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Preface

We wrote this book for readers who wish to acquire a basic understanding of statisti-
cal analysis and the various functions that statistics perform in clinical research. Our
intended audience includes practitioners of evidence-based medicine, practitioners-
in-training, students working on research projects under the supervision of their
faculty, and clinicians collaborating with professional researchers. Members of this
audience are, of course, highly accomplished, but they are often short on time and
sometimes uncertain of their mathematical skills. Consequently, our goal was to
provide a representative and accessible cross-section of statistical techniques while
respecting the readers’ intelligence and avoiding being simplistic.

To instantiate many of the statistical concepts we discuss, we include output gen-
erated by IBM® SPSS® statistics software, and explain how to interpret it. SPSS is
frequently used in clinical research, so for readers who want hands-on experience
in analyzing data with it, we give an overview of SPSS in Chap. 2 (Introduction to
SPSS), and in each chapter thereafter, we explain how to use SPSS to conduct the
analyses of that chapter on data sets taken from actual studies. SPSS is updated pe-
riodically, each update identified by a version number. The book is based on version
22, but most of our instructions should apply to other versions as well. Permission
to use reprinted SPSS dialogs and output is courtesy of International Business Ma-
chines Corporation, © International Business Machines Corporation. SPSS Inc. was
acquired by IBM in October 2009. IBM, the IBM logo, ibm.com, and SPSS are trade-
marks or registered trademarks of International Business Machines Corporation.

To allow readers to test their understanding of the material on the fly, we quiz
them throughout each chapter. With the exception of Chap. 2, readers should be able
to respond without having access to SPSS. So that readers can further test themselves,
we conclude each chapter with a set of exercise questions. To meet the needs of read-
ers wishing to learn SPSS, most exercises from Chaps. 2—17 require access to SPSS.

We obtained most of the data sets from either published primary or secondary
sources. A handful of data sets are from unpublished master’s projects conducted
by physician assistant students under the supervision of one of the author’s of this
book (WHH). The sources of the data sets of a given chapter are listed at the end of
the chapter. The data sets themselves can be found at http://www.springer.com/978-
3-319-12549-7, as can the answers to the in-chapter questions and end-of-chapter
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exercises. On the assumption that course instructors might wish to assign the end-
of-chapter exercises as homework, their solutions are available only to instructors
on the Springer page for the book (http://www.springer.com/978-3-319-12549-7).

We would like to thank the publishing houses and researchers who granted us
permission to use their data, and IBM for permission to use screenshots of SPSS
dialogs and output. We also thank Marc Strauss, Editorial Director, Mathematics
Department, and Hannah Bracken, Associate Editor, Springer Science+Business
Media, for their advice and encouragement. Earlier drafts of the book were re-
viewed by the faculty and students of the Department of Physician Assistant Studies
of Le Moyne College. We are grateful for their feedback and support. Finally, WHH
would like to thank his wife, Joan Dalton for her endless patience and unflagging
support.

William H. Holmes, PhD
Le Moyne College
Syracuse, NY

William C. Rinaman, PhD
Pinehurst, NC
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Chapter 1
Introduction

Abstract This chapter summarizes the various functions of statistics in clinical
research, reviews study designs that guide how data are typically collected and ana-
lyzed, and provides examples of statistical procedures frequently used in clinical
studies. The designs include the case study, case-control study, the survey, pro-
spective and retrospective cohort studies, parallel group and crossover trials, and
systematic reviews and meta-analyses. The ability of each design to draw confident
causal conclusions is also discussed. The chapter concludes with an overview of the
content of the book.

1.1 Functions of Statistics

The practice of medicine is continuously informed by clinical research into health
and disease. The research is empirical, generated by observational procedures that
are grounded in physical reality and which can be clearly communicated to and
repeated by anyone with sufficient training and ability. Often these observations
or data are numerical and are of various chemical and biological processes related
to health and disease. It goes without saying that in order to grasp the findings of
clinical studies, medical practitioners need to be literate in chemistry and biology.
But clinical research documents probabilities, tendencies or what is true on aver-
age. It determines, for example, whether people who have been exposed to a sus-
pected carcinogen are more likely to contract cancer, not about whether exposure
to the carcinogen always leads to cancer, or whether on average a particular cancer
treatment helps patients, not whether the treatment always works or works equally
well for all patients. Because of the probabilistic nature of clinical data, researchers
must use statistical analysis to uncover patterns within those data. Consequently,
to understand clinical studies, practitioners need to have a working knowledge of
statistics as well.

An analysis of a set of data can involve the use of a wide range of statistics that
perform a variety of functions. Usually, investigators begin an analysis by sum-
marizing their observations with descriptive statistics. Descriptive statistics include
percentages, means and standard deviations, among many others. Researchers also
use various graphical techniques such as bar charts and histograms. Investigators
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2 1 Introduction

then use measures of association to determine whether two variables are related and
if so, how strongly, and in what direction. Examples include the odds ratio (OR),
relative risk, the hazard ratio, and the rate ratio. Other measures of association in-
clude Cramer’s V and gamma, the Pearson correlation coefficient, Spearman’s Rho
coefficient, and the difference between the means of two or more groups.

In addition to summarizing observations and documenting associations between
variables, investigators use certain statistical procedures to assess the degree of re-
lationship between two variables after controlling for the presence of a third vari-
able with which the two variables are related. This statistical control of potential
confounding variables is often achieved through some form of regression analysis.
Researchers also use regression for the purpose of prediction or estimation, that is,
to predict or estimate health-related outcomes of patients with various characteris-
tics. For example, a regression analysis might be used to estimate the mortality rate
of cardiac patients of a given gender, age, and health history.

In most clinical studies, participants constitute a sample that is drawn from a
larger population. Due to a phenomenon known as random sampling variability,
researchers use inferential statistics to help them decide whether their sample re-
sults should be attributed to chance or can be used to make inferences about the
populations from which they drew their participants. Inferential statistics make use
of various test statistics that generate confidence intervals and p-values that help
researchers make this decision.

Identify each of the following as an example of a descriptive statistic, a mea-

sure of association, an inferential statistic, statistical control or prediction.

1.1.1 The probability of recurrence of breast cancer over the next 10 years
for a postmenopausal woman who does not smoke

1.1.2  The proportion of a sample of Americans who are prehypertensive

1.1.3 A 95% confidence interval for the proportion of Americans who are
prehypertensive

1.1.4 The correlation between the body mass index (BMI) of anorexics and
their preferred BMI

1.1.5 Using regression to take into account gender in a study of the relation-
ship between forced expiratory volume and age in a sample of children

1.2 Common Study Designs in Clinical Medicine

At the level of procedural detail, research studies can be very different from one
another. In fact, it is safe to say that no two studies are exactly the same in terms of
their specifics. However, at a global level, many clinical studies can be classified in
terms of a relatively small number of study designs. These designs serve as a kind
of blueprint that researchers follow as they collect their data. For example, a study
design stipulates whether the investigator will observe the impact of a factor by sys-
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tematically exposing volunteers to it or by observing patients who during the course
of their lives had already been exposed, whether patients are to be observed on a
single occasion or followed over a period of time, and whether follow-up data are
to be obtained directly from patients until the study ends at some point in the future,
or extracted from preexisting medical records that extend from the present to some
point in the past. Because study designs guide how data are to be collected, they
influence how the data are to be analyzed. An analysis that would be appropriate for
one study design might not work for another. Consequently, in this section, we shall
review some of the more common designs in clinical research, and give examples
of the statistical analyses that are associated with them.

Although clinical research tries to pin down the causes of disease, researchers
often use study designs that fall short of generating strong evidence of causality.
This is because practical and ethical limitations can prevent researchers from us-
ing designs that convincingly establish the conditions for demonstrating causality.
One of these conditions is covariation. To show that one variable causes another,
researchers must first show that the two variables covary, that is, that they are cor-
related with one another. For example, if a researcher believes that lack of exercise
is a cause of overweight, then he or she must show that people who do not exercise
tend to be heavier than people who do, other things being equal. This is not to say
that the researcher will not find thin people who do not exercise or that there are
not any overweight people who work out. Weight is a result of many causes after
all. But if lack of exercise is to be considered one of them, then the researcher will
have to show that the /ikelihood of being overweight is greater for people who do
not exercise regularly.

Causes not only covary with their effects, but they also come before their effects.
So a second condition researchers must demonstrate is the correct time order be-
tween the two variables. Researchers must show that the hypothesized causal vari-
able precedes in time its hypothesized effect. For example, to show only that lack of
exercise and BMI are correlated would not reveal the direction of causality between
exercise and weight. We would be left wondering whether people who do not exer-
cise become heavy, or whether people do not exercise because they are heavy.

Sometimes a researcher will find that a factor covaries with a health-related out-
come when in fact the factor has no impact on patients. This can happen because of
random sampling variability or because of confounding. In the former instance, the
association between the factor and the medical outcome is a chance coincidence. In
the latter instance, the association is genuine but is due to the factor’s correlation
with a causal variable, not because it is itself a cause. For example, if a researcher
were to find that lack of exercise and BMI are correlated, we might wonder if the
observed relationship was just a fluke. If we were to be persuaded that chance was
not responsible, then we might wonder if people who do not exercise are over-
weight not because they are sedentary but because they have poor eating habits.
Consequently, before researchers can point to the correlation between the factor and
the medical outcome as strong evidence of a causal relationship between the two,
they must rule out both random sampling variability and confounding as plausible
alternative explanations of that relationship.
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1.2.1 List three conditions that must be established in clinical research in
order to demonstrate cause and effect.

1.2.2 Which of these three conditions cannot be established when con-
founding is present?

Study designs vary in their ability to establish covariation and the correct time or-
der, and to rule out random sampling variability and confounding as alternative
explanations. As a result, study designs not only influence the choice of statistical
analysis, but they also affect the confidence that can be placed in any causal conclu-
sions drawn from that analysis. As we review some of the most common designs,
we shall see why this is so.

Case Reports and Case Series In a case report, the investigator details the expe-
rience of a single patient (called a case). In a case series, the investigator reports
the experiences of several individual patients. These designs are frequently used to
document highly unusual medical conditions. For example, Newsom-Davis et al.
[1] presented the case of an 82-year-old woman who had been referred because she
had experienced postmenopausal bleeding during the past month. She died about 18
months later from postoperative complications. In the report, the authors discuss the
challenges of diagnosing and treating uterine teratoma, a rare tumor.

Case reports and case series are also used to get a sense of the effectiveness
of new interventions. For example, de Paleville et al. [2] noticed that the benefits
of aerobic exercise on breast cancer patients undergoing chemotherapy had been
studied only when exercise had been introduced during therapy. Curious about the
effects of exercise if it were begun prior to chemotherapy, they documented the fa-
tigue and functional abilities of a breast cancer patient who was about to participate
in a supervised home-based walking program 1 week prior to as well as throughout
an 8-week course of chemotherapy. The investigators found that at the end of the
9-week period, the patient experienced less fatigue and improved functional abili-
ties, suggested that these outcomes were due to her having begun her exercise pro-
gram before chemotherapy was initiated, and recommended that further research on
“prehabilitation” should be conducted.

Case reports and case series struggle to establish the three conditions of causal-
ity that must be met in order to establish a causal conclusion. Consequently, they
are used to document cases rather than to demonstrate causality. For example, it
is often impossible to evaluate the effectiveness of a new treatment with a case
report because the report did not establish covariation. Notice that the case report
reported by de Paleville et al. did not include a patient who did not participate in the
prechemotherapy exercise regimen. Consequently, the investigators could not show
that variation in the supposed causal factor (being or not being prehabilitated) was
associated with variation in the supposed effect (having higher or lower levels of
energy or functional ability).
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Even if a case report had included a patient who had not been given the treat-
ment and even if this patient had shown less improvement than the patient who had
been treated, we would not be able to rule out plausible alternative explanations for
why the treated patient showed more improvement than the untreated one. Recall
that one possibility could be random sampling variability. The apparent effect of the
treatment could have been due not to the treatment but to one or more factors that
were present by chance at the time the treatment was administered. For example,
most if not all measurement in clinical research is influenced at least to some extent
by random factors. A blood pressure reading, a laboratory test result or a patient’s
self-report are all likely to be affected by factors that occur by chance at the time the
blood pressure reading is taken, the lab test conducted, or the self-report given. This
random measurement error is one source of random variability. A problem with a
case report is that it is difficult to determine to what extent the patient’s observed
improvement was genuine, that is, due to the treatment, and to what extent it was
due to random factors such as measurement error. Combining several cases into a
case series can be helpful in this regard, since if the effect of the treatment is genu-
ine, it should help other patients as well, but the resulting number of cases in a case
series is usually too small to allow researchers to confidently rule out the possibility
that chance was the sole cause of the observed change in the patients’ condition.

Another possible explanation for improvement observed in a treated patient is
that the improvement was not due to chance but to confounding, that is, to a factor
that is reliably associated with the treatment and with the medical outcome under
investigation. A factor that is consistently associated with both the treatment and
the outcome is referred to as a confounding factor or a confounder. To convincingly
show that a treatment is effective, a researcher must demonstrate that although there
may have been random factors at work in the study, there were no systematic differ-
ences between the patient who was treated and the one who was not other than the
treatment itself. There are techniques that researchers can use to take into account
or control confounding factors, but to be effective they require a large number of
patients.

Despite their shortcomings as evidence of causality, information reported in a
case report or a case series can alert practitioners to diagnoses and treatments that
they might not have otherwise considered. Moreover, a case report or series can lead
to additional research that uses study designs better suited to establishing causal
connections. One such design is the case-control study.

Is each of the following statements true or false?
1.2.3 In general, case reports can provide strong evidence of covariation.
1.2.4 Case reports have little or no role to play in clinical research.

Case-Control Studies Case-control studies compare people (called cases) who
already have a specific condition or disease with people (called controls) who do
not. The logic of this type of study is to work backward from the disease to identify
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a factor that distinguishes between the two groups. The factor might be a demo-
graphic, physical or psychological characteristic, or a life experience of some kind.
Case-control studies often rely on preexisting records such as medical charts or on
participant self-report to identify these factors. Rarely if ever does the identified
factor perfectly distinguish between cases and controls. Although none of the con-
trols will have the illness, it is likely that some will have been exposed to the fac-
tor, and while all of the cases suffer from the disease, it is likely that some will not
have been exposed to the factor. So case-control studies compare the /ikelihood that
those who have been exposed to the factor have the disease to the likelihood that
those who have not been exposed have the disease. These likelihoods are expressed
in terms of odds. A risk factor is associated with an increase in the likelihood or
odds of disease, while a protective factor is associated with a decrease in odds. The
extent to which a factor increases or decreases the odds of disease is calculated by
dividing the odds of the exposed group by the odds of the unexposed group. The
result is called an odds ratio (OR). A risk factor generates an OR greater than 1.0;
a protective factor generates an OR less than 1.0. An OR equal to 1.0 indicates that
the factor has no impact on disease.

As an example of research on a protective factor, consider a study conducted by
Kim et al. [3] in Korea. They asked 358 breast cancer patients and 360 women with
no known history of malignant neoplasm to complete a food intake frequency ques-
tionnaire. The investigators found that the odds of having breast cancer were lower
for women who reported that they consumed relatively large amounts of fish high
in omega-3 fatty acid. In fact, dividing the odds of having breast cancer for women
whose diets were greatest in omega-3 fatty acid by the odds for women whose diets
were lowest in omega-3 generated an OR of 0.47. This means that diets highest in
fatty acid were associated with odds of breast cancer that were less than half the
odds of diets lowest in omega-3. The investigators concluded that a diet high in fatty
fish is a protective factor for breast cancer.

The exact value of a statistic obtained in any given study is subject to random
sampling variability. If the study were to be repeated many times, we would not
obtain the exact same value each time. Instead, we would see a range of values.
Consequently, researchers often report an estimate of that range known as the 95 %
confidence interval (95% CI). If the sample statistic is an OR, and if the interval
does not include the value of 1.0, then random factors can be confidently ruled out
as an explanation for the finding. For example, in the Kim et al. study, the OR of
0.47 has a 95% CI that ranges from 0.27 to 0.80. This range does not include 1.0,
so we can be confident that the observed difference in odds of contracting breast
cancer between the people in the study who consumed a lot of omega-3 acid and
those in the study who consumed very little of it was not due just to random sam-
pling variability.

Case-control studies have at least three advantages over case reports and case se-
ries. First, by including a group of patients that are free of disease, that is, by includ-
ing the controls, case-control studies can demonstrate covariation. For example, in
the study of diet and breast cancer conducted by Kim et al., the point was not that
the cases did not eat fatty fish. The point was that the cases ate less fatty fish than
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did the controls. By including the controls in their study, they were able to show
covariation between fish consumption and breast cancer.

The second and third advantages have to do with the fact that the number of cases
and controls observed in a case-control study is usually large. Collecting observa-
tions from a large sample of cases and controls helps to compensate for the random
measurement error associated with each observation, and so allows researchers to
have more confidence in their findings. For example, Kim et al. based their conclu-
sions on their assessment of the dietary habits of over 700 patients. In contrast, de
Paleville et al. based their conclusions on a single case. In addition, using a large
sample allows researchers to employ inferential statistics. These procedures help re-
searchers to decide whether covariation was due solely to chance or to a systematic
difference between their cases and controls. One way they do this is by generating
95% Cls. For instance, by generating a 95% CI, Kim et al. were able to conclude
that that the covariation they observed between levels of fish consumption and the
odds of having breast cancer was not due solely to random factors.

Although case-control studies can demonstrate covariation between exposure to
a risk or protective factor on the one hand and the odds of having a disease on the
other, exposure may be associated or confounded with one or more other factors.
Consequently, researchers assess the degree of relationship between the factor and
the disease after they have first controlled for confounders. Several methods exist
for controlling confounding. For example, Kim et al. collected information about
each patient’s age, BMI, breast cancer family history, smoking status, physical ac-
tivity, and many other factors that might have something to do with the etiology
of breast cancer and be correlated with dietary habits. Then using a statistical pro-
cedure known as logistic regression to take these confounders into account, they
found that the odds of having breast cancer were lower for women whose diet was
high in fatty fish.

Other methods for controlling confounding are stratification and matching.
Stratification refers to the procedure of first computing the OR at each value of a
confounder. For each comparison, the confounder is held constant, so any differ-
ence between the cases and controls in their odds of having been exposed to the
factor under investigation cannot be due to the confounding variable. Then the ORs
across the levels of the confounder are combined to give a representative estimate of
the size of the difference in odds between cases and controls when the confounder
has been held constant. Matching involves recruiting controls that are similar to the
cases in terms of a subset of confounders. When matching is used in a case-control
study, the research design is called a matched case-control study. Often in matched
case-control studies, logistic regression is used to control for additional confound-
ers, in which case the regression is called conditional logistic regression.

