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Preface

We wrote this book for readers who wish to acquire a basic understanding of statisti-
cal analysis and the various functions that statistics perform in clinical research. Our 
intended audience includes practitioners of evidence-based medicine, practitioners-
in-training, students working on research projects under the supervision of their 
faculty, and clinicians collaborating with professional researchers. Members of this 
audience are, of course, highly accomplished, but they are often short on time and 
sometimes uncertain of their mathematical skills. Consequently, our goal was to 
provide a representative and accessible cross-section of statistical techniques while 
respecting the readers’ intelligence and avoiding being simplistic.

To instantiate many of the statistical concepts we discuss, we include output gen-
erated by IBM® SPSS® statistics software, and explain how to interpret it. SPSS is 
frequently used in clinical research, so for readers who want hands-on experience 
in analyzing data with it, we give an overview of SPSS in Chap. 2 ( Introduction to 
SPSS), and in each chapter thereafter, we explain how to use SPSS to conduct the 
analyses of that chapter on data sets taken from actual studies. SPSS is updated pe-
riodically, each update identified by a version number. The book is based on version 
22, but most of our instructions should apply to other versions as well. Permission 
to use reprinted SPSS dialogs and output is courtesy of International Business Ma-
chines Corporation, © International Business Machines Corporation. SPSS Inc. was 
acquired by IBM in October 2009. IBM, the IBM logo, ibm.com, and SPSS are trade-
marks or registered trademarks of International Business Machines Corporation.

To allow readers to test their understanding of the material on the fly, we quiz 
them throughout each chapter. With the exception of Chap. 2, readers should be able 
to respond without having access to SPSS. So that readers can further test themselves, 
we conclude each chapter with a set of exercise questions. To meet the needs of read-
ers wishing to learn SPSS, most exercises from Chaps. 2–17 require access to SPSS.

We obtained most of the data sets from either published primary or secondary 
sources. A handful of data sets are from unpublished master’s projects conducted 
by physician assistant students under the supervision of one of the author’s of this 
book (WHH). The sources of the data sets of a given chapter are listed at the end of 
the chapter. The data sets themselves can be found at http://www.springer.com/978-
3-319-12549-7, as can the answers to the in-chapter questions and end-of-chapter 

http://www.springer.com/978-3-319-12549-7
http://www.springer.com/978-3-319-12549-7
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exercises. On the assumption that course instructors might wish to assign the end-
of-chapter exercises as homework, their solutions are available only to instructors 
on the Springer page for the book (http://www.springer.com/978-3-319-12549-7).

We would like to thank the publishing houses and researchers who granted us 
permission to use their data, and IBM for permission to use screenshots of SPSS 
dialogs and output. We also thank Marc Strauss, Editorial Director, Mathematics 
Department, and Hannah Bracken, Associate Editor, Springer Science + Business 
Media, for their advice and encouragement. Earlier drafts of the book were re-
viewed by the faculty and students of the Department of Physician Assistant Studies 
of Le Moyne College. We are grateful for their feedback and support. Finally, WHH 
would like to thank his wife, Joan Dalton for her endless patience and unflagging 
support.

� William H. Holmes, PhD
� Le Moyne College
� Syracuse, NY

� William C. Rinaman, PhD
� Pinehurst, NC

http://www.springer.com/978-3-319-12549-7
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Abstract  This chapter summarizes the various functions of statistics in clinical 
research, reviews study designs that guide how data are typically collected and ana-
lyzed, and provides examples of statistical procedures frequently used in clinical 
studies. The designs include the case study, case-control study, the survey, pro-
spective and retrospective cohort studies, parallel group and crossover trials, and 
systematic reviews and meta-analyses. The ability of each design to draw confident 
causal conclusions is also discussed. The chapter concludes with an overview of the 
content of the book.

1.1 � Functions of Statistics

The practice of medicine is continuously informed by clinical research into health 
and disease. The research is empirical, generated by observational procedures that 
are grounded in physical reality and which can be clearly communicated to and 
repeated by anyone with sufficient training and ability. Often these observations 
or data are numerical and are of various chemical and biological processes related 
to health and disease. It goes without saying that in order to grasp the findings of 
clinical studies, medical practitioners need to be literate in chemistry and biology. 
But clinical research documents probabilities, tendencies or what is true on aver-
age. It determines, for example, whether people who have been exposed to a sus-
pected carcinogen are more likely to contract cancer, not about whether exposure 
to the carcinogen always leads to cancer, or whether on average a particular cancer 
treatment helps patients, not whether the treatment always works or works equally 
well for all patients. Because of the probabilistic nature of clinical data, researchers 
must use statistical analysis to uncover patterns within those data. Consequently, 
to understand clinical studies, practitioners need to have a working knowledge of 
statistics as well.

An analysis of a set of data can involve the use of a wide range of statistics that 
perform a variety of functions. Usually, investigators begin an analysis by sum-
marizing their observations with descriptive statistics. Descriptive statistics include 
percentages, means and standard deviations, among many others. Researchers also 
use various graphical techniques such as bar charts and histograms. Investigators 
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then use measures of association to determine whether two variables are related and 
if so, how strongly, and in what direction. Examples include the odds ratio ( OR), 
relative risk, the hazard ratio, and the rate ratio. Other measures of association in-
clude Cramér’s V and gamma, the Pearson correlation coefficient, Spearman’s Rho 
coefficient, and the difference between the means of two or more groups.

In addition to summarizing observations and documenting associations between 
variables, investigators use certain statistical procedures to assess the degree of re-
lationship between two variables after controlling for the presence of a third vari-
able with which the two variables are related. This statistical control of potential 
confounding variables is often achieved through some form of regression analysis. 
Researchers also use regression for the purpose of prediction or estimation, that is, 
to predict or estimate health-related outcomes of patients with various characteris-
tics. For example, a regression analysis might be used to estimate the mortality rate 
of cardiac patients of a given gender, age, and health history.

In most clinical studies, participants constitute a sample that is drawn from a 
larger population. Due to a phenomenon known as random sampling variability, 
researchers use inferential statistics to help them decide whether their sample re-
sults should be attributed to chance or can be used to make inferences about the 
populations from which they drew their participants. Inferential statistics make use 
of various test statistics that generate confidence intervals and p-values that help 
researchers make this decision.

1.2 � Common Study Designs in Clinical Medicine

At the level of procedural detail, research studies can be very different from one 
another. In fact, it is safe to say that no two studies are exactly the same in terms of 
their specifics. However, at a global level, many clinical studies can be classified in 
terms of a relatively small number of study designs. These designs serve as a kind 
of blueprint that researchers follow as they collect their data. For example, a study 
design stipulates whether the investigator will observe the impact of a factor by sys-

Identify each of the following as an example of a descriptive statistic, a mea-
sure of association, an inferential statistic, statistical control or prediction.
1.1.1 � The probability of recurrence of breast cancer over the next 10 years 

for a postmenopausal woman who does not smoke
1.1.2 � The proportion of a sample of Americans who are prehypertensive
1.1.3 � A 95 % confidence interval for the proportion of Americans who are 

prehypertensive
1.1.4 � The correlation between the body mass index (BMI) of anorexics and 

their preferred BMI
1.1.5 � Using regression to take into account gender in a study of the relation-

ship between forced expiratory volume and age in a sample of children
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tematically exposing volunteers to it or by observing patients who during the course 
of their lives had already been exposed, whether patients are to be observed on a 
single occasion or followed over a period of time, and whether follow-up data are 
to be obtained directly from patients until the study ends at some point in the future, 
or extracted from preexisting medical records that extend from the present to some 
point in the past. Because study designs guide how data are to be collected, they 
influence how the data are to be analyzed. An analysis that would be appropriate for 
one study design might not work for another. Consequently, in this section, we shall 
review some of the more common designs in clinical research, and give examples 
of the statistical analyses that are associated with them.

Although clinical research tries to pin down the causes of disease, researchers 
often use study designs that fall short of generating strong evidence of causality. 
This is because practical and ethical limitations can prevent researchers from us-
ing designs that convincingly establish the conditions for demonstrating causality. 
One of these conditions is covariation. To show that one variable causes another, 
researchers must first show that the two variables covary, that is, that they are cor-
related with one another. For example, if a researcher believes that lack of exercise 
is a cause of overweight, then he or she must show that people who do not exercise 
tend to be heavier than people who do, other things being equal. This is not to say 
that the researcher will not find thin people who do not exercise or that there are 
not any overweight people who work out. Weight is a result of many causes after 
all. But if lack of exercise is to be considered one of them, then the researcher will 
have to show that the likelihood of being overweight is greater for people who do 
not exercise regularly.

Causes not only covary with their effects, but they also come before their effects. 
So a second condition researchers must demonstrate is the correct time order be-
tween the two variables. Researchers must show that the hypothesized causal vari-
able precedes in time its hypothesized effect. For example, to show only that lack of 
exercise and BMI are correlated would not reveal the direction of causality between 
exercise and weight. We would be left wondering whether people who do not exer-
cise become heavy, or whether people do not exercise because they are heavy.

Sometimes a researcher will find that a factor covaries with a health-related out-
come when in fact the factor has no impact on patients. This can happen because of 
random sampling variability or because of confounding. In the former instance, the 
association between the factor and the medical outcome is a chance coincidence. In 
the latter instance, the association is genuine but is due to the factor’s correlation 
with a causal variable, not because it is itself a cause. For example, if a researcher 
were to find that lack of exercise and BMI are correlated, we might wonder if the 
observed relationship was just a fluke. If we were to be persuaded that chance was 
not responsible, then we might wonder if people who do not exercise are over-
weight not because they are sedentary but because they have poor eating habits. 
Consequently, before researchers can point to the correlation between the factor and 
the medical outcome as strong evidence of a causal relationship between the two, 
they must rule out both random sampling variability and confounding as plausible 
alternative explanations of that relationship.
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Study designs vary in their ability to establish covariation and the correct time or-
der, and to rule out random sampling variability and confounding as alternative 
explanations. As a result, study designs not only influence the choice of statistical 
analysis, but they also affect the confidence that can be placed in any causal conclu-
sions drawn from that analysis. As we review some of the most common designs, 
we shall see why this is so.

Case Reports and Case Series  In a case report, the investigator details the expe-
rience of a single patient (called a case). In a case series, the investigator reports 
the experiences of several individual patients. These designs are frequently used to 
document highly unusual medical conditions. For example, Newsom-Davis et al. 
[1] presented the case of an 82-year-old woman who had been referred because she 
had experienced postmenopausal bleeding during the past month. She died about 18 
months later from postoperative complications. In the report, the authors discuss the 
challenges of diagnosing and treating uterine teratoma, a rare tumor.

Case reports and case series are also used to get a sense of the effectiveness 
of new interventions. For example, de Paleville et al. [2] noticed that the benefits 
of aerobic exercise on breast cancer patients undergoing chemotherapy had been 
studied only when exercise had been introduced during therapy. Curious about the 
effects of exercise if it were begun prior to chemotherapy, they documented the fa-
tigue and functional abilities of a breast cancer patient who was about to participate 
in a supervised home-based walking program 1 week prior to as well as throughout 
an 8-week course of chemotherapy. The investigators found that at the end of the 
9-week period, the patient experienced less fatigue and improved functional abili-
ties, suggested that these outcomes were due to her having begun her exercise pro-
gram before chemotherapy was initiated, and recommended that further research on 
“prehabilitation” should be conducted.

Case reports and case series struggle to establish the three conditions of causal-
ity that must be met in order to establish a causal conclusion. Consequently, they 
are used to document cases rather than to demonstrate causality. For example, it 
is often impossible to evaluate the effectiveness of a new treatment with a case 
report because the report did not establish covariation. Notice that the case report 
reported by de Paleville et al. did not include a patient who did not participate in the 
prechemotherapy exercise regimen. Consequently, the investigators could not show 
that variation in the supposed causal factor (being or not being prehabilitated) was 
associated with variation in the supposed effect (having higher or lower levels of 
energy or functional ability).

1.2.1 � List three conditions that must be established in clinical research in 
order to demonstrate cause and effect.

1.2.2 � Which of these three conditions cannot be established when con-
founding is present?



51.2 � Common Study Designs in Clinical Medicine�

Even if a case report had included a patient who had not been given the treat-
ment and even if this patient had shown less improvement than the patient who had 
been treated, we would not be able to rule out plausible alternative explanations for 
why the treated patient showed more improvement than the untreated one. Recall 
that one possibility could be random sampling variability. The apparent effect of the 
treatment could have been due not to the treatment but to one or more factors that 
were present by chance at the time the treatment was administered. For example, 
most if not all measurement in clinical research is influenced at least to some extent 
by random factors. A blood pressure reading, a laboratory test result or a patient’s 
self-report are all likely to be affected by factors that occur by chance at the time the 
blood pressure reading is taken, the lab test conducted, or the self-report given. This 
random measurement error is one source of random variability. A problem with a 
case report is that it is difficult to determine to what extent the patient’s observed 
improvement was genuine, that is, due to the treatment, and to what extent it was 
due to random factors such as measurement error. Combining several cases into a 
case series can be helpful in this regard, since if the effect of the treatment is genu-
ine, it should help other patients as well, but the resulting number of cases in a case 
series is usually too small to allow researchers to confidently rule out the possibility 
that chance was the sole cause of the observed change in the patients’ condition.

Another possible explanation for improvement observed in a treated patient is 
that the improvement was not due to chance but to confounding, that is, to a factor 
that is reliably associated with the treatment and with the medical outcome under 
investigation. A factor that is consistently associated with both the treatment and 
the outcome is referred to as a confounding factor or a confounder. To convincingly 
show that a treatment is effective, a researcher must demonstrate that although there 
may have been random factors at work in the study, there were no systematic differ-
ences between the patient who was treated and the one who was not other than the 
treatment itself. There are techniques that researchers can use to take into account 
or control confounding factors, but to be effective they require a large number of 
patients.

Despite their shortcomings as evidence of causality, information reported in a 
case report or a case series can alert practitioners to diagnoses and treatments that 
they might not have otherwise considered. Moreover, a case report or series can lead 
to additional research that uses study designs better suited to establishing causal 
connections. One such design is the case-control study.

Case-Control Studies  Case-control studies compare people (called cases) who 
already have a specific condition or disease with people (called controls) who do 
not. The logic of this type of study is to work backward from the disease to identify 

Is each of the following statements true or false?
1.2.3  In general, case reports can provide strong evidence of covariation.
1.2.4  Case reports have little or no role to play in clinical research.
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a factor that distinguishes between the two groups. The factor might be a demo-
graphic, physical or psychological characteristic, or a life experience of some kind. 
Case-control studies often rely on preexisting records such as medical charts or on 
participant self-report to identify these factors. Rarely if ever does the identified 
factor perfectly distinguish between cases and controls. Although none of the con-
trols will have the illness, it is likely that some will have been exposed to the fac-
tor, and while all of the cases suffer from the disease, it is likely that some will not 
have been exposed to the factor. So case-control studies compare the likelihood that 
those who have been exposed to the factor have the disease to the likelihood that 
those who have not been exposed have the disease. These likelihoods are expressed 
in terms of odds. A risk factor is associated with an increase in the likelihood or 
odds of disease, while a protective factor is associated with a decrease in odds. The 
extent to which a factor increases or decreases the odds of disease is calculated by 
dividing the odds of the exposed group by the odds of the unexposed group. The 
result is called an odds ratio (OR). A risk factor generates an OR greater than 1.0; 
a protective factor generates an OR less than 1.0. An OR equal to 1.0 indicates that 
the factor has no impact on disease.

As an example of research on a protective factor, consider a study conducted by 
Kim et al. [3] in Korea. They asked 358 breast cancer patients and 360 women with 
no known history of malignant neoplasm to complete a food intake frequency ques-
tionnaire. The investigators found that the odds of having breast cancer were lower 
for women who reported that they consumed relatively large amounts of fish high 
in omega-3 fatty acid. In fact, dividing the odds of having breast cancer for women 
whose diets were greatest in omega-3 fatty acid by the odds for women whose diets 
were lowest in omega-3 generated an OR of 0.47. This means that diets highest in 
fatty acid were associated with odds of breast cancer that were less than half the 
odds of diets lowest in omega-3. The investigators concluded that a diet high in fatty 
fish is a protective factor for breast cancer.

The exact value of a statistic obtained in any given study is subject to random 
sampling variability. If the study were to be repeated many times, we would not 
obtain the exact same value each time. Instead, we would see a range of values. 
Consequently, researchers often report an estimate of that range known as the 95 % 
confidence interval (95 % CI). If the sample statistic is an OR, and if the interval 
does not include the value of 1.0, then random factors can be confidently ruled out 
as an explanation for the finding. For example, in the Kim et al. study, the OR of 
0.47 has a 95 % CI that ranges from 0.27 to 0.80. This range does not include 1.0, 
so we can be confident that the observed difference in odds of contracting breast 
cancer between the people in the study who consumed a lot of omega-3 acid and 
those in the study who consumed very little of it was not due just to random sam-
pling variability.

Case-control studies have at least three advantages over case reports and case se-
ries. First, by including a group of patients that are free of disease, that is, by includ-
ing the controls, case-control studies can demonstrate covariation. For example, in 
the study of diet and breast cancer conducted by Kim et al., the point was not that 
the cases did not eat fatty fish. The point was that the cases ate less fatty fish than 
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did the controls. By including the controls in their study, they were able to show 
covariation between fish consumption and breast cancer.

The second and third advantages have to do with the fact that the number of cases 
and controls observed in a case-control study is usually large. Collecting observa-
tions from a large sample of cases and controls helps to compensate for the random 
measurement error associated with each observation, and so allows researchers to 
have more confidence in their findings. For example, Kim et al. based their conclu-
sions on their assessment of the dietary habits of over 700 patients. In contrast, de 
Paleville et al. based their conclusions on a single case. In addition, using a large 
sample allows researchers to employ inferential statistics. These procedures help re-
searchers to decide whether covariation was due solely to chance or to a systematic 
difference between their cases and controls. One way they do this is by generating 
95 % CIs. For instance, by generating a 95 % CI, Kim et al. were able to conclude 
that that the covariation they observed between levels of fish consumption and the 
odds of having breast cancer was not due solely to random factors.

Although case-control studies can demonstrate covariation between exposure to 
a risk or protective factor on the one hand and the odds of having a disease on the 
other, exposure may be associated or confounded with one or more other factors. 
Consequently, researchers assess the degree of relationship between the factor and 
the disease after they have first controlled for confounders. Several methods exist 
for controlling confounding. For example, Kim et al. collected information about 
each patient’s age, BMI, breast cancer family history, smoking status, physical ac-
tivity, and many other factors that might have something to do with the etiology 
of breast cancer and be correlated with dietary habits. Then using a statistical pro-
cedure known as logistic regression to take these confounders into account, they 
found that the odds of having breast cancer were lower for women whose diet was 
high in fatty fish.

Other methods for controlling confounding are stratification and matching. 
Stratification refers to the procedure of first computing the OR at each value of a 
confounder. For each comparison, the confounder is held constant, so any differ-
ence between the cases and controls in their odds of having been exposed to the 
factor under investigation cannot be due to the confounding variable. Then the ORs 
across the levels of the confounder are combined to give a representative estimate of 
the size of the difference in odds between cases and controls when the confounder 
has been held constant. Matching involves recruiting controls that are similar to the 
cases in terms of a subset of confounders. When matching is used in a case-control 
study, the research design is called a matched case-control study. Often in matched 
case-control studies, logistic regression is used to control for additional confound-
ers, in which case the regression is called conditional logistic regression.

A study by Rajaraman et al. [4] is an example of all three of these methods of 
controlling confounding. These researchers investigated whether exposure to diag-
nostic radiation in utero or in early infancy or to ultrasound scans in early infancy 
is associated with childhood cancer. Cases were 2656 children 14 years of age or 
younger living in the UK who had been diagnosed between 1992 and 1996 as hav-
ing leukemia, lymphoma, or a tumor of the central nervous system. The investiga-
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tors wished to control for each child’s sex, age, birth weight, mother’s age, the 
geographical region in which the child lived, and whether the child’s cancer was di-
agnosed before or after the age of five. To control these six confounders, the inves-
tigators first identified a control who was of the same sex, had within 1 month the 
same date of birth, and came from the same geographical area as the case to which 
he or she was to be matched. Obtaining data from medical records, the investigators 
then compared the extent to which each case and his or her matched control had 
been exposed to radiation or ultrasound scans in utero or up to 100 days following 
birth. They made these comparisons while using conditional logistic regression to 
control for the mother’s age and the child’s birth weight, and stratified the analysis 
by the age at which the child’s cancer was diagnosed. In general, the investigators 
found a “slight” increase in risk associated with exposure to X-rays in utero or 
in early infancy, but the increases could have been due to random variability. For 
example, across all cancers, the OR was 1.14, but the 95 % CI ranged from 0.90 to 
1.45. No adverse effects associated with ultrasounds were found.

Although case-control studies are an improvement over case reports, they have 
their weaknesses. Medical charts may not always be accurate, complete or even 
available, and patient self-reports can be unreliable. These problems can make it 
difficult to identify a risk or protective factor, to be certain that the cases were 
exposed to the factor more often than the controls or to be sure that the exposure 
occurred before the onset of the disease. Our next study design addresses these 
problems. In addition, in a case-control study, only confounding factors that are 
known to exist and which are measured can be controlled. This leaves open the pos-
sibility of residual confounding. For example, say that Rajaraman et al. had found 
an association between exposure to X-rays and lymphoma. This association would 
not appear to be explainable in terms of the six confounders that the investigators 
controlled. However, controlling six confounders does not guarantee that all con-
founders had been taken into account, so while we could have been confident that 
lymphoma is associated with X-ray exposure, and that this association is probably 
not due, for example, to the age at which the diagnosis was made, we would have to 
be cautious about concluding that X-ray exposure causes lymphoma.

Cohort Studies  In a cohort study, a group (called a cohort) of people who have 
not yet experienced the outcome of interest is observed over time. Whether or not 
the outcome is experienced by each member of the cohort during the lifetime of 
the study is recorded, and differences between those who experience the outcome 

1.2.5 � A regression analysis is one method of controlling confounding in a 
case-control study. Name two others.

1.2.6 � Although researchers can use a number of techniques to control con-
founding in a case-control study, some confounders may be over-
looked. This produces __________________ confounding.
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and those who do not are identified. Often two or more cohorts are studied and the 
outcome of interest is whether one cohort is more likely to experience some event 
than another. For example, two cohorts known to vary in their degree of exposure 
to a suspected risk or protective factor might be followed to determine whether they 
differ in their incidences of disease or death. The extent to which exposure affects 
the probability of disease onset or of death is assessed after confounders have been 
taken into account, and inferential statistical tests are used to see if random sam-
pling variability can be ruled out as an explanation of the findings. Often the prob-
ability of disease or death of the exposed group is compared to the probability of 
disease or death of the unexposed group by taking the ratio of the former to the 
latter. This ratio is called relative risk, hazard ratio, or rate ratio. Risk factors are 
associated with relative risks, hazard ratios, and rate ratios that are greater than 1.0, 
protective factors less than 1.0.

An example of a cohort study of a risk factor for death can be seen in the work 
of Sakata et al. [5] who examined the relationship between cigarette smoking and 
mortality due to all causes among nearly 68,000 Japanese men and women born be-
fore August 1945. The cohort was followed for an average of about 23 years. Using 
Poisson regression, Sakata et al. compared the death rates of current smokers and of 
former smokers to never smokers for people who were born before 1920 and again 
for people born between 1920 and 1945. Table 1.1 displays the death rate ratios for 
current smokers born between 1920 and 1945 as a function of the age at which they 
began smoking. Each ratio compares the death rate of current smokers to the death 
rate of respondents who never smoked. We can see from the table that the death 
rate for current smokers who started smoking before the age of 20 was more than 
twice the death rate of people who never smoked (rate ratio of 2.21 for men, 2.61 
for women). We can also see that the death rate ratio was lowest for current smokers 
who did not start to smoke until they were at least in their thirties. However, even 
for these late starters, the death rate was still higher than for life-long nonsmokers 
(rate ratio of 1.48 for men, 1.40 for women).

As with case-control studies, cohort studies can show covariation between ex-
posure to a risk or protective factor on the one hand and the presence or absence of 
disease or death on the other. However, by obtaining data from participants at the 
beginning of the study and again periodically over time, cohort studies are better 
at verifying that the factor preceded the outcome, and at tracking any changes that 
might have occurred in health status and exposure to the factor and to confounders. 
But, as in all research designs, cohort studies have disadvantages. For example, 
because they often take many years to complete, they can be expensive to conduct, 

Age started 
smoking

Men Women

 < 20 2.21 (1.97−2.48) 2.61 (1.98−3.44)
20–29 1.71 (1.53–1.91) 2.01 (1.79−2.25)
≥ 30 1.48 (1.07−2.05) 1.40 (1.22–1.62)

Table 1.1   Death rate ratios 
(95 % CI) by age started 
smoking for men and women 
current versus never Japanese 
smokers born between 1920 
and 1945. (Adapted from 
BMJ Publishing Group 
Limited [5])
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and tracking and retaining patients can be difficult. Moreover, although cohort stud-
ies can employ techniques such as matching, stratification and regression to control 
confounders, they are subject to the problem of residual confounding.

Randomized Controlled Trials  A scientific experiment intended to assess the effi-
cacy of an intervention is called a randomized controlled trial (RCT). In this study 
design, at least one group of people is exposed to an intervention and one is not. 
The effects of the intervention are then assessed. Sometimes the intervention is a 
treatment or therapy that is intended to restore health or at least control or slow the 
progression of disease. Other times the intervention is intended to maintain health 
or to prevent disease or some other adverse event. In either case, the safety of the 
intervention is often also assessed.

Not unlike a cohort study, an RCT establishes the correct time order by follow-
ing participants over time after they have been exposed to the intervention and 
covariation by comparing the outcomes experienced by those were exposed to the 
intervention to the outcomes experienced by those who were not. However, an RCT 
has several advantages over a cohort study. One is that an RCT can give investiga-
tors more precise control over the administration of the intervention and the mea-
surement of the outcomes so that both are more uniform across participants. This 
reduces random sampling variability which in turn makes it easier to rule out chance 
as an explanation of the results. Another is that investigators can have more control 
over inclusion and exclusion eligibility criteria by which participants are chosen 
for study. This allows investigators to reduce chance differences across participants 
in their demographic or other physical or psychological characteristics, which can 
also decrease random sampling variability. If the intervention is a drug therapy, the 
patients and the investigators can be blinded or masked, that is, kept unaware of 
whether the patient is receiving the drug under investigation or a standard treatment 
or placebo. But perhaps the single most important advantage of an RCT is that it 
uses randomization to control confounding.

There are two basic types of randomization procedures that are used in an RCT. 
The type depends on whether the participants in the group exposed to the interven-
tion are the same or different from the participants in the group that is not exposed. 
In a parallel group trial, two or more different groups or arms are used. Random-
ization takes the form of random assignment of each participant to one of the arms. 
When random assignment is used, investigators let chance decide to which group a 
participant will be assigned. For example, if a treatment is to be compared against a 

True or false?
1.2.7 � In a cohort study, a protective factor will have a relative risk greater 

than 1.
1.2.8 � In order for a researcher to conclude that a factor is a risk to health, the 

95 % confidence interval of the hazard ratio must include the value 
of 1.
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placebo, the investigator would, in effect, flip a coin to decide whether a participant 
will be given the treatment or the placebo. By randomly assigning participants to 
groups, investigators can be highly confident that the arms on average will be simi-
lar with respect to all potential confounders that are related to participant character-
istics such as age, health status, race, eating and exercise habits, and so on. Random 
assignment is a powerful tool for controlling confounders associated with partici-
pant characteristics. It controls confounders without needing to measure them, and 
more importantly, controls confounders of which investigators might be unaware.

An example of a parallel group design is an Australian study conducted by Clem-
son et al. [6] of the impact of exercise on the rate of falls among the elderly living 
at home. A total of 317 men and women aged 70 or older who within the past 12 
months had experienced either at least two falls or one injurious fall were randomly 
assigned to one of three arms. One group of participants was asked to perform vari-
ous physical movements that increase strength and balance but which can be easily 
integrated into daily activities. For example, participants were encouraged to bend 
from the knees instead of from the waist when picking up objects. A second group 
was asked to engage in a structured program of balance and strength exercises three 
times per week. The third arm served as the control group; these participants were 
asked to engage in 12 “gentle and flexibility exercises.” The number of falls and 
other adverse events reported by each participant was recorded for up to 1 year, or 
until the participant left the study or died. In addition, various measures of balance 
and strength were taken at the beginning of the study to establish baselines, and 
again at 6- and 12-month follow-up. Using negative binomial regression, Clemson 
et al. compared the fall rates of the integrated and structured exercise groups to the 
fall rate of the control group, and found that the rate ratio for the integrated program 
group was 0.69, with a 95 % CI of 0.48 to 0.99, while the rate ratio for the structured 
program group was 0.81 (95 % CI, 0.56–1.17). Using analysis of variance and pair-
wise comparisons, Clemson et al. then compared the average balance and strength 
scores of the three arms from baseline to 12-month follow-up, and found on several 
measures that the integrated exercise group experienced greater increases in balance 
and strength compared either to the structured program or to the control group, in-
creases that were unlikely to be due to random variability alone. Regarding adverse 
events other than falls, one participant in the integrated program arm experienced a 
pelvic stress fracture but continued to participate, while one participant in the struc-
tured program arm experienced a groin strain and withdrew from the study. The 
investigators concluded that a program of physical activities designed to increase 
balance and strength can substantially reduce falls among the elderly if the program 
is incorporated into everyday living.

The second type of RCT is the crossover trial. In this study, the same group of 
people is exposed at different points in the study to the presence and absence of 
the intervention, or to two different interventions. Investigators then compare each 
participant’s outcomes he or she experienced under the two conditions. This design 
is often used to assess the effects of a drug relative to a placebo or to an alternative 
remedy. If a drug is being tested, the administrations of the drug and placebo (or 
alternative remedy) may be separated by a fixed interval of time or washout period. 
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The form of randomization used here is random sequencing of the two treatments. 
By using a random order for each participant, investigators control carryover ef-
fects, confounders related to the order of treatments.

An example of a crossover trial is a study reported by Noman et al. [7] who in-
vestigated the effects of high-dose allopurinol on exercise in patients with chronic 
stable angina. At the beginning of the study, 65 outpatients underwent exercise tol-
erance tests to provide baseline measurements of total exercise time, time to ST 
depression, and time until chest pains occurred. Then a 6-week course of allopu-
rinol followed by a 6-week course of placebo was randomly assigned to 31 of the 
patients. The opposite sequence was assigned to the remaining 34. In other words, 
each patient began at random with either allopurinol or placebo and then 6 weeks 
later “crossed over” to the placebo or allopurinol. The investigators found that on 
average, allopurinol produced a reliable increase in all three performance measures. 
A box plot comparing the median changes from baseline in total exercise times of 
the placebo and allopurinol groups is displayed in Fig. 1.1. The median is repre-
sented by the horizontal line near the middle of each box. For the placebo group, 
the median change is close to zero. The p-value displayed in the figure tells us that 
the probability of obtaining a difference between two median exercise times equal 
to or greater than that observed in the sample is three in 10,000 if allopurinol in 
fact has no impact on exercise times. By convention, scientists rule out random 
sampling variability as a plausible alternative explanation if the p-value is equal to 
or less than 0.05. In this case, the probability that the observed difference between 
the two group medians was due solely to random sampling variability is much less 
than 0.05.

Despite their ability to make strong inferences about causality, RCTs have their 
share of weaknesses. One is the possibility of differential attrition. This refers to 
participants in one arm of the study being more likely to withdraw from the study 

Fig. 1.1   Box plot of change in total exercise time from baseline. (Reproduced with permission 
from the Lancet Publishing Group [7])
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than participants in another. An example would be patients who withdrew from a 
drug study because the medicine was not helping them. If by the end of the study 
only those who found the drug helpful remain, the efficacy of the drug could appear 
to be greater than it really is. A similar problem occurs when patients fail to follow 
their regimens appropriately, as might happen if they do not understand instructions, 
experience unpleasant side effects or find the regimen inconvenient. Noncompli-
ance can make an intervention appear to be less efficacious than it really is. Another 
problem is a result of one of the strengths of an RCT. Its ability to tightly control and 
standardize various aspects of the study can raise questions about generalizability, 
that is, about whether the intervention would be effective in more natural settings. A 
therapy which may show efficacy in an RCT might demonstrate less effectiveness in 
clinical practice where, for example, administration of the drug may be more vari-
able, patient compliance may be less prevalent, or patient populations may differ 
from those selected for the trial. Finally, while RCTs are valuable for determining 
the efficacy of treatments, ethical considerations prevent them from being used to 
establish the causes of disease.

Researchers have a number of methods for addressing at least some of the limi-
tations of an RCT. For example, to get a truer sense of the effectiveness of the 
treatment, researchers would conduct an intention-to-treat analysis. This means that 
regardless of whether patients complied with the request of the researcher, the out-
comes experienced by the patients assigned to the treatment condition are compared 
to the outcomes experienced by the patients who were not assigned to the treatment 
condition. For example, the outcomes experienced by patients in the treatment con-
dition who were discovered to have failed to follow the treatment regimen correctly 
would be included with the outcomes experienced by treatment patients who were 
known to have followed the regimen as intended. Perhaps more importantly, re-
searchers would conduct additional studies to see if trial results can be replicated. 
One study might be a larger trial conducted at a number of clinical sites distributed 
across a broad geographical area on patients with diverse demographic character-
istics. Another might be a cohort study conducted in a setting that more closely 
approximates daily clinical practice. At some point, researchers would then draw 
conclusions about treatment effectiveness based on the accumulated evidence.

1.2.9 � �  A randomized controlled trial has two basic types: the parallel group 
trial and the _____ trial.

1.2.10 � Which of these two types of trials controls patient-related character-
istics through random assignment?

1.2.11 � A(n) _____ analysis assesses the effectiveness of a treatment by 
including all patients assigned to the treatment condition, even those 
who failed to follow the treatment regimen correctly.
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Systematic Review and Meta-Analysis  Assessing accumulated evidence is the 
goal of a systematic review or meta-analysis. Researchers conducting a system-
atic review begin by identifying a fairly specific research topic and methodically 
locating reports of research studies that meet explicitly stated inclusion and exclu-
sion criteria. Next, they critically evaluate the findings of each study, compare and 
contrast them, and integrate their assessments into an overall conclusion. Finally, 
they make recommendations for clinical practice and identify issues to be explored 
in future research. The steps taken by authors of a meta-analysis are similar except 
that they focus on studies that are more homogeneous in various aspects of their 
methodology compared to studies in a systematic review. This allows authors of 
a meta-analysis not only to compare the size of the effect of a given treatment or 
intervention in each study, but also to combine these individual effect sizes into an 
overall quantitative measure of effect size. The pooled effect size is likely to be a 
more reliable estimate of impact than the effect size assessed in a single study.

As an example, Schulze-Rath et al. [8] conducted a systematic review of research 
on whether exposure to diagnostic X-rays is a risk factor for cancer in children. The 
reviewers restricted their review to cohort and case-control studies of children and 
adolescents who for diagnostic reasons had been exposed to low doses of prenatal 
or postnatal ionizing radiation. Each study had to have been published in English 
between 1990 and 2006, and to have reported risk estimates for leukemia, lympho-
mas, solid tumors or tumors of the central nervous system. To locate the studies, the 
reviewers first searched through the database, PubMed, using the following search 
key words, “(child or child preschool or infant) and neoplasms and (radiograph*/
adverse effects) and (pregnancy or pregnant women or infant or fetus or embryo).” 
The reviewers also consulted six other databases, the reference lists of the studies 
they uncovered in the seven databases, and 2-yearly volumes of two important jour-
nals in the field. The search led the reviewers to 59 articles from the databases and 
another 88 from the reference lists of those 59. After sifting through the 147 studies, 
the authors identified 19 case-control and six cohort studies that met their eligibility 
criteria, although some of the studies included adults up to the age of 31 among their 
participants. Most of the case-control studies included 40–500 patients and each 
cohort study included 300–31,000 patients. Of the 25 studies, 12 were conducted 
in Europe, seven in the USA, four in Canada, and one each in Shanghai and Israel.

Schulze-Rath et al. discovered that the variability across the 25 studies in the 
type of design (case-control or cohort), the timing of the radiation (pre or postnatal) 
and the type of cancer studied limited their ability to draw meaningful conclusions. 
Nevertheless, they were able to identify nine studies that shared the same study de-
sign, risk factor, and outcome, so they decided to conduct a meta-analysis of them. 
These were case-control studies of prenatal exposure and leukemia. Using the OR 
as a measure of effect size, the reviewers pooled the data from the nine studies to 
generate an overall measure of risk associated with prenatal radiation. The results 
are presented in Fig. 1.2.

Figure 1.2 is often referred to as a forest plot, a visual display of the effect sizes 
of each study and the pooled effect size. The OR for each of the nine studies is 
represented by a small square. The size of each square represents the weight that 
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was given to the OR of that study when the pooled OR was calculated: The greater 
the weight, the bigger is the square. The pooled OR is represented by the diamond 
beneath the nine squares. As we can see from the forest plot, the ORs of eight of the 
nine studies cluster around 1.0. One study found an OR substantially greater than 1 
but this result clearly is not typical, and the pooled OR is 0.99. Because an OR of 
1.0 means that the likelihood of disease is the same for both the exposed and unex-
posed groups, the reviewers concluded that this body of research has failed to show 
that prenatal exposure to radiation is a risk factor for leukemia.

The horizontal line going through each square of the forest plot is the 95 % CI 
of the OR. The width of the diamond represents the 95 % CI of the pooled OR. A 
measure of an effect size that has a narrow confidence interval is more reliable than 
a measure that has a wide confidence interval. Notice that the size of each square 
seems to be inversely related to the width of the confidence interval. This is because 
in a meta-analysis more reliable effect sizes are given more weight in the calcula-
tion of the pooled effect. Notice too that the confidence interval of the pooled OR is 
relatively narrow compared to most of the others. This demonstrates an advantage 
of a meta-analysis: It tends to generate conclusions that are more reliable than con-
clusions that are based on the findings of a single study.

Systematic reviews and especially meta-analyses are very useful tools for evalu-
ating evidence to date for they help researchers to assess the reliability and gener-
alizability of a given finding, to discern relationships among data that might not 
be apparent in any single study, and when the reviews include randomized con-
trolled trials, generate highly confident causal conclusions. But conclusions from 
reviews and meta-analyses are often limited by the methodologies of the studies 
they review, and their conclusions should not be generalized beyond the conditions 
under which the reviewed studies were conducted. Recognizing these limitations, 
Schulze-Rath et al. caution that most of their studies were case-control studies, the 
few cohort studies that they were able to locate differed from one another in many 
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Fig. 1.2   Forest plot of odds ratios from nine case-control studies of prenatal diagnostic X-rays and 
leukemia. (Adapted with permission from Springer Science+Business Media [8])
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ways and included small numbers of childhood cancers, and relative to most of the 
participants of their review, children today are exposed to higher overall levels of 
radiation due to the increased use of CT scans. They conclude that cohort studies 
with very large sample sizes and long follow-up periods are needed to detect the 
long-term effects of today’s diagnostic practices.

1.3 � Categories of Research

Our review of study designs does not include every type of study design used in 
clinical research. Rather than try to present each of these additional types of studies, 
here we will give an overview of the various categories of research into which most 
clinical investigations fall. Knowing these categories will help you to understand 
designs that we have not covered and to interpret the statistics that they generate. 
The categories are retrospective versus prospective research, experimental versus 
observational research, and cross-sectional versus longitudinal research.

Retrospective Versus Prospective Research  A retrospective study focuses on 
an outcome that study participants have already experienced. A prospective study 
investigates an outcome that participants have not yet experienced. Case-control 
studies are always retrospective. Randomized controlled trials are always prospec-
tive. Cohort studies can be either prospective or retrospective.

Recall that cohort studies track participants over an interval of time, and that 
at the beginning of the interval, none of the participants has experienced the out-
come of interest. When a prospective cohort study is conducted, a cohort study is 
designed to answer specific research questions. Appropriate cohorts are identified, 
and procedures intended to measure relevant risk factors, protective factors, out-
comes, and confounders are carefully planned. These measurements are then taken 
of the cohorts at the beginning of, during, and at the end of the time interval, and the 
resulting data are analyzed to answer the questions the study was designed to ad-
dress. Sometimes data collection goes on indefinitely, in which case study findings 
are updated periodically. The study by Sakata et al. [5] on smoking and mortality 
that we reviewed earlier is a prospective cohort study.

When a retrospective cohort study is conducted, a research question is answered 
by consulting a data archive that contains information about groups that can serve as 
relevant cohorts and of whom observations were made before and after a time inter-
val that serves the investigators’ purpose. An example of a retrospective cohort study 
is an investigation conducted by Dosoretz et al. [9] who wished to know the effect 
of neoadjuvant hormone therapy (Lupron or Zoladex) on prostate cancer patients 

1.2.12 � A _____ is a visual display of effect sizes obtained in studies reviewed 
in a meta-analysis.

1.2.13 � Does the 95 % confidence interval of a pooled OR tend to be rela-
tively wide or narrow?
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receiving brachytherapy. The outcome variable that interested them was mortality 
due to any cause. To answer their question, they sifted through the medical records 
of 20 oncology centers and selected 3744 men who had undergone brachytherapy 
for localized prostate cancer between May 1991 and September 2005, had not also 
received external-beam radiation, and had been followed after brachytherapy for at 
least 2 years. Using Cox regression to control confounding variables such as tumor 
classification and pretreatment PSA levels, the investigators obtained a hazard ratio 
(HR) of 1.24 (95 % CI, 1.01–1.53) among patients who had been 73 years old or 
older at the time of brachytherapy. The HR of 1.24 means that among men in this 
age group, those who had also received the hormone therapy were 24 % more likely 
to have died compared to men who had not received hormone therapy.

Retrospective and prospective cohort studies are similar in many ways. Both 
focus on groups that prior to a given time interval had not experienced the outcome 
of interest, both use the same statistical procedures to assess the role of random 
sampling variability and to control confounding, and both are subject to the prob-
lem of residual confounding. But because retrospective cohort studies are more 
problematic—for example they are more susceptible to bias when participants are 
selected and record keeping is more likely to be incomplete or inaccurate—prospec-
tive cohort studies are preferred.

Experimental Versus Observational Research  In an experimental study, the 
investigator systematically exposes participants to a suspected causal factor after 
having controlled confounding variables by holding them constant or by using ran-
domization. The investigator then measures an outcome variable and compares the 
measurements across the exposure conditions of the experiment. In an observa-
tional study, the investigator does not systematically expose participants to a causal 
factor. Instead the investigator observes people who have already been exposed. If 
possible, the investigator will also observe people who have not been exposed and 
compare the two sets of observations. In an observational study, the investigator 
cannot control confounding variables before the exposure occurs, and therefore is 
less confident that the exposure is the only systematic difference between the two 
groups. Consequently, experimental studies are superior to observational studies 
in establishing cause and effect. An RCT is an example of an experiment, but one 
in which the causal factor is an intervention. Case-control and cohort studies are 
examples of observational research.

Experimental and observational studies often employ the same statistical proce-
dures. However, the ability to draw causal conclusions from the results of a statisti-
cal analysis is greater for experimental data. For example, we could use an indepen-
dent-samples t-test to compare the average blood pressure of hypertensive patients 
who had been on a low sodium diet for a year to the average blood pressure of hy-
pertensive patients who had not been on a low sodium diet for a year, regardless of 
whether the diet was randomly assigned to the patients (experiment) or self-selected 
(observational study). But if the data were observational, we would be particularly 
cautious about drawing causal conclusions, even if the average blood pressure of 
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the low sodium group were lower than that of the second group, and the results of 
the t-test allowed us to rule out chance as the cause of the difference.

Cross-Sectional Versus Longitudinal Research  A cross-sectional study is an 
observational study that takes measurements from a sample of people on a single 
occasion. It can document covariation between a suspected cause and its suspected 
effect, but is less able than the longitudinal study and the experiment to establish 
that a suspected cause preceded its suspected effect, and inferior to the experiment 
in controlling confounding. It is often used to provide a snap-shot of a population at 
the time the sample was taken, as when it is used to determine disease prevalence, 
the proportion of a population that has a given disease. A survey is often conducted 
as a relatively cost-effective method of collecting cross-sectional data. The annual 
telephone survey conducted by the Behavioral Risk Factor Surveillance System 
(BRFSS) [10] of the Centers for Disease Control and Prevention (CDC) is an exam-
ple. Each survey allows the CDC to document the prevalence of various risk factors 
such as obesity within the USA and its territories.

A longitudinal study is an observational study that takes measurements from a 
sample of people on two or more occasions. A longitudinal study is useful for track-
ing changes in a given group over time, documenting how a disease progresses as 
times passes, and for determining disease incidence, the rate of new occurrences 
of a given disease. A longitudinal study can document covariation between a sus-
pected cause and its suspected effect while also establishing the correct time order 
between the two variables. However, it lacks the ability of the experiment to control 
confounding. A cohort study is an example of a longitudinal study.

Cross-sectional and longitudinal studies employ somewhat different statistical 
procedures. This is because an analysis of longitudinal data must take into account 
the fact that the measurements were made of the same individuals. For example, if 
we wanted to compare the mean blood pressure of a group of hypertensive patients 
before they had decided to go on a low sodium diet to their average blood pressure 
1 year later, we could not use the independent-samples t-test. Instead we would use 
a paired-samples t-test to compare the two sets of blood pressure readings.

1.4 � Looking Ahead

Clinical investigators can call upon a very large number of statistical methods to 
help them understand their data, so our review of study designs provides only a 
sampling of the statistics that are used in clinical research. However, researchers 

True or false:
1.3.1  A cohort study is always prospective.
1.3.2 � Disease prevalence is the proportion of a population that has a given 

disease.
1.3.3 � Longitudinal studies are useful for measuring disease incidence.
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tend to draw from the same set of study designs when they plan their research proj-
ects, so they tend to draw from the same set of statistical procedures when analyz-
ing their data. As a result, the statistics that are typically used in clinical research 
are a subset of those that are available. However, that subset is still substantial, 
and includes some highly sophisticated techniques that require advanced training. 
Moreover, older methods are sometimes replaced with new ones. Consequently, we 
will not cover all of the methods that you are likely to encounter in clinical studies. 
But we will give you a representative sampling, and one that will help you to master 
more complex techniques and understand new ones as they come along.

Descriptive statistics and graphical techniques are the focus of our discussion in 
Chaps. 3 (“Describing the Distribution of a Categorical Variable”) and 4 (“Describ-
ing the Distribution of a Quantitative Variable”). We also discuss graphing data 
throughout the book, including in Chap. 9 (“Relationships in Quantitative Data”) 
where we describe scatter plots, Chap. 12 (“Analysis of Variance with Two Fac-
tors”) where we discuss plots of interaction effects, and Chap. 16 (“Survival Analy-
sis”) where we describe survival functions.

As for measures of association, we discuss ORs and relative risk in Chap.  6 
(“Inference for Proportions”) and again in Chap. 15 (“Logistic Regression”), haz-
ard ratios in Chap. 16, and rate ratios in Chap. 17 (“Regression Analysis of Count 
Data”). We explain using the difference between means as a measure of associa-
tion in Chaps. 10 (“Comparing Means of Independent Samples”), 11 (“Comparing 
Means of Related Samples”) and 12. In addition, we review the Pearson correlation 
coefficient and Spearman’s Rho coefficient, measures of association between two 
quantitative variables, in Chap. 9, and Cramér’s V and gamma, measures of associa-
tion between two categorical variables, in Chap. 7 (“Relationships in Categorical 
Data”). Building on the concepts of contingency tables, and row and column per-
centages of Chap. 7, we explain in Chap. 8 (“Assessing Screening and Diagnostic 
Tests”) how the degree of association between diagnostic test results and the pres-
ence of disease is determined.

We discuss regression analysis in five chapters. We review the analysis of the 
relationship between a quantitative outcome variable and either a single predictor 
variable or two or more predictor variables in Chaps. 13 (“Simple Linear Regres-
sion”) and 14 (“Multiple Linear Regression”). We explain binary logistic regression 
in Chap. 15 where the outcome variable is categorical and binary, Cox regression 
in Chap. 16 where the outcome variable is time to event or survival time, and nega-
tive binomial regression in Chap. 17 where the outcome variable is a rate, such as 
a mortality rate.

Finally, we introduce basic concepts of inferential statistics, such as confidence 
intervals, tests of hypotheses, and test statistics, in Chap. 5 (“Introduction to Statisti-
cal Inference”). We then apply these concepts throughout the remainder of the book 
to a range of population parameters. Along the way, we review several test statis-
tics, including the Z and t statistics, the F-ratio, chi-square, and the Wald statistic.

To help you understand the statistical concepts we discuss, we include in each 
chapter output generated by SPSS [11], and explain how to interpret it. SPSS is a 
statistics software package frequently used in clinical research. On the assumption 
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that you will learn more if you are actively involved in the analyses, we will also 
explain how to generate the output and invite you to replicate the analysis. Most of 
the exercises at the end of each chapter will give you additional opportunities to use 
SPSS. If you do not want hands-on experience with data analysis or do not have 
access to SPSS, you can skip Chap. 2, which provides an overview of the software, 
and in subsequent chapters you can ignore our SPSS-related instructions. You will 
still be able to interpret the output we provide and tackle those exercise questions 
that can be answered independently of SPSS.

1.5 � Exercise Questions

1.	 Bissonauth et al. [12] asked 280 French-Canadian women who had breast cancer 
and were nongene carriers of the mutated BRCA gene to complete a lifestyle ques-
tionnaire. For each of these women, a French-Canadian woman of the same age 
(within 10-year intervals) without any cancer and who also did not carry the gene 
was recruited and asked to complete the questionnaire. After statistically control-
ling confounders such as alcohol consumption and smoking status, the investi-
gators compared the odds of having breast cancer among women who engaged 
in moderate physical activity for long periods of time each week to the odds of 
having breast cancer for women who engaged in moderate physical activity each 
week relatively infrequently. The resulting OR was 0.48 (95 % CI, 0.31–0.74).

a.	 Which of the following was used to control age?

Matching
Random assignment
Statistical control
Stratification

b.	 According to this study, engagement in moderate physical activity is

A protective factor
A risk factor
Unrelated to whether or not women have breast cancer

c.	 Given their study design, can we conclude from their statistical analysis that 
moderate physical activity prevents breast cancer? Why or why not?

2.	 Franco et al. [13] reviewed the medical charts of 67 African-American patients 
with lupus nephritis and found that the odds of developing end stage renal dis-
ease (ESRD) requiring dialysis for patients with low glomerular filtration rates 
were about 15 times greater than the odds for patients with higher glomerular 
filtration rates (OR = 15.28; 95 % CI, 3.18–73.38). The investigators concluded 
that low glomerular filtration rates are a risk factor for ESRD requiring dialysis 
for this patient population.



211.5  Exercise Questions�

a.	 Was this study retrospective or prospective?
b.	 Why were the authors able to rule out chance as the explanation for their 

finding?

3.	 Srinivas-Shankar et al. [14] randomly assigned 274 intermediate-frail and frail 
elderly men living in the UK to a 6-month course of either transdermal testoster-
one or placebo gel treatment. The investigators concluded that testosterone treat-
ment can have beneficial effects on muscle strength, quality of life and physical 
function.

a.	 Was this study an experiment or an observational study?
b.	 The title of this article implies that the authors documented a causal relation-

ship between testosterone and a number of outcome variables. Does the study 
design justify drawing causal conclusions? Why or why not?

4.	 Shaikh et al. [15] tracked the acute and early-onset effects of anthracycline, a 
cardiotoxic chemotherapeutic agent, on the cardiac functioning of 110 pediat-
ric cancer patients living in Pakistan. For each child, a number of echocardio-
graphic parameters, including ejection fraction, were assessed at baseline, and 
then 1 month and 1 year after chemotherapy. The mean ejection fraction values 
at baseline, 1 month and 1 year were 69.9 %, 67.3 %, and 62.6 %, respectively, 
( p < 0 .001).

a.	 Was this study cross-sectional or longitudinal?
b.	 Which of the following was most likely used to analyze the children’s ejec-

tion fractions?

Analysis of variance
Independent-samples t-test
Logistic regression
Negative binomial regression

c.	 Can the investigators rule out the possibility that chance was responsible for 
the observed differences among the three ejection fraction means? Why or 
why not?

5.	 Using the medical records of the U.S. Department of Veterans’ Affairs (VA), 
Turakhia et al. [16] tracked over 122,000 patients who had been newly diagnosed 
with nonvalvular atrial fibrillation/flutter (AF) to determine whether risk of 
death was higher for those who had received digoxin in an outpatient care setting 
within 90 days of diagnosis. Risk of death was derived from survival time data, 
also extracted from VA records. Patients with no record of death were assumed to 
be alive as of September 30, 2011. After controlling for various confounders, the 
investigators reported a hazard ratio of 1.26 (95 % CI, 1.23–1.29). The investiga-
tors concluded that digoxin is associated with increased risk of mortality.

a.	 Which of the following best describes the design of this study?

Case-control
Prospective cohort
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Retrospect cohort
Randomized controlled trial

b.	 Which of the following was most likely used to analyze the survival times of 
the AF patients?
Analysis of variance
Cox regression
Logistic regression
Paired-samples t-test

c.	 Complete the following sentence: AF patients who had received digoxin were 
_____% more likely to die than AF patients who had not received digoxin.
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Abstract  This chapter introduces several basic SPSS procedures that are used in 
the analysis of a data set. The chapter explains the structure of SPSS data files, how 
to open an SPSS data file, and how to import into SPSS data contained in an Excel 
file. The chapter also explains how to select cases for an analysis, display variables 
listed in dialog boxes in alphabetical order, label and print output, paste output into 
a Microsoft Word document, and save data and output as SPSS or Excel files.

2.1 � Overview

Throughout the book we take a hands-on approach to teaching statistics by ask-
ing you to carry out many of the statistical procedures yourself with SPSS. In this 
chapter, we show you how to open an SPSS data file and how to import data into 
an SPSS file from a Microsoft Excel spreadsheet. We show you how to modify and 
save a data file, how to display variables listed in dialog boxes in alphabetical order, 
how to label and print output, how to paste your output into a Microsoft Word docu-
ment, and how to export your output into Excel.

Often it is necessary to limit an analysis of data to a subset of respondents. For 
example, you might want to include only women in your analysis or only respon-
dents whose answers to a particular question were within a certain range. In this 
chapter, we show you one way by which you can select out a subset of cases for 
analysis.

The data that we will use are responses of residents of New York state in 2005 to 
telephone interview questions asked by the Centers for Disease Control and Preven-
tion (CDC) Behavioral Risk Factor Surveillance System (BRFSS). BRFSS has been 
conducting annual cross-sectional studies of health conditions and risk behaviors in 
the USA since 1984. As we will soon see, the data set from 2005 consists of a large 
number of categorical and quantitative variables. Examples of categorical variables 
are the respondent’s sex, marital status, and educational level. Examples of quanti-
tative variables are the respondent’s age, body mass index, and the number of days 
per week of exercise.
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2.2 � Opening SPSS Data Files

We will begin by opening an SPSS data file, CDC BRFSS.sav [1].

Double-Clicking  The easiest way to open an SPSS data file is to navigate to it 
(e.g., with Window’s Explore utility) and double-click it. In a few moments, SPSS 
will open and display the data file in its Data Editor.

From Within SPSS  If SPSS is already running, you can open a data file within 
SPSS by following the sequence displayed in Figs. 2.1 and 2.2. Within SPSS, select 
its File menu at the top of the screen and then choose Open and Data. (To save some 
effort on our part, hereafter we will refer to a sequence of keystrokes such as this 
one as File > Open > Data.) An alternative method for opening the dialog box is 
to click the Open data document icon, located just beneath the File menu tab. SPSS 
will then display the Open Data dialog box. In the Look in window, navigate to the 
location of the data file, click the file so that it appears in the File name window, 
and then click Open.

Importing an Excel Spreadsheet  It is often convenient to build a data set with 
Excel, and then analyze those data with SPSS. To import an Excel spreadsheet into 
SPSS, use the Open Data dialog box. There in the Files of type window, click on the 
downward pointing arrow and select Excel. Any Excel files at the location to which 
you have navigated will now appear. Click on the file you wish to open to move it to 
the File name window. Click Open and the Opening Excel data source dialog box 
will appear. If the first row of the Excel file contains the names of the variables (a 
good idea, by the way), then be sure that Read variable names from the first row of 
data is checked. Otherwise, uncheck this instruction. Click OK. This sequence of 
keystrokes is displayed in Figs. 2.3, 2.4, and 2.5. SPSS will now convert the Excel 
spreadsheet to an SPSS data file.

Fig. 2.1   Accessing the Open Data dialog
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2.3 � Structure of SPSS Data Files: Data and Variable 
Views

Regardless of how you open a data file, once it is open you will see in the lower left-
hand corner two tabs labeled Data View and Variable View, as shown in Fig. 2.6.

One of these two views will be active, and the tab for the active view will be 
highlighted. In Fig. 2.6, Data View is active. The view that is selected when a data 
file is opened depends on which view was active when the file was last saved.

Data View  Click the Data View tab if it is not currently active. We will look at the 
Variable View window in a moment. A portion of the Data View page of the file is 
shown in Fig. 2.7. Note the layout of the data: Variables run across the top of the 
columns while respondents (SPSS refers to these as cases) run down the rows.

Fig. 2.2   Opening a data set with the Open Data dialog
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Variable View  Click the Variable View tab in the lower left-hand corner and study 
the internal structure of the file. In Variable View, each row represents each of the 
variables and its associated properties. There are 11 properties altogether. The first 
five are displayed in Fig. 2.8. The 11 properties are as follows.

•	 Name This is the name that appears at the top of each column of the Data View. 
There are some limitations on names. Names must begin with a letter or one of 
the characters @, #, or $, and can contain no more than 64 characters. Only @ 
can be used in variable names that you define. The rest of the variable name can 
be a combination of letters, numbers, and underbars, but they cannot contain any 
blank spaces or other unusual symbols. Underscore, @, #, and $ are not consid-
ered unusual characters.

•	 Type There are different data types. The most common with this kind of data 
file are String and Numeric. String refers to variables that contain text. Numeric 
variables contain values that are numbers. To change the data type, click the Type 
cell. A button with an ellipsis will appear. Click the button to bring up the Vari-
able Type dialog box, select the appropriate data type, and then click OK. These 
steps are displayed in Figs. 2.9 and 2.10.

Fig. 2.3   Accessing data file types and selecting Excel as the file type
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Fig. 2.5   Completing the import process

 

Fig. 2.4   Opening the Excel file

 

Fig. 2.6   Data view and vari-
able view tabs
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•	 Width This is the number of characters that SPSS will allow to be entered for 
the variable. It is set automatically when you enter data. You change this by 
clicking the Width cell for that variable and then clicking the up or down arrow 
to get the desired width. Figure 2.11 displays an example for a variable named 
GENHLTH.

Fig. 2.9   Accessing the Vari-
able Type dialog
 

Fig. 2.8   Variable view

 

Fig. 2.7   Data view
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•	 Decimals This value is the number of decimal places that are displayed in the 
Data View for each value of that variable. It does not alter the values that are 
actually stored in the data set. As shown in Fig. 2.12, you change the number of 
decimal places by clicking on the Decimals cell and then clicking the up or down 
arrow to obtain the desired number of decimal places.

•	 Label This gives a more descriptive name for the variable. If this cell is not 
empty, the label will be displayed in any output. Figure 2.13 displays the variable 
label for GENHLTH.

It is highly recommended that every variable has a descriptive label. Because 
some variables names can be cryptic or uninformative, we will refer to variables 
by their labels rather than by their names. When we refer to a variable for the first 
time, we will also include the variable name in brackets and the variable number 
in parentheses. For example, NUMBER OF DAYS PHYSICAL HEALTH 

Fig. 2.12   Changing the num-
ber of decimal places
 

Fig. 2.11   Example of a 
numeric variable whose val-
ues consist of one character

 

Fig. 2.10   Assigning a variable type
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NOT GOOD is the fourth variable in the data set, so on our first mention of it we 
would refer to it as NUMBER OF DAYS PHYSICAL HEALTH NOT GOOD 
[PHYSHLTH ] (variable 4). Sometimes we will also include the value labels as well. 
For example, SEX [SEX ] (variable 32; 1 = Male; 2 = Female).

•	 Values Categorical data are stored in the Data View with numerical values rep-
resenting each category. The Values cell allows you to associate each numeri-
cal value with a plain language value. This should be done for all categorical 
variables. For example, female respondents were asked if they were pregnant. 
Their responses were entered into the variable, ARE YOU NOW PREGNANT 
[PREGNANT ] (variable 33; 1 = Yes, 2 = No, 7 = Do not know/Not Sure, 9 = Re-
fused). To enter the value labels, you would click the Values cell of this variable 
and then the button with the ellipsis to bring up the Value Labels dialog box. 
Next, you would enter each numerical value for the variable in the Value box, the 
plain language label in the Label box, and click the Add button. When you finish, 
you would click OK. Figures 2.14, 2.15, and 2.16, and 2.17 display these steps.

Practicing Entering Value Labels

Since understanding the results of data analysis is easier if value labels are 
used, practice entering a set of value labels for the categorical variable, 
HAVE HEALTH CARE COVERAGE [HLTHPLAN] (variable 7; 1 = Yes; 
2 = No; 7 = Do not know/Not sure; 9 = Refused). This variable stores answers 
to the question, “Do you have any kind of health care coverage, including 
health insurance, prepaid plans such as HMOs, or government plans such as 
Medicare?”

Fig. 2.14   Accessing the value labels dialog

 

Fig. 2.13   Example of a variable label
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•	 Missing Usually missing data appear in the Data View as periods. Sometimes 
special numerical values, such as 9999, are used to indicate missing data. You 
can set these by clicking the Missing cell for that variable and then the button 
with the ellipsis to bring up the Missing Values dialog box. If you have three or 
fewer missing value codes, you would check Discrete missing values and enter 
one code in each of the boxes. If there are more than three missing value codes, 
but they are within a range that does not contain any nonmissing value codes, 

Fig. 2.16   Value Labels dialog showing one value labeled

 

Fig. 2.15   Labeling a value
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then you would check Range plus one optional discrete missing value and enter 
the low and high ends of the range in the Low and High boxes. Figures 2.18 and 
2.19 show what to do when there are two missing values codes. The codes hap-
pened to be 7 and 9.

The BRFSS data set contains examples of treating some responses as missing. This 
is because participants sometimes responded to interview questions by saying that 
they were not sure or by refusing to answer. We saw an example when we entered 
value labels for the variable, ARE YOU NOW PREGNANT. Most women replied 
either yes or no, but some said that they did not know or were not sure, and others 
would not give an answer. The CDC recorded all of the responses but considered 
not knowing, not being sure, and refusing to answer as missing data.

Fig. 2.18   Accessing the 
Missing Values dialog
 

Fig. 2.17   Value Labels dialog showing all values labeled
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•	 Columns This value gives the width, in number of characters, of the column that 
is displayed in the Data View for the variable. As shown in Fig. 2.20, you can 
change in Variable View the column width by clicking the Columns cell and then 
clicking the up or down arrows to get the desired width.

If you are in Data View you can do this by placing the cursor over the right-hand 
border of the desired variable. When the cursor becomes a double-headed arrow, 

Practicing Declaring Missing Values

Treating certain responses as missing occurs often, so let us take a moment 
to practice declaring missing values on a variable in the BRFSS data set. 
We have already declared missing values for some of the variables. One is 
GENERAL HEALTH [GENHLTH] (variable 3). This variable contains the 
answer to the question, “Would you say that in general your health is excel-
lent, very good, good, fair or poor?” The CDC used a value of 7 to indicate 
that the respondent did not know or was not sure, and a value of 9 to indicate 
that the respondent refused to answer. To declare these values as missing, we 
followed the sequence displayed in Figs. 2.18 and 2.19. Now it is your turn. 
Declare missing values for the variable, HAVE HEALTH CARE COVER-
AGE [HLTHPLAN] (variable 7; 1 = Yes; 2 = No; 7 = Do not know/Not sure; 
9 = Refused).

Fig. 2.20   Changing the 
width of a column in variable 
view

 

Fig. 2.19   Selecting the dis-
crete missing values option 
and entering two missing 
values codes
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drag the border until the desired width is obtained. Figure 2.21 shows as an example 
GENERAL HEALTH.

•	 Align This shows whether the values for the variable will be aligned on the left, 
center, or right. Typically, string data are left aligned and numeric data are right 
aligned. As shown in Fig. 2.22, you can change the alignment by clicking the 
Align cell, clicking the arrow button, and then selecting the desired alignment.

•	 Measure SPSS recognizes three scales of measurement—scale, ordinal and 
nominal. Quantitative data (e.g., body mass index) are scale variables. Categori-
cal data are nominal if there is no natural order to the categories (e.g., gender) or 
ordinal if there is a natural order to the categories (e.g., body mass index catego-
ry—normal, overweight, or obese). Many statistical procedures require that data 
have the measure type appropriate to those procedures. SPSS cannot identify the 
type. It is up to the user to do that. To assign the type of measure of each variable, 
click its Measure cell, and then click a button with an arrow to display the three 
measure types. Select the desired measure type. Figure 2.23 displays the three 
measure types for the variable, GENHLTH.

•	 Role Variables in SPSS can play a variety of roles. For example, one variable 
might be used to predict the value of another. The predictor variable would be 
considered the input variable while the predicted variable would be considered 
the target variable. Some dialogs have the ability to preselect variables based on 
the variables’ assigned roles. By default, all variables are assigned to the input 
role. As shown in Fig. 2.24, to change a variable’s role, click its Role cell, click 
the arrow button to display the role options, and select the desired role.

Fig. 2.22   Selecting the align-
ment of a variable
 

Fig. 2.21   Changing the width of a column in data view
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Back to Data View  Click on the Data View tab and find the column with the vari-
able name, GENHLTH. If the column is too narrow to show entirely either the 
name of the variable or the variable’s data entries, widen the column as described 
earlier. You may widen other columns as you wish.

Place the cursor over the variable name. The variable’s label, GENERAL 
HEALTH, will appear, as shown in Fig. 2.25. Slide the cursor over some of the 
other variable names and their labels will also appear.

Study the data that have been entered in the GENERAL HEALTH column. The 
entries may appear as either numbers or their value labels, depending on whether 
SPSS has been asked to display the numerical values or the value labels. Recall that 
each of the numerical entries represents the participant’s response to the question 
about his or her general health. To see the numerical values and the responses that 
they represent, click the Value Labels icon. You will find it at the top of Data View. 
In SPSS 22, it looks like the middle icon displayed in Fig. 2.26. After each click of 

Answer the following questions about the assigned properties of the variable, 
GENERAL HEALTH.
2.3.1  Is the variable string or numeric?
2.3.2  Is the variable nominal, ordinal, or scale?
2.3.3  What is the values label for a variable value of 3?

Fig. 2.24   Changing the role 
of a variable
 

Fig. 2.23   Assigning a mea-
sure type
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the icon, the numbers in the GENERAL HEALTH column will be translated into 
their corresponding response options and vice versa.

While you are clicking the icon, see if the value labels you entered earlier are 
also displayed.

When the value labels listed in the GENERAL HEALTH column are displayed, 
the entries of most of the remaining variables remain numerical. There are two 
reasons for this: either the value labels for those variables have not been entered, or 
the variables are quantitative rather than categorical. For example, BODY MASS 
INDEX [@_BMI4] (variable 78) and BODY MASS INDEX—THREE LEVELS 
CATEGORY [@_BMI4CAT] (variable 79) are coded numerically. However, the 
numerical entries of BODY MASS INDEX reflect quantity, so this variable has 
no value labels. BODY MASS INDEX—THREE LEVELS CATEGORY has 
ordinal categories and so it has value labels.

2.4 � Saving SPSS Data Files

We will be using this data set in other chapters. If you wish to keep the value labels 
you just entered, save your data file to your account. When we return to the data in 
future sessions, you can upload into SPSS the data file that you have saved rather 
than the file that you first opened in this session.

As an SPSS File  To save the file, select File > Save As from the menu at the top 
of the screen. In the resulting Save Data As dialog box, locate the destination where 
you want to save the file, enter a name for the file, and click the Save button. The 
data file will be saved with the name that you assigned to it with a .sav extension. 
These steps are displayed in Figs. 2.27 and 2.28.

Fig. 2.26   Displaying variable 
values and their correspond-
ing labels

 

Fig. 2.25   Sliding the cursor over the variable name displays the variable label
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Fig. 2.27   Accessing the Save 
Data As dialog
 

Fig. 2.28   Saving data as an SPSS data file
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As an Excel File  There are times when exporting SPSS data files to Excel can be 
handy. For example, you might want to work on your data when you do not have 
access to SPSS but will have access to Excel. As shown in Fig. 2.29, exporting an 
SPSS data set is done within the Save Data As dialog box. Before saving the data 
file, click the down arrow of the Save as type window and select the version of 
Excel you wish to use. The extension of the data set will change from .sav to the 
Excel extension. If you do not want your variable names listed on the first row of 
the Excel spreadsheet, uncheck the instruction, Write variable names to spreadsheet 
before clicking Save.

2.5 � Selecting Cases for an SPSS Analysis

There will be occasions when you will want to analyze a subset of data. For ex-
ample, in the BRFSS data set, you might want to limit your analysis to respondents 
who are male. Select Data > Select Cases to open the Select Cases dialog box. In 
the Select Cases dialog box, select If condition is satisfied, and then click the If but-
ton to open the Select Cases: If dialog box. Highlight the variable SEX from the list 
of variables on the left and move it into the blank box to the right by clicking on the 
button that displays an arrow pointing to the right. Resist the temptation to type the 
variable name. It is too prone to typographical errors. Next, either type in an equals 

Fig. 2.29   Saving data as an Excel spreadsheet
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sign or click the “=” button in the keypad area of the dialog box. Then either type 
in the number 1 or click the “1” button. Finally, click the Continue button. You 
will have now set up an If condition by which you are asking SPSS to select for 
analysis only those respondents whose sex has been entered as 1. Since a value of 1 
represents males, you ask SPSS to select only male respondents. Back in the Select 
Cases dialog box, ask SPSS to execute your command by clicking OK. These steps 
are shown in Figs. 2.30, 2.31, 2.32, 2.33 and 2.34.

SPSS will execute the command and then automatically open its Viewer window. 
This window displays a log or record of the instructions SPSS just executed. The 
instructions are expressed in the language or syntax of SPSS, and tell us that SPSS 
has selected respondents for whom SEX had been coded as “1.”

Return to the Data Editor by selecting Window > CDC BRFSS.sav, and select 
Data View if it is not active. Scroll over to the column that displays each respon-
dent’s sex and note that each row of data that belongs to a woman is now preceded 
by a diagonal line. These rows will not be included in any analysis that follows. In 
addition, if you scroll over to the last variable you will notice that a new variable, 
filter_$, has been created. It contains a zero for each case that is not included in 
subsequent analyses and a one for those cases that will be used in subsequent analy-
ses. The zero is labeled Not Selected and the one is labeled Selected. Figure 2.35 
displays the variables, SEX and filter_$, for ten cases.

Selecting Cases by Category  To illustrate how analysis with selected cases works 
and to generate some output for later tasks, we will generate a frequency table for 

Fig. 2.30   Accessing the select cases dialog
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the variable GENERAL HEALTH. An explanation of how to use a frequency table 
is a topic of Chap. 3. For now, do not concern yourself with that aspect of what we 
are doing. Select Analyze > Descriptive Statistics > Frequencies to open the Fre-
quencies dialog box shown below. Move GENERAL HEALTH to the Variables 
box by highlighting it and clicking the right pointing arrow. Then click OK. Fig-
ures 2.36, 2.37, and 2.38 show you what to do.

SPSS will generate a frequency table and automatically display it in the Viewer. 
The output can also be found in Table 2.1. Note the number of cases included in the 
analysis. As a result of our including only men in the frequency analysis, the result-
ing total number of cases is far less than that of the entire sample.

We will generate a second frequency table but this time limit the analysis to fe-
male respondents. Return to Data > Select Cases. In the dialog box, make your way 
back to the If condition, “SEX = 1.” Replace the “1” with a “2.” One way to do this 

Fig. 2.31   Accessing the select cases: if dialog
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Fig. 2.33   Creating the if condition

 

Fig. 2.32   Selecting a variable to be included in the if condition
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is to type in “2” after you have highlighted the “1” by double-clicking on it. After 
you have made the change, click Continue and then OK. In Data View, note that 
now men will be excluded from our analysis (Fig. 2.39).

Rerun the frequency analysis and notice the resulting number of cases (Table 2.2).

Selecting All Cases  Here we will generate a third frequency table but this time we 
will include both men and women. Return to Data > Select Cases. Select All cases, 
the top option in the Select area, as shown in Fig.  2.40. Choosing the All cases 
option instructs SPSS to ignore any If conditions that may have been previously 
defined. Click OK.

In Data View, the absence of the diagonal lines means that neither men nor 
women will now be excluded (Fig.  2.41). Notice that the filter variable has not 
changed—it is still set to exclude men. SPSS includes all cases by deactivating the 
filter variable.

Fig. 2.34   Executing the if condition
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Fig. 2.37   Selecting a variable for a frequency analysis

 

Fig. 2.36   Accessing the Frequencies dialog

 

Fig. 2.35   Data view after 
selecting males
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Table 2.1   Frequency distribution of the self-reported general health of males 

Fig. 2.38   Executing a frequency analysis
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Fig. 2.39   Data view after 
selecting females
 

Table 2.2   Frequency distribution of the self-reported general health of females 
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Fig. 2.41   Data view after 
selecting both males and 
females

 

Fig. 2.40   Selecting all cases
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Rerun the frequency analysis. The output should be similar to that displayed in 
Table 2.3. Does the resulting number of cases seem right?

Selecting Cases by Range of Responses  In this section, we focus only on those 
respondents whose answers to a question about their general health were coded 
within a 1 (“Excellent”) to 5 (“Poor”) range. That is, we will exclude those who 
gave no answer, said that they did not know, etc. As we have already seen, one way 
to do this is to declare values of 7 and 9 as missing (see Sect. 2.3). Another way 
to do this is to ask SPSS to limit our analysis to respondents whose answers to the 
GENERAL HEALTH question were coded 1, 2, 3, 4, or 5. One way to do this is 
to set the If condition in the Select Cases dialog box to “GENHLTH < 6” (without 
the quotation marks). Set this condition (the “<” sign can either be typed in from 
the keyboard or “clicked in” from the dialog box keypad), and then generate the 
frequency table. Only the five response categories should be listed in the output 
(Table 2.4).

