼ N(0,Q), where G is an m×m, real, symmetric positive definite
(SPD) matrix and Q is a k × k SPD matrix. The functions Fj in (3.4) can now be
written as

Fj(Xn+1
j ) =

1
2

(

Xn+1
j − μ j

)T
Σ−1

(

Xn+1
j − μ j

)

+φ j, (3.7)

where

Σ−1 = G−1 +HT Q−1H, (3.8)

K = HGHT +Q, (3.9)

μ j = Σ
(

G−1 f n(Xn
j)+HT Q−1bn+1) , (3.10)

φ j =
1
2

(

bn+1 −H f n(Xn
j)
)T

K−1 (bn+1 −H f n(Xn
j)
)

. (3.11)

It is clear that φ j = minFj(Xn+1
j ), so that (3.5) becomes

(

Xn+1
j − μ j

)T
Σ−1

(

Xn+1
j − μ j

)

= ξ T
j ξ j. (3.12)



68 A.J. Chorin et al.

We can solve (3.12) by computing the Cholesky factorization Σ = LLT and putting

Xn+1
j = μ j +Lξ j. (3.13)

The Jacobian J = |det
(

∂x
∂ξ

)

| = |detL| is constant (the same for all particles) and

thus need not be computed. By (3.6), the weight for each particle is

wn+1
j ∝ wn

j exp(−φ j). (3.14)

Moreover, a simple calculation shows that

wn+1
j ∝ wn

j p(bn+1 | Xn
j).

The above weights are the same as those of a filter that uses the optimal importance
function q̂ = p(xn+1|xn,bn+1) (see [17] and the references therein) . “Optimal” here
refers to “having minimum variance in the weights per particle,” i.e. for a fixed
Xn

j , the variance of wn+1
j is zero. The implicit particle filter produces minimum

variance weights in this sense if the observation equation (3.2) is linear and the
observations are in sync with the model (see Sect. 3.4.2 for more details on the
optimal importance function).

3.2.2 Sparse Observations

The assumption that the observations are available at every model step can be re-
laxed. Let r ≥ 1 be the number of model steps between observations (it is an easy
exercise to adjust Fj for the case when the number of model steps between observa-
tions is not constant). The recursive formula (3.3) becomes

p(x0:r(n+1) | b1:n+1) = p(x0:rn | b1:n)p(xrn+1 | xrn) · · · p(xr(n+1) | xr(n+1)−1)

×p(bn+1 | xr(n+1))/p(bn+1 | b1:n).

Again, suppose we have M weighted samples X j = X0:rn
j , j = 1, . . . ,M, from

p(x0:rn | b1:n) and, for each sample, we define a function Fj by

Fj(Xrn+1
j , . . . ,Xr(n+1)

j ) = − log(p(Xrn+1
j | Xrn

j ) · · · p(Xr(n+1)
j | Xr(n+1)−1

j )

×p(bn+1 | Xr(n+1)
j )).

With this Fj, one can follow the steps starting with (3.5) to obtain a sample from
p(x0:r(n+1) | b1:n+1). Note that the functions Fj depend on rm variables (the com-

ponents of Xrn+1:r(n+1)
j ), so that we need to choose an rm-dimensional reference

density. However, the general procedure for generating samples does not change
when the observations are sparsely available in time.
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3.2.3 Models with Partial Noise

Following [40], we consider the case of “partial noise,” i.e. the model noise,
vn ∼ N(0,G), is Gaussian with singular covariance matrix G. Such models appear
frequently, for example in the discretization of a stochastic partial differential equa-
tion (SPDE) driven by spatially smooth noise (see, e.g., [25, 35, 40]). Another class
of models with partial noise are stochastic dynamical equations supplemented by
conservation laws. There is typically zero uncertainty in the conservation laws (e.g.,
the conservation of mass), so that the model is subject to partial noise [33]. This
situation is similar to that of second-order (in time) SDEs, that appear, for example,
in robotics. The second-order equation is often converted into a set of first-order
equations, some of which are trivial (e.g., u′′ = f is converted into v = u′,v′ = f )
and it is unphysical to inject noise into these trivial equations.

We use a linear coordinate transformation to diagonalize the state covariance
matrix G [44] to obtain a canonical form of a model with partial noise from (3.1)
and (3.2):

x̂n+1 = f̂ (x̂n, ŷn)+ v̂n+1, v̂n+1 ∼ N(0, Ĝ), (3.15)

ŷn+1 = g(x̂n, ŷn), (3.16)

bn+1 = ĥ(x̂n, ŷn)+ ŵn. (3.17)

Here x̂n is a p-dimensional column vector, p < m is the rank of the state covariance
matrix G, and f̂ and ĥ a p-dimensional, respectively, k-dimensional vector functions;
Ĝ is a non-singular, diagonal p× p matrix, ŷn is a (m− p)-dimensional vector, and
g is a (m− p)-dimensional vector function. For ease of notation, we drop the hats
and, for convenience, we refer to the set of variables xn and yn as the “forced” and
“unforced variables,” respectively.

The key to filtering a model with partial noise is observing that the unforced
variables at time n+ 1, given the state at time n, are not random. To be sure, yn is
random for any n due to the nonlinear coupling g(xn,yn), but the conditional pdf
p(yn+1 | xn,yn) is the delta-distribution. For a given initial state x0, y0, the target
density is

p(x0:n+1,y0:n+1 | b1:n+1) ∝ p(x0:n,y0:n | b1:n)

× p(bn+1 | xn+1,yn+1)p(xn+1 | xn,yn)

and the corresponding functions Fj as in (3.4) for models with partial noise are
defined by

Fj(Xn+1
j ) =− log

(

p(bn+1 | Xn+1
j ,yn+1

j )p(Xn+1
j | Xn

j ,y
n
j)
)

.

With this Fj, we can use the implicit particle filter as described above.
The difference in filtering models with partial noise is that yn+1

j is fixed for each
particle, because its previous state, (Xn

j ,y
n
j), is known, and because there is no noise
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in the equation for the unforced variables yn. That means that the filter only updates
the forced variables Xn+1

j when the observations bn+1 become available. The un-

forced variables yn+1
j are moved forward in time using the model, as they should be,

since there is no uncertainty in yn+1 given xn,yn. Because the functions Fj depend
on the forced variables only, the implicit particle filter reduces in dimension from m
to p (the rank of the state covariance matrix G). This fact makes the implicit parti-
cle filter particularly effective for models with partial noise, because other filtering
techniques, e.g., SIR, struggle to make direct use of the structure of the model.

3.2.4 Combined State and Parameter Estimation

Next, we consider models with unknown parameters, say θ ∈ Rl , so that the model
equation (3.1) becomes

xn = f n(xn−1,θ )+ vn−1.

The goal is to estimate both the states and the parameters, i.e. compute the condi-
tional mean E

[

x0:n,θ |b1:n
]

. We approximate the conditional mean by the sample
mean, using weighted samples from p(x0:n,θ |b1:n). A relatively simple way of esti-
mating the parameters is to append a state equation for the parameters of the form

θ n = gn(xn−1,θ n−1)+ vn−1
θ ,

where gn is an l-dimensional vector function and vn
θ is an l-dimensional i.i.d. ran-

dom process. Defining an “extended” state x̂ = (x,θ ), the implicit particle filter as
described above can be applied to estimate x̂0:n given the data b1:n. The difficulty
here lies in how to choose the dynamics gn of the parameters θ . In particular, this
approach is questionable if the parameters are known to be constant in time.

Alternatively, one can use the Markov property of the model and Bayes’ rule to
derive the recursive formula

p(x0:n+1,θ | b1:n+1) = p(x0:n,θ | b1:n)p(xn+1 | xn,θ )p(bn+1 | xn+1)/p(bn+1 | b1:n).

Following the now familiar steps and assuming that we have M samples from
p(x0:n,θ | b1:n), we can define the functions Fj by

Fj(Xn+1
j ,θ j) =− log

(

p(Xn+1
j | Xn

j ,θ j)p(bn+1 | Xn+1
j )

)

.

With these Fj, we can again apply the implicit particle filter as described above.
The details and numerical tests for this method applied to ecological models can be
found in [55].
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3.3 Implementations of the Implicit Particle Filter

The setup for the implicit particle filter as presented in the previous section is rather
general, i.e. we have a lot of freedom in how we execute the various steps of the
method. The crucial steps are (1) to find the minima of the functions Fj; and (2)
choose a map that solves the implicit equation (3.5). In practice, any one of the
standard numerical optimization algorithms, e.g. Newton’s method, quasi-Newton
methods, trust-region methods, or gradient descent, can be used for the minimiza-
tions. However the applicability and efficiency of the minimization algorithms are
problem dependent. For example, it may be very difficult to compute the Hessians
of the functions Fj (for which the derivatives of the model equations are needed), so
that Newton’s method is not applicable but a quasi-Newton method can be used. If
the state dimension is large, and memory limitations become an issue, then a gradi-
ent descent method may be the method of choice for minimization of Fj. We explain
the minimization algorithms we use in the examples in Sect. 3.5. In the present sec-
tion, we present two efficient ways of solving the implicit equation (3.5).

3.3.1 Solution of the Implicit Equation via Quadratic
Approximation

Inspired by the simplicity of the case for which linear observations are available at
each model step, one can try solving a quadratic equation, rather than the implicit
equation (3.5). This idea was presented in [7] and is related to the quadratic expan-
sion construction in [17] (see Sect. 3.4.2 for more details) and the Laplace approxi-
mation [29] (where the target pdf is approximated by a Gaussian). To find a suitable
quadratic equation, expand Fj to second-order accuracy around its minimum:

F0
j = φ j +

1
2
(Xn+1

j − μ j)
T Hj(Xn+1

j − μ j),

where Hj is the Hessian of Fj, evaluated at the minimizer μ j = argmin Fj. With this
F0

j , define the equation

F0
j (X

n+1
j )−φ j =

1
2
ξ T

j ξ j, (3.18)

which can be solved efficiently using a Cholesky decomposition of the Hessian Hj.
Let Lj be a Cholesky factor of Hj = LjLT

j . It is easy to verify that

Xn+1
j = μ j +Ljξ j,

solves (3.18) and that the Jacobian, J =
∣

∣det(Lj)
∣

∣, of this map is easy to calculate,
since it is the product of the diagonal elements of Lj. To avoid introducing any bias,
one needs to account for the error we made by solving (3.18) rather than the true
equation (3.5) in the weights. With this importance function, we obtain the weights
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wn+1
j = wn

j

exp(−Fj(Xn+1
j ))

exp(−ξ T
j ξ j/2)

J,

= wn
j exp(−φ j)

∣

∣det(Lj)
∣

∣exp(F0
j (X

n+1
j )−Fj(Xn+1

j )). (3.19)

This method of sampling has a geometric interpretation: the target pdf is approx-
imated locally by a Gaussian centered at the mode of the target pdf, and with a
covariance matrix that depends on the curvature of the target pdf at the minimum
(i.e., the importance function is obtained from the Laplace approximation). These
samples are weighted by exp(F0

j (X
n+1
j )−Fj(Xn+1

j )) to account for the error we
make by solving the quadratic equation (3.18) rather than the true equation (3.5). If
a Newton or quasi-Newton method is used for the minimization of Fj, then Hj, and
often even Lj, are already available and this sampling method is easy to code and
numerically efficient.

However, if the Gaussian approximation is not valid, for example, because the
skewness in the target density is significant, the variance of the weights is increased,
which should be avoided. In such cases, exact solution of (3.5) is advisable and we
present an efficient method for doing so in the next subsection.

3.3.2 Solution of the Implicit Equation via Random Maps

Here we review the approach presented in [39] which solves (3.5) by the random
change of variables (random map)

Xn+1
j = μ j +λ jL

T
j η j, (3.20)

where λ j is a scalar and η j = ξ j/
√

ξ T
j ξ j is uniformly distributed on the unit

m-sphere (or rm-sphere if the observations are sparse in time), and where μ j =
argmin Fj. The square matrix Lj contains all prior information we have about Fj

and is deterministic and invertible. We will discuss the choice of Lj in more detail
below.

By substitution of (3.20) into (3.5), we obtain a single algebraic equation in a
single variable λ j:

Fj(μ j +λ jL
T
j η j)−φ j =

1
2
ξ T

j ξ j.

The solution of the above equations defines Xn+1
j through (3.20). The geometric

interpretation of this approach is that we choose a direction η j at random, and then
solve for λ j, which tells us how far we need to search in this direction to hit the level
set of Fj that is defined by the sample from the reference variable ξ .

To compute the weights in (3.6), we need to compute the Jacobian of the random
map (3.20), which is:

J = 2|detLj| ρ1−m/2
j

∣

∣

∣

∣

λm−1
j

∂λ j

∂ρ j

∣

∣

∣

∣

,
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where ρ j = ξ T
j ξ j, and m is the dimension of the state space (if the observations

are sparse, m in the above formula is to be replaced by rm). We refer to [39] for
the details of this calculation; however, note that the Jacobian is easy to evaluate,
since the scalar derivative ∂λ j/∂ρ j can be computed efficiently either by using finite
differences or by evaluating

∂λ j

∂ρ j
=

1
2(∇Fj)LTη j

,

where ∇Fj is the gradient of Fj. The weight of the sample we obtained by solv-
ing (3.5) with the random map (3.20) is thus

wn
j ∝ wn−1

j exp(−φ j)|detLj| ρ1−m/2
j

∣

∣

∣

∣

λm−1
j

∂λ j

∂ρ j

∣

∣

∣

∣

. (3.21)

We now discuss the choices of the matrix Lj. Suppose we apply our random map
method to the special case we discussed in Sect. 3.2.1, i.e. the observation equa-
tion (3.2) is linear and in-sync with the model. With Lj = I, we find that

λ j =

√ρ j
√

ηT
j Σ−1η j

where Σ is given in (3.8). The weights of the particles become

wn+1
j ∝ wn

j exp(−φ j)(ηT
j Σ

−1η j)
−m/2,

and, since Σ is symmetric, are bounded above and below by the eigenvalues of Σ .
The Jacobian J can vary dramatically from one sample to another, especially if the
largest and smallest eigenvalues of Σ j are separated by a large gap. If we choose Lj

such that Σ = LT
j L j , we find λ j =

√ρ j and J = |detLj|. This Jacobian is constant and
need not be computed, and with this choice of Lj, we sample the optimal importance
function, by solving (3.5) with the random map (3.20), see [39].

In the general case, we can use the information on the curvature of Fj we have
in its Hessian Hj, by choosing Lj to be a Cholesky factor of this Hessian, i.e. Hj =
LT

j L j. This choice should speed up the solution of (3.5), especially if Fj is quadratic
or nearly so. This choice of Lj also suggests a “good” initialization for the numerical
computation of the parameter λ j in the random map. One can expect λ to be on the
order of

√ρ and so that the iterative solution of (3.5) is initialized with λ 0
j =

√ρ j.

3.4 Comparison with Other Sequential Monte Carlo Schemes

We wish to compare the implicit particle filter with other data assimilation methods
and point out differences and similarities between these methods and the implicit
particle filter.
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3.4.1 Comparison with the SIR Filter

The SIR filter [16] uses the model (3.1), i.e. p(xn+1|xn), as the importance function,
so that the weights are

wn+1
j,SIR ∝ wn

j,SIRp(bn+1|xn+1). (3.22)

The SIR filter can be formulated as an implicit particle filter with a different choice
of φ j in (3.5). Recall that for the implicit particle filter φ j = minFj in (3.5). If we
replace φ j by

φ j,SIR =− log(p(bn+1|Xn+1
j )), (3.23)

then (3.5) becomes

− log(p(Xn+1
j |Xn

j)) =
1
2
ξ T

j ξ j.

For Gaussian model noise with covariance matrix Q, we thus have

(Xn+1
j −Xn

j)
T Q−1(Xn+1

j −Xn
j) = ξ T

j ξ j, (3.24)

which can be solved by

Xn+1
j = Xn

j +LTξ j, (3.25)

where L is a Cholesky factor of Q = LLT . Note that the Jacobian of this map is
constant for all particles (it is the determinant of L), and thus need not be determined
for computation of the weights. Moreover, computing Xn+1

j by (3.25) is equivalent
to running the model forward for one time step, so that this implicit particle filter
uses the same importance function as the SIR filter. The weights of the particles of
this implicit particle filter, given by (3.6), are therefore also the same as the weights
of the SIR filter in (3.22).

The SIR filter is thus an implicit particle filter with φ j in (3.5) replaced by φ j,SIR
in (3.23). This observation illustrates why the SIR filter requires significantly more
particles than the implicit particle filter (with φ j = minFj): choosing φ j to be the
minimum of Fj in (3.5) maps the high probability region of the reference vari-
able ξ to the neighborhood of the minimum of Fj, which corresponds to the high
probability region of the target pdf. Choosing φ j as in (3.23), on the other hand,
maps the high probability region of the reference variable to the high probability
region of the model (3.1). The overlap of the high probability region of the model
with the high probability region of the target pdf can be very small, and in these
cases, the SIR filter requires a large number of particles to provide accurate state
estimates.
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3.4.2 Comparison with Optimal Importance Function Filters

A crucial step in designing an efficient sequential Monte Carlo method is “a good
choice” of the importance function. In the context of data assimilation, an “optimal”
importance function can be found in [17] and the references therein:

q̂ = p(Xn+1
j |bn+1,Xn

j). (3.26)

Here, “optimal” means that the variance of the weights of a given particle is zero
(but not the variance of the weights of all the particles), and a particle filter which
uses the optimal importance function is often called an optimal importance function
filter. The weights of the optimal particles can be shown to be

ŵn+1
j ∝ ŵn

j p(bn+1 | Xn
j).

If observations are available at every model step and if, in addition, the model
and observation noise are Gaussian and the observation function hn in (3.2) is lin-
ear, then the optimal importance function q̂ is Gaussian with mean μ and covari-
ance Σ as in (3.10) and (3.8) [17]. It was shown in Sect. 3.2.1 that in this case the
implicit particle filter uses exactly this density as the importance function and that
its weights are proportional to p(bn+1 | Xn

j). Thus, for this special case, the implicit
particle filter samples the optimal importance function and represents a convenient
implementation of the optimal importance function filter.

In the general case, the optimal importance function is not readily available. One
can rewrite (3.26) as

q̂ =
p(bn+1|Xn+1

j )p(Xn+1
j |Xn

j)

p(bn+1|Xn
j)

, (3.27)

and try to compute the denominator, e.g., by Monte Carlo using

p(bn+1|Xn
j) =

∫

p(bn+1|Xn+1
j )p(Xn+1

j |Xn
j)dXn+1

j .

which is often hard to do. However, even if p(bn+1|Xn
j) is available, sampling di-

rectly from the optimal importance function may be hard. In this case, one can define
the function

l j = log p(Xn+1
j |bn+1,Xn

j),

find its maximum λ j = max l j, and expand l j around its maximum:

l j = λ j +
1
2

(

Xn+1
j − γ j

)T
Hj

(

Xn+1
j − γ j

)

,

where γ j = argmax l j and Hj is the Hessian of l j, evaluated at the maximum. The
quadratic expansion suggests the (suboptimal) Gaussian importance function

q = N(γ j ,H
−1
j ).
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This approach has many similarities to the implicit particle filter when Fj in (3.5)
is approximated by its quadratic expansion, also see Sect. 3.3.1. Specifically, both
methods require the solution of an optimization problem (to search for the high
probability regions in the target pdf), and sampling from a multivariate Gaussian
density. However, the implicit particle filter avoids the difficulties which arise in the
optimal importance function filter from the need to compute p(bn+1|Xn

j) in (3.27).
Since the computation of this term can be expensive, the implicit particle filter seems
to be more efficient and easier to implement.

3.4.3 Comparison with the Kalman Filter and with Variational
Data Assimilation Methods

The KF is, strictly speaking, only applicable to linear systems ( f and h are linear
in (3.1) and (3.2)), driven by Gaussian noise (both vn and wn in (3.1) and (3.2)
are Gaussian) [27, 28]. In this special case, the KF is widely used and efficient
implementations are available for large, linear models. The implicit particle filter
(with one particle) implements the KF for linear dynamics and Gaussian noise, be-
cause (3.8) and (3.10) become, upon rearrangement of the terms, the KF formulas.

For nonlinear, non-Gaussian HMM models, the extended Kalman filter (EKF)
uses a linearization of the model and observation equation along with the standard
KF formalism [26]. The EnKF implements the KF step using a covariance matrix
that is approximated by Monte Carlo, i.e. by the sample covariance of many model
runs. This step avoids the often costly computation of the covariance matrix in the
KF formalism, and the EnKF can outperform the KF in linear systems with a very
large state dimension [19]. Moreover, the EnKF injects the nonlinearity of the model
into the KF formalism through the sample covariance matrix but relies on a lin-
earization of the observation equation. For this reason, both EKF and EnKF can
give good results if the nonlinearity is not too strong and if the number of model
steps between observations is not too large. The implicit particle filter, on the other
hand, tackles the full nonlinear problem and can outperform EnKF in nonlinear
problems [40].

Variational data assimilation finds the most likely state given the data by finding
the mode of the target pdf [2, 10, 11, 33, 48–50, 56]. This mode can be found by
minimizing a suitable cost function which is very similar to the functions Fj used
in the implicit particle filter. Specifically, the cost function in weak constraint 4D-
Var is the function Fj, with Xn

j being a variable (in the context of the filter, Xn
j is

a parameter), and with an additional quadratic term, that corresponds to a Gaus-
sian approximation of prior information on the state Xn

j (see, e.g., [50]). Thus, the
computational cost of the implicit particle filter is roughly the cost of a variational
method, times the number of particles required (which should be a relatively small
number), since the sampling can be carried out very efficiently once the minima of
the Fj are obtained (see [41] for a detailed comparison of the implicit particle filter
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with variational data assimilation). It is also important to note that the minimization
of the functions Fj and the sampling for the different particles can be carried out in
parallel.

The main benefits of investing the additional effort and using the implicit par-
ticle filter rather than a variational method are: (1) a variational method computes
the maximum a posteriori estimate (MAP), while the implicit particle filter approx-
imates the minimum mean square error estimate (MMSE); in many situations, e.g.,
if the skewness in the target density is significant, the MMSE is a better estimator
than the MAP[5]; (2) the implicit particle filter provides a quantitative measure of
the uncertainty of its state estimate (e.g., sample covariance or higher moments),
while variational methods only provide a state trajectory, but no error bounds; and
(3) the implicit particle filter is a sequential method and thus it is relatively easy to
assimilate more observations as they become available, while there are theoretical
and practical issues with the sequential continuation of variational methods.

3.5 Applications

We demonstrate the applicability and efficiency of the implicit particle filter on six
examples and provide details about the implementation in each of the examples. The
first two examples show that the implicit filter can outperform other methods even
in relatively simple problems. In examples 3 and 4 we demonstrate the applicabil-
ity of the implicit particle filter to models that exhibit chaotic behaviors. We then
consider data assimilation for a model of the geomagnetic field coupled to the core
velocity. Finally, we consider an ecological model and use the implicit particle filter
to assimilate ocean color data obtained by NASA’s SeaWiFS satellite.

3.5.1 A Simple Example

This first example, taken from [47], corresponds to the special case discussed in
Sect. 3.2.1: the functions f n in (3.1) are zero and hn in (3.2) is the identity, i.e. the
model and data equations become

xn+1 = vn, bn+1 = xn+1 +wn+1,

where vn and wn are m-dimensional vectors whose elements are independent stan-
dard normal variates. If the initial conditions are known precisely (i.e., if we start all
particles from the same state), then, by (3.14), the weights of the particles produced
by the implicit filter are constant, since φ j in (3.11) is constant. The weights of the
SIR filter, on the other hand, are uneven and, if the dimension m exceeds 100, one
observes frequently that a single SIR particle hogs all the probability [3, 47], so that
this version of SIR fails.
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3.5.2 Stochastic Volatility Model

We consider the stochastic volatility model

xn+1 = axn + vn, bn+1 = wn+1σb exp(xn+1/2),

where, as in [45], a = 0.9702, σb = 0.5992, and vn and wn are Gaussian random
variables with mean 0 and standard deviation σv = 0.178 and σw = 1, respectively.
For this (non-Gaussian) model, the functions Fj become

Fj(X
n+1
j ) =

(

Xn+1
j − aXn

j

)2

2σ2
v

+

(

bn+1
)2

2σ2
b

exp(−Xn+1
j ).

For the implicit particle filter we minimize these functions using Newton’s method
and then use the quadratic approximation as in Sect. 3.3.1 to generate the particles
with weights given by (3.19). Results of a test-run with the implicit filter as well
as with an SIR filter and the (adapted) auxiliary particle filters in (see Sect. 3.3.4
in [45]) are shown in Fig. 3.1. We observe that the implicit particle filter gives good
results with a small number of particles (∼100); the SIR and auxiliary particle filters
are less accurate even if we increase the number of particles significantly (to about
100,000 for SIR and 5,000 for the auxiliary particle filter).

3.5.3 The Stochastic Lorenz Attractor

This example is taken from [39]. We follow [6, 37, 38] and consider the stochastic
Lorenz attractor [36]

dx = σ(y− x)dt + g1dW1, (3.28)

dy = (x(ρ− z)− y)dt + g2dW2, (3.29)

dz = (xy−ηz)dt + g3dW3, (3.30)

with the standard parameters σ = 10, ρ = 28, η = 8/3, and initial conditions x(0) =
−5.91652, y(0) = −5.52332, z(0) = 24.5723. The noise is chosen equally strong
for all variables, so that g1 = g2 = g3 = g =

√
2. We discretized the continuous

equations by the Klauder–Petersen (KP) scheme [30]

xn+1,∗ = xn + δ f (xn)+ gv1,

xn+1 = xn +
δ
2

(

f (xn)+ f (xn+1,∗)
)

+ gv2,

where δ is the time step, v1,v2 ∼N(0,δ I), and where f (·) can be read off the Lorenz
attractor (3.28)–(3.30). We are content here with an approximation with time step
δ = 0.01 (see [39] for more details on the discretization). Observations of all three
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Fig. 3.1 Filtering results for the stochastic volatility model: an SIR filter with 100,000 particles
and the auxiliary particle filter with 5,000 particles are less accurate than the implicit particle filter
with 100 particles.

state variables, corrupted by noise with variance 0.1, became available every 0.48
dimensionless time units (every 48 steps). This is a hard data assimilation prob-
lem and some filters miss transitions from one wing of the Lorenz butterfly to the
other [38].

The minimization of the functions Fj was done using Newton’s method, initial-
ized by a free model run without noise (a larger gap between observations can cause
problems here; however, a more sophisticated initialization and a more robust min-
imization provide a cure, see [41]). Note that the argument of the Fj’s are the state
variables Xn

j , as well as the intermediate model steps Xn,∗
j . The problem is thus of

dimension 288: 3 dimensions for the Lorenz attractor, times 2 for the intermedi-
ate step x∗ of the KP scheme, times 48 for the gap between observations. If the
variance matrix of the reference variable ξ is the identity matrix I, we are express-
ing a vector variable of small variance as a function of a unit reference variable,
and this produces very small Jacobians J which can lead to underflow. One solu-
tion is to rescale ξ which, after all, is arbitrary. What we did instead is keep track
of the logarithms of the weights rather than the weights themselves wherever we
could; this solved the problem. At each assimilation step, we thus sampled a 288
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dimensional standard normal variate ξ j (the reference variable) and computed the

random direction η j = ξ j/
√

ξ T
j ξ j to be used in the random map (3.20). Because we

used Newton’s method for the minimization of Fj, the Cholesky factor Lj of the Hes-
sian evaluated at the minimum was available and we used it in (3.20). Substitution
of the map (3.20) into the algebraic equation (3.5) gave the required equation for
λ j, which we solved by Netwon’s method. The iteration was initialized by choosing
λ 0

j =
√ρ j and typically converged within four to six steps. Finally, we computed

the weight of the particle using (3.21) and the numerical derivative ∂λ/∂ρ , with a
perturbation Δλ = 10−5√ρ . We repeated this process for each particle and resam-
ple with “algorithm 2” in [16]. We decided to resample at every time an observation
became available.

To compare the implicit particle filter with an SIR filter, we ran 1,000 twin exper-
iments. That is, we ran the model for 960 time steps and produced artificial observa-
tions (corrupted by the assumed noise). This model run was the reference we wished
to reconstruct using the SIR and the implicit particle filters. For each experiment,
the error at time tN = 9.6 is measured by

e = ||xN
re f − xN||,

where the norm is Euclidean, xN
re f is the reference state, and xN is the reconstruction

by a filter. We computed this error for each twin experiment, and, after running
1,000 twin experiments, we computed the mean value of the error norms (mean
error, for short) and the mean of the variance of the error norms (mean variance of
the error, for short). The mean of the error norm is a better estimate for the errors
than the mean error because it does not allow for cancelations. The mean variance
of the error is not the variance of the mean, it is a fair estimate of the error in each
individual run. Our results are in Table 3.1.

Table 3.1 Filtering results for the Lorenz attractor.

# of Particles Mean error/mean variance of the error
Implicit particle filter SIR

5 0.2192/0.3457 -/-
10 0.2317/0.4905 0.9964/1.9970
20 0.1927/0.1646 0.5352/0.7661
50 -/- 0.4271/0.5445

100 -/- 0.2336/0.1229

The implicit particle filter yielded good results with 20 particles, while an SIR
filter required about 100 particles for comparable accuracy (the results obtained for
the SIR filter are in agreement with those previously reported in [6, 38]). The reason
for the large difference in the number of particles required for these two filters is
as follows. The large gap between observations implies that the SIR importance
function and the target density become nearly mutually singular. The “unguided”
SIR particles are therefore very likely to become unlikely, and only very few of them
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carry a significant weight. The particles of the implicit particle filter, on the other
hand, are guided towards the high probability regions because they are generated by
solving (3.5), which incorporates information from the data. The larger number of
particles required by the SIR filter thus indicates that the “focusing” of the particles
towards the high probability regions of the target pdf was indeed achieved by the
implicit particle filter.

The computational cost of these filters is comparable in this example. The im-
plicit particle filter requires fewer particles, but the computations for each particle
are more expensive when compared with the SIR filter.

3.5.4 The Stochastic Kuramoto–Sivashinsky Equation

We follow [39] and consider data assimilation for the stochastic Kuramoto–
Sivashinsky (SKS) equation

ut + uux + uxx +νuxxxx = g W (x, t)

where ν > 0 is the viscosity, g is a scalar, and W (x, t) is a space–time white
noise process. The SKS equation is a chaotic SPDE that models laminar flames
or reaction–diffusion systems [32, 46] and recently has been used as a large dimen-
sional test-problem for data assimilation algorithms [6, 24].

We consider the m-dimensional Itô–Galerkin approximation of the SKS equation

dU = (L (U)+N (U))dt + g dW m
t ,

where U is a finite dimensional column vector whose components are the Fourier
coefficients of the solution and where dW m

t is a truncated cylindrical Brownian mo-
tion (BM) [35], obtained from the projection of the noise process W (x, t) into the
Fourier modes. Assuming that the initial conditions u(x,0) are odd with Ũ0(0) = 0
and that dW m

t is imaginary, all Fourier coefficients Uk(t) are imaginary for all t ≥ 0.
Writing Uk = iÛk and subsequently dropping the hat gives

L (U) = diag(ω2
k −νω4

k )U,

{N (U)}k =−ωk

2

m

∑
k′=−m

Uk′Uk−k′ ,

whereωk = 2πk/L, k = 1, . . . ,m and {N (U)}k denotes the kth element of the vector
N (U). We choose a period L = 16π and a viscosity ν = 0.251, to obtain SKS
equations with 31 linearly unstable modes. This setup is similar to the SKS equation
considered in [24]. With these parameter values there is no steady state as in [6]. We
chose zero initial conditions U(0) = 0, so that the solution evolves solely due to
the effects of the noise. To approximate the SKS equation, we keep m = 512 of
the Fourier coefficients and use the exponential Euler scheme [25], with time step
δ = 2−12 for time discretization (see [39] for details).
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We are solving the SKS equations in Fourier variables, but we choose to observe
in physical space (as is maybe physically reasonable). Specifically, we observe
the solution u(x, t) at m/2 equidistant locations and at every model step through
the nonlinear observation operator h(x) = x + x3 . The solution of the algebraic
equation (3.5) is easiest when the functions Fj is nearly diagonal, i.e., when its
linearizations around a current state are nearly diagonal matrices; this requires in
particular that the variables that are observed coincide with the variables that are
evolved by the dynamics. Observing in physical space while computing in Fourier
space creates the opposite situation, in which each observation is related to the vari-
ables one computes by a dense matrix. This problem can be overcome using the
random map algorithm presented in Sect. 3.3.2.

The minimization of Fj was done using Newton’s method, initialized by a free
model run without noise. The Cholesky factor of the Hessian of Fj at the minimum
was used as the matrix Lj in (3.20), and (3.5) was solved using this random map and
a Newton iteration on λ j. To test the implicit particle filter we ran twin experiments
as in Sect. 3.5.3. The error at time tn is defined as

en = ||Un
re f −Un

F ||

where the norm is the Euclidean norm Un
re f denotes the set of Fourier coefficients of

the reference run, and Un
F denotes the reconstruction by the filter, both at the fixed

time tn. Results of 500 twin experiments are shown in Fig. 3.2.
We observe from Fig. 3.2 that the implicit particle filter requires far fewer parti-

cles than the SIR filter. Again, the example confirms that the implicit particle filter
focuses its particles on the high probability regions of the target pdf. The focusing
effect is more pronounced in the SKS equation than in the Lorenz attractor (see
Sect. 3.5.3), because the dimension of the state space of the SKS equation is 512,
and therefore much larger than the dimension of the Lorenz attractor (dimension 3).

Fig. 3.2 Filtering results
for the SKS equation: the
error statistics are shown as
a function of the number of
particles for SIR (blue) and
implicit particle filter (red).
The error bars represent the
mean of the errors and mean
of the standard deviations of
the errors.
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3.5.5 Application to Geomagnetic Data Assimilation

The following example is taken from [40]. We wish to apply the implicit particle
filter to a test problem in geomagnetic data assimilation, defined by two SPDEs

∂t u+ u∂xu = b∂xb+ν∂ 2
x u+ gu∂tW (x, t),

∂t b+ u∂xb = b∂xu+ ∂ 2
x b+ gb∂tW (x, t),

where ν = 10−3, gu = 0.01, gb = 1 are scalars and where W is a spatially smooth
stochastic process [21, 40]. We consider the above equations on the strip 0≤ t ≤ 0.2,
−1 ≤ x ≤ 1 and with given boundary and initial conditions. Physically, u represents
the velocity field at the core, and b represents the magnetic field of the earth. The
model is essentially the model proposed in [21], but with additive noise

W (x, t) =
∞

∑
k=0

αk sin(kπx)w1
k(t)+ηk cos(kπ/2x)w2

k(t),

where w1
k ,w

2
k are independent BMs and

αk = ηk =

{

1, if k ≤ 10,
0, if k > 10.

(3.31)

This simple noise model represents a spatially smooth noise which decreases in
amplitude near the boundaries. The continuous equations are discretized using Leg-
endre spectral elements in space, and an implicit–explicit first-order scheme in time
(see [4, 15, 31, 40]). We are content with an approximation that uses one Legendre
element of order 300 for u and one for b, and a time step δ = 0.002.

The data are the values of the magnetic field b, measured at 200 equally spaced
locations in [−1,1] and corrupted by noise:

zl = Hbq(l) + sV l ,

where s = 0.001 and H is a k×m-matrix that maps the numerical approximation b
to the locations where data is collected. We consider data that are available every
ten model steps.

For our choice of αk,ηk in (3.31), the state covariance matrices of the discrete
equations are singular, i.e. the model is subject to partial noise (see Sect. 3.2.3).
Upon linear coordinate transformation, that diagonalizes the state covariance matrix,
we obtain a model of the form (3.15)–(3.17). Because the second derivatives of the
functions Fj are hard to calculate, we use a simple gradient descent algorithm with
line search to carry out the minimization. As in previous examples, the minimization
is initialized by a free model run. Since no information on the curvature of Fj is
available, we set Lj in the random map (3.20) to the identity matrix. Equation (3.5)
is then solved by a Newton iteration, initialized with λ j = 0 (i.e., we start close to
the minimum of Fj).
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To assess the performance of the implicit particle filter, we ran 100 twin experi-
ments. For each twin experiment, we calculate and store the error at t = T = 0.2
in the velocity, eu = ||u(x,T )− uFilter(x,T ) ||, and in the magnetic field, eb =
||b(x,T )− bFilter(x,T ) ||. After running the 100 twin experiments, we calculate the
mean of the error norms and the variance of the error norms and scale the results by
the mean of the norm of u and b, respectively. Figure 3.3 shows the results.

It is evident from this figure that the implicit particle filter requires few particles
to yield accurate state estimates with less than 1 % error in the observed magnetic
field b and less than 15% error in the unobserved velocity u. The SIR filter with
1,000 particles gives significantly larger errors (about 10 % in the observed variables
b and 20% in the unobserved variable u) as well as much larger variances in the
errors. The EnKF requires about 500 particles to achieve the accuracy of the implicit
particle filter with only 4 particles. These examples thus provide further numerical
evidence that the implicit particle filter can achieve the desired focusing effect and,
as a consequence, is applicable to large dimensional data assimilation problems.

3.5.6 Assimilation of Ocean Color Data from NASA’s SeaWiFS
Satellite

We apply the implicit particle filter in its iterative implementation [9] (which is
not discussed in this review) to a prototypical marine ecosystem model described
in [18]. The model involves four state variables: phytoplankton P (microscopic
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Fig. 3.3 Filtering results for the geomagnetic test problem. The errors of the implicit particle filter
(red), EnKF (purple), and SIR filter (green) are plotted as a function of the number of particles.
The error bars represent the mean of the errors and mean of the standard deviations of the errors.
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plants), zooplankton Z (microscopic animals), nutrients N (dissolved inorganics),
and detritus D (particulate organic nonliving matter). At the initial time t = 0 we
have P(0) = 0.125, Z(0) = 0.00708, N(0) = 0.764, and D(0) = 0.136. The system
is described by the nonlinear ordinary differential equations

dP
dt

=
N

0.2+N
γP− 0.1P− 0.6

P
0.1+P

+N (0,σ2
P),

dZ
dt

= 0.18
P

0.1+P
Z − 0.1Z+N (0,σ2

Z )

dN
dt

= 0.1D+ 0.25
P

0.1+P
Z − γP

N
0.2+N

+ 0.05Z+N (0σ2
N)

dD
dt

= −0.1D+ 0.1P+ 0.18
P

0.1+P
Z + 0.05Z+N (0,σ2

D).

The variances of the noise terms are σP =P(0), σZ = 0.01Z(0), σN = 0.01N(0), and
σD = 0.01D(0). We discretize the above equations with the stochastic Euler method
(see [31]) with time step δ = 1 day. The growth rate at time step t, γt , follows the
recursion

γt = 0.14+ 3Δγt, where Δγt = 0.9Δγt−1 +N (0,σ2
γ ),

with σγ = 0.01. The observations were obtained from NASA’s SeaWiFS satellite
ocean color images and provide a time series (190 data points from late 1997 to
mid-2002) for the phytoplankton P by

logb(t) = logP(t)+N (0,σ2
b ),

where σb = 0.3. We apply the implicit particle filter and the standard SIR filter to
find a trajectory of the system consistent with the data. We observe that the implicit
particle filter with only ten particles does better than the SIR filter with ten particles,
in the sense that the filtered output matches the data better (see Fig. 3.4). In fact
the SIR filter requires about 100 particles to achieve the accuracy of the implicit
particle filter with only 10 particles. This example thus provides further numerical
evidence that the implicit particle filter can provide accurate state estimates with
only a few particles. Moreover, the example shows that the implicit particle filter
can work well with real data.

3.6 Conclusion

One of the barriers to the successful application of sequential Monte Carlo methods
is sample impoverishment, i.e. the fact that the number of samples (particles) re-
quired can grow dramatically with the state dimension. The implicit particle filter is
an attempt to overcome this problem. The main idea is to focus the particles so that
they remain within the high probability regions of the target pdf. We have described
the mathematical background of this idea in detail and have shown that the regions
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Fig. 3.4 The concentration of phytoplankton as a function of time. Top: data and reconstruction by
the implicit particle filter with ten particles. Bottom: data and reconstruction by the SIR filter with
ten particles.

of high probability can be identified by particle-by-particle minimization. Samples
within these regions are obtained by solving data-dependent algebraic equations.
We presented two effective algorithms for solving these equations and discussed
the advantages of various numerical minimization algorithms in examples. We have
considered special cases of interest (e.g., partial noise), in both theory and in ex-
amples, and made connections with several other data assimilation methods (SIR,
EnKF, and variational methods). Six numerical examples have been given to illus-
trate the theory and demonstrate the broad applicability and efficiency of the implicit
particle filter. The examples indicate that the implicit particle filter indeed achieves
the desired focusing effect and that this focusing effect keeps the number of particles
manageable even if the dimension of the state space is large.
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Part II
Linear State-Space Models

in Macroeconomics and Finance



Chapter 4
Model Uncertainty, State Uncertainty,
and State-Space Models

Yulei Luo, Jun Nie, and Eric R. Young

4.1 Introduction

State-space models have been broadly applied to study macroeconomic and financial
problems. For example, they have been applied to model unobserved trends, to
model transition from one economic structure to another, to forecasting models, to
study wage-rate behaviors, to estimate expected inflation, and to model time-varying
monetary reaction functions.

A state-space model typically consists of two equations, a measurement equa-
tion which links the observed variables to unobserved state variables and a tran-
sition equation which describes the dynamics of the state variables. The Kalman
filter, which provides a recursive way to compute the estimator of the unobserved
component based on the observed variables, is a useful tool to analyze state-space
models.

In this chapter, we show that a classic linear-quadratic-Gaussian (LQG) macroe-
conomic framework which incorporates two new assumptions can still be analyt-
ically solved and explicitly mapped to a state-space representation.1 The two as-
sumptions we consider are model uncertainty due to concerns for model misspecifi-
cation (robustness, RB) and state uncertainty (SU) due to limited information con-
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straints (rational inattention, RI). We show that the state-space representation of the
observable and unobservable can be used to quantify the key parameters by simu-
lating the model. We provide examples on how this framework can be used to study
a range of interesting questions in macroeconomics and international economics.

The remainder of the chapter is organized as follows. Section 4.2 presents the
general framework. Section 4.3 shows how to introduce the model uncertainty and
state uncertainty to this framework. Section 4.4 provides several applications how
to apply this framework to address a range of macroeconomic and international
questions. In addition, it shows how this framework has a state-space representation.
And this state-space representation can be used to quantify the key parameters in
different models. Section 4.5 concludes.

4.2 Linear-Quadratic-Gaussian State-Space Models

The LQG framework has been widely used in macroeconomics. This specification
leads to the optimal linear regulator problem, for which the Bellman equation can
be solved easily using matrix algebra. The general setup is as follows. The objective
function has a quadratic form,

max
{xt}

E0

[

∞

∑
t=0

ηt f (xt)

]

(4.1)

and the maximization is subjected to a linear constraint

g(xt ,yt ,yt+1) = 0, for all t (4.2)

where g(·) is a linear function, xt is the vector of control variables, and yt is the
vector of state variables.

Example 4.1 (A Small-Open Economy Version of Hall’s Permanent Income Model).
Let xt = {ct ,bt+1}, yt = {bt ,yt}, f (xt ) = − 1

2 (c− ct)
2, g(xt ,yt ,yt+1) = Rbt + yt −

ct − bt+1, where c is the bliss point, ct is consumption, R is the exogenous and
constant gross world interest rate, bt is the amount of the risk-free foreign bond
held at the beginning of period t, and yt is net income in period t and is defined
as output minus investment and government spending. Then this becomes a small-
open economy version of Hall’s permanent income model in which a representative
agent chooses the consumption to maximize his/her utility subject to the exogenous
endowments. As the representative agent can borrow from the rest of the world
at a risk-free interest rate, the resource constraint need not bind every period. If
we remove this assumption, the model goes back to the permanent income model
studied in Hall (1978).2

2 We take a small-open economy version of Hall’s model as we’ll use it to address some small-open
economy issues in later sectors.
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Example 4.2 (Barro’s Tax-Smoothing Model). Barro (1979) proposed a simple ra-
tional expectations (RE) tax-smoothing model with only noncontingent debt in
which the government spreads the burden of raising distortionary income taxes
over time in order to minimize their welfare losses to address these questions.3

This tax-smoothing hypothesis has been widely used (to address various fiscal
policies) and tested. The model also falls well into this linear-quadratic frame-
work.4 Specifically, let xt = {τt ,Bt+1}, yt = {Yt ,Gt}, f (xt) =− 1

2τ
2
t , g(xt ,yt ,yt+1) =

RBt +Gt − τtYt −Bt+1, where E0 [·] is the government’s expectation conditional on
its available and processed information set at time 0, η is the government’s sub-
jective discount factor, τt is the tax rate, Bt is the amount of government debt, Gt

is government spending, Yt is real GDP, and R is the gross interest rate. Here we
assume that the welfare costs of taxation are proportional to the square of the tax
rate.5

In general, the number of the state variables in these models can be more than
one. But in order to facilitate the introduction of robustness we reduce the above
multivariate model with a general exogenous process to a univariate model with
iid innovations that can be solved in closed-form. Specifically, following Luo and
Young (2010) and Luo, Nie, and Young (2011a), we rewrite the model described by
(4.1) and (4.2) as

max
{zt ,st+1}∞t=0

{

E0

[

∞

∑
t=0

ηt f (zt )

]}

(4.3)

subject to
st+1 = Rst − zt + ζt+1, (4.4)

where both zt and st are single variables, and ζt+1 is the Gaussian innovation to the
state transition equation with mean 0 and variance ω2

ζ .
For instance, for Example 4.1, the mapping is

zt = ct ,

st = bt +
1
R

∞

∑
j=0

R− jEt [yt+ j ] ,

ζt+1 =
1
R

∞

∑
j=t+1

(

1
R

) j−(t+1)

(Et+1 −Et) [y j] .

3 It is worth noting that the tax-smoothing hypothesis (TSH) model is an analogy with the perma-
nent income hypothesis (PIH) model in which consumers smooth consumption over time; tax rates
respond to permanent changes in the public budgetary burden rather than transitory ones.
4 For example, see Huang and Lin (1993), Ghosh (1995)
5 Following Barro (1979), Bohn (1990), and Huang and Lin (1993), we only need to impose the
restriction, f ′ (τ)> 0 and f ′′ (τ)> 0, on the loss function, f (τ).
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And for Example 4.2, the mapping is

zt = τt ,

st = Et

[

bt +
1

(1+ n) ˜R

∞

∑
j=0

(

1
˜R

) j

gt+ j

]

,

ζt+1 =
∞

∑
j=0

(

1
˜R

) j+1

(Et+1 −Et)
[

gt+1+ j
]

,

where ˜R = R/(1+ n) is the effective interest rate faced by the government, n is the
GDP growth rate, bt and gt are government debt and government spending as a ratio
of GDP.6

Finally, the recursive representation of the above problem is as follows:

v(st ) = max
zt

{ f (zt )+ηEt [v(st+1)]} (4.5)

subject to:
st+1 = Rst − zt + ζt+1, (4.6)

given s0.

4.3 Incorporating Model Uncertainty and State Uncertainty

In this section we show how to incorporate model uncertainty and state uncertainty
into the framework presented in the previous section.

4.3.1 Introducing Model Uncertainty

We focus on the model uncertainty due to a concern for model misspecification
(robustness). Hansen and Sargent (1995, 2007a) first introduce robustness (a con-
cern for model misspecification) into economic models. In robust control problems,
agents are concerned about the possibility that their model is misspecified in a man-
ner that is difficult to detect statistically; consequently, they choose their decisions
as if the subjective distribution over shocks was chosen by a malevolent nature in
order to minimize their expected utility (that is, the solution to a robust decision-
maker’s problem is the equilibrium of a max–min game between the decision-maker
and nature). Specifically, a robustness version of the model represented by (4.5) and
(4.6) is

v(st) = max
zt

min
νt

{

f (zt )+η
[

ϑν2
t +Et [v(st+1)]

]}

(4.7)

6 n is assumed to be constant.
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subject to the distorted transition equation (i.e., the worst-case model):

st+1 = Rst − zt + ζt+1 +ωζνt , (4.8)

where νt distorts the mean of the innovation and ϑ > 0 controls how bad the error
can be.7

4.3.2 Introducing State Uncertainty

The model presented in Sect. 4.3.1 is extended to incorporate state uncertainty in this
subsection. It will be seen that state uncertainty will further amplify the effect due to
model uncertainty.8 We consider the model with imperfect state observation (state
uncertainty) due to finite information-processing capacity (rational inattention or
RI). Sims (2003) first introduced RI into economics and argued that it is a plausible
method for introducing sluggishness, randomness, and delay into economic models.
In his formulation agents have finite Shannon channel capacity, limiting their ability
to process signals about the true state of the world. As a result, an impulse to the
economy induces only gradual responses by individuals, as their limited capacity
requires many periods to discover just how much the state has moved.

Under RI, consumers in the economy face both the usual flow budget constraint
and information-processing constraint due to finite Shannon capacity first intro-
duced by Sims (2003). As argued by Sims (2003, 2006), individuals with finite
channel capacity cannot observe the state variables perfectly; consequently, they
react to exogenous shocks incompletely and gradually. They need to choose the
posterior distribution of the true state after observing the corresponding signal. This
choice is in addition to the usual consumption choice that agents make in their utility
maximization problem.9

Following Sims (2003), the consumer’s information-processing constraint can be
characterized by the following inequality:

H (st+1|It)−H (st+1|It+1)≤ κ , (4.9)

where κ is the consumer’s channel capacity, H (st+1|It) denotes the entropy of
the state prior to observing the new signal at t + 1, and H (st+1|It+1) is the en-

7 Formally, this setup is a game between the decision-maker and a malevolent nature that chooses
the distortion process νt . ϑ ≥ 0 is a penalty parameter that restricts attention to a limited class of
distortion processes; it can be mapped into an entropy condition that implies agents choose rules
that are robust against processes which are close to the trusted one. In a later section we will apply
an error detection approach to calibrate ϑ .
8 This will be clearer when we go to the applications in later sections.
9 More generally, agents choose the joint distribution of consumption and current permanent in-
come subject to restrictions about the transition from prior (the distribution before the current
signal) to posterior (the distribution after the current signal). The budget constraint implies a link
between the distribution of consumption and the distribution of next period permanent income.
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tropy after observing the new signal.10 The concept of entropy is from information
theory, and it characterizes the uncertainty in a random variable. The right-hand
side of (4.9), being the reduction in entropy, measures the amount of information in
the new signal received at t + 1. Hence, as a whole, (4.9) means that the reduction
in the uncertainty about the state variable gained from observing a new signal is
bounded from above by κ . Since the ex post distribution of st is a normal distribu-
tion, N

(

ŝt ,σ2
t

)

, (4.9) can be reduced to

log |ψ2
t |− log |σ2

t+1| ≤ 2κ (4.10)

where ŝt is the conditional mean of the true state, and σ2
t+1 = var [st+1|It+1] and

ψ2
t = var [st+1|It ] are the posterior variance and prior variance of the state variable,

respectively. To obtain (4.10), we use the fact that the entropy of a Gaussian random
variable is equal to half of its logarithm variance plus a constant term.

It is straightforward to show that in the univariate case (4.10) has a unique steady
state σ2.11 In that steady state the consumer behaves as if observing a noisy mea-
surement which is s∗t+1 = st+1 + ξt+1, where ξt+1 is the endogenous noise and its
variance α2

t = var [ξt+1|It ] is determined by the usual updating formula of the vari-
ance of a Gaussian distribution based on a linear observation:

σ2
t+1 = ψ2

t −ψ2
t

(

ψ2
t +α2

t

)−1ψ2
t . (4.11)

Note that in the steady state σ2 = ψ2 −ψ2
(

ψ2 +α2
)−1ψ2, which can be solved

as α2 =
[

(

σ2
)−1 − (

ψ2
)−1

]−1
. Note that (4.11) implies that in the steady state

σ2 =
ω2
ζ

exp(2κ)−R2 and α2 = var [ξt+1] =

[

ω2
ζ+R2σ2

]

σ2

ω2
ζ+(R2−1)σ2 .

We now incorporate state uncertainty due to RI into the RB model proposed in
the last section. There are two different ways to do it. The simpler way is to assume
that the consumer only has doubts about the process for the shock to permanent
income ζt+1, but trusts his or her regular Kalman filter hitting the endogenous noise
(ξt+1) and updating the estimated state. In the next subsection, we will relax the
assumption that the consumer trusts the Kalman filter equation which generates an
additional dimension along which the agents in the economy desire robustness.

The RB–RI model is formulated as

v̂(ŝt ) = max
zt

min
νt

{

f (zt )+ηEt
[

ϑν2
t + v̂(ŝt+1)

]}

, (4.12)

subject to the (budget) constraint

st+1 = Rst − zt +ωζνt + ζt+1 (4.13)

10 We regard κ as a technological parameter. If the base for logarithms is 2, the unit used to mea-
sure information flow is a “bit,” and for the natural logarithm e the unit is a “nat.” 1 nat is equal to
log2 e ≈ 1.433 bits.
11 Convergence requires that κ > log(R)≈ R−1; see Luo and Young (2010) for a discussion.
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and the regular Kalman filter equation

ŝt+1 = (1−θ )
(

Rŝt − zt +ωζνt
)

+θ (st+1 + ξt+1) (4.14)

Notice that f (zt ) is a quadratic function, so the model is in a linear-quadratic
form. As to be shown in the next section, we can explicitly solve the optimal choice
for control variable zt and the worst-case shock νt . After substituting these two
solutions into the transition equations for st and ŝt , it can easily be shown that the
model has a state-space representation.

4.3.2.1 Robust Filtering Under RI

It is clear that the Kalman filter under RI, (4.13), is not only affected by the funda-
mental shock (ζt+1) but also affected by the endogenous noise (ξt+1) induced by
finite capacity; these noise shocks could be another source of the demand for ro-
bustness. We therefore need to consider this demand for robustness in the RB–RI
model. By adding the additional concern for robustness developed here, we are able
to strengthen the effects of robustness on decisions.12 Specifically, we assume that
the agent thinks that (4.14) is the approximating model. Following Hansen, Peter
and Sargent (2007), we surround (4.14) with a set of alternative models to represent
a preference for robustness:

ŝt+1 = Rŝt − zt +ωηνt +ηt+1, (4.15)

where

ηt+1 = ϑR(st − ŝt)+ϑ(ζt+1 + ξt+1) (4.16)

and Et [ηt+1] = 0 because the expectation is conditional on the perceived signals and
inattentive agents cannot perceive the lagged shocks perfectly.

Under RI the innovation ηt+1, (4.16), that the agent distrusts is composed of two
MA(∞) processes and includes the entire history of the exogenous income shock
and the endogenous noise, {ζt+1,ζt , · · ·,ζ0;ξt+1,ξt , · · ·,ξ0}. The difference between
(4.13) and (4.15) is the third term; in (4.13) the coefficient on νt is ωζ while in
(4.15) the coefficient is ωη ; note that with θ < 1 and R > 1 it holds that ωζ < ωη .

The optimizing problem for this RB–RI model can be formulated as follows:

v̂(ŝt ) = max
ct

min
νt

{

f (zt )+ηEt
[

ϑν2
t + v̂(ŝt+1)

]}

(4.17)

subject to (4.15). Equation (4.17) is a standard dynamic programming problem and
can be easily solved using the standard procedure.

12 Luo, Nie, and Young (2011a) use this approach to study the joint dynamics of consumption,
income, and the current account.
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4.4 Applications

This section provides several applications of the framework developed in Sect. 4.3.13

In each application, the model can be mapped into the general framework presented
in the previous section. Using these examples, we show how this framework can
be analytically solved and can be explicitly mapped to a state-space representa-
tion (Sect. 4.4.1). We also show that this state-space representation plays an impor-
tant role in quantifying the model uncertainty and state uncertainty (Sect. 4.4.4).
These applications show how model uncertainty (RB) and state uncertainty (RI or
imperfect information) alter the results from the standard framework presented in
Sect. 4.2.

4.4.1 Explaining Current Account Dynamics

Return in to Example 4.1 in Sect. 4.2. The model is a small-open economy version of
the permanent income model. The standard model is represented by (4.5) and (4.6),
while the model incorporating model uncertainty and state uncertainty is represented
by (4.12)–(4.14). (Notice that zt = ct and f (xt) =− 1

2 (c− ct)
2.)

As shown in Luo et al. (2011a), given ϑ and θ , the consumption function under
RB and RI is

ct =
R− 1
1−Σ

ŝt − Σc
1−Σ

, (4.18)

the mean of the worst-case shock is

ωηνt =
(R− 1)Σ

1−Σ
ŝt − Σ

1−Σ
c, (4.19)

where ρs =
1−RΣ
1−Σ ∈ (0,1), Σ = Rω2

η/(2ϑ), ω2
η = var [ηt+1] =

θ
1−(1−θ)R2ω2

ζ .

Substituting (4.19) into (4.13) and combining with (4.14), the observed st and
unobserved ŝt are governed by the following two equations

st − ŝt =
(1−θ )ζt

1− (1−θ )R ·L − θξt

1− (1−θ )R ·L (4.20)

ŝt+1 = ρsŝt +ηt+1. (4.21)

where

ηt+1 = θR(st − ŝt)+θ (ζt+1 + ξt+1) (4.22)

Thus, it is clear to see that (4.20) and (4.21) form a state-space representation the
model in which (4.20) is the measurement equation that links the observed variable

13 These illustrations are based on the research by Luo and Young (2010) and Luo, Nie, and Young
(2011a, 2011b, 2011c).
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st to unobserved variable ŝt and (4.21) is the transition equation which describes the
dynamics of ŝt .

Notice that Σ measures the effects of both model uncertainty and state uncer-
tainty, which is bounded by 0 and 1.14 As argued in Sims (2003), although the
randomness in an individual’s response to aggregate shocks will be idiosyncratic
because it arises from the individual’s own information-processing constraint, there
is likely a significant common component. The intuition is that people’s needs for
coding macroeconomic information efficiently are similar, so they rely on com-
mon sources of coded information. Therefore, the common term of the idiosyn-
cratic error, ξ t , lies between 0 and the part of the idiosyncratic error, ξt , caused by
the common shock to permanent income, ζt . Formally, assume that ξt consists of
two independent noises: ξt = ξ t + ξ i

t , where ξ t = Ei [ξt ] and ξ i
t are the common

and idiosyncratic components of the error generated by ζt , respectively. A single
parameter,

λ =
var

[

ξ t

]

var [ξt ]
∈ [0,1],

can be used to measure the common source of coded information on the aggregate
component (or the relative importance of ξ t vs. ξt ).15

Next, we briefly list the facts we focus on (Table 4.1). First, the correlation be-
tween the current account and net income is positive but small (and insignificant
when detrended with the Hodrick–Prescott (HP) filter). Second, the relative volatil-
ity of the current account to net income is smaller in emerging countries than in
developed economies, although the difference is not statistically significant when
the series are detrended with the HP filter. Third, the persistence of the current ac-
count is smaller than that of net income and less persistent in emerging economies.
And fourth, the volatility of consumption growth relative to income growth is larger
in emerging economies than in developed economies.

Finally, let’s compare the model implications, as summarized in Table 4.2. First,
we have seen that in this case (λ = 1 and θ = 50%) the interaction of RB and RI
makes the model fit the data quite well along dimensions (3) and (4), while also
quantitatively improving the model’s predictions along dimensions (1) and (2). Sec-
ond, this improvement does not preclude the model from matching the first two
dimensions as well (i.e., the contemporaneous correlation between the current ac-
count and net income and the volatility of the current account). For example, holding
λ equal to 1 and further reducing θ can generate a smaller contemporaneous cor-
relation between the current account and net income which is closer to the data.
And holding θ = 50% and reducing λ to 0.1 can make the relative volatility of the
current account to net income very close to the data.

14 See Luo, Nie, and Young (2011a) for the proof.
15 It is worth noting that the special case that λ = 1 can be viewed as a representative-agent model
in which we do not need to discuss the aggregation issue.
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Table 4.1 Emerging vs. developed countries (averages)

A: Emerging vs. developed countries (HP filter)

σ (y)/μ(y) 4.09(0.23) 1.98(0.09)
σ (Δy)/μ(y) 4.28(0.23) 1.89(0.07)
ρ(yt ,yt−1) 0.53(0.03) 0.66(0.02)
ρ(Δyt ,Δyt−1) 0.28(0.05) 0.46(0.03)
σ (c)/σ (y) 0.74(0.02) 0.59(0.02)
σ (Δc)/σ (Δy) 0.71(0.02) 0.59(0.02)
σ (ca)/σ (y) 0.79(0.03) 0.85(0.04)
ρ(c,y) 0.85(0.02) 0.78(0.02)
ρ(cat ,cat−1) 0.30(0.05) 0.41(0.03)
ρ(ca,y) −0.59(0.05) −0.35(0.04)

ρ
(

ca
y ,y

)

−0.54(0.04) −0.36(0.04)

B: Emerging vs. developed countries (linear filter)

σ (y)/μ(y) 7.97(0.40) 4.79(0.22)
σ (Δy)/μ(y) 4.28(0.23) 1.89(0.07)
ρ(yt ,yt−1) 0.79(0.02) 0.89(0.01)
ρ(Δyt ,Δyt−1) 0.28(0.05) 0.46(0.03)
σ (c)/σ (y) 0.72(0.02) 0.58(0.02)
σ (Δc)/σ (Δy) 0.71(0.02) 0.59(0.02)
σ (ca)/σ (y) 0.54(0.03) 0.65(0.04)
ρ(c,y) 0.88(0.02) 0.85(0.02)
ρ(cat ,cat−1) 0.53(0.04) 0.71(0.02)
ρ(ca,y) −0.17(0.06) −0.08(0.05)

ρ
(

ca
y ,y

)

−0.32(0.05) −0.20(0.04)

Table 4.2 Implications of different models (emerging countries)

Data RE RB RB + RI RB + RI RB + RI RB + RI
(θ = 0.9) (θ = 0.8) (θ = 0.7) (θ = 0.5)

(λ = 1)
ρ(ca,y) 0.13 1.00 0.62 0.57 0.56 0.56 0.58
ρ(cat ,cat−1) 0.53 0.80 0.74 0.57 0.50 0.45 0.36
σ (ca)/σ (y) 0.80 0.71 0.49 0.52 0.55 0.59 0.79
σ (Δc)/σ (Δy) 1.35 0.28 0.90 0.89 0.89 0.91 1.36

(λ = 0.5)
ρ(ca,y) 0.13 1.00 0.62 0.59 0.58 0.59 0.64
ρ(cat ,cat−1) 0.53 0.80 0.74 0.63 0.59 0.55 0.46
σ (ca)/σ (y) 0.80 0.71 0.49 0.50 0.52 0.53 0.64
σ (Δc)/σ (Δy) 1.35 0.28 0.90 0.85 0.81 0.79 0.99

(λ = 0.1)
ρ(ca,y) 0.13 1.00 0.62 0.61 0.60 0.61 0.67
ρ(cat ,cat−1) 0.53 0.80 0.74 0.67 0.64 0.62 0.56
σ (ca)/σ (y) 0.80 0.71 0.49 0.49 0.50 0.51 0.57
σ (Δc)/σ (Δy) 1.35 0.28 0.90 0.84 0.79 0.75 0.82
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4.4.2 Resolving the International Consumption Puzzle

The same framework can be used to address an old puzzle in the international eco-
nomics literature. That is, the cross-country consumption correlations are very low
in the data (lower than the cross-country correlations of outputs) while standard
models imply the opposite.16

To show the flexibility of the general framework summarized by (4.5) and (4.6),
we slightly deviate from the assumption we used in the previous subsection (Ex-
ample 4.1) to introduce state uncertainty. We assume that consumers in the model
economy cannot observe the true state st perfectly and only observe the noisy signal

s∗t = st + ξt , (4.23)

when making decisions, where ξt is the iid Gaussian noise due to imperfect obser-
vations. The specification in (4.23) is standard in the signal extraction literature and
captures the situation where agents happen or choose to have imperfect knowledge
of the underlying shocks.17 Since imperfect observations on the state lead to wel-
fare losses, agents use the processed information to estimate the true state.18 Specif-
ically, we assume that households use the Kalman filter to update the perceived state
ŝt = Et [st ] after observing new signals in the steady state:

ŝt+1 = (1−θ )(Rŝt − ct)+θ (st+1 + ξt+1) , (4.24)

where θ is the Kalman gain (i.e., the observation weight).19

In the signal extraction problem, the Kalman gain can be written as

θ =ϒΛ−1, (4.25)

where ϒ is the steady state value of the conditional variance of st+1, vart+1 [st+1],
and is the variance of the noise,Λ = vart [ξt+1].ϒ andΛ are linked by the following
equation which updates the conditional variance in the steady state:

Λ−1 =ϒ−1 −Ψ−1, (4.26)

whereΨ is the steady state value of the ex ante conditional variance of st+1,Ψt =
var t [st+1].