A study by Rajaraman et al. [4] is an example of all three of these methods of
controlling confounding. These researchers investigated whether exposure to diag-
nostic radiation in utero or in early infancy or to ultrasound scans in early infancy
is associated with childhood cancer. Cases were 2656 children 14 years of age or
younger living in the UK who had been diagnosed between 1992 and 1996 as hav-
ing leukemia, lymphoma, or a tumor of the central nervous system. The investiga-
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tors wished to control for each child’s sex, age, birth weight, mother’s age, the
geographical region in which the child lived, and whether the child’s cancer was di-
agnosed before or after the age of five. To control these six confounders, the inves-
tigators first identified a control who was of the same sex, had within 1 month the
same date of birth, and came from the same geographical area as the case to which
he or she was to be matched. Obtaining data from medical records, the investigators
then compared the extent to which each case and his or her matched control had
been exposed to radiation or ultrasound scans in utero or up to 100 days following
birth. They made these comparisons while using conditional logistic regression to
control for the mother’s age and the child’s birth weight, and stratified the analysis
by the age at which the child’s cancer was diagnosed. In general, the investigators
found a “slight” increase in risk associated with exposure to X-rays in utero or
in early infancy, but the increases could have been due to random variability. For
example, across all cancers, the OR was 1.14, but the 95% CI ranged from 0.90 to
1.45. No adverse effects associated with ultrasounds were found.

Although case-control studies are an improvement over case reports, they have
their weaknesses. Medical charts may not always be accurate, complete or even
available, and patient self-reports can be unreliable. These problems can make it
difficult to identify a risk or protective factor, to be certain that the cases were
exposed to the factor more often than the controls or to be sure that the exposure
occurred before the onset of the disease. Our next study design addresses these
problems. In addition, in a case-control study, only confounding factors that are
known to exist and which are measured can be controlled. This leaves open the pos-
sibility of residual confounding. For example, say that Rajaraman et al. had found
an association between exposure to X-rays and lymphoma. This association would
not appear to be explainable in terms of the six confounders that the investigators
controlled. However, controlling six confounders does not guarantee that all con-
founders had been taken into account, so while we could have been confident that
lymphoma is associated with X-ray exposure, and that this association is probably
not due, for example, to the age at which the diagnosis was made, we would have to
be cautious about concluding that X-ray exposure causes lymphoma.

1.2.5 A regression analysis is one method of controlling confounding in a
case-control study. Name two others.

1.2.6 Although researchers can use a number of techniques to control con-
founding in a case-control study, some confounders may be over-
looked. This produces confounding.

Cohort Studies In a cohort study, a group (called a cohort) of people who have
not yet experienced the outcome of interest is observed over time. Whether or not
the outcome is experienced by each member of the cohort during the lifetime of
the study is recorded, and differences between those who experience the outcome
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and those who do not are identified. Often two or more cohorts are studied and the
outcome of interest is whether one cohort is more likely to experience some event
than another. For example, two cohorts known to vary in their degree of exposure
to a suspected risk or protective factor might be followed to determine whether they
differ in their incidences of disease or death. The extent to which exposure affects
the probability of disease onset or of death is assessed after confounders have been
taken into account, and inferential statistical tests are used to see if random sam-
pling variability can be ruled out as an explanation of the findings. Often the prob-
ability of disease or death of the exposed group is compared to the probability of
disease or death of the unexposed group by taking the ratio of the former to the
latter. This ratio is called relative risk, hazard ratio, or rate ratio. Risk factors are
associated with relative risks, hazard ratios, and rate ratios that are greater than 1.0,
protective factors less than 1.0.

An example of a cohort study of a risk factor for death can be seen in the work
of Sakata et al. [5] who examined the relationship between cigarette smoking and
mortality due to all causes among nearly 68,000 Japanese men and women born be-
fore August 1945. The cohort was followed for an average of about 23 years. Using
Poisson regression, Sakata et al. compared the death rates of current smokers and of
former smokers to never smokers for people who were born before 1920 and again
for people born between 1920 and 1945. Table 1.1 displays the death rate ratios for
current smokers born between 1920 and 1945 as a function of the age at which they
began smoking. Each ratio compares the death rate of current smokers to the death
rate of respondents who never smoked. We can see from the table that the death
rate for current smokers who started smoking before the age of 20 was more than
twice the death rate of people who never smoked (rate ratio of 2.21 for men, 2.61
for women). We can also see that the death rate ratio was lowest for current smokers
who did not start to smoke until they were at least in their thirties. However, even
for these late starters, the death rate was still higher than for life-long nonsmokers
(rate ratio of 1.48 for men, 1.40 for women).

As with case-control studies, cohort studies can show covariation between ex-
posure to a risk or protective factor on the one hand and the presence or absence of
disease or death on the other. However, by obtaining data from participants at the
beginning of the study and again periodically over time, cohort studies are better
at verifying that the factor preceded the outcome, and at tracking any changes that
might have occurred in health status and exposure to the factor and to confounders.
But, as in all research designs, cohort studies have disadvantages. For example,
because they often take many years to complete, they can be expensive to conduct,
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and tracking and retaining patients can be difficult. Moreover, although cohort stud-
ies can employ techniques such as matching, stratification and regression to control
confounders, they are subject to the problem of residual confounding.

True or false?

1.2.7 In a cohort study, a protective factor will have a relative risk greater
than 1.

1.2.8 In order for a researcher to conclude that a factor is a risk to health, the
95 % confidence interval of the hazard ratio must include the value
of 1.

Randomized Controlled Trials A scientific experiment intended to assess the effi-
cacy of an intervention is called a randomized controlled trial (RCT). In this study
design, at least one group of people is exposed to an intervention and one is not.
The effects of the intervention are then assessed. Sometimes the intervention is a
treatment or therapy that is intended to restore health or at least control or slow the
progression of disease. Other times the intervention is intended to maintain health
or to prevent disease or some other adverse event. In either case, the safety of the
intervention is often also assessed.

Not unlike a cohort study, an RCT establishes the correct time order by follow-
ing participants over time after they have been exposed to the intervention and
covariation by comparing the outcomes experienced by those were exposed to the
intervention to the outcomes experienced by those who were not. However, an RCT
has several advantages over a cohort study. One is that an RCT can give investiga-
tors more precise control over the administration of the intervention and the mea-
surement of the outcomes so that both are more uniform across participants. This
reduces random sampling variability which in turn makes it easier to rule out chance
as an explanation of the results. Another is that investigators can have more control
over inclusion and exclusion eligibility criteria by which participants are chosen
for study. This allows investigators to reduce chance differences across participants
in their demographic or other physical or psychological characteristics, which can
also decrease random sampling variability. If the intervention is a drug therapy, the
patients and the investigators can be blinded or masked, that is, kept unaware of
whether the patient is receiving the drug under investigation or a standard treatment
or placebo. But perhaps the single most important advantage of an RCT is that it
uses randomization to control confounding.

There are two basic types of randomization procedures that are used in an RCT.
The type depends on whether the participants in the group exposed to the interven-
tion are the same or different from the participants in the group that is not exposed.
In a parallel group trial, two or more different groups or arms are used. Random-
ization takes the form of random assignment of each participant to one of the arms.
When random assignment is used, investigators let chance decide to which group a
participant will be assigned. For example, if a treatment is to be compared against a
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placebo, the investigator would, in effect, flip a coin to decide whether a participant
will be given the treatment or the placebo. By randomly assigning participants to
groups, investigators can be highly confident that the arms on average will be simi-
lar with respect to all potential confounders that are related to participant character-
istics such as age, health status, race, eating and exercise habits, and so on. Random
assignment is a powerful tool for controlling confounders associated with partici-
pant characteristics. It controls confounders without needing to measure them, and
more importantly, controls confounders of which investigators might be unaware.

An example of a parallel group design is an Australian study conducted by Clem-
son et al. [6] of the impact of exercise on the rate of falls among the elderly living
at home. A total of 317 men and women aged 70 or older who within the past 12
months had experienced either at least two falls or one injurious fall were randomly
assigned to one of three arms. One group of participants was asked to perform vari-
ous physical movements that increase strength and balance but which can be easily
integrated into daily activities. For example, participants were encouraged to bend
from the knees instead of from the waist when picking up objects. A second group
was asked to engage in a structured program of balance and strength exercises three
times per week. The third arm served as the control group; these participants were
asked to engage in 12 “gentle and flexibility exercises.” The number of falls and
other adverse events reported by each participant was recorded for up to 1 year, or
until the participant left the study or died. In addition, various measures of balance
and strength were taken at the beginning of the study to establish baselines, and
again at 6- and 12-month follow-up. Using negative binomial regression, Clemson
et al. compared the fall rates of the integrated and structured exercise groups to the
fall rate of the control group, and found that the rate ratio for the integrated program
group was 0.69, with a 95 % CI of 0.48 to 0.99, while the rate ratio for the structured
program group was 0.81 (95 % CI, 0.56—1.17). Using analysis of variance and pair-
wise comparisons, Clemson et al. then compared the average balance and strength
scores of the three arms from baseline to 12-month follow-up, and found on several
measures that the integrated exercise group experienced greater increases in balance
and strength compared either to the structured program or to the control group, in-
creases that were unlikely to be due to random variability alone. Regarding adverse
events other than falls, one participant in the integrated program arm experienced a
pelvic stress fracture but continued to participate, while one participant in the struc-
tured program arm experienced a groin strain and withdrew from the study. The
investigators concluded that a program of physical activities designed to increase
balance and strength can substantially reduce falls among the elderly if the program
is incorporated into everyday living.

The second type of RCT is the crossover trial. In this study, the same group of
people is exposed at different points in the study to the presence and absence of
the intervention, or to two different interventions. Investigators then compare each
participant’s outcomes he or she experienced under the two conditions. This design
is often used to assess the effects of a drug relative to a placebo or to an alternative
remedy. If a drug is being tested, the administrations of the drug and placebo (or
alternative remedy) may be separated by a fixed interval of time or washout period.
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Fig. 1.1 Box plot of change in total exercise time from baseline. (Reproduced with permission
from the Lancet Publishing Group [7])

The form of randomization used here is random sequencing of the two treatments.
By using a random order for each participant, investigators control carryover ef-
fects, confounders related to the order of treatments.

An example of a crossover trial is a study reported by Noman et al. [7] who in-
vestigated the effects of high-dose allopurinol on exercise in patients with chronic
stable angina. At the beginning of the study, 65 outpatients underwent exercise tol-
erance tests to provide baseline measurements of total exercise time, time to ST
depression, and time until chest pains occurred. Then a 6-week course of allopu-
rinol followed by a 6-week course of placebo was randomly assigned to 31 of the
patients. The opposite sequence was assigned to the remaining 34. In other words,
each patient began at random with either allopurinol or placebo and then 6 weeks
later “crossed over” to the placebo or allopurinol. The investigators found that on
average, allopurinol produced a reliable increase in all three performance measures.
A box plot comparing the median changes from baseline in total exercise times of
the placebo and allopurinol groups is displayed in Fig. 1.1. The median is repre-
sented by the horizontal line near the middle of each box. For the placebo group,
the median change is close to zero. The p-value displayed in the figure tells us that
the probability of obtaining a difference between two median exercise times equal
to or greater than that observed in the sample is three in 10,000 if allopurinol in
fact has no impact on exercise times. By convention, scientists rule out random
sampling variability as a plausible alternative explanation if the p-value is equal to
or less than 0.05. In this case, the probability that the observed difference between
the two group medians was due solely to random sampling variability is much less
than 0.05.

Despite their ability to make strong inferences about causality, RCTs have their
share of weaknesses. One is the possibility of differential attrition. This refers to
participants in one arm of the study being more likely to withdraw from the study
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than participants in another. An example would be patients who withdrew from a
drug study because the medicine was not helping them. If by the end of the study
only those who found the drug helpful remain, the efficacy of the drug could appear
to be greater than it really is. A similar problem occurs when patients fail to follow
their regimens appropriately, as might happen if they do not understand instructions,
experience unpleasant side effects or find the regimen inconvenient. Noncompli-
ance can make an intervention appear to be less efficacious than it really is. Another
problem is a result of one of the strengths of an RCT. Its ability to tightly control and
standardize various aspects of the study can raise questions about generalizability,
that is, about whether the intervention would be effective in more natural settings. A
therapy which may show efficacy in an RCT might demonstrate less effectiveness in
clinical practice where, for example, administration of the drug may be more vari-
able, patient compliance may be less prevalent, or patient populations may differ
from those selected for the trial. Finally, while RCTs are valuable for determining
the efficacy of treatments, ethical considerations prevent them from being used to
establish the causes of disease.

Researchers have a number of methods for addressing at least some of the limi-
tations of an RCT. For example, to get a truer sense of the effectiveness of the
treatment, researchers would conduct an intention-to-treat analysis. This means that
regardless of whether patients complied with the request of the researcher, the out-
comes experienced by the patients assigned to the treatment condition are compared
to the outcomes experienced by the patients who were not assigned to the treatment
condition. For example, the outcomes experienced by patients in the treatment con-
dition who were discovered to have failed to follow the treatment regimen correctly
would be included with the outcomes experienced by treatment patients who were
known to have followed the regimen as intended. Perhaps more importantly, re-
searchers would conduct additional studies to see if trial results can be replicated.
One study might be a larger trial conducted at a number of clinical sites distributed
across a broad geographical area on patients with diverse demographic character-
istics. Another might be a cohort study conducted in a setting that more closely
approximates daily clinical practice. At some point, researchers would then draw
conclusions about treatment effectiveness based on the accumulated evidence.

1.2.9  Arandomized controlled trial has two basic types: the parallel group
trial and the trial.

1.2.10 Which of these two types of trials controls patient-related character-
istics through random assignment?

1.2.11 A(n) analysis assesses the effectiveness of a treatment by
including all patients assigned to the treatment condition, even those
who failed to follow the treatment regimen correctly.
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Systematic Review and Meta-Analysis Assessing accumulated evidence is the
goal of a systematic review or meta-analysis. Researchers conducting a system-
atic review begin by identifying a fairly specific research topic and methodically
locating reports of research studies that meet explicitly stated inclusion and exclu-
sion criteria. Next, they critically evaluate the findings of each study, compare and
contrast them, and integrate their assessments into an overall conclusion. Finally,
they make recommendations for clinical practice and identify issues to be explored
in future research. The steps taken by authors of a meta-analysis are similar except
that they focus on studies that are more homogeneous in various aspects of their
methodology compared to studies in a systematic review. This allows authors of
a meta-analysis not only to compare the size of the effect of a given treatment or
intervention in each study, but also to combine these individual effect sizes into an
overall quantitative measure of effect size. The pooled effect size is likely to be a
more reliable estimate of impact than the effect size assessed in a single study.

As an example, Schulze-Rath et al. [8] conducted a systematic review of research
on whether exposure to diagnostic X-rays is a risk factor for cancer in children. The
reviewers restricted their review to cohort and case-control studies of children and
adolescents who for diagnostic reasons had been exposed to low doses of prenatal
or postnatal ionizing radiation. Each study had to have been published in English
between 1990 and 2006, and to have reported risk estimates for leukemia, lympho-
mas, solid tumors or tumors of the central nervous system. To locate the studies, the
reviewers first searched through the database, PubMed, using the following search
key words, “(child or child preschool or infant) and neoplasms and (radiograph*/
adverse effects) and (pregnancy or pregnant women or infant or fetus or embryo).”
The reviewers also consulted six other databases, the reference lists of the studies
they uncovered in the seven databases, and 2-yearly volumes of two important jour-
nals in the field. The search led the reviewers to 59 articles from the databases and
another 88 from the reference lists of those 59. After sifting through the 147 studies,
the authors identified 19 case-control and six cohort studies that met their eligibility
criteria, although some of the studies included adults up to the age of 31 among their
participants. Most of the case-control studies included 40-500 patients and each
cohort study included 300-31,000 patients. Of the 25 studies, 12 were conducted
in Europe, seven in the USA, four in Canada, and one each in Shanghai and Israel.

Schulze-Rath et al. discovered that the variability across the 25 studies in the
type of design (case-control or cohort), the timing of the radiation (pre or postnatal)
and the type of cancer studied limited their ability to draw meaningful conclusions.
Nevertheless, they were able to identify nine studies that shared the same study de-
sign, risk factor, and outcome, so they decided to conduct a meta-analysis of them.
These were case-control studies of prenatal exposure and leukemia. Using the OR
as a measure of effect size, the reviewers pooled the data from the nine studies to
generate an overall measure of risk associated with prenatal radiation. The results
are presented in Fig. 1.2.

Figure 1.2 is often referred to as a forest plot, a visual display of the effect sizes
of each study and the pooled effect size. The OR for each of the nine studies is
represented by a small square. The size of each square represents the weight that
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Fig. 1.2 Forest plot of odds ratios from nine case-control studies of prenatal diagnostic X-rays and
leukemia. (Adapted with permission from Springer Science+Business Media [8])

was given to the OR of that study when the pooled OR was calculated: The greater
the weight, the bigger is the square. The pooled OR is represented by the diamond
beneath the nine squares. As we can see from the forest plot, the ORs of eight of the
nine studies cluster around 1.0. One study found an OR substantially greater than 1
but this result clearly is not typical, and the pooled OR is 0.99. Because an OR of
1.0 means that the likelihood of disease is the same for both the exposed and unex-
posed groups, the reviewers concluded that this body of research has failed to show
that prenatal exposure to radiation is a risk factor for leukemia.

The horizontal line going through each square of the forest plot is the 95% CI
of the OR. The width of the diamond represents the 95% CI of the pooled OR. A
measure of an effect size that has a narrow confidence interval is more reliable than
a measure that has a wide confidence interval. Notice that the size of each square
seems to be inversely related to the width of the confidence interval. This is because
in a meta-analysis more reliable effect sizes are given more weight in the calcula-
tion of the pooled effect. Notice too that the confidence interval of the pooled OR is
relatively narrow compared to most of the others. This demonstrates an advantage
of a meta-analysis: It tends to generate conclusions that are more reliable than con-
clusions that are based on the findings of a single study.

Systematic reviews and especially meta-analyses are very useful tools for evalu-
ating evidence to date for they help researchers to assess the reliability and gener-
alizability of a given finding, to discern relationships among data that might not
be apparent in any single study, and when the reviews include randomized con-
trolled trials, generate highly confident causal conclusions. But conclusions from
reviews and meta-analyses are often limited by the methodologies of the studies
they review, and their conclusions should not be generalized beyond the conditions
under which the reviewed studies were conducted. Recognizing these limitations,
Schulze-Rath et al. caution that most of their studies were case-control studies, the
few cohort studies that they were able to locate differed from one another in many
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ways and included small numbers of childhood cancers, and relative to most of the
participants of their review, children today are exposed to higher overall levels of
radiation due to the increased use of CT scans. They conclude that cohort studies
with very large sample sizes and long follow-up periods are needed to detect the
long-term effects of today’s diagnostic practices.