Selecting Cases by More Than One Condition  Often it is necessary to select 
cases based on more than one condition. For example, in the CDC data set, we 
might want to limit an analysis to females who reported that they were in excel-
lent general health. Let us see how cases can be selected based on more than one If 
condition.

Table 2.3   Frequency distribution of the self-reported general health of the entire sample 
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If we wish to limit our analysis to women in excellent health, we can make use of 
the “and” logical operator (&). In the Select Cases dialog box, enter the following If 
condition: “SEX = 2 & GENHLTH = 1.” The “&” symbol can be clicked in from the 
dialog keypad. As an alternative, the word “and” can be typed in from the keyboard 
instead. Click Continue and then OK. In Data View, notice that only women who 
reported to be in excellent health were selected (Fig. 2.42).

Imagine that we wanted to expand our selection to include women who reported 
that they were in either excellent or very good health. To select these cases, we would 

Table 2.4   Frequency distribution of general health without missing values 

Fig. 2.42   Data view after 
selecting females in excellent 
general health
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use both the “and” (&) and the “or” (|) logical operators. In the Select Cases dialog box, 
enter the following condition: “SEX = 2 & (GENHLTH = 1 | GENHLTH = 2).” The “|” 
symbol is the logical OR operator and can be clicked in from the dialog box keypad. 
As an alternative, the word “or” could be typed in from the keyboard instead. Click 
Continue and then OK. Inspection of Data View should reveal that we have selected 
only women who reported to be in either excellent or very good health (Fig. 2.43).

2.6 � Sorting a Dialog Box Variables List

When a data file has a large number of variables, as is the case with the CDC data 
set, finding a particular variable from a dialog box listing can be frustrating. Fortu-
nately, SPSS allows users to alphabetize the order by which the variables displayed 
in a dialog box are listed. To do so, right-click a variable in the list. From the result-
ing menu, choose whether to have the variables displayed by name or label, and 
then choose Sort Alphabetically. The variables will then be listed in the dialog box 
in alphabetical order. This procedure does not change the actual order of the vari-
ables within the data file. Figures 2.44, 2.45, and 2.46 show how to display variable 
labels alphabetically in the Select Cases dialog box.

2.7 � Labeling SPSS Output

The output generated by the frequency procedure does not identify the subset of cas-
es included in the analysis, and the log tells us only that the cases selected were those 
for whom SEX had been coded as a “1.” It would be convenient if we could add 
commentary to the output indicating that the respondents were men. Here is one way.

In the Viewer’s right-hand pane, double-click the heading Frequencies. This will 
either generate a text box that surrounds the heading, or produce an SPSS Output 
Text window. Figure 2.47 shows a text box.

Fig. 2.43   Data view after 
selecting females in either 
excellent or very good gen-
eral health
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Place the cursor to the right of the heading and type a description of the output 
that identifies the cases that were included in the analysis. For example, you might 
type, “Men only.” Entering a colon or a space after “Frequencies” will make your 
output label easier to read, e.g., “Frequencies: Men only.” To close the text box, 
double-click any white space outside of it. To close the Output Text window, click 
the X in the upper right hand corner. The end result will be output similar to that 
shown in Table 2.5.

2.8 � Printing and Pasting SPSS Output

Sometimes you will want to print output or copy and paste output to a Word docu-
ment.

Fig. 2.44   Accessing the Sort Alphabetically option
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Printing  SPSS allows us to print either all of the output in the Viewer, or only 
selected portions. To print the entire output file, select File > Print or press the Ctrl 
and P keys simultaneously (i.e., press Ctrl + P) while the cursor is in the output 
window. Select the printer you wish to use and click OK.

To print selected portions of output, first select the output you wish to print by 
clicking it. You may use either the left or right output pane. To select more than one 
portion of output for printing, hold down the Ctrl key while you click the output that 
you wish to print. Then select File > Print to open the Print dialog box. Confirm 
that in the Print Range area, the option, Selected output, has been chosen, and click 
OK.

Pasting into a Word Document  There may be times when you want to paste a 
portion of the output from SPSS into a Word document. One way to do this is to 
click the output that you wish to paste, and select Edit > Copy (or press Ctrl + C). 
Move to the location in your Word document where you want to place the output, 
and execute Word’s paste command (e.g., Edit > Paste or Ctrl + V).

Fig. 2.45   Selecting the Sort Alphabetically option
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Fig. 2.46   Select cases dialog displaying variables in alphabetical order by variable labels
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Fig. 2.47   Text box for an output heading
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2.9 � Saving and Exporting SPSS Output Files

SPSS output can be saved as an SPSS output file or exported to other formats, such 
as an Excel or a PDF file.

Saving the Output File  Saving output as an SPSS file is straightforward. From 
Viewer, select File > Save As. In the resulting dialog box, select the location where 
the file is to be saved, enter a name for the file, and click Save. The output file will 
be saved with the name that you assigned to it with a .spv extension.

Exporting to an Excel or a PDF File  If you want to save your output as either an 
Excel or PDF file, select File > Export from the output window. In the Export Output 
dialog box, indicate in the Objects to Export area how much of the output you want. 
Select All if you want to export the entire output file and you want to include addi-
tional information that SPSS collects behind the scenes such as data about processing 
times. This additional information does not appear on screen but can be included in 
the exported file. Select All visible if you want to export the entire file but do not want 
the data behind the scenes. Choose Selected if you have clicked a subset of results 
to export. In the Type box, click the down arrow and select either a version of Excel 
or Portable Document Format. Then click Browse, navigate to where you wish to 
save the file, name it, and click OK. These steps are displayed in Figs. 2.48 and 2.49.

Table 2.5   Output with an edited heading 
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Fig. 2.49   Exporting SPSS output to Excel

 

Fig. 2.48   Accessing the Export Dialog
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2.10 � Exercise Questions

The following questions refer to data found in CDC BRFFS.sav.

1.	 Participants interviewed by the CDC were asked: “Now thinking about your 
physical health, which includes physical illness and injury, for how many days 
during the past 30 days was your physical health not good?” Their answers are 
stored in the variable, NUMBER OF DAYS PHYSICAL HEALTH NOT 
GOOD [PHYSHLTH] (variable 4; 77 = Do not know/Not sure; 99 = Refused). 
Responses of “none” were coded by the CDC as 88.

a.	 In the jargon of SPSS, what is the name of the variable?
b.	 In the jargon of SPSS, what type of variable is it?
c.	 How many decimal places do its entries show?
d.	 Does this variable currently have any value labels? Should it? Why or why 

not?
e.	 What values of this variable have been declared as missing data?
f.	 In the jargon of SPSS, what is the type of measure that has been assigned? Is 

this measure type correct? Why or why not?
g.	 What was the answer of the third case to this question? Was this case male or 

female?

2.	 The variable, MARITAL STATUS [MARITAL] (variable 24) is categorical, not 
quantitative, yet it is listed in Variable View as numeric. How can a categorical 
variable be numeric?

3.	 This chapter asked you to enter value labels and declare missing values for the 
variable, HAVE HEALTH CARE COVERAGE [HLTHPLAN] (variable 7; 
1 = Yes; 2 = No; 7 = Do not know/Not sure; 9 = Refused).

a.	 Conduct a frequency analysis of that variable. Be sure that the output displays 
the value labels.

b.	 Repeat the analysis but this time limit it to women between the ages of 25 
and 35. Age is stored in the variable, REPORTED AGE IN YEARS [AGE] 
(variable 20). Label the resulting output “Women between 25 and 35.”

Data Set and Reference

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

Data Set and Reference�

http://www.cdc.gov/brfss/
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Chapter 3
Describing the Distribution of a Categorical 
Variable

© Springer International Publishing Switzerland 2014
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners,
DOI 10.1007/978-3-319-12550-3_3

Abstract  This chapter introduces graphical and numerical techniques for describ-
ing the distribution of a categorical variable. Frequency tables are described. Bar 
charts and pie charts are covered as graphical methods. The SPSS commands to 
create these are discussed. In addition, the procedure for transforming a variable 
in SPSS is discussed. Finally, the methods for copying SPSS charts into Microsoft 
Word are covered.

3.1 � Overview

In Chap. 1, we said that clinical practice is continuously informed by the findings 
of clinical research, and that those findings are based on empirical evidence or data. 
But the well-known adage notwithstanding, data cannot speak for themselves, at 
least not literally. Researchers must make sense out of them. To interpret a set of 
data, researchers begin by using descriptive statistics and graphical techniques to 
describe or summarize its distribution. There are many of these statistical tools from 
which to choose, but they generally fall into two broad categories: those appropri-
ate for quantitative variables and those for categorical. A quantitative variable has 
two important properties. It takes on values that reflect quantity, and equal intervals 
between the values correspond to equal differences in quantity. Weight measured 
in pounds is an example. Pounds reflect quantity of weight. For instance, a patient 
who weighs 125 pounds is heavier than one who weighs 100 pounds. Moreover, 
equal differences in pounds correspond to equal differences in weight. For instance, 
a difference of 25 pounds corresponds to the same difference in weight whether the 
difference is between a patient who weighs 100 pounds and a patient who weighs 
125 pounds, or between a patient who weighs 125 pounds and one who weighs 
150 pounds. A categorical variable lacks either the first or both of these properties.

As we saw in Chap. 2, there are two types of categorical variables. Values of a 
nominal variable do not reflect differences in quantity. Instead the values identify 
the group or category to which the patient is said to belong. Gender and ethnicity 
are examples. Values of an ordinal variable reflect differences in amount, but equal 
intervals between the values do not necessarily correspond to equal differences in 
quantity. Instead the values reflect a rank order. Educational level is an example. 
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Patients who graduated from college have more education (we hope) than patients 
who graduated from high school, and high school graduates have more education 
than patients who did not attend high school. But the difference in education be-
tween a college graduate and a high school graduate cannot be assumed to be equal 
to the difference in education between a high school graduate and someone who 
never attended high school.

In this chapter, we will focus on some of the descriptive statistics and graphical 
techniques appropriate for categorical variables: frequencies, percentages, frequen-
cy tables, and bar and pie charts. In the next chapter, we will describe methods ap-
propriate for quantitative variables. The Centers for Disease Control and Prevention 
(CDC) data set that we used in the previous chapter has a number of quantitative 
and categorical variables, so we will use that data set in both chapters.

Sometimes clinical researchers transform a quantitative variable into a categori-
cal one. For example, body mass index (BMI) is a quantitative variable that is often 
converted into a categorical variable. In the CDC data set, respondents whose BMI 
was less than 25 were categorized as “Neither overweight nor obese,” respondents 
whose BMI was 25 or over but less than 30 were categorized as “Overweight,” and 
respondents whose BMI was 30 or over were categorized as “Obese.” Sometimes 
researchers transform a categorical variable into one that has fewer but broader cat-
egories. For example, respondents to the CDC survey reported their general health 
in terms of the following categories: “Excellent,” “Very good,” “Good,” “Fair” and 
“Poor.” This produced a categorical variable, GENERAL HEALTH [GENHLTH] 
(variable 3), that has five values. This variable was transformed into a new one, 
HEALTH STATUS [@_RFHLTH] (variable 58), with two values, “Good or Better 
Health” and “Fair or Poor Health.” To get a feel for how transformations work, we 
will transform some variables in this chapter.

3.2 � Frequency Tables

Frequencies and Percentages  When a variable is categorical, the number of times 
each of its values occurs in a set of data is counted. These counts are called fre-
quencies. When a count or frequency is divided by the total count and multiplied 
by 100, the result is a percentage or percent. The frequencies or percentages of the 
values of a variable constitute its distribution. In this section, we will look at the 
distribution of various categories of BMI in the CDC BRFSS data set. Respondents 
were categorized as “Neither overweight nor Obese” if their BMI were less than 25, 
“Overweight” if their BMI were equal to or greater than 25 but less than 30, and 
“Obese” if their BMI were equal to or greater than 30. To determine the frequencies 
of these categories, we will create a frequency table.

Load the data file, CDC BRFSS.sav [1], into SPSS as you did in the previous 
chapter. Check that the value labels for the variable, BODY MASS INDEX-THREE 
LEVELS CATEGORY [@_BMI4CAT] (variable 79; 1 = Neither overweight nor 
obese, 2 = Overweight, 3 = Obese, 9 = Don’t know/Refused/Missing) have been entered 
and that 9 has been declared as missing. Next, select Analyze > Descriptive Statis-
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tics > Frequencies to bring up the Frequencies dialog box. From the list of variables 
on the left of the dialog box, click the variable BODY MASS INDEX-THREE 
LEVELS CATEGORY. Move that variable to the Variable(s) area on the right by 
clicking on the arrow immediately to the left of the Variable(s) area. Check in the 
lower left corner of the dialog box that Display frequency tables has been checked. 
Next, click the Charts button to bring up the Frequencies: Charts dialog box. Se-
lect Bar charts and Frequencies. Click Continue and then OK. Figures 3.1, 3.2, 
3.3, 3.4, 3.5, 3.6 show these steps.

SPSS will generate the output that you requested and display it in the Viewer, as 
shown in Fig. 3.7.

Fig. 3.2   Selecting the vari-
able to be analyzed

Fig. 3.1   Selecting the frequencies procedure
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Fig. 3.3   Generating the 
frequency table and the 
Charts dialog

Fig. 3.4   Selecting a bar chart

Fig. 3.5   Exiting the Charts 
dialog
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Fig. 3.6   Conducting the analysis

     

Fig. 3.7   Output from the frequencies procedure
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The Viewer consists of two panes. The pane to the left is called the outline pane 
and lists the output’s section headings. Think of this pane as a table of contents or 
index of your output. The pane to the right is called the contents pane and consists 
of the output itself. Clicking any of the section headings in the left pane selects the 
corresponding output in the right pane. This is a handy way of moving quickly from 
one section of output to another when the output file is large. The contents pane 
begins with an SPSS syntax log, followed by two tables and a bar chart.

The first table consists of the number of valid cases, i.e., cases for which data 
were not missing, and the number of cases for which data were missing. In this 
example, there were 7417 valid cases, and 379 cases for which values for this vari-
able were missing. BMI was calculated on the basis of self-reported heights and 
weights. The 379 cases that were counted as missing represent respondents who did 
not know, were unsure or refused to report their height or weight, or who for some 
reason were never asked or whose answers were never recorded.

The second table displays the frequencies of each category. Note that for each 
category the table includes information about its frequency ( Frequency), the fre-
quency expressed as the percentage of all cases ( Percent), the percentage of all 
cases without missing values ( Valid Percent), and the total percentage of valid cases 
in the category and the categories above it ( Cumulative Percent). For example, of 
the 7796 respondents who were interviewed, 2703 were overweight. Thus, 34.7 % 
of all cases were categorized as overweight. As 379 cases included missing data, the 
valid percentage is slightly different, 36.4 %. Finally, 77.0 % of the participants who 
provided a valid response were either overweight or neither overweight nor obese.

3.3 � Bar Charts and Pie Charts

Bar Charts and Frequencies  A bar chart displays along the Y-axis the frequency 
of each value of the categorical variable plotted on the X-axis. The bar chart we 
generated in Sect. 3.2 is shown in Fig. 3.8.

In general, a bar chart is a useful way of presenting data. However, reading the 
exact values of the frequencies from a bar chart can be difficult. If one wishes to 
display the exact values, SPSS can be instructed to generate data labels. This is 
done by double clicking any of the bars and then selecting Elements > Show Data 
Labels from the Chart Editor which is accessed by double clicking the bar chart in 
the viewer. The exact values represented by the bars in the chart will be displayed. 
This is shown in Fig. 3.9, and the resulting bar chart is shown in Fig. 3.10.

To the right of Chart Editor is the chart’s Properties dialog box. By using this 
dialog box, various features of the chart can be modified. For example, the location 

Answer the following question:
3.2.1 � According to these data, what percent of New York State adults were 

obese in 2005?
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of data labels can be changed by double clicking one of the data labels and then 
clicking the Data Value Labels tab, clicking the Custom option in the Label Position 
area, selecting one of the three location icons, and clicking Apply. This is shown in 
Fig. 3.11. To exit the Chart Editor and the Properties dialog box, click the X in the 
upper right-hand corner of the Chart Editor.

Many other aspects of an SPSS chart can be modified. For example:

•	 To modify the numerical entries along the Y-axis, click any number assigned to 
the Y-axis and enter changes in the Minimum, Maximum, Major Increment or 
Origin boxes under the Properties Scale tab. This is shown in Fig. 3.12.

•	 To add a title, select Options > Title in Chart Editor and enter a title in the title 
text box. To adjust the title’s position or its overall look (e.g., its font or color), 
use the Text Layout and Text Style tabs of the Properties dialog box. Click any-
where outside the title text box when finished. This is shown in Fig. 3.13.

•	 To change the background color and remove the frame around the graph, click 
once within the body of the graph and use the Properties Fill & Border tab. This 
is shown in Fig. 3.14.

•	 To make changes to the label of the X- or Y-axis, click the label to select it, click 
again to edit the text, and use the Properties Text Layout and Text Style tabs as 
necessary. Click anywhere outside the text box when finished.

•	 To add text within the body of the graph, select Options > Text Box from Chart 
Editor, enter the information in the resulting text box, drag the box to its desired 

Fig. 3.8   A bar chart

     

3.3 � Bar Charts and Pie Charts�
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location and click anywhere outside the box when finished. To remove the text 
box, click it and press the delete key.

The chart in Fig. 3.15 shows how the bar chart might look with a few edits using 
many of the tools described above.

Bar Charts of Percentages  Sometimes a bar chart of percentages is more useful 
than one showing the number of cases. To generate a chart showing percentages, 
select Percentages instead of Frequencies in the Frequencies: Charts dialog box. 
This was done to generate the graph that is shown in Fig. 3.16.

Charts with Transposed Axes  Sometimes the two axes of a bar chart are trans-
posed. An example is the chart that is shown in Fig. 3.17. This is the same chart as 

Fig. 3.9   Selecting show data labels

   



673.3 � Bar Charts and Pie Charts�

the one shown in Fig. 3.16, except that several edits were made and the axes were 
transposed by selecting Options > Transpose Chart in Chart Editor.

Pie Charts  An alternative to displaying percentages in terms of the heights of bars 
of a bar chart is in terms of the size of slices of a pie chart. The pie chart that is shown 
in Fig. 3.18 displays the distribution of the three categories of BMI. The pie chart 
was generated by conducting a frequency analysis in which the Pie charts option 
of the Frequencies: Charts dialog box was selected. Selecting Elements > Explode 
slice in the Chart Editor resulted in the pie chart shown in Fig. 3.19. In both pie 
charts, data labels were added in the manner explained above.

Chart Builder  In SPSS, bar and pie charts can be generated without conducting 
a frequency analysis. This is done by selecting Graphs > Chart Builder. This will 
open two dialog boxes. The first informs us that before creating a chart, each of our 

Fig. 3.10   Bar chart with data labels
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variables should have the appropriate measure type assigned to it, and if the vari-
able is categorical, its value labels should be defined. We can click Define Variable 
Properties to change measure types or create value labels, or we can click OK to 
go directly to the Chart Builder. In this example, we can click OK. To create our 
bar chart in Chart Builder, select Bar from the Gallery. Drag the picture of the first 
bar chart (the one in the upper left hand corner) to the area just above it. This will 
open another dialog box, Element Properties, to the right of Chart Builder. In Chart 
Builder, drag BODY MASS INDEX-THREE LEVELS CATEGORY from the 
Variables area to the X-Axis box under the picture of the bar chart that you had just 
dragged. Clicking OK at this point will produce a bar chart. Figures 3.20, 3.21, 
3.22, 3.23, 3.24 summarize these steps.

Fig. 3.11   Changing the data 
label position
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To get a graph of percentages instead of number of cases, go to the Element 
Properties dialog box before clicking OK. There select Percentage(?) from the list 
of options in the Statistic drop-down menu and click Apply. Back in Chart Builder, 
click OK to generate the chart. These steps are shown in Figs. 3.25 and 3.26.

Data labels and the look of the graph can be controlled by using Chart Editor in 
the same way as explained earlier.

Fig. 3.12   Changing the 
Y-axis scale
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3.4 � Transforming Variables

It is sometimes useful to convert or transform a quantitative variable into a categori-
cal one, or one categorical variable into another. In this section, we will look at an 
example of each of these transformations.

Recoding a Quantitative Variable  As we saw earlier, the CDC data set includes 
a variable that represents three categories of BMI. Let us create a new categorical 
variable that adds a fourth group—people who are underweight (BMI < 18.50). One 
way to do this is depicted in Figs. 3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34. That 
is, select Transform > Recode into Different Variables. In the Recode into Differ-
ent Variables dialog box, click the third from the last variable of the data set, BODY 
MASS INDEX [BMI] (variable 107), and move it to the Input Variable → Output 
Variable box by clicking the right-pointing arrow. In the Output Variable area, type 
a variable name and a variable label for the new variable into the Name and Label 
boxes. In our example, we happened to name the new variable BMIFourCategories 
(variable names cannot contain spaces), and to label it, BMI Four Categories. Click 

Fig. 3.13   Adding a title
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Change and then Old and New Values. In the Old and New Values dialog box, select 
Range in the Old Value area and enter the range of values for our first category, 
which will be the underweight group. To be sure that we included all qualifying 
cases, set the range to 0 through 18.49. In the New Value area, select Value and enter 
1 in the box. Click Add. Repeat setting the ranges for the second, third and fourth 
categories (18.50 through 24.99, 25 through 29.99, and 30 through 80). These cat-
egories will be the normal, overweight and obese groups, respectively. Any missing 
values in the old variable should be copied into the new one, so select All other 
values in the Old Value area and Copy old values in the New Value area, and click 
Add. Now click Continue and execute the transformation by clicking OK.

SPSS will create the new variable and store it in the very last column of Data 
View, and print the following syntax in the output.

Fig. 3.14   Changing the fill 
and border
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After labeling the values of the new variable, we conducted a frequency analysis 
that generated the frequency table shown in Table 3.1.

Recoding a Categorical Variable  The CDC asked respondents the following 
question: “In general, how satisfied are you with your life?” The response alter-
natives were “Very satisfied,” “Satisfied,” “Dissatisfied,” and “Very dissatisfied.” 
The respondents’ answers are stored in the ordinal variable, SATISFACTION W/
LIFE [LSATISFY] (variable 50; 1 = Very satisfied; 2 = Satisfied, etc.). If we wished, 

Fig. 3.15   An edited bar chart

      

Answer the following question:
3.4.1 � According to these data, what percent of New York state residents in 

2005 was underweight?
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we could recode this variable. For example, we could combine the first two groups 
into a category called “Satisfied or Very Satisfied” and the last two groups into a 
category called “Dissatisfied or Very Dissatisfied.” To do this, we would follow the 
same general procedure that we used for recoding a quantitative variable. We leave 
this for you to do as an exercise question.

3.5 � Copying SPSS Charts into MS Word Documents

In this section, we will review how to copy an SPSS chart into a Microsoft Word 
document. Right-click the chart you’ve created and choose Copy from the result-
ing menu. As an alternative, you can double click the graph to open Chart Editor 
and choose Copy Chart from the Edit menu. Next, place the cursor in the Word 
document where you wish to copy the chart, and execute Word’s paste command 
(e.g., Edit > Paste or Ctrl + V). The chart should now appear. If the size of the 
chart needs to be adjusted, use Word’s Format Picture dialog box to resize it.

Fig. 3.16   A bar chart of percentages

  

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.17   A transposed bar chart

  

Fig. 3.18   A pie chart
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Fig. 3.19   An exploded pie chart

   

Fig. 3.20   Selecting the chart builder

   

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.21   Accepting existing variable properties

   

Fig. 3.22   Selecting a bar chart
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Fig. 3.23   Selecting the variable to plot

   

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.24   Drawing the bar chart
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Fig. 3.25   Creating a bar chart of percentages

   

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.26   Drawing the bar chart of percentages

   

Fig. 3.27   Selecting the recode procedure

3  Describing the Distribution of a Categorical Variable
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Fig. 3.28   Selecting the variable to recode

   

Fig. 3.29   Creating the new variable name and label

   

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.30   Selecting the define old and new values dialog

   

Fig. 3.31   Creating the underweight category

   

3  Describing the Distribution of a Categorical Variable
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Fig. 3.32   Creating the normal category

   

Fig. 3.33   Completing the new variable definition

   

3.5 �� Copying SPSS Charts into MS Word Documents�
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Fig. 3.34   Creating the new variable

   

3  Describing the Distribution of a Categorical Variable

BMI Four Categories

Frequency Percent Valid Percent
Cumulative 

Percent

Valid Underweight 108 1.4 1.5 1.5

Normal 2899 37.2 39.1 40.5

Overweight 2703 34.7 36.4 77.0

Obese 1707 21.9 23.0 100.0

Total 7417 95.1 100.0
Missing System 379 4.9

Total 7796 100.0

Table 3.1   Analysis of recoded variable   

3.6 � Exercise Questions

1.	 Identify each of the following variables as nominal, ordinal or quantitative. For 
each, explain your answer.

a.	 Body temperature
b.	 Blood type
c.	 Blood pressure
d.	 Cause of death
e.	 Disease stage (e.g., mild, moderate or severe)
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2.	 Conduct a frequency analysis of the variable, SATISFACTION W/LIFE 
[LSATISFY] (variable 50; 1 = Very satisfied; 2 = Satisfied, 3 = Dissatisfied, 4 = 
Very dissatisfied; 7 and 9 are missing values).

3.	 Generate a bar chart of percentages for a new variable called LIFE SATISFAC-
TION. The new variable will have two categories. The first category will be 
called “Satisfied or Very Satisfied.” The second category will be called “Dissat-
isfied or Very Dissatisfied.”

4.	 Table 3.2 displays the frequency table for the variable, LIFE SATISFACTION. 
Answer the following questions.

a.	 What percentage of the sample gave valid responses?
b.	 What is a “valid” response?
c.	 What percentage of the sample is dissatisfied or very dissatisfied?

5.	 Figure 3.35 displays three pie charts of the distribution of LIFE SATISFAC-
TION. One is for married people, one for those who are divorced, and one for 
those who are separated.

a.	 According to these data, would you say that adult New York residents in 2005 
were generally satisfied or dissatisfied with their lives? Explain.

b.	 According to these data, does it appear that life satisfaction has something to 
do with marital status? Explain.

Table 3.2   Frequency table for life satisfaction
LIFE SATISFACTION

Frequency Percent Valid Percent
Cumulative 

Percent

Valid Satisfied or Very Satisfied 6840 87.7 93.9 93.9

Dissatisfied or Very 
Dissatisfied 445 5.7 6.1 100.0

Total 7285 93.4 100.0
Missing 7 46 .6

9 19 .2
System 446 5.7
Total 511 6.6

Total 7796 100.0

   

3.6 � Exercise Questions�
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Data Set and Reference

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral risk factor surveillance system survey data. US Department of Health and Human Ser-
vices, Centers for Disease Control and Prevention, Atlanta, Georgia (2005). Public domain. 
For more information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

3  Describing the Distribution of a Categorical Variable

Fig. 3.35   Pie charts of the distribution of life satisfaction

   

http://www.cdc.gov/brfss/
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Chapter 4
Describing the Distribution of a Quantitative 
Variable

© Springer International Publishing Switzerland 2014
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners, 
DOI 10.1007/978-3-319-12550-3_4

Abstract  This chapter reviews measures of central tendency and spread, and graph-
ical techniques that are commonly used to describe the distributions of quantitative 
data. Included are the arithmetic mean and median; interquartile range, variance and 
standard deviation; skewness, kurtosis, and outliers; and histograms, stem-and-leaf 
plots, box plots, and clustered bar charts. The standard error of the mean and the 
95 % confidence interval are described briefly. The chapter concludes with a discus-
sion of transformations and the geometric mean.

4.1 � Overview

We pointed out in Chap. 3 that it is difficult to make sense of data without the use 
of descriptive statistics and graphs. In that chapter, we learned about frequency 
tables and bar and pie charts. However, the variables we studied were categorical. 
When describing the distribution of a quantitative variable, a different set of tools 
is required. In this chapter, we will review many of the descriptive statistics and 
graphical techniques for quantitative data.

Most of the descriptive statistics for a quantitative variable focus on data within a 
single sample. Some of these statistics focus on the overall shape of the distribution 
of the data within the sample. Others, called measures of central tendency, focus 
on the typical score within the sample. Still others, called measures of spread, at-
tend to the variability of the sample scores. Other descriptive statistics focus on the 
variability of sample characteristics across different samples randomly drawn from 
the same population. Perhaps the most important of these are those that focus on 
the extent to which the mean of a set of scores varies from one sample to the next. 
In this chapter, we will study these various measures. We will also study some of 
the graphical methods for displaying the distribution of quantitative data: the stem-
and-leaf plot, the histogram, and the box plot. Stem-and-leaf plots and histograms 
display the shape of the distribution of data. Box plots are useful for determining if 
the distribution of the data is skewed or symmetric and also whether there are any 
extreme observations, called outliers.

We will begin with data from residents of NY state in 2005 who were inter-
viewed by the Centers for Disease Control and Prevention Behavioral Risk Factor 
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Surveillance System (BRFSS). This is the same data set that we used in the previous 
chapter. This time we will focus on the respondents’ body mass index (BMI). We 
will complete the chapter by turning to another data set. These data come from a 
study of the diagnostic value of prostate-specific antigen levels.

4.2 � Describing the Distribution of a Sample

Load the data file, CDC BRFSS.sav [1], into. Select SPSS Analyze > Descriptive 
Statistics > Explore to bring up the Explore dialog box. Move BODY MASS 
INDEX [BMI] (variable 107) into the Dependent List box. In the Display area, 
check Both (in order to generate both statistics and graphs). Click the Statistics 
button to open the Explore: Statistics dialog box and check Descriptives and Per-
centiles. Click Continue to return to the main dialog box. Now click Plots to bring 
up the Explore: Plots dialog box. In the Boxplots area, select Factor levels together. 
In the Descriptive area, check Stem-and-leaf and Histogram. Return to the main 
dialog box by clicking Continue. Run the analysis by clicking OK. These steps are 
depicted in Figs. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7.

Descriptive Statistics  Study the resulting output. It contains a lot of information. 
We will begin with the descriptive statistics.

The Case Processing Summary (Table 4.1) tells the number of valid responses 
for the variable and the number of missing cases.

The Descriptives table (Table 4.2) gives the descriptive statistics. We will look 
at each one.

•	 Mean The mean is the arithmetic average of the data. It is a measure of central 
tendency, meaning that it is one way to describe where the data are centered. It 
should be used when the data are relatively symmetric and there are no outliers. 

Fig. 4.1   Selecting Explore
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Fig. 4.2   Selecting the quantitative variable

 

Fig. 4.3   Opening the explore: statistics dialog
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The value in the Std. Error column gives what is known as the standard error 
(SE) for the mean. It is a measure of how variable means would be from sample 
to sample. If the distribution of the sample data is approximately normal or the 
sample is large, then about 67 % of all possible sample means will be within one 
SE of the population mean.

•	 95 % CI for Mean A confidence interval (CI) for the mean is used to present an 
interval of values that is likely to contain the mean of the population from which 
the data were drawn along with a percentage showing how confident we are that 
the population mean is actually in there (hence the term confidence interval). 
The interpretation of the CI begins with the fact that there are a large number 
of samples than can be taken from the population. If we were to construct 95 % 
CIs for each one of these samples, then 95 % of these intervals would contain the 
population mean and 5 % would not. These will be discussed in more detail in the 
next chapter.

Fig. 4.5   Opening the 
explore: plots dialog
 

Fig. 4.4   Selecting descrip-
tive statistics and percentiles
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Fig. 4.6   Selecting a boxplot, 
a stem-and-leaf plot and a 
histogram

 

Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

BODY MASS INDEX 7417 95.1% 379 4.9% 7796 100.0%

Table 4.1   Number of valid and missing cases associated with the BMI of a random sample of NY 
state residents
 

Fig. 4.7   Executing the 
explore procedure
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•	 5 % Trimmed Mean Trimmed means are intended to keep the good properties 
of the sample mean in the presence of skewed data or outliers. They do this by 
removing a percentage of the largest and smallest observations (trimming) and 
computing the mean of the remaining data. The 5 % indicates that the top and 
bottom 5 % of the data were trimmed in this case.

•	 Median The median is that value that has the same number of observations 
greater than it as are less than it. It is the 50th percentile of the data. It is another 
measure of central tendency. It is relatively unaffected by skewed data or outli-
ers. It gives a better measure of the center of the data than the mean when the 
distribution is skewed or there are outliers.

•	 Variance Variance is a measure of spread. The more that sample scores vary 
from one another, the greater is their variance. Roughly speaking it is approxi-
mately the average squared distance between each observation and the mean.

•	 Std. Deviation The standard deviation is also a measure of spread. It is the 
square root of the variance. It is generally used more than the variance because 
it has the same units as the data. It should be used in those situations where you 
would use the mean to measure the center.

•	 Minimum The minimum, as its name implies, is the smallest observation in the 
data.

•	 Maximum The maximum, as its name implies, is the largest observation in the 
data.

•	 Range The range is a third measure of spread. It is the difference between the 
maximum and the minimum. Thus, it is the distance spanned by the data. It is 
easy to compute, but it is very sensitive to outliers.

Descriptives

Statistic
Std. 
Error

BODY MASS INDEX Mean 26.8767 .06467

95% Confidence Interval 
for Mean

Lower Bound 26.7499

Upper Bound 27.0034

5% Trimmed Mean 26.4811

Median 25.8800

Variance 31.024

Std. Deviation 5.56992

Minimum 9.63

Maximum 70.01

Range 60.38

Interquartile Range 6.42

Skewness 1.355 .028

Kurtosis 3.584 .057

Table 4.2   Descriptive statistics of the BMI of a random sample of NY state residents 
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•	 Interquartile Range The interquartile range is the difference between the 75th 
percentile and the 25th percentile of the data. The 25th, 50th, and 75th percen-
tiles are known as the first, second, and third quartiles, respectively. So, the inter-
quartile range is the distance between the first and third quartiles. That is, it is the 
distance spanned by the middle 50 % of the data. Like the median, it is relatively 
unaffected by outliers and should be used in those situations where you would 
use the median to measure the center of the data.

•	 Skewness Skewness is a measure of the shape of the distribution. It is a measure 
of asymmetry. The normal distribution is symmetric and has a skewness value of 
0. A distribution that is positively skewed has a long right tail, while a distribu-
tion that is negatively skewed has a long left tail. According to SPSS, “a skew-
ness value more than twice its standard error is taken to indicate a departure from 
symmetry.” A positively skewed distribution will have a positive skewness, and 
a negatively skewed distribution will have a negative skewness.

•	 Kurtosis Kurtosis is a measure of the extent to which observations pile up around 
a central point. It is also called peakedness. Again, the standard of comparison 
is the normal distribution. Normal distributions have zero kurtosis. Distributions 
that have positive kurtosis cluster more and have longer tails than those in the 
normal distribution, while distributions that have negative kurtosis cluster less 
and have shorter tails.

The Percentiles table (Table 4.3) gives various percentiles for the data. The top row 
of the table gives the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles comput-
ed using a weighted average method. The percentiles computed using this method 
are the ones used to compute the interquartile range. The percentiles referred to as 
Tukey’s hinges compute the 50th percentile in the same manner as the weighted 
average method. The 25th percentile, however, is obtained by finding the median 
of all the observations that fall below the median of the entire sample, and the 75th 
percentile is obtained by finding the median of all the observations that fall above 
the median of the entire sample.

Graphical Techniques  Now let us look at the various graphs that are included in 
the output.

•	 Histogram Figure 4.8 displays a histogram. A histogram shows the shape of the 
distribution. The range of the data is broken up into a number of equal width 
subintervals called bins. The number of observations in each bin is determined, 
and a bar whose height is proportional to the number of observations in each 
bin is drawn over each bin. The mean, standard deviation, and sample size are 
displayed to the right of the plot.

Percentiles

Percentiles

5 10 25 50 75 90 95

Weighted Average
(Definition 1)

BODY MASS INDEX 19.7800 20.9220 23.0650 25.8800 29.4800 34.0400 37.2800

Tukey's Hinges BODY MASS INDEX 23.0700 25.8800 29.4800

Table 4.3   Percentiles of the BMI of a sample of NY state residents 



94 4  Describing the Distribution of a Quantitative Variable

•	 Stem-and-leaf plot Figure 4.9 displays a stem-and-leaf plot. It too shows the 
shape of the distribution of the data in a manner similar to a histogram, only 
rotated 90° clockwise. It has the additional feature that it orders the data. The val-
ues of the observations are subdivided into two parts—the stems and the leaves. 
For example, an observation of 78 might be divided so that the tens digit, 7, is 
the stem and the units digit, 8, is the leaf. The possible stems are listed on the 
left, and all of the leaves for each stem are listed to the right of the stem. The 
leaves are then ordered in ascending order from left to right. The numbers in the 
extreme left column are the number of observations in each stem. For example, 
there are 38 observations in the 17 stem.

•	 Box plot Figure 4.10 displays the final item in the output, a box plot of the data. 
It is useful for determining if the data are skewed or symmetric and for detecting 
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Fig. 4.8   Histogram of the BMI of a sample of NY state residents
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outliers in the data. It consists of a box that uses the first quartile (the 25th per-
centile) as its lower boundary and the third quartile (the 75th percentile) as its up-
per boundary. A line is drawn in the box at the median (the 50th percentile). Next, 
lines called whiskers are drawn from each end of the box to a point determined 
by the width of the box. Finally, each observation that has a value more extreme 
than the whiskers is drawn with either a circle or an asterisk. These are outliers. 
Outliers with a circle are designated as mild outliers, and those with asterisks are 
designated as extreme outliers. The numbers are the case numbers in the data of 
the outliers.

4.3 � The Standard Error of the Mean

In research, a set of data is often a result of measurements taken from a sample ran-
domly drawn from a much larger population. The goal of the research is to measure 
various aspects of the population. However, because the population is so large, it 
is not possible to take measurements of all members of that population (i.e., take a 
census). Therefore, one must take measurements from a sample of the population, 
and then use those measurements to estimate the values of the variables of interest 
of the entire population. The population quantities of interest are called the param-
eters of the population.

For example, a researcher might be interested in knowing the mean systolic 
blood pressure (SBP) of 10,000 patients. Not having the resources to measure the 
SBP of all 10,000 patients, the researcher measures the SBP of 100 patients ran-
domly chosen from the population, calculates the mean SBP of the 100, and uses 
that sample mean as an estimate of the average SBP of all 10,000 patients.

Whenever a sample result is used to estimate a population parameter, it is im-
portant to know whether the sample result is likely to be close to the population 

Now that we have reviewed the output, see if you can answer the following 
questions:
4.2.1  How many respondents were included in the analysis?
4.2.2  What was the mean BMI? The median?
4.2.3 � Do the values of the mean and median suggest that the distribution of 

BMI scores was skewed? If so, in the positive or negative direction?
4.2.4 � Does your answer seem to be confirmed by the histogram or stem-

and-leaf plot? How so?
4.2.5 � What was the interquartile range? What BMI scores were its lower 

and upper boundaries?
4.2.6  What are the values for skewness and kurtosis?
4.2.7  What conclusions do you draw from the skewness and kurtosis values?
4.2.8  Does the box plot show any mild outliers? Extreme outliers?
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value. For example, if we try to estimate the mean SBP of 10,000 patients by using 
the mean SBP of 100 of those patients, we would want to know if the mean of 100 
patients is approximately the same as the mean SBP of all 10,000. We will never 
know for sure because we will never measure the mean SBP of all 10,000 patients 
and compare that mean with the average of any given sample of 100 patients. How-
ever, we can get a sense of the goodness of the sample mean as an estimate of the 
population mean by noticing how much sample means vary from one sample to the 
next. In the output of Explore this is estimated by the Std. Error of the mean. The 
interpretation goes as follows. If the distribution is roughly normal or if the sample 
is large enough (a commonly used rule of thumb is 30 or more), then about 67 % of 
all sample means based on samples of the same size will be within one SE of the 
population mean. Furthermore, about 95 % will be within two SEs of the population 
mean, and about 99 % will be within three SEs of the population mean. So, if you 
consider the observed SE to be small, then the sample mean is likely to be relatively 
close to the population mean, but if you consider it to be large, then the sample 
would not be a very reliable estimate of the population mean.

The smaller the SE, the less the sample mean will vary across samples. Ideally, 
we want a sample mean that has a very low SE, for such a mean would tell us that its 
value is close to values of the means that we would obtain if we were to take many 
samples, and therefore close to the mean of the population from which we drew 
our sample. However, if the SE is large, we will not have much confidence that our 
sample mean gives us a good sense of the population mean. After all, how can we 
trust any particular sample mean as an estimate of the population mean if different 
samples give us very different results?

Our ability to trust that the average SBP of a sample of patients accurately re-
flects the average SBP of a population of 10,000 patients from which the sample 
was taken will be greater the larger our sample. This is because means based on 
larger samples tend to have smaller SEs. A sample of 200 patients will give us a 
more reliable estimate of the population SBP than would a sample of 100, for exam-
ple. In addition, our trust in our sample result will be enhanced the more the SBP of 
the patients in the sample are similar to one another. This is because means based on 
samples from populations whose scores have small standard deviations tend to have 
small SEs. In addition, we should also try to lower the variability in SBP scores by 
following procedures for measuring blood pressure exactly the same each and every 
time SBP is measured. Large samples and standardization of measurement are key 
to reducing SEs and increasing our confidence in our sample means.

To see if you understand the concept of the standard error, tackle the follow-
ing questions:
4.3.1  What is the standard error of the mean BMI?
4.3.2 � If we were to repeat the CDC’s interviews of NY state residents and 

found that the mean BMI was 28, would we be surprised? What about 25? 
Why?
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4.4 � Comparing Distributions Across Values of a 
Categorical Variable

So far we have looked at the distribution of a quantitative variable across an entire 
sample. However, distributions can vary across subsets of cases within a sample. 
For example, the distribution of BMI in the CDC sample might covary with the 
health status of the respondents or with the extent to which they engage in physical 
activity. In this section we will see if the distribution of BMI covaries with respon-
dents’ self-reports of their general health. We will leave the study of the relation-
ship between BMI and physical activity to an exercise question. As before, we will 
use Explore to generate the descriptive statistics, but this time we will use Chart 
Builder to generate the graphs.

Descriptive Statistics  Before we begin, be sure that 7 and 9 have been declared 
as missing values for the variable, GENERAL HEALTH [GENHLTH] (variable 
3; 1 = Excellent, …, 5 = Poor). Then return to the Analyze > Descriptive Statistics 
> Explore dialog box and, as shown in Figs.  4.11 and 4.12, move GENERAL 
HEALTH into the Factor List box. We will be generating graphs with Chart 
Builder, so select Statistics in the Display area. Click OK.

Table 4.4 is an edited version of the resulting descriptives table.

Box Plots  You should have noticed that the central tendency and spread of BMI 
increased as self-reported health decreased. A box plot can display these increases.

Select Graphs > Chart Builder and make your way to the Chart Builder dialog 
box. Then select Boxplot in the Gallery area. Drag the first box plot option into the 
window above it. Then drag BODY MASS INDEX [BMI] (variable 107) to the 
Y-axis and GENERAL HEALTH [GENHLTH] (variable 3) to the X-axis. Click 
OK to generate the box plot. These steps are displayed in Figs. 4.13, 4.14 and 4.15.

The box plot is reproduced in Fig. 4.16.

Try answering the following questions:
4.4.1 � Judging from the resulting table of descriptive statistics, does there 

appear to be a relationship between general health and average BMI?
4.4.2  How about between general health and the variability of BMI scores?
4.4.3  How would you describe those relationships?

Answer the following questions:
4.4.4 � How can we tell from the box plot that the median BMI increases as 

reported health varies from excellent to poor?
4.4.5 � How can we tell from the box plot that the interquartile range increas-

es as reported health varies from excellent to poor?
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In the box plot of Fig. 4.16, the horizontal lines within the boxes and the heights 
of those boxes show the increases in the medians and interquartile ranges of BMI 
across the values of a single categorical variable. Box plots can also display distri-
butions across levels of more than one categorical variable. For example, a box plot 
can display the relationship between BMI and general health for each gender.

Fig. 4.12   Requesting output in explore that displays statistics but not graphs

 

Fig. 4.11   Selecting a factor in explore
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Return to Chart Builder. Click the Groups/Point ID tab. Select Columns panel 
variable to display the Panel box. Drag the variable SEX [SEX] (variable 32) to the 
Panel box and click OK. These steps are displayed in Fig. 4.17.

The resulting box plot is reproduced in Fig. 4.18.

Descriptives

GENERAL HEALTH Statistic
Std. 
Error

BODY MASS INDEX Excellent Mean 24.9477 .10198

95% Confidence Interval 
for Mean

Lower Bound 24.7477

Upper Bound 25.1478

Std. Deviation 4.05865

Very good Mean 26.4026 .09980

95% Confidence Interval 
for Mean

Lower Bound 26.2069

Upper Bound 26.5983

Std. Deviation 4.92465

Good Mean 27.8306 .12940

95% Confidence Interval 
for Mean

Lower Bound 27.5768

Upper Bound 28.0843

Std. Deviation 6.01386

Fair Mean 28.4057 .20867

95% Confidence Interval 
for Mean

Lower Bound 27.9961

Upper Bound 28.8152

Std. Deviation 6.30856

Poor Mean 29.2027 .43187

95% Confidence Interval 
for Mean

Lower Bound 28.3529

Upper Bound 30.0525

Std. Deviation 7.56698

Table 4.4   Descriptive statistics of the BMI of NY state residents of varying levels of general 
health
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Bar Charts  Bar charts are frequently used to display various properties of a distri-
bution across values of categorical variables. For example, the mean BMI of male 
and female respondents across levels of general health can be displayed in a clus-
tered bar chart.

Fig. 4.13   Selecting a box plot in chart builder

 

4.4.6 � Does the relationship between median BMI and general health seem 
to be similar for men and women?

4.4.7 � Does the relationship between the interquartile range and general 
health seem to be similar for men and women?

4.4 �� Comparing Distributions Across Values of a Categorical Variable�
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Return to Chart Builder. Select Bar from the Gallery and drag the picture of the 
second bar chart to the window immediately above it. Drag GENERAL HEALTH 
to the X-Axis box and drag BODY MASS INDEX to the Y-Axis box. In order to 
graph the relationship between BMI and general health separately for men and 
women, drag the variable, SEX into the Cluster: set color box. Click OK to gener-
ate the graph. These steps are displayed in Figs. 4.19, 4.20 and 4.21.

Figure 4.22 displays an edited version of the resulting clustered bar chart. (Be-
cause Fig. 4.22 is in grayscale rather than in color, we modified the formatting of 
the bars representing men and women).

Descriptive statistics other than the mean can also be displayed in a bar chart 
by making use of the Element Properties dialog box that can be found to the right 
of the Chart Builder. For example, in order to plot standard deviations instead of 

Fig. 4.14   Selecting a variable for the Y-axis
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means, click Mean in the Statistic box of the Element Properties dialog box and 
select Standard Deviation from the drop down menu. Click Apply and notice that 
the Y-Axis box now reads StdDev BODY MASS INDEX. Click OK to generate a bar 
chart of standard deviations. These steps are displayed in Figs. 4.23, 4.24 and 4.25.

The clustered bar chart of the standard deviations is displayed in Fig. 4.26.

Fig. 4.15   Selecting a variable for the X-axis and generating the box plot

 

4.4.8 � How would you describe the relationship between mean BMI and 
general health?

4.4.9 � How about the relationship between the standard deviation and gen-
eral health?

4.4.10  Do these relationships seem to be similar for men and women?
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4.5 � Transforming a Quantitative Variable

Quantitative variables are sometimes modified or transformed into new variables. 
We explored one reason for doing this in the previous chapter: to convert a quan-
titative variable into a categorical variable. In this section, we will explore three 
additional reasons: to generate a new quantitative variable, to change the shape of 
a distribution, and to make the variability of data across two or more groups more 
nearly equal. To demonstrate, we will use data from a study of prostate cancer.

Generating a new quantitative variable Open PSA.sav [2]. This file consists of 
301 men who reported to the urology department at the Naval Medical Center San 
Diego. Their prostate-specific antigen (PSA) levels (in ng/ml) are stored in the vari-
able Prostate-Specific Antigen Level (ng/ml) [psa] (variable 5), and the volume 
(in ml) of their prostates is stored in Volume of Prostate (ml) [vol] (variable 6). From 
these two quantitative variables, a new quantitative variable was created, Prostate-
specific Antigen Density Level [psad] (variable 7) in order to determine whether 
PSA density is superior to PSA levels in detecting the presence of prostate cancer. 
(In a later chapter, we will conduct an analysis to determine which one was better). 
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To create the new variable, each patient’s PSA level was divided by the volume of 
his prostate:

� (4.1)

To conduct this transformation, choose Transform > Compute Variable to open 
the Compute Variable dialog box. In the Target Variable window, give the new 
variable a name, such as PSADensity. Remember from Chap.  2 that SPSS does 
not accept spaces in variable names. Next, give the new variable a variable label, 
such as PSA Density, by clicking Type & Label to open the Type & Label dialog 
box, entering the label into the Label window, and clicking Continue. Now select 

/ .psad psa vol=

Fig. 4.17   Adding a columns panel variable to a box plot
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Prostate-Specific Antigen Level (ng/ml) from the list of variables and click the 
right-pointing arrow to move the variable to the Numeric Expression window. From 
the set of buttons representing various arithmetic operations, click the button with 
the division sign (/). Select Volume of Prostate (ml) and move it to the Numeric 
Expression window. You have now told SPSS how to create the new variable. Click 
OK to execute the transformation. The steps for computing this new variable are 
displayed in Figs. 4.27, 4.28, 4.29, 4.30, 4.31 and 4.32.

The new variable will be stored in the last column of the data file. Go to Data 
View and scroll over to the last column to see the results of the transformation. Com-
pare the values of the new variable with those of Prostate-specific Antigen Density 
Level [psad] (variable 7). The values of the two variables should be identical except 
for rounding error.

Changing the Shape of a Distribution  Another purpose of a transformation is 
to change the shape of the distribution of a variable. For example, there are times 
when an analysis of a variable requires that the variable be normally distributed. If 
the variable is not normal, it might be possible to transform it into one that is, or at 
least into one that more closely approximates a normal distribution. The analysis 
would then be conducted on the transformed variable. One such transformation is 
a log transformation, which converts the values of a variable into their logarithmic 
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equivalents. The statistical analysis is then conducted on the log values. A log trans-
formation is used when the distribution of the original variable is positively skewed. 
As an example, let us look at the distribution of the variable, prostate-specific anti-
gen level (ng/ml), in the PSA.sav data set. Across the 301 patients, the PSA levels 
varied from 0.3 to 221.0.

To generate a histogram of the distribution, we could use Explore, but let us use 
instead Chart Builder which can also produce histograms. Return to Chart Builder. 
Select Histogram from the Gallery and drag the first histogram (called a simple his-
togram) in the row of histograms to the window above it. Drag Prostate-Specific 
Antigen Level (ng/ml) to the X-Axis box and click OK. These steps are displayed 
in Fig. 4.33.

The histogram is shown in Fig. 4.34. We can see that the data are not normally 
distributed. For example, most PSA levels are located to the extreme left, rather 
than in the middle of the distribution, and there are several extremely high values. 

Fig. 4.19   Selecting clustered bar chart from the gallery and assigning a variable to the X-axis
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Had we used Explore to generate the histogram, we would have seen that the skew-
ness is 8.113 and its kurtosis is 87.725.

To make these positively skewed data more nearly normal, we can try a log 
transformation. Usually, this transformation involves taking either the log to the 
base 10 ( log10) or the natural logarithm ( ln) of the variable. Here, we will do the 
former, although we could have just as easily taken the natural log. The log10 of a 
number is the value that when used as the exponent of 10 returns that number. For 
example, the log10 of 10 is 1 because 101 equals 10. The log10 of 100 is 2 because 102 
equals 100. The log10 of 1 is zero because 100 equals 1. The log10 of values between 
0 and 1 are negative. For example, the log10 of 0.5 is − 0.301. Thus, the log10 of PSA 
levels of 0.5, 1, 10 and 100 would be − 0.301, 0, 1 and 2. The log10 of our highest 
PSA level, 221, is 2.344.

Fig. 4.20   Assigning a variable to the Y-axis of a clustered bar chart
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To conduct the log transformation, return to the Compute Variable dialog box. 
Click Reset. In the Target Variable window, enter a name for the new variable, such 
as LogPSA, and in the Type & Label dialog box, enter a variable label, such as Log 
PSA. To set up the numeric expression, select Arithmetic from the Function group 
window. In the Function and Special Variables window, select Lg10 and click the 
up pointing arrow. Select Prostate-Specific Antigen Level (ng/ml) from the list of 
variables and click the right pointing arrow. These latter six steps are displayed in 
Figs. 4.35, 4.36 and 4.37.

The resulting histogram of the log10 of the PSA levels is displayed in Fig. 4.38.
We can see from the histogram that by taking the log of the PSA values, we 

have created a variable that still measures levels of PSA, but whose distribution 
more closely approximates a normal distribution than did the distribution of the 

Fig. 4.21   Selecting a variable to be the cluster variable and generating the clustered bar chart
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original values. If we had used Explore to generate the histogram of the log values, 
we would have seen that the skewness and kurtosis of the transformed variable are 
much closer to zero than they were for the original variable. The skewness of the 
transformed variable is − 0.20, and its kurtosis is 0.832.

Medical researchers can use several other transformations to convert a nonnor-
mal distribution into one that approximates a normal distribution. These include 
taking the reciprocal (dividing each value into one) or the square root of the variable 
if the distribution is positively skewed, and squaring the variable if the distribution 
is negatively skewed.

Equalizing Variability Across Groups  There are times when a statistical com-
parison of the distribution of a variable across groups requires that the variability of 
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the distribution be constant across those groups. If constancy is absent, then the data 
can sometimes be transformed to reduce the inequality of the variances. Several 
transformations can be tried, including taking the reciprocal or square root of the 
variable. A log transformation can also be effective. As an example of the latter, let 
us return to the PSA.sav data set. Table 4.5 displays some of the output generated 
by Explore. The data are the PSA levels and their log10 equivalents of two groups 
of patients: those who had prostate cancer and those who did not. Cancer was diag-
nosed by biopsy.

Fig. 4.23   Selecting the stan-
dard deviation as the descrip-
tive statistic to be displayed 
in a clustered bar chart

 

Answer the following questions:
4.5.1  What was the mean PSA level of patients with prostate cancer?
4.5.2  What was the mean PSA level of patients who were disease-free?
4.5.3  What were the standard deviations of the PSA levels of the two groups?



112 4  Describing the Distribution of a Quantitative Variable

We can see from the output that the standard deviations of the PSA levels of the 
two groups of patients were very different while the standard deviations of the log 
values were similar. Consequently, if we wished to compare the average PSA levels 
of the two groups of patients with a measure of PSA that produces similar variabil-
ity across the two groups, we could use log values of PSA. Our comparison though 
would be in terms of logarithms, not in terms of the original units of measurement. 
If after we had conducted our analysis, we wanted to express our findings in terms 
of the original PSA units, we would have to convert the results obtained with the 
transformed variable back into the original units of measurement. This is done by 
computing the antilog or exponent of the log. The exponent of a log is equal to the 

4.5.4  Were these two standard deviations similar?
4.5.5  What were the standard deviations of the log10 values of the two groups?
4.5.6  Were the standard deviations of the log10 values similar?

Fig. 4.24   Applying the selec-
tion of the standard deviation 
as the descriptive statistic to 
be displayed in a clustered 
bar chart
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base of the log raised to a power equal to the log. For example, according to the 
output above, the mean of the log10 PSA levels of patients with prostate cancer was 
0.9105. If we raise 10 to the power of 0.9105 (100.9105), the result is 8.138. The ex-
ponent of 0.9105 is 8.138.

The mean of a variable is sometimes called the variable’s arithmetic mean. In 
our example, the arithmetic mean of the PSA levels of patients with cancer was 
15.548. The exponent of the mean of the log of the values of a variable is called the 
variable’s geometric mean. In our example, the geometric mean of the PSA levels 
of the prostate cancer patients was 8.138. Geometric means are less sensitive to 

Fig. 4.25   Generating a clustered bar chart displaying the standard deviation of the BMI of men 
and women of varying levels of general health
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Fig. 4.27   Opening the compute variable dialog
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Fig. 4.29   Labeling the 
variable
 

Fig. 4.28   Naming the new variable and opening the Type & Label dialog
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Fig. 4.31   Completing the numeric expression

 

Fig. 4.30   Moving a variable to the numeric expression window
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extreme values than arithmetic means. As a result, when the distribution of a vari-
able includes extreme values, the variable’s geometric mean will be smaller than its 
arithmetic mean, as is the case in our example.

4.6 � Exercise Questions

1.	 Return to the CDC data set. Respondents were asked whether they engage in 
moderate physical activity for at least 10 min at a time during a typical week. 
Respondents who answered in the affirmative were then asked the number of 
days per week they did so and the total time they spent per day engaged in that 
activity. The number of days per week is stored in the variable, DAYS PER 
WEEK OF MOD. PHYS. ACT [MODPADAY] (variable 44), and ranges from 
1 to 7. Values of 77, 88 and 99 should be declared missing values. The num-
ber of minutes per day is stored in MINUTES OF MODERATE PHYSICAL 
ACTIVITY [@_MODPAMN] (variable 94), and ranges from 0 to 599. Using 

Fig. 4.32   Executing the transformation
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Explore, study the distribution of the number of minutes per day of moderate 
physical activity reported by respondents.

a.	 How many respondents were included in the analysis?
b.	 What was the mean number of minutes per day? The median?
c.	 Do the above values of the mean and median suggest that the distribution of 

minutes was skewed? If so, in the positive or negative direction?
d.	 What was the skewness of the distribution of minutes? Does this value indi-

cate that the distribution was skewed? In which direction?
e.	 Did the distribution of minutes include outliers?
f.	 What was the interquartile range?
g.	 What was the range?

Fig. 4.33   Creating a histogram of a distribution of PSA levels
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h.	 We can be 95 % confident that on average, adult residents of NY state spend 
_________ to __________ minutes per day engaged in moderate physical 
activity.

2.	 Using Explore once again, study the relationship between BODY MASS INDEX- 
THREE LEVELS CATEGORY [@_BMI4CAT] (variable 79) and MINUTES 
OF MODERATE PHYSICAL ACTIVITY [@_MODPAMN] (variable 94). Be 
sure that 9 has been declared a missing value for the BMI variable.

a.	 For each category, report in Table 4.6 the mean number of minutes and the 
corresponding SE.
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Fig. 4.34   Histogram of the distribution of the PSA levels of a sample of 301 men
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Fig. 4.35   Selecting log10 as the function to be used in a transformation

 

Fig. 4.36   Selecting a variable to be transformed into its logarithm equivalent
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b.	 Describe the relationship between BMI category and moderate physical 
activity.

3.	 Using Chart Builder, create a bar graph to determine if the relationship between 
BMI category and mean moderate physical activity that you described in 2b is 
the same across sex.

a.	 Overall, which sex appears to engage in more minutes of moderate activity?
b.	 Does the relationship between BMI and moderate activity appear to be the 

same for each sex?

4.	 In this question, focus on respondents who reported engaging in moderate physi-
cal activity for at least 10 min at a time. That is, use Data > Select Cases to limit 
the analysis to people for whom MINUTES OF MODERATE PHYSICAL 
ACTIVITY [@_MODPAMN] (variable 94) was greater than zero. Then, using 
Transform, create a variable, MINUTES PER WEEK [MINUTES_WEEK], that 
stores the number of minutes per week these respondents engaged in moder-
ate physical activity: To create this variable, multiply DAYS PER WEEK OF 

Fig. 4.37   Executing the logarithm transformation
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MOD. PHYS. ACT [MODPADAY] (variable 44) by MINUTES OF MODER-
ATE PHYSICAL ACTIVITY:

� (4.2)

Analyze the new variable with Explore and report in Table 4.7 the sample size, me-
dian and interquartile range for each sex.

5.	 Figure 4.39 is the distribution of minutes per week for men and women who 
engaged in moderate physical activity for at least 10 min at a time during a typi-
cal week. Figure 4.40 is the log10 transformation of those distributions. Table 4.8 
displays the means and standard deviations of the four distributions.

a.	 Does the log transformation appear to have normalized the distributions? 
Why or why not?

b.	 Does the log transformation appear to have equalized the spread of the distri-
butions? Why or why not?

MINUTES WEEK_ *@_= MODPADAY MODPAMN.
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Fig. 4.38   Histogram of the distribution of the log10 PSA levels of a sample of 301 men
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Descriptives

Biopsy Result Statistic Std. Error

Prostate-Specific Antigen 
Level (ng/ml)

Cancer Present Mean 15.548 2.8688

95% Confidence Interval 
for Mean

Lower Bound 9.852

Upper Bound 21.244

Std. Deviation 27.9615

Cancer Absent Mean 5.666 .3753

95% Confidence Interval 
for Mean

Lower Bound 4.926

Upper Bound 6.406

Std. Deviation 5.3862

Log PSA Cancer Present Mean .9105 .04804

95% Confidence Interval 
for Mean

Lower Bound .8151

Upper Bound 1.0058

Std. Deviation .46822

Cancer Absent Mean .5752 .03009

95% Confidence Interval 
for Mean

Lower Bound .5158

Upper Bound .6345

Std. Deviation .43189

Table 4.5   Descriptive statistics of the PSA Levels and their Log10 equivalents of patients with and 
without prostate cancer
 

Table 4.6   BMI category and number of minutes per day engaged in moderate physical activity
BMI category Mean SE
Neither overweight nor obese
Overweight
Obese

Table 4.7   Minutes per week of moderate physical activity of respondents engaging in such activ-
ity for at least 10 min at a time
Gender Sample size Median Interquartile range
Male
Female

4.6 � Exercise Questions�
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c.	 The geometric mean (GM) for men was approximately 190.55. It was calcu-
lated with the following formula:

� (4.3)

What were the values of y and x that were used to calculate the geometric mean 
of men?
y = __________; x = __________.

d.	 Both the arithmetic and geometric means are measures of central tendency. 
Which provides the truer measure of the average number of minutes? Why?

GM = yx .
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Data Sets and References

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
Services, Centers for Disease Control and Prevention Public domain, Atlanta (2005). For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2.	 PAS.sav obtained from: Riffenburgh, R.H.: Statistics in Medicine, 2nd edn. Elsevier, Burling-
ton (2006). (With the kind permission of the Elsevier Books and Dr. Thomas K. Huisman) 
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Variable Mean (SD)
Minutes per week
Man 335.01 (465.65)
Woman 292.80 (400.88)
Log minutes per week
Man 2.28 (0.45)
Woman 2.25 (0.42)

Table 4.8   Mean (SD) 
minutes and log minutes of 
exercise per week
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Chapter 5
Introduction to Statistical Inference

Abstract  This is an introduction to the two key tools for statistical inference. Con-
fidence intervals on a population mean are introduced. This is followed by an intro-
duction to the ideas behind hypothesis testing. They are applied to test a population 
mean. Since these procedures can depend, in the case of small samples, on the 
population distribution being normal, tests of this assumption are discussed. When 
the usual tests cannot be used, the Wilcoxon signed ranks test is introduced. This 
is followed by a discussion of statistical power and the difference between clinical 
significance and statistical significance.

5.1 � Overview

In Chap. 2, we concentrated on becoming familiar with SPSS environment, seeing 
how to manipulate a data file to prepare it for analysis, how to save analysis, and 
how to transfer analysis from SPSS to a Word document. In Chap. 3, we learned 
how to describe the distribution of a categorical variable, while in Chap. 4, we 
learned how to describe the distribution of a quantitative variable by using measures 
of central tendency, measures of spread, skewness, and kurtosis. We also learned 
to describe the distribution of a quantitative variable graphically by constructing 
stem-and-leaf plots, histograms, and box plots. In all of the analyses, we have been 
interested in describing the distribution of our sample data. These types of analyses 
come under the general heading of descriptive statistics.

A logical, important question is whether or not the information gained from a 
sample is indicative of a similar pattern in the population from which the sample 
was drawn. For example, in a sample of quantitative data, we can compute the 
sample mean. This tells us something about the “center” of the data. What does this 
sample mean tell us about the “center” of the population (the population mean)? We 
are trying to use a sample result to infer a population quantity called a population 
parameter. This type of analysis is commonly referred to as inferential statistics. 
In this chapter, we focus on making inferences regarding the center of the popula-
tion using a single sample from that population. Subsequent chapters will deal with 
other population parameters and research designs.

© Springer International Publishing Switzerland 2014
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners, 
DOI 10.1007/978-3-319-12550-3_5



128 5  Introduction to Statistical Inference

In order to make valid inferences about population quantities, it is necessary that 
the data drawn from the population of interest are a random sample from the target 
population. This is the only way to ensure that the data are representative of the 
general population. For example, the data in the file CDC BRFSS.sav [1] consist 
of 7796 residents of New York State aged 18 or older who were interviewed in 2005 
by the Centers for Disease Control and Prevention Behavioral Risk Factor Surveil-
lance System (BRFSS). These were telephone interviews. The telephone numbers 
were obtained using a technique known as random digit dialing. It is exactly what 
it sounds like—telephone numbers from New York State were selected at random. 
To compensate for nonresponse and other factors, the results are then weighted to 
account for the possibility of systematic under- or overrepresentation of population 
subgroups. In this way, we can view these data as constituting a random sample of 
adults in New York State.

Not all statistical studies gather data in this manner. Suppose we are investigat-
ing the effect, if any, of a new drug on patients with hypertension, and we have a 
set of volunteers for the study. It is common practice to view these hypertensive 
patients as being representative of all persons with the condition, and to randomly 
assign patients to a treatment group and a control group. In this way, assuming that 
we have a random sample is reasonable.

In order to gain information regarding the value of a population parameter, we 
need to decide how to process the sample data. That is, we need to decide on what 
statistic to use. A statistic is a numerical value that is computed using sample data. 
For example, if we are interested in the population mean, we would typically use 
the sample mean as a basis for our analysis. Similarly, if we are considering the 
population standard deviation (SD), then the sample SD would be the statistic of 
choice. Since we are considering making inferences regarding the “center” of the 
population in this chapter, two of the three procedures we will investigate will start 
with the sample mean. The third procedure makes inferences about the population 
median and uses an entirely different approach.

Before we get into a detailed discussion of the procedures and how SPSS con-
ducts them, it is necessary to review a little of the logic that underlies them. That is, 
we will discuss what confidence intervals (CIs) are and how to interpret them. We 
will also discuss what a hypothesis test is and how it works.

5.2 � Confidence Intervals for a Population Mean

We introduced CIs in our discussion of the Explore procedure in the preceding 
chapter. CIs are methods that are intended to estimate the value of a population 
parameter. The value of the sample statistic that is associated with the parameter 
of interest can be used to get a good single number estimate for that parameter. 
However, since the value of the statistic will vary from sample to sample (a phe-
nomenon known as sampling variability), you cannot assume that the value you get 
from a single sample will be equal to the value of the parameter. If the statistic is 
well chosen, you can be fairly confident that, on average, its value is pretty close to 
that of the parameter. However, given the nature of random sampling, you cannot 
always be certain.
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The idea behind a CI is to derive a range (called the confidence interval) of pos-
sible values for the parameter that is reasonable given the value of the statistic and, 
along with that interval, provide a measure of how confident (called the confidence 
level) you are that the parameter is actually somewhere in that interval. Confidence 
levels are stated in percent. Since we would like to be very confident that the param-
eter is in your particular interval, confidence levels are usually chosen near 100 %. 
You cannot use 100 % because a 100 % CI would have to span all possible values 
for the parameter, and that would not serve to pin down the parameter’s value. Com-
mon values are 90, 95, and 99 %, with 95 % being by far the one most frequently 
chosen.

The interpretation of the confidence level is as follows. Suppose, for the sake of 
example, we construct a 95 % CI for the population mean. This means that 95 % of 
all possible CIs will contain the true population mean, and 5 % will not. We do not 
know if the CI we just constructed is one of the good 95 % or one of the bad 5 %. 
However, since 95 % of all intervals will contain the population mean, we can say 
that we are 95 % “confident” that the population mean is in our interval.

The width of a CI depends on the confidence level chosen. Higher confidence 
levels result in wider CIs. Thus, a 99 % CI has a greater likelihood of containing the 
parameter of interest, but at the cost of being less precise. On the other hand, a 90 % 
CI is more precise, in the sense of being narrower, but at the expense of not contain-
ing the parameter of interest as often. A 95 % confidence level is a good compro-
mise between 90 and 99 %. Other factors affect the width of a CI. If the underlying 
variability in the population is great, then CIs will be wider than for populations 
which are less variable everything else being constant. In addition, sample size af-
fects the width of a CI. Larger sample sizes reduce the variability of the statistics 
on which CIs are based. The net effect is that CIs using larger sample sizes will be 
narrower than CIs based on smaller sample sizes, everything else being equal.

In this chapter, we use SPSS to construct CIs for the population mean. Although 
you will not need to construct CIs by hand, it is worthwhile that you be acquainted 
with how SPSS does it. When calculating a CI for a population mean, the statistic 
that serves as the basis for the interval is the sample mean. Generically, the symbol 
for the sample mean is X . The variability in the population is measured using the 
sample SD, whose symbol is s. The sample size is denoted by n. The confidence 
level is accounted for by a multiplying factor called the critical value, denoted by 
t *, obtained by using what is known as a t distribution. If the underlying population 
has a normal distribution, or if the sample size is large enough (a popular rule of 
thumb is n ≥ 30 ), then using the t distribution is appropriate. The larger confidence 
levels result in higher values for t *. The resulting formula for a CI for the popula-
tion mean is

� (5.1)

We are presenting the formulas for the procedures in this chapter so that you know 
what SPSS uses. You will have no need to do these calculations by hand. Therefore, 
in succeeding chapters, we will not show the formulas. As you can see, the interval 
will be centered at the sample mean. Also, higher values of t * (i.e., higher confi-

X t
s

n
± ×
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dence levels) and s contribute to wider intervals. In addition, higher values of n 
contribute to narrower intervals.

An example: the mean Body Mass Index (BMI) of New York state adults We 
wish to construct CIs for the variable, BODY MASS INDEX [BMI] (variable 107), 
found in the data file, CDC BRFSS.sav.

To generate the CIs with SPSS, load the data file. As we saw in Chap. 4, part 
of the standard output of the Explore procedure (Analyze > Descriptive Statis-
tics > Explore) is a CI for the mean. The default interval has a confidence level of 
95 %. This can be changed to any desired confidence level by clicking Statistics to 
open the Explore: Statistics dialog box shown in Figs. 5.1, 5.2, and 5.3. To change 
the confidence level, type the desired confidence level, in percent, in the Confidence 
Interval for Mean box and click Continue

Fig. 5.2   Changing the confi-
dence level
 

Fig. 5.1   Selecting the Explore: Statistics dialog
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Use the Explore procedure to construct 95, 99, and 90 % CIs for the mean of 
BODY MASS INDEX. Study the resulting output.

The partial output displayed in Tables 5.1, 5.2 and 5.3 shows the 95, 90, and 99 % 
CIs for the mean of BODY MASS INDEX, respectively.

Descriptives

Statistic
Std. 
Error

BODY MASS INDEX Mean 26.8767 .06467

90% Confidence Interval 
for Mean

Lower Bound 26.7703

Upper Bound 26.9830

Table 5.2   90 % Confidence interval for body mass index 

Descriptives

Statistic
Std. 
Error

BODY MASS INDEX Mean 26.8767 .06467

95% Confidence Interval 
for Mean

Lower Bound 26.7499

Upper Bound 27.0034

Table 5.1   95 % Confidence interval for body mass index 

Fig. 5.3   Constructing the confidence interval
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Answer the following questions:
5.2.1  What is the 95 % confidence interval?
5.2.2  What is the 99 % confidence interval?
5.2.3  What is the 90 % confidence interval?
5.2.4  How do the three confidence intervals compare?
�5.2.5 � Is the actual population mean body mass index in any of your intervals?
�5.2.6 � Which of your three confidence intervals is most likely to contain the 

true population body mass index?

5.3 � Test of Hypotheses

The other statistical procedure that we will discuss is known as a test of hypoth-
eses. While a CI is designed to provide a way to estimate the value of a population 
parameter, a statistical test is intended to decide between two statements about the 
value of a population parameter. Each statement about the value of the population 
parameter is a hypothesis.

Null and Alternative Hypotheses  One hypothesis is referred to as the null hypoth-
esis, and the other hypothesis is referred to as the alternative hypothesis. It is com-
mon practice for the null hypothesis to be the statement you feel should be false. The 
null hypothesis statement must always state that the parameter is equal to a specific 
value. The alternative hypothesis will state that the parameter is less than the value 
stated in the null hypothesis, greater than the value stated in the null hypothesis, or 
is not equal to the value stated in the null hypothesis. Which of these three versions 
of the alternative hypothesis should be used depends on the context of the problem.

There is some terminology that is commonly used in testing. When the alterna-
tive hypothesis is either greater than or less than, the alternative hypothesis is said to 
be one-tailed or one-sided. A test with a one-sided alternative hypothesis is referred 
to as a one-tailed test or a one-sided test. If the alternative hypothesis is not equal 
to, then the alternative is said to be two-tailed or two-sided. A test with a two-sided 
alternative hypothesis is referred to as a two-tailed test or a two-sided test.

As an example, suppose we wish to test hypotheses about the mean BMI of a 
population, and you believe that the mean BMI is < 30 (not obese). One hypothesis 
would be that the mean BMI is < 30. As a consequence, the other hypothesis would 

Descriptives

Statistic
Std. 
Error

BODY MASS INDEX Mean 26.8767 .06467

99% Confidence Interval 
for Mean

Lower Bound 26.7100

Upper Bound 27.0433

Table 5.3   99 % Confidence interval for body mass index 
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be that the mean BMI is ≥ 30. Since the second statement contains equality, it be-
comes the null hypothesis. The statement that we believe is true becomes the alter-
native hypothesis. It is common practice to neglect the inequality part of the null 
hypothesis and simply restate it as that the mean BMI is equal to 30.