16 For example, Backus, Kehoe, and Kydland (1992) solve a two-country real business cycles
model and argue that the puzzle that empirical consumption correlations are actually lower than
output correlations is the most striking discrepancy between theory and data.
17 For example, Muth (1960), Lucas (1972), Morris and Shin (2002), and Angeletos and La’O
(2009). It is worth noting that this assumption is also consistent with the rational inattention idea
that ordinary people only devote finite information-processing capacity to processing financial
information and thus cannot observe the states perfectly.
18 See Luo (2008) for details about the welfare losses due to information imperfections within the
partial equilibrium permanent income hypothesis framework.
19 Note that θ measures how much uncertainty about the state can be removed upon receiving the
new signals about the state.
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Multiplying ω2
ζ on both sides of (4.26) and using the fact thatΨ = R2ϒ +ω2

ζ , we
have

ω2
ζΛ

−1 = ω2
ζϒ

−1 −
[

R2
(

ω2
ζϒ

−1
)−1

+ 1

]−1

, (4.27)

where ω2
ζϒ

−1 =
(

ω2
ζΛ

−1
)

(

Λϒ−1
)

.

Define SNR as π = ω2
ζΛ

−1. We obtain the following equality linking SNR (π)
and the Kalman gain (θ ):

π = θ
(

1
1−θ

−R2
)

. (4.28)

Solving for θ from the above equation yields

θ =
−(1+π)+

√

(1+π)2 + 4R2 (π+R2)

2R2 , (4.29)

where we omit the negative values of θ because both ϒ and Λ must be positive.
Note that given π , we can pin down Λ using π = ω2

ζΛ
−1 and ϒ using (4.25) and

(4.29).
Combining (4.4) with (4.24), we obtain the following equation governing the

perceived state ŝt :
ŝt+1 = Rŝt − ct +ηt+1, (4.30)

where

ηt+1 = θR(st − ŝt)+θ (ζt+1 + ξt+1) (4.31)

is the innovation to the mean of the distribution of perceived permanent income,

st − ŝt =
(1−θ )ζt

1− (1−θ )R ·L − θξt

1− (1−θ )R ·L (4.32)

is the estimation error where L is the lag operator and Et [ηt+1] = 0. Note that ηt+1

can be rewritten as

ηt+1 = θ
[(

ζt+1

1− (1−θ )R ·L
)

+

(

ξt+1 − θRξt

1− (1−θ )R ·L
)]

, (4.33)

where ω2
ξ = var [ξt+1] =

1
θ

1
1/(1−θ)−R2ω2

ζ . Expression (4.33) clearly shows that the

estimation error reacts to the fundamental shock positively, while it reacts to the
noise shock negatively. In addition, the importance of the estimation error is de-
creasing with θ . More specifically, as θ increases, the first term in (4.33) becomes
less important because (1−θ )ζt in the numerator decreases, and the second term
also becomes less important because the importance of ξt decreases as θ increases.20

20 Note that when θ = 1, var [ξt+1] = 0.
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Although the assumption we use to introduce state uncertainty is different, the
general framework is still the same. More importantly, the solution strategy is also
the same. Basically, we can explicitly derive the expressions for consumption and
the worst-case shock and then substitute them into (4.30). Together with (4.32), it
forms a state-space representation of the model.

Table 4.3 reports the implied consumption correlations (between the domestic
country and ROW) between the RE, RB, and RB–SU models. There are two interest-
ing observations in the table. First, given the degrees of RB and SU (θ ), corr(ct ,c∗t )
decreases with the aggregation factor (λ ). Second, when λ is positive (even if it
is very small, e.g., 0.1 in the table), corr(ct ,c∗t ) is decreasing with the degree of
inattention (i.e., increasing with θ ). The intuition is that when there are common
noises, the effect of the noises could dominate the effect of gradual consumption
adjustments on cross-country consumption correlations.

Table 4.3 Theoretical corr (c,c∗) from different models

Data RE RB RB + SU RB + SU RB + SU
(θ = 0.9) (θ = 0.6) (θ = 0.3)

Canada
(λ = 1) 0.38 0.41 0.33 0.27 0.17 0.12
(λ = 0.5) 0.38 0.41 0.33 0.31 0.26 0.23
(λ = 0.1) 0.38 0.41 0.33 0.32 0.32 0.32
Italy
(λ = 1) 0.25 0.54 0.50 0.42 0.27 0.19
(λ = 0.5) 0.25 0.54 0.50 0.48 0.41 0.36
(λ = 0.1) 0.25 0.54 0.50 0.50 0.50 0.49
UK
(λ = 1) 0.21 0.69 0.45 0.38 0.25 0.17
(λ = 0.5) 0.21 0.69 0.45 0.44 0.38 0.32
(λ = 0.1) 0.21 0.69 0.45 0.46 0.46 0.45
France
(λ = 1) 0.46 0.51 0.49 0.40 0.26 0.18
(λ = 0.5) 0.46 0.51 0.49 0.46 0.40 0.34
(λ = 0.1) 0.46 0.51 0.49 0.49 0.48 0.48
Germany
(λ = 1) 0.04 0.45 0.40 0.33 0.22 0.15
(λ = 0.5) 0.04 0.45 0.40 0.38 0.33 0.29
(λ = 0.1) 0.04 0.45 0.40 0.40 0.40 0.40

As we can see from Table 4.3, for all the countries we consider here, introduc-
ing SU into the RB model can make the model better fit the data on consump-
tion correlations at many combinations of the parameter values. For example, for
Italy, when θ = 60% (60% of the uncertainty is removed upon receiving a new
signal about the innovation to permanent income) and λ = 1, the RB–SU model
predicts that corr(ct ,c∗t ) = 0.27, which is very close to the empirical counterpart,
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0.25.21 For France, when θ = 90% and λ = 0.5, the RB–SU model predicts that
corr(ct ,c∗t ) = 0.46, which exactly matches the empirical counterpart. Note that a
small value of θ can be rationalized by examining the welfare effects of finite chan-
nel capacity.22

4.4.3 Other Possible Applications

This linear-quadratic framework which incorporates model uncertainty (due to RB)
and state uncertainty (either due to RI or imperfect information) can be applied to
study other topics as well. We will briefly discuss several more in this subsection.
We will not write down the model equations again as we have shown in Sects. 4.2
and 4.3 that these models can be written in a similar framework.

First, as shown in the previous section, model uncertainty due to RB is partic-
ularly promising and interesting for studying emerging and developed small-open
economies because it has the potential to generate the different joint behaviors of
consumption and current accounts observed across the two groups of economies.
This novel theoretical contribution can also be used to address the observed U.S.
Great Moderation in which the volatility of output changed after 1984. Specifi-
cally, this feature can be used to address different macroeconomic dynamics (e.g.,
consumption volatility) given that output volatility changed before and after the
Great Moderation.

Second, inventories in the standard production smoothing model can be viewed
as a stabilizing factor. Cost-minimizing firms facing sales fluctuations smooth pro-
duction by adjusting their inventories. As a result, production is less volatile than
sales. However, in the data, real GDP is more volatile than final sales measured
by real GDP minus inventory investment. The existing studies find supportive evi-
dence that real GNP is more volatile than final sales in industry-level data. The key
question is that if cost-minimizing firms use inventories to smooth their production,
why is production more volatile than sales? In the future research, we can examine
whether introducing RB can help improve the prediction of an otherwise standard
production smoothing model with inventories on the joint dynamics of inventories,
production, and sales.

Third, as shown in Luo, Nie, and Young (2011c), the standard tax-smoothing
model proposed by Barro (1979) cannot explain the observed volatility of the tax
rates and the joint behavior of the government spending and deficits. As shown
in Example 4.2 of Sect. 4.2, the tax-smoothing model used in the literature falls
well into the linear-quadratic framework we described. It is easy to show that the
same mechanisms presented in Sects. 4.4.1 and 4.4.2 will work in the tax-smoothing

21 For example, Adam (2007) found θ = 40% based on the response of aggregate output to mon-
etary policy shocks. Luo (2008) found that if θ = 50%, the otherwise standard permanent income
model can generate realistic relative volatility of consumption to labor income.
22 See Luo and Young (2010) for details about the welfare losses due to imperfect observations in
the RB model; they are uniformly small.
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model which incorporates model uncertainty and state uncertainty. Specifically,
Luo, Nie, and Young (2011c) shows that it can help the standard model to better
explain the relative volatility of the changes in tax rates to government spending
and the comovement between government deficits and spending in the data.

Fourth, this framework can also be extended to study optimal monetary policy
under model uncertainty and imperfect state observation. A central bank sets nomi-
nal interest rate to minimize prices fluctuations and the output gap (i.e., the deviation
of the output from the potential maximum output level). Following the literature, the
standard objective function of a central bank can be described by a quadratic func-
tion which is a weighted average of the deviation of the inflation from its target and
the output gap.23 Therefore, the framework presented in this chapter can be used to
study optimal monetary policy when a central bank has concerns that the model is
misspecified and it faces noisy data when making decisions.24

4.4.4 Quantifying Model Uncertainty

One remaining question from previous sections is how to quantify the incorporated
degree of model uncertainty.25 In this section, we will show how to use the state-
space representation of st and ŝt to simulate the model and calibrate the key param-
eters. For convenience and consistence, we continue to use the small-open economy
model described in Example 4.1 as the illustration example.

Let model A denote the approximating model and model B be the distorted
model. Define pA as

pA = Prob

(

log

(

LA

LB

)

< 0

∣

∣

∣

∣

A

)

, (4.34)

where log
(

LA
LB

)

is the log-likelihood ratio. When model A generates the data, pA

measures the probability that a likelihood ratio test selects model B. In this case,
we call pA the probability of the model detection error. Similarly, when model B
generates the data, we can define pB as

pB = Prob

(

log

(

LA

LB

)

> 0

∣

∣

∣

∣

B

)

. (4.35)

23 For example, see Svensson (2000), Gali and Monacelli (2005), Walsh (2004), Leitemo and
Soderstrom (2008a; 2008b).
24 For the examples of the model equations describing the inflation and output dynamics in a closed
economy, see Leitemo and Soderstrom (2008a).
25 This includes the two versions of the model presented in previous sections which incorporates
the model uncertainty due to RB: one uses the regular Kalman filter; the other one assumes that
the agent does not trust the Kalman filter either (robust filtering).
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Following Hansen, Sargent, and Wang (2002) and Hansen and Sargent (2007b),
the detection error probability, p, is defined as the average of pA and pB:

p(ϑ) =
1
2
(pA + pB) , (4.36)

where ϑ is the robustness parameter used to generate model B. Given this definition,
we can see that 1− p measures the probability that econometricians can distinguish
the approximating model from the distorted model.

Now we show how to compute the model detection error probability due to model
uncertainty and state uncertainty.

In the model with both the RB preference and RI, the approximating model can
be written as

st+1 = Rst − ct + ζt+1, (4.37)

ŝt+1 = (1−θ )(Rŝt − ct)+θ (st+1 +λξt+1) , (4.38)

and the distorted model is

st+1 = Rst − ct + ζt+1 +ωζνt , (4.39)

ŝt+1 = (1−θ )
(

Rŝt − ct +ωζνt
)

+θ (st+1 +λξt+1) , (4.40)

where we remind the reader that λ =
var[ξ t ]
var[ξt ]

∈ [0,1] is the parameter measuring the

relative importance of ξ t vs. ξt .
After substituting the consumption function and the worst-case shock expression

into (4.38) and (4.40) we can put the equations in the following matrix form:

[

st+1

ŝt+1

]

=

[

R − R−1
1−Σ

θR 1−R+R(1−θ)(1−Σ)
1−Σ

]

[

st

ŝt

]

+

[

ζt+1

θ (ζt+1 +λξt+1)

]

+

[ Σ
1−Σ c
Σ

1−Σ c

]

(4.41)

and
[

st+1

ŝt+1

]

=

[

R −(R− 1)
θR 1−θR

][

st

ŝt

]

+

[

ζt+1

θ (ζt+1 +λξt+1)

]

. (4.42)

Given the RB parameter, ϑ , and RI parameter, θ , we can compute pA and pB and
thus the detection error probability as follows:

1. Simulate {st}T
t=0 using (4.41) and (4.42) a large number of times. The number

of periods used in the simulation, T , is set to be the actual length of the data for
each individual country.

2. Count the number of times that log
(

LA
LB

)

< 0
∣

∣

∣A and log
(

LA
LB

)

> 0
∣

∣

∣B are each

satisfied.
3. Determine pA and pB as the fractions of realizations for which log

(

LA
LB

)

< 0
∣

∣

∣A

and log
(

LA
LB

)

> 0
∣

∣

∣B, respectively.
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4.4.5 Discussions: Risk-Sensitivity and Robustness Under Rational
Inattention

Risk-sensitivity (RS) was first introduced into the LQG framework by Jacobson
(1973) and extended by Whittle (1981). Exploiting the recursive utility framework
of Hansen and Sargent (1995) introduce discounting into the RS specification and
show that the resulting decision rules are time-invariant. In the RS model agents
effectively compute expectations through a distorted lens, increasing their effec-
tive risk aversion by overweighting negative outcomes. The resulting decision rules
depend explicitly on the variance of the shocks, producing precautionary savings,
but the value functions are still quadratic functions of the states.26 In Hansen et al.
(1999) and Hansen, Peter and Sargent (2007), they interpret the RS preference in
terms of a concern about model uncertainty (robustness or RB) and argue that RS
introduces precautionary savings because RS consumers want to protect themselves
against model specification errors.

Following Luo and Young (2010), we formulate an RI version of risk-sensitive
control based on recursive preferences with an exponential certainty equivalence
function as follows:

v̂(ŝt) = max
ct

{

−1
2
(ct − c)2 +ηRt [v̂(ŝt+1)]

}

(4.43)

subject to the budget constraint (4.6) and the Kalman filter equation (4.14). The
distorted expectation operator is now given by

Rt [v̂(ŝt+1)] =− 1
α

logEt [exp(−α v̂(ŝt+1))] ,

where s0| I 0 ∼ N
(

ŝ0,σ 2), ŝt = Et [st ] is the perceived state variable, θ is the opti-
mal weight on the new observation of the state, and ξt+1 is the endogenous noise.
The optimal choice of the weight θ is given by θ (κ) = 1−1/exp(2κ) ∈ [0,1]. The
following proposition summarizes the solution to the RI–RS model when ηR = 1:

Proposition 4.1. Given finite channel capacity κ and the degree of risk-sensitivity
α , the consumption function of a risk-sensitive consumer under RI

ct =
R− 1
1−Π

ŝt − Πc
1−Π

, (4.44)

26 Formally, one can view risk-sensitive agents as ones who have non-state-separable preferences,
as in, but with a value for the intertemporal elasticity of substitution equal to one.
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where

Π = Rαω2
η ∈ (0,1) , (4.45)

ω2
η = var [ηt+1] =

θ
1− (1−θ )R2ω

2
ζ , (4.46)

ηt+1 is defined in (4.16), and θ (κ) = 1− 1/exp(2κ).

Comparing (4.18) and (4.44), it is straightforward to show that it is impossible
to distinguish between RB and RS under RI using only consumption-savings deci-
sions.

Proposition 4.2. Let the following expression hold:

α =
1

2ϑ
. (4.47)

Then consumption and savings are identical in the RS–RI and RB–RI models.

Note that (4.47) is exactly the same as the observational equivalence condition
obtained in the full-information RE model (see Backus, Routledge, and Zin 2004).
That is, under the assumption that the agent distrusts the Kalman filter equation, the
OE result obtained under full-information RE still holds under RI.27

HST (1999) show that as far as the quantity observations on consumption and
savings are concerned, the robustness version (ϑ > 0 or α > 0, ˜η) of the PIH model
is observationally equivalent to the standard version (ϑ = ∞ or α = 0,η = 1/R)
of the PIH model for a unique pair of discount factors.28 The intuition is that in-
troducing a preference for risk-sensitivity (RS) or a concern about robustness (RB)
increases savings in the same way as increasing the discount factor, so that the dis-
count factor can be changed to offset the effect of a change in RS or RB on consump-
tion and investment.29 Alternatively, holding all parameters constant except the pair
(α,η), the RI version of the PIH model with RB consumers (ϑ > 0 and ηR = 1)
is observationally equivalent to the standard RI version of the model (ϑ = ∞ and
˜η > 1/R).

27 Note that the OE becomes

αθ
1− (1−θ )R2 =

1
2ϑ

,

if we assume that the agents distrust the income process hitting the budget constraint, but trust the
RI-induced noise hitting the Kalman filtering equation.
28 HST (1999) derive the observational equivalence result by fixing all parameters, including R,
except for the pair (α ,η).
29 As shown in HST (1999), the two models have different implications for asset prices because
continuation valuations would alter as one alters (α ,η) within the observationally equivalent set
of parameters.
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Proposition 4.3. Let

˜η =
1
R

1−Rω2
η/(2ϑ)

1−R2ω2
η/(2ϑ)

=
1
R

1−Rαω2
η

1−R2αω2
η
>

1
R
.

Then consumption and savings are identical in the RI, RB–RI, and RS–RI
models.

4.5 Conclusions

In this chapter we show that a state-space representation can be explicitly derived
from a classic macroeconomic framework which has incorporated model uncer-
tainty due to concerns for model misspecification (robustness or RB) and state un-
certainty due to limited information constraints (rational inattention or RI). We show
the state-space representation can also be used to quantify the key model parame-
ters. Several applications are also provided to show how this general framework can
be used to address a range of interesting economic questions.
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HKU seed funding program for basic research for financial support. All errors are the responsibility
of the authors. The views expressed here are the opinions of the authors only and do not necessarily
represent those of the Federal Reserve Bank of Kansas City or the Federal Reserve System.

Appendix

A.1 Solving the Current Account Model Explicitly
Under Model Uncertainty

To solve the Bellman equation (4.7), we conjecture that

v(st) =−As2
t −Bst −C,

where A, B, and C are undetermined coefficients. Substituting this guessed value
function into the Bellman equation gives

−As2
t −Bst −C = max

ct
min
νt

{

−1
2
(c− ct)

2 +ηEt
[

ϑν2
t −As2

t+1 −Bst+1 −C
]

}

.

(4.48)

We can do the min and max operations in any order, so we choose to do the mini-
mization first. The first-order condition for νt is

2ϑνt − 2AEt
[

ωζνt +Rst − ct
]

ωζ −Bωζ = 0,
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which means that

νt =
B+ 2A(Rst − ct)

2
(

ϑ −Aω2
ζ

) ωζ . (4.49)

Substituting (4.49) back into (4.48) gives

−As2
t −Bst −C = max

ct

⎧

⎪

⎨

⎪

⎩

−1
2
(c− ct)

2 +ηEt

⎡

⎢

⎣
ϑ

⎡

⎣

B+ 2A(Rst − ct)

2
(

ϑ −Aω2
ζ

) ωζ

⎤

⎦

2

− As2
t+1 −Bst+1 −C

⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

where

st+1 = Rst − ct + ζt+1 +ωζνt .

The first-order condition for ct is

(c− ct)−2ηϑ
Aωζ

ϑ −Aω2
ζ
νt +2ηA

(

1+
Aω2

ζ

ϑ −Aω2
ζ

)

(

Rst − ct +ωζ νt
)

+ηB

(

1+
Aω2

ζ

ϑ −Aω2
ζ

)

= 0.

Using the solution for νt the solution for consumption is

ct =
2AηR

1−Aω2
ζ/ϑ + 2ηA

st +
c
(

1−Aω2
ζ/ϑ

)

+ηB

1−Aω2
ζ/ϑ + 2ηA

. (4.50)

Substituting the above expressions into the Bellman equation gives

−As2
t −Bst −C

=−1
2

(

2AηR

1−Aω2
ζ/ϑ + 2ηA

st +
−2ηAc+ηB

1−Aω2
ζ/ϑ + 2ηA

)2

+
ηϑω2

ζ
(

2
(

ϑ −Aω2
ζ

))2

⎛

⎝

2AR
(

1−Aω2
ζ/ϑ

)

1−Aω2
ζ/ϑ + 2ηA

st +B−
2c

(

1−Aω2
ζ/ϑ

)

A+ 2ηAB

1−Aω2
ζ/ϑ + 2ηA

⎞

⎠

2

−ηA

⎛

⎜

⎝

⎛

⎝

R

1−Aω2
ζ/ϑ + 2ηA

st −
−Bω2

ζ/ϑ + 2c+ 2Bη

2
(

1−Aω2
ζ/ϑ + 2ηA

)

⎞

⎠

2

+ω2
ζ

⎞

⎟

⎠

−ηB

⎛

⎝

R

1−Aω2
ζ/ϑ + 2ηA

st −
−Bω2

ζ/ϑ + 2c+ 2Bη

2
(

1−Aω2
ζ/ϑ + 2ηA

)

⎞

⎠−ηC.
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Given ηR= 1, collecting and matching terms, the constant coefficients turn out to be

A =
R(R− 1)

2−Rω2
ζ/ϑ

, (4.51)

B =− Rc

1−Rω2
ζ/(2ϑ)

, (4.52)

C =
R

2
(

1−Rω2
ζ/2ϑ

)ω2
ζ +

R

2
(

1−Rω2
ζ/2ϑ

)

(R− 1)
c2. (4.53)

Substituting (4.51) and (4.52) into (4.50) yields the consumption function. Substi-
tuting (4.53) into the current account identity and using the expression for st yields
the expression for the current account.
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Chapter 5
Hong Kong Inflation Dynamics: Trend
and Cycle Relationships with the USA
and China

Pym Manopimoke

5.1 Introduction

Inflation modeling is an important topic in macroeconomics, particularly because
being able to understand and predict inflation plays a central role in monetary policy
analysis. Recently, the approach of modeling inflation as having two components,
trend and cycle, has become an appealing way to study the inflation process. Within
this framework, changes to the trend component are driven by permanent shocks and
correspond to long-horizon forecasts of inflation. Shocks to the cycle component
are transitory and generally arise from short-run fluctuations in aggregate demand.
Policymakers closely monitor movements in trend inflation as it indicates the fu-
ture course of inflation that is rid of short-term noise. At the same time, knowledge
about the driving forces behind the cyclical movements can help improve near-term
inflation forecasts as well as deliver an improved understanding about the monetary
policy transmission mechanism.

One challenge in studying the trend and cycle components of inflation is that they
are unobserved, thus an appropriate econometric technique must be used to extract
their movements from the observed data. In recent work, a popular method for trend
and cycle decomposition is to model the inflation dynamics as an unobserved com-
ponents (UC) model, which can then be easily estimated with the Kalman filter once
cast into state-space form. For example, Stock and Watson (2007) in [28] propose
a univariate UC model that decomposes US inflation into a trend component which
follows a driftless random walk, and a stationary white noise component. Harvey
(2008) in [17] estimates a UC model for US inflation that corresponds to a reduced
form Phillips curve, with lags of inflation replaced by a random walk process. Lee
and Nelson (2007) in [24] and Kim et al. (2012) in [23] consider estimation of
trend-cycle UC models of inflation that are consistent with the forward-looking
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New Keynesian Phillips curve (NKPC). Within this context, trend inflation
corresponds to long-horizon forecasts of inflation and the cycle component is driven
by current and future forecasts of the real activity variable. Modeling inflation in ac-
cordance with a Phillips curve has the advantage of giving the extracted trend and
cycle components more economic content when compared to a univariate decom-
position that is based solely on the statistical properties of inflation.

Thus far, the majority of studies that estimate UC models for inflation limit the
driving factors for trend and cycle movements to domestic ones. This chapter ex-
tends the UC model of [23] to account for external factors as well and applies the
model to study Hong Kong inflation dynamics. The case of Hong Kong is partic-
ularly interesting for at least three reasons. First, the direction of trend inflation is
usually assumed to be driven by domestic monetary policy. For example, in the
USA, the usual approach is to attribute movements in trend inflation to changes in
the Federal Reserve Bank’s implicit inflation target (see [7, 21]). However, Hong
Kong relinquished the control of its monetary policy stance since it entered into
the Linked Exchange Rate System in October 1983. To establish stability and con-
fidence in the economy, Hong Kong fixed its currency at a rate of 1 HKD to 7.80
US dollars, leaving little room for the conduct of discretionary monetary policy. Ac-
cordingly, Hong Kong trend inflation may be heavily reliant on external factors such
as US trend inflation movements.

Second, inflation in a country under a currency board arrangement such as Hong
Kong is believed to be highly dependent on external forces. Moreover, Hong Kong
is a small open economy that engages in substantial amounts of international trade
which could lead to volatile price movements. While these swings may originate
from many sources, it is often understood that shocks from the USA and Mainland
China are most responsible in shaping the macroeconomic landscape of Hong Kong.
This is because these two countries are Hong Kong’s leading trading partners and
investors. Also, as mentioned earlier, the economy of Hong Kong is tied to some
degree to the USA via the Linked Exchange Rate System. As for China, the close
geographic proximity and the return of Hong Kong to the Chinese sovereignty in
1997 has led to tight economic integration between Hong Kong and the Mainland
through activities in trade, FDI, tourism, and financial markets. While it is undis-
puted that these developments with the USA and China are important towards Hong
Kong’s price movements, the exact nature and transmission mechanism is less well
understood. The UC framework developed in this chapter can help shed some light
on this issue.

Last, despite the economic influence that China has exerted on the rest of the
world, its macroeconomic variables and linkages with its trading partners is still
an understudied topic. In this chapter, the output gaps in the empirical model are
treated as latent variables, thus a by-product from estimation is a measure of China’s
unobserved output gap. A number of studies attempt to estimate China’s output gap
through UC approaches such as [11], but the majority of work rely on within country
relationships and Chinese data alone. By exploiting the macroeconomic linkages
between Hong Kong, US, and China, information in Hong Kong and US data may
be able to help deliver a more accurate measure of China’s output gap.
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The rest of this chapter is organized as follows. Section 5.2 briefly describes the
characteristics of Hong Kong’s inflation dynamics as well as the related literature.
The model specification is outlined in Sect. 5.3 and Sect. 5.4 discusses the empirical
findings. Section 5.5 concludes.

5.2 Literature Review

Since the establishment of the currency board arrangement in 1983, consumer price
inflation in Hong Kong has varied substantially from highly inflationary to defla-
tionary periods. Figure 5.1 plots headline inflation as calculated from the consumer
price index (CPI), CPI inflation that excludes rental components, and underlying
CPI inflation. The latter measure is headline inflation that strips out the impact of
one-off government relief measures. As shown, Hong Kong experienced high infla-
tion for the most part of the 1980s and 1990s. Then, it underwent a 6-year prolonged
period of deflation starting in 1998 which may have been spurred by events such as
the Asian Financial Crisis and the greater integration with Mainland China. During
the recent period, it can be observed that Hong Kong inflation has been on the rise
since mid-2004, albeit with a slight dip due to the recent recession. Rising global
food prices along with a number of other factors such as rising energy prices, the
appreciation of the renminbi, and the weakening US dollar may all be responsible
for this increase in headline inflation. However, it can be inferred from Fig. 5.1 that

Fig. 5.1 Hong Kong CPI inflation
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during the recent period, the rise in the rental component has driven the overall
increase in Hong Kong CPI inflation as well.

In the literature, various versions of the NKPC have been used to analyze the
inflation process. In the baseline NKPC, monopolistic competitive firms exhibit
forward-looking price-setting behavior in an environment of sticky prices. Accord-
ingly, current inflation is postulated to depend on expected future inflation and a
measure of real economic activity such as the output gap. However, this so-called
forward-looking NKPC has difficulty in explaining high persistence observed in the
inflation data. Therefore, the forward-looking NKPC is often augmented to include
a backward-looking component or a lagged inflation term to help fit with the data,
resulting in an NKPC of hybrid form. The inclusion of a backward-looking term
is somewhat ad hoc but is often justified by the existence of price-indexation or
rule-of-thumb price-setting behavior (see [4, 9]).

For the case of Hong Kong, an open-economy hybrid NKPC is often the preferred
model used to study the inflation process as the economy relies heavily on interna-
tional trade. The open-economy NKPC is an extension of the baseline model where
pricing decisions are also allowed to depend on external sector macrovariables such
as fluctuations in the multilateral terms of trade or imported intermediate goods (see
[5, 10]). Among the few studies that have estimated open-economy Phillips curves
for Hong Kong, the majority report evidence supporting the empirical relevance
of the model. For example, using the instrumental variable approach, Genberg and
Pauwels (2005) in [11] find that the Phillips curve can provide a good description
of movements in Hong Kong inflation and that both backward and forward-looking
components are important in the NKPC. In addition, they report that using either a
output gap, a unit labor cost gap or a specification of marginal cost as the driving
variable for inflation yield similar results. Liu and Tsang (2008) in [25] also employs
a Phillips curve model to study Hong Kong domestic inflation but they focus on ana-
lyzing the pass-through effect of exchange rate movements to Hong Kong domestic
inflation. They find that although the degree of exchange rate pass-through is high
in Hong Kong compared to OECD averages, domestic factors are also important in
explaining Hong Kong inflation dynamics and can even dominate external factors
in the medium-run.

Recent studies have also attempted to gain a better understanding about Hong
Kong inflation trend and cycle movements. For example, Leung et al. (2009) in [26]
employs various approaches such as the exclusion method and the principal compo-
nents analysis to extract trend inflation movements from the data. Ha et al. (2002) in
[15] estimates a backward-looking Phillips curve augmented by an error-correction
term to relate Hong Kong’s inflation to those of the USA and China in the long-run,
and the output gap, import prices, and property prices in the short-run. They find
that US inflation explains 92% of Hong Kong’s long-run price movements whereas
in the short-run, lags of the output gap, import prices, and property prices are found
to be important. Cheung and Yuen (2002) in [3] also find long-run price movements
in Hong Kong to be tied to the USA via cointegration tests, and using a vector
error correction model, they also show that US inflation has a significant impact on
Hong Kong inflation in the short-run with a lag of 2 years. Ha and Fan (2002) in
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[14] uses a panel of city-level commodity prices in Hong Kong, Beijing, Shanghai,
Guangzhou, and Shenzhen to examine the price convergence between Hong Kong
and Mainland China. They find that price convergence with the Mainland is respon-
sible for about less than a quarter of the deflation in Hong Kong, whereas domestic
cyclical conditions may play a larger role.

5.3 Model Specification

Consider the following NKPC:

πt = Et(πt+1)+ kxt +ηt , (5.1)

where Et(.) refers to expectation formed conditional on information up to time t,
πt is current inflation, k is the slope of the Phillips curve, and xt is the output gap,
defined as the difference between actual and potential output. As explained in [23],
ηt may be serially correlated if the backward-looking component or additional leads
of inflation beyond t + 1 are important in the NKPC.1

Iterating (5.1) forward results in the NKPC of the following form:

πt = lim
j→∞

Et(πt+ j)+ k
∞

∑
j=0

Et(xt+ j)+ z̃t , (5.2)

where z̃t = ∑∞j=0 Et(ηt+ j). Since a number of studies such as [19] and [12] fail to
reject the null of a unit root for Hong Kong inflation, the limt→∞ Et(πt+ j) term can
be interpreted as long-horizon forecasts of inflation or the Beveridge and Nelson
stochastic trend. The remaining term, k∑∞j=0 Et(xt+ j) + z̃t , is the stationary cycle
component of inflation, also known as the inflation gap. Note that in theory, z̃t would
be driven by backward-looking or additional forward-looking price dynamics. How-
ever, empirically, z̃t could also be influenced by a variety of other macroeconomic
factors. For the case of a small open economy such as Hong Kong, fluctuations in
terms of trade, import prices, and property price movements as well as exchange rate
variability could all be relevant towards explaining z̃t . This chapter is particularly in-
terested in investigating how US and China output gaps influence z̃t movements.

1 To illustrate this point, notice that the widely estimated hybrid NKPC:

πt = (1−α)Et(πt+1)+απt−1+ kxt +ηt , 0 ≤ α < 1,

can be rewritten as (5.1) with ηt = α(πt−1 −Et(πt+1)). It then follows that if α > 0, firms are
backward-looking and ηt will be serially correlated. The above model is a hybrid NKPC that is
derived under the assumption that inflation is stationary. However, as shown in [7], additional leads
of inflation beyond t + 1 may enter the NKPC if inflation is assumed to have a unit root. Thus, in
the presence of stochastic trend inflation, serial correlation in ηt may not necessarily stem from
backward-looking price-setting dynamics. Rather, serial correlation in ηt may serve as a spurious
proxy for additional forward-looking elements.
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Following [23], (5.2) can be written as the following UC model for inflation:

πt = π̃t + k
∞

∑
j=0

Et−1(xt+ j)+ zt , (5.3)

π̃t = π̃t−1 + et , (5.4)

zt = εt , (5.5)

where the inflation gap is rewritten with zt = z̃t +(∑∞j=0 Et(xt+ j)−∑∞j=0 Et−1(xt+ j))
for feasible estimation of the model. Since zt is a function of economic agents’
revision on the present value of future output gaps, shocks to zt are allowed to be
correlated with those of xt through a nonzero correlation coefficient ρεv. Also, note
that although zt may be serially correlated, it is defined as a white noise process in
(5.5). This is because with the use of Akaike’s Information Criterion (AIC) tests, it
is determined that the fit of the data during the time period studied is best when zt is
modeled as a white noise process with εt ∼ i.i.d.N(0,σ2

ε ). This result implies that a
forward-looking NKPC can explain Hong Kong inflation data well.

In dealing with the unobserved output gap xt , Kim et al. (2012) in [23] assumes
that the US output gap is an observed process and proxies it with the Congressional
Budget Office’s (CBO) estimate of the output gap. For the case of Hong Kong, there
is less of an established measure for the output gap. Hence, the output gap in the
UC model for Hong Kong inflation is also treated as an unobserved process and is
extracted from the following UC model for output:

yt = τt + xt , (5.6)

τt = μ+ τt−1 +wt , (5.7)

xt = φ1xt−1 +φ2xt−2 + vt . (5.8)

The above model follows [16] and [6], in which equilibrium output yt is decomposed
into a stochastic trend component τt and a cyclical component xt which corresponds
to the output gap.2 The output trend and cycle components are assumed to be uncor-
related. Note that the unobserved output gap xt backed out from the full UC model
will be consistent with the NKPC, and its movements are influenced not only by
information contained in its own lags but also by information in inflation as well as
the trend output growth rate.

2 As an alternative to a UC model for real output, a UC model for the unemployment rate can
be estimated with the inflation equations instead. The unemployment rate can be specified as a
sum of the natural rate, which typically is assumed to follow a driftless random walk, and an
unemployment gap, which may follow an autoregressive process. In such a case, the unemployment
gap will replace the output gap as the driving variable for inflation in the NKPC specification. For
examples of UC models that use the unemployment gap as a measure of economic slack, see [1]
and [24].
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The UC model denoted by (5.3)–(5.8) is henceforth referred to as the one-country
model. Its corresponding state-space representation can be written as follows:

Measurement equation

[

πt

yt

]

=

[

1 1 0 0 0
0 0 1 1 0

]

⎡

⎢

⎢

⎢
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⎣
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xt−1

⎤

⎥

⎥

⎥

⎥

⎦

+

[

k∑∞j=0 Et−1(xt+ j)

0

]

, (5.9)

Transition equation
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where σεv = ρεvσεσv. Note that ∑∞j=0 Et−1(xt+ j) in the measurement equation can
be calculated as:

∞

∑
j=0

Et−1(xt+ j) = ẽ′1F(I2 −F)−1x̃t−1, (5.11)

where ẽ1 =

[

1
0

]

, F =

[

φ1 φ2

1 0

]

and x̃t−1 =

[

xt−1

xt−2

]

.

To investigate how Hong Kong’s inflation dynamics may be affected by external
factors from the USA and China, the one-country model is extended to the following
three-country model:

NKPC for Hong Kong:

π1,t = π̃1,t + k1

∞

∑
j=0

Et−1(x1,t+ j)+ z1,t , (5.12)

π̃1,t = ηπ̃2,t−1 +(1−η)π̃1,t−1+ e1,t , (5.13)

z1,t = γ1x2,t−1 + γ2x2,t−2 + γ3x3,t−1 + γ4x3,t−2 + ε1,t , (5.14)

y1,t = τ1,t + x1,t , (5.15)

τ1,t = μ1 + τ1,t−1 +w1,t , (5.16)

x1,t = φ1,1x1,t−1 +φ1,2x1,t−2 + v1,t , (5.17)
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NKPC for the USA:

π2,t = π̃2,t + k2

∞

∑
j=0

Et−1(x2,t+ j)+ z2,t , (5.18)

π̃2,t = π̃2,t−1 + e2,t , (5.19)

z2,t = ε2,t , (5.20)

y2,t = τ2,t + x2,t , (5.21)

τ2,t = μ2 + τ2,t−1 +w2,t , (5.22)

x2,t = φ2,1x2,t−1 +φ2,2x2,t−2 + v2,t , (5.23)

Output equation for China:

y3,t = τ3,t + x3,t , (5.24)

τ3,t = μ3 + τ3,t−1 +w3,t , (5.25)

xt = φ3,1x3,t−1 +φ3,2x3,t−2 + v3,t , (5.26)

where variables with subscripts 1, 2, and 3 belong to Hong Kong, the USA, and
China, respectively, except for all γ coefficients in (5.14) that belong to the domestic
country, Hong Kong. In the NKPC representation for Hong Kong, two departures
are made from the one-country model. First, since Hong Kong ties its monetary
policy to the USA via the Linked Exchange Rate System, the three-country model
allows Hong Kong trend inflation to be influenced by US trend inflation movements.
The importance of US trend inflation is captured through the significance of the
coefficient η . Note that in theory, Hong Kong’s inflation rate should converge to
the levels of the USA in the long-run, in which case the two countries will share
a common trend with η equal to one. However, as shown in Fig. 5.2, it is unclear
whether this is empirically the case since the differences between Hong Kong and
US price movements are quite substantial.

Next, the cycle component of Hong Kong inflation that follows (5.14) is allowed
to depend on the lagged output gap effects from the USA and China through the
coefficients γ1, γ2, γ3, and γ4. In general equilibrium, the term of trade gap is driven
by the difference between the domestic and foreign countries’ output gaps, thus
the significance of these coefficients may denote the importance of terms of trade
fluctuations onto Hong Kong inflation dynamics.

Note that the UC model for the USA in (5.18)–(5.23) is similar to the one-country
NKPC model for Hong Kong and is not influenced by any variables that belong
to Hong Kong or China.3 As for China, only an output equation is included as the
literature suggests that the fit of Chinese inflation data to standard Phillips curves are

3 This is similar to [23]’s UC model for US inflation except here, zt is specified as a white-noise
process instead of an AR(1) process. However, the empirical findings in [23] suggest that zt follows
a white noise process for the post mid-1980s which corresponds to the sample period studied in
this chapter.
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Fig. 5.2 Hong Kong and US inflation

problematic (see [11]). This is not surprising since there have been large swings and
structural changes in Chinese inflation that may stem from events such as changes in
the exchange rate regime, trade liberalization, and the impact of price deregulation.
Finally, in the three-country model, the shocks to all three output gaps are allowed
to be correlated through correlation coefficients ρ12,v, ρ13,v, and ρ23,v. Likewise, all
shocks to trend output are allowed to be correlated through correlation coefficients
ρ12,w, ρ13,w, and ρ23,w.

The corresponding state-space representation for the three-country model can be
written as:

Measurement equation
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Transition equation
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where σi,εv = ρi,εvσi,εσi,v for i= 1,2 and σ jk,v = ρ jk,vσ j,vσk,v, σ jk,w = ρ jk,wσ j,wσk,w

for j,k = 1,2,3; j < k.
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Similar to (5.11), the infinite sum term ∑∞j=0 Et−1(x1,t+ j) term in the measure-
ment equation can be calculated as:

∞

∑
j=0

Et−1(x1,t+ j) = ẽ′1F(I2 −F)−1x̃1,t−1, (5.29)

where ẽ1 =

[

1
0

]

, F =

[

φ1,1 φ1,2

1 0

]

and x̃1,t−1 =

[

x1,t−1

x1,t−2

]

. Likewise,

∞

∑
j=0

Et−1(x2,t+ j) = ẽ′1F(I2 −F)−1x̃2,t−1, (5.30)

where ẽ1 =

[

1
0

]

, F =

[

φ2,1 φ2,2

1 0

]

and x̃2,t−1 =

[

x2,t−1

x2,t−2

]

.

5.4 Empirical Results

The empirical analysis employs quarterly data that spans 1986Q1–2010Q4. The
Hong Kong inflation series are calculated as the one-quarter log change of the CPI,
the non-rental component of the CPI, and Hong Kong’s underlying CPI. The under-
lying CPI inflation is the preferred measure for Hong Kong inflation in this study as
it strips out the impact of one-off government relief measures. This relief is designed
to reduce the final cost of various goods and services to people burdened by infla-
tion. Headline inflation does not adjust for this, which may have caused distortions
and increased volatility in the data. Inflation data for Hong Kong is obtained from
the CEIC database and from the database at the Hong Kong Monetary Authority.

For the USA, the inflation rate is calculated as the one-quarter log change of the
CPI obtained from the Federal Reserve Economic Database. As for data on out-
put, the Purchasing Power Parity (PPP)-adjusted Gross Domestic Product (GDP) is
used, with 2005 PPP data obtained from the Penn World Table. GDP data for Hong
Kong, USA, and China are obtained from the Hong Kong Census and Statistics De-
partment, the US Bureau of Economic Analysis and the China National Bureau of
Statistics, respectively. Note that the series in which quarterly data is not available,
monthly data is converted to quarterly data by averaging monthly data within the
quarter.

First, the one-country model is fitted to Hong Kong inflation to see how well the
model performs without explicitly accounting for the external influences from the
USA and China. Table 5.1 reports the estimation results for the three Hong Kong
inflation series. All parameter estimates have the right sign and are of reasonable
magnitudes, and they are statistically significant at the 5% level except for the corre-
lation coefficient ρεv. The estimation results produced from all three Hong Kong in-
flation series are reasonably similar. Some minor differences are as expected, which
include the variability of shocks to the component zt being slightly smaller for
underlying CPI inflation and shocks to trend inflation being less volatile for the
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Table 5.1 Estimation results for the one-country model [Hong Kong: 1986Q1–2010Q4]

Parameters CPI Non-rental CPI Underlying CPI

Phillips curve slope, output trend drift, and AR coefficients of the unobserved gap

k 0.345 (0.168) 0.364 (0.153) 0.379 (0.185)
μ 0.965 (0.132) 0.966 (0.130) 0.976 (0.137)
φ1 1.588 (0.078) 1.574 (0.077) 1.582 (0.081)
φ2 −0.714 (0.070) −0.709 (0.065) −0.687 (0.068)

Standard deviations and correlations

σe 1.088 (0.197) 0.841 (0.158) 1.145 (0.181)
σw 1.229 (0.118) 1.218 (0.112) 1.280 (0.108)
σv 0.463 (0.110) 0.478 (0.102) 0.397 (0.110)
σε 2.064 (0.210) 1.940 (0.182) 1.692 (0.192)
ρεv −0.548 (0.378) −0.286 (0.271) −0.743 (0.419)

Log-likelihood: −289.902 −280.604 −279.526

Note: Standard errors are in parentheses.

non-rental component of CPI inflation. The slope of the output gap is estimated
to be approximately 0.35 for all inflation measures, suggesting that the domestic
output gap plays an important role in explaining Hong Kong’s short-run inflation
movements. Finally, for the underlying CPI inflation measure, the model implies
a trend output growth rate of 3.9%, and the unobserved output gap implied by the
NKPC is fairly persistent with a sum of AR coefficients equal to 0.895.

Plots of the unobserved components produced from the three inflation measures
are similar, so only the estimates from the underlying CPI inflation series are re-
ported due to space considerations. First, smoothed trend inflation estimates inferred
from the one-country model are plotted in Fig. 5.3. As shown, Hong Kong trend in-
flation tracks the overall movements in actual inflation well. Trend inflation was
high in the mid-1980s to early 1990s, experienced a sharp drop in the mid-1990s,
was low throughout the late 1990s and early 2000s, and has been picking up since
the mid-2000s. In comparison with the literature, the estimates of trend inflation
shown here are less volatile than the measures that Leung et al. (2009) in [26] report
by using the exclusion method or the principal components analysis.

Figure 5.4 plots the unobserved output gap as implied by the one-country model
for Hong Kong alongside the HP-filtered output gap.4 It is to be emphasized that

4 The HP gap is a commonly used measure of the output gap in Phillip curve models for Hong
Kong. This is despite the well-known shortcomings of the HP-filter which includes difficulty in
identifying the appropriate smoothing parameter as well as high end-sample biases (see [18]). For
comparisons with the literature, the one-country model is also estimated with the HP-filtered output
gap. In doing so, the one-country model is reduced to (5.3)–(5.5) and (5.8), with the HP gap acting
as an observed measure of the output gap. For underlying CPI inflation, the reduced model gives an
estimated slope of 0.082 which is smaller in magnitude than the reported slope estimate of 0.379
in Table 5.1. This result is as expected since the HP gap undergoes larger swings relative to the
unobserved output gap that is extracted from the one-country model.
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Fig. 5.3 Hong Kong actual inflation and smoothed estimates of trend inflation from the one-
country model

Fig. 5.4 Hong Kong unobserved output gap from the one-country model and HP-filtered output
gap
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the two output gap measures are very different since the HP-gap is a purely statis-
tical measure, whereas the unobserved output gap is one that is consistent with the
NKPC. Nevertheless, it can be observed that the two series share the same general
movements, with dates of peaks and troughs in the business cycle that roughly coin-
cide. However, the magnitude of swings in the HP-filtered output gap is much more
pronounced. This may be due to the fact that the HP-filter imposes a smooth trend,
causing the variability to show up in the cyclical component, whereas the UC model
makes no such assumption. Gerlach and Yiu (2004) in [13] and Cheng et al. (2011)
in [2] also show that a univariate UC model for output that is similar to (5.6)–(5.8)
produces a less volatile output gap that has smaller peaks and troughs when com-
pared to the HP-filtered output gap. However, their estimated magnitudes are still
larger than those implied by the one-country model. Thus, it may be the case that
information in inflation helps identify a less volatile output gap.

Table 5.2 reports estimation results for the three-country model for Hong Kong,
the USA, and China. The inflation measure for Hong Kong is the underlying CPI,

Table 5.2 Estimation results for the three-country model [Hong Kong, USA, China: 1986Q1–
2010Q4]

Inflation equation parameters

Hong Kong USA
k 0.366 (0.183) 0.010 (0.005)
η 0.052 (0.022) –
γ1 −2.296 (1.255) –
γ2 2.279 (1.240) –
γ3 4.401 (2.287) –
γ4 −4.004 (2.353) –

Output equation parameters

Hong Kong USA China
μ 0.937 (0.135) 0.797 (0.085) 2.395 (0.093)
φ1 1.678 (0.053) 1.714 (0.081) 1.894 (0.036)
φ2 −0.785 (0.048) −0.719 (0.079) −0.919 (0.033)

Standard deviations and correlations

Hong Kong USA China
σe 1.079 (0.208) 0.180 (0.112) –
σε 1.661 (0.209) 1.834 (0.142) –
σw 1.266 (0.100) 0.307 (0.079) 0.845 (0.063)
σv 0.357 (0.085) 0.435 (0.077) 0.084 (0.037)

ρ1,εv −0.718 (0.449)
ρ2,εv 0.123 (0.147)
ρ13,w 0.254 (0.099)
ρ12,v 0.570 (0.142)
ρ13,v 0.998 (0.002)
ρ23,v 0.998 (0.001)

Log-likelihood: −397.276

Note: Standard error are in parentheses.
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but the estimation results are robust across the three different inflation series for
Hong Kong. As shown, the parameter estimates that describe Hong Kong inflation
and output dynamics are similar to those reported in Table 5.1. For the USA, they
are similar to those that Kim et al. (2012) in [23] report when fitting a one-country
model similar to (5.18)–(5.20) to US inflation and CBO output gap data. Compar-
ing the NKPC parameter estimates across the two countries, the major difference is
in the Phillips curve slope estimates k. Hong Kong has a steeper slope of 0.37 versus
the USA that has a flat slope of 0.01. The estimates for Hong Kong reported here
are slightly higher than those in the literature, but these comparisons are against the
few studies that estimate Phillips curve models with quite different specifications
and with data that span a shorter time period. For example, using the instrumen-
tal variable approach, Genberg and Pauwels (2005) in [11] estimate a version of
the open-economy hybrid NKPC for the sample period 1984–2002 and report a
slope estimate of 0.19. By a similar approach, Dua and Gaur (2010) in [8] obtain
a slope estimate of 0.15 for the 1990–2005 sample. As for the USA, NKPCs typ-
ically deliver small slope estimates of magnitude 0.02 which is comparable to the
one reported in this chapter (see [23, 24]). Finally, in explaining the sharp differ-
ences in the two countries’ slope estimates, a number of theoretical models such
as Romer (1993) in [27] predict that Phillip curve slopes increase with the degree
of trade openness. Using 2011 data from the CIA World Factbook database, Hong
Kong’s degree of openness as measured by the sum of imports and exports as a per-
centage of GDP is 256.05, whereas for the USA it is 24.41. This difference is quite
pronounced and hence the findings in this chapter provide empirical support to the
argument that more open economies have steeper Phillips curves.

Examining the variability of inflation trend components through the estimated σe

parameters, Hong Kong trend inflation is more volatile when compared to the USA.
Estimates of Hong Kong trend inflation from the three-country model are similar to
those shown in Fig. 5.3, except that they track actual inflation more closely during
the decline in inflation that started in 1997. Figure 5.5 plots the estimates of US trend
inflation which is substantially less volatile when compared to Hong Kong trend
inflation, supporting the view that US inflation has been sufficiently well anchored
at around 2% since the mid-1980s. From these observed differences in the long-
run components of the two inflation series, it is not surprising that the estimate of η ,
which denotes the degree in which Hong Kong inflation is dependent on US inflation
in the long-run is estimated at 0.05 which is low.5 This result stands in contrast with
[15]’s finding that Hong Kong prices will converge to US levels in the long-run.

Comparing estimates of the output equation parameters, the trend output growth
rate was highest for China and lowest for the USA. China had an annual trend out-

5 Long-run price movements in Hong Kong should effectively be tied to the USA through the
Linked Exchange Rate System. Nevertheless, there may be many causes for persistent deviations
of Hong Kong price dynamics from that of the USA. For example, the relatively high inflation
in Hong Kong during the 1990s may be due to favorable export price shocks which hike up the
prices of tradables that ultimately impact the prices of non-tradables. The Balassa–Samuelson ef-
fect in which the high productivity growth gap between the tradable sector and the non-tradable
sector leads to a real exchange rate appreciation that increases prices of non-tradables could also
be responsible for Hong Kong’s higher long-term inflation in the 1990s (see [20] and references
therein).
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Fig. 5.5 US actual inflation and smoothed estimates of trend inflation from the three-country
model

put growth rate of 9.58%, whereas for the USA, the growth rate is estimated at
3.19%. All three output gap measures are highly persistent as evidenced by the sum
of their AR coefficients φ1 and φ2. Shocks to the three output gap series are highly
correlated, especially the ones between Hong Kong and China and USA and China,
yielding evidence of business cycle synchronization. Shocks to Hong Kong trend
output is most volatile, with US output exhibiting the smoothest trend. The vari-
ability of shocks to China’s trend output is also high, in contrast to the shocks to
its cyclical component which is lower than Hong Kong and the USA by approxi-
mately a factor of 5. From estimation of the three-country model, it turns out that
only shocks to Hong Kong and China trend outputs are correlated, thus the results
reported here are based on the restricted model in which the correlations between
the shocks to the other countries’ output trends are set to zero.

In Fig. 5.6, the unobserved output gap estimates from the three-country model
are plotted. As shown, the three output gaps began to co-move more closely since
the early 2000s. Prior to this period, the output gaps of Hong Kong and the USA
were unsynchronized. Given that Hong Kong’s monetary policy is tied to the USA
but their real economies differ, US monetary policy that aims at domestic output
gap stabilization may have delivered adverse effects onto Hong Kong’s economy,
contributing to the high volatility observed in Hong Kong’s inflation dynamics. An-
other observation from the graph is that the current recession affected the USA the
most in terms of loss in output, whereas Hong Kong shows the fastest recovery. The
Hong Kong output gap looks similar to the series obtained from the one-country
model in Fig. 5.4, except at the end points. For example, examining the lowest point



5 Hong Kong Inflation Dynamics: Trend and Cycle Relationships. . . 129

Fig. 5.6 Output gap estimates from the three-country model

of the most recent recession, the three-country model gap was lower than that of the
one-country model gap by approximately 3%. In addition, it is sufficiently lower
relative to the trough of the 1997 Asian financial crisis. As shown in the plot of
Hong Kong trend output and actual output in Fig. 5.7, this suggests that for Hong
Kong, the 1997 recession can be characterized by a large permanent loss in output
whereas the loss during the most recent recession was largely temporary.

As for China, China’s output gap appears smooth in comparison with the US
and Hong Kong output gaps. The general movement of China’s output gap reported
here resembles those of [11], in which the authors estimate a univariate UC model
for output similar to (5.24)–(5.26). The authors find an output gap that also peaks
around the mid-1980s and mid-1990s but their output gap measure is slightly more
volatile. By estimating a UC model for output using both US and China data, Jia
and Sinclair (2009) in [22] also report a more volatile gap. However, note that these
output gap estimates for China should be viewed with caution. Output data from
the Mainland are known to be subject to considerable measurement errors causing
output gap estimates to be imprecise. Moreover, Chinese GDP data are found to
be very smooth in comparison with those of the USA and Hong Kong, and this
limitation may have contributed to the overall smoothness of Chinese output gap
estimates.

Finally, as discussed in Sect. 5.2, studies in the literature have found Hong Kong
price dynamics to be related to macroeconomic factors in the USA at both short and
long time-horizons. However, it has been more difficult to establish a link between
Hong Kong inflation dynamics and macroeconomic factors from China. In this
chapter, an encouraging finding is that both the coefficients that link the US and
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Fig. 5.7 Hong Kong actual output and estimates of trend output from the three-country model

China output gaps to Hong Kong inflation in the short-run are sufficiently large and
statistically significant at the 10% level. Examining the estimates of γ3 and γ4, the
output gap influence from China onto Hong Kong’s cyclical component is approx-
imately twice as large when compared to the impact from the US output gap, as
reflected through the coefficients γ1 and γ2. In addition, from the signs on these
gamma coefficients, it seems to be the case that the US and China output gaps have
opposing effects on Hong Kong’s inflation cycle at the first and second time lags.
The finding that China’s output gap effects matter more for Hong Kong inflation
when compared to the USA is not surprising. This is because according to the statis-
tics compiled by the Trade and Industry Department, the total trade between Hong
Kong and Mainland China in 2011 is 48.5%, while its total trade with the USA is
smaller at 7.6%.

5.5 Conclusion

This chapter investigates the extent in which domestic and external factors matter for
Hong Kong inflation trend and cycle movements within the framework of a NKPC.
The empirical model is an unobserved component model for inflation and output
where US trend inflation and output gaps from the USA and China are allowed to
influence Hong Kong price dynamics at the long and short time-horizons. In con-
trast to theory, the empirical findings suggest that since the mid-1980s, the degree
in which Hong Kong and US inflation rates are related in the long-run is minor.
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Over the short-run, the domestic output gap turns out to be a very important driving
variable in explaining Hong Kong inflation dynamics. Moreover, foreign output gap
effects from the US and China matter as well, with the magnitude on the China out-
put gap estimated at twice as large as that of the USA. Comparing the unobserved
output gap series that are backed out from the empirical model, there is evidence
that the output gaps of the three countries have become more synchronized since
the early 2000s.

The findings in this chapter are encouraging as it is able to identify meaningful
relationships between Hong Kong inflation and external factors from the USA and
China. Admittedly, there are other factors that could influence Hong Kong infla-
tion that are not explicitly included in the empirical model. For example, permanent
price shocks from China may be important in explaining Hong Kong trend infla-
tion movements. Swings in property prices or global food and energy prices may
also matter for Hong Kong’s short-run price dynamics. Given the flexibility of the
empirical model and the fact that both the trend and cycle components are reduced
form expressions, incorporating such features into the model would be straightfor-
ward. Then, if the relationships between these factors and the model are found to be
important and stable, an interesting avenue for future research would be to evaluate
the forecasting performance of the empirical model. As a small open economy in-
fluenced heavily by international trade, Hong Kong inflation is known to be difficult
to forecast. So far, vector autoregression (VAR) models are widely used to forecast
Hong Kong inflation. However, giving the forecasting model more structure through
the NKPC framework may be able to yield fruitful results.
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Chapter 6
The State Space Representation and Estimation
of a Time-Varying Parameter VAR
with Stochastic Volatility

Taeyoung Doh and Michael Connolly

6.1 Introduction

Vector autoregressions (VARs) are widely used in macroeconomics to detect
comovements among multiple economic time series. In a nutshell, VARs regress
each time series onto various lags of multiple time series included in the model.
When coefficients are assumed to be stable, each equation in a VAR becomes an
example of a multiple linear regression. In the simplest form, error terms in the
VAR are assumed to have constant variances.

While convenient, assuming time-invariant coefficients and variances turns out
to be quite restrictive in capturing the evolution of economic time series. For exam-
ple, US business cycle dynamics and monetary policy have changed substantially
over the post-war period. To describe these changes in the VAR framework requires
one to allow shifts in coefficients or volatility (e.g. Canova and Gambetti (2009);
Clark (2009); Cogley and Sargent (2005); Cogley, Primiceri, and Sargent (2010);
Primiceri (2005); Sims and Zha (2006)).

When time variation is introduced to either coefficients or volatility in a VAR, the
state space representation of the VAR is typically used in empirical analysis to esti-
mate unobserved time-varying coefficients or volatility. Since allowing time varia-
tion in coefficients or volatility introduces too many parameters unless restricted, the
literature evolved in a way of introducing random processes to time-varying coeffi-
cients or volatility to avoid the “overparameterization” problem (Koop and Korobilis
(2010)). The randomness in these parameters fits quite well with Bayesian methods
because there is no strict distinction between fixed “true” parameters and random
samples in the Bayesian tradition.

This chapter will discuss applying Bayesian methods for estimating a time-
varying parameter VAR with stochastic volatility using the state space representa-
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tion of the VAR. Section 6.2 describes the state space representation and estimation
methods for VARs. In particular, each step in the Bayesian estimation procedure of a
time-varying parameter VAR with stochastic volatility is explained. Section 6.3 pro-
vides empirical analysis of a time-varying parameter VAR with stochastic volatility
using three US macroeconomic variables. We will focus on implications of esti-
mates for the time-varying trend and volatility of each variable during the recent
period since the start of the recession of 2007–2009. Section 6.4 concludes.

6.2 State Space Representation and Estimation of VARs

6.2.1 State Space Representation

Let yt be an n×1 vector of observed variables and q the length of lags. A canonical
representation of a VAR(q)) with time-invariant parameters and volatility takes the
following form;

yt = c0 + c1yt−1 + · · ·+ cqyt−q + et , et ∼ (0,Σe). (6.1)

Since all the state variables are observed, there is no need to distinguish a state
transition equation from a measurement equation in this case. However, if we allow
for time variation in coefficients (c0,c1, · · · ,cq) or volatility (Σe), the model includes
some unobserved components as state variables. To estimate these unobserved com-
ponents based on the observed data, it is useful to distinguish a state transition equa-
tion from a measurement equation as in the canonical representation of a state space
model. Here are examples of the state space representation of VARs with time-
varying coefficients and volatility.

Example 6.1 (Time-Varying Parameter VAR with Time-Invariant Volatility).

yt = X ′
t θt + εt , εt ∼ N (0,Σε) , (Measurement Equation), (6.2)

θt = θt−1 + vt , vt ∼ N (0,Σv) , (State Transition Equation). (6.3)

Here Xt includes a constant plus lags of yt , and θt is a vector of VAR parameters.
εt and vs are assumed to be independent of one another for all t and s. Given the
linear and Gaussian state space representation of the above VAR, we can apply the
Kalman filter to estimate θt conditional on the time series of observed variables yt .
If we further allow a possible correlation between εt and vt , the model studied in
Cogley and Sargent (2001) belongs to this example.

Example 6.2 (VAR with Stochastic Volatility).

yt = X ′
t θ +Σtεt , εt ∼ N (0, In) , Σt =diag(

√

Hi,t) , (Measurement Equation),

(6.4)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0,Q) , (State Transition Equation). (6.5)
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Here Σt is a diagonal matrix whose diagonal elements are
√

Hi,t(i = 1, · · · ,n).
The measurement equation is a nonlinear function of the unobserved log stochastic
volatility (lnHi,t). Hence, the Kalman filter is not applicable in this case. Simulation-
based filtering methods are typically used to back out stochastic volatility implied
by the observed data. The above model is close to the one studied in Clark (2011),
who shows that allowing stochastic volatility improves the real time accuracy of
density forecasts out of the VAR model.

Example 6.3 (Time-Varying Parameter VAR with Stochastic Volatility).
As emphasized by Sims (2001), ignoring time-varying volatility may overstate

the role of time-varying coefficients in explaining structural changes in the dynamics
of macroeconomic variables. Adding stochastic volatility to a time-varying parame-
ter VAR will alleviate this concern. The time-varying parameter VAR with stochas-
tic volatility can be described as follows:

yt = X ′
t θt + εt , εt ∼ N (0,B−1HtB

−1′) , (Measurement Equation), (6.6)

θt = θt−1 + vt , vt ∼ N (0,Σv) (6.7)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0,Qi) , (State Transition Equation). (6.8)

Here Ht is a diagonal matrix whose diagonal element is Hi,t . B−1 is a matrix used to
identify structural shocks from VAR residuals. If we allow for a correlation between
εt and vt , this model is the one studied in Cogley and Sargent (2005).1

6.2.2 Estimation of VARs

Without time-varying coefficients or volatility, the VAR can be estimated by
equation-by-equation ordinary least squares (OLS) which minimizes the sum of
residuals in each equation of the VAR. However, estimating VARs with time-varying
coefficients or volatility requires one to use filtering methods to extract information
about unobserved states from observed time series. For example, in the time-varying
parameter VAR model with time-invariant volatility, we can use the Kalman filter
to obtain the estimates of time-varying coefficients conditional on parameters deter-
mining the covariance matrix and initial values of coefficients.

Under the frequentist approach, we estimate the covariance matrix and initial
values of coefficients first and obtain estimates of time-varying coefficients condi-
tional on the estimated covariance matrix and initial values of coefficients. While
conceptually natural, implementing this procedure faces several computational is-
sues especially for a high-dimensional model. The likelihood is typically highly

1 If we allow for time variation in the B matrix, the model becomes a time-varying structural VAR
in Primiceri (2005). And we can also incorporate the time-varying volatility of vt too to capture
fluctuations in variances of innovations in trend components as in Cogley, Primiceri, and Sargent
(2010).
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nonlinear with respect to parameters to be estimated and maximizing it over a high-
dimensional space is computationally challenging.

As emphasized by Primiceri (2005), Bayesian methods can deal efficiently with
these types of models using the numerical evaluation of posterior distributions of
parameters and unobserved states. The goal of Bayesian inference is to obtain joint
posterior distributions of parameters and unobserved states. In many cases such as
VARs with time-varying parameters or volatility, these joint distributions are diffi-
cult or impossible to characterize analytically. However, distributions of parameters
and unobserved states conditional on each other are easier to characterize or sim-
ulate. Gibbs sampling, which iteratively draws parameters and unobserved states
conditional on each other, provides draws from joint distributions under certain reg-
ularity conditions.2

As an illustration of Bayesian estimation methods in this context, consider Ex-
ample 6.1. Denote zT be a vector or matrix of variable zt from t = 0 to t = T . In
this model, unobserved states are time-varying coefficients θt and parameters are
covariance matrices of VAR residuals and innovations in coefficients (Σε ,Σv). Prior
distributions for θ0 and Σε can be represented by p(θ0) and p(Σε). The Bayesian
estimation procedure for this model is described as follows:

(Bayesian Estimation Algorithm for a Homoskedastic Time-Varying Param-
eter VAR )
Step 1: Initialization
Draw Σε from the prior distribution p(Σε ).