1.2.12 A is a visual display of effect sizes obtained in studies reviewed
in a meta-analysis.

1.2.13 Does the 95 % confidence interval of a pooled OR tend to be rela-
tively wide or narrow?

1.3 Categories of Research

Our review of study designs does not include every type of study design used in
clinical research. Rather than try to present each of these additional types of studies,
here we will give an overview of the various categories of research into which most
clinical investigations fall. Knowing these categories will help you to understand
designs that we have not covered and to interpret the statistics that they generate.
The categories are retrospective versus prospective research, experimental versus
observational research, and cross-sectional versus longitudinal research.

Retrospective Versus Prospective Research A refrospective study focuses on
an outcome that study participants have already experienced. A prospective study
investigates an outcome that participants have not yet experienced. Case-control
studies are always retrospective. Randomized controlled trials are always prospec-
tive. Cohort studies can be cither prospective or retrospective.

Recall that cohort studies track participants over an interval of time, and that
at the beginning of the interval, none of the participants has experienced the out-
come of interest. When a prospective cohort study is conducted, a cohort study is
designed to answer specific research questions. Appropriate cohorts are identified,
and procedures intended to measure relevant risk factors, protective factors, out-
comes, and confounders are carefully planned. These measurements are then taken
of the cohorts at the beginning of, during, and at the end of the time interval, and the
resulting data are analyzed to answer the questions the study was designed to ad-
dress. Sometimes data collection goes on indefinitely, in which case study findings
are updated periodically. The study by Sakata et al. [5S] on smoking and mortality
that we reviewed earlier is a prospective cohort study.

When a retrospective cohort study is conducted, a research question is answered
by consulting a data archive that contains information about groups that can serve as
relevant cohorts and of whom observations were made before and after a time inter-
val that serves the investigators’ purpose. An example of a retrospective cohort study
is an investigation conducted by Dosoretz et al. [9] who wished to know the effect
of neoadjuvant hormone therapy (Lupron or Zoladex) on prostate cancer patients
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receiving brachytherapy. The outcome variable that interested them was mortality
due to any cause. To answer their question, they sifted through the medical records
of 20 oncology centers and selected 3744 men who had undergone brachytherapy
for localized prostate cancer between May 1991 and September 2005, had not also
received external-beam radiation, and had been followed after brachytherapy for at
least 2 years. Using Cox regression to control confounding variables such as tumor
classification and pretreatment PSA levels, the investigators obtained a hazard ratio
(HR) of 1.24 (95% CI, 1.01-1.53) among patients who had been 73 years old or
older at the time of brachytherapy. The HR of 1.24 means that among men in this
age group, those who had also received the hormone therapy were 24 % more likely
to have died compared to men who had not received hormone therapy.

Retrospective and prospective cohort studies are similar in many ways. Both
focus on groups that prior to a given time interval had not experienced the outcome
of interest, both use the same statistical procedures to assess the role of random
sampling variability and to control confounding, and both are subject to the prob-
lem of residual confounding. But because retrospective cohort studies are more
problematic—for example they are more susceptible to bias when participants are
selected and record keeping is more likely to be incomplete or inaccurate—prospec-
tive cohort studies are preferred.

Experimental Versus Observational Research In an experimental study, the
investigator systematically exposes participants to a suspected causal factor after
having controlled confounding variables by holding them constant or by using ran-
domization. The investigator then measures an outcome variable and compares the
measurements across the exposure conditions of the experiment. In an observa-
tional study, the investigator does not systematically expose participants to a causal
factor. Instead the investigator observes people who have already been exposed. If
possible, the investigator will also observe people who have not been exposed and
compare the two sets of observations. In an observational study, the investigator
cannot control confounding variables before the exposure occurs, and therefore is
less confident that the exposure is the only systematic difference between the two
groups. Consequently, experimental studies are superior to observational studies
in establishing cause and effect. An RCT is an example of an experiment, but one
in which the causal factor is an intervention. Case-control and cohort studies are
examples of observational research.

Experimental and observational studies often employ the same statistical proce-
dures. However, the ability to draw causal conclusions from the results of a statisti-
cal analysis is greater for experimental data. For example, we could use an indepen-
dent-samples t-test to compare the average blood pressure of hypertensive patients
who had been on a low sodium diet for a year to the average blood pressure of hy-
pertensive patients who had not been on a low sodium diet for a year, regardless of
whether the diet was randomly assigned to the patients (experiment) or self-selected
(observational study). But if the data were observational, we would be particularly
cautious about drawing causal conclusions, even if the average blood pressure of
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the low sodium group were lower than that of the second group, and the results of
the #-test allowed us to rule out chance as the cause of the difference.

Cross-Sectional Versus Longitudinal Research A cross-sectional study is an
observational study that takes measurements from a sample of people on a single
occasion. It can document covariation between a suspected cause and its suspected
effect, but is less able than the longitudinal study and the experiment to establish
that a suspected cause preceded its suspected effect, and inferior to the experiment
in controlling confounding. It is often used to provide a snap-shot of a population at
the time the sample was taken, as when it is used to determine disease prevalence,
the proportion of a population that has a given disease. A survey is often conducted
as a relatively cost-effective method of collecting cross-sectional data. The annual
telephone survey conducted by the Behavioral Risk Factor Surveillance System
(BRFSS) [10] of the Centers for Disease Control and Prevention (CDC) is an exam-
ple. Each survey allows the CDC to document the prevalence of various risk factors
such as obesity within the USA and its territories.

A longitudinal study is an observational study that takes measurements from a
sample of people on two or more occasions. A longitudinal study is useful for track-
ing changes in a given group over time, documenting how a disease progresses as
times passes, and for determining disease incidence, the rate of new occurrences
of a given disease. A longitudinal study can document covariation between a sus-
pected cause and its suspected effect while also establishing the correct time order
between the two variables. However, it lacks the ability of the experiment to control
confounding. A cohort study is an example of a longitudinal study.

Cross-sectional and longitudinal studies employ somewhat different statistical
procedures. This is because an analysis of longitudinal data must take into account
the fact that the measurements were made of the same individuals. For example, if
we wanted to compare the mean blood pressure of a group of hypertensive patients
before they had decided to go on a low sodium diet to their average blood pressure
1 year later, we could not use the independent-samples #-test. Instead we would use
a paired-samples t-test to compare the two sets of blood pressure readings.

True or false:

1.3.1 A cohort study is always prospective.

1.3.2 Disease prevalence is the proportion of a population that has a given
disease.

1.3.3 Longitudinal studies are useful for measuring disease incidence.

1.4 Looking Ahead

Clinical investigators can call upon a very large number of statistical methods to
help them understand their data, so our review of study designs provides only a
sampling of the statistics that are used in clinical research. However, researchers
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tend to draw from the same set of study designs when they plan their research proj-
ects, so they tend to draw from the same set of statistical procedures when analyz-
ing their data. As a result, the statistics that are typically used in clinical research
are a subset of those that are available. However, that subset is still substantial,
and includes some highly sophisticated techniques that require advanced training.
Moreover, older methods are sometimes replaced with new ones. Consequently, we
will not cover all of the methods that you are likely to encounter in clinical studies.
But we will give you a representative sampling, and one that will help you to master
more complex techniques and understand new ones as they come along.

Descriptive statistics and graphical techniques are the focus of our discussion in
Chaps. 3 (“Describing the Distribution of a Categorical Variable™) and 4 (“Describ-
ing the Distribution of a Quantitative Variable’). We also discuss graphing data
throughout the book, including in Chap. 9 (“Relationships in Quantitative Data”)
where we describe scatter plots, Chap. 12 (“Analysis of Variance with Two Fac-
tors”’) where we discuss plots of interaction effects, and Chap. 16 (“Survival Analy-
sis”’) where we describe survival functions.

As for measures of association, we discuss ORs and relative risk in Chap. 6
(“Inference for Proportions™”) and again in Chap. 15 (“Logistic Regression”), haz-
ard ratios in Chap. 16, and rate ratios in Chap. 17 (“Regression Analysis of Count
Data”). We explain using the difference between means as a measure of associa-
tion in Chaps. 10 (“Comparing Means of Independent Samples™), 11 (“Comparing
Means of Related Samples™) and 12. In addition, we review the Pearson correlation
coefficient and Spearman's Rho coefficient, measures of association between two
quantitative variables, in Chap. 9, and Cramér s V and gamma, measures of associa-
tion between two categorical variables, in Chap. 7 (“Relationships in Categorical
Data”). Building on the concepts of contingency tables, and row and column per-
centages of Chap. 7, we explain in Chap. 8 (“Assessing Screening and Diagnostic
Tests”) how the degree of association between diagnostic test results and the pres-
ence of disease is determined.

We discuss regression analysis in five chapters. We review the analysis of the
relationship between a quantitative outcome variable and either a single predictor
variable or two or more predictor variables in Chaps. 13 (“Simple Linear Regres-
sion”) and 14 (“Multiple Linear Regression”). We explain binary logistic regression
in Chap. 15 where the outcome variable is categorical and binary, Cox regression
in Chap. 16 where the outcome variable is time to event or survival time, and nega-
tive binomial regression in Chap. 17 where the outcome variable is a rate, such as
a mortality rate.

Finally, we introduce basic concepts of inferential statistics, such as confidence
intervals, tests of hypotheses, and test statistics, in Chap. 5 (“Introduction to Statisti-
cal Inference”). We then apply these concepts throughout the remainder of the book
to a range of population parameters. Along the way, we review several test statis-
tics, including the Z and ¢ statistics, the F-ratio, chi-square, and the Wald statistic.

To help you understand the statistical concepts we discuss, we include in each
chapter output generated by SPSS [11], and explain how to interpret it. SPSS is a
statistics software package frequently used in clinical research. On the assumption
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that you will learn more if you are actively involved in the analyses, we will also
explain how to generate the output and invite you to replicate the analysis. Most of
the exercises at the end of each chapter will give you additional opportunities to use
SPSS. If you do not want hands-on experience with data analysis or do not have
access to SPSS, you can skip Chap. 2, which provides an overview of the software,
and in subsequent chapters you can ignore our SPSS-related instructions. You will
still be able to interpret the output we provide and tackle those exercise questions
that can be answered independently of SPSS.

1.5 Exercise Questions

1. Bissonauth et al. [12] asked 280 French-Canadian women who had breast cancer
and were nongene carriers of the mutated BRCA gene to complete a lifestyle ques-
tionnaire. For each of these women, a French-Canadian woman of the same age
(within 10-year intervals) without any cancer and who also did not carry the gene
was recruited and asked to complete the questionnaire. After statistically control-
ling confounders such as alcohol consumption and smoking status, the investi-
gators compared the odds of having breast cancer among women who engaged
in moderate physical activity for long periods of time each week to the odds of
having breast cancer for women who engaged in moderate physical activity each
week relatively infrequently. The resulting OR was 0.48 (95 % CI, 0.31-0.74).

a. Which of the following was used to control age?

Matching

Random assignment
Statistical control
Stratification

b. According to this study, engagement in moderate physical activity is

A protective factor
A risk factor
Unrelated to whether or not women have breast cancer

c. Given their study design, can we conclude from their statistical analysis that
moderate physical activity prevents breast cancer? Why or why not?

2. Franco et al. [13] reviewed the medical charts of 67 African-American patients
with lupus nephritis and found that the odds of developing end stage renal dis-
ease (ESRD) requiring dialysis for patients with low glomerular filtration rates
were about 15 times greater than the odds for patients with higher glomerular
filtration rates (OR=15.28; 95% CI, 3.18-73.38). The investigators concluded
that low glomerular filtration rates are a risk factor for ESRD requiring dialysis
for this patient population.
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a. Was this study retrospective or prospective?
b. Why were the authors able to rule out chance as the explanation for their
finding?

3. Srinivas-Shankar et al. [14] randomly assigned 274 intermediate-frail and frail
elderly men living in the UK to a 6-month course of either transdermal testoster-
one or placebo gel treatment. The investigators concluded that testosterone treat-
ment can have beneficial effects on muscle strength, quality of life and physical
function.

a. Was this study an experiment or an observational study?

b. The title of this article implies that the authors documented a causal relation-
ship between testosterone and a number of outcome variables. Does the study
design justify drawing causal conclusions? Why or why not?

4. Shaikh et al. [15] tracked the acute and early-onset effects of anthracycline, a
cardiotoxic chemotherapeutic agent, on the cardiac functioning of 110 pediat-
ric cancer patients living in Pakistan. For each child, a number of echocardio-
graphic parameters, including ejection fraction, were assessed at baseline, and
then 1 month and 1 year after chemotherapy. The mean ejection fraction values
at baseline, 1 month and 1 year were 69.9 %, 67.3 %, and 62.6 %, respectively,
(p<0.001).

a. Was this study cross-sectional or longitudinal?
b. Which of the following was most likely used to analyze the children’s ejec-
tion fractions?

Analysis of variance
Independent-samples #-test
Logistic regression

Negative binomial regression

c. Can the investigators rule out the possibility that chance was responsible for
the observed differences among the three ejection fraction means? Why or
why not?

5. Using the medical records of the U.S. Department of Veterans’ Affairs (VA),
Turakhia et al. [16] tracked over 122,000 patients who had been newly diagnosed
with nonvalvular atrial fibrillation/flutter (AF) to determine whether risk of
death was higher for those who had received digoxin in an outpatient care setting
within 90 days of diagnosis. Risk of death was derived from survival time data,
also extracted from VA records. Patients with no record of death were assumed to
be alive as of September 30, 2011. After controlling for various confounders, the
investigators reported a hazard ratio of 1.26 (95 % CI, 1.23—1.29). The investiga-
tors concluded that digoxin is associated with increased risk of mortality.

a. Which of the following best describes the design of this study?

Case-control
Prospective cohort
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Retrospect cohort
Randomized controlled trial

b. Which of the following was most likely used to analyze the survival times of
the AF patients?
Analysis of variance
Cox regression
Logistic regression
Paired-samples #-test

c. Complete the following sentence: AF patients who had received digoxin were
% more likely to die than AF patients who had not received digoxin.
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Chapter 2
Introduction to SPSS

Abstract This chapter introduces several basic SPSS procedures that are used in
the analysis of a data set. The chapter explains the structure of SPSS data files, how
to open an SPSS data file, and how to import into SPSS data contained in an Excel
file. The chapter also explains how to select cases for an analysis, display variables
listed in dialog boxes in alphabetical order, label and print output, paste output into
a Microsoft Word document, and save data and output as SPSS or Excel files.

2.1 Overview

Throughout the book we take a hands-on approach to teaching statistics by ask-
ing you to carry out many of the statistical procedures yourself with SPSS. In this
chapter, we show you how to open an SPSS data file and how to import data into
an SPSS file from a Microsoft Excel spreadsheet. We show you how to modify and
save a data file, how to display variables listed in dialog boxes in alphabetical order,
how to label and print output, how to paste your output into a Microsoft Word docu-
ment, and how to export your output into Excel.

Often it is necessary to limit an analysis of data to a subset of respondents. For
example, you might want to include only women in your analysis or only respon-
dents whose answers to a particular question were within a certain range. In this
chapter, we show you one way by which you can select out a subset of cases for
analysis.

The data that we will use are responses of residents of New York state in 2005 to
telephone interview questions asked by the Centers for Disease Control and Preven-
tion (CDC) Behavioral Risk Factor Surveillance System (BRFSS). BRFSS has been
conducting annual cross-sectional studies of health conditions and risk behaviors in
the USA since 1984. As we will soon see, the data set from 2005 consists of a large
number of categorical and quantitative variables. Examples of categorical variables
are the respondent’s sex, marital status, and educational level. Examples of quanti-
tative variables are the respondent’s age, body mass index, and the number of days
per week of exercise.
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Fig. 2.1 Accessing the Open Data dialog

2.2 Opening SPSS Data Files

We will begin by opening an SPSS data file, CDC BRFSS.sav [1].

Double-Clicking The easiest way to open an SPSS data file is to navigate to it
(e.g., with Window’s Explore utility) and double-click it. In a few moments, SPSS
will open and display the data file in its Data Editor.

From Within SPSS If SPSS is already running, you can open a data file within
SPSS by following the sequence displayed in Figs. 2.1 and 2.2. Within SPSS, select
its File menu at the top of the screen and then choose Open and Data. (To save some
effort on our part, hereafter we will refer to a sequence of keystrokes such as this
one as File > Open > Data.) An alternative method for opening the dialog box is
to click the Open data document icon, located just beneath the File menu tab. SPSS
will then display the Open Data dialog box. In the Look in window, navigate to the
location of the data file, click the file so that it appears in the File name window,
and then click Open.

Importing an Excel Spreadsheet It is often convenient to build a data set with
Excel, and then analyze those data with SPSS. To import an Excel spreadsheet into
SPSS, use the Open Data dialog box. There in the Files of type window, click on the
downward pointing arrow and select Excel. Any Excel files at the location to which
you have navigated will now appear. Click on the file you wish to open to move it to
the File name window. Click Open and the Opening Excel data source dialog box
will appear. If the first row of the Excel file contains the names of the variables (a
good idea, by the way), then be sure that Read variable names from the first row of
data is checked. Otherwise, uncheck this instruction. Click OK. This sequence of
keystrokes is displayed in Figs. 2.3, 2.4, and 2.5. SPSS will now convert the Excel
spreadsheet to an SPSS data file.
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File Edit View Data Transform

As an alternative to File = Open > Data,
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File From -

Fig. 2.2 Opening a data set with the Open Data dialog

2.3 Structure of SPSS Data Files: Data and Variable
Views

Regardless of how you open a data file, once it is open you will see in the lower left-
hand corner two tabs labeled Data View and Variable View, as shown in Fig. 2.6.

One of these two views will be active, and the tab for the active view will be
highlighted. In Fig. 2.6, Data View is active. The view that is selected when a data
file is opened depends on which view was active when the file was last saved.

Data View Click the Data View tab if it is not currently active. We will look at the
Variable View window in a moment. A portion of the Data View page of the file is
shown in Fig. 2.7. Note the layout of the data: Variables run across the top of the
columns while respondents (SPSS refers to these as cases) run down the rows.
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Fig. 2.3 Accessing data file types and selecting Excel as the file type

Variable View Click the Variable View tab in the lower left-hand corner and study
the internal structure of the file. In Variable View, each row represents each of the
variables and its associated properties. There are 11 properties altogether. The first
five are displayed in Fig. 2.8. The 11 properties are as follows.

» Name This is the name that appears at the top of each column of the Data View.

There are some limitations on names. Names must begin with a letter or one of
the characters @, #, or $, and can contain no more than 64 characters. Only @
can be used in variable names that you define. The rest of the variable name can
be a combination of letters, numbers, and underbars, but they cannot contain any
blank spaces or other unusual symbols. Underscore, @, #, and $ are not consid-
ered unusual characters.