Test Statistics  Once the null and alternative hypotheses have been formulated, 
we need a procedure for determining which hypothesis is better supported by the 
sample data. A typical starting point is the sample statistic that is associated with 
the parameter being tested. Since we will be discussing testing hypotheses about a 
population mean, the appropriate statistic will be X , the sample mean. Using the 
sample statistic, we compute what is called the test statistic. The test statistic is 
computed assuming that the value of the parameter specified in the null hypothesis 
is true. This is why the null hypothesis must contain equality.

The formula for the test statistic for tests on a population mean is

�
(5.2)

where T is the name of the test statistic, X is the sample mean, 0µ is the value of the 
population mean specified in the null hypothesis, s is the sample standard deviation 
(SD), and n is the sample size. The use of 0µ in the formula is how the test statistic 
assumes that the null hypothesis is true. The numerator in T is the distance that the 
sample mean is from the value of the population mean when the null hypothesis is 
true. The denominator in T is the standard error of the mean ( SEM). Consequently, 
the test statistic for the population mean measures how many standard errors the sam-
ple mean is from the population mean when the null hypothesis is true. It is less likely 
that the null hypothesis is true when this distance, in standard error terms, is large.

Statistical Significance and p-Values  In order to ascertain which hypothesis is 
better supported by the data we compute the probability of observing a value of our 
test statistic that is as extreme or more extreme than the value we compute when the 
null hypothesis is true. This probability is called the p-value of the test. The calcula-
tion of the p-value depends on the form of the alternative hypothesis. For tests on a 
population mean, the p-value calculations are as shown in Table 5.4. µ denotes the 
population mean, Pr denotes a probability, and t denotes the value of T calculated 
using sample data. The probability is calculated using a distribution known as the 

0 ,
/

X
T

s n

-
=

µ

Table 5.4   P-values for testing a population mean 
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t distribution. Using the t distribution is appropriate as long as we have a random 
sample, and either the population distribution is normal or the sample size is large 
enough (a typical rule of thumb is n ≥ 30 ).

Small p-values are indicative of evidence against the null hypothesis. Typically, 
any p-value > 0.1 is considered to be supportive of the null hypothesis. As p-values 
decrease below 0.1 we have increasingly stronger evidence that the null hypothesis 
is not true.

A term associated with p-values is statistical significance. A significance level 
is a value of the p-value. It is also known as an level-α  (or alpha level). Common 
significance levels are 0.1, 0.05, and 0.01. Significance levels are often referred to 
in percentage terms by multiplying the significance level by 100. A test is termed 
to be significant at level α if the p-value is ≤ α . Thus, the statement “the test was 
significant at the 5 % level” indicates that the p-value was 0.05 or less. What this 
means is that, if we conduct repeated tests of our two hypotheses when the null 
hypothesis is true, we will find, in the long run, a significant result 5 % of the time.

An Example: The One Sample t-Test  We want to test whether or not the mean 
BMI of the population of New York state adults is not in the obese range (i.e., < 30). 
Therefore, we will use SPSS to test the null hypothesis that the mean BMI is 30 
against the alternative hypothesis that the mean BMI is < 30.

Select Analyze > Compare Means > One-Sample T Test to open the One-Sam-
ple T Test dialog box shown in Fig. 5.4. Select and move BODY MASS INDEX 
[BMI] (variable 107) to the Test Variable(s) box. Enter the value of the population 
mean specified by the null hypothesis (30) in the Test Value box.

Part of the standard output for this procedure is a CI for the difference from the 
value of the population mean specified by the null hypothesis. (This is an alternative 
method of constructing a CI for the population mean, if you enter a value of 0 in 
the Test Value box.) The default confidence level is 95 %. If you want to use another 
confidence level, click Options to open the One-Sample T Test: Options dialog box 

Fig. 5.4   Testing a population mean
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One-Sample Statistics

N Mean Std. Deviation
Std. Error 

Mean

BODY MASS INDEX 7417 26.8767 5.56992 .06467

One-Sample Test

Test Value = 30

t df Sig. (2-tailed)
Mean 

Difference

95% Confidence Interval of the 
Difference

Lower Upper

BODY MASS INDEX -48.293 7416 .000 -3.12335 -3.2501 -2.9966

Table 5.5   Output for the t-test procedure 

5.3 � Test of Hypotheses�

shown in Fig. 5.5. Enter the desired confidence level, in percent, in the Confidence 
Interval box and click Continue.

Click OK to conduct the test. Study the resulting output.
The one-sample t-test generates two tables, reproduced in Table 5.5. The first 

table gives the sample size ( N), the sample mean ( Mean), the sample SD ( Std. De-
viation), and the SEM ( Std. Error Mean). The SEM is the sample SD divided by 
the square root of the sample size. Recall that the SEM is the denominator in the 
test statistic, T.

The second table gives test results. At the top of the table is the value of the popu-
lation mean used in the null hypothesis. The leftmost box of the bottom row of the 
table shows the variable that is being tested. The next box in the bottom row gives 
the value of the test statistic ( t). The column headed df gives the degrees of freedom 
associated with the test. Degrees of freedom are a quantity that takes into account 
the size of our sample. Degrees of freedom for this t statistic are n−1. The value of 
t and the degrees of freedom are used to compute the p-value for the test. The next 
box headed Sig. (2-tailed) gives the p-value for the two-sided alternative.

If you want to conduct a one-tailed test, you can use this two-tailed p-value to ob-
tain the one-sided p-value by using Table 5.6. Let Sig denote the two-tailed p-value.

The next box of the bottom row of the One-Sample Test table is headed Mean 
Difference and gives the value of 0X - µ . The next two boxes give the upper and 
lower limits of the CI (in our case a 95 % CI) for the mean difference.

Fig. 5.5   Changing the confi-
dence level
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5.4 � Test of Normality

In those cases when the sample size is not large (i.e., < 30) it is necessary to deter-
mine whether it is reasonable to assume that the underlying population has a normal 
distribution. The normal distribution is the familiar bell-shaped curve. We saw in 
the previous chapter that it is possible to look at a stem-and-leaf plot or a histogram 
to see if the general shape of the distribution follows a bell curve. But there are more 
definitive means available.

Open the file, Bodymass.sav [2]. It contains data on the BMI of 20 anorexic pa-
tients. It has the BMI at the beginning of a treatment program, the BMI at discharge, 
and the patient’s preferred BMI based on the patient’s stated preferred weight at 
admission. Suppose we wish to test the null hypothesis that the mean BMI at the 
beginning of the treatment program is 18.5 (not underweight) against the alterna-
tive hypothesis that the mean BMI at the beginning of the program is <18.5 (under-
weight). Since the sample size is only 20, we need to verify that it is reasonable to 
assume that the population distribution is normal.

Select Analyze > Descriptive Statistics > Explore. As shown below, place Body 
mass at admittance [Admit] (variable 2) in the Dependent List box. Click Plots 

 
Table 5.6   Calculating 
one-tailed p-values

Consult the output and answer the following questions.
5.3.1  What is the value of the sample mean?
5.3.2  What is the value of the sample standard deviation?
5.3.3  What is the sample size?
5.3.4  What is the value of t?
5.3.5  What are the degrees of freedom?
5.3.6 � What is the p-value for testing that the population mean is equal to 

30 against the alternative hypothesis that the population mean is 30?
5.3.7  Does your p-value give evidence that the null hypothesis is false?
5.3.8 � Have the technical requirements that we have a random sample and 

either a normal population or a large sample size been satisfied?
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to open the Explore: Plots dialog box, and check Normality plots with tests. Click 
Continue followed by OK. These steps are shown in Figs. 5.6 and 5.7.

Fig. 5.7   Choosing normality 
plots with tests
 

Fig. 5.6   Selecting plots in explore
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The output will include a table-labeled Tests of Normality. This table is repro-
duced in Table 5.7.

The table gives the results of the Kolmogorov-Smirnov test and the Shapiro-Wilk 
test. For both tests, the null hypothesis is that the population distribution is normal, 
and the alternative hypothesis is that the population distribution is not normal. If the 
p-values which appear in the columns labeled Sig. are higher than 0.1 it is reason-
able to accept the null hypothesis that the population distribution is normal.

In addition to the test results, what is known as a normal quantile-quantile plot 
(or simply a normal Q-Q plot) appears following the stem-and-leaf plot. This plot is 
shown in Fig. 5.8. The term quantile is synonymous with percentile. If the sample 

Normal Q-Q Plot of Body mass at admittance
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Fig. 5.8   A normal Q-Q plot

 

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Body mass at admittance .097 20 .200* .967 20 .700

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

Table 5.7   Tests of normality 
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results are consistent with a normal population distribution, the points on the plot 
should generally follow the straight line that is drawn. The points should be a ran-
dom scattering about the line. Following the Q-Q plot is a detrended normal Q-Q 
plot. It is like the Q-Q plot except that the line is horizontal. The detrended plot is 
shown in Fig. 5.9.

Study the output and answer the following questions.
5.4.1 � What is the p-value for the Kolmogorov-Smirnov test? What does it 

signify?
5.4.2  What is the p-value for the Shapiro-Wilk test? What does it signify?
5.4.3 � Does the normal Q-Q plot indicate that a normal distribution is ap-

propriate?
5.4.4 � Should we use the t-test to determine whether or not the mean body 

mass index for anorexic patients entering treatment is < 18.5?
5.4.5 � If the answer to the previous question is “yes,” have SPSS conduct 

the t-test of the null hypothesis that the mean body mass index for 
anorexic patients entering treatment is equal to 18.5 against the alter-
native hypothesis that the mean body mass index for anorexic patients 
entering treatment is < 18.5. Interpret your results.

Detrended Normal Q-Q Plot of Body mass at admittance
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Fig. 5.9   A detrended normal Q-Q plot
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5.5 � Nonparametric Test of Hypotheses: Testing a 
Population Median

What if you have a small sample size and the population distribution does not ap-
pear to be normal? Researchers have found through computer simulations that it is 
safe to use the t-test if the population distribution deviates from normality by a slight 
amount. Procedures which maintain their statistical properties when the underlying 
technical requirements have not been met are said to be robust. Even though the t-test 
is reasonably robust under departures from normality, it is safe to back up the analy-
sis by using a procedure that does not depend on the population having a specific 
distribution. Such procedures are called nonparametric. A nonparametric alternative 
to the t-test is the Wilcoxon signed ranks test. It tests the null hypothesis that the 
population median is equal to a specified value against one of three possible alterna-
tives: the population median is greater than the value specified by the null hypoth-
esis, the population median is less than the value specified by the null hypothesis, 
or the population median is not equal to the value specified by the null hypothesis.

The only technical requirement for using the Wilcoxon signed ranks test is that 
we must have a random sample. Even though the t-test is appropriate we will test 
the median BMI of the anorexic patients on admittance to treatment. We will test 
the null hypothesis that the median BMI is equal to 18.5 against the alternative that 
the median BMI is < 18.5.

SPSS only conducts the Wilcoxon signed ranks test for an experimental situation 
known as matched pairs. We will discuss matched pairs in detail in Chap. 11. This 
procedure can, however, be adapted to conduct a single sample Wilcoxon signed 
ranks test by creating a new variable containing the value of the median specified by 
the null hypothesis. Select Transform > Compute Variable. As shown in Fig. 5.10, 
enter nullmedian in the Target Variable box and enter 18.5 in the Numeric Expres-
sion. Click OK to create the new variable.

To conduct the Wilcoxon test, select Analyze > Nonparametric Tests > Legacy 
Dialogs > 2-Related Samples to open the Two-Related-Samples Tests dialog box 
shown below. Select Body mass at admittance and nullmedian, and move them 
as a pair to the Test Pair(s) List box by clicking the right pointing arrow. Make sure 
that Wilcoxon is checked in the Test Type area. Click OK to conduct the test. These 
steps are shown in Fig. 5.11. Study the output.

The output will include a Test Statistics box, shown in Table 5.8.
Z is the value of the test statistic, and Asymp. Sig. (2-tailed) gives the p-value for 

the two-sided alternative.
The p-value can be converted to a one-tailed p-value by using Table 5.9. For 

notation let µ� denote the population median, 0µ� denote the value of the population 
median specified by the null hypothesis, and Sig denote the two-sided p-value.
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Fig. 5.10   Creating a new variable

 

Fig. 5.11   Conducting the Wilcoxon test
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Study the output and answer the following questions.
5.5.1  What is the value of the test statistic?
5.5.2  What is the two-sided p-value?
5.5.3 � What is the p-value for testing that the population median is 18.5 

against the alternative that the population median is < 18.5?
5.5.4 � Do the data support the notion that anorexic patients are underweight 

at admission to treatment?

5.6 � Statistical Power

Since the Wilcoxon signed ranks test only requires a random sample, it is logical to 
ask why we need the t-test, a test that imposes the additional requirement that either 
the population has a normal distribution or that the sample is sufficiently large. The 
answer lies in the power of the test. A statistical test that correctly finds evidence 

Table 5.9   Converting p-values to one tail p-values 

Test Statisticsa

nullmedian -
Body mass at 

admittance

Z -3.920b

Asymp. Sig. (2-tailed) .000

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Table 5.8   Output for the 
Wilcoxon test
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against the null hypothesis is said to be more powerful than a test that correctly finds 
evidence against the null hypothesis less often. It is a general rule that a test that places 
more restrictions on the population distribution is more powerful than one that does 
not. Therefore, when the requirements for using the t-test are met, it is used instead of 
the Wilcoxon signed ranks test. The t-test is more powerful than the Wilcoxon.

5.7 � Clinical Versus Statistical Significance

Let’s return to the data file, CDC BRFSS.sav, to test whether or not the mean re-
ported height for males is 70 in. This will be a two-sided test of the null hypothesis 
that the mean height is 70 in. against the alternative hypothesis that the mean height 
is not equal to 70 in.

Begin by declaring the value of 999 as missing for the variable, REPORTED 
HEIGHT IN INCHES [HTIN3] (variable 75). Select those cases where SEX 
[SEX ] (variable 32) is 1 (male). Now use Analyze > Compare Means > One-Sam-
ple T Test with REPORTED HEIGHT IN INCHES in the Test Variable(s) box 
and 70 in the Test Value box. Study the output shown in Table 5.10.

The output reports that the value for t is −  4.360, the degrees of freedom are 
2915, and the resulting two-sided p-value is 0.000. (The reported p-value is rounded 
to the third decimal place. To see the exact value, double-click the output table and 
then double-click again the cell that displays the p-value.) The results of the t-test 
provide very strong evidence that the mean height for males is not 70 in. However, 
notice that the value of the sample mean is 69.76 in. In terms of the actual values, 
the sample mean is not meaningfully different from 70 in. When dealing with large 
sample sizes, small differences can be statistically significant. Although a differ-
ence may be statistically highly significant, that difference in practical or clinical 
terms may not be significant at all.

One-Sample Statistics

N Mean Std. Deviation
Std. Error 

Mean

REPORTED HEIGHT IN 
INCHES 2916 69.76 3.011 .056

One-Sample Test

Test Value = 70

t df Sig. (2-tailed)
Mean 

Difference

95% Confidence Interval of the 
Difference

Lower Upper

REPORTED HEIGHT IN 
INCHES -4.360 2915 .000 -.243 -.35 -.13

Table 5.10   Output for t test 
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5.8 � Exercise Questions

1.	 Do men who are 25 years old engage in moderate exercise on more than 4 days a 
week? Load SPSS data file, CDC BRFSS.sav. The variable of interest is DAYS 
PER WEEK OF MOD. PHYS. ACT [MODPADAY] (variable 44). Be sure that 
the values of 77, 88, and 99 have been declared as missing. Test the null hypoth-
esis that the mean number of days for 25-year-old men who engage in moderate 
physical activity is 4 against the alternative hypothesis that the mean number of 
days is > 4. In addition, construct a 99 % CI for the mean number of days that 
respondents engage in moderate physical activity.

a.	 What is your sample size?
b.	 What is the sample mean?
c.	 What is the value of the test statistic, t?
d.	 What are the degrees of freedom?
e.	 What is the p-value for the test? Remember that we are running a one-sided 

test.
f.	 What is your 99 % confidence interval?
g.	 According to the results of the t-test, can we reject the null hypothesis? Why 

or why not?
h.	 What are the technical requirements for using the t-test? Have they been satis-

fied? Explain.

2.	 Imagine that you are in charge of a treatment program for anorexia, and you 
want to know if your patients have a BMI > 18.5 at the time of discharge from 
the program. To find out, you analyze the data in SPSS data file, Bodymass.sav. 
The variable you are interested in is Bodymass at discharge [Disch] (variable 
4). Note that the sample size is 20.

a.	 Do the data indicate that a normal distribution is appropriate for the population?
b.	 If so, conduct a t-test of the null hypothesis that the mean BMI is 18.5 against 

the alternative hypothesis that the mean BMI is > 18.5. If not, conduct a Wil-
coxon signed ranks test that the median BMI is 18.5 against the alternative 
hypothesis that the median BMI is > 18.5.

c.	 What is the value of your test statistic?
d.	 What is the p-value for your test? Remember that we are running a one-sided 

test.
e.	 Can you confidently conclude from these results that the average patient 

leaves your program with a BMI > 18.5? Why or why not?

3.	 Do patients with advanced colon cancer who are treated with ascorbate have an 
average survival time of 500 days? Use SPSS data file, Patient.sav [3], which 
contains data from patients with various types of cancer. Focusing on patients 
with colon cancer (use Data > Select Cases), analyze the variable, Survival 
Days [Days] (variable 2). Note that the sample size is 17.



1455.8 � Exercise Questions�

a.	 Do the data indicate that a normal distribution is appropriate for the popula-
tion of colon cancer patients?

b.	 If so, conduct a t-test of the null hypothesis that the mean survival time is 
500 days against the alternative hypothesis that the mean survival time is 
not equal to 500 days. If not, conduct a Wilcoxon signed ranks test that the 
median survival time is 500 days against the alternative hypothesis that the 
median survival time is not equal to 500 days.

c.	 What is the value of your test statistic?
d.	 What is the p-value for your test?
e.	 Can you confidently conclude that the average survival time is not equal to 

500 days? Why or why not?

4.	 The PSA levels and prostate volumes of 301 men were measured [4].

a.	 According to the results of the tests of normality displayed in Table 5.11, are 
the PSA levels of men within the population from which the sample was taken 
normally distributed? Defend your answer.

b.	 According to the normal Q-Q plot shown in Fig. 5.12, are the prostate vol-
umes of men within the population from which the sample was taken nor-
mally distributed? Defend your answer.

5.	 How many hours per night do college seniors sleep during the week day? To find 
out, undergraduates were polled [5]. Sixteen were seniors. Because the sample 
size was small and the population distribution was not normal, a one sample 
t-test and a Wilcoxon signed ranks test were conducted. The t-test tested the null 
hypothesis that the mean number of hours of sleep per night obtained within the 
population of college seniors is equal to six against the alternative hypothesis 
that the mean number of hours of sleep per night obtained within the population 
of college seniors is > 6. The Wilcoxon test tested the null hypothesis that the 
median number of hours of sleep per night is equal to 6 against the alternative 
hypothesis that the median number of hours of sleep is > 6. The results of a two-
tailed test for each analysis are reported below:

−	 Sample mean: 6.56.
−	 Sample median: 6.75.
−	 One-sample t-test: t15 = 2.377, P = 0.031.
−	 Wilcoxon signed ranks test: Z = − 2.087, P = 0.037.

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Prostate-Specific Antigen 
Level (ng/ml) .314 301 .000 .358 301 .000

a. Lilliefors Significance Correction

Table 5.11   Normality test for PSA 
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a.	 The results of the two inferential tests are reported in the editorial style of the 
American Medical Association. For the value of t, the number “15” appears 
as a subscript. To what does the “15” refer?

b.	 According to the results of the one-sample t-test, what is the one-tailed 
p-value?

c.	 According to the results of the one-sample t-test, should we reject the null 
hypothesis that the population mean is equal to 6 hours of sleep in favor of 
the alternative hypothesis that the population mean is > 6 h of sleep? Why or 
why not?

d.	 Do the results of the nonparametric test support or contradict the results of the 
t-test? Briefly defend your answer.

e.	 The sample mean (6.56 h) is about 0.5 h greater than the value stated in the 
null hypothesis (6 h). Is this finding statistically significant? Why or why not? 
In your opinion, is this finding clinically significant? Why or why not?
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Fig. 5.12   Q-Q plot for PSA
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Chapter 6
Inference for Proportions
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DOI 10.1007/978-3-319-12550-3_6

Abstract  An important goal in clinical research is estimating the proportion of a 
population who has a particular disease or who will acquire the disease over a given 
period of time, and identifying factors that are associated with the occurrence of 
the disease. This chapter reviews how confidence intervals and tests of hypotheses 
are used to estimate prevalence and incidence from sample data, and how various 
measures of association based on sample proportions—the difference between two 
proportions, relative risk and the odds ratio—are used to identify risk factors.

6.1 � Overview

Researchers are often interested in the frequency with which a patient characteristic, 
medical condition or disease is encountered within a population. With regard to 
disease, researchers often document prevalence and incidence. Prevalence refers 
to the proportion of a population who has the disease at a given point in time. For 
example, an investigator might be interested in knowing the proportion of residents 
of NY state who had hypertension at the end of the year 2005. Incidence refers to 
the proportion of a population who acquire a disease over a given period of time. 
For example, a researcher might be interested in knowing the proportion of NY 
state residents who became hypertensive during the year 2005. In some instances, 
researchers wish to know whether the proportion of a population with a given char-
acteristic, condition, or illness is equal to, greater than, or less than some particular 
value. For example, an investigator might wish to know whether the proportion of a 
population who needed to see a doctor but could not because of the cost associated 
with an office visit is no more than some value, say, 10 %.

Since researchers cannot examine the entire population, they need to estimate a 
population proportion using sample data. This means that they need to construct a 
confidence interval (CI) for the population value and to test hypotheses regarding 
the population proportion. SPSS does not have a built-in capability to construct CIs 
or test hypotheses regarding population proportions. SPSS does, however, provide 
the capability of writing external procedures to produce analysis that is not part of 
SPSS program. They are known as SPSS scripts. We shall see how to use previously 
written scripts to analyze population proportions.
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In addition, there are times when researchers want to compare the proportions of 
two independent populations. For example, they might wish to determine if a dis-
ease is more prevalent among men or women in order to determine whether the oc-
currence of the disease is related to the patient’s sex. In these instances, researchers 
construct CIs for the difference between two population proportions and conduct 
tests of hypotheses regarding the difference between two population proportions. 
As is the case with a single proportion, SPSS does not have a built-in capability for 
performing these procedures but can make use of previously written scripts.

Estimating or testing the difference between two proportions can reveal whether 
the likelihood of developing a particular medical condition or disease is greater 
for people who share a certain characteristic or experience. Such characteristics or 
experiences are called risk factors. Risk factors can also be identified by using two 
proportions to compare the probability or odds of acquiring a disease for a person 
exposed to the factor to the probability or odds for a person not exposed. Often the 
comparison is made in terms of the ratio of the two probabilities or the two odds. 
When the ratio consists of two probabilities, the result is known as relative risk. 
When the ratio consists of two odds, the result is known as an odds ratio. Later in 
the chapter, we will explore these two statistics and learn how to instruct SPSS to 
compute them.

6.2 � CIs for Population Proportions

Suppose that we are interested in determining the proportion of people in a popula-
tion that has a certain condition. The population parameter of interest here is the 
population proportion. The mathematical symbol for it is p. (Do not confuse this 
symbol for p-value.) Looking back at our discussion of CIs for the population mean, 
we note a couple of things. First, the basic form for the CI was

� (6.1)

Second, the statistic was the sample statistic corresponding to the population pa-
rameter. That is, the sample mean is the statistic associated with the population 
mean. The same holds true for a CI for a population proportion. Before getting to 
the details we need to define some terms. An observation that has the condition of 
interest is said to be a success. An observation that does not have the condition of 
interest is said to be a failure. The statistic associated with the population proportion 
is the sample proportion. Its symbol is p̂  and is called p hat. If we let X denote the 
number of successes in our sample and let N denote the sample size, then p hat is 
computed by dividing the number of successes by the sample size. That is,

� (6.2)

We need these terms in order to understand how to complete the dialog box for con-
structing the CIs and conducting the tests that we will be discussing in this chapter.

( ) ( )Statistic Critical value Standard error±

ˆ / .p X N=
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CIs for a proportion have the same interpretation as those for the population 
mean. That is, 95 % confidence means that 95 % of all possible CIs based on sam-
ples of the same size from the same population will contain the population propor-
tion and 5 % will not.

An Example  As an example, let us construct a 95 % CI for the proportion of adults 
living in NY state in 2005 who were obese. Load the data file, CDC BRFSS.sav 
[1], into SPSS. Be sure that 9 has been declared as a missing value for BODY 
MASS INDEX-THREE LEVELS CATEGORY [@_BMI4CAT] (variable 79) 
Select Analyze > Descriptive Statistics > Frequencies and enter BODY MASS 
INDEX-THREE LEVELS CATEGORY in the Variable(s) box and click OK. 
This will generate the frequency table in Table 6.1. The value in the Frequency col-
umn for the category labeled Obese will be the number of successes in the sample 
( X), and the value in the Frequency column for the category labeled Total will be the 
sample size ( N). You will need these to construct the CI. Note that the valid percent 
divided by 100 is the sample proportion.

As we mentioned in the overview, SPSS does not have a built-in capability to 
construct CIs for a population proportion. SPSS does have a capability to write 
external programs called scripts that can perform procedures that are not part of 
SPSS. A script has been written to construct CIs for a single population proportion. 
It is called ciprop.sbs. Your instructor will tell you where to find it. The procedure 
used by the script is appropriate as long as there are at least 10 successes and 10 
failures in the sample.

To run the script select Utilities > Run Script. This will open the Run Script 
dialog box shown in Fig. 6.1. In the Look in window, make your way to the script. 
Run the script by either double-clicking the script or by clicking the script followed 
by Run. This will open the Confidence Interval for a Proportion dialog box shown 
in Fig. 6.2.

BODY MASS INDEX- THREE LEVELS CATEGORY

Frequency Percent Valid Percent
Cumulative 

Percent

Valid Neither Overweight nor 
Obese 3007 38.6 40.5 40.5

Overweight 2703 34.7 36.4 77.0

Obese 1707 21.9 23.0 100.0

Total 7417 95.1 100.0
Missing Don’t 

know/Refused/Missing 379 4.9

Total 7796 100.0

The number of cases = X, while the 
total number of valid cases = N.

The valid percent divided by 
100 = X / N, the sample 
proportion of obesity.

Table 6.1   Frequency table for three categories of body mass index 
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If you have the value for p hat, enter it in the Phat or X box. If you have the num-
ber of successes ( X), enter it in the Phat or X box. Enter the sample size ( N) in the N 
box. Enter the desired confidence level in percent in the Confidence Level box. The 
resulting dialog box should look like the one in Fig. 6.2.

Click OK to construct the CI. The output is reproduced in Table 6.2.

Fig. 6.2   Generating a 95 % confidence interval for a single population proportion

 

Fig. 6.1   Selecting the script, confidence interval for a single population proportion

 



153

6.3 � Testing a Single Proportion

There are situations where one wants to test whether or not the proportion of the 
population that has a certain condition is equal to a specified value. This is the null 
hypothesis. The possible alternative hypotheses are that the population proportion 
is less than the value specified by the null hypothesis, the population proportion 
is greater than the value specified by the null hypothesis, or the population pro-
portion is not equal to the value specified by the null hypothesis. The appropriate 
alternative hypothesis will be dictated by the context of the investigation. Similar 
to the case for testing population means, the test statistic is based on a sample 
statistic—in this case, the sample proportion, p hat—and it computes a p-value. 
The p-value is interpreted in the same way that p-values for testing the population 
mean are interpreted.

An Example  We wish to test whether or not less than 10 % of the population needed 
to see a doctor within the last 12 months but could not because of the cost of an 
office visit. The relevant variable in the Centers for Disease Control and Prevention 
(CDC) data file is COULD NOT SEE DR. BECAUSE OF COST [MEDCOST] 
(variable 9; 1 = Yes, 2 = No, 7 = Don’t know/Not sure, 9 = Refused).

Declare values of 7 and 9 as missing and assign the value labels. Select Ana-
lyze > Descriptive Statistics > Frequencies. Enter COULD NOT SEE DR. BE-
CAUSE OF COST in the Variable(s) box and click OK. Study the output which 
should include the frequency table displayed in Table 6.3.

The value in the Frequencies column for Yes will be the number of successes 
( X), and the value in the Frequencies column for Total will be the sample size ( N).

As was the case for CIs, SPSS does not have a built-in capability to conduct tests 
on a single population proportion, so we have provided a script, testprop.sbs, for 
you. The procedure that it implements is appropriate if the sample size times the 

Answer the following questions:
6.2.1  What is the value of N?
6.2.2  What is the value of p hat?
6.2.3 � What are the confidence limits for the proportion of the population 

that is obese?
6.2.4  Does your CI contain the true proportion?

95% Confidence Interval for P

N X Phat Lower Upper

7417 1707 0.230147 0.2205675 0.2397264

Table 6.2   95 % Confidence interval for the proportion of obese NY state residence 

6.3 � Testing a Single Proportion�
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proportion specified by the null hypothesis is at least 10 and the sample size times 1 
minus the proportion specified by the null hypothesis is at least 10.

To run the script, select Utilities > Run Script. Run the testprop.sbs script 
to open the Test for a Proportion dialog box. As was the case with the CI script, 
enter either the value of p hat or the number of successes ( X) in the Phat or X box, 
and the sample size ( N) in the N box. Enter the proportion specified by the null 
hypothesis in the Proportion box. Select the appropriate alternative hypothesis by 
clicking on it in the Alternative box. The resulting dialog box should look like the 
one in Fig. 6.3.

Click OK to conduct the test. The output is reproduced in Table 6.4.

Fig. 6.3   Generating a test of proportion against a one-tailed alternative hypothesis

 

Table 6.3   Frequency of NY state residents unable to see a doctor because of cost 
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6.4 � CIs for the Difference Between Two Population 
Proportions

There are situations where researchers will want to compare two population propor-
tions. For example, an investigator might be interested in comparing the proportion 
of men who are obese to the proportion of women who are obese to determine 
whether sex is a risk factor for obesity. One way to compare two population propor-
tions is to construct a CI for the difference between the two proportions. As was the 
case with inferences regarding a single population proportion, SPSS does not have 
a built-in capability for comparing two proportions. SPSS scripts are provided to 
address this need. It is appropriate to use the script if you have at least five successes 
and five failures in each sample.

An Example  We wish to construct a 95 % CI for the difference between the propor-
tion of men who are obese and the proportion of women who are obese. We will be 
using the variable BODY MASS INDEX-THREE LEVELS CATEGORY[@_
BMI4CAT] (variable 79).

Before running Analyze > Descriptive Statistics > Frequencies to get the sum-
mary statistics needed for the script, we need to split the file according to gender so 
that we can obtain summary statistics separately for men and women. Select Data > 
Split File to open the Split File dialog box. Check Organize output by groups and 
enter SEX [SEX ] (variable 32; 1 = Male, 2 = Female) in the Groups Based on box. 
Click OK. Splitting the file will result in a separate analysis for each distinct value 
of the grouping variable, SEX. Figures 6.4, 6.5 and 6.6 review these steps.

Run Analyze > Descriptive Statistics > Frequencies on BODY MASS IN-
DEX-THREE LEVELS CATEGORY. Study the output.

The frequency table for each sex is reproduced in Tables 6.5 and 6.6. Now that 
we have obtained the numbers of obese respondents and the sample sizes of each 

Test of P = .10 vs. P Less Than.10

N X Phat Z P-value

7776 742 9.542181E-02 -1.345707 8.919852E-02

Table 6.4   Results of a one-tailed test of a population proportion 

Answer the following questions:
6.3.1  What is the sample size?
6.3.2  What is the value of p hat?
6.3.3  What is the value of Z?
6.3.4  What is the p-value for the test?
6.3.5. � What does the test lead you to conclude regarding whether or not less 

than 10 % could not visit a doctor because of the cost?

6.4 � CIs for the Difference Between Two Population Proportions�



156 6  Inference for Proportions

Fig. 6.5   Organizing the output by sex

 

Fig. 6.4   Opening the Split File dialog
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sex, we can construct the CI for the difference between the proportions of men and 
women who are obese.

We will construct the CI for the difference between the two proportions by sub-
tracting the women from the men. The group that is being subtracted from is called 
generically population 1, and the group that is being subtracted is called generically 
population 2. That is, the difference is population 1 minus population 2. So, in this 
case population 1 will be the men and population 2 will be the women.

Fig. 6.6   Splitting the data file by sex

 

SEX = Male
BODY MASS INDEX-THREE LEVELS CATEGORYa

Frequency Percent Valid Percent
Cumulative 

Percent

Valid Neither Overweight nor 
Obese 911 31.0 31.6 31.6

Overweight 1302 44.4 45.2 76.8

Obese 670 22.8 23.2 100.0

Total 2883 98.3 100.0
Missing Don’t 

know/Refused/Missing 51 1.7

Total 2934 100.0

a. SEX = Male

Table 6.5   Distribution of BMI categories of a sample of male residents of NY state 

6.4 � CIs for the Difference Between Two Population Proportions�
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To construct the CI, we will use the script, ci2prop.sbs. It is appropriate to use 
this script if each sample contains at least five successes and five failures. Select 
Utilities > Run Script and run the script to open the Conf. Int. Diff. between Two 
Proportions dialog box. Enter the number of obese men in the Phat 1 or X1 box, 
the sample size for the men in the N1 box, the number of obese women in the Phat 
2 or X2 box, and the sample size for the women in the N2 box. Enter the desired 
confidence level in the Confidence Level box. The resulting dialog box should look 
like the one shown in Fig. 6.7.

Click OK to construct the CI. Table 6.7 displays the resulting output.

6.5 � Testing Two Proportions

When comparing two proportions, a test of whether or not two proportions are equal 
can be conducted. The null hypothesis is that the two proportions are equal. The 
possible alternative hypotheses are that one proportion is greater than the other, one 
proportion is less than the other, or the two proportions are not equal to each other. 
Again, the context of the investigation indicates which alternative hypothesis is 
appropriate.

SEX = Female
BODY MASS INDEX-THREE LEVELS CATEGORYa

Frequency Percent Valid Percent
Cumulative 

Percent

Valid Neither Overweight nor 
Obese 2096 43.1 46.2 46.2

Overweight 1401 28.8 30.9 77.1

Obese 1037 21.3 22.9 100.0

Total 4534 93.3 100.0
Missing Don’t 

know/Refused/Missing 328 6.7

Total 4862 100.0

Table 6.6   Distribution of BMI categories of a sample of female residents of NY state 

Answer the following questions:
6.4.1  What were the sample sizes for the men and the women?
6.4.2  What were the values of p hat for the men and for the women?
6.4.3 � What are the confidence limits for the difference between the proportion 

of men who are obese and the proportion of women who are obese?
6.4.4 � Is this interval consistent with there being no difference in the popula-

tion between men and women with regard to obesity?

a. SEX = Female
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An Example  We wish to test whether or not the proportion of men who are obese 
is equal to the proportion women who are obese. The null hypothesis will be that 
the two proportions are equal, and the alternative hypothesis will be that the two 
proportions are not equal. As we did when we constructed the CI, population 1 will 
be the men and population 2 will be the women.

The condition that must be satisfied in order to use the script that is appropriate 
for this situation is a little complicated. First, unsplit the file by selecting Data > 
Split File, checking Analyze all cases, do not create groups, and clicking OK. Now 
run Analyze > Descriptive Statistics > Frequencies on BODY MASS INDEX-
THREE LEVELS CATEGORY to compute the proportion of respondents who 
are obese. You may recall from Sect. 6.2 that the proportion of the entire sample that 
is obese is 0.23. If each sample size times this proportion is at least 5, and if each 
sample size times 1 minus this proportion is at least 5, then the procedure imple-
mented by the script is appropriate.

To conduct the test, select Utilities > Run Script and run the script test2prop.
sbs to open the Test for Equality of Two Proportions dialog box. Enter the number 

95% Confidence Interval for P1 - P2

N X Phat Lower Upper

One 2883 670 0.2323968 -1.599581E-02 2.335672E-02

Two 4534 1037 0.2287164

Table 6.7   95 % confidence interval for the difference between two population proportions 

Fig. 6.7   Generating a 95 % confidence interval for the difference between two population 
proportions

 

6.5 � Testing Two Proportions�
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of obese men in the Phat 1 or X1 box, the sample size for the men in the N1 box, 
the number of obese women in the Phat 2 or X2 box and the sample size for the 
women in the N2 box. Select the appropriate alternative hypothesis ( Not Equal To) 
by clicking it in the Alternative box. The resulting dialog box should look like the 
one shown in Fig. 6.8.

Click OK to conduct the test. Table 6.8 displays the resulting output.

Test of P1 = P2 vs. P1 Not Equal To P2

N X Phat Z P-value

One 2883 670 0.2323968 0.3670656 0.7135701
Two 4534 1037 0.2287164

Table 6.8   Results of a two-tailed test of the difference between two proportions 

Fig. 6.8   Generating a two-tailed test of the difference between two proportions

 

Answer the following questions:
6.5.1  What are the sample sizes for the men and women?
6.5.2  What are the sample proportions (  p hat) for the men and women?
6.5.3  What is the value of Z ?
6.5.4  What is the p-value for the test?
6.5.5 � Does the test indicate that the proportion of men who are obese is dif-

ferent from the proportion of women who are obese?
6.5.6  Have the necessary conditions for using this procedure been met?
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6.6 � Relative Risk and Odds Ratios

Risk factors are associated with but have not been shown to cause the conditions or 
diseases of interest. As we pointed out in Chap. 1, to establish that a factor causes a 
particular outcome, it would be necessary to show that the factor preceded the out-
come in time (causes come before their effects) and that the outcome was not due to 
the presence of some other variable or confounder that may have accompanied the 
factor. To establish these two conditions convincingly, an experiment would have to 
be conducted in which patients are at random either exposed or not exposed to the 
factor in question. The proportion of those exposed to the factor (the experimental 
group) who subsequently develop the outcome under investigation would then be 
compared to the proportion of those in the group not exposed (the control group).

For ethical reasons, suspected causal factors cannot be studied experimentally 
on humans. For example, it would be unethical to expose people to a suspected 
carcinogen to see if it really causes cancer. However, researchers can still establish 
that exposure to a factor is followed by an increase in the probability of disease or 
illness by conducting a cohort study. As with an experiment, this study tracks the 
incidence of an outcome in two groups, one which shares the risk factor and one 
which does not. The ratio of these two proportions yields a statistic called relative 
risk, the extent to which the probability of disease for those exposed to the risk 
factor is greater than that of those not exposed. If the relative risk is statistically 
significantly greater than 1, the researcher would have evidence that the variable 
under study is a risk factor.

By measuring how often new instances of the outcome occur after the two 
groups have been selected, the cohort study attempts to establish the appropriate 
time sequence regarding the risk factor and its outcome. However, because the two 
groups were not formed via random assignment, it is always possible that any ob-
served difference in risk between the two groups was due to factors associated with 
the risk factor rather than to the risk factor itself. Therefore, relative risk in a cohort 
study is evidence regarding whether the factor under study is a risk factor but is not 
conclusive evidence that the factor is a cause of disease.

We saw in Chap. 1 that as useful as cohort studies are in identifying risk factors, 
they can be difficult and expensive to conduct. For example, cohort studies can take 
a long time to complete, patients can be difficult to track, and many patients may 
be lost to the study over time. Consequently, researchers may choose alternative 
designs to establish that exposure to a factor is associated with a higher likelihood 
of disease or illness. Although these designs have their weaknesses, they are often 
relatively easy, quick and inexpensive to conduct. Two such designs are the case-
control study and the cross-sectional study. Chapter 1 provides details about these 
two designs, so here we will give a quick overview.

In a case-control study, the researcher works backward from the disease to the 
suspected risk factor. First, two groups of people are identified. One, called cases, 
already has the condition or illness. The second, called controls, does not. The re-
searcher then counts the number of cases and controls that had been exposed to the 

6.6 � Relative Risk and Odds Ratios�



162 6  Inference for Proportions

risk factor and determines whether the proportion of cases that had been exposed to 
the factor is greater than the proportion of controls. In a cross-sectional study, the 
researcher collects data from a sample of people without first selecting them on the 
basis of either the risk factor (as would be the case in a cohort study) or disease (as 
would be the case in a case-control study). The researcher then divides the sample 
into those who it turns out had been exposed to the risk factor and those who had 
not, and determines if the prevalence of disease in the first group is greater than in 
the second.

Risk is defined as the probability of developing a negative health outcome over 
a given period of time. Consequently, it is impossible for either the case-control or 
cross-sectional study to assess risk as neither design identifies people who have yet 
to experience the outcome and then follows them forward in time to determine the 
proportion who during a specified time interval experience the outcome. Unable 
to measure risk, researchers using case-control or cross-sectional studies cannot 
calculate relative risk. But researchers can calculate the odds ratio, a statistic that 
determines the extent to which the odds of experiencing the outcome in question is 
greater for the group of people who had been exposed to the risk factor than for the 
group who had not been exposed.

Unless the outcome is rare, an odds ratio will not equal the relative risk, so it 
usually can not be used to make conclusions about how much more at risk people 
become when they are exposed to a risk factor. But odds ratios can always be used 
to determine if a risk factor and an outcome are related to one another. If the odds 
ratio is statistically significantly greater than 1, the researcher has evidence that the 
factor under study is a risk factor.

Relative Risk  Let us analyze the CDC data to determine if being overweight is a 
risk factor for poorer health. At this point, you may have recognized the CDC sur-
vey as an example of a cross-sectional study. If so, you realize that in order to use 
the CDC data to estimate risk, we would have to assume that the variable we are 
calling a potential risk factor (being overweight) preceded in time the variable we 
are calling an outcome (poorer health). This is a tenuous assumption, but making it 
will allow us to use these data as an example.

Reverse coding the risk factor and the outcome variable. When using SPSS 
to calculate relative risk or odds ratios, cases that were exposed to the risk factor 
should be identified with a numerical code that is lower than the code used for 
cases that were not exposed to the risk factor. Unfortunately, in the CDC data set, 
the opposite is true: In the variable, RISK FACTOR FOR OVERWEIGHT OR 
OBESE [@_RFBMI4] (variable 80), respondents who were exposed to the risk 
factor (i.e., people who were either overweight or obese) are coded with a 2, while 
respondents who were not exposed (people who were neither overweight nor obese) 
are coded with a 1. So before we begin, we will have to reverse this coding.

Similarly, when using SPSS to calculate relative risk or odds ratios, cases that 
experienced the negative outcome should be identified with a numerical code that 
is lower than the code used for cases that did not experience the outcome. Un-
fortunately, in the CDC data set, the opposite is true: In the variable, HEALTH 
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STATUS [@_RFHLTH] (variable 58), respondents who experienced the outcome 
(i.e., people who were in fair or poor health) are coded with a 2, while respondents 
who did not experience the outcome (people who were in good or better health) are 
coded with a 1. So we will have to reverse this coding as well.

To reverse the coding of the two variables, we will use Transform > Recode 
into Different Variables. As this procedure was reviewed in earlier chapters, here 
we will just outline the steps needed to reverse the coding of our risk factor and 
outcome variable.

Select Transform > Recode Into Different Variables to bring up the Recode 
into Different Variables dialog box. Move RISK FACTOR FOR OVERWEIGHT 
OR OBESE to the Input Variable → Output Variable window. In the Name window, 
enter as a name for the new variable, RISK_FACTOR_FOR_OVERWEIGHT_
OR_OBESE_RECODED. Then type a label for this new variable in the Label 
window, RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED. Click 
Change. The dialog box should look similar to the one shown in Fig. 6.9.

Now click Old and New Values to bring up the Recode into Different Variables: 
Old and New Values dialog box. Into the Value window of the Old Value area, type 
a “1” (without the quotation marks). Into the Value window of the New Value area, 
type a “2.” Click Add. Return to the Value window of the Old Value area and type in 
a “2,” and then enter a “1” into the Value window of the New Value area. Again click 
Add. Finally, select All other values in the Old Value area and Copy old value(s) in 
the New Value area. Click Add. The dialog box should now look like the one shown 
in Fig. 6.10.

You will now have instructed SPSS to recode the old variable, RISK FACTOR 
FOR OVERWEIGHT OR OBESE, into a new variable, RISK FACTOR FOR 
OVERWEIGHT OR OBESE RECODED, such that cases that had been coded as 

Fig. 6.9   Naming the output variable
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1 in the old variable will now be coded as 2 in the new variable, and cases that had 
been coded as 2 in the old variable will now be coded as 1 in the new variable. By 
reversing the scoring that was used in the old variable, the new variable will identify 
respondents who are overweight or obese with a 1 instead of a 2, and those who are 
not overweight or obese with a 2 instead of a 1. You have also told SPSS to retain 
all remaining codes in the original variable. As a result, the code “9,” which was 
used with the old variable for cases involving either responses of “Don’t Know” or 
“Refused,” or for missing values, will be copied over to the new variable. Now click 
Continue and OK. The new variable will now be created.

Now reverse the scoring for the variable, HEALTH STATUS, so that those in 
fair or poor health are coded with a 1 and those in good or better health are coded 
with a 2. Name the new variable, HEALTH_STATUS_RECODED, and label it 
HEALTH STATUS RECODED. Remember to copy the code for “Don’t Know” 
and “Refused” responses and for missing data (all coded as “9”) to the new variable.

We will use these new variables to calculate relative risk and an odds ratio. How-
ever, before we begin, label the values of the new variable, RISK FACTOR FOR 
OVERWEIGHT OR OBESE RECODED, such that 1 indicates “Yes” and 2 in-
dicates “No,” and the values of the new variable, HEALTH STATUS RECODED, 
such that 1 indicates “Poorer Health” and 2 indicates “Better Health.” Then for both 
variables, declare 9 as a missing value. While you are at Variable View, define the 
measurement level for each variable as ordinal.

Relative Risk  Now we can determine if being overweight may be a risk factor for 
poorer health. We will do this by comparing the risk of poorer health for each of the 
two categories of the risk factor.

Select Analyze > Descriptive Statistics > Crosstabs to bring up the Crosstabs 
dialog box. One purpose of the Crosstabs procedure is to generate a table displaying 

Fig. 6.10   Defining new values
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the distribution of cases across the combinations of the values of two categorical 
variables. In this instance, we want SPSS to display a table that shows the distribu-
tion of cases across the combinations of the two values of our risk factor, RISK 
FACTOR FOR OVERWEIGHT OR OBESE RECODED, and the two values of 
our outcome variable, HEALTH STATUS RECODED. SPSS requires that the risk 
factor defines the rows of the table and the outcome variable the columns. So move 
RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED to the Rows 
window and HEALTH STATUS RECODED to the Columns window. To help us 
to understand the table that will be generated, click Cells to bring up the Crosstabs: 
Cell Display dialog box. Select Row in the Percentages area and then Continue. To 
instruct SPSS to calculate the relative risk and odds ratio statistics, click Statistics 
in the Crosstabs dialog box to bring up the Crosstabs: Statistics dialog box and 
select Risk. Click Continue and then OK. These steps are displayed in Figs. 6.11, 
6.12, 6.13, 6.14, 6.15 and 6.16.

The output generated by this analysis is displayed in Tables 6.9, 6.10 and 6.11. 
Table 6.9 is a Case Processing Summary that tells us that we had 7400 valid cases, 
and 396 cases with missing values.

Table 6.10 is a Crosstabulation that displays the distribution of the valid cases 
across the combinations of the values of the two variables. Note that the first two 
rows of the table are defined by our risk factor and that the first two columns by our 
outcome variable. The bottom row is the total of the rows above it while the last 
column is the total of columns to the left of it.

The distribution of cases is represented both as counts and percentages. We see 
from the last column of the first row that there were a total of 4397 cases who were 
either overweight or obese. Of these 4397 cases, 837 or 19 % were in poorer health 
and 3560 or 81 % were in better health. We see from the last column of the second 
row that there were a total of 3003 cases who were neither overweight nor obese, of 
whom 384 or 12.8 % were in poorer health and 2619 or 87.2 % were in better health.

We can see from these data that for both weight groups, it was unlikely that 
respondents would be in poorer health. However, were those who were overweight 

Fig. 6.11   Opening the cross-
tab dialog
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Fig. 6.13   Selecting row percentages

 

Fig. 6.12   Assigning the row and columns variables and opening the Cell Display dialog
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Fig. 6.15   Selecting risk 
estimates
 

Fig. 6.14   Opening the Statistics dialog
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RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED * HEALTH STATUS RECODED Crosstabulation

HEALTH STATUS RECODED

TotalPoorer Health Better Health

RISK FACTOR FOR 
OVERWEIGHT OR 
OBESE RECODED

Yes Count 837 3560 4397

% within RISK FACTOR 
FOR OVERWEIGHT OR 
OBESE RECODED

19.0% 81.0% 100.0%

No Count 384 2619 3003

% within RISK FACTOR 
FOR OVERWEIGHT OR 
OBESE RECODED

12.8% 87.2% 100.0%

Total Count 1221 6179 7400

% within RISK FACTOR 
FOR OVERWEIGHT OR 
OBESE RECODED

16.5% 83.5% 100.0%

Table 6.10   Health status of NY state residents as a function of their BMI category 

Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

RISK FACTOR FOR 
OVERWEIGHT OR 
OBESE RECODED * 
HEALTH STATUS 
RECODED

7400 94.9% 396 5.1% 7796 100.0%

Table 6.9   Number of valid and missing cases in the crosstabulation 

Fig. 6.16   Generating a cross-tabulation and risk estimates
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or obese more likely to be in poorer health than those who were neither overweight 
nor obese? To find out, we compare the proportion of poorer health for each group. 
As we saw in the preceding paragraph, 19 % of those who were overweight or obese 
were in poorer health while only 12.8 % of those who were neither overweight nor 
obese were in poorer health. Consequently, the relative risk is 19% to 12.8 % or 
1.48. Respondents who were overweight or obese were almost 1.5 times as likely to 
be in poorer health compared to their thinner counterparts.

If the proportion of poorer health were equal in both weight groups, relative risk 
would equal 1. For example, if 12.8 % of both weight groups were in poorer health, 
the risk to both groups would be the same and relative risk would equal 1. However, 
in these data, relative risk was greater than 1. It appears that being overweight is a 
risk factor for poorer health.

We say “appears” because it is always possible that the value of relative risk that 
we obtain from our sample is due entirely to sampling variability. In this study, for 
example, it is possible that the value of relative risk is in fact 1 in the population 
from which the 7400 cases were drawn. Consequently, we need to determine how 
certain we can be that the population value is not equal to 1. One way to do this is 
by calculating a 95 % CI around the sample value. If the CI does not contain the 
value of 1, then we can be 95 % confident that the population value is not equal to 
1. SPSS generates these CIs for us.

SPSS also generates relative risk values and displays them, along with the CIs, 
in the Risk Estimate table of the output, shown in Table 6.11.

Risk Estimate

Value

95% Confidence Interval

Lower Upper

Odds ratio and 95% Confidence Interval

Odds Ratio for RISK 
FACTOR FOR 
OVERWEIGHT OR 
OBESE RECODED (Yes / 
No)

1.604 1.407 1.828

Relative Risk and 95% Confidence 
Interval

For cohort HEALTH 
STATUS RECODED = 
Poorer Health

1.489 1.332 1.664

For cohort HEALTH 
STATUS RECODED = 
Better Health

.928 .910 .947

N of Valid Cases 7400

Table 6.11   Estimates of risk of poorer health 
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To find the relative risk of being in poorer health if respondents are overweight or 
obese, inspect the row labeled, For cohort HEALTH STATUS RECODED = Poorer 
Health. In the column labeled Value you will find the sample value of relative risk, 
1.489. (Since SPSS carries its calculations out to several decimal points, its values 
of relative risk are often a bit different from those we calculate by hand.) You will 
also find to the right of the value the lower and upper limits of the 95 % CI. As the 
interval does not include the value of 1, we can conclude with 95 % confidence 
that for residents of NY state, being overweight or obese is a risk factor for poorer 
health.

You may have noticed that in the Risk Estimate table, there is a row labeled, For 
cohort HEALTH STATUS RECODED = Better Health. This row refers to the rela-
tive chances of being in better health for respondents who are overweight or obese. 
This value is calculated in the same way that we calculated relative risk. (In fact, it 
could be referred to as a relative risk estimate but since we do not usually think of 
being in good health as a negative outcome, the term “risk” seems out of place in 
this context.) As you can see, the value is 0.928. What does this value mean? To find 
out, look at the column of the Crosstabulation table labeled, Better Health. What 
proportion of those who were overweight or obese enjoyed better health? What 
proportion of those who were neither overweight nor obese enjoyed better health? 
Which proportion is smaller? How much smaller? At this point you should see that 
the chances of being in better health for respondents who were obese were about 
93 % of those of their thinner counterparts. Note that SPSS includes the 95 % CI for 
this value as well.

Odds Ratio  Another statistic for determining whether a factor places people at 
risk is the odds ratio. As we explained above, using the odds ratio is more appro-
priate than using relative risk in our example as the CDC data come from a cross-
sectional study. Similar to relative risk, an odds ratio reflects the relative likelihood 
of the occurrence of a negative outcome. However, while relative risk is expressed 
in terms of probabilities, an odds ratio is expressed in terms of odds.

Refer back to the Crosstabulation table. For those who were overweight or obese, 
837 were in poorer health while 3560 were in better health. Thus for overweight or 
obese respondents, the odds of being in poorer health were 837 to 3560 or 0.235 to 
1. What were the odds for those who were neither overweight nor obese? A check 
of the table reveals 384 to 2619, or 0.147 to 1.

We can see from these data that for both weight groups, the odds were against 
any respondent being in poorer health. However, were those who were overweight 
or obese more likely to be in poorer health than those who were neither overweight 
nor obese? To find out, we compare the two sets of odds and see that the odds of 
being in poorer health for those who were overweight or obese (0.235) are about 1.6 
times as large as the corresponding odds for those who were neither overweight nor 
obese (0.147). If being overweight or obese was not a risk factor for poorer health, 
then the odds for each of the weight groups would be equal and the odds ratio would 
equal 1. However, in these data, the odds ratio is greater than 1 and so it appears that 
being overweight is a risk factor for poorer health.
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We say “appears” because, as with a relative risk estimate, it is always possible 
that the sample value of an odds ratio is due entirely to sampling variability. Con-
sequently, we need to know the upper and lower limits of the 95 % CI constructed 
around the sample value to see if we can be 95 % confident that the population value 
is not equal to 1. SPSS generates the CIs for us and displays it along with the odds 
ratio in the first row of the Risk Estimate table. As you can see from that row, the 
odds ratio equals 1.604 and the 95 % CI does not contain the value of 1. Once again, 
we come to the confident conclusion that being overweight or obese is a risk factor 
for poorer health.

We might mention that there are two additional ways to calculate odds ratios. 
One involves the following three steps. First, multiply the two frequency counts 
in the upper left and lower right cells of the Crosstabulation table (837 and 2619 
in this case). Then multiply the remaining two frequency counts (3560 and 384). 
Finally, divide the first product by the second. The second alternative method is to 
divide the relative risk of the negative outcome (in this case, 1.489) by the relative 
chances of the positive outcome (0.928).

Deriving an Odds Ratio from a Case-Control Study  In the preceding example, 
we treated being overweight or obese as a risk factor and interpreted the relative 
risk and odds ratio to mean that people who are overweight or obese are more likely 
to develop poorer health. We cannot be sure, however, that being overweight was 
followed by a decline in health. For example, perhaps people who were in poorer 
health became less physically active and therefore gained weight. To overcome the 
problem of determining which variable came first in time, researchers can conduct a 
case-control study. In case-control studies, the degree of association, if any, between 
a suspected risk factor and an outcome is measured in terms of an odds ratio.

As an example of a case-control study, consider an investigation of whether age 
at first pregnancy is a risk factor for cervical cancer. A total of 366 women who had 
been pregnant at least once and were at the time of the study between the ages of 50 
and 59 were selected. The cases were 49 women who had been diagnosed as having 
cervical cancer. The controls were 317 women who did not have the disease. For 
each group, the researchers counted the number of women who at their first preg-
nancy either were 25 years old or younger or were older than 25. Notice that in this 
study, the risk factor clearly preceded the outcome.

The data from this study can be found in Cervical.sav [2]. This file is construct-
ed differently from others that we have seen so far. Instead of having 366 rows of 
data, one for each woman, we have only four, one row for each combination of the 
values of Age at First Pregnancy (25 or younger and Older than 25) and Disease 
Status (Cervical Cancer and Controls). Each row contains the number of women in 
each of the four combinations. For example, we have 42 women whose first preg-
nancy occurred when they were 25 or younger and who had been diagnosed with 
cervical cancer. Figure 6.17 displays the data file. We show you this type of data file 
to make the point that it is sometimes possible to conduct statistical analyses with 
SPSS from summary data.
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Before we can calculate an odds ratio, we must convert our summary data into 
the original data set. Open the file and select Data > Weight Cases to bring up the 
following Weight Cases dialog box. Select Weight cases by and move Number of 
Cases to the Frequency Variable window. Click OK. These steps are displayed in 
Figs. 6.18 and 6.19.

Now you are ready to compute the odds ratio. Using the Crosstab procedure, 
ask SPSS to create a table with the risk factor (Age at First Pregnancy) as the row 
variable and the outcome (Disease Status) as the column variable, and to generate 
row percentages and risk statistics. Run the analysis. The output should be similar 
to the output shown in Tables 6.12 and 6.13.

Fig. 6.18   Opening the Weight Cases dialog

 

Fig. 6.17   Cervical.sav data file
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Fig. 6.19   Assigning the weight cases by variable and executing the weight cases procedure

 

Study the output and answer the following questions:
6.6.1 � What are the odds that women who were 25-years old or younger at 

first pregnancy were diagnosed with cervical cancer?
6.6.2  What are the odds for women who were older than 25 at first pregnancy?
6.6.3 � Are women who were 25-years old or younger at first pregnancy more 

or less likely to be diagnosed with cervical cancer?
6.6.4  How much more (or less)?
6.6.5  Does age at first pregnancy appear to be a risk factor for cervical cancer?
6.6.6  Can we be 95 % confident that age at first pregnancy is a risk factor?
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6.7 � Exercise Questions

1.	 To answer the following questions, you will use the variable INCOME CAT-
EGORIES [@_INCOMG] (variable 83; 1 ≤ US$ 15,000, 2 = US$ 15,000 to less 
than US$ 25,000, 3 = US$ 25,000 to less than US$ 35,000, 4 = US$ 35,000 to 
less than US$ 50,000, 5 = US$ 50,000 or more, 9 = Don’t know/Not sure/Miss-
ing) in the CDC BRFSS data set. Be sure to declare the missing value before 
proceeding.

a.	 What is the 90 % CI for the proportion of the population whose annual house-
hold income is less than $ 15,000?

b.	 What is the 95 % CI for the proportion of the population whose annual house-
hold income is less than US$ 15,000?

c.	 What is the 99 % CI for the proportion of the population whose annual house-
hold income is less than $ 15,000?

Age at First Pregnancy * Disease Status Crosstabulation

Disease Status

Total
Cervical 
Cancer Controls

Age at First Pregnancy 25 or Younger Count 42 203 245

% within Age at 
First Pregnancy 17.1% 82.9% 100.0%

Older than 25 Count 7 114 121

% within Age at 
First Pregnancy 5.8% 94.2% 100.0%

Total Count 49 317 366

% within Age at 
First Pregnancy 13.4% 86.6% 100.0%

Table 6.12   Distribution of cervical cancer as a function of age at first pregnancy 

Risk Estimate

Value

95% Confidence Interval

Lower Upper

Odds Ratio for Age at 
First Pregnancy (25 or 
Younger / Older than 25)

3.369 1.466 7.746

For cohort Disease Status 
= Cervical Cancer 2.963 1.372 6.400

For cohort Disease Status 
= Controls .879 .818 .945

N of Valid Cases 366

Table 6.13   Estimates of risk of cervical cancer 
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d.	 How do the widths of the three CIs you just reported differ from one another? 
Why are they different?

2.	 Using the variable GENERAL HEALTH [GENHLTH] (variable 3; 1 = Excel-
lent, 2 = Very good, 3 = Good, 4 = Fair, 5 = Poor, 7 = Don’t know/Not Sure, 
9 = Refused) in the CDC BRFSS data set, determine whether more than half of 
the adult population of NY state considers their general health to very good to 
excellent. Be sure that any missing values have been declared before you begin.

a.	 How many people in the sample reported that they were in either very good 
or excellent health?

b.	 What proportion of the people in the sample reported that they were in either 
very good or excellent health?

c.	 What is the null hypothesis? What is the alternative hypothesis?
d.	 Can we confidently conclude that more than half of the adult population of 

NY state consider themselves to be in very good to excellent health? Why or 
why not?

3.	 In Question 1, you conducted analyses on INCOME CATEGORIES. Recode 
this variable into a new variable so that people who earned less than US$ 15,000 
are still coded as a 1 but all other non-missing values are coded as a 2. That is, a 
value of 1 will be those whose annual household income is less than US$ 15,000, 
and a value of 2 will be those whose annual household income is US$ 15,000 
or more. Name the new variable something like, INCOME CATEGORIES 2 
GROUPS. Now split the file (Data > Split File) according to this new variable 
and conduct analyses that will answer the following questions:

a.	 How many people who earned less than US$ 15,000 reported that their gen-
eral health was either very good or excellent?

b.	 What proportion of people who earned less than US$ 15,000 reported that 
their general health was either very good or excellent?

c.	 How many people who earned US$ 15,000 or more reported that their general 
health was either very good or excellent?

d.	 What proportion of people who earned US$ 15,000 or more reported that their 
general health was either very good or excellent?

e.	 What is the 95 % CI for the difference between these two proportions?
f.	 Judging from the CI for the difference between the two proportions, can we 

be confident that the two population proportions are different? Why or why 
not?

g.	 Check on your answer to f. above by testing whether the proportion of the 
population whose annual income is less than US$ 15,000 who report that their 
general health is either very good or excellent is different from the proportion 
of the population whose annual household income is US$ 15,000 or more 
who report that their general health is either very good or excellent. Were the 
two proportions significantly different?

h.	 Were the requirements necessary for using the script in g. above satisfied? 
Why or why not?
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4.	 Researchers wanted to know whether owners of pet birds are at risk for contract-
ing lung cancer. To find out, they asked 239 people who had lung cancer and 429 
who did not whether they had kept birds as pets. The data are in Petbirds.sav [3]. 
The results of the study are shown in Table 6.14.

a.	 Is this investigation an experiment, a cohort study, a case-control study or a 
cross-sectional study?

b.	 To determine whether keeping pet birds is a risk factor, should we calculate 
relative risk or an odds ratio? Why?

c.	 By hand calculate and report whichever statistic you think is appropriate.
d.	 According to your calculations, does keeping pet birds seem to be a risk factor 

for contracting lung cancer? Why or why not?
e.	 Open the data set, Petbirds.sav, and double check your calculations by 

instructing SPSS to conduct the relevant cross-tabulation.
f.	 Does the 95 % CI include the value of 1?
g.	 According to the 95 % CI, can we conclude that keeping pet birds is a risk 

factor for lung cancer? Why or why not?
h.	 According to the 95 % CI, can we conclude that keeping pet birds is a cause 

of lung cancer? Why or why not?

5.	 A team of physician assistant students measured the physical flexibility of col-
legiate athletes at the beginning of a sports season to determine if lack of flex-
ibility is a risk factor for being injured during the season [4]. The results of their 
analysis are displayed in Tables 6.15 and 6.16.

Flexibility at Beginning of Sports Season * Injured During the Sports Season 
Crosstabulation

Injured During the 
Sports Season

TotalYes No

Flexibility at 
Beginning of Sports 
Season

Low Count 12 21 33

% within Flexibility 
at Beginning of 
Sports Season

36.4% 63.6% 100.0%

High Count 12 60 72

% within Flexibility 
at Beginning of 
Sports Season

16.7% 83.3% 100.0%

Total Count 24 81 105

% within Flexibility 
at Beginning of 
Sports Season

22.9% 77.1% 100.0%

Table 6.15   Distribution of injured collegiate athletes of varying physical flexibility 

Respondents kept birds Respondents had lung cancer
Yes No

Yes 98 101
No 141 328

Table 6.14   Distribution of 
lung cancer
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a.	 Was this study an experiment, a cohort study, a case-control study or a cross-
sectional study? Explain.

b.	 What was the risk of injury for athletes who were high in flexibility? Low in 
flexibility?

c.	 What was the relative risk of injury?
d.	 Was the relative risk of injury statistically significantly different from 1? How 

do you know?
e.	 What were the odds of injury for athletes low in flexibility?
f.	 What is the odds ratio? Does it indicate that low flexibility is a risk factor for 

injury?
g.	 Does the design of this study justify the use of relative risk or should the 

researchers use the odds ratio instead? Explain.

Data Sets and References

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2.	 Cervical.sav obtained from: Graham, S., Shotz, W.: Epidemiology of cancer of the cervix in 
Buffalo, New York. J. Natl. Cancer Inst. 63(1), 23–27 (1979). (Public domain)

3.	 Petbirds.sav obtained from: Kohlmeier, L., Arminger, G., Bartolomeycik, S., Bellach, B., 
Rehm, J., Thamm, M.: Pet birds as a independent risk factor for lung cancer: case-control 
study. Br. Med. J. 305, 986–989 (1992). (With the kind permission of the BMJ Publishing 
Group Ltd.)

4.	 From: Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and 
Reach Test as a measure of flexibility for predicting lower extremity injury in Division III 
athletes. Unpublished data, Le Moyne College, Syracuse (2010)

Risk Estimate

Value

95% Confidence Interval

Lower Upper

Odds Ratio for Flexibility 
at Beginning of Sports 
Season (Low / High)

2.857 1.114 7.328

For cohort Injured During 
the Sports Season = Yes 2.182 1.099 4.332

For cohort Injured During 
the Sports Season = No .764 .578 1.008

N of Valid Cases 105

Table 6.16   Estimates of risk of injury 

http://www.cdc.gov/brfss/
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Abstract  This chapter investigates relationships in categorical data. It begins with 
a discussion of contingency tables and clustered bar charts as descriptive measures. 
The chi-square test for contingency tables is discussed. If the two categorical vari-
ables are found to be related, then the strength of that relationship is measured using 
Cramér’s V for nominal variables and Gamma for ordinal variables.

7.1 � Overview

An important goal of science is to determine if one variable causes another. As we 
saw in Chap. 1, a first step toward establishing causal connections is to determine if 
the two variables in question are related. Once a relationship has been established, 
additional research can be conducted to determine if the relationship between the 
two variables is causal and if so, the direction of the causality. In this chapter, we 
look at several statistics that are used to determine whether two categorical vari-
ables are related. In Chap. 9, we will look at statistics that are used to determine 
whether two quantitative variables are related.

To better understand the association between two variables, it is helpful to gener-
ate a visual display of the relationship between those variables. When the variables 
are categorical, the relationship is depicted in the form of a two-way table called a 
contingency table or in the form of a graph called a clustered bar chart. When the 
variables are quantitative, the relationship between them is usually depicted in the 
form of a graph known as a scatter plot. In this chapter, we focus on how to interpret 
a contingency table. In Chap. 9, we will focus on how to interpret a scatter plot.

We pointed out in Chap. 5 that sample data are always subject to sampling vari-
ability. Random measurement errors and random differences across respondents 
guarantee that sample results will be affected by chance factors. We also pointed out 
that we can never know for sure the characteristics of a population. To overcome 
this, we will need to conduct a test of hypotheses.

In addition to determining whether two variables are related, measures of as-
sociation can be used to quantify the strength of the relationship. Many do so along 
a scale ranging from 0 to − 1 for negative relationships, and 0 to + 1 for positive 
relationships. For data where it does not make sense for a relationship to have a 
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direction (e.g., with some categorical data), these measures typically range from 0 
to 1. The measures of association that we will study are Cramér’s V, gamma, Pear-
son correlation, and Spearman’s Rho. The last two are intended to be used when 
the data are quantitative, and they are the subject of Chap. 9. The first two are to be 
used when the two variables are categorical, and they are the subject of this chapter.

7.2 � Contingency Tables

Using the CDC data set, we will construct what statisticians call a contingency 
table to see if there appears to be a relationship between the self-reported health of 
respondents and their sex. Since we are interested in whether self-reported health 
varies according to the sex of the respondent, it is common practice to refer to sex 
as the explanatory variable, and to refer to self-reported health as the response 
variable. When constructing a contingency table with two variables, the usual pro-
cedure is to have the explanatory variable be the column variable and the response 
variable be the row variable. We will create a contingency table with sex as the col-
umn variable and self-reported health as the row variable. The intersection of each 
column and row within the body of the table will display a count of the respondents 
of a particular sex who gave a particular response (e.g., the number of men who said 
that they were in excellent health), and the percentage of those of a particular sex 
who gave a particular response (e.g,, the percentage of all men in our sample who 
said that they were in excellent health).

Load the data file, CDC BRFSS.sav [1], into SPSS. Before proceeding be 
sure that 7 and 9 have been declared missing values for the variable, GENERAL 
HEALTH [GENHLTH] (variable 3). Begin by selecting Analyze > Descriptive 
Statistics > Crosstabs. This will open the Crosstabs dialog box. Move the variable 
GENERAL HEALTH into the Row(s) area, and the variable SEX [SEX ] (variable 
32) into the Column(s) area. We want to know for each sex the percent that gave 
each response. Of the men, what percent said they were in excellent health, were in 
very good health, and so on? Of the women, what percent said they were in excel-
lent health, very good health, and so on? Since we decided to make SEX a column 
variable, each of these percentages is equal to the number of respondents in a given 
column-row combination divided by the total number of respondents in that col-
umn. To instruct SPSS to generate these percentages, click the Cells button to open 
the Crosstabs: Cell Display dialog box. As we want percentages calculated within 
each sex, and since SEX is our column variable, check Column in the Percentages 
area. Click Continue and then click OK. The steps for generating this analysis are 
displayed in Figs. 7.1, 7.2, and 7.3.

Interpreting a contingency table displaying column percentages  SPSS will now 
generate a contingency table that shows the number of cases of men and women 
who chose each of the GENERAL HEALTH response categories. The table is 
reproduced in Table 7.1.
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The purpose of a contingency table is to reveal whether the distribution of re-
spondents across the values of one variable depends or is contingent upon the val-
ues of the other variable. Study the contingency table and see if the distribution 
of respondents across the variable GENERAL HEALTH seems to depend on the 
respondents’ sex.

The bottom row of the table provides the total for each sex and for all partici-
pants combined. According to the output, the sample consisted of 2930 men and 
4847 women, for a total of 7777 respondents with valid responses. Note that each 
of these three numbers comes from one of the columns, and that the percentages 
reading down that column total to 100 %.

Each of the rows above the bottom row provides information about the number 
of men and women who gave the corresponding response. For example, 639 men or 

Fig. 7.1   Selecting crosstabs

 

Fig. 7.2   Selecting the row and column variables and selecting the Cell Display dialog
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Table 7.1   A cross-tabulation 

Fig. 7.3   Selecting column percentages
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21.8 % of the 2930 men said their health was excellent and 1013 women or 20.8 % 
of the 4847 women said they were in excellent health. Again note that we are read-
ing the data within a given column and that the percentages within a column add 
up to 100 %.

Inspection of the table should tell us whether sex and reported general health are 
related. However, when interpreting a cross-tabulation, pay close attention to the 
percentages, especially when considering data where the number of respondents in 
each group differs greatly. In this sample, for example, there are many more women 
than men. Yet we see that the column percentages are very close for each gender. 
The similarity of the column percentages indicates that perceptions of overall health 
do not vary with a respondent’s gender. The terminology here is to say that SEX and 
GENERAL HEALTH are independent.

In order to conclude that health varied with sex, we would have to see percent-
ages within the columns that are different from column to column. For example, in 
the CDC data that we are analyzing, if 40 % of women said they were in excellent 
health contrasted with 25 % of men saying they were in excellent health, we might 
have reason to believe that women tend to be healthier than men.

We say that we might have reason to believe that women tend to be healthier 
than men because we are dealing with sample data. It is possible that a difference 
of this size (40 % of women versus 25 % of men) may not be inconsistent with what 
one might expect to see due to sampling variability. As we saw in Chap. 5, to know 
whether or not the trends we think we are seeing in our data are not just a fluke or 
the result of random factors is an important function of statistical analysis. We will 
return to this topic later in this chapter.

Interpreting a contingency table displaying row percentages  The contingency 
table above displayed column percentages. When studying whether or not two vari-
ables are related, it is often useful to generate two contingency tables, one in which 
percentages are calculated within columns, another within rows. Let us look at the 
contingency table when it displays row percentages.

Return to the Crosstabs: Cell Display dialog box. Replace column percentages 
with row percentages and rerun the analysis.

The contingency table displaying the row percentages is shown in Table 7.2.
The frequencies within each cell of the cross-tabulation are exactly the same as 

before, but the percentages are different. This is because the percentages are read 
by reading across a given row. For example, recall that there were 639 men who 
reported that they were in excellent health. In the first analysis, 639 was 21.8 % of 
the 2930 men in the sample. In this analysis, 639 represents 38.7 % of the 1652 men 
and women in the sample who said that they were in excellent health.

In the first analysis, we could see that there was no relationship between sex and 
reported health because the column percentages in each row were quite close to 
each other. In this analysis, we can see that no relationship existed between sex and 
health by noting that the percentages of men and women in each row are essentially 
the same as the overall percentages of men and women in the sample.
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7.3 � Clustered Bar Charts

Sometimes displaying a cross-tabulation as a bar chart is useful. In this section, we 
study a clustered bar chart of the cross-tabulation of GENERAL HEALTH and 
SEX.

As we did in Chap. 3, select Graphs > Chart Builder to open the Chart Builder 
dialog box. In the Gallery, select Bar. Now drag the clustered bar chart picture (the 
second chart from the left in the top row) to the empty window above it. Drag GEN-
ERAL HEALTH to the X-Axis box, and drag SEX to the Cluster on X: set color 
box. In the Element Properties dialog box, select Percentage(?) in the Statistic box. 
Click Set Parameters and select Total for Each Legend Variable Category (same 
fill color). Now click Continue, and then Apply followed by OK to produce the 
graph. These steps are displayed in Figs. 7.4, 7.5, 7.6, 7.7 and 7.8).

The resulting graph is reproduced in Fig. 7.9. Which of the two cross-tabulations 
in Sect. 7.2 does this graph seem to represent?