Step 2: Draw VAR coefficients θT

The model is a linear and Gaussian state space model. Assuming that p(θ0) is Gaus-
sian, the conditional posterior distribution of p(θt |yt ,Σε ,Σv) is also Gaussian. A for-
ward recursion using the Kalman filter provides expressions for posterior means and
the covariance matrix.

p(θt |yt ,Σε ,Σv) = N(θt|t ,Pt|t ),
Pt|t−1 = Pt−1|t−1 +Σv,

Kt = Pt|t−1Xt(X
′
t Pt|t−1Xt +Σε)−1,

θt|t = θt−1|t−1 +Kt(yt −X ′
t θt−1|t−1),

Pt|t = Pt|t−1 −KtX
′
t Pt|t−1. (6.9)

Starting from θT |T and PT |T , we can run the Kalman filter backward to charac-
terize posterior distributions of p(θT |yT ,Σε ,Σv).

p(θt |θt−1,y
T ,Σε ,Σv) = N(θt|t+1,Pt|t+1),

θt|t+1 = θt|t +Pt|tP−1
t+1|t(θt+1 −θt|t),

Pt|t+1 = Pt|t −Pt|tP−1
t+1|tPt|t . (6.10)

2 See Lancaster (2004, Chap. 4) for necessary conditions.
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We can generate a random trajectory for θT using backward recursion starting
with a draw of θT from N (θT |T ,PT |T ) as suggested by Carter and Kohn (1994).

Step 3: Draw covariance matrix parameters for VAR coefficients Σv

Conditional on a realization for θT , innovations in VAR coefficients vt are observ-
able. Assuming the inverse-Wishart prior for Σv with scale parameter Σv and degree
of freedom Tv0, the posterior is also inverse-Wishart3:

p(Σv|yT ,θT ) = IW (Σ−1
v,1 ,Tv,1),

Σv,1 = Σv +
T

∑
t=1

vtv
′
t , Tv,1 = Tv,0 +T. (6.11)

Step 4: Draw covariance matrix parameters for VAR residuals Σε
Conditional on a realization for θT , VAR residuals εt are observable. Assuming the
inverse-Wishart prior for Σε with scale parameter Σε and degree of freedom Tε,0,
the posterior is also inverse-Wishart:

p(Σε |yT ,θT ) = IW (Σ−1
ε,1 ,Tε,1),

Σε,1 = Σε +
T

∑
t=1

εtε ′t , Tε,1 = Tε,0 +T. (6.12)

Step 5: Posterior inference
Go back to step 1 and generate new draws of θT , Σv, and Σε . Repeat this M0 +M1

times and discard the initial M0 draws. Use the remaining M1 draws for posterior
inference. Since each draw is generated conditional on the previous draw, posterior
draws are generally autocorrelated. To reduce the autocorrelation, we can thin out
posterior draws by selecting every 20th draw from M1 draws, for example.

Although posterior draws are obtained from conditional distributions, their em-
pirical distributions approximate the following joint posterior distribution p(θT ,Σv,
Σε |yT ). Hence, integrating out uncertainties about other components of the model
is trivial. For instance, if we are interested in the median estimate of θT , which in-
tegrates out uncertainties of Σv and Σε , we can simply use the median value of M1

draws of θT .
In the above example, conditional distributions of parameters and unobserved

states are known. However, in models with stochastic volatility such as Exam-
ples 6.2 and 6.3, the conditional posterior distribution of volatility is known up to a
constant. Without knowing the constant, we cannot directly sample from the condi-
tional posterior distribution for stochastic volatility. Instead, we can use Metropolis–
Hastings algorithm following Jacquier, Polson, and Rossi (1994) to generate poste-
rior draws for stochastic volatility.

As an illustration, consider Example 6.3. Posterior simulation for time-varying
coefficients θT and Σv are essentially the same as before. Below, I will describe
steps to generate posterior draws for Hi,t and B conditional on θT , yT , and Σv.

3 Notations here closely follow those in the appendix of Cogley and Sargent (2005).
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(Drawing Stochastic Volatility Ht and Covariance Parameters B)
Step 1 Given yT , θT , we can generate a new draw for B. Notice the following rela-
tionship between VAR residuals εt and structural shocks ut :

Bεt = ut . (6.13)

Conditional on yT and θT , εt is observable. Since B governs only covariance
structures among different shocks, n(n+1)

2 elements of the matrix are restricted. For
example, if B is the following 2× 2 matrix,

B =

(

1 0
B21 1

)

,

with B21 ∼ N (B21,V21), the relation between εt and ut implies the following trans-
formed regressions.

ε1t = u1t

(H−.5
2t ε2t) = B21(−H−.5

2t ε1t)+ (H−.5
2t u2t). (6.14)

As explained by Cogley and Sargent (2005), the above regressions imply the
normal posterior for B21.

B21|yT ,HT ,θT ∼ N (B̂21,V̂21) , V̂21 = (V−1
21 +∑(

ε2
1t

H2t
))−1 , B̂21 = V̂21(V

−1
21 B21 +∑(

ε1tε2t

H2t
)).

(6.15)

Step 2 Conditional on εt , we can write down the following state representation
for Ht :

n

∑
j=1

Bi jε jt =
√

Hitwit , wit ∼ i.i.d.N (0,1), (6.16)

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0,Qi). (6.17)

The above system is not linear and Gaussian with respect to Hit . The conditional
posterior density of Hit is difficult to characterize analytically but known up to a
constant.

p(Hit |Hi,t−1,Hi,t+1,y
T ,θT ,B,Qi) ∝ p(uit |Hit ,B)p(Hit |Hi,t−1)p(Hi,t+1|Hit),

∝ H−1.5
it exp(−0.5

u2
it

Hit
)exp(−0.5

(lnHit − μit)
2

0.5Qi
),

μit = 0.5(lnHi,t−1 + lnHi,t+1). (6.18)

We can use the Metropolis–Hastings algorithm which draws Hit from a certain
proposal density q(Hit).4 Each mth draw is accepted with probability αm,

4 One example of such a proposal density is N (μit ,0.5Qi).
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αm =
p(Hm

it |Hm
i,t−1,H

m−1
i,t+1,y

T ,θT ,B,Qi)q(Hm−1
i,t )

p(Hm−1
it |Hm

i,t−1,H
m−1
i,t+1,y

T ,θT ,B,Qi)q(Hm
i,t)

. (6.19)

As shown by Jacquier, Polson, and Rossi (1994), this sampling scheme generates
posterior draws for Hit .

6.3 Application: A Time-Varying Parameter VAR with
Stochastic Volatility for Three US Macroeconomic Variables

As an application of state space modelling, we estimate a time-varying parameter
VAR with stochastic volatility for US macroeconomic time series consisting of in-
flation, the unemployment rate, and the long-term interest rate.5 The model is close
to Cogley and Sargent (2005) but there are two main differences. First, we shut down
the correlation VAR residuals and innovations in time-varying parameter transition
equations. Second, we use the long-term interest rate rather than the short-term in-
terest rate to cover the overall monetary policy stance at the recent zero lower bound
period. The estimated model can be casted into the following state space represen-
tation like Example 6.3 in the previous section:

yt = θ0,t +θ1,tyt−1 +θ2,tyt−2 + εt , εt ∼ N (0,B−1HtB
−1′),

θt = θt−1 + vt , θt = [θ0,t
′,vec(θ1,t)

′,vec(θ2,t)
′]′ , vt ∼ N (0,Σv),

lnHi,t = lnHi,t−1 + ui,t , ui,t ∼ N (0,Qi) , (i = 1,2,3). (6.20)

yt contains the dynamics of three variables in the order of the 10-year yield, core
PCE (Personal Consumption Expenditure price index) inflation, and the civilian un-
employment rate. The sample period is from 1960:Q1 to 2011:Q4. We assume that
B is a lower triangular matrix whose diagonal elements are all equal to 1.

6.3.1 Priors

Priors are set in the same way as Cogley and Sargent (2005), using pre-sample data
information from 1953:Q2 to 1959:Q4.6

First, we estimate seemingly unrelated regressions for the pre-sample data and
use the point estimate of coefficients as the prior mean for θ0 and its asymptotic
variance P as the prior variance. Second, we use an inverse-Wishart distribution as
the prior for Σv with degree of freedom T0 = 22 and scale matrix Σv = T0 ×0.001×

5 Doh (2011) estimates the same model with shorter sample data and focuses on the time-varying
relationship between inflation and unemployment.
6 For pre-sample data, we use total PCE inflation because core PCE inflation is not available for
this period.
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P. Third, the prior distribution of the log of the initial volatility is set to the normal
distribution whose mean is equal to the variance of regression residuals using the
pre-sample data. The prior variance is set to 10. Fourth, the prior distributions of
elements in B are normal with the mean equal to 0 and the covariance matrix equal to
10,000× I3. Finally, the prior for the variance of the innovation to volatility process
is inverse gamma with the scale parameter equal to 0.012 and the degree of freedom
parameter equal to 1.

6.3.2 Posterior Simulation

We generate 100,000 posterior draws and discard the first 50,000 draws. Among the
remaining 50,000 draws, we use every 20th draw to compute posterior moments.
Following Cogley and Sargent (2005), we throw away draws implying the non-
stationarity of the VAR. Hence, if θT contains coefficients which indicate the non-
stationarity of the VAR at any point of time, we redraw θT until the stationarity is
ensured all the time.

Consider a companion VAR(1) for [y′t ,y′t−1]
′. Technically speaking, stationar-

ity is guaranteed if all the eigenvalues of At =

(

θ1,t θ2,t

I3 0

)

are inside the unit

circle. The truncation is particulary useful when we back out time-varying trend
components from estimated coefficients. When we use the companion form for
long-horizon forecasts, the stochastic trend in [y′t ,y′t−1]

′ can be approximated as
(I − At)

−1[θ ′
0,t ,0]

′. Below, we will use this approximation to obtain posterior es-
timates of time-varying trends in yt .

6.3.3 Posterior Estimates of Time-Varying Trends and Volatility

Over the last 50 years, the US economy has shown substantial changes. In particu-
lar, there is considerable evidence that trend inflation and volatility of inflation rose
during the mid-1970s and the early 1980s but then declined after the Volcker dis-
inflation.7 Also, the decline in the volatility of inflation is one primary factor for
explaining the decline in the term premium of long-term government bonds since
the late 1980s (Wright (2011)). On the other hand, economic slack seems to be
less important in predicting inflation since 1984.8 In addition, the volatility of real
activity declined since the mid-1980s.9

Most papers on these issues rely on data before the most recent recession that
started in late 2007. The severity of the recession and the unprecedented policy

7 For example, see Cogley, Primiceri, and Sargent (2010) and papers cited there.
8 See Doh (2011) and papers discussed there.
9 See Canova and Gambetti (2009) and papers cited there.
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Fig. 6.1 Time-varying trend. The solid line stands for posterior median estimates and dashed lines
for estimates of the 70% highest posterior density regions. The vertical bar indicates the fourth
quarter of 2007 when the recession started.

actions including keeping the short-term interest rate at the effective zero lower
bound and implementing large-scale asset purchases raised a question about the
robustness of the above-mentioned changes.

Our time-varying parameter VAR model with stochastic volatility can shed light
on this question. First of all, we can investigate if the recession and the subsequent
policy responses affected mainly trend components or cyclical components of the
three macroeconomic variables. Impacts on cyclical components are expected to be
temporary while those on trend components are supposed to be more persistent.
Second, we can do a similar exercise for the volatility of three macroeconomic vari-
ables. For instance, we can compute the short-run and the long-run volatility of the
three variables in the VAR and see if there might be shifts during the recent period.

Our posterior estimates of time-varying trends in Fig. 6.1 suggest that trends in
nominal variables such as inflation and the long-term interest rate were little af-
fected by the recent episode while the trend unemployment rate was affected more
substantially. This result is interesting because the level of all the variables moved
significantly during the same period as shown in Fig. 6.2. For the inflation rate,
movements in the trend component explain about 9% of the overall movements in
the level of the inflation rate.10 The relative contribution of the trend component
further declines to about 6% for the nominal 10-year bond yield. In contrast, the

10 This calculation is based on comparing the standard deviation of each variable during the rele-
vant period.
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Fig. 6.2 Data.

movement in the trend unemployment rate explains more than 15% of the overall
movement in the unemployment rate for the same period.

These differences in the relative contribution of time-varying trends across
variables suggest that it will take a longer time for the unemployment rate to re-
turn to its pre-recession level than other variables. However, it is possible that the
relatively small role of trend component volatility was driven by our assumption of
constant volatility of innovations in time-varying coefficients. To check the robust-
ness of our finding, we allowed for the time-varying volatility for innovations in θt

in an alternative specification. Even in this version of the model, we got essentially
the same relative contribution of trend components during the recent period.11

11 The drawback of this generalization of time-varying volatility is that so many volatility estimates
become explosive during the mid-1970s, casting doubts on the convergence property of the model
estimates. For the model without stochastic volatility for innovations in θt , we do not observe such
a convergence issue.
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Fig. 6.3 Time-varying volatility of residuals. The solid line stands for posterior median estimates
and dashed lines for estimates of the 70% highest posterior density regions.

We can apply the similar trend-cycle decomposition for volatility estimates, too.
Following Cogley, Primiceri, and Sargent (2010), we approximate the unconditional
variance of [y′t ,y′t−1]

′ by

∞

∑
h=0

(At)
hB−1Ht(B

−1)′((At)
h)′. (6.21)

This unconditional variance is dominated by slowly moving trend components of
volatility estimates while Ht is mainly based on the short-run movements of volatil-
ity estimates. The volatility of residuals went up for all the variables as shown in
Fig. 6.3. In addition, the unconditional volatility of the unemployment rate moved
up more noticeably during the recent period to the historical peak level as shown in
Fig. 6.4. This finding suggests that the increase in volatility since the recession may
not be driven by a common factor affecting the entire economy. This interpretation
is in line with the observation in Clark (2009) that the recent increase in volatility is
concentrated on certain sectors of the economy (goods production and investment
but not services components, total inflation but not core).

Overall, our posterior analysis indicates that the trend and volatility of the unem-
ployment rate have experienced substantial changes during the recent episode while
core inflation and the nominal long-term interest rate have been relatively immune
from these changes. Analyzing causes of different responses across variables may
require a more structural model of the economy built on decisions of agents. Our
analysis can be a starting point for such a project.
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Fig. 6.4 Time-varying unconditional volatility. The solid line stands for posterior median estimates
and dashed lines for estimates of the 70% highest posterior density regions.

6.4 Conclusion

VARs are widely used in macroeconomics and finance to describe the histori-
cal dynamics of multiple time series. When the VAR is extended to incorporate
time-varying coefficients or volatility to capture structural shifts in the economy
over time, the state space representation is necessary for estimation. Applying the
Kalman filter in the state space representation of a time-varying parameter VAR
provides estimates of unobserved time-varying coefficients that we are interested in.
Also, we can obtain estimates of time-varying volatility by applying the simulation-
based filtering method to the state space representation of the volatility process.

We illustrate the value of applying the state space representation to the time-
varying parameter VAR with stochastic volatility by estimating such a model with
three US macro variables. Our empirical analysis suggests that the recession of
2007–2009 was driven by a particulary bad shock to the unemployment rate which
increased the trend and volatility of the unemployment rate substantially. In contrast,
nominal variables such as the core PCE inflation rate and the 10-year Treasury bond
yield have exhibited relatively less noticeable movements in terms of their trend and
volatility. Further identifying underlying causes of unemployment dynamics may re-
quire us to go beyond the small scale time-varying parameter VAR model that we
are considering in this chapter.



6 The State Space Representation. . . 145

Acknowledgments The views expressed here are the opinions of the authors only and do not
necessarily represent those of the Federal Reserve Bank of Kansas City or the Federal Reserve
System.

References

1. Canova, F. and L. Gambetti (2009): “Structural changes in the US economy: Is there a role for
monetary policy?,”Journal of Economic Dynamics and Control, 33, 477-490.

2. Carter, C. and R. Kohn (1994): “On Gibbs sampling for state space models,”Biometrika, 81,
541-553.

3. Clark, T. (2009): “Is the Great moderation over? An empirical analysis,”Economic Review,
2009:Q4, 5-42, Federal Reserve Bank of Kansas City.

4. Clark, T. (2011): “Real-time density forecasts from Bayesian vector autoregressions with
stochastic volatility, ”Journal of Business and Economic Statistics, 29(3), 327-341.

5. Cogley, T. and T. Sargent (2001): “Evolving post-world war II U.S. inflation dynamics,”NBER
Macroeconomics Annual, 16, Edited by B.S. Bernanke and K. Rogoff, Cambridge,MA:MIT
Press, 331-373.

6. Cogley, T. and T. Sargent (2005): “Drifts and volatilities: Monetary policies and outcomes in
the post WWII U.S.,”Review of Economic Dynamics, 8(2), 262-302.

7. Cogley, T., G. Primiceri, and T. Sargent (2010): “Inflation-gap persistence in the
US,”American Economic Journal: Macroeconomics, 2(1), 43-69.

8. Doh, T. (2011): “Is unemployment helpful for understanding inflation?,”Economic Review,
2011:Q4, 5-26, Federal Reserve Bank of Kansas City.

9. Jacquier, E., N. Polson, and P. Rossi (1994): “Bayesian analysis of stochastic volatil-
ity,”Journal of Business and Economic Statistics, 12, 371-417.

10. Koop, G. and D. Korobilis (2010): “Bayesian multivariate time series methods for empirical
macroeconomics,”Manuscript, University of Strathclyde.

11. Lancaster, T. (2004): “An introduction to modern Bayesian econometrics,” Malden, MA:
Blackwell Publishing.

12. Primiceri, G. (2005): “Time-varying structural vector autoregressions and monetary policy,”
Review of Economic Studies, 72, 821-852.

13. Sims, C. (2001): “Comment on Cogley and Sargent (2001),”NBER Macroeconomics Annual,
16, Edited by B.S. Bernanke and K. Rogoff, Cambridge,MA:MIT Press, 373-379.

14. Sims, C. and T. Zha (2006): “Were there regime switches in macroeconomic policy?,” Ameri-
can Economic Review, 96(1), 54-81.

15. Wright, J. (2011): “Term Premiums and Inflation Uncertainty: Empirical Evidence from an
International Panel Dataset, ”American Economic Review, 101, 1514-1534.



Chapter 7
A Statistical Investigation of Stock Return
Decomposition Based on the State-Space
Framework

Jun Ma and Mark E. Wohar

7.1 Introduction

John Cochrane (2011) writes an incredibly insightful 2011 Presidential Address for
the American Finance Association. The first part of the address surveys the em-
pirical findings, theories, and applications related to fluctuations in discount rates
(expected returns) that are reported in the extant literature with respect to time se-
ries analysis.1 Finance theory tells us that the price of an asset is equal to the dis-
counted expected future cash flows that the asset generates. It follows that there are
two primary factors that can influence prices: expectations regarding discount rates
(expected returns) and expectations regarding future cash flows.

We can think of two branches of literature. We begin with the first branch of
literature that suggests that aggregate expected cash flows do not generate significant
aggregate stock price variability. Most of the work in this area has concluded that
expectations of future excess returns rather than future real dividend growth or real
interest rates are responsible for most of the fluctuations in stock prices. Campbell
(1991), for aggregate US stock returns, employs the Campbell and Shiller (1988a)
log-linearization of the dividend-price ratio in order to decompose the variance of
equity returns into three components: (1) expected future excess returns (i.e., risk
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premium), (2) future real risk free interest rate (the other component of discount
rates) and (3) future dividend cash flows. Campbell (1991) finds that cash flow news
explains only 15% in the variation of market returns over the period 1952–1988,
while Campbell and Vuolteenaho (2004) find that cash flow news explains only
20% of the variation in returns.2

Campbell and Shiller (1988a, 1988b, 1998), Campbell (1991), Shiller and Bel-
tratti (1992), Cochrane (1992), and Campbell and Ammer (1993) decompose the
variance of stock returns and bond returns into contributions of real dividend growth
and other factors. In particular, Cochrane (1992) and Campbell and Ammer (1993)
break stock return movements into contributions of real dividend growth, real inter-
est rate, and excess stock returns. They find that US return innovations are primarily
driven by news about future returns (for stocks) and inflation news (for bonds). They
find that most of the variability in stock returns is due to innovations in excess re-
turns and not real dividend or real interest rates.

Cochrane (2001, p. 398) notes that

It is nonetheless an uncomfortable fact that almost all variation in price/dividend ratios is
due to variation in expected excess returns. How nice it would be if high prices reflected
expectations of higher future cash flows.

Cochrane (2008a, p. 1573) is still consistent with his view after 7 years as he
points out the implications of the finding that excess returns explain the majority of
the movements in the price-dividend ratio.

If all market price-dividend ratio variations come from varying expected returns and none
from varying expected growth in dividends or earnings, much of the rest of finance still
needs to be rewritten.

The second branch of the literature studies the volatility of stock return (specif-
ically firm level returns) as opposed to the price-dividend ratio (see, for example,
Vuolteenaho, 2002). These studies find that cash flows do generate enough variabil-
ity in stock returns to be consistent with the variability of cash flows. For example,
Vuolteenaho (2002) extends the Campbell (1991) analysis of aggregate stock re-
turns to a similar decomposition of firm level stock returns and finds that they are
driven primarily by cash flow news.3 Campbell and Ammer (1993) and Ammer and
Mei (1996) extend the above discussed approach to multiple assets, so that the co-
variance between national stock returns can be characterized in terms of elements
similar to time-varying discount rates and the value of future cash flows. Campbell

2 Consistent with the previously mentioned finding, the extant literature finds that the price-
dividend ratio predicts aggregate stock returns but not dividends. There is a vast literature in-
vestigating stock return predictability which we do not survey here.
3 The literature has attempted to reconcile the conflicting results between aggregate returns and
firm level returns in the following way. A number of authors have applied the analysis to the cross-
section of firm stock returns (e.g., Vuolteenaho, 2002; Cohen, Polk, and Vuolteennaho 2003; Callen
and Segal 2004). Expected return news is likely to be highly correlated across firms, while cash
flow news is very much firm specific and can almost be completely diversified away in aggregate
portfolios. The literature has inferred that firm level news about profitability, unlike returns, must
be primarily idiosyncratic in nature and thus almost completely diversifiable. Cochrane (2001,
p. 399) concludes,
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and Hamao (1992) argue that if asset returns in different countries are generated
by an international multivariate linear factor model, the conditional means of the
excess returns must move together, as linear combinations of some common risk
premiums.

Using an alternative approach to the variance decomposition approach discussed
above, Binsbergen and Koijen (2010) employ a state-space framework using US
annual data within a present value model to estimate the expected return and ex-
pected dividend growth rates of the aggregate US stock market. Their approach
aggregates information contained in the price-dividend ratio and dividend growth
rates to predict expected returns and dividend growth rates. They treat condi-
tional expected returns and expected dividend growth as latent variables that follow
an exogenously specified time series process. They combine this model with the
Campbell and Shiller (1988a, 1988b) present value model to derive the implied dy-
namics of the price-dividend ratio. They find that both expected dividend growth
rates and expected returns are time varying and persistent but that expected returns
are more persistent than expected dividend growth rates. They also find that the fil-
tered returns for expected returns and expected dividend growth are good predictors
of realized returns and realized dividend growth rates, with R2 ranging from 8.2%
to 8.9% for returns and 13.9% to 31.6% for dividend growth rates. Finally, they es-
timate a process for dividend growth and back out expected returns. They find that
expected returns contribute more to fluctuations in the price-dividend ratio than do
dividend growth rates.

Balke and Wohar (2002) also estimate unobserved expectations of market funda-
mentals employing a more general state-space model than Binsbergen and Koijen
(2010). An attractive feature of their state-space framework is that it allows for a
parsimonious specification of low frequency movements in market fundamentals.
A vector auto-regression (VAR) in levels may have difficulty capturing low fre-
quency movements in small samples. Balke and Wohar (2002) model the dynamics
of the log price-dividend ratio along with short-term and long-term interest rates,
real dividend growth and inflation. One advantage of the state-space approach that
they employ is that they can parsimoniously model the low frequency movements
present in the data. They find that if one allows persistent changes, albeit small,
in real dividend growth, interest rates and inflation (but not excess returns), then
expectations of real dividend growth and real interest rates become significant con-
tributors to stock price fluctuations. They also show that stock price decompositions

Much of the expected cash-flow variation is idiosyncratic while the expected return variation
is common, which is why variation in the index book/market ratio, like variation in the index
dividend/price ratio is almost all due to varying expected returns.

The results suggest that fluctuation in expected profitability can explain a large portion of the vari-
ation in firm-level returns, book-to-market ratios, and earnings-to-price ratios. The studies attribute
the difference between the firm level and aggregate results to the relative strength of the idiosyn-
cratic components of cash flow variation versus the systematic components of expected returns.
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are very sensitive to assumptions about which market fundamental has a permanent
component.4

Surprisingly, studies that investigate the variance decomposition of stock return
in an effort to find the contribution that particular factors have on stock prices have
focuses on point estimates and have ignored issues of inference.5 The current chap-
ter employs Cochrane’s (2011) annual data covering the period 1947–2009 to illus-
trate the point that focusing on point estimates without regard to conducting analysis
of inference can lead to inaccurate conclusions that have weak statistical founda-
tion.6 When issues of inference are considered we find that there is little evidence
to support the notion that either expected returns or expected dividend growth con-
tributes to movements in the price-dividend ratio. In an effort to explore this finding
in detail, we employ a state-space modeling framework. We find that within this
framework, it is the existence of weak identification combined with a low signal-to-
noise ratio that leads to the conclusion that there is too much uncertainty to make
any claims about the relative contribution of expected returns and expected divi-
dend growth to movements in the price-dividend ratio. We propose a procedure that
could potentially correct for the inference problem and offer more reliable results.
The corrected inference indicates that the large contribution of the expected returns
to fluctuations in the price-dividend ratio found in previous studies has no statistical
significance. We also evaluate the statistical significance in the variance decompo-
sition as well as in the state-space modeling framework.

The remainder of the chapter is organized as follows. Section 7.2 describes the
stock return variance decomposition based on VAR framework and proposes a boot-
strap procedure to document the uncertainty of such decomposition in this approach.
Section 7.3 presents the state-space decomposition of stock returns. Section 7.4 dis-
cusses the existence of spurious inference in the presence of weak identification.
Section 7.5 concludes the chapter.

4 When they allow excess stock returns to have a permanent component (but not real dividend
growth) then it is excess stock returns that become the important contributor to fluctuations to stock
price movements, while real dividend growth is not. They conclude that the data is not informative
about which one of the above models is the appropriate model. The important finding of Balke and
Wohar (2002) that the factor with the largest degree of persistence is the factor that contributes
most to movements in the price-dividend ratio is also consistent with the findings of this chapter
as well as those of Binsbergen and Koijen (2010) who found that the persistent expected excess
return factor explains most of the movements in stock prices.
5 Although some papers such as Campbell (1991) and Larrain and Yogo (2008) have conducted
inference exercises for such decompositions, the rest of the large literature have largely ignored
issues of inference.
6 We thank John Cochrane for generously providing all the data used in this chapter which he also
used in Cochrane’s (2011).
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7.2 VAR Variance Decomposition of the Stock Prices

Consider the log-linearization of the stock return due to Campbell and Shiller
(1988a):

rt+1 = κ+Δdt+1 +ρ ·pdt+1 − pdt , (7.1)

where r is the log return, Δd is the log dividend growth, pd is the log price-dividend
ratio, ρ = 1/(1+ e− p̄d), and p̄d is the steady-state price/dividend ratio, κ is a con-
stant.

Iterating the above equation forward and taking expectations, we obtain:

pdt =
κ

1−ρ
+Et

∞

∑
j=0

ρ j(Δdt+1+ j − rt+1+ j). (7.2)

Equation (7.2) says that the price-dividend is the sum of discounted future ex-
pected dividend growth. Therefore, if the price-dividend varies, its variation must
come from either the expected future dividend growth (cash flow or CF) or the ex-
pected future returns (discount rate or DR). CF is more related to firm fundamentals
because of its link to production, while DR news can reflect time-varying risk aver-
sion or investor sentiment. Since we do not directly observe these expectations, we
have to make certain assumptions about the information set (such as past price-
dividend ratios, dividends growth, and stock returns) and explore possible dynamics
patterns in these variables to estimate the agent’s expectations.

Following seminal articles by Campbell (1991) and Campbell and Ammer (1993)
it has become common to employ VAR-based return decomposition to determine
the contribution that cash flow (CF) news and discount rate (DR) news have on
fluctuations in stock prices. Although some papers such as Campbell (1991) and
Larrain and Yogo (2008) have conducted inference for such variance decomposition,
we attempt to provide more extensive inference exercises in order to evaluate the
statistical significance of the stock prices decompositions.

Next we aim to employ a nonparametric bootstrap procedure to explicitly take
into account the parameter uncertainty of such variance decompositions in order to
illustrate some of the statistical issues in this type of exercise. We show that the em-
pirical distributions of the bootstrapped contributions of returns and dividends both
have heavy tails. Following this literature we directly model the log return along
with the log price-dividend ratio in a bivariate VAR. The contribution of the ex-
pected future returns can be computed directly using the model parameter estimates
while the contribution of the expected future dividend growth is backed out using
(7.2).

Using Cochrane’s (2011) annual data from 1947 to 2009 we estimate the VAR
with four lags and implement the variance decomposition. The variance decompo-
sition result is presented in Table 7.1. Similar to what have been documented in
this literature, the variance decomposition seems to attribute most of the stock price
variation to the expected returns but little to the dividends. In order to investigate
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Fig. 7.1 Empirical distribution of returns contribution under the null.Note: The graph is based on
5,000 replications; the scale of y-axis is made the same as that in Fig. 7.2 to facilitate comparison;
the last bar on the right counts the percentage of the contributions greater than 200%; because of
negative covariance the contributions are often greater than 100%.

the statistical significance of the decomposition results, we resort to a nonparamet-
ric bootstrap procedure. Since the variance contribution estimate is highly nonlinear
in the parameter estimates, the distribution of the variance contribution must not be
normal. Therefore we prefer an inference based on the bootstrapping procedure.

In our bootstrapping exercise, we use the parameter estimates and the estimated
residuals to generate data from the VAR model. In this way, we explicitly take into
account the actual fat-tailed residuals that are commonly observed in the equity
market. To generate the distribution under the null we set all coefficients in the re-
turns equation to zero. In doing this we assume no return forecastability as the null
hypothesis and also the benchmark case. Specifically, we follow the procedure of
nonparametric bootstrapping with replacement in Davidson and MacKinnon (2004).
For each set of bootstrapped data, we estimate the VAR model, compute and record
the variance decomposition results. The number of draws is 5,000. We plot the em-
pirical distributions of the contributions of expected returns and expected dividend
growth to price-dividend variations under the null hypothesis in Figs. 7.1 and 7.2,
respectively. The empirical distributions of the contributions allow us to evaluate the
statistical significance of the point estimates of the variance decomposition. Notice
that in Fig. 7.1 even the data are generated from the null of no return predictability,
the return contributions are often estimated close to or even great than 1. This has
to do with the fact that the variance contribution estimate is highly nonlinear in the
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Fig. 7.2 Empirical distribution of dividends contribution under the null. Note: The graph is based
on 5,000 replications; the scale of y-axis is made the same as that of Fig. 7.1 to facilitate com-
parison; the last bar on the right counts the percentage of those contributions greater than 200%;
because of negative covariance the contributions are often greater than 100%.

Table 7.1 VAR variance decomposition (four lags)

Variance decomposition of price-dividend ratio (%)
Variance due to expected return 64.32%

Variance due to expected dividend growth 7.81%
Covariance part 27.87%

Note: Annual data from 1947 to 2009 is used; the covariance part is constructed as 100% minus
the first two contributions.

parameter estimates and that makes it very sensitive to even small changes in the
parameter estimates.

Both distributions turn out to have heavy tails at the right end. In particular, the
95th percentile for returns contribution is 110.75%, which is far larger than the point
estimate 64.32% in Table 7.1. Therefore, the seemingly large role of the expected
returns is in fact insignificant at 5% level. Similarly, the dividend contribution is
also insignificant. The data does not seem informative enough to tell us whether it
is expected returns or expected dividends that contribute most to the price-dividend
variation.

We conduct a second bootstrap exercise for a robustness check. In the estimated
VAR, the price-dividend ratio appears very persistent as the sum of its four AR
coefficients is 0.9695, very close to 1. Therefore, to study the effect of the very
persistent price-dividend ratio on the empirical distributions of the variance decom-
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position, we bootstrap 5,000 sets of data by further imposing the sum of the four
AR coefficients for price-dividend to be unity. The resulting empirical distributions
of the variance decomposition turn out to be quite similar to those obtained in the
first exercise but more heavily tailed on the right. For example, the 95th percentile
for returns contribution is 133.20%, even greater than that from the first bootstrap
exercise.

7.3 The State-Space Model for Decomposing Stock Prices

The above section employs VAR to illustrate that the stock price decomposition in-
volves a great deal of uncertainty. To better understand where this uncertainty comes
from we build a state-space framework for decomposing the stock prices. Further-
more, the state-space model can naturally model the unobservable expectations in
the stock price decomposition as latent factors and extract them through filtering
procedures. Balke and Wohar (2002) and Binsbergen and Koijen (2010) have pro-
vided such examples. Furthermore, this latent factor approach within the state-space
framework can capture the long-run serial correlations that a VAR with finite num-
ber of lags have difficulty in doing, since the state-space model usually leads to a
reduced-form of Vector Auto-Regressive Moving Average (VARMA) model.

Let us denote the conditional expectation of dividends growth by ḡt =Et [Δdt+1−
ag], the conditional expectation of returns by μ̄t = Et [rt+1]− aμ , and model them
both as stationary AR(p) processes:

φg(L) · ḡt = εg
t , (7.3)

φμ(L) · μ̄t = εμt , (7.4)

where φi(L) = 1−∑p
j=1φi, jL j, i = g,μ and φi,0 = 1. And ε i

t , i = g,μ are shocks
to the expectation processes. Each shock is i. i. d, respectively, with variances
Var(εg

t ) = σ2
g ,Var(εμt ) = σ2

μ . The shocks may be contemporaneously correlated.
At each period, the realized dividends growth and returns are then their expected
values plus any realized (news) shocks:

Δdt+1 = ag + ḡt + εd
t+1, (7.5)

rt+1 = aμ + μ̄t + εr
t+1, (7.6)

where ag,aμ are average dividend growth and return, respectively. εd
t+1 and εr

t+1 are
the realized (news) shocks to the realized dividends growth and returns. Again each
shock is i. i. d, respectively, with variances Var(εd

t ) = σ2
d ,Var(εr

t ) =σ2
r . The shocks

may be contemporaneously correlated.
Such state-space model can be most efficiently estimated using the Kalman filter

as long as the model is linear and the shocks are normally distributed. Once the
hyper-parameters are estimated the latent factors (the expectations) can be estimated
as the filtered estimate from the realized values.
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To facilitate the computation, write out the companion form of (7.3):

Xg
t = Fg ·Xg

t−1 +V g
t , (7.7)

where Xg
t = (ḡt , · · · , ḡt−p+1)

′,V g
t = (εg

t , · · · ,0)′, and Fg is the proper companion ma-
trix. It is then straightforward to derive the contribution of dividends growth (drop-
ping constants):

Et

∞

∑
j=0

ρ j(Δdt+1+ j) = e′1 · (I−ρ ·Fg)
−1 ·Xg

t , (7.8)

where e1 is the selection vector that has 1 on its first element and zero elsewhere.
Likewise, write out the companion form of (7.4):

Xμ
t = Fμ ·Xμ

t−1 +V μ
t , (7.9)

where Xμ
t = (μ̄t , · · · , μ̄t−p+1)

′,V μ
t = (εμt , · · · ,0)′, and Fμ is the corresponding com-

panion matrix. We then derive the contribution of returns (dropping constants):

Et

∞

∑
j=0

ρ j(rt+1+ j) = e′1 · (I−ρ ·Fμ)−1 ·Xμ
t . (7.10)

Combining (7.7) and (7.9), the stock price decomposition (7.2) becomes:

pdt = e′1 · (I−ρ ·Fg)
−1 ·Xg

t − e′1 · (I−ρ ·Fμ)−1 ·Xμ
t . (7.11)

Equation (7.11) integrates the information of the expectations dynamics into the
Campbell–Shiller decomposition formulae and shows that the price-dividend varia-
tion comes from two major sources Var[e′1 · (I −ρ ·Fg)

−1 ·Xg
t ] and Var[e′1 · (I −ρ ·

Fμ)−1 ·Xμ
t ], if ignoring the correlation term for illustrative purpose.

Before estimating the hyper-parameters in the above state-space model and ex-
tracting the expectations we notice that the Campbell and Shiller identity (7.1) im-
plicitly imposes a restriction on the four shocks εg

t+1,ε
μ
t+1,ε

d
t+1,ε

r
t+1. This restric-

tion is:

εr
t+1 = εd

t+1 + e′1 · (I−ρ ·Fg)
−1 ·ρV g

t+1 − e′1 · (I−ρ ·Fμ)−1 ·ρV μ
t+1. (7.12)

See Ma and Wohar (2012) for a detailed derivation and also Cochrane (2008b) for a
discussion.

Therefore, it is sufficient to estimate the variance matrix of any arbitrary set of
three shocks and then the restriction (7.12) may be invoked to derive the variance
matrix of all four shocks. Likewise, due to the identity (7.1) one only needs to choose
two out of three observed variablesΔdt+1,pdt+1,rt+1 to set up the state-space model
for estimation, and then the last variable may be backed out from the identity.7

7 Ma and Wohar (2012) extensively study the robustness of the decomposition results by employing
different variables and model specifications.
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In Binsbergen and Koijen’s (2010) estimation, they select [Δdt+1,pdt+1]
′ and

set lag p = 1 for both expectation dynamics. The state-space representation of the
model is presented below:

Measurement equation:

[

Δdt+1

pdt+1

]

=

[

ag

H

]

+

[

0 1 0 1
G2 0 −G1 0

]

⎡

⎢

⎢

⎣

ḡt+1

ḡt

μ̄t+1

εd
t+1

⎤

⎥

⎥

⎦

. (7.13)

Transition equation:

⎡

⎢

⎢

⎣

ḡt+1

ḡt

μ̄t+1

εd
t+1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

φg 0 0 0
1 0 0 0
0 0 φμ 0
0 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

ḡt

ḡt−1

μ̄t

εd
t

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

εg
t+1
0
εμt+1
εd

t+1

⎤

⎥

⎥

⎦

, (7.14)

where H = κ
1−ρ +

ag−aμ
1−ρ ,G1 =

1
1−ρφμ ,G2 =

1
1−ρφg

, and Var(

[

εd
t+1
εμt+1
εg

t+1

]

) =

[

σ2
d × ×

σdμ σ2
μ ×

σdg σμg σ2
g

]

.

It has been pointed out in the literature that not all correlations are necessar-
ily identifiable in this type of state-space models. Morley, Nelson and Zivot (2003)
work on identification conditions for a particular type of univariate models for de-
composing the output into trend and cycle and find that rich dynamics (long lags p)
can help identify the correlations. Cochrane (2008b) and Rytchkov (2008) study the
identification issues in this state-space model of decomposing the stock price and
find that exactly one correlation is not identifiable for the case p = 1. As a result we
need to impose one restrict in order to estimate the model. To facilitate comparisons
we follow Binsbergen and Koijen (2010) and restrict σdg = 0.

We use the annual log dividends growth, log price-dividend ratio, and the log
returns from 1947 to 2009 in Cochrane’s (2011) chapter to estimate the above state-
space model. The log-likelihood function of the model is written out via Kalman
filter (see Kim and Nelson (1999)) and is maximized over the admissible parameter
space using various starting values. The estimation results are laid out in Table 7.2.
Our estimation results turn out to be similar to what Binsbergen and Koijen (2010)
obtained. In particular, the persistent estimate for the expected returns is very high.
Besides its standard error is very small, leading to an extremely tight 95% con-
fidence interval for it: [0.8360, 1.0079]. At the same time, the expected dividend
growth is far less persistent and its point estimate is even negative.

It is important to realize that the size of the persistence estimate in this decompo-
sition framework has profound implication to the decomposition result. To illustrate
this, write out (7.11) for the case p = 1 (dropping constants):

pdt =
gt

1−ρφg
− μt

1−ρφμ
. (7.15)



7 Stock Return Decomposition 157

Table 7.2 State-space estimation results

Parameters Estimates Standard errors
ag 0.0542 0.0127
φg −0.4049 0.1660
aμ 0.0806 0.0162
φμ 0.9219 0.0438
σd 0.0783 0.0152
σμ 0.0156 0.0071
σg 0.0868 0.0136
ρdμ −0.4285 0.0962
ρμg 0.9035 0.0456

Log-likelihood value 88.2314
Implied parameters estimates

σr 0.1540 0.0129
ρdr 0.9001 0.0451
ρμr −0.7786 0.0468
ρgr −0.4346 0.0934

Model constants
κ 0.1401 –
ρ 0.9685 –

ZILC indication
σμ/σr 0.1012 –
σg/σd 1.1092 –

Note: Data is annual from 1947 to 2009. The model is estimated by imposing the restriction
ρdg = 0.

If we take the variance of both sides and ignore the correlation, we obtain (ignoring
the correlation):

Var(pdt) =
1

(1−ρφg)2 ·Var(gt)+
1

(1−ρφμ)2 ·Var(μt). (7.16)

Therefore, price-dividend variation consists of two contributions: 1
(1−ρφg)2 ·Var(gt)

and 1
(1−ρφμ )2 ·Var(μt). Each contribution percentage depends on both the variance of

two factors Var(gt) and Var(μt), and the loading parameters 1
(1−ρφg)2 and 1

(1−ρφμ )2 .

But both the variance of latent factors and the loadings are increasing and convex
functions in the persistence parameters φg and φμ . Consequently, since the expected
returns are estimated to be much more persistent than the expected dividend growth
the estimation would tend to attribute most of the price-dividend variation to the
expected return. Table 7.3 presents the variance decomposition of the price-dividend
variation in this case. The variation of expected return indeed dominates that of the
expected dividend growth in contributing to the price-dividend variation.

Figure 7.3 compares the expected dividend growth with the realized one. There
is essentially very little difference between these two, which indicates that a large
part of the realized dividend growth is well expected and there is little surprise. This
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Table 7.3 State-space variance decomposition

Variance decomposition of price-dividend ratio (%)
Contribution of expected return μt 76.24%

Contribution of expected dividend growth gt 2.51%
Covariance contribution 21.25%

Note: Data is annual from 1947 to 2009; the covariance contribution is constructed as 100% minus
the first two contributions.

Fig. 7.3 Realized dividend growth and expected dividend growth. Note: Data is annual from 1947
to 2009.

result is primarily driven by the estimated signal-to-noise ratio σg/σd = 1.1092
reported at the bottom of Table 7.2.8

Figure 7.4 compares the expected return with the realized one and it portrays a
very different picture from dividend growth. The expected return is very persistent
and appears much smoother than the realized one. Most realized returns variation
does not seem to be explained by the expected one. This finding is driven primar-
ily by the small signal-to-noise ratio σμ/σr = 0.1012 as reported at the bottom of
Table 7.2.

To further illustrate this point we regress the realized returns on the filtered ex-
pected return in the following regression:

8 Please refer to (7.3) and (7.5) for the definition of the expectation shock and news shock.
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Fig. 7.4 Realized return and expected return. Note: Data is annual from 1947 to 2009.

rt+1 = a1 + b1 · μ̂t + vt+1. (7.17)

The expected return is extracted using all the past information of dividends growth
and price-dividend in the state-space framework. Therefore this regression is able
to tell us how much variation of returns are predictable using both past returns and
price-dividend ratios. In this regression the adjusted R2 is only about 10%, which
is about the same size as one would get by regressing the realized returns on the
one-period lagged price-dividend ratio:

rt+1 = a2 + b2 ·pdt +ηt+1. (7.18)

The adjusted R2 for this regression is about 8.9%. Such poor predictability in the
returns equation is, however, entirely consistent with what we highlight in Sect. 7.2
with respect to the VAR decomposition. To summarize, independent of the models
chosen for variance decomposition, the evidence of return predictability appears
small, and this turns out to have a profound impact on the statistical significance of
the variance decomposition.

The state-space approach essentially filters out the expected return (signal) from
the realized one (signal plus noise). The signal-to-noise ratio turns out to be very
small for the expected return (σμ/σr = 0.1012), which indicates the signal is far too
small compared with the noise. Intuitively, when this happens we can only know
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very little about the dynamics of the latent factors and there should be a great deal
of uncertainty of the parameter estimates, in particular, the persistence parameter
φμ . However, its standard error appears very small and indicates a counter-intuitive
conclusion that the estimate is very accurate. We show next that the small signal-
to-noise ratio implies a weak identified model and leads to spurious inference that
needs to be corrected.

7.4 The Weak Identification and the Corrected Inference

Ma and Nelson (2010) find that state-space models in general are subject to the Zero-
Information-Limit-Condition (ZILC) of Nelson and Startz (2007) (NS hereafter)
when the signal is small relative to noise. Specifically, when the signal-to-noise ratio
is small, the state-space model becomes weakly identified and the standard error of
the persistence parameter would appear much smaller than it actually is, resulting in
too many rejections of the null when using the standard t-test. To prove that ZILC
holds, we relate the state-space model to its ARMA representation. Consider the
return process:

rt+1 = aμ + μ̄t + εr
t+1, (7.19)

μ̄t = φμ · μ̄t−1 + εμt . (7.20)

Plugging (7.20) into (7.19), we can obtain:

r̄t+1 = φμ · r̄t + εr
t+1 −φμ · εr

t + εμt , (7.21)

where r̄ is the demeaned return. By Granger and Newbold’s Theorem (1986), (7.21)
implies an ARMA(1,1) representation for the realized returns:

(1−φμL) · r̄t+1 = (1−θL) ·ut+1. (7.22)

The mappings between the parameters of (7.21) and (7.22) can be solved explic-
itly by matching the second moments of the RHS of the two equations (assuming
orthogonal shocks for illustration purpose):

γ0 = (1+φ2
γ )σ2

μ = (1+θ 2)σ2
u , (7.23)

γ1 = φμσ2
γ = θσ2

u , (7.24)

where γ0,γ1 are the variance and first-order covariance of the RHS of (7.21) and
(7.22). Solve the above two equations for the moving average parameter θ of
ARMA(1,1) by assuming invertibility:

θ =

⎧

⎨

⎩

[1+φ2
μ+S2]−

√

((1−φ2
μ )2+S4+2(1+φ2

μ )S2)

2φμ for φμ �= 0

0 for φμ = 0
, (7.25)
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Fig. 7.5 Near root cancellation of the implied ARMA. Note: The horizontal axis gives a sequence
of values of φμ between 0 and 1; the vertical axis gives the resulting value of φμ −θ from (7.26).

where S = σμ/σr is the signal-to-noise ratio. It is straightforward to prove that as
this ratio approaches zero,φμ converges to θ , the well-known root cancellation issue
of the ARMA:

lim
S→0

(φμ −θ ) = 0. (7.26)

Figure 7.5 illustrates numerically the near root cancellation for various possible val-
ues of φμ , assuming S is equal to the estimated value 0.1012. Note that especially
for small values of φμ , that is, low persistence, the difference is extremely small,
indicating that the model is more weakly identified when the persistence is low.

NS shows that the ARMA of near root cancellation belongs to the class of mod-
els in which ZILC holds. Specifically, when (φμ − θ ) is small (relative to sample
variation), the information of either φ̂μ or θ̂ will be severely underestimated based
on conventional inference method, leading to a large size distortion of the standard
t-test. Furthermore, under this circumstance, the persistence parameter such as φμ
tends to have an upward bias, that is, the well-known pile-up issue in the ARMA.
In the context of state-space model, a small signal-to-noise ratio would imply a
weakly identified model that tends to give upward biased persistent estimates along
with severely underestimated standard errors. As a result, the standard test would
tend to reject the null of low or zero persistence too often.

To deal with this issue, Ma and Nelson (2010) propose a reduced-form test based
on a linear approximation to the exact test of Fieller (1954) for a ratio of regression
coefficients. The test is also an LM test in the spirit of Breusch and Pagan (1980)
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since the test is conducted based on the null. They show that this test has a nearly
correct size in finite samples when the standard t-test is severely oversized in the
presence of weak identification.

To compute the reduced-form test for φμ , write out the reduced-form VARMA
for the dividends growth and price-dividend ratio as implied by (7.13) and (7.14):

[

(1−φgL) 0
0 (1−φgL)(1−φμL)

][

Δdt+1

pdt+1

]

=

[

(1−θ1L) 0
0 (1−θ2L)

][

u1t+1

u2t+1

]

,

(7.27)

where the shocks [u1t+1,u2t+1]
′ may be correlated.9

To construct the reduced-form test for φμ , we first impose the null φμ = φμ,0 and
estimate the restricted VARMA. In the second step, we focus on the second equation
of (7.27) since φμ only shows up there and compute the t-statistic for the null λ = 0
from the following classical linear regression:

(1− φ̃g,1L)pdt+1 = τ ·
∞

∑
i=1

φ i−1
μ,10ũ2t+1−i+λ ·

∞

∑
i=2

(i−1) ·φ i−2
μ,10ũ2t+1−i + ũ2t+1 (7.28)

where (7.28) is the first-order Taylor approximation of the second equation of (7.27)
around the null φμ = φμ,0,τ = φμ −θ2, and λ = τ(φμ −φμ,0); φ̃g and ũ2t+1 are the
restricted estimates from the first step. The reduced-form test for φμ = φμ,0 is the
t-statistic for the null λ = 0, since intuitively the second term on the RHS of (7.28)
should not be significant if the null is true and the first term is enough to capture all
serial correlations.

In order to present the whole confidence interval, we calculate the reduced-form
test statistics corresponding to each possible null of φμ , and the 95% confidence
interval consists of these null values that produce test statistics not exceeding the
5% critical value. Figure 7.6 plots the reduced-form t-statistic for the data used in
this chapter. The test result indicates that the confidence interval for the expected
return persistence covers essentially all admissible parameter regions, which surely
is much wider than that of the standard inference.

Interestingly, the reduced-form test cannot even reject the zero persistence, that
is, H0 : φμ = 0. Recall that the contribution of the expected returns to price-dividend
variation hinges upon the persistence parameter of the expected returns process (see
(7.16)). If the null hypothesis H0 : φμ = 0 cannot be rejected, then we also can-
not reject the null hypothesis of zero contribution of the expected returns to price-
dividend variation. This finding is, however, remarkably consistent with the primary
conclusion based on bootstrap procedures in Sect. 7.2, and thus raises a doubt about
the statistical significance of the contribution of the expected returns to the stock
price variation.

Finally, the issue of weak identification comes down to the degree of persis-
tence in the particular factor (i.e., expected dividend growth or expected returns).
The persistent component is what contains the predominant amount of information

9 The off-diagonal elements in the matrix of moving average parameters are restricted to be zeros.
This restriction does not affect our main results but facilitates the estimation.
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Fig. 7.6 The confidence interval for expected return persistence based on the reduced-form test.
Note: Data is annual from 1947 to 2009; numbers on the x-axis are the null hypotheses for φμ .
Numbers on the y-axis are reduced-form test statistics.

about movements in the price-dividend ratio. If expected returns are persistent, then
the signal-to-noise ratio will be small and most of the variation of the price-dividend
ratio will be explained by movements in excess returns. Similarly for expected div-
idend growth. If the persistence in a factor is low, however, then the signal-to-noise
ratio will be large and the contribution of that factor to movements in the price-
dividend ratio will be small. The issue of weak identification and the ZILC condition
makes it very difficult to determine which factor dominates and explains movements
in the price-dividend ratio.

7.5 Conclusion

Finance theory tells us that the price of an asset is equal to the discounted expected
future cash flows that the asset generates. It follows that there are primarily two
factors that can influence prices; expectations regarding discount rates (expected
returns) and expectations regarding future cash flows. Employing the variance de-
composition return approach, virtually all of the empirical work in this area has
concluded that it is expectations of future returns rather than future dividend growth
that are responsible for most of the fluctuations in stock prices (or the price-dividend
ratio).

Employing an alternative approach to the variance decomposition method,
Binsbergen and Koijen (2010) employ an unobserved component (state-space)
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model using US annual data within a present value model to estimate expected re-
turn and expected dividend growth rates of the aggregate US stock market. Their
approach aggregates information contained in the price-dividend ratio and dividend
growth rates to predict expected returns and dividend growth rates. They treat condi-
tional expected returns and expected dividend growth as latent variables that follow
an exogenously specified time series process. They find that both expected dividend
growth rates and expected returns are time varying and persistent but that expected
returns are more persistent than expected dividend growth rates. They find that ex-
pected returns contribute more to fluctuations in the price-dividend ratio than do div-
idend growth rates. Balke and Wohar (2002) also estimate unobserved expectations
market fundamentals employing a more general state-space model than Binsbergen
and Koijen (2010). They show that stock price decompositions are very sensitive to
assumptions about which market fundamental has a permanent component.

Our chapter shows that the existing literature has focused on point estimates
with little detailed attention given to issues of inference. When issues of inference
are considered we find that there is little evidence to support the notion that ei-
ther expected returns or expected dividend growth contributes to movements in the
price-dividend ratio. In an effort to explore this finding in detail, we employ a state-
space modeling framework. We find that within this framework, it is the existence
of weak identification combined with a low signal-to-noise ratio that leads to the
conclusion that there is too much uncertainty to make any claims about the rela-
tive contributions of expected returns and expected dividend growth to movements
in the price-dividend ratio. We propose a procedure that could potentially correct
for the inference problem and offer more reliable results. The corrected inference
indicates that the large contribution of the expected returns to fluctuations in the
price-dividend ratio found in previous studies has no statistical significance. Our
finding that the weak identification plays an important role in the stock price de-
composition naturally calls for further investigations using more information. The
additional information can come in the form of either model restrictions or more
data, such as disaggregated equity returns or corporate earnings.
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Chapter 8
A HMM Intensity-Based Credit Risk Model
and Filtering

Robert J. Elliott and Tak Kuen Siu

8.1 Introduction

Modeling default risk is an important topic in financial risk management. There are
two major approaches to modeling default risk, namely, the structural firm value ap-
proach initiated by Black and Scholes (1973) [2] and Merton (1974) [29], and the
reduced-form intensity-based approach introduced by Jarrow and Turnbull (1995)
[24] and Madan and Unal (1998) [28]. The key idea of the structural firm value ap-
proach is to model explicitly the relationship between a firm’s asset value and the
default of the firm. More specifically, the asset value of the firm is described by a
geometric Brownian motion and default of the firm is triggered by the event that the
asset value falls below a default barrier level. This means that defaults are endoge-
nous events in the structural firm value model. The reduced-form intensity-based
approach is based on the premise that defaults are exogenous events and models ar-
rivals of defaults by Poisson point processes. In the structural approach, the default
time is a stopping time with respect to the asset’s filtration; in the reduced-form
approach, the default time is a stopping time with respect to a larger filtration (see
Cooper and Martin (1996) [7]). The difference between these two types of default
times has important implications for the evaluation of default probabilities of firms
and the valuation of defaultable securities. For details, interested readers may refer
to Elliott, Jeanblanc and Yor (2000) [18].

Modeling dependent defaults of constituents in a credit portfolio is a central
theme in default risk modeling. One approach to modeling dependent defaults is
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based on the reduced-form intensity-based model. There are two major types of
reduced-form intensity-based models for dependent defaults, namely, a bottom-up
model and a top-down model. In a bottom-up model, one focuses on modeling de-
fault intensities of constituents, and the default intensity of the credit portfolio is
given by an aggregation of the default intensities of the constituents. Some works on
the bottom-up approach to portfolio credit risk include Kusuoka (1999) [26], Duffie
and Garleanu (2001) [12], Jarrow and Yu (2001) [25], Schönbucher and Schubert
(2001) [31], Giesecke and Goldberg (2004) [21], Schönbucher (2004) [32], Duffie,
Saita and Wang (2006) [13], Giesecke and Weber (2006) [23], Mortensen (2006)
[30], Das, Duffe, Kapadia and Saita (2007) [9], Eckner (2007) [15], Feldhütter
(2007) [20], Yu (2007) [33], Duffie, Eckner, Horel and Saita (2009) [14], and others.
These works differ in the way the default intensities of constituents were specified.
In particular, Giesecke and Goldberg (2004) [21], Schönbucher (2004) [32], Duffie,
Eckner, Horel and Saita (2009) [14] considered the situation where the default in-
tensities of constituents depend on an unobservable factor, namely, a frailty factor.
In a top-down model, the default intensity is specified at the portfolio level without
reference to the identities of the constituents. Then a random thinning procedure
is adopted to recover default intensities of constituents. Some works on top-down
models include Davis and Lo (2001) [10], Giesecke and Goldberg (2005) [22],
Brigo, Pallavicini and Torresetti (2006) [3], Ding, Giesecke and Tomecek (2006)
[11], Arnsdorf and Halperin (2007) [1], Longstaff and Rajan (2007) [27], Cont and
Minca (2008) [6], amongst others.

In this article, we discuss an intensity-based model for portfolio credit risk using
a set of hidden Markov-modulated single jump processes, which is a hidden Markov
model (HMM). The probability laws of these single jump processes are specified
by compensators, or dual predictable projections, modulated by a continuous-time,
finite-state, hidden Markov chain. The states of the chain are interpreted as differ-
ent levels of a common hidden dynamic frailty factor. Firms are exposed to this
common source of hidden risk factor. The model considered here is a bottom-up
model, where defaults are modelled at the level of individual reference entities. An
important feature of the model is that the information structure is fine enough to
distinguish the identity of each defaulter, so each of the single jump processes for
defaults is observed. Based on observations about single jump processes for de-
faults, we obtain filtering equations for the dynamic frailty factor. We also derive
a (robust) filter-based EM algorithm for the online recursive estimates of unknown
model parameters. Finally, a joint default probability of individual reference entities
in a credit portfolio is given. This article is for an expository purpose. It is a shorter
version of a paper by Elliott and Siu (2011) [19]. Full proofs of the results in this
article will be published in the longer paper [19]. Numerical results and applications
to Credit Value at Risk will also be published in [19].

The rest of the chapter is organized as follows. The next section discusses the
modeling framework. In Sect. 8.3 we first discuss briefly a reference probability
approach for filtering. Then we give the filtering equations for some hidden quan-
tities. A filter-based EM algorithm for the online recursive estimates of the model
parameters is presented in Sect. 8.4. We present the variance dynamics in Sect. 8.5.
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In Sect. 8.6 we give the joint default probability of the credit portfolio. The final
section concludes this article.

8.2 A HMM Frailty-Based Default Model

Consider a complete probability space (Ω ,F ,P), where P is a real-world proba-
bility measure. The probability space is supposed to be rich enough to incorporate
all sources of uncertainty in our modeling framework. Let T be the extended time
interval [0,∞) on which economic activities take place.

Let X := {X(t)|t ∈ T } be a continuous-time hidden Markov chain with finite-
states on (Ω ,F ,P) with state space E := {e1,e2, · · · ,en}, where ei is a standard
unit vector in ℜN and the jth component of ei is the Kronecker delta δij, for each
i, j = 1,2, · · · ,n. Indeed, E is the standard basis of the Euclidean space ℜn and is
called the canonical state space of the chain X. The states of the chain X represent
different levels of a dynamic frailty factor.

Suppose the generator, or Q-matrix, of the chain X is the (n× n)-matrix A. The
probability laws of the chain X are specified by the generator A. Since the generator
A does not depend on time, the chain X is time-homogeneous.

Let FX := {FX(t)|t ∈T } be the P-completion of the natural filtration generated
by the chain X. Note that FX is right-continuous. It was shown in Elliott et al. (1995)
[17] that the chain X has the following semimartingale dynamics:

X(t) = X(0)+
∫ t

0
AX(u−)du+M(t) .

Here {M(t)|t ∈ T } is an ℜN-valued, (FX,P)-martingale.
We now describe the single jump processes and their associated martingales.

Suppose that there are K constituents in a credit portfolio and that after a con-
stituent defaults, it will stay in the default state forever. For each constituent
k (k = 1,2, · · · ,K), the default time τk of the kth constituent is a totally inacces-
sible (or an unpredictable), stopping time with respect to some observable filtration
to be defined later in this section. We suppose that for each k = 1,2, · · · ,K, τk is
a random variable on (Ω ,F ,P) taking value in T . For each k = 1,2, · · · ,K, let
Nk := {Nk(t)|t ∈ T } be a right-continuous, non-decreasing process given by:

Nk(t) := I{τk≤t} , t ∈ T ,

where IA is the indicator function of the event A.
For each k = 1,2, · · · ,K, Nk is the default process of the kth constituent. This

process takes the value “zero” before default and “one” afterwards. Here we suppose
that P-almost surely there are no common jumps between the chain X and the default
processes Nk, k = 1,2, · · · ,K.

One may consider the situation that structural changes in the state of the economy
and defaults of the constituents may happen at the same time. However, we believe
that there should be a lead–lag effect between structural changes in the state of the
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economy and defaults of the constituents. In other words, defaults of constituents
can only happen after structural changes in the state of the economy, and vice versa.

Write, for each k = 1,2, · · · ,K, Fk := {F k(t)|t ∈ T } for the P-complete, right-
continuous, natural filtration generated by the default process Nk, so

F k(t) := σ{Nk(t)|t ∈ T }∨N ,

where N is the collection of all P-negligible sets in the σ -field F .
Indeed, the σ -field F k(t) is generated by the sets {τk ≤ u} for each u ∈ [0, t],

and the atom {τk > t}. Consequently,Fk is the smallest filtration satisfying the usual
hypotheses such that τk is an F

k-stopping time.
Define, for each t ∈ T and k = 1,2, · · · ,K,

G k(t) := F k(t)∨FX(t) .

That is, the minimal σ -field generated by both F k(t) and FX(t). Write G
k for the

right-continuous, complete filtration generated by {G k(t)|t ∈ T }.
For each k = 1,2, · · · ,K, let Ak := {Ak(t)|t ∈ T } be the dual predictable pro-

jection of the default process Nk with respect to the filtration G
k under the mea-

sure P. Note that Ak is also called the (Gk,P)-compensator of Nk so that the process
N̄k := {N̄k(t)|t ∈ T } defined by:

N̄k(t) := Nk(t)−Ak(τk ∧ t) , t ∈ T ,

is a (Gk,P)-local martingale, where τk ∧ t := min{τk, t}. Consequently, Nk is a
(Gk,P)-submartingale and has the following decomposition:

Nk(t) = N̄k(t)+Ak(τk ∧ t) , t ∈ T .

We suppose that the compensator Ak is absolutely continuous with respect to the
Lebesgue measure on T . Then there is a nonnegative,Gk-progressively measurable,
intensity process λ k := {λ k(t)|t ∈ T } such that

Ak(t) =
∫ t

0
λ k(u)du , P-a.s. ,

so

Nk(t)−
∫ τk∧t

0
λ k(u)du , t ∈ T ,

is a (Gk,P)-local martingale. It was noted in Elliott et al. (2000) [18] that the inten-
sity process λ k is not uniquely defined after τk and that there is no meaning for the
“intensity” after τk though it is sometimes mentioned.

For each t ∈ T and k = 1,2, · · · ,K, the intensity λ k(t) is the conditional mean
rate of default of the kth constituent given G k(t) under the measure P. We consider
here a particular form for an intensity process λ k as follows:

λ k(t) :=
〈

λ k,X(t)
〉

, t ∈ T .
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Here λ k := (λ k
1 ,λ

k
2 , · · · ,λ k

n )
′ ∈ ℜn with λ k

i > 0 for each i = 1,2, · · · ,n. In other
words, the intensity process λ k is modulated by the chain X. Since the chain X is
not unobservable, neither is the intensity process λ k. The scalar product 〈·, ·〉 in ℜN

selects the component in the vector λ k of default intensities of the kth constituent in
force depending on the current state of the economy described by the value of the
chain X(t).

Under P the HMM intensity-based credit risk model has the following state-space
form:

Nk(t) =
∫ τk∧t

0

〈

λ k,X(u)
〉

du+ N̄k(t) , k = 1,2, · · · ,K ,

X(t) = X(0)+
∫ t

0
AX(u−)du+M(t) .

Here the single jump processes Nk, k = 1,2, · · · ,K, are the observation processes
and the chain X is the state process.

8.3 Filtering Equations for the Hidden Dynamic Frailty Factor

In this section, we first discuss an approach based on a reference probability and a
version of the Bayes’ rule to derive filtering equations for the dynamic frailty factor.
Then we present a Zakai stochastic differential equation for the unnormalized filter
of the frailty factor. Using a gauge transformation technique, we further simplify the
filtering equation and give a linear ordinary differential equation for a (robust) filter
of the frailty factor. Here robustness is in the sense of Clark (1978) [5] and refers to
the Lipschitz continuity with respect to the observation processes in the Skorohod
topology.