Type There are different data types. The most common with this kind of data
file are String and Numeric. String refers to variables that contain text. Numeric
variables contain values that are numbers. To change the data type, click the Type
cell. A button with an ellipsis will appear. Click the button to bring up the Vari-
able Type dialog box, select the appropriate data type, and then click OK. These
steps are displayed in Figs. 2.9 and 2.10.
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Fig. 2.8 Variable view

Fig. 2.9 Accessing the Vari-
able Type dialog
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| Name | Type |

1 @_GEOSTR  Numeric
IMONTH String

3 | GENHLTH
4 PHYSHLTH  Numenc
5 MENTHLTH  Numeric

| Name | Type |
1 | @_GEOSTR  Numeric
2 IMONTH String _
3 GENHL?'
4 PHYSHLTH Nume
H MENTHLTH  Numeric

*  Width This is the number of characters that SPSS will allow to be entered for
the variable. It is set automatically when you enter data. You change this by
clicking the Width cell for that variable and then clicking the up or down arrow
to get the desired width. Figure 2.11 displays an example for a variable named

GENHLTH.
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Fig. 2.11 Example of a

. . I Name Type Width
numeric variable whose val- ! J
ues consist of one character 1 @_GEOSTR Numeric 2
2 IMONTH String 6
3 GENHLTH  Numeric @
lljig. Zf;Z .Chz;n%ing the num- ey = Width | Decimals
er o1 decimat places 1 | @_GEOSTR Numeic 2 0
2 | IMONTH String 6 0
3 GENHLTH MNumeric 1

(>

* Decimals This value is the number of decimal places that are displayed in the
Data View for each value of that variable. It does not alter the values that are
actually stored in the data set. As shown in Fig. 2.12, you change the number of
decimal places by clicking on the Decimals cell and then clicking the up or down
arrow to obtain the desired number of decimal places.

* Label This gives a more descriptive name for the variable. If this cell is not
empty, the label will be displayed in any output. Figure 2.13 displays the variable

label for GENHLTH.

It is highly recommended that every variable has a descriptive label. Because
some variables names can be cryptic or uninformative, we will refer to variables
by their labels rather than by their names. When we refer to a variable for the first
time, we will also include the variable name in brackets and the variable number
in parentheses. For example, NUMBER OF DAYS PHYSICAL HEALTH
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1 @_GEOSTR N STRATUM CODE
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3 GENHLTH N @

Fig. 2.13 Example of a variable label
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Fig. 2.14 Accessing the value labels dialog
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NOT GOOD is the fourth variable in the data set, so on our first mention of it we
would refer to it as NUMBER OF DAYS PHYSICAL HEALTH NOT GOOD
[PHYSHLTH ] (variable 4). Sometimes we will also include the value labels as well.
For example, SEX [SEX] (variable 32; 1 =Male; 2=Female).

* Values Categorical data are stored in the Data View with numerical values rep-
resenting each category. The Values cell allows you to associate each numeri-
cal value with a plain language value. This should be done for all categorical
variables. For example, female respondents were asked if they were pregnant.
Their responses were entered into the variable, ARE YOU NOW PREGNANT
[PREGNANT] (variable 33; 1=Yes, 2=No, 7=Do not know/Not Sure, 9=Re-
fused). To enter the value labels, you would click the Values cell of this variable
and then the button with the ellipsis to bring up the Value Labels dialog box.
Next, you would enter each numerical value for the variable in the Value box, the
plain language label in the Label box, and click the Add button. When you finish,
you would click OK. Figures 2.14, 2.15, and 2.16, and 2.17 display these steps.

Practicing Entering Value Labels

Since understanding the results of data analysis is easier if value labels are
used, practice entering a set of value labels for the categorical variable,
HAVE HEALTH CARE COVERAGE [HLTHPLAN] (variable 7; 1=Yes;
2=No; 7=Do not know/Not sure; 9=Refused). This variable stores answers
to the question, “Do you have any kind of health care coverage, including
health insurance, prepaid plans such as HMOs, or government plans such as
Medicare?”
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Q Value Labels "
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Fig. 2.15 Labeling a value

@ Value Labels "

rValue Labels

Lok (cancel] s )

Fig. 2.16 Value Labels dialog showing one value labeled

* Missing Usually missing data appear in the Data View as periods. Sometimes
special numerical values, such as 9999, are used to indicate missing data. You
can set these by clicking the Missing cell for that variable and then the button
with the ellipsis to bring up the Missing Values dialog box. If you have three or
fewer missing value codes, you would check Discrete missing values and enter
one code in each of the boxes. If there are more than three missing value codes,
but they are within a range that does not contain any nonmissing value codes,
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Fig. 2.17 Value Labels dialog showing all values labeled

Fig. 2.18 Accessing the -
Missing Values dialog L I Name | Missing
1 @ GEOSTR N None
2 ]MONTH S Ngps
3 |GENHLTH N -
Missing

1 @ GEOSTR | None '
2 IMONTH Nu : .
3 | GENHLTH ﬂ

then you would check Range plus one optional discrete missing value and enter
the low and high ends of the range in the Low and High boxes. Figures 2.18 and
2.19 show what to do when there are two missing values codes. The codes hap-
pened to be 7 and 9.

The BRFSS data set contains examples of treating some responses as missing. This
is because participants sometimes responded to interview questions by saying that
they were not sure or by refusing to answer. We saw an example when we entered
value labels for the variable, ARE YOU NOW PREGNANT. Most women replied
either yes or no, but some said that they did not know or were not sure, and others
would not give an answer. The CDC recorded all of the responses but considered
not knowing, not being sure, and refusing to answer as missing data.
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Fig. 2.19 Selecting the dis-
crete missing values option
and entering two missing
values codes

Fig. 2.20 Changing the
width of a column in variable
view
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Practicing Declaring Missing Values

Name
@_GEOSTR
IMONTH
GENHLTH

Columns

Treating certain responses as missing occurs often, so let us take a moment
to practice declaring missing values on a variable in the BRFSS data set.
We have already declared missing values for some of the variables. One is
GENERAL HEALTH [GENHLTH] (variable 3). This variable contains the
answer to the question, “Would you say that in general your health is excel-
lent, very good, good, fair or poor?” The CDC used a value of 7 to indicate
that the respondent did not know or was not sure, and a value of 9 to indicate
that the respondent refused to answer. To declare these values as missing, we
followed the sequence displayed in Figs. 2.18 and 2.19. Now it is your turn.
Declare missing values for the variable, HAVE HEALTH CARE COVER-
AGE [HLTHPLAN] (variable 7; 1=Yes; 2=No; 7=Do not know/Not sure;

9=Refused).

* Columns This value gives the width, in number of characters, of the column that
is displayed in the Data View for the variable. As shown in Fig. 2.20, you can
change in Variable View the column width by clicking the Columns cell and then
clicking the up or down arrows to get the desired width.

If you are in Data View you can do this by placing the cursor over the right-hand
border of the desired variable. When the cursor becomes a double-headed arrow,



36 2 Introduction to SPSS

|@_GEOSTR| IMONTH |  GENHL YSHLTH
1 107 88
2 112 3 88
3 102 2 88

Fig. 2.21 Changing the width of a column in data view

menatavarale [ name [y <[ Aign
1 @_GEOSTR Ny = Right
2 IMONTH ?
3 GENHLTH Ny = Right
4 PHYSHLTH N E Left
5 MENTHLTH = Right
6 POORHLTH Ne = Center

drag the border until the desired width is obtained. Figure 2.21 shows as an example
GENERAL HEALTH.

» Align This shows whether the values for the variable will be aligned on the left,
center, or right. Typically, string data are left aligned and numeric data are right
aligned. As shown in Fig. 2.22, you can change the alignment by clicking the
Align cell, clicking the arrow button, and then selecting the desired alignment.

* Measure SPSS recognizes three scales of measurement—scale, ordinal and
nominal. Quantitative data (e.g., body mass index) are scale variables. Categori-
cal data are nominal if there is no natural order to the categories (e.g., gender) or
ordinal if there is a natural order to the categories (e.g., body mass index catego-
ry—normal, overweight, or obese). Many statistical procedures require that data
have the measure type appropriate to those procedures. SPSS cannot identify the
type. It is up to the user to do that. To assign the type of measure of each variable,
click its Measure cell, and then click a button with an arrow to display the three
measure types. Select the desired measure type. Figure 2.23 displays the three
measure types for the variable, GENHLTH.

* Role Variables in SPSS can play a variety of roles. For example, one variable
might be used to predict the value of another. The predictor variable would be
considered the input variable while the predicted variable would be considered
the target variable. Some dialogs have the ability to preselect variables based on
the variables’ assigned roles. By default, all variables are assigned to the input
role. As shown in Fig. 2.24, to change a variable’s role, click its Role cell, click
the arrow button to display the role options, and select the desired role.
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Answer the following questions about the assigned properties of the variable,
GENERAL HEALTH.

2.3.1 Is the variable string or numeric?

2.3.2 Is the variable nominal, ordinal, or scale?

2.3.3 What is the values label for a variable value of 3?

Back to Data View Click on the Data View tab and find the column with the vari-
able name, GENHLTH. If the column is too narrow to show entirely either the
name of the variable or the variable’s data entries, widen the column as described
earlier. You may widen other columns as you wish.

Place the cursor over the variable name. The variable’s label, GENERAL
HEALTH, will appear, as shown in Fig. 2.25. Slide the cursor over some of the
other variable names and their labels will also appear.

Study the data that have been entered in the GENERAL HEALTH column. The
entries may appear as either numbers or their value labels, depending on whether
SPSS has been asked to display the numerical values or the value labels. Recall that
each of the numerical entries represents the participant’s response to the question
about his or her general health. To see the numerical values and the responses that
they represent, click the Value Labels icon. You will find it at the top of Data View.
In SPSS 22, it looks like the middle icon displayed in Fig. 2.26. After each click of
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Fig. 2.25 Sliding the cursor over the variable name displays the variable label

Fig. 2.26 Displaying variable
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the icon, the numbers in the GENERAL HEALTH column will be translated into
their corresponding response options and vice versa.

While you are clicking the icon, see if the value labels you entered earlier are
also displayed.

When the value labels listed in the GENERAL HEALTH column are displayed,
the entries of most of the remaining variables remain numerical. There are two
reasons for this: either the value labels for those variables have not been entered, or
the variables are quantitative rather than categorical. For example, BODY MASS
INDEX [@_BMI4] (variable 78) and BODY MASS INDEX—THREE LEVELS
CATEGORY [@_BMI4CAT) (variable 79) are coded numerically. However, the
numerical entries of BODY MASS INDEX reflect quantity, so this variable has
no value labels. BODY MASS INDEX—THREE LEVELS CATEGORY has
ordinal categories and so it has value labels.

2.4 Saving SPSS Data Files

We will be using this data set in other chapters. If you wish to keep the value labels
you just entered, save your data file to your account. When we return to the data in
future sessions, you can upload into SPSS the data file that you have saved rather
than the file that you first opened in this session.

As an SPSS File To save the file, select File > Save As from the menu at the top
of the screen. In the resulting Save Data As dialog box, locate the destination where
you want to save the file, enter a name for the file, and click the Save button. The
data file will be saved with the name that you assigned to it with a .sav extension.
These steps are displayed in Figs. 2.27 and 2.28.
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Fig. 2.27 Accessing the Save
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Fig. 2.28 Saving data as an SPSS data file
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first row of the Excel spreadsheet, uncheck this box.

Fig. 2.29 Saving data as an Excel spreadsheet

As an Excel File There are times when exporting SPSS data files to Excel can be
handy. For example, you might want to work on your data when you do not have
access to SPSS but will have access to Excel. As shown in Fig. 2.29, exporting an
SPSS data set is done within the Save Data As dialog box. Before saving the data
file, click the down arrow of the Save as type window and select the version of
Excel you wish to use. The extension of the data set will change from .sav to the
Excel extension. If you do not want your variable names listed on the first row of
the Excel spreadsheet, uncheck the instruction, Write variable names to spreadsheet
before clicking Save.

2.5 Selecting Cases for an SPSS Analysis

There will be occasions when you will want to analyze a subset of data. For ex-
ample, in the BRFSS data set, you might want to limit your analysis to respondents
who are male. Select Data>Select Cases to open the Select Cases dialog box. In
the Select Cases dialog box, select If condition is satisfied, and then click the If but-
ton to open the Select Cases: If dialog box. Highlight the variable SEX from the list
of variables on the left and move it into the blank box to the right by clicking on the
button that displays an arrow pointing to the right. Resist the temptation to type the
variable name. It is too prone to typographical errors. Next, either type in an equals
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Fig. 2.30 Accessing the select cases dialog

sign or click the “=" button in the keypad area of the dialog box. Then either type
in the number 1 or click the “1” button. Finally, click the Continue button. You
will have now set up an If condition by which you are asking SPSS to select for
analysis only those respondents whose sex has been entered as 1. Since a value of 1
represents males, you ask SPSS to select only male respondents. Back in the Select
Cases dialog box, ask SPSS to execute your command by clicking OK. These steps
are shown in Figs. 2.30, 2.31, 2.32, 2.33 and 2.34.

SPSS will execute the command and then automatically open its Viewer window.
This window displays a log or record of the instructions SPSS just executed. The
instructions are expressed in the language or syntax of SPSS, and tell us that SPSS
has selected respondents for whom SEX had been coded as “1.”

Return to the Data Editor by selecting Window >CDC BRFSS.sav, and select
Data View if it is not active. Scroll over to the column that displays each respon-
dent’s sex and note that each row of data that belongs to a woman is now preceded
by a diagonal line. These rows will not be included in any analysis that follows. In
addition, if you scroll over to the last variable you will notice that a new variable,
filter_$, has been created. It contains a zero for each case that is not included in
subsequent analyses and a one for those cases that will be used in subsequent analy-
ses. The zero is labeled Not Selected and the one is labeled Selected. Figure 2.35
displays the variables, SEX and filter_$, for ten cases.

Selecting Cases by Category To illustrate how analysis with selected cases works
and to generate some output for later tasks, we will generate a frequency table for
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Fig. 2.31 Accessing the select cases: if dialog

the variable GENERAL HEALTH. An explanation of how to use a frequency table
is a topic of Chap. 3. For now, do not concern yourself with that aspect of what we
are doing. Select Analyze > Descriptive Statistics > Frequencies to open the Fre-
quencies dialog box shown below. Move GENERAL HEALTH to the Variables
box by highlighting it and clicking the right pointing arrow. Then click OK. Fig-
ures 2.36, 2.37, and 2.38 show you what to do.

SPSS will generate a frequency table and automatically display it in the Viewer.
The output can also be found in Table 2.1. Note the number of cases included in the
analysis. As a result of our including only men in the frequency analysis, the result-
ing total number of cases is far less than that of the entire sample.

We will generate a second frequency table but this time limit the analysis to fe-
male respondents. Return to Data > Select Cases. In the dialog box, make your way
back to the If condition, “SEX=1."” Replace the “1” with a “2.” One way to do this
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Fig. 2.33 Creating the if condition
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Fig. 2.34 Executing the if condition

is to type in “2” after you have highlighted the “1” by double-clicking on it. After
you have made the change, click Continue and then OK. In Data View, note that
now men will be excluded from our analysis (Fig. 2.39).

Rerun the frequency analysis and notice the resulting number of cases (Table 2.2).

Selecting All Cases Here we will generate a third frequency table but this time we
will include both men and women. Return to Data > Select Cases. Select A/ cases,
the top option in the Select area, as shown in Fig. 2.40. Choosing the A/l cases
option instructs SPSS to ignore any If conditions that may have been previously
defined. Click OK.

In Data View, the absence of the diagonal lines means that neither men nor
women will now be excluded (Fig. 2.41). Notice that the filter variable has not
changed—it is still set to exclude men. SPSS includes all cases by deactivating the
filter variable.
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Fig. 2.36 Accessing the Frequencies dialog
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Fig. 2.37 Selecting a variable for a frequency analysis



46 2 Introduction to SPSS

@ Frequencies

Variable(s):
&b STRATUM CODE... ﬂ i GENERAL HEALTH ...
& MONTH OF INTE...
& NUMBER OF DA...
& NUMBER OF DA...

& DAYS HEALTH IM...
&b HAVE HEALTHC... :

&b HAVE PERSONA. ..

&b COULDNOTSE... | |
sl uowioncaiv T

¥/ Disp yfrequ’en_cmmes
o Yo Deasie ) (Reset) (concel) i)

w

Fig. 2.38 Executing a frequency analysis

Table 2.1 Frequency distribution of the self-reported general health of males
Frequencies

Statistics
GENERAL HEALTH
N vaiid  Jf
Missing \ )
GENERAL HEALTH
Cumulative
Frequency Percent Valid Percent Percent
Valid Excellent 639 21.8 21.8 21.8
Very good 928 31.6 31.7 53.5
Good 890 30.3 30.4 83.9
Fair 355 121 121 96.0
Poor 118 4.0 4.0 100.0
Total 2930 99.9 100.0
Missing Don't know/Not 3 1
sure
Refused 1 .0
Total 4 A
Total 2934 100.0
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1 Female Selected
2 Female Selected
3 Female Selected
4 Female Selected
/,,&’”’- Male Not Selected
6 Female Selected
7 Female Selected
8 Female Selected
9 Female Selected
10 Female Selected
Table 2.2 Frequency distribution of the self-reported general health of females
Frequencies
Statistics
GENERAL HEALTH
N Valid 4847
Missing
GENERAL HEALTH
Cumulative
Frequency Percent Valid Percent Percent
Valid Excellent 1013 20.8 20.9 20.9
Very good 1612 33.2 33.3 54.2
Good 1393 28.7 28.7 82.9
Fair 624 12.8 12.9 95.8
Poor 205 4.2 4.2 100.0
Total 4847 99.7 100.0
Missing sDL?th know/Not 13 3
Refused 2 .0
Total 15 3
Total 4862 100.0
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Table 2.3 Frequency distribution of the self-reported general health of the entire sample
Frequencies

Statistics
GENERAL HEALTH

N Valid 7777
Missing 19
GENERAL HEALTH
Cumulative
Frequency Percent Valid Percent Percent
Valid Excellent 1652 21.2 21.2 21.2
Very good 2540 32.6 32.7 53.9
Good 2283 29.3 29.4 83.3
Fair 979 12.6 12.6 95.8
Poor 323 4.1 4.2 100.0
Total 7777 99.8 100.0
Missing  Don't know/Not sure 16 2
Refused 3 .0
Total 19 2
Total 7796 100.0

Rerun the frequency analysis. The output should be similar to that displayed in
Table 2.3. Does the resulting number of cases seem right?

Selecting Cases by Range of Responses In this section, we focus only on those
respondents whose answers to a question about their general health were coded
within a 1 (“Excellent”) to 5 (“Poor”) range. That is, we will exclude those who
gave no answer, said that they did not know, etc. As we have already seen, one way
to do this is to declare values of 7 and 9 as missing (see Sect. 2.3). Another way
to do this is to ask SPSS to limit our analysis to respondents whose answers to the
GENERAL HEALTH question were coded 1, 2, 3, 4, or 5. One way to do this is
to set the If condition in the Select Cases dialog box to “GENHLTH <6 (without
the quotation marks). Set this condition (the “<” sign can either be typed in from
the keyboard or “clicked in” from the dialog box keypad), and then generate the
frequency table. Only the five response categories should be listed in the output
(Table 2.4).