The graph in Fig. 7.9 shows the column percentages. To show the row percentag-
es, we would return to Chart Builder and reverse the positions of the two variables 
by assigning SEX as the X-Axis variable and GENERAL HEALTH as the Cluster 
on X: set color variable. This would produce the graph shown in Fig. 7.10. Look-
ing at this graph, would you say that men and women differed in their self-reported 
health? Remember, about 38 % of the sample was male.

Table 7.2   A contingency table with row percentages 
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7.4 � Testing Hypotheses About Whether Two Categorical 
Variables are Related

Imagine that we were to interview another random sample of 7000 or so New York-
ers. We would be very surprised if the data provided by the new sample turned out 
to be exactly the same as those of the present sample. In fact, we should be very 
suspicious of the sampling methodology if they were the same. Since sample data 
are subject to random fluctuation, it is always possible that any relationship we ob-
serve between two variables in a sample was due only to chance, a fluke that should 
not be taken to mean that the relationship we observed in the sample actually exists 
in the population from which the sample was taken.

Fig. 7.4   Selecting the clustered bar chart

 

7.4 � Testing Hypotheses About Whether Two Categorical Variables are Related�
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Instead of assuming that what is true of the sample is necessarily true of the 
population, we apply logic similar to that explained in Chap. 5 and conduct a test 
of hypotheses to decide between two claims about the population. One claim, the 
null hypotheses, states that in the population from which we took our sample, there 
is no relationship between the two variables of interest. The second claim, the alter-
native hypothesis, states that there is a relationship. Using the sample data, we test 
the null hypothesis by calculating the probability that the relationship between two 
variables observed in our sample would occur if the null hypothesis is in fact true. 
If that probability, which you will recognize as the p-value of the test, is small, we 
can then confidently conclude that the relationship we found in the sample is a true 
reflection of the relationship that exists in the population.

Fig. 7.5   Setting the x-axis and clustering variables
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Chi-square test  When we are interested in whether or not two categorical vari-
ables are related in the population, the test of hypotheses we can conduct is known 
as a chi-square test. The test tries to decide between the null hypothesis that there 
is no relationship and the alternative hypothesis that there is. In this section, we 
use chi-square to explore the relationship between the nominal variable, sex (male 
versus female), and an ordinal measure of obesity (neither overweight nor obese, 
overweight, or obese).

Fig. 7.6   Selecting a bar chart 
of percentages
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Begin by declaring 9 as a missing value for the variable, BODY MASS IN-
DEX-THREE LEVELS CATEGORY [@_BMI4CAT] (variable 79). Next, return 
to the cross-tabulations dialog box and click Reset. Then set up a cross-tabulation 
with SEX [SEX] (variable 32) as the column variable and BODY MASS INDEX-
THREE LEVELS CATEGORY as the row variable. Click Statistics and check 
Chi-square. Click Continue followed by Cells. Check column percentages and 
click Continue. Finally, to demonstrate another way to generate a graph of our re-
sults, check Display clustered bar charts in the main cross-tabulation dialog box. 
Click OK. These steps are displayed in Figs. 7.11, 7.12 and 7.13.

Study the output. The chi-square statistic that is of interest to us is labeled Pear-
son Chi-square. The p-value for the test appears in the Asymp. Sig. (2-sided) col-
umn.

Fig. 7.8   Drawing the clustered bar chart

 

Fig. 7.7   Selecting percentage 
within each sex
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Statistical significance and the Type I Error  Recall from Chap. 5 that scientists 
feel that we can rule out chance as the sole cause of a sample result whenever the 
p-value is ≤ 0.05. Whenever a p-value is ≤ 0.05, we know that if we took repeated 
samples and conducted the same test we would see a value of chi-square equal to 
or more extreme than what we found in only 5 % or fewer of those tests if the null 
hypothesis is true. When the p-value is this small, we say that the observed relation-
ship between the two variables was statistically significant at the 0.05 level.

Another way of looking at this goes as follows. If we use 0.05 as our cutoff for 
saying that the observed relationship is statistically significant, 5 % of the time we 
will mistakenly conclude that a relationship we found between the two variables 
in our sample also exists in the population. In statistics, this mistake is known as a 
Type I Error. We never know when we have committed a Type I Error. However, we 
do know that if the null hypothesis is true we will make this mistake 5 % of the time. 
Scientists feel that a 5 % error rate is acceptable. In addition, it is common practice 
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for scientists to try to replicate each others’ results. If the outcomes can be repeated, 
then the conclusion drawn is more likely to be valid.

Sometimes, an error rate of 5 % seems too high. This might be true if the impli-
cations of one’s research are very important. In these cases, scientists will demand 
an even lower error rate. In such a situation, scientists might opt for a significance 
level of .01.

Any sample result associated with a p-value equal to or less than 0.05, 0.01, or 
0.001 could be said to be statistically significant. Therefore, it is incumbent upon 
researchers to explain which p-value was used to determine whether results were to 
be labeled “significant.” In addition, researchers are encouraged to report the exact 
p-value associated with each of their findings, e.g., p = 0.02.

SPSS computes the p-value associated with many of its sample statistics. In 
some cases, it can calculate the exact p-value. In other cases, it calculates an ap-
proximate value.
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Fig. 7.12   Requesting a chi-
square test
 

Fig. 7.11   Cross-tabulation dialog
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The output  Recall that the p-value for the test tells us the probability that the 
observed relationship between the two variables is due just to chance. If the p-value 
is ≤ 0.05, we conclude that there is a relationship between the two variables under 
study in the population from which the sample was drawn. Table 7.3 and Fig. 7.14 
show the output from the cross-tabulation we just conducted.

Answer the following questions.
7.4.1 � According to Table 7.3, we can conclude that there is a relationship 

between sex and BMI category among New York State residents. Why 
can we make this conclusion?

7.4.2 � How would you describe the relationship between sex and BMI cat-
egory?

7.4.3 � The clustered bar graph (Fig. 7.14) displays frequencies, not percent-
ages. Would a graph of percentages have been more helpful? Why or 
why not?

Fig. 7.13   Requesting column percentages
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7.5 � Measuring the Strength of the Relationship: 
Cramér’s V

The fact that a relationship observed in a sample is statistically significant means 
that it is very likely that the relationship also exists in the population. However, a 
significant relationship does not imply that the relationship is a strong one. For ex-
ample, a weak relationship between two variables can still be significant if the size 
of the sample is sufficiently large. Consequently, when a relationship between two 
variables is found to be significant, often the next step is to determine how closely 
or strongly the two variables are associated with one another.

When both variables under study are categorical, a large number of measures 
of association are available. For the rest of the chapter, we focus on two of them, 
Cramér’s V and gamma. First, Cramér’s V. If either of the variables is nominal, 
Cramér’s V is an appropriate measure of the degree to which the two variables are 
related. To demonstrate we will use the CDC data set to determine if sex (male or 
female) and access to health care (yes or no) are related.

To make interpretation of the output easier, begin by labeling the values of HAVE 
HEALTH CARE COVERAGE [HLTHPLAN] (variable 7; 1 = Yes; 2 = No) and 
declaring values of 7 and 9 for HAVE HEALTH CARE COVERAGE as missing. 
Open the Crosstabs dialog box and click Reset. Then using SEX [SEX] (variable 
32) as the column variable and HAVE HEALTH CARE COVERAGE as the row 

Table 7.3   Crosstabs output 

7.5 � Measuring the Strength of the Relationship: Cramér’s V�
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variable, run a cross-tabulation. Before conducting your analysis, click Cells and 
ask SPSS to generate column percentages. Then click Statistics and check Chi-
square and Phi and Cramér’s V in the Nominal area of the Statistics dialog box as 
shown in Fig. 7.15.

Depending on how the values of the two variables are coded, Cramér’s V can 
range from 0 to + 1. If two variables are not at all related to one another, Cramér’s 
V will equal 0; if both variables are perfectly related to one another, Cramér’s V 
will equal + 1. The phi coefficient that also appears in the output will have the same 
magnitude as Cramér’s V in the case of a 2 × 2 table. For larger tables, phi should not 
be used because it cannot achieve its maximum value. For these tables Cramér’s V 
has an achievable upper value of + 1, and therefore should be used.

In our example, if there is no relationship between the sex of the respondent and 
whether or not he or she had access to a health care plan, then Cramér’s V would 
equal 0. If Cramér’s V were equal to or very close to 0, knowing whether the respon-
dent was male or female would not allow us to improve our ability to tell whether or 
not he or she had a health-care plan. On the other hand, if males always had a plan 
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and women never did, or if males never had a plan, and women always did, Cra-
mér’s V would equal + 1. In these cases, knowing the sex of the respondent would 
always tell us whether or not the respondent had a health care plan.

The output of the cross-tabulation is shown in Table 7.4.

Testing hypotheses about Cramér’s V  Recall that sample data are always subject 
to the effects of chance. As a consequence, we can never be certain that the results 
we obtained from a given sample give us a true reading of the population from 
which we drew the sample. For example, the Cramér’s V that we calculated in the 
previous section was based on a sample of New York state residents, not the entire 
population of people who live in the state. The value of Cramér’s V that we com-
puted was true of the sample, but because of chance factors, may not approximate 
the value of Cramér’s V that we would have calculated if we could have interviewed 
everyone in the state. In fact, it is possible the value of Cramér’s V in the population 
is actually zero. Hence we need to choose between two possibilities: the population 
value of Cramér’s V is equal to zero (the null hypothesis) or the population value of 

Fig. 7.15   Selecting  
Cramér’s V
 

Answer the following questions.
7.5.1 � In our sample, were men or women more likely to have a health care 

plan?
7.5.2  What is the value of Cramér’s V ?
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Cramér’s V is not equal to zero (the alternative hypothesis). To make this choice, we 
need to know the probability that the value of Cramér’s V that we calculated based 
on our sample would have been obtained if the population value was zero, i.e., if the 
null hypothesis were true.

For each value of Cramér’s V (and the phi coefficient), SPSS calculates an ap-
proximate p-value, and labels it Approx. Sig. As long as this p-value is ≤ 0.05, we 
can confidently reject the null hypothesis and conclude that the sample value of 
Cramér’s V was not solely due to chance, but also a result of a true relationship 
within the population from which the sample was taken.

Comparing values of Cramér’s V across a categorical variable  It is possible 
that the strength of a relationship between two categorical variables varies across 
values of a third categorical variable. Consequently, researchers often determine 

Answer the following questions.
7.5.3 � In our analysis of the relationship between sex and having a health 

care plan, what was the p-value associated with Cramér’s V ?
7.5.4 � Can we reject the null hypothesis that Cramér’s V is equal to zero? 

Why or why not?
7.5.5 � In the population of New York State residents, can we conclude that 

women are more likely to have a health care plan?

Table 7.4   Output from crosstabs 
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whether the value of Cramér’s V (or whatever measure of association they are 
using) depends on some other factor. For instance, in our example, we found that 
women are more likely to have a health care plan than men. This conclusion applies 
to the population of New York State as a whole, but there might be exceptions. For 
example, maybe married couples share their spouses’ plan, and as a result there is no 
difference between the percentages of married men and women who have a health 
care plan. In this section, we determine if the relationship between sex and health 
coverage depends on whether people are married or divorced.

Begin by checking that the values of the variable, MARITAL STATUS [MARI-
TAL] (variable 24; 1 = Married, 2 = Divorced, 3 = Widowed, 4 = Separated, 5 = Never 
married, 6 = A member of an unmarried couple, and 9 = Refused to answer) have 
been labeled and that the value of 9 has been declared as a missing value. Then use 
Data > Select Cases to restrict our analysis to married and divorced respondents. 
Then return to the cross-tabulation dialog box that we set up in our previous analy-
sis and move MARITAL STATUS to the box labeled Layer 1 of 1. The dialog box 
should now look similar to the one shown in Fig. 7.16.

Be sure that Phi and Cramér’s V in the Crosstabs: Statistics dialog box is still 
checked. Then click Continue and OK.

Table 7.5 gives the output that is generated by the above analysis.

Fig. 7.16   Selecting marital status as a layer variable
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Table 7.5   Controlling for marital status 

Answer the following questions.
7.5.6 � Do the values of Cramér’s V vary across marital status?
7.5.7 � Among married people within New York State, are men or women 

more likely to have health coverage?
7.5.8 � What about among New York’s divorced residents?
7.5.9 � Is our earlier conclusion that women are more likely to have health 

coverage generally true or are there exceptions? Explain.
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7.6 � Measuring the Strength of the Relationship: Gamma

If both variables are ordinal, researchers are interested in determining not only how 
strongly the two variables are related but in determining whether the relationship is 
positive or negative. In a positive relationship, increases in one variable tend to be 
associated with increases in the other. In a negative relationship, increases in one 
variable tend to be associated with decreases in the other. One measure of associa-
tion between ordinal variables that measures both strength and direction is called 
gamma. Gamma can range from − 1 to + 1. The closer gamma is to either extreme, 
the stronger is the relationship between the two variables. The sign tells the direc-
tion of the relationship. If the overall tendency is for an increase in one ordinal 
variable to be associated with an increase in the other ordinal variable, gamma will 
be positive. If the overall tendency is for an increase in one ordinal variable to be as-
sociated with a decrease in the other ordinal variable, then gamma will be negative.

Gamma is calculated as follows. First, two types of pairs of observations are 
identified. A pair of observations, call them A and B, is said to be concordant if A 
is higher than B in one variable and A is higher than B in the other variable. A pair 
of observations is said to be discordant if A is higher than B in one variable, but B 
is higher than A in the other variable. Next, the total number of concordant pairs 
and the total number of discordant pairs are calculated. Gamma is then computed 
as the difference between the number of concordant and discordant pairs relative to 
the number of all pairs which are either concordant or discordant. If there are more 
concordant pairs than discordant pairs, then gamma will be positive. If there are 
more discordant pairs than concordant pairs, then gamma will be negative. Gamma 
will be + 1 if there are no discordant pairs, and gamma will be − 1 if there are no 
concordant pairs.

We will use gamma to study the relationship between reported health status (good 
or better health versus fair or poor health) and BMI category (neither overweight 
nor obese, overweight, obese). We will conduct the analysis on the entire sample.

Begin by returning to the Data > Select Cases dialog box. Select All cases and 
click OK. Be sure that the value of 9 has been declared as missing for the vari-
able, HEALTH STATUS [@_RFHLTH] (variable 58; 1 = Good or Better Health, 
2 = Fair or Poor Health) and that the value labels have been assigned. Then set up 
a cross-tabulation with BODY MASS INDEX-THREE LEVELS CATEGORY 
[@_BMI4CAT] (variable 79) as the column variable and HEALTH STATUS as 
the row variable. Click Statistics and as shown in Fig. 7.17, check Gamma in the 
ordinal area and Chi-square.

Click Continue. Now click Cells to be sure that column percentages have been 
selected. After clicking Continue, run the analysis.

The output that is generated by this analysis is shown in Table 7.6.
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7.7 � Exercise Questions

1.	 Using the variables INCOME CATEGORIES [@_INCOMG ](variable 83) and 
GENERAL HEALTH [GENHLTH] (variable 3) of the CDC BRFSS data set, 
investigate whether the reported general health of adult residents of New York 
State is related to their income. Before you begin, declare 7 and 9 as missing 
values for GENERAL HEALTH and 9 for INCOME CATEGORIES. Then 
generate a cross-tabulation between GENERAL HEALTH and INCOME 
CATEGORIES. INCOME CATEGORIES will be the explanatory variable 
so make it the column variable in the cross-tabulation. Include both row and 
column percentages.

Answer the following questions.
7.6.1  Is there a significant relationship between the two variables?
7.6.2  What is the value of gamma?
7.6.3 � Is the relationship positive or negative?
7.6.4 � What conclusion can we draw about the relationship between BMI 

category and the reported health for residents of New York state?

Fig. 7.17   Selecting gamma 
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a.	 Regardless of their reported health, how many respondents reported an annual 
household income less than US$ 15,000?

b.	 What percent of the total sample reported an annual household income less 
than US$ 15,000?

c.	 Regardless of their reported health, how many respondents reported a house-
hold income equal to or greater than US$ 50,000?

d.	 What percent of the total sample reported an annual household income equal 
to or greater than US$ 50,000?

e.	 Of the respondents who reported an annual household income less than 
US$15,000, what percentage also reported that they were in excellent health?

Table 7.6   Analysis with gamma 
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f.	 Of the respondents who reported an annual household income equal to or 
more than US$ 50,000, what percentage also reported that they were in excel-
lent health?

g.	 Of the respondents who reported an annual household income less than 
US$ 15 000, what percentage also reported that they were in poor health?

h.	 Of the respondents who reported an annual household income equal to or more 
than US$ 50 000, what percentage also reported that they were in poor health?

i.	 Does it appear that reported general health and income level are related? 
Defend your answer.

2.	 Determine if sex and smoking are related. Consider sex the explanatory variable. 
To conduct this analysis, use the variables SEX [SEX ] (variable 32; 1 = Male, 
2 = Female) and CURRENT SMOKING STATUS RISK FACTOR [@_
RFSMOK3] [variable 64; 1 = No (meaning that the respondent was not a smoker 
at the time of the interview); 2 = Yes (the respondent was a smoker); and 9 = Do 
Not Know/Refused to Answer/Missing] in the CDC BRFSS data set. Be sure 
that the values of each variable have been labeled, and declare a value of 9 as 
missing to limit the analysis to respondents whose smoking status was coded as 
either No or Yes. Then conduct a cross-tabulation that generates a contingency 
table with column percentages and that calculates Cramér’s V.

a.	 How many participants were included in the analysis?
b.	 What was the value of Cramér’s V?
c.	 According to Cramér’s V, is there a statistically significant relationship 

between sex and smoking status? If so, which sex is more likely to smoke?
d.	 Create a clustered bar graph of sex and smoking status. Put sex on the x-axis 

and percent (not count) on the y-axis. Be sure that the percentages reflect the 
column percentages of the contingency table.

3.	 Repeat the above analysis, but this time, determine if emotional support mod-
erates the extent to which sex and smoking are related. To conduct this analy-
sis, recode HOW OFTEN GET EMOT SUPPORT NEEDED [EMTSUPRT] 
(variable 49; 1 = Always; 2 = Usually; 3 = Sometimes; 4 = Rarely; and 5 = Never) 
into a new variable, EMOT SUPPORT 3 GROUPS. For the new variable, 
instruct SPSS to code those who reported usually or always receiving support 
as 1, sometimes receiving support as 2, and rarely or never as 3; and to copy the 
remaining variables (7 and 9) from the old variable to the new one. Then for the 
new variable, assign value labels (e.g., 1 = Usually or Always), and declare 7 and 
9 as missing values. Finally, run the cross-tabulation of Question 2 with the new 
variable as the layer variable.

a.	 Enter into Table  7.7 the values of Cramér’s V for each level of emotional 
support.

b.	 When does the prevalence of smoking significantly differ between men and 
women?

4.	 Determine if the overall general health of New York State adults is related to the 
time since they last had a routine checkup. The relevant variables are HEALTH 
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STATUS [@_RFHLTH] (variable 58; 1 = Good or Better Health; 2 = Fair or Poor 
Health; and 9 = Do Not Know/Not Sure/Refused/Missing) and HOW LONG 
SINCE LAST ROUTINE CHECKUP [CHECKUP] (variable 10; 1 = Within 
the Last Year; 2 = Within the Last 2 Years; 3 = Within the Last 5 Years; 4 = Five 
or More Years Ago; 7 = Do Not Know/Not Sure; 8 = Never; 9 = Refused) in the 
CDC BRFSS data set. Be sure that the value of 9 has been declared as missing 
for the variable, HEALTH STATUS, and that the values of 7 and 9 have been 
declared as missing for HOW LONG SINCE LAST ROUTINE CHECKUP.

In this analysis, we are interested only in those who have had a routine check-
up at least once in their lives, so using Data > Select Cases, exclude respondents 
who had never had a checkup.

Then recode HOW LONG SINCE LAST ROUTINE CHECKUP into a 
new variable, CHECKUP 2 GROUPS. In this new variable, assign a 1 to those 
who reported that they had a checkup within the last 2 years and a 2 to those who 
reported that they had a checkup over 2 years ago.

Next, declare 7 and 9 as missing for the new variable, and assign value labels 
to the new variable, and if necessary, to the variable, HEALTH STATUS.

Now create a contingency table with HEALTH STATUS as the explanatory 
variable and CHECKUP 2 GROUPS as the response variable. Include in the 
analysis column percents. To quantify the degree of relationship between the 
two variables, ask SPSS to calculate either Cramér’s V or gamma, whichever you 
believe is appropriate to the analysis.

a.	 How many participants are in the analysis?
b.	 In this analysis, is Cramér’s V or gamma the appropriate measure of associa-

tion? Why?
c.	 Report the value of Cramér’s V or gamma (whichever statistic you calculated).
d.	 Based on this statistic, how would you describe the relationship between gen-

eral health and time since last checkup?

5.	 Study the clustered bar chart in Fig. 7.18 and the output summarized Table 7.8. 
These were generated by a cross-tabulation of the CDC data.

Based on these data, answer the following question: Within the population of 
male New York State residents, are veterans more or less likely than nonveterans 
to be heavy drinkers? Explain your answer.
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Data Set and Reference

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral risk factor surveillance system survey data. Atlanta: US Department of Health and Hu-
man Services, Centers for Disease Control and Prevention (2005). Public domain. For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

Table 7.8   Output (Question 5) 

Fig. 7.18   Clustered bar chart (Question 5)

 

http://www.cdc.gov/brfss/
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Abstract  Clinicians often use screening and diagnostic tests to identify asymptom-
atic patients, confirm diagnoses or assess treatment effectiveness. The usefulness 
of these tests depends on their ability to correctly classify patients as having or not 
having a particular disease. This ability is assessed by determining the extent to 
which a test’s classifications agree with those of a criterion or gold standard. This 
chapter reviews several measures of agreement, including the test’s positive and 
negative predictive values, its true positive rate or sensitivity, its true negative rate 
or specificity, and the ratio of its true positive rate to its false positive rate, or likeli-
hood ratio. The chapter concludes with a discussion of how a receiver operating 
characteristic (ROC) curve is used to evaluate the accuracy of a test that generates 
a range of quantitative values, and to select a cutoff value that optimizes sensitivity 
and specificity.

8.1 � Overview

In Chap. 6, we learned that prevalence is the proportion of a population that has 
a given illness. Using this information, clinicians can get an initial sense of the 
likelihood that an individual patient has a particular disease. However, the accuracy 
of diagnosis can be greatly improved by including information generated by stan-
dardized clinical or laboratory tests. In some cases, a test can establish with great 
confidence whether or not a patient has a given medical condition. Unfortunately, 
such tests, referred to as criterion standards or gold standards, can have significant 
disadvantages. For example, they may be expensive, invasive, pose serious risks 
to patients, or cannot be used until after patients have died. Instead of using crite-
rion standards, clinicians often use screening and diagnostic tests. Clinicians use 
screening tests to identify among asymptomatic patients those who have disease in 
its early stages and diagnostic tests to confirm a diagnosis or to track the progress 
of treatment. Although less accurate than a criterion standard, a good screening or 
diagnostic test helps clinicians to adjust their initial judgments in the direction of 
a more accurate assessment of the likelihood that the patient has a given disease.

The results of a screening or diagnostic test are said to be either positive or nega-
tive for the presence of disease. A positive result means that the test has classified 
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the patient as having disease. A negative result means that the test has classified the 
patient as being free of disease. For these classifications to be useful to the clinician, 
they must tend to correctly identify whether or not the patient in fact has the disease. 
Since the test classifies patients as positive or negative, and since patients either 
have or do not have the disease, the screening or diagnostic usefulness of the test 
can be assessed with a 2 × 2 contingency table. In the last chapter, we learned how to 
use contingency tables to study the relationship between two categorical variables. 
In this chapter, we will see how contingency tables can be used to determine how 
well screening and diagnostic tests detect disease. The categorical variables will be 
the results of the screening or diagnostic test (positive versus negative) and the dis-
ease status of the patient as determined by a criterion test (disease is present versus 
disease is absent).

8.2 � Positive and Negative Predictive Values

One measure of the usefulness of a test is its positive predictive value (PPV), the 
proportion of times a positive test result is followed by a positive result on a crite-
rion test. If a test has a high PPV, then patients who test positive on it will tend to 
also test positive on the criterion test. Another measure is a test’s negative predictive 
value (NPV), the proportion of times a negative test result is followed by a negative 
result on the criterion test. If a test has a high NPV, then patients who test negative 
on it will tend to also test negative on the criterion test. In this section, we will de-
termine the PPV and NPV of a screening exam, specifically a digital rectal exam 
( DRE) that was conducted on 301 men to detect the presence of prostate cancer. 
These data are stored in the file, PSA.sav [1]. Subsequent to the exam, the prostate 
of each patient was biopsied. The researchers who conducted this study stored the 
results of the DRE in a variable called DRE Result [dre] (variable 3; 1 = Posi-
tive; 2 = Negative) and the results of the biopsy in a variable called Biopsy Result 
[biopsy] (variable 8, 1 = Cancer Present; 2 = Cancer Absent). Did the results of the 
digital exam predict the results of the biopsy?

If we were to answer this question by hand, we would first set up a 2 × 2 contin-
gency table. Following customary procedures, we would label the two rows with 
the possible results of the screening test, with the first row consisting of patients 
who tested positive. We would label the columns with the two possible results of 
the criterion test, with the first column consisting of patients identified as having 
the disease. Then we would calculate the PPV of the DRE by computing the pro-
portion of patients who tested positive on the DRE who then tested positive on 
the biopsy. To do this, we would consult the top row of the contingency table and 
divide the number of patients who had a positive biopsy result by the total number 
of patients who tested positive on the DRE. To calculate the NPV of the DRE, we 
would compute the percentage of patients who tested negative on the DRE who then 
subsequently tested negative on the biopsy. To do this, we would consult the second 
row and divide the number of patients who had a negative biopsy result by the total 
number of patients who tested negative on the DRE.
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To get SPSS to do all of this for us, load the file, PSA.sav, and select Ana-
lyze > Descriptive Statistics > Crosstabs. In the resulting dialog box, move DRE 
Result to the Row(s) window, and Biopsy Result to the Column(s) window. Select 
Cells, check Row percentages, and click Continue followed by OK. This will gen-
erate the contingency table that we need.

The contingency table would be similar to the one displayed in Table 8.1.

From the first row, we can see that 185 patients tested positive on the DRE. Of 
these, 68 or 36.8 % subsequently tested positive on the biopsy. Thus, the PPV of the 
DRE is 0.368. If we were to predict that patients who tested positive on the DRE 
would subsequently have positive biopsy results, we would be correct about 37 % 
of the time. From the second row, we can see that 116 patients tested negative on 
the DRE. Of these, 89 or 76.7 % also tested negative on the biopsy. Thus, the NPV 
is 0.767. We would be right about 77 % of the time if we were to predict that a pa-
tient who tested negative on the DRE would subsequently have a negative biopsy.

Answer the following questions:
8.2.1  How many patients tested positive on the DRE?
8.2.2  Of these, how many subsequently tested positive on the biopsy?
8.2.3  What is the positive PPV of the DRE?
8.2.4 � If we were to predict that a patient who tested negative on the DRE 

would also have a negative biopsy, how often would we be correct?

DRE Result * Biopsy Result Crosstabulation

Biopsy Result

Total
Cancer 
Present

Cancer 
Absent

DRE Result Positive Count 68 117 185

% within DRE Result 36.8% 63.2% 100.0%

Negative Count 27 89 116

% within DRE Result 23.3% 76.7% 100.0%

Total Count 95 206 301

% within DRE Result 31.6% 68.4% 100.0%

Positive Predictive Value

Negative Predictive Value

Positive Predictive Value = Number of patients with the disease / Number of patients who 
tested positive on the screening or diagnostic test = 68/185 = .368.

Negative Predictive Value = Number of patients without the disease / Number of patients who 
tested negative on the screening or diagnostic test = 89/116 = .767.

Table 8.1   Positive and negative predictive values 
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Although predictive values are indicators of the ability of a test to detect disease, 
they are sensitive to the prevalence of the disease within the population to which the 
test was administered. If the disease is highly prevalent, the PPV will also be high. 
If the same test were used to detect the disease in a population in which the disease 
is rare, the PPV would be lower. Consequently, judging a test on the basis of its pre-
dictive values requires that prevalence rates be taken into account. This can make 
comparing the usefulness of various tests difficult if the tests were administered 
to populations with different prevalence rates. More helpful in evaluating tests are 
diagnostic statistics that are independent of prevalence. We turn to those statistics 
in the next section.

8.3 � True Positives, True Negatives, False Positives, 
and False Negatives

A screening or diagnostic test classifies patients as either positive or negative for 
the presence of disease. If a patient has disease, the test should return a positive 
result. If a patient does not have disease, the test should return a negative result. 
Each of these correct classifications is called a true positive and a true negative, 
respectively. Conversely, if a patient has disease, the test should not return a nega-
tive result, and if a patient does not have disease, the test should not return a posi-
tive result. Each of these two errors in classification is called a false negative and 
a false positive, respectively. Table 8.2 displays the number of true positives (TP), 
true negatives (TN), false positives (FP) and false negatives (FN) that occurred in 

DRE Result * Biopsy Result Crosstabulation

Biopsy Result

Total
Cancer 
Present

Cancer 
Absent

DRE Result Positive Count 68 117 185

% within Biopsy Result 71.6% 56.8% 61.5%

Negative Count 27 89 116

% within Biopsy Result 28.4% 43.2% 38.5%

Total Count 95 206 301

% within Biopsy Result 100.0% 100.0% 100.0%

Specificity

Sensitivity

FN TN

TP FP

TP = Number of true positives.  TN = Number of true negatives.
FP = Number of false positives.  FN = Number of false negatives.

Accuracy = (TP + TN)/Total number of classifications = 157/301 = .522.
Sensitivity = TP/Number of patients with disease = 68/95 = .716.
Specificity = TN/Number of patients without disease = 89/206 = .432.

Table 8.2   Contingency table for computing test accuracy, sensitivity, and specificity 

8  Assessing Screening and Diagnostic Tests
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our example. The table displays the same frequency data reported in Table 8.1, but 
the cell percentages are different as they are calculated within each column instead 
of within each row. We will discuss those cell percentages in a moment.

The proportion of times a test makes a correct classification is its accuracy. Ac-
curacy is calculated by dividing the total number of correct classifications (TP plus 
TN) by the total number of classifications. As we can see from Table 8.2, the ac-
curacy of the DRE is 68 TP plus 89 TN divided by 301 total classifications, or 157 
correct classifications divided by 301 total classifications. This yields an accuracy 
of 0.522. The DRE correctly classified patients about 52 % of the time.

Accuracy can give a global sense of the usefulness of a test but it does not re-
veal whether the test is more prone to making false negative errors (not detecting 
disease when it is present) or false positive errors (detecting disease when none is 
present). The relative seriousness of the consequences that follow from these errors 
varies across situations, so clinicians try to use tests that for a given situation com-
mit the more serious error less often while keeping the frequency of the less serious 
mistake within tolerable levels. For example, if a disease is more likely to be cured 
if it is treated before patients show symptoms, then it is important that a screening 
test identify within an asymptomatic population as many patients with the disease 
as possible, even if this means that more patients who are disease-free will be mis-
diagnosed as having the disease. In this case, missing a patient who has the disease 
(a false negative result) would be seen as the more serious error and a screening 
test that minimizes FN would be preferred. Once patients have been screened, they 
could then be given a diagnostic test to confirm the presence of the disease. In 
this case, identifying a patient as having the disease when it is not present (a false 
positive) would be considered the more serious mistake, and a diagnostic test that 
minimizes FP would be preferred.

To assess the rate at which a screening or diagnostic test correctly classifies pa-
tients, its rates of TP and TN are calculated. The true positive rate is the proportion 
of patients who in fact had the disease for whom the test had returned a positive 
result. It is calculated by dividing the number of patients who had tested positive 
on the screening or diagnostic test by the total number of patients who in fact had 
the disease. Remember that whether or not the patient in fact had the disease is 
determined by the criterion test. Consequently, we calculate the true positive rate 
by consulting the first column of our contingency table. The true negative rate is 
the proportion of patients who in fact did not have the disease for whom the screen-
ing or diagnostic test returned a negative result. It is calculated by consulting the 
second column of the contingency table and dividing the number of patients who 
tested negative on the screening or diagnostic test by the total number of patients 
who were in fact disease-free.

To get SPSS to do these calculations for us, return to the Crosstabs dialog box, 
click Cells, uncheck Row(s), and check Column(s). Click Continue and OK. The 
output will include the contingency table displayed in Table 8.2.
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We can see from the first column that 95 patients were by biopsy diagnosed with 
prostate cancer. Of these, 68 or 71.6 % had tested positive on the DRE. We can see 
from the second column that 206 patients were by biopsy diagnosed as cancer-free. 
Of these, 89 or 43.2 % had tested negative on the screening test. Thus, the true 
positive and true negative rates are 0.716 and 0.432, respectively. If a patient had 
prostate cancer, the chances were about 72 % that the DRE would detect it. If a pa-
tient did not have cancer, the chances were about 43 % that the screening test would 
classify the patient as cancer-free.

The true positive rate is the proportion of patients with disease who tested posi-
tive on the screening or diagnostic test. When cell percentages of the contingency 
table are calculated within columns, the true positive rate can be found in the first 
column of the first row. Notice that the two cell percentages in this column account 
for 100 % of all patients with disease. Who are the patients in the second row of 
the first column? They are the remaining proportion of patients with disease whose 
disease was not detected by the test. This proportion is the false negative rate and 
is equal to 1 minus the true positive rate. In our example, the true positive rate was 
0.716. As we can see in the second row of the first column, our true positive rate 
means that the DRE missed 1 − 0.716 or 28.4 % of patients who had prostate cancer.

The true negative rate is the proportion of patients without disease who tested 
negative on the screening or diagnostic test. It can be found in the second row of the 
second column. Notice that the two cell percentages in the second column account 
for 100 % of patients who were disease-free. Who are the patients in the first row of 
the second column? They are the remaining proportion of patients who were cancer-
free who were mistakenly diagnosed by the digital exam as having disease. This 
proportion is the false positive rate and is equal to 1 minus the true negative rate. 
In our example, the true negative rate was 0.432. As we can see in the first row of 
the second column, this true negative rate means that 56.8 % of cancer-free patients 
were erroneously diagnosed with cancer by the digital exam.

Recall that the accuracy of the digital exam was 0.522; it correctly classified a 
little over half of the patients. We now know why: The exam missed about 28 % of 
the patients who had prostate cancer and falsely detected cancer in about 57 % of 
those who were cancer-free. The exam made both types of classification mistakes, 
but was especially susceptible to making false positive errors.

Answer the following questions:
8.3.1 � What proportion of patients who by biopsy were diagnosed as having 

prostate cancer had tested positive on the DRE?
8.3.2 � What proportion of patients who by biopsy were diagnosed as not 

having prostate cancer had tested negative on the DRE?
8.3.3 � What are the true positive and true negative rates of the DRE?
8.3.4 � For which group of patients was the DRE a better measure of the pres-

ence or absence of cancer, those who had cancer or those who were 
cancer-free?

8  Assessing Screening and Diagnostic Tests



2118.4 � Sensitivity and Specificity�

The statistics we have discussed in this section do not depend on the prevalence 
of disease, but on the ability of a test to detect disease when it is present. Of course, 
if the disease in question is uncommon, it might be difficult to find enough patients 
with disease to adequately assess a test intended to detect it. Nevertheless, true and 
false positive rates and true and false negative rates are characteristics of the test, 
not of the population that is given the test.

8.4 � Sensitivity and Specificity

If patients are given a test that has true positive and true negative rates equal to 1, 
then they will test positive if and only if they have disease. Such a test would be 
perfectly sensitive to the presence of the disease and generate a positive result each 
and every time the disease is present. In addition, a positive result would be specific 
to the presence of the disease: The test would always “come back” negative unless 
the disease is present. For this reason, true positive and true negative rates are of-
ten referred to as the sensitivity and specificity of the test, respectively. Sensitivity 
is equal to the true positive rate and specificity is equal to the true negative rate. 
(If you have trouble keeping these terms straight, try using the “opposites rule.” 
Sensitivity refers to true positives while specificity refers to true negatives.) In our 
example, the sensitivity of the DRE was 0.716 and its specificity was 0.432. The 
digital exam had fairly good sensitivity but much lower specificity: Usually patients 
with prostate cancer tested positive, so the test was relatively sensitive, but as a high 
percentage of patients who did not have cancer also tested positive, a positive test 
result was not specific to the presence of prostate cancer.

Because the sensitivity of a test is the same as the test’s true positive rate, the rate 
of making FN is equal to 1 minus sensitivity. Because specificity is the same as the 
test’s true negative rate, the rate of making FP is equal to 1 minus specificity. These 
facts have some interesting implications. First, neither sensitivity nor specificity 
depends on disease prevalence. They are characteristics of the test, not of the popu-
lation to which the test was administered, and so are convenient benchmarks for 
assessing various tests that are administered to different populations. Second, if we 
know the sensitivity of a test, we can easily calculate the test’s false negative rate, 
and if we know the specificity of a test, we can easily calculate its false positive rate.

Third, the sensitivity of a test does not tell us its specificity as the two statistics 
are based on separate patients groups: Sensitivity is about patients who have disease 

Answer the following true or false questions:
8.4.1 � The sensitivity and specificity of a test can be determined without giv-

ing it to patients who are disease-free.
8.4.2  The false positive rate of a test is equal to 1 minus specificity.
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and specificity is about patients who are disease-free. A high value of one does not 
imply a high value of the other. Recall that in our example, sensitivity was relatively 
high but specificity was relatively low. In fact, it is possible for the sensitivity of a 
test to equal 1 and specificity to equal 0, and vice-versa. The former would occur 
if the test classifies all patients, including those without disease, as positive, and 
the latter if the test classifies all patients, including those with disease, as negative. 
Consequently, when evaluating a test, both its sensitivity and specificity must be 
separately computed.

Fourth, to calculate sensitivity and specificity, the test must be administered to 
patients who have disease and to patients who do not. For example, the usefulness 
of the DRE in detecting prostate cancer cannot be determined by administering the 
exam solely to patients with prostate cancer.

8.5 � Prior Odds, Posterior Odds, and the Likelihood Ratio

Another statistic that is useful in judging a screening or diagnostic test is its likeli-
hood ratio. This statistic compares the probability of testing positive of two patients: 
one with disease and one who is disease-free. If the sensitivity and specificity of 
a test are equal to 1, all patients who have the disease will test positive (thanks to 
perfect sensitivity) but none of patients who are disease-free will (thanks to perfect 
specificity). The true positive rate will equal 1 and the false positive rate, which, 
remember, is equal to 1 minus specificity, will equal 0. Consequently, the probability 
of testing positive for a patient who has disease will equal 1 and the probability of 
testing positive for a patient without disease will equal 0. The test would be able to 
discriminate between a patient with disease and a patient without disease 100 % of 
the time. Screening and diagnostic tests, however, produce one or both types of clas-
sifications errors, so they do not allow clinicians to be able to always distinguish be-
tween the two types of patients. However, a test does not have to be perfect to be use-
ful. But to be useful, the test must have at least some ability to discriminate between 
a patient who has disease and a patient who does not. We can tell how well a test can 
distinguish between patients with and without disease by comparing the true positive 
rate to the false positive rate. If this comparison is done in terms of the ratio of the 
true positive rate to the false positive rate, we have the likelihood ratio. A ratio of 1 
indicates that the test has no ability to distinguish between patients with and without 
disease. The higher the ratio, the better the test is at screening or diagnosing disease.

As an example of a test that cannot discriminate, let us imagine that the data from 
the prostate cancer study were those displayed in Table 8.3.

Answer the following questions about these new data (Table 8.3):
8.5.1  What is the sensitivity or true positive rate of this DRE?
8.5.2 � What is the probability that a patient with disease tested positive on 

the digital exam?

8  Assessing Screening and Diagnostic Tests



2138.5 � Prior Odds, Posterior Odds, and the Likelihood Ratio�

We can see from Table 8.3 that the sensitivity of the exam is now 0.568, down from 
0.716 in our first example. We can also see that sensitivity is equal to the false posi-
tive rate. This means that the probability of a patient testing positive is the same 
whether or not the patient has prostate cancer. Since both patients are equally likely 
to test positive, a positive test offers no evidence that the patient has cancer—he is 
equally likely to be disease-free. So in this example, the likelihood ratio is equal to 1 
and a positive test result would be of no help to a clinician trying to decide whether 
or not the patient has cancer.

Table 8.4 shows the results from the prostate cancer study that might have been 
obtained if the digital exam had high levels of both sensitivity and specificity.

DRE Result * Biopsy Result Crosstabulation

Biopsy Result

Total
Cancer 
Present

Cancer 
Absent

DRE Result Positive Count 86 30 116

% within Biopsy Result 90.5% 14.6% 38.5%

Negative Count 9 176 185

% within Biopsy Result 9.5% 85.4% 61.5%

Total Count 95 206 301

% within Biopsy Result 100.0% 100.0% 100.0%

Table 8.4   Contingency table for a screening test with a likelihood ratio of 6.216 

DRE Result * Biopsy Result Crosstabulation

Biopsy Result

Total
Cancer 
Present

Cancer 
Absent

DRE Result Positive Count 54 117 171

% within Biopsy Result 56.8% 56.8% 56.8%

Negative Count 41 89 130

% within Biopsy Result 43.2% 43.2% 43.2%

Total Count 95 206 301

% within Biopsy Result 100.0% 100.0% 100.0%

Table 8.3   Contingency table for a screening test with a likelihood ratio of 1 

8.5.3  What is the false positive rate?
8.5.4 � What is the probability that a patient without disease tested positive 

on the digital exam?
8.5.5 � In this example, is a patient with disease more likely to test positive 

than a disease-free patient?
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We can see from Table 8.4 that the sensitivity of the exam is now 0.905, up from 
0.716 in our first example, specificity is now 0.854, up from 0.432, and that the false 
positive rate is now 0.146, down from 0.568. We can also see that sensitivity is sub-
stantially greater than the false positive rate. In fact, it is 6.216 times greater. This 
means that the probability of a patient testing positive is over six times greater for a 
patient who has prostate cancer. So in this example, the likelihood ratio is equal to 
6.216 and a positive test result is clear evidence of the presence of cancer.

Now let us see how useful the digital exam really was. Recall from Sect. 8.4 that 
the sensitivity of the digital exam was 0.716 and its specificity was 0.432.

Prior and posterior odds  Unless a test is free of classification errors, the clini-
cian can never be 100 % certain that a positive test result means that the patient has 
disease. But a positive result from a test that has a likelihood ratio greater than 1 
should increase the clinician’s level of confidence that the patient has disease. The 
higher the likelihood ratio of the test, the more impact a positive result will have on 
the clinician’s confidence in the diagnosis. One way to think about the impact of a 
positive test result on diagnosis is to imagine the following scenario.

A clinician who has no information about a patient other than some demographic 
information is asked to estimate the probability that the patient has a particular dis-
ease. To make a judgment, the clinician uses the prevalence of the disease among 
people who share the patients’ demographic profile. This judgment, arrived at prior 
to obtaining additional information about the patient, is called the prior or pretest 
probability of disease. To obtain more information about the patient, the clinician 
then orders a test which returns a positive result. Based on this finding, the clinician 
adjusts the prior probability. The clinician’s revised judgment of the chances that 

Answer the following questions about these new data (Table 8.4):
8.5.6   What is the sensitivity or true positive rate of this DRE?
8.5.7  � What is the probability that a patient with disease tested positive on 

the digital exam?
8.5.8   What is the false positive rate?
8.5.9  � What is the probability that a patient without disease tested positive on 

the digital exam?
8.5.10 �Is a patient with disease more likely to test positive than a disease-free 

patient?

Answer the following questions:
8.5.11  What was the false positive rate of the exam?
8.5.12  What was the likelihood ratio?
8.5.13 � What does the likelihood ratio tell us about the value of the exam in 

detecting prostate cancer?
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the patient has the disease is called the posterior or posttest probability. If the prior 
and posterior probabilities are expressed as odds, the likelihood ratio of the test 
that the clinician ordered will indicate the extent to which the prior odds should be 
adjusted by a positive test result. Specifically,

� (8.1)

This relationship between prior and posterior odds is called Bayes’ Rule, named 
after the nineteenth century probability theorist who discovered it. When applied 
to a medical test, Bayes’ Rule tells us that the impact of a positive test result on 
a clinician’s judgment is directly related to the test’s likelihood ratio. This makes 
sense since tests with large likelihood ratios are better able to discriminate between 
patients with and without disease and so should have a greater impact.

If the prior odds of disease are based on disease prevalence, then Bayes’ Rule 
also tells us that the odds that a patient who has tested positive has the disease are 
equal to the prevalence of the disease (expressed as odds) times the likelihood ratio 
of the test. To demonstrate, let us review the three versions of the digital exam data 
that we have discussed thus far. In each, 95 of 301 patients had prostate cancer. 
This is a prevalence of 0.316. Assume that these 301 patients were taken at random 
from a population of men who fit a given demographic profile. Then the prevalence 
of prostate cancer in that population would be estimated to be 0.316, and the prior 
probability that any individual in that population has prostate cancer is also 0.316. 
If a clinician had no information about a patient other than that he is a member of 
this population, the clinician would estimate the patient’s chances of having cancer 
as 31.6 %. This is equivalent to prior odds of 0.316/0.684 or 0.462.

In our first hypothetical example, displayed in Table 8.3, the likelihood ratio was 
equal to 1. In this example, the test had no ability to discriminate prostate cancer pa-
tients from healthy patients, so a positive result would have no impact on judgment. 
In our second hypothetical example, displayed in Table 8.4, the likelihood ratio was 
6.216. In this example, a positive test result would increase the odds of disease by 
more than six-fold, so the posterior odds would be 6.216 × 0.462 or 2.872. These 
odds are equivalent to a posterior probability of 2.872/(1 + 2.872) or 0.742. Not 
surprisingly, a positive result from a test as discriminating as the one in our second 
hypothetical example would have a relatively large impact on diagnosis.

We can see from Table  8.2 that the actual likelihood ratio of the DRE was 
0.716/0.568 or 1.26. A man who had prostate cancer would be only 1.26 times more 
likely to test positive on the digital exam than a man who was disease-free. This 
means that if a patient were to test positive for prostate cancer, his odds of having 
the cancer would increase by a factor of only 1.26, and his chances of having the 
cancer would increase from 31.6 to only 36.8 %. Because the test had limited ability 
to discriminate prostate cancer patients from healthy patients, the impact of a posi-
tive test result on the clinician’s judgment would be small.

Calculating posterior probabilities by hand requires converting prior probabili-
ties to odds and then converting posterior odds back to probabilities. A faster way 

Posterior Odds Likelihood Ratio Prior Odds.= ×
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is to use Fagan’s nomogram, displayed in Fig. 8.1. To obtain a posterior probabil-
ity, one draws a straight line from the prior probability value listed on the scale to 
the left through the appropriate likelihood ratio on the center scale to the posterior 
probability. The straight line in the nomogram of Fig. 8.1, for example, shows that 
a prior probability of 0.31 converts to a posterior probability of 0.74 when the test 
has a likelihood ratio of 6.2.

Before we leave the topic of likelihood ratios, we should point out that the likeli-
hood ratio we have been using always generates a posterior probability that is equal 
to the PPV, that is, the probability that a patient who tests positive has disease. We 
should also mention that another version of the likelihood ratio is relevant to the 
prediction of the probability that a patient does not have disease. This version is 
sometimes called the likelihood ratio for a negative result. It compares as a ratio the 
proportion of patients without and with disease who test negative. When used with 
the complement of prevalence (1 minus prevalence), it generates the NPV, that is, 
the probability that a patient who tests negative does not have the disease.

Fig. 8.1   Fagan’s Nomogram. 
(Nomogram template by 
Mikael Häggström, public 
domain, Wikipedia Com-
mons, http://commons.
wikimedia.org/wiki/
File%3AFagan_nomogram.
svg)
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8.6 � The Receiver Operating Characteristic (ROC) Curve

So far we have looked at diagnostic statistics that apply to tests that can return only 
one of two values. In the last two sections, we will look at how these statistics are 
applied to tests that generate a range of values that can be arranged along a quan-
titative scale, such as the prostate-specific antigen (PSA) test which measures the 
level of prostate-specific antigen, expressed in units of ng/ml. For these tests, it is 
necessary to determine a cutoff value. If patients who have disease tend to have 
higher test values, then patients whose test values are above the cutoff are classified 
as positive. If patients who have disease tend to have lower test values, then patients 
whose test values are below the cutoff are classified as positive. Each of the numeri-
cal values generated by the test is a potential cutoff value. From these a cutoff is 
chosen that most often yields TP and TN.

As an example, return to the PSA.sav data file. The file includes the PSA test 
result for each of the 301 patients. Patients who have prostate cancer tend to have 
higher PSA scores, so a positive test result will be any PSA score that is above the 
cutoff. Imagine that we rank order the 301 patients by their PSA scores from the 
lowest to the highest. We choose a cutoff value and classify all patients whose PSA 
scores are above the cutoff as positive. In the ideal, every patient with prostate 
cancer would be above the cutoff and every patient without cancer would be below. 
This would give us a test with 100 % sensitivity and specificity, respectively. How-
ever, in reality, there will be patients who do not have prostate cancer but whose 
PSA scores will be above the cutoff. These patients will be FP. For these patients, 
the cutoff was too low. In addition, there will be patients who do have prostate can-
cer but whose PSA scores will be below the cutoff. These patients will be FN. For 
these patients, the cutoff was too high. If we have so many FP that the specificity of 
the test is too low, we could raise the cutoff value so that fewer cancer-free patients 
with high PSA scores are classified as positive. Unfortunately, raising the cutoff 
may result in some cancer patients with lower PSA scores no longer being classi-
fied as positive, resulting in a decrease in the sensitivity of the test. The challenge 
then is to choose a cutoff value that strikes the best balance between sensitivity and 
specificity. This is done by first computing the sensitivity and specificity for each 
possible test result. In effect, for each possible test value, a 2 × 2 contingency table is 
constructed in which patients whose scores are equal to or greater than the test value 
(if patients with disease tend to have higher test scores) or equal to or less than the 
test value (if patients with disease tend to have lower test scores) are classified as 
positive, and sensitivity and specificity are calculated in the usual manner. Then the 
test score that generates the best combination of sensitivity and specificity is chosen 
to be the cutoff value. This procedure is labor intensive, especially if the test, such 
as the PSA test, generates a large number of possible values. Fortunately, there is 
a quicker method. Developed by signal detection theorists, engineers who design 
machines that detect environmental threats (such as fire or carbon monoxide) quick-
ly without triggering an excessive number of false alarms, this method involves 
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generating what is called a receiver operating characteristic curve, or ROC curve. 
In this section, we will learn how to interpret an ROC curve.

Return to the PSA.sav data file. Each patient’s PSA value is stored in Prostate-
Specific Antigen Level (ng/ml) [psa] (variable 5). Values range from 0.3 to 221.0. 
The average value was about 8.8. Select Analyze > ROC Curve to open the ROC 
Curve dialog. In SPSS, the screening or diagnostic test is referred to as the test vari-
able, and the criterion test as the state variable. So move Prostate-Specific Antigen 
Level (ng/ml) to the Test Variable window and Biopsy Result to the State Variable 
window. In the Value of State Variable, enter the value of the state variable that 
indicates that the patient had disease. In the Display area, check all of the options. 
We are now ready to generate the ROC curve, but before we do, click Options. By 
default, SPSS assumes that higher values of the state variable indicate greater prob-
ability of disease, as is the case in our example. So in the Test Direction area, Larger 
test result indicates more positive test should already have been selected. If lower 
values had indicated greater probability, we would have selected Smaller test result 
indicates more positive test. While we’re here, notice that the confidence interval 
for the estimate of the area under the curve can be set in the Confidence level win-
dow. We will leave it at 95 %. Click Continue and then OK. The steps for assigning 
test and state variables, and selecting output, test direction and confidence level are 
displayed in Figs. 8.2 through 8.4.

Fig. 8.2   Assigning the test and state variables, selecting output to display, and opening the Options 
dialog
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The output includes the Case Processing Summary displayed in Table 8.5. Us-
ing the state variable, the Summary displays the number of patients with (95) and 
without (206) disease.

Figure 8.5 displays the ROC curve. This graph plots the test’s false positive and 
true positive rates generated by each of the possible cutoff points. The false positive 
rate, or 1 minus specificity, is plotted along the x-axis and the true positive rate, or 
sensitivity, is plotted along the y-axis. To understand the graph, imagine what would 
happen if we attempted to diagnose each of the 301 patients in our earlier example 
on the basis of information that is entirely irrelevant to the question of whether or 
not cancer is present: the patient’s height. Let us assume that our shortest patient is 
5 ft, 0 in. tall and our tallest is 6 ft, 3 in. tall. Let us begin by setting the cutoff to a 
height greater than the height of the tallest person. Say we set it to 6 ft, 4 in. We then 
classify all patients whose height is above the cutoff as positive for prostate cancer, 
and plot the resulting sensitivity and false positive rates.

Fig. 8.3   Selecting the test direction and confidence level
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In setting the cutoff to a level greater than the height of the tallest patient, all of the 
patients are below the cutoff and so we end up classifying none of them as having 
prostate cancer. This means that none of the patients who in fact have the cancer 

Fig. 8.4   Generating an ROC curve

 

 Case Processing Summary

Biopsy Result
Valid N 

(listwise)

Positivea 95
Negative 206

Larger values of the test result 
variable(s) indicate stronger 
evidence for a positive actual 
state.
a. The positive actual state is 

Cancer Present.

Table 8.5   Case processing 
summary

Answer the following questions:
8.6.1 � What would be the sensitivity of our hypothetical test for prostate 

cancer?
8.6.2  What would be the hypothetical test’s specificity?
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are correctly diagnosed, yielding a sensitivity of 0, but all of the patients who are 
cancer-free are classified as negative, yielding a specificity of 1. When we plot the 
values generated by our cutoff for the false positive rate (which, remember, is equal 
to 1 minus specificity) and sensitivity, the x- and y-coordinates are 0 and 0. Our first 
data point would be in the lower left-hand corner of the graph.

Next we lower the cutoff to 6 ft, classify all patients taller than that as having the 
cancer, grind out the values for sensitivity and 1 minus specificity and plot them on 
the graph. We do all of this a third time, but with the cutoff lowered to 5.5 ft.

Finally, we set the cutoff to a value smaller than the height of the shortest person, 
say, 4 ft, 11 in., repeat our calculations and plot the results. When we’re done, we 
connect the four data points.

Fig. 8.5   ROC curve displaying the PSA test’s true positive rate (sensitivity) as a function of its 
false positive rate (1 minus specificity)

 

8.6.3  As we lower the cutoff, what happens to sensitivity?
8.6.4  To specificity?
8.6.5  To the false positive rate?



222

Lowering the cutoff to 6 ft results in our now having patients who are above the 
cutoff. Since height and prostate cancer are unrelated, it is likely that some of the 
patients above the cutoff will have cancer and some not. All of them will be classi-
fied as testing positive, however. The likely result of lowering the cutoff then will 
be that sensitivity will increase because we are now classifying some of the cancer 
patients as positive, but specificity will decrease because we are no longer clas-
sifying all of the cancer-free patients as negative. So lowering the cutoff increases 
both sensitivity and the false positive rate. Lowering the cutoff yet again will likely 
result in further increases in sensitivity and 1 minus specificity. Setting the cutoff to 
a height smaller than the shortest patient increases both to 1: Since all of the patients 
will be above the cutoff, all of those with cancer will be classified as positive but 
none of those without cancer will be classified as negative.

If we were to plot the coordinates generated by this exercise, we would see that 
both sensitivity and the false positive rate increase at about the same rate as we 
lower the cutoff. If we were to connect the four data points, we would see that we 
had drawn a curve that closely follows a diagonal line extending from the coordi-
nates (0, 0) in the lower left-hand corner to the coordinates (1, 1) in the upper right.

Return to the graph that we generated with SPSS (Fig. 8.5). In it you will see 
a diagonal line. This is the ROC curve that would be generated if we were to try 
to diagnose a very large number of patients by using test information that has zero 
diagnostic value. Notice that the slope of the line is equal to 1. This tells us that 
lowering the cutoff has the same impact on sensitivity as it has on the false positive 
rate. Notice too that the ratio of any pair of coordinates on this line is equal to 1. 
This ratio is the likelihood ratio. Recall from Sect. 8.5 that a test with no diagnostic 
value will have a likelihood ratio of 1.

The diagonal line serves as a visual baseline or reference for determining the 
diagnostic value of a test. The better a test is at distinguishing between patients 
with and without disease, the further from the diagonal the test’s ROC curve will 
be. Study the ROC curve for the PSA test. The curve begins and ends at or near the 
(0, 0) and (1, 1) coordinates, as all ROC curves must. As we follow the curve from 
lower left to upper right, we see that decreasing the cutoff increases sensitivity. De-
creasing the cutoff also increases the false positive rate, but not as much. As a result, 
the curve for a while moves further and further away from the diagonal, showing 
visually the positive impact that decreasing the cutoff has on the test’s diagnostic 
ability. For example, decreasing the cutoff to what turns out to be a value of about 
6 increases sensitivity to about 0.73 while increasing the false positive rate to only 
about 0.36. Eventually, though, further decreases in the cutoff produce a slower rate 
of increase in sensitivity relative to the increase in the false positive rate, the diag-
nostic value of the test declines as the false positive rate catches up to sensitivity, 
and the curve moves closer and closer to the diagonal.

8.6.6  What are the coordinates that derive from our last set of calculations?
8.6.7  When we connect the four data points, what do we see?
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Visual inspection of an ROC curve helps clinicians to determine the cutoff value 
that best discriminates between patients with disease and patients without. First the 
optimal combination of sensitivity and false positive rate is identified. This will be 
the pair of coordinates that is furthest away from the diagonal along a line perpen-
dicular to the diagonal. These coordinates are then read off from the graph as shown 
in Fig. 8.6.

The coordinates are about 0.36 for the false positive rate and 0.73 for sensitivity. 
Now that we know these values, we can determine the cutoff by consulting the Co-
ordinates of the Curve table that is included in SPSS output. This table, a fragment 
of which is reproduced in Table 8.6, presents the cutoffs and the values of sensitivity 
and 1 minus specificity. SPSS lists the cutoffs in terms of values that lie between 
actual values. We find the coordinates that are in the neighborhood of 0.73 and 0.36, 
and determine that the sensitivity and false positive rate that yield the highest likeli-
hood ratio are 0.726 and 0.354. According to the table, these were generated by a 
cutoff equal to or greater than 6.15. So our cutoff is 6.1. Classifying patients with a 
PSA value greater than 6.1 generates the optimal combination of sensitivity, which 
is about 0.73, and specificity, which is about 0.65.

Fig. 8.6   Determining optimal values of sensitivity and specificity from an ROC curve
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Area Under the Curve  Returning to the output that we generated earlier, we find 
the Area Under the Curve table, reproduced in Table 8.7. The Area Under the Curve 
table displays information about the overall diagnostic value of a test. To under-
stand what it is this table is telling us, imagine that from our sample of 301 men, a 
patient who has prostate cancer and a patient who does not are selected at random. 
We are asked to identify which of the two patients has prostate cancer. Say we 
choose the patient who is taller. What is the probability that we chose correctly? If a 
man’s height is unrelated to whether or not he has prostate cancer, then choosing on 
the basis of height is equivalent to guessing, and the probability of our choosing cor-
rectly would be 0.5. It turns out that the area under an ROC curve is the probability 

 Coordinates of the Curve

Test Result Variable(s): Prostate-Specific 
Antigen Level (ng/ml)  

Positive if 
Greater Than 
or Equal Toa Sensitivity 1 - Specificity

-.700 1.000 1.000
.350 1.000 .981
.450 .989 .971

Rows Omitted
5.950 .737 .369
6.050 .737 .364
6.150 .726 .354
6.250 .716 .350
6.350 .695 .345
Remainder of Table Omitted

Table 8.6   Using the Coor-
dinates of the Curve table to 
determine the cutoff value 
that yields the optimum 
combination of sensitivity 
and specificity

Area Under the Curve

Test Result Variable(s): Prostate-Specific Antigen Level (ng/ml)  

Area Std. Errora
Asymptotic 

Sig.b

Asymptotic 95% Confidence 
Interval

Lower Bound Upper Bound

.707 .032 .000 .645 .770

The test result variable(s): Prostate-Specific Antigen Level (ng/ml) has at least 
one tie between the positive actual state group and the negative actual state 
group. Statistics may be biased.
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Table 8.7   Area under the curve and its standard error, p-value and 95 % confidence interval 
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of choosing correctly in this situation. Recall that a test that has no diagnostic value 
produces in the long run the diagonal line in our graph. Notice that the diagonal 
line divides the area of the graph in half, and so the area under the diagonal is 0.5. 
According to the Area Under the Curve table in Table 8.7, the area under the ROC 
curve of the PSA test is 0.707. This value means that when deciding which of the 
two randomly paired patients has prostate cancer, we would choose correctly about 
71 % of the time if we select the patient with the higher PSA score.

The 0.707 value is based on a sampling of men and so is subject to sampling 
variability. The null hypothesis is that if we had administered the PSA test to all men 
within the population from which our 301 men were drawn, the area under the curve 
would be 0.5. According to the highly significant p-value, however, we can very 
confidently reject the null hypothesis and conclude that the PSA test discriminates 
between a patient with cancer and a patient who is cancer-free better than at chance 
level. The 95 % confidence interval indicates that while the area under the curve 
in the sample is 0.707, we can be 95 % confident that in the population the area is 
somewhere between about 0.645 and 0.770.

Comparing the diagnostic value of two or more tests  The area under the curve 
can be used to compare the overall diagnostic value of two or more tests. In the 
PSA.sav file, the variable, Prostate-specific Antigen Density Level [psad] (vari-
able 7), contains each patient’s PSA level relative to the volume (ml) of his prostate 
gland. Return to the ROC Curve dialog box, and as shown in Fig. 8.7, add Prostate-
specific Antigen Density Level to the Test Variable window and click OK.

Fig. 8.7   Generating ROC curves to compare the diagnostic value of two tests
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Study the ROC curves of the two tests, shown in Fig. 8.8. (We edited the format-
ting of the curves a bit so that the two can be more easily distinguished from one 
another in grayscale.) According to these data, PSA density levels more accurately 
detect the presence of prostate cancer than do PSA levels, especially when the false 
positive rate is below about 0.4.

Table 8.8 displays some of the remainder of the output.

8.7 � Exercise Questions

1.	 Wanting a noncultural alternative to the laboratory diagnosis of gonorrhea in 
urogenital samples, investigators tested the accuracy of a DNA probe. Walk-in 
patients at a sexually transmitted disease clinic were tested. A conventional labo-
ratory test was the criterion standard. The data for female patients can be found 
in Table 8.9 and in the file, Gonorrhea.sav [2]. Doing your calculations either 
by hand or using SPSS, answer the following questions:

Fig. 8.8   ROC curves of two screening tests

 

Using Table 8.8, answer the following questions:
8.6.8  What is the area under the curve for PSA density levels?
8.6.9  Is this area significantly greater than 50 %?
8.6.10  What is this area’s 95 % confidence interval?
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a.	 What was the PPV of the DNA probe?
b.	 What was the sensitivity of the DNA probe?
c.	 What was the probe’s likelihood ratio?
d.	 What were the prior or pretest odds that a patient had gonorrhea?
e.	 If a patient tested positive for gonorrhea, what were the posterior or posttest 

odds that she had the disease?
f.	 On the nomogram in Fig. 8.9, show how the posterior probability would be 

found.

2.	 Researchers asked a radiologist to rate the CT images of 109 patients for neuro-
logical disease. Fifty-one of the patients were known to be abnormal. The radi-
ologist made the ratings along a 5-place scale ranging from definitely normal (1) 
to definitely abnormal (5). The data can be found in the file, CT Scan.sav [3]. 
The data are in summary form; the file lists the number of normal patients whose 
CT images were definitely normal, the number of normal patients whose images 
were probably normal, and so on. So before going any further, open the file, 
select Data > Weight Cases and ask SPSS to weight each case by its frequency.

	 The variable, CT Rating [CT_Rating] (variable 1) contains the radiologist’s rat-
ings. The variable, Disease Status (variable 2; 0 = normal, 1 = abnormal) is the 
criterion variable. Construct an ROC curve.

a.	 By visual inspection of the curve, what appears to be the optimum combina-
tion of sensitivity and specificity of the radiologist’s ratings?

Area Under the Curve

Test Result Variable(s) Area Std. Errora
Asymptotic 

Sig.b

Asymptotic 95% Confidence 
Interval

Lower Bound Upper Bound

Prostate-Specific Antigen 
Level (ng/ml) .707 .032 .000 .645 .770

Prostate-specific Antigen 
Density Level .760 .031 .000 .700 .821

The test result variable(s): Prostate-Specific Antigen Level (ng/ml), Prostate-specific Antigen Density Level 
has at least one tie between the positive actual state group and the negative actual state group. Statistics 
may be biased.
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Table 8.8   Area under the curve of each of two screening tests 

DNA probe result Laboratory test result (criterion)
Positive Negative

Positive 42 3
Negative 4 155

Table 8.9   Culture and DNA 
probe results
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b.	 What cutoff value should be used to optimize the diagnostic value of the radi-
ologist’s ratings? Explain how you arrived at your answer.

3.	 The file, Xray.sav [4], consists of 150 patients who underwent surgery to deter-
mine if they had suffered a bone fracture due to disease. The file contains the 
results of three biochemical tests intended to detect the disease: BiochemA [test1] 
(variable 4), BiochemB [test2] (variable 5), and BiochemC [test3] (variable 6). 
The disease status of the patient as determined by the surgery is in Disease Posi-
tive [disease] (variable 7). We wish to know which of the three biochemical tests 
best detects the presence of the disease.

a.	 Figures 8.10 through 8.12 display three pairs of histograms. Each pair shows 
the distribution of the results of one of the biochemical tests for patients who 

Fig. 8.9   Nomogram for 
Question 2f
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had the disease (labeled by the researchers as “Disease positive present”) and 
patients who did not have the disease (“Disease positive absent”). Judging 
from these histograms, which test should best discriminate between patients 
with disease and disease-free patients? Explain

b.	 Generate a set of ROC curves that compares the diagnostic performance of 
these three tests. Based on visual inspection of the ROC curves, which bio-
chemical test best detects this disease? How can you tell from the graph?

c.	 Focusing on the best of the three tests, what is the area under its curve? Is it 
significantly different from 50 %?

d.	 Staying with the best of the three tests, what appears from the graph to be the 
optimal combination of sensitivity and specificity?

e.	 If you wanted to use the best of the three tests as a screening tool, would you 
use the cutoff that generates the optimum level of sensitivity, a level of sensi-
tivity higher than the optimum or a level lower than the optimum? Explain.
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Fig. 8.10   Distribution of biochemical Test A
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(1989). (With the kind permission of the American Society for Microbiology)
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a Receiver Operating Characteristic (ROC) curve. Radiology 143(1), 29–36 (1982). (With the 
kind permission of the Radiological Society of North America)

4.	 Xray.sav obtained from: Peat, J., Barton, B.: Medical Statistics: A Guide to Data Analysis and 
Critical Appraisal. Blackwell, Malden (2005). (With the kind permission of John Wiley and 
Sons)
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Chapter 9
Relationships in Quantitative Data

© Springer International Publishing Switzerland 2014
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners, 
DOI 10.1007/978-3-319-12550-3_9

Abstract  This chapter investigates assessing relationships between two quantita-
tive variables. Scatter plots are introduced as a graphical way to determine whether 
a relationship exists between the two variables and assess the shape, direction, and 
strength of the relationship. When the relationship is linear, the Pearson correlation 
coefficient is introduced to measure the strength of the relationship. Tests and con-
fidence intervals on the Pearson correlation coefficient are discussed. For nonlinear 
relationships Spearman’s rho is discussed.

9.1 � Overview

We learned in Chap. 7 that contingency tables and clustered bar graphs are used to 
display the relationship between two categorical variables. However, if the vari-
ables of interest are quantitative, the relationship between the two can be displayed 
with a scatter plot (also known as a scatter diagram). With this technique, we can 
determine whether a relationship exists, and if so, whether it is linear or not, wheth-
er it is positive or negative, and whether the relationship is weak or strong. In this 
chapter, we learn about scatter plots. In Chap. 7, we also learned about two statistics 
that are used to measure the extent to which two categorical variables are related: 
Cramér’s V and gamma. In this chapter, we learn about two statistics that allow 
us to measure the strength of relationship between two quantitative variables: the 
Pearson correlation coefficient and Spearman’s rho.

Two quantitative variables are related if, for a given value of one variable, there 
is a tendency for the second variable to have a certain value. A graphical means for 
determining if a relationship exists is a scatter plot. Each observational unit has two 
quantitative measurements taken on it. One is called the explanatory variable, and 
the other is called the response variable. On an x-y coordinate system, the explana-
tory variable forms the horizontal axis, and the response variable forms the vertical 
axis. The values of the two variables for each observational unit form an ( x,y) pair 
that is plotted. The resulting plot of these points is a scatter plot.

To determine if a relationship exists, we look for a pattern in the scatter plot. If 
there is no pattern, then we say that the two variables are not related. If there is a 
pattern, then we can say that the two variables are related. If the pattern seems to 
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follow a straight line, then we say that the relationship is linear. If the pattern is such 
that an increase in one variable is associated with an increase in the other variable, 
then we say that the relationship is positive. If the pattern reveals that an increase in 
one variable is associated with a decrease in the other variable, then we say that the 
relationship is negative.

The strength of the relationship is determined by the degree to which the pattern 
follows a straight line or some sort of curve. If the points follow a line or curve 
closely, then the relationship is said to be strong. As the points follow a line or curve 
less well, then the relationship is weaker.

9.2 � Scatter Plots

In this section, we interpret scatter plots. Begin by loading the data file, CDC 
BRFSS.sav [1], into SPSS. In order to generate a meaningful scatter plot, it will 
be necessary to exclude from our analyses answers of “do not know,” etc. So de-
clare the values of 7777 and the range 9000–9999 as missing for the variable RE-
PORTED WEIGHT IN POUNDS [WEIGHT2] (variable 29), and 999 for the vari-
able REPORTED HEIGHT IN INCHES [HTIN3] (variable 75). (Do not confuse 
the latter variable with a similar one that is expressed in feet and inches.) Select 
Graphs > Chart Builder and open the Chart Builder dialog box. As shown in 
Fig. 9.1, select Scatter/Dot from the Gallery and drag the picture of the simple scat-
ter plot (the one in the upper left-hand corner) to the window directly above it. Drag 
REPORTED WEIGHT IN POUNDS to the Y-Axis box, and drag REPORTED 
HEIGHT IN INCHES to the X-Axis box. It is general practice to put the explana-
tory variable on the horizontal axis and the response variable on the vertical axis of 
a scatter plot. Click OK.

Study the output, reproduced in Fig. 9.2.

Best Fitting Straight Line  Although visual inspection of a scatter plot can often 
reveal whether two variables are linearly related, it is helpful to plot the straight line 
that best describes that relationship.

Double-click on the scatter plot we just generated to open the Chart Editor. As 
shown in Fig. 9.3, click the Add Fit Line at Total icon. SPSS will then display the 
best fitting straight line. It also displays in the upper right-hand corner of the plot a 
quantity labeled R Sq Linear which we will discuss a bit later. To close Chart Editor, 

Answer the following questions.
9.2.1  Does a relationship between the two variables seem to exist?
9.2.2  If so, does the relationship appear to be linear?
9.2.3  Does it appear to be positive or negative?
9.2.4  Does the relationship appear to be strong or weak?
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click X in the upper right-hand corner of the editor. The resulting scatter plot is 
shown in Fig. 9.3.

Assuming that values along the x-axis increase from left to right, and values 
along the y-axis increase from bottom to top, a positive relationship will be indi-
cated by a line that extends from the lower left to upper right (i.e., the line will have 
a positive slope). For negative relationships, the line will extend from upper left to 
lower right (i.e., the line will have a negative slope). If there is no linear relationship 
between the two variables, the line will be relatively flat.

Fig. 9.1   Creating a scatter plot

 

9.2.5 � What relationship between weight and height is indicated by the best 
fitting straight line in the scatter plot?
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Note that in the scatter plot we generated, a large number of data points do not 
fall exactly on the best fitting line. This scatter of points around the line indicates 
that the relationship between height and weight is not perfect. The more the data 
points gravitate toward the line, the stronger is the relationship between the two 
variables. If the relationship is linear and perfect, all of the points will fall on the 
line. Finding two variables which are perfectly linearly related to one another is a 
very rare occurrence.

R Squared: Proportion of Variability in Y Accounted for by Variability in 
X  The fact that the scatter plot does not show a perfect relationship is evidence 
that factors other than those used to create the scatter plot influence the relation-
ship between them. After all, if values of the Y variable were related only to values 
of the X variable and to nothing else, the relationship between the two variables 
would be perfect and all of the data points would fall on the best fitting line. In the 
jargon of statisticians, all of the variability in the Y scores would be accounted for 
or explained by variability in the X scores. However, it is rare that the values of any 
one variable are related only to one other variable. Almost always, the Y variable 
will be related to many variables, not just to the X variable.

Weight, for example, is related to height, but it is also related to other factors as 
well. To fully account for variability in people’s weight, one would have to take into 

Fig. 9.2   A Scatter plot of weight versus height
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account not only each person’s height but also each person’s diet, exercise habits, 
etc. The more factors we can take into account in addition to height, the more we 
will be able to account for the variability in people’s weight.

In theory, if we could measure every factor that affects the Y variable, we could 
explain 100 % of the variability in that variable. For example, if we could measure 
every factor that determines weight, we could explain 100 % of the variability in 
people’s weight. However, when we measure only one factor, it is likely that we 
will be able to account for only a small percentage of the variability in the Y vari-
able. For example, knowing the height of each person in a group of people would 
not allow us to account for all of the variability in their weight. However, knowing 
people’s height will at least allow us to account for some of the variability in their 
weight.

Fig. 9.3   Adding a best fit line to a scatter plot
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The amount of variability in the Y variable accounted for by the X variable is pro-
vided by SPSS when we instruct the program to insert the best fitting straight line. 
This amount is the quantity R Sq Linear we mentioned earlier. The R Sq stands for 
R Squared and refers to the square of the correlation between the X and Y variables. 
(We will take a closer look at correlation later in this chapter.) The Linear reminds 
us that we are measuring the degree to which the two variables have a linear re-
lationship. The value of R Sq Linear is the proportion of the observed variability 
in the Y variable accounted for by the X variable. If there is a perfect relationship 
between X and Y, R Sq Linear will equal 1.0 and 100 % of the variation in Y will 
be accounted for by variation in X. If there is no linear relationship between X and 
Y, R Sq Linear will equal 0, and 0 % of the variation in Y will be accounted for by 
variation in X. Keep in mind that, if the relationship between the two variables is not 
linear, then R squared will underestimate the strength of the relationship.