Suppose there is a reference probability measure P† under which

1. the default processes Nk, k = 1,2, · · · ,K, are independent and have an unit in-
tensity. This means that the compensator of Nk is {t ∧ τk|t ∈ T }, for each
k = 1,2, · · · ,K;

2. the hidden Markov chain X has the generator A;
3. the chain X and the processes Nk, k = 1,2, · · · ,K, are independent.

Write

Mk(t) := Nk(t)− τk ∧ t , t ∈ T ,

so Mk is an (Fk,P†)-martingale, and hence, a (Gk,P†)-martingale.
Define, for each k = 1,2, · · · ,K, the family of stochastic exponentials Zk :=

{Zk(t)|t ∈ T } by:

Zk(t) := exp

(

−
∫ τk∧t

0
(λ k(u)− 1)du+

∫ t

0
lnλ k(u)dNk(u)

)

.
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Write, for each t ∈ T ,

G (t) :=
K
∨

k=1

G k(t) ,

and G := {G (t)|t ∈ T }.
Consider now the following G-adapted process Z := {Z(t)|t ∈ T } defined by:

Z(t) := Z1(t)Z2(t) · · ·ZK(t) , t ∈ T .

Then

Z(t) = exp

(

−
K

∑
k=1

∫ τk∧t

0
(λ k(u)− 1)du+

K

∑
k=1

∫ t

0
lnλ k(u)dNk(u)

)

.

Applying Itô’s differentiation rule to Z(t) gives:

dZ(t) =
K

∑
k=1

∫ t

0
Z(u−)(λ k(u)− 1)dMk(u) ,

so Z is a (G,P†)-(local)-martingale. We suppose here that Z is a positive, uniformly
integrable, (G,P†)-martingale.

By Remark 13.18 in Elliott (1982) [16],

Z(∞) := lim
t→∞

Z(t) ,

exists P†-a.s., and for each t ∈ T ,

Z(t) = E†[Z(∞)|G (t)] , P-a.s. ,

where E† is expectation under P†.
Consequently,

E†[Z(∞)] = Z(0) = 1 .

Note that Z(∞) > 0, P†-a.s. We can then re-construct the real-world probability
measure P equivalent to P† on G (∞) by putting:

dP

dP†

∣

∣

∣

∣

G (∞)
:= Z(∞) .

Recall that N̄k := {N̄k(t)|t ∈ T } is defined by:

N̄k(t) := Nk(t)−
∫ t∧τk

0
λ k(u)du , t ∈ T .

By a version of Theorem 13.19 in Elliott (1982) [16], it can be shown that under P,
N̄k is a local martingale with respect to the filtration G

k, for each k = 1,2, · · · ,K.
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In other words, N̄k has the intensity process λ k under P prior to the default
time τk.

Furthermore, since X and Nk, k = 1,2, · · · ,K, are independent under P†, the prob-
ability law of the chain X remains unchanged after the measure change from P† to P
by the density process Z. Consequently, under P, the chain X has the generator A.

Write, for each t ∈ T ,

F (t) :=
K
∨

k=1

F k(t) ,

and F := {F (t)|t ∈ T }, so F is the observed filtration generated by the default
processes of the constituents. We wish to “fuse” together information about defaults
of constituents to estimate the hidden dynamic frailty factor.

By a version of the Bayes’ rule,

E[X(t)|F (t)] =
E†[Z(t)X(t)|F (t)]

E†[Z(t)|F (t)]

=
σ(X(t))
σ(1)

, say .

Here σ(X(t)) := E†[Z(t)X(t)|F (t)], so σ(1) = E†[Z(t)|F (t)]. σ(X(t)) is called
the unnormalized filter of X given F (t).

Note that

〈X(t),1〉= 1 ,

where 1 := (1,1, · · · ,1)′ ∈ℜn, so σ(1) = 〈σ(X(t)),1〉, and hence,

E[X(t)|F (t)] =
σ(X(t))

〈σ(X(t)),1〉 .

Consequently, to determine the normalized filter E[X(t)|F (t)], it suffices to deter-
mine the unnormalized one σ(X(t)).

Then the following theorem gives the filtering equation for the unnormalized
filter σ(X(t)).

Theorem 8.1. Write

diag(λ k − 1) := diag(λ k
1 − 1,λ k

2 − 1, · · · ,λ k
n − 1) ,

a diagonal matrix with diagonal elements being (λ k
1 − 1,λ k

2 − 1, · · · ,λ k
n − 1).

Then σ(X) satisfies the following stochastic differential equation:

σ(X(t)) = σ(X(0))+
∫ t

0
Aσ(X(u))du+

K

∑
k=1

∫ t

0
diag(λ k − 1)σ(X(u−))dNk(u)

−
K

∑
k=1

∫ τk∧t

0
diag(λ k − 1)σ(X(u))du .
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To simplify the filtering equation in Theorem 8.1, we consider a gauge transfor-
mation matrix Γ (t) to be defined as follows:

For each i = 1,2, · · · ,n, we consider a scalar-valued process γi := {γi(t)|t ∈ T }
defined by:

γi(t) := exp

[ K

∑
k=1

(1−λ k
i )(τ

k ∧ t)+
K

∑
k=1

∫ t

0
lnλ k

i dNk(u)

]

, t ∈ T .

Write, for each t ∈ T ,

Γ (t) := diag(γ1(t),γ2(t), · · · ,γn(t)) ,

where diag(γ1(t),γ2(t), · · · ,γn(t)) is a diagonal matrix with diagonal elements being
the vector (γ1(t),γ2(t), · · · ,γn(t)).

Write, for each t ∈ T , Γ−1(t) for the inverse of Γ (t). The existence of Γ−1(t) is
ensured by the positivity of γi(t), for each i= 1,2, · · · ,n. Then we have the following
lemma.

Lemma 8.1. For each k = 1,2, · · · ,K, define a diagonal matrix by:

diag
(

1−λ k

λ k

)

:= diag
(

1−λ k
1

λ k
1

,
1−λ k

2

λ k
2

, · · · , 1−λ k
n

λ k
n

)

.

Then

dΓ−1(t) =
K

∑
k=1

I{t≤τk}diag(λ k − 1)Γ−1(t)dt+
K

∑
k=1

diag
(

1−λ k

λ k

)

Γ−1(t−)dNk(t) ,

where Γ (0) = Γ−1(0) = I and I is the (n× n)-identity matrix.

Write, for each t ∈ T ,

σ̄(X(t)) := Γ−1(t)σ(X(t)) .

This is a transformed unnormalized filter for X(t). Then the following theorem gives
a filtering equation for σ̄(X(t)).

Theorem 8.2. σ̄(X(t)) satisfies the following linear, vector-valued, ordinary differ-
ential equation:

dσ̄(X(t))
dt

= Γ−1(t)AΓ (t)σ̄(X(t)) .

Suppose π(X(t)) is a version of the expectation E[X(t)|F (t)]. Note that σ(X(t)) :
= Γ (t)σ̄(X(t)), so

π(X(t)) =
Γ (t)σ̄ (X(t))

〈Γ (t)σ̄(X(t)),1〉 .
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8.4 A Robust Filter-Based EM Algorithm

In this section, we first give the (robust) filtering equations for some quantities re-
lated to the hidden Markov chain. Then these filtering equations are used to develop
a (robust) filter-based EM algorithm for the online recursive estimates of model
parameters. These model parameters include the default intensities of different con-
stituents in the credit portfolio over different levels of the dynamic frailty factor and
the transition intensities of the levels of the factor.

We start by defining the following quantities related to the hidden Markov
chain X:

1. O i(t) is the occupation time of the chain X in state ei up to time t, for each
i = 1,2, · · · ,n and each t ∈ T . That is,

O i(t) :=
∫ t

0
〈X(u),ei〉du .

2. J ji(t) is the number of transitions of the chain from state ei to state e j up to
time t, for each i, j = 1,2, · · · ,n with j �= i and each t ∈ T . That is,

J ji(t) :=
∫ t

0
〈X(u−),ei〉

〈

e j,dX(u)
〉

.

3. L k
i (t) is the level integral for the state ei with respect to Nk, for each i =

1,2, · · · ,n, k = 1,2, · · · ,K and t ∈ T . That is,

L k
i (t) :=

∫ t

0
〈X(u),ei〉dNk(u) .

Write, for each t ∈ T , i, j = 1,2, · · · ,n and k = 1,2, · · · ,K,

σ(O i(t)X(t)) := E†[Z(t)O i(t)X(t)|F (t)] ,

σ(J ji(t)X(t)) := E†[Z(t)J ji(t)X(t)|F (t)] ,

σ(L k
i (t)X(t)) := E†[Z(t)L k

i (t)X(t)|F (t)] .

The following theorem gives the filtering equations for σ(O i(t)X(t)), σ(J ji(t)
X(t)) and σ(L k

i (t)X(t)).

Theorem 8.3. For each i, j = 1,2, · · · ,n with j �= i and each k = 1,2, · · · ,K, σ(O i(t)
X(t)), σ(J ji(t)X(t)) and σ(L k

i (t)X(t)) satisfy the following stochastic differential
equations:

σ(L k
i (t)X(t))

=

∫ t

0
Aσ(L k

i (u)X(u))du+
∫ t

0
〈σ(X(u)),ei〉dNk(u)ei

+
K

∑
k=1

∫ t

0
diag(λ k − 1)σ(L k

i (u)X(u))dNk(u)
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−
K

∑
k=1

∫ τk∧t

0
diag(λ k − 1)σ(L k

i (u)X(u))du

+
K

∑
k=1

∫ t

0
〈σ(X(u)),ei〉

〈

λ k − 1,ei

〉

dNk(u)ei ,

σ(J ji(t)X(t))

=

∫ t

0
Aσ(J ji(u)X(u))du+

∫ t

0
〈σ(X(u)),ei〉ai jdue j

+
K

∑
k=1

∫ t

0
diag(λ k − 1)σ(J ji(u)X(u))dNk(u)

−
K

∑
k=1

∫ τk∧t

0
diag(λ k − 1)σ(J ji(u)X(u))du ,

and

σ(O i(t)X(t))

=

∫ t

0
Aσ(O i(u)X(u))du+

∫ t

0
〈σ(X(u)),ei〉duei

+
K

∑
k=1

∫ t

0
diag(λ k − 1)σ(O i(u)X(u))dNk(u)

−
K

∑
k=1

∫ τk∧t

0
diag(λ k − 1)σ(O i(u)X(u))du ,

where σ(L k
i (0)X(0)) = σ(J ji(0)X(0)) = σ(O i(0)X(0)) = 0 ∈ℜn.

Again we shall simplify the filtering equations for the unnormalized filters
σ(L k

i (t)X(t)), σ(J ji(t)X(t)) and σ(O i(t)X(t)) using the transformation matrix
Γ (t).

Write, for each t ∈ T , k = 1,2, · · · ,K and i, j = 1,2, · · · ,n,

σ̄(L k
i (t)X(t)) := Γ−1(t)σ(L k

i (t)X(t)) ,

σ̄(J ji(t)X(t)) := Γ−1(t)σ(J ji(t)X(t)) ,

σ̄(O i(t)X(t)) := Γ−1(t)σ(O i(t)X(t)) .

Then the following theorem gives the filtering equations for these transformed
unnormalized filters σ̄(L k

i (t)X(t)), σ̄(J ji(t)X(t)) and σ̄(O i(t)X(t)).

Theorem 8.4. σ̄(L k
i (t)X(t)), σ̄(J ji(t)X(t)) and σ̄(O i(t)X(t)) satisfy the follow-

ing linear, vector-valued, filtering equations:

σ̄(L k
i (t)X(t))

= Nk(t)〈σ̄(X(t)),ei〉ei −
∫ t

0
Nk(u)〈dσ̄(X(u)),ei〉ei +

∫ t

0
Aσ̄(L k

i (u)X(u))du
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+
K

∑
k=1

〈σ̄(X(t)),ei〉
〈

λ k − 1,ei

〉

diag
(

1

λ k

)

Nk(t)ei

−
K

∑
k=1

∫ t

0
Nk(u)

〈

λ k − 1,ei

〉

diag
(

1

λ k

)

〈dσ̄(X(u)),ei〉 ,

σ̄(J ji(t)X(t))

=
∫ t

0
〈σ̄(X(u)),ei〉ai jdue j +

∫ t

0
Aσ̄(J ji(u)X(u))du ,

and

σ̄(O i(t)X(t))

=

∫ t

0
〈σ̄(X(u)),ei〉dtei +

∫ t

0
Aσ̄(O i(u)X(u))du ,

where σ̄(L k
i (0)X(0)) = σ̄(J ji(0)X(0)) = σ̄(O i(0)X(0)) = 0 ∈ℜn.

Our goal is to estimate aji and λ k
i , for each i, j = 1,2, · · · ,n and k = 1,2, · · · ,K.

The parameter estimates âji and ̂λ k
i of aji and λ k

i , respectively, are given in Dembo
and Zeitouni (1989) [8] as follows:

âji =
E[J ji(t)|F (t)]
E[O i(t)|F (t)]

=
σ(J ji(t))
σ(O i(t))

, i �= j ,

̂λ k
i =

E[L k
i (t)|F (t)]

E[O i(t)|F (t)]
=
σ(L k

i (t))
σ(O i(t))

.

It is not difficult to see that

σ(L k
i (t)) =

〈

σ(L k
i (t)X(t)),1

〉

=
〈

Γ (t)σ̄(L k
i (t)X(t)),1

〉

,

σ(J ji(t)) =
〈

σ(J ji(t)X(t)),1
〉

=
〈

Γ (t)σ̄(J ji(t)X(t)),1
〉

,

σ(O i(t)) =
〈

σ(O i(t)X(t)),1
〉

=
〈

Γ (t)σ̄(O i(t)X(t)),1
〉

.

Consequently, to evaluate the parameter estimates âji and ̂λ k
i , we can implement

a filter bank consisting of transformed unnormalized recursive filters given in
Theorems 8.2 and 8.4. These parameter estimates can then be evaluated by fol-
lowing the three steps in the (robust) filter-based expectation maximization (EM)
algorithm described as follows:

Step I: Choose the initial estimates âji(0) and ̂λ k
i (0).

Step II: Compute the maximum likelihood estimates âji(l + 1) and ̂λ k
i (l + 1)

using âji(l) and ̂λ k
i (l) and the filter bank consisting of recursive filters given in

Theorem 8.2 and Theorem 8.4, where l represents the lth run of the algorithm.
Step III: Stop when |âji(l + 1)− âji(l)| < ε1 and |̂λ k

i (l + 1)−̂λ k
i (l)| < ε2; other-

wise, continue from Step II, where ε1 and ε2 are the desirable levels of accuracy and
both of them are positive.
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8.5 Variance Dynamics

We present the variance dynamics for the observation processes and the hidden state
process in our HMM intensity-based credit risk model. Firstly, we recall that the
observation processes and the hidden state process are, respectively, given by:

Nk(t) =
∫ τk∧t

0

〈

λ k,X(u)
〉

du+ N̄k(t) , k = 1,2, · · · ,K ,

and

X(t) = X(0)+
∫ t

0
AX(u−)du+M(t) .

Note that for each k = 1,2, · · · ,K, {N̄k(t)|t ∈ T } is the innovations process for
the observation process {Nk(t)|t ∈ T }, while {M(t)|t ∈ T } represents the inno-
vations process of the hidden state process {M(t)|t ∈ T }. From the modeling and
estimation perspectives, one may be interested in the variance dynamics of the in-
novations processes {Nk(t)|t ∈ T }, k = 1,2, · · · ,K, and {M(t)|t ∈ T }. Since we
are considering a continuous-time modeling setup here, the (predictable) quadratic
variation processes of the innovations processes represent natural variance dynamics
of the innovations processes. Consequently, we present the (predictable) quadratic
variation processes of the innovations process {Nk(t)|t ∈ T }, k = 1,2, · · · ,K, and
{M(t)|t ∈ T } here.

Firstly, the (predictable) quadratic variation process {〈M,M〉 (t)|t ∈ T } of the
innovations process {M(t)|t ∈ T } was obtained in Elliott et al. (1995) [17] (see
Lemma 1.3 in Appendix B therein). We state it here without proof.

〈M,M〉 (t) = diag
(

∫ t

0
AX(u−)du

)

−
∫ t

0
diag(X(u−))A′du−

∫ t

0
Adiag(X(u−))du .

Note that {〈M,M〉 (t)|t ∈ T } may be related to a continuous-time version of the
conditional mean-square-error process of the hidden state process {X(t)|t ∈ T }.
Furthermore, 〈M,M〉 (t) depends on unknown parameters represented by the com-
ponents in the rate matrix A as well as the hidden state process {X(t)|t ∈ T }. Con-

sequently, we may provide an estimate ̂〈M,M〉(t) of 〈M,M〉 (t) as follows:

̂〈M,M〉(t) = diag
(

∫ t

0

̂ÂX(u−)du

)

−
∫ t

0
diag(̂X(u−))̂A′du−

∫ t

0

̂Adiag(̂X(u−))du .

Here ̂X(t) is the filtered estimate of X(t) presented in Sect. 8.3 and ̂A is the filter-

based EM estimate of A presented in Sect. 8.4. Note that { ̂〈M,M〉(t)|t ∈ T } may
be related to a continuous-time version of the conditional standard error process of
the hidden state process {X(t)|t ∈T }, which is an estimate of the model estimation
error frequently used in statistical analysis in discrete-time.
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Similarly, we consider the (predictable) quadratic variation process {〈N̄k, N̄k
〉

(t)|
t ∈ T } of the innovations process {N̄k(t)|t ∈ T }, for each k = 1,2, · · · ,K, and its

estimate { ̂〈N̄k, N̄k〉(t)|t ∈ T } in the sequel. Firstly,
〈

N̄k, N̄k
〉

(t) is given by:

〈

N̄k, N̄k
〉

(t) =
〈

Nk,Nk
〉

(t) =
∫ τk∧t

0

〈

λ k,X(u)
〉

du , k = 1,2, · · · ,K , t ∈ T .

This may be related to a continuous-time version of the conditional mean-square-
error process of the observation process {Nk(t)|t ∈ T }.

Again
〈

N̄k, N̄k
〉

(t) depends on unknown parameters represented by the com-

ponents in the vector λ k as well as the hidden state process {X(t)|t ∈ T }. Con-

sequently, we may estimate
〈

N̄k, N̄k
〉

(t) by ̂〈N̄k, N̄k〉(t) defined as follows:

̂〈N̄k, N̄k〉(t) =
∫ τk∧t

0

〈

̂λ
k
, ̂X(u)

〉

du .

Here ̂X(t) is the filtered estimate of X(t) presented in Sect. 8.3 and ̂λ
k

is the filter-
based EM estimate of λ k presented in Sect. 8.4.

8.6 Default Probabilities

In this section, we present an analytical formula for the joint conditional distribution
of defaults of K firms. The joint distribution is obtained using an analytical formula
for the joint characteristic function of occupation times of the chain X together with
the robust filter of the chain X derived in Sect. 8.3.

For each i = 1,2, · · · ,n and t, t +h ∈T with h > 0, let O i(t,h) be the occupation
time of the chain X in state ei over the time interval [t, t + h]. That is,

O i(t,h) :=
∫ t+h

t
〈X(u),ei〉du .

Write

O(t,h) := (O1(t,h),O2(t,h), · · · ,On(t,h)) ∈ [t, t + h]n ⊂ (ℜ+)
n .

Then it has been shown in Buffington and Elliott (2002) [4] that the conditional joint
characteristic function of O(t,h) given G (t) evaluated at ζ ∈ℜn under P is:

ΦO(t,h)|G (t)(ζ ) := E[e
√−1

〈

ζ ,O(t,h)
〉

|G (t)]

=
〈

exp[(A+
√−1diag(ζ ))h]X(t),1

〉

.
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Let φO(t,h)|G (t)(u) be the conditional joint probability density function of O(t,h)
given G (t) under P, where u := (u1,u2, · · · ,un) ∈ [t, t + h]n. Then by the inverse
Fourier transform,

φO(t,h)|G (t)(u)

=
1

(2π)n

∫

ℜn
e
−√−1

〈

ζ ,u
〉

ΦO(t,h)|G (t)(ζ )dζ1dζ2 · · ·dζn

=
1

(2π)n

∫

ℜn
e
−√−1

〈

ζ ,u
〉

〈

exp[(A+
√−1diag(ζ ))h]X(t),1

〉

dζ1dζ2 · · ·dζn .

We wish to evaluate the conditional joint default probability of the portfolio of
firms in the time horizon given observed information up to time t, say F (t) and
given that these firms have survived at time t. The result is presented in the following
theorem.

Theorem 8.5. For each t, t + h ∈ T with h > 0, with u ∈ℜn,

P(t < τ1 < t + h, t < τ2 < t + h, · · · , t < τK < t + h|F (t))

=
1

(2π)n

∫

ℜn

∫

[t,t+h]n

〈

exp[(A+
√−1diag(ζ ))h]Γ (t)σ̄(X(t)),1

〉

〈Γ (t)σ̄(X(t)),1〉

×
[ K

∏
k=1

(

1− e
−
〈

λ k
,u
〉

)

I{τk>t}

]

e
−√−1

〈

ζ ,u
〉

du1du2 · · ·dundζ1dζ2 · · ·dζn ,

where, for each k = 1,2, · · · ,K, I{τk>t} is the indicator function of the event {τk >

t}; σ̄(X(t)) follows the linear, vector-valued, ordinary differential equation in
Theorem 8.2.

8.7 Conclusion

An intensity-based model for the dependent default risk of constituents in a credit
portfolio is considered, where the constituents are exposed to a common hidden
dynamic frailty factor described by a continuous-time, finite-state, hidden Markov
chain. Filtering equations of the hidden factor and an estimation algorithm of the
model are given. An analytical formula for the joint default probability is obtained
in Fourier transform space.
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Chapter 9
Yield Curve Modelling Using a Multivariate
Higher-Order HMM

Xiaojing Xi and Rogemar Mamon

9.1 Introduction

Interest rate modelling is a central consideration in financial market given its
fundamental importance in pricing, risk management and investment. Classical
short-term interest rate models, such as those proposed by Merton [1], Vasicek [2],
Cox et al. [3] and Hull and White [4], assume deterministic parameters. However,
we all know that the economy and market are subjected to dynamic and in some
cases significant changes. Such changes have substantial impact on the evolution
of interest rates. Research works in recent years focus on the development of ap-
propriate quantitative models suited for time-varying model parameters to accu-
rately capture the behaviour of various financial variables and economic indicators.
The introduction of regime-switching models provided some ways of incorporat-
ing the impact of market and economic changes on interest rates. Pioneered by the
work of Hamilton [5], the construction of regime-switching-based methods was ex-
plored in the modelling of non-stationary time series. In such models, values of
the model parameters at a particular moment depends on the state of an underly-
ing Markov chain at that moment. A study by Smith [6] found evidence that the
volatility depends on the level of the short rate and supports Markov-switching
model over a stochastic volatility model. Landén [7] developed a hidden Markov
model (HMM) for the short-term interest rates, in which the mean and variance
are governed by an underlying Markov process. In practice, the underlying state of
the market and volatilities are unobservable and so parameter estimation for these
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Markov-switching models presents some challenges from both the practical and the
mathematical standpoints.

In a comprehensive work, Elliott et al. [8] provided recursive self-updating esti-
mates for the Markov chain, the model drift and diffusion parameters modulated by
the same Markov chain. Elliott et al. [9] proposed a multivariate HMM for the short
rate process and HMM filtering techniques are employed in their implementation.
Erlwein and Mamon [10] considered a Hull–White interest rate model in which
the interest rate’s volatility, mean-reverting level and speed of mean-reversion are
all governed by a Markov chain in discrete time. The HMM filters are derived and
implemented on a financial data set. Their analysis of prediction errors together
with the aid of the Akaike information criterion shows that a two-regime model is
sufficient to describe the interest rate dynamics in their study. More recent develop-
ments on regime-switching focus on extending various models. Hunt and Devolder
[11] studied an extension of the Ho and Lee model under a semi-Markov regime-
switching framework, and an application of their proposed extension to the pricing
of European bond options is given. Zhou and Mamon [12] investigated the Vasicek,
CIR and Black–Karasinski models with the parameters of the short rate being mod-
ulated by a finite-state Markov chain in discrete time. A quasi-maximum likelihood
method is utilized to estimate the model parameters and implementation of their
algorithms is carried out on the Canadian yield rates.

Some recent studies examine the integration of regime-switching models with
other modelling approaches to obtain a richer methodology. A four-state model to
capture rate dynamics in the US spot and forward rate markets was proposed by
Guidolin and Timmermann [13]; their an out-of-sample forecasting exercise show
evidence that, at short horizons, combining regime-switching forecasts with simpler
univariate time-series forecasts can help reduce the root mean squared forecast error.
Meligkotsidou and Dellaportas [14] adopted a Bayesian forecasting methodology of
discrete-time finite state-space HMM with non-constant transition matrix in mod-
elling monthly data on rates of return series; the results of their MCMC algorithms
indicate that non-homogeneous HMMs improve the predictive ability of the model
when compared against a standard homogeneous HMM.

Other papers on regime-switching models continue to develop new approaches
in detecting further evidence of regime shifts in the market. Startz and Tsang [15]
constructed an unobserved component model in which the short-term interest rate
is composed of a stochastic trend and a stationary cycle; results from their model-
based measures suggest that allowing for regime switching in shock variances im-
proves model performance. Audrino and Mederos [16] proposed a smooth transition
tree model that combines regression trees and GARCH models to describe regime
switches in the short-term interest rate series; their empirical results provide evi-

dence of the power of the model in forecasting the conditional mean and variance.
Utilizing an adapted unit-root test, Holmes et al. [17] found evidence that Australian
and New Zealand interest rates can switch between regimes characterized by differ-
ences in mean, variance and persistence.

For a review of models of term structure of interest rates under regime-switching
setting, including earlier regime-switching models of short-term interest rate in
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discrete time, and recent Markov-switching models in continuous-time, refer to
Nieh et al. [18]. Whist the original HMM can reasonably model the impact of struc-
tural changes in the financial time series, there is a need to also develop quantitative
models that are able to capture time series memory. Processes with long mem-
ory characteristics have stronger coupling between values at different times than
that of short-memory processes, and they can be described by heavy-tailed distri-
butions. Mandelbrot [19] demonstrated applications of stochastic processes with
long-memory in economics and finance. Cajueiro and Tabak [20, 21] showed ev-
idence of long-range dependence in the LIBOR and US interest rates. McCarthy
et al. [22] investigated the presence of long memory in corporate bond yield
spreads and found strong evidence that such presence exists. Numerous studies
have developed stochastic models to capture the long-range dependence property
in financial time series. Maheu [23] concluded that GARCH models can capture the
long-memory property in volatility of financial prices under some circumstances.
Dajcman [24] proposed an autoregressive fractionally integrated moving average
(ARFIMA) model for eight European stock market returns. Duan and Jacobs [25]
suggested that inclusion of long-range dependence in their model improves sig-
nificantly model fitting performance on real interest rate data. It seems, however,
that the existing literature on long-memory property of time series mainly concen-
trates on single-state stochastic models. This paper contributes to the widening of
literature on the development of models that are able to capture not only regime-
switching but also short- or long-term dependence in the HMM that modulates
regime switches. We put forward a weak hidden Markov model (WHMM), also
known as a higher-order HMM to model the movement of the term structure of in-
terest rates. As Solberg [26] indicated, the real significance of WHMM is to rectify
the weakness of the usual HMM. One may feel that HMM’s memoryless prop-
erty is unwarranted for many stochastic processes observed in real-life applications.
WHMM generalizes HMM and therefore, the memoryless property implied by the
Markov assumption is not really as restrictive as it first appears. By using WHMM,
the probability of current state does not depend on just one prior time epoch but on
any finite number of prior epochs, and so more information from the past are taken
into account. The higher-order Markov chain and its applications in finance have
been investigated by a number of authors, and these include, amongst others, Xi and
Mamon [27] for returns of risky assets; Siu et al. [28] for risk measurement; Ching
et al. [29] for exotic option pricing and Siu [30] for spot rates and credit ratings.

In this paper, we consider a multivariate WHMM for the evolution of the term
structure of interest rates. Extending the formulation in [9], the short-term rate can
be rewritten as a function of a discrete time weak Markov chain (WMC). We assume
the drift and diffusion terms of the yield values are governed by a second-order
multivariate Markov chain. The states of the WMC are associated with the states of
the market, whose current behaviour depends on the behaviour at the previous two
time steps. We utilize a transformation that converts a WHMM into a regular HMM
allowing us to apply the usual HMM estimation algorithm.

The remainder of this paper is organized as follows. Section 9.2 describes the
formulation of the multivariate modelling framework. The derivation of the filters
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for the states of WMC and other related processes through a measure change is
presented. The recursive estimations are obtained by applying the expectation–
maximization (EM) algorithm. The implementation of this proposed model is given
in Sect. 9.3. The data set involved in our numerical study consists of daily US Trea-
sury yields. In Sect. 9.4, we provide a discussion on how to select the optimal num-
ber of states. Using some metrics and criteria, we conclude that a two-state WHMM
is sufficient to capture the market dynamics of our data. We also present an analysis
of h-day ahead forecasts under the one-, two-, three- and four-state settings. Fore-
casting errors generated under the WHMM are compared to those generated under
the regular HMM. Our results demonstrate that by including a memory-capturing
mechanism in the model, WHMM outperforms the HMM in terms of low forecast-
ing error. We conclude with some remarks in Sect. 9.5.

9.2 Filtering and Parameter Estimation

We assume all processes in our modelling set-up are supported by a stochastic ba-
sis (Ω ,F ,{Ft},P), where P is a risk-neutral measure used in the pricing of the
zero-coupon bond. Let {xt}, t ≥ 0 be a continuous-time WMC with finite space
S = {s1,s2, . . . ,sN}. Without loss of generality, we identify the points in S with
the canonical basis {e1,e2, . . . ,eN} ⊂ RN , where ei = (0, . . . ,0,1,0, . . . ,0)� and �
denotes the transpose of a vector. The representation 〈xt ,ei〉 refers to the event that
the economy is in state i at time t. Here, 〈 , 〉 stands for the inner product in RN . We
suppose the short rate process rt is a function of the unobservable Markov chain xt ,
such that rt = r(xt) = 〈r,xt〉 for some vector r ∈ RN . At time t, a zero-coupon bond
Fi, expiring at time t + τi, i = 1, . . . ,d, has a price

Fi(xt , t) = E

[

exp

(

−
∫ t+τi

t
r(xs)ds

)

∣

∣Ft

]

,

where the expectation is taken with respect to the risk-neutral measure.
It was shown in [28] that the yield values in discrete time can be expressed as

〈fi,xk〉 = − 1
τi

logFi(xt , t), and xk = xtk , as a discrete-time version of the state pro-
cess xt . In practice, it has to be noted that at each time k, one yield curve is observed
determined by the yields of T-bills (maturities of 30 days to 1 year), T-notes (matu-
rities between 1 and 5 years), and T-bonds (maturities more than 5 years). Suppose
that there are d maturities (and hence d fixed-income instruments trading) corre-
sponding to the d number of yields at each time k. Let yk = (y1

k,y
2
k , . . . ,y

d
k ) denote

the d-dimensional yield process. We assume that the drift and volatility of each yield
component yi

k can switch between N regimes, i.e., each yi
k, 1 ≤ i ≤ d, is modulated

by a Markov chain xk. In other words, the yield values have dynamics

yi
k+1 = f i(xk)+σ i(xk)z

i
k+1.
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The sequence {zi
k}, for i = 1, 2, . . . , d, is a sequence of N(0,1) independent,

identically distributed (IID) random variables, which are independent of the x-
process. More specifically, the functions f i and σ i are given by the vectors fi =
( f i

1, f i
2, . . . , f i

N)
� and σ i = (σ i

1,σ
i
2, . . . ,σ

i
N)

� in RN , f i(xk) = 〈fi,xk〉 and σ i(xk) =
〈σ i,xk〉 represent the mean and variance of yi

k, respectively. Note that all com-
ponents of the vector observation process are modulated by the same underlying
WMC.

In this paper, our attention will solely be on a WMC of order 2 to simplify the
discussion and present a complete characterization of the parameter estimation. The
probability of the next time step for the WMC given the previous information is

P (xk+1 = xk+1|x0 = x0, . . . ,xk−1 = xk−1,xk = xk)

= P(xk+1 = xk+1|xk−1 = xk−1,xk = xk).

Each entry of the transition probability matrix A := (almv) ∈ RN×N2
, where l,m,v ∈

1, . . . ,N, refers to the probability that the process enters state l given that the current
and previous states were in states m and v, respectively. The salient idea in the
filtering method for WHMM is that, a second-order Markov chain is transformed
into a first-order Markov chain through a mapping ξ , and then we may apply the
regular filtering method. The mapping ξ is defined by

ξ (er,es) = ers, for 1 ≤ r,s ≤ N,

where ers is an RN2
-unit vector with unity in its ((r−1)N + s)th position. Note that

〈ξ (xk,xk−1),ers〉= 〈xk,er〉〈xk−1,es〉

indicates the identification of the new first-order Markov chain with the canonical
basis. The new N2 ×N2 transition probability matrix … of the new Markov chain is
defined by

πij =

{

almv ifi = (l − 1)N +m, j = (m− 1)N + v
0 otherwise.

Here, each non-zero element πij represents the probability

πij = almv = P(xk = el |xk−1 = em, xk−2 = ev),

and each zero represents an impossible transition. It may be shown that the new
Markov chain ξ (xk,xk−1) has the semi-martingale representation

ξ (xk,xk−1) = …ξ (xk−1,xk−2)+ vk, (9.1)

where {vk}k≥1 is a sequence of RN2
martingale increments. We recognize that the

above approach of transforming a higher-order Markov chain to a corresponding
Markov chain of order one-lag lower is cumbersome to adopt for orders higher
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than 3. However, it has to be noted that for financial time series models such as the
GARCH, ARCH and EWMA, the lags employed do not exceed 2 anyway in ma-
jority of the applications and therefore concentrating on lower lags is a reasonable
modelling assumption.

Under P, the underlying WMC is not known. Instead, the state xk is contained
in the noisy market observations yk,k ≥ 1. We aim to “filter” the noise out of the
observations to determine xk. However, the derivation of filters under P is com-
plicated. By Kolmogorov’s extension theorem, there exists a reference probability
measure P̄ under which the yk’s are N(0,1) IID random variables and therefore P̄ is
an easier measure to work with. Now, we perform a measure change to construct the
real-world measure P from the ideal-world measure P̄ by invoking a discrete-time
version of Girsanov’s theorem. Let φ(z) denote the probability density function of
a standard normal random variable Z. For each component i, write

λ i
l :=

φ(σ i(xl−1)
−1(yi

l − f i(xl−1)))

σ i(xl−1)φ(yi
l)

. (9.2)

The Radon–Nikodŷm derivative of P with respect to P̄, dP
dP̄ |Yk := Λk, is defined by

Λk =
d

∏
i=1

k

∏
l=1

λ i
l , k ≥ 1, Λ0 = 1. (9.3)

To obtain the estimates of ξ (xk,xk−1) under the real world measure, we first per-
form all calculations under the reference probability measure P̄. Calculations under
the two measures are linked via the Bayes’ theorem for conditional expectation.

Let us derive the conditional expectation of ξ (xk,xk−1) given Yk under P.
Write

pij
k := P(xk = ei,xk−1 = e j|Yk) = E[〈ξ (xk,xk−1),eij〉|Yk] (9.4)

with pk = (p11
k , . . . , pij

k , . . . , pNN
k ) ∈ RN2

. Assuming that ξ (xk,xk−1) is an integrable
sequence of random variables and using Bayes’ theorem, we have

pk = E[ξ (xk,xk−1)|Yk] =
Ē[Λkξ (xk,xk−1)|Yk]

Ē[Λk|Yk]
. (9.5)

Letting qk = Ē[Λkξ (xk,xk−1)|Yk] and 1 = (1, . . . ,1)� ∈ RN2
, we see that

N

∑
i, j=1

〈ξ (xk,xk−1),eij〉= 〈ξ (xk,xk−1),1〉= 1,

so that

〈qk,1〉= Ē[Λk〈ξ (xk,xk−1),1〉|Yk] = Ē[Λk|Yk]. (9.6)
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From (9.5) and (9.6), we get the explicit form of the conditional distribution as

pk =
qk

〈qk,1〉 . (9.7)

Now, we need a recursive filter for the process qk in order to estimate the state
process ξ (xk,xk−1). Define the diagonal matrix Bk by

Bk =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1
k

. . .
b1

k
. . .

bN
k

. . .
bN

k

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (9.8)

where

bi
k =

d

∏
g=1

φ((yg
k − f g

i )/σ
g
i )

σg
i φ(y

g
k)

. (9.9)

Notation: For any Yk-adapted and integrable process Xk, write X̂k := E[Xk|Yk] and
γ(X)k := Ē[ΛkXk|Yk]. Again invoking Bayes’ theorem, we have

X̂k =
γ(X)k

Ē[Λk|Yk]
. (9.10)

To estimate the parameters of the model, recursive filters will be derived for several
quantities of interest. For r,s, t = 1, . . . ,N, let Jrst denote the number of jumps from
(es,et ) to state er up to time k, that is,

Jrst
k =

k

∑
l=1

〈xl ,er〉〈xl−1,es〉〈xl−2,et〉;

Ors
k represents the occupation time of the WMC spent in state (er,es) up to time k,

that is,

Ors
k =

k

∑
l=1

〈xl−1,er〉〈xl−2,es〉;

Or
k denotes the occupation time spent by the WMC in state er up to time k, that is,

Or
k =

k

∑
l=1

〈xl−1,er〉;
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T r
k (c) is the level sum for the state er, that is,

T r
k (c) =

k

∑
l=1

c(yl)〈xl−1,er〉.

Here, c is a function with the form c(y) = y or c(y) = y2.
The above quantities are needed in the above four related processes are needed in

the estimation of model parameters as illustrated in Proposition 9.2 below. We shall
take advantage of the semi-martingale representation in (9.1) and best estimate of
an adapted process X in (9.10) to obtain recursive formulae for the vector quantities
Jrst

k ξ (xk,xk−1), Ors
k ξ (xk,xk−1), Or

kξ (xk,xk−1) and T r
k (c)ξ (xk,xk−1). The recursive

relation of these vector processes and qk under a multi-dimensional observation set-
up are given in the following proposition.

Proposition 9.1. Let Vr,1 ≤ r ≤ N be an N2 ×N2 matrix such that the ((i− 1)N +
r)th column of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix
defined in (9.8), then

qk+1 = Bk+1…qk (9.11)

and

γ(Jrstξ (xk+1,xk))k+1 = Bk+1…γ(Jrstξ (xk,xk−1))k

+ br
k+1〈qk,est〉πrsters, (9.12)

γ(Orsξ (xk+1,xk))k+1 = Bk+1…γ(Orsξ (xk,xk−1))k

+Bk+1…ers〈qk,ers〉, (9.13)

γ(Orξ (xk+1,xk))k+1 = Bk+1…γ(Orξ (xk,xk−1))k

+VrBk+1…qk, (9.14)

γ(T r(c)ξ (xk+1,xk))k+1 = Bk+1…γ(T r(c)ξ (xk,xk−1))k

+ c(yc
k+1)VrBk+1…qk, (9.15)

for 1 ≤ g ≤ d.

Proof. See [27] for an analogous proof for each of the filters under the single obser-
vation setting. �

Similar to (9.7), we determine the normalized filter estimates of γ(Jrst)k, γ(Ors)k,
γ(Or)k and γ(T r(c))k by summing the components of the vector expressions given
in (9.12)–(9.15).

We adopt the EM algorithm to estimate the optimal parameters. The calcula-
tion is similar to the technique for the single observation set-up. The estimates are
expressed in terms of the recursions provided in (9.12)–(9.15) and given in the fol-
lowing proposition.

Proposition 9.2. Suppose the observation is d-dimensional and the set of parame-
ters {ârst, f̂ g

r , σ̂g
r } determines the dynamics of yg

k, k ≥ 1, 1 ≤ g ≤ d. Then the EM
estimates for these parameters are given by
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ârst =
̂Jrst
k
̂Ost

k

=
γ(Jrst)k

γ(Ost)k
, ∀pairs (r,s), r �= s, (9.16)

f̂ g
r =

̂T r
k
̂Or

k

=
γ(T r(yg))k

γ(Or)k
, (9.17)

σ̂g
r =

√

√

√

√

̂T r((yg)2)k − 2 f̂ g
r ̂T r(yg)k +( f̂ g

r )2 ̂Or
k

̂Or
k

. (9.18)

Proof. See [27] for an analogous proof of each estimate under the single observation
setting. �
Given the observation up to time k, new parameters ârst(k), f̂ g

r (k), σ̂g
r (k), 1≤ r,s, t ≤

N are provided by (9.16)–(9.18). The recursive filters for the unobserved Markov
chain and related processes in Proposition 9.1 can easily get updated every time
new information arrives. Thus, the parameter estimation is self-calibrating.

9.3 Implementation

We implement the recursive filters derived in the previous section on yields of 3-
month and 6-month US T-bills, 1- and 5-year US T-notes, and 20- and 30-year US
bonds. The data set of yields, compiled by the Bank of Canada, contains 718 daily
vector observations from 22 December 2008 to 31 October 2011. The evolution of
yields underwent several regimes as evidenced by the changes in parameter values
and the summary descriptive statistics (see Table 9.1) indicating that data are coming
from a distribution with heavy tails relative to the normal distribution. In particular,
we see that the values of excess kurtosis for the yield curves are higher than those
from a normal distribution. Regime-switching models are designed to capture this
type of behaviour of the data. Tables 9.1 and 9.2 display possible segregations of
the actual data into either two or three states based on mean and volatility levels.
This preliminary analysis of the actual data reveals that the yield volatilities are
related to mean and maturity. When maturity is short, yield volatilities are higher
with relatively high means; when maturity is long, yield volatilities are higher with
lower means. The data set on yield values is a six-dimensional observation process,
whose dynamics are given by

yi
k+1 = f i(xk)+σ i(xk)z

i
k+1, i = 1, . . . ,6,

where fi = ( f i
1, . . . , f i

N) ∈ RN and σ i = (σ i
1, . . . ,σ

i
N) ∈ RN are governed by the

WHMM x. The implementation procedure starts with choosing the initial values
for fi and σ i, i = 1, . . . ,6. All non-zero entries in the transition matrix Π are set to
1/N. The data are processed in 71 batches, and a batch consists of ten yield vec-
tors. Each algorithm run through a batch of data is termed as a complete algorithm
step. At the end of each step, new estimates for f, σ and A are computed. From
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Table 9.1 Descriptive summary statistics and data segregation into two states

Overall Dec/08–July/10 August/10–Nov/11
Maturity Mean STD Ex. Kurtosis Mean STD Mean STD
3-month 0.13 0.06 0.57 0.14 0.07 0.12 0.04
6-month 0.23 0.09 1.97 0.26 0.10 0.20 0.05
1-year 0.43 0.16 0.22 0.45 0.12 0.41 0.20
5-year 3.39 0.57 0.70 3.33 0.42 3.45 0.71
20-year 4.07 0.46 7.88 4.14 0.38 3.98 0.53
30-year 4.12 0.50 6.65 4.15 0.50 4.09 0.48

Table 9.2 Segregation of data into three states

Dec/08–Feb/09 March/09–April/11 May/11–Nov/11
Maturity Mean STD Mean STD Mean STD
3-month 0.17 0.07 0.13 0.04 0.09 0.04
6-month 0.34 0.08 0.20 0.04 0.18 0.06
1-year 0.54 0.11 0.38 0.14 0.44 0.19
5-year 3.11 0.47 3.41 0.57 3.71 0.53
20-year 3.97 0.43 4.14 0.44 4.01 0.50
30-year 3.86 0.55 4.30 0.38 4.01 0.50

the estimates of A, we construct …. These new estimates are in turn used as initial
parameter values in the succeeding batch data processing that employs the recur-
sive filter equations. This self-turning algorithm allows a forthnightly update of the
parameters. Figure 9.1 exhibits the plots for the evolution of the transition proba-
bilities under the two-state setting. The plot in the top panel shows the probabilities
of staying in the same regime as the previous step. The plot in the bottom panel
shows the probabilities of switching to a different state from the previous step. Ex-
cept for some jumps in the probability values around the 50th algorithm pass, the
bond market is quite stable as demonstrated by the relatively smooth evolution of
probabilities. The large changes correspond to yield fluctuations over a brief period
of time, e.g., T-bill rate increases from 0.29 on 31 December 2010 to 0.61 on 03
January 2011, and T-bond rate increases from 4.13 on 31 December 31 2010 to 4.55
on 05 January 2011. These significant changes during a short time span constitute
evidence of states switching that could be captured by WHMM. Additionally, these
market changes are reflected in the dynamics of parameter estimates. Figures 9.2
and 9.3 show plots depicting the movement through time of the optimal parameter
estimates for each yield vector under the two-state WHMM set-up. Furthermore, the
values of f and σ are positively correlated with the yield maturity, i.e., the longer
the maturity the higher the mean and volatility levels. The evolution of parameters
for 1-, 5- and 20-year yields support our preliminary analysis that the 1- and 5-year
yields have states characterized by high (low) means and high (low) volatilities.
The 20-year yield series, however, has states characterized by low (high) means and
high (low) volatilities. Such consistent behavioural mean-volatility relationship pat-
terns are not necessarily present for yields of instruments that have either very short
or very long maturities. It is worth mentioning that parameters appear to stablize
after approximately seven steps through this online algorithm. The same patterns
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Table 9.3 Parameter estimates at the end of final algorithm step for N = 3

Final estimation:

A matrix:

⎛

⎝

0.818 0.848 0.836 0.029 0.000 0.005 0.041 0.007 0.010
0.091 0.076 0.082 0.942 1.000 0.989 0.041 0.008 0.010
0.091 0.076 0.082 0.029 0.000 0.006 0.918 0.985 0.980

⎞

⎠

f matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.06 0.13 0.07
0.53 0.23 0.50
0.87 0.43 0.91
3.04 3.39 3.12
3.79 4.08 3.85
3.56 4.14 3.62

⎞

⎟

⎟

⎟

⎟

⎟

⎠

σ matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.16 0.06 0.07
0.08 0.08 0.05
0.02 0.16 0.05
0.35 0.57 0.20
0.48 0.45 0.21
0.44 0.49 0.21

⎞

⎟

⎟

⎟

⎟

⎟

⎠

are produced regardless of the choice of the initial values. The choice of the initial
parameter values though can affect the speed of convergence. For the three-state
setting, we report the final estimates of A, f and σ after the final algorithm step in
Table 9.3.
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9.4 Forecasting and Error Analysis

In this section, we shall use the model parameter estimates to forecast yield values
covering an h-day ahead horizon. The semi-martingale representation of x in (9.1)
leads to

E[ξ (xk+1,xk)|Yk] = …ξ (xk,xk−1) = …pk. (9.19)

Furthermore, we have

E[ξ (xk+h,xk+h−1)|Yk] = …hpk, for h = 1,2, . . . (9.20)

Recall that … is constructed from A, which is defined by

almv = P(xk+1 = el |xk = em, xk−1 = ev),

so that (9.19) gives

E[xk+1|Yk] = Apk. (9.21)

Hence, from (9.20) and (9.21),

E[xk+h|Yk] = Apk+h−1 = A…h−1pk. (9.22)

Using (9.22), the best estimate of the h-step ahead predicted yields yi
k+h given avail-

able information at time k is

ŷi
k+h = E[yi

k+h|Yk] = 〈fi,A…h−1pk〉, for 1 ≤ i ≤ d. (9.23)

The conditional variance for the predicted yields are calculated using

Var[yi
k+h|Yk] = (fi)�diag(A…h−1pk)f

i +(σ i)�diag(AΠh−1pk)σ i

−〈fi,AΠh−1pk〉2, (9.24)

where diag(A…h−1pk) is a diagonal matrix whose diagonal entries are the compo-
nents of the vector (A…h−1pk).

The determination of the optimal number of states given a particular data set is
an important statistical inference problem. Hardy [31] and Erlwein and Mamon [10]
applied the Akaike information criterion (AIC) to determine the optimal number of
regimes in HMM-based models. The AIC is a measure of the relative goodness of
fit of a statistical model. It offers a relative measure of lost information described
by the trade-off between bias and variance in the model construction. The AIC is
calculated as

AIC = 2s− 2log(L (θ )),
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where s is the number of parameters and L (θ ) denotes the likelihood function of
the model. The preferred model is the one that gives the minimal AIC value. For the
vector observation process yk in each pass, the log-likelihood of the parameter set θ
is given by

L (θ ) =
# in batch

∑
l=1

d

∑
i=1

(

−1
2

log
(

2πσ i(xl−1)
2)−

(

yi
l − f i(xl−1)

)2

2σ i(xl−1)2

)

. (9.25)

The calculated AIC values for the one-, two-, three- and four-state models after
each algorithm step are presented in Fig. 9.4. Both one- and two-state models are
reasonable in capturing the dynamics of our data gauging from this criterion with
the one-state model producing the smallest AIC values. The results indicate that both
one- and two-state models perform better than the three- and four-state models. The
model we proposed requires the estimation of (N2 −1)N +2mN parameters, where
m is the number of securities. The number of needed estimations increases rapidly
as N increases leading to higher AIC associated. The AIC, however, cannot measure
how well a model fits the actual time series data. In order to assess the goodness of
fit of the one-step ahead forecasts, we evaluate the root mean square error (RMSE)
for the one-, two-, three- and four-state WHMM-based term structure models. The
results of this error analysis are given in Table 9.4.

Clearly, the two-state model outperforms the model with no switching in terms
of lower forecasting errors. The large improvement in the error indicates that the
models with regime switching can generate better price forecasts. The comparison
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Table 9.4 RMSE for one-step ahead predictions versus actual values

State setting 3-month 6-month 1-year 5-year 20-year 30-year
1 0.0558 0.0864 0.1631 0.4923 0.4363 0.4732
2 0.0539 0.0821 0.1458 0.3418 0.2994 0.3590
3 0.0558 0.0854 0.1619 0.4921 0.4357 0.4722
4 0.0524 0.0806 0.1426 0.3656 0.3194 0.3710

of error measure also shows that the four-state model is able to forecast the short
maturity yields better than the two-state model. However, the improvement is not
significant. Since a larger number of state increases the complexity of parameter
estimation, a two-state model is sufficient to model the yield values.

Figure 9.5 exhibits the actual yields and one-step ahead forecasted yields for
the 3- and 6-month T-bills, 1- and 5-year T-notes and 20- and 30-year T-bonds. The
99% confidence interval for the predicted yields is also displayed and was calculated

using E[yi
k+h|Yk]± 2.575

√

Var[yi
k+h|Yk]. The resulting forecasts follow the actual

data quite well. Empirical results confirm that the WHMM can capture most of the
market dynamics.

In [27], the forecasting performance of the one-dimensional WHMM is com-
pared with that of the regular HMM using the data set on S&P500 prices. The results
suggest that the WHMM outperforms the HMM over a long forecasting horizon. In
this empirical implementation, we also evaluate the goodness of fit of the h-day
ahead forecasts using RMSE and absolute percentage error (APE) as benchmarks.
The multi-dimensional WHMM-based term structure model is compared to the reg-
ular multi-dimensional HMM model using these two criteria. The RMSE for an
h-day ahead prediction of yi, i = 1, . . . ,d is given by

RMSE(i,h) =

√

√

√

√

1
M− h

M−h

∑
k=1

(yi
k+h − ŷi

k+h)
2,

where M is the time horizon. Similarly, the APE for an h-day ahead prediction of yi

is defined by

APE(i,h) =
1

M− h

M−h

∑
k=1

∣

∣

∣

∣

∣

yi
k+h − ŷi

k+h

yi
k+h

∣

∣

∣

∣

∣

.

Following the idea in Date et al. [32], we calculate the average RMSE (AvRMSE)
and average APE (AvAPE) over six yields to measure the prediction performance.
AvRMSE(h) is the average of RMSE(i,h) over yield values with different maturi-
ties, i.e.,

AvRMSE(h) =
1
d

d

∑
i=1

RMSE(i,h).
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AvAPE(h) denotes the average of APE(i,h) over yield values with different matu-
rities, i.e.,

AvAPE(h) =
1
d

d

∑
i=1

APE(i,h).

These error analyses are displayed in Tables 9.5–9.8. In Table 9.5, the one-state
WHMM coincides with the one-state HMM. Under the WHMM framework, mem-
ory is a property of the underlying market state process. A one-state Markov chain
stays in only one state throughout the progression of time. That is, there is no mem-
ory of visiting other states in the previous steps. This is why WHMM collapses to
the HMM set-up under the one-state setting. The two-state WHMM gives a better fit
than the HMM in terms of lower forecasting errors with respect to both metrics. The
differences of errors between the three-state WHMM and HMM models, shown in
Table 9.7, are too small to make any practical significance. The four-state WHMM
seems to outperform the regular HMM in the long-horizon forecasting under the
RMSE but not for the APE metric.

Table 9.5 Error analysis of WHMM and HMM models under the one-state setting

h-Day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM/HMM 0.2845 0.2862 0.2825 0.2883 0.2842 0.2828 0.2943
AvAPEh of WHMM/HMM 0.2843 0.2687 0.2690 0.2722 0.2817 0.3073 0.3018

Table 9.6 Error analysis of WHMM and HMM models under the two-state setting

h-Day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2137 0.2175 0.2173 0.2263 0.2241 0.2812 0.2351
AvRMSEh of HMM 0.2738 0.2773 0.2742 0.2815 0.2794 0.3054 0.2897
AvAPEh of WHMM 0.2465 0.2352 0.2393 0.2436 0.2546 0.2812 0.2769

AvAPEh of HMM 0.2789 0.2643 0.2656 0.2694 0.2794 0.3054 0.2998

Table 9.7 Error analysis of WHMM and HMM models under the three-state setting

h-Day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2839 0.2857 0.2819 0.2877 0.2838 0.2725 0.2851
AvRMSEh of HMM 0.2855 0.2841 0.2844 0.2864 0.2866 0.2328 0.2451
AvAPEh of WHMM 0.2828 0.2673 0.2676 0.2707 0.2804 0.2782 0.2763

AvAPEh of HMM 0.2855 0.2867 0.2670 0.2773 0.2875 0.2849 0.2805
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Table 9.8 Error analysis of WHMM and HMM models under the four-state setting

h-Day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2219 0.2252 0.2231 0.2320 0.2318 0.2307 0.2399
AvRMSEh of HMM 0.2098 0.2057 0.2182 0.2291 0.2368 0.2437 0.2514
AvAPEh of WHMM 0.2485 0.2364 0.2388 0.2416 0.2544 0.2805 0.2775

AvAPEh of HMM 0.2086 0.2113 0.2129 0.2172 0.2218 0.2346 0.2406

9.5 Conclusion

In this paper, we put forward a multivariate WHMM-driven term structure model
where the means and volatilities of vector observations are governed by a second-
order Markov chain in discrete time. The proposed model is tested on time series
data of yields covering 3- and 6-month US T-bills, 1- and 5-year US T-notes and 20-
and 30-year US T-bonds. A multivariate filtering technique along with the EM algo-
rithm was employed in the optimal estimation of parameters. The algorithms were
run in batches and parameters are updated when new information arrives thereby
making the model self-tuning. The empirical results of the implementation of fil-
ters and parameter estimation demonstrate the adequacy of the proposed model in
capturing market dynamics and regime changes in the data. We applied the Akaike
information criterion to determine the optimal number of regimes and assessed the
goodness of fit of the one-step ahead forecasts generated by the one-, two-, three-
and four-state models. We found that within the data set examined, a two-state model
is deemed sufficient to capture the term structure dynamics. An analysis of the h-
day ahead predictions was also presented and results from WHMM were compared
with those from the regular HMM. This paper manifests that WHMM outperforms
the HMM in terms of low forecasting errors and we attribute such improved per-
formance to building a model that takes into account both regime switching and
memories in the data series.
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Chapter 10
Numerical Methods for Optimal Annuity
Purchasing and Dividend Optimization
Strategies under Regime-Switching Models:
Review of Recent Results

Zhuo Jin and George Yin

10.1 Introduction

In actuarial science, many stochastic control problems such as designing optimal
risk controls, developing dividend payment policies, and hedging for contingent
claims. for an insurance corporation have drawn increasing attention. The actual
applications may vary, the problems of interest all involve stochastic processes in
the problems that depend on controls. We are interested in determining the maximal
value which is the so-called value function and the corresponding optimal control
strategies. To obtain the optimal control and the value function, one basic approach
is to use the dynamic programming methods to solve Hamilton–Jacobi–Bellman
(HJB) equations. A comprehensive study of stochastic control problems in insurance
can be found in [18].

Empirical studies indicate that traditional stochastic models often fail to cap-
ture more extreme movements. To better reflect the reality, one of the recent trends
is to use regime-switching models. Hamilton (1989) in [9] introduced a regime-
switching time series in the study of data analysis and time series. Recent work on
regime-switching models and related issues in insurance applications can be found
in [19, 22]. The models contain both continuous dynamics and discrete events and
are more versatile. The discrete event describes, for example, market behaviors and
other economics effects that cannot be modeled as a differential equation. The mod-
els that we are interested in this chapter can be thought of as a number of controlled
diffusion processes modulated by a random switching device. They can be treated as
two-component processes, in which one component delineates the diffusion behav-
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ior, and the other component describes the discrete events involved. For example,
the market modes can be formulated as a finite-state Markov chain that takes val-
ues 1 and 2. We use 1 to represent the bullish (up-trend) market and 2 the bearish
(down-trend) market. The switching between 1 and 2 describes the market changes.
In this chapter, we assume that the Markov chain has a finite state space. For differ-
ent discrete states, the rates of yield and volatility are different.

With the traditional dynamic programming approach, the HJB equations can be
obtained. It would be ideal to find the explicit solutions under suitable assumptions.
However, the underlying systems are normally highly nonlinear. In addition, for the
regime-switching model, a coupled system of HJB equations instead of one HJB
equation needs to be solved due to the Markov switching. To obtain closed-form
solutions becomes very difficult. Furthermore, a large class of dividend payment
problems will involve singular and impulse controls. The optimal value function will
satisfy a coupled system of quasi-variational inequalities. It is virtually impossible
to solve them analytically. Thus, a numerical approach for solving such problems is
a viable alternative.

In this study, we survey some recent progress on numerical methods for stochas-
tic control problems arising in insurance risk management. The basic models involve
regime switching that delineates the coexistence of continuous dynamics and dis-
crete events. In this chapter, we review our results obtained in [10] and [11]. Addi-
tional numerical examples different from that in the aforementioned papers are pro-
vided for demonstration. We extend the Markov chain approximation methodology
developed by Kushner and Dupius (2001) in [13] to the regime-switching models in
the problems of actuarial science and finance. In what follows, a generalized formu-
lation of hybrid controlled diffusion model will be presented at first. Depending on
if we are dealing with regular control or singular control, the dynamic programming
principle will yield a coupled system of HJB equations or QVIs (if singular control
is contained). To deal with the numerical algorithm of Markov chain method for
solving the system of HJB equations or QVIs, we will construct a two-component
discrete-time controlled Markov chain to approximate the diffusion process and the
Markov switching term. With the piecewise constant interpolation and upwind dis-
cretization, the corresponding dynamic programming equation and transition prob-
abilities will be obtained. To guarantee that the approximating Markov chain is in
good alignment with the original diffusion process, which is technically known as
consistency of the numerical approximation. The precise definition of local consis-
tency will be introduced and verified. Under simple conditions, the convergence of
the approximation sequence to the diffusion process and the convergence of the ap-
proximation to the value function will be confirmed. In the actual computation, we
simply use the well-known policy iteration (or policy improvement) or value itera-
tion method for implementation. It is also worth mentioning that the Markov chain
approximation method requires little regularity of the value function and/or analytic
properties of the associated systems of HJB equations and/or QVIs. In reality, for a
great many cases, the actual analytic properties of the solutions are rarely known.

In this work, we examine optimal annuity purchasing strategies and dividend op-
timization problems. We concentrate on the numerical treatments of such problems.
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The rest of the chapter is organized as follows. The optimal annuity-purchasing
problem is considered in Sect. 10.2. The controlled hybrid wealth models are pre-
sented in Sect. 10.2.2. The constant hazard rate and the corresponding optimal con-
trol are considered in Sect. 10.2.3. Section 10.2.4 presents the more general hazard
rate models and the associated numerical algorithms for finding the optimal strate-
gies. Section 10.2.5 presents two examples with constant hazard rate and Gompertz
hazard rate, respectively. Section 10.3 considers the problem of optimal dividend
payment policies. The formulation and assumptions are presented in Sect. 10.3.2.
It is also shown that the value functions are twice continuously differentiable with
respect to the continuous component and satisfy the system of HJB equations. Sec-
tion 10.3.3 deals with the Markov chain approximation method. The approximating
Markov chain and the algorithm for solving the dynamic programming equation are
presented. Section 10.3.4 deals with the convergence of the approximation scheme.
Numerical examples are provided in Sect. 10.3.5 to illustrate the performance of the
approximation procedure. In this chapter, we only present the conditions needed and
the corresponding results, whereas the verbatim proofs of the results can be found
in [10] and [11]. Finally, some additional remarks are provided in Sect. 10.4.

10.2 Optimal Annuity-Purchasing Strategies

10.2.1 Motivation

Due to the collapse of the housing market and the financial crisis, trillions of dollars
have been lost. The retirement security may be one of the greatest casualties of the
recent financial crisis. More and more people are concerned with their future finan-
cial safety after retirement. How to avoid financial ruin becomes a pressing issue.
To secure the post-retirement life, purchasing annuities from insurance companies is
of crucial importance. The recipient of the annuity could receive a continuous fixed
payment throughout the life. This life stream income could guarantee the retiree
a given level of consumption. On the other hand, since the Swedish actuary Filip
Lundberg introduced the classical compound-Poisson risk model in 1903, proba-
bility of ruin has been among the prime quantities to measure the insurance risk.
Therefore, to measure the financial risk of purchasing annuity and managing port-
folio becomes a big issue.

According to the Transamerica Center for Retirement Studies, the number of U.S.
workers who are confident in their ability to retire comfortably has declined signif-
icantly in the past year. Recently, Vanderhei and Copeland (2003) in [20] reported
that American retirees would have at least $45 billion less in retirement income
in 2030 than needed to cover their expenses. This shortfall highlights the pressing
need of better strategies to manage the wealth and to avoid financial ruin. Annu-
ities can be a very good way of saving money and securing post retirement bene-
fits. A fixed-payout life annuity is a financial instrument that pays a fixed amount
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periodically throughout the life of the recipient. It is crucial to choose the right plan
and the right time to invest in annuity products. Therefore, motivated by the desire
to apply probability optimization to problems faced by retirees, we find the optimal
annuity-purchasing strategy for an individual who seeks to minimize the probability
of wealth running out zero while the individual is still alive.

In the literature, Yaari (1965) in [23] proved that in the absence of bequest mo-
tives and in a deterministic financial economy, consumers would annuitize all of
their liquid wealth. This result was generalized to a stochastic model by Richard
(1975) in [17]. Recently, Davidoff et al. (2005) in [5] demonstrated the robustness of
Yaari’s result. Similarly, Kapur and Orszag (1999) in [12] and Brown (2001) in [3]
provide theoretical and empirical guidance on the optimal time to annuitize under
various market structures. Optimal investment strategy to minimize the probability
of lifetime ruin was considered by Milevsky et al. (2006) in [15], in which they
provided the annuity-purchasing strategies to minimize the probability of lifetime
ruin.

Along another line, recent applications in financial engineering demand the con-
sideration of systems that better describe the random environment. Unlike the pre-
vious work, where wealth is described as Brownian motion risk model (see [7])
or compound Poisson model (see [8]), the wealth in our chapter is modeled as a
regime-switching diffusion modulated by a continuous-time Markov chain. Based
on Markov chain approximation techniques, an approximation procedure to find op-
timal annuity-purchasing strategies for minimizing the probability of lifetime ruin
was constructed. Several interesting results that are consistent with the economics
intuition were obtained.

10.2.2 Formulation

We use a controlled hybrid diffusion model to represent the wealth. For simplicity,
assume the system to be one dimensional. Let (Ω ,F ,P) be a probability space and
{F t} be a filtration defined on it. Suppose that the discrete event process α(·) is
a continuous-time Markov chain having state space M = {1, . . . ,m} and generator
Q = (qι�). Let ω(·) be a standard Ft -Wiener process, and u(·) be an Ft -adapted
control, taking value in a compact set U . Such controls are said to be admissible.