Selecting Cases by More Than One Condition Often it is necessary to select
cases based on more than one condition. For example, in the CDC data set, we
might want to limit an analysis to females who reported that they were in excel-
lent general health. Let us see how cases can be selected based on more than one /f
condition.
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Table 2.4 Frequency distribution of general health without missing values
Frequencies

Statistics
GENERAL HEALTH

N Valid 7777
Missing 0

GENERAL HEALTH

Cumulative
Frequency Percent Valid Percent Percent
Excellent 1652 21.2 21.2 21.2
Very good 2540 32.7 32.7 53.9
Good 2283 29.4 294 83.3
Fair 979 12.6 12.6 95.8
Poor 323 4.2 4.2 100.0
Total 7777 100.0 100.0
Fig. 2‘.42 Data view after GENHLTH SEX fiter S
selecting females in excellent =~ ———v -
general health 1 Excellent Female Selected
/,2/ Good  Female Not Selected
/3/'/ Fair  Female Not Selected
/ Verygood  Female Not Selected
= Good Male Not Selected
_/,5—""" Good  Female Not Selected
7 Excellent Female Selected
/-9"”’ Very good Female Not Selected
',_,9/ Verygood  Female Not Selected
/19"/’ Very good Female Not Selected

If we wish to limit our analysis to women in excellent health, we can make use of
the “and” logical operator (&). In the Select Cases dialog box, enter the following If
condition: “SEX=2 & GENHLTH=1.” The “&” symbol can be clicked in from the
dialog keypad. As an alternative, the word “and” can be typed in from the keyboard
instead. Click Continue and then OK. In Data View, notice that only women who
reported to be in excellent health were selected (Fig. 2.42).

Imagine that we wanted to expand our selection to include women who reported
that they were in either excellent or very good health. To select these cases, we would
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Fig. 2.43 Data view after

selecting females in either —_— GENHLTH SEX L&
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eral health /2/ Good Female Not Selected
=] Fair  Female  Not Selected
4 Very good Female Selected
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7 Excellent Female Selected
8 Very good Female Selected
9 Very good Female Selected
10 Very good Female Selected

use both the “and” (&) and the “or” (]) logical operators. In the Select Cases dialog box,
enter the following condition: “SEX=2 & (GENHLTH=1 | GENHLTH=2).” The “[”
symbol is the logical OR operator and can be clicked in from the dialog box keypad.
As an alternative, the word “or” could be typed in from the keyboard instead. Click
Continue and then OK. Inspection of Data View should reveal that we have selected
only women who reported to be in either excellent or very good health (Fig. 2.43).

2.6 Sorting a Dialog Box Variables List

When a data file has a large number of variables, as is the case with the CDC data
set, finding a particular variable from a dialog box listing can be frustrating. Fortu-
nately, SPSS allows users to alphabetize the order by which the variables displayed
in a dialog box are listed. To do so, right-click a variable in the list. From the result-
ing menu, choose whether to have the variables displayed by name or label, and
then choose Sort Alphabetically. The variables will then be listed in the dialog box
in alphabetical order. This procedure does not change the actual order of the vari-
ables within the data file. Figures 2.44, 2.45, and 2.46 show how to display variable
labels alphabetically in the Select Cases dialog box.

2.7 Labeling SPSS Output

The output generated by the frequency procedure does not identify the subset of cas-
es included in the analysis, and the log tells us only that the cases selected were those
for whom SEX had been coded as a “1.” It would be convenient if we could add
commentary to the output indicating that the respondents were men. Here is one way.

In the Viewer s right-hand pane, double-click the heading Frequencies. This will
either generate a text box that surrounds the heading, or produce an SPSS Output
Text window. Figure 2.47 shows a text box.
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Fig. 2.44 Accessing the Sort Alphabetically option

Place the cursor to the right of the heading and type a description of the output
that identifies the cases that were included in the analysis. For example, you might
type, “Men only.” Entering a colon or a space after “Frequencies” will make your
output label easier to read, e.g., “Frequencies: Men only.” To close the text box,
double-click any white space outside of it. To close the Output Text window, click
the X in the upper right hand corner. The end result will be output similar to that
shown in Table 2.5.

2.8 Printing and Pasting SPSS Output

Sometimes you will want to print output or copy and paste output to a Word docu-
ment.
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Printing SPSS allows us to print either all of the output in the Viewer, or only
selected portions. To print the entire output file, select File > Print or press the Ctr/
and P keys simultaneously (i.e., press Ctrl+P) while the cursor is in the output
window. Select the printer you wish to use and click OK.

To print selected portions of output, first select the output you wish to print by
clicking it. You may use either the left or right output pane. To select more than one
portion of output for printing, hold down the Ctr/ key while you click the output that
you wish to print. Then select File > Print to open the Print dialog box. Confirm
that in the Print Range area, the option, Selected output, has been chosen, and click
OK.

Pasting into a Word Document There may be times when you want to paste a
portion of the output from SPSS into a Word document. One way to do this is to
click the output that you wish to paste, and select Edit>Copy (or press Ctrl+C).
Move to the location in your Word document where you want to place the output,
and execute Word’s paste command (e.g., Edit>Paste or Ctrl+V).
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i Frequencies

GENERAL HEALTH

N Valid 2930
Missing 4
GENERAL HEALTH
Cumulative
Frequency Percent Valid Percent Percent

Valid Excellent 639 21.8 21.8 21.8

Very good 928 31.6 31.7 53.5

Good 890 30.3 30.4 83.9

Fig. 2.47 Text box for an output heading
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Table 2.5 Output with an edited heading
Frequencies: Men Only.

Statistics
GENERAL HEALTH
N Valid 2930
Missing 4
GENERAL HEALTH
Cumulative
Frequency Percent Valid Percent Percent
Valid Excellent 639 21.8 21.8 21.8
Very good 928 31.6 31.7 53.5
Good 890 30.3 30.4 83.9
Fair 355 121 121 96.0
Poor 118 4.0 4.0 100.0
Total 2930 99.9 100.0
Missing  Don't know/Not sure 3 A
Refused 1 .0
Total 4 A
Total 2934 100.0

2.9 Saving and Exporting SPSS Output Files

SPSS output can be saved as an SPSS output file or exported to other formats, such
as an Excel or a PDF file.

Saving the Output File Saving output as an SPSS file is straightforward. From
Viewer, select File>Save As. In the resulting dialog box, select the location where
the file is to be saved, enter a name for the file, and click Save. The output file will
be saved with the name that you assigned to it with a .spv extension.

Exporting to an Excel or a PDF File If you want to save your output as either an
Excel or PDF file, select File>Export from the output window. In the Export Output
dialog box, indicate in the Objects to Export area how much of the output you want.
Select All if you want to export the entire output file and you want to include addi-
tional information that SPSS collects behind the scenes such as data about processing
times. This additional information does not appear on screen but can be included in
the exported file. Select A/l visible if you want to export the entire file but do not want
the data behind the scenes. Choose Selected if you have clicked a subset of results
to export. In the Type box, click the down arrow and select either a version of Excel
or Portable Document Format. Then click Browse, navigate to where you wish to
save the file, name it, and click OK. These steps are displayed in Figs. 2.48 and 2.49.
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2.10 Exercise Questions

The following questions refer to data found in CDC BRFFS.sav.

1.

Participants interviewed by the CDC were asked: “Now thinking about your
physical health, which includes physical illness and injury, for how many days
during the past 30 days was your physical health not good?” Their answers are
stored in the variable, NUMBER OF DAYS PHYSICAL HEALTH NOT
GOOD [PHYSHLTH] (variable 4; 77=Do not know/Not sure; 99=Refused).
Responses of “none” were coded by the CDC as 88.

In the jargon of SPSS, what is the name of the variable?

. In the jargon of SPSS, what #ype of variable is it?

How many decimal places do its entries show?

. Does this variable currently have any value labels? Should it? Why or why

not?

What values of this variable have been declared as missing data?

f. In the jargon of SPSS, what is the type of measure that has been assigned? Is
this measure type correct? Why or why not?

g. What was the answer of the third case to this question? Was this case male or

female?

a0 o

o

. The variable, MARITAL STATUS [MARITAL] (variable 24) is categorical, not

quantitative, yet it is listed in Variable View as numeric. How can a categorical
variable be numeric?

. This chapter asked you to enter value labels and declare missing values for the

variable, HAVE HEALTH CARE COVERAGE [HLTHPLAN] (variable 7,
1=Yes; 2=No; 7=Do not know/Not sure; 9=Refused).

a. Conduct a frequency analysis of that variable. Be sure that the output displays
the value labels.

b. Repeat the analysis but this time limit it to women between the ages of 25
and 35. Age is stored in the variable, REPORTED AGE IN YEARS [4AGE]
(variable 20). Label the resulting output “Women between 25 and 35.”

Data Set and Reference

1.

CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
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Chapter 3

Describing the Distribution of a Categorical
Variable

Abstract This chapter introduces graphical and numerical techniques for describ-
ing the distribution of a categorical variable. Frequency tables are described. Bar
charts and pie charts are covered as graphical methods. The SPSS commands to
create these are discussed. In addition, the procedure for transforming a variable
in SPSS is discussed. Finally, the methods for copying SPSS charts into Microsoft
Word are covered.

3.1 Overview

In Chap. 1, we said that clinical practice is continuously informed by the findings
of clinical research, and that those findings are based on empirical evidence or data.
But the well-known adage notwithstanding, data cannot speak for themselves, at
least not literally. Researchers must make sense out of them. To interpret a set of
data, researchers begin by using descriptive statistics and graphical techniques to
describe or summarize its distribution. There are many of these statistical tools from
which to choose, but they generally fall into two broad categories: those appropri-
ate for quantitative variables and those for categorical. A quantitative variable has
two important properties. It takes on values that reflect quantity, and equal intervals
between the values correspond to equal differences in quantity. Weight measured
in pounds is an example. Pounds reflect quantity of weight. For instance, a patient
who weighs 125 pounds is heavier than one who weighs 100 pounds. Moreover,
equal differences in pounds correspond to equal differences in weight. For instance,
a difference of 25 pounds corresponds to the same difference in weight whether the
difference is between a patient who weighs 100 pounds and a patient who weighs
125 pounds, or between a patient who weighs 125 pounds and one who weighs
150 pounds. A categorical variable lacks either the first or both of these properties.

As we saw in Chap. 2, there are two types of categorical variables. Values of a
nominal variable do not reflect differences in quantity. Instead the values identify
the group or category to which the patient is said to belong. Gender and ethnicity
are examples. Values of an ordinal variable reflect differences in amount, but equal
intervals between the values do not necessarily correspond to equal differences in
quantity. Instead the values reflect a rank order. Educational level is an example.

© Springer International Publishing Switzerland 2014 59
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Patients who graduated from college have more education (we hope) than patients
who graduated from high school, and high school graduates have more education
than patients who did not attend high school. But the difference in education be-
tween a college graduate and a high school graduate cannot be assumed to be equal
to the difference in education between a high school graduate and someone who
never attended high school.

In this chapter, we will focus on some of the descriptive statistics and graphical
techniques appropriate for categorical variables: frequencies, percentages, frequen-
cy tables, and bar and pie charts. In the next chapter, we will describe methods ap-
propriate for quantitative variables. The Centers for Disease Control and Prevention
(CDC) data set that we used in the previous chapter has a number of quantitative
and categorical variables, so we will use that data set in both chapters.

Sometimes clinical researchers transform a quantitative variable into a categori-
cal one. For example, body mass index (BMI) is a quantitative variable that is often
converted into a categorical variable. In the CDC data set, respondents whose BMI
was less than 25 were categorized as “Neither overweight nor obese,” respondents
whose BMI was 25 or over but less than 30 were categorized as “Overweight,” and
respondents whose BMI was 30 or over were categorized as “Obese.” Sometimes
researchers transform a categorical variable into one that has fewer but broader cat-
egories. For example, respondents to the CDC survey reported their general health
in terms of the following categories: “Excellent,” “Very good,” “Good,” “Fair” and
“Poor.” This produced a categorical variable, GENERAL HEALTH [GENHLTH]
(variable 3), that has five values. This variable was transformed into a new one,
HEALTH STATUS [@_RFHLTH)| (variable 58), with two values, “Good or Better
Health” and “Fair or Poor Health.” To get a feel for how transformations work, we
will transform some variables in this chapter.

3.2 Frequency Tables

Frequencies and Percentages When a variable is categorical, the number of times
each of its values occurs in a set of data is counted. These counts are called fre-
quencies. When a count or frequency is divided by the total count and multiplied
by 100, the result is a percentage or percent. The frequencies or percentages of the
values of a variable constitute its distribution. In this section, we will look at the
distribution of various categories of BMI in the CDC BRFSS data set. Respondents
were categorized as “Neither overweight nor Obese” if their BMI were less than 25,
“Overweight” if their BMI were equal to or greater than 25 but less than 30, and
“Obese” if their BMI were equal to or greater than 30. To determine the frequencies
of these categories, we will create a frequency table.

Load the data file, CDC BRFSS.sav [1], into SPSS as you did in the previous
chapter. Check that the value labels for the variable, BODY MASS INDEX-THREE
LEVELS CATEGORY [@_BMI4CAT] (variable 79; 1= Neither overweight nor
obese, 2=0verweight, 3=0bese, 9=Don’t know/Refused/Missing) have been entered
and that 9 has been declared as missing. Next, select Analyze > Descriptive Statis-
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tics > Frequencies to bring up the Frequencies dialog box. From the list of variables
on the left of the dialog box, click the variable BODY MASS INDEX-THREE
LEVELS CATEGORY. Move that variable to the Variable(s) area on the right by
clicking on the arrow immediately to the left of the Variable(s) area. Check in the
lower left corner of the dialog box that Display frequency tables has been checked.
Next, click the Charts button to bring up the Frequencies: Charts dialog box. Se-
lect Bar charts and Frequencies. Click Continue and then OK. Figures 3.1, 3.2,
3.3,3.4,3.5, 3.6 show these steps.

SPSS will generate the output that you requested and display it in the Viewer, as
shown in Fig. 3.7.
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The Viewer consists of two panes. The pane to the left is called the outline pane
and lists the output’s section headings. Think of this pane as a table of contents or
index of your output. The pane to the right is called the contents pane and consists
of the output itself. Clicking any of the section headings in the left pane selects the
corresponding output in the right pane. This is a handy way of moving quickly from
one section of output to another when the output file is large. The contents pane
begins with an SPSS syntax log, followed by two tables and a bar chart.

The first table consists of the number of valid cases, i.e., cases for which data
were not missing, and the number of cases for which data were missing. In this
example, there were 7417 valid cases, and 379 cases for which values for this vari-
able were missing. BMI was calculated on the basis of self-reported heights and
weights. The 379 cases that were counted as missing represent respondents who did
not know, were unsure or refused to report their height or weight, or who for some
reason were never asked or whose answers were never recorded.

The second table displays the frequencies of each category. Note that for each
category the table includes information about its frequency (Frequency), the fre-
quency expressed as the percentage of all cases (Percent), the percentage of all
cases without missing values ( Valid Percent), and the total percentage of valid cases
in the category and the categories above it (Cumulative Percent). For example, of
the 7796 respondents who were interviewed, 2703 were overweight. Thus, 34.7%
of all cases were categorized as overweight. As 379 cases included missing data, the
valid percentage is slightly different, 36.4 %. Finally, 77.0 % of the participants who
provided a valid response were either overweight or neither overweight nor obese.

Answer the following question:
3.2.1 According to these data, what percent of New York State adults were
obese in 20057

3.3 Bar Charts and Pie Charts

Bar Charts and Frequencies A bar chart displays along the Y-axis the frequency
of each value of the categorical variable plotted on the X-axis. The bar chart we
generated in Sect. 3.2 is shown in Fig. 3.8.

In general, a bar chart is a useful way of presenting data. However, reading the
exact values of the frequencies from a bar chart can be difficult. If one wishes to
display the exact values, SPSS can be instructed to generate data labels. This is
done by double clicking any of the bars and then selecting Elements >Show Data
Labels from the Chart Editor which is accessed by double clicking the bar chart in
the viewer. The exact values represented by the bars in the chart will be displayed.
This is shown in Fig. 3.9, and the resulting bar chart is shown in Fig. 3.10.

To the right of Chart Editor is the chart’s Properties dialog box. By using this
dialog box, various features of the chart can be modified. For example, the location
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of data labels can be changed by double clicking one of the data labels and then
clicking the Data Value Labels tab, clicking the Custom option in the Label Position
area, selecting one of the three location icons, and clicking Apply. This is shown in
Fig. 3.11. To exit the Chart Editor and the Properties dialog box, click the X in the
upper right-hand corner of the Chart Editor.

Many other aspects of an SPSS chart can be modified. For example:

To modify the numerical entries along the Y-axis, click any number assigned to
the Y-axis and enter changes in the Minimum, Maximum, Major Increment or
Origin boxes under the Properties Scale tab. This is shown in Fig. 3.12.

To add a title, select Options> Title in Chart Editor and enter a title in the title
text box. To adjust the title’s position or its overall look (e.g., its font or color),
use the Text Layout and Text Style tabs of the Properties dialog box. Click any-
where outside the title text box when finished. This is shown in Fig. 3.13.

To change the background color and remove the frame around the graph, click
once within the body of the graph and use the Properties Fill & Border tab. This
is shown in Fig. 3.14.

To make changes to the label of the X- or Y-axis, click the label to select it, click
again to edit the text, and use the Properties Text Layout and Text Style tabs as
necessary. Click anywhere outside the text box when finished.

To add text within the body of the graph, select Options>Text Box from Chart
Editor, enter the information in the resulting text box, drag the box to its desired
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Fig. 3.9 Selecting show data labels

location and click anywhere outside the box when finished. To remove the text
box, click it and press the delete key.

The chart in Fig. 3.15 shows how the bar chart might look with a few edits using
many of the tools described above.

Bar Charts of Percentages Sometimes a bar chart of percentages is more useful
than one showing the number of cases. To generate a chart showing percentages,
select Percentages instead of Frequencies in the Frequencies: Charts dialog box.
This was done to generate the graph that is shown in Fig. 3.16.

Charts with Transposed Axes Sometimes the two axes of a bar chart are trans-
posed. An example is the chart that is shown in Fig. 3.17. This is the same chart as
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Fig. 3.10 Bar chart with data labels

the one shown in Fig. 3.16, except that several edits were made and the axes were
transposed by selecting Options > Transpose Chart in Chart Editor.

Pie Charts An alternative to displaying percentages in terms of the heights of bars
of'a bar chart is in terms of the size of slices of a pie chart. The pie chart that is shown
in Fig. 3.18 displays the distribution of the three categories of BMI. The pie chart
was generated by conducting a frequency analysis in which the Pie charts option
of the Frequencies: Charts dialog box was selected. Selecting Elements >Explode
slice in the Chart Editor resulted in the pie chart shown in Fig. 3.19. In both pie
charts, data labels were added in the manner explained above.