For example, in the scatter plot depicting the relationship between weight and 
height, R Sq Linear is equal to 0.271. This value means that 27.1 % of the variabil-
ity in the weights of the respondents can be accounted for by the variation in their 
heights. This value also means that 72.9 % of the variability in people’s weights 
cannot be attributed to height but to other factors, whatever they might be.

It is not unusual that relationships between variables studied in research are much 
weaker than the relationship between weight and height depicted in the scatter plot. 
At least two problems arise when studying weak relationships. First, large samples 
may be needed for weak relationships to be statistically significant. Second, studies 
of weak relationships can raise questions regarding the theoretical or clinical sig-
nificance of the variables under investigation.

9.3 � Pearson Correlation Coefficient

We look now at measures of association known as correlation coefficients. These 
give a numerical measure of the strength of the relationship between two variables. 
If both variables under study are quantitative and the relationship is linear, the Pear-
son correlation coefficient is the statistic of choice. We will use this statistic to study 
the relationship between height and weight.

As shown in Fig. 9.4, select Analyze > Correlate > Bivariate to bring up the Bi-
variate Correlations dialog box. Move REPORTED WEIGHT IN POUNDS and 
REPORTED HEIGHT IN INCHES into the Variables box. Be sure that Pear-
son has been selected in the Correlation Coefficients area. As we are dealing with 
quantitative data, let us generate some means and standard deviations as well. Click 
Options to open the Bivariate Correlations: Options dialog box. Check Means and 
standard deviations. Notice that in the Missing Values area, Exclude cases pairwise 
has been selected by SPSS. Now click Continue (Fig. 9.5).

Before we run the analysis, notice that in the Tests of Significance area, Two-
tailed has been selected. Unless we instruct SPSS to do otherwise, it will conduct a 
two-tailed test of significance. Now click OK and study the output.
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The output includes a table, shown in Table 9.1, that displays means and standard 
deviations of the two variables.

The output also includes a table displaying Pearson correlation coefficients. The 
table, sometimes called a correlation matrix, is shown in Table 9.2.

In a matrix, the names of the variables are listed both down the rows and across 
the columns. The correlation between any two variables listed within the table is 
displayed in the cell that forms the intersection between the appropriate row and 
column. The matrix is symmetric, so it does not matter whether you first select the 
appropriate column and then move down to the appropriate row, or you first select 
the appropriate row and move across to the appropriate column. In a matrix gener-
ated by SPSS, most of the cells also display the p-values associated with the correla-
tions and the number of cases that were used in calculating them. The correlation is 
labeled Pearson Correlation, the p-value Sig (2-tailed), and the sample size, N. Let 
us look at each of these three entries more closely.

Fig. 9.4   Selecting correlation

 

9.3.1  What was the average height and weight of the sample?

9.3 � Pearson Correlation Coefficient�
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Table 9.2   Correlation results 

Table 9.1   Summary statistics 

Fig. 9.5   Requesting the desired correlation
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Pearson Correlation  Pearson correlation coefficients vary from − 1 to 0 to + 1. 
The closer the value is to + 1 or −1, the stronger is the relationship between the two 
variables. A positive correlation indicates that increases in one variable are associ-
ated with increases in the other, while a negative correlation indicates that increases 
in one variable are associated with decreases in the other. Note that because the 
matrix displays the correlations between all possible pairings of the variables in the 
analysis, the correlation between each variable and itself is also displayed. These 
values are always equal to 1 and can be found on a diagonal from the uppermost left 
cell to the lowermost right cell.

p-value  Immediately below each of the correlations that do not lie along the diago-
nal is the p-value. As we learned in Chap. 5, a p-value is the probability of observing 
a value of a test statistic that is equal to or greater than the value we computed if the 
null hypothesis were true. SPSS tests the null hypothesis that the population correla-
tion is zero, that is, that the two variables are uncorrelated. If the p-value is ≤ 0.05, 
we reject the null hypothesis in favor of the alternative hypothesis. If we conduct 
a two-tailed test, the alternative hypothesis is that the population correlation is not 
equal to zero. If we conduct a one-tailed test, the alternative hypothesis is either that 
the population correlation is greater than zero or that the population correlation is 
less than zero. Recall that by default, SPSS conducts a two-tailed test. We did not 
ask SPSS to conduct a one-tailed test, so in our analysis the alternative hypothesis 
is that the population correlation is not equal to zero.

Sample Size  The sample sizes displayed in the matrix refer to the numbers of cases 
upon which the correlations are based. By default, SPSS excludes cases pairwise, that 
is, it will omit cases with missing data with reference only to the two variables for 
which it is about to calculate the correlation coefficient. If the analysis involves the cal-
culation of two or more correlations, different correlations may be based on different 
numbers of cases or on different subsets of cases. If you want to avoid these outcomes, 
check Exclude cases listwise in the Missing Values area of the Bivariate Correlations: 
Options dialog box. SPSS will exclude all cases that have missing data on any of the 
variables involved in the analysis before it calculates the correlations. The resulting 
correlations will be based on the same subset of cases and will of course have the same 
sample size. However, the resulting sample size can be appreciably smaller than those 
that would have been obtained had cases been excluded on a pairwise basis.

Study the correlation matrix and answer the following questions.
9.3.2  What is the value of the Pearson correlation in our analysis?
9.3.3 � Would you describe the relationship between weight and height as 

positive or negative?
9.3.4 � Would you describe the relationship between weight and height as 

weak or strong?
9.3.5 � What is the p-value associated with the correlation?
9.3.6  What does the p-value tell us?
9.3.7  What was the sample size?
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Confidence Intervals and Null Hypotheses About Nonzero Values of Popula-
tion Correlations  If we wish to construct a confidence interval for a population 
correlation or test a null hypothesis that the population correlation is some value 
other than zero, we need to use a procedure known as Fisher’s Z Transformation, 
developed by Ronald A. Fisher. Fisher found that if both variables come from nor-
mal populations, then transformation

� (9.1)

where ln is the natural logarithm and r is the sample correlation. If both variables 
have a normal distribution, Z has a normal distribution. This means that we can 
use the z transformation to convert the values of the sample correlation and the 
population correlation posited by the null hypothesis. We can then use the normal 
distribution to compute a p-value. We can also construct a confidence interval for 
the converted correlation and transform that interval back to obtain a confidence 
interval for the population correlation.

These procedures are not built-in features of SPSS. However, we can use a script 
called correlation.sbs to implement them. The script is located in the same place as 
the scripts we used in Chap. 6.

To illustrate the script, suppose we wish to test whether the population correla-
tion between REPORTED WEIGHT IN POUNDS and REPORTED HEIGHT 
IN INCHES is greater than 0.5, and we wish to construct a 99 % confidence interval 
for this correlation. Select Utilities > Run Script and run correlation.sbs to open 
the Inference for a Population Correlation dialog box shown below. In the Sample 
Correlation box, enter the Pearson correlation that we obtained earlier (0.52). In 
the Test Correlation box, enter the value of the population correlation being tested 
in the null hypothesis (0.50). In the Sample Size box, enter the size of the sample 
(7404), and in the Confidence Level (%) box, enter in percent the desired confidence 
level (99) for the Pearson correlation. Click Greater Than in the Alternative box. 
The dialog box should look like the one shown in Fig. 9.6.

Click OK.
The Z-transformation produces the output shown in Table 9.3.

When you opened the dialog box for the script, you may have noticed that the Test 
Correlation box contained a default value of 0, and the Confidence Level (%) box 
contained a default value of 95. If all you want to do is conduct a hypothesis test on 
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9.3.8  What is the value of Z for the test?
9.3.9  What is the p-value for the test?
9.3.10  Does the p-value indicate that the population correlation is > 0.5?
9.3.11  What is the 99 % confidence interval for the population correlation?
9.3.12  Is it consistent with the test result?
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the population correlation, simply set up the dialog box for the desired test, without 
specifying a confidence level. If all you want to do is construct a confidence inter-
val for the population correlation, set up the dialog box for the desired confidence 
interval without specifying a test correlation.

Fig. 9.6   Correlation script 
dialog box
 

Table 9.3   Test and confidence interval for a correlation 
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9.4 � Spearman’s Rho Coefficient

There are times when the Pearson correlation is not the most appropriate measure 
of the relationship between two quantitative variables. One such time is when the 
relationship between two quantitative variables is better described by a curve rather 
than by a straight line. Since Pearson correlation is a measure of the strength of a 
linear relationship, it is not the appropriate measure of association for curvilinear 
relationships.

Some curvilinear relationships are monotonic while others are nonmonotonic. 
Both types of relationships take the form of a curve, but for monotonic relationships, 
the curve never reverses direction from positive to negative or from negative to posi-
tive. For nonmonotonic relationships, the curve reverses direction at least once. A 
relationship that is U shaped is an example of a nonmonotonic relationship. For 
monotonic relationships, Spearman’s rho is a better choice than Pearson correla-
tion. Spearman’s rho coefficients are Pearson correlation coefficients calculated on 
the basis of the ranked values of the data. For example, if we were to ask SPSS to 
calculate the correlation between height and weight using Spearman’s rho, SPSS 
would first assign a ranking to each respondent’s weight (to indicate whether a given 
respondent’s weight was the heaviest, second heaviest, etc.) and height (to indicate 
whether the respondent’s height was the tallest, second tallest, etc.). SPSS would 
then calculate the Pearson correlation coefficient between the two sets of rankings.

Spearman’s rho coefficients have many of the same properties as the Pearson 
correlation. They range from − 1 to 0 to + 1 and have the same meaning. For ex-
ample, if weight and height were perfectly positively related, the tallest respondent 
would also be the heaviest, the second tallest would also be the second heaviest, 
etc., and rho would equal 1. The difference between Pearson and rho coefficients 
is that if the data follow some sort of nonlinear monotonic curve, the value of the 
Pearson correlation will underestimate the strength of the relationship. However, be 
aware that if the curve is nonmonotonic, Spearman’s rho may also underestimate the 
strength of the relationship.

Another instance where Pearson correlation would be inappropriate occurs 
when either of the two variables is not normally distributed. In these circumstances, 
Spearman’s rho is preferred. Whether each of the two variables is normally distrib-
uted can be determined by using the techniques explained in Chap. 5.

An Example  The file, Bodymass.sav [2], contains three BMI scores of each of 20 
hospitalized female anorexics: her BMI when she was admitted, her preferred BMI 
as reported upon admittance, and her BMI at discharge. Let us determine the nature 
of the relationship between Preferred body mass [Prefer] (variable 3) and Body 
mass at admittance [Admit] (variable 2).

Load the data file. Using Analyze > Descriptive Statistics > Explore, conduct 
tests of normality on each variable. Then using Chart Builder, generate a scatter plot 
of the two variables. Put Body mass at admittance on the x-axis.

The results of the tests of normality are shown in Table 9.4, and the scatter plot 
is shown in Fig. 9.7.
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Fig. 9.7   Scatter plot

 

Table 9.4   Tests of normality 

Answer the following questions.
9.4.1  Are both variables normally distributed?
9.4.2 � Does the relationship between the two variables appear to be linear 

or nonlinear?
9.4.3  Does the relationship appear to be monotonic or nonmonotonic?
9.4.4 � Which correlation coefficient should we compute: Pearson or Spear-

man’s rho?

9.4 � Spearman’s Rho Coefficient�
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We can see from the tests of normality that we can reject the null hypothesis that 
preferred body mass is normally distributed, and we can see from the scatter plot 
that the relationship between the two variables is not linear. Either of these findings 
would lead us to compute Spearman’s rho instead of Pearson correlation. Note that 
the relationship is monotonic.

To compute Spearman’s rho, open the Bivariate Correlations dialog box, move 
Preferred body mass and Body mass at admittance to the Variables box, and in 
the Correlation Coefficients area, select Spearman. Leave Pearson checked so we 
can compare the two coefficients. Click OK and study the correlation matrices.

The matrix displaying the Pearson correlation is shown in Table 9.5, and the 
matrix displaying Spearman’s rho is shown in Tables 9.6.

Both matrices look very similar to one another. However, the matrix displaying 
the rho coefficients includes the phrase Spearman’s rho in the upper left-hand cor-
ner and identifies each coefficient as a Correlation Coefficient.

Table 9.6   Spearman’s rho 

Table 9.5   Pearson correlation 
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9.5 � Exercise Questions

1.	 Open the file, Framingham.sav [3]. This file contains a subset of data from the 
Framingham Heart Study, a prospective cohort study of cardiovascular disease 
among residents of Framingham, Massachusetts. Generate a scatter plot depict-
ing the degree of linear relationship between Diastolic Blood Pressure [dbp] 
(variable 3) and Body Mass Index [bmi] (variable 8). Plot Diastolic Blood Pres-
sure on the y-axis and Body Mass Index on the x-axis. After you have generated 
the scatter plot, insert the best fitting straight line.

2.	 Which of the following best describes the relationship depicted in the scatter plot 
between diastolic blood pressure and BMI you generated in question 1? Explain 
your answer.

a.	 There is no relationship.
b.	 There is a weak positive relationship.
c.	 There is a strong positive relationship.
d.	 There is a weak negative relationship.
e.	 There is a strong negative relationship.

3.	 According to the scatter plot you generated in question 1, how much variability in 
diastolic blood pressure is accounted for by variability in BMI? How do you know?

4.	 Figure 9.8 shows a set of four scatter plots depicting the relationship between 
diastolic blood pressure and BMI. These plots were generated in Chart Builder 
by assigning Gender [sex] (variable 1) as the Rows Panel variable and Coronary 
Heart Disease [chdfate] (variable 5) as the Columns Panel variable. For which 
group of patients is diastolic blood pressure and BMI most strongly related? 
How do you know?

a.	 Female patients without coronary heart disease
b.	 Female patients with coronary heart disease
c.	 Male patients without coronary heart disease
d.	 Male patients with coronary heart disease

5.	 This question focuses on the relationship between Systolic Blood Pressure [sbp] 
(variable 2) and Diastolic Blood Pressure among the entire sample in the Fram-
ingham data set.

Answer the following questions.
9.4.5  What is the value of Spearman’s rho?
9.4.6 � How confident can we be that the population correlation is not equal 

to zero?
9.4.7 � How does the value of Spearman’s rho compare to the value of the 

Pearson correlation?
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a.	 Create a correlation matrix that displays the correlation between systolic and 
diastolic blood pressure.

b.	 What is the value of the Pearson correlation between systolic and diastolic 
blood pressure?

c.	 What is the sample size upon which the correlation is based?
d.	 What is the p-value for the test of the alternative hypothesis that the correla-

tion between systolic and diastolic blood pressure in the population of Fram-
ingham residents is not zero?

e.	 What is the p-value for the test of the alternative hypothesis that the correla-
tion between systolic and diastolic blood pressure in the population of Fram-
ingham residents is > 0.70? (Hint: You will need to conduct another analysis 
to answer this question.)

f.	 What is the 95 % confidence interval for the correlation between systolic and 
diastolic blood pressure?

Fig. 9.8   A set of scatter plots of diastolic blood pressure versus body mass index (Question 4)
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6.	 Figure 9.9 is a scatter plot of the relationship between forced expiratory volume 
(FEV) and age for girls between the ages of 8 and 18 who do not smoke. These 
data are in FEV.sav [4]. The values of the Pearson correlation and Spearman’s 
rho coefficients are shown in Table 9.7.

a.	 Does the relationship between FEV and age appear to be linear? Is it mono-
tonic? Explain.

b.	 What are the two values of the Pearson and Spearman’s rho correlations?
c.	 What are the p-values for each correlation?
d.	 What is the null hypothesis for each correlation?
e.	 Can we reject the null hypothesis for each correlation?
f.	 Which correlation is the better choice for these data: Pearson or Spearman’s 

rho? Why?

Fig. 9.9   Scatter plot for Question 6

 

9.5  Exercise Questions�



250 9  Relationships in Quantitative Data

Data Sets and References

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2.	 Bodymass.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, 
E.: A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permis-
sion of the Routledge Taylor and Francis Group, and Professor Shelley L Channon).

3.	 Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean 
Coady, National Heart, Blood, and Lung Institute).

4.	 FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics, 6th ed. Thomson Brooks/
Cole, Belmont (2006). With the kind permission of Professor Bernard Rosner. For context, 
see Tager, I.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on 
pulmonary function in children. American Journal of Epidemiology. 110, 15–26 (1979).

Table 9.7   Correlation results for Question 6 

http://www.cdc.gov/brfss/
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Chapter 10
Comparing Means of Independent Samples
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Abstract  This chapter reviews the independent-samples t-test and the one-way 
analysis of variance, inferential statistics that are commonly used to test null and 
alternative hypotheses about mean differences among independent populations. 
Because both procedures assume equal population variances, Levene’s test for 
homogeneity of variances is discussed, as are methods for hypothesis testing when 
homogeneity of variances cannot be safely assumed. The chapter continues by 
using a measure of effect size, partial eta squared, to distinguish between statisti-
cal and clinical significance, and concludes with a discussion of post hoc multiple 
comparisons and contrast analysis.

10.1 � Overview

Often researchers make two sets of measurements and then, using a test of hypoth-
eses, compare the two sets to determine if the difference observed in the sample 
measurements is attributable to the population from which the data were drawn. 
Sometimes the measurements are made of two different groups of participants. For 
example, the blood pressure of hypertensive patients who had received a new treat-
ment might be compared to that of a group who had received a standard treatment. 
In this type of study, researchers are said to be comparing two independent samples. 
Sometimes the two sets of observations are made of the same group of participants. 
For example, the blood pressure of hypertensive patients who had received a new 
treatment might be compared to the blood pressure of the same group of patients 
before they had received the treatment. In this type of study, researchers are said to 
be making paired comparisons.

If the observations are quantitative (e.g., blood pressure), researchers can com-
pute the means of the two sets of observations and assess whether the observed 
difference is significant by using what is known as a t-test. If the two sets of ob-
servations are made of two different groups (e.g., the mean blood pressure of hy-
pertensive patients receiving a new treatment is to be compared to the mean blood 
pressure of hypertensive patients receiving a standard treatment), an independent-
samples t-test will be used. If the two sets of observations are of the same group 
(e.g., the mean blood pressure of hypertensive patients who had received a new 
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treatment is to be compared to the mean blood pressure of the same group of pa-
tients before they had received the treatment), a paired-samples t-test will be used. 
In this chapter, we focus on comparing independent samples. In the next chapter, we 
will study paired comparisons.

When comparing independent samples, the observations ideally will have been 
made within the context of a controlled experiment in which an explanatory vari-
able is manipulated by the researcher to determine its causal impact on a response 
variable. For example, a new treatment for hypertension might be given to an ex-
perimental group of hypertensive patients while a standard treatment is given to a 
control group of hypertensives. Whether a patient is given the new or standard treat-
ment would be decided at random. In these cases, if the results of a statistical test 
support the hypothesis that the difference between two sets of observations is attrib-
utable to the general population rather than to random sampling variability, a causal 
relationship between the explanatory and response variables can be established. 
Often, though, comparisons are made across sets of observations in studies that do 
not involve manipulation of an explanatory variable. For example, the explanatory 
variable might be gender, race, age, or economic status, or it might be whether or 
not participants in the course of their daily lives had been exposed to a risk factor. 
In these observational studies, investigators cannot randomly assign participants to 
various values of the explanatory variable. Consequently, the results of a hypothesis 
test reveal only if the difference in the response variable can be confidently attrib-
uted to the population from which the sample was taken rather than to sampling 
variability, but the cause of the difference cannot be established.

An alternative to the t-test is a procedure known as one-way analysis of variance 
( one-way ANOVA). As with the t-test, one-way ANOVA can be used to compare 
two group means. However, one-way ANOVA can also be used to compare three or 
more means at one time. In this chapter, we explore one-way ANOVA as a method 
of comparing two or more means.

In order to conduct a t-test or a one-way ANOVA, the response variable must 
be quantitative. Usually, the explanatory variable is categorical. For example, in a 
randomized controlled trial of a new hypertensive medication, the explanatory vari-
able might be whether or not hypertensive patients were given the new or standard 
drug. In an observational study of salt intake and blood pressure, the explanatory 
variable might be whether or not participants self-report that they avoid salty foods. 
Sometimes though, the explanatory variable is quantitative. If the explanatory vari-
able is quantitative, its values are few in number, and there are a sufficient number 
of cases at each of those values to allow for a meaningful comparison of group 
averages, then a t-test or one-way ANOVA might be conducted. Otherwise, the rela-
tionship between the explanatory and response variable would be assessed by other 
techniques. For example, the investigator might calculate the Pearson correlation 
between the two quantitative variables, or first transform the quantitative explana-
tory variable into a categorical variable and then conduct the t-test or ANOVA if 
the transformed variable generates two groups or conduct the ANOVA if the trans-
formed variable generates more than two groups.
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For example, in a randomized controlled trial, an investigator might determine 
the relative effect of two different amounts of a new hypertension medication by 
giving the smaller dose to a group of 50 hypertensive patients and the larger dose to 
a second group of 50 hypertensives. The investigator would then compare the aver-
age blood pressure of both groups by using either a t-test or a one-way ANOVA. On 
the other hand, in an observational study of the relationship between salt intake and 
blood pressure, an investigator might analyze participants’ diets to obtain a quanti-
tative measure of daily salt intake. Since the measure of salt intake would generate 
a large number of possible values, the investigator would compute the correlation 
between salt intake and blood pressure, or if the sample size is sufficiently large to 
allow for a meaningful analysis of group means, transform the amount of daily salt 
intake into a categorical variable (e.g., by grouping participants in terms of whether 
their salt intake was in the first, second, third or fourth quartile), and then compare 
the mean blood pressure of the resulting groups.

As we saw in Chap. 5 and as we will see later in this chapter, it is possible for 
differences among sets of observations to be statistically significant even if the dif-
ferences are small. For example, an experimental group of hypertensive patients 
who received a marginally effective treatment might experience a small yet statisti-
cally significant reduction in blood pressure. Therefore, in addition to determining 
whether differences among groups are statistically significant, researchers conduct-
ing experiments will quantify the size of the impact of the causal variable on the 
response variable, and researchers conducting observational studies will quantify 
the strength of the relationship between the explanatory and response variables. 
One method by which to do this is by computing what is called effect size. In this 
chapter, we look at a measure of effect size that can be computed when a one-way 
ANOVA is used.

10.2 � Comparing Two Means: The Independent-Samples 
t-Test

In this section, we demonstrate how two means are compared when using the inde-
pendent-samples t-test. The two means will be the average body mass index (BMI) 
values of male and female residents of NY.

Load the data file, CDC BRFSS.sav [1], into SPSS. As shown in Figs. 10.1, 
10.2, 10.3 and 10.4, select Analyze > Compare Means > Independent-Samples 
T-Test to open the Independent-Samples T-Test dialog box. Move BODY MASS 
INDEX [BMI] (variable 107) into the Test Variable(s) box and SEX [SEX] (vari-
able 32) into the Grouping Variable box. You will notice that Sex( ?,?) is displayed 
in the Grouping Variable box. The question marks indicate that you need to define 
what value of the grouping variable corresponds to the first group and what value 
corresponds to the second group. To do this, click Define Groups to open the De-
fine Groups dialog box. Type “1” in the Group 1 box, and “2” in the Group 2 box. 

10.2 � Comparing Two Means: The Independent-Samples t-Test�
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(Do not include the quotation marks.) Typing in these numbers will tell SPSS which 
values of SEX we wish to use. Of course, there are only the two values, but we have 
to tell SPSS anyway. Click Continue and then OK.

The output of the t-test consists of two tables. The first is Table 10.1, Group 
Statistics. It displays some descriptive statistics.

Fig. 10.2   Selecting the test and grouping variables and opening the Define Groups dialog

 

Fig. 10.1   Opening the Independent-Samples T-Test dialog
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Fig. 10.3   Defining groups 

Fig. 10.4   Executing the independent-samples t-test

 

Table 10.1   Group statistics generated by an independent-samples t-test
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The second table, Independent-Samples Test, shows the results of two different t-
tests. Table 10.2 is a segment of that table.

The t-test on the first row of Table 10.2 should be used if it is safe to assume 
that the two population variances (variance is the square of standard deviation) 
are equal. If equality of variances cannot be assumed, the t-test on the second row 
should be used. To make this determination, researchers refer to the results of what 
is known as Levene’s test. For this test, the null hypothesis is that the two population 
variances are equal, and the alternative hypothesis is that they are not equal. The 
p-value for this test appears in the Sig. box in the Levene’s Test for Equality of Vari-
ances area. It has the same interpretation as the other p-values we have encountered.

10.2.5  Were the two sample standard deviations equal?
10.2.6 � If not, what does the p-value for Levene’s test lead us to con-

clude about whether or not this difference can be attributed to the 
populations?

10.2.7  What is the p-value?
10.2.8  Is the difference in sample variances significant at the 0.05 level?

Table 10.2   Segment of the Indpendent-samples test table showing Levene’s test for equality of 
variances

 

Study the Group Statistics table and answer the following questions.
10.2.1  How many men were included in the analysis? Women?
10.2.2  What were their respective means and standard deviations?
10.2.3 � Imagine that we were to repeat the survey 100 times, and each time we 

computed the mean BMI of men and of women. When we were fin-
ished, we would have a set of 100 mean BMI scores for men, and a set 
of 100 BMI scores for women. Which set of means—those for men or 
those for women—would show greater variability? How do you know?

10.2.4 � If we calculated the standard deviation of the 100 mean BMI scores 
of men, approximately what would it equal?
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If the difference in sample variances is significant at the 0.05 level, we conclude that 
the difference in the variances of the BMI scores of the 7000 or so men and women 
in our sample was due to a difference in the variance of BMI scores of the millions 
of men and women in the population from which the sample was taken. Otherwise, 
we conclude that the difference in the variances of the BMI scores of the 7000 or so 
men and women in our sample was due just to chance, and that there is no difference 
in the variance of BMI scores of the millions of men and women in the population 
from which the sample was taken.

Now we are ready to determine if the data support the null hypothesis that the mean 
BMI of men is the same as the mean BMI of women or the alternative hypothesis 
that the mean BMI of men differs from the mean BMI of women. Table 10.3 is that 
portion of the Independent-Samples Test that displays the results of the indepen-
dent-samples t-test.

Using the appropriate row of the table, find the t-value. This value is in the column 
labeled t, and is calculated using a formula that uses three properties of the data: the 
size of the difference between the two group means (the sample mean from group 2 
is subtracted from the sample mean from group 1), the variability of the scores within 
each group, and the number of observations in each group. The result is the t-value. 
In our example, what is the t-value? Be sure to be reading from the appropriate row.

Values of t can be either positive or negative, depending on the direction of the 
difference between the two means. If the sample mean from group 1 is greater than 
the sample mean from group 2, the t-value will be positive. If the sample mean from 
group 1 is less than the sample mean from group 2, the t-value will be negative. If 
the two sample means are equal, the t-value will equal zero. Does your observed 
t-value indicate that the difference between the two sample mean BMI scores is 
positive, negative or zero?

Table 10.3   Results of the independent-samples t-test
 

10.2.9 � Based on the results of Levene’s test, which version of the indepen-
dent-samples t-test should we use to decide whether or not the differ-
ence in sample means is significant?
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Before the p-value is calculated, the number of degrees of freedom is computed. 
There is a different formula for each of the two versions of the t-test. Degrees of 
freedom reflect sample size. The larger the sample, the greater is the number of 
degrees of freedom.

The number of degrees of freedom and the t-value are then used to calculate the 
p-value. The p-value is the probability of observing a value of t as or more extreme 
under the assumption that the null hypothesis—the two population means BMI 
scores are equal—is true. The p-values will decrease as t increases or the number of 
degrees of freedom increases. When both are large, p-values are quite small, often 
less than 0.001.

What is the p-value in our example? To find out, read from the table in the col-
umn labeled Sig. ( 2-tailed). The term 2-tailed indicates that this is the p-value for 
the alternative hypothesis that the two population means are not equal to each other. 
Do the data support the null or the alternative hypothesis? That is, can we say that 
the difference is statistically significant?

The rest of the output in Independent-Samples Test provides information regard-
ing the construction of a 95 % confidence interval for the difference between the 
two population means (the mean for group 2 subtracted from the mean for group 
1). This information is displayed in Table 10.4. The table displays the size of the 
difference between the two means in our sample (found in the column labeled Mean 
Difference), the standard error of the difference (found under Std. Error Difference), 
and the 95 % confidence interval of the difference, with its lower and upper values.

10.2.10 � What are the degrees of freedom in our example for the t-test that is 
appropriate for this situation? Look in the column labeled df.

Table 10.4   Mean difference, and its standard error and 95 % confidence interval
 

To see if you understand these statistics, answer the following questions.
10.2.11 � Does the confidence interval indicate that the population mean BMI 

for men is greater than the population mean BMI for women? Less 
than? Neither? Why?

10.2.12  Can we be sure this conclusion is correct? Why or why not?
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10.3 � Comparing Two Means: One-way Analysis 
of Variance

An alternative to the independent-samples t-test is known as one-way analysis of 
variance, or one-way ANOVA. In addition to comparing two means, one-way ANO-
VA can be used to compare three or more group means at the same time. For ex-
ample, we might wish to compare the mean blood pressure of hypertensive patients 
who were given a new drug with that of patients who were kept on standard drug 
treatment with that of patients who were given an alternative to a drug treatment, 
say, an exercise and diet regimen. The t-test cannot handle more than two means at 
a time, so in this case, one-way ANOVA would be the test of choice. Later in this 
chapter, we will look at how the ANOVA approaches the analysis of three or more 
means.

One-way ANOVA can be used to compare two means when it may be safely 
assumed that the population variances are equal. Earlier, we saw that the variances 
in BMI varied significantly across gender. Because it is not appropriate to use the 
standard one-way ANOVA in this example, we will change our example and look 
at the relationship between BMI and coronary heart disease. On average, who has 
the larger BMI: patients who have coronary heart disease or patients who do not? 
To answer this question, we will analyze data from the Framingham Heart Study, a 
prospective cohort study of cardiovascular disease.

Open the file, Framingham.sav [2]. This file consists of a sample of 4699 men 
and women whose cardiovascular health was monitored for an average of about 
22 years. As shown in Figs. 10.5, 10.6, 10.7 and 10.8, select Analyze > Compare 
Means > One-Way ANOVA to open the One-Way ANOVA dialog box. Move BODY 
MASS INDEX [bmi] (variable 8) into the Dependent List box and Coronary Heart 
Disease [chdfate] (variable 5; 0 = No; 1 = Yes) into the Factor box. Click Options to 

Fig. 10.5   Opening the one-way ANOVA dialog

 

10.3 � Comparing Two Means: One-way Analysis of Variance�
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open the One-Way ANOVA: Options dialog box. Check Descriptive, Homogeneity 
of variance test, Brown–Forsythe, and Welch, and then click Continue and OK.

Table 10.5 is the first table of the output, and gives for each category of coronary 
heart disease the sample size, the mean BMI, the standard deviation of the BMI val-
ues, the standard error of the mean BMI, the 95 % confidence interval for the mean, 
and the maximum and minimum observed values of BMI.

Table 10.6 is the second table of the output, and reports the Levene test for equal-
ity of variances of the BMI values in the two disease categories. The null hypothesis 

Fig. 10.6   Selecting the dependent variable and factor, and opening the Options dialog

 

Fig. 10.7   Selecting statistics 
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is that the two population variances are equal, and the alternative hypothesis is that 
the two population variances differ.

If the Levene test indicates that it is safe to assume that the two variances are 
equal, then it is appropriate to use the F statistic given in the ANOVA table shown 
in Table 10.7 to test whether or not the group means are equal. The null hypothesis 
is that the group means are equal, and the alternative hypothesis is that the group 
means are not the same.

Table 10.6   Levene test of the homegeneity of variances in the BMI of patients with and without 
conronary heart disease

 

Table 10.5   Descriptive statistics generated by a one-way ANOVA on the BMI of patients with and 
wthout coronary heart disease (rows labelled yes and no, respectively) 

Fig. 10.8   Executing a one-way ANOVA

 

10.3 � Comparing Two Means: One-way Analysis of Variance�
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Table 10.8 is the last table of the output, and gives the results of the Welch test 
and the Brown–Forsythe test for equality of group means. These tests are appropri-
ate when the Levene test indicates that it is not safe to assume that the two variances 
are the same. Again, the null hypothesis is that the group means are equal, and the 
alternative hypothesis is that the group means differ.

Values of t, F, and the Welch and the Brown–Forsythe statistics have several 
common characteristics. Each of the four statistics is a ratio in which the numerator 
reflects the size of the difference between the two group means, and the denomina-
tor reflects the variability of the scores within each group and the size of the sample. 
In addition, larger values of each of the four statistics result in smaller p-values. 
However, F ratios and the Welch and Brown–Forsythe statistics can never be nega-
tive. They begin at 0 and go up from there. A value of 0 results when the sample 
means are equal, giving evidence that there is no difference between the population 
means. In the case of testing the difference between two group means, you may note 
that the value of the F ratio is equal to the square of the value of the t-test statistic 
when the two population variances are equal.

As is the case with the t-value, the calculations of the F ratio and the Welch and 
Brown–Forsythe statistics have degrees of freedom associated with them. However, 
unlike the t-value, each of the latter three statistics has two values for the degrees of 
freedom, one associated with the numerator of the statistic and one associated with 
the denominator of the statistic. For the F ratio, the numerator degrees of freedom 
are equal to the number of group means being tested minus 1, while the denomina-

Table 10.7   One-way analysis of variance testing the null hypothesis that the mean BMI of patients 
with and wthout coronary heart disease are equal
 

Table 10.8   Tests of the null hypothesis when equal variances in the BMI of patients with and 
without coronary heart disease cannot be assumed 
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tor degrees of freedom have the same value as those for the equal variances t-test. 
The numerator degrees of freedom for the Welch and the Brown–Forsythe statistics 
are the same as that of the F ratio, but there is a rather complicated formula for ar-
riving at the degrees of freedom for the denominator.

The value of the F ratio, the Welch statistic or the Brown–Forsythe statistic, and 
its associated degrees of freedom are used to compute a p-value. If we can assume 
equal variances, the p-value associated with the t-test will be the same as that for 
the one-way ANOVA. In this situation, whether we conduct a t-test or a one-way 
ANOVA, we will come to the same conclusion as to whether the difference between 
the two group means was statistically significant.

10.4 � Effect Size

Large values of t or one-way ANOVA statistics occur when the difference between 
the two sample means is large, the variability of scores within each of the two 
groups is small, or when the number of scores in each group is large. Since large 
values of these statistics are associated with small p-values, and since statistically 
significant results are usually desirable, researchers will often conduct studies in 
such a way as to maximize the average difference in scores between the two groups 
under study, minimize the variability of scores within each group, and maximize the 
size of the sample.

For example, in an experimental investigation of whether a newly developed 
hypertensive drug reduces blood pressure, a researcher might maximize the differ-
ence between the average blood pressure of the experimental and control groups 
by administering to the experimental group as large a dose of the new drug as is 
safely possible. To minimize the variability of blood pressure readings in each of the 
two groups, the researcher would take care to measure blood pressure at the same 
time of day each day, and in the same way with the same equipment. To maximize 
sample size, the researcher would recruit large numbers of patients.

Study the output in Tables 10.5, 10.6, 10.7 and 10.8, and answer the following 
questions.
10.3.1  What is the mean BMI of patients who have coronary heart disease?
10.3.2 � What is the mean BMI of patients who do not have coronary heart 

disease?
10.3.3 � What test or tests of equality of means should we use with these 

data? Why?
10.3.4  What is the value of the test statistic that compares the two means?
10.3.5 � What is the p-value associated with the test statistics that compares 

the two means?
10.3.6 � Can we confidently conclude that in the population of Framingham 

residents, coronary heart disease and BMI are related? Why or why not?

10.4 � Effect Size�
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It should be pointed out that there are cases when a tiny and clinically unimport-
ant difference between two group means can still result in a significant p-value. 
For example, the impact on blood pressure of a newly developed drug may be sta-
tistically significant but perhaps only because the researcher recruited a very large 
number of patients. The impact of the drug might be quite small, so small as to have 
little or no clinical or practical significance. So, not only will researchers look for 
statistical significance but they will also use a measure of effect size to determine 
if the difference between the means is meaningful. These statistics gauge whether 
a statistically significant difference between two groups reflects a weak, moderate 
or strong relationship between the two variables under investigation. These mea-
sures involve taking into account the size of the difference between the means of 
the two groups, the variability of the scores within each group and the size of the 
sample. The details of these measures vary from one to the other, but all quantify 
the strength of relationship between two variables.

Partial eta squared  In this section, we use a measure of effect size called par-
tial eta squared to determine the strength of relationship between sex and BMI. In 
the exercise questions, we leave it to you to determine the strength of relationship 
between coronary heart disease and BMI in our Framingham data set. Partial eta 
squared varies from 0 to 1. The closer the value of partial eta squared is to 0, the 
weaker is the relationship between the two variables. The closer the value is to 1, 
the stronger is the relationship.

In order to compute partial eta squared with SPSS, we need to use an alternative 
procedure to conducting the one-way analysis of variance. Return to the Centers 
for Disease Control and Prevention (CDC) data set. As shown in Figs. 10.9, 10.10 
and 10.11, select Analyze > General Linear Model >  Univariate to open the Uni-
variate dialog box. Move BODY MASS INDEX [BMI] (variable 107) to the De-
pendent Variable box and SEX [SEX ] (variable 32) to the Fixed Factor(s) box. To 
obtain the value for partial eta squared and the group means, click Options to bring 

Fig. 10.9   Opening the Univariate dialog
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up the Univariate: Options dialog box. Move (OVERALL) and SEX to the Display 
Means for box, and check Descriptive statistics and Estimates of effect size in the 
Display area. Click Continue and then OK (Fig. 10.12).

The output includes Table 10.9, which displays sample sizes, and Table 10.10, 
which displays means and standard deviations. The sample sizes, means, and stan-
dard deviations should be identical to those generated by the t-test we conducted in 
Sect. 10.2 and displayed in Table 10.1.

What is different in the output is the content of a third table, Table 10.11. This 
table is called Tests of Between-Subjects Effects, and displays the test statistic and 
the measure of effect size.

To find the test statistic, that is, the F ratio, first locate the column labeled F in 
the table. Then read down the column until you encounter the F ratio that is found 
in the row labeled with the name of the factor of interest, in our example, SEX. Once 
you have found the F ratio, the p-value associated with it can be found in the Sig. 
column in that row. This p-value is based on the assumption that the variances in 
BMI are the same for each sex.

Fig. 10.10   Selecting the dependent variable and factor, and opening the Options dialog

 

10.4.1  What is value of the F ratio?
10.4.2  What is the p-value?
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To determine the values for degrees of freedom associated with the F ratio, look in 
the df column of the table. The entry in the row corresponding to the factor of inter-
est ( sex in this example) gives the numerator degrees of freedom. The denominator 
degrees of freedom can be found by continuing down the df column to the row 
labeled Error.

To find the value of partial eta squared, look in the last column of the table in the 
row corresponding to the factor of interest, in our case, SEX.

Fig. 10.11   Selecting output to be displayed

 

10.4.3  What are the numerator and denominator degrees of freedom?
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Fig. 10.12   Using the Univariate dialog to execute a one-way ANOVA

 

Table 10.9   Sample sizes of male 
and female residents of NY
 

Table 10.10   Descriptive statistics of the BMI of male and female residents of NY
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Statistical Significance and Effect Size  We can now put together two important 
concepts: statistical significance and effect size.

Remember, a statistically significant relationship between two variables does not 
necessarily mean that the relationship is a powerful one. The relationship between 
sex and BMI is a case in point. Although the mean BMI of men was significantly 
different from the mean BMI of women, sex and BMI were only weakly related. In 
fact, the effect size is tiny, suggesting that the difference in BMI between the two 
sexes may have little or no practical or clinical significance.

10.5 � Comparing More than Two Means

As we noted earlier in this chapter, ANOVA is typically used when one wishes 
to compare three or more means. In this section, we explore how ANOVA can be 
used for this purpose. As an example, we study the average BMI of four groups 

Table 10.11   Output from a one-way ANOVA displaying the strength of the relationship between 
sex and BMI among residents of NY

 

10.4.4  What is the value of partial eta squared?
10.4.5 � Based on that value, how strong is the relationship between sex and 

BMI?

10.4.6 � Based on your analysis of the CDC data, would you say that there 
is or is not a difference between the population mean BMIs of men 
and women?

10.4.7 � If you say that there is a difference, would you say that it is small, 
moderate, or large?
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of respondents in the CDC data set: those who did not graduate from high school, 
those who graduated from high school, those who attended college or technical 
school, and those who graduated from college or technical school.

Begin by declaring cases that have values for the variable, LEVEL OF ED-
UCATION COMPLETED [@_EDUCAG] (variable 82), equal to 9 as missing. 
Then select Analyze > Compare Means > One-Way ANOVA to open the one-way 
ANOVA dialog box. Move LEVEL OF EDUCATION COMPLETED to the Fac-
tor box, and BODY MASS INDEX (variable 107) to the Dependent List box. In the 
Options dialog box, be sure that the statistics Descriptive, Homogeneity of variance 
test, Brown–Forsythe, and Welch have been selected. Now run the analysis.

As we saw in Sect. 10.3, the output consists of a table of descriptive statistics. 
Table  10.12 displays the sample sizes, means, standard deviations, and standard 
errors from this table. The output also consists of Levene’s test for equality of vari-
ances (Table 10.13), the ANOVA table (Table 10.14) and the results of the Brown–
Forsythe and Welch tests of the equality of means when equality of variances cannot 
be assumed (Table 10.15).

Table 10.12   Descriptive statistics of the BMI of NY residents of varying levels of education
 

Table 10.13   Levene’s test of homogeneity of variances in the BMI of NY residents of varying 
levels of education 

10.5 � Comparing More than Two Means�
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However, the analysis we conducted in Sect. 10.3 compared two sample means, 
the average BMI of males and the average BMI of females. Our analysis here com-
pares four sample means: the average BMI of respondents who did not graduate 
from high school, the average BMI of high school graduates, the average BMI of 
those who attended college or technical school, and the average BMI of college or 
technical school graduates.

Recall that the null hypothesis tested by ANOVA is that the population means are 
equal, and that the alternative hypothesis is that the population means are not equal. 
In the present example, the null hypothesis is that within the population of NY 
residents, the mean BMIs of those who did not finish high school, of high school 
graduates, of those who did not finish college or technical school, and of college 
graduates are all the same. The alternative hypothesis is that the population means 
of these four groups are not all the same.

Table 10.14   One-way analysis of variance testing the null hypothesis that the mean BMI of NY 
residents of varying levels of education are equal 

Table 10.15   Tests of the null hypothesis when equal variances in the BMI of NY residents of 
varying levels of education cannot be assumed 

Study the four group means and the associated tests of the equality of those 
means, and answer the following questions.
10.5.1 � If we assume that the variances in BMI of the four population groups 

are equal, what is the value of the test statistic that tests the null 
hypothesis?

10.5.2 � If we assume that the population variances are equal, what is the 
probability that we would obtain a test statistic that is equal to or 
greater than the value we obtained if the null hypothesis is true?
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In this example, even if we cannot assume that the population variances are the 
same, we can confidently reject the null hypothesis in favor of the alternative hy-
pothesis that in the population of NY residents, the mean BMI scores of these four 
education groups are not the same. It is important to point out, however, that the 
null hypothesis states that the population means are equal, and that the alternative 
hypothesis states that the population means are not equal. By rejecting the null hy-
pothesis, we are concluding that the four population means are not equal. However, 
we are not stating that all four means are different from one another. All we know at 
this point is that at least one of the four population means differs from at least one 
other. We will have to conduct some additional analyses to find out which of the 
four means differs significantly from which of the others.

You might be thinking at this point that the next step is to conduct a series of 
t-tests on every possible pair of means to determine which pairings yield p-values 
≤ 0.05. Unfortunately, a problem with this approach is that the probability that at 
least one of the comparisons will be significant will be greater than the alpha level 
set for each comparison. That is, after we have completed all of our t-tests, our Type 
I error rate, the rate at which we rejected a true null hypothesis, will be 5 %. In our 
example, for instance, we have four mean BMIs. A set of four means allows for as 
many as six pairings (the mean BMI of the first group versus the mean of the sec-
ond, the mean of the first versus the mean of the third, the mean of the first versus 
the mean of the fourth, the mean of the second versus the mean of the third, and so 
on). If we were to compare one and only one pair of means, and if we were to set 
alpha to 0.05, the probability that we would reject the null hypothesis when it is in 
fact true would be 0.05. However, if we were to conduct t-tests on two or more pair-
ings, and set alpha to 0.05 for each comparison, the probability of making a Type I 
error on at least one of those comparisons will be greater than 0.05.

When conducting multiple comparisons of group means, it is necessary that we 
use statistical techniques that are designed to keep the overall probability of mak-
ing a Type I error at the desired alpha level (e.g., 0.05). There are many such tech-
niques. Some, called post hoc comparisons, conduct a series of comparisons, each 
involving two group means. In our example, we might compare the mean BMI 
of each group against the mean BMI of each of the other three. Other techniques, 
called contrasts, can compare the means of subsets of groups. For instance, in our 
example, we could compare the mean BMI of the three groups of respondents who 
did not graduate from college with the mean BMI of college graduates.

Post hoc comparisons  We will turn our attention first to two examples of post hoc 
comparisons: Bonferroni and Tamhane’s T2. The former is used when equality of 
variances can be assumed; the latter when equality of variances cannot be assumed. 

10.5.3 � Can we safely assume that the population variances are equal? 
Why or why not?

10.5.4 � If we cannot safely assume that the variances are equal, can we re-
ject the null hypothesis that the four population means are equal? 
Why or why not?

10.5 � Comparing More than Two Means�



272 10  Comparing Means of Independent Samples

Although equality of variances cannot be assumed in our example, we will include 
the Bonferroni test here to show you how to use it, and because it is frequently used 
by researchers when equality of variances can be assumed.

Return to the One-Way ANOVA dialog box. As shown in Figs. 10.13, 10.14 and 
10.15, click Post Hoc to open the One-Way ANOVA: Post Hoc Multiple Comparisons 
dialog box. Select Bonferroni and Tamhane’s T2 under Equal Variances Assumed 
and Equal Variances Not Assumed, respectively. Click Continue and then OK.

The output consists of the information that we generated earlier plus a table called, 
Multiple Comparisons. This table, a fragment of which is shown in Table 10.16, 
displays the results of the Bonferroni and Tamhane’s T2 analyses.

Fig. 10.13   Opening the one-way ANOVA: Post hoc Multiple Comparisons dialog

 

Fig. 10.14   Selecting Bonferroni and Tamhane’s T2
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Fig. 10.15   Executing the one-way ANOVA with post hoc multiple comparisons

 

Table 10.16   Bonferroni and Tamhane’s T2 post hoc multiple comparisons 
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The table compares the mean BMI of each group against the mean of each of the 
other three groups. For each comparison, the table displays the difference between 
the two means, the standard error of the difference, the p-value, and the lower and 
upper bounds of the confidence interval that achieves an overall 95 % confidence 
level for all of the intervals. For each comparison, the null hypothesis is that the two 
population means are equal. The alternative hypothesis is that the two population 
means are not equal. For example, the Bonferroni p-value generated by comparing 
the mean BMI of those who did not graduate from high school (28.29) against the 
mean BMI of high school graduates (27.63) is 0.057. The Tamhane p-value for this 
comparison is 0.078. On the other hand, both the Bonferroni and Tamhane p-values 
generated by comparing the mean BMI of those who did not graduate from high 
school (again, 28.29) against the mean BMI of people who attended college or tech-
nical school (27.20) is less than 0.001. Because we cannot assume that the variance 
in BMI is constant across the four levels of education, we would focus on the Tam-
hane findings, but as it turned out, both types of post hoc comparisons happened to 
lead to same results: We reject the null hypothesis for the second comparison but 
not for the first.

Contrasts Sometimes it is useful to conduct a contrast analysis by which we com-
pare the mean of a subset of groups against the mean of another subset of groups. In 
our example, we might wish to know if the mean BMI of those with at least some 
post-high school education differs from the rest of the population. To find out, we 
could compare the mean BMI of two subsets of groups. One group would consist of 
those who either attended college or technical school or who graduated from college 
or technical school. The second group would consist of those who attended high 
school or graduated from high school. In this section, we carry out this contrast.

Return to the One-Way ANOVA dialog box. Click Contrasts to open the One-
Way ANOVA: Contrasts dialog box. To conduct a contrast, we must assign a number 
to each of the four groups of respondents. These numbers are called coefficients and 
will indicate to SPSS the comparison or contrast we wish to generate. Certain rules 
must be followed when assigning coefficients. First, groups assigned the same coef-
ficient are allocated to the same subset. Second, the sum of the coefficients should 
be equal to zero. Third, groups that are to be excluded from an analysis should be 

Answer the following questions.
10.5.5 � According to the Bonferroni test, does the mean BMI of those who 

did not graduate from high school significantly differ from the mean 
BMI of college or technical school graduates?

10.5.6 � According to the Bonferroni test, what is the standard error of the 
difference between the mean BMI of those who did not graduate 
from high school and the mean BMI of those who attended college 
or technical school?

10.5.7 � Do either of the answers to the previous questions differ if one uses 
the Tamhane’s T2 test?



27510.5 � Comparing More than Two Means�

assigned coefficients equal to zero. Fourth, coefficients are entered into SPSS one 
at a time and in the ascending order of the values of the variable that defines the 
groups that are being compared.

In our example, we wish to group together respondents who either attended high 
school or graduated from high school. Therefore, we will assign those two groups 
the same coefficient. Although we could use any number, we will use “1.” The re-
maining groups (those who attended college or technical school or who graduated 
from college or technical school) will be assigned their own coefficient. Since the 
sum of the coefficients should equal zero, we will assign “− 1” to those two groups. 
We will use all four groups, so none of the groups will be assigned a zero coef-
ficient.

The variable, LEVEL OF EDUCATION COMPLETED, has four values rang-
ing from 1 to 4, where 1 represents those who attended high school, 2 represents 
those who graduated from high school, 3 represents those who attended college 
or technical school, and 4 those who graduated from college or technical school. 
Therefore, the first coefficient we enter into SPSS will be assigned to those who 
attended high school, the second coefficient to high school graduates, and so on. As 
a result, the sequence by which we will enter the four coefficients into SPSS will 
be 1, 1, − 1, and − 1.

Enter each of the coefficients, one at a time and in the correct sequence, into the 
Coefficients area of the One-Way ANOVA: Contrasts dialog box. To do this, enter 
the first coefficient (1) into the Coefficients box, and then click Add. Repeat for 
the remaining three coefficients. When you have finished, you will see a column of 
the four coefficients in the box to the right of the Add button. Click Continue. The 
steps for setting up a contrast are depicted in Figs. 10.16 and 10.17.

Back in the One-Way ANOVA dialog box, click OK to conduct the analysis. In 
addition to the information that we have already discussed, the output will contain a 
Contrast Coefficients table, reproduced in Table 10.17. This table displays the four 
coefficients that we assigned.

The output will also contain a Contrast Tests table, reproduced in Table 10.18. 
This table tells us whether the two means were significantly different as determined 
by a t-test.

Two values of t are reported, one under the assumption of equal variances, the 
other when this assumption is not made. The null hypothesis is that the population 
means of the two groups are equal. The alternative hypothesis is that the population 
means of the two groups are not equal.

10.5.8 � Is the mean BMI of those who had at least some college or techni-
cal school experience significantly different from the mean BMI of 
those who did not attend college or technical school?

10.5.9 � Does your answer depend on whether or not we assume that the pop-
ulation variances are equal?
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Fig. 10.16   Adding the first 
of four contrast coefficients
 

Fig. 10.17   Four contrast 
coefficients to test the mean 
BMI of New Yorkers with 
no more than a high school 
education against the mean 
BMI of New Yorkers with 
at least some postsecondary 
education
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10.6 � Exercise Questions

1.	 Using the CDC data set, conduct a t-test for independent samples to determine 
if the number of minutes of weekly vigorous physical activity in which people 
engage varies between those who are overweight or obese and those who are 
neither overweight nor obese. Number of minutes is stored in the variable, MIN-
UTES OF VIGOROUS PHYSICAL ACTIVITY [@_VIGPAMN ] (variable 
95). BMI categories are stored in the variable, RISK FACTOR FOR OVER-
WEIGHT OR OBESE [@_RFBMI4 ] (variable 80; 1 = No, 2 = Yes).

a.	 What was the average number of minutes of vigorous activity for those who 
were neither overweight nor obese (people coded as “No”)?

b.	 What was the average number of minutes of vigorous activity for those who 
were either overweight or obese?

c.	 What is the numerical difference between the two averages?
d.	 Can we assume that the variance in the number of minutes of vigorous activ-

ity is the same across the two BMI categories? Why or why not?
e.	 How many degrees of freedom are associated with the t-value that would be 

appropriate to use in the analysis?
f.	 Do the data indicate that you can reject the null hypothesis that the two popu-

lation mean number of minutes differ? Why or why not?

2.	 Conduct a one-way ANOVA to determine if on average the number of minutes 
of weekly vigorous activity varies among three groups: those who are neither 
overweight nor obese, those who are overweight, and those who are obese. BMI 
category is stored in the variable, BODY MASS INDEX-THREE LEVELS 
CATEGORY [@_BMI4CAT] (variable 79). Be sure that 9 is declared as a 

Table 10.17   The four contrast coefficients

 

Table 10.18   Contrast testing the mean BMI of New Yorkers with no more than a high school edu-
cation against the mean BMI of New Yorkers with at least some postsecondary education 

10.6 � Exercise Questions�
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missing value for the BMI variable. Include in your analysis Bonferroni or Tam-
hane T2 tests, whichever is more appropriate.

a.	 Complete the table of descriptive statistics (Table 10.19).
b.	 Should we use one of the robust tests of equality of means to test the null 

hypothesis that the three population means are equal? Why or why not?
c.	 How many numerator degrees of freedom are associated with the test statistic 

that we should use?
d.	 Do the data indicate that the three population means differ across the three 

BMI categories?
e.	 Which post hoc test is more appropriate for these data, Bonferroni or Tam-

hane? Why?
f.	 Which of the following statements is supported by the analysis. On average, 

minutes of weekly vigorous activity differed significantly between:

 i.	     ��People who were neither overweight nor obese and people who were 
overweight.

 ii.		  ��People who were neither overweight nor obese and people who were 
obese.

iii.	  People who were overweight and people who were obese.

3.	 Using a contrast, determine if the mean BMI of college and technical school 
graduates is significantly different from the mean BMI of the remainder of 
the sample. Educational level is stored in LEVEL OF EDUCATION COM-
PLETED [@_EDUCAG] (variable 82). Be sure that 9 has been declared as 
missing.

a.	 What are the values of the contrast coefficients?
b.	 What are the degrees of freedom associated with this contrast if equal vari-

ances cannot be assumed?
c.	 What is the t-value associated with this contrast if equal variances cannot be 

assumed?
d.	 Can we reject the null hypothesis that the mean BMI of college and technical 

school graduates is equal to the mean BMI of the rest of the population?

4.	 Using the Framingham data set and partial eta squared, determine the strength 
of relationship between Body Mass Index [bmi] (variable 8) and Gender [sex] 
(variable 1) and between Body Mass Index and Coronary Heart Disease [chd-
fate] (variable 5).

Table 10.19   Descriptive Statistics
BMI category Mean Standard

deviation
Neither overweight nor obese
Overweight
Obese
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a.	 Is gender significantly related to BMI? How do you know?
b.	 Is coronary heart disease significantly related to BMI?
c.	 What are the values of partial eta squared for the relationships between BMI 

and gender, and BMI and coronary heart disease?
d.	 Does BMI seem to be more strongly related to gender or to coronary heart 

disease?

5.	 A researcher wished to know whether average PSA levels differ between patients 
with prostate cancer and patients without. Suspecting that the variance in PSA 
scores could not be assumed to be equal across the two groups, she performed 
a log transformation and included log PSA values in her one-way ANOVA. The 
software that she used did not include robust tests of equality of means, but it did 
generate Tables 10.20 and 10.21. Which F ratio should she report? Why?

6.	 Using the Sit-and-Reach Test, a team of physician assistant students measured 
the flexibility of three groups of collegiate athletes: football players, male ath-
letes playing a sport other than football, and female athletes playing any sport 
[3]. The F ratio was significant so the researchers conducted post hoc compari-
sons. Tables 10.22 and 10.23 are fragments of the output generated by a one-way 
ANOVA.

After inspecting these results, the team conducted a contrast in which they 
compared the mean flexibility of both groups of male athletes against the mean 
flexibility of the female athletes. The results are displayed in Table 10.24.

Table 10.20   Test of homogeneity of variances for Question 5 

Table 10.21   One-way analysis of variance for Question 5
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Table 10.22   Descriptive statistics for Question 6

 

Table 10.23   Post hoc multiple comparisons for Question 6 

Table 10.24   Contrast tests for Question 6
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a.	 According to the post hoc comparisons, was the average flexibility of the two 
groups of male athletes significantly different?

b.	 What conclusion should we draw from the contrast?

Data Sets and References

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more 
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2.	 Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd edn. Cambridge University Press, New York (2009). (With the kind permission of 
Sean Coady, National Heart, Blood, and Lung Institute) 

3.	 From: Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and 
Reach Test as a Measure of Flexibility for Predicting Lower Extremity Injury in Division III 
Athletes. Unpublished data. Le Moyne College, Syracuse (2010)

http://www.cdc.gov/brfss
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Abstract  This chapter reviews the paired-samples t-test and the repeated measures 
analysis of variance (ANOVA). These are inferential statistics commonly used to 
test the difference between the means of populations that are related to each other, 
such as the means of a quantitative measurement taken of the same group of par-
ticipants on two or more occasions. Because the ANOVA assumes the presence of a 
condition known as sphericity, the chapter also reviews Mauchly’s test of sphericity 
and methods for hypothesis testing when sphericity cannot be assumed.

11.1 � Overview

In the previous chapter, we considered analyses that compare quantitative mea-
surements taken from independent groups of participants. The procedures were the 
independent samples t-test when there were two groups and the one-way ANOVA 
when there were three or more groups. There are, however, many situations when 
it is more desirable to take multiple measurements on the same participant. For 
example, the blood pressure of hypertensive patients who had received a new treat-
ment might be compared to the blood pressure of the same group of patients before 
they had received the treatment. In this type of study, researchers are said to be us-
ing a paired comparisons analysis. Sometimes three or more sets of observations 
are made of the same group of participants. In this type of study, researchers are said 
to be using a repeated measures analysis.

Ideally, the observations will have been made within the context of a controlled 
experiment or randomized controlled trial. This type of study can determine the 
causal impact of an explanatory variable on a response variable. In such experi-
ments, the advantage of paired comparisons and repeated measures analyses is that, 
because the measurements are being made on the same subject, any differences 
detected across those measurements can be more confidently attributed to the ex-
planatory variable under investigation rather than to some patient-related factor that 
might have been confounded with the treatment.

For example, imagine that we conduct a parallel-groups trial in which we give a 
new treatment for hypertension to one group of patients and a standard treatment to 
another. Imagine further that because of genetic factors, the blood pressure of some 
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of our patients is innately higher than some of the others. To control for these ge-
netic factors, we randomly decide which patient receives which treatment. We find 
that the posttreatment average blood pressure of the patients given the new treat-
ment is lower than that of the patients given the standard treatment. We also find 
that the results of a t-test for independent samples support the hypothesis that this 
difference can be generalized to the population from which the patients were taken, 
that is, the difference between the average blood pressure of the two groups was not 
due solely to chance. In this situation, we could be confident that the difference in 
average blood pressure between the two groups was not due to differences between 
the two groups in their genetic makeup. But we could not be certain. Despite the 
random assignment of the patients to the two treatment groups, it would still be 
possible that, just by chance, the genetic makeup of the two treatment groups dif-
fered, and differed enough to cause the observed difference in their average blood 
pressure readings.

Now imagine that we conduct a crossover trial in which we give each patient the 
standard treatment and after some specified period of time measure his or her blood 
pressure. We then give each patient the new treatment and after the same specified 
amount of time has passed, take his or her blood pressure again. We compare the 
two blood pressure readings of each patient and discover that on average, the blood 
pressure reading following the new treatment is lower. We also find that the results 
of a statistical test allow us to generalize our findings to the population from which 
the sample of patients was taken. In this situation, both treatment groups consisted 
of the same set of patients, so we could be certain that genetic factors were not 
responsible for our observed difference in blood pressure between the new and stan-
dard treatments.

Although experiments can generate confident cause-and-effect conclusions, it is 
often necessary in medical research to make comparisons across multiple measure-
ments that were taken outside the context of an experiment. For example, we might 
conduct a prospective cohort study of air traffic controllers to see if hypertension is 
associated with long-term exposure to stress. Here, the results of a hypothesis test 
would still reveal if any increases in the response variable (in our example, blood 
pressure) can be confidently generalized to the population from which the sample 
was taken, but we would not be able to establish with confidence that the cause of 
the increase was our explanatory variable (long-term exposure to stress).

In this chapter, we study two statistical tests that are used when researchers com-
pare measurements of a quantitative response variable taken from the same set of 
participants on two or more occasions. If two measurements are taken, a paired 
comparisons analysis is carried out by conducting a paired-samples t-test: The dif-
ference between the two measurements on each subject is calculated, the mean dif-
ference across all subjects is computed, and the resulting sample of differences 
is subjected to the one-sample t-test from Chap. 5. When there are three or more 
quantitative measurements taken on the same group of subjects, a repeated mea-
sures analysis is carried out by conducting a repeated measures analysis of variance 
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(also known as a repeated measures ANOVA) to compare the means of these mul-
tiple measurements. This analysis is analogous to how we used one-way ANOVA 
to compare the means of three or more independent groups in the previous chapter.

We will begin with the paired-samples t-test and compare the severity of head-
aches experienced by patients before and after acupuncture. We will then repeat the 
analysis using the repeated measures procedure.

11.2 � Paired-Samples T-Test

The file, Acupuncture.sav [1], consists of data from 401 male and female patients 
who suffered from chronic headache. For 4 weeks prior to the beginning of the 
study, patients rated the severity of their headaches along a scale ranging from “No 
headache” to “Intense, incapacitating headache.” From these ratings, a baseline 
measure of headache severity was computed, such that the higher the rating, the 
more severe the headache. Each patient was then randomly assigned to one of two 
conditions: Acupuncture and Control. Patients assigned to the acupuncture group 
were referred by their general practitioners to acupuncturists who offered weekly 
sessions for a period of 3 months. Patients in the control group were not referred. 
Three months (3-month follow-up) and again 12 months (1-year follow-up) later, a 
second and third measure of headache severity was obtained. We will use a paired-
samples t-test to compare the baseline and 3-month follow-up ratings of headache 
severity provided by the patients who were referred to acupuncture treatment.

Begin by loading the file. The group to which each patient was assigned is stored 
in the variable, Group [group] (variable 6; 0 = Control; 1 = Acupuncture). We want 
to focus on the acupuncture group, so use Select > Cases to filter out the control 
cases. Then select Analyze > Compare Means > Paired-Samples T-Test to bring 
up the Paired-Samples T-Test dialog box. Move Headache Severity at Baseline 
[hs0] (variable 7) to the Variable 1 box of the Paired Variables window. This can 
be done either by selecting the variable and clicking the right-pointing arrow or 
by dragging the variable. Now move the second variable, Headache Severity at 3 
Month Follow-up [hs3] (variable 8) to the Variable 2 box. Click OK. These steps 
are shown in Figs. 11.1, 11.2 and 11.3 and 11.4.

Much of the output is presented in Tables 11.1 and 11.2.
As you can see, the output is somewhat different from that of an independent-

samples t-test. For example, there is no test to determine if the variances of the 
two populations of scores are significantly different. Since the paired-samples t-test 
begins by subtracting the value of one variable from that of the other variable to 
get a single sample of differences, we have only one set of scores: the differences 
between the two variables.

Although the output is not displayed exactly as is the output from an indepen-
dent-samples t-test, you should be able to answer the following questions:
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Fig. 11.2   Selecting baseline headache severity

 

Fig. 11.1   Selecting the paired-samples t-test

 

11.2.1  What is the sample size?
11.2.2 � What is the average severity rating at baseline? At 3-month follow-

up?
11.2.3  What is the average difference in the two sets of ratings?
11.2.4  What is the null hypothesis?
11.2.5  What is the alternative hypothesis? How do you know?
11.2.6  Were the two set of ratings significantly different?
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Fig. 11.3   Selecting 3-month headache severity

 

Fig. 11.4   Conducting the analysis

 

Table 11.1   Summary statistics
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11.3 � Repeated Measures Analysis of Variance

In this section, we repeat the above analysis using the ANOVA. Later in the section, 
we will compare three means.

Comparing Two Means  Remember that when we make a pair-wise comparison, 
we are comparing the scores of one group with a second set of scores from the same 
set of participants. Therefore, we cannot use the same ANOVA that is used as an 
alternative to the independent-samples t-test. Instead, we must use an ANOVA that 
is an alternative to the paired-samples t-test. In the language of analysis of variance, 
we need to conduct what is called a repeated measures ANOVA. The term “repeated 
measures” denotes that two or more measurements were taken of each case, i.e., 
each participant was measured more than once.

As shown in Figs. 11.5, 11.6, 11.7, 11.8, 11.9 and 11.10, select Analyze > Gen-
eral Linear Model > Repeated Measures to open the Repeated Measures Define 
Factor(s) dialog box. Type a name for our repeated measures variable into the box 
labeled, Within-Subject Factor Name. For example, you could type in “Time” (no 

Fig. 11.5   Selecting repeated measures ANOVA

 

Table 11.2   Output for the paired-samples t-test
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quotation marks) to indicate that we are making a comparison over time. In the 
Number of Levels box, enter the number of levels or values of the repeated measures 
factor. We have two values—baseline and 3-month follow-up—so enter “2” (again 
no quotation marks). Click the Add button in the Number of Levels area. Next, 
enter into the Measure Name box a name of the variable that was assessed. The 
severity of each patient’s headache was measured, so you might type “Severity” 
into the box. Click Add in the Measure Name area. Now click Define to bring up 
the Repeated Measures dialog box. In the Repeated Measures dialog box, highlight 
Headache Severity at Baseline and move it into the Within-Subjects Variable win-
dow by clicking the right-pointing arrow or by dragging the variable over. Then 
move Headache Severity at 3-Month Follow-up into the same window. Now click 
Options to bring up the Repeated Measures: Options dialog box. Move the entries 
(OVERALL) and Time from the Factor(s) and Factor Interactions box on the left 
to the Display Means for box on the right. This will tell SPSS to print the overall 
mean and the means for the two groups of data (that is, the mean headache severity 
at baseline and the mean headache severity at 3-month follow-up). In the Display 
area, select Descriptive statistics so we can generate standard deviations and such. 
Click Continue and then OK.

Fig. 11.6   Creating a within 
factor
 

11.3 � Repeated Measures Analysis of Variance�



290 11  Comparing Means of Related Samples

Output from a repeated measures ANOVA can be complex, but fortunately, we 
need be concerned with only a subset of it, reproduced in Tables 11.3, 11.4, 11.5 
and 11.6.

Table 11.3, titled Descriptive Statistics, reports the means, standard deviations 
and sample size of the repeated measurements.

Table 11.4, titled 2. Time, reports means, standard errors, and confidence inter-
vals of the repeated measures variable, in our case, Time.

The Mauchly’s Test of Sphericity table shown in Table 11.5 gives the results of a 
test of sphericity. Roughly speaking, sphericity is analogous to the requirement in 
one-way ANOVA that every group has the same variance. The null hypothesis is 

Fig. 11.7   Adding a measure 
name
 

11.3.1 � How do the values of the statistics in the above tables compare to 
those in Sect. 11.2?
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that there is sphericity, and the alternative hypothesis is that sphericity is not pres-
ent. If the test is significant, one of the adjustments—Greenhouse-Geisser, Hyunh-
Feldt, or Lower-bound—in the Tests of Within-Subjects Effects table has to be used. 
Sphericity is relevant when the repeated measures factor has three or more values. 
As we have only two values (baseline and 3-month follow-up), we can move on.

In the Tests of Within-Subjects Effects table, shown in Table 11.6, we find the F 
ratio, the degrees of freedom, and the p-value. These statistics are interpreted in the 
same way as those of ANOVA tables we have encountered before.

Comparing More than Two Means  Repeated measures ANOVA can be used 
to compare three or more measurements on subjects. Just as we could view one-
way ANOVA as an extension of the independent samples t-test to more than two 
independent samples, we can view repeated measures ANOVA as an extension of 
the paired-samples t-test to more than two measurements. Also, as with one-way 

Fig. 11.8   Selecting the first within-subjects variable

 

11.3.2  What is the F ratio?
11.3.3  What are the degrees of freedom associated with the F ratio?
11.3.4  What is the p-value?
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ANOVA, when we determine that there is a difference in treatment levels we can 
conduct multiple comparisons to try to ascertain how the treatment levels differ. 
To demonstrate, we will once again analyze the headache severity ratings of the 
acupuncture study, but this time we will include ratings from the 1-year follow-up.

Return to the Repeated Measures Define Factor(s) dialog box. In this analysis, 
we are adding a third measurement—severity ratings at 1-year follow-up. These 
data are stored in the variable, Headache Severity at 1-Year Follow-up [hs12] 
(variable 9). So first we need to tell SPSS that we now have three levels of our 
Time factor. To do this, highlight Time(2), change the Number of Levels from 2 to 
3, and click Change. To add the third measurement to the analysis, click Define to 
open the Repeated Measures dialog box and move Headache Severity at 1-Year 
Follow-up to the Within-Subjects Variable window. Because we now are comparing 
three means, we may want to conduct a multiple comparisons analysis, so click Op-
tions, check Compare main effects and select Bonferroni in the Confidence interval 
adjustment box. Click Continue.

When measurements are taken over time from the same set of participants, it is 
often useful to display the means of each of those measurements in a graph called 
a means plot. We could construct such a graph with Chart Builder but we can also 

Fig. 11.9   Defining the second within-subjects variable and selecting Options
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do so from within the ANOVA dialog boxes. Back in the Repeated Measures dialog 
box, click Plots, move Time to the Horizontal Axis window, click Add and then 
Continue. Click OK to conduct the analysis. These steps are shown in Figs. 11.11, 
11.12, 11.13 and 11.14.

Fig. 11.10   Generating descriptive statistics

 

Table 11.3   Descriptive statistics 



294 11  Comparing Means of Related Samples

Table 11.5   Sphericity test 

Table 11.6   Within-subjects tests
 

Table 11.4   Means and standard errors of repeated measures variables

 

The interpretation of the repeated measures output, shown in Tables 11.7, 11.8, 
11.9 and 11.10, is the same as the interpretation of the output we saw earlier in this 
chapter.

The Pair-wise Comparisons output shown in Table 11.11 is similar to the mul-
tiple comparisons output we studied in the preceding chapter, and is interpreted in 
the same manner.

The means plot displays the three mean ratings across the three points in time. 
The values of the means are plotted along the y-axis. The points in time (baseline, 
3-months follow-up and 1-year follow-up) are plotted along the x-axis from left to 
right (Fig. 11.15).
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Fig. 11.11   Changing the 
number of levels
 

Study the output and answer the following questions:
11.3.5  Is Mauchly’s Test of Sphericity significant?
11.3.6  Will you need to adjust for lack of sphericity?
11.3.7 �� Regarding the mean severity ratings at baseline, 3-month follow-up 

and 1-year follow-up, what are the null and alternative hypotheses?
11.3.8  What is the F ratio?
11.3.9 �� What are the numerator and denominator degrees of freedom associ-

ated with the F ratio?
11.3.10  What is the p-value?
11.3.11  Can we reject the null hypothesis in favor of the alternative?
11.3.12 � What does the means plot tell us about how the ratings of severity 

changed over time?
11.3.13 � According to the pair-wise comparisons, can we confidently con-

clude that for the population of patients who suffer from chronic 
headache and who are referred to acupuncture for treatment, head-
ache severity will be less at 1-year follow-up than at 3-month follow-
up? Why or why not?
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Our analysis of these data reveals that the ratings of severity provided by the pa-
tients in the acupuncture group were at 3-month follow-up significantly lower than 
the ratings they provided at the beginning of the study. Because the 3-month fol-
low-up ratings were obtained after the patients had received a series of acupunc-
ture sessions, it would be tempting to conclude that the acupuncture treatment was 
responsible for the decline in reported severity. However, before we can draw this 
conclusion, we should consider the possibility that those severity ratings might have 
declined over time even if the patients had not received acupuncture. To evaluate 
this possibility, we will need to determine whether the control patients also reported 
a decline in severity. One way to do this is to repeat our analysis on control patients. 
We will leave this analysis to you as an exercise. Another would be to include all 
patients in the analysis—those who had acupuncture and those who did not—and 
determine in a single analysis whether control patients also reported a decline in se-
verity at 3 months, and if so, whether the decline was significantly less than that re-
ported by the patients who had undergone acupuncture treatment. Such an analysis 
would require what is called a two-way analysis of variance, the topic of the next 
chapter.

Fig. 11.12   Adding a third variable and selecting Options

 



29711.3 � Repeated Measures Analysis of Variance�

Fig. 11.13   Selecting Bonferroni multiple comparisons

 

Fig. 11.14   Requesting plots 
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11.4 � Exercise Questions

1.	 Using a t-test for paired samples, compare the headache severity ratings of con-
trol patients at baseline and at 3-month follow-up.

a.	 What was the average severity rating at baseline?
b.	 What was the average severity rating at 3 months?
c.	 How many degrees of freedom are associated with the t-value?
d.	 What is the t-value?

Table 11.8   Variable estimates 

Table 11.9   Sphericity test
 

Table 11.7   Descriptive statistics
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e.	 What is the p-value?
f.	 Were the ratings of severity on average statistically significantly lower at 3 

months?