First, for each ι ∈ M , define the excess consumption Z(s, ι) = c(ι)− A(s, ι),
where c(ι) denotes a constant rate that the individual consumes and A(s, ι) is a
nonnegative income rate at time s after any annuity purchases at that time. Then,
Z(s, ι) is the net income the decision maker requires. Then the dynamic system can
be written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

dW (s,α(s)) = r(α(s)W (s,α(s))+ [μ(s,α(s))− r(α(s))u(s)−Z(s,α(s))]ds
+σ(s,α(s))u(s)dω + a(s)dZ(s),

W (t,α(t)) = w ≥ 0,
Z(t,α(t)) = z ≥ 0,

(10.1)
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where for each ι ∈ M , W (s, ι) denotes the wealth of the individual at time s. Let
u(s) be the amount that the decision maker invests in the risky asset at time s, and
0 ≤ u ≤ W . We assume that the interest rate at time s is given by r(α(s)). The
individual can invest in a riskless asset with the yield rate r(ι) for each ι ∈ M ,
and a risky asset with return rate μ(s, ι) > r(ι) and volatility σ(s, ι) > 0 for all
ι ∈ M . We use λ (s) to denote the hazard rate at age s. The actuarial present value
of perpetuity with the life stream payment of one dollar per year by the interest rate
r(α(t)) and the hazard rate λ with the discount is

a(t) =
∫ ∞

0
exp(−r(α(t))s)exp

(

−
∫ t+s

t
λ (v)dv

)

ds. (10.2)

Since if w ≥ za(t), the individual can purchase the annuity immediately to guar-
antee a net income of z to avoid the lifetime ruin. Let τ0 be the time when the
wealth reaches zero and τd be the random time of death of the individual. Then
the probability of lifetime ruin ψ at time t can be represented on the domain
D = {(w,z, t,α(t)) : 0 ≤ w ≤ za(t),z ≥ 0, t ≥ 0,α(t) ∈ M } as

ψ(w,z, t,α(t))
= inf

{u,Z}
P[τ0 < τd |W (t,α(t)) = w,Z(t,α(t)) = z,τ0 > t,τd > t]. (10.3)

Note that τ0 = τ0(x,u). That is, it depends on x as well on the control u. How-
ever, for notational simplicity, in what follows, we suppress the (x,u) depen-
dence. Thus, ψ(w,z, t,α(t)) = 0 when w ≥ za(t). Denote the cost function P[·] by
ϕ(w,z, t,α(t),u). We can prove the following results. The proofs are omitted for
brevity.

Proposition 10.1. The probability of lifetime ruin is a constrained viscosity solution
of the system of HJB variational inequalities

max
[

λ (t)ψ−ψt − (rw− z)ψw −min
u
[(μ− r)uψw+

1
2
σ2u2ψww]

+Qψ(w,z, t, ·)(ι),a(t)ψw +ψz

]

= 0, ι ∈ M .
(10.4)

Define V (x, t, ι) = ψ(x,1, t, ι), where x = w/z ∈ G and G denotes the range of
x. Since the probability of lifetime ruin depends only on the ratio of wealth and in-
come, which isψ(x,1, t, ι) =ψ(w,z, t, ι). We aim to find the optimal investment pro-
portion in risky asset u(t) to minimize the ruin probability. Then the value function is

V (x, t, ι) = inf
u∈U

ϕ(w,z, t, ι,u), ι ∈ M . (10.5)

For an arbitrary u ∈U , ι = α(t) ∈ M , define an operator L u
t by

L u
t V (x, t, ι) =Vt +Vx(x, t, ι)b(x, t, ι,u)+

1
2

Vxx(x, t, ι)ρ2(t, ι,u)+QV(x, t, ·)(ι),
(10.6)
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where Vx and Vxx denote the first and second derivatives with respect to x, Vt is the
derivative with respect to t, and

b(x, t, ι,u) = r(ι)x− 1+(μ(t, ι)− r(ι))u,
ρ(t, ι,u) = σ(t, ι)u,
QV (x, t, ·)(ι) =∑

� �=ι
qι�(V (x, t, �)−V(x, t, ι)), ι ∈ M .

Let U be the collection of admissible controls, the value functions have the fol-
lowing properties.

Proposition 10.2. The probability of lifetime ruin can be written as

λ (t)V (x, t, ι)− inf
u∈U

L u
t V (x, t, ι) = 0, ι ∈ M , (10.7)

for x < a(t) with boundary conditions V (0, t, ι) = 1 and V (a(t), t, ι) = 0 with the
transversality condition

lim
s→∞

exp(−
∫ s

t
λ (v)dv)E[V (X∗

s ,s, ι)|Xt = x] = 0,

in which X∗
s is the optimally controlled Xs.

10.2.3 Constant Hazard Rate

In this section, we assume the forces of mortality to be a constant. That is, λ (t) = λ
for all t ≥ 0. Define an operator L u

L uV (x, ι) =Vx(x, ι)b(x, ι,u)+
1
2

Vxx(x, ι,u)ρ2(ι,u)+QV(x, ·)(ι), ι ∈ M . (10.8)

Using (8), (7) becomes

λV (x, ι)− inf
u∈U

L uV (x, ι) = 0, (10.9)

and the boundary conditions are V (0, ι) = 1 and V (1/(min
i

r(i)+λ ), ι) = 0, i ∈ M

Next, we present the local consistency for our approximating Markov chain.

Lemma 10.1. The Markov Chain {ξ h
n ,αh

n} with proper transition probabilities
(ph(·)) is locally consistent with the stochastic differential equation in (1).

To proceed, we use the Markov chain approximation method to construct the se-
quence, then piecewise constant interpolation is obtained here with appropriately
chosen interpolation intervals. Using (ξ h

n ,αh
n ) to approximate the continuous-time

process (x(·),α(·)), we defined the continuous-time interpolation (ξ h(·),αh(·)),
uh(·) and ηh(t). Define D h

t as the smallest σ -algebra of {ξ h(s),αh(s),uh(s),ηh(s),s≤
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t}. In addition, U h is equivalent to the collection of all piecewise constant admis-
sible controls with respect to D h

t .

Lemma 10.2. The interpolated process of the constructed Markov chain {αh(·)}
converges weakly to α(·), the Markov chain with generator Q = (qι�).

We omit the details of proof here. The lemma above can be proved using the
idea of two-time-scale Markov chains worked in [25]. To continue, we need the
following assumptions.

(A1) For each ι ∈ M and each u ∈U , the function b(·, ι,u) and σ(·, ι) are contin-
uous.

(A2) For each ι ∈ M , σ(s, ι) > 0,∀s > 0.
(A3) Let u(·) be an admissible ordinary control with respect to ω(·) and α(·), and

suppose that u(·) is piecewise constant and takes only a finite number of values.
Then for each initial condition, there exists a solution to the dynamic system
where m(·) is the relaxed control representation of u(·). This solution is unique
in the weak sense.

Theorem 10.1. Assume (A1) and (A2). Let {ξ h
n ,αh

n ,n < ∞}, the approximating
chain, be constructed with transition probabilities, {uh

n,n <∞} be a sequence of ad-
missible controls, (ξ h(·),αh(·)) be the continuous-time interpolation, mh(·) be the
relaxed control representation of {uh

n,n < ∞}. Then (ξ h(·),αh(·),mh(·),ωh(·)) is
tight. Denote the limit of weakly convergent subsequence by (ξ (·),α(·),m(·),ω(·))
and denote by Ft the σ -algebra generated by {x(s),α(s),m(s),ω(s),s ≤ t}. Then
ω(·) is a standard Ft -Wiener process, and m(·) is an admissible control.

By using the Skorohod representation, we can obtain the convergence of the cost
function. As h→ 0, ϕh(x, ι,mh)→ϕ(x, ι,m). We further obtain the following result.

Theorem 10.2. Assume (A1)–(A4). V (x, ι) and V h(x, ι) are value functions defined
in (5) and the corresponding approximation sequence, respectively. Then V h(x, ι)→
V (x, ι) as h → 0.

10.2.4 General Hazard Rate

In this section, we assume the forces of mortality are not constant, but a continuous
function with respect to t for all t ≥ 0. Define another function ĝ(x,T ) to approxi-
mate the transversality condition of (10.2), and ĝ(x,T ) → 0 as T → ∞. Under this
condition, (7) becomes

λ (t)V (x, t, ι)− inf
u∈U

L u
t V (x, t, ι) = 0 (10.10)

with the boundary condition V (0, t, ι) = 1 and V (a(t), t, ι) = 0, and terminal condi-
tion as V (x,T, ι) = ĝ(x,T ).
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Theorem 10.3. Assume (A1) and (A2). Let {ξ h,δ
n ,αh,δ

n ,n < ∞}, the approximat-

ing chain, be constructed with transition probabilities, {uh,δ
n ,n < ∞} be a se-

quence of admissible controls, (ξ h,δ (·),αh,δ (·),λ h,δ (·)) be the continuous-time in-

terpolation, mh,δ (·) be the relaxed control representation of {uh,δ
n ,n < ∞}. Then

(ξ h,δ (·),αh,δ (·),mh,δ (·), ωh,δ (·),λ h,δ (·)) is tight. Denote by Ft the limit of weakly
convergent subsequence by (ξ (·),α(·),m(·),ω(·),λ (·)) and denote the σ -algebra
generated by {x(s),α(s),m(s),ω(s),λ (s),s ≤ t}. Then ω(·) is a standard Ft -
Wiener process, and m(·) is an admissible control.

Similar to the constant hazard rate case, it is not hard to get the convergence of the
cost function with the general hazard rate by virtue of the Skorohod representation.
Convergence of the value function can also be obtained.

Theorem 10.4. Assume (A1)–(A4). V (x, t, ι) and V h,δ (x, t, ι) are value functions
defined in (5) and corresponding approximation sequence, respectively. Then V h,δ

(x, t, ι)→V (x, t, ι) as h,δ → 0.

10.2.5 Examples

In this section, we consider a couple of examples with constant and more general
hazard rates with two regimes, respectively. For simplicity, we deal with systems
that are linear in the wealth. The dynamic system becomes

dW (s,α(s)) = rA(α(s))W (s)+B(α(s))(μ(s)− r))u(s)−Z(s))ds
+C(α(s))σ(s)u(s)dω + a(s)dZ(s).

(10.11)

Suppose r = 0.01 (the yield rate of riskless asset), μ = 0.04 (the yield rate of risky
asset), σ = 0.1 (the volatility of the risky asset), z = 1 (the individual consumes one
unit wealth per year).

Example 10.1. Take λ = 0.03, the hazard rate is 0.03 such that the expected future
lifetime of individual is 33.3 years. The Markov Chain α(·) ∈ M with M = {1,2}
and generator Q, and

Q =

(−0.2 0.2
0.8 −0.8

)

,

{

A(1) = 1
A(2) = 2,

{

B(1) = 4
B(2) = 1,

{

C(1) = 2
C(2) = 1.

(10.12)

We use the value iteration to numerically solve the optimal control problem, then
we obtain the relationship between wealth and the probability of lifetime ruin as in
Fig. 10.1. In addition, we compute the probability of lifetime ruin under the assump-
tion of exponential future lifetime for an individual with wealth $1 who invests in
the riskless asset only with constant interest rate and self-annuitizes. The probability
of lifetime ruin will be

P[τ0 < τd ] = exp(−rτd) = (1+ r/λ )−
λ
r = 0.422.
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Moreover, Fig. 10.1 shows that the probability of ruin with life annuity purchase is
less than 0.444 when the initial wealth w ∈ (0.5,1). Comparing to the probability
of lifetime ruin without life annuity purchasing and the consumption z = r + λ =
0.04, if the individual buys the life annuity as in (1), the individual will have less
probability of financial ruin even with lower wealth than the individual with self-
annuitization to maintain the same consumption.
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Fig. 10.1 Constant hazard rate with two regimes. (a) Probability of lifetime ruin versus wealth. (b)
Comparison of ruin probability between annuity-purchasing and self-annuitization.

Example 10.2. In this example, we consider Gompertz hazard rate λ (t) =
exp( t−m̄

b )/b, where m̄ is a model value and b is a scale parameter, we choose m̄ = 90
and b = 9. We also consider the terminal condition to be exponentially decay as
ĝ(x,T ) = exp(−xT). We consider the same Markov chain as in the last example. To
illustrate the impact of ages of the investors on the probability of lifetime ruin, three
age levels are presented as t = 30, t = 50, t = 70. From Fig. 10.2, we can see that the
individual with the same wealth but younger age will more likely to outlive his or
her wealth.
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Fig. 10.2 Proportion of assets vs. time. (a) Probability of lifetime ruin versus wealth with age 30,
(b) probability of lifetime ruin versus wealth with age 50, (c) probability of lifetime ruin versus
wealth with age 70
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10.3 Optimal Dividend Payment Policies

10.3.1 Motivation

Designing dividend payment policies has long been an interesting and important
research issue in actuarial science and finance literature. The dividend decision is
crucial because not only does it represent an important signal about a firm’s fu-
ture growth opportunities and profitability but also may influence the investment
and financing decisions of firms and the wealth of the policyholders. For insurance
companies, because of the nature of their product, insurers tend to accumulate rela-
tively large amounts of cash, cash equivalents, and investments in order to pay future
claims and avoid financial ruin. The study of insurance companies’ dividend deci-
sions is thus desirable because the payment of dividends to shareholders may reduce
an insurer’s ability to survive adverse investment and underwriting experience. Re-
cently, the financial crisis has led to the controversial discussion on the dividend
policy of European insurance industry, see [16].

In actuarial science, stochastic optimization problems such as designing optimal
risk controls for an insurance corporation have drawn increasing attention since the
introduction of the classical collective risk model in [14], where the probability of
ruin was used to measure the risk. De Finetti (1957) in [6] proposed a dividend op-
timization problem after realizing that the surplus is not realistic in practice to reach
arbitrarily high and exceed any finite level. Instead of considering the safety aspect
(ruin probability), aiming at maximizing the expected discounted total dividends un-
til ruin by assuming the surplus process follows a simple random walk, he showed
that the optimal dividend strategy is a barrier strategy. Since then, many researchers
have analyzed this optimization problem under more realistic assumptions and ex-
tended its range of applications. Some recent work can be found in [1, 2, 4, 7] and
references therein.

In particular, dividend optimization has been widely studied using regime-switch-
ing models such as optimal dividend payment policy with ruin constraint, reinsur-
ance strategy, and investment portfolio allocation, see [21, 24]. In this part, the sur-
plus process is modulated by a jump diffusion with regime-switching process to
study the maximization of the expected discounted total dividends until ruin. The
process describing the regime-switching is assumed to be a continuous-time Markov
chain representing the random environment. As mentioned above, this model ap-
pears to be more versatile and more realistic than the classical compound Poisson
and diffusion models. Thus, we solve a system of HJB partial differential equa-
tions instead of a single HJB equation under this model, which is very difficult to
solve analytically. We aim to construct feasible numerical approximation schemes
for finding a good approximation to the underlying problems.
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10.3.2 Formulation

To delineate the random environment and other random factors, we use a continuous-
time Markov chain α(t) whose generator is Q = (qι�) ∈ R

m×m and state space is
M = {1, . . . ,m}. Let νn be the arrival time of the nth claim. Corresponding to each
ι ∈ M , Nι (t) = max{n ∈ N : νn ≤ t} is the number of claims up to time t, which is
a Poisson counting process.

The surplus process under consideration is a regime-switching jump diffusion.
For each ι ∈ M , the premium rate is c(ι) > 0 and the volatility is σ(ι) > 0. Let
Rι(t) for each ι ∈ M be a jump process representing claims with arrival rate λι ,
claim size distribution Fι , and zero initial surplus. The function q(x, ι,ρ) is assumed
to be the magnitude of claim size, where ρ have the distribution Π(·). Then the
Poisson measure Nι (·) has intensity λιdt×Πι(dρ) where Πι (dρ) = fι (ρ)dρ . The
surplus process before dividend payment is given by

dx̃(t)= ∑
ι∈M

I{α(t)=i}(c(ι)dt+σ(ι)dw(t)− dRι (t))

=
[

c(α(t))dt+σ(α(t))dw(t)
]

−
∫

R+

q(x(t−),α(t),ρ)Nα(t)(dt,dρ),

(10.13)

where IA is the indicator function of the set A, c(ι) > 0 and σ(ι) > 0 for each
ι ∈ M , and w(t) is a standard Brownian motion. Assume that q(·, ι,ρ) is contin-
uous for each ρ and each ι ∈ M . We are working on a filtered probability space
(Ω ,F ,{Ft},P), where Ft is the σ -algebra generated by {α(s),w(s),Nι (s) : 0 ≤
s ≤ t, ι ∈ M }.

Note that the drift c describes the premium magnitude collected by the insurance
company, and is modulated by a finite Markov Chain α(t), which represents the
market mode and other economic conditions. It is used to determine the amount
charged by the insurer and mainly depends on the insurance coverage, not surplus.
The volatility σ refers to measures of risk in the market here. Like the drift c, it
is mainly affected by the market mode. From a numerical approximation point of
view, making c and σ x-dependent will not introduce any essential difficulty.

A dividend strategy D(·) is an Ft -adapted process {D(t) : t ≥ 0} correspond-
ing to the accumulated amount of dividends paid up to time t such that D(t) is a
nonnegative and nondecreasing stochastic process that is right continuous and have
left limits with D(0−) = 0. In general, a dividend process is not necessarily an abso-
lutely continuous process. In this chapter, we consider the optimal dividend strategy,
which is either a barrier strategy or a band strategy. In both cases, the dividend rate
is the same as the premium rate. As a result, D(t) is absolutely continuous. Denote
Γ = [0,C]. Since the optimal dividends policy is either a barrier or a band strategy,
D(t) is an absolutely continuous process. We write D(t) as

dD(t) = u(t)dt, 0 ≤ u(t)≤C, (10.14)
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where u(t) is an Ft -adapted process and 0 <C < ∞. Note that if C < c(ι) for some
ι ∈ M , this formulation will lead to a threshold strategy. If C ≥ c(ι) for all ι ∈ M ,
the optimal strategy is either a barrier or band strategy. Then the surplus process in
the presence of dividend payments is given by

dx(t) = dx̃(t)− dD(t), x(0) = x ≥ 0 (10.15)

for all t < τ and we impose x(t) = 0 for all t > τ , where τ = inf{t ≥ 0 : x(t) ≤ 0}
represents the time of ruin. Denote Γ = [0,C], 0 < C < ∞. Suppose the dividend
is paid at a rate u(t), where u(t) is an Ft -adapted process, and the optimal payout
strategy is applied subsequently. Then the expected discounted dividend until ruin
is given by

J(x, ι,u(·)) = Ex,ι

[

∫ τ

0
e−rtu(t)dt

]

, ι ∈ M , (10.16)

where Ex,ι denotes the expectation conditioned on x(0) = x and α(0) = ι .
Combining (13) and (15), we can rewrite the surplus process with the dividend

payment as

dx(t) =
[

c(α(t))− u(t)
]

dt+σ(α(t))dw(t)− dR(t),

R(t) = ∑
ι∈M

I{α(t)=ι}Rι (t) =
∫ t

0

∫

R+

q(x(t−),α(t),ρ)Nα(t)(dt,dρ),

x(0) = x.

(10.17)

Admissible Strategies. A strategy u(·) = {u(t) : t ≥ 0} satisfying u(t) ∈ Γ being
progressively measurable with respect to σ{α(s),w(s),Nι (s) : 0 ≤ s ≤ t, ι ∈ M }
is called an admissible strategy. Denote the collection of all admissible strategies
or admissible controls by A . A Borel measurable function u(x,α) is an admissible
feedback strategy or feedback control if (17) has a unique solution.

We are interested in finding the optimal dividend rate u(t) that is bounded and is
a function of x and α to maximize the expected utility function J(x, ι,u(·)). Define
V (x, ι) as the optimal value of the corresponding problem. That is,

V (x, ι) = sup
u(·)∈A

J(x, ι,u(·)). (10.18)

Setting u(t) to any quantity such that it does not change the value of V (x(τ),α(τ))
for t ≥ τ , that is, u(t) = 0 for t ≥ τ , Therefore, (16) can be rewritten as

J(x, ι,u(·)) = Ex,ι

[
∫ ∞

0
e−rtu(t)dt

]

. (10.19)

The optimal dividend problem is formulated as
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⎪

⎪

⎪

⎪

⎪

⎪

⎩

maximize : J(x, ι,u(·)) = Ex,ι

∫ ∞

0
e−rtu(t)dt,

subject to : dx(t) = [c(α(t))− u(t)]dt+σ(α(t))dw(t)

−
∫

R+

q(x(t−),α(t),ρ)Nα(t)(dt,dρ),

x(0) = x, α(0) = ι, u(·) ∈ A ,
value function : V (x, ι) = sup

u(·)∈A
J(x, ι,u(·)), for each ι ∈ M .

(10.20)

For an arbitrary u ∈ A , ι = α(t) ∈ M , and V (·, ι) ∈C2(R), define an operator L u

by

L uV (x, ι)=Vx(x, ι)(c(ι)− u)+
1
2
σ(ι)2Vxx(x, ι)+QV (x, ·)(ι)

+λι
∫ x

0
[V (x− q(x, ι,ρ), ι)−V(x, ι)] fι (ρ)dρ ,

(10.21)

where Vx and Vxx denote the first and second derivatives with respect to x, and

QV(x, ·)(ι) =∑
� �=ι

qι�(V (x, �)−V(x, ι)).

Note that

J(x, ι,u) = Ex,ι

[
∫ ∞

0
e−rtu(t)dt

]

≤ Ex,ι

[
∫ ∞

0
e−rtCdt

]

≤ C
r
.

Taking supu in the above inequality leads to that V (x, ι) is bounded. Furthermore,
by the concavity of V (x, ι) and monotonicity (nondecreasing) of Vx(x, ι) (see [19]),
we have

lim
x→∞

Vx(x, ι) = 0.

Formally, the value function (18) satisfies the HJB equations
{

max
u∈[0,C]

{L uV (x, ι)− rV(x, ι)+ u}= 0, ∀ι ∈ M ,

V (0, ι) = 0, ∀ι ∈ M .
(10.22)

10.3.3 Algorithm

To construct a locally consistent Markov chain approximation for the jump diffusion
model with regime-switching, we consider an equivalent way to define the process
(17) by working with the claim times and values. To do this, set ν0 = 0, and let νn,
n ≥ 1, denote the time of the nth claim, and q(·, ·,ρn) is the corresponding claim in-
tensity with a suitable function of q(·). Let {νn+1−νn,ρn,n <∞} be mutually inde-
pendent random variables with νn+1−νn being exponentially distributed with mean
1/λ , and let ρn have a distribution Π(·). Furthermore, let {νk+1 −νk, ρk,k ≥ n} be



218 Z. Jin and G. Yin

independent of {x(s),α(s),s < νn,νk+1 − νk,ρk,k < n}, then the nth claim term is
q(x(ν−n ),α(νn),ρn), and the claim amount R(t) can be written as

R(t) = ∑
νn≤t

q(x(ν−n ),α(νn),ρn).

Because νn+1 −νn is exponentially distributed, we can write

P{claim occurs on [t, t +Δ)|x(s),α(s),w(s),N(s, ·),s ≤ t}= λΔ +o(Δ). (10.23)

By the independence and the definition of ρn, for any H ∈ B(R+), we have

P{x(t)− x(t−) ∈ H|t = νn for some n;w(s),x(s),α(s),N(s, ·),s < t;
x(t−) = x,α(t) = α}

=Π(ρ : q(x(t−),α(t),ρ) ∈ H).
(10.24)

It is implied by the above discussion that x(·) satisfying (17) can be viewed as a
process that involves regime-switching diffusion with claims according to the claim
rate defined by (23). Given that the nth claim occurs at time νn, we construct the
values according to the conditional probability law (24) or, equivalently, write it as
q(x(ν−n ),α(νn),ρn). Then the process given in (17) is a switching diffusion process
until the time of the next claim.

To begin, we construct a discrete-time, finite-state, controlled Markov chain to
approximate the controlled diffusion process with regime-switching in the finite
state space Gh. Then we obtain the corresponding transition probabilities

ph
D((x, ι),(x+ h, ι)|u) = (σ2(ι)/2)+ h(c(ι)− u)+

D− rh2 ,

ph
D((x, ι),(x− h, ι)|u) = (σ2(ι)/2)+ h(c(ι)− u)−

D− rh2 ,

ph
D((x, ι),(x, �)|u) =

h2

D− rh2 qι�, for � �= ι,

ph
D(·) = 0, otherwise,

Δ th(x, ι,u) =
h2

D
,

(10.25)

with
D = σ2(ι)+ h|c(ι)− u|+ h2(r− qιι )

being well defined. Suppose that the current state is ξ h
n = x, αh

n = ι , and control is
uh

n = u. The next interpolation interval Δ th(x, ι,u) is determined by (25). To present
the claim terms, we determine the next state (ξ h

n+1,α
h
n+1) by noting:

1. With probability (1−λΔ th(x, ι,u)+ o(Δ th(x, ι,u))), no claims are in [th
n , t

h
n+1);

we determine (ξ h
n+1,α

h
n+1) by transition probability ph

D(·) as in (25).
2. With probability λΔ th(x, ι,u)+ o(Δ th(x, ι,u))), there is a claim in [th

n , t
h
n+1); we

determine (ξ h
n+1,α

h
n+1) by
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ξ h
n+1 = ξ h

n − qh(x, ι,ρ),αh
n+1 = αh

n ,

where ρ ∼ Π(·), and qh(x, ι,ρ) ∈ Sh ⊆ R+ such that qh(x, ι,ρ) is the nearest
value of q(x, ι,ρ) so that ξ h

n+1 ∈ Sh. Then |qh(x, ι,ρ)− q(x, ι,ρ)| → 0 as h → 0,
uniformly in x.

Let Hh
n denote the event that (ξ h

n+1,α
h
n+1) is determined by the first alternative above

and use T h
n to denote the event of the second case. Let IHh

n
and IT h

n
be corresponding

indicator functions, respectively. Then IHh
n
+ IT h

n
= 1. Then we need a new defini-

tion of the local consistency for Markov chain approximation of compound Poisson
process with diffusion and regime-switching.

Definition 10.1. A controlled Markov chain {(ξ h
n ,αh

n ),n < ∞} is said to be locally
consistent with (17), if there is an interpolation interval Δ th(x, ι,u) → 0 as h → 0
uniformly in x,ι , and u such that

1. there is a transition probability ph
D(·) that is locally consistent with the diffusion

process without jumps.
2. there is a δ h(x, ι,u) = o(Δ th(x, ι,u)) such that the one-step transition probability

{ph((x, ι),(y, �))|u} is given by

ph(((x, ι),(y, �))|u) = (1−λΔ th(x, ι,u)+ δ h(x, ι,u))ph
D((x, ι),(y, �))

+(λΔ th(x, ι,u)+ δ h(x, ι,u))Π{ρ : qh(x, ι,ρ) = x− y}. (10.26)

Furthermore, the system of dynamic programming equations is

V h(x, ι) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
u∈U

[

(1−λΔ th(x, ι,u)+ δ h(x, ι,u))e−rΔ th(x,ι,u)

×∑
y,�

(ph
D((x, ι),(y, �))|u)V h(y, �)

+(λΔ th(x, ι,u)+ δ h(x, ι,u))e−rΔ th(x,ι,u)

×
∫ x

0
V h(x− qh(x, ι,ρ), ι)Π(dρ)+ uΔ th(x, ι,u)

]

, for x ∈ Gh,

0, for x = 0.
(10.27)

10.3.4 Convergence

Lemma 10.3. The Markov chain {ξ h
n ,αh

n} with transition probabilities (ph
D(·)) de-

fined in (25) is locally consistent with the stochastic differential equation in (17).

We need one more assumption.

(B1) Let τ̂(φ) = ∞, if φ(t) ∈ Go, for all t < ∞, otherwise, define τ̂(φ) = inf{t :
φ /∈ Go}. The function τ̂(·) is continuous (as a map from D[0,∞), the space
of functions that are right continuous and have left limits endowed with the
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Skorohod topology to the interval [0,∞] (the extended and compactified positive
real numbers)) with probability one relative to the measure with initial condition
(x,α).

Lemma 10.4. The interpolated process of the constructed Markov chain {αh(·)}
converges weakly to α(·), the Markov chain with generator Q = (qι�).

Theorem 10.5. Let the approximating chain {ξ h
n ,αh

n ,n <∞} constructed with tran-
sition probabilities defined in (25) be locally consistent with (17), {uh

n,n < ∞} be
a sequence of admissible controls, and (ξ h(·),αh(·)) be the continuous-time inter-
polation. Let {˜τh} be a sequence of F h

t -stopping times. Then {ξ h(·),αh(·),uh(·),
wh(·),Nh(·),˜τh} is tight.

Theorem 10.6. Let the limit of the weakly convergent subsequence be denoted by
(ξ (·),α(·),u(·),w(·),N(·),˜τ ) and Ft the σ -algebra generated by {x(s),α(s),u(s),
w(s),N(s),s ≤ t,˜τI{˜τ<t}}. Then w(·) and N(·) are a standard Ft -Wiener process
and Poisson measure, respectively, and ˜τ is an Ft -stopping time and u(·) is an
admissible control. Let the claim times and claim sizes of N(·) be denoted by νn,ρn.
Then, the limit satisfies the jump diffusion model with regime switching.

Theorem 10.7. Assume (B1). V (x, ι) and V h(x, ι) are value functions and corre-
sponding approximation sequence, respectively. Then V h(x, ι)→V (x, ι) as h → 0.

10.3.5 Examples

This section is devoted to a couple of examples. For simplicity, we consider the case
the discrete event has two states. That is, the continuous-time Markov chain has two
states.

Example 10.3. The Markov chain α(t) representing the discrete event state has gen-
erator Q

Q =

(−0.5 0.5
0.5 −0.5

)

,

and takes values in M = {1,2}. The premium size depends on the discrete state with
c(1) = 2 and c(2) = 3. The dividend rate u(t) taking its value in [0,2] is a control
parameter,σ(α(t))dw(t) is interpreted as small claim fluctuation and/or fluctuations
due to premium incomes with σ(1) = 0.2 and σ(2) = 2, and R(t) is a Poisson pro-
cess interpreted as claims with R(t) =∑νn≤t ρn, where ρn ∈ {0.01,0.015}, with dis-
tribution Π(0.01) = 0.7,Π(0.02) = 0.3. Let λι = 4, for ι = 1,2. Then {νn+1 −νn}
is a sequence of exponentially distributed random variables with mean 1/4. Further-
more, the initial surplus x is supposed to have the maximum 100 and the minimum
0. We use policy iteration methods to numerically solve the optimal control prob-
lems. This provides us with the advantage that we trace out the optimal policy for
the portfolio selection. We obtain the computation results depicted in Figs. 10.3 and
10.4 as follows.
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Fig. 10.3 Maximal expected present value of dividend versus initial surplus
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Fig. 10.4 Optimal dividend rate versus initial surplus

Example 10.4. Comparing with Example 10.3, we consider the case that the divi-
dend rate is more than the premium rate. Use data exactly the same as above, but
change the range of dividend rate to [0,4]. Then we obtain the computation results
depicted in Figs. 10.5 and 10.6 as follows.

Example 10.5. In this example, we assume the difference of the volatilities in the
two regimes is bigger comparing to Example 10.3. That is, taking σ(1) = 0.1 and
σ(2) = 3. Then we obtain the computation results given in Figs. 10.7 and 10.8 as
follows.

Figures 10.3–10.8 show that the dividend strategy is a threshold strategy (Exam-
ple 10.3), or a band strategy (Example 10.4). The dividend is paid when Vx(x, ι)< 1,
in which case the company is “inefficient” and cash surplus is high, otherwise, the
company is considered “efficient” when Vx(x, ι) > 1. It is best to pay no dividend
when the company is efficient and the cash surplus is low, then funds should be left
to company for growth. Furthermore, when the dividend payment is executed, the
pay out is supposed to be as much as allowable. That is, the cap of the dividend
payment rate could be achieved. Such a dividend payment policy is the so-called
bang–bang strategy.
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Fig. 10.5 Maximal expected present value of dividend versus initial surplus
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Fig. 10.6 Optimal dividend rate versus initial surplus
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Fig. 10.7 Maximal expected present value of dividend versus initial surplus



10 Numerical Methods for Insurance Risk Management 223

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

initial wealth

op
tim

al
 d

iv
id

en
d 

ra
te

α=1
α=2

Fig. 10.8 Optimal dividend rate versus initial surplus

By examining the graphs, the following observations are in order. Figures 10.3–
10.6 show that the dividend payment rates reach the thresholds depending on the
sign of Vx(x, ι)− 1 no matter whether the ceiling of the dividend payment rate is
greater than the premium rate or not. However, when the cap of dividend rate is
larger in Example 10.4, the dividend is paid until the surplus reaches much higher
level than the one in Example 10.3. This is a kind band strategy, when the initial
surplus is greater than 60 (the surplus – 60) should be paid as dividend. But since
we have a upper bound for the dividend rate, the payment rate becomes the upper
bound. It is consistent with the theoretical result.

In addition, the difference of volatilities in Example 10.3 is 1.8 and the difference
of volatilities in Example 10.5 is 3.9. From Figs. 10.7 and 10.8, we can see that the
difference of the dividend payment strategies is bigger comparing to Figs. 10.3 and
10.4, in which case the difference of the volatilities is smaller. So the optimal div-
idend strategies are sensitive to the market regimes. This indicates that the regime-
switching models are appropriate for the intended modeling and optimization.

10.4 Concluding Remarks

In this work, we reviewed some of our recent work on numerical approximation
schemes to annuity purchasing and dividend optimization problems arising in in-
surance risk controls. The models under consideration involve regime switching, in
which the switching process is represented by a Markov chain. Although detailed
proofs are not provided and referred to our recent papers [10] and [11] for further
reading, the statements of the results as well as conditions needed are spelled out.
Although one could derive the associate system of HJB equations by using the usual
dynamic programming approach together with the use of properties of switching
jump diffusions, solving them analytically is very difficult. As an alternative, one
may try to discretize the system of HJB equations directly, but this relies on the
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properties of the HJB equations. We present a viable alternative. Our Markov chain
approximation method uses mainly probabilistic methods that do not need any ana-
lytic properties of the solutions of the system of HJB equations. In the actual com-
putation, the optimal control can be obtained by using the value or policy iteration
methods.
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Chapter 11
Trading a Mean-Reverting Asset with Regime
Switching: An Asymptotic Approach

Eunju Sohn and Qing Zhang

11.1 Introduction

This chapter is concerned with mean-reversion trading with regime switching. It is
a continuation of the study developed in Zhang and Zhang [15]. In [15], a mean-
reversion trading rule was considered. The objective was to buy and sell the as-
set so as to maximize an overall return. They followed the dynamic programming
approach and used the associated HJB equations (quasi-variational inequalities) to
characterize the value functions. They showed that the solution to the original opti-
mal stopping problem can be obtained by solving two quasi-algebraic equations. In
addition, they obtained sufficient conditions in the form of a verification theorem.
Nevertheless, only the basic mean-reversion model with constant equilibrium was
considered in [15]. It is important to extend the results to account for more realistic
settings. It is the purpose of this chapter to consider the mean-reversion model in
which the equilibrium is subject to random jumps governed by a two-state Markov
chain and to study the corresponding trading rules.

A mean-reversion model is often used in financial and energy markets to capture
price movements that have the tendency to move towards an “equilibrium” level.
Studies that support the mean-reversion stock returns can be traced back to the 1930s
(see Cowles and Jones [3]) in empirical literature. The research was furthered by
many researchers including Fama and French [6], and Gallagher and Taylor [7]
among others. In addition to stock markets, mean-reversion models are also used to
characterize stochastic volatility (see Hafner and Herwartz [8]) and asset prices in
energy markets (see Blanco and Soronow [1] and de Jong and Huisman [4]). See
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also related results in option pricing with a mean-reversion asset by Bos, Ware and
Pavlov [2].

Trading rules in financial markets have been studied for many years. For exam-
ple, an investment capacity expansion/reduction problem was considered in Merhi
and Zervos [11]. Under a geometric Brownian motion market model, the authors
used the dynamic programming approach and obtained an explicit solution to the
singular control problem. A more general diffusion market model was treated by
Løkka and Zervos [10] in connection with an optimal investment capacity adjust-
ment problem. More recently, Johnson and Zervos [9] studied an optimal timing of
investment problem under a general diffusion market model. The objective was to
maximize the expected cash flow by choosing when to enter an investment and when
to exit the investment. An explicit analytic solution was obtained in [9]. Recently,
Dai et al. [5] provided a theoretical justification of trend following trading. In par-
ticular, the underlying stock price was formulated as a geometric Brownian motion
with regime switching. Two regimes were considered: the up trend (bull market) and
the down trend (bear market). The switching process was modeled as a two-state
Markov chain which is not directly observable. The trading decisions were based on
current information represented by both the stock price and historical information
with the probability in the bull phase conditioning to all available historical price
levels as a proxy. Assuming trading one share with a fixed percentage transaction
cost, they showed that the strategy that optimizes the discounted expected return is
a simple implementable trend following system. This strategy was characterized by
two threshold curves for the conditional probability in a bull regime signaling buy
and sell, respectively. The main advantage of this approach is that the conditional
probability in a bull market can be obtained directly using actual historical stock
price data through a differential equation.

In this chapter, we focus on a mean-reversion model in which its equilibrium
is subject to random jumps. Such model can be applied to assets with a “stair-
case” price behavior. We consider trading involving both buying and selling actions.
The objective is to buy and sell the underlying asset sequentially in order to maxi-
mize a discounted reward function. Slippage cost associated with each transaction
is imposed. We assume that a fixed percentage slippage cost is incurred with each
transaction. In general, this is a class of challenging problems because a closed-form
solution is difficult to obtain. In this chapter, we consider the case in which the un-
derlying Markov chain jumps frequently between its two states. This leads to a class
of singular perturbation problems. The idea is to approximate the value functions
of the original problem by the value functions of a limiting problem. The limiting
problem is easier to solve. The solution of the limiting problem leads to admissible
trading rules that are typically as good as the optimal ones for the original problem.
There are substantial studies along the line of singular perturbations. We refer the
readers to Sethi and Zhang [13] and Yin and Zhang [14] for related literature. In
this chapter, we study the problem using the dynamic programming approach and
establish the associated HJB equations (quasi-variational inequalities) for the value
functions. Following a viscosity solution approach, we establish asymptotic prop-
erties of the value functions. Then using a numerical example, we show how the
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solution for the limiting problem can be used to construct a set of trading rules for
the original problem.

This chapter is organized as follows. In Sect. 11.2, we formulate the problem
under consideration. In Sect. 11.3, we study properties of the value functions and
the associated HJB equations. In Sect. 11.4, we provide asymptotic properties of
the value functions and describe the corresponding limiting problem. In Sect. 11.5,
we demonstrate further related approximation schemes. A numerical example is
given in Sect. 11.6 in which the closed-form solution obtained in [15] is used to
construct a trading rule for the original problem. The performance of the trading
rule is provided in this example. Finally, some concluding remarks are provided in
Sect. 11.7. Some technical definitions and assumption verification details are given
in Appendix.

11.2 Problem Formulation

Let Xt ∈ R denote a mean-reverting diffusion with regime-switching governed by

dXt = a(b(αt)−Xt)dt+σ(αt)dWt , X0 = x, (11.1)

where a > 0 is the rate of reversion, b( j), j = 1,2, is the equilibrium level for each
state, σ( j) > 0, j = 1,2, is the volatility, αt ∈ {1,2} is a two-state Markov chain,
and Wt is a standard Brownian motion. In this chapter, we assume that αt and Wt are
independent.

Let h(x) be a smooth function. We consider the model in which the asset price is
given by St = h(Xt). For example, the function h(x) = ex is used in Zhang and Zhang
[15]. In this chapter, we consider h(x) that equals ex except when x is large. The main
reason for specifying h(x) is to facilitate subsequent analysis without affecting much
of the applicability.

Let

0 ≤ φ1 ≤ ψ1 ≤ φ2 ≤ ψ2 ≤ ·· · (11.2)

denote a sequence of stopping times. A buying decision is made at φk and a selling
decision at ψk, k = 1,2, . . ..

We consider the case that the net position at any time can be either flat (no stock
holding) or long (with one share of stock holding). Let i = 0,1 denote the initial net
position. If initially the net position is long (i = 1), then one should sell the stock
before acquiring a share. The corresponding sequence of stopping times is denoted
byΛ1 = (ψ1,φ2,ψ2,φ3, . . .). Likewise, if initially the net position is flat (i = 0), then
one should first buy a stock before selling a share. The corresponding sequence of
stopping times is denoted by Λ0 = (φ1,ψ1,φ2,ψ2, . . .).

In addition, we consider the problem with at most N round trips of trading. We
use the notationΛn

1 =(ψ1,φ2,ψ2,φ3, . . . ,φn,ψn) andΛn
0 =(φ1,ψ1,φ2,ψ2, . . . ,φn,ψn)

to label the corresponding stopping times limited to n round trips for n= 0,1, . . . ,N.
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Let 0<K < 1 denote the percentage of slippage (or commission) per transaction.
Given the initial states X0 = x, α0 = α , and initial net position i = 0,1, the reward
functions of the decision sequences {Λn

i , n = 0,1, . . . ,N} are given as follows:

Jn
i (x,α,Λn

i ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E

{

n

∑
k=1

[

e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)
]

}

, if i = 0,

E

{

e−ρψ1Sψ1(1−K)

+
n

∑
k=2

[

e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)
]

}

, if i = 1,

(11.3)

where ρ > 0 is the discount factor.
For i = 0,1 and n = 0,1, . . . ,N, let V n

i (x,α) denote the value functions with the
initial state (X0,α0) = (x,α) and initial net positions i = 0,1. That is,

V n
i (x,α) = sup

Λn
i

Jn
i (x,α,Λ

n
i ). (11.4)

Remark 11.1. In (29), we allow the equalities, i.e., one is allowed to buy and sell
at the same time. Nevertheless, owing to the existence of the positive slippage cost
K, simultaneous buying and selling only cause negative returns and therefore are
automatically ruled out by optimality conditions.

Let Q = (qi j) denote the generator of αt and let A denote the generator of
(Xt ,αt), i.e.,

A f (x,α) = a(b(α)− x)
∂ f (x,α)
∂x

+
σ2(α)

2
∂ 2 f (x,α)
∂x2 +Q f (x, ·)(α),

where Q f (x, ·)(α) = qα1 f (x,1)+ qα2 f (x,2), α = 1,2.
In Fig. 11.1, a sample path of (Xt ,αt) is provided. The picture was generated

using the Monte Carlo method with

a = 0.8, b(1) = 3, b(2) = 1, σ (1) = 0.7, σ (2) = 0.3, Q =

(−0.91 0.91
0.62 −0.62

)

, X0 = 1.

It is clear from Fig. 11.1, whenαt = 1, the equilibrium b(1)= 3 serves as an attractor
for Xt pulling it upwards; when αt switched to 2, the new equilibrium b(2) = 1 pulls
Xt downwards and so on.

As mentioned in the introduction, a closed-form solution to the problem is dif-
ficult to obtain. In this chapter, we consider the case in which the Markov chain
jumps frequently between its two states. We aim at the corresponding asymptotic
properties. In particular, we consider case where the generator has the following
form:

Qε =
1
ε
˜Q+ ̂Q =

1
ε

(−λ λ
μ −μ

)

+

(−λ1 λ1

μ1 −μ1

)

,
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Fig. 11.1 Mean-reversion with regime switching (a) A sample path of Xt , (b) a sample path of αt

where ε > 0 is a small parameter, and λ , μ , λ1, and μ1 are positive constants. We
study the convergence of the problem as ε → 0. For related Markov models in con-
nection with manufacturing systems, see Sethi and Zhang [13].

Remark 11.2. The Markov chain αt generated by Qε represents the regime of the
underlying market. We focus on the market with frequent regime changes in αt .
Such a scenario often arises in a prolonged sideways market such as Dow Jones
Industrial Average during the 1960s and 1980s. Its behavior can be captured by our
regime-switching model with a relatively small ε . In this chapter, we aim at models
with a not-so-small ε and construct near optimal trading rules from the optimal
solution of the corresponding limiting problem as ε → 0. A major advantage of our
approach is that one does not have to identify the state of αt , which is difficult during
the period when it is changing rapidly.

The corresponding Markov chain will be labeled as αεt . Similarly, we use X ε
t for

Xt , Sεt for St , Jn,ε
i for Jn

i , and V n,ε
i for V n

i from now on to emphasize the dependence
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on ε . Using this notation, the optimal trading problem PN,ε can be written as fol-
lows:

PN,ε :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max Jn,ε
i (x,α,Λn

i )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E

{

n

∑
k=1

[

e−ρψk Sεψk
(1−K)− e−ρφkSεφk

(1+K)
]

}

, if i = 0,

E

{

e−ρψ1Sεψ1
(1−K)

+
n

∑
k=2

[

e−ρψk Sεψk
(1−K)− e−ρφkSεφk

(1+K)
]

}

, if i = 1,

s.t. dXε
t = a(b(αεt )−X ε

t )dt+σ(αεt )dWt , X ε
0 = x,

value fn V n,ε
i (x,α) = supΛn

i
Jn,ε

i (x,α,Λn
i ), n = 0,1, . . . ,N,

Note that the sequence Λn
0 = (φ1,ψ1, . . . ,φn,ψn) can be regarded as a com-

bination of a buy at φ1 and then followed by the sequence of stopping times
Λn

1 = (ψ1,φ2,ψ2, . . . ,φn,ψn). In view of this, we have

V n,ε
0 (x,α)≥ Jn,ε

0 (x,α,Λn
0 )

= E

{

e−ρψ1Sεψ1
(1−K)+

n

∑
k=2

[

e−ρψk Sεψk
(1−K)− e−ρφkSεφk

(1+K)
]

}

−Ee−ρφ1Sεφ1
(1+K)

= Jn,ε
1 (X ε

φ1
,α,Λn

1 )−Ee−ρφ1Sεφ1
(1+K).

In particular, setting φ1 = 0 (recall that Sεt = h(X ε
t )), we obtain the inequality

V n,ε
0 (x,α) ≥V n,ε

1 (x,α)− h(x)(1+K). (11.5)

Similarly, we can show that

V n,ε
1 (x,α) ≥V n−1,ε

0 (x,α)+ h(x)(1−K). (11.6)

Formally, the associated HJB equations should have the form:

min
{

ρV n,ε
0 (x,α)−A V n,ε

0 (x,α), V n,ε
0 (x,α)−V n,ε

1 (x,α)+ h(x)(1+K)
}

= 0,

min
{

ρV n,ε
1 (x,α)−A V n,ε

1 (x,α), V n,ε
1 (x,α)−V n−1,ε

0 (x,α)− h(x)(1−K)
}

= 0,

(11.7)

for n = 1,2, . . . ,N and α = 1,2. Here, we follow the convention that V 0,ε
0 (x,α) = 0.

Next, we impose conditions on h(x).

Assumption. h(x), h′(x), xh′(x), and h′′(x) are bounded and Lipschitz.
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Example 11.1. An immediate example satisfying the above conditions can be given

as follows. Let h0(x) =

{

ex for x ≤ M,
eM for x > M,

for a fixed M. Take h(x) to be the convo-

lution of h0 with the kernelΨ (x) = (1/
√

2π)e−x2/2. Validation of these conditions
is provided in Appendix.

Under these assumptions, we can show, following a similar approach as in Sethi
and Zhang [13,Chap. 8], that V n,ε

i (x,α) are the viscosity solutions (see the definition
given in Appendix) of the HJB equations (34).

In this chapter, C (and Ci) are generic positive constants with convention C+C =
C and CC =C, etc.

11.3 Properties of the Value Functions

In this section, we consider the basic properties of the value functions. In particular,
we establish the boundedness and Lipschitz continuity of these functions.

Lemma 11.1. There exists a constant C0 such that

0 ≤V n,ε
i (x,α)≤C0,

for ε > 0, x ∈ R, α = 1,2, i = 0,1, and n = 0,1, . . . ,N.

Proof. In view of the definition of V n,ε
i (x,α), it is clear that they are nonnegative. It

remains to establish their upper bounds. Let

F(x,α) = a(b(α)− x)h′(x)+
σ2(α)

2
h′′(x)−ρh(x).

Then, using Dynkin’s formula, we have

Ee−ρψk Sεψk
−Ee−ρφk Sεφk

= E
∫ ψk

φk

e−ρsF(X ε
s ,αs)ds. (11.8)

It is easy to see that the function F(x,α) is bounded above on R by the boundedness
assumptions on h(x). Let C be an upper bound of F . It follows that

Ee−ρψk Sεψk
−Ee−ρφk Sεφk

≤ CE
∫ ψk

φk

e−ρtdt. (11.9)



234 E. Sohn and Q. Zhang

Using the definition of Jn,ε
0 (x,α,Λn

0 ), we have

Jn,ε
0 (x,α,Λn

0 ) ≤
n

∑
k=1

(

Ee−ρψk Sεψk
−Ee−ρφk Sεφk

)

≤
n

∑
k=1

CE
∫ ψk

φk

e−ρtdt

≤C
∫ ∞

0
e−ρtdt :=C0.

This implies that 0 ≤V n,ε
0 (x,α)≤C0.

Similarly, letting Ch = sup |h(x)|, we have the inequalities

Jn,ε
1 (x,α,Λn

1 )≤C0 +Ee−ρψ1h(X ε
ψ1
)(1−K)≤C0 +Ch(1−K) :=C0.

Therefore, 0 ≤V n,ε
1 (x,α)≤C0. This completes the proof. �

Lemma 11.2. V n,ε
i (x,α) are Lipschitz, i.e., there exists C0 such that

|V n,ε
i (x1,α)−V n,ε

i (x2,α)| ≤C0|x1 − x2|.

for ε > 0, x1,x2 ∈ R, α = 1,2, i = 0,1, and n = 0,1, . . . ,N.

Proof. Given x1 and x2, let X1
t and X2

t be solutions of (28) with X1
0 = x1 and X2

0 = x2,
respectively. We claim that: There exists an constant C0 such that for any stopping
time τ ,

∣

∣E
[

e−ρτ(h(X1
τ )− h(X2

τ )
]∣

∣≤C0|x1 − x2|. (11.10)

Let

G(x,y,α) = ab(α)[h′(x)−h′(y)]−a[xh′(x)− yh′(y)]+
σ 2(α)

2
[h′′(x)−h′′(y)]−ρ [h(x)−h(y)].

Then, using the Lipschitz assumptions on h(x), we can see that

|G(x,y,α)| ≤C0|x− y|,

for some constant C0. Then, applying Dynkin’s formula, we have

E
[

e−ρτ(h(X1
t )− h(X2

t ))
]

= h(x1)− h(x2)+E
∫ τ

0
e−ρtG(X1

t ,X
2
t ,αt)dt.

It follows that

∣

∣E
[

e−ρτ(h(X1
t )− h(X2

t ))
]∣

∣ ≤ |h(x1)− h(x2)|+E
∫ ∞

0
e−ρt |G(X1

t ,X
2
t ,αt)|dt

≤C0|x1 − x2|+C0E
∫ ∞

0
e−ρt |X1

t −X2
t |dt.
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Note that

X1
t −X2

t = x1 − x2 − a
∫ t

0
(X1

s −X2
s )ds.

Therefore, X1
t −X2

t = (x1 − x2)e−at. In view of this, we have

∣

∣

∣E
[

e−ρτ (h(X1
t )−h(X2

t ))
]∣

∣

∣≤C0|x1 −x2|+C0E
∫ ∞

0
e−ρt |x1 −x2|e−atdt =C0|x1 −x2|,

which proves the claim. Using this inequality, for any givenΛn
i , it is easy to see that

|Jn,ε
i (x1,α,Λn

i )− Jn,ε
i (x2,α,Λn

i )| ≤C0|x1 − x2|. �

11.4 Asymptotic Properties

In this section, we study the asymptotic properties of the value functions as ε → 0.
We first characterize the limiting problem and then establish the desired conver-
gence.

Lemma 11.3. For each (x,α), if for some subsequence of ε , V n,ε
i (x,α)→V n,0

i (x,α),
then V n,0

i (x,α) =V n,0
i (x).

Proof. Let τε denote the first jump time ofαεt . Then τε → 0 a.s. as ε→ 0. Following
the dynamic programming principle, we have

V n,ε
i (x,α)≥ Ee−ρτ

ε
V n,ε

i (Xτε ,ατε ).

If α = 1, then sending ε → 0, we have

V n,0(x,1)≥V n,0(x,2).

Similarly,

V n,0(x,2)≥V n,0(x,1).

Therefore, V n,0(x,1) =V n,0(x,2). �
Let (ν1,ν2) denote the equilibrium distribution corresponding to ˜Q, i.e.,

(ν1,ν2) =

(

μ
λ + μ

,
λ

λ + μ

)

.

so that (ν1,ν2) ˜Q = (0,0). Let Xt denote the corresponding mean-reversion process
with mean b = ν1b(1)+ν2b(2) and volatility σ =

√

ν1σ2(1)+ν2σ2(2). The stock
price driven by Xt is denoted by St = h(Xt).
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Given a sequence of σ{Wr : r ≤ t} measurable stopping times

0 ≤ φ1 ≤ ψ1 ≤ φ2 ≤ ψ2 ≤ ·· · ,

one can define the set of stopping timesΛn
i as before for n = 0,1, . . . ,N and i = 0,1.

The limiting problem PN,0 can be defined as follows:

PN,0 :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max J
n
i (x,Λn

i )

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E

{

n

∑
k=1

[

e−ρψk Sψk(1−K)− e−ρφkSφk(1+K)
]

}

, if i = 0,

E

{

e−ρψ1Sψ1(1−K)

+
n

∑
k=2

[

e−ρψk Sψk(1−K)− e−ρφkSφk (1+K)
]

}

, if i = 1,

s.t. dXt = a(b−Xt)dt+σdWt , X0 = x,
value fn V

n
i (x) = supΛn

i
Ji(x,Λn

i ).

Let A denote the generator of Xt , i.e.,

A f (x) = a(b− x)
df (x)

dx
+
σ2

2
d2 f (x)

dx2 .

The associated HJB equations for the limiting problem should have the form:

min
{

ρV
n
0(x)−A V

n
0(x), V

n
0(x)−V

n
1(x)+ h(x)(1+K)

}

= 0,

min
{

ρV
n
1(x)−A V

n
1(x), V

n
1(x)−V

n−1
0 (x)− h(x)(1−K)

}

= 0,
(11.11)

for n = 1,2, . . . ,N.
The definition of viscosity solution of the above HJB equations is also given in

Appendix. We can show the following lemma, where the uniqueness can be obtained
along the line of Pham [12].

Lemma 11.4. V
n
i (x) are the unique viscosity solutions of the HJB equations (38).

Next, we give the main result of this chapter. We show that the value functions of
the original problem converge to those of the limiting problem. This suggests that
the optimal solution of the limiting problem can be used to construct a trading rule
for the original problem. We refer the readers to Sethi and Zhang [13] for similar
approach in connection with manufacturing systems.

Theorem 11.1. As ε → 0, we have

V n,ε
i (x,α)→V

n
i (x),

for n = 0,1, . . . ,N, i = 0,1, x ∈ R, and α = 1,2.
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Proof. Recall the Lipschitz properties of V n,ε
i in Lemma 11.2. In view of the Arzela–

Ascoli Theorem, for each sequence of {ε → 0}, there exists a further subsequence
(still indexed by ε) such that V n,ε

i (x,α) converges. Denote the limit by V n,0
i (x,α).

Then by Lemma 11.3, V n,0
i (x,α) =V n,0

i (x). It suffices to show that V n,0
i (x) is a vis-

cosity solution of (38) because Lemma 11.4 implies that V n,0
i (x) =V

n
i (x). Following

Lemma A.25 in Yin and Zhang [14], for each i= 0,1, take a function φi(x)∈C2 such
that V n,0

i (x)−φi(x) has a strictly local maximum at any given x0 in a neighborhood
N(x0). Choose xn,ε

i,α ∈ N(x0) such that

V n,ε
i (xn,ε

i,α ,α)−φi(x
n,ε
i,α ) = max

x∈N(x0)
{V n,ε

i (x,α)−φi(x)}.

Then, xn,ε
i,α → x0, as ε → 0. First, fix i = 0. We are to show the following inequality:

min
{

ρV n,0
0 (x0)−A φ0(x0),V

n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)
}

≤ 0. (11.12)

If

V n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)≤ 0,

then (39) holds. Otherwise,

V n,0
0 (x0)−V n,0

1 (x0)+ h(x0)(1+K)> 0.

Then there exists N0(x0)⊂ N(x0) such that

V n,ε
0 (x)−V n,ε

1 (x)+ h(x)(1+K)> 0

on N0(x0) for ε small enough. Recall that V n,ε
i is a viscosity solution to (34).

V n,ε
0 (x,α) must satisfy (45). Necessarily,

ρV n,ε
0 (xn,ε

0,α ,α)−A φ0V n,ε
0 (xn,ε

0,α ,α)≤ 0,

for α = 1,2.
It follows that

ν1(ρV n,ε
0 (xn,ε

0,1,1)−A φ0V n,ε
0 (xn,ε

0,1,1))+ν2(ρV n,ε
0 (xn,ε

0,2,2)−A φ0V n,ε
0 (xn,ε

0,2,2))≤ 0.
(11.13)

Note that

ν1

(

λ
ε

)

(V n,ε
0 (xε1,2)−Vn,ε

0 (xε1,1))+ν2

(μ
ε

)

(V n,ε
0 (xε2,1)−Vn,ε

0 (xε2,2))

≤ ν1

(

λ
ε

)

[V n,ε
0 (xε2,2)−φ(xε2)− (V n,ε

0 (xε1,1)−φ(xε1))]

+ν2

(μ
ε

)

[V n,ε
0 (xε1,1)−φ(xε1)− (V n,ε

0 (xε2,2)−φ(xε2))] = 0.

(11.14)
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Using this inequality and sending ε → 0 in (40) to obtain ρV n,0
0 (x0)−A φ0(x0)≤ 0,

which yields (39). Similarly, we can show

min
{

ρV n,0
1 (x0)−A φ1(x0),V

n,0
0 (x0)−V n−1,0

0 (x0)− h(x0)(1−K)
}

≤ 0.

Thus, V n,0
i (x) is a viscosity subsolution to (38).

To show that V n,0
i (x) is a viscosity supersolution to (38), note that

min
{

ρV n,ε
0 (x0,α0)−A ψV n,ε

0 (x0,α0), V n,ε
0 (x0,α0)−V n,ε

1 (x0,α0)+h(x)(1+K)
} ≥ 0

implies

V n,0
0 (x0)−V n,0

1 (x0)+ h(x)(1+K)≥ 0.

Moreover, following similar argument as in (41), we can show that

ρV n,0
0 (x0)−A ψ0(x0)≥ 0.

Hence,

min
{

ρV n,0
0 (x0)−A ψ0(x0), V n,0

0 (x0)−V n,0
1 (x0)+ h(x)(1+K)

}

≥ 0.

Similarly, we can show the inequality with i = 1. Therefore V n,0
i (x) is a viscosity

supersolution. This completes the proof. �

11.5 Further Approximations

In this section, we show that the value function V
n
i (x) can be further approximated

by taking N to be very large and h(x) to be very close to ex. In this case, we can
use the closed-form solution obtained in Zhang and Zhang [15] to come up with an
approximate solution for the original problem.

Recall the definition of Λi and its N-th round trip truncationΛN
i . Let

Ji(x,Λi) = limsup
N→∞

J
N
i (x,Λ

N
i )

and V i(x) = supΛi
Ji(x,Λi). It is easy to see that

lim
N→∞

V
N
i (x) =V i(x).

In fact, for each δ > 0, letΛi,δ be a sequence of stopping times such that Ji(x,Λi,δ )≥
V i(x)− δ . Then, noticing that V

N
i (x) is monotonically increasing in N, we have
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V i(x)− δ ≤ Ji(x,Λi,δ ) = limsup
N→∞

J
N
i (x,Λ

N
i,δ )≤ limsup

N→∞
V

N
i (x)≤V i(x).

Next, we consider approximating ex by particular choices of h(x). Recall Ex-
ample 11.1 and the definition of h0(x). For each γ > 0, let Ψγ(x) = (1/γ)Ψ(x/γ)
and hγ(x) be the convolution of h0 and Ψγ . Then, hγ(x) → h0(x) as γ → 0 for
all x. Therefore, we can approximate ex by hγ(x) by choosing a small enough γ
on [−M,M].

In view of these, the original problem with a large N can be approximated by
the limiting problem with a large N and a large M. In the next section, we study a
numerical example demonstrating how these approximations work.

11.6 A Numerical Example

The optimal trading rule in the limiting problem with N = ∞ and h(x) = ex was
treated in Zhang and Zhang [15]. The main result can be summarized as follows.

Lemma 11.5. Let (x∗1,x
∗
2) be a pair satisfying the following conditions:

x∗1 ≤
1
a

(

σ 2

2
+ ab−ρ

)

≤ x∗2, x∗2 − x∗1 > log

(

1+K
1−K

)

,

and

⎛

⎜

⎝

∫ ∞

0
η(t)e−κ(b−x∗1)t dt −

∫ ∞

0
η(t)eκ(b−x∗1)t dt

∫ ∞

0
tη(t)e−κ(b−x∗1)t dt

∫ ∞

0
tη(t)eκ(b−x∗1)tdt

⎞

⎟

⎠

−1
(

ex∗1(1+K)

ex∗1(1+K)/κ

)

=

⎛

⎜

⎝

∫ ∞

0
η(t)e−κ(b−x∗2)t dt −

∫ ∞

0
η(t)eκ(b−x∗2)t dt

∫ ∞

0
tη(t)e−κ(b−x∗2)t dt

∫ ∞

0
tη(t)eκ(b−x∗2)tdt

⎞

⎟

⎠

−1
(

ex∗2(1−K)

ex∗2(1−K)/κ

)

(11.15)

where κ =
√

2a/σ and η(t) = t(ρ/a)−1 exp
(−t2/2

)

.
Let

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V 0(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C∗
2

∫ ∞

0
η(t)eκ(b−x)t dt if x ≥ x∗1,

C∗
1

∫ ∞

0
η(t)e−κ(b−x)t dt− ex(1+K) if x < x∗1,

V 1(x) =

⎧

⎪

⎨

⎪

⎩

C∗
1

∫ ∞

0
η(t)e−κ(b−x)t dt if x < x∗2,

C∗
2

∫ ∞

0
η(t)eκ(b−x)t dt+ ex(1−K) if x ≥ x∗2

(11.16)
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with

(

C∗
1

C∗
2

)

=

⎛

⎜

⎜

⎝

∫ ∞

0
η(t)e−κ(b−x∗1)tdt −

∫ ∞

0
η(t)eκ(b−x∗1)t dt

∫ ∞

0
tη(t)e−κ(b−x∗1)t dt

∫ ∞

0
tη(t)eκ(b−x∗1)t dt

⎞

⎟

⎟

⎠

−1
(

ex∗1(1+K)

ex∗1(1+K)/κ

)

.

If, on the interval (x∗1,x
∗
2), the following inequalities hold

ex(1−K)≤V 1(x)−V 0(x)≤ ex(1+K),

then buying when x ≤ x∗1 and selling when x ≥ x∗2 is optimal.

Example 11.2. In this example, we take

a = 0.8, b(1) = 3, b(2) = 1, σ(1) = 0.7, σ(2) = 0.3,

λ = 0.09, μ = 0.06, λ1 = 0.01, μ1 = 0.02, ρ = 0.5, and K = 0.01.

Then, (ν1,ν2)= (2/5,3/5), b= 9/5, and σ = 0.5. We solve (42) to obtain (x∗1,x
∗
2) =

(1.115,1.455) and the value functionsV i(x). These functions are plotted in Fig. 11.2.
In addition, we vary ε = 0.1, 0.01, and 0.001 and solve the corresponding HJB equa-
tions in (34) (using the explicit finite difference method) with N = ∞. The value
functions V ε

i are also presented in Fig. 11.2. It is clear in this example that V ε
i can

be approximated by V i when ε is small enough.
Next, we use (x∗1,x

∗
2) = (1.115,1.455) to construct the following trading rules for

the original problem:
{

Buy: if X ε
t ≤ x∗1,

Sell: if X ε
t ≥ x∗2.

(11.17)

Using these trading rules, we generate the corresponding reward functions with
a varying ε and N =∞. In particular, we use Monte Carlo simulations based on (28)
and generate 10 K sample paths. The corresponding reward functions with ε = 1,
0.01, and 0.0001 are plotted in Fig. 11.3. Combining these two figures, one can see
how the constructed trading rules in (44) work for the original problem.