Chart Builder In SPSS, bar and pie charts can be generated without conducting
a frequency analysis. This is done by selecting Graphs>Chart Builder. This will
open two dialog boxes. The first informs us that before creating a chart, each of our
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variables should have the appropriate measure type assigned to it, and if the vari-
able is categorical, its value labels should be defined. We can click Define Variable
Properties to change measure types or create value labels, or we can click OK to
go directly to the Chart Builder. In this example, we can click OK. To create our
bar chart in Chart Builder, select Bar from the Gallery. Drag the picture of the first
bar chart (the one in the upper left hand corner) to the area just above it. This will
open another dialog box, Element Properties, to the right of Chart Builder. In Chart
Builder, drag BODY MASS INDEX-THREE LEVELS CATEGORY from the
Variables area to the X-Axis box under the picture of the bar chart that you had just
dragged. Clicking OK at this point will produce a bar chart. Figures 3.20, 3.21,
3.22,3.23, 3.24 summarize these steps.
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To get a graph of percentages instead of number of cases, go to the Element
Properties dialog box before clicking OK. There select Percentage(?) from the list
of options in the Statistic drop-down menu and click Apply. Back in Chart Builder,
click OK to generate the chart. These steps are shown in Figs. 3.25 and 3.26.

Data labels and the look of the graph can be controlled by using Chart Editor in
the same way as explained earlier.
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3.4 Transforming Variables

It is sometimes useful to convert or transform a quantitative variable into a categori-
cal one, or one categorical variable into another. In this section, we will look at an
example of each of these transformations.

Recoding a Quantitative Variable As we saw earlier, the CDC data set includes
a variable that represents three categories of BMI. Let us create a new categorical
variable that adds a fourth group—people who are underweight (BMI<18.50). One
way to do this is depicted in Figs. 3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.33, 3.34. That
is, select Transform > Recode into Different Variables. In the Recode into Differ-
ent Variables dialog box, click the third from the last variable of the data set, BODY
MASS INDEX [BMI] (variable 107), and move it to the Input Variable — Output
Variable box by clicking the right-pointing arrow. In the Output Variable area, type
a variable name and a variable label for the new variable into the Name and Label
boxes. In our example, we happened to name the new variable BMIFourCategories
(variable names cannot contain spaces), and to label it, BMI Four Categories. Click
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Change and then Old and New Values. In the Old and New Values dialog box, select
Range in the Old Value area and enter the range of values for our first category,
which will be the underweight group. To be sure that we included all qualifying
cases, set the range to 0 through 18.49. In the New Value area, select Value and enter
1 in the box. Click Add. Repeat setting the ranges for the second, third and fourth
categories (18.50 through 24.99, 25 through 29.99, and 30 through 80). These cat-
egories will be the normal, overweight and obese groups, respectively. Any missing
values in the old variable should be copied into the new one, so select A/l other
values in the Old Value area and Copy old values in the New Value area, and click
Add. Now click Continue and execute the transformation by clicking OK.

SPSS will create the new variable and store it in the very last column of Data
View, and print the following syntax in the output.

RECODE BMI (0 thru 18.49=1) (18.5 thru 24.99=2) (25 thru 29,99=3)
(30 thru 80=4) (ELSE=Copy) INTO BMIFourCategories.

VARIABLE LABLES BMIFourCategories ‘BMI Four Catergories’.

EXECUTE.
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Figure 1. Distribution of Body Mass Index
BODY MASS INDEX- THREE LEVELS CATEGORY

4,000

3,000

Frequency
g

Neither Overweight nor Obese Overweight Obese
BODY MASS INDEX

Fig. 3.15 An edited bar chart

After labeling the values of the new variable, we conducted a frequency analysis
that generated the frequency table shown in Table 3.1.

Answer the following question:
3.4.1 According to these data, what percent of New York state residents in

2005 was underweight?

Recoding a Categorical Variable The CDC asked respondents the following
question: “In general, how satisfied are you with your life?”” The response alter-
natives were “Very satisfied,” “Satisfied,” “Dissatisfied,” and “Very dissatisfied.”
The respondents’ answers are stored in the ordinal variable, SATISFACTION W/
LIFE [LSATISFY] (variable 50; 1= Very satisfied; 2= Satisfied, etc.). If we wished,
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BODY MASS INDEX- THREE LEVELS CATEGORY

50

407

Percent

Neither Overweight nor Obese Overweight Obese
BODY MASS INDEX- THREE LEVELS CATEGORY

Fig. 3.16 A bar chart of percentages

we could recode this variable. For example, we could combine the first two groups
into a category called “Satisfied or Very Satisfied” and the last two groups into a
category called “Dissatisfied or Very Dissatisfied.” To do this, we would follow the
same general procedure that we used for recoding a quantitative variable. We leave
this for you to do as an exercise question.

3.5 Copying SPSS Charts into MS Word Documents

In this section, we will review how to copy an SPSS chart into a Microsoft Word
document. Right-click the chart you’ve created and choose Copy from the result-
ing menu. As an alternative, you can double click the graph to open Chart Editor
and choose Copy Chart from the Edit menu. Next, place the cursor in the Word
document where you wish to copy the chart, and execute Word’s paste command
(e.g., Edit > Paste or Ctrl + V). The chart should now appear. If the size of the
chart needs to be adjusted, use Word’s Format Picture dialog box to resize it.
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BODY MASS
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8

Fig. 3.17 A transposed bar chart

BODY MASS INDEX- THREE LEVELS CATEGORY
o rs;elf: Overweight nor

W overweight
D obese

Fig. 3.18 A pie chart
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BODY MASS INDEX- THREE LEVELS CATEGORY
O gehmeer Overweight nor

W overweight
[ obese

Fig. 3.19 An exploded pie chart

Fig. 3.20 Selecting the chart builder
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(R Chart Builder [=5=)

o Before you use this dialog, measurement level should be set properly for each
variable in your chart. In addition, if your chart contains categorical variables,
value labels should be defined for each category.

Press OK to define your chart.

Press Define Variable Properties to set measurement level or define value
labels for chart variables.

Don't show this dialog again

"

Fig. 3.21 Accepting existing variable properties
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Fig. 3.22 Selecting a bar chart
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Fig. 3.23 Selecting the variable to plot
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Fig. 3.24 Drawing the bar chart
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Display error bars
rErmor Bars Represent

® Confidence intervals

Level (%): [95
aNTara o @ Standard error
Multiptier: [2 Multiplier: [2
©® standard de';_rialion © standard ueériauon
Multiplier: [2 Multiplier: [2
Bar Style: Bar Style:

|| Bar =)

(oo J (concn] v )

(B Bar =)

79
( el T—
R Element Properties R Element Properties

Edit Properties of. Edit Properties of:

X-Axis1 (Bar1) X-Axis1 (Bar1)

Y-Axis1 (Bar1) Y-Axis1 (Bar1)

~Statistic ~Statistics

Variable:

J

Fig. 3.25 Creating a bar chart of percentages
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Fig. 3.26 Drawing the bar chart of percentages

Fig. 3.27 Selecting the recode procedure
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r Recode into Different Variables
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Fig. 3.28 Selecting the variable to recode
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Fig. 3.29 Creating the new variable name and label
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Fig. 3.31 Creating the underweight category
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Fig. 3.34 Creating the new variable
Table 3.1 Analysis of recoded variable
BMI Four Categories
Cumulative
Frequency Percent Valid Percent Percent
Valid Underweight 108 1.4 1.5 1.5
Normal 2899 37.2 39.1 40.5
Overweight 2703 34.7 36.4 77.0
Obese 1707 21.9 23.0 100.0
Total 7417 95.1 100.0
Missing  System 379 4.9
Total 7796 100.0

3.6 Exercise Questions

1. Identify each of the following variables as nominal, ordinal or quantitative. For
each, explain your answer.

o a0 oW

Body temperature
. Blood type
Blood pressure

. Cause of death
Disease stage (e.g., mild, moderate or severe)
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Table 3.2 Frequency table for life satisfaction
LIFE SATISFACTION

Cumulative
Frequency Percent Valid Percent Percent
Valid Satisfied or Very Satisfied 6840 87.7 93.9 93.9
Disgftsfiad or Very 445 5.7 6.1 100.0
Total 7285 93.4 100.0
Missing 7 46 .6
9 19 2
System 446 5.7
Total 511 6.6
Total 7796 100.0

2. Conduct a frequency analysis of the variable, SATISFACTION W/LIFE
[LSATISFY] (variable 50; 1= Very satisfied; 2= Satisfied, 3= Dissatisfied, 4=
Very dissatisfied; 7 and 9 are missing values).

3. Generate a bar chart of percentages for a new variable called LIFE SATISFAC-
TION. The new variable will have two categories. The first category will be
called “Satisfied or Very Satisfied.” The second category will be called “Dissat-
isfied or Very Dissatisfied.”

4. Table 3.2 displays the frequency table for the variable, LIFE SATISFACTION.
Answer the following questions.

a. What percentage of the sample gave valid responses?
b. What is a “valid” response?
c. What percentage of the sample is dissatisfied or very dissatisfied?

5. Figure 3.35 displays three pie charts of the distribution of LIFE SATISFAC-
TION. One is for married people, one for those who are divorced, and one for
those who are separated.

a. According to these data, would you say that adult New York residents in 2005
were generally satisfied or dissatisfied with their lives? Explain.

b. According to these data, does it appear that life satisfaction has something to
do with marital status? Explain.
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Marital Status Two Categor
Satisfac:tglon!'f
Married Divorced Separated [ Very Satisfied or Satisfied
g Dissatisfied or Very
Dissatisfied

Fig. 3.35 Pie charts of the distribution of life satisfaction

Data Set and Reference

1. CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral risk factor surveillance system survey data. US Department of Health and Human Ser-
vices, Centers for Disease Control and Prevention, Atlanta, Georgia (2005). Public domain.
For more information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
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Chapter 4

Describing the Distribution of a Quantitative
Variable

Abstract This chapter reviews measures of central tendency and spread, and graph-
ical techniques that are commonly used to describe the distributions of quantitative
data. Included are the arithmetic mean and median; interquartile range, variance and
standard deviation; skewness, kurtosis, and outliers; and histograms, stem-and-leaf
plots, box plots, and clustered bar charts. The standard error of the mean and the
95 % confidence interval are described briefly. The chapter concludes with a discus-
sion of transformations and the geometric mean.

4.1 Overview

We pointed out in Chap. 3 that it is difficult to make sense of data without the use
of descriptive statistics and graphs. In that chapter, we learned about frequency
tables and bar and pie charts. However, the variables we studied were categorical.
When describing the distribution of a quantitative variable, a different set of tools
is required. In this chapter, we will review many of the descriptive statistics and
graphical techniques for quantitative data.

Most of the descriptive statistics for a quantitative variable focus on data within a
single sample. Some of these statistics focus on the overall shape of the distribution
of the data within the sample. Others, called measures of central tendency, focus
on the typical score within the sample. Still others, called measures of spread, at-
tend to the variability of the sample scores. Other descriptive statistics focus on the
variability of sample characteristics across different samples randomly drawn from
the same population. Perhaps the most important of these are those that focus on
the extent to which the mean of a set of scores varies from one sample to the next.
In this chapter, we will study these various measures. We will also study some of
the graphical methods for displaying the distribution of quantitative data: the stem-
and-leaf plot, the histogram, and the box plot. Stem-and-leaf plots and histograms
display the shape of the distribution of data. Box plots are useful for determining if
the distribution of the data is skewed or symmetric and also whether there are any
extreme observations, called outliers.

We will begin with data from residents of NY state in 2005 who were inter-
viewed by the Centers for Disease Control and Prevention Behavioral Risk Factor

© Springer International Publishing Switzerland 2014 87
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Surveillance System (BRFSS). This is the same data set that we used in the previous
chapter. This time we will focus on the respondents’ body mass index (BMI). We
will complete the chapter by turning to another data set. These data come from a
study of the diagnostic value of prostate-specific antigen levels.

4.2 Describing the Distribution of a Sample

Load the data file, CDC BRFSS.sav [1], into. Select SPSS Analyze > Descriptive
Statistics > Explore to bring up the Explore dialog box. Move BODY MASS
INDEX [BMI] (variable 107) into the Dependent List box. In the Display area,
check Both (in order to generate both statistics and graphs). Click the Statistics
button to open the Explore: Statistics dialog box and check Descriptives and Per-
centiles. Click Continue to return to the main dialog box. Now click Plots to bring
up the Explore: Plots dialog box. In the Boxplots area, select Factor levels together.
In the Descriptive area, check Stem-and-leaf and Histogram. Return to the main
dialog box by clicking Continue. Run the analysis by clicking OK. These steps are
depicted in Figs. 4.1,4.2,4.3,4.4,4.5,4.6 and 4.7.

Descriptive Statistics Study the resulting output. It contains a lot of information.
We will begin with the descriptive statistics.

The Case Processing Summary (Table 4.1) tells the number of valid responses
for the variable and the number of missing cases.

The Descriptives table (Table 4.2) gives the descriptive statistics. We will look
at each one.

* Mean The mean is the arithmetic average of the data. It is a measure of central
tendency, meaning that it is one way to describe where the data are centered. It
should be used when the data are relatively symmetric and there are no outliers.

File [Edt View Data irect Marketing  Graphs  Utilities  Add-ons
- I 1 ' 1 i ‘ H. id
== ——

- -2 Frequencies
Name Type Tables
1 @_GEOSTR Numeric Compare Means
2 MONTH String General Linear Model
NHLT
3 GENHLTH —— Generalized Linear Models » Sy
alysis
4 PHYSHLTH Numenc Mixed Models » ¥
5 MENTHLTH  Numeric
6 POORHLTH IJU 1 Conelzte ' ——
umenc u
7 HLTHPLAN N e =
wumenc &3
Q-Q Plots
o DEDCNNANT Alimaria Loglinear ’ Eil -

Fig. 4.1 Selecting Explore
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The value in the Std. Error column gives what is known as the standard error
(SE) for the mean. It is a measure of how variable means would be from sample
to sample. If the distribution of the sample data is approximately normal or the
sample is large, then about 67 % of all possible sample means will be within one
SE of the population mean.

95 % CI for Mean A confidence interval (CI) for the mean is used to present an
interval of values that is likely to contain the mean of the population from which
the data were drawn along with a percentage showing how confident we are that
the population mean is actually in there (hence the term confidence interval).
The interpretation of the CI begins with the fact that there are a large number
of samples than can be taken from the population. If we were to construct 95 %
ClIs for each one of these samples, then 95 % of these intervals would contain the
population mean and 5 % would not. These will be discussed in more detail in the
next chapter.
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Table 4.1 Number of valid and missing cases associated with the BMI of a random sample of NY
state residents
Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

BODY MASS INDEX 7417 95.1% 379 4.9% 7796 100.0%
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Table 4.2 Descriptive statistics of the BMI of a random sample of NY state residents
Descriptives

Std.
Statistic Error
BODY MASS INDEX  Mean 26.8767 .06467
95% Confidence Interval Lower Bound 26.7499
for Mean
Upper Bound 27.0034
5% Trimmed Mean 26.4811
Median 25.8800
Variance 31.024
Std. Deviation 5.56992
Minimum 9.63
Maximum 70.01
Range 60.38
Interquartile Range 6.42
Skewness 1.355 .028
Kurtosis 3.584 .057

* 5% Trimmed Mean Trimmed means are intended to keep the good properties
of the sample mean in the presence of skewed data or outliers. They do this by
removing a percentage of the largest and smallest observations (trimming) and
computing the mean of the remaining data. The 5% indicates that the top and
bottom 5 % of the data were trimmed in this case.

* Median The median is that value that has the same number of observations
greater than it as are less than it. It is the 50th percentile of the data. It is another
measure of central tendency. It is relatively unaffected by skewed data or outli-
ers. It gives a better measure of the center of the data than the mean when the
distribution is skewed or there are outliers.

* Variance Variance is a measure of spread. The more that sample scores vary
from one another, the greater is their variance. Roughly speaking it is approxi-
mately the average squared distance between each observation and the mean.

» Std. Deviation The standard deviation is also a measure of spread. It is the
square root of the variance. It is generally used more than the variance because
it has the same units as the data. It should be used in those situations where you
would use the mean to measure the center.

e Minimum The minimum, as its name implies, is the smallest observation in the
data.

* Maximum The maximum, as its name implies, is the largest observation in the
data.

* Range The range is a third measure of spread. It is the difference between the
maximum and the minimum. Thus, it is the distance spanned by the data. It is
easy to compute, but it is very sensitive to outliers.
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» Interquartile Range The interquartile range is the difference between the 75th
percentile and the 25th percentile of the data. The 25th, 50th, and 75th percen-
tiles are known as the first, second, and third quartiles, respectively. So, the inter-
quartile range is the distance between the first and third quartiles. That is, it is the
distance spanned by the middle 50 % of the data. Like the median, it is relatively
unaffected by outliers and should be used in those situations where you would
use the median to measure the center of the data.

» Skewness Skewness is a measure of the shape of the distribution. It is a measure
of asymmetry. The normal distribution is symmetric and has a skewness value of
0. A distribution that is positively skewed has a long right tail, while a distribu-
tion that is negatively skewed has a long left tail. According to SPSS, “a skew-
ness value more than twice its standard error is taken to indicate a departure from
symmetry.” A positively skewed distribution will have a positive skewness, and
a negatively skewed distribution will have a negative skewness.

» Kurtosis Kurtosis is a measure of the extent to which observations pile up around
a central point. It is also called peakedness. Again, the standard of comparison
is the normal distribution. Normal distributions have zero kurtosis. Distributions
that have positive kurtosis cluster more and have longer tails than those in the
normal distribution, while distributions that have negative kurtosis cluster less
and have shorter tails.

The Percentiles table (Table 4.3) gives various percentiles for the data. The top row
of the table gives the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles comput-
ed using a weighted average method. The percentiles computed using this method
are the ones used to compute the interquartile range. The percentiles referred to as
Tukey's hinges compute the 50th percentile in the same manner as the weighted
average method. The 25th percentile, however, is obtained by finding the median
of all the observations that fall below the median of the entire sample, and the 75th
percentile is obtained by finding the median of all the observations that fall above
the median of the entire sample.

Graphical Techniques Now let us look at the various graphs that are included in
the output.

» Histogram Figure 4.8 displays a histogram. A histogram shows the shape of the
distribution. The range of the data is broken up into a number of equal width
subintervals called bins. The number of observations in each bin is determined,
and a bar whose height is proportional to the number of observations in each
bin is drawn over each bin. The mean, standard deviation, and sample size are
displayed to the right of the plot.

Table 4.3 Percentiles of the BMI of a sample of NY state residents

Percentiles

Percentiles

5 10 25 50 75 90 95

Weighted Average
(Definition 1)
Tukey's Hinges BODY MASS INDEX 23.0700 25.8800 29.4800

BODY MASS INDEX 19.7800 20.9220 23.0650 25.8800 29.4800 34.0400 37.2800
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Fig. 4.8 Histogram of the BMI of a sample of NY state residents

Stem-and-leaf plot Figure 4.9 displays a stem-and-leaf plot. It too shows the
shape of the distribution of the data in a manner similar to a histogram, only
rotated 90° clockwise. It has the additional feature that it orders the data. The val-
ues of the observations are subdivided into two parts—the stems and the leaves.
For example, an observation of 78 might be divided so that the tens digit, 7, is
the stem and the units digit, 8, is the leaf. The possible stems are listed on the
left, and all of the leaves for each stem are listed to the right of the stem. The
leaves are then ordered in ascending order from left to right. The numbers in the
extreme left column are the number of observations in each stem. For example,
there are 38 observations in the 17 stem.