2.	 Using a one-way repeated measures ANOVA, compare the headache severity 
ratings of control patients at baseline, 3-month follow-up, and 1-year follow-up. 
Include a multiple comparisons analysis and a plot of the three means.

a.	 What are the means for each of the severity measurements?
Baseline: __________
3-month follow-up: __________
12-month follow-up: __________

b.	 Will you need to adjust for lack of sphericity? Why or why not?
c.	 What is the value of the F ratio that compares the three mean severity ratings?

Table 11.11   Pair-wise comparisons
 

Table 11.10   Within-subjects tests
 

11.4 � Exercise Questions�
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d.	 What are the numerator and denominator df that are associated with this F 
ratio?
dfn: __________
dfd: __________

e.	 According to the multiple comparisons analysis, was the mean severity rating 
at 12 months significantly different from the mean severity rating at baseline?

f.	 Complete the following table:

Mean headache severity ratings
Time

Group Baseline 3-month follow-up 12-month follow-up
Acupuncture
Control

1

20.00

22.00

24.00

26.00

2 3

Profile Plots

Estimated Marginal Means of Severity

Time
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Fig. 11.15   Profile plot
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g.	 Does it appear from the table that acupuncture reduces headache severity at 3 
months? Why or why not?

3.	 The past two chapters introduced you to two versions of the t-test: independent 
samples and paired samples.

a.	 Which of these two tests should be used to compare the mean severity ratings 
at 3 months of the acupuncture and control groups? Why?

b.	 Conduct the analysis. What is the t-value?
c.	 Were the mean severity ratings of the two groups at 3 months significantly 

different?

4.	 The file Bodymass.sav [2] contains body mass data on 20 anorexia patients. 
Each patient was measured on admittance, assigned a preferred body mass, and 
measured body mass on discharge. These data were analyzed with a repeated 
measures ANOVA. Multiple comparisons were included. Study the output, 
reproduced in Tables 11.12, 11.13, 11.14 and 11.15.

a.	 Do you need to adjust for the lack of sphericity? Why or why not?
b.	 What is the value of the F ratio?
c.	 Is the F ratio statistically significant?
d.	 What do the pair-wise comparisons show about the differences among pre-

ferred body mass, body mass at admittance, and body mass on discharge?

11.4 � Exercise Questions�

Table 11.12   Output for question 4
 

Table 11.13   Output for question 4
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Data Sets and References

1.	 Acupuncuture.sav obtained from: Vickers, A.J., Rees, R.W., Zollman, C.E., et al.: Acupuncture 
for chronic headache in primary care: large, pragmatic, randomised trial. BMJ. (2004). doi: 
10.1136/bmj.38029.421863.EB. (With the kind permission of Professor Andrew J. Vickers)

2.	 Bodymass.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, 
E.: A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permis-
sion of the Routledge Taylor and Francis Group, and Professor Shelley L Channon)

Table 11.14   Output for Question 4
 

Table 11.15   Output for Question 4
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Chapter 12
Analysis of Variance with Two Factors
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Abstract  Previous chapters have presented statistical techniques for studying the 
relationship between a response variable and a single explanatory variable. The 
remaining chapters discuss techniques that investigate the relationship between 
a response variable and two or more explanatory variables, and that determine 
whether the impact of one explanatory variable varies across values of a second. 
In this chapter, two-way analysis of variance, also known as two-way ANOVA, is 
reviewed. This technique is appropriate when the response variable is quantitative, 
and is used to test null hypotheses about the main effects of two categorical explana-
tory variables, and the interaction effect between them. Three examples of two-way 
ANOVA are discussed: one in which both explanatory variables are independent 
groups, one in which both are repeated measures, and one in which one variable is 
independent groups and one is repeated measures.

12.1 � Overview

As we saw in the last chapter, in many circumstances researchers wish to compare 
the means of three or more groups. If the measurements are quantitative, a one-way 
analysis of variance (ANOVA) is often employed. Unlike the independent samples 
t-test, one-way ANOVA can accommodate more than two means at a time. For 
example, the blood pressure means of three groups of hypertensive patients—those 
who had received a new treatment, had received a standard treatment, or had re-
ceived no treatment—could be compared in a single analysis.

In addition to being able to compare several means simultaneously, ANOVA can 
also assess the effects of two or more categorical factors in a single analysis, and 
whether the effect of a factor changes across values of another. For example, a two-
way ANOVA could assess whether blood pressure was significantly related to the 
sex of hypertensive patients who had participated in a clinical trial of a new treat-
ment, whether the treatment significantly reduced their blood pressure, and whether 
the benefit of the treatment was significantly greater for men or women. If race 
were added to this analysis, a three-way ANOVA could be employed to study the 
individual and combined effects of race, sex, and treatment.
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Ideally, the observations will have been made within the context of a controlled 
experiment in which two or more causal factors were manipulated by the research-
er. In these cases, if the results of an ANOVA reveal significant differences across 
groups, then causality can be established. Often, though, comparisons are made 
across factors that cannot be manipulated (e.g., gender, race, prior exposure to a 
risk factor). In these cases, the results of an ANOVA reveal only if differences 
across groups are statistically significant. The cause of the differences cannot be 
established.

In theory, there is no limit to the number of factors that can be included in an 
ANOVA. However, experiments that include a large number of factors can be very 
expensive and time consuming to conduct. Moreover, the relationships among a 
large number of factors can be quite complex and difficult to understand. Conse-
quently, researchers seldom conduct an ANOVA that includes more than a handful 
of factors.

In this chapter, we will focus on the two-way ANOVA. In our first analysis, both 
factors will be independent groups. In the second analysis, both will be repeated 
measures. In the third, we will conduct a two-way ANOVA with one independent 
groups factor and one repeated measures factor.

12.2 � ANOVA with One Independent Groups Factor

Before we conduct an ANOVA with two independent groups factors, let us take 
another look at the one-way ANOVA. Recall that the one-way ANOVA has one 
independent groups factor. In this section, we will ascertain whether the body mass 
index (BMI) of female respondents between the ages of 35 and 54, inclusive, is 
related to engagement in physical activity. Note that in the analysis, we will have a 
quantitative response variable and a categorical explanatory variable. Note also that 
an independent-samples t-test would be appropriate as an alternative to the ANOVA 
in this situation as we will be comparing the means of two groups. In this instance, 
though, we will choose the ANOVA so as to facilitate our later discussion of two-
way ANOVA.

Load the data file, CDC BRFSS.sav [1]. Begin by assigning labels to the values 
of the variable, NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR 
[@_RFNOPA] (variable 102; 1 = Engaged in Physical Activity, 2 = Did not Engage 
in Physical Activity), and declare the value of 9 as missing. Next, label two of the 
values of the variable, SIX LEVEL IMPUTED AGE CATEGORY [@_AGE_G] 
(variable 74) as follows: 3 = 35 to 44 and 4 = 45 to 54. Then, using Data > Select Cas-
es, select female respondents who belong to either the 35 to 44 or 45 to 54 age cat-
egory. Respondents’ sex is stored in SEX [SEX] (variable 32; 1 = Male, 2 = Female).

SPSS offers two procedures that will carry out an ANOVA involving one inde-
pendent groups factor. One procedure, called One-Way ANOVA, can be used only 
when there is one explanatory factor and the factor is independent groups. The 
second procedure, called General Linear Model (GLM) is much more flexible. 
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For example, GLM can conduct an ANOVA with two or more factors and the fac-
tors can be either independent groups or repeated measures. We will use GLM in 
this chapter.

As shown in Figs. 12.1 and 12.2, select Analyze > General Linear Model > Uni-
variate to bring up the Univariate dialog box. Move BODY MASS INDEX [BMI] 
(variable 107) into the Dependent Variable box. Now move NO PHYSICAL AC-
TIVITY OR EXERCISE RISK FACTOR into the Fixed Factor(s) box.

We will want to create a means plot so as shown in Fig. 12.2, click Plots to 
bring up the Univariate: Profile Plots dialog box. Then as shown in Fig. 12.3, move 
the physical activity variable into the Horizontal Axis box, click Add, followed by 
Continue.

Next, we will want to generate some descriptive statistics and an effect size anal-
ysis, so in the Univariates dialog, click Options to bring up the Univariate: Options 
dialog box shown in Fig. 12.4. Move (OVERALL) and the physical activity variable 
to the Display Means for box, and check Descriptive statistics in the Display area. 
Click Continue. Back in the Univariates dialog, click OK.

Study the resulting output reproduced in Tables 12.1 and 12.2, and Fig. 12.5. The 
output should have a familiar look, thanks to Chap. 10.

Fig. 12.1   Opening the Univariate dialog

 

Answer the following questions regarding the null hypothesis that the popula-
tion BMI means of the two physical activity groups are equal:
12.2.1  What is the mean BMI for each of the two physical activity groups?
12.2.2  Are these means accurately reflected in the means plot?
12.2.3  What is the value of the F ratio?
12.2.4  What are the numerator and denominator degrees of freedom?
12.2.5  What is the p-value?
12.2.6 � Do the data indicate that BMI is related to physical activity for 

female residents of NY state who are between the ages of 35 and 54?
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Fig. 12.3   Requesting a means plot of the main effect of physical activity

 

Fig. 12.2   Selecting the dependent variable and fixed factor, and opening the Univariate: Profile 
Plots dialog
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Fig. 12.4   Requesting tables displaying the overall mean, the means of the main effect of age, and 
descriptive statistics

 

Table 12.1   Descriptive statistics for no physical activity or exercise risk factor 



308 12  Analysis of Variance with Two Factors

12.3 � ANOVA with Two Independent Groups Factors

In the previous section, we saw that BMI was significantly related to engagement 
in physical activity. In the jargon of the ANOVA, we found what is called a sig-
nificant main effect of physical activity. In this section, we will see if BMI is also 

28.50

Engaged in Physical Activity

NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR
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Fig. 12.5   Means plot of the main effect of physical activity on body mass index

 

Table 12.2   Test of the null hypothesis that BMI is unrelated to engagement in physical activity
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related to respondents’ age category. That is, we will see if there is also a signifi-
cant main effect of age category. In addition, we will see whether the relationship 
between physical activity and BMI depends upon the respondents’ age category. 
In the jargon of ANOVA, we will see if there exists a significant interaction effect 
between physical activity and age category.

Before we begin, notice that by adding a second factor to our analysis, we will 
now have a two-way ANOVA. The term “two-way” indicates that we are categoriz-
ing participants in two ways—by whether or not they engaged in physical activity 
and by their age category. Notice too that our second factor is independent groups. 
So we will be carrying out a two-way ANOVA in which both factors are indepen-
dent groups variables.

Return to the Univariate dialog box, and as shown in Fig. 12.6, move SIX LEV-
EL IMPUTED AGE CATEGORY into the Fixed Factor(s) box to tell SPSS that 
we wish to add age category as a factor. Remember that earlier we used Select 
Cases to limit the analysis to two age categories, women between the ages of 35 and 
44 and women between the ages of 45 and 54.

In the previous analysis, we asked SPSS to plot the mean BMI of those who 
had engaged in physical activity and the mean BMI of those who had not. Recall 
that these two means were significantly different. The resulting plot, therefore, dis-
played a significant main effect of physical activity. Now let us add a plot for the 

Fig. 12.6   Adding age category as a second factor to the analysis of variance

 

12.3 � ANOVA with Two Independent Groups Factors�
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age variable. This plot will show the mean BMI of each of the two age groups and 
indicate whether there is a main effect of age category. We will also create what is 
known as an interaction plot to see whether there is an interaction effect involving 
physical activity and age category, that is, if the relationship between physical activ-
ity and BMI varies with age category.

To generate these graphs, click Plots in the Univariate dialog box. As shown 
in Fig. 12.7, move SIX LEVEL IMPUTED AGE CATEGORY to the Horizon-
tal Axis box, and click Add. This plot will display the mean BMI of the two age 
categories. Next, as shown in Fig. 12.8, move the physical activity variable to the 
Horizontal Axis box and SIX LEVEL IMPUTED AGE CATEGORY to the Sepa-
rate Lines box. Click Add. This plot will display the mean BMI of four independent 
groups: women who were between the ages of 35 and 44 who had engaged in physi-
cal activity, women who were between the ages of 35 and 44 who had not, women 
between the ages of 45 and 54 who had engaged in physical activity, and women 
between the ages of 45 and 54 who had not. Now click Continue to get back to the 
Univariate dialog box.

Back in the Univariate dialog, click Options. As shown in Fig. 12.9, add the 
age variable and its interaction with physical activity to the Display Means for box. 
Click Continue followed by OK to run the analysis.

Fig. 12.7   Adding a request for a means plots of the main effect of age category
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Main Effects  The output has much the same look as before, but now there is more 
of it as a result of adding a second factor to the analysis. The output begins with 
information about sample sizes, shown in Table 12.3.

Table  12.4 displays the mean BMI of the 1673 women who had engaged in 
physical activity and the mean BMI of the 139 women who had not. Figure 12.10 
is the plot of those two means. This information is relevant to the main effect of 
physical activity.

Table 12.5 displays the mean BMI of the 849 women between the ages of 35 
and 44, and the mean BMI of the 963 women between the ages of 45 and 54. 
Figure 12.11 is the plot of those two means. This information is relevant to the main 
effect of age category.

Judging by the output thus far, it appears that both physical activity and age 
category are related to BMI. However, these findings may have been due to random 
sampling variability. So for each of two main effects we observed in our sample, 
we need to determine the probability that it would occur if there is no such effect in 
the population of NY state women. To do this, we refer to the p-value of each main 
effect. To find these values, we would consult the table labeled, Tests of Between-
Subjects Effects, shown in Table 12.6.

This table is similar to the one we created when we conducted our one-way 
ANOVA earlier in the chapter, but it now includes the F ratio, degrees of freedom, 

Fig. 12.8   Adding a request for a means plot of the interaction effect between physical activity 
and age category
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and p-value associated with not only the relationship between physical activity and 
BMI but with the relationship between age category and BMI as well.

Fig. 12.9   Adding a request for tables displaying the means of the main effect of age category and 
the interaction effect between physical activity and age category

 

12.3.1 � Do the data indicate that the population BMI means differ across the 
two physical activity groups?

12.3.2  Did we find a significant main effect of physical activity?
12.3.3 � Do the data indicate that the population BMI means differ across the 

two age groups?
12.3.4  Did we find a significant main effect of age category?
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Interaction Effect  The inclusion of age as a second factor results in output that 
tells us whether the relationship between physical activity and BMI varies accord-
ing to the age category of the participant. When the strength or direction of a rela-
tionship between one factor and a response variable depends on the values of a 
second factor, an interaction effect between the two factors is said to be present. 
To determine whether there is an interaction effect, we can inspect the mean BMI 
values of each of the four groups of women, and compare the difference between 
the two mean BMI values of the women between the ages of 35 and 44 who had and 
had not engaged in physical activity with the difference between the two mean BMI 
values of the women between the ages of 45 and 54 who had and had not engaged 
in physical activity. Tables 12.7 and 12.8 display this information. Table 12.7 high-
lights the BMI means of the two physical activity groups for women between 34 
and 44, while Table 12.8 highlights the BMI means of women between 45 and 54.

Table 12.3   Sample sizes of the independent groups factors
 

Table 12.4   Means of the main effect of physical activity on BMI
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We see that for the younger group of women, those who had engaged in physical 
activity and those who had not had about the same average BMI, but that for the 
older women, those who had engaged in physical activity had an average BMI sub-
stantially lower than those who had not engaged in physical activity.

Engaged in Physical Activity

NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR

Did not Engage in Physical Activity
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Fig. 12.10   Means plot of the main effect of physical activity on BMI

 

Table 12.5   Means of the main effect of age category on BMI
 

Answer the following questions:
12.3.5 � Judging from the 4 BMI means, which age group seems to benefit 

from engagement in physical activity?
12.3.6 � Does the pattern of the 4 BMI means suggest an interaction effect 

between engagement in physical activity and age category?
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Comparing the effect of physical activity on the average BMI of older women to 
the effect of physical activity on the average BMI of younger women is made easier 
by inspecting the interaction plot that displays these four means. Study this display, 
shown in Fig. 12.12. (We modified the formatting of the figure slightly to better dis-
tinguish in grayscale the two age categories.) Note whether the relationship between 

Fig. 12.11   Means plot of the main effect of age category on BMI
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Table 12.6   Tests of the null hypotheses that BMI is unrelated to physical activity or age category
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Estimated Marginal Means of BODY MASS INDEX
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Fig. 12.12   Means plot of the interaction effect between physical activity and age category on BMI

 

Table 12.7   BMI means of women between the ages of 35 and 54 who engaged or did not engage 
in physical activity, with the BMI means of the younger group highlighted
 

Table 12.8   BMI means of women between the ages of 35 and 54 who engaged or did not engage 
in physical activity, with the BMI means of the older group highlighted
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physical activity and BMI seems to differ across the two age categories. To be sure 
that you understand the graph, see if you can find in the graph each of the four 
means singled out in Tables 12.7 and 12.8.

The graph tells us that the relationship between whether or not women were 
physically active and their BMI depended on the age category of the women. In the 
language of ANOVA, we can say that engagement in physical activity appears to 
interact with age.

As you may have guessed from the interaction plot, an interaction effect is evi-
denced by the lack of parallelism between the lines displayed in the graph. How-
ever, as with any sample result, the lack of parallelism in our sample may have 
been due to random sampling variability and not to an interaction in the population. 
Consequently, we need to test the null hypothesis that there is no interaction in the 
population against the alternative hypothesis that there is an interaction. In other 
words, we need to determine the probability that the sample interaction effect would 
have occurred if there were no interaction effect in the population.

We can discover this probability by consulting the row in the Tests of Between-
Subjects Effects table, displayed in Table 12.9. If we consult the row labeled @_RF-
NOPA*@_AGE_G, we will find the F-ratio for the interaction effect and its associ-
ated p-value.

According to Table 12.9, the probability that the interaction we observed in our 
sample would have occurred if there is no interaction in the population is 0.003. 

Table 12.9   Test of the interaction effect between physical activity and age category on BMI
 

Answer the following questions:
12.3.7 � Was the interaction effect between physical activity and age category 

statistically significant?
12.3.8 � Can we reject the null hypothesis that in the population from which 

the sample was taken, physical activity benefits both age groups 
equally?
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This probability tells us that it is highly unlikely that we would have observed in our 
sample the interaction between physical activity and age category if there were no 
such interaction in the population of NY state women. Therefore, from our sample, 
we can infer with great confidence that the relationship between physical activity 
and BMI for female residents of NY depends on whether they are 35–44 years of 
age or 45–54 years of age.

The existence of a significant interaction effect forces us to be cautious about 
how we interpret the separate effects of each of the factors involved in the interac-
tion, that is, how we interpret the main effects. For example, consider again the plot 
of the main effect of physical activity, shown in Fig. 12.10. This graph compares 
the mean BMI of those who had been physically active with those who had not, re-
gardless of their age category. Our inspection of the interaction plot, reproduced in 
Fig. 12.12, tells us that we would be mistaken if we were to conclude that the main 
effect of physical activity describes equally well the relationship between physical 
activity and BMI for both age groups.

12.4 � ANOVA with Two Repeated Measures Factors

In the preceding analysis, we conducted a two-way ANOVA in which each factor 
formed independent groups. In the next two sections, you will learn how to interpret 
a two-way ANOVA when at least one of the factors is repeated measures. We will 
begin with a study that used two repeated measures factors.

The file, Blood.sav [2], consists of systolic and diastolic blood pressures (mm 
Hg) of 15 hypertensive patients who had been given the drug, captopril. Each pa-
tient’s blood pressure was measured twice, immediately before and 2 h after the 
drug was administered. Let us investigate the effects of this drug on blood pressure.

We will begin by studying the structure of the data file, reproduced in Fig. 12.13. 
Note that, as usual, each row contains the data from each participant. In this data set, 
the first variable refers to patient number (1 through 15), and the next four variables 
contain the blood pressure readings. Note the ordering of the last four columns: The 
researchers chose to enter the systolic readings before the diastolic, and for each 
type of blood pressure, the before reading prior to the after reading.

We will determine if systolic blood pressure was greater than diastolic (which of 
course it should have been), whether blood pressure dropped significantly after the 
drug was given, and whether the drug had the same effect on systolic and diastolic 
blood pressure. In the language of ANOVA, we will see if there was a significant 
main effect of type of blood pressure (systolic vs. diastolic), a significant main ef-
fect of time of measurement (before vs. after), and a significant interaction effect 
between time of measurement and type of blood pressure.

As with our earlier two-way ANOVA, the outcome variable is quantitative and 
the explanatory variables are categorical. But this time both explanatory factors are 
repeated measures. This is because each patient had both types of blood pressure 
readings taken at both points in time. Consequently, we will be conducting a two-
way repeated measures ANOVA.
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Select Analyze > General Linear Model > Repeated Measures to bring up 
the Repeated Measures Define Factor(s) dialog box. In the Within-Subject Factor 
Name box, we will enter a name for the repeated measures factor, Type of Blood 
Pressure. To minimize typing time and output space, just enter the word, Type. 
In the Number of Levels box, enter 2, and then click Add. Now enter the second 
repeated measures factor, Time of Measurement, by entering the word, Time, into 
the Within-Subject Factor Name box. In the Number of Levels box, enter 2, and 
then click Add. In the Measure Name box, enter the name of our response variable, 
Blood Pressure, by entering the word, Pressure. Click Add. These steps are shown 
in Figs. 12.14, 12.15, 12.16, and 12.17.

At this point, we have told SPSS to execute an ANOVA with two repeated mea-
sures factors we have called Type and Time on an response variable we have called 
Pressure We have also told SPSS that each of the two factors has two values. SPSS 
will therefore expect that there will be a column of data for each of the four combi-
nations of the values of the two factors. Our next step is to tell SPSS which column 
of data corresponds to which combination of the values of the factors.

As shown in Fig. 12.17, click Define to bring up the Repeated Measures dialog 
displayed in Fig. 12.18. Here, we will match up each relevant column of data listed 
in the window to the left to each of the combinations of the values of the factors, 
Type and Time, listed in the Within-Subjects Variables window to the right.

Let us look more closely at the Within-Subjects Variables window. Note that the 
names of the repeated measures factors, Type and Time, are listed in parentheses 
just above the window. The factors are listed in the order we entered them in the 
previous dialog box. Type is listed first, Time second. Below the names of the fac-
tors and also within parentheses are two digits, 1 and 2, followed by the name of 

Fig. 12.13   Blood.sav data set
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our response variable, that is, (1,1,Pressure), (1,2,Pressure) and so on. Recall that 
each factor has two levels: Systolic and Diastolic for the factor, Type; and Before 
and After for the factor, Time. For each pair of digits, the first number refers to one 
of the two levels of the first factor, Type; and the second number refers to one of the 
two values of the second factor, Time.

Fig. 12.14   Opening the Repeated Measures Define Factor(s) dialog

 

Fig. 12.15   Defining type of 
blood pressure as a repeated 
measures factor
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Fig. 12.16   Defining time of 
measurement as a repeated 
measures factor

Fig. 12.17   Naming the 
response variable and open-
ing the Repeated Measures 
dialog
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Our next step is to move each column of blood pressure readings listed in the 
window to the left to the Within-Subjects Variables window. Highlight Systolic: 
Before and then click the right arrow to move this set of readings to the 1,1 com-
bination of Type and Time. In the same manner, move Systolic: After to the 1,2 
combination of Type and Time. Repeat for the remaining two combinations of Type 
and Time and you should have produced the dialog box shown in Fig. 12.19.

Now, we will set up our plots for the main effects of Type and Time and the 
interaction between the two. As shown in Fig. 12.19, click Plots and create three 
graphs in the Repeated Measures: Profile Plots dialog: one which will display the 
relationship between mean blood pressure and type of blood pressure (i.e., a graph 
that will list the values of Type on the horizontal line), one which will display the 
relationship between mean blood pressure and the time of measurement (i.e., a 
graph that will list the values of Time on the horizontal line), and one which will 
display the relationship between mean blood pressure and time of measurement 
for each type of blood pressure (i.e., a graph that will list the values of Time on 
the horizontal line and display the two types of blood pressure as separate lines). 
When you have finished, the Repeated Measures: Profile Plots dialog should look 
like Fig. 12.20.

Fig. 12.18   Repeated measures dialog
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Click Continue to return to the Repeated Measures dialog, and then Options to 
open the Repeated Measures: Options dialog. Tell SPSS to display means for all 
factors and factor interactions. Then select Descriptive statistics. When you have 
finished, the Options dialog should look like the one in Fig. 12.21. Click Continue 
to return to the Repeated Measures dialog box, and OK to run the analysis.

Main Effects  The output should have a familiar look, thanks to our review of one-
way repeated measures ANOVA in Chap. 11. This time though we have descriptive 
statistics, means plots, and F-ratios relevant to the investigation of two main effects 
instead of just one, and for the investigation of an interaction effect.

Let us begin our study of the output with a trivial question: Was systolic blood 
pressure significantly different from diastolic? Inspection of the means displayed 
in Table 12.10 or of the corresponding means plot in Fig. 12.22 tells us not surpris-
ingly that on the average, systolic blood pressure was greater than diastolic.

To determine whether these two means were significantly different, that is, to 
determine whether there was a significant main effect of type of blood pressure, we 
do what we had done in Chap. 11—we consult the table labeled Tests of Within-Sub-
jects Effects. We find the row labeled Type and its corresponding F-ratio, degrees of 
freedom, and p-value. That row can be found in Table 12.11.

Fig. 12.19   Selecting the variables corresponding to the four combinations of the repeated mea-
sures factors, and opening the Repeated Measures: Profile Plots dialog
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According to the table, mean systolic blood pressure was significantly different 
from mean diastolic blood pressure. That is, a significant main effect of type of 
blood pressure was found.

Now let us focus on whether the drug seemed to have an effect on blood pres-
sure. Inspection of Table 12.12 or of the corresponding means plot in Fig. 12.23 tells 
us that blood pressure declined following administration of the drug.

To determine whether these two means were significantly different, that is, to 
determine whether there was a significant main effect of type of blood pressure, we 

Fig. 12.20   Requesting means plots of the main effects of type of pressure and time of measure-
ment, and of the interaction between type of pressure and time of measurement

 

Answer the following questions:
12.4.1  What was the value of the F-ratio?
12.4.2 � What were the numerator and denominator degrees of freedom asso-

ciated with the F-ratio?
12.4.3  What was the p-value associated with the F-ratio?
12.4.4 � Can we reject the null hypothesis that in the population from which 

the sample was taken, mean systolic and diastolic blood pressures 
are equal?

12.4.5 � In this analysis, we do not have to be concerned about whether we 
can assume sphericity. Why?
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consult the row labeled Time in the Tests of Within-Subjects Effects table. That row 
can be found in Table 12.13.

Interaction Effect  Our last finding has to do with whether the relationship between 
time of measurement and blood pressure depended on the type of blood pressure mea-
sured. Inspection of the means found in Table 12.14 or of the corresponding interaction 
plot of Fig. 12.24 suggests that although both types of blood pressure declined after 
administration of the drug, the decline was somewhat greater for systolic pressure.

Fig. 12.21   Requesting tables displaying the overall mean, the means of the main and interaction 
effects, and descriptive statistics

 

Answer the following questions:
12.4.6  Were the two means displayed in Table 12.13 significantly different?
12.4.7 � Does the analysis support the conclusion that captopril reduces blood 

pressure?
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To determine whether there was a significant interaction effect between the type 
of blood pressure and the time of measurement, we consult the row labeled Time * 
Type in Tests of Within-Subjects Effect. That row is included in Table 12.15.

Table 12.10   Mean systolic and diastolic blood pressure readings
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Fig. 12.22   Means plot of the main effect of type of blood pressure: systolic (Type = 1) versus 
diastolic (Type = 2)

 

Answer the following questions:
12.4.8  Was the interaction effect statistically significant?
12.4.9 � Can we reject the null hypothesis that captopril reduces systolic and 

diastolic blood pressure equally?
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As usual, the existence of a significant interaction forces us to be careful when we 
interpret the main effects. As we can see by comparing Figs. 12.23 and 12.24, the 
main effect of time of measurement (mean blood pressure before vs. mean blood 
pressure after; Fig. 12.23) somewhat underestimates the drug’s effect on systolic 
blood pressure and somewhat overestimates the drug’s effect on diastolic blood 
pressure (Fig. 12.24).

12.5 � ANOVA with One Independent Groups and One 
Repeated Measure Factor

As our last example of a two-way ANOVA, we will return to a study that we en-
countered in the previous chapter: the effects of acupuncture on severity of chronic 
headaches. In this study, 401 male and female patients who suffered from chronic 
headache were randomly assigned to one of two conditions: Acupuncture and Con-
trol. Patients assigned to the acupuncture group were referred by their general prac-
titioners to acupuncturists who offered weekly sessions for a period of 3 months. 

Table 12.11   Test of the null hypothesis that the population systolic and diastolic blood pressure 
means are equal
 

Table 12.12   Mean blood pressure readings before (Time = 1) and after (Time = 2) administration 
of captopril
 

12.5 � ANOVA with One Independent Groups and One Repeated Measure Factor�
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Patients in the control group were not referred. Three months (3-month follow-up) 
and again 12 months (1-year follow-up) later, the severity of the patients’ headaches 
was assessed and compared to their baseline severity ratings obtained at the begin-
ning of the study.

Table 12.13   Test of the null hypothesis that the population blood pressure means before and after 
administration of captopril are equal
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Fig. 12.23   Means plot of the main effect of time of measurement on blood pressure: before 
(Time = 1) and after (Time = 2) administration of captopril
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Table 12.14   Mean systolic (Type = 1) and diastolic (Type = 2) blood pressures before (Time = 1) 
and after (Time = 2) administration of captopril 
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Fig. 12.24   Means plot of systolic (Type = 1) and diastolic (Type = 2) blood pressures before 
(Time = 1) and after (Time = 2) administration of captopril

 

12.5 � ANOVA with One Independent Groups and One Repeated Measure Factor�



330 12  Analysis of Variance with Two Factors

In the previous chapter, we used a paired-samples t-test to compare the baseline 
and 3-month follow-up severity ratings of the patients who were referred to acu-
puncture treatment. There we saw that the mean severity rating at 3-month follow-
up was significantly less than at baseline. However, before we can credit this de-
cline to the acupuncture treatment, we have to determine whether this decline was 
greater than any that might have been reported by the control group. So this time 
we will compare the baseline to 3-month follow-up changes in severity ratings of 
the acupuncture and control groups. We will do this by using a two-way ANOVA.

Data from this study are in Acupuncture.sav [3]. The group to which each pa-
tient was assigned is stored in the variable, Group [group] (variable 6; 0 = Control, 
1 = Acupuncture). Because each group consists of a different set of patients, the 
group variable is independent groups. Each patient within each group rated his or 
her headache severity at baseline, 3-month follow-up and 1-year follow-up. These 
measurements are stored in the variables Headache Severity at Baseline [hs0] 
(variable 7), Headache Severity at 3 Months Follow-up [hs3] (variable 8), and 
Headache Severity at One Year Follow-up [hs12] (variable 9). This set of three 
measurements will constitute a repeated measures variable that we will call Time 
of Measurement. Note that the two-way ANOVA will consist of a categorical vari-
able that is independent groups (Group) and a second categorical variable that is 
repeated measures (Time of Measurement). As is always the case with ANOVA, 
the response variable is quantitative. In this case, the response variable is Headache 
Severity.

Load the data file, Acupuncture.sav. Because our analysis will include a repeated 
measures factor, select Analyze > General Linear Model > Repeated Measures 

Table 12.15   Test of the null hypothesis that the effects of captopril on systolic and diastolic blood 
pressures are equal 

12.5.1 � If we were to predict that acupuncture is effective in treating chronic 
headache, would we predict an interaction effect between Groups 
and Time of Measurement? Why or why not?
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to bring up the now familiar Repeated Measures Define Factor(s) dialog box. As-
sign a name to the repeated measures factor—the name Time will do—and tell SPSS 
that it has two levels. Then assign a Measure Name. This is our response variable. 
Severity will do. When you have finished, the dialog box should look similar to the 
one in Fig. 12.25.

As shown in Fig. 12.25, click Define to bring up the Repeated Measures dialog 
box. Move the baseline and 3-month follow-up variables to the Within-Subjects 
Variables window.

At this point, you have told SPSS that you wish to conduct an ANOVA on a re-
sponse variable called Severity, that the ANOVA has one explanatory factor, Time, 
and that the factor is repeated measures and has two values. If we were to run the 
analysis now, we would generate a one-way repeated measures ANOVA. But we 
want a two-way ANOVA. What’s missing?

We need to tell SPSS that there is a second factor, Group, and that the sec-
ond factor is independent groups. To do this, move Group into the window labeled 
Between-Subjects Factor(s) by selecting it and clicking the right pointing arrow to 
the left of the Between-Subjects Factor(s) window. Now the dialog box should look 
like the one in Fig. 12.26.

Fig. 12.25   Defining the 
repeated measures factor, 
naming the response variable, 
and opening the Repeated 
Measures dialog

 

12.5 � ANOVA with One Independent Groups and One Repeated Measure Factor�
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Next, click Plots and tell SPSS to plot the main effects of Time and Group and 
the interaction between the two factors. For the interaction plot, put Time on the X-
axis. When you’re done, the Profile Plots dialog should look like Fig. 12.27. Click 
Continue.

Back in the Repeated Measures dialog, click Options and instruct SPSS to gen-
erate descriptive statistics for all of the variables, as shown in Fig.  12.28. Click 
Continue and then OK to run the analysis.

The layout of the output is the same as with the analyses of Sects. 12.3 and 12.4 
in that the output provides information about two factors. For example, the output 
will display the means that correspond to the four combinations of the two factors 
(Table 12.16), and a means plot of those means (Fig. 12.29). This time, though, one 
of the factors is independent groups and the other repeated measures. Consequently, 
to see if the study generated a significant main effect of Group, inspect the table 
labeled Tests of Between-Subjects Effects (Table 12.17). To see if the study gener-
ated a significant main effect of Time or a significant interaction between Group and 
Time, inspect the table labeled Test of Within-Subjects Effects (Table 12.18).

Fig. 12.26   Assigning variables corresponding to the two values of the repeated measures factor, 
selecting the independent groups factor, and opening the Repeated Measures: Profile Plots dialog
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Fig. 12.27   Requesting means plots of the main effects of time of measurement and group, and of 
the interaction effect between the two factors

 

Study the output, remembering that higher severity ratings indicate greater 
headache severity. Then answer the following questions:
12.5.2  What was the p-value for the main effect of Group?
12.5.3 � Was the mean severity rating at 3-month follow-up significantly less 

than the mean severity rating at baseline?
12.5.4 � What was the mean headache severity rating of the acupuncture 

group at 3-month follow-up?
12.5.5 � Did the acupuncture group experience an average change in severity 

at 3-month follow-up that was significantly different from the aver-
age change experienced by the control group?

12.5.6  What was the p-value for the interaction effect?
12.5.7 � Do the statistical results of this study support the hypothesis that 

acupuncture reduces headache severity? Why or why not?

12.5 � ANOVA with One Independent Groups and One Repeated Measure Factor�
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Table 12.16   Mean headache severity ratings of the control and acupuncture groups at baseline 
(Time = 1) and 3-month follow-up (Time = 2)
 

Fig. 12.28   Requesting tables displaying the overall mean, the means of the main and interaction 
effects, and descriptive statistics
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Fig. 12.29   Means plot of the headache severity ratings of the control and acupuncture groups at 
baseline (Time = 1) and 3-month follow-up (Time = 2)

 

Table 12.17   Test of the main effect of group
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12.6 � Exercise Questions

1.	 For people between the ages of 35 and 44, is participation in physical activity 
associated with mental health? Is the answer to this question different for men 
and women? To find out, a researcher analyzed the CDC BRFSS data set. The 
results of the analysis are displayed in Figs. 12.30 and 12.31, and in Table 12.19.
a.	 What is the response variable?
b.	 Is the response variable categorical or quantitative?
c.	 What are the explanatory variables?
d.	 Are the explanatory variables independent groups or repeated measures 

factors?
e.	 Ignoring gender, was mental health significantly related to physical activity?
f.	 Report the values of the F-ratio, degrees of freedom, and p-value associated 

with the main effect of physical activity.
g.	 Describe the main effect of physical activity.
h.	 Does the relationship between physical activity and mental health differ sig-

nificantly for men and women? What was the p-value associated with this 
finding?

i.	 Describe the interaction effect between physical activity and sex.

2.	 Using a crossover design, a researcher gave five patients two drugs in tablet 
form. Drug A was given first. After a washout out period, each patient was given 
Drug B. For each drug, the researcher measured the level of antibiotic blood 
serum present at four points in time following ingestion: 1 h, 2 h, 3 h and 6 h. 
The data are in the file, Groups.sav [4]. Conduct a two-way ANOVA.
a.	 What is the response variable? Is it categorical or quantitative?
b.	 What are the explanatory variables? Are they independent groups or repeated 

measures factors?

Table 12.18   Tests of the main effect of time of measurement and the interaction effect between 
time of measurement and group
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c.	 Fill in the empty 15 cells of Table 12.20 with the appropriate means.
d.	 Did the two drugs differ significantly in the overall amount of antibiotic blood 

serum they produced? What is the p-value associated with this finding?
e.	 Did the number of hours following ingestion produce a significant main ef-

fect? What are the values of the means associated with this effect?
f.	 Did the effect of the number of hours following ingestion significantly de-

pend on which drug had been ingested? What is the p-value associated with 
the answer to this question?

g.	 When you answered questions 2e and 2f, did you have to take into account the 
results of the Mauchly's Test of Sphericity? Why or why not?

3.	 Return to the acupuncture data and include the 1-year follow-up measurement in 
the analysis.
a.	 If we were to predict that acupuncture is effective in treating chronic head-

ache, would we predict an interaction effect between groups and time of mea-
surement? Why or why not?

b.	 Did the mean severity ratings at baseline, 3-month follow-up, and 1-year 
follow-up significantly differ? What is the p-value associated with this main 
effect?

c.	 What was the p-value for the main effect of Group?
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Fig. 12.30   Means plot of the relationship between reported number of days during the past month 
mental health was “not good” and physical activity (Question 1)
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Fig. 12.31   Means plot of the relationship between reported number of days during the past month 
mental health was “not good” and physical activity for men and women (Question 1)

 

Table 12.19   Tests of the main and interaction effects (Question 1)
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Table 12.20   Mean antibiotic blood serum
Hours following ingestion

Drug 1 2 3 6 Across hours
Drug A
Drug B
Across Drugs

d.	 Did the decline in severity from baseline to 1-year follow-up differ across 
the acupuncture and control groups? What is the p-value associated with this 
finding?

e.	 Do the statistical results of this study support the hypothesis that acupuncture 
reduces headache severity? Why or why not?

Data Sets and References

1.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human 
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2.	 Blood.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, E.: A 
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of Professor David J. Hand)



341

Chapter 13
Simple Linear Regression

Abstract  The principle of least squares is introduced to determine the best fitting 
straight line. The coefficient of determination is discussed as a measure of how well 
the straight line fits the data. Estimation and testing of the slope and intercept coeffi-
cients is introduced. Confidence intervals on the predictions made by the regression 
line are discussed. Finally, residual analysis is presented.

13.1 � Overview

In Chap. 9, we considered measuring the strength of relationship between two quan-
titative variables by using the Pearson correlation coefficient. There we learned that 
a correlation of +1 indicates that two quantitative variables have a perfect linear 
relationship with a positive slope, a value of − 1 indicates a perfect linear relation-
ship with a negative slope, and that correlations with a magnitude near zero indicate 
a very weak linear relationship. When the variables do exhibit a linear relationship, 
researchers often would like to know the equation of the straight line that describes 
the relationship. The equation of a straight line has the following form:

� (13.1)

In the equation, b represents the slope (the change in y for a one unit increase in x) 
and a represents the y-intercept (the value of y when x equals 0). In this context, the 
y variable is often called the dependent variable and the x variable is often called 
the independent variable. Once researchers have the equation of this line, it can be 
used to make predictions of y for a given value of x.

Before trying to determine the slope and intercept of the straight line, research-
ers first create a scatter plot to see if the relationship between the two variables is 
linear. If the relationship is linear, then researchers use a method, known as least 
squares, to find the slope and intercept that “best” describes the linear relationship 
seen in the data.

The straight line equation describes a linear relationship observed in a sample of 
data. If the sample had been taken at random from a larger population, the sample’s 
slope and intercept will be affected by random sampling variability. In other words, if 

y a bx= +
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another random sample were to be taken, the values of its slope and intercept would 
likely be at least a little different from those of the first sample. Because of this ran-
dom variability, the values of the slope and intercept of a given sample may not be 
indicative of those of the population. Moreover, the predictions of y based on the sam-
ple will likely not be the same as those based on another sample randomly drawn from 
the same population. Consequently, after determining the best fitting straight line for 
a sample of data, researchers construct confidence intervals (CIs) for the population 
slope and intercept, test hypotheses regarding their values, and construct CIs for pre-
dictions generated by the equation of that line. In this chapter, we will review these 
procedures. In the next chapter, we will apply these techniques to situations in which 
predictions of the dependent variable are based on two or more independent variables.

13.2 � Describing the Best Fitting Straight Line

In this chapter, we will use data from a study of the pulmonary function of 654 boys 
and girls between the ages of 3 and 19. The data file includes the forced expiratory 
volume (FEV) of each child, that is, the amount of air (measured in liters) each child 
exhaled forcefully in one second. The age, height, and sex of the child, and whether 
the child was a smoker or nonsmoker are also recorded. We will focus on predict-
ing the FEV of nonsmokers between the ages of 9 and 14. We will begin our study 
by creating a scatter plot to determine if there appears to be a linear relationship 
between FEV and age.

Scatter Plots  As we saw in Chap. 9, a graphical means for determining if a relation-
ship exists between a quantitative explanatory variable and a quantitative response 
variable is a scatter plot. In the context of regression, the explanatory variable is 
called the independent variable and the response variable is called the dependent 
variable. In our example, age will be the independent variable and FEV will be the 
dependent variable.

On an x-y coordinate system, the independent variable forms the horizontal axis, 
and the dependent variable forms the vertical axis. The values of the two variables 
for each case form an ( x,y) pair that is plotted. The resulting plot of these points is a 
scatter plot. We then look at the pattern of the plotted points to determine the degree 
to which the two variables are related and whether or not the relationship appears to 
be linear. The degree to which the plot follows some sort of a curve will show the 
strength of the relationship. The more the points follow a curve, the stronger is the 
relationship. If the curve shows that there is a tendency for x and y to both increase, 
the relationship is said to be positive. If the curve shows that there is a tendency for y 
to decrease as x increases, the relationship is said to be negative. If the points follow 
a curve that is a straight line, then the relationship is said to be linear, otherwise it 
is said to be non-linear.

Open the file, FEV.sav [1]. This file consists of the following variables: Age 
(years) [Age] (variable 1), FEV (liters) [FEV] (variable 2), Height (inches) [Height] 



34313.2 � Describing the Best Fitting Straight Line�

(variable 3), Sex [Sex] (variable 4; 0 = female, 1 = male), and Smoking Status 
[Smoke] (variable 5; 0 = nonsmoker, 1 = smoker). We wish to focus on nonsmokers 
who are between the ages of 9 and 14, inclusive, so begin by selecting cases of non-
smokers within this age range. There are 348 of them distributed across the six age 
groups. Chapter 2 explains how to use Data > Select Cases to choose cases in SPSS.

To draw the scatter plot, we will follow the same procedure we followed in 
Chap. 9. Select Graphs > Chart Builder, select Scatter/Dot from the Gallery, and 
drag the picture of the simple scatter plot (the one in the upper left corner) to the 
empty window above it. Drag the independent variable, Age (years) [Age] (variable 
1) to the x-Axis box, and drag the dependent variable, FEV (liters) [FEV] (variable 
2) to the y-Axis box. When you are finished, the dialog box should look like the one 
shown in Fig. 13.1.

Fig. 13.1   Requesting a scatter plot
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Click OK to draw the scatter plot. The resulting plot should look similar to the 
one shown in Fig. 13.2.

Equation of the Best Fitting Straight Line  Since there appears to be a linear rela-
tionship between FEV (liters) and Age (years), it is appropriate to try to determine 
the equation of the straight line that “best” describes that relationship. The goal is 
to try to find the equation of the straight line that comes closest to all of the points 
in our scatter plot. In order to do this, we need to quantify how far all of the points 
are from the line and then find the slope and intercept of the line that minimizes this 
quantity. The principle we will use is known as least squares. For a candidate line 
we will draw a vertical line from each point in the scatter to the line. If we let the y 

Answer the following questions.
13.2.1  Is there a relationship between FEV (liters) and Age (years)?
13.2.2  Is the relationship positive or negative?
13.2.3  Does the relationship appear to be strong, moderate, or weak?
13.2.4  Does the relationship appear to be linear?
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Fig. 13.2   A scatter plot
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value of where one of these verticals intercepts the candidate line be denoted by ŷ, 
the distance from the point to the line would be ˆy y- . This quantity is known as 
a residual. We calculate the residual for each point in the data. These residuals are 
then squared and the squares are summed to obtain what is known as the residual 
sum of squares,

� (13.2)

The slope and intercept of the straight line that minimizes the residual sum of 
squares are known as the least squares estimates (i.e., they make the residual sum 
of squares have its least value). The equation of the straight line that uses the slope 
and intercept obtained in this manner is known as the least squares fit or the least 
squares regression line for the data. The equation of the least squares line will be

� (13.3)

SPSS can compute the slope and intercept for the least squares regression line. As 
shown in Figs.  13.3, 13.4, 13.5, and 13.6, select Analyze > Regression > Linear 
to bring up the Linear Regression dialog box. Place the independent ( x) variable, 
Age (years), in the Independent(s) box, and place the dependent ( y) variable, FEV 
(liters), in the Dependent box. Click OK to run the regression.

The output will contain a number of items. We will explain them eventually, but 
for now we are interested in determining the equation of the least squares regression 
line. The slope and intercept of that line are found in the Coefficients table shown 
in Table 13.1.

2
ˆ( )y y-∑

ŷ a bx= +

Fig. 13.3   Selecting a linear regression
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Fig. 13.4   Selecting the dependent variable

 

Fig. 13.5   Selecting the independent variable
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They are in the column labeled B in the Unstandardized Coefficients area. The 
value in the row labeled ( Constant) is the intercept, and the value in the row with 
the name of the independent variable is the slope. Notice that the slope is positive, 
indicating that the relationship between the two variables is positive.

13.2.5  What is the value of the y-intercept?
13.2.6  What is the slope of the line?
13.2.7  What is the equation of the least squares regression line?

Fig. 13.6   Performing the analysis

 

Table 13.1   Coefficients table 
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13.3 � The Coefficient of Determination

We can see from our analysis that the equation of the straight line that best describes 
the linear relationship between FEV and age is

� (13.4)

This equation means that for any given individual in our study, we would predict 
that his or her FEV is 0.073 plus an amount equal to 0.264 times his or her age. For 
example, the first participant in the data set has an age of 9 years. This individual 
would be predicted to have an FEV of 0.073 + 0.264(9) or about 2.449 L. The ac-
tual FEV of this person was 1.7080 L, so a logical question is whether or not the 
least squares regression fits the data well. A partial answer to this is addressed by 
a quantity known as the coefficient of determination, or R2. It tells us what propor-
tion of the observed variability in the dependent variable is “explained” by the least 
squares regression line.

The observed variability is measured by what is known as the total sum of 
squares. The equation for it is

� (13.5)

This variability reflects the extent to which values of the dependent variable vary 
around the mean of those values. If we had no information about a sample other 
than the mean, we would use the mean as our estimate of the value of the dependent 
variable for each individual. For example, the mean FEV of our 348 children is 
2.89683 L. If this is all we know about them, then our best guess of the FEV of each 
of the 348 children would be 2.89683 L. Consequently, TSS also indicates the ex-
tent to which using the mean to predict individual values of the dependent variable 
would be off the mark. It turns out that this sum of squares can be broken into the 
sum of two other sums of squares, called the regression sum of squares, RSS, and 
the residual or error sum of squares, ESS. The equation looks like

�

(13.6)

In the equation, yi is the actual FEV of a given child, y  is the mean FEV of the 
sample, and iy

�
is the predicted value of FEV for that child. You will note that the re-

sidual sum of squares is the quantity that the least squares method tries to minimize. 
The regression sum of squares is referred to as the amount of the variability in y that 
is “explained” by the regression line, and the residual sum of squares is the amount 
of the variability in y that is “unexplained” by the regression line. Therefore, the 
proportion of the total variability in y that is “explained” by the regression will be 
the ratio RSS/TSS. This quantity is the coefficient of determination, or R2. Since it 

ˆ 0.073 0.264y x= +

TSS y yi= −∑ ( )2

2 2 2ˆ ˆ( ) ( ) ( )

TSS = RSS + ESS
i i i iy y y y y y- = - + -∑ ∑ ∑
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is a proportion, its range of possible values is from 0 to 1. A value of 1 indicates 
a perfect fit to the data. That is, the data follow a straight line exactly. A value of 
0 indicates that the independent variable is of absolutely no help in predicting the 
value of the dependent variable. We would be no better off than if we had used the 
mean of the sample to make our estimates. We put the term “explained” in quotes to 
emphasize that “explained” in this context does not imply a cause-and-effect rela-
tion between the independent and dependent variables.

In SPSS, the coefficient of determination for a regression can be found in the 
Model Summary table under R Square. This table is shown in Table 13.2. The Model 
Summary table also contains R which is the positive square root of the coefficient of 
determination; Adjusted R Square, which will be discussed in the next chapter, and 
Std. Error of the Estimate, which will be discussed in the next section. Study the 
output and answer the following questions.

The value of R2 tells us that the regression line fits the data reasonably well, ac-
counting for 31 % of the variability in FEV. We saw in Chap. 9 that we can ask SPSS 
to draw the best fitting straight line through the points in a scatter plot by double 
clicking the plot and clicking the Add Fit Line at Total icon. Doing this with the 
scatter plot we generated earlier in this chapter allows us to visualize the goodness 
of fit of the regression line. The plot is shown in Fig. 13.7.

We can see from the plot that the data show a weak to moderate tendency to 
gravitate around the regression line. Notice the value of R2 linear in the upper right-
hand corner of the graph. This is the coefficient of determination. Its value will 
match the value displayed in the Model Summary table.

Let us take a closer look at the regression line. In the scatter plot in Fig. 13.7, the 
x-axis has been extended leftward to its zero point. We did this to show the intercept 
of the regression line.

The regression line consists of the predicted values of FEV across the values 
of age. The strength of the relationship between FEV and age is indicated by how 
closely these predicted values match actual values. For example, as we saw earlier, 

13.3.1  What is the value of R2?
13.3.2  What is the quality of the fit?

 

Table 13.2   Model summary 
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the participant who had an age of 9 years would be predicted to have an FEV of 
about 2.449 L. This child’s actual FEV was 1.7080 L, so the predicted value falls 
short of the actual value by a residual of about of − 0.741 L. Another 9-year old 
had an actual FEV of 2.9880 L. In fact, most of the 9-year olds in the sample had 
an actual FEV different from the predicted value of 2.449 L. These relationships 
are displayed in the plot shown in Fig. 13.8. The boxed points are the actual FEV 
values, and the arrow shows the predicted FEV value (or what we referred to as ŷ
in the equations above).

There are 348 people in the sample. If we were to square all 348 residuals and 
then sum them, the result would be the residual or error sum of squares, ESS. Recall 
that this quantity is equal to 1 minus the coefficient of determination. Thus, our 
analysis tells us that the straight line that best describes the relationship between 
FEV and age cannot account for 69.9 % of the variability in FEV values. On the 
other hand, our analysis also tells us that taking into account the linear relationship 
between FEV and age greatly improves our ability to make accurate estimates of 
FEV beyond that which we would have been able to make by using the mean of the 
sample.
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Fig. 13.7   Scatter plot with regression line
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13.4 � Estimating and Testing Population Coefficients

Estimation  If the data used to get the least squares regression line are a random 
sample from a larger population, we would like to know whether or not the results 
are indicative of a true linear relationship in the population. In order to do this, 
we need a model for the population that would produce a scatter plot such as we 
observed in the sample. That means that we will need a straight line that follows the 
trend in the data. In addition, we need some randomly generated values that produce 
the scatter about this line. In order to obtain this, the so-called classical regression 
model looks like the following:

� (13.7)

where yi is an actual value of y, a  is the population y-intercept, b  is the population 
slope, xi is a known, fixed value of x, and ie is a random value that is assumed to 
have a normal distribution with a mean of 0 and a standard deviation of s . Thus, the 
parameters of the model are a , b , and s . Since we do not know the values of these 
parameters, we need to use our sample data to estimate them. The estimator for a  is 

i i iy xa b e= + +
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Fig. 13.8   Illustrating errors
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the least squares value for the intercept, a. The estimator for β  is the least squares 
estimator for the slope, b. Finally, σ  is estimated by

�

(13.8)

It is called the standard error of the estimate. In SPSS, the standard error of the es-
timate is found in the Model Summary table under Std. Error of the Estimate. Study 
the output and answer the following questions:

13.4.1  What is the value of the estimate for α ?
13.4.2  What is the value of the estimate for β ?
13.4.3  What is the value of the estimate for σ ?

Testing Hypotheses with the t Distribution  Our next step is to determine whether 
or not the regression equation on our data is indicative of a true linear relationship 
between the independent and dependent variables in the population from which the 
data were drawn. To do this, we will test the null hypothesis that the population 
slope, β , is equal to 0. The alternative hypothesis can be either that the population 
slope is positive, or that the population slope is negative, or that the population is 
not equal to 0. SPSS conducts this test in two different ways. We will discuss the 
first in this section and address the second method in the next section. The first uses 
a test statistic that has a t distribution. The value of the test statistic and the p-value 
for the two-sided alternative hypothesis can be found in the Coefficients table in 
the columns labeled t and Sig. In the row for the independent variable, the value of 
the test statistic is in the t column and the two-tailed p-value is in the Sig. column. 
As usual, small p-values correspond to evidence against the null hypothesis. You 
will note that if you divide the value in the B column by the value in the Std. Error 
column you get the t value to within rounding. If the alternative hypothesis is one-
sided, the two-sided p-value is obtained as described in Table 13.3. Sig. is the two-
tailed p-value from the Coefficients table.

21
ˆ( )

2 i is y y
n

= -
- ∑

Alternative Hypothesis p-value

β  > 0
If b > 0 Sig/2
If b  ≤ 0 1-Sig/2

β < 0
If b > 0 1-Sig/2
If b ≤ 0 Sig/2

Table 13.3   Converting 
2-tailed p-values to 1-tailed 
p-values
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In the row labeled ( Constant) the t value and the p-value are for the two-sided 
test that the population intercept, α , is equal to 0. If the p-value for this test is large 
(usually greater than 0.1), you might want to consider fitting a model where the 
intercept is set to 0. This is done by clicking Options in the regression main dialog 
box to bring up the dialog box shown in Fig. 13.9. Unchecking Include constant in 
equation will do a least squares fit with a set to 0.

Study the Coefficients table shown in Sect. 13.2 (Table 13.1) and answer the 
following questions:
13.4.4 � What is the t value for testing the null hypothesis that the population 

slope is 0?
13.4.5  What is the two-sided p-value for this test?
13.4.6  What should you conclude regarding the population slope?
13.4.7 � What is the t value for testing the null hypothesis that the population 

intercept is 0?
13.4.8  What is the two-sided p-value for this test?
13.4.9  What should you conclude regarding the population intercept?

Fig. 13.9   Fitting a regression with an intercept of 0
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Testing Hypotheses with the F Distribution  The second method for testing the 
null hypothesis that the population slope is 0 uses the F distribution. The only alter-
native hypothesis for this test is that the population slope is not equal to 0. The test 
is summarized in the ANOVA table. Recall that ANOVA is an acronym for ANalysis 
Of VAriance. The ANOVA table contains the following information. The Model 
contains the names of the sums of squares that are the basis for the F test. The Sum 
of Squares column contains the values of those sums of squares. Recall from our 
discussion of R2 earlier that the total sum of squares is TSS, the regression sum 
of squares is RSS, the residual sum of squares in ESS and that the regression and 
residual sums of squares sum to the total sum of squares.

Each sum of squares has degrees of freedom associated with it. They appear in 
the df column. The degrees of freedom for regression is 1, the number of indepen-
dent variables in our model. The residual degrees of freedom in n−2, where n is the 
sample size. Coincidentally, n−2 is number of degrees of freedom used in the t tests 
we just discussed. Finally, the total degrees of freedom is n−1. Note that the regres-
sion and residual degrees of freedom sum to the total degrees of freedom.

The entries in the Mean Square column are arrived at by dividing the sum of 
squares by its degrees of freedom. The mean square for total is not computed be-
cause it is not used in the test. It is interesting to note that the square of the standard 
error of the estimate is equal to the residual mean square to within rounding. The 
entry in F is the value of the test statistic. It is obtained by dividing the regression 
mean square by the residual mean square. It has associated with it a pair of degrees 
of freedom, one for the numerator mean square, and one for the denominator mean 
square. The numerator degrees of freedom are always listed first, followed by the 
denominator degrees of freedom. Large values of F indicate evidence against the 
null hypothesis. The entry in Sig. is the p-value for the F test. As usual, the smaller 
the p-value, the greater is the strength of evidence against the null hypothesis.

At this point, it is logical to ask why we need two different tests for determining 
whether or not the population slope is 0. We really do not. It turns out that the t and 
F tests are equivalent only in regression models with a single independent variable. 
In the next chapter, we shall see that the F test is different from the t test when we 
consider models with two or more independent variables. To see that the t and F 
tests are equivalent in this setting note that the F value is the square of the t value 
for testing the slope to within rounding.

Table 13.4 is the ANOVA table reproduced from the output.

13.4.10  What is the value of the regression sum of squares?
13.4.11  What is the value of the residual sum of squares?
13.4.12  What are the degrees of freedom for the regression sum of squares?
13.4.13  What are the degrees of freedom for the residual sum of squares?
13.4.14 � Verify that each mean square is obtained by dividing the sum of 

squares by its corresponding degrees of freedom.
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13.4.15 � Verify that the value of the F statistic is the ratio of the regression 
mean square divided by the residual mean square?

13.4.16  What is the p-value for this test?
13.4.17 � Based on this p-value does it appear that the population slope coef-

ficient is 0? Why or why not.

Confidence Intervals  There are times when you want to construct CIs for the pop-
ulation slope and intercept. These CIs have the same interpretation as CIs we have 
encountered in previous chapters. That is, a 95 % CI means that 95 % of all possible 
intervals will contain the population parameter of interest. SPSS can construct CIs 
for the population slope and intercept. In the main regression dialog box click Sta-
tistics to bring up the dialog box shown in Fig. 13.10.

In the Regression Coefficient area check Confidence intervals. Enter the desired 
confidence level, in percent, in the Level(%) box. For our example, use a 95 % con-
fidence level. Click Continue and OK to run the regression in the usual manner. 
The requested CIs will be appended on the right-hand side of the Coefficients table 
in the output, as shown in Table 13.5.

Study the output shown in Table 13.5 and answer the following questions.
13.4.18  What is the 95 % CI for the population slope?
13.4.19  What is the 95 % CI for the population intercept?
13.4.20 � Are these CIs consistent with the results of the t tests reported in 

the table?

13.5 � Prediction Intervals

The regression equation we obtained was based on the sample of 348 subjects. 
If we were to collect another sample of 348 subjects we would obtain a different 
regression equation. The predictions for values of the dependent variable using the 

Table 13.4   Regression ANOVA table 
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second regression equation would differ from those obtained using the first regres-
sion equation. So, in addition to making point predictions for the dependent vari-
able, we would like to construct CIs for the predictions. Such intervals are known 
as prediction intervals. There are two types of prediction intervals depending on 
how you interpret what the regression equation predicts. The value of the dependent 
variable that the regression predicts can represent the mean value of the dependent 
variable for that value of the independent variable. The other possibility is that the 
value of the dependent variable that the regression equation predicts represents the 
value of the next individual having that value of the independent variable. Clearly, 
we are more confident in the accuracy of predicting a mean compared to an individ-
ual. This is reflected in the fact that prediction intervals for means are narrower than 
prediction intervals for individuals. It is up to the investigator to interpret whether 
the predictions represent means or individuals. SPSS allows for both possibilities.

Fig. 13.10   Requesting confidence intervals

 

Table 13.5   Confidence intervals 
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To construct prediction intervals for values of the independent variable in the data 
set, click Save in the main regression dialog box to bring up the dialog box shown in 
Fig. 13.11. To compute and save the point predictions check Unstandardized in the 
Predicted Values area. To obtain the prediction intervals check Mean and Individual 
in the Prediction Intervals area. Enter the desired confidence level, in percent, in the 
Confidence Interval box. Click Continue and run the regression in the usual manner.

The various predictions and CIs will be appended to the data set as new columns 
of data. Predictions and CIs for the first 10 participants are shown in Fig. 13.12.

The point predictions appear in a new variable, labeled PRE_1. For the first 
participant, the model predicts an FEV of 2.444. The next two columns present 

Fig. 13.11   Requesting point predictions and prediction intervals
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the upper and lower confidence limits of predicted means as two new variables, 
LMCI_1 and UMCI_1, respectively. For the first participant, these values tell us that 
we can be 95 % confident that the average predicted FEV of 9-year-old children will 
be between 2.35 and 2.538 L. The upper and lower confidence limits for individual 
predictions will appear as the next two new variables, LICI_1 and UICI_1, respec-
tively. These values tell us that we can be 95 % confident that the predicted FEV for 
any given 9-year-old child will be between 1.3 and 3.59 L. Notice that for any given 
value of age, the CI for predicting an individual child’s FEV is wider than the CI for 
predicting the mean FEV.

Often, we will want to make point predictions or get prediction interval limits for 
values of the independent variable that are not in the data set. To do this, we enter 
the desired value(s) for the independent variable to the bottom of the data set, leave 
the dependent variable empty, and run the regression saving the predicted values 
and the prediction intervals. To see how this works, enter a value of 15 in case 655 
of Age (years) and a value of 1 in filter_$, as shown in Fig. 13.13.

Compute the regression saving the unstandardized predicted values and 95 % pre-
diction intervals for both the mean and individuals. This will produce a second set 
of predictions and CIs for all of the individuals, and for the new entry. Each of the 
second set of variables will have “_2” attached to the variable names. See Fig. 13.14.

It is probably not obvious from looking at the values that are stored in the Data 
View, but predictions intervals get wider as we move from the center of the data to 

Fig. 13.12   Point predictions and prediction intervals

 

Fig. 13.13   Adding a new independent variable value
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extremities. This reflects the fact that predictions are more accurate in the center of 
the data set than they are at the end points. Making predictions beyond the endpoints 
of the data should be made with care as you need to make the assumption that the 
pattern of the relationship that you see in the data does not change for values of the 
independent variable larger or smaller than the largest or smallest value in the data. 
It is a little hard to see, but the scatter plot shown in Fig. 13.15 shows the predicted 
values for the dependent variable and the two sets of prediction intervals. The up-
permost and lowermost lines are the prediction interval for individuals. The next 
two are the prediction interval for means. The center line shows the point predic-
tions. If you look closely, you can see that, as we move from the center of the data, 
the upper and lower confidence limits get farther apart.

Answer the following questions:
13.5.1  What was the point prediction for a value of Age of 15?
13.5.2 � What are the upper and lower 95 % prediction limits when we inter-

pret the predicted value to be a mean for a 9-year old?
13.5.3  What is the width of this interval?
13.5.4 � What are the upper and lower 95 % prediction limits when we inter-

pret the predicted value to be an individual for a 9-year old?
13.5.5  What is the width of this interval?
13.5.6  Which prediction interval is wider?

13.6 � Residual Analysis

The validity of the t tests, the F test, the CIs of the population slope and inter-
cept, and the prediction interval we have been discussing depends on the regres-
sion model requirements that there is a linear relationship between the independent 
and dependent variables, and that the error terms have a normal distribution with a 
mean of 0 and a standard deviation that is constant for all values of the independent 
variable. We need to verify that these conditions have been met. This is done by 
examining the residuals that result from the least squares curve fit. Recall that the 
residual for the ith case is ˆi iy y- . These are the estimates for the value of the error 

Fig. 13.14   A new set of predictions and prediction intervals
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term. If the relationship between the independent and dependent variables is linear, 
the data points should be randomly scattered about the regression line. If the error 
terms have the same standard deviation, the distance the data points are from the 
regression line should not show a tendency to get closer or farther from the regres-
sion as the value of the independent variable increases.

These properties can be investigated by examining a scatter plot of the residuals 
versus the predicted values of the dependent variable. Such a scatter plot is known as 
a residual plot. If there is a linear relationship between the independent and depen-
dent variables and the error terms have a constant standard deviation, the residual 
plot should show a random scatter with no discernable pattern or a tendency to show 
a wider or narrower dispersion as you move from left to right. Whether or not the 
error terms have a normal distribution can be assessed by examining a normal proba-
bility plot of the residuals. As was the case with the normal probability plots we saw 
in Chap. 5, if the residuals show a relatively random scatter about the straight line 
that is drawn, then it is safe to assume that the error terms have a normal distribution.
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Fig. 13.15   Plot of prediction intervals
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These plots can be obtained in SPSS by clicking Plots in the main regression 
dialog box to bring up the dialog box shown in Fig. 13.16.

The residual plot is obtained by placing ZRESID in the Y box and ZPRED in the 
X box. The leading Z means that the residuals and predicted values have been trans-
formed to have a mean of 0 and a standard deviation of 1. The normal probability 
plot is obtained by checking Normal probability plot in the Standardized Residual 
Plots area. When the dialog box has been set up as shown in Fig. 13.16, click Con-
tinue and run the regression in the usual manner. The requested plots will be drawn 
in an output window, and are shown in Figs. 13.17 and 13.18.

Study the output and answer the following questions:
13.6.1 � Does the residual plot have a random pattern with relatively constant 

dispersion about 0?
13.6.2 � Does the normal probability plot reveal a pattern that is consistent 

with a normal distribution?
13.6.3 � Does the regression model requirement of a linear relationship 

between the independent and dependent variables appear to have 
been met?

13.6.4 � Do the regression model requirements that the error terms have a nor-
mal distribution with a constant standard deviation appear to be met?

13.6.5 � Are the results of the t tests, the F test, the CIs on the population slope 
and intercept, and the prediction intervals reliable?

Fig. 13.16   Requesting residual plots
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13.7 � Exercise Questions

1.	 Figure 13.19 is a scatter plot of the relationship between diastolic blood pres-
sure and BMI of patients participating in the Framingham heart study. The plot 
displays the best fitting straight line. Load the data file Framingham.sav [2] and 
conduct a regression on these data.

a.	 Report the equation of the best fitting straight line.
b.	 According to the value of the slope, how much does diastolic blood pressure 

increase for every increase of one unit of BMI?
c.	 What is the value of the coefficient of determination?
d.	 What does the value of the coefficient of determination that you just reported 

tell us about the relationship between diastolic blood pressure and BMI?
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Fig. 13.17   Normal probability plot of residuals
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e.	 What is the predicted diastolic blood pressure of an individual patient with a 
BMI of 30?

f.	 What would be the 95 % CI for this prediction?

2.	 Tables 13.6 and 13.7 show some of the output generated by the analysis in Ques-
tion 1 above.

a.	 What is the value of the t test for the population slope?
b.	 What is the two-sided p-value?
c.	 What should you conclude regarding whether or not the population slope is 0?
d.	 What is the value of the F-ratio?
e.	 What are the degrees of freedom for the numerator and the denominator?
f.	 What is the p-value associated with the F-ratio?
g.	 What should you conclude from this p-value?

3.	 Imagine that we conduct a regression analysis on the Framingham data set to 
determine the relationship between BMI and age for men. The resulting coef-
ficients are displayed in Table 13.8. Can we conclude from Table 13.8 that BMI 
and age are related? Why or why not?

4.	 The regression analysis of Question 3 generated the plots shown in Figs. 13.20 
and 13.21.
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Table 13.7   Output for Question 2 

Table 13.6   Output for Question 2 
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Table 13.8   Coefficients table for Question 3 
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a.	 List three conditions that are required by a regression analysis.
b.	 According to the plots above, did the data meet these conditions? Why or why 

not?

Data Sets and References

1.	 FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics, 6th edn. Thomson Brooks/
Cole, Belmont (2006). With the kind permission of Professor Bernard Rosner. For context, 
see Tager, I.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on 
pulmonary function in children. Am. J. Epidemiol. 110, 15–26 (1979)

2.	 Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd edn. Cambridge University Press, New York (2009). (With the kind permission of 
Sean Coady, National Heart, Blood, and Lung Institute)
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Chapter 14
Multiple Linear Regression
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Abstract  This chapter provides an overview of multiple linear regression, a sta-
tistical technique that predicts values of a quantitative dependent variable from 
values of two or more independent variables. By including more than one indepen-
dent variable, a multiple linear regression can often account for more variability 
in the dependent variable than can a simple regression, can assess the relationship 
between the dependent variable and an independent variable after controlling for 
the presence of other independent variables, and can determine whether the effect 
of an independent variable varies across levels of another. Topics reviewed include 
the multiple correlation coefficient, adjusted R2,interpreting and testing unstandard-
ized and standardized slope coefficients, using categorical and dummy variables as 
predictors, and testing for the presence of interaction effects.

14.1 � Overview

In the previous chapter, we saw how to use a scatter plot to judge whether a straight 
line describes the relationship between two quantitative variables, how to ascertain 
the equation of the straight line that best describes the relationship, and how to use 
that equation to predict the values of a dependent variable from the values of an 
independent variable. We also saw that when two variables are not perfectly related, 
the data points will scatter around the best fitting straight line rather than falling on 
it, and the predicted values will often not match actual values exactly. In clinical 
research, two variables are rarely perfectly related, so predictions rarely exactly 
coincide with actual values. To improve the accuracy of prediction, researchers can 
employ not just one independent variable but a set of two or more variables that 
are linearly related to the dependent variable. The logic here is that the dependent 
variable is likely to be a function of a number of factors, not just one, and therefore 
predictions of the dependent variable will be more accurate if these additional fac-
tors are taken into account. In this chapter, we look at a statistical technique that 
yields a prediction equation that allows researchers to predict values of a dependent 
variable from values of two or more independent variables. The technique is called 
multiple linear regression.
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The prediction equation in a multiple regression analysis takes the following 
form:

� (14.1)

where ŷ  is the predicted value of the dependent variable, x x1 2, ,  and xk  are the 
values of each of k independent variables, a is the intercept, and b1

, b2 ,  and bk  are 
the slope coefficients. The values of the intercept and slope coefficients are com-
puted so that the sum of the squared differences between the predicted and actual 
values of y is as small as possible. That is, the intercept and slope coefficients are 
least squares estimates that minimize the residual sum of squares. The relationship 
between each independent variable and the dependent variable is assumed to be 
linear, and as is the case with simple regression, the residuals are assumed to be 
normally distributed. Both of these assumptions can be checked in the manner ex-
plained in the previous chapter.

Often the independent variables are related not only to the dependent variable 
but to one another. When independent variables correlate with one another, infor-
mation about the dependent variable that one predictor provides is to some extent 
redundant with the information provided by the other predictors. This overlap in 
information provided by the independent variables can affect the predictive value of 
one or more of the variables. Slope coefficients generated by a regression analysis 
take the interrelationships among the independent variables into account. Conse-
quently, slope coefficients reflect the degree to which an independent variable is 
related to the dependent variable after the impact of the remaining predictors has 
been taken into account or statistically controlled.

Factors that are correlated with both the independent and dependent variables but 
which are not taken into account are called confounding variables. Ideally, potential 
confounding variables are taken into account while the study is in progress through ex-
perimental control. That is, in the context of an experiment or randomized controlled 
trial, the dependent variable is measured after all potential confounding variables have 
been accounted for by either holding them constant or by randomly assigning partici-
pants to experimental conditions. However, in clinical research, it is often necessary 
to collect data outside the context of an experiment. In these cases, after the data have 
been collected, multiple regression analysis might be used to adjust for the presence 
of confounding variables. Note however that statistical control can be used only for 
confounding variables of which we are aware and for which we have measurements.

In this chapter, we use data from a study of the pulmonary function of 654 boys and 
girls between the ages of 3 and 19. The data file includes the forced expiratory volume 
(FEV) of each child, that is, the amount of air (measured in liters) each child exhaled 
forcefully in one second. The age, height, and sex of the child and whether the child 
was a smoker or nonsmoker are also recorded. We focus on predicting the FEV of non-
smokers between the ages of 9 and 14. In so doing, we learn how to conduct a multiple 
regression analysis, how to determine whether the inclusion of additional independent 
variables improved prediction, and how to interpret slope coefficients. As we did in the 
previous chapter, we also learn how to determine whether the relationships between 

1 1 2 2ˆ ,k ky a b x b x b x= + + +…+
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the independent and dependent variables we observed in our sample are indicative of 
those relationships within the population from which the sample was taken.

14.2 � Assessing the Impact of a Single Predictor on 
Prediction Accuracy

We begin by revisiting our analyses of the relationship between FEV and age that 
we conducted in Chap. 13.

Scatter Plot  Recall that the file, FEV.sav [1], consists of the following variables: 
Age (years) [Age] (variable 1), FEV (liters) [FEV] (variable 2), Height (inches) 
[Height] (variable 3), Sex [Sex] (variable 4; 0 = female, 1 = male), and Smoking 
Status [Smoke] (variable 5; 0 = nonsmoker, 1 = smoker). Following the instructions 
of the previous chapter, create a scatter plot with FEV (liters) on the y-axis and 
Age (years) on the x-axis, and then insert the best fitting straight line. As we did 
in Chap. 13, use Data > Select Cases to restrict your plot to nonsmokers who are 
between the ages of 9 and 14, inclusive.

The resulting scatter plot is displayed in Fig. 14.1. (We asked SPSS not to dis-
play the equation for the best fitting straight line.)

R2 Linear = 0.310
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Fig. 14.1   Scatter plot of the relationship between forced expiratory volume ( FEV) and age for 348 
children who do not smoke
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Simple Linear Regression  Repeat our simple linear regression of Chap.  13 in 
which FEV (liters) is the dependent variable and Age (years) is the independent 
variable. The output is shown in Tables 14.1, 14.2, 14.3.

Visualizing Prediction Accuracy  You should have found that age accounts for 
31 % of the variability in FEV and that we would expect a 9-year-old to exhale 
about 2.44 L. Before we go any further, let us try to visualize some of these findings. 
First, return to the Linear Regression dialog box and ask SPSS to generate unstan-
dardized predicted values of FEV using age as the independent variable. After the 
predicted values have been generated, go to Data View and see if the predicted FEV 
of a 9-year-old you computed by hand matches the value computed by SPSS. While 
you are at Data View, compare the predicted value for a 9-year-old with the actual 
values of some of the 9-year-olds. A segment of those data is shown in Fig. 14.2.