In general, the control policy obtained via a singular perturbation approach not
only work when ε is small but also work for the problem with not-so-small ε . The
performance with ε = 1 can be seen in Fig. 11.3 in which the corresponding re-
ward functions are fairly close to the value functions of the limiting problem, and
therefore, in view of Fig. 11.2, close to those of the original problem.

11.7 Concluding Remarks

In this chapter, we studied the asymptotic properties of the mean-reverting trading
problem. We established the convergence of the value functions and demonstrated
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Fig. 11.2 Value function approximation. (a) V ε
1 (x,1) and V 1(x), (b) V ε

1 (x,2) and V 1(x), (c)
V ε

0 (x,1) and V 0(x), (d) V ε
0 (x,2) and V 0(x)

how the optimal trading rule for the limiting problem can be used to construct a
trading rule for the original problem.

In general, to use an optimal trading rule for the original problem, one needs to
determine the mode (or the state of αεt ). This typically involves nonlinear filtering as
in Dai et al. [5]. Nevertheless, in this chapter, we showed that this is not necessary
when the jump rates of αεt is large because the constructed trading rule does not
require the state information of αεt .
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Fig. 11.3 Reward functions under trading rules constructed from that of the limiting problem.

Appendix

In this appendix, we provide the definitions of viscosity solutions of the HJB equa-
tions (34) and (38). First, we consider (34). For each f (x,α) and φ(x) ∈C2, let

A φ f (x,α) = a(b(α)− x)
dφ(x)

dx
+
σ2(α)

2
d2φ(x)

dx2 +Q f (x, ·)(α).

Definition 11.1. vn,ε
i (x,α) is a viscosity solution of (34) if the following hold:

(a) vn,ε
i (x,α) is uniformly continuous in x;

(b) for any α0 ∈ {1,2} and x0,

min
{

ρvn,ε
0 (x0,α0)−A φ0vn,ε

0 (x0,α0),

vn,ε
0 (x0,α0)− vn,ε

1 (x0,α0)+ h(x0)(1+K)
}

≤ 0,

min
{

ρvn,ε
1 (x0,α0)−A φ1vn,ε

1 (x0,α0),

vn,ε
1 (x0,α0)− vn−1,ε

0 (x0,α0)− h(x0)(1−K)
}

≤ 0,

(11.18)
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for n = 0,1, . . . ,N, whenever φi(x) ∈ C2 and vn,ε
i (x,α0)− φi(x) has a local

maximum at x = x0; and
(c) for any α0 ∈ {1,2} and x0,

min
{

ρvn,ε
0 (x0,α0)−A ψ0vn,ε

0 (x0,α0),

vn,ε
0 (x0,α0)− vn,ε

1 (x0,α0)+ h(x0)(1+K)
}

≥ 0,

min
{

ρvn,ε
1 (x0,α0)−A ψ1vn,ε

1 (x0,α0),

vn,ε
1 (x0,α0)− vn−1,ε

0 (x0,α0)− h(x0)(1−K)
}

≥ 0,

(11.19)

for n = 0,1, . . . ,N, whenever ψi(x) ∈C2 and vn,ε
i (x,α0)−ψi(x) has a local min-

imum at x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution (resp.
viscosity supersolution).

Finally, we give the definition of viscosity solution of (38). Recall that

A f (x) = a(b− x)
df (x)

dx
+
σ2

2
d2 f (x)

dx2 .

Definition 11.2. vn
i (x) is a viscosity solution of (38) if the following hold:

(a) vn
i (x) is uniformly continuous in x;

(b) for any x0,

min
{

ρvn
0(x0)−A φ0(x0), vn

0(x0)− vn
1(x0)+ h(x0)(1+K)

}≤ 0,
min

{

ρvn
1(x0)−A φ1(x0), vn

1(x0)− vn−1
0 (x0)− h(x0)(1−K)

}≤ 0,
(11.20)

for n = 0,1, . . . ,N, whenever φi(x) ∈C2 and vn
i (x)−φi(x) has a local maximum

at x = x0; and
(c) for any x0,

min
{

ρvn
0(x0)−A ψ0(x0), vn

0(x0)− vn
1(x0)+ h(x0)(1+K)

}≥ 0,
min

{

ρvn
1(x0)−A ψ1(x0), vn

1(x0)− vn−1
0 (x0)− h(x0)(1−K)

}≥ 0,
(11.21)

for n = 0,1, . . . ,N, wheneverψi(x) ∈C2 and vn
i (x)−ψi(x) has a local minimum

at x = x0.

If (a) and (b) (resp. (a) and (c)) hold, we say that v is a viscosity subsolution (resp.
viscosity supersolution).

Next, we give a sketch verifying the conditions in Example 11.1, i.e., we show
that h(x), h′(x), xh′(x), and h′′(x) are bounded and Lipschitz.

First note that h0(x) is bounded and Lipschitz. The boundedness and Lipschitz
properties of h, h′, and h′′ follow from the equalities:
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h(x) =
∫ ∞

−∞
h0(x− u)Ψ(u)du,

h′(x) =
∫ ∞

−∞
h0(x− u)Ψ ′(u)du,

h′′(x) =
∫ ∞

−∞
h0(x− u)Ψ ′′(u)du.

Next, we show that xh′(x) is bounded. Note that

xh′(x) = x
∫ ∞

−∞
h′0(u)Ψ(x− u)du,

= x
∫ M

−∞
euΨ(x− u)du,

= x
∫ ∞

x−M
ex−yΨ(y)dy, (with y = x− u)

=
xex
√

2π

∫ ∞

x−M
e−ye−y2/2dy

≤ xex
√

2π

∫ ∞

x−M
e−y2/2dy.

(11.22)

Clearly, it is bounded on (−∞,M]. To see it is also bounded on (M,∞), note also that

xex
√

2π

∫ ∞

x−M
e−y2/2dy ≤ xex

√
2π

(

exp
(−(x−M)2/2

)

x−M

)

. (11.23)

The boundedness follows.
Finally, to see the Lipschitz property of xh′(x), in view of the Mean Value Theo-

rem, it suffices to show that xh′′(x) is bounded. This can be done similarly as in (49)
and (50) by noticing

xh′′(x) = x
∫ ∞

−∞
h′0(u)Ψ

′(x− u)du.
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Chapter 12
CPPI in the Jump-Diffusion Model

Mingming Wang and Allanus Tsoi

12.1 Introduction

Constant Proportion Portfolio Insurance (CPPI) was introduced by [13] for eq-
uity instruments and has been further analyzed by many scholars (such as [1]). An
investor invests in a portfolio and wants to protect the portfolio value from falling
below a pre-assigned value. The investor shift his asset allocation over the invest-
ment period among a risk-free asset plus a collection of risky assets. The CPPI strat-
egy is based on the dynamic portfolio allocation of two basic assets: a riskless asset
(usually a treasury bill) and a risky asset (a stock index for example). This strategy
relies crucially on the concept of a cushion C, which is defined as the difference
between the portfolio value V and the floor F . This latter one corresponds to a guar-
anteed amount at any time t of the management period [0,T ]. The key assumption
is that the amount e invested on the risky asset, called the exposure, is equal to the
cushion multiplied by a fixed coefficient m, called the multiple. The floor and the
multiple can be chosen according to the investor’s risk tolerance.

Consider the jump-diffusion process with Yn > −1 representing the percentage
of jump-size, i.e. STn = ST−

n
(1+Yn). Between two jumps, we assume that the risky

asset model follows the Black–Scholes model. The number of jumps up to time t is
a Poisson processes Nt with intensity λt . Our model becomes

St = S0 exp

[

∫ t

0
(μs − σ2

s

2
)ds+

∫ t

0
σsdWs +

Nt

∑
n=1

ln(1+Yn)

]

.
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We usually assume that the ln(1+Yn) are i.i.d. with density function fQ.
Our chapter is outlined as follows: in Sect. 12.2, we set up the jump-diffusion

model, calculate the density function, and discuss the martingale measure. In
Sect. 12.3, we describe the CPPI strategy and calculate the CPPI portfolio value, its
expectation and variation. In Sect. 12.4, we consider the CPPI portfolio as a hedg-
ing tool (see [2]). In Sect. 12.5, we consider the mean-variance hedging for a given
contingent claim H. In our jump-diffusion model, the market is not complete and
so H is not attainable. Thus, we consider the mean-variance hedging as a kind of
quadratic hedging [15]. We consider H as a function of the portfolio value VT with
risk measure Q. We formulate our optimal problem (see (12.22)). We adopt the
method used in Chap. 10 of [3] and give the explicit optimal solution of Z0 and ϑt

(see Proposition 5.2.). The explicit solution is applicable in real financial market.
The main contribution of this chapter is contained in Sects. 12.4 and 12.5.

12.2 The Jump-Diffusion Model

To understand the background of our chapter we refer our readers to [3, 6, 10, 11,
14, 16], and [8].

Let (Ω ,F,Ft ,P) be a probability space satisfying the “usual assumption.” Let the
price St of a risky asset (usually stocks or their benchmark) be a right continuous
with left limits stochastic process on this probability space which jumps at the ran-
dom times T1, T2,. . . and suppose that the relative/proportional change in its value at
a jump time is given by Y1, Y2,. . . , respectively. We usually assume ln(1+Yn)s be
i.i.d. and in our chapter, we usually assume the density function of ln(1 +Yn)s
be fQ. We assume that, between any two near-by jump times, the price St follows
the Black–Scholes model. Those Tns are the jump times of a Poisson process Nt

with intensity λt and those Yns are a sequence of random variables with values in
(−1,+∞). We have

Nt = ∑
n≥1

χt≥Tn

and

P[Nt = n] =
e−

∫ t
0 λsds(

∫ t
0 λsds)n

n!
.

Then the description of the model can be formalized by letting, on the intervals
t ∈ [Tn,Tn+1),

dSt = St(μt dt +σtdWt),

and in exponential form:

St = STn exp

[

∫ t

Tn

(μs − σ2
s

2
)ds+

∫ t

0
σsdWs

]

.
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While, at t = Tn, the jump size is given by ΔSn = STn − ST−
n
= STn−Yn, so that

STn = ST−
n
(1+Yn)

which, by the assumption that Yn >−1, leads to positive values of the prices.
At the generic time t, St satisfies

St = S0 exp

[

∫ t

0
(μs − σ2

s

2
)ds+

∫ t

0
σsdWs

]

[

Nt

∏
n=1

(1+Yn)

]

(12.1)

= S0 exp

[

∫ t

0
(μs − σ2

s

2
)ds+

∫ t

0
σsdWs +

Nt

∑
n=1

ln(1+Yn)

]

(12.2)

= S0 exp

[

∫ t

0
(μs − σ2

s

2
)ds+

∫ t

0
σsdWs +

∫ t

0
ln(1+Ys)dNs

]

(12.3)

where Yt is obtained from Yn by a piecewise constant and left continuous time inter-
polation, i.e.

Yt = Yn if Tn < t ≤ Tn+1,

here we let T0 = 0. The term ∑Nt
n=1 ln(1+Yn)] in (12.2) is a compound Poisson

process. It has independent and stationary increments. Also because of (12.2), our
jump-diffusion model is an exponential levy model. By the generalized Ito formula,

dSt = St−[μt dt +σtdWt +YtdNt ], (12.4)

with initial value S0.
In general, if we assume Qn = ln(1+Yn) are i.i.d with density function fQ, then

the density function of ∑ j
n=1 ln(1+Yn) is f ( j)

Q . f ( j)
Q (y) is the convolution of the den-

sity fQ(y) with itself j times. i.e.

f ( j)
Q (y) = fQ(y)∗ fQ(y)∗ . . .∗ fQ(y)

︸ ︷︷ ︸

Convoluted j times

(12.5)

12.2.1 Density

We have the following proposition:

Proposition 12.1. Let Qn = ln(1+Yn) be i.i.d random variables with density func-
tion fQ. The density function of

ln

(

St

S0

)

=
∫ t

0

(

μs − σ2
s

2

)

ds+
∫ t

0
σsdWs +ΣNt

n=1 ln(1+Yn)
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is:

p(x) =
∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!

∫ ∞

−∞
φ
(

x− y;
∫ t

0
(μs − σ2

s

2
)ds,

∫ t

0
σ2

s ds

)

f ( j)
Q (y)dy,

where f ( j)
Q (y) = fQ(y)∗ fQ(y)∗ . . . fQ(y)

︸ ︷︷ ︸

Convoluted j times

and φ(x,m,υ2) = 1√
2πυ2 e

− (x−m)2

2υ2 .

Proof. Let L =
∫ t

0

(

μs − σ2
s

2

)

ds+
∫ t

0 σsdWs and M = ΣNt
n=1 ln(1+Yn). Then,

L ∼ N

(

∫ t

0
(μs − σ2

s

2
)ds,

∫ t

0
σ2

s ds

)

.

When Nt = j, we have

P(L+M ≤ x) =
∫ x

−∞

∫ ∞

−∞
φ
(

y− y2;
∫ t

0

(

μs − σ2
s

2

)

ds,
∫ t

0
σ2

s ds

)

f ( j)
Q (y2)dy2dy.

We calculate the distribution of L+M in general. For all x ∈R, we have

∀x ∈ R,

P(L+M ≤ x) = P

[

∞
⋃

j=0

(L+M ≤ x,Nt = j)

]

=
∞

∑
j=0

P(L+M ≤ x,Nt = j) =
∞

∑
j=0

P(L+M ≤ x|Nt = j)P(Nt = j)

=
∞

∑
j=0

P(L+Σ j
n=1 ln(1+Yn)≤ x|Nt = j)P(Nt = j)

=
∞

∑
j=0

P(L+Σ j
n=1 ln(1+Yn)≤ x,Nt = j)

P(Nt = j)
P(Nt = j)

=
∞

∑
j=0

P(L+Σ j
n=1 ln(1+Yn)≤ x)P(Nt = j)

P(Nt = j)
P(Nt = j)

=
∞

∑
j=0

P(L+Σ j
n=1 ln(1+Yn)≤ x)P(Nt = j)

=
∞

∑
j=0

∫ x

−∞
φ
(

y;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0
σ2

s ds+ jδ 2
)

dy
e−

∫ t
0 λsds(

∫ t
0 λsds) j

j!
.

Each item in the above equations is positive, thus the series is absolute convergence.
Hence, the density function is
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p(x)

=

d

(

∑∞j=0
∫ x
−∞ φ

(

y;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0 σ2
s ds+ jδ 2

)

dy e−
∫ t
0 λsds

(
∫ t

0 λsds) j

j!

)

dx

=
∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!
φ
(

x;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0
σ2

s ds+ jδ 2
)

.

�
The Merton’s Model [12] and Kou’s Model [9] are two common jump-diffusion
models.

When we assume ln(1+Yn)∼ N(α,δ 2), we have Merton’s model [12].
When we assume Q = ln(1+Yn) has an asymmetric double exponential distribu-

tion with the density function

fQ(y) = p ·η1e−η1yχy≥0 + q ·η2e−η2yχy<0

where η1 > 1, η2 > 0, p, q ≥ 0 and p+ q = 1, then it is called Kou’s model [9].

12.2.2 Martingale Measure

For our jump-diffusion model defined by (12.2), consider a predictable Ft -process
ψt , such that

∫ t
0ψtλsds < ∞. Choose θt and ψt such that

μt +σtθt +Ytψtλt = rt (12.6)

and

ψt ≥ 0.

From here we see that

θt = σ−1
t (rt − μt −Ytψtλt) (12.7)

whose the choice of ψt is arbitrary. Define

Lt = exp

{

∫ t

0

[

(1−ψs)λs − 1
2
θ 2

s

]

ds+
∫ t

0
θsdWs +

∫ t

0
lnψsdNs

}

(12.8)

for t ∈ [0,T ] and the Radon–Nikodym derivative to be

dQ
dP

= LT . (12.9)
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Then Q is a risk neutral measure or martingale measure, i.e. a measure under which
S̃t = exp{−∫ t

0 rsds}St is a martingale (see [14]).
Define

dWQ

t = dWt −θtdt; (12.10)

dMQ

t = dNt −ψtλtdt. (12.11)

Then WQ

t and MQ

t are Q-martingales. Also under the measure Q, St satisfies

dSt = St−[(μt +σtθt +Ytψtλt)dt +σtdWQ

t +YtdMQ

t ]. (12.12)

Under the measure Q, Nt is a Poisson processes with intensity λtψt .
There are many risk-neutral measures Q ∼ P. A special case of a risk-neutral

measure, reflecting the case of a risk-neutral world, it should satisfy

E(S(t)) = S0ert .

(See page 312 on [6], page 248–250 on [7], page 19 on [11].)
In Merton’s Model, ln(1+Yn) ∼ N(α,δ 2), by Proposition 12.1, it follows that

the density satisfies

p(x) =
∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!
φ
(

x;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0
σ2

s ds+ jδ 2
)

.

Then

E(S(t)) = S0E

(

elnSt/S0

)

= S0

∫

R

ex p(x)dx

= S0

∫

R

ex
∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!
φ
(

x;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0
σ2

s ds+ jδ 2
)

dx

= S0

∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!

∫

R

exφ
(

x;
∫ t

0

(

μs − σ2
s

2

)

ds+ jα,
∫ t

0
σ2

s ds+ jδ 2
)

dx

= S0

∞

∑
j=0

e−
∫ t

0 λsds(
∫ t

0 λsds) j

j!
exp

{

∫ t

0
μsds+ jα+ j

δ 2

2

}

= S0 exp
∫ t

0

(

μs −λs+ eα+
δ2
2 λs

)

ds.

When

E(S(t)) = S0ert ,

we have

μs −λs+ eα+
δ2
2 λs = r.
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Thus under our new risk-neutral measure P
rn, we can use r+λs − eα+

δ2
2 λs to sub-

stitute μs. The model then becomes

St = S0 exp

⎡

⎣

∫ t

0

(

r+λs − eα+
δ2
2 λs − σ2

s

2

)

ds+
∫ t

0
σsdW rn

s +
N
(rn)
t

∑
n=1

ln(1+Yn)

⎤

⎦ .

W (rn)
s is a Brownian motion and N(rn)

t is Poisson process which intensity is λs under
the probability measure P

rn. For convenience, we still denote them as Ws and Nt .
Then, under the probability measure Prn, the model is

St = S0 exp

[

∫ t

0

(

r+λs − eα+
δ2
2 λs − σ2

s

2

)

ds+
∫ t

0
σsdWs +

Nt

∑
n=1

ln(1+Yn)

]

.

12.3 The CPPI Strategies

12.3.1 The constant multiple case

The CPPI strategy is based on a dynamic portfolio allocation on two basic assets: a
riskless asset (usually a treasury bill) and a risky asset (a stock index for example).

At time t, the exposure et is equal to the cushion Ct multiplied by the multiple m.
The cushion Ct is defined as the difference between the portfolio value Vt and the
floor Ft . Ft = Gexp{−r(T − t)}, G is the floor at time T . Because of the existence
of jumps, it is possible to have the case that the portfolio value is less than the floor.
Then, the cushion will be negative and so will be the exposure. That means short-
selling should be allowed. The following proposition describes the portfolio value
under this strategy.

Denote portfolio value as Vt . It consists with riskless asset Vt −mCt and risky
asset mCt . i.e. Vt = mCt +(Vt −mCt). Let the interest rate be r and floor at time t be
Ft = F0ert = FT e−r(T−t). For convenience we summarize our notations:

Name Notation
Interest rate r
Time t
Time period [0,T ]
Floor at time t Ft

Portfolio value at time t Vt

Cushion at time t Ct

Multiple m
Exposure at time t et

Riskless asset at time t Bt
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Their relations are as follows

Ct =Vt −Ft;

et = mCt ;

Bt =Vt − et .

Proposition 12.2. The CPPI portfolio value under the jump-diffusion model defined
by (12.2) is

Vt = C0 exp

{

∫ t

0

(

r+m(μs − r)− mσ2
s

2

)

ds

+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft ,

where

C0 =
(

V0 −Ge−rT) ,

Ft = G× exp{−r(T − t)}.

Proof. We have

Vt = mCt +(Vt −mCt)

= Vt

[

mCt

Vt
+

(

1− mCt

Vt

)]

and

dVt =Vt

[

mCt

Vt−
dSt

St−
+

(

1− mCt

Vt−

)

dBt

Bt

]

.

Since Bs is continuous, then Bs− = Bs, we have

dCt = d(Vt −Ft)

=Vt

[

mCt−
Vt

dSt

St−
+

(

1− mCt−
Vt

)

dBt

Bt

]

−Ft
dBt

Bt

=Ct−
(

mdSt

St−
− (m− 1)rdt

)

=Ct−[m(μt dt +σtdWt +YtdNt)− (m− 1)rdt]

=Ct−[(r+m(μt − r))dt +mσtdWt +mYtdNt ].

(12.13)
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Then

Ct =C0 exp

{

∫ t

0

(

r+m(μs − r)− m2σ2
s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

.

Hence

Vt = Ct +Ft

= C0 exp

{

∫ t

0

(

r+m(μs − r)− mσ2
s

2

)

ds

+

∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft .

�
If we substitute μs by r+λs − eα+

δ2
2 λs, under the probability measure P

rn, we get
the following corollary.

Corollary 12.1. In Merton’s model, under the probability measure P
rn, the CPPI

portfolio value under jump-diffusion model is

Vt = C0 exp

{

∫ t

0

[

r+m

(

λs − eα+
δ2
2 λs

)

− mσ2
s

2

]

ds

+

∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft ,

where

C0 = (V0 −Ge−rT )

Ft = G× exp{−r(T − t)}.

The expectation and variance of the CPPI portfolio value are deduced in the follow-
ing two propositions. They are obviously two important values to describe the CPPI
strategy in our jump-diffusion model.

Proposition 12.3. The expected CPPI portfolio value at time t under the jump-
diffusion model is

E[Vt ] =C0 exp

{

∫ t

0
(r+m(μs − r))ds

} ∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]

+Ft .
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Proof. Because

P

[

Nt

∏
n=1

(1+mYn)≤ x

]

= P

[

∞
⋃

k=1

(

Nt

∏
n=1

(1+mYn)≤ x,Nt = k

)]

=
∞

∑
k=1

P

[

Nt

∏
n=1

(1+mYn)≤ x|Nt = k

]

P[Nt = k]

=
∞

∑
k=1

P

[

k

∏
n=1

(1+mYn)≤ x|Nt = k

]

P[Nt = k]

=
∞

∑
k=1

P

[

∏k
n=1(1+mYn)≤ x,Nt = k

]

P[Nt = k]
P[Nt = k]

=
∞

∑
k=1

P

[

∏k
n=1(1+mYn)≤ x

]

P[Nt = k]

P[Nt = k]
P[Nt = k]

=
∞

∑
k=1

P

[

k

∏
n=1

(1+mYn)≤ x

]

P[Nt = k]

=
∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
P

[

k

∏
n=1

(1+mYn)≤ x

]

,

we get

E

[

Nt

∏
n=1

(1+mYn)

]

=
∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]

and then

E[Vt ]

= C0E

[

exp

{

∫ t

0

(

r+m(μs − r)− m2σ 2
s

2

)

ds+
∫ t

0
mσsdWs

}]

E

[

Nt

∏
n=1

(1+mYn)

]

+Ft

= C0 exp

{

∫ t

0
[r+m(μs − r)]ds

}

E

[

Nt

∏
n=1

(1+mYn)

]

+Ft

= C0 exp

{

∫ t

0
[r+m(μs − r)]ds

} ∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]

+Ft .

�
Proposition 12.4. The variance of the CPPI portfolio value at time t under jump-
diffusion model is
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C2
0 exp

{

∫ t

0
2
[

r+m(μs − r)+m2σ 2
s

]

ds

} ∞

∑
k=1

E

[

k

∏
n=1

(1+mYn)

]2
e−

∫ t
0 λsds(

∫ t
0 λsds)k

k!

−
(

exp

{

∫ t

0
[r+m(μs − r)]

}

ds
∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

])2

.

Proof. Similar to the proof of Prop. 12.3, we have

E

⎛

⎝

[

Nt

∏
n=1

(1+mYn)

]2
⎞

⎠=
e−

∫ t
0 λsds(

∫ t
0 λsds)k

k!
E

⎛

⎝

[

k

∏
n=1

(1+mYn)

]2
⎞

⎠ .

Thus,

Var[Vt ] = Var[Ct ]

= C2
0Var

(

exp

{

∫ t

0

(

r+m(μs − r)− m2σ 2
s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

])

= C2
0E

(

exp

{

∫ t

0

(

r+m(μs − r)− m2σ 2
s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

])2

−C2
0

(

E

[

exp

{

∫ t

0

(

r+m(μs − r)− m2σ 2
s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]])2

= C2
0E

[

exp

{

∫ t

0

(

r+m(μs − r)− m2σ 2
s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]]2

−C2
0

[

exp

{

∫ t

0
[r+m(μs − r)]ds

} ∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]]2

= C2
0E

[

exp
{
∫ t

0
2[r+m(μs − r)−m2σ 2

s ]ds+2
∫ t

0
mσsdWs

}

]

E

[

Nt

∏
n=1

(1+mYn)

]2

−C2
0

[

exp

{

∫ t

0
(r+m(μs − r))ds

} ∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]]2

= C2
0 exp

{

∫ t

0
2[r+m(μs − r)+m2σ 2

s ]ds

} ∞

∑
k=1

E

[

k

∏
n=1

(1+mYn)

]2
e−

∫ t
0 λsds(

∫ t
0 λsds)k

k!

−
[

exp

{

∫ t

0
[r+m(μs − r)]

}

ds
∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mYn)

]]2

.

�
Remark 12.1. Another method to calculate the expectation of the portfolio value is
calculating the characteristic function of
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∫ t

0

(

[r+m(μs − r)]− mσ2
s

2

)

ds+
∫ t

0
mσsdWs +

Nt

∏
n=1

(1+mYn)

Remark 12.2. For the Merton’s and Kou’s model, E[∏k
n=1(1+mYn)] and E[∏k

n=1
(1 +mYn)]

2 can be calculated and thus the expected portfolio can be calculated
explicitly. In general, if we assume Qn = ln(1 + Yn) are i.i.d with density fQ,
E[∏k

n=1(1+mYn)] and E[∏k
n=1(1+mYn)]

2 still can be calculated in terms of the
function of fQ.

The following lemma gives the density function of 1+mYi.

Lemma 12.1. Let the density function of ln(1+Yn) be fQ(y). Then the density func-
tion f ′Q of the random variable 1+mYi is

f ′Q(z) = fQ

[

ln

(

1+
z− 1

m

)]

1
m+ z− 1

.

Proof. Since

P(1+mYi ≤ z) = P

[

ln(1+Yi)≤ ln

(

1+
z− 1

m

)]

=
∫ ln(1+ z−1

m )

−∞
fQ(y)dy,

the density f ′Q of the random variable 1+mYi is

f ′Q(z) =
d (P(1+mYi ≤ z))

dz
= fQ

[

ln

(

1+
z− 1

m

)]

1
m+ z− 1

.

�
Now we can calculate

E

[

k

∏
n=1

(1+mYn)

]

= E

[

exp

{

k

∑
n=1

ln(1+mYn)

}]

=

∫

R

exp

⎧

⎪

⎨

⎪

⎩

f ′Q ∗ f ′Q ∗ . . .∗ f ′Q(x)
︸ ︷︷ ︸

k items

⎫

⎪

⎬

⎪

⎭

dx

and

E

[

k

∏
n=1

(1+mYn)
2

]

= E

[

exp

{

k

∑
n=1

2 ln(1+mYn)

}]

=
∫

R

exp

⎧

⎪

⎨

⎪

⎩

2 f ′Q ∗ f ′Q ∗ . . .∗ f ′Q(x)
︸ ︷︷ ︸

k items

⎫

⎪

⎬

⎪

⎭

dx.
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12.3.2 The Time-Varying Multiple Case

We study the case when the multiple is a function of time. Let mt be the multiple at
time t. The conclusion does not change much in comparison with the constant case.
We still have similar propositions:

Proposition 12.5. When the multiple is a function of time at time t, the CPPI port-
folio value under the jump-diffusion model is

Vt =C0 exp

{

∫ t

0

(

r+ms[μs − r]− m2
sσ 2

s

2

)

ds+
∫ t

0
msσsdWs

}

[

Nt

∏
n=1

(1+mnYn)

]

+Ft ,

where mn is obtained from mt by the formula

mn = mTn ,

where T0 = 0.

Proposition 12.6. When the multiple is a function of time at time t, the expected
CPPI portfolio value under jump-diffusion model is

C0 exp

{

∫ t

0
[r+ms(μs − r)]ds

∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mnYn)

]}

+Ft .

Proposition 12.7. When the multiple is a function of time at time t, the variance of
the CPPI portfolio value under jump-diffusion model is

C2
0 exp

{

∫ t

0
2
(

r+ms(μs − r)+m2
sσ 2

s

)

ds

} ∞

∑
k=1

E

[

k

∏
n=1

(1+mnYn)

]2
e−

∫ t
0 λsds(

∫ t
0 λsds)k

k!

−
{

exp

{

∫ t

0
[r+ms(μs − r)]ds

} ∞

∑
k=1

e−
∫ t

0 λsds(
∫ t

0 λsds)k

k!
E

[

k

∏
n=1

(1+mnYn)

]}2

.

12.4 The CPPI Portfolio as a Hedging Tool

We have proved that the portfolio value is

Vt =C0 exp

{

∫ t

0

(

r+ms(μs − r)− m2
sσ 2

s

2

)

ds+
∫ t

0
msσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft .

In Sect. 12.4 of [2], the CPPI portfolio as an hedging tool under the Black–Scholes
model is discussed. [5] also discusses the option on CPPI under the Black–Scholes
model. In this section, we generalize the result to our jump-diffusion model.
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12.4.1 PIDE Approach

Suppose that η = g(ST ) is a contingent claim that the portfolio’s manager is aiming
to have at maturity. Can the CPPI portfolio be converted into a synthetic derivative
with pay-off specified by η = g(ST )?

Theorem 12.1. If g : R → R is sufficiently smooth, there exists a unique self-
financed g(ST ) hedging CPPI portfolio V; defined by

Vt = v(t,St) t ∈ [0,T ] (12.14)

where v ∈ C1,2([0,T ]×R) is the unique solution of the following partial integro-
differential equations (PIDE).

∂u
∂ t

(t,s)+ (μt s)
∂u
∂x

(t,s)+
1
2
(sσt )

2 ∂ 2u
∂x2 (t,s)− ru(t,s) = 0, (12.15)

sz
∂u
∂x

(t,s) = u(t,s+ sz)− u(t,s), (12.16)

u(T,s) = g(s), (t,s) ∈ [0,T ]×R), u ∈C1,2([0,T ]×R). (12.17)

Here, ∂u
∂x is the partial derivative to the second variable. In particular the CPPI

portfolio’s gearing factor is given by:

mt =
∂u
∂x (t,St)St−

Vt−−Ft
, t ∈ [0,T ]. (12.18)

Proof. For V to be a self-financed g(ST )-hedging portfolio, it is enough to ensure
that at maturity time we have

VT = g(ST ), a.s..

Choose a map v ∈C1,2([0,T ]×R) and set Vt = v(t,St)(t ∈ [0,T ]). Then v(T,ST ) =
g(ST ) P-a.s., therefore

v(T,s) = g(s), ∀s ∈ R.

Second by Ito’s chain rule,

dv(t,St) =

(

∂v
∂ t

+ μtSt−
∂v
∂x

+
1
2
(σt St−)2 ∂ 2v

∂x2

)

(t,St)dt

+St−σt
∂v
∂x

(t,St)dWt +[v(t,St−+ St−Yt)− v(t,St−)]dNt .

Now Vt satisfies

dVt = dCt + dFt

= (Vt−−Ft)[r+mt(μt − r)]dt + rFtdt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt

= [rVt−+(Vt−−Ft)mt(μt − r)]dt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt .
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A comparison of the above two equations implies that

mt =
∂u
∂x (t,St)St−

Vt−−Ft
, t ∈ [0,T ]

and

∂u
∂ t

(t,s)+ (μt s)
∂u
∂x

(t,s)+
1
2
(sσt )

2 ∂ 2u
∂x2 (t,s)− ru(t,s) = 0

sz
∂u
∂x

(t,s) = u(t,s+ sz)− u(t,s).

�
In a financial turmoil, the portfolio’s manager acting on the leverage regime may

convert the CPPI portfolio in a suitable synthetic derivative whose price is specified
by (12.14)–(12.17). Moreover the required dynamic gearing factor (multiple) can be
easily determined, using (12.18). This is the PIDE/PDE approach hedging.

Another observation that reveals to be central in the analysis of possible port-
folio’s hedges is that at any time of the financial horizon the CPPI portfolio value
may be regarded as a standard risky asset and therefore as an underlying for any
convenient contingent claim:

Theorem 12.2. Under the risk neutral measure Q, the discounted CPPI portfolio’s
value {Vt}t∈[0,T ]

Ṽt = e−rtVt , t ∈ [0,T ] (12.19)

is a Martingale.

Proof. In the proof of last theorem, we have deduced

dVt = [rVt−+(Vt−−Ft)mt (μt − r)]dt +(Vt−−Ft)mtσt dWt +(Vt−−Ft)mtYtdNt .

Thus we have

dVt = (rVt−+(Vt−−Ft)mt(μt − r))dt +(Vt−−Ft)mtσt(dWQ

t +θtdt)

+(Vt−−Ft)mtYtdNt

= (rVt−+(Vt−−Ft)mt(μt − r+θt))dt +(Vt−−Ft)mtσt dWQ

t

+(Vt−−Ft)mtYtdNt

= [rVt−+(Vt−−Ft)mtσt ]dWQ

t +[(Vt−−Ft)mt(−Ytψtλt)]dt

+(Vt−−Ft)mtYtdNt

= [rVt−+(Vt−−Ft)mtσt ]dWQ

t +(Vt−−Ft)mtYtdMQ

t .
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Integration by parts implies that

dṼt = de−rtVt =−re−rtVtdt + e−rtdVt

= e−rt [(Vt−−Ft)mtσt dWQ

t +(Vt−−Ft)mtYtdMQ

t ].

Thus, Ṽt is a Q-Martingale. �
If we substitute μs by r+λs − eα+

δ2
2 λs, under the probability measure P

rn, we
get the following corollary.

Corollary 12.2. In Merton’s model, under the probability measure Prn, the discoun-
ted CPPI portfolio’s value {Vt}t∈[0,T ]

Ṽt = e−rtVt , t ∈ [0,T ]

is a Martingale.

Proof. We have

dVt = [rVt−+(Vt−−Ft)mt(μt − r)]dt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt

=

[

rVt−+(Vt−−Ft)mt

(

λt − eα+
δ2
2 λt

)]

dt

+(Vt−−Ft)mtσt dWt +(Vt−−Ft)mtYtdNt .

Thus

dṼt = de−rtVt =−re−rtVtdt + e−rtdVt

= −re−rtVtdt + e−rt(rVt−+(Vt−−Ft)mt

(

λt − eα+
δ2
2 λt

)

dt

+(Vt−−Ft)mtσt dWt +(Vt−−Ft)mtYtdNt)

= e−rt
[

(Vt−−Ft)mt

(

λt − eα+
δ2
2 λt

)

dt

+(Vt−−Ft)mtσt dWt +(Vt−−Ft)mtYtdNt

]

= e−rt
[

(Vt−−Ft)mt

(

λt − eα+
δ2
2 λt +λtYt

)

dt

+(Vt−−Ft)mtσt dWt +(Vt−−Ft)mtYt(dNt −λtdt)

]

.

Since dNt −λtdt is a martingale and

E[Yt ] = E

[

eln(1+Yn)− 1
]

= eα+
δ2
2 − 1,

we get E

[

λt − eα+
δ2
2 λt

]

= 0, so we prove Ṽt is a P
nr-Martingale. �
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Given any claim η = g(VT ) which is a function of the terminal portfolio’s price,
there exists a unique self-financed η = g(VT )-hedging strategy:

Theorem 12.3. Let g : R → R sufficiently smooth. Then there exists a unique η =
g(VT )-hedging self-financed trading strategy (U,η) defined as

Ut = u(t,Vt), ηt− =
∂u
∂x

(t,Vt), t ∈ [0,T ],

where u ∈C1,2([0,T ]×R) is the unique solution of the PIDE.

∂u
∂ t

(t,v)+ rv
∂u
∂x

(t,v)+
1
2

m2σ2
t (v− f )2 ∂ 2u

∂x2 (t,v)− ru(t,v) = 0 (12.20)

mz(v− f )
∂u
∂x

(t,v) = u(t,v+m[v− f ]z)− u(t,v) (12.21)

with the final condition u(T,v) = g(v).

Proof. Consider an asset {Vt}t∈[0,T ], and pick a self-financed g(VT ) hedging strategy
space (Ut ,ηt)t∈[0,T ] by setting:

dUt = ηt−dVt +(Ut−−ηt−Vt−)rdt

and

UT = g(VT ) a.s.

Since

dVt = [rVt−+(Vt−−Ft)mt(μt − r)]dt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt ,

the hedging portfolio’s equation may be rewritten as:

dUt = ηt−[rVt−+(Vt−−Ft)mt (μt − r)dt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt ]+ (Ut−−ηt−Vt−)rdt

= [rUt−+ηt−(Vt−−Ft)m(μt − r)]dt +ηt−(Vt−−Ft)mtσt dWt

+[ηt−(Vt−−Ft)mtYtdNt ].

Pick u ∈C1,2([0,T ]×R) and set Ut = u(t,Vt), for t ∈ [0,T ].
For any t ∈ [0,T ], the Ito’s formula implies that:

du(t,Vt) =
∂u
∂ t

(t,Vt)+ [rVt−+m(μt − r)(Vt−−Ft)]
∂u
∂x

(t,Vt)

+
1
2
(mσt)

2(Vt−−Ft)
2 ∂ 2u
∂x2 (t,Vt)dt +mσt(Vt−−Ft)

∂u
∂x

(t,Vt)dWt

+[u(t,Vt−+m(Vt−−Ft)Yt)− u(t,Vt−)]dNt .
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A comparison between the above two equations implies in particular

ηt− =
∂u
∂x

(t,Vt)

and

∂u
∂ t

(t,v)+ (rv+m(μt − r)(v− f ))
∂u
∂x

(t,v)+
1
2

m2σ2
x (v− f )2 ∂ 2u

∂x2 (t,v)

= ru(t,v)+m(μt − r)(v− f )
∂u
∂x

(t,v).

Thus

∂u
∂ t

(t,v)+ rv
∂u
∂x

(t,v)+
1
2

m2σ2
t (v− f )2 ∂ 2u

∂x2 (t,v)− ru(t,v) = 0

and

mz(v− f )
∂u
∂x

(t,v) = u(t,v+m[v− f ]z)− u(t,v)

with the final condition u(T,v) = g(v). �
The rationale in constructing self-financed trading strategies that hedge the CPPI

portfolio’s terminal price is that there are contingent claims particularly useful to
control both the closing-out-effect and the gap risk. As an example consider the
case of a Vanilla options based on the CPPI portfolio’s value. For instance being
long in an at-the-money Put option on the portfolio with a strike at least equal to
the protection required is a natural way to hedge gap risk. Similarly being long in
an at-the-money Call option on the portfolio is a natural way to invest in a CPPI’s
portfolio preserving the capability to not purse forward the investment in the case
of closed out.

12.4.2 Martingale Approach

It is possible to obtain a Black–Scholes like formula for the pricing of Vanilla op-
tions based on the CPPI portfolio:

We first consider the general case of jump-diffusion model. In this case, we as-
sume ln(1+Yi) are i.i.d. with the common density function fQ.

Proposition 12.8. Let the density of ln(1+Yi) be fQ(x) and the density function of

ln(Lt) =

∫ t

0

[

(1−ψs)λs − 1
2
θ 2

s

]

ds+
∫ t

0
θsdWs +

∫ t

0
lnψsdNs
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be f Lt , where Lt is defined by (12.8). Then the vanilla Call/Put option on the whole
CPPI portfolio’s value at maturity is completely determined by:

Call(0,v,T,K)

=
∞

∑
k=0

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

∫ ∞

ς

(

C0ex +F0− e−rT K
)

p(k)dx

and

Put(0,v,T,K)

=
∞

∑
k=0

(

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

)

∫ ∞

ς
(−C0ex −F0+ e−rT K)p(k)dx,

where K > FT and

p(k) = f1 ∗ fQQ′ ∗ . . .∗ fQQ′
︸ ︷︷ ︸

k terms

,

where fQ′ and fQQ′ have the following relation:

∫

R

exp
{

iu fQQ′(z)
}

dz =
∫

R

exp
{[

fQ′(
z
iu
)

z
iu

]

∗ f LT (z)
}

dz

and f1 is the density function of the normal distribution

N

(

·,
∫ T

0

(

(m(−Yψsλs)− m2σ2
s

2

)

ds,
∫ T

0
mσsdWQ

s

)

and ς = ln
(

e−rT K−F0
C0

)

.

Proof. Consider the process:

Vt = C0 exp

{

∫ t

0

(

r+m(μs − r)− m2
sσ2

s

2

)

ds+
∫ t

0
mσsdWs

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft

= C0 exp

{

∫ t

0

(

r+m(μs − r)+mσsθs − m2σ2
s

2

)

ds+
∫ t

0
mσsdWQ

s

}

×
[

Nt

∏
n=1

(1+mYn)

]

+Ft

= C0 exp

{

∫ t

0

(

r−mYsψsλs − m2σ2
s

2

)

ds+
∫ t

0
mσsdWQ

s

}

[

Nt

∏
n=1

(1+mYn)

]

+Ft .

In the case of NT = k, we denote



266 M. Wang and A. Tsoi

L(k) = e−rT V k
T −FT

C0
= exp

{

∫ T

0

(

m(−Yψsλs)− m2σ2
s

2

)

ds

+

∫ T

0
mσsdW Q

s +

[

k

∑
n=1

ln(1+mYn)

]}

.

(see the Remark 12.5 below the proof.) Because

P[ln(1+mYi)≤ z] = P

[

ln(1+Yi)≤ ln

(

1+
ez − 1

m

)]

=

∫ ln
(

1+ ez−1
m

)

−∞
fQ(y)dy,

the density function fQ′ of the random variable ln(1+mYi) under the Probability
measure P is

fQ′(z) =
d[P(ln(1+mYi)≤ z)]

dz
= fQ

[

ln

(

1+
ez − 1

m

)]

ez

m+ ez− 1
.

Let the density function of the random variable ln(1+mYi) under Probability mea-
sure Q be fQQ′ . By the properties of the Radon–Nikodym derivative and the charac-
teristic function, we have

E
Q[exp{iu ln(1+mYi)}] = E[exp{iu ln(1+mYi)}LT ]

= E[exp{iu ln(1+mYi)+ lnLT}]

UnderP, the density function of iu ln(1+mYi) is fQ′
(

z
iu

)

z
iu , thus the density function

of iu ln(1+mYi)+ lnLT under P is

[

fQ′
( z

iu

) z
iu

]

∗ f LT (z)

and thus fQ′ and fQQ′ have the following relation:

∫

R

exp
{

iu fQQ′(z)
}

dz =
∫

R

exp
{[

fQ′
( z

iu

) z
iu

]

∗ f LT (z)
}

dz.

Since

∫ T

0

[

m(−Yψsλs)− m2σ2
s

2

]

ds+
∫ T

0
mσsdWQ

s

∼ N

(

·,
∫ T

0

[

m(−Yψsλs)− m2σ2
s

2

]

ds,
∫ T

0
mσsdWQ

s

)

,

we denote its density function by

f1(x) = φ
(

x,
∫ T

0

[

m(−Yψsλs)− m2σ2
s

2

]

ds,
∫ T

0
mσsdWQ

s

)
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under the Probability measure Q where φ(x,m,υ) = 1√
2πυ2

e
− (x−m)2

2υ2 . Then the den-

sity function p(k)(x) of L(k) is

p(k) = f1 ∗ fQQ′ ∗ . . .∗ fQQ′
︸ ︷︷ ︸

k terms

.

We have

E
Q

[

e−rT (V (k)
T −K)+

]

=
∫ ∞

ς

(

C0ex +F0 − e−rT K
)

p(k)dx,

where

ς = ln

(

e−rT K −F0

C0

)

,

thus

Call(0,v,T,K)

= E
Q
[

e−rT (VT −K)+
]

=
∞

∑
k=0

E
Q

[

e−rT (V (k)
T −K)+

]

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

=
∞

∑
k=0

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

∫ ∞

ς
(C0ex +F0 − e−rT K)p(k)dx.

Similarly,

E
Q

[

e−rT (K −V (k)
T )+

]

=

∫ ∞

ς
(−C0ex −F0 + e−rT K)p(k)dx

and

Put(0,v,T,K)

= E
Q
[

e−rT (K −VT )
+
]

=
∞

∑
k=0

E
Q

[

e−rT (K −V (k)
T )+

]

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

=
∞

∑
k=0

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

∫ ∞

ς
(−C0ex −F0 + e−rT K)p(k)dx.

�
Remark 12.3. The expression is not very explicit since they contain measure trans-
formations and convolutions.



268 M. Wang and A. Tsoi

Remark 12.4. When Q is the risk neutral measure, the price of a Vanilla Call option
is given by,

Call(t,v,T,K) = EQ[e−r(T−t)(V t,v
T −K)+] = EQ[e−r(T−t)(VT −K)+|Vt = v],

for any t ∈ [0,T ]. The CPPI portfolio’s value {Vt} is a Markov process so that

Call(t,v,T,K) = Call(0,v,T − t,K), for t ∈ [0,T ]

and it is sufficient to cover the case of the Vanilla Call option’s price at zero.

Remark 12.5. The value of 1+mYn might be negative, in this case ln(1+mYn) is an
imaginary number.

Corollary 12.3. In Merton’s Model and under the probability measure P
rn, let the

density of ln(1+Yi) be φ(x,α, δ 2). Then the vanilla Call/Put option on the whole
CPPI portfolio’s value at maturity is completely determined by,

Call(0,v,T,K) =
∞

∑
k=0

[

e−
∫ T

0 λsds(
∫ T

0 λsds)k

k!

]

∫ ∞

ς

(

C0ex +F0 − e−rT K
)

p(k)dx

and

Put(0,v,T,K) =
∞

∑
k=0

[

e−
∫ T

0 λsds(
∫ T

0 λsds)k

k!

]

∫ ∞

ς

(−C0ex −F0 + e−rT K
)

p(k)dx,

where K > FT and

p(k) = f1 ∗ fQ′ ∗ . . .∗ fQ′
︸ ︷︷ ︸

k terms

,

fQ′(z) = φ
[

ln

(

1+
ez − 1

m

)

,α, δ 2
]

ez

m+ ez− 1
,

and f1 is the density function of the normal distribution

N

[

·,
∫ T

0

(

m

(

λs − eα+
δ2
2 λs

)

− mσ2
s

2

)

ds,
∫ T

0
mσsdWs

]

and ς = ln
(

e−rT K−F0
C0

)

.

In the following proposition we consider the special case that Yn = Y is a con-
stant. In this case, the expression is more explicit.

Proposition 12.9. In the case that Yn = Y is a constant, the vanilla Call/Put option
on the whole CPPI portfolio’s value at maturity has the explicit expression:
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Call(0,v,T,K) =
∞

∑
k=0

⎡

⎢

⎣

e−
∫ T

0 ψsλsds
(

∫ T
0 ψsλsds

)k

k!

⎤

⎥

⎦

[

C0e
M(k)+ 1

2σ
2
(k)Ψ

(

M(k) +σ2
(k)− ς

σ(k)

)

− (F0 − e−rT K)Ψ

(

M(k)− ς
σ(k)

)]

and

Put(0,v,T,K) =
∞

∑
k=0

⎡

⎢

⎣

e−
∫ T

0 ψsλsds
(

∫ T
0 ψsλsds

)k

k!

⎤

⎥

⎦

[

−C0e
M(k)+ 1

2σ
2
(k)Ψ

(

−
M(k)−σ2

(k) + ς
σ(k)

)

+
(−F0 + e−rT K

)

Ψ

(

−M(k) + ς
σ(k)

)]

,

where K > FT and

M(k) =

∫ T

0

[

(m−Yψsλs)− mσ2
s

2

]

ds+ k ln(1+mY),

σ2
(k) =

∫ T

0
mσsdWQ

s ,

ς = ln

(

e−rT K −F0

C0

)

and

Ψ(x) =
∫ x

−∞
1√
2π

e−
1
2 t2

dt.

Proof. We have

Vt = C0 exp

{

∫ t

0

[

r+m(μs − r)− mσ2
s

2

]

ds

+

∫ t

0
mσsdWs +

[

Nt

∑
n=1

ln(1+mYn)

]}

+Ft

= C0 exp

{

∫ t

0

[

r+m(−Yψsλs)− mσ2
s

2

]

ds

+

∫ t

0
mσsdW Q

s +

[

Nt

∑
n=1

ln(1+mYn)

]}

+Ft .
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In case that NT = k, we have

e−rT V k
T −FT

C0
= exp

{

∫ T

0

[

m(−Yψsλs)− mσ2
s

2

]

ds

+

∫ T

0
mσsdW Q

s +

[

NT

∑
n=1

ln(1+mYn)

]}

.

Then we have

ln

(

e−rT V k
T −FT

C0

)

∼ N
(

.;M(k),σ2
(k)

)

,

where

M(k) =
∫ T

0

[

m(−Yψsλs)− mσ2
s

2

]

ds+ k ln(1+mY)

σ2
(k) =

∫ T

0
mσsdWQ

s .

Thus

E
Q

(

e−rT (V (k)
T −K)+

)

=

∫ ∞

ς

(

C0ex +F0 − e−rT K
)

d
[

N
(

x;M(k),σ2
(k)

)]

= C0e
M(k)+ 1

2σ
2
(k)Ψ

(

M(k) +σ2
(k)− ς

σ(k)

)

− (

F0 − e−rT K
)

Ψ

(

M(k)− ς
σ(k)

)

,

where

ς = ln

(

e−rT K −F0

C0

)

.

and

Ψ(x) =
∫ x

−∞
1√
2π

e−
1
2 t2

dt.

Then

Call(0,v,T,K)

= E
Q[e−rT (VT −K)+] =

∞

∑
k=0

E
Q

[

e−rT (V (k)
T −K)+

]

[

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

]

=
∞

∑
k=0

⎡

⎢

⎣

e−
∫ T

0 ψsλsds
(

∫ T
0 ψsλsds

)k

k!

⎤

⎥

⎦

[

C0e
M(k)+ 1

2σ
2
(k)Ψ

(

M(k) +σ2
(k)− ς

σ(k)

)

− (F0 − e−rT K)Ψ

(

M(k)− ς
σ(k)

)]

.



12 CPPI in the Jump-diffusion Model 271

Similarly,

E
Q

[

e−rT (K −V (k)
T )+

]

=

∫ ς

−∞
(−C0ex −F0 + e−rT K

)

d
[

N
(

x;M(k),σ2
(k)

)]

= −C0e
M(k)+ 1

2σ
2
(k)Ψ

(

−
M(k)−σ2

(k) + ς
σ(k)

)

+
(−F0 + e−rT K

)

Ψ

(

−M(k) + ς
σ(k)

)

and

Put(0,v,T,K)

= E
Q(e−rT (K −VT )

+) =
∞

∑
k=0

E
Q

(

e−rT (K −V (k)
T )+

)

(

e−
∫ T

0 ψsλsds(
∫ T

0 ψsλsds)k

k!

)

=
∞

∑
k=0

⎡

⎢

⎣

e−
∫ T

0 ψsλsds
(

∫ T
0 ψsλsds

)k

k!

⎤

⎥

⎦

[

−C0e
M(k)+ 1

2σ
2
(k)Ψ

(

−
M(k)−σ2

(k) + ς
σ(k)

)

+
(−F0 + e−rT K

)

Ψ

(

−M(k) + ς
σ(k)

)]

.

�
Remark 12.6. The assumption of the jump Yn be constant is not reasonable; however,
it is a weighted sum of the option formula in Black–Scholes model with constant
coefficients.

12.5 Mean-Variance Hedging

12.5.1 The Idea

Given a contingent claim H and if the financial market models do not allow arbi-
trage opportunities, in a complete market, H is attainable, i.e. there exists a self-
financing strategy with final portfolio value ZT = H, P-a.s. However, when in our
jump-diffusion model, the market is not complete and then H is not attainable.
Quadratic hedging has been studied in more than 100 papers. It is used to hedge
the incomplete market using the quadratic criterion. There are two approaches of
quadratic hedging. One approach is risk-minimization; the other approach is mean-
variance hedging. [15] is a review paper about quadratic hedging. Many symbols
and definitions in this section are borrowed from that paper.

In our section, we consider the mean-variance hedging. For any contingent claim,
let the payoff at T be H. Our jump-diffusion model of the risky asset price S is a
semimartingale under P. The following definition is taken from Sect. 4 in [15].
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Definition 12.1. We denote by Θ2 the set of all ϑ ∈ L(S) such that the stochastic
integral process G(ϑ) :=

∫

ϑdS satisfies GT ∈ L2(P). For a fixed linear subspaceΘ
ofΘ2, aΘ -strategy is a pair (Z0, ϑ) ∈ R×Θ and its value process is Z0 +G(ϑ). A
Θ -strategy (Z̃0, ϑ̃) is calledΘ -mean-variance optimal for a given contingent claim
H ∈ L2 if it minimizes ||H −Z0 −GT (ϑ)||L2 over allΘ -strategies (Z0, ϑ) and Z̃0 is
then called theΘ -approximation price for H.

The linear subspace

G := GT (Θ) =

{

∫ T

0
ϑudSu|ϑ ∈Θ

}

of L2 describes all outcomes of self-financingΘ -strategies with initial wealth Z0 = 0
and

A = R+G =

{

Z0 +

∫ T

0
ϑudSu|(Z0, ϑ) ∈ (R×Θ)

}

is the space of contingent claims replicable by self-financingΘ -strategies. Our goal
in mean-variance hedging is to find the projection in L2 of H on A and this can
be studied for a general linear subspace G of L2 space. In analogy with the above
definition, we introduce a G -mean-variance optimal pair (Z̃0, g̃)∈R×G for H ∈ L2

and call Z̃0 the G -approximation price for H. In mathematics, our goal is to find

min
(Z0,ϑ )∈R×Θ

||H −Z0 −GT (ϑ)||L2

Since

dSt = St−[μt dt +σtdWt +YtdNt ],

our goal becomes to find

min
(Z0,ϑ )∈R×Θ

∣

∣

∣

∣

∣

∣

∣

∣

H −Z0 −
∫ T

0
ϑudSu

∣

∣

∣

∣

∣

∣

∣

∣

L2

min
(Z0,ϑ )∈R×Θ

∣

∣

∣

∣

∣

∣

∣

∣

H −Z0 −
∫ T

0
ϑuSu− [μudu+σudWu +YtdNu]

∣

∣

∣

∣

∣

∣

∣

∣

L2

= min
(Z0,ϑ )∈R×Θ

(

E

{

H −Z0 −
∫ T

0
ϑuSu−[μudu+σudWu +YtdNu]

}2
) 1

2

.

[15] has pointed out that finding the optimal ϑ̃ is general is an open problem. In the
other hand, in real contingent claim pricing, we should always use the risk-neutral
measure. [4] gives the G -mean-variance optimal pair (Z̃0, g̃) when the stocks’ model
is an exponential levy form martingale. For similar consideration, also see Chap. 10
in [3].
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12.5.2 The Problem

Now we consider H as a function of VT and denote H = g(VT ). For any martingale
measure Q defined in (12.9), we have proved that Ṽt = e−rtVt is a Q-martingale.
Denote H̃ = e−rT H. We want to consider the following optimization problem.

min
(Z0,ϑ )∈R×Θ

E
Q

(

H̃ −Z0 −
∫ T

0
ϑudṼu

)2

. (12.22)

Proposition 12.10. The solution of the optimization problem (12.22) is

Z0 = E
Q
[

H̃
]

;

ϑt =
σtCx(t,Vt)+C (t,Vt +[Vt−−Ft ]mtYt)−C (t,Vt)Ytλtψt

σt +(Vt−−Ft)mtY 2
t λtψt

.

Proof. We have

E
Q

(

H̃ −Z0 −
∫ T

0
ϑudṼu

)2

= E
Q

(

E
Q
[

H̃
]−Z0 + H̃ −E

Q
[

H̃
]−

∫ T

0
ϑudṼu

)2

= E
Q

[

(

E
Q
[

H̃
]−Z0

)2
]

+E
Q

(

H̃ −E
Q
[

H̃
]−

∫ T

0
ϑudṼu

)2

.

We see that the optimal value for the initial capital is Z0 = E
Q
[

H̃
]

.
Define C (t,x) = ert

E
Q
[

H̃|Vt = x
]

and C̃ (t,x) = e−rtC (t,x). By construction,
C̃ (t,x) is a Q-martingale. We have deduced that

dVt = [rVt−+(Vt−−Ft)mt(μt − r)]dt +(Vt−−Ft)mtσt dWt

+(Vt−−Ft)mtYtdNt ,

and

dṼt = e−rt
[

(Vt−−Ft)mtσt dWQ

t +(Vt−−Ft)mtYtdMQ

t

]

.

Then by Ito’s formula we have

dC̃ (t,Vt)

=
[

− re−rtC (t,Vt)+ e−rtCt(t,Vt)+ (rVt−+(Vt−−Ft)mt(μt − r))e−rtCx(t,Vt)

+
1
2
(Vt−−Ft)

2m2
t σ

2
t e−rtCxx(t,Vt)

]

dt +(Vt−−Ft)mtσt e
−rtCx(t,Vt)dWt

+
[

e−rtC (t,Vt +[Vt−−Ft ]mtYt)− e−rtC (t,Vt)
]

dNt

= (Vt−−Ft)mtσt e
−rtCx(t,Vt)dWQ

t

+
[

e−rtC (t,Vt +[Vt−−Ft ]mtYt)− e−rtC (t,Vt)
]

dMQ

t .
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Thus we have

H̃ −E
Q
[

H̃
]−

∫ T

0
ϑudṼu

= C̃ (T,VT )− C̃ (0,V0)−
∫ T

0
ϑt e

−rt
[

(Vt−−Ft)mtσt dWQ

t +(Vt−−Ft)mtYtdMQ

t

]

= e−rt
[

∫ T

0
(Vt−−Ft)mtσt(Cx(t,Vt)−ϑt)dWQ

t

+

∫ T

0
(C (t,Vt +(Vt−−Ft)mtYt)−C (t,Vt)−ϑt(Vt−−Ft)mtYt)dMQ

t

]

.

By the Isometry formula, we have

E
Q

(

H̃ −E
Q
[

H̃
]−

∫ T

0
ϑudṼu

)2

= e−2rt

(

E
Q

[

∫ T

0
[(Vt−−Ft)mtσt(Cx(t,Vt)−ϑt)]

2dt

]

+E
Q

[

∫ T

0
[C (t,Vt +[Vt−−Ft ]mtYt)−C (t,Vt)−ϑt(Vt−−Ft)mtYt ]

2λtψt dt

]

)

.

This is the minimizing problem with respect to ϑt . Differentiating the above expres-
sion with respect to ϑt and letting the first order derivative equal to 0, we have

(Vt−−Ft)mtσt [Cx(t,Vt)−ϑt ]+ [C (t,Vt +(Vt−−Ft)mtYt)

−C (t,Vt)−ϑt(Vt−−Ft)mtYt ](Vt−−Ft)mtYtλtψt = 0,

thus

ϑt =
σtCx(t,Vt)+C (t,Vt +[Vt−−Ft ]mtYt)−C (t,Vt)Ytλtψt

σt +(Vt−−Ft)mtY 2
t λtψt

�
Remarks: When the contingent claim is the call option with the strike price K, i.e.
H = (VT −K)+, then

Z0 = E
Q
[

H̃
]

= Call(0,V0,T,K)

and

C (t,x) = ert
E
Q
[

H̃|Vt = x
]

= Call(t,x,T,K);

when the contingent claim is the put option with the strike price K, i.e. H = (K −
VT )

+, then

Z0 = E
Q
[

H̃
]

= Put(0,V0,T,K)



12 CPPI in the Jump-diffusion Model 275

and

C (t,x) = ert
E
Q
[

H̃|Vt = x
]

= Put(t,x,T,K).

This is consistent with the calculation of call and put options.

12.6 Conclusion

In this chapter we considered CPPI by employing the jump-diffusion model. Con-
sider an insurance firm which would like to reinvest certain amount of their income
from their clients. The “floor” F can possibly be implicitly related to the calculation
of the ruin probability of the company, where ruin would occur as an implicit func-
tion of F , probably with other additional ruin factors. The introduction of jump in
the wealth process is suitable in situations when the investment portfolio includes,
e.g., functions of the Moody Indices of some corporations. In addition to the clas-
sical martingale approach, which gives the closed-form solutions of the extended
Black–Scholes type formula, the PIDE approach to the hedging problem is partic-
ularly useful to the situations when numerical calculations/programming are to be
employed.
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Part IV
Nonlinear State-Space Models for High

Frequency Financial Data



Chapter 13
An Asymmetric Information Modeling
Framework for Ultra-High Frequency
Transaction Data: A Nonlinear Filtering
Approach

Yoonjung Lee

13.1 Introduction

Understanding the joint dynamics of the price impact of a trade and the pattern of
trading volume in financial markets is an important issue. The increasing availabil-
ity of transaction level financial data allows empirical researchers to analyze the
complex interactions among various market participants. For example, the duration
between two consecutive trades might play a crucial role in conveying information
to the market. Empirical researchers, however, face many challenges in analyzing a
set of irregularly spaced data. Most statistical tools employed in time-series analysis
are not well suited for this type of data. Besides the scarcity of standard statisti-
cal treatments, a more serious challenge lies in the lack of a theoretical framework
applicable to transaction level data.

The main contribution of this chapter is to propose a continuous-time asymmetric
information modeling framework that is applicable to analyzing irregularly spaced
transaction data. The prosed framework specifies a full three-way interaction among
the information structure, order arrivals, and price changes. Furthermore, with its
dynamic nature, it can be used as a basis for empirical research. Not only does the
model produce key implications consistent with the observed interactions among
various market participants, but it also provides a theoretical explanation for the
observed market dynamics under a traditional asymmetric information framework.

One of the first empirical models that takes into consideration the duration be-
tween trades is the ordered probit model introduced by Hausman et al. (1992) in
[19]. They investigate the conditional distribution of price changes given a set of
explanatory variables which includes the sequence of past prices and irregularly
spaced order arrivals. Their cross-sectional analysis illustrates that the sequence of
trades, not just the total volume of trades, affects the dynamics of price changes.

Y. Lee (�)
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In their model, however, the sequence of order arrivals is used as an explanatory
variable only. As a result, the feedback effects of price changes on the order arrival
processes are overlooked.

In recent years, more sophisticated statistical approaches to analyzing ultra-high-
frequency transactions data have been introduced by Engle (2000) in [14] and
Dufour and Engle (2000) in [8]. In [14], the transaction arrival times and accom-
panying measures are formulated as marked point processes. In particular, an au-
toregressive conditional duration (ACD) model is applied to explicitly specify the
dynamics of the time duration between order arrivals. Transactions data are summa-
rized by two types of random variables. The first is the time of the transaction, and
the second is a vector observed at the time of the transaction. The first variable is
modeled as a process that accompanies the information on the second variables as
marks. The marks in [14] consist of the volume of the contract, the price of the con-
tract, and the posted bid and ask prices at the time. In similar vein to [14], Dufour
and Engle (2000) in [8] explore a statistical model suitable for analyzing trans-
actions data, generalizing the VAR model in [18] to incorporate the role of time
between trades in stock price and trade processes. The results in [8] highlight
the crucial role of duration in assessing the price impact of a trade. In particu-
lar, the price impact of a trade tends to increase as the time duration between two
trades decreases, suggesting that increased trading activity would be associated with
a higher level of information asymmetry. They find a positive autocorrelation of
signed trades. Interestingly, a stronger positive autocorrelation is linked to higher
trading intensity. This may suggest that informed traders gradually exploit their in-
formational advantage by trading on one-side until their signal is revealed to the
market. While their empirical investigation provides valuable insights into the cru-
cial role of the inter-arrival time, it does not address how the price and volume dy-
namics would affect the inter-arrival time of trades. This limitation is mainly due to
their exogeneity assumption on inter-trade durations. Note that they maintain the
exogeneity assumption for the time process, treating inter-trade time durations as
strongly exogenous to both the price and trade processes. Therefore, a theoretical
link that ties the joint dynamics of the trade and volume processes would be helpful
to present a complete picture of the market dynamics.