Box plot Figure 4.10 displays the final item in the output, a box plot of the data.
It is useful for determining if the data are skewed or symmetric and for detecting
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Fig. 4.9 Stem-and-leaf plot of the BMI of a sample of NY state residents
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outliers in the data. It consists of a box that uses the first quartile (the 25th per-
centile) as its lower boundary and the third quartile (the 75th percentile) as its up-
per boundary. A line is drawn in the box at the median (the 50th percentile). Next,
lines called whiskers are drawn from each end of the box to a point determined
by the width of the box. Finally, each observation that has a value more extreme
than the whiskers is drawn with either a circle or an asterisk. These are outliers.
Outliers with a circle are designated as mild outliers, and those with asterisks are
designated as extreme outliers. The numbers are the case numbers in the data of
the outliers.

Now that we have reviewed the output, see if you can answer the following

questions:

4.2.1 How many respondents were included in the analysis?

4.2.2 What was the mean BMI? The median?

4.2.3 Do the values of the mean and median suggest that the distribution of
BMI scores was skewed? If so, in the positive or negative direction?

4.2.4 Does your answer seem to be confirmed by the histogram or stem-
and-leaf plot? How so?

4.2.5 What was the interquartile range? What BMI scores were its lower
and upper boundaries?

4.2.6 What are the values for skewness and kurtosis?

4.2.7 What conclusions do you draw from the skewness and kurtosis values?

4.2.8 Does the box plot show any mild outliers? Extreme outliers?

4.3 The Standard Error of the Mean

In research, a set of data is often a result of measurements taken from a sample ran-
domly drawn from a much larger population. The goal of the research is to measure
various aspects of the population. However, because the population is so large, it
is not possible to take measurements of all members of that population (i.e., take a
census). Therefore, one must take measurements from a sample of the population,
and then use those measurements to estimate the values of the variables of interest
of the entire population. The population quantities of interest are called the param-
eters of the population.

For example, a researcher might be interested in knowing the mean systolic
blood pressure (SBP) of 10,000 patients. Not having the resources to measure the
SBP of all 10,000 patients, the researcher measures the SBP of 100 patients ran-
domly chosen from the population, calculates the mean SBP of the 100, and uses
that sample mean as an estimate of the average SBP of all 10,000 patients.

Whenever a sample result is used to estimate a population parameter, it is im-
portant to know whether the sample result is likely to be close to the population
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value. For example, if we try to estimate the mean SBP of 10,000 patients by using
the mean SBP of 100 of those patients, we would want to know if the mean of 100
patients is approximately the same as the mean SBP of all 10,000. We will never
know for sure because we will never measure the mean SBP of all 10,000 patients
and compare that mean with the average of any given sample of 100 patients. How-
ever, we can get a sense of the goodness of the sample mean as an estimate of the
population mean by noticing how much sample means vary from one sample to the
next. In the output of Explore this is estimated by the Std. Error of the mean. The
interpretation goes as follows. If the distribution is roughly normal or if the sample
is large enough (a commonly used rule of thumb is 30 or more), then about 67 % of
all sample means based on samples of the same size will be within one SE of the
population mean. Furthermore, about 95 % will be within two SEs of the population
mean, and about 99 % will be within three SEs of the population mean. So, if you
consider the observed SE to be small, then the sample mean is likely to be relatively
close to the population mean, but if you consider it to be large, then the sample
would not be a very reliable estimate of the population mean.

The smaller the SE, the less the sample mean will vary across samples. Ideally,
we want a sample mean that has a very low SE, for such a mean would tell us that its
value is close to values of the means that we would obtain if we were to take many
samples, and therefore close to the mean of the population from which we drew
our sample. However, if the SE is large, we will not have much confidence that our
sample mean gives us a good sense of the population mean. After all, how can we
trust any particular sample mean as an estimate of the population mean if different
samples give us very different results?

Our ability to trust that the average SBP of a sample of patients accurately re-
flects the average SBP of a population of 10,000 patients from which the sample
was taken will be greater the larger our sample. This is because means based on
larger samples tend to have smaller SEs. A sample of 200 patients will give us a
more reliable estimate of the population SBP than would a sample of 100, for exam-
ple. In addition, our trust in our sample result will be enhanced the more the SBP of
the patients in the sample are similar to one another. This is because means based on
samples from populations whose scores have small standard deviations tend to have
small SEs. In addition, we should also try to lower the variability in SBP scores by
following procedures for measuring blood pressure exactly the same each and every
time SBP is measured. Large samples and standardization of measurement are key
to reducing SEs and increasing our confidence in our sample means.

To see if you understand the concept of the standard error, tackle the follow-

ing questions:

4.3.1 What is the standard error of the mean BMI?

4.3.2 If we were to repeat the CDC’s interviews of NY state residents and
foundthatthe mean BMIwas 28, would we be surprised? Whatabout25?
Why?
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4.4 Comparing Distributions Across Values of a
Categorical Variable

So far we have looked at the distribution of a quantitative variable across an entire
sample. However, distributions can vary across subsets of cases within a sample.
For example, the distribution of BMI in the CDC sample might covary with the
health status of the respondents or with the extent to which they engage in physical
activity. In this section we will see if the distribution of BMI covaries with respon-
dents’ self-reports of their general health. We will leave the study of the relation-
ship between BMI and physical activity to an exercise question. As before, we will
use Explore to generate the descriptive statistics, but this time we will use Chart
Builder to generate the graphs.

Descriptive Statistics Before we begin, be sure that 7 and 9 have been declared
as missing values for the variable, GENERAL HEALTH [GENHLTH] (variable
3; 1=Excellent, ..., 5=Poor). Then return to the Analyze > Descriptive Statistics
> Explore dialog box and, as shown in Figs. 4.11 and 4.12, move GENERAL
HEALTH into the Factor List box. We will be generating graphs with Chart
Builder, so select Statistics in the Display area. Click OK.

Table 4.4 is an edited version of the resulting descriptives table.

Try answering the following questions:

4.4.1 Judging from the resulting table of descriptive statistics, does there
appear to be a relationship between general health and average BMI?

4.4.2 How about between general health and the variability of BMI scores?

4.43 How would you describe those relationships?

Box Plots You should have noticed that the central tendency and spread of BMI

increased as self-reported health decreased. A box plot can display these increases.
Select Graphs > Chart Builder and make your way to the Chart Builder dialog

box. Then select Boxplot in the Gallery area. Drag the first box plot option into the

window above it. Then drag BODY MASS INDEX [BMI] (variable 107) to the

Y-axis and GENERAL HEALTH [GENHLTH] (variable 3) to the X-axis. Click

OK to generate the box plot. These steps are displayed in Figs. 4.13,4.14 and 4.15.
The box plot is reproduced in Fig. 4.16.

Answer the following questions:

4.4.4 How can we tell from the box plot that the median BMI increases as
reported health varies from excellent to poor?

4.4.5 How can we tell from the box plot that the interquartile range increas-
es as reported health varies from excellent to poor?
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Fig. 4.12 Requesting output in Explore that displays statistics but not graphs

In the box plot of Fig. 4.16, the horizontal lines within the boxes and the heights
of those boxes show the increases in the medians and interquartile ranges of BMI
across the values of a single categorical variable. Box plots can also display distri-
butions across levels of more than one categorical variable. For example, a box plot
can display the relationship between BMI and general health for each gender.
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Table 4.4 Descriptive statistics of the BMI of NY state residents of varying levels of general
health

Descriptives

Std.
GENERAL HEALTH Statistic Error
BODY MASS INDEX  Excellent Mean 24.9477 .10198
95% Confidence Interval Lower Bound 247477
for Mean
Upper Bound 25.1478
Std. Deviation 4.05865
Very good Mean 26.4026 .09980
95% Confidence Interval Lower Bound 26.2069
for Mean
Upper Bound 26.5983
Std. Deviation 4.92465
Good Mean 27.8306 12940
95% Confidence Interval Lower Bound 27.5768
for Mean
Upper Bound 28.0843
Std. Deviation 6.01386
Fair Mean 28.4057 .20867
95% Confidence Interval Lower Bound 27.9961
for Mean
Upper Bound 28.8152
Std. Deviation 6.30856
Poor Mean 29.2027 43187
95% Confidence Interval Lower Bound 28.3529
for Mean
Upper Bound 30.0525
Std. Deviation 7.56698

Return to Chart Builder. Click the Groups/Point ID tab. Select Columns panel
variable to display the Panel box. Drag the variable SEX [SEX] (variable 32) to the
Panel box and click OK. These steps are displayed in Fig. 4.17.

The resulting box plot is reproduced in Fig. 4.18.
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Fig. 4.13 Selecting a box plot in Chart Builder

4.4.6 Does the relationship between median BMI and general health seem
to be similar for men and women?

4.4.7 Does the relationship between the interquartile range and general
health seem to be similar for men and women?

Bar Charts Bar charts are frequently used to display various properties of a distri-
bution across values of categorical variables. For example, the mean BMI of male
and female respondents across levels of general health can be displayed in a clus-
tered bar chart.
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Return to Chart Builder. Select Bar from the Gallery and drag the picture of the
second bar chart to the window immediately above it. Drag GENERAL HEALTH
to the X-Axis box and drag BODY MASS INDEX to the Y-Axis box. In order to
graph the relationship between BMI and general health separately for men and
women, drag the variable, SEX into the Cluster: set color box. Click OK to gener-
ate the graph. These steps are displayed in Figs. 4.19, 4.20 and 4.21.

Figure 4.22 displays an edited version of the resulting clustered bar chart. (Be-
cause Fig. 4.22 is in grayscale rather than in color, we modified the formatting of
the bars representing men and women).

Descriptive statistics other than the mean can also be displayed in a bar chart
by making use of the Element Properties dialog box that can be found to the right
of the Chart Builder. For example, in order to plot standard deviations instead of
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Fig. 4.15 Selecting a variable for the X-axis and generating the box plot

means, click Mean in the Statistic box of the Element Properties dialog box and

select Standard Deviation from the drop down menu. Click Apply and notice that

the Y-Axis box now reads StdDev BODY MASS INDEX. Click OK to generate a bar

chart of standard deviations. These steps are displayed in Figs. 4.23, 4.24 and 4.25.
The clustered bar chart of the standard deviations is displayed in Fig. 4.26.

4.4.8 How would you describe the relationship between mean BMI and
general health?
4.4.9 How about the relationship between the standard deviation and gen-

eral health?

4.4.10 Do these relationships seem to be similar for men and women?
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4.5 Transforming a Quantitative Variable

Quantitative variables are sometimes modified or transformed into new variables.
We explored one reason for doing this in the previous chapter: to convert a quan-
titative variable into a categorical variable. In this section, we will explore three
additional reasons: to generate a new quantitative variable, to change the shape of
a distribution, and to make the variability of data across two or more groups more
nearly equal. To demonstrate, we will use data from a study of prostate cancer.

Generating a new quantitative variable Open PSA.sav [2]. This file consists of
301 men who reported to the urology department at the Naval Medical Center San
Diego. Their prostate-specific antigen (PSA) levels (in ng/ml) are stored in the vari-
able Prostate-Specific Antigen Level (ng/ml) [psa] (variable 5), and the volume
(in ml) of their prostates is stored in Volume of Prostate (ml) [vol] (variable 6). From
these two quantitative variables, a new quantitative variable was created, Prostate-
specific Antigen Density Level [psad] (variable 7) in order to determine whether
PSA density is superior to PSA levels in detecting the presence of prostate cancer.
(In a later chapter, we will conduct an analysis to determine which one was better).
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To create the new variable, each patient’s PSA level was divided by the volume of
his prostate:

psad = psa/vol. (4.1)

To conduct this transformation, choose Transform > Compute Variable to open
the Compute Variable dialog box. In the Target Variable window, give the new
variable a name, such as PSADensity. Remember from Chap. 2 that SPSS does
not accept spaces in variable names. Next, give the new variable a variable label,
such as PSA Density, by clicking Type & Label to open the Type & Label dialog
box, entering the label into the Label window, and clicking Continue. Now select
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Fig. 4.18 Box Plot of the BMI of male and female NY state residents of varying levels of general
health

Prostate-Specific Antigen Level (ng/ml) from the list of variables and click the
right-pointing arrow to move the variable to the Numeric Expression window. From
the set of buttons representing various arithmetic operations, click the button with
the division sign (/). Select Volume of Prostate (ml) and move it to the Numeric
Expression window. You have now told SPSS how to create the new variable. Click
OK to execute the transformation. The steps for computing this new variable are
displayed in Figs. 4.27, 4.28, 4.29, 4.30, 4.31 and 4.32.

The new variable will be stored in the last column of the data file. Go to Data
View and scroll over to the last column to see the results of the transformation. Com-
pare the values of the new variable with those of Prostate-specific Antigen Density
Level [psad] (variable 7). The values of the two variables should be identical except
for rounding error.

Changing the Shape of a Distribution Another purpose of a transformation is
to change the shape of the distribution of a variable. For example, there are times
when an analysis of a variable requires that the variable be normally distributed. If
the variable is not normal, it might be possible to transform it into one that is, or at
least into one that more closely approximates a normal distribution. The analysis
would then be conducted on the transformed variable. One such transformation is
a log transformation, which converts the values of a variable into their logarithmic
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Fig. 4.19 Selecting clustered bar chart from the gallery and assigning a variable to the X-axis

equivalents. The statistical analysis is then conducted on the log values. A log trans-
formation is used when the distribution of the original variable is positively skewed.
As an example, let us look at the distribution of the variable, prostate-specific anti-
gen level (ng/ml), in the PSA.sav data set. Across the 301 patients, the PSA levels
varied from 0.3 to 221.0.

To generate a histogram of the distribution, we could use Explore, but let us use
instead Chart Builder which can also produce histograms. Return to Chart Builder.
Select Histogram from the Gallery and drag the first histogram (called a simple his-
togram) in the row of histograms to the window above it. Drag Prostate-Specific
Antigen Level (ng/ml) to the X-A4xis box and click OK. These steps are displayed
in Fig. 4.33.

The histogram is shown in Fig. 4.34. We can see that the data are not normally
distributed. For example, most PSA levels are located to the extreme left, rather
than in the middle of the distribution, and there are several extremely high values.
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Fig. 4.20 Assigning a variable to the Y-axis of a clustered bar chart

Had we used Explore to generate the histogram, we would have seen that the skew-
ness is 8.113 and its kurtosis is 87.725.

To make these positively skewed data more nearly normal, we can try a log
transformation. Usually, this transformation involves taking either the log to the
base 10 (log,,) or the natural logarithm (/) of the variable. Here, we will do the
former, although we could have just as easily taken the natural log. The log,, of a
number is the value that when used as the exponent of 10 returns that number. For
example, the log,, of 10 is 1 because 10! equals 10. The log,, of 100 is 2 because 10?
equals 100. The log,, of 1 is zero because 10° equals 1. The log,, of values between
0 and 1 are negative. For example, the log,, 0f 0.5 is —0.301. Thus, the log,, of PSA
levels of 0.5, 1, 10 and 100 would be —0.301, 0, 1 and 2. The log,, of our highest
PSA level, 221, is 2.344.
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To conduct the log transformation, return to the Compute Variable dialog box.
Click Reset. In the Target Variable window, enter a name for the new variable, such
as LogPSA, and in the Type & Label dialog box, enter a variable label, such as Log
PSA. To set up the numeric expression, select Arithmetic from the Function group
window. In the Function and Special Variables window, select Lgl0 and click the
up pointing arrow. Select Prostate-Specific Antigen Level (ng/ml) from the list of
variables and click the right pointing arrow. These latter six steps are displayed in
Figs. 4.35,4.36 and 4.37.

The resulting histogram of the log,, of the PSA levels is displayed in Fig. 4.38.

We can see from the histogram that by taking the log of the PSA values, we
have created a variable that still measures levels of PSA, but whose distribution
more closely approximates a normal distribution than did the distribution of the
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original values. If we had used Explore to generate the histogram of the log values,
we would have seen that the skewness and kurtosis of the transformed variable are
much closer to zero than they were for the original variable. The skewness of the
transformed variable is —0.20, and its kurtosis is 0.832.

Medical researchers can use several other transformations to convert a nonnor-
mal distribution into one that approximates a normal distribution. These include
taking the reciprocal (dividing each value into one) or the square root of the variable
if the distribution is positively skewed, and squaring the variable if the distribution
is negatively skewed.

Equalizing Variability Across Groups There are times when a statistical com-
parison of the distribution of a variable across groups requires that the variability of



4.5 Transforming a Quantitative Variable

Fig. 4.23 Selecting the stan-
dard deviation as the descrip-
tive statistic to be displayed
in a clustered bar chart

111

3 Element Properties ﬁ

Edit Properties of:
Bart 4
X-Axis1 (Bar1)
Y-Axis1 (Bar1)
CrounCalar (Rar1)

Statistics
Variable: ¢® BODY MASS INDEX
Statistic:
Mean
anulative Sum
Percentile (?)

((standard Deviation )Q

Percentage Less Than (?)
Percentage Greater Than (?)
Number Less Than (?)

tlllllllllllllll

r

[ ][ Close ][ Help ]

the distribution be constant across those groups. If constancy is absent, then the data
can sometimes be transformed to reduce the inequality of the variances. Several
transformations can be tried, including taking the reciprocal or square root of the
variable. A log transformation can also be effective. As an example of the latter, let
us return to the PSA.sav data set. Table 4.5 displays some of the output generated
by Explore. The data are the PSA levels and their log,, equivalents of two groups
of patients: those who had prostate cancer and those who did not. Cancer was diag-

nosed by biopsy.

Answer the following questions:

4.5.1 What was the mean PSA level of patients with prostate cancer?

4.5.2 What was the mean PSA level of patients who were disease-free?
4.5.3 What were the standard deviations of the PSA levels of the two groups?
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4.5.4 Were these two standard deviations similar?
4.5.5 What were the standard deviations of the log,, values of the two groups?
4.5.6  Were the standard deviations of the log,, values similar?

We can see from the output that the standard deviations of the PSA levels of the
two groups of patients were very different while the standard deviations of the log
values were similar. Consequently, if we wished to compare the average PSA levels
of the two groups of patients with a measure of PSA that produces similar variabil-
ity across the two groups, we could use log values of PSA. Our comparison though
would be in terms of logarithms, not in terms of the original units of measurement.
If after we had conducted our analysis, we wanted to express our findings in terms
of the original PSA units, we would have to convert the results obtained with the
transformed variable back into the original units of measurement. This is done by
computing the antilog or exponent of the log. The exponent of a log is equal to the
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Fig. 4.25 Generating a clustered bar chart displaying the standard deviation of the BMI of men
and women of varying levels of general health

base of the log raised to a power equal to the log. For example, according to the
output above, the mean of the log,, PSA levels of patients with prostate cancer was
0.9105. If we raise 10 to the power of 0.9105 (10°919), the result is 8.138. The ex-
ponent of 0.9105 is 8.138.