There are 93 children in the data file who are 9 years old (and do not smoke). The 
predicted FEV for each of them is 2.44403. Notice though that the actual values are 
sometimes above the predicted value and sometimes below. This is in part because 
of random errors associated with the taking of an FEV and in part because FEV is a 
function of not only age but other factors as well. As a result, our predicted values 
are off the mark to some extent, sometimes underpredicting and sometimes overpre-
dicting actual FEV values. Notice that the same can be said of other age groups. For 
example, the actual FEV values for 10-year-olds vary around their predicted value.

Answer the following questions:
14.2.4  What is thecorrelation, R, between FEV and age?
14.2.5 � What is the coefficient of determination, R2 ? Does this value match 

the value displayed in the scatter plot?
14.2.6  What is the value of the standard error of the estimate, s ?
14.2.7 � What is the total sum of squares? Of this, how much is accounted 

for by the prediction line? How much is due to errors in prediction? 
What proportion of the total sum of squares is accounted for by the 
regression?

14.2.8  What is the intercept? Is it significantly different from zero?
14.2.9 � What is the unstandardized slope coefficient? Is it significantly dif-

ferent from zero?
14.2.10 � The prediction equation for this analysis is of the form, 

1 1ŷ a b x= + . Compute by hand the number of liters we would expect 
would be forcefully exhaled by a 9-year-old.

Answer the following questions:
14.2.1  Does the relationship between FEV and age appear to be linear?
14.2.2  How would you describe the relationship between FEV and age?
14.2.3 � What is the value of R2? What percent of the variability in FEV is 

accounted for by age?
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Another way to visualize our findings is to return to our scatter plot of the re-
lationship between FEV and age that you created earlier. A version of the plot, 
borrowed from Chap. 13, is shown in Fig. 14.3. The points within the rectangle are 
the actual FEV values of our 93 9-year-old nonsmokers. The arrow indicates the 
predicted value of FEV for these 93 kids, about 2.44. Once again we see that our 
predicted value is too low for some of our 9-year-olds and too high for others.

A third way to visualize our data is to generate either a scatter plot of the actual 
values of FEV and the values of FEV predicted on the basis of age, or, as we did 
in Chap. 13, draw a residuals plot of the differences between the actual and pre-
dicted values. Those two plots are presented in Figs. 14.4 and 14.5, respectively. As 
Fig. 14.4 shows, small values of FEV predicted on the basis of age are associated 
with small actual values, moderate predicted values are associated with moderate 

Table 14.3   Intercept and slope coefficient for the regression using age to predict forced expiratory 
volume
 

Table 14.1   Model summary for regression using age to predict forced expiratory volume 

Table 14.2   ANOVA table for regression using age to predict forced expiratory volume
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Fig. 14.3   Scatter plot highlighting the distribution of actual values of forced expiratory volume 
( FEV) of 9-year-olds around their predicted value

 

Fig. 14.2   Actual values of forced expiratory volume ( FEV) and predicted values ( Pre_1) based 
on each child’s age
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actual values, and large predicted values are associated with large actual values. So 
it appears that predicting FEV on the basis of a child’s age has merit. However, 
both plots show that our predictions are far from perfect. Clearly, if we want to pre-
dict a child’s FEV more precisely, we need to do more than base predictions on the 
child’s age.

14.3 � Improving Prediction by Adding a Second Predictor

We have seen that knowing children’s ages allows us to account for a portion of the 
variability in the volume of air they can forcefully exhale. In fact, the value of R2  
tells us that age accounts for 31 % of the variability in FEV for children between the 
ages of 9 and 14. This leaves 69 % of the variability unaccounted for. Let us see if 
adding a second independent variable improves prediction.

Each child’s height is included in the data set. Do you think height should be 
included in our prediction equation? Height would seem to be a likely candidate 
for our second predictor if we can assume that taller children exhale more air than 
shorter children. However, the predictive value of independent variables is the 

R2 Linear = 0.310
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Fig. 14.4   Scatter plot of the relationship between the actual values of forced expiratory volume 
( FEV) and the unstandardized FEV values predicted on the basis of each child’s age
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greatest when the variables are not only correlated with the dependent variable but 
are uncorrelated with one another. As children get older, they tend to get taller, so 
the heights and ages of the children in our sample are likely to be correlated. If the 
correlation between age and height is too high, knowledge of a child’s height does 
not convey information about the child’s FEV that was not already revealed by the 
child’s age. So before we include height as our second independent variable, we 
should determine the extent to which it is correlated with FEV and with age. We 
can do this by selecting Analyze > Correlate > Bivariate to generate a correlation 
matrix that includes the variables FEV (liters), Age (years), and Height (inches). 
The resulting correlation matrix is reproduced in Table 14.4.
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Fig. 14.5   Residuals plot of the differences between the actual values of forced expiratory volume 
( FEV) and the values of FEV predicted on the basis of each child’s age

 

Answer the following questions:
14.3.1 � Is the correlation between FEV and age the same as the correlation 

you found in Sect. 14.2? It should be.
14.3.2 � What is the correlation between FEV and height? Does this corre-

lation suggest that including height in our prediction equation will 
improve the prediction?

14.3.3 � Were age and height correlated? Does this correlation suggest that 
including height in our prediction equation will improve prediction?
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You should have found that height is indeed correlated with FEV. This finding sug-
gests that including height in the prediction equation makes sense. However, you 
should have found that height is also correlated with age, so it remains to be seen 
whether predictions of FEV that are based on both a child’s age and height will be 
more accurate than predictions based on the child’s age alone. Let us conduct a 
multiple regression to find out.

Multiple Linear Regression  Return to the Linear Regression dialog box and move 
Height (inches) into the Independent(s): window as shown in Fig. 14.6. Run the 
analysis and study the output.

Although our prediction equation now includes two predictors, the output 
will have a familiar look. Let us begin with the Model Summary table, shown in 
Table 14.5.

As before, R is the correlation between the predicted and actual values of the 
dependent variable, FEV. However, in a multiple regression analysis, R is called the 
multiple correlation coefficient to indicate that the predicted values are based on two 
(or more) independent variables. In our case, R  is the correlation between actual 
values of FEV and values of FEV predicted on the basis of each child’s age and 
height. As with simple linear regression, R2  is the proportion of variability in FEV 
accounted for by our prediction equation. However, in multiple regression analysis, 
the equation has two (or more) independent variables. In our case, the prediction 
equation includes age and height, rather than just age alone, so R2  is the proportion 
of variability in FEV accounted for when each child’s age and height are considered.

Table 14.4   Matrix displaying correlations among forced expiratory volume, age, and height 

Answer the following questions:
14.3.4 � What is the correlation between actual and predicted values of FEV 

when predictions of FEV are based on each child’s age and height? 
How does the multiple correlation coefficient compare to the value 
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Fig. 14.6   Adding height to the regression

 

Table 14.5   Model summary of regression using age and height to predict forced expiratory volume

 

of R  when our predictions of FEV were based only on each child’s 
age?

14.3.5 � What is the value of R2  in our multiple regression analysis? How 
does this value compare to the value of R2  when our predictions 
were based only on age?

14.3.6 � Do predictions of FEV based on age and height seem to be more ac-
curate than predictions based on age alone?
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Adjusted R2   At this point, it seems clear that adding height to the prediction 
equation improved the prediction. However, any time an independent variable is 
added to the prediction equation, R2  will always increase even if the added pre-
dictor has no predictive value. Therefore, it is necessary to adjust the value of R2  
to control for the number of predictors in the equation. This new value of R2  is 
called adjusted R2  and can be found in the Model Summary table. When comparing 
multiple regression models with a different number of independent variables, the 
adjusted R2 should be used. Compare this value with the value of adjusted R2 when 
we used age as our sole predictor.

Visualizing Prediction Accuracy  In the next section, we will look at the predic-
tion equation that we generated with our multiple regression analysis. But first let 
us look at a visual display of the goodness of fit of that equation. Fig. 14.7 displays 
a plot of the actual FEV values and predicted values of FEV based on age and 
height. The residuals plot is displayed in Fig. 14.8. Compare these plots with the 
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Fig. 14.7   Scatter plot of the relationship between the actual values of forced expiratory volume 
( FEV) and the values of FEV predicted on the basis of each child’s age and height

 

14.3.7  Which regression model does a better job of predicting FEV?
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corresponding plots in which the predicted values are based on age alone (Figs. 14.4 
and 14.5).

14.4 � Interpreting Standardized and Unstandardized 
Slope Coefficients

As do simple regression analyses, multiple regressions generate Coefficients tables 
that include information about intercepts and slopes. Recall, however, that in a mul-
tiple regression, the prediction equation includes two or more independent vari-
ables. Therefore, the Coefficients table includes the unstandardized slope of each of 
the predictors. In our case, we have two independent variables, age and height, so 
the prediction equation takes the form,

� (14.2)
1 1 2 2ˆ .y a b x b x= + +

Fig. 14.8   Residuals plot of the differences between the actual values of forced expiratory volume 
( FEV) and the values of FEV predicted on the basis of each child’s age and height

 

14.3.8  Which prediction equation fits the data better?
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The values of the intercept ( )a  and the slopes ( , )b b1 2
 of the two predictors, age 

( )x1  and height ( )x2
 can be found in the Coefficients table reproduced in Table 14.6.

Unstandardized Slope Coefficients  Let us take a closer look at the slope coef-
ficients. The values of the coefficients take into account the degree to which the 
independent variables are related to the dependent variable and to one another, 
and whether those relationships are positive or negative. As was the case in simple 
regression, we must look at the results of the t-tests to determine whether or not 
the computed slope coefficient is statistically significantly different from zero. If 
a slope coefficient is statistically significantly different from zero, then the value 
of a slope assigned to a given independent variable tells us how much change in 
the dependent variable is associated on average with change in that independent 
variable above and beyond the impact of the other independent variables. Indepen-
dent variables that either are not related to the dependent variable or do not tell us 
anything about the dependent variable that we do not already know from the other 
predictors will have slope coefficients that are not statistically significantly dif-
ferent from zero. A statistically significant positive slope tells us that increases in 
the independent variable are associated with increases in the dependent variable. A 
statistically significant negative slope tells us that increases in the independent vari-
able are associated with decreases in the dependent variable.

As an example of how to interpret slopes, recall that the unstandardized slope 
coefficients generated by our multiple regression were 0.081 for age and 0.127 for 

Table 14.6   Intercept and unstandardized slope coefficients for age and height 

14.4.1 � Specify the prediction equation for our multiple regression analy-
sis by filling in the following blanks: Predicted values of FEV 
= __________ + _________ (Age) + __________ (Height).

14.4.2 � Imagine that you were about to measure the FEV of a 9-year-old 
child who is 53 inches tall and does not smoke. Compute by hand the 
number of liters you would expect the child to exhale.

14.4.3 � Does the predicted value you calculated match the value that SPSS 
generated?
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height, and both of them were statistically significantly different from zero. Thus, 
each independent variable contributes to the prediction above and beyond the con-
tribution of the other. This explains why predicted values based on age and height 
do a better job of accounting for the variability in FEV than do predicted values 
based on age alone. While knowing a child’s age tells us something about what the 
child’s FEV will be, knowing the child’s height gives us additional information. 
When it comes to understanding FEV, apparently there is more to the story than 
just age.

Both coefficients are positive, telling us that increases in either age or height are 
associated with increases in FEV. The value of each of the unstandardized slopes 
tells us how much of an increase. Recall that FEV was measured in liters, age in 
years, and height in inches. The values of the slopes tell us that for children of a 
given height, FEV increases on average by 0.081 L for every one year increase in 
age, and that for children of a given age, FEV increases on average by 0.127 L for 
every one inch increase in height.

Standardized Coefficients  We need to be a little careful about using the slopes 
to determine the relative importance of each of the independent variables. It might 
seem logical to assume that the larger the slope, the greater is the impact of the 
independent variable, indicating that the independent variable with the largest 
slope could be considered the most important predictor. However, the magnitude 
of unstandardized slopes is affected by the units of measurement associated with 
the independent and dependent variables, so comparing unstandardized slopes can 
be misleading. To be able to compare slopes meaningfully, it is necessary that they 
be calculated on the basis of variables that are expressed in terms of the same unit 
of measurement. This is accomplished by calculating slopes after the values of 
each independent and dependent variable have been transformed into standardized 
scores. A standardized score, also known as a Z-score, is the number of standard 
deviations the original score is above or below the mean of those scores. Z-scores 
have a mean of 0 and a standard deviation of 1.

As an example, consider the ages of the nonsmokers in the entire sample. The 
average age is 9.53 years with a standard deviation of 2.74 years. A 13-year-old 
within this sample is older than the average child by 3.47 years ( . )13 9 53-  which is 
about 1.27 standard deviations above the mean ( . / . . )3 47 2 741 1 27= . A 3-year-old 
is 6.53 years younger than the average child or 2.38 standard deviations below the 
mean. Thus, the age of any child in the sample who is 13 years old can be expressed 
as a standardized score of 1.27 while the age of any 3-year-old can be expressed as 
a standardized score of − 2.38.

If we transform the values of our independent and dependent variables into stan-
dardized scores, FEV will no longer be expressed in terms of feet, age in terms of 
years, or height in terms of inches. Instead, all of our variables will be expressed in 
terms of the same unit of measurement—the number of standard deviations above 
or below the mean. If we then calculate slope coefficients from standardized scores, 
the slopes will be expressed in terms of standard deviations rather than in terms 
of the original units of measurement. These slopes are called standardized or beta 
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coefficients and are displayed in the Coefficients table as shown in Table 14.7. You 
will notice that there is no value reported for the intercept. This is because the 
intercept is always equal to zero when the data are standardized. According to the 
table, a one standard deviation increase in age is associated with an increase in FEV 
scores of 0.171 standard deviation while a one standard deviation increase in height 
is associated with an increase in FEV scores of 0.707 standard deviation. Now that 
we have converted all of our variables to the same scale of measurement, we can 
meaningfully compare the two slopes. When we do so, we see that a one standard 
deviation change in height results in a much larger change in FEV, in standard de-
viation terms, than does age.

Use Caution When Interpreting Slope Coefficients  When comparing slopes, it 
is important to remember that a slope coefficient for a given independent variable 
is sensitive to the presence of the other independent variables within the regression 
model. Standardized and unstandardized slopes can vary as independent variables 
are added or removed from the prediction equation. As an example, the unstandard-
ized coefficient for height when age is included in the model is 0.081. However, 
we saw in Table 14.3 that the unstandardized slope coefficient for age when it was 
the only predictor was 0.264. We will see in the next section that this coefficient 
will change again when sex is added to the model. Because slope coefficients are 
dependent upon the set of independent variables that happen to be in the prediction 
equation, the results of a regression analysis do not indicate in some absolute sense 
the predictive, theoretical, or clinical importance of a given variable.

Slope coefficients can also be sensitive to the presence of outliers, especially 
when sample sizes are small. In addition, coefficients reflect the range of values of 
the independent variables of the sample. Extrapolating or making predictions using 
values that lie outside those upon which the prediction equation was fitted is risky. 
In our example, the slopes for age and height were based on kids between the ages 
of 9 and 14. There is no guarantee that our prediction equation would provide an 
equally good fit for people outside this age range. Finally, even if the values of the 
independent variables are within the range, the prediction equation may not general-
ize to populations different from the one from which the sample that generated the 
equation was taken. In our example, there is no guarantee that our prediction equa-
tion would be accurate in predicting the FEV of children who smoke.

Table 14.7   Standardized slope coefficients for age and height 
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14.5 � Using Categorical Predictors

Independent variables are often quantitative, but they can be categorical as well. In 
this section, we add gender to our prediction equation and see if knowing a child’s 
sex as well as his or her age and height improves the prediction. In our sample of 9- 
to 14-year-olds, the boys, on average, are over 2 in. taller than the girls. Given that 
height and gender are related, do you think that including gender in our regression 
model will improve prediction?

Return to the Linear Regression dialog box and move Sex into the Independents: 
window. Run the analysis. The resulting Model Summary and Coefficients tables are 
displayed in Tables 14.8 and 14.9, respectively.

The Coefficients table now shows slope coefficients for three independent vari-
ables: age, height, and sex. The interpretation of the first two coefficients is similar 
to our interpretation of the slopes we have studied thus far, so see if you can answer 
the following questions:

Table 14.8   Model summary for regression using age, height, and sex to predict forced expiratory 
volume
 

14.5.1 � According to the Model Summary table, did the addition of sex 
seem to account for variability in FEV not accounted for by age and 
height? How can you tell?

14.5.2 � Did including sex reduce s? How can you tell?

14.5.3 � After controlling for sex and height, does FEV increase or decrease 
on average as children get older? By how much per year?

14.5.4 � After controlling for sex and age, what is the average impact on FEV 
of an increase of one standard deviation of height?

14.5.5 � Did the slope coefficients for age and height differ in this analysis 
from their values generated in Sect. 14.4? Why or why not?
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Age (years) and Height (inches) are quantitative variables. When we interpreted 
their slope coefficients, we took into account that the slopes were positive, and 
therefore, we knew that increases in the predictors were associated with increases in 
FEV. When a predictor is categorical, the slope is interpreted in terms of the numeri-
cal values assigned to the categories. Usually these values are 0 and 1. A positive 
slope means that changes from 0 to 1 are associated with increases in the dependent 
variable while a negative slope means that changes from 0 to 1 are associated with 
decreases in the dependent variable. In our analysis, we have a categorical variable, 
Sex. Its categories, female and male, were assigned the values of 0 and 1, respec-
tively. Its unstandardized slope coefficient is 0.049. Although the slope coefficient 
is positive, it makes no sense to conclude that increases in sex were associated with 
an average increase of 0.049 L of FEV. However, we can conclude that changes 
from 0 to 1were associated with an average increase of 0.049 L of FEV. Because 
girls were assigned the value of 0 and boys the value of 1, we can conclude that after 
controlling for age and height, the boys in the sample had an average FEV that was 
0.049 L greater than that of girls in the sample.

Including sex in the regression equation has the net effect that there are essen-
tially two parallel regression lines with the regression line for boys being 0.049 L 
higher than that for girls. If it is suspected that the two lines may not be parallel, 
then one equation for boys and a separate one for girls will be fitted, or as we will 
discuss later in this chapter, an interaction variable will be added to the prediction 
equation.

Dummy Variables  Sex is but one of many categorical variables that clinical 
researchers might include in regression analyses. For example, race (white versus 
nonwhite), marital status (married versus single), or smoking status (smoker versus 
nonsmoker) might be relevant predictors. When a categorical variable has more 
than two categories, however, it must be converted into a set of dummy variables. 
The number of dummy variables is equal to the number of categories minus 1. Each 
dummy variable represents a category and has two numerical values, 0 and 1.

For example, imagine a study of the effects of smoking on pulmonary func-
tion as measured by FEV. Patients are categorized as smokers, former smokers, or 
nonsmokers. As there are three categories, two dummy variables would be needed 
to represent the smoking status of each patient. One dummy variable would cor-

Table 14.9   Intercept and slope coefficients for regression using age, height, and sex to predict 
forced expiratory volume
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respond to one of the three categories, the other to one of the remaining two. In 
our example, we might name one of the dummy variables, Smoker, and use it to 
indicate whether each patient is a smoker or not. We might name the other dummy 
variable, Former Smoker, and use it to indicate whether each patient is a former 
smoker or not. As shown in Table 14.10, smokers would be assigned the value of 
1 on the first dummy variable and a 0 on the second. Former smokers would be 
assigned a 0 on the first dummy variable and a 1 on the second. The category not 
represented by its own dummy variable is called the reference category. Cases fall-
ing into the reference category are assigned a 0 on each of the dummy variables. 
In our example, the reference category is nonsmokers. Nonsmokers, being neither 
smokers nor former smokers, would be assigned a 0 on both dummy variables. The 
decision as to which category will be the reference can be arbitrary, but often it rep-
resents a group that was not exposed to a health risk or to a treatment.

In order to create these dummy variables in SPSS, we would need to use Trans-
form > Recode into Different Variables twice. We would create the variable 
Smoker by using it to give smokers a value of 1 and everyone else a value of 0. 
Then, we would use Transform a second time to create the variable Former Smok-
er, this time giving every former smoker a value of 1 and everyone else a value of 0.

Slope coefficients assigned to dummy variables are interpreted relative to the 
reference category. In our example, if the unstandardized slope coefficient for the 
dummy variable, Smoker, were − 0.25, then we would know that the average FEV 
of smokers was 0.25 L less than that of the average nonsmoker. If the slope coeffi-
cient for the dummy variable Former Smoker was − 0.10, then we would know that 
the average former smoker exhaled 0.10 L of air less than the average nonsmoker. 
You will have an opportunity to create dummy variables in one of the exercise 
questions.

Use Caution when Adding Predictor Variables  In theory, researchers can keep 
adding predictors until they are satisfied that they have accounted for as much vari-
ability in the dependent variable as possible. However, when including additional 
predictors, researchers keep the following in mind. First, investigators prefer to use 
independent variables that are uncorrelated with one another so that each predictor 
provides maximum unique information about the dependent variable. The more the 
independent variables are correlated with one another, the more redundant they are 
with one another, and thus, the less useful they are collectively as predictors. In fact, 

Table 14.10   Hypothetical unstandardized slope coefficients for two dummy variables (Smoker 
and Former Smoker) representing a categorical variable (smoking status) with three values

Dummy variable
Smoking status Smoker Former smoker Coefficient
Smoker 1 0 − 0.25
Former Smoker 0 1 − 0.10
Nonsmoker 
(reference)

0 0 –
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independent variables that are too highly correlated with one another can have slope 
coefficients that are not statistically significantly different from zero despite the fact 
that they are correlated with the dependent variable. For this reason, when the cor-
relation between two predictors is quite high, researchers consider using one or the 
other predictor, but not both.

Second, at some point adding more predictors is likely to capitalize on random 
variation present in the given sample and produce results that will not replicate 
across samples. To guard against generating unstable coefficients, it is often rec-
ommended that the sample be 10–20 times as large as the number of independent 
variables.

Third, blindly adding additional predictors may increase the value of adjusted 
R2, but is unlikely to generate a prediction equation that makes theoretical sense. 
Finally, scientists prefer theories that are parsimonious. The theory that uses the 
least number of causal factors to explain an outcome is generally preferred. In terms 
of multiple regression analysis, the goal is to discover the prediction equation that 
accounts for the maximum amount of variability with the fewest number of inde-
pendent variables.

14.6 � Testing Model Coefficients

If the data can be considered to have been randomly drawn from a larger popula-
tion, we will want to use our sample statistics to estimate corresponding population 
parameters. To do this, we follow procedures similar to those explained in the previ-
ous chapter for simple regression. However, in the case of multiple regression, we 
will have two or more predictors so that the population model becomes

� (14.3)

where yi is an actual value of y for the i th  member of the population, α  is the 
population y-intercept, 1 2, , kβ β β…  are the population slopes for k predictors, 
x x xi i ki1 2, …  are known, fixed values of each of the predictors, and iε  is a random 
value that is assumed to have a normal distribution with a mean of 0 and a standard 
deviation of .σ  Thus, the population parameters are ,α  1 2, , ,kβ β β…  and .σ  Our 
estimator for α  is the least squares value for the intercept, a. Our estimators for 

1 2, , kβ β β…   are the least squares values for the slopes b b bk1 2, … , respectively. 
Finally, σ  is estimated by the standard error of the estimate, s, which in the case of 
multiple regression is calculated as follows:

�
(14.4)

In this section, we see how to test hypotheses about population parameters and to 
generate their confidence intervals.

1 1 2 2 ,i i i k ki iy x x xα β β β ε= + + +…+ +

21
ˆ( ) .

1 i is y y
n k

= -
- - ∑
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Confidence Intervals for Coefficients  Return to the Linear Regression dialog box 
of our last analysis, choose Statistics and select Confidence Intervals in the Regres-
sion Coefficients area. In this example, we generate a 95 % confidence interval, 
so be sure that the correct level of confidence is displayed in the Level (%) win-
dow. When you are finished, the dialog box should be similar to the one shown in 
Fig. 14.9. Run the analysis.

The output is identical to that which we generated in Sect. 14.5 except that now 
the Coefficients table displayed in Table 14.9 include confidence intervals for our 
population parameters. These confidence intervals are shown in Table 14.11.

Study the confidence intervals and answer the following questions:
14.6.1  Which of the slope coefficients are significantly different from zero?
14.6.2 � Can we be at least 95 % confident that in the population from which 

the children of our sample were drawn, a child’s sex is associated with FEV 
independent of the child’s age and height?

14.6.3 � What is the 95 % confidence interval for the slope for height? Why 
is it important to know whether the value of zero is included in this 
interval?

Fig. 14.9   Requesting 95 % confidence intervals for the intercept and slope coefficients
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Testing Hypotheses About Coefficients  The ANOVA table, shown in Table 14.12, 
displays the results of a test of the null hypothesis that all of the population slopes 
are equal to zero. In our example, we have three predictors, so the ANOVA tests the 
null hypothesis that

� (14.5)

The alternative hypothesis is that one or more population slopes are not equal to 
zero.

Before we see whether we can reject the null hypothesis, take a moment to note 
the values for regression, residual, and total sum of squares in Table 14.12. Now 
consult Table  14.13 to compare these values to those generated by our analysis 
in which the prediction equation used only Age (years) or used Age (years) and 
Height (inches). The total sum of squares of the three analyses will of course be the 
same as the total is the variability in actual values of FEV. However, the regression 
and residual sum of squares differ across the three analyses.

1 2 3 0.β β β= = =

Table 14.11   Coefficients table displaying 95 % confidence intervals for the intercept and slope 
coefficients
 

Table 14.12   Testing the null hypothesis that all population slope coefficients are zero 
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Returning to the null hypothesis that the population slope coefficients for age, 
height, and sex equal zero, the probability that the values of the sample slopes 
would be obtained if the null hypothesis is true can be found in the column labeled 
Sig of Table 14.12.

The results of our ANOVA told us that it is extremely unlikely that the population 
slopes are all equal to zero. To determine which of the slopes is significantly dif-
ferent from zero, t-tests are conducted on each sample slope. For each test, the null 
hypothesis is that the population slope is equal to zero. The alternative hypothesis 
is that the population slope is not equal to zero. A t-test on the intercept is also 
conducted to test the null hypothesis that the population intercept is equal to zero 
against the alternative hypothesis that the intercept is not equal to zero. As with a 
simple regression, the results of the t-tests are reported in the Coefficients table ex-
cept this time the table displays t- and p-values for more than one slope. The table 
also contains confidence intervals for each of the parameters if confidence levels 
had been requested. Remember that the reported p-values are two-tailed. If the alter-
native hypothesis is either that the population parameter is greater than zero or that 
the population parameter is less than zero, the reported p-values need to be adjusted 
as explained in the previous chapter.

Table 14.13   Effect of adding independent variables on regression and residual sum of squares
Independent variable(s)
Age Age and height Age, height, and sex

Regression 52.242 111.413 111.595
Residual 116.206 57.035 56.853
Total 168.448 168.448 168.448

Study Table 14.13 and answer the following questions:
14.6.4  Which analysis has the greatest regression sum of squares? Why?
14.6.5 � The analysis with the greatest regression sum of squares also has the 

lowest residual sum of squares? Why?

14.6.6  According to Table 14.12, should we accept or reject the null hypothesis?
14.6.7 � Should we conclude that at least one of our three sample slopes is 

statistically significantly different from zero?

Refer back to Table 14.9, which displays the results of the t-tests of the slope 
coefficients for age, height, and sex, and answer the following question:
14.6.8 � Are the three slope coefficients statistically significantly different 

from zero? If not, which one(s) is/are not? How do you know?



38914.7 � Interaction Effects
�

14.7 � Interaction Effects

The regression models that we have been using assume that the relationship be-
tween a given independent variable and the dependent variable is the same across 
all levels of any other independent variables included in the prediction equation. 
When the relationship between an independent variable and a dependent variable is 
not the same across the values of another independent variable, statisticians say that 
there is an interaction effect between the two independent variables. The regres-
sion analyses that we have conducted thus far assume that there are no interaction 
effects. In this section, we see how to determine whether interaction effects are 
present.

Begin by setting up a regression analysis in which FEV (liters) is the dependent 
variable and Age (years) and Sex are the independent variables. Once you have set 
up the analysis, the Linear Regression dialog box should look similar to the one 
displayed in Fig. 14.10.

Click OK to generate the table of coefficients shown in Table 14.14.
These coefficients tell us that both the age and sex of the child contribute to FEV. 

FEV increases on average by 0.262 L for every one year increase in age, and boys 
on average have an FEV that is 0.337 L greater than girls.

This analysis assumes that the relationship between age and FEV is the same for 
both boys and girls. By assuming that there is no interaction effect between sex and 
age, the analysis leads to the conclusion that an increase in 1 year of age is associ-
ated with an increase of 0.262 L of FEV, regardless of whether the child is a boy or 
girl.

A common way to test the assumption that there is no interaction effect between 
two independent variables is to include in the prediction equation a variable that 
represents the interaction and determine whether the slope coefficient associated 
with this variable is significantly different from zero. In our example, the model 
becomes

� (14.6)

where yi is the actual value of FEV for the i th  member of the population, α  is the 
population y-intercept, x i1

 is the age of the i th  member of the population, x xi i1 2,  
is the interaction between age and sex for the i th  member of the population, and 

1β  and 
12β  are the slope coefficients for age and the interaction between age and 

sex, respectively. As before, 
iε  is a random value that is assumed to have a normal 

distribution with a mean of 0 and a standard deviation of .σ  The presence of a sig-
nificant interaction effect is then determined by testing the slope coefficient, 

12β .
To conduct this analysis, we must first create a variable that represents the inter-

action between the two independent variables. To do this, we create a new variable 
that is equal to the product of the two independent variables. In our example, we are 
interested in knowing whether the relationship between age and FEV varies by sex, 
so we begin by multiplying age and sex together.

1 1 12 1 2 ,i i i i iy x x xα β β ε= + + +
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Select Transform > Compute Variable to bring up the Compute Variable dia-
log box. Since we are multiplying one variable by the other, it would be common 
practice to call this variable, Age*Sex. Unfortunately, SPSS allows asterisks to be 
used in variable labels but not in variable names. Accordingly, enter Age_Sex in the 
Target Variable box, then after clicking Type & Label, enter Age*Sex in the Label 
area. Click Continue. In the Numeric Expression area, instruct SPSS to multiply 
Age (years) and Sex together. Click OK. These steps are displayed in Figs. 14.11 
and 14.12.

Table 14.14   Intercept and slope coefficients generated by regression using age and sex to predict 
forced expiratory volume
 

Fig. 14.10   Requesting a regression using age and sex to predict forced expiratory volume ( FEV)
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Return to the Linear Regression dialog box. In the Independent(s) area, replace 
Sex with Age*Sex. The dialog box should now be similar to the one shown in 
Fig. 14.13. Click OK.

Study the resulting output, in particular the coefficients table, reproduced in 
Table 14.15.

We can see from the table that the slope coefficients for both Age (years) and the 
interaction between age and sex, Age*Sex, are significant. The significant slope for 
Age (years) tells us that overall, FEV is positively associated with age: For every 1 
year increase in age, there is a 0.243 L increase in the FEV. The significant slope for 
the interaction effect however tells us that the slope that describes the relationship 
between FEV and age is not the same for boys and girls. We can also see this in the 
prediction equation.

According to the coefficients table, the prediction equation is as follows:

� (14.7)

To interpret the equation, remember that sex was coded such that girls were as-
signed a 0 and boys a 1. For girls, the equation becomes:

� (14.8)

0.092 0.243 ( ) 0.034 ( * ).FEV Age Age Sex= + +

0.092  0.243 ( ) 0.034 ( *0).FEV Age Age= + +

Fig. 14.11   Naming and labeling the variable representing the interaction effect between age and 
sex
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Fig. 14.12   Generating a variable representing the interaction effect between age and sex

 

Fig. 14.13   Generating a regression analysis to test for the presence of an interaction effect between 
age and sex
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Because the value of Sex for girls is zero, the prediction equation for girls simpli-
fies to:

� (14.9)

For boys, the prediction equation is as follows:

� (14.10)

Because the value of Sex for boys is 1, the prediction equation becomes:

� (14.11)

This in turn becomes:

� (14.12)

Thus, for both boys and girls, FEV is positively associated with age, but the increase 
is significantly greater for boys (slope of 0.277) than it is for girls (slope of 0.243).

14.8 � Exercise Questions

1.	 Conduct a simple linear regression analysis on the FEV (liters) of children 
between the ages of 9 and 14, inclusive, using Smoking Status as the predictor.

a.	 Complete the following prediction equation:

   FEV = _________ + __________ (Smoking Status).

b.	 What is the proportion of variability in the FEV that is accounted for by the 
children’s smoking status?

0.092 0.243 ( ).FEV Age= +

0.092 0.243 ( ) 0.034 ( *1).FEV Age Age= + +

FEV Age Age= + +0 0 0. . ( ) . ( ).092 243 034

0.092 0.277 ( ).FEV Age= +

Table 14.15   Intercept and slope coefficients generated by regressing the forced expiratory volume 
on age and the interaction effect between age and sex
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c.	 On average, what is the difference in the FEV between kids who smoked and 
kids who did not? _________ liter.

d.	 According to your analysis, which group had the larger average FEV—smok-
ers or nonsmokers? Does this finding make sense? Why or why not?

2.	 Add Age (years) to Smoking Status and run the multiple regression analysis.

a.	 Complete the following prediction equation:

FEV = _________ + __________ ( Smoking Status) + __________ ( Age)

b.	 After taking into account age, what is the average difference in the FEV 
between kids who smoked and kids who did not? _________ liter.

c.	 After adjusting for age, which group had the larger average FEV—smokers or 
nonsmokers? Does this finding make sense? Why or why not?

d.	 Given the results of your multiple regression analysis, what might explain the 
slope coefficient for Smoking Status in the simple linear regression of Ques-
tion 1?

e.	 What is the value of adjusted R2 ? How does it compare to the correspond-
ing value of the simple linear regression of Question 1? Does including age 
improve prediction?

3.	 Curious about the fitness and exercise habits of male and female volunteer fire-
fighters, a physician assistant student asked firefighters to report anonymously 
their sex, age, height, weight, and the number of days per week they exercised. 
She then converted height and weight into the body mass index (BMI). The data 
can be found in Firefighters.sav [2] as Sex [Sex] (variable 1; 0 = M, 1 = F), Age 
[Age] (variable 2; 1 = 18 to 29, 2 = 30 to 40, 3 = 41 to 50, and 4 = over 50), Fre-
quency of Exercise [TimesPerWeek] (variable 6), and Body Mass Index [BMI] 
(variable 7). Conduct a multiple regression analysis in which Body Mass Index 
is the dependent variable and Sex and Frequency of Exercise are the indepen-
dent variables.

a.	 Report below the unstandardized slope coefficient for each of the two 
predictors.

	 Sex: __________
	 Frequency of Exercise: __________
b.	 Based on her own experience as a firefighter, the researcher expected that the 

BMI of the average male firefighter who does not exercise would be above 
the normal range, that is, above 25. According to the results of your regression 
analysis, was she correct? How can you tell?

c.	 The researcher predicted that the BMI is negatively related to the frequency 
of exercise. In terms of slope coefficients, what is the null hypothesis associ-
ated with this expectation? What is the alternative hypothesis? Should the test 
of hypothesis be one- or two-tailed? Why?

d.	 Regarding the slope coefficient associated with the exercise hypothesis stated 
in 3c, should we accept or reject the null hypothesis? Why or why not?
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e.	 Which of the two predictors was more strongly related to the BMI? How do 
you know?

f.	 Using the unstandardized slope coefficient, describe in words the relationship 
between BMI and frequency of exercise.

g.	 In words, reexpress the relationship between BMI and frequency of exercise 
in terms of the standardized slope coefficient.

4.	 Repeat the regression analysis of Question 3, but this time include in the regres-
sion model dummy variables that will allow you to determine whether the aver-
age BMI of firefighters between the ages of 18 and 29 is significantly different 
from the average BMI of each of the remaining three age groups.

a.	 Given the number of independent variables, is the sample sufficiently large to 
justify conducting the analysis? Why or why not?

b.	 Does including age improve goodness of fit? How do you know?
c.	 According to this analysis, what is the average difference in the BMI between 

the two youngest age groups after adjusting for the other independent vari-
ables? Between the youngest and the oldest? Is either of these differences 
statistically significant?

Table 14.16   Coefficients table for question 5: regression of forced expiratory volume on age for 
children aged 10 years or younger
 

Table 14.17   Coefficients table for question 5: regression of forced expiratory volume on age for 
children older than 10 years
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5.	 Imagine that an investigator used the FEV data set to test the hypothesis that for 
children who do not smoke and who are 10 years old or younger, FEV increases 
with age at the same rate for boys and girls, but that for children who do not 
smoke but are over the age of 10, the rate of increase is greater for boys (SEX 
= 1) than for girls (SEX = 0). To test the hypothesis, the researcher conducted a 
multiple linear regression for each of the two age groups of children who do not 
smoke. The resulting coefficients tables are displayed in Tables 14.16 and 14.17.

a.	 What is the prediction equation for children who are older than 10 years of 
age?

FEV = _________ + __________ (Age) + __________ (Age*Sex).

b.	 What is the slope coefficient for age for boys who are older than 10 years of 
age?

c.	 Was the researcher’s hypothesis supported by the analysis? Why or why not?

Data Sets and References

1.	 FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics. 6th ed. Thomson Brooks/
Cole, Belmont, CA (2006). With the kind permission of Professor Bernard Rosner. For context, 
see Tager, I.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on 
pulmonary function in children. Am. J. Epidemiol. 110, 15–26 (1979)

2.	 Firefighters.sav obtained from: Marlow, C.E., Cappelletti, E.M., Holmes, W.H.: Relationship 
between availability of exercise equipment and BMI among volunteer firefighters. Unpub-
lished data, Le Moyne College, Syracuse (2006) 
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Abstract  This chapter deals with predicting a categorical response variable that 
has two categories. The chapter begins with using a single independent variable 
to make this prediction. It moves on to discuss the case where there are two cat-
egorical independent variables. Next comes a discussion of making predictions with 
a mixture of quantitative and categorical independent variables. Finally, adjusted 
odds ratios are considered followed by testing for an interaction effect between the 
independent variables.

15.1 � Overview

In Chap. 13, we considered predicting a quantitative response variable using simple 
linear regression with a single independent variable. In Chap. 14, we expanded those 
ideas to multiple regression where two or more independent variables were used to 
predict the value of a quantitative response variable. There are occasions, however, 
where the response variable may be categorical. For example, we may be interested 
in the relationship, if any, between a patient’s age and whether or not the patient 
has coronary heart disease. In such a case, the response variable could consist of 
two values, 0 if the patient does not have coronary heart disease, and 1 if the patient 
does have coronary heart disease. Fitting a simple linear regression line of the form

� (15.1)

where b represents the slope (the change in y for a one unit increase in x) and a 
represents the y-intercept (the value of y when x equals 0) to these data presents 
some difficulties. For instance, if the predicted value of y is not equal to 0 or 1, how 
do we know whether to predict that the patient has coronary heart disease or not? 
One possible fix is not to use the presence or absence of coronary heart disease as 
the predicted response variable, but rather the probability that the patient will have 
coronary heart disease. If we let p be the probability of having coronary heart dis-
ease, then the simple regression equation would be of the form.

� (15.2)

y a bx= + ,

p a bx= + .
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One problem with this approach is that it can generate values of p that are greater 
than 1 or less than 0. Since the probability of having coronary heart disease can 
neither exceed 1 nor be negative, we need to predict a dependent variable that can 
take on any positive or negative value, but from which we can derive probabilities. 
The solution is twofold. First, the regression equation is used to predict the odds that 
the patient has coronary heart disease. Recall from Chap. 6 that a probability can be 
expressed as odds through the following transformation:

� (15.3)

For example, if the probability that a patient has coronary heart disease is 0.20, the 
odds that she has the disease are 0.20 to 0.80 or 0.25. This means that the probability 
that she has the disease is one-fourth the probability that she does not have the dis-
ease. Recall also that the odds can be greater than 1. For example, if the probability 
that a second patient has coronary heart disease is 0.80, the odds that she has the 
disease are 0.80 to 0.20 or 4. The probability that she has the disease is four times 
the probability that she does not have the disease.

Using the odds as the dependent variable allows us to predict values greater than 
1. Unfortunately, odds cannot be negative, but their natural logarithms can. So the 
second step of our two-step solution is to use the regression equation to predict the 
natural logarithm of the odds that the patient has coronary heart disease. The natu-
ral logarithm of a number a is the power of the number e (approximately equal to 
2.71828) that gives a. For example, the natural logarithm of 10 is about 2.303 be-
cause 2 71828 102 303. . = . Natural logarithms can be positive or negative. If the odds 
of disease are 4, for example, the natural logarithm of those odds would be 1.386. If 
the odds of disease are 0.25, the natural logarithm of those odds would be − 1.386.

The natural logarithm of the odds is called the logit. It is the logit that will be 
predicted by the regression equation. Therefore, the resulting model will be

� (15.4)

The symbol ln stands for the natural logarithm. Once we have the equation of this 
line, we can use it to make predictions of the logit for any value of the independent 
variable, x. Once we have the logit for a given value of x, we can convert it to the 
odds’ original units to get the odds that a patient with a given value of x has the coro-
nary heart disease. From those odds, we can derive the probability that the patient 
has the disease with the following:

� (15.5)

ODDS =
−
p

p1
.

ln .
p

p
a bx

1−





= +

p =
ODDS

1+ODDS
.
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Alternatively, we can use the following equation to derive the probability directly 
from the logit:

� (15.6)

That is, to get p, we raise e to the power equal to a + bx (in other words, to the power 
equal to the logit), then divide by 1 + e to the power equal to a + bx.

Raising e to a given power can be easily done with the exponential function, ex, 
found on any scientific calculator. The Windows operating system also includes a 
scientific calculator. The function raises the number e to any power specified by the 
user. In this case, that power would be equal to the logit.

Once we have the predicted value of p, we can decide whether to classify the 
patient as having or not having coronary heart disease. Typically, if the predicted 
value of p is greater than 0.5, we would predict that the patient has coronary heart 
disease, and if the predicted value of p is not greater than 0.5, we would predict that 
the patient does not have coronary heart disease.

For technical reasons, the slope and intercept in the equation using the inde-
pendent variable to predict the logit cannot be obtained using the method of least 
squares that was used in simple and multiple linear regression. Another method, 
known as maximum likelihood, must be used. This method essentially uses trial-
and-error to obtain a solution. SPSS uses this method to obtain estimates of the 
slope and intercept coefficients.

15.2 � Logistic Regression with One Predictor

In this section, we will see how logistic regression is used to study the relationship 
between probability of disease and a single predictor. The disease will be coronary 
heart disease and the predictor will be the patient’s age.

Load the data file Coronary Heart Disease.sav [1] into SPSS. Our goal is to use 
Age [Age] (variable 3) to predict Coronary Heart Disease [CHD] (variable 4). Age 
contains a patient’s age in years, and Coronary Heart Disease contains a value of 0 
if the patient does not have coronary heart disease and a value of 1 if the patient does 
have the coronary heart disease. This coding scheme is typical of medical research. 
Risk factors are coded such that higher numbers reflect more of the factor, and the 
disease is coded such that its absence is assigned a 0 and its presence a 1. To con-
duct a logistic regression, select Analyze > Regression > Binary Logistic as shown 
in Fig. 15.1 to bring up the dialog box shown in Fig. 15.2. The term binary simply 
means that the categorical response variable has only two categories.

Place the quantitative independent variable (Age) in the Covariates box and 
the categorical dependent variable in the Dependent box. The resulting dialog box 
should look like the one shown in Fig. 15.2. Click OK to run the logistic regression. 
Output like that shown below will appear in an output window.

p
e

e

a bx

a bx
=

+

+

+1
.
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Fig. 15.2   Performing the logistic regression

 

Fig. 15.1   Requesting a binary logistic regression
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The Table 15.1 summarizes the number of cases in the study.
SPSS runs two models. The first contains no independent variables. This is 

called the beginning block. Three tables summarize the results of this model, the 
first of which is of interest to us and is displayed in Table 15.2.

The classification table shown in Table 15.2 tells us how accurately we can cat-
egorize our patients as having or not having coronary heart disease when we ignore 
the independent variable. We can see from the table that the majority of the patients 
(57 out of 100) did not have coronary heart disease. Consequently, if we were to 
ignore the age of each patient, we would most often be correct in classifying our 
patients if we categorize all 100 as being free of the disease. This would allow us to 
correctly categorize 57 % of our patients. Later in the output, we will see if taking 
age into account increases the accuracy.

The second model contains all of the independent variables. This is called 
Block 1.

Table 15.2   The model with no predictors 

Table 15.1   Case processing summary 
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The Table 15.3 gives the results of testing that all of the population slope coef-
ficients are 0. This is analogous to the ANOVA F-test in linear regressions. The null 
hypothesis is that all slope coefficients are 0, and the alternative hypothesis is that 
at least one slope coefficient is not equal to 0. The degrees of freedom are equal to 
the number of independent variables.

•	 The model summary shown in Table 15.4 includes an entry called − 2 log likeli-
hood. This value has to do with the maximum likelihood estimation process and 
is not very informative.

•	 Logistic regression does not have a quantity that is analogous to R2 in linear re-
gression. A number of quantities, called pseudo-R-squares, have been proposed 
to create such a quantity. The model summary gives two of the more popular 
ones. None of them is very reliable.

The classification table shown in Table 15.5 shows how well the logistic regres-
sion correctly classifies a subject as to whether or not he or she has coronary heart 
disease when the independent variable is taken into account. Comparing this clas-
sification table with the one in Block 0, we see that by taking the patients’ ages into 
account, the percentage of correct classifications increased from 57 to 74 %. The 
74 % value is found by adding the number of patients that were correctly classified 
(45 + 29 = 74), dividing that sum by the total number of patients classified (100) and 
multiplying that result by 100. The cut value footnote indicates that patients were 

Table 15.4   Model summary 

Table 15.3   Omnibus tests of model coefficients 
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classified as having coronary heart disease if their predicted values for p were above 
0.5.

Table 15.6 shows the variables in the equation and is analogous to the coeffi-
cients table in linear regression.

•	 The value in the B column in the row for the independent variable is the slope 
coefficient.

•	 The value in the B column in the row labeled Constant is the intercept.
•	 The values in the S.E. column are the standard errors for the slope and intercept 

coefficients, respectively.
•	 The values in the Wald column are the square of the B coefficient divided by the 

standard error. It is analogous to the individual t-test in simple and multiple re-
gression. The null hypothesis is that the population coefficient is equal to 0, and 
the alternative hypothesis is that the coefficient does not equal to 0.

•	 The df column shows that there is 1 degree of freedom associated with each Wald 
statistic.

•	 The Sig. column gives the p-value for each Wald test. The p-values are inter-
preted in the usual way.

•	 The Exp(B) gives the value of e raised to the power of the B coefficient. For the 
independent variable, the entry is the odds ratio and indicates the change in the 
odds for a 1-unit increase in the independent variable. The entry for the intercept 
are the odds (not the odds ratio) for patients for whom the independent variable 
is coded as 0. In our example, the intercept coefficient is not useful as age cannot 
be 0.

Table 15.5   Final classification table 

Table 15.6   Variables in the equation 
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Predicted Probabilities and Confidence Intervals for Odds Ratios  You should 
have found that the log of the odds that a 60-year-old patient will have coronary 
heart disease is − 5.309 + 0.111(60) or 1.351. This is the logit for a 60-year-old 
patient. As we explained earlier, we could then derive the model’s predicted prob-
ability that a 60-year-old patient will have coronary heart disease by raising e to 
the power of 1.351 to get the odds expressed in its original units (the odds would 
be about 3.8) and then calculate the probability from those odds. Alternatively, we 
could derive the predicted probability directly by raising e to the power of the logit 
and dividing the result by 1 + e raised to the power of the logit. Yet another option 
is to instruct SPSS to generate the predicted probabilities for us. In this section, we 
will see how. We will also see how to get confidence intervals for the odds ratios.

To get each patient’s predicted probability of having coronary heart disease, first 
set up the logistic regression in the usual manner. Then click Save. In the resulting 
dialog box shown in Fig. 15.3, choose Probabilities. Click Continue.

To get the confidence intervals, click Options to bring up the dialog box shown 
in Fig. 15.4. Now check CI for exp(B) and enter the desired confidence level in 
percent in the % box. In this example, enter 95 % if it is not already there. Click 
Continue followed by OK.

The predicted probabilities generated by the prediction equation will appear in 
the last column of the data file, a section of which is shown in Fig. 15.5. We saw 
earlier that the log of the odds that a 60-year-old patient will have coronary heart 
disease is 1.351. We can see from the column labeled PRE_1 that this value of the 
logit corresponds to a probability of 0.79344. Thus, the prediction equation predicts 
that a 60-year-old patient has about a 79 % chance of having coronary heart disease.

The confidence interval of the odds ratio will be appended to the Variables in the 
Equation table as shown Table 15.7.

Study the output of Block 1 and answer the following questions:
15.2.1  What is the logistic regression equation?
15.2.2 � What percentage of the patients is correctly classified as to whether 

or not they have coronary heart disease using this equation?
15.2.3  Is the patient’s age useful information?
15.2.4 � What is the change in the odds ratio for a one year increase in a pa-

tient’s age?
15.2.5 � What is the log of the odds that a 60-year-old patient will have coro-

nary heart disease?

15.2.6 � According to the prediction model, what are the chances that a 
69-year-old patient would have coronary heart disease?
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15.3 � Logistic Regression with Two Categorical Predictors

Our logistic regression consisted of a single predictor, and the predictor was quan-
titative. However, a logistic regression can include two or more independent vari-
ables and the independent variables can be categorical. In this section, we will look 
at an example of a logistic regression in which we have two categorical indepen-
dent variables. In the next section, we will look at an example that includes both 
categorical and quantitative variables. If the categorical variable has only two cat-
egories, such as gender, then Exp(B) gives the change in the odds for going from 
one category to the next. If the categorical variable has three or more categories, 

Fig. 15.3   Requesting probabilities

 

15.2.7 � According to this output, what is the 95 % confidence interval for the 
odds ratio associated with age?
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Fig. 15.4   Requesting confidence intervals

 

Fig. 15.5   Data file displaying predicted probabilities

 

Table 15.7   Confidence interval for the odds ratio 
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then things get a little bit trickier. In this section, we will stick to categorical vari-
ables with two categories.

Load the data file, Diabetes.sav [2]. This file was compiled by physician as-
sistant students who interviewed patients at a clinic for the uninsured in order to 
document the prevalence of diabetes mellitus type 2 and its risk factors among 
patients who have no health insurance. The dependent variable is Diabetes Status 
[Diabetes] (variable 8). It has two values. Following standard practice, a 0 was as-
signed if the patient reported that he or she did not have diabetes and a 1 if he or 
she did. Several risk factors were assessed. In our example, we will focus on two: 
Family History [Family] of diabetes (variable 9) and Hypertension [Hyperten-
sion] (variable 10). As is usually the case with research on risk factors, a 0 indicates 
the absence of the factor while a 1 represents its presence.

To run the regression, select Analyze > Regression > Binary Logistic to bring up 
the Logistic Regression dialog box. Enter the categorical dependent variable (Dia-
betes Status) in the Dependent box. Enter the two independent variables (Family 
History and Hypertension) in the Covariates box. The dialog box should now be 
similar to the one shown in Fig. 15.6.

Next we have to declare that the two predictors are categorical. To do this, click 
Categorical as shown in Fig. 15.6 to bring up the Define Categorical Variables dia-
log box. Move the two categorical variables to the Categorical Covariates area. For 
each variable, select whether the reference category will be the lowest numbered 
category ( First) or the highest numbered category ( Last). Last is the default choice. 

Fig. 15.6   Declaring categorical predictors

 

15.3 � Logistic Regression with Two Categorical Predictors�
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By convention, patients who are not exposed to the risk factor are defined as the 
reference group, so First is the appropriate choice for both variables. For each vari-
able, highlight it, choose First and click Change. Click Continue followed by OK 
to conduct the regression. These steps are displayed in Figs. 15.7 and 15.8.

The output is as follows. The Case Processing Summary in Table 15.8 is similar 
in structure to the one in our first example.

Fig. 15.8   Declaring hypertension as categorical

 

Fig. 15.7   Declaring Family as categorical
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Table 15.9 displays the output that explains the codes assigned by SPSS to the 
dependent variable and to the categorical independent variables.

•	 Tables 15.10 and 15.11 are the similar in structure to those in the first example. 
Notice in the Classification Table that when we ignore the independent variables, 
we can accurately categorize 72.5 % of the patients as to whether or not they had 
diabetes. The accuracy rate is as high as it is because the bulk of the subjects in 
the study do not have diabetes.

Table 15.9   Information on the variables in the model 

Table 15.8   Case processing summary 
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•	 Table 15.12 shows whether or not each independent variable would be signifi-
cant if it were entered in the model.

•	 Tables 15.13, 15.14, and 15.15 give the same type of information as in the first 
example.

•	 As in the first example, Table 15.16 displays the slope coefficients, their standard 
errors, the results of the test statistic, and the exponents of the slope coefficients. 
For family history of diabetes, we see that the slope coefficient is 1.554. The ex-
ponent of this (that is, e1.554) is the odds ratio, 4.731. The odds of having diabetes 
for a patient who has a family history of diabetes is about 4.7 times greater than 
those who do not have a family history of the disease. The p-value tells us that 
the odds ratio is significantly different from 1.

Table 15.12   Tests on variables not in the model 

Table 15.11   Wald test for the empty model 

Table 15.10   Predictions in the empty model 
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Table 15.16   Results for variables in the model 

Table 15.15   Final classification table 

Table 15.14   Model summary 

Table 15.13   Omnibus test of the model 
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•	 The entry for hypertension shows that the odds ratio for the second predictor is 
also significantly different from 1, and that the odds of having diabetes for a pa-
tient who has hypertension is about 5.5 times greater than those who do not have 
hypertension.

•	 The entry for Constant gives the odds for cases for whom all values of the inde-
pendent variables are 0. In research on risk factors, the cases not exposed to any 
of the risk factors are assigned a 0 for each factor. Consequently, the information 
in this row tells us the odds that a patient has diabetes if he or she has neither a 
family history of diabetes nor hypertension. These odds are sometimes referred 
to as the baseline odds. In our example, the log of the baseline odds is − 2.68, 
while the baseline odds are 0.069. If we were to convert the baseline odds into 
a probability, we would see that the chances that a patient from this population 
would have diabetes if he or she does not have a family history of diabetes and 
is not hypertensive is about 6.5 % (0.069/1.069 = 0.0645).

Using Odds Ratios and Baseline Odds to Estimate Odds of Disease  Once the 
odds ratio for each risk factor has been determined, the extent to which the exposure 
to various combinations of those factors increases the odds of disease can also be 
determined by multiplying together the odd ratios in question. For instance, accord-
ing to our example data, amongst patients who are uninsured, the odds of having 
diabetes increase almost five fold for those who have a family history of diabetes 
and over five times for those who are hypertensive. By how much do the odds 
increase for patients who are unfortunate enough to have been exposed to both risk 
factors? To find out, we multiply the two sets of odds ratios together and see that if 
patients have a family history of diabetes and are hypertensive, their odds of having 
diabetes increase by almost a factor of 26 (4.731 × 5.472 = 25.888).

The odds ratios can be combined with baseline odds to predict the odds of dis-
ease for cases exposed to various risk factors and combinations of risk factors. This 
is done by multiplying the baseline odds by the odds ratios in question. For in-
stance, in our example, the baseline odds are the odds of diabetes for patients who 
have no family history of diabetes and are not hypertensive. If we multiply those 
odds (0.069) by the odds ratio for family history (4.731), we see that the predicted 
odds of disease for patients who have a family history, but are not hypertensive are 
0.3264, a value that corresponds to a probability of about 0.25. If we multiply the 
baseline odds by the odds ratio for hypertension, we would get the odds of disease 
for patients who are hypertensive, but do not have a family history of diabetes.

Answer the following question:
15.3.1 � What would be the odds of disease for patients who have a family 

history of diabetes and are hypertensive?
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15.4 � Logistic Regression with Quantitative 
and Categorical Predictors

In this section, we will conduct another logistic regression. This time though we 
will use one quantitative and two categorical independent variables, and one of the 
categorical variables will have more than two categories. In the example, we will try 
to predict whether or not a patient died after having been admitted to an intensive 
care unit (the dependent variable) based on one quantitative and two categorical 
independent variables: the patient’s age (quantitative), the type of admission (cat-
egorical), and the patient’s level of consciousness at admission (categorical).

When using a categorical variable that has more than two categories, one of 
those categories must be selected as a reference category. In research on risk fac-
tors, the reference category is usually the one that represents the absence of the risk 
factor. Otherwise, it is usually the category that is most frequent in the data. The 
SPSS will calculate B coefficients for each of the other categories for a change from 
the reference category to that category. This means that Exp(B) will give the change 
in the odds for going from the reference category to the other category. The ratio 
of the Exp(B) values of two non-reference categories yields the change in the odds 
between two non-reference categories.

Load the data file ICU.sav [3] into SPSS. The file contains data on patients in an 
intensive care unit. The variable Vital Status [STA] (variable 2) contains a 0 if the 
patient survived and a 1 if the patient died. The variable, Age [AGE] (variable 3), con-
tains the patient’s age in years. The variable, Type of Admission [TYP] (variable 14), 
indicates the type of admission to the intensive care unit. A value of 0 indicates that 
the admission was elective, and a value of 1 indicates that the admission was an emer-
gency. The variable, Level of Consciousness [LOC] (variable 21), gives the level of 
consciousness when the patient was admitted to the intensive care unit. A value of 0 
represents no coma or stupor, a value of 1 represents a patient in a deep stupor, and 
a value of 2 represents a patient in a coma. We wish to use Age, Type of Admission 
and Level of Consciousness to predict whether or not a particular patient survived.

To run the regression, open the Logistic Regression dialog box, enter the cat-
egorical dependent variable (Vital Status) in the Dependent box, and the three in-
dependent variables (Age, Type of Admission and Level of Consciousness) in the 
Covariates box, as shown in Fig. 15.9.

To declare that Type of Admission and Level of Consciousness are categorical, 
click Categorical to bring up the Define Categorical Variables dialog box. Move 
the two categorical variables to the Categorical Covariates area. For each variable, 
select whether the reference category will be the lowest numbered category ( First) 
or the highest numbered category ( Last).

As we saw in the previous section, Last is the default choice. Since most patients 
come to an intensive care unit on an emergency basis, Last is the appropriate choice 
for Type of Admission. However, since most patients come to an intensive care unit 
conscious, choose First for Level of Consciousness and click Change. Click Con-
tinue followed by OK to conduct the regression. This is displayed in Fig. 15.10.
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A portion of the output is shown below. Interpretation of Tables 15.17 and 15.18 
of the output is similar to our previous example.

As in the previous example, the table displaying the codes of the categorical vari-
ables in Table 15.19 depicts the codes assigned by SPSS to the categorical variables. 

Fig. 15.9   Selecting the variables in the model

 

Fig. 15.10   Declaring the categorical variables in the model
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For a categorical variable with only two categories, the reference category is given 
a value of 0, and the other category is given a value of 1. For a categorical variable 
with three categories, SPSS creates two internal variables called dummy variables, 
each of which takes on either a 0 or a 1. For patients in the reference category, 
the SPSS sets both dummy variables to 0. The other categories get a value of 0 in 
one dummy variable and a value of 1 in the other. For categorical variables with 
more than three categories, the pattern is similar. For k categories, SPSS creates k-1 
dummy variables. The reference category always receives a value of 0 for all of the 
dummy variables. The other categories receive a value of 1 for one of the dummy 
variables and a value of 0 in all of the other dummy variables. The logic of creat-
ing dummy variables is similar to the logic we used in Chap. 14 on multiple linear 

Table 15.19   Encoding for the categorical predictors 

 

Table 15.17   Case processing summary 

Table 15.18   Values of the 
dependent variable
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regression except that there we would have had to create the dummy variables our-
selves by using Transform > Recode into Different Variables. Here SPSS creates 
the dummy variables automatically.

•	 The interpretation of Tables 15.20 and 15.21 is similar to the previous example.
•	 Table 15.22 shows whether or not each independent variable would be significant 

if entered in the model. Whether or not the dummy variable for its corresponding 

Table 15.21   Test of the empty model 

Table 15.20   Classification table for the empty model 

Table 15.22   Tests of variables not in the model 
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category would be significant if entered in the model is provided by the LOC(1) 
and LOC(2) entries.

•	 Tables 15.23, 15.24, and 15.25 give the same type of information as in the previ-
ous examples.

•	 From Table 15.26 we see that for every additional year in the age of a patient, the 
logit increases by 0.033, resulting in odds ratio of 1.034. The entry for the type 
of admission tells us that the odds of dying for patients who chose to be admitted 
are 0.06 of those for patients who were of emergency admissions.

Table 15.25   Final classification table 

Table 15.24   Final model summary 

Table 15.23   Test of final model 
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•	 The entry for LOC shows that, overall, the level of consciousness is a significant 
variable. There is no slope coefficient or an odds ratio because the variable has 
been replaced by the dummy variables in the model.

•	 LOC(1) and LOC(2) represent the difference between the reference category and 
the other two categories. LOC(1) is for deep stupor and LOC(2) is for coma. We 
see that the slope for LOC(1) is not significantly different from 0. This means 
that the odds ratio is not significantly different from 1, and not the extremely 
high value ( . )1 735 1010×  that is shown in the output. Thus, the odds of dying for 
a patient who is in a deep stupor are the same as for a patient who is neither in a 
stupor nor in a coma. However, the slope coefficient for LOC(2) is significantly 
different from 0, indicating that the odds of dying for a patient who is admitted 
in a coma are 11.28 times as high as for a patient with no coma or stupor.

•	 If you wanted the odds ratio for a patient arriving in a coma compared to a person 
arriving in a deep stupor, you would divide the odds ratio for a patient arriving 
in a coma by the odds ratio for a patient arriving in a deep stupor. In this case, 
since the odds ratio for a patient arriving in a deep stupor compared to a patient 
arriving in neither a deep stupor nor a coma is 1, the odds ratio comparing the 
odds of the coma patient against the odds of the patient in a deep stupor works 
out again to 11.28, indicating that a person in a coma is 11.28 times more likely 
to die than is a patient arriving in a deep stupor.

•	 The entry for Constant gives the odds for a patient for whom all values of the 
independent variable are 0. Since in this example a patient’s age cannot be 0, this 
value is uninteresting.

15.5 � Adjusted Odds Ratios

Logistic regression models often include several independent variables. One reason 
for this is to improve the fit of the model to the data. Another is to determine the 
relationship between a dependent variable and a given independent variable after 
controlling for the presence of other independent variables. In either case, the re-
sulting odds ratios are referred to as adjusted odds ratios, as their values take into 

Table 15.26   Tests of the individual variables in the equation 
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account or adjust for the relationships among the independent variables included 
in the model. As a consequence, the adjusted odds ratio for a given predictor may 
change as independent variables are added to or removed from the model. This is 
analogous to the way in which the slope coefficients in mutilple regression change 
as independent variables are added or removed. In order to see this, remove Type of 
Admission from our previous analysis of Sect. 15.4, and run the regression.

The Variables in the Equation table you generated in Block 1 should match the 
one shown in Table 15.27. Compare this table to Table 15.26.

15.6 � Testing for an Interaction Effect

As with multiple regression, logistic regression assumes that the effect of an inde-
pendent variable is constant across the values of the other independent variables in 
the model, that is, there are no interaction effects. This assumption can be tested 
in a logistic regression in the same way it is tested in a multiple regression. First, 
a new variable representing the interaction between the two independent variables 
of interest is created by multiplying the two independent variables together. The 
resulting variable is then added to the model. If the slope coefficient associated with 
the interaction term is significant, then we would have evidence that the effect of 
one of the independent variables depends on the value of the other. For example, 
a logistic regression investigating the effects of age and sex on vital status would 
assume that the effect of age is the same for both men and women. To test this as-
sumption, we would multiply age by sex to obtain a variable that represents the 
interaction between these two predictors, replace the independent variable Sex with 
this interaction term, and run the analysis. If the slope coefficient for the interac-
tion is significant, we would have evidence that the relationship between age and 
survival depends on the sex of the patient.

Answer the following questions:
15.5.1  Did the adjusted odds ratio for Age change?
15.5.2  How about the dummy variables for Level of Consciousness?

Table 15.27   Variables in the equation table with type of admission removed 
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As was the case in Chap. 14, Transform > Compute Variable would be used 
to create the interaction variable. In our example, the interaction variable might be 
called Age*Sex. The logistic regression would then be conducted in which Age and 
Age*Sex would be the independent variables and Vital Status the dependent vari-
able. You will get a chance to do this in the exercises.

15.7 � Exercise Questions

1.	 This exercise question uses the intensive care unit (ICU) data set.

a.	 Use Analyze > Descriptive Statistics > Crosstabs to create a contingency 
table comparing Vital Status [STA] (variable 2; 0 = Lived, 1 = Died) with His-
tory of Chronic Renal Failure [CRN] (variable 8; 0 = No, 1 = Yes). Calculate 
by hand the odds of a patient with a history of chronic renal failure dying. 
Calculate by hand the odds of a patient with no history of chronic renal fail-
ure dying. Divide the odds of a patient with a history of chronic renal failure 
dying by the odds of a patient of a person with no history of chronic renal 
failure dying. What is the resulting odds ratio?

b.	 Conduct a binary logistic regression using the categorical variable History of 
Chronic Renal Failure as the independent variable and Vital Status as the 
dependent variable. What is the odds ratio for chronic renal failure? How does 
it compare with your answer from Question 1a? What does this odds ratio tell 
you about the likelihood of survival of patients with a history of renal failure 
compared to patients with no history of renal failure?

2.	 This exercise question continues using the ICU data set.

a.	 Repeat the logistic regression of the previous question, but add Age, Sex, and 
Level of Consciousness as independent variables. Report the odds ratio for 
renal failure.

b.	 Compare the odds ratio you just reported with that of Question 1. How do 
they compare? Explain any difference that you see.

c.	 What is the 95 % confidence interval of the odds ratio for renal failure?
d.	 What is the predicted probability of death for a 69-year-old man who has a 

history of renal failure and arrives at the ICU in a coma?

3.	 Conduct a logistic regression on the ICU data using Age and the interaction 
between age and sex as the independent variables.

a.	 What is the slope coefficient for the interaction term?
b.	 What is the p-value for the interaction term?
c.	 According to the analysis, does the relationship between age and likelihood of 

survival depend on the sex of the patient? Why or why not?

4.	 A team of physician assistant students wanted to know whether the lack of flexibil-
ity is a risk factor for lower extremity injuries among male collegiate athletes [4]. 
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To find out, the research team measured the flexibility of male Division III ath-
letes at the beginning of the fall of season. Flexibility was measured by asking the 
athletes to reach towards their toes as far as possible while sitting on the floor with 
their legs outstretched in front of them. The distance each athlete was able to reach 
served as the measure of flexibility. The researchers then classified each athlete 
into one of three categories of flexibility: low (coded as 2), moderate (1), and 
high (0). At the end of the season, the team recorded the number of practice and 
game days that each athlete had missed during the season due to a lower extremity 
injury. Athletes who missed at least 1 day were classified as having been injured. 
The team conducted a logistic regression in which injury status was the dependent 
variable, and the level of flexibility was the independent variable. A fragment of 
output is below. The high flexibility category was the reference group. Study the 
output shown in Table 15.28 and then complete the following sentences.

a. The log of the odds (or the logit) of injury for an athlete who is highly flexible 
is _________ while the log of the odds (or the logit) of injury for an athlete 
who is low in flexibility is _________.

b. The odds of injury for an athlete who is low in flexibility are _________ times 
the odds of injury for an athlete who is high in flexibility.

c. The odds of injury for an athlete who is low in flexibility are _________ while 
the odds of injury for an athlete who is high in flexibility are _________.

d. The probability of injury for an athlete who is low in flexibility is _________ 
while the probability of injury for an athlete who is high in flexibility is 
_________.

e. One of the findings of this study tests the null/alternative (choose one) hypoth-
esis that athletes who are moderate in flexibility are no more likely to be 
injured than the athletes who are high in flexibility. This hypothesis should be 
accepted/rejected (choose one).

Data Sets and References

1.	 Coronary Heart Disease.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Logistic 
Regression. Wiley, New York (1989). (With the kind permission of Professors David W. 
Hosmer and Stanley Lemeshow)

Table 15.28   Output for Question 4 
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2.	 Diabetes.sav obtained from: Cassel, S., Mahoney, G., Troia, L., Volles, A., Henry, N.J., Holmes, 
W.H.: Prevalence of Risk Factors for Type 2 Diabetes Mellitus in a Population Served by a 
Health Clinic for the Uninsured. Unpublished data, Le Moyne College, Syracuse, New York 
(2010)

3.	 ICU.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, 
New York (1989). (With the Kind Permission of John Wiley and Sons, and Professors David 
W. Hosmer and Stanley Lemeshow)

4.	 Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and Reach 
Test as a Measure of Flexibility for Predicting Lower Extremity Injury in Division III Athletes. 
Unpublished data, Le Moyne College, Syracuse, New York (2010)

15  Logistic Regression
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Chapter 16
Survival Analysis
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Abstract  This chapter reviews the analysis of time to event data. Following a dis-
cussion of censored observations, the Kaplan–Meier estimator of the survival func-
tion, median and mean survival times, and comparing two survival functions with 
the log-rank test are reviewed. A second method of comparing survival functions 
is then introduced—Cox proportional hazards model. Topics include hazard and 
cumulative hazard functions, interpreting a hazard ratio, Cox regression, and testing 
for interactions among the covariates.

16.1 � Overview

In Chap. 13 we considered predicting a quantitative response variable using simple 
linear regression with a single independent variable. In Chap. 14 we expanded those 
ideas to multiple regression where two or more independent variables were used 
to predict the value of a quantitative response variable. Chapter 15 considered the 
models where the dependent variable was a categorical variable having two cat-
egories. In this chapter we will consider a very different situation which will give 
rise to a different kind of regression—survival analysis. Survival analysis is used in 
longitudinal studies to assess the impact of factors on the amount of time that passes 
between a patient’s entry into the study and the occurrence of a specified critical 
event. For example, survival analysis is used to study factors that affect the recur-
rence of a tumor following treatment, the length of hospital stay following surgery, 
or survival time following diagnosis.

Consider a hypothetical study that is interested in the survival time of patients 
having a certain type of cancer. Suppose the study ran from January 1, 2005 through 
December 31, 2010. After a patient had a confirmed diagnosis of having cancer, the 
patient would have been followed until death due to this type of cancer, until the end 
of the study, or until the patient was lost to follow-up (i.e., left the area, died due to 
some other cause, etc.). There would be a number of possible independent variables. 
Some might be age, alcohol use, and smoking.

The dependent variable in our hypothetical example is the time until death or 
survival time. However, measuring survival time (and more generally, time to 
event) can be somewhat complicated. Time is measured as the time from entry in 
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the study until either death, termination of the study, or the patient leaves the study. 
The complication is that while we will know the time of death, and thus the survival 
times of patients who die while the study is ongoing, we will not know the time of 
death of patients who are still alive at the end of the study or who leave the study 
while still alive. Because the time variable is not the actual time to death for every 
patient, we cannot use the descriptive methods we studied in the previous chapters 
that summarize quantitative data, and we cannot use multiple linear regression to 
determine the effect of various independent variables on survival time.

When the time to event for a patient is not known, that patient’s time measure-
ments are said to be censored. An observation that is censored is not to be confused 
with one that is missing. If an observation is missing for a particular patient, the 
variable of interest was not measured for that patient, and we have no information 
about the patient for that variable. With censored data, the variable of interest was 
measured, but only until the time the patient left the study while still not having 
experience the event, or until the study ended. Consequently, that patient’s data are 
not so much missing as they are incomplete. For example, in a survival time study, 
we would not know the survival time of a patient who left the study after 2 years of 
observation. However, we would know that the patient lived for at least 2 years. In 
this chapter, we will investigate descriptive and regression methods that have been 
designed for the analysis of censored time to event data.

16.2 � Kaplan–Meier Estimator of the Survival Function

To begin, we shall consider what is known as the survival function. Simply stated, 
the survival function, S(t), is the probability that a patient will survive longer than t 
time periods. We will consider what is known as the Kaplan–Meier estimator of the 
survival function. This estimator has the advantage that it accounts for the possible 
effect of censored patients on the probability of survival. It goes as follows:

a.	 Let =in  the number of patients known to be at risk at time period i.
b.	 Let =id  the number of patients who die at time period i.
c.	 Then for patients that are alive at the start of time period i, the estimated prob-

ability of surviving time period i given that 
id  dies during time period i is

� (16.1)

d.	 Then the estimated probability that a patient survives the first t time periods is

� (16.2)
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To illustrate, consider the following simple example. Suppose we have five pa-
tients who are diagnosed as having cancer. Table 16.1 gives their survival times and 
whether or not each time measurement is censored.

Since each patient is still alive until time period 4,

� (16.3)

So, for t = 1, 2, and 3,

� (16.4)

During the time period 4, there are five patients in the study and one of them (Pa-
tient 2) dies. Therefore,

� (16.5)

Consequently,

� (16.6)

Now there are four patients in the study. During the time period 5, a second patient 
(Patient 5) dies, giving

� (16.7)

and

� (16.8)

Now there are three patients remaining. During the time period 6, Patient 4 leaves 
the study, leaving two patients in the study. Therefore,

� (16.9)
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(4) 1 1 1 0.8 0.8.= × × × =S

5

4 1
0.75,

4

-
= =p

(5) 0.8 0.75 0.6.= × =S

6

2 0
1,

2

-
= =p

Patient Survival time Censored?
1 10 No
2 4 No
3 7 No
4 6 Yes
5 5 No

Table 16.1   Survival times 
of five hypothetical cancer 
patients
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and

� (16.10)

During time period 7, another patient (Patient 3) dies, giving

� (16.11)

and

� (16.12)

There is one patient left in the study up until time period 10. Therefore,

� (16.13)

Finally, that patient dies during time period 10, giving

� (16.14)

and

� (16.15)

The Kaplan–Meier estimator of the survival function can be displayed in a survival 
table or as a graph. Both as generated by SPSS for the above five patients are pre-
sented in Table 16.2 and Fig. 16.1, respectively. Let us look at the table first.