On the theoretical front, Kyle (1985) in [25] has laid a foundation for modeling
the dynamics of the market with information asymmetry. An informed trader who
privately observes the value of the asset optimizes his trading strategy in order to
maximize his expected trading profits. Kyle’s paper examines: the optimal trading
strategy of the informed trader, the pricing rule that the market maker follows to
set the price, and the speed at which this private information is incorporated into
the market. The Kyle model has been extended in a number of directions. For in-
stance, Back (1992) in [3] allows a more general distribution of the private signal
and formally derives an equilibrium pricing rule, Aase et al. (2012) in [1] derive
the optimal trading strategy of an insider in the presence of a time-varying but de-
terministic intensity of the liquidity traders, and finally Biagini et al. (2012) in [6]
incorporate the persistent liquidity traders whose trading intensity is modeled by a
fractional Brownian motion.
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The stylized description of the economy in the Kyle model concisely summa-
rizes the core of the equilibrium market dynamics. However, the continuous trading
assumption may be unrealistic to some degree. In a market with frictions, investors
would wait until the benefit of a trade exceeds the cost of a trade and then submit
a lump-sum order. In this spirit, a strand of sequential trading models has been ini-
tiated by Glosten–Milgrom (1985) in [17]. In their model, orders are assumed to
arrive sequentially at the specialist post. The market maker who observes the com-
bined order flows from both informed and noise traders sets the price competitively.
Despite its similarity to the order process of most financial markets, the Glosten–
Milgrom-type model has not been explored as extensively as the Kyle-type model,
perhaps due to its analytical intractability. A notable exception is the model by Back
and Baruch (2004) in [4], which examines the informed traders’ optimal submission
of discrete orders. In their chapter, the optimal strategy of a single informed trader
is numerically evaluated, under the assumption that the liquidation value of the firm
follows a Bernoulli distribution. The optimal trading intensity is approximately lin-
ear in the magnitude of mispricing. I use their results to motivate the assumption for
the informed traders’ order arrival process in my model.

I consider a security market for a single risky asset with discrete order arrivals. In
the market, there are three types of investors: informed traders, uninformed traders,
and a market maker. Informed traders observe a noisy signal with regard to the liq-
uidation value of the asset. The public information gradually arrives at the market,
revealing a part of the private signal to the public. The gradual arrival of the pub-
lic information also increases the quality of the informed traders’ signal over time.
Rationally revising the signal, each informed trader sets his reservation price to be
the conditional expectation of the terminal value of the asset. An informed trader
submits market orders when there is a discrepancy between his valuation and the
current asset price. The intensity of his order flow depends on the magnitude of this
discrepancy. A risk-neutral market maker who is assumed to know the probability
structure of the order process sets the price under the zero profit condition. The cur-
rent price is set at the conditional expectation of the terminal value of the asset, given
the market maker’s information. The market maker’s information set includes not
only the past history of order arrivals but also the public information. His inference
problem involves rationally processing these two different sources of information.
Formulating the dynamics of the market as a partially observed system, I apply a
nonlinear filtering technique to provide a solution to this problem. Standard filter-
ing techniques, which have been applied to other financial applications,1 are not
directly applicable to my model, due to the complexity of the information structure.
Using enlarged filtration theory, as described in [15], I extend the standard filtering
methodology. From a technical perspective, this extension is a novel contribution to
the literature.

1 For instance, Elliott (1997) in [12] applies a filtering approach to asset allocation problems. Frey
and Runggaldier (2001) in [16] and Chib et al. (2002) in [26] use filtering in estimating stochastic
volatility models. Zeng (2003) in [29] formulates the micro-movement of asset prices as a filtering
problem, focusing on the discreteness of quoted prices.
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There are some unique characteristics of the model that are particularly well
suited for empirical studies. First, the generality of the structure produces vari-
ous patterns of trade and volume. Second, the continual arrival of information en-
sures that the evolution of the market is truly dynamic and incorporates the learning
processes of informed traders. Last, as a by-product of the filtering algorithm, max-
imum likelihood estimators can be obtained from the likelihood function. Simu-
lation studies demonstrate that key predictions of the model are consistent with
some recent empirical observations. Moreover, a theoretically consistent framework
provides reasonable explanations for the observed phenomena from a traditional
asymmetric information modeling point of view. With gradual revelation of the in-
formation, signed trades submitted by informed trades tend to exhibit positive au-
tocorrelation. Given the constant trading rates of uninformed traders, a higher level
of trading activity is associated with an increased positive autocorrelation of signed
trades. In addition, trades arriving in a short time interval indicate an increased level
of information asymmetry. Therefore, the price impact of a trade increases when the
duration between trades decreases.

The information content carried in order arrival process is an important factor
in setting prices. For example, Easley and O’Hara (1992) in [11] provide a model
where a longer gap between trades reduces the price impact, because the market
maker takes a low level of trading as a sign of a fewer information-based trades.
The EKOP model, introduced in [10], has been a popular choice for many em-
piricists who examined the informational role in trading, cross-sectionally. At the
beginning of each period, a piece of either good, bad, or no news arrives at the mar-
ket independently. Informed traders participate in trading only when they observe
a good or bad news and submit either buy orders or sell orders depending on the
direction of news. The assumption on independent arrivals of information events
retains the tractability of the model, because, under this assumption, a set of suffi-
cient statistics consists of the total number of orders and the total number of order
imbalances between buy and sell orders in each period. However the simplifying
assumption leaves out the duration between trades from its analysis. Relaxing the
static nature of the information structure in the EKOP model, Easley et al. (2008) in
[9] consider a time-varying arrival rate model for informed and uninformed trades.
A generalized autoregressive bivariate process is used to model the joint dynamics
of these arrival rates. With the forecasted arrival rates, interesting interactions are
found. For instance, both arrival rates tend to be highly consistent and uninformed
traders tend to decrease their trading rates when informed traders trade more fre-
quently. The relative strength of my model over the EKOP model lies in modeling
the co-movement of price changes and trade arrivals under a dynamically evolving
information structure. Time-varying trading rates of informed traders in the model
are parsimoniously captured by stochastic changes in the size of the mispricing.

Last, I would like to point out that even with its fair generality, the proposed
model is not a full-scale equilibrium model in that trading strategies of informed
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traders are not optimized.2 Rather the functional form is given exogenously. In
addition, the aggregated trading rate of informed traders is obtained by simply as-
suming that each investor follows an identical trading strategy, regardless of how
many informed traders are present in the market.

The rest of this chapter is constructed as follows: Sect. 13.2 outlines the model,
describing the information structure and the inference problem that each market
participant faces. Section 13.3 formalizes the market maker’s inference problem as
a filtering problem. Section 13.4 describes a simulation procedure and summarizes
key implications of the model. In Sect. 13.5, I provide a procedure to estimate the
parameters and discuss the sampling distribution of the parameter estimates. Finally,
Sect. 13.6 concludes with a brief summary and directions for future research.

13.2 The Model

Following the setup described in [25], I consider a single risky asset traded over a
fixed time period [0,T ]. The terminal time T can be interpreted as the liquidation
time of the firm or the time when all the uncertainty in asset valuation is resolved
(e.g., the time of a public earnings announcement). The log-liquidation value of the
risky asset is denoted by V (T ).

In the market, three kinds of investors participate in trading: informed traders,
uninformed traders, and a market maker. Informed traders have superior knowledge
of the distribution of the terminal value of the asset. They submit market orders
to the market maker in order to exploit the mispricing with respect to their superior
information set. The risk-neutral market maker absorbs combined market orders and
sets the price competitively.

13.2.1 The Information Structure Dynamics

In order to fully motivate the structure of the model, I will build the information
structure, adding one layer at a time.

2 In a continuous trading model, Kyle (1985) in [25] endogenizes the trading rate of a single
informed trader. Holden and Subrahmanyam (1992) in [20] demonstrate that multiple informed
investors who observe a common signal tend to trade more aggressively, revealing their informa-
tion at a higher speed, than a single informed trader would have otherwise. A recent paper of
[4] endogenizes the trading intensity of a single informed trader who submits his order sequen-
tially. Along another line of research, implications of strategic behavior of noise traders have been
under great scrutiny. Admati and Pfleiderer (1988) [2] examine the interaction between strategic
informed traders and strategic liquidity traders who have some discretion over when to place their
trades. Bhushan (1991) in [5] models cross-sectional variation in trading costs that arise from a
strategic behavior of discretionary liquidity traders.
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13.2.1.1 The Perfect Signal Case Without Public Information Revealed

First I consider a case where informed traders observe a perfect signal and their trad-
ing activity is the only source of information in the market. In this case, informed
traders observe V (T ) at the beginning of the period, and this is the only source of
information in the market. As a result, the information structure is static. Some early
market microstructure models, such as [25] and [3], are built on a similar informa-
tion structure. As is shown in [25], the optimal trading strategy for a monopolistic
informed trader, when continuous trades are allowed, is proportional to the magni-
tude of mispricing, namely the difference between V (T ) and the current price.

With the private signal being the only source of information and the trading activ-
ity being the only channel through which this information is transmitted, the price is
completely determined by the combined order flows from informed and uninformed
trades. However, in most financial markets, there are many other factors that influ-
ence the price formation process other than information carried by trades. Among
those factors are the macro-economic conditions of the market, updated earnings
estimates announced by investment banks, or buy and sell recommendations of an-
alysts. If these multiple sources of information are available to the public, the price
would be adjusted to reflect this information, in addition to the information conveyed
through order arrivals. In the next section, I describe how this public information is
explicitly modeled.

13.2.1.2 The Perfect Signal Case With Public Information Revealed

Next, consider a more general setting in which the private information is slowly
revealed to the public. I have two objectives in mind in modeling the public infor-
mation process. The first objective is to build a dependency structure between the
public and private information. The second objective is to incorporate a learning
process of the public, by introducing gradual improvements of the information over
time. It would be desirable to have a structure in which the public estimates V (T )
with more accuracy, as the terminal time gets closer.

In order to achieve these objectives while maintaining tractability, I model V (T )
as the terminal value of some stochastic process, say {V (t) : 0 ≤ t ≤ T}, with V (t)
revealed to the public at time t. Informed traders are capable of acquiring and pro-
cessing the information more quickly than the public. The public information would
lead the log-price of the asset to slowly converge to V (T ), even in the absence of in-
formed traders. This gives us a natural interpretation of the terminal time as the time
when the information asymmetry is completely resolved. For modeling purposes,
I assume V (·) to be a Brownian motion with variance σ2. Based on the public in-
formation only, the variance of the prediction error of estimating V (T ) at time t is
σ2(T − t). Therefore, the public information is effectively modeled to be revealed
over time at a constant rate.

Addressing the evolution of the public information explicitly is a unique fea-
ture of the model. The role of public information has not been fully explored in
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Glosten–Milgrom-type models, even though the original Glosten–Milgrom paper
(1985) incorporates it in the market maker’s information set. I believe that this is
mainly because designing a theoretically consistent mechanism to process multi-
ple sources of information is a challenging problem. As will be discussed later, I
provide a solution to this problem with the aid of the filtering approach.

13.2.1.3 The Imperfect Signal Case With Public Information Revealed

So far, unlike the public information that is gradually revealed, the private signal has
been assumed to be perfectly observable to informed traders at the beginning of the
period, leaving no room for incorporating a learning process for informed traders.
The last layer I add to the information structure is a dynamic learning process of the
informed traders.

Informed traders are now assumed to observe a noisy path of the V (·) pro-
cess rather than the perfect signal, V (T ). To be explicit, I model their imperfect
signal at the beginning of the period, to be the whole path of a noisy signal,
{V(t) +W (t) : 0 ≤ t ≤ T}, where the noise process W (·) is again modeled as a
Brownian motion. I assume that the processes W (·) and V (·) are independent and
denote the variance parameter of W (·) by γ2. Upon the arrival of the public infor-
mation at time t, informed traders are able to separate W (t) from their noisy signal
V (t)+W(t), hence having a better estimate of V (T )+W(T ). Their learning process
will be considered in detail in the next section.

In sum, the merits of explicitly modeling the public information are multi-fold.
First, it provides a natural interpretation of the end of the trading period, T , as the
time when the information asymmetry completely dissipates. Second, it allows us
to decompose the price impact of a trade into two parts, one part due to the infor-
mational content of a trade and the other due to the arrival of new public informa-
tion that is unrelated to order flow. Most asymmetric information models assume
that trades are the only source of information. Their usage in empirical studies of
transaction data is somewhat limited, since the observed price dynamics in finan-
cial markets are much more complex than can be explained by the trading activity
alone. Last, from a modeling point of view, V (t) concisely models natural learning
processes of both informed and uninformed investors.

13.2.2 Informed Traders’ Signal Extraction

In this section, I formalize the signal extraction procedure of informed traders, when
informed traders observe an imperfect signal and the public information gradually
reveals the private information. As briefly discussed above, informed traders are
able to sharpen their signal as they gradually learn the public information.

I summarize the information available to informed traders as a sigma field, F I
t ,

defined by
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F I
t = σ ({V (u) : 0 ≤ u ≤ t})∨σ ({W (u) : 0 ≤ u ≤ t})∨σ ({V (u)+W (u) : t ≤ u ≤ T}) .

Then the conditional expectation of the terminal value of the asset given F I
t , de-

noted by I(t), is shown below:

I(t) ≡ E
[

exp (V (T)) |F I
t

]

= E [exp (V (T)) |{(V (u),W (u)) : 0 ≤ u ≤ t},{V (u)+W (u) : t ≤ u ≤ T}]
= E [exp (V (t)+V (T)−V (t)) |{V (t),W(t),V (T)+W (T )}]

= exp

(

V (t)+
σ 2

σ 2 + γ2 (V (T)−V (t)+W (T)−W (t))+
1
2
σ 2(T − t)

γ2

σ 2 + γ2

)

.

Note that I have used the independent increment property of Brownian motion and
that the conditional distribution of V (T )−V (t) given V (T )−V (t)+W (T )−W (t)
is also normal with the mean and variance given by,

V (T )−V(t)|V (T )−V(t)+W(T )−W(t)

∼ N

(

σ2

σ2 + γ2 (V (T )−V(t)+W(T )−W(t)) , σ2(T − t)
γ2

σ2 + γ2

)

.

The mean-square prediction error at time t on estimating V (T ) based on the infor-

mation available to informed traders is σ2(T − t) γ2

σ2+γ2 , whereas the variance of

the prediction error based on the public signal is σ2(T − t). Consequently, the ratio
σ2

σ2+γ2 = 1− γ2

σ2+γ2 measures the variance reduction due to the private signal. The
larger this ratio, the more important the role informed traders play in the market. In
this sense, this ratio measures the degree of information asymmetry in the market.

13.2.3 Order Arrivals

In this section, I describe the probabilistic structure of the order arrival processes.
With an application to transaction level data in mind, I follow [17] and consider a
market where orders arrive sequentially. Uninformed traders submit both buy and
sell orders with intensity η . Let P(t) denote the current price of the asset set by the
market maker at the expected value of exp(V (T )) based on the market maker’s infor-
mation. Informed traders submit market buy (sell) orders, if P(t) is lower (higher)
than his reservation price I(t), according to counting processes whose intensities
are α (log(I(t))− log(P(t)))+ for buy orders and α (log(I(t))− log(P(t)))− for sell
orders, where x+ (x−) is the positive (negative) part of x.

Summarizing, I model the total number of buy orders up to time t, denoted by
B(t), and the total number of sell orders up to time t, denoted by S(t), as counting
processes whose intensities are given by:

{

λB(t) = α (log(I(t))− log(P(t)))++η
λS(t) = α (log(I(t))− log(P(t)))−+η
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The parameter α governs how aggressively informed traders, as a whole, exploit
their informational advantage. Therefore, it governs the speed at which the private
signal is revealed to the market. Too high a value of α may not be desirable for
informed traders, in terms of their total expected profits, since profitable future trad-
ing opportunities may be lost by revealing their private information too quickly. In
fact, finding an optimal strategy for a single informed trader, even without consider-
ing the strategic behavior of other informed traders, is a challenging yet interesting
problem. In an equilibrium market setting, [4] numerically evaluates an optimized
strategy, though in a simpler setting, where V (T ) takes only two different values.
The key insight from their research is that the trading intensity of a single informed
trader does depend on the perceived mispricing and is approximately linear in the
magnitude of mispricing.

So far I have described how the information structure evolves over time and how
investors in the market submit their orders. In the next section, the market maker’s
inference problem will be discussed. Specifically, the Bayesian updating procedure
of the market maker will be developed.

13.3 Bayesian Updating of the Market Maker’s Beliefs
via Filtering

The market maker is assumed to have correct beliefs on the probabilistic structure
of the order arrival processes. The information set available to the market maker at
time t includes the history of the public information V process and the history of the
order processes B and S. Therefore, the market maker’s information set, FM

t , can
be summarized as

FM
t = σ ((V (u),B(u),S(u)) : 0 ≤ u ≤ t) .

The market maker is risk-neutral and sets his price competitively under the zero
profit condition. In other words, the ask/bid price, Pa(t)/Pb(t) is his unbiased esti-
mate of V (T ) given the past information and given the assumption that a buy/sell
order arrives at the market instantaneously at time t:

⎧

⎨

⎩

P(t) = E
[

exp(V (T )) |FM
t

]

.
Pa(t) = E

[

exp(V (T )) |FM
t−, ΔB(t) = 1

]

.
Pb(t) = E

[

exp(V (T )) |FM
t−, ΔS(t) = 1

]

.

If a buy order arrives at time t, P(t) = Pa(t), and the buy order is transacted at this
price. Similarly, if a sell order arrives at time t, P(t) = Pb(t), and the sell order is
transacted at this price. The market maker updates his conditional distribution of the
signal V (T ), as new information arrives at the market. The information extraction
problem that the market maker faces fits a general setting of a filtering problem.
A filtering problem is concerned with estimation of the state at time t of a given
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stochastic system in which some of the information is hidden. Based on the incom-
plete information available at time t, a filtering algorithm computes the conditional
distribution of hidden signals, or state variables.

The filtering approach, in general, has been used in various financial applications.
The two main approaches to deriving filtering equations are the innovations ap-
proach and the reference measure approach. The innovations approach hinges upon
the martingale representation of the projection of the state process on the observed
history. The reference measure approach involves constructing a reference measure
under which the history of observations is independent of the unobserved state vari-
ables. A generalized Bayes formula provides the link between the objective measure
and the reference measure. In this chapter, I follow the reference measure approach
to compute the conditional distribution of the signal V (T ). I refer interested readers
to [13] for a wide range of applications of the reference measure approach.

For a formal description of the filtering problem, I consider a probability space
(Ω ,F ,P) with a filtration {Ft}0≤t≤T . Under the measure P and with respect to the
filtration Ft , V (·) and W (·) are independent Brownian motions with variance pa-
rameters σ2 and γ2, respectively. Consider two independent unit Poisson processes
ξB(·) and ξS(·) so that ξB(t)− t and ξS(t)− t are martingales with respect to Ft and
are independent of V (·) and W (·). Then the order arrival processes B(·) and S(·) can
be expressed as follows with λB and λS defined in Sect. 13.2:

{

B(t) = ξB
(
∫ t

0 λB(u)du
)

S(t) = ξS
(
∫ t

0 λS(u)du
)

so that B(t)− ∫ t
0 λB(u)du and S(t)− ∫ t

0 λS(u)du are martingales under P with filtra-
tion Ft .

Under the measure P, the observed quantities, namely the history of the V , B, and
S processes up to time t, depend on the hidden variable V (T ). Indeed, the observed
processes interact with each other through V (T ). The key step in the reference mea-
sure approach is to construct a reference measure, say Q, under which the observed
processes are independent of the unobserved processes. Due to the independence
between the observed and unobserved processes, certain computations such as tak-
ing expectations become analytically easier to handle under the reference measure
Q than the objective measure P. However, the inference needs to be based on the ob-
jective measure P. So, there needs to a link that connects the inferences made under
the reference measure to the inferences made under the objective measure. A gener-
alized version of the classic Bayes formula described below provides this link.

Bayes Formula (Rule):
If (Ω ,F ,Q) is a probability space and P is also a probability measure on (Ω ,F )

such that

L =
dP
dQ

,

then for any sub-σ -algebra G ⊂ F and L1(P)-random variable Z,
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EP[Z|G ] =
EQ[ZL|G ]

EQ[L|G ]
.

In the next section, I illustrate how to construct a reference measure Q, defining the
Radon–Nikodym derivative of P with respect to Q.

13.3.1 Construction of a Reference Measure

I construct a reference measure under which the state variables V (T ) and W (T )−
W (t) are independent of the market maker’s information set, FM

t , in two steps. The
construction requires two steps, because the price P(t) incorporates two sources of
information: one source from the order flow and the other from the public informa-
tion, V (t). The first change of measure ensures the buy and sell processes B(·) and
S(·) become independent of the firm value process V . The second change of mea-
sure ensures the terminal value of the firm V (T ) becomes independent of the public
information, {V (u) : 0 ≤ u ≤ t}.

As a first step, I construct a reference measure Q1 under which the processes
B(·) and S(·) are independent unit Poisson processes that are independent of V (·).
Filtering problems with counting process observations are developed in depth in [7].
Girsanov’s theorem on the change of measure for Poisson processes gives

L1(t) ≡ dP
dQ1

(t)

= exp
(

∫ t

0
log(λB(u−))dB(u)−

∫ t

0
(λB(u)− 1)du

+
∫ t

0
log(λS(u−))dS(u)−

∫ t

0
(λS(u)− 1)du

)

.

In a stochastic differential equation (SDE) form,

L1(t) = 1+
∫ t

0
(λB(u−)−1)L1(u−)(dB(u)−du)+

∫ t

0
(λS(u−)−1)L1(u−)(dS(u)−du).

Under the measure Q1, the observed order arrival processes B(·) and S(·) are inde-
pendent of V (·) and W (·).

The market maker’s information set, FM
t , however, includes the history of V up

to time t, as well as the history of the order arrival processes. Hence, the second step
of the construction involves finding a reference measure Q2 under which V (T ) is
independent of {V (u) : 0 ≤ u ≤ t}. Constructing such a reference measure involves
several well-known results on Brownian motion, such as the enlargement of filtra-
tion technique, a decomposition of the Brownian motion, and Girsanov’s theorem.
The enlargement of filtration technique has been used in other financial applications,
such as in [15] and in [27]. The theory on the decomposition of a Brownian motion
and Girsanov’s theorem can be found in [23].
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I first consider an enlarged filtration, denoted by Gt , which is enlarged to include
V (T ):

Gt = FM
t ∨σ(V (T )).

Then a standard result on Brownian motion allows us to decompose V (t) into the
following two components,

V (t) = Z(t)+
∫ t

0

V (T )−V(u)
T − u

du,

where Z(t) is a Brownian motion with respect to the enlarged filtration, Gt , and
is independent of V (T ). Hence, V (t), which is a martingale with respect to FM

t ,
becomes a semi-martingale with respect to Gt .

Consider a process Y (t), defined by

Y (t)≡
∫ t

0
(T − u)d

(

V (u)
T − u

)

so that

Y (t) = Z(t)+
∫ t

0

V (T )
T − u

du.

Notice that Y (t) is decomposed into two pieces: Z(t), a Brownian motion with

respect to Gt , and
∫ t

0
V (T )
T−u du, which is a function of the private signal, V (T ). In

other words, Y (t) has a standard form of the observed process, namely, the form of
“noise+signal.” Moreover,Y (t) can be constructed from the observed process V (t),
giving

FM
t = σ ((V (u),B(u),S(u)) : 0 ≤ u ≤ t) = σ ((Y (u),B(u),S(u)) : 0 ≤ u ≤ t) .

This allows us to model the observations by Y (·) rather than V (·). Currently, under
the objective measure P, the process Y (·) is a semi-martingale with respect to the

enlarged filtration Gt with its drift term V (T)
T−t . I construct a reference measure Q2

under which the process Y (·) becomes a martingale, more precisely, a Brownian
motion with variance parameter σ2 with respect to the enlarged filtration Gt . Ap-
plying Girsanov’s theorem, which allows us to change the drift term of a Brownian
motion, yields for t < T ,

L2(t) ≡ dP
dQ2

(t)

= exp

(

1
σ2

∫ t

0

V (T )
T − u

dY (u)− 1
2σ2

∫ t

0

V (T )2

(T − u)2 du

)

= 1+
1
σ2

∫ t

0

V (T )
T − u

L2(u)dY (u).
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It can also be shown that under the reference Q2, Y (·) is independent of the unob-
served signal V (T ).

Finally, putting the pieces together, I define a reference measure Q such that

dP
dQ

(t) = L(t),

where

L(t) ≡ L1(t)L2(t)

= exp
(

∫ t

0
log(λB(u−))dB(u)−

∫ t

0
(λB(u)− 1)du

+

∫ t

0
log(λS(u−))dS(u)−

∫ t

0
(λS(u)− 1)du

+
1
σ2

∫ t

0

V (T )
T − u

dY (u)− 1
2σ2

∫ t

0

V (T )2

(T − u)2 du
)

.

In other words,

L(t) = 1+
∫ t

0
L(u−)(λB(u−)− 1)d (B(u)− u)

+

∫ t

0
L(u−)(λS(u−)− 1)d (S(u)− u)+

1
σ2

∫ t

0
L(u)

V (T )
T − u

dY (u).

By the construction of the measures Q1 and Q2, under the reference measure Q, the
following properties are satisfied: the processes B(·) and S(·) are independent unit
Poisson processes and they are independent of Y (·) and W (·). W (·) is a Brownian
motion with variance γ2 and it is independent of Y (·). Furthermore, with respect to
Gt , Y (·) is a Brownian motion with variance σ2 and Y (·) is independent of V (T ).
Lastly, the Radon–Nikodym derivative L(t) is a martingale with respect to Gt .

13.3.2 Filtering Equation

With the reference measure constructed above, I apply a generalized Bayes formula,
also known as the Kallianpur–Striebel formula [22], to compute the conditional dis-
tribution of V (T ) given the market maker’s information. The informed traders’ un-
biased estimate of the asset value, denoted by I(t), involves two quantities V (t)
and V (T )−V (t) +W (T )−W (t). With V (t) revealed to the public at time t, the
observed order flows convey the information on the quantity V (T ) +W (T )−
W (t), from which the market maker is ultimately interested in estimating V (T ).
As a first step, the market maker computes the joint conditional distribution of
{V (T ),W (T )−W(t)}. Next, he/she obtains the marginal conditional distribution of
V (T ) by integrating out the distribution of W (T )−W (t). This leads us to consider
the following quantity,
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φ(t, f ) ≡ EQ [

f (V (T ),W (T )−W(t))L(t)|FM
t

]

for some function f . φ(t, f ) determines the conditional distribution of (V (T ),
W (T )−W(t)) for a general class of f . The Kallianpur–Striebel formula gives

π(t, f ) ≡ EP [ f (V (T ),W (T )−W(t)) |FM
t

]

=
EQ

[

f (V (T ),W (T )−W(t))L(t)|FM
t

]

EQ
[

L(t)|FM
t

]

=
φ(t, f )
φ(t,1)

.

The Zakai equation [21] that the unnormalized conditional distribution φ(t, f ) sat-
isfies is derived in Proposition 13.1.

Proposition 13.1. φ(t, f ) is the solution of the following stochastic partial differen-
tial equations (SPDEs):

φ(t, f ) = φ(0, f )+
∫ t

0
φ (u−, f (λB −1))d (B(u)−u)+

∫ t

0
φ (u−, f (λS −1))d (S(u)−u)

+
1
σ2

∫ t

0
φ (u,g1)dY (u)−

∫ t

0
φ (u,g2)du+

γ2

2

∫ t

0
φ (u, fww)du,

where

g1(u,v,w) = f (v,w)
v

T − u
, g2(u,v,w) = fw(v,w)

w
T − u

,

and

P(t) =
φ(t, f0)

φ(t,1)
,

with

f0 (v,w)≡ exp(v) .

(All proofs are in Appendix.)
The Zakai equation displayed in Proposition 13.1 may appear linear, but it is

highly nonlinear in its nature, since the solution for φ(t, f ) depends on P(t), while
P(t) is in turn determined by φ(t, f ).

13.3.3 Uniqueness of the System

As pointed out in [17], establishing the existence and uniqueness of the Pa and Pb

is not trivial. Since the quoted prices affect the trading intensities and the trades are
in part used in formulating the prices, there is a feedback effect of quoted prices in
the system. This problem is similar to what is known as a fixed point problem in a
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rational equilibrium model setting. Proposition 13.2 shows that prices are uniquely
determined by filtering equations derived in the previous section. For technical de-
tails of the proof, I rely on methods developed in [24], where they examine the
uniqueness of a class of nonlinear SPDEs.

Proposition 13.2. Pa and Pb are uniquely determined by filtering equations in
Proposition 13.1.

(All proofs are in Appendix.)

13.4 Key Implications of the Model

This section investigates some of the key implications of the model, the imperfect
signal case when informed traders observe a slowly improving imperfect signal.

The degree of information asymmetry in the market will be measured by the con-
ditional variance of V (T ) given the market maker’s information set and the quoted
spread, Pa(t)−Pb(t). The conditional variance of V (T ) defined below measures how
much uncertainty remains in the market:

Var
[

V (T )|FM
t

]

= EP [V (T )2|FM
t

]− (

EP [V (T )|FM
t

])2
.

The quoted spread, Pa(t)− Pb(t), is frequently used quantity in the literature to
measure liquidity. It measures how much the price would change if a market order
arrived instantaneously. More precisely, Pa(t)−P(t−) is the price impact of a buyer-
initiated order arrival and P(t−)−Pb(t) is the price impact of a seller-initiated order
arrival.

13.4.1 The Quality of the Signal

The remaining uncertainty of the terminal value of the asset clearly depends on the
quality of the signal for informed traders. When the signal that informed traders
observe has a high noise-to-signal ratio (relatively high value of γ with respect to
σ ), the market maker faces higher uncertainty in estimating the value of the asset.
When γ converges to zero, the conditional variance curve moves close to the con-
ditional variance curve with the perfect signal case. The conditional variance curve
with the perfect signal case then serves as a lower bound for the conditional variance
plots. As in the perfect signal case, the line of σ2(T − t) serves as an upper bound,
since if the signal is very noisy, then there is little advantage of observing the signal
and the role of the public information dominates the role of the private information.
The parameter γ governs how close the conditional variance is to either bound.

The signal that informed traders observe in the perfect signal case is static, in the
sense that V (T ) is revealed to informed traders at the beginning of the time period.
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When informed traders observe a noisy signal, the signal is gradually improved over
time with a new piece of public information arriving continuously.

Since informed traders maintain their superiority of knowledge of the terminal
value of the asset over the market maker (FM

t ⊂ F I
t ∨σ (B(u),S(u)) : 0 ≤ u ≤ t)),

P(t) = E
[

exp(V (T )) |FM
t

]

= E
[

E
[

exp(V (T )) |F I
t ∨σ (B(u),S(u)) : 0 ≤ u ≤ t)

] |FM
t−
]

= E
[

I(t)|FM
t

]

.

Consequently, the price process can be interpreted as the conditional expectation of
the signal process of the informed traders as well as the conditional expectation of
the terminal asset value. You can think of I(t) as a moving target that is continuously
revised by informed traders and think of P(t) as the market maker’s best prediction
of where this moving target is. In terms of estimating the terminal asset value, P(t)
does not perform as well as I(t), since only a part of the private information is
revealed through trades.

13.4.2 Informed Traders’ Trading Rate

In order to investigate the impact of the trading intensity parameter α , the remain-
ing parameters are fixed at η = 50, and σ = 1, and γ = .5. As in the perfect signal
case, the trading intensity parameter α controls how rapidly the uncertainty is re-
solved. From Fig. 13.1, one can notice that under the imperfect signal assumption,
a large value of α alone cannot decrease the conditional distribution to zero. The
uncertainty about V (T ) that informed traders face is not resolved by increasing the
trading intensity of informed traders. In fact, the lower bound of the conditional

variance curve is γ2

σ2+γ2 (T − t). As displayed in Fig. 13.1, when α = 160, the con-

ditional variance curve is close to γ2

σ2+γ2 (T − t). When α approaches infinity, the
private information is revealed immediately to the market.

13.4.3 The Price Impact of a Trade

The quoted spreads, the sequence of order arrivals, and the price dynamics are
plotted in Fig. 13.2. The parameter values used in simulation are (α,η ,σ ,γ) =
(40,50,1, .5). The plots in Fig. 13.2 are drawn on a large time scale to illustrate the
relationship between the price impact of a trade and the duration between trades.
In Fig. 13.2, quoted spreads, the sequence of order arrivals (a positive directional
vertical bar indicates a buy order and a negative directional vertical bar a sell order),
and the price dynamics are plotted in that order. A striking feature is the pattern
of narrowing spreads, as the market maker waits for the next order to arrive. The
market maker associates a high volume of trading, especially consecutive trades of
the same sign, with a high level of information asymmetry. So, consecutive buy or
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Fig. 13.1 Time-series plots of
(

E
[

V (T )|F M
t

]

,Var
[

V (T )|F M
t

])

for different values of α in an
imperfect signal case: the other parameters are fixed at (η ,σ ,γ) = (50,1, .5).

sell orders in a short time period should widen quoted spreads, resulting in a large
price impact of a trade.

13.5 Parameter Estimation

There are two main approaches to estimating the parameters in the model.
A Bayesian approach extends the state space to include the parameters in the model
as state variables. With a given prior distribution of the state variables, the filter-
ing algorithm produces the joint conditional distribution of the signal process and
the parameters. The dimensionality quickly becomes an issue, since implement-
ing a filtering equation of a high dimension of signal is generally computationally
intractable. Several simulation algorithms have been suggested for enhancing the
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Fig. 13.2 Time-series plots of spreads, order arrivals, and price dynamics in an imperfect signal
case: the parameter values used in simulation are (α ,η ,σ ,γ) = (40,50,1, .5).

computational efficiency. For example, Pitt and Shephard (1999) in [28] suggest
a particle filter algorithm for online Bayesian calculations about the parameters.
Alternatively, one can take a classical maximum likelihood approach which involves
finding a set of parameters that maximize the likelihood function.

13.5.1 Maximum Likelihood Estimation

I take a classical approach and consider a continuous-time likelihood function
L(θ ,T ), defining θ = {γ,α,η}. Since σ is the volatility parameter of the public
information process V , I assume that σ is a known parameter and focus on estimat-
ing the remaining parameters in the model, θ ≡ {α,η ,γ}.

If all the state variables in the system are observable, a complete likelihood func-
tion is given by

dP
dQ

= L(T,θ ),

where

L(T,θ ) = 1+
∫ T

0
L(u−,θ )(λB(u−,θ )− 1)d (B(u)− u)

+

∫ T

0
L(u−,θ )(λS(u−,θ )− 1)d (S(u)− u)
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with
{

λB(u) = α (log(I(u))− log(P(u)))+ +η
λS(u) = α (log(I(u))− log(P(u)))−+η

At the end of the period, I have full access to {P(·),V (·),B(·),S(·)} for t ∈ [0,T ].
However, the process W (·) is still unobserved at the end of the period. Hence, the
complete likelihood function is not available for computing maximum likelihood
estimators. The conditional likelihood function based on the observed quantities is

EQ [L(T,θ )|HT ] ,

where

Ht ≡ σ ((B(u),S(u)) : 0 ≤ u ≤ t)∨σ ((V (u),P(u)) : 0 ≤ u ≤ T ) .

Proposition 13.3 shows that this conditional distribution function can be computed
from a recursive filtering algorithm, similar to the filtering equation that is used for
the market maker’s inference problem.

Proposition 13.3.

EQ [L(t,θ )|Ht ] = exp
(

∫ t

0
log

(

EP [λB(u−,θ )|Hu]
)

dB(u)−
∫ t

0

(

EP [λB(u,θ )|Hu]−1
)

du

+

∫ t

0
log

(

EP [λS(u−,θ )|Hu]
)

dS(u)−
∫ t

0

(

EP [λS(u,θ )|Hu]−1
)

du
)

.

(All proofs are in Appendix.)
A maximum likelihood estimator of θ , denoted by θ̂ , is then a quantity that

maximizes EQ [L(T,θ )|HT ].

13.5.2 Parameter Estimation for Simulated Data

The simulation procedure can be summarized as follows: I first fix a set of parameter
values (α,η ,γ,σ) and the time interval [0,T ]. For the given parameter values, the
recursive filtering algorithm in Proposition 13.1 is applied to update the price pro-
cess. For each sample path, assuming that public information is available in com-
puting the likelihood function and henceforth σ is known, I first choose an initial
value of (α,η ,γ) to evaluate the likelihood function according to Proposition 13.3.
In order to find a set of parameter values that maximizes the likelihood function, I
use a nonlinear minimization algorithm built-in the statistical package R.

The sampling distribution of the MLEs for simulated data is summarized in
Fig. 13.3. The parameter values of (α,η ,γ,σ) = (20,20,2,1) and T = 20 are used.
The parameter estimates are based on 250 simulated data sets. The histograms in
Fig. 13.3 seem to suggest that the distributions of η̂ and γ̂ are fairly symmetric
around the true values of the parameters, while the distribution of α̂ is skewed to the
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Fig. 13.3 Histograms of (α̂ , η̂, γ̂) in an imperfect signal case: the true parameter values used in
simulation are (α ,η ,γ) = (20,20,2).

Table 13.1 The summary statistics for (α̂ , η̂, γ̂) in an imperfect signal case: the true parameter
values used in simulation are (α ,η ,γ) = (20,20,2) with T = 20. The parameter estimates are
based on 250 simulations.

α̂ η̂ γ̂
Mean 24.55 19.92 2.15

Median 22.70 19.84 2.02
Std. dev. 11.86 1.81 0.72

right. The summary statistics are also presented in Table 13.1. The parameter esti-
mates of α exhibit relatively wider sample variation than the other two parameters.

13.6 Conclusion

Formulating the economy as a partially observed dynamical system, I propose a new
theoretical framework that is geared toward modeling transaction level data. A the-
oretical link that has been missing in the empirical market microstructure literature
is the three-way interaction among the price impact of a trade, the duration between
trades, and the degree of information asymmetry. The model fully specifies this in-
teraction under a fairly general dynamically evolving information structure with a
continuously distributed terminal value of the asset. The generality of the model de-
mands a rigorous treatment of the price formulation process, for which a nonlinear
filtering technique has been applied. The filter provides a computationally efficient
recursive algorithm for Bayesian updating by the market maker.
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The set of parameters in the model parsimoniously captures characteristics of the
market and provides flexibility in modeling. The speed at which the private informa-
tion is incorporated into the price depends on the trading rate of informed traders and
the quality of their signal. The liquidity of the market, measured by quoted spreads,
dynamically changes depending on the particular sequence of order arrivals. When
the current price veers away from the informed traders’ valuation, orders of the same
sign are more likely to arrive. In turn, by observing the increased trading activity,
the market maker widens his quoted spread in order to be compensated for bearing
the risk of trading with informed traders. Meanwhile, he revises his view on the asset
value and adjusts the price toward the private valuation, decreasing the magnitude
of the mispricing. Simulation studies confirm that the proposed model reconciles
some of the empirical findings reported in the market microstructure literature. In
particular, the empirical role of time between trades and the impact of a particular
pattern of order arrivals are captured in simulation studies.

Simulation studies on the maximum likelihood estimates demonstrate that the
parameters that govern the uninformed trading rate and the quality of the signal
process can be estimated with better accuracy than the parameter that governs the
informed trading rate. The continuous trading model provides some insights into
the magnitude of the bias of the maximum likelihood estimator. From a theoretical
point of view, the results on the optimal trading rate of an insider is an extension
of the Kyle (1985) model. When the information advantage of an insider gradually
decreases as the public slowly learns his private signal, he/she trades more aggres-
sively.

There are a number of interesting directions for future research. These can be
grouped into two categories: theoretical issues and empirical issues. An important
path for improving the current model is to fully endogenize the trading intensity for a
single informed trader in the market. This problem can be formulated as a stochastic
control problem. However, unlike most standard control problems, the control vari-
able in the model would be of infinite dimension, since the conditional distribution
of the asset value given the market maker’s information becomes a quantity that
the informed trader controls. Another interesting application is to develop an option
pricing framework when investors are heterogeneously informed. A key quantity in
pricing a contingent claim is the volatility parameter of the underlying asset. The
filtering algorithm implemented produces the conditional distribution of the asset
valuation, which can be used to estimate the volatility of the price.

Along the lines of empirical research, a cross-sectional analysis of transaction
data would be of primary importance. In particular, I would like to compare the re-
sults of the model with those of other well-known microstructure models in [9] and
[18]. Second, it would be interesting to examine the proposed mechanism for setting
quoted prices against other algorithms that market makers implement in practice.
The filtering algorithm developed may serve as a useful tool in designing an auto-
mated market maker system, since it successfully processes multiple sources of in-
formation that arrive at the market. Additionally, the proposed model has a potential
for addressing some interesting research questions outside of market microstruc-
ture. For instance, the parameter that controls the intensity with which informed
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traders trade could be correlated with the number of analysts who follow the stock.
A cross-sectional comparison of the estimated parameters can be used to provide
valuable insights as to what kind of stocks tend to be followed by a large number of
analysts. Alternatively, after controlling for other firm characteristics, one could test
if and to what extent the analyst coverage affects the firm’s managerial decisions
on investments or mergers and acquisitions. Furthermore, the quality of informed
traders’ signal is an important characteristic of the firm. It measures how transparent
the firm’s prospects are to informationally advanced traders. A low signal-to-noise
ratio is an indication that the firm’s future is rather opaque. Therefore, the quality
of the signal indirectly measures the benefit of putting resources toward the funda-
mental analysis, from an investor’s point of view.
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Appendix

Proof of Proposition 13.1

Proof. Note that

W (t) = Ŵ (t)+
∫ t

0

W (T )−W(u)
T − u

du,

where Ŵ (·) is a Brownian motion with respect to the enlarged sigma field, FW
t ∨

σ(W (T )). For a smooth function f ,

f (V (T ),W (T )−W (t))

= f (V (T ),W (T )−W (0))+
∫ t

0
fw (V (T ),W (T )−W (u))d (W (T )−W (u))

+
γ2

2

∫ t

0
fww (V (T ),W(T )−W (u))du

= f (V (T ),W (T )−W (0))+
∫ t

0
fw (V (T ),W (T )−W (u))

(

−dŴ (u)−
(

W (T )−W(u)
T −u

)

du

)

+
γ2

2

∫ t

0
fww (V (T ),W(T )−W (u))du.

Itô’s formula applying on f (V (T ),W (T )−W(t))L(t) gives:

f (V (T ),W(T )−W (t))L(t)

= f (V (T),W (T)−W (0))L(0)+
∫ t

0
f (V (T),W (T)−W (u))dL(u)
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+
∫ t

0
L(u)d f (V (T),W (T)−W (u))+ [ f (V (T),W (T)−W (·)) ,L(·)]t

= f (V (T),W (T))+
∫ t

0
f (V (T ),W(T )−W (u))L(u−) (λB(u−)−1)d (B(u)−u)

+

∫ t

0
f (V (T ),W(T )−W (u))L(u−) (λS(u−)−1)d (S(u)−u)

+
∫ t

0
f (V (T ),W(T )−W (u))L(u)

(

V (T)
T −u

)

dY (u)

+

∫ t

0
fw (V (T),W (T)−W (u))L(u)

(

−dŴ (u)−
(

W (T)−W (u)
T −u

)

du

)

+
γ2

2

∫ t

0
fww (V (T),W (T )−W (u))L(u)du.

Taking averages given the observed processes under the reference measure,

EQ
[

f (V (T ),W (T )−W(t))L(t)|FB,S,Y
t

]

= EQ
[

f (V (T ),W (T )) |FB,S,Y
0

]

+

∫ t

0
EQ [

f (V (T ),W (T )−W(u))L(u−)(λB(u−)− 1)|FB,S,Y
u

]

d (B(u)− u)

+

∫ t

0
EQ [

f (V (T ),W (T )−W(u))L(u−)(λS(u−)− 1)|FB,S,Y
u

]

d (S(u)− u)

+
1
σ2

∫ t

0
EQ

[

f (V (T ),W (T )−W(u))L(u)

(

V (T )
T − u

)

|FB,S,Y
u

]

dY (u)

−
∫ t

0
EQ

[

L(u) fw (V (T ),W (T )−W(u))

(

W (T )−W(u)
T − u

)

|FB,S,Y
u

]

du

+
γ2

2

∫ t

0
EQ [

L(u) fww (V (T ),W (T )−W(u)) |FB,S,Y
u

]

du.

Note that I utilize the independence between the observed processes and the state
variables, when taking averages under the reference measure. φ(t, f ) is the solution
of the following SPDEs:

φ(t, f ) = φ(0, f )+
∫ t

0
φ (u−, f (λB −1))d (B(u)−u)+

∫ t

0
φ (u−, f (λS −1))d (S(u)−u)

+
1
σ2

∫ t

0
φ (u,g1)dY (u)−

∫ t

0
φ (u,g2)du+

γ2

2

∫ t

0
φ (u, fww)du,

where

g1(u,v,w) = f (v,w)
v

T − u
, g2(u,v,w) = fw(v,w)

w
T − u

,
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and

P(t) = EP [exp(V (T )) |FM
t

]

=
EQ

[

exp(V (T ))L(t)|FM
t

]

EQ
[

L(t)|FM
t

]

=
φ(t, f0)

φ(t,1)
,

with
f0 (v,w)≡ exp(v) .

�

Proof of Proposition 13.2

Proof. For t ∈ [0,T − ε], consider

Xi(t) = (Vi(T ),Wi(T )−Wi(t)) ,

such that {Xi(t) : i ∈ N} is independent and identically distributed. Think of {Xi(t) :
0 ≤ t ≤ T − ε, i ∈ N} as a system of particles with locations in R2 and time-varying
weights {Li(t) : 0 ≤ t ≤ T − ε, i ∈ N} and define M(t) to be the weighted empirical
measure of {Xi(t) : i ∈ N} such that

M(t) = lim
n→∞

1
n

n

∑
i=1

Li(t)δXi(t),

where δx is the Dirac measure of x.
Let

Li(t) = exp
(

∫ t

0
log(λB(Xi(u−),M(u−)))dB(u)−

∫ t

0
(λB(Xi(u),M(u))− 1)du

+

∫ t

0
log(λS(Xi(u−),M(u−)))dS(u)−

∫ t

0
(λS(Xi(u),M(u))− 1)du

+
1
σ2

∫ t

0

Vi(T )
T − u

dY (u)− 1
2

∫ t

0

Vi(T )2

(T − u)2 du
)

,

where

λB(Xi(u),M(u))

= α
(

V (t)+
σ2

σ2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ2(T − t)

γ2

σ2 + γ2 − log (P(t))

)+

+η ,
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λS(Xi(u),M(u))

= α
(

V (t)+
σ2

σ2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ2(T − t)

γ2

σ2 + γ2 − log (P(t))

)−
+η .

Note that P(t) is a function of M(t), since

P(t) = EP
[

exp(V (T )) |FB,S,Y
t

]

=
EQ

[

exp(V (T ))L(t)|FB,S,Y
t

]

EQ
[

L(t)|FB,S,Y
u

]

=
limn→∞

1
n ∑

n
i=1 exp(Vi(T ))Li(t)

limn→∞
1
n ∑

n
i=1 Li(t)

=
〈 f0,M(t)〉
〈1,M(t)〉 .

where

f0 (v,w)≡ exp(v)

and

〈 f ,M(t)〉 ≡ lim
n→∞

1
n

n

∑
i=1

f (Xi(t))Li(t).

For given {Xi(t) : 0≤ t ≤ T −ε, i ∈ N}, suppose that (L,M) and (L̃,M̃) are solutions
of the system. Let

P(t) =
〈 f0,M(t)〉
〈1,M(t)〉 and P̃(t) =

〈 f0,M̃(t)〉
〈1,M̃(t)〉 .

Let li(·) be log(Li(·)) and l̃i(·) be log(L̃i(·)). Then
∣

∣li(t)− ˜li(t)
∣

∣

=
∣

∣

∫ t

0

(

log(λB(Xi(u−),M(u−)))− log
(

λB(Xi(u−),M̃(u−))
))

dB(u)

+

∫ t

0

(

log(λS(Xi(u−),M(u−)))− log
(

λS(Xi(u−),M̃(u−))
))

dS(u)

−
∫ t

0

(

λB(Xi(u),M(u))−λB(Xi(u),M̃(u))+λS(Xi(u),M(u))−λS(Xi(u),M̃(u))
)

du

+
1
σ2

∫ t

0

(

Vi(T )
T −u

− Vi(T )
T −u

)

dY (u)− 1
2

∫ t

0

(

Vi(T )2

(T −u)2 − Vi(T )2

(T −u)2

)

du
∣

∣
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≤
∫ t

0

∣

∣ log(λB(Xi(u−),M(u−)))− log
(

λB(Xi(u−),M̃(u−))
)∣

∣dB(u)

+
∫ t

0

∣

∣ log(λS(Xi(u−),M(u−)))− log
(

λS(Xi(u−),M̃(u−))
)∣

∣dS(u)

+
∫ t

0

(∣

∣λB(Xi(u),M(u))−λB(Xi(u),M̃(u))
∣

∣+
∣

∣λS(Xi(u),M(u))−λS(Xi(u),M̃(u))
∣

∣

)

du

∣

∣λB(Xi(u),M(u))−λB(Xi(u),M̃(u))
∣

∣

=
∣

∣α
(

V (t)+
σ 2

σ 2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ 2(T − t)

γ2

σ 2 + γ2 − log(P(t))

)+

−α
(

V (t)+
σ 2

σ 2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ 2(T − t)

γ2

σ 2 + γ2 − log(P(t))

)+
∣

∣

≤ ∣

∣α
(

V (t)+
σ 2

σ 2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ 2(T − t)

γ2

σ 2 + γ2 − log(P(t))

)

−α
(

V (t)+
σ 2

σ 2 + γ2 (Vi(T )−V (t)+Wi(T )−Wi(t))+
1
2
σ 2(T − t)

γ2

σ 2 + γ2 − log(P(t))

)

∣

∣

= α
∣

∣P(u)− P̃(u)
∣

∣.

Note that I have used
∣

∣x+− y+
∣

∣≤ ∣

∣x− y
∣

∣. Similarly,
∣

∣λS(Xi(u),M(u))−λS(Xi(u),M̃(u))
∣

∣≤ α
∣

∣P(u)− P̃(u)
∣

∣.

Since both log(λB(Xi(u−),M(u−))) and log
(

λB(Xi(u−),M̃(u−))
)

are bounded be-
low by η , I have for some C1 > 0 such that

∣

∣ log(λB(Xi(u−),M(u−)))− log
(

λB(Xi(u−),M̃(u−))
)∣

∣

≤C1
∣

∣λB(Xi(u),M(u))−λB(Xi(u),M̃(u))
∣

∣

≤ αC1
∣

∣P(u)− P̃(u)
∣

∣.

Similarly,
∣

∣ log(λS(Xi(u),M(u)))− log
(

λS(Xi(),M̃(u))
)∣

∣≤ αC1
∣

∣P(u)− P̃(u)
∣

∣.

Hence,
∣

∣li(t)− l̃i(t)
∣

∣

≤
∫ t

0
αC1

∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
αC1

∣

∣P(u−)− P̃(u−)
∣

∣dS(u)+
∫ t

0

(

2α
∣

∣P(u)− P̃(u)
∣

∣

)

du

≤
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)+
∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du,

where C ≡ max(αC1,2α).
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On the other hand,

∣

∣P(t)− P̃(t)
∣

∣ =
∣

∣ log

( 〈 f0,M(t)〉
〈1,M(t)〉

)

− log

( 〈 f0,M̃(t)〉
〈1,M̃(t)〉

)

∣

∣

=
∣

∣ log

( 〈 f0,M(t)〉
〈 f0,M̃(t)〉

)

− log

( 〈1,M(t)〉
〈1,M̃(t)〉

)

∣

∣

≤ ∣

∣ log

( 〈 f0,M(t)〉
〈 f0,M̃(t)〉

)

∣

∣+
∣

∣ log

( 〈1,M(t)〉
〈1,M̃(t)〉

)

∣

∣

log

( 〈 f0,M(t)〉
〈 f0,M̃(t)〉

)

= log

(

limn→∞
1
n ∑

n
i=1 exp (Vi(T ))Li(t)

limn→∞
1
n ∑

n
i=1 exp (Vi(T )) L̃i(t)

)

= log

(

limn→∞∑n
i=1 exp (Vi(T )+ li(t))

limn→∞∑n
i=1 exp

(

Vi(T )+ l̃i(t)
)

)

= log

(

limn→∞∑n
i=1 exp

(

Vi(T )+ l̃i(t)
)

exp
(

li(t)− l̃i(t)
)

limn→∞∑n
i=1 exp

(

Vi(T )+ l̃i(t)
)

)

≤ log

(

exp

(

∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)+
∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du

))

=
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)+
∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du,

since

∣

∣li(t)− l̃i(t)
∣

∣≤
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)

+

∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du

and

limn→∞∑n
i=1 exp

(

Vi(T )+ l̃i(t)
)

exp
(

li(t)− l̃i(t)
)

limn→∞∑n
i=1 exp

(

Vi(T )+ l̃i(t)
)

is a convex combination of exp
(

li(t)− l̃i(t)
)

and log(·) is an increasing function.

− log

( 〈 f0,M(t)〉
〈 f0,M̃(t)〉

)

= log

( 〈 f0,M̃(t)〉
〈 f0,M(t)〉

)

≤
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)+
∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du.
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Therefore,

∣

∣ log

( 〈 f0,M(t)〉
〈 f0,M̃(t)〉

)

∣

∣≤
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)

+

∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du.

Applying similar arguments gives:

∣

∣ log

( 〈1,M(t)〉
〈1,M̃(t)〉

)

∣

∣≤
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
C
∣

∣P(u−)− P̃(u−)
∣

∣dS(u)

+

∫ t

0
C
∣

∣P(u)− P̃(u)
∣

∣du.

Finally,

∣

∣P(t)− P̃(t)
∣

∣≤
∫ t

0
2C

∣

∣P(u−)− P̃(u−)
∣

∣dB(u)+
∫ t

0
2C

∣

∣P(u−)− P̃(u−)
∣

∣dS(u)

+

∫ t

0
2C

∣

∣P(u)− P̃(u)
∣

∣du.

Then by Gronwall’s inequality,

P(t) = P̃(t) a.s.

Hence,

Li(t) = L̃i(t) a.s.

This shows that the solution to the system (L,M), for given {Xi(t) : 0≤ t ≤ T −ε, i∈
N}, is unique. �

Proof of Proposition 13.3

Proof. Define a reference measure Q such that

dP
dQ

(t) = L(t),

where

L(t,θ ) = 1+
∫ t

0
L(u−,θ )(λB(u−,θ )− 1)d (B(u)− u)

+
∫ t

0
L(u−,θ )(λS(u−,θ )− 1)d (S(u)− u)
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with
{

λB(t,θ ) = α (I(t)−P(t))++η .
λS(t,θ ) = α (I(t)−P(t))−+η .

Under the reference measure Q, B(·) and S(·) are independent unit Poisson pro-
cesses that are independent of W (·). W (·) is a Brownian motion with a volatility
parameter γ .

EQ [L(t,θ )|Ht ] = 1+
∫ t

0
EQ [L(u−,θ )(λB(u−,θ )− 1)|Hu]d (B(u)− u)

+
∫ t

0
EQ [L(u−,θ )(λS(u−,θ )− 1)|Hu]d (S(u)− u)

= 1+
∫ t

0
EP [(λB(u−,θ )− 1)|Hu]E

Q [L(u−,θ )|Hu]d (B(u)− u)

+

∫ t

0
EP [(λS(u−,θ )− 1)|Hu]E

Q [L(u−,θ )|Hu]d (S(u)− u).

Hence,

EQ [L(t,θ )|Ht ] = exp
(

∫ t

0
log

(

EP [λB(u−,θ )|Hu]
)

dB(u)−
∫ t

0

(

EP [λB(u,θ )|Hu]−1
)

du

+
∫ t

0
log

(

EP [λS(u−,θ )|Hu]
)

dS(u)−
∫ t

0

(

EP [λS(u,θ )|Hu]−1
)

du
)

.

In order to evaluate EP
[

λB(t,θ )
∣

∣Ht
]

and EP
[

λS(t,θ )
∣

∣Ht
]

, we need to know the
conditional distribution of W (T )−W (t) given Ht . The conditional distribution of
W (T )−W(t) given Ht is derived below.

For a smooth function f ,

f (W (T )−W (t))

= f (W (T )−W (0))+
∫ t

0
fw (W(T )−W (u))d (W (T )−W(u))+

γ2

2

∫ t

0
fww (W (T )−W (u))du

= f (W (T )−W (0))+
∫ t

0
fw (W(T )−W (u))

(

−dŴ (u)−
(

W (T )−W(u)
T −u

)

du

)

+
γ2

2

∫ t

0
fww (W (T )−W (u))du.

f (W (T )−W(t))L(t)

= f (W (T )−W(0))L(0,θ )+
∫ t

0
f (W (T )−W(u))dL(u,θ )

+

∫ t

0
L(u,θ )d f (W (T )−W(u))+ [ f (W (T )−W(·)) ,L(·,θ )]t

= f (W (T ))+
∫ t

0
f (W (T )−W(u))L(u−,θ )(λB(u−,θ )− 1)d (B(u)− u)
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+

∫ t

0
f (W (T )−W(u))L(u−,θ )(λS(u−,θ )− 1)d (S(u)− u)

+

∫ t

0
fw (W (T )−W(u))L(u,θ )

(

−dŴ(u)−
(

W (T )−W(u)
T − u

)

du

)

+
γ2

2

∫ t

0
fww (W (T )−W(u))L(u,θ )du.

EQ [ f (W (T )−W(t))L(t,θ )|Ht ]

= EQ [ f (W (T )) |H0]

+
∫ t

0
EQ [ f (W (T )−W(u))L(u−,θ )(λB(u−,θ )− 1)|Hu]d (B(u)− u)

+

∫ t

0
EQ [ f (W (T )−W(u))L(u−,θ )(λS(u−,θ )− 1)|Hu]d (S(u)− u)

−
∫ t

0
EQ

[

L(u,θ ) fw (W (T )−W(u))

(

W (T )−W(u)
T − u

)

|Hu

]

du

+
γ2

2

∫ t

0
EQ [L(u,θ ) fww (W (T )−W(u)) |Hu]du.

EP [ f (W (T )−W(t)) |Ht ] =
EQ [ f (W (T )−W(t))L(t,θ )|Ht ]

EQ [L(t,θ )|Ht ]
.

�

References

1. Aase, K., Bjuland, T., Øksendal, B.: Strategic insider trading equilibrium: a filter theory ap-
proach. Afrika Matematika 23, 145–162 (2012)

2. Admati, A., Pfleiderer, P.: A theory of intraday patterns: Volume and price variability. Review
of Financial Studies 1, 3–40 (1988)

3. Back, K.: Insider trading in continuous time. Review of Financial Studies 5, 387–409 (1992)
4. Back, K., Baruch, S.: Information in securities markets: Kyle meets Glosten and Milgrom.

Econometrica 72(2), 433–465 (2004)
5. Bhushan, R.: Trading costs, liquidity, and asset holdings. Review of Financial Studies 4(2),

343–60 (1991)
6. Biagini, F., Hu, Y., Meyer-Brandis, T., Øksendal, B.: Insider trading equilibrium in a market

with memory. Mathematics and Financial Economics 6, 229–247 (2012)
7. Bremaud, P.: Point processes and queues, martingale dynamics. Springer series in statistics.

Springer-Verlag, New York, N.Y. (1981)
8. Dufour, A., Engle, R.F.: Time and the price impact of a trade. The Journal of Finance 55(6),

2467–2498 (2000)
9. Easley, D., Engle, R.F., O’Hara, M., Wu, L.: Time-varying arrival rates of informed and unin-

formed trades. Journal of Financial Econometrics, 6, 171–207 (2008)
10. Easley, D., Kiefer, N.M., O’Hara, M., Paperman, J.B.: Liquidity, information, and infrequently

traded stocks. Journal of Financial Economics LI(4), 1405–1436 (1996)



13 An Asymmetric Information Modeling 309

11. Easley, D., O’Hara, M.: Time and the process of security price adjustment. The Journal of
Finance 47, 577–607 (1992)

12. Elliott, R.J.: An application of hidden Markov models to asset allocation problems. Finance
and Stochastics 3, 229–238 (1997)

13. Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control.
Applications of Mathematics. Springer-Verlag, New York, N.Y. (1997)

14. Engle, R.F.: The econometrics of ultra high frequency data. Econometrica 68, 1–22 (2000)
15. Follmer, H., Imkeller, P.: Anticipation canceled by a Girsanov transformation: a paradox on

wiener space. Annales Inst. H. Poincar’e 29(4), 569–58 (1993)
16. Frey, R., Runggaldier, W.J.: Nonlinear filtering techniques for volatility estimation with a

view towards high frequency data. International Journal of Theoretical and Applied Finance
4, 199–210, (2001)

17. Glosten, L.R., Milgrom, P.R.: Bid, ask, and transaction prices in a specialist market with het-
erogeneously informed traders. Journal of Financial Economics 14, 71–100 (1985)

18. Hasbrouck, J.: Measuring the information content of stock trades. Journal of Financial Eco-
nomics 46 (1), 179–207 (1991)

19. Hausman, J.A., Lo, A.W., MacKinlay, A.C.: An ordered probit analysis of transaction stock
prices. Journal of Financial Economics 31(2), 319–379 (1992)

20. Holden, C.W., Subrahmanyam, A.: Long-lived private information and imperfect competition.
Journal of Financial Economics 47, 247–270 (1992)

21. Kallianpur, G.: Stochastic Filtering Theory. Stochastic Filtering Theory. Springer-Verlag, New
York, N.Y. (1980)

22. Kallianpur, G., Striebel, C.: Arbitrary system process with additive white noise observation
errors. Ann. Math. Statist. 39, 785–801 (1968)

23. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Graduate texts in mathe-
matics. Springer-Verlag, New York, N.Y. (1991)

24. Kurtz, T.G., Xiong, J.: Particle representations for a class of nonlinear SPDEs. Stochastic
Processes and their Applications 83, 103–126 (1999)

25. Kyle, A.S.: Continuous auctions and insider trading. Econometrica 53, 1315–1335 (1985)
26. Chib, S., Nardari, F., Shephard, N.: Markov chain Monte Carlo methods for stochastic volatil-

ity models. Journal of Econometrics 108, 281–316 (2002)
27. Pikovsk, I., Karatzas, I.: Anticipative portfolio optimization. Advances in Applied Probability

28, 1095–112 (1996)
28. Pitt, M., Shephard, N.: Filtering via simulation: Auxiliary particle filters. Journal of the Amer-

ican Statistical Association 94, 590–599 (1999)
29. Zeng, Y.: A partially observed model for micromovement of asset prices with Bayes estimation

via filtering. Mathematical Finance 13, 411–444 (2003)



Chapter 14
Heterogenous Autoregressive Realized
Volatility Model

Yazhen Wang and Xin Zhang

14.1 Introduction

Volatility plays a central role in modern finance. There is extensive literature on
volatility estimation and forecast based on financial data. For financial data observed
at daily or longer time horizons, which are often referred to as low-frequency finan-
cial data, many parametric models were developed in past three decades to model
volatility processes, and the well-known volatility models include GARCH models,
discrete stochastic volatility models, and diffusive stochastic volatility models (see
Bollerslev et al. (1992); Drost and Nijman (1993) and Shephard (1996)). For intra-
day financial data, which are called high-frequency financial data, various realized
volatility methods were developed for estimating integrated volatility in the past
decade (see Ait-Sahalia et al. (2005); Andersen et al. (2003a,b); Barndorff-Nielsen
et al. (2008); Tao et al. (2013); Wang and Zou (2010)).

For low-frequency data, due to the lack of enough data to directly estimate
volatilities, the low-frequency modeling of volatilities assumes that volatility pro-
cesses follow stationary models such as autoregressive (AR) processes. For exam-
ple, for daily data there is only one observation in each day, and daily volatility
cannot be estimated from the single observation. We often fit daily return data to a
stationary model with an AR volatility process for volatility estimation and forecast.
On the other hand, given a time interval we can directly estimate integrated volatil-
ity based on high-frequency data over the time interval. Because of the small time
scale in high-frequency financial observations, the high-frequency models need to
incorporate micro-structure noise, and the volatility processes in the high-frequency
models no longer obey any known parametric models. Instead nonparametric mod-
els are used for volatility processes in the high-frequency models, and nonparamet-
ric methods such as realized volatility are used to estimate integrated volatility.
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The volatility processes in the low-frequency models have stationary paramet-
ric AR structures that are good for prediction, but the low-frequency models take
volatilities as latent processes and thus make statistical inferences difficult. The
high-frequency methods can directly estimate volatility nonparametrically, with-
out relying on stationary assumption, but the nonparametric methods are hard for
volatility prediction. We may take the advantages of the strengths of high-frequency
and low-frequency methods by combining them together. One combining approach
is to use the high-frequency data to estimate volatilities and then fit the estimated
volatilities to an AR volatility model (Andersen et al. (2003a,b); Corsi (2009), and
Tao et al. (2011)). Instead of latent volatility processes in the low-frequency models,
the combining approach enables us to fit an AR volatility model directly for volatil-
ity estimation and prediction. The approach is largely based on good intuitions and
nice empirical results.