In Table 16.2, the outcome (death or censored) for each patient is indicated in 
the order in which it occurred. The first column lists the numerical order, the second 
column the time period in which the event occurred, and the third whether the event 
was censored. For example, the first two events occurred during time periods 4 and 
5, respectively, and were deaths. The third event occurred during time period 6 and 

(6) 0.6 1 0.6.= × =S

7

2 1
0.5,

2

-
= =p

(7) 0.6 0.5 0.3.= × =S

(8) (9) 0.3.= =S S

10

1 1
0,

1

-
= =p

(10) 0.3 0 0.= × =S

Table 16.2   Survival table of five hypothetical cancer patients 
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was the departure of a patient from the study. The fourth column presents the cumu-
lative proportion of the five patients who survived through the corresponding time 
period. For example, at the end of the time period 7, 0.30 or 30 % of the original five 
patients were still alive. These cumulative proportions constitute the estimated sur-
vival function, that is, Kaplan–Meier estimates of the probability of surviving over 
time. The fifth column presents each estimate’s standard error—a measure of the 
extent to which the estimate would vary across a large number of samples. The last 
two columns display running totals of patients who died and patients who remained 
in the study. Note that the fate of each patient is listed in the table. For this reason, 
the survival tables can be quite lengthy in studies of large numbers of patients.

Now let us look at the graphical display of the survival function, presented in 
Fig. 16.1. This plots the cumulative proportion of patients surviving at each time 
period and depicts a series of steps. The height of a step reflects the proportion of 
all patients enrolled in the study who survived to the end of the corresponding time 
period. Whenever a patient dies, the height of the step decreases. It is common 
practice to illustrate the censoring of a patient’s outcome with a cross at the time of 
censoring occurred.
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Fig. 16.1   Survival function of five hypothetical cancer patients
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Median and Mean Survival Times  The Kaplan–Meier survival function can be 
used to estimate mean and median survival times. The median survival time is the 
time period at the end of which 50 % of the patients enrolled have survived. As you 
can see in Fig. 16.2, the median survival time for our hypothetical data would be 
estimated to be 7 years. The estimate of the mean survival time is more complicated. 
It is found by calculating what is known as the “area under the curve,” that is, the 
total area under the steps of the graph of the survival function. The area under each 
step is the area of the rectangle that is formed. In our hypothetical example shown in 
Fig. 16.3, the leftmost rectangle has a height of 1 with a base of 4; the next rectangle 
has a height of 0.8 with a base of 1; the third rectangle has a height of 0.6 with a base 
of 2; and the rightmost rectangle has a height of 0.3 with a base of 3. The area under 
the curve is the sum of the areas of these four rectangles or 6.9 years.

Another Example with Real Data  Now that we have studied a hypothetical 
example of a survival function, let us look at a real one: the survival function of 481 
male and female patients from the Worcester Heart Attack Study who had experi-
enced one or more myocardial infarctions. The patients were observed following 
their most recent heart attack for an average of about 5 years. The file containing 
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Fig. 16.2   Median survival time: point in time at which the cumulative survival is 0.5. In this 
example, the median is 7 years.
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these data is called WHAS.sav  [1], and it consists of the following variables. Total 
Length of Follow-up from Hospital Admission (days) [LENFOL] (variable 13) 
gives the time in days from the date a patient entered the study until the end of the 
patient’s follow-up time. Status as of Last Follow-up [FSTAT] (variable 14) con-
tains a 1 if the patient died and a 0 if the patient was alive at the end of the follow-
up. Our goal is to compute and graph the Kaplan–Meier estimator for the survival 
function and to calculate the mean and median survival times.

Load the data file. Select Analyze > Survival > Kaplan–Meier. In the dialog box 
that opens, enter the survival time variable, Total Length of Follow-up from Hos-
pital Admission (days), in the Time box. Enter the variable that indicates whether 
the value for time is censored or not, Status as of Last Follow-up, in the Status 
box. Click Define Event. In the resulting dialog box, enter the value that indicates 
that the subject died (a value of 1) into the Single value box. Click Continue. These 
steps are displayed in Figs. 16.4 and 16.5.

Back in the Kaplan–Meier dialog, notice that FSTAT(?) has been replaced 
by FSTAT(1) in the Status box. This change can be seen in Fig. 16.6. Now click 
Options. In the resulting dialog, select Mean and median survival in the Statistics 
area if it is not already checked, and select Survival in the Plots area. So as not to 
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Fig. 16.3   Mean survival time: total area under the survival function. In this example, the mean 
equals 4.0 + 0.8 + 1.2 + 0.9 or 6.9 years.
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Fig. 16.4   Generating a Kaplan–Meier survival function: assigning the time and status variables, 
and opening the Define Event for Status Variable dialog

 

Fig. 16.5   Generating a Kaplan–Meier survival function: defining the event value
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generate a lengthy survival table, uncheck Survival table(s) in the Statistics area. 
When you have finished, the dialog box should look similar to the one in Fig. 16.7. 
Now click Continue followed by OK.

The output will consist of two tables and a plot of the survival function. The first 
table is the Case Processing Summary, shown in Table 16.3. The first column re-
ports the sample size. The second column displays the number of patients who died. 

Fig. 16.6   Generating a Kaplan–Meier survival function: opening the Options dialog

 

Fig. 16.7   Generating a 
Kaplan–Meier survival func-
tion: requesting mean and 
median survival times and 
a survival plot
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The last two columns report the number and percentage of patients who were alive 
at the last follow-up observation.

The second table, shown in Table 16.4, reports the mean and median survival 
times and their 95 % confidence intervals.

The plot of the survival function is displayed in Fig. 16.8. Note that the survival 
function does not go to zero, indicating that the longest survival times were from 
the censored data.

16.3 � Comparing Two Survival Functions

In clinical research, the survival functions of two groups of patients are often com-
pared. As an example, we will compare the survival times of patients whose myo-
cardial infarctions (MIs) were their first (first MI group) to the survival times of 
patients with a history of MIs (recurrent MI group).

Select Analyze > Survival > Kaplan–Meier to open the dialog box shown in 
Fig. 16.9. Enter the group identifying the variable, MI Order [MIORD] (variable 
7), in the Factor box. To determine whether the survival functions of the two groups 

Answer the following questions:
16.2.1  How many patients had died by the last follow-up observation?
16.2.2  What is the mean survival time?
16.2.3  What is the median survival time?
16.2.4  What is the 95 % confidence level for the median?
16.2.5  What is the area under the curve? __________ days.
16.2.6 � What percent of the sample lived for at least 2335 days? 

__________ %.

Table 16.4   Mean and median survival times in days of 481 patients who had experienced at least 
one myocardial infarction
 

Table 16.3   Case processing summary for a Kaplan–Meier survival analysis 
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Fig. 16.8   Survival function of 481 Patients who had experienced at least one myocardial infarction

 

Fig. 16.9   Comparing two survival functions: assigning a group identifying variable or factor, 
and opening the Compare Factor dialog
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are statistically significantly different, click Compare Factor to bring up the dialog 
box shown in Fig. 16.10. Select Log rank, a test statistics that tests the null hypoth-
esis that the two population survival functions are the same. Click Continue and 
then OK.

The output will include the following tables. The Case Processing Summary 
table (Table 16.5) displays the sample size of each of the two groups—the number 
of deaths within each group and the number of cases within each group that were 
censored.

The Means and medians for survival time table (Table 16.6) presents the infor-
mation about the mean and median survival times of the two groups.

The Overall Comparisons table (Table 16.7) displays the results of the log rank 
test (also known as the Mantel-Cox test). This tests the null hypothesis that the two 
population survival functions are the same.

The output will also include a plot similar to the one shown in Fig. 16.11. (We 
added text boxes to identify more clearly the survival functions of the two groups.) 
We can see that patients with recurrent MI die more quickly.

Fig. 16.10   Comparing two survival functions: selecting the log rank test

 

Table 16.5   Case processing summary 
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Table 16.7   Results of the log rank test 

Table 16.6   Mean and median survival times of first and recurrent MI patients 
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Fig. 16.11   Survival functions of First MI and Recurrent MI patients. ( MI myocardial infarction)
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16.4 � Hazard Functions, the Proportional Hazards Model, 
and Relative Risk

We now turn to the estimation of relative risk. This begins with the introduction of 
what is known as a hazard function.

Hazard Functions  Generally speaking, the hazard function, h(t), is the instanta-
neous rate at which patients are dying at time t. The connection with the survival 
function goes as follows. If at time t no one has died, then at that point in time the 
graph of S(t) will be flat and h(t) will equal to 0. This means that there is no risk of 
dying at time t. On the other hand, if at time t many people die, then at that point in 
time, the graph of S(t) will drop rapidly and the value of h(t) will be large, indicating 
that the risk of dying at time t is high.

Cumulative Hazard Functions  Often a graph that displays the total hazard expe-
rienced up to time t is generated. This is called the cumulative hazard function, 
H(t). To generate a graph of the cumulative hazard function in SPSS, select Ana-
lyze > Survival > Kaplan–Meier > Options, and as shown in Fig. 16.12, check Haz-
ard in the Plots area, and then click Continue. Back in the Kaplan–Meier dialog, 
click OK.

The resulting graph is shown in Fig. 16.13. For patients with a history of MI, the 
cumulative hazard increases quickly at first, increases at a lower, but steady rate 
thereafter, and then levels off. For patients without a history of MI, risk of death 
rises less sharply at first, and then mirrors the increases in risk experienced by the 
patients with recurrent MI.

The Proportional Hazards Model, Hazard Ratios, and Relative Risk  Typically, 
researchers are interested in determining whether the exposure to a risk factor or to 
a treatment regimen affects the risk of dying. For example, a cohort study of cardiac 
patients might be conducted to determine if the risk of death is higher for patients 
who have a history of MI as compared to those whose MI is their first, or a random-
ized controlled trial might be conducted to determine if a new treatment reduces the 
risk of death as compared to a standard treatment. Determining whether the expo-
sure to a risk factor is related to risk of death can be done by comparing the hazard 
function of the group exposed to the factor to the group that has not been exposed. 
Similarly, assessing the efficacy of a new treatment can be done by comparing the 
hazard function of patients exposed to a new treatment to a control group that has 
received the standard treatment.

16.3.1 � What are the mean and median survival times for a patient with no 
history of myocardial infarction?

16.3.2  For a patient with recurrent MI?
16.3.3  Do the two survival functions significantly differ?
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The simplest model for comparing hazard functions is known as the proportional 
hazards model. If 1( )h t  is the hazard function of the nonexposed or control group, 
then this model assumes that 1( )h t  is proportional to 0 ( )h t  for all t, or

� (16.16)

for all t. In our example of cardiac patients, the exposed group would be those 
patients with a history of MI, and their hazard function would be 

1( )h t . The non-
exposed group would be those patients with no history of MI, and their hazard 
function would be 

0 ( )h t . If we were to assume proportional hazards, then we would 
assume that the ratio of the hazard functions of the two groups of cardiac patients 
is the same over time.

The simplest proportional hazards model is one that only makes use of the fact 
that a patient is in either the exposed group or the control group. As applied to our 
example, the model looks like the following. Let 

0 ( )h t  be the hazard function for 
patients with no history of MI. Let 1=ix  if the ith patient has a history of MI and 0 
if not. Then the proportional hazards model will be

� (16.17)
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Fig. 16.12   Requesting a 
cumulative hazard function
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where e is a constant approximately equal to 2.71828 and β  is an unknown param-
eter that needs to be estimated. Let us take a closer look at this equation.

Note that if the ith patient has a history of MI, then the equation becomes

� (16.18)

If we divide both sides of the equation by 0 ( )h t , then

� (16.19)

The quantity eβ is the ratio of the hazard associated with the patients with recurrent 
MI to the hazard associated with the patients with their first MI. This ratio is called 
the hazard ratio. A hazard ratio greater than 1 indicates that the exposure is associ-
ated with increased risk, while a hazard ratio less than 1 indicates that exposure is 
associated with decreased risk. In this situation, it turns out that the hazard ratio is 
also the relative risk of the exposed group compared to the control group.
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This model was developed by David Cox in 1972, and it is commonly referred to 
as the Cox proportional hazards model. You may have recognized that e is the base 
of the natural logarithm and eβ  is an antilog or exponent. According to the Cox mod-
el, we obtain the hazard ratio or relative risk by first estimating the value of β  and 
then raising the base of the natural logarithm by this value. β  is a population slope 
coefficient. The process of estimating it is commonly referred to as Cox regression.

16.5 � Cox Regression with One Covariate

In this section, we will see how Cox regression is used to estimate the value of β  by 
investigating the risk of death for cardiac patients who have a history of MI relative 
to the risk of death for cardiac patients who have experienced their first MI. In the 
next section, we will again estimate the relative risk, but after taking into account 
each patient’s age.

Select Analyze > Survival > Cox Regression to bring up the dialog box shown 
in Fig. 16.14. Enter the survival time variable, Total Length of Follow-up from 
Hospital Admission (days), in the Time box. Enter the censoring variable, Status 

Fig. 16.14   Generating a Cox regression: assigning the time and status variables, and opening 
the Define Event for Status Variable dialog
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as of Last Follow-up, in the Status box. Click Define Event and enter the value that 
indicates that a patient’s datum was not censored (a value of 1) into the Single value 
box, as shown in Fig. 16.15. Click Continue.

We wish to compare the risk of death of two groups of patients. In the jargon of 
Cox regression, the variable that distinguishes one group from the other is called a 
covariate. A covariate is analogous to an independent variable in linear regression, 
and like an independent variable, can be either categorical or quantitative. Our co-
variate is MI Order and it is categorical. So back at the Cox Regression dialog box, 
enter the covariate in the Covariates box. Then click Categorical to bring up the 
Define Categorical Covariates dialog box, and move MI Order to the Categorical 
Covariates area. As is customary, we wish to make the value of 0 (i.e., no history of 
MI) the reference category. Therefore, check First in the Change Contrast area and 
then click Change. Now click Continue. These steps are displayed in Figs. 16.16 
and 16.17.

Back in the Cox Regression dialog, notice that MIORD in the Covariates area 
has now changed to MIORD(Cat). We are now ready to generate the regression. But 
first let us ask SPSS to display the confidence interval for the relative risk estimate. 
Click Options and select CI for exp(B). The confidence level can be set to 90, 95, 

Fig. 16.15   Generating a Cox Regression: defining the event value
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Fig. 16.17   Generating a Cox Regression: identifying the categorical variable and reference 
category

 

Fig. 16.16   Generating a Cox Regression: identifying the predictor variable and opening the 
Define Categorical Covariates dialog

 

16.5 � Cox Regression with One Covariate�
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or 99 %. Set it to 95 % if it has not already been selected. When you have finished, 
the dialog will be similar to the one in Fig. 16.18. Click Continue and OK to run 
the regression.

You will see results like the following in an output window. We shall give a brief 
explanation of what is there. The Case Processing Summary (Table 16.8) shows that 
there were 481 patients in the study. Of those, 249 died before the end of the study, 
and 232 were still alive at the last follow-up observation.

Categorical Variable Codings (Table  16.9) shows the internal coding of the 
group identifying variable.

Table 16.8   Case processing summary for a Cox regression 

Fig. 16.18   Generating a Cox regression: requesting a 95 % confidence interval for the hazard ratio
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Estimation is done by an iterative method known as maximum likelihood. This 
is the same method that was mentioned in the chapter on logistic regression. The 
Omnibus Tests of Model Coefficients table for the beginning block (Table 16.10) 
shows the starting value for the process.

Table 16.11 displays the Omnibus Tests of Model Coefficients at Block 1. This 
version of the table is analogous to the ANOVA table in regression. A small p-value 
for the Overall (score) portion of the table indicates that the population slope coef-
ficient is not zero.

The Variables in the Equation table (Table 16.12) is analogous to the Coefficients 
table in the regression.

Table 16.11   Omnibus tests of model coefficients for a Cox regression at block 1 

Table 16.10   Omnibus tests 
of model coefficients for a 
Cox regression at Block 0

 

Table 16.9   Categorical variable codings for a Cox regression in which the categorical variable is 
myocardial infarction order (MIORD)
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•	 B is the estimate of the parameter β , and is 0.446 with a standard error ( SE) of 
0.128.

•	 The Wald statistics is like that in logistic regression. It is the square of B/SE, and 
it has a chi-square distribution with 1 degree of freedom. The null hypothesis is 
that 0=β , and the alternative hypothesis is that 0≠β .

•	 The p-value ( Sig.) indicates that there is strong evidence that 0≠β .
•	 Exp(B) = 1.562. This is the relative risk. This shows that a patient with a history 

of MI is about 1.6 times more likely to die than a patient with no history of MI.
•	 The 95 % confidence interval for the relative risk ranges from 1.215 to 2.008.

Covariate Means (Table 16.13) gives the sample mean of the independent variable. 
This quantity is of little interest to us.

16.6 � Cox Regression with Two Covariates

We now turn to a discussion of the inclusion of more than one covariate in the 
model. Specifically, we will see what happens in our running example if we include 
in the model the age of the patient on entry in the study. The patients’ ages can be 
found in Age (years) [AGE] (variable 2). The new model will be

� (16.20)

Return to the Cox Regression dialog box and move Age (years) to the Covariates 
box. The resulting dialog box should look like the one shown in Fig. 16.19. Click 
OK to run the regression.

The resulting output is pretty much the same as that shown in Sect. 16.5. The 
main difference is in the Variables in the Equation table. It is shown in Table 16.14.

•	 Note that the value of B for MI Order changed from 0.446 to 0.422. As was the 
case in multiple regression and logistic regression, each B coefficient is sensi-
tive to the presence of the other covariates. Thus, once the contribution of Age 

1 2 ( )
0( ) ( ) .+= ix age

ih t h t eβ β

Table 16.13   Mean of 
covariate predictor in a Cox 
regression

 

Table 16.12   Variables in the equation for a Cox regression 
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(years) is accounted for, the risk of dying for an MI patient with a history of MI 
relative to that of an MI patient with no such history decreases to 0.422e   or 1.525.

•	 The value of B for the patient’s age is 0.044. The Wald test shows that this value 
is significantly different from 0. In addition, Exp(B) is 1.045, indicating that the 
relative risk of dying increases by a factor of 1.045 for every additional year in 
the age of the patient at the time of entry into the study. Note that Exp(B) is the 
estimate of eβ  in the proportional hazards model. The value of Exp(B) can be 
used to obtain the relative risk for, say, a change in age of 2 years. This works as 
follows.

� (16.21)( )2Risk at year 2 Risk at year 2 Risk at year 1
.

Risk at year 0 Risk at year 1 Risk at year 0
= × = =e e eβ β β

Fig. 16.19   Adding a second predictor to a Cox regression

 

Table 16.14   Variables in the equation for a Cox regression with two predictors 
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If we follow the same line of reasoning, we would obtain the relative risk for a 
change in age of 5 years by raising Exp(B) to a power of 5. So, the relative risk for 
an increase in age of 5 years would be 5(1.045) 1.246= . This means that of two 
patients who at enrollment differed in their ages by 5 years, the risk of death for 
the older patient is estimated to be about 25 % higher than the risk of death for the 
younger.

16.7 � Interaction Effects

The Cox regression assumes that the impact of each covariate is independent of the 
other covariates in the model. For example, the previous analysis assumes that the 
impact of age on the risk of death does not depend on whether or not the patient 
has a history of MI. This assumption can be assessed by testing for the presence 
of an interaction. We first encountered the notion of an interaction in regression in 
Chap. 14. There we learned that an interaction is tested by creating an interaction 
variable that is the product of the two variables of interest, entering the interaction 
variable into the regression model as a predictor, and determining if its slope coeffi-
cient is significantly different from zero. In this section, we will test for the presence 
of an interaction between age and history of MI.

Select Transform > Compute Variable to bring up the Compute Variable dialog 
box. Enter Age_MIOrder in the Target Variable box, and then click Type & Label. 
Give the new variable a label of Age*MI Order and click Continue. Back in the 
Compute Variable dialog, enter Age*MI Order in the Numeric Expression box. 
Click OK to create the interaction variable. These steps are shown in Figs. 16.20, 
16.21 and 16.22.

Select Analyze > Survival > Cox Regression. Set up the regression as in 
Sect. 16.6 with the exception that MI Order is replaced by Age*MI Order. The 
resulting dialog box should look like the one shown in Fig. 16.23. Click OK to run 
the regression.

We will focus on the Variables in the Equation table, shown in Table 16.15.
From the p-values, we see that both Age (years) and Age*MI Order have the 

slope coefficients that are highly significantly different from zero. The interpreta-
tion of the slope coefficients goes as follows. The equation is

� (16.22)0.042* 0.006* *  .+Age Age MI Order

Answer the following question.
16.6.1  What would be the relative risk for an increase in age of 7 years?



44716.7 � Interaction Effects�

Recall that MI Order was coded 0 for a cardiac patient with no history of MI, and 1 
for a cardiac patient having a history of MI. So for a patient with no history of MI, 
the equation becomes

� (16.23)0.042* .Age

Fig. 16.20   Fragment of the Compute Variable dialog: naming the interaction variable

 

Fig. 16.21   Labeling the 
interaction variable
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Fig. 16.23   Adding an interaction variable to a Cox regression

 

Fig. 16.22   Generating the interaction variable
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Since Exp(B) = 1.043, the relative risk is 1.043 for every additional year in the age 
of a patient with no history of MI.

For a patient with a history of MI, the equation becomes

� (16.24)

For a patient with a history MI, the value of Exp(0.048) is the product of the Exp(B) 
values given in the table, or (1.043)(1.006) = 1.049. This means that the relative risk 
for a patient with a history of MI is 1.049 for every additional year in age.

16.8 � Exercise Questions

These exercise questions use the Framingham Heart Study data set, Framingham.
sav [2]. The variables in the data set include:

•	 Gender [sex] (variable 1; 0 = Male, 1 = Female).
•	 Serum Cholesterol [scl] (variable 4).
•	 Coronary Heart Disease [chdfate] (variable 5; 1 = Yes, 0 = No). This is the cen-

soring variable for the event, coronary heart disease.
•	 Follow-up in Days [followup] (variable 6). This is the time to event variable.
•	 Body Mass Index [bmi] (variable 8).

1.	 Open the data file and draw the Kaplan–Meier estimator survival function com-
paring the survival times (or in this context, the times to event) of males against 
females. There are over 4000 subjects in this study. So, avoid producing the sur-
vival table by unchecking Survival table(s) in the Statistics area of the Options 
dialog box. Include in the analysis a test of the null hypothesis that the two popu-
lation survival (time to event) functions are equal.
a.	 Describe the survival (time to event) function.
b.	 Do men and women significantly differ in the distribution of their survival 

times? How do you know?
c.	 What are the mean and median survival times for male patients?

2.	 Use Cox regression to determine the risk of a man developing coronary heart 
disease relative to the risk of a woman developing coronary heart disease. How 

0.042* 0.006* 0.048* .+ =Age Age Age

Table 16.15   Variables in the equation table for a Cox regression testing for the presence of an 
interaction
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much more likely is it for a man to develop coronary heart disease relative to a 
woman?

3.	 Use Cox regression with Gender, Serum Cholesterol, and Body Mass Index as 
predictors of follow-up time.
a.	 Are the B coefficients for each of these covariates significantly different from 

zero?
b.	 What is the risk of a male subject developing coronary heart disease relative 

to that of a female subject?
c.	 What is the change in risk for a one unit increase in BMI?
d.	 What is the change in risk for a one point increase in serum cholesterol?
e.	 What is the change in risk for a 10-point increase in serum cholesterol?

4.	 Using the Framingham data, a researcher found an interaction between Age (in 
years) and Gender. The results of the analysis are included in Table 16.16.
a.	 How did the researcher create the variable, Age_Gender?
b.	 What is the relative risk for each additional year in the age of a male?
c.	 What is the relative risk for each additional year in the age of a female?

Data Sets and References

1.	 WHAS.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Survival Analysis. Wiley, 
New York (1999). (With the kind permission of John Wiley and Sons, and Professors David W. 
Hosmer and Stanley Lemeshow)

2.	 Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers. 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean 
Coady, National Heart, Blood, and Lung Institute)MI myocardial infarction

Table 16.16   Output for Question 4 
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Regression Analysis of Count Data
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Abstract  This chapter reviews negative binomial regression. Often used to docu-
ment incidence and mortality rates, this form of regression generates a rate ratio to 
assess the degree of relationship between a predictor variable and the frequency 
with which an event occurs over a given period of time. The chapter begins with a 
discussion of the case of a single predictor variable, and then moves on to a discus-
sion of two or more predictors, and of testing for the presence of interactions. As 
an example of the difference between cumulative incidence and incidence rate, the 
concept of person-years, and the use of an offset variable, the chapter concludes 
with an application of negative binomial regression to count data collected over 
unequal follow-up times.

17.1 � Overview

In Chap. 13 we considered predicting a quantitative response variable using simple 
linear regression with a single independent variable. In Chap.  14, we expanded 
those ideas to multiple regression where two or more independent variables were 
used to predict the value of a quantitative dependent variable. Chapter 15 consid-
ered logistic regression models where the dependent variable was a categorical vari-
able having two categories, and Chap. 16 applied Cox regression to survival data. 
In this chapter, we will consider a kind of regression that is appropriate when the 
dependent variable consists of count data. The number of doctor-visits made by pa-
tients during a 2-week period or the number of new cases of coronary heart disease 
that occur in a year are examples of count data. Because the response variable is the 
frequency with which an outcome occurs per some unit of time, this kind of regres-
sion is useful for studying the rate at which an outcome occurs, such as the annual 
incidence of a given disease.

Several regression models can be used when the dependent variable is a count 
taken over a fixed period of time. The one we will consider in this chapter is known 
as negative binomial regression. This kind of regression is so named because it is 
based on the assumption that the count variable is distributed as a random variable 
known as a negative binomial. There is an important special case of negative bino-
mial regression that is applicable in a situation when it is possible to safely assume 
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that the mean and variance of the frequency of the outcome variable are equal. In 
such a case, the count variable can be assumed to be distributed as a Poisson ran-
dom variable, and a technique known as Poisson regression can be used. The steps 
in conducting a Poisson regression and the manner in which its output are inter-
preted are very similar to those employed with negative binomial regression, so we 
will not discuss Poisson regression in this chapter.

Let the observed count for patient i be denoted by .iy  We assume that there are 
k predictors, 1 2, , ,…i i kix x x  that are observed for patient i. The negative binomial 
regression model fits the following equation:

� (17.1)

The ln( )iy  term is the natural logarithm of the count. We first encountered the use 
of the natural logarithm in regression in Chap. 15. There we learned that logistic 
regression is used to predict the logit, the natural logarithm of the odds of a binary 
event, such as the log of the odds that a patient has coronary heart disease. The rea-
son why the predicted outcome in negative binary regression is the log of the actual 
count is similar to the reason that the logit is the predicted outcome in the logistic 
regression. Taking the log of the counts produces values which can be any real num-
ber. This eliminates the issue of how to handle predicted counts that are negative.

As in logistic regression, the parameters in a negative binomial regression are 
β s, that is, the population intercept coefficient and the population slope coefficients 
associated with each of the independent variables. The goal of negative binomial 
regression is to use sample data to obtain estimates of the β s. As is the case in 
logistic regression, an iterative procedure known as the method of maximum likeli-
hood is used to obtain these estimates. However, in logistic regression, the expo-
nents of predicted outcome variables and intercepts are odds, and the exponents of 
slope coefficients are odds ratios. In negative binomial regression, the exponents 
of predicted outcome variables and intercepts are rates, and the exponents of slope 
coefficients are rate ratios.

17.2 � Negative Binomial Regression with One Predictor

In this section, we will conduct a negative binomial regression to determine if the 
rate at which Australian patients visit their doctors is related to the patients’ general 
health. The data come from a study of 5190 adult Australians on whom information 
about several health-related factors was collected, including the number of times 
they each had visited a doctor in a 2-week period.

Calculating a Rate  Before we conduct the regression, it might be helpful to first 
take a closer look at what a rate is. In medical research, a rate usually refers to the 
number of times an outcome of some kind occurs over a given unit of time. In our 
example, the outcome is the number of visits to the doctor and the unit of time is 

0 1 1 2 2ln( ) = + + + +�i i i k kiy x x xβ β β β
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2 weeks (or as Australians might put it—a fortnight). The rate can be expressed in 
terms of a single patient (e.g., the number of visits per patient per fortnight) or, if the 
rate is small, in terms of some multiple of patients (e.g., the number of doctor-visits 
per 1000 patients per fortnight). If the outcome in question is a disease, the rate is 
called the incidence rate. If the event is death, the rate is called the mortality rate.

Table 17.1 is a frequency distribution of the number of doctor visits made by 
our sample of 5190 Australians over a fortnight. We can see from the frequency 
distribution that during the 2-week interval, most of the samples did not visit their 
doctors at all. But we can also see that 782 patients each visited their doctors once. 
Another 174 individuals saw their doctors twice, resulting in a total of 348 visits. 
Thirty patients each saw their doctors three times, for a total of 90 visits, 24 patients 
made a total of 96 visits, nine a total of 45 visits, and so on. If we were to count 
up the total number of visits made by the entire sample, we would see that over a 
fortnight the 5190 patients as a group made a total of 1566 visits. If we divide the 
total number of visits by the total number of patients, we get a rate of 0.3017 visits 
per patient (1566 visits/5190 patients = 0.3017 visits/patient) per fortnight. If we 
multiply the numerator and denominator of our rate by 1000, we get a 2-week rate 
of 301.7 visits per 1000 patients. This latter rate means that we can expect that in 
every fortnight, a 1000 adult Australians will make about 300 doctor-visits.

Conducting a Negative Binomial Regression  You may have noticed from our 
calculation of the rate of doctor visits that a rate is the average number of times 
an outcome occurs per person over a single unit of time. In our example, the rate 
of 0.3017 is the average number of visits made per patient over a fortnight. As 
with all averages, a rate summarizes what is true of a group of patients as a whole, 

Table 17.1   Frequency distribution of doctor visits 
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but does not necessarily equal the rate of any given patient within that group. For 
example, our frequency analysis makes clear that our rate of 0.3017 visits per per-
son overestimates the frequency of visits for those 4141 patients who made zero 
visits and underestimates it for the remainder of the patients. Our next step then is 
to conduct a negative binomial regression to uncover those factors that explain or 
account for the variation we observed across patients in their frequency of visits. 
Possible explanatory factors might be the general health of the patient, the patient’s 
sex and age, the number of illnesses the patient had experienced during the 2-week 
period, and so on.

The file, Doctor Visits.sav [1], contains the number of doctor visits made in a 
fortnight by our sample of 5190 Australian patients. The number of doctor visits is 
in the variable, Number of consultations with a doctor or specialist in the past 
2 weeks [doctorco] (variable 13). This will be the count response. The file also 
contains a number of possible predictors. We will begin by using the patient scores 
on a general health questionnaire to predict their number of doctor visits. The ques-
tionnaire scores are in the variable, General health questionnaire score [hscore] 
(variable 10). This will be the predictor. In the data set, this score varies from 0 to 
12. The higher the score, the poorer was the patient’s general health.

Open the data file and select Analyze > Generalized Linear Models > General-
ized Linear Models. Select the Type of Model tab if it is not selected to open the 
dialog box shown in Fig. 17.1. Check Negative binomial with log link. (Note that 
if we wished to conduct a Poisson regression, we would choose Poisson log linear 
instead. The remaining steps for setting up the regression are the same for both 
negative binomial and Poisson.)

Select the Response tab to open the dialog box shown in Fig. 17.2. Enter Num-
ber of consultations with a doctor or specialist in the past 2 weeks in the Depen-
dent Variable box.

Click the Predictors tab to open the dialog box shown in Fig. 17.3. The categori-
cal predictors are called Factors in the dialog box, and quantitative predictors are 
called Covariates. Health questionnaire scores are quantitative, so enter General 
health questionnaire score in the Covariates box.

Click the Model tab to open the dialog box shown in Fig. 17.4. Select General 
health questionnaire score in the Factors and Covariates boxes and place it in the 
Model box. Make sure that Main effects is selected for the Type button in the Build 
Term(s) area.

We want the output to include the exponents of the intercept and slope coef-
ficients, so click the Statistics tab to open the dialog box shown in Fig. 17.5, and 
check Include exponential parameter estimates in the Print area.

If you wish to have SPSS generate the predicted number of doctor visits for each 
patient, click the Save tab to bring up the dialog box shown in Fig. 17.6. Check 
Predicted value of mean of response. This will generate a new variable called Pre-
dicted Value of Mean of Response [MeanPredicted] that will store for each patient 
his or her predicted number of visits based on the regression model. By default, 
SPSS sets the number of decimal places for this variable to zero and displays its 
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values to the nearest whole number. To see more exact values, go to Variable View 
after the variable has been created and change its Decimals setting.

The values stored in Predicted Value of Mean of Response are the exponents 
of the original log values generated by the prediction equation. If you wish to see 
these log values, check in the Save tab Predicted value of linear predictor. This will 
result in the creation of a new variable called Predicted Value of Linear Predictor 
[XBPredicted] whose values will be displayed to the third decimal place.

Click OK to run the regression. As was the case with logistic and Cox regres-
sions, there are a number of items in the output. We shall go through them pointing 
out the ones that are relevant.

•	 The dependent variable entry in the Model Information table (Table 17.2) states 
that the response variable is the number of doctor visits in a 2-week period.

•	 The probability distribution entry in Table 17.2 shows that this is a negative bi-
nomial regression.

•	 The link function entry in the table shows that the link function is a natural loga-
rithm.

Fig. 17.1   Selecting negative binomial regression
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•	 The Case Processing Summary table shows that all of the 5190 cases were used 
in the analysis (Table 17.3).

•	 The Continuous Variable Information table (Table 17.4) gives the sample size, 
minimum observed value, maximum observed value, the mean, and the standard 
deviation for each quantitative variable that was used in the current model. As we 
shall see later, there is a separate table for categorical variables.

•	 Notice in Table 17.4 that the mean of the dependent variable is 0.30. This is the 
rate rounded off to the second decimal place of doctor visits per patient over a 
2-week period.

•	 The Goodness of Fit table (Table 17.5) contains a number of statistics that are 
used to assess the degree to which the negative binomial regression correctly 
predicts the number of doctor visits for each patient. These can be considered 
to be very roughly similar to R2 in linear regressions. They are used to com-
pare different models when trying to find the best set of predictor variables. 
For these measures, with the exception of Log Likelihood, the smaller is the 
better.

Fig. 17.2   Selecting the response variable
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•	 The Omnibus Test table (Table 17.6) contains the results of testing the null hy-
pothesis that the population slope coefficients for all of the predictor variables 
are 0 against the alternative hypothesis that at least one of them is not. This is 
analogous to the ANOVA F-test in the linear regression. This result shows that 
the population slope coefficient for General health questionnaire score is not 0. 

•	 The Tests of Model Effects table (Table 17.7) reproduces the same information 
that appears in Table 17.8.

•	 The Parameter Estimates table (Table 17.8) is analogous to the Coefficients table 
in linear regression. The (Intercept) row shows that the population intercept, 
B, is estimated to be − 1.479. The standard error is used to calculate the Wald 
test statistics and the confidence interval. The confidence interval shows that we 
are 95 % confident that the population intercept is between − 1.549 and − 1.409. 
The Hypothesis Test area gives the results of testing the null hypothesis that the 
population intercept is 0 against the alternative hypothesis that the population 
intercept is not 0. The p-value ( Sig.) shows that we can safely reject the null 
hypothesis.

•	 Recall that the intercept (−1.479 in this case) is a natural logarithm. The Exp(B) 
entry on the (Intercept) row of Table 17.8 displays the exponent of the intercept. 

Fig. 17.3   Selecting the predictor variable
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The exponent of the intercept is the rate of the outcome under investigation for 
patients whose value on the predictor variable is zero. In our example, the ex-
ponent of the intercept is 0.228 1.479( 0.228)- =e . Our regression model estimates 
that the population rate of doctor visits for patients with a health questionnaire 
score of 0 is 0.228 visits per patient per fortnight. The confidence interval for the 
exponent tells us that we are 95 % confident that the population rate for patients 
with a health score of 0 is between 0.212 and 0.244.

•	 The hscore row of Table 17.8 shows that the slope coefficient for the health 
questionnaire scores is estimated to be 0.166. We can be 95 % confident that the 
true slope is between 0.145 and 0.188. The Wald test of the null hypothesis that 
the slope coefficient is 0 against the alternative hypothesis that it is not 0 tells us 
that the null can be safely rejected.

•	 Recall that slope coefficients are natural logarithms. The Exp(B) entry on the 
hscore row displays the exponent of the hscore slope coefficient. The exponent 
of the slope coefficient is a rate ratio and indicates the extent to which the rate 
changes for every one unit increase in the predictor variable. A rate ratio equal to 
1 indicates that the predictor variable is unrelated to the rate under investigation. 
In our example, the exponent is 1.181. Our regression model estimates that the 

Fig. 17.4   Selecting the model
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rate of doctor visits increases by a ratio of 1.181 for every one unit increase in the 
health score. Put another way, the rate at which Australian patients visit their doc-
tors increases by about 18 % for every one unit increase in their general health 
scores (remember, higher scores on the health questionnaire used in this study 
reflect poorer health). The confidence interval tells us that we are 95 % confident 
that the population rate ratio is between 1.156 and 1.207. Recall that the p-value 
in the ( Sig.) column allows us to confidently reject the null hypothesis that the 
slope coefficient (0.166) is equal to zero. This also means that we can confidently 
reject the null hypothesis that the population rate ratio is equal to 1.

•	 The entry for (Scale) in Table 17.8 is of no interest.

Fig. 17.5   Requesting exponential parameter estimates

 

Answer the following questions about the negative binomial regression we 
just conducted.
17.2.1 �� What are the missing values in the following prediction equation? 

Predicted log of the rate of doctor visits = _________ + _________ 
(hscore).

17.2.2 � Using the prediction equation in Question 17.2.1, calculate by hand the 
log of the rate of doctor-visits for a patient with a health score of 10.



460 17  Regression Analysis of Count Data

17.2.3 � What is the predicted number of visits for a patient with a health 
score of 10?

17.2.4 � The p-value in the Parameter Estimates table told us that we can 
reject the null hypothesis that the population rate ratio is equal to 1. 
The 95 % confidence interval for the rate ratio also tells us that we 
can reject the null hypothesis. How can we tell from the confidence 
interval that the null hypothesis can be rejected?

Fig. 17.6   Saving predictions

 

Table 17.2   Model information 
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Table 17.5   Goodness of fit test results 

Table 17.4   Information about the predictor variable 

Table 17.3   Case processing summary 

17.2 � Negative Binomial Regression with One Predictor�
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17.3 � Testing Two or More Predictors

As was the case with the other regression models we have considered, it is possible 
to use multiple predictors. The predictors may be either categorical or quantitative. 
Recall that we said earlier that categorical predictors in this setting are called fac-
tors and quantitative predictors are called covariates. As an example, we will add to 

Table 17.8   Parameter estimates 

Table 17.7   Tests of the slope and intercept coefficients 

Table 17.6   Test of the overall model 



46317.3 � Testing Two or More Predictors�

our regression model the patient’s sex and age as well as the number of illnesses the 
patient had experienced during the 2-week period.

Select Analyze > Generalized Linear Models > Generalized Linear Models. 
Set up the dialog boxes for the Type of Model and Response tabs as was done in 
Sect. 7.2. Then click the Predictors tab to open the dialog box shown in Fig. 17.7. 
Place the two categorical variables Sex [sex] (variable 1; 0= Male; 1= Female) and 
Number of illnesses in past 2 weeks [illness] (variable 8, 0= 0, 1= 1…5= 5 or more) 
in the Factors box. Place the two quantitative variables General health question-
naire score [hscore] and Age in years [age] (variable 2) in the Covariates box.

Click the Model tab to open the dialog box shown in Fig. 17.8, Place all of the 
variables from the Factors and Covariates boxes into the Model box. Make sure 
that Main Effects is selected for the Type button in the Build Term(s) area.

Be sure that Include exponential parameter estimates has been checked in the 
Statistics tab. Now click OK to run the regression. The regression output is shown 
in Tables 17.9, 17.10, 17.11, 17.12, 17.13, 17.14, 17.15 and 17.16.

•	 Tables 17.9 and 17.10 are identical to the earlier example.
•	 The Categorical Variable Information shown in Table 17.11 lists each categori-

cal variable used in the regression. For each one, it shows a frequency table for 

Fig. 17.7   Adding the new predictors
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Table 17.9   Model information 

Fig. 17.8   Creating the new model

 

Table 17.10   Case processing 
summary
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each of the possible categories. For example, it shows that 47.9 % of the patients 
were male and 52.1 % were female.

•	 As in the first example, the continuous variable information table shown in Ta-
ble 17.12 gives the sample size, minimum, maximum, mean, and standard devia-
tion for each quantitative variable used in the regression.

•	 The Goodness of Fit table shown in Table 17.13 gives the same goodness of 
fit measures as in the first example. Compare the values with those there. No-
tice that, with the exception of Log Likelihood, the values here are smaller than 
the earlier ones. This shows that using multiple predictors does a better job of 
predicting the log of the counts than just using General health questionnaire 
score.

•	 Again, the Omnibus Test table shown in Table 17.14 gives the results of testing 
that the slope coefficients for all of the predictors are simultaneously 0 against 
the alternative hypothesis that at least one is not 0. As before, we can safely con-
clude that at least one predictor has a non-zero population slope coefficient.

•	 As before, the Tests of Model Effects table shown in Table 17.15 gives results that 
are duplicated in the next table.

Table 17.12   Information on the quantitative predictors 

Table 17.11   Information on the categorical predictors 
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•	 Again, Table 17.16 is analogous to the Coefficients table in a linear regression. 
For each predictor and the intercept, it gives the estimated β  coefficient, its stan-
dard error, a 95 % confidence interval for the actual value, the results of a test 
of the null hypothesis that the β  coefficient is 0 against the alternative hypoth-
esis that it is not 0, and the exponent and its 95 % confidence interval. We shall 
discuss the results for Sex, Number of illnesses in past 2 weeks, and General 
health questionnaire score.

Table 17.13   Goodness of fit test results 

Table 17.14   Overall model test 
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•	 For Sex, there are two entries, one for a value of 0 (male) and one for a value 
of 1 (female). For a categorical variable with just two categories, the category 
with the higher numerical value is by default the reference group. Consequently, 
women are the reference group. The entry in the B column for sex= 0 is − 0.189, 
meaning that the population slope coefficient for males is estimated to be − 0.189. 
That is, on an average, the log of the number of doctor visits for a male patient is 
-0.189 less than for a female patient, although the 95 % confidence interval tells 
us that we can be 95 % confident that the average difference between men and 
women in the population may be as large as − 0.314 or as small as − 0.065. The 

Table 17.16   Results for individual predictors 

Table 17.15   Test of individual predictors 
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results of the Wald test shows that there is a p-value of 0.003, meaning that there 
is moderately strong evidence that the true slope coefficient for Sex is not 0. The 
exponent is the rate ratio for sex and is equal to 0.828, indicating that the number 
of visits made by men is about 0.83 of those made by women. We can be 95 % 
confident that the population rate ratio is between 0.730 and 0.937.

•	 For Number of illnesses in past 2 weeks, there are six categories. So, SPSS 
estimates a slope coefficient for each category, again with the highest numbered 
category being the reference group. The Wald tests indicate that the slope coef-
ficients for 0 through 3 illnesses are not 0. However, we must accept the null 
hypothesis that the slope coefficient for 4 illnesses is zero. The exponents and 
their confidence intervals refer to the rate ratios. For example, the rate ratio for 0 
illnesses is 0.167, indicating that the number of visits made in a 2-week period by 
patients who had no illnesses during those 2 weeks is about 17 % of the number 
of visits made by patients who had 5 or more illnesses, although we are 95 % 
confident that the true rate ratio could be as low as 0.126 or as high as 0.221. 
The rate ratios for patients with 0 to 3 illnesses are significantly different from 
1, indicating that we can be confident that in the population of Australian adults, 
patients with 3 illnesses or less visit their doctors less often than patients with 5 
or more illnesses. However, the rate ratio for patients with 4 illnesses is not sig-
nificantly different from 1, so we cannot be confident that the Australian patients 
with 4 illnesses see their doctors less often than do the Australian patients with 5 
or more illnesses.

•	 For General health questionnaire score, we see that the slope coefficient is 
estimated to be 0.104. The Wald test has a p-value less than 0.001, giving strong 
evidence that the population slope coefficient is not 0. Compare the B value for 
this variable with the first example (Table 17.8). They are not the same. As was 
the case in the other types of regression we have studied, the slope coefficients 
give the change in the response variable for a one unit increase in the predictor 
in the presence of the other predictors. Notice also that the two intercept coef-
ficients are not the same.

Changing the Reference Category In the previous analysis, the category with the 
highest numerical value was by default the reference category for each categorical 
variable. If you wish the reference groups to be the categories with the lowest nu-
merical values, click the Predictors tab to open the dialog shown in Fig. 17.3, and 
then click Options to open the Generalized Linear Models: Options dialog shown 
in Fig. 17.9. Select Descending in the Category Order for Factors area followed by 
Continue.

Answer the following questions:
17.3.1  Is the slope coefficient for Age significantly different from 0?
17.3.2  What is the rate ratio for Age? Is it significantly different from 1?
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17.4 � Testing for an Interaction Effect

As with the other forms of regression we have studied, interaction effects among 
predictors can be tested in a negative binomial regression. In this section, we will 
investigate the possible interaction between a patient’s age and gender. We proceed 
in a similar manner as was introduced in Chap. 14 by creating an interaction vari-
able that is the product of age and gender, and then including the new variable in 
the regression model.

Select Transform > Compute Variable to open the dialog box shown in 
Fig. 17.10. Give the target variable a name of age_sex and a label of Age*Sex. In 
the numeric expression box enter age*sex and click OK to create the interaction 
variable.

Select Analyze > Generalized Linear Models > Generalized Linear Models 
and set up the dialog boxes for the Type of Model and Response tabs as before. Set 
up the dialog box in the Predictors tab so that Age and Age*Sex are in the Covari-
ates box. In the dialog box for the Model tab, move both Age and Age*Sex to the 
Model box. In the Build Term(s) area, make sure that Type is set to Main Effects. Be 
sure that Predicted value of mean of response has been checked in the dialog box of 
the Save tab. Finally, click OK to run the regression.

Fig. 17.9   Defining the refer-
ence category as the category 
with the lowest numerical 
value
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Examine the output for the regression. We will concentrate on the Parameter 
Estimates table shown in Table 17.17.

The Wald tests for the intercept and slope coefficient for Age show that there 
is very strong evidence that they are different from 0. The Wald test for the slope 
coefficient for the interaction term shows that there is some evidence that there is an 
interaction between Age and Sex. The resulting regression equation is

� (17.2)
ln( ) 1.846 0.013 0.003 *

1.846 (0.013 0.003 ) .

= - + +
= - + +

iy Age AGE SEX

SEX AGE

Fig. 17.10   Creating the interaction variable

 

Table 17.17   Information for the model with an interaction term 
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Sex equals to 0 for a male patient and 1 for a female patient. Accordingly, for a male 
patient the regression equation is

� (17.3)

The exponent of 0.013 is 1.013, as shown in the Parameter Estimates table 
(Table 17.17). This means that for every additional year in the age of a male patient, 
the average number of doctor visits in a 2-week period increases by a factor of 
1.013, or by 1.3 %.

For a female patient the regression equation is

� (17.4)

Using a scientific calculator, we find that the exponent of 0.016 is 1.016. This means 
that for every additional year in the age of a female patient, the average number of 
doctor visits in a 2-week period increases by a factor of 1.016, or by 1.6 %.

An alternative method for computing the exponent for female patients is to mul-
tiply the two rate ratios displayed in the Parameter Estimates table—1.013 (the rate 
ratio for age) times 1.003 (the rate ratio for the interaction) equals 1.6 %. The rate of 
increase in the number of doctor visits per fortnight for every 1 year increase in age 
is 0.3 % greater for female patients.

17.5 � Regression with Unequal Follow-up Times

So far we have been analyzing the data from a study in which the interval of time 
across which counts were made was constant across all patients. For each patient, 
the time frame was always 2 weeks. However, in medical studies, the interval of 
time across which the counts are made often varies from one patient to the next. For 
example, in studies of disease incidence, patients who are free of the disease are fol-
lowed from the time they are enrolled into the study until the time they develop the 
disease, withdraw from the study or the study is ended, whichever comes first. This 
results in unequal time intervals or follow-up times across patients. For example, the 
disease might appear in some patients 1 year following enrollment, but not in others 
until 5 years after enrollment. Among patients who remain disease-free, some might 
leave the study 6 months after enrollment while others might not leave until years 
later. If we want to know how often on an average the disease appears each year, we 
need to take into account each patient’s follow-up time.

Calculating Rates When Follow-up Times Are Unequal  When follow-up times 
are unequal, the number of times the event under investigation occurred across all 
patients who had enrolled in the study is divided by the total follow-up times of all 
of the patients. Often follow-up times are measured in terms of years, but any con-
venient unit of time can be used, such as days, weeks, months, and so on. If the time 

ln( ) 1.846 0.013 .= - +iy AGE

ln( ) 1.846 0.016 .= - +iy AGE
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interval is expressed in terms of years, then the total follow-up time is expressed in 
terms of person-years, and the resulting rate is expressed in terms of the number of 
events that occurred per person-year. As one person-year of follow-up is equivalent 
to observing one person for 1 year, the resulting rate tells us the number of times the 
event occurs per person per year.

For example, the data set, Framingham.sav [2], contains observations from a 
cohort study of the heart health of 4699 men and women with varying cholesterol 
levels. Of these patients, 1473 or about 31 % developed coronary heart disease dur-
ing follow-up. The remaining patients were believed to be disease-free either at the 
time the data set was created or at the time the patients were lost to follow-up. The 
31 % figure is the cumulative incidence of the disease, the number of patients who 
at some point during follow-up developed the disease compared to the total number 
of enrolled patients. To calculate an incidence rate, that is, the number of incidents 
of heart disease that occur each year, we need to take into account each patient’s 
follow-up time.

Each patient was followed on an average for roughly 22 years with individual 
follow-up times varying from 18 days (about 0.05 year) to 32 years. If we wish to 
calculate the annual incidence rate of heart disease, we would compare the number 
of patients who developed heart disease (1473) to the total number of person-years 
during which the entire sample of 4699 patients was observed. Adding up the num-
ber of years each patient was observed, we discover that those 4699 patients were 
followed for a total of about 103,710 person-years. We now divide the number of 
cases of heart disease (1473) by the number of person-years of follow-up (103,710) 
and find that the incidence rate is about 0.0142 per person-year. If we multiply the 
rate by 1000, the rate becomes 14.2 new cases of heart disease per 1000 person-
years. One thousand person-years is equivalent to observing 1000 patients for 1 
year, so the rate of 0.0142 per person-year is equivalent to a rate of 14.2 new cases 
of heart disease per 1000 patients per year. Based on these data, we would expect 
that on an average, about 14 out of every 1000 patients would develop heart disease 
over the course of a year.

Negative Binomial Regression with Unequal Follow-ups  When follow-up times 
are unequal, a negative binomial regression must take into account the follow-up 
time of each patient. This is done by including in the regression analysis an offset 
variable that stores the natural logarithm of the follow-up times. Using the offset 
variable, the analysis generates the parameter estimates after controlling for the 
length of the follow-up time of each patient. For example, using an offset variable 
that stores the natural logarithm of the number of years each patient in the Fram-
ingham data set was followed, we could determine whether the annual rate of heart 
disease is related to sex and cholesterol level.

Open the data file, Framingham.sav. In this file, the follow-up times are stored 
in the variable, Follow-up in Days [followup] (variable 6). This variable will be the 
basis of our offset variable. However, in order that we can express our findings in 
terms of person-years, we will first transform each patient’s days of follow-up into 
years of follow-up, and then take the natural log of the result to create the offset 
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variable. In order to take leap years into account, we will define a year as 365.25 
days. Open Transform > Compute Variable, and as shown in the dialog box of 
Fig.  17.11, name the target variable followup_years, and enter into the Numeric 
Expression window the following:

� (17.5)

If you wish, you can give the new variable a label, such as, Follow-up Years.
The natural logarithm function can be found in the Arithmetic group. When you 

have finished, click OK. This is shown in Fig. 17.11.
Now we are ready to set up the regression. Open the Generalized Linear Models 

dialog box and select Negative binomial with log-link in the dialog box of the Type 
of Model tab. In the dialog box of the Response tab, move Coronary Heart Dis-
ease [chdfate] (variable 5) to the Dependent Variable window. Click the Predictors 
tab, and as shown in the dialog box of Fig. 17.12, move Gender [sex] (variable 1; 
0 = Male, 1 = Female) to the Factors window and Serum Cholesterol [scl] (variable 
4) to the Covariates window. Now move the offset variable, followup_years, to the 
Offset Variable window.

In the dialog box of the Model tab, move the two predictors to the Model win-
dow, and in Statistics, check Include exponential parameter estimates. Click OK.

ln( / 365.25 ).followup

Fig. 17.11   Creating the offset variable
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The output will be very similar in form to the output we have reviewed earlier, 
and it is interpreted in the same manner. We will focus on the Continuous Variable 
Information and Parameter Estimates tables.

As before, the Continuous Variable Information table (Table 17.18) displays de-
scriptive statistics for the dependent variable and any covariates. It also displays de-
scriptive statistics for the offset variable, which in our case is the natural log of the 
follow-up times measured in years. Consulting the exponent function of any scien-
tific calculator, we can tell that the follow-up times ranged from 0.05 years (0.05 is 
the exponent of − 3.01, the minimum value of the offset) to 32.14 years (32.14 is the 
exponent of 3.47, the maximum value), with a mean of 18.43 years (the exponent 
of 2.9138). Notice that the number of patients in this analysis (4666) is 33 less than 
the total sample size. This is because cholesterol levels were missing for 33 patients. 

Fig. 17.12   Selecting the predictor and offset variables

 

Table 17.18   Information on the quantitative variables in the model 
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Note also that the mean for coronary heart disease is 0.31. This is equivalent to the 
cumulative incidence of heart disease for the 4666 patients.

The Parameter Estimates table, a fragment of which is shown in Table 17.19, is 
interpreted in the same manner as before.

17.6 � Exercise Questions

The first three exercise questions use the Centers for Disease Control and Preven-
tion (CDC) data set, CDC BRFSS.sav [3]. Open the file. This file contains the re-
sponses of New York state residents to a telephone survey conducted in 2005 by the 
CDC. Respondents were asked to report the number of days during the past month 
in which their physical health was not good. These data are contained in NUMBER 

Study the table and answer the following questions.
17.5.1 � What are the missing values in the following prediction equation for 

a male patient with a cholesterol level of 200?
In (rate of coronary heart disease) = ________ + ________ + 
________ (200).

17.5.2 � The exponent of the log rate of coronary heart disease for a male with 
a cholesterol level of 200 is about 0.019. According to these results, 
how many new cases of coronary heart disease each year can we 
expect for every 1000 men with a cholesterol level of 200?

17.5.3 � According to these data, the rate of coronary heart disease for men is 
_________ times the rate for women.

17.5.4 � Do the results allow us to conclude that in the population from which 
the Framingham patients were drawn, the rate of coronary heart dis-
ease is greater in men than in women? Why or why not?

Table 17.19   Estimates of the parameters in the model 
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OF DAYS PHYSICAL HEALTH NOT GOOD [PHYSHLTH] (variable 4). The 
CDC coded a response of 0 days as 88 to signify “none.” The CDC also asked 
respondents to report their sex and to categorize their general health. These re-
sponses are located in the variables SEX [SEX] (variable 32; 1 = Male, 2= Female), 
and GENERAL HEALTH [GENHLTH] (variable 3; 1 = Excellent, 2 = Very Good, 
3 = Good, 4 = Fair, and 5 = Poor). The respondents reported their height and weight 
as well. From these responses the CDC calculated each respondent’s BODY MASS 
INDEX [BMI] (variable 107).

Recode (Transform > Recode into Different Variables) NUMBER OF DAYS 
PHYSICAL HEALTH NOT GOOD into a new variable called NEW PHYSI-
CAL HEALTH [NEWPHYSHLTH] so that all instances of 88 are recoded as 0. 
Then in Variable View declare all instances of 77 and 99 in the new variable as miss-
ing. Be sure that for GENERAL HEALTH, values of 7 and 9 have been declared 
as missing.

1.	 Conduct a negative binomial regression using BODY MASS INDEX as a pre-
dictor and NEW PHYSICAL HEALTH as the response.

a.	 Is BMI a significant predictor of the number of days a New Yorker’s health is 
not good? How do you know?

b.	 What is the slope coefficient for BODY MASS INDEX?
c.	 What is the rate ratio for BODY MASS INDEX?
d.	 Is the rate ratio significantly different from 1? How do you know?
e.	 Complete the following sentence: The number of days per month during which 

the physical health of New Yorkers is not good increases by _________ % for 
every 1 unit of increase in BMI.

2.	 Conduct a negative binomial regression using SEX, GENERAL HEALTH and 
BODY MASS INDEX as predictors and NEW PHYSICAL HEALTH as the 
response.

a.	 What are the slope coefficient and its p-value for SEX?
b.	 On average, which sex experienced significantly more days during which 

their physical health was not good?
c.	 Was the respondents’ general health significantly related to the number of days 

during which their physical health was not good? Describe the relationship.
d.	 In what way, if any, does the relationship between BODY MASS INDEX 

and the response variable change when SEX and GENERAL HEALTH are 
included as predictors?

3.	 Table  17.20 shows the output from a negative binomial regression in which 
BODY MASS INDEX and an interaction variable between SEX and BODY 
MASS INDEX (SEX_BMI) were the predictors and NEW PHYSICAL 
HEALTH was the response.

a.	 What is the slope coefficient for the interaction term?
b.	 What is the BMI slope coefficient for men? And for women?
c.	 Which of the following conclusions is supported by the data, at least as of 

2005? For residents of New York state,
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i.	 BMI is equally related to the response variable for men and women.
ii.	 BMI is more strongly related to the response variable for men than for 

women.
iii.	BMI is more strongly related to the response variable for women than for 

men.

4.	 Open the file, Caerphilly.sav [4]. This file contains data from a study of the 
incidence of myocardial infarction (MI) or stroke among a cohort of 2398 Welsh 
men who were followed for an average of about 9.5 person-years. The follow-
up times are recorded in the variable, Person-years at Risk [pyar] (variable 5). 
At enrollment, each patient’s smoking status was recorded and is stored in the 
variable, Smoking Status [Smoking Status] (variable 4; 0 = Never Smoked, 
1 = Former Smokers, 2 = Mild Smokers, 3 =  Moderate or Heavy Smokers). Body 
mass index, BMI [BMI] (variable 2), was also recorded and used to create the 
variable, BMI Category [BMI_group] (variable 3; 1 = Underweight, 2 = Nor-
mal, 3 = Overweight, 4 = Obese). The variable, Non-fatal MI or Stroke [CVD] 
(variable 7), stores the outcomes experienced by the patients during follow-up. 
Patients were assigned the value of 1 if during follow-up they either experienced 
an MI or a stroke; otherwise, they were assigned a 0. Conduct a negative bino-
mial regression in which the dependent variable is Non-fatal MI or Stroke and 
the predictor variable is Smoking Status. In the analysis, assign patients who 
never smoked to the reference category.

a.	 What percentage of these 2398 men either suffered an MI or a stroke during 
the follow-up?

b.	 What is the log of the rate of MI or stroke for men who never smoked?
c.	 Complete the following sentence: According to the prediction equation, the 

rate of MI or stroke for men who are moderate or heavy smokers is ________ 
times that of men who never smoked.

d.	 According to the regression analysis, how many new cases of MI or stroke 
on average will occur each year among 1000 Welsh men who are moderate or 
heavy smokers?

Table 17.20   Output for Question 3 
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5.	 Table 17.21 displays output from a negative binomial regression of the Caer-
philly.sav data described in Question 4. In the analysis, the predictor variables 
are Smoking Status and BMI.    

a.	 The offset variable was equal to the natural logarithm of which of the 
following?

i.	 Person-years at Risk
ii.	 Smoking Status
iii.	BMI
iv.	Non-fatal MI or Stroke

b.	 Complete the following sentence: According to the output in Table 17.21, the 
rate of MI or stroke increases by _____  % for every 1 unit increase in the 
BMI.

c.	 Using a calculator and the data displayed in the output in Table 17.21, com-
pute and report the average number of new cases of MI or stroke that are 
expected to occur each year among every 1000 Welsh men who have a BMI 
of 30 and are moderate or heavy smokers.

d.	 The rate you computed in 5c should be ________ times the rate of new cases 
of MI or stroke that are expected to occur each year among 1000 Welsh men 
who have a BMI of 30 but have never smoked.

Data Sets and References

1.	 Doctor Visits.sav obtained from: Cameron, A.C., Trivedi, P.K.: Regression Analysis of 
Count Data. 2nd ed. Econometric Society Monograph No. 53. Cambridge University Press, 
Cambridge (2013). (With the kind permission of Professor A. Colin Cameron)

Table 17.21   Output for Question 5 
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2.	  Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean 
Coady, National Heart, Blood, and Lung Institute) 

3.	 CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: US Department of Health 
and Human Services, Centers for Disease Control and Prevention (2005). Public domain. For 
more information about the BRFSS, visit  http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

4.	 Caerphilly.sav obtained from: Caerphilly Prospective Study. With the kind permission of the 
Caerphilly Prospective Study Steering Committee, Professor Yoav Ben-Shlomo, Secretary. For 
more information about the Caerphilly Prospective Study, consult the Caerphilly Prospective 
Study website at http://www.bris.ac.uk/social-community-medicine/projects/caerphilly/about/.

Data Sets and References�

http://www.cdc.gov/brfss/
http://www.bris.ac.uk/social-community-medicine/projects/caerphilly/about/
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Index

A
Analysis of variance, 11

One-way analysis of variance, 252,  
259–263, 304–308

Repeated measures analysis of variance, 
284–285, 288–298

Two-way analysis of variance, 303
With one independent groups factor 

and one repeated measures factor, 
327–336

With two independent groups factors, 
308–318

With two repeated measures factors, 
318–327

Arm (parallel group trial), 10
Assessing screening and diagnostic tests 

accuracy, 209
criterion standard, 205 
cutoff value, 217, 223
diagnostic test, 205
Fagan’s nomogram, 216
false negative, 208, 209
false negative rate, 210, 211
false positive, 208, 209
false positive rate, 210, 211
gold standard, 205
likelihood ratio, 212–216, 222  
likelihood ratio for a negative result, 216 
negative predictive value, 206
negative test result, 206 
positive predictive value, 206
positive test result, 206
posterior odds, 215 
posterior or posttest probability, 215 
prior odds, 212, 215
prior or pretest probability, 214

© Springer International Publishing Switzerland 2014
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners, 
DOI 10.1007/978-3-319-12550-3

receiver operating characteristic (ROC) 
curve, 217–226

area under the curve, 224 
comparing two or more tests, 225–226

screening test, 205
sensitivity, 211–212
specificity, 211–212
true negative, 208
true negative rate, 209
true positive, 208
true positive rate, 209

B
Blinding, 10

C
Carryover effects, 12
Categorical variable 

nominal, 36, 59
ordinal, 36, 59

Censored data, 424
Chart builder

creating a bar chart, 67–69
creating a box plot, 98–101
creating a clustered bar chart, 101–103
creating a histogram, 107 
creating a scatter plot, 234

Chart editor
adding a chart title, 65
adding text within the body of a chart, 

65–66
adding the best fitting straight line to a 

scatter plot, 234–235
changing a chart’s background color and 

frame, 65
changing the location of data labels, 64, 65 
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editing X- or Y-axis labels, 65
editing Y-axis numerical entries, 65
exploding a pie chart, 67
transposing the axes of a bar chart, 67 

Chi-square test, 187
Conditional logistic regression, 7 
Confidence intervals, 6

for the difference between two independent 
means, 258 

for the difference between two proportions, 
155

for a hazard ratio, 444
for an intercept

from a linear regression, 355
from a logistic regression, 404
from a negative binomial regression, 

458
for a mean, 90, 128–132
for mean and median survival times, 432
for an odds ratio, 174, 404
for a Pearson correlation coefficient, 

242–243
for a proportion, 150–153
for a rate ratio, 459
for a relative risk, 169
for a slope coefficient

from a linear regression, 355
from a logistic regression, 404
from a negative binomial regression, 

458
Confounder, confounding factor, confounding 

variable, 2, 3 
Contingency table, 179–184
Contrast analysis, 274–277
Controlling confounding variables 

experimental control, 368
matching, 7
randomization, 10

random assignment, 10
random sequencing, 12

statistical control, 368
stratification, 7

Copying SPSS charts into Word, 73 
Cox regression, 17

proportional hazards model, 439
slope coefficient, 444
exponent, 444
with one covariate, 439–444
with two covariates, 444–446

Cramér’s V, 2, 193–198
Critical value, 129, 150
Cross-tabulation, 165
Cumulative incidence, 472, 475 

Curvilinear relationship
monotonic, 244
non-monotonic, 244

D
Data, 1
Data editor, 26
Data view, 27, 31–37
Degrees of freedom

independent-samples t-test, 258
linear regression, 354
logistic regression, 402, 403 
one sample t-test, 135
one-way analysis of variance, 262–263, 

266 
repeated measures analysis of variance, 

291
robust tests of equality of means (Welch 

and Brown-Forsythe), 262–263
Two-way analysis of variance, 311, 323
Wald statistic, 403, 444

Demonstrating causality, 3
Dependent variable, 341, 342
Descriptive statistics, see Measures of spread; 

Measures of central tendency
Difference between means, 19 
Differential attrition, 12 
Distribution of a variable, 60, 87

kurtosis, 93
normal distribution, 93, 136
skewness, 93

Dummy variable, 383–384, 415–416
reference category, 384, 415, 468

E
Effect size, 14, 253, 263–268, see also Partial 

eta squared
Explanatory variable, 180, 233 
Exponent of a logarithm, 108, 112–113

F
Frequencies and frequency tables, 60–64 
Functions of statistics, 1–2

G
Gamma, 2, 199–200
Generalizability, 13
Goodness of fit, 349, 377, 456
Graphical techniques

bar chart, 64–67
box plot, 87, 94–96
clustered bar chart, 184
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cumulative hazard function, see Hazard 
function, cumulative hazard 
function

detrended normal Q-Q plot, 139 
forest plot, 14–15
histogram, 93–94
interaction plot, 310, 315–317, 322,  

325–327, 332
means plot, 292–294, 305, 311, 322, 323, 

332
normal probability plot of residuals, 361
normal Q-Q plot, 136–139 
pie chart, 67
residual plot, 360–361
scatter plot, 179, 233–238

best fitting straight line, 234–236
stem-and-leaf plot, 87, 94
survival function, see Survival analysis

H
Hazard function, 436

cumulative hazard function, 436
Hazard ratio, 2, 9, 438

I
Importing an Excel spreadsheet, 26 
Incidence, 18, 149 
Incidence rate, 453, 472
Inclusion/exclusion eligibility criteria, 10
Independent variable, 341, 342 
Inferential statistics, 2, 19, 127
Intention-to-treat analysis, 13
Interaction effect

in analysis of variance, 309, 313–318, 
325–327, 332

in regression analysis, 389–393, 419–420, 
446–449, 469–471

L
Labeling SPSS output, 51–52 
Least squares method, 341, 345
Levene’s test, 256–257, 269
Linear regression

coefficient of determination or R squared, 
348–350 

intercept, 341 
least squares regression line, 345
prediction intervals, 355–359
residual analysis, 359–362
slope coefficient, 341
standardized, 380–381
unstandardized, 347, 378–380
standard error of the estimate, 352
sum of squares

regression sum of squares, 348, 388
residual or error sum of squares, 348, 

388
total sum of squares, 348, 388

Linear relationship, 234, 342
negative, 234, 342
positive, 234, 342
strength of relationship, 234, 342

Logistic regression
adjusted odds ratio, 418–419 
baseline odds, 412
classification table, 401, 402
converting odds to probabilities, 398 
converting probabilities to odds, 398 
intercept, 403

exponent, 403
logit, 398
predicted probabilities, 404
slope coefficient, 397, 403, 410
exponent, 410
with one predictor, 399–405
with quantitative and categorical predictors, 

413–418
with two categorical predictors, 405–412 

M
Masking, 10
Mauchly’s test of sphericity, 290–291
Maximum likelihood method, 399, 443, 452 
Measures of association

between categorical variables, see  
Chi-square test; Cramér’s V; Gamma

between quantitative variables, see Pearson 
correlation coefficient; Spearman’s 
rho coefficient 

Measures of central tendency 
arithmetic mean, 88
geometric mean, 113, 117
median, 92
trimmed mean, 92 

Measures of spread
interquartile range, 93
range, 92
standard deviation, 92
variance, 92

Mortality rate, 2, 453

N
Negative binomial regression 

intercept, 454, 457
exponent, 454, 457–458, 466

slope coefficient, 452, 454, 458, 466–468
exponent, 459



Index484

with one predictor, 452–462
with two or more predictors, 462–469 
with unequal follow-up times, 471–475 

offset variable, 472
person-years, 472 

Nonparametric test, 140
Wilcoxon signed ranks test, 140–142 

O
Odds, 6, 150, 170, 398
Odds ratio, 2, 6, 162, 170–174, 403,410, 412, 

418
Opening SPSS data files, 26 
Outliers, 87, 96

P
Paired comparisons analysis, 251, 283
Pairwise comparisons, 11, 294 
Partial eta squared, 264–268
Pasting SPSS output into Word, 53
Pearson correlation coefficient, 238–243

correlation matrix, 239 
Fisher’s Z transformation, 242

Percentages, 60–64
cumulative percent, 64
valid percent, 64

Poisson regression, 9, 452, 454 
Population parameter, 96, 127, 128
Post hoc comparisons, 271–274
Predictor variable, 19, 36, 458
Prevalence, 18, 149
Printing SPSS output, 53 
Probability, 150, 398
Protective factor, 6, 9

Q
Quantitative or scale variable, 36, 59

R
R squared, 236–238

Adjusted R squared, 377
Random measurement error, 5, 7
Random sample, 128, 134, 140
Random sampling variability, 2, 5, 6, 9, 10, 

124
Rate ratio, 2, 9, 11, 452, 458, 468
Relative risk, 2, 9, 150, 161, 162–170, 438, 

444, 445–446
Repeated measures analysis, 283, 284–285
Replication, 13
Residual confounding, 8
Response variable, 180, 233, 234

Risk, 162
Risk factor, 6, 9, 150

S
Sample versus population, 2
Sample statistic, 128, 133, 150, 153
Saving an SPSS data file 

as an Excel file, 40 
as an SPSS file, 38 

Saving SPSS output
as an Excel or PDF file, 55
as an SPSS file, 55

Scripts, 151
Selecting cases

all cases, 44
by category, 41–44
by more than one condition, 49–51
by range of responses, 49 

Sorting a dialog box variable list, 51 
Spearman’s rho, 2, 244–247
Sphericity, 290–291
Splitting a file, 155
Standard error of the mean, 96–97, 133
Standardized score (Z-score), 380
Statistical power, 142–143 
Statistical significance, 133–136 

alpha level, 134
contrasted with clinical significance, 143
significance level, 134, 143, 189
p-value, 12, 133–134, 189 
Type I error, 189 

Structure of SPSS data files
column width, 35
data type, 28
missing values, 33–35
number of decimal places, 31
value labels, 32
values alignment, 36
variable label, 31–32
variable measure, 36
variable name, 28
variable role, 36
variable width, 30 

Study designs
case report, 4–5
case series, 4–5
case-control study, 5–8, 17, 161–162 
cohort study, 8–10, 16–18, 161

prospective cohort study, 16–17
retrospective cohort study, 16–17

cross-sectional study, 18, 162
meta-analysis, 14–15
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randomized controlled trial, 10–13
crossover trial, 11–12
parallel group trial, 10–11

systematic review, 14–15
Survival analysis

survival function, 424, 427
Kaplan-Meier estimator, 424–432

comparing two survival functions, 432–436
survival table, 426–427
survival time, 423–424 

mean survival time, 428, 432
median survival time, 428, 432

T
Test of hypotheses, 132–136

alternative hypothesis, 132–133
one-tailed or one-sided, 132 
two-tailed or two-sided, 132

null hypothesis, 132–133
robust test, 140
testing a mean, see t-test, one sample t-test 
testing a median, see Nonparametric test, 

Wilcoxon signed ranks test 
testing a Pearson correlation coefficient, 

241–243
testing a single proportion, 153–155
testing a slope coefficient

from a Cox regression, 444 
from a linear regression, 352, 354, 

387–388
from a logistic regression, 403, 410, 

417–418 
from a negative binomial regression, 

458–459, 466–468
testing an intercept

from a linear regression, 353
from a logistic regression, 403
from a negative binomial regression, 

457, 466
testing for the presence of sphericity, see 

Mauchly’s test of sphericity 
testing the equality of two proportions, 

158–160
testing the equality of two survival 

functions, see Survival analysis, 
Kaplan-Meier estimator

testing the equality (homogeneity) of 
variances, see Levene’s test

testing whether two categorical variables 
are related, see Chi-square test

Test of normality, 136–139
Test statistic, 19, 133, 135, 140, 153, 241, 265, 

352, 410 
Brown-Forsythe, 262–263
chi-square, 19, 187
F, 19, 261, 265, 354
t, 19, 135, 352
Wald, 19, 403, 444
Welch, 262–263
Z, 19, 140, 155, 160

Time to event, 19, 423
Transforming variables, 70–73

log transformation, 106–107
to change the shape of a distribution, 

106–110 
to create an interaction variable for a 

regression, 390
to create a dummy variable, 384
to create an offset variable, 472–473
to create a quantitative variable, 104–106
to equalize variability across groups, 

110–111 
to recode a categorical variable into another 

categorical variable, 72–73 
to recode a quantitative variable into a 

categorical variable, 70–71 
to reverse the coding of a variable, 

163–164
Treatment effectiveness, 13
Treatment efficacy, 13
t-test

paired-samples t-test, 18, 252, 284, 
285–288

one sample t-test, 134–136
independent-samples t-test, 17, 253–258

V
Variable view, 28–37
Viewer window, 41

contents pane, 64
outline pane, 64

W
Washout period, 11
Weighting cases, 172
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