This chapter is the first attempt to provide some theoretical justifications for
the combining approach. As it is widely known that at large time scales of low-
frequency data volatility processes have an AR structure, but at the small time scales
of high-frequency data, the volatility processes do not obey any simple parametric
models like the AR model. Since the volatility behaviors at larger time scales may be
treated as the results of temporal aggregations of volatility activities at smaller time
scales, we may speculate that the low-frequency parametric AR volatility structures
are due to the temporal aggregations of high-frequency volatility models. In this pa-
per we will show that for appropriate underlying price and volatility processes, tem-
poral aggregations of volatility processes and their corresponding realized volatility
estimators approximately obey a heterogenous AR (HAR) model. The obtained re-
sults provide some theoretic justifications for the described approach of combining
low-frequency and high-frequency methods.

The rest of the chapter is as follows. Section 14.2 reviews the model framework
for high-frequency financial data. Section 14.3 presents a continuous-time bivari-
ate diffusion model for the underlying price process and describes the GARCH
approximation and the stochastic volatility (SV) approximation to the underlying
continuous-time price and volatility processes. Section 14.4 shows that the tempo-
ral aggregations of the GARCH volatility process, the SV volatility process, and the
underlying continuous-time volatility process all approximately obey a HAR model.
Section 14.5 illustrates realized volatility estimators of integrated volatilities based
on the high-frequency financial data and establishes an approximate HAR model
for the realized volatility estimators. We collect some technical results about the
temporal aggregation of AR processes in Sect. 14.6.

14.2 High-Frequency Financial Data and Price Model

Let X(t) be the true log price of an asset at time t over an interval [0,T ]. High-
frequency finance assumes that, because of micro-structure noise in high-frequency
data, the observed data are not the underlying true log price process X(t) in contin-
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uous time. Instead we observe only the high-frequency noisy version, Y (t�), of X(·)
at time points t�. In this chapter we assume

Y (t�) = X(t�)+ e(t�), t� = T �/n, �= 1, · · · ,n, (14.1)

where e(t�), �= 1, · · · ,n, represent micro-structure noise and are assumed to be i.i.d.
random variables with mean zero and variance η , and e(·) and X(·) are assumed to
be independent.

Modern finance theory assumes that X(t) follows a continuous-time diffusion
model,

dX(t) = μt dt +σt dBt , t ∈ [0,T ], (14.2)

where Bt is a standard Brownian motion, μt is the drift, and σ2
t is the volatility of

X(t). High-frequency data Y (t�) are used to estimate the integrated volatility.

14.3 GARCH and Stochastic Volatility Approximations
to the Price Model

Consider the following bivariate diffusion model for the log price process
Xt , t ∈ [0,T ],

dXt = (ν0 +ν1σ2
t )dt +σt dBt , (14.3)

dσ2
t = (η0 +η1σ2

t )dt +η2σ2
t dWt , (14.4)

where Bt and Wt are two independent standard Brownian motions,σ2
t is the volatility

process, and (ν0,ν1,η0,η1,η2) are parameters.
The bivariate diffusion process (Xt ,σ2

t ) can be approximated by a GARCH
process as follows. Divide the time interval [0,T ] into n subinterval of length
sn = T/n and set tk = k sn, k= 0,1, · · · ,n. For i.i.d. standard normal random variables
{εk}, let

ζk = 2−1/2 (ε2
k − 1). (14.5)

We define a linear GARCH(1,1) approximating process as follows. For k =
1, · · · ,n, let

Xn,k −Xn,k−1 = (ν0 +ν1σ2
n,k)sn +σn,k s1/2

n εk, (14.6)

σ2
n,k = η0 sn +σ2

n,k−1 (1+η1 sn +η2 s1/2
n ζk−1)

= α0 +α1σ2
n,k−1 +α2σ2

n,k−1 ε
2
k−1, (14.7)

where

α0 = η0 sn, α1 = 1+η1 sn −η2 s1/2
n /21/2, α2 = η2 s1/2

n /21/2.



314 Y. Wang and X. Zhang

The approximating process (Xn,t ,σ2
n,t), t ∈ [0,T ], is given by

Xn,t = Xn,k, σ2
n,t = σ2

n,k, for t ∈ [tk, tk+1), k = 0, · · · ,n. (14.8)

As n → ∞, the normalized partial sum process of (εk,ζk) weakly converges to a
planar Wiener process (Bt ,Wt) and thus the GARCH process (Xn,t ,σ2

n,t) converges
in distribution to bivariate diffusion process (Xt ,σ2

t ) described by (14.3) and (14.4).
The diffusion model (14.3) and (14.4) [or the process (Xt ,σ2

t )] is called the diffusion
limit of the linear GARCH model (14.6) and (14.7).

We may discretize (14.3) and (14.4) to obtain a discrete stochastic volatility (SV)
model,

Xn,k −Xn,k−1 = (ν0 +ν1σ2
n,k)sn +σn,k s1/2

n εk, (14.9)

σ2
n,k = η0 sn +σ2

n,k−1 (1+η1 sn +η2 s1/2
n δk)

= α0 +α1σ2
n,k−1 +α2σ2

n,k−1 δk, (14.10)

where εk = (Btk −Btk−1)/s1/2
n and δk = (Wtk −Wtk−1)/s1/2

n

α0 = η0 sn, α1 = 1+η1 sn, α2 = η2 s1/2
n .

The approximating process (Xn,t ,σ2
n,t), t ∈ [0,T ], is given by

Xn,t = Xn,k, σ2
n,t = σ2

n,k, for t ∈ [tk, tk+1), k = 0, · · · ,n. (14.11)

For the SV process (Xn,t ,σ2
n,t), since εk and δk are discretizations of Brownian mo-

tions B and W , (Xn,t ,σ2
n,t) will converge in probability to bivariate diffusion process

(Xt ,σ2
t ) described by (14.3) and (14.4). See Nelson (1990) and Wang (2002).

Note that we abuse notations by using the same set of notations for the GARCH
model (14.6)–(14.8) and for the SV model (14.9)–(14.11).

14.4 The HAR Model for Volatility Processes

For both the GARCH approximation model (14.6) and (14.7) and the SV approxi-
mation model (14.9) and (14.10), the volatility process σ2

n,k obeys a HAR(1) model
(a heterogeneous autoregressive model of order 1). Consider a temporal aggregation
of the volatility process

σ̄2
m,n, j =

1
m

m+ j

∑
k=1+ j

σ2
n,k,

where m is an integer. Propositions 14.1 and 14.2 in Sect. 14.6 shows that the aggre-
gated volatility process σ̄2

m,n, j still follows a HAR(1) model, that is,

σ̄2
m,n, j = η0 +η1σ̄2

m,n, j−1 + z∗j , (14.12)
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where z∗j is an innovation process specified by Propositions 14.1 and 14.2 in
Sect. 14.6.

Sine the GARCH and SV volatility processes σ2
n,k converge in probability to

diffusion volatility σ2
t given by (14.4), the aggregated SV volatility process provides

an approximation to a temporal aggregation of the diffusion volatility σ2
t

σ̄2
m,t j

=
1
m

m+ j

∑
k=1+ j

σ2
tk
. (14.13)

Hence, from (14.12) we have that the temporal aggregated diffusion volatility pro-
cess σ̄2

m,t j
approximately follows a HAR(1) model, that is,

σ̄2
m,t j

= η0 +η1σ̄2
m,t j−1

+ z∗j + oP(1). (14.14)

Define integrated volatility

γm,t j =
n

mT

∫ tm+ j

t j

σ2
t dt.

which is the continuous-time average of σ2
t over interval [t j, tm+ j]. Note that

γm,t j =
n

mT

m+ j

∑
k=1+ j

∫ tk

tk−1

σ2
t dt,

|σ̄2
m,t j

− γm,t j | ≤
1
m

m+ j

∑
k=1+ j

∣

∣

∣

∣

σ2
tk −

n
T

∫ tk

tk−1

σ2
t dt

∣

∣

∣

∣

=
1
m

m+ j

∑
k=1+ j

∣

∣

∣σ2
tk
−σ2

t∗k

∣

∣

∣≤ max
|s−t|≤1/n

|σ2
t −σ2

s | → 0,

where t∗k is between tk and tk−1. Thus from (14.14) we obtain

γm,t j = η0 +η1γm,t j−1 + z∗j + oP(1). (14.15)

Thus the temporal aggregated continuous-time volatility process γm,t j approximately
follows a HAR(1) model.

14.5 The HAR Model for Realized Volatilities

Various realized volatility estimators are proposed to estimate integrated volatility
based on high-frequency data Y (t�) from model (14.1). Suppose we like to estimate
integrated volatility

∫ a1
a0
σ2

t dt over [a0,a1] (a subinterval of [0,T ]) based on high-
frequency data Y (t�), t� ∈ [a0,a1]. Denote by n1 the number of observations Y (t�)
with t� ∈ [a0,a1].
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Given an integer K let

[Y,Y ](K)
1 =

1
K

n1−K

∑
�=1

(Y (t�+K)−Y(t�))
2.

We choose K = cn2/3
1 for some constant c and define the two-scale realized

volatility (TSRV) estimator

Γ̃1 = [Y,Y ](K)
1 − 1

K
[Y,Y ](1)1 . (14.16)

TSRV estimator has a suboptimal convergence rate n1/6
1 , that is,

Γ̃1 −
∫ a1

a0

σ2
t dt = OP(n

−1/6
1 ).

See Zhang et al. (2005).
The multi-scale realized volatility (MSRV) estimator is given by

Γ̂1 =
M

∑
j=1

a j[Y,Y ]
(Kj)
1 + ξ ([Y,Y ](K1)

1 − [Y,Y ](KM)
1 ), (14.17)

where Kj = j+N

a j =
12( j+N)( j−M/2− 1/2)

M(M2 − 1)
,

ξ =
(M+N)(N + 1)
(n+ 1)(M− 1)

,

and we take M and N to be the integer part of n1/2
1 (i.e., the largest integer not greater

than
√

n1). The MSRV estimator Γ̂1 has optimal convergence rate n−1/4
1 , that is,

Γ̂1 −
∫ a1

a0

σ2
t dt = OP(n

−1/4
1 ).

See Zhang (2006) and Fan and Wang (2007).
We divide [0,T ] into n/m subintervals [a j−1,a j], a j = t j m, j = 1, · · · ,n/m. We

apply the methods described above to the high-frequency data on the jth subinterval
and construct TSRV estimator Γ̃j and MSRV estimator Γ̂j for the integrated volatility
∫ a j

a j−1
σ2

t dt, j = 1, · · · ,n/m. Then

Γ̃j −
∫ a j

a j−1

σ2
t dt = OP(m

−1/6), Γ̂j −
∫ a j

a j−1

σ2
t dt = OP(m

−1/4). (14.18)
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Since the continuous average of σ2
t over interval [a j−1,a j] is

1
a j − a j−1

∫ a j

a j−1

σ2
t dt =

n
mT

∫ a j

a j−1

σ2
t dt,

we define the TSRV estimator and MSRV estimator of the average volatility as
follows,

γ̃ j =
n

mT
Γ̃j, γ̂ j =

n
mT

Γ̂j.

Hence, from (14.18) we conclude

γm,t j =
n

mT

∫ a j

a j−1

σ2
t dt =

n
mT

Γ̂j +OP(nm−5/4), (14.19)

γm,t j =
n

mT

∫ a j

a j−1

σ2
t dt =

n
mT

Γ̃j +OP(nm−7/6). (14.20)

We choose m such that nm−7/6 → 0 for the TSRV case and nm−5/4 → 0 for the
MSRV case. Then the above results and (14.15) imply that TSRV estimator γ̃ j and
MSRV estimator γ̂ j approximately follows a HAR(1) model, that is,

γ̃ j = η0 +η1γ̃ j−1 + z∗j + oP(1), (14.21)

γ̂ j = η0 +η1γ̂ j−1 + z∗j + oP(1). (14.22)

The established HAR(1) models in (14.21) and (14.21) for TSRV estimator γ̃ j

and MSRV estimator γ̂ j provide some justification for the combining approach of
fitting the estimated realized volatilities to a HAR(1) model used in Andersen et al.
(2003a,b) and Corsi (2009) (see also Tao et al. (2011)).

14.6 The Temporal Aggregation of AR Processes

This section provides some technical results on the aggregation of AR model.

Proposition 14.1. Consider the following HAR(1) process {uk},

uk = α0 +α1uk−1 + zk, (14.23)

where innovation process zi satisfies (i) Var(zk) = τ2
k may depend on k and (ii)

Cov(zk,z j) = 0 for j �= k. Define an aggregation, {vi}, of process uk,

vi =
1
m

im

∑
k=(i−1)m+1

uk. (14.24)

Then {vi} follows a HAR(1) model,

vi = α∗
0 +α∗

1 vi−1 + z∗i , (14.25)
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where α∗
0 , α∗

1 and z∗i are given by

α∗
0 = α0

m−1

∑
k=0

αk
1 , α∗

1 = αm
1 , z∗i =

1
m

im

∑
j=(i−1)m+1

m−1

∑
k=0

αk
1 z j−k. (14.26)

Proof. It is sufficient to show that v2 = α∗
0 +α∗

1 v1 + z∗2. First, we substitute {uk+m}
successively into the expressions of {uk} and obtain

um+1 = α0 +α1um + zm+1,

= (α0 +α0α1)+α2
1 um−1 +(zm+1 +α1zm),

= α0

m−1

∑
k=0

αk
1 +αm

1 u1 +
m−1

∑
k=0

αk
1 zm+1−k,

um+2 = α0

m−1

∑
k=0

αk
1 +αm

1 u2 +
m−1

∑
k=0

αk
1 zm+2−k,

and

u2m = α0

m−1

∑
k=0

αk
1 +αm

1 um +
m−1

∑
k=0

αk
1 z2m−k.

Plugging these expression of {uk} into v2 in (14.24) we have

v2 =
1
m

2m

∑
k=m+1

uk

= α0

m−1

∑
k=0

αk
1 +αm

1
1
m

m

∑
k=1

uk +
1
m

2m

∑
j=m+1

m−1

∑
k=0

αk
1z j−k

= α0

m−1

∑
k=0

αk
1 +αm

1 v1 +
1
m

2m

∑
j=m+1

m−1

∑
k=0

αk
1 z j−k

= α∗
0 +α∗

1 v1 + z∗2.

The proof is completed. �
Proposition 14.2. The innovation process {z∗i } in model (14.25) satisfies

z∗i =
1
m

im

∑
j=(i−1)m+1

m−1

∑
k=0

αk
1 z j−k,

Var(z∗i ) = O

(

1
m

)

, Cov(z∗i ,z
∗
i+1) = O

(

1
m2

)

.
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Proof. Proposition 14.1 assumes Var(zk) = τ2
k , Cov(zk,z j) = 0 for j �= k. It is suffi-

cient to show that

Var(z∗2) = O

(

1
m

)

, Cov(z∗2,z
∗
3) = O

(

1
m2

)

.

Direct computations show

Var(z∗2) =Var

(

1
m

2m

∑
j=m+1

m−1

∑
k=0

αk
1z j−k

)

=
1

m2

m

∑
j=2

(

m−1

∑
k=m+1− j

αk
1

)2

Var(z j)+
1

m2

2m

∑
j=m+1

(

2m− j

∑
k=0

αk
1

)2

Var(z j)

=
1

m2

(

m

∑
j=2

α2m−2 j+2
1 +α2m

1 − 2α2m− j+1
1

(1−α1)2 τ2
j

)

+
1

m2

(

2m

∑
j=m+1

1+α4m−2 j+2
1 − 2α2m− j+1

1

(1−α1)2 τ2
j

)

=
1
m

τ̄2
m+1,2m

(1−α1)2 + o

(

1
m

)

,

where τ̄2
m+1,2m is the average of τ2

j over m+ 1 ≤ j ≤ 2m, that is,

τ̄2
m+1,2m =

1
m

2m

∑
j=m+1

τ2
j .

Similarly, simple manipulations lead to

Cov(z∗2,z
∗
3) =Cov

(

1
m

2m

∑
j=m+1

(

2m− j

∑
k=0

αk
1

)

z j ,
1
m

2m

∑
j=m+2

(

m−1

∑
k=2m+1− j

αk
1

)

z j

)

=
1

m2

2m

∑
j=m+2

(

2m− j

∑
k=0

αk
1

m−1

∑
k=2m+1− j

αk
1

)

Var(z j)

=
1

m2

2m

∑
j=m+2

(

1−α2m− j+1
1

1−α1

)(

α2m− j+1
1 −αm

1

1−α1

)

τ2
j

=
1

m2

2m

∑
j=m+2

(

α2m− j+1
1 −α4m−2 j+2

1 −αm
1 +α3m− j+1

1

(1−α1)2

)

τ2
j

= O

(

1
m2

)

.

We complete the proof. �
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Chapter 15
Parameter Estimation via Particle MCMC
for Ultra-High Frequency Models

Cai Zhu and Jian Hui Huang

15.1 Introduction

The recent availability of high frequency data1 has motivated a growing literature
devoted to extracting information from intraday trading prices and returns. Com-
pared with low frequency data, such as daily observations, high frequency data has
two distinguishable features. On the one hand, the intraday trading occur at ran-
dom trading times. On the other hand, trading prices are contaminated by market
microstructure noise.

According to market microstructure theory, noise is generated from two main
sources. Firstly, noise is introduced by noise traders, as discussed by Black (1986).
Noise traders may enter into market driven by transitory liquidity needs or misun-
derstanding of information. Secondly, noise may be a reflection of trading cost or
the effect of price discreteness and clustering (Harris, 1991), inventory control by
dealers (Hasbrouck, 1988), and delayed price discovery (Cohen et al., 1980), among
other sources.

Microstructure noise has significant effect on asset dynamic modeling and pa-
rameter estimation. For instance, Aı̈t-Sahalia et al. (2005); Bandi and Russell
(2006), among others, find out the existence of microstructure noise will generate

1 There is a difference between high frequency data in the literature related to realized variance,
which are equally spaced in time and ultra-high frequency data which are irregularly spaced. In
this chapter, we use high frequency data to denotes ultra-high frequency data to keep in line with
other literature. But readers should notice the difference.
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over-valued estimator for realized variance. More recently, Asparouhova et al.
(2010) study the effects of microstructure noise on prices, showing that coefficients
estimated by standard ordinary least squares regressions of security returns on se-
curity characteristics or factor loadings are biased and inconsistent if microstructure
noise is considered. Moreover, Duan and Fulop (2009) show that ignoring trad-
ing noise can lead to a significant over-estimation for the firm asset volatility, thus
will generate bias in credit risk modeling through structure method (Merton, 1974).
Therefore, models explicitly considering microstructure noise are needed.

In market microstructure literature, most models for asset dynamics have two
components: a permanent one and a transitory one. The permanent component is
commonly assumed to be information-related and affected by the degree of informa-
tion asymmetry. The transitory component is regarded as trade-related perturbations
due to market imperfection. Some stochastic processes, such as geometric Brown-
ian motion (GBM), are often applied to model the intrinsic value of assets, and the
observed prices differ from this intrinsic value due to all kinds of noise.

For most papers related to parameters estimation involving high frequency data,
the various market microstructure noises are commonly summarized by white noise.
However, the actual structure of noise is rich. Zeng (2003) proposes a model ex-
plicitly considering the structure of three different kinds of market microstructure
noises: discrete, clustering, and non-clustering noise, with 1/8 trading rule. The
details of the model is introduced in later section. Along with his model, Zeng
(2003) also develops a Bayesian filtering estimation method. The method is a re-
cursive algorithm relying on the Markov chain approximation method to compute
the approximate posterior and then the Bayes estimator. While efficient, the method
is computational intensive, and once the underlying dynamics for stock changes,
derivation of the algorithm according to the new dynamics is also difficult.

In this chapter, a general estimation method, namely, particle Markov Chain
Monte Carlo (PMCMC), is applied to parameter estimation for a couple of Zeng’s
models under both 1/8 and 1/100 trading rules. This method combines particle fil-
tering with Markov Chain Monte Carlo (MCMC) to achieve sequential parameter
learning in a Bayesian way. In a nutshell, MCMC is used to propose new values
for parameters in the model, and then particle filtering is used to calculate values of
marginal likelihood functions in the state-space model based on those proposed pa-
rameters. Similar insights are provided by Liu and West (2001) and Storvik (2002),
among others.

The idea of PMCMC method has been used in finance and economics by sev-
eral scholars. Since the seminal paper by Gordon, Salmond and Smith (1993) with
bootstrap filter (SIR), particle filtering is regarded as an important simulation-based
estimation tool for nonlinear and non-Gaussian state-space model when likelihood
values and sequential parameter learning are needed. Particle filtering-based estima-
tion methods draw much attention in finance recently, especially in stochastic vari-
ance modeling and option pricing, because in most models, except for GARCH fam-
ily, stochastic variance is treated as an unobservable factor. Johannes et al. (2009)
use particle filtering to extract latent stochastic variance from stochastic volatility
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models with and without jumps. Malik and Pitt (2011) adapt particle filtering within
maximum likelihood method to study a basic stochastic volatility model with lever-
age effect. Carvalho and Lopes (2007) and Rios and Lopes (2012) use the Liu and
West particle filtering framework and its extension to estimate Markov switching
stochastic volatility models. Christoffersen et al. (2010) apply particle filtering to
both estimate model parameters and filter latent variance factor for option pric-
ing under several stochastic volatility models. In economics, some researchers also
use particle filtering-based algorithm to estimate dynamic stochastic general equi-
librium (DSGE) models, such as Fernández-Villaverde and Rubio-RamÍrez (2007)
and An and Schorfheide (2007). These researchers use particle filtering to calculate
likelihood function values for DSGE models, and then use either Bayesian method
or numerical optimization to estimate parameters in the models. Recently, Andrieu
et al. (2010) summarize this PMCMC idea as a general calculation framework and
provide some theoretical foundations.

PMCMC method has several nice features. First of all, although it is based on
simulation, the resampling schemes in particle filtering step of the method can ef-
ficiently reduce the variance for likelihood calculation. Secondly, approximation to
likelihood functions by particle filtering is proven to be unbiased in a general aux-
iliary particle filtering case by Pitt et al. (2010). Thirdly, the Markov Chain Monte
Carlo step of the method approximates the posterior distributions of parameters,
containing more information to conduct statistical inference than just point esti-
mates. Moreover, due to the nature of this algorithm, parallel programming is able
to be used, making this method more efficient in practice. Some numeric methods
that are able to enhance the algorithm efficiency are discussed. Numerical studies
through simulation and real data show that PMCMC method is able to yield reason-
able estimates for model parameters.

The rest of the chapter is as follows. In Sect. 15.2, Zeng (2003) model is pre-
sented. Due to the intrinsic value plus noise structure, the model can be cast into
nonlinear and non-Gaussian state-space framework. Hence, in Sect. 15.3, estimation
method based on particle Markov Chain Monte Carlo method (PMCMC, Andrieu
et al., 2010) is introduced to address the parameter estimation problem. Then both
simulation and empirical studies are conducted in Sect. 15.4. Section 15.5 makes
conclusions.

15.2 The Model

Zeng’s model is based on the intuition that trading price should arise from an intrin-
sic price process in combination with market noise from trading activities at trading
times. The model consists of three parts: trading time series, micro-structure noise
in observed price and the unobservable intrinsic process, which are described sub-
sequently below.
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15.2.1 Trading Times

Trading time series {ti : i ≥ 1} are modeled as a doubly-stochastic Poisson process
including a Poisson process with constant intensity.

15.2.2 Micro-Structure Noise

Three important kinds of micro-structure noise, discrete, clustering, and non-clust-
ering noise are considered. Discrete noise, which is generated from trading mech-
anism, exists because intraday prices move discretely, that is, tick by tick, and the
smallest tick size for trading is set by security exchanges.

Clustering noise means prices gather more on some ticks, instead of distributing
evenly on all ticks. Harris (1991) documents this phenomenon, noticing that stock
prices cluster on some fractions: integers more common than halves, halves more
than odd quarters, etc. The reason for clustering noise to exist, as suggested by
Harris, is that traders want to lower the negotiation cost. With a coarser tick size
scheme, it is easier to get agreements. Hasbrouck (1999) also studies the clustering
noise, and puts up a modeling idea used by Zeng (2003).

Clustering noise is generated from trading procedure. There should be other
kinds of trading noise, such as fixed transaction cost, cost generated from inven-
tory control of market makers, and cost from loss of market makers when trading
with informed investors. All these noise is modeled as non-clustering noise. Non-
clustering noise is important in asset price dynamic modeling, because its existence
allows the prices of trades to occur within the same second to be different and the
difference can be two or more ticks. Besides, it can generate observed outliers in
price.

Zeng’s model considers all these three kinds of noise. At trading time ti, there
is an unobservable intrinsic value {S(ti)} of an asset. S(t) or St is commonly mod-
eled by a certain stochastic process and is to be described in the next subsection.
The price at trading time ti, Y (ti), is constructed from the intrinsic value S(ti) by
incorporating the above three kinds of noise.

Step 1. Incorporate price discreteness by rounding off St to its closest tick:
Round[S(ti), 1

M ], where M is tick size. Tick size is determined by trading regula-
tions of different market and varies with time. For example, the tick size in New
York Stock Exchange (NYSE) was switched to $ 1

16 from $ 1
8 on June 24, 1997 and

then further adjusted to $0.01 beginning from January 29, 2001. Zeng (2003) deals
with the case of M = 8, Spalding, Tsui and Zeng (2006) the case of M = 16, and
this chapter the case of M = 100.

Step 2. Incorporate non-clustering noise by adding Vi: Y ′(ti) = Round[S(ti) +
Vi,

1
M ], where V is a i.i.d. random variable and independent of the intrinsic value

S(t). The distribution of V should be unimodal, symmetric, and bell-shaped in order
to conform to the desirable features that the trading price at a tick closer to the
stock value is more likely to occur and trading prices with the same distance to
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the stock value have equal probabilities. A good candidate is the doubly geometric
distribution with parameter ρ and M = 100, whose probability mass function is
given by

P(V = v) =

{

(1−ρ) if v = 0,
1
2 (1−ρ)ρM|v| if v =± 1

M ,± 2
M , . . . .

(15.1)

Step 3. Incorporate clustering noise by biasing Y ′(ti). The biasing function b(·)
moves Y ′(ti) to some close ticks according to certain probability defined by param-
eters α,η . The construction of biasing function is related to tick size and illustrated
by Zeng (2003) in detail with 1/8 trading rules. Market data with a tick size of 1 cent
exhibits elevated frequencies of prices that are increments of 5 cents and 10 cents.
From the motivation of Harris (1991) and Hasbrouck (1999), when tick size is $ 1

100 ,
b(·) is constructed in the following way. If Y ′(ti) is a multiple of 5 cents, then Y (ti)
stays on Y ′(ti) with probability one. Otherwise, move Y ′

t to the nearest odd incre-
ment of 5 cents with probability α and to the nearest increment of 10 cents with
probability η to obtain Y (ti). Note that α+η should be less than 1 in general. The
two parameters α , η can be estimated via relative frequency methods. The details
are illustrated in Zeng (2003).

The conditional likelihood function P(Y (ti) | S(ti)) with M = 100 is listed in
Table 15.1, with two variables D and R defined as

D = M ∗ |Yt −Round[St ,
1
M
]|, (15.2)

and

R =

⎧

⎪

⎨

⎪

⎩

0 Yt is an increment of 10 cents,

1 Yt is an increment of 5 cents,

2 otherwise.

(15.3)

Table 15.1 Likelihood function for high frequency data model under 1/100 trading rule

R D Likelihood function
0 0 (1−ρ)(1+η(ρ+ρ2 +ρ3 +ρ4))
0 1 0.5(1−ρ)(ρ+η(2+ρ+2∗ρ2 +2∗ρ3 +ρ4))
0 2 0.5(1−ρ)(ρ2 +η(2+2ρ+ρ2 +ρ3 +ρ4 +ρ5 +ρ6))
0 3 0.5(1−ρ)(ρ3 +η(2+2ρ+ρ2 +ρ4 +ρ5 +ρ6 +ρ7))
0 4 0.5(1−ρ)(ρ4 +η(2+ρ+ρ2 +ρ3 +ρ5 +ρ6 +ρ7 +ρ8))
0 ≥ 5 0.5(1−ρ)(ρ5 +η(2+ρ+ρ2 +ρ3 +ρ4 +ρ6 +ρ7 +ρ8 +ρ9))ρD−5

1 0 (1−ρ)(1+α(ρ+ρ2 +ρ3 +ρ4))
1 1 0.5(1−ρ)(ρ+α(2+ρ+2∗ρ2 +2∗ρ3 +ρ4))
1 2 0.5(1−ρ)(ρ2 +α(2+2ρ+ρ2 +ρ3 +ρ4 +ρ5 +ρ6))
1 3 0.5(1−ρ)(ρ3 +α(2+2ρ+ρ2 +ρ4 +ρ5 +ρ6 +ρ7))
1 4 0.5(1−ρ)(ρ4 +α(2+ρ+ρ2 +ρ3 +ρ5 +ρ6 +ρ7 +ρ8))
1 ≥ 5 0.5(1−ρ)(ρ5 +α(2+ρ+ρ2 +ρ3 +ρ4 +ρ6 +ρ7 +ρ8 +ρ9))ρD−5

2 0 (1−ρ)(1−α−η)
2 ≥ 1 0.5(1−ρ)(1−α−η)ρD
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The corresponding R and likelihood function under 1/8 trading rule is given in
(15.4) and Table 15.2:

R =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if Yt is an integer,

1 if the fractional part of Yt is 1
2 ,

2 if the fractional part of Yt is 1
4 ,

3
4 ,

3 if the fractional part of Yt is 1
8 ,

3
8 ,

5
8 ,

7
8 .

(15.4)

Table 15.2 Likelihood function for high frequency data model under 1/8 trading rule

R D Likelihood function
0 0 (1−ρ)∗ (1+ γ ∗ρ ∗ (1+ρ2))
0 1 0.5∗ (1−ρ)∗ (ρ+ γ ∗ (2+2∗ρ2 +ρ4))
0 2 0.5∗ (1−ρ)∗ρ ∗ (ρ+ γ ∗ (2+ρ2 +ρ4))
0 3 0.5∗ (1−ρ)∗ (ρ3 + γ ∗ (2+ρ2 +ρ4 +ρ6))
0 ≥ 4 0.5∗ (1−ρ)∗ρD−3 ∗ (ρ3 + γ ∗ (1+ρ2 +ρ4 +ρ6))

1 0 (1−ρ)∗ (1+η ∗ρ ∗ (1+ρ2))
1 1 0.5∗ (1−ρ)∗ (ρ+η ∗ (2+2∗ρ2 +ρ4))
1 2 0.5∗ (1−ρ)∗ρ ∗ (ρ+η ∗ (2+ρ2 +ρ4))
1 3 0.5∗ (1−ρ)∗ (ρ3 +η ∗ (2+ρ2 +ρ4 +ρ6)
1 ≥ 4 0.5∗ (1−ρ)∗ρD−3 ∗ (ρ3 +η ∗ (1+ρ2 +ρ4 +ρ6))
2 0 (1−ρ)∗ (1+α ∗ρ)
2 1 0.5∗ (1−ρ)(ρ+α ∗ (2+ρ2))
2 ≥ 2 0.5∗ (1−ρ)ρD−1 ∗ (ρ+α ∗ (1+ρ2))
3 0 (1−ρ)∗ (1−α−η− γ)
3 ≥ 1 0.5∗ (1−α−η− γ)∗ (1−ρ)∗ρD

15.2.3 Intrinsic Value Processes

In general, the intrinsic value St can be modeled by all kinds of stochastic process.
It is natural to assume GBM, or a jump-diffusion process, or a stochastic volatility
process in the model. In this chapter, GBM and Merton’s model, a jump-diffusion
process are adopted. GBM is first estimated to study the method in detail, and then
the algorithms are extended to the jump-diffusion case.

The stochastic differential equation for GBM is as follows:

dSt

St
= μdt +σdWt , (15.5)

where μ is a drift parameter, σ is a positive diffusion parameter, and Wt is a standard
Brownian motion.

The stochastic differential equation for Merton’s jump-diffusion process (Merton,
1976) is as follows:

dSt

St
= μdt +σdWt + JtdNt , (15.6)
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where μ , σ , and Wt are of the same meanings as those in (15.5), Nt is a Poisson
process with intensity λ , and Jt is normally distributed jump size with mean μJ and
variance σ2

J , which is independent of Wt and Nt .
At trading time ti, the two processes yield two S(ti) and then evolve to two dif-

ferent Y (ti) according to either Table 15.1 or 15.2 depending on different tick size
rules. The target is to estimate all parameters in both stochastic processes together
with ρ in (15.1). The estimation method is introduced in next section.

15.3 Estimation Method

Commonly, estimation methods for parametric model are built upon likelihood func-
tion. However, the estimation for model parameters is more difficult and computa-
tionally expensive for Zeng’s model. The main reason is that the intrinsic values
are not observed directly due to the existence of market microstructure noise, which
makes the model a state-space one. Another reason is that the high randomness
of market microstructure noise makes the state-space model nonlinear and non-
Gaussian. Because of these challenges in model estimation, an efficient estimation
method should be developed.

In this section, particle Markov Chain Monte Carlo (PMCMC) method is intro-
duced. As to be shown, this method is suitable for state-space model estimation,
especially for ultra-high frequency data models with complicated noise structures.
For different underlying stock dynamics, only the simulation part of this algorithm
needs revision.

A general review of particle filtering is given by Doucet and Johansen (2011).
Other reviews in a financial and economical setting are given by Creal (2009); Lopes
and Tsay (2011). The following intuitive explanation of particle filtering is based on
Doucet and Johansen (2011).

For adapting PMCMC algorithm in the setting of ultra-high frequency data
models, we first address one notation issue. For particle filtering algorithm (Algo-
rithm 1), in most cases, the input data time series is equally spaced in time. How-
ever, one characteristic of ultra-high frequency data is random trading time interval.
The generalization of particle filtering algorithm for Zeng’ model is straightforward.
The only thing is to alter the time sequence {1 : t} in Algorithm 1 to {t1, t2, . . . , tn},
where n is the length of data, and {ti}n

i=1 is the sequence of trading times, which
is commonly modeled as a Poisson process. Hence in the following introduction of
the algorithms, we do not distinguish t from ti.

15.3.1 Likelihood Calculation via Simulation

First of all, the problem of likelihood value calculation is addressed and serves as an
introduction of notations. As shown in the model building section, our state-space
model consists of two components: one unobserved component, which is intrinsic
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asset value process {St ;t ≥ 1}; one observable component, which is trading price
{Yt ; t ≥ 1}. {St ; t ≥ 1} and is a Markov process, characterized by its initial density
S1 ∼ μθ (·) and transition probability density

St+1 | (St = S)∼ fθ (· | S), (15.7)

where θ is the parameter vector for the model. Since {St; t ≥ 1} is observed indi-
rectly through trading price {Yt ;t ≥ 1}, their common marginal probability density
has the form

Yt | (S1, . . . ,St = S, . . . ,Sm)∼ gθ (· | S). (15.8)

The important issues for a state-space model are filtering and parameter estimation.
The filtering equations for the state-space model can be written as follows:

p(St | Y1:t−1;θ ) =
∫

p(St | St−1;θ )p(St−1 | Y1:t−1;θ )dSt−1, (15.9)

p(St | Y1:t ;θ ) =
p(Yt | St ;θ )p(St | Y1:t−1;θ )

p(Yt | Y1:t−1;θ )
, (15.10)

p(Yt | Y1:t−1;θ ) =
∫

p(Yt | St ;θ )p(St | Y1:t−1;θ )dSt . (15.11)

Equations (15.9)–(15.11) enable us to filter for a given θ and evaluate marginal
likelihood of observation {Y1:t}. The likelihood function is given by

p(Y1:t | θ ) = p(Y1 | θ )
t

∏
k=2

p(Yk | Y1:k−1;θ ). (15.12)

In order to obtain the marginal likelihood function value, {St ; t ≥ 1} should be inte-
grated out from joint likelihood function (likelihood function assuming {St ; t ≥ 1}
is observable):

p(Y1:t | θ ) =
∫

pθ (S1:t ,Y1:t)dS1:t

=

∫

μθ (S1)
t

∏
k=2

fθ (Sk | Sk−1)
t

∏
k=1

gθ (Yk | Sk)dS1:t . (15.13)

When both observation and state transition equations are linear and Gaussian, the
likelihood function can be evaluated analytically by Kalman filtering. However,
since our model is a nonlinear, non-Gaussian, and high dimensional2 state-space
model, integration in (15.13) needs to be calculated numerically via Monte Carlo
method, which means that S1:t needs to be sampled from a suitable distribution
πt(S1:t), and the likelihood value can be calculated by

Eπt (p(Y1:t | θ )) = 1
N

N

∑
i=1

pθ (S1:t ,Y1:t), (15.14)

2 The number of dimensions is equal to the number of data points in high frequency data set.
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where {Si
1:t , i= 1, . . . ,N} are N samples drawn from πt(S1:t). Sampling from πt(S1:t)

links particle filtering (sequential importance sampling) with state-space models and
we first present importance sampling.

15.3.2 Importance Sampling

Consider a sequence of probability distributions πt (t≥1) defined on a sequence of
measurable spaces (Et ,Ft )t≥1, where E1 = E,F1 = F and Et = Et−1 ×E,Ft =
Ft−1 ×F . Each distribution πt(dS1:t) = πt(S1:t)dS1:t is known up to a normalizing
constant Zt , i.e.

πt(S1:t) =
γt(S1:t)

Zt
, (15.15)

Zt =

∫

γt(S1:t)dS1:t , (15.16)

where the only requirement for γt : Et → R+ is that it is known pointwise. The
purpose is to sample N independent random variables, Si

1:t ∼ πt(S1:t) for i= 1, . . . ,N.
In the high frequency data model, S1:t is the path of intrinsic price process until
time t, thus πt(S1:t) is a complex high-dimensional probability distribution. It is
difficult to draw samples directly from such a distribution. A traditional way is to
use importance sampling technique. Importance sampling serves as a fundamental
Monte Carlo method and is also the basis of particle filtering algorithms. It relies on
an importance density qt(S1:t), such that

πt(S1:t)> 0 ⇒ qt(S1:t)> 0. (15.17)

In this case, (15.15) and (15.16) are rewritten as follows:

πt(S1:t) =
wt(S1:t)qt(S1:t)

Zt
, (15.18)

Zt =
∫

wt (S1:t)qt(S1:t)dS1:t , (15.19)

where wt (S1:t) is the unnormalized weight

wt(S1:t) =
γt(S1:t)

qt(S1:t)
, (15.20)

W i
t =

wt(Si
1:t)

N
∑

i=1
wt(Si

1:t)

. (15.21)

Importance density qt(S1:t) is often carefully selected from some special distribu-
tions, from which it is easy to draw samples.
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15.3.3 Sequential Importance Sampling: Particle Filtering

Particle filtering (sequential importance sampling) method chooses a special impor-
tance density

qt(S1:t) = qt−1(S1:t−1)qt(St | S1:t−1) = q1(S1)
t

∏
k=2

qk(Sk | S1:k−1). (15.22)

In the algorithm, Si
1:t is called one particle at time t. To obtain a particle, first S1

should be sampled from π1(S1) and given a weight w1 at time 1. Then based on the
result of time 1, S2 should be sampled from π2(S1:2) and given a weight w2 at time
2 and so on. The associated unnormalized weights can be calculated recursively
according to (15.20):

wt (S1:t) =
γt(S1:t)

qt(S1:t)
=
γt−1(S1:t−1)

qt−1(S1:t−1)

γt(S1:t)

γt−1(S1:t−1)qt(St | S1:t−1)

= wt−1(S1:t−1)αt (S1:t) = w1(S1)
t

∏
k=2

αk(S1:k), (15.23)

where αk is called as incremental importance weight function, which is given by

αk(S1:k) =
γk(S1:k)

γk−1(S1:k−1)qk(Sk | S1:k−1)
. (15.24)

In the high frequency data model, let π(S1:t) = p(S1:t | Y1:t), γ(S1:t) = p(S1:t ,Y1:t),
Zt = p(Y1:t), then the only thing left is to select an importance distribution qt(St |
S1:t−1). In practice, qt(St | St−1) = q(St |Yt ,St−1). Particularly, qt(St | S1:t−1) is cho-
sen as fθ (St | St−1) by Gordon et al. (1993), then αt(S1:t) = gθ (Yt | St) in this case
due to the Markov property of unobserved process St . Other schemes are possible,
for instance, Pitt and Shephard (1999) simulate St from St−1 using information Yt ,
which is the so-called auxiliary particle filtering. The SIR algorithm is simply writ-
ten as Algorithm 1.

Algorithm 1 Particle filtering method for state-space model
At time t = 1

Select q1(S1) = μ(S1), and sample Si
1, i = 1, . . . ,N from q1(S1).

Compute unnormalized weights w1(Si
1) = gθ (Y1 | Si

1) .
Compute normalized weights W i

1 ∝ w1(Si
1) .

Resample {Si
1} via weight {W i

1} to obtain N particles, denoted as {Si
1}.

for iteration t ≥ 2 do
Sample Si

t ∼ fθ (St | Si
t−1).

Compute unnormalized weights wt(St) = gθ (Yt | Si
t) .

Compute normalized weights W i
t ∝ wt(Si

1:t ) .
Resample {Si

t} via weight {W i
t } to obtain N particles, denoted as {Si

t}.
end for
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Algorithm 1 allows us to estimate sequentially the marginal likelihood func-
tion by

p̂θ (Y1:t) = p̂θ (Y1)
T

∏
t=2

p̂θ (Yt | Y1:t−1), (15.25)

where

p̂θ (Yt | Y1:t−1) =
1
N

N

∑
k=1

wt(S1:t)
i. (15.26)

15.3.4 Particle MCMC

In the particle filtering algorithm, when parameter vector θ is fixed, {S1:t}i is sam-
pled from p(S1:t | Y1:t). For parameters estimation in PMCMC method, θ should
also be sampled from certain distribution. PMCMC can be regarded as particle fil-
tering within MCMC, which allows us to sample from joint density p(θ ,S1:t | Y1:t)
in each iteration by an particular MCMC algorithm. In this chapter, Metropolis–
Hastings (M–H) algorithm proposed by Metropolis et al. (1953) is applied. Since
Metropolis–Hastings algorithm is widely used and well known, it is not introduced
in detail. Refer to Bolstad (2010) for some comprehensive introduction.

By standard decomposition, p(θ ,S1:t | Y1:t) = p(θ | Y1:t)pθ (S1:t | Y1:t). Conse-
quently it is natural to use a proposal density for an M–H upgrade in the form of

q̃(θ ′,S′1:t | θ ,S1:t) = q̃(θ ′ | θ )pθ ′(S
′
1:t | Y1:t). (15.27)

The M–H acceptance rate α̃ is given by

α̃ =
p(θ ′,S′1:t | Y1:t)

p(θ ,S1:t | Y1:t)
=

pθ ′(Y1:t)

pθ (Y1:t)

q̃(θ | θ ′)
q̃(θ ′ | θ ) , (15.28)

where pθ (Y1:t) and pθ ′(Y1:t) can be calculated via particle filtering method listed in
Algorithm 1. The whole algorithm is summarized in Algorithm 2.

Algorithm 2 Particle MCMC for state-space model
At time t = 1

Set initial parameters θ0.
Run a particle filtering algorithm, obtaining p̂θ0 (Y1:t ), denote as estimation of
marginal likelihood value.

for iterations i ≥ 1 do
Sample θ ′ ∼ q̃(· | θi−1).
Run a particle filtering algorithm, obtaining p̂θ0 (Y1:t ), denote as estimation of marginal like-
lihood value.
With probability α̃ = min(1,

p(θ ′ ,S′1:t |Y1:t )

p(θ ,S1:t |Y1:t )
=

pθ ′ (Y1:t )

pθ (Y1:t )
q̃(θ |θ ′)
q̃(θ ′ |θ) ),

set θi = θ ′, and p̂θi (Y1:t ) = p̂θ ′ (Y1:t ).
end for
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The estimation approach (Algorithm 2) relies on particle approximations to the
likelihood functions. Under mild regularities on state transition function and the
likelihood function, particle approximations to the likelihood functions of
Algorithm 1 converge to the true values as the number of particles N increases, refer
to Crisan and Doucet (2002) for a summary. Typically, particle filtering will achieve
good accuracy when the number of particles N is equal or larger than the number of
data points. The convergence of particle filtering also depends on properties of re-
sampling methods. Theories for multinomial resampling, residual resampling, and
systematic resampling are established. The extension to branching resampling is
given by Xiong and Zeng (2011). Moreover, in Algorithm 1, the resampling proce-
dure is conducted in every iteration; however, it is not necessary. Douc and Moulines
(2008) and Del Moral et al. (2012) prove the convergence properties for algorithms
in which resampling is conducted at random times, according to coefficient of vari-
ation (CV) and effective sample size (ESS) criterion.

15.4 Simulation and Empirical Studies

In this section, first of all we show that as a Monte Carlo integration for (15.13),
resampling can reduce variance for likelihood value calculation, because the re-
sampling steps eliminate those particles which have lower probabilities to generate
observed values. Then through a simulation experiment, the method is tested and
confirmed to be useful, and related numerical issues are discussed. Finally, the al-
gorithm is applied to real transaction data.

15.4.1 Variance Reduction Effect of Particle Filtering Method

In Algorithm 2, the likelihood value pθ (Y1:t) is also the normalized constant Zt in
(15.15). Then according to Monte Carlo integration theory, pθ (Yt |Y1:t−1) is calcu-
lated at every time t via particle filtering by (15.26).

Generally speaking, the algorithm falls into the Monte Carlo integration frame-
work, directly using Monte Carlo integration method suffers from large variance.
To make it clear, take GBM, for example. In Fig. 15.1, 100 transaction data points
are simulated according to GBM dynamics. Since the variance of GBM increases
with time, the top-left panel of Fig. 15.1 shows that after a short period of time, the
simulated paths will deviate from the true one significantly. To maintain a given de-
gree of accuracy, the number of paths (number of particles) needed may be large and
may increase with time. However, when particle filtering with resampling scheme
is applied, the paths are able to be constrained near the true one. The basic idea
of resampling is to eliminate trajectories which have small normalized importance
weights and to concentrate upon trajectories with larger weights. As resampling fre-
quency increases, the simulated paths get to the true one closer, which improves the
accuracy of estimation for pθ (Y1:t).
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Fig. 15.1 Effects of particle filtering in variance reduction

As Fig. 15.1 shows, compared to ordinary Monte Carlo method, SIR algorithm
can reduce variance significantly.

15.4.2 Simulation Study: GBM Case

To simulate trading price with 1/100 tick size, when underlying intrinsic asset value
movements follow a GBM process, the drift parameter μ for GBM is 4.4e−8 per
second, and the diffusion parameter is 1.2e−4 per second. The parameter ρ for non-
clustering noise is 0.2. Parameter α and η for clustering noise is 0.0093 and 0.0287,
respectively. The trading time is assumed to follow a Poisson process with parameter
0.067, thus for 1 day, there is about 2,000 observations. These values are consistent
with estimation results in the paper of Zeng (2003), therefore, are able to generate
reasonable price dynamics. The 1/100 trading rule is used here. In Sect. 15.4.3, the
performance of PMCMC will be compared under both 1/8 and 1/100 trading rule.
The length of Markov chain for MCMC is 10,000, and the first 2,000 is ignored as
burn-in.

Firstly, PMCMC with SIR particle filtering with 10,000 particles is used. The
plots in the first row of Fig. 15.2 show that the Markov chain moves around the pa-
rameter space very well. The decreasing pattern of the autocorrelations coefficients
of the parameters in the plots in the second row indicates that the mixing properties
of Markov chain is good. Moreover, the third row of Fig. 15.2 gives the posteriors
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Fig. 15.2 Estimation results via SIR

Table 15.3 Estimation of parameters via SIR

ρ μ σ
Mean 0.1778 −5.1434e−7 1.1981e−4
Standard deviation 0.0152 6.3941e−7 3.2527e−6

of the parameters. In Table 15.3, the estimates of ρ and σ are around the true value
with small standard deviations. However, the estimate of μ is less accurate and it
is not surprising because μ is a trend parameter, whose estimation accuracy de-
pends on the range of trading time, whereas the accuracy of estimations for ρ and σ
mainly depends on the number of observations. In a word, the algorithm works for
the model.

However, for some applications in finance, only SIR algorithm may be not
enough. One concern is that although resampling step in the algorithm can reduce
likelihood value variance to certain level, the magnitude may be still too large. Large
variance for likelihood values will reduce accept rate for proposals in MCMC algo-
rithm, making the whole algorithm inefficient. There are several ways to deal with
this problem. One brutal force is to increase the number of particles. This method
will always work theoretically; however, in some cases, when noise to signal ra-
tio is high, the computational burden introduced by more particles will be beyond
practical.

One possible solution is to use auxiliary particle filtering (Pitt and Shephard,
1999). Note that in SIR algorithm, St is blindly simulated from St−1, without using
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Yt , which is known at the time. Briefly, auxiliary particle filtering simulates St from
St−1, considering information from Yt , for detailed illustration, refer to the original
paper. The key idea is to pick up St−1 which can generate St with larger probability
to be consistent with Yt . This algorithm may further reduce variance of likelihood
calculation, as shown by Pitt (2002) and Malik and Pitt (2011) for stochastic vari-
ance model estimation. Johannes et al. (2009) and Christoffersen et al. (2010) use
auxiliary particle filtering for stochastic volatility models, among others.

Another method helpful for this problem, called implicit particle filter, is illus-
trated by Chorin et al. (2012). The key idea of the method is still focusing on the high
probability regions of the target probability density function approximated by parti-
cles. In the algorithm, a transform function F is defined (Eq. (4) in the origin paper),
then finding the high probability particles is equivalent to finding region around the
global minimum of F , which can be done by standard optimization procedure.

Apart from this variance issue, another issue is that the likelihood calculated by
SIR method is not continuous in the unknown parameters. This problem is addressed
in Pitt (2002) and Malik and Pitt (2011). The reason is that if Si

t−1(i = 1, . . . ,N)
drawn from the filtering density p(St−1 | Y1:t−1) slightly change, then the proposal
sample for Si

t(i = 1, . . . ,N) will also change slightly; however, the discrete proba-
bilities associated with these proposals will change as well. The implication is that
even if we use the same random numbers in each time step, the resampled particle
will not be close, then the likelihood function is not continuous with parameters.

This feature may cause problem for numerical optimization procedure based on
gradient, if maximum likelihood method is applied. Moreover, usual optimal ran-
dom walk methods may not perform as well as expected because probability of
acceptance does not tend to 1 as a proposed move becomes more local moves
or even if parameter does not change at all. To address this issue, Pitt (2002)
and Malik and Pitt (2011) propose a continuous approximation resampling method
(CSIR). Generally speaking, the resampling method is a stratified bootstrap method.
Incorporating this method in particle MCMC method may increase accepting rate
and improve mixing property of MCMC chains.

Table 15.4 Estimation of parameters via CSIR

ρ μ σ
Mean 0.1794 −8.004831e−7 1.2014e−4
Standard deviation 0.0161 6.046625e−7 3.603310e−6

Since this continuous resampling is well accepted for financial applications, it
is also used for our model with simulated data as a comparison. The result shows
that CSIR can help reduce the number of particles needed. Table 15.4 and Fig. 15.3
show that CSIR with 2,000 particles can generate similar and reasonable estimation
results for our high frequency data model, in comparison with those calculated by
SIR algorithm with 10,000 particles.
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Fig. 15.3 Estimation results via CSIR

15.4.3 Comparison Algorithm Under Trading Rules with 1/8
and 1/100 Tick Size

In market microstructure literature, the effects of tick size on bid-ask spread, price
discovery and transaction costs are widely discussed. Zeng (2003) proposes a mod-
eling method for microstructure noise based on 1/8 tick size, which can be compared
with 1/100 tick size in the simulation study.

In this section, the same underlying asset price St is simulated, with the same
value of μ , σ , and ρ . Then the trading prices Yt are generated via these two trading
rules with different minimal tick sizes. The parameter estimation results are listed in
Table 15.5. The properties of Markov chains for those parameters are similar with
Fig. 15.3. Note that only the likelihood function needs to be modified for 1/8 tick
size model, which is an advantage of PMCMC algorithm. For detailed numerical
study of 1/8 tick size model via PMCMC method, refer to Zhu (2011).

Table 15.5 Estimation of parameters via SIR for model with 1/8 tick size

ρ μ σ
Mean 0.2012 −5.1434e−7 1.22e−04
Standard deviation 0.0103 3.693e−07 4.915e−06
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One interesting question is whether smaller tick size scheme is better for recov-
ering true underlying process from trading noise.

Table 15.6 Summary of log-likelihood value calculated using Algorithm 1

Mean Standard deviation
1/8 tick size −2,228.48 0.9176
1/100 tick size −3,632.61 2.2457

Particle filtering algorithm with the true parameters is applied and likelihood val-
ues for different tick size model are repeatedly calculated 200 times. The simulated
trading price has 2,000 data points, hence 2,000 particles are used. As Table 15.6
illustrates, the variance of likelihood values under 1/100 is larger, and mean is
smaller.
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Fig. 15.4 Example: Distribution of particles (prices) in 60th step after rounding

The reason lies in Fig. 15.4. The figure shows distribution of particles after round-
ing in 60th out of 2,000 steps in the particle filtering algorithm. The simulated in-
trinsic asset value is 27.9485. The generated observed transaction price is 27.95 and
28.00 according to 1/100 tick size and 1/8 tick size rules, respectively. The round-
ing procedure (discreteness of trading price) in the model tends to eliminate the
diversity of particles. The concentration effect is much stronger under 1/8 trading
rule. In the model with 1/8 tick size, although different particles are generated for
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likelihood calculation, the strong discreteness in trading price will eliminate such
difference and generate similar likelihood values. Therefore, the variance is smaller.
Besides, the strong discreteness will distort the simulated price away from intrinsic
value and more close to trading price. Hence the mean of likelihood is larger. The
simulation shows that 1/8 model should be less sensitive to parameters as long as
they are kept in a reasonable range, and the trading rule will distort the underlying
value a lot. Figure 15.5 confirm this argument by showing filtered intrinsic price
path via true parameters is closer to the true one under 1/100 tick size rule. The total
square error between filtered path and true path is only 0.0765 under 1/100 tick size
rule, compared with 2.9742 under 1/8 tick size rule. The same problem of trading
noise is studied under particle filtering framework by Duan and Fulop (2009). The
authors show that even with daily data, the trading noise is still so significant and
has an innegligible effect on credit risk model estimation.
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Fig. 15.5 True path and filtered paths for different trading rules

However, note that the large variance for likelihood value calculation under 1/100
tick size makes it more difficult to estimate true parameters with MCMC, because
accept rate of proposed parameters will decrease as the variance increase. Therefore,
the variance reduction via resampling for particle filtering and some extensions,
such as continuous approximation resampling method, which are demonstrated in
Sects. 15.4.1 and 15.4.2, are important in practice.

15.4.4 Simulation Study: Jump-Diffusion Case

In studies based on low frequency data, such as daily data, jumps are assumed to
have relatively large jump size and small jump intensity, which is caused by macroe-
conomic information and financial statement of particular companies. When daily
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returns are used, one well-accepted assumption for jump-diffusion process is that
there should be at most one jump in a given day. Therefore, ΔNt = Nt −Nt−1 fol-
lows a Bernoulli distribution. However, there are studies indicating that there could
be some small jumps in 1 day, and these small jumps may give rise to an appear-
ance of infrequent large jumps if one only uses low frequency data such as daily,
weekly, and monthly data. According to empirical study of Duan and Fulop (2007)
concerning jumps in high frequency data, estimations of jump intensity and jump
size depend on sampling frequency. As one increases the sampling frequency from
once every hour to once every 10 min, the estimated mean number of jumps in price
per trading session rises. Since tick-by-tick data are used in the simulation study, it
is reasonable to assume jumps have relatively small size and arrive more frequently.

In this section, for simulation experiment, parameters except for jumps are set to
be the same as Sect. 15.4.2: ρ = 0.2, α = 0.225, η = 0.066, γ = 0.3, μ = 4.4e−8

per second, σ = 1.2e−4 per second. The minimal tick size is 1/8. One day’s data is
generated with three different sets for jump parameters (μJ, σJ, λ ) in seconds:Θ1 =
(4.4e− 5, 1.2e− 5, 0.01), Θ2 = (4.4e− 3, 1.2e− 3, 0.0001) and Θ3 = (4.4e− 3,
1.2e− 3, 0.001). The particle number is 2000, and the length of Markov chain is
45,000. The last 35,000 data is used for analysis.

Table 15.7 Estimation results for jump-diffusion process with different parameter sets

Panel A. Estimation results for parameter setΘ1

ρ μ σ μJ σJ λ
True value 0.200 4.400e−8 1.200e−4 4.400e−5 1.200e−5 0.01
Estimated mean 1.877e−1 3.399e−7 1.160e−4 4.180e−5 1.092e−5 1.084e−2
Estimated error 4.380e−5 2.037e−7 5.925e−6 5.056e−6 2.879e−6 4.633e−3
Panel B. Estimation results for parameter setΘ2

ρ μ σ μJ σJ λ
True value 0.200 4.400e−8 1.200e−4 4.400e−3 1.200e−3 0.0001
Estimated mean 1.937e−1 3.564e−7 1.185e−4 4.324e−3 1.154e−3 1.158e−4
Estimated error 8.484e−3 2.080e−7 6.171e−6 4.842e−4 2.803e−4 4.217e−5
Panel C. Estimation results for parameter setΘ3

ρ μ σ μJ σJ λ
True value 0.200 4.400e−8 1.200e−4 4.400e−3 1.200e−3 0.001
Estimated mean 1.856e−1 3.980e−7 1.192e−4 4.452e−3 1.180e−3 1.103e−3
Estimated error 8.893e−3 2.456e−7 6.284e−6 4.082e−4 2.582e−4 2.251e−4

Table 15.7 lists estimates for different parameter sets.Θ1 means smaller but more
frequent jumps. Θ3 means larger but less frequent jumps. Θ2 denotes the middle
case. Results show that PMCMC method can get reasonable estimates of parame-
ters for jump-diffusion process with all three sets of parameters. Figure 15.6 shows
the similar pattern with Fig. 15.2. The plots in the first row show that the Markov
chain moves around the parameter space well. The decreasing pattern of the auto-
correlations coefficients of the parameters in the plots in the second row indicates
that the mixing properties of Markov chain is good. Moreover, the third row gives
the posteriors of the parameters. All the estimates except for μ are around the true
value with small standard deviations.
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Fig. 15.6 Estimation results for jump-diffusion process via SIR
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15.4.5 Real Data Application

This section applies the mode and the algorithm to a real data set. The data set
consists of all transaction price of MSFT (MicroSoft) from NYSE, NASDAQ, and
AMEX on January 3, 2011. The dynamics of intraday price is very different from
daily price dynamics which we are familiar with. As is shown in Fig. 15.7, the price
discreteness is obvious: the path is not so “smooth” as daily price dynamics, and the
jump size is in unit of minimal tick size, which is 0.01.
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Fig. 15.7 Intraday trading price: MSFT, January, 03, 2011

For parameter estimation, all 12,093 observations are used, and particle number
is 13,000. The underlying asset value dynamics is assumed to follow a GBM. CSIR
algorithm is used to estimate model parameters from real data, for CSIR is shown to
be more efficient than SIR method. The estimation results are reasonable, shown in
Table 15.8. The accept rate of MCMC proposal is around 30%. Figure 15.8 demon-
strates similar patterns for estimates, autocorrelation coefficients and posteriors with
those in simulation studies.

Table 15.8 Estimation of parameters via CSIR

ρ μ σ
Mean 0.0678 −2.5551e−07 7.9339e−05
Standard deviation 0.0034 5.4830e−07 1.2250e−06
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Fig. 15.8 Real data estimation via CSIR: MSFT, January, 03, 2011

15.5 Conclusion

One important issue in ultra-high frequency data study is how to model microstruc-
ture noise. Although summarizing all kinds of noise in a Gaussian random variable
will make the estimation procedure much easier, this method will neglect many
stylized facts from trading process. Zeng (2003) model is able to capture various
kinds of noise into three categories, which are related to price discreteness, price
clustering, and non-clustering noise. When considering noise explicitly, the model
is a state-space model, making it difficult to estimate parameters using likelihood-
based methods. To address this issue, particle Markov Chain Monte Carlo algorithm
is applied to estimate the model. Moreover, methods that can enhance efficiency
of this algorithm are discussed through numerical studies, such as the continuous
approximation resampling method (CSIR) proposed by Pitt (2002) and Malik and
Pitt (2011). Results show that PMCMC method generates reasonable estimates for
model parameters when the underlying asset value follows GBM or jump-diffusion
process. It is interesting to further extend PMCMC method for more complicated
underlying dynamics, for instance, stochastic volatility models with leverage effect.
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nonparametric bootstrap procedure, 151

optimal annuity-purchasing strategies, 207
optimal dividend payment policies, 214
optimal importance function filters, 75
optimal investment capacity adjustment, 228
optimal timing of investment, 228
ordered probit model, 279

particle learning, 8, 23
particle MCMC, 9, 331
PF: particle filter, 3, 23, 64
PIDE: partial integro-differential equation, 260
PIH: permanent income hypothesis, 93
portfolio credit risk, 170
practical filter, 23
private signal, 281
probability of lifetime ruin, 209
public information, 281

quadratic approximation, 71
quadratic hedging, 271
quasi-maximum likelihood method, 186
QVI: quasi-variational inequality, 206, 227
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random maps, 72
RB-RI model, 96
RB-SU model, 103
RB: robustness, 91, 94
RE: rational expectation, 93
realized volatility, 311
reduced-form intensity-based approach, 169
reference measure, 289
reference probability measure, 173
regime-switching jump diffusion, 215
regime-switching models, 186
regression trees, 186
reservation price, 281
residual Bernoulli resampling, 6
residual resampling, 332
reward function, 230
RI: rational inattention, 92, 95
risk neutral measure, 261
risk-minimization, 271
risk-neutral measure, 188, 252
RMSE: root mean square error, 198
robust control problem, 94
robust decision-maker’s problem, 94
RS: risk sensitivity, 107

SDE: stochastic differential equation, 69
self-financed trading strategy, 263
semimartingale, 171, 271
sequential sufficient statistics, 23
short-term interest rate models, 185
single jump process, 171
SIR: sampling importance resampling, 26, 64,
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SIS: sequential importance sampling, 330
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SKS equation: stochastic Kuramoto-

Sivashinsky equation, 81
SMC: sequential Monte Carlo, 23, 64
smooth transition tree model, 186
sparse observation, 68
spatially smooth noise, 69
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SPDE: stochastic partial differential equation,
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SS: sufficient statistics, 30
state substitution, 10
state-space model for decomposing stock

prices, 154
stochastic Lorenz attractor, 78

stochastic volatility approximation to
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stochastic volatility models, 311
stochastic volatility with contemporaneous

jumps, 17
stopping time, totally inaccessible, (or an

unpredictable), 171
Storvik’s filter, 8, 31
structural firm value approach, 169
SU: state uncertainty, 91, 95, 101
SV model: stochastic volatility model, 24, 78
systematic resampling, 332

term structure of interest rates, 186
the unnormalized filter, 175
time-varying parameter VAR with stochastic

volatility, 135
time-varying parameter VAR with time-

invariant volatility, 134
top-down model, 170
trading times, 324
trend following trading, 228
trend-cycle UC models, 113
truncated cylindrical Brownian motion, 81
TSH: tax-smoothing hypothesis, 93

UC model: unobserved component model,
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ultra-high frequency data, 327
uninformed traders, 281
unit-root test (adapted), 186

value function, 230
VAR variance decomposition, 151
VAR with stochastic volatility, 134
variance reduction, 332
variational data assimilation methods, 64, 76
viscosity solution, 209, 242, 243
viscosity subsolution, 243
viscosity supersolution, 243

weak identification, 160
WHMM: weak hidden Markov model, 187,
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WMC: weak Markov chain, 187, 189

Zakai equation, 173, 292
Zeng model, 322, 323
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ZILC: zero-information-limit-condition, 160
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