The mean of a variable is sometimes called the variable’s arithmetic mean. In
our example, the arithmetic mean of the PSA levels of patients with cancer was
15.548. The exponent of the mean of the log of the values of a variable is called the
variable’s geometric mean. In our example, the geometric mean of the PSA levels
of the prostate cancer patients was 8.138. Geometric means are less sensitive to
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Fig. 4.26 Cluster bar chart of the standard deviations of the BMI of male and female NY state
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Fig. 4.32 Executing the transformation

extreme values than arithmetic means. As a result, when the distribution of a vari-
able includes extreme values, the variable’s geometric mean will be smaller than its
arithmetic mean, as is the case in our example.

4.6 Exercise Questions

1. Return to the CDC data set. Respondents were asked whether they engage in
moderate physical activity for at least 10 min at a time during a typical week.
Respondents who answered in the affirmative were then asked the number of
days per week they did so and the total time they spent per day engaged in that
activity. The number of days per week is stored in the variable, DAYS PER
WEEK OF MOD. PHYS. ACT [MODPADAY] (variable 44), and ranges from
1 to 7. Values of 77, 88 and 99 should be declared missing values. The num-
ber of minutes per day is stored in MINUTES OF MODERATE PHYSICAL
ACTIVITY [@_MODPAMN] (variable 94), and ranges from 0 to 599. Using
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Fig. 4.33 Creating a histogram of a distribution of PSA levels

Explore, study the distribution of the number of minutes per day of moderate
physical activity reported by respondents.

a.

How many respondents were included in the analysis?

b. What was the mean number of minutes per day? The median?

g

. Do the above values of the mean and median suggest that the distribution of

minutes was skewed? If so, in the positive or negative direction?

. What was the skewness of the distribution of minutes? Does this value indi-

cate that the distribution was skewed? In which direction?
Did the distribution of minutes include outliers?
What was the interquartile range?

. What was the range?
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Fig. 4.34 Histogram of the distribution of the PSA levels of a sample of 301 men

h. We can be 95% confident that on average, adult residents of NY state spend
to minutes per day engaged in moderate physical

activity.

2. Using Explore once again, study the relationship between BODY MASS INDEX-
THREE LEVELS CATEGORY [@_BMI4CAT] (variable 79) and MINUTES
OF MODERATE PHYSICALACTIVITY [@_MODPAMN] (variable 94). Be
sure that 9 has been declared a missing value for the BMI variable.

a. For each category, report in Table 4.6 the mean number of minutes and the
corresponding SE.
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Fig. 4.37 Executing the logarithm transformation

b. Describe the relationship between BMI category and moderate physical
activity.

3. Using Chart Builder, create a bar graph to determine if the relationship between
BMI category and mean moderate physical activity that you described in 2b is
the same across sex.

a. Overall, which sex appears to engage in more minutes of moderate activity?
b. Does the relationship between BMI and moderate activity appear to be the
same for each sex?

4. In this question, focus on respondents who reported engaging in moderate physi-
cal activity for at least 10 min at a time. That is, use Data > Select Cases to limit
the analysis to people for whom MINUTES OF MODERATE PHYSICAL
ACTIVITY [@_MODPAMN] (variable 94) was greater than zero. Then, using
Transform, create a variable, MINUTES PER WEEK [MINUTES WEEK], that
stores the number of minutes per week these respondents engaged in moder-
ate physical activity: To create this variable, multiply DAYS PER WEEK OF



122 4 Describing the Distribution of a Quantitative Variable

Mean = .681
Std.Dev. = .46959
60.0 — N =301
50.0 —
40.0
>
(8]
c
]
3
&
r 30.0
20.0 1 -
10.0
0.0 — . — = T
-1.00 .00 1.00 2.00 3.00

Log PSA
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MOD. PHYS. ACT [MODPADAY] (variable 44) by MINUTES OF MODER-
ATE PHYSICAL ACTIVITY:

MINUTES _WEEK = MODPADAY * (@_MODPAMN. 4.2)

Analyze the new variable with Explore and report in Table 4.7 the sample size, me-
dian and interquartile range for each sex.

5. Figure 4.39 is the distribution of minutes per week for men and women who
engaged in moderate physical activity for at least 10 min at a time during a typi-
cal week. Figure 4.40 is the log,, transformation of those distributions. Table 4.8
displays the means and standard deviations of the four distributions.

a. Does the log transformation appear to have normalized the distributions?
Why or why not?

b. Does the log transformation appear to have equalized the spread of the distri-
butions? Why or why not?
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Table 4.5 Descriptive statistics of the PSA Levels and their Log,, equivalents of patients with and

without prostate cancer
Descriptives

Biopsy Result Statistic Std. Error
Prostate-Specific Antigen Cancer Present Mean 15.548 2.8688
Level (ng/ml)
95% Confidence Interval Lower Bound 9.852
for Mean
Upper Bound 21.244
Std. Deviation 27.9615
Cancer Absent Mean 5.666 .3753
95% Confidence Interval Lower Bound 4.926
for Mean
Upper Bound 6.406
Std. Deviation 5.3862
Log PSA Cancer Present Mean .9105 .04804
95% Confidence Interval Lower Bound .8151
for Mean
Upper Bound 1.0058
Std. Deviation 46822
Cancer Absent Mean 5752 .03009
95% Confidence Interval Lower Bound 5158
for Mean
Upper Bound .6345
Std. Deviation 43189

Table 4.6 BMI category and number of minutes per day engaged in moderate physical activity
BMI category Mean SE

Neither overweight nor obese

Overweight
Obese

Table 4.7 Minutes per week of moderate physical activity of respondents engaging in such activ-
ity for at least 10 min at a time

Gender Sample size Median Interquartile range
Male

Female
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Fig. 4.39 Distribution of the number of minutes of exercise per week reported by a sample of male
and female residents of NY state

c. The geometric mean (GM) for men was approximately 190.55. It was calcu-
lated with the following formula:

GM = y*. (4.3)
What were the values of y and x that were used to calculate the geometric mean

of men?

d. Both the arithmetic and geometric means are measures of central tendency.
Which provides the truer measure of the average number of minutes? Why?
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Tgble 4.8 Mean (SD ) Variable ‘ Mean (SD)
minutes and log minutes of
exercise per week

Minutes per week

Man 335.01 (465.65)
Woman 292.80 (400.88)
Log minutes per week

Man 2.28 (0.45)
Woman 2.25(0.42)

Data Sets and References

1. CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention Public domain, Atlanta (2005). For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2. PAS.sav obtained from: Riffenburgh, R.H.: Statistics in Medicine, 2nd edn. Elsevier, Burling-
ton (2006). (With the kind permission of the Elsevier Books and Dr. Thomas K. Huisman)



Chapter 5
Introduction to Statistical Inference

Abstract This is an introduction to the two key tools for statistical inference. Con-
fidence intervals on a population mean are introduced. This is followed by an intro-
duction to the ideas behind hypothesis testing. They are applied to test a population
mean. Since these procedures can depend, in the case of small samples, on the
population distribution being normal, tests of this assumption are discussed. When
the usual tests cannot be used, the Wilcoxon signed ranks test is introduced. This
is followed by a discussion of statistical power and the difference between clinical
significance and statistical significance.

5.1 Overview

In Chap. 2, we concentrated on becoming familiar with SPSS environment, seeing
how to manipulate a data file to prepare it for analysis, how to save analysis, and
how to transfer analysis from SPSS to a Word document. In Chap. 3, we learned
how to describe the distribution of a categorical variable, while in Chap. 4, we
learned how to describe the distribution of a quantitative variable by using measures
of central tendency, measures of spread, skewness, and kurtosis. We also learned
to describe the distribution of a quantitative variable graphically by constructing
stem-and-leaf plots, histograms, and box plots. In all of the analyses, we have been
interested in describing the distribution of our sample data. These types of analyses
come under the general heading of descriptive statistics.

A logical, important question is whether or not the information gained from a
sample is indicative of a similar pattern in the population from which the sample
was drawn. For example, in a sample of quantitative data, we can compute the
sample mean. This tells us something about the “center” of the data. What does this
sample mean tell us about the “center” of the population (the population mean)? We
are trying to use a sample result to infer a population quantity called a population
parameter. This type of analysis is commonly referred to as inferential statistics.
In this chapter, we focus on making inferences regarding the center of the popula-
tion using a single sample from that population. Subsequent chapters will deal with
other population parameters and research designs.
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In order to make valid inferences about population quantities, it is necessary that
the data drawn from the population of interest are a random sample from the target
population. This is the only way to ensure that the data are representative of the
general population. For example, the data in the file CDC BRFSS.sav [1] consist
of 7796 residents of New York State aged 18 or older who were interviewed in 2005
by the Centers for Disease Control and Prevention Behavioral Risk Factor Surveil-
lance System (BRFSS). These were telephone interviews. The telephone numbers
were obtained using a technique known as random digit dialing. 1t is exactly what
it sounds like—telephone numbers from New York State were selected at random.
To compensate for nonresponse and other factors, the results are then weighted to
account for the possibility of systematic under- or overrepresentation of population
subgroups. In this way, we can view these data as constituting a random sample of
adults in New York State.

Not all statistical studies gather data in this manner. Suppose we are investigat-
ing the effect, if any, of a new drug on patients with hypertension, and we have a
set of volunteers for the study. It is common practice to view these hypertensive
patients as being representative of all persons with the condition, and to randomly
assign patients to a treatment group and a control group. In this way, assuming that
we have a random sample is reasonable.

In order to gain information regarding the value of a population parameter, we
need to decide how to process the sample data. That is, we need to decide on what
statistic to use. A statistic is a numerical value that is computed using sample data.
For example, if we are interested in the population mean, we would typically use
the sample mean as a basis for our analysis. Similarly, if we are considering the
population standard deviation (SD), then the sample SD would be the statistic of
choice. Since we are considering making inferences regarding the “center” of the
population in this chapter, two of the three procedures we will investigate will start
with the sample mean. The third procedure makes inferences about the population
median and uses an entirely different approach.

Before we get into a detailed discussion of the procedures and how SPSS con-
ducts them, it is necessary to review a little of the logic that underlies them. That is,
we will discuss what confidence intervals (Cls) are and how to interpret them. We
will also discuss what a hypothesis test is and how it works.

5.2 Confidence Intervals for a Population Mean

We introduced Cls in our discussion of the Explore procedure in the preceding
chapter. CIs are methods that are intended to estimate the value of a population
parameter. The value of the sample statistic that is associated with the parameter
of interest can be used to get a good single number estimate for that parameter.
However, since the value of the statistic will vary from sample to sample (a phe-
nomenon known as sampling variability), you cannot assume that the value you get
from a single sample will be equal to the value of the parameter. If the statistic is
well chosen, you can be fairly confident that, on average, its value is pretty close to
that of the parameter. However, given the nature of random sampling, you cannot
always be certain.
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The idea behind a CI is to derive a range (called the confidence interval) of pos-
sible values for the parameter that is reasonable given the value of the statistic and,
along with that interval, provide a measure of how confident (called the confidence
level) you are that the parameter is actually somewhere in that interval. Confidence
levels are stated in percent. Since we would like to be very confident that the param-
eter is in your particular interval, confidence levels are usually chosen near 100 %.
You cannot use 100 % because a 100% CI would have to span all possible values
for the parameter, and that would not serve to pin down the parameter’s value. Com-
mon values are 90, 95, and 99 %, with 95 % being by far the one most frequently
chosen.

The interpretation of the confidence level is as follows. Suppose, for the sake of
example, we construct a 95 % CI for the population mean. This means that 95 % of
all possible CIs will contain the true population mean, and 5% will not. We do not
know if the CI we just constructed is one of the good 95% or one of the bad 5 %.
However, since 95 % of all intervals will contain the population mean, we can say
that we are 95 % “confident” that the population mean is in our interval.

The width of a CI depends on the confidence level chosen. Higher confidence
levels result in wider CIs. Thus, a 99 % CI has a greater likelihood of containing the
parameter of interest, but at the cost of being less precise. On the other hand, a 90 %
Cl is more precise, in the sense of being narrower, but at the expense of not contain-
ing the parameter of interest as often. A 95% confidence level is a good compro-
mise between 90 and 99 %. Other factors affect the width of a CI. If the underlying
variability in the population is great, then CIs will be wider than for populations
which are less variable everything else being constant. In addition, sample size af-
fects the width of a CI. Larger sample sizes reduce the variability of the statistics
on which CIs are based. The net effect is that CIs using larger sample sizes will be
narrower than Cls based on smaller sample sizes, everything else being equal.

In this chapter, we use SPSS to construct Cls for the population mean. Although
you will not need to construct Cls by hand, it is worthwhile that you be acquainted
with how SPSS does it. When calculating a CI for a population mean, the statistic
that serves as the basis for the interval is the sample mean. Generically, the symbol
for the sample mean is X . The variability in the population is measured using the
sample SD, whose symbol is 5. The sample size is denoted by n. The confidence
level is accounted for by a multiplying factor called the critical value, denoted by
t*, obtained by using what is known as a ¢ distribution. If the underlying population
has a normal distribution, or if the sample size is large enough (a popular rule of
thumb is n = 30), then using the ¢ distribution is appropriate. The larger confidence
levels result in higher values for ¢ *. The resulting formula for a CI for the popula-
tion mean is

X4rx—o (5.1)

Jn

We are presenting the formulas for the procedures in this chapter so that you know
what SPSS uses. You will have no need to do these calculations by hand. Therefore,
in succeeding chapters, we will not show the formulas. As you can see, the interval
will be centered at the sample mean. Also, higher values of ¢* (i.e., higher confi-
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An example: the mean Body Mass Index (BMI) of New York state adults We
wish to construct Cls for the variable, BODY MASS INDEX [BMI] (variable 107),
found in the data file, CDC BRFSS.sav.

To generate the Cls with SPSS, load the data file. As we saw in Chap. 4, part
of the standard output of the Explore procedure (Analyze>Descriptive Statis-
tics > Explore) is a CI for the mean. The default interval has a confidence level of
95%. This can be changed to any desired confidence level by clicking Statistics to
open the Explore: Statistics dialog box shown in Figs. 5.1, 5.2, and 5.3. To change
the confidence level, type the desired confidence level, in percent, in the Confidence
Interval for Mean box and click Continue
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Table 5.1 95% Confidence interval for body mass index
Descriptives
Std.
Statistic Error
BODY MASS INDEX  Mean 26.8767 .06467
95% Confidence Interval Lower Bound 26.7499
for Mean Upper Bound | 27.0034
Table 5.2 90% Contfidence interval for body mass index
Descriptives
Std.
Statistic Error
BODY MASS INDEX  Mean 26.8767 .06467
90% Confidence Interval Lower Bound 26.7703
for Mean Upper Bound | 26.9830

Use the Explore procedure to construct 95, 99, and 90% Cls for the mean of

BODY MASS INDEX. Study the resulting output.

The partial output displayed in Tables 5.1, 5.2 and 5.3 shows the 95, 90, and 99 %

ClIs for the mean of BODY MASS INDEX, respectively.
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Table 5.3 99 % Confidence interval for body mass index

Descriptives

Std.
Statistic Error
BODY MASS INDEX  Mean 26.8767 .06467

99% Confidence Interval Lower Bound 26.7100
for Mean Upper Bound | 27.0433

Answer the following questions:

5.2.1 What is the 95 % confidence interval?

5.2.2 What is the 99 % confidence interval?

5.2.3 What is the 90 % confidence interval?

5.2.4 How do the three confidence intervals compare?

5.2.5 [Istheactual population mean body mass index in any of your intervals?

5.2.6  Which of your three confidence intervals is most likely to contain the
true population body mass index?

5.3 Test of Hypotheses

The other statistical procedure that we will discuss is known as a test of hypoth-
eses. While a CI is designed to provide a way to estimate the value of a population
parameter, a statistical test is intended to decide between two statements about the
value of a population parameter. Each statement about the value of the population
parameter is a hypothesis.

Null and Alternative Hypotheses One hypothesis is referred to as the null hypoth-
esis, and the other hypothesis is referred to as the alternative hypothesis. It is com-
mon practice for the null hypothesis to be the statement you feel should be false. The
null hypothesis statement must always state that the parameter is equal to a specific
value. The alternative hypothesis will state that the parameter is less than the value
stated in the null hypothesis, greater than the value stated in the null hypothesis, or
is not equal to the value stated in the null hypothesis. Which of these three versions
of the alternative hypothesis should be used depends on the context of the problem.

There is some terminology that is commonly used in testing. When the alterna-
tive hypothesis is either greater than or less than, the alternative hypothesis is said to
be one-tailed or one-sided. A test with a one-sided alternative hypothesis is referred
to as a one-tailed test or a one-sided test. If the alternative hypothesis is not equal
to, then the alternative is said to be two-tailed or two-sided. A test with a two-sided
alternative hypothesis is referred to as a two-tailed test or a two-sided test.

As an example, suppose we wish to test hypotheses about the mean BMI of a
population, and you believe that the mean BMI is <30 (not obese). One hypothesis
would be that the mean BMI is <30. As a consequence, the other hypothesis would
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Table 5.4 P-values for testing a population mean

Alternative Hypothesis p-value
B> 10 Pr(T'=1)
u < o Pr(T <9
4% uo 2Pr(72]1)

be that the mean BMI is >30. Since the second statement contains equality, it be-
comes the null hypothesis. The statement that we believe is true becomes the alter-
native hypothesis. It is common practice to neglect the inequality part of the null
hypothesis and simply restate it as that the mean BMI is equal to 30.

Test Statistics Once the null and alternative hypotheses have been formulated,
we need a procedure for determining which hypothesis is better supported by the
sample data. A typical starting point is the sample statistic that is associated with
the parameter being tested. Since we will be discussing testing hypotheses about a
population mean, the appropriate statistic will be X, the sample mean. Using the
sample statistic, we compute what is called the test statistic. The test statistic is
computed assuming that the value of the parameter specified in the null hypothesis
is true. This is why the null hypothesis must contain equality.
The formula for the test statistic for tests on a population mean is

)?_luo
= ) 5.2
s/\/; (52)

T

where T'is the name of the test statistic, X is the sample mean, M, is the value of the
population mean specified in the null hypothesis, s is the sample standard deviation
(SD), and 7 is the sample size. The use of g, in the formula is how the test statistic
assumes that the null hypothesis is true. The numerator in 7" is the distance that the
sample mean is from the value of the population mean when the null hypothesis is
true. The denominator in 7 is the standard error of the mean (SEM). Consequently,
the test statistic for the population mean measures how many standard errors the sam-
ple mean is from the population mean when the null hypothesis is true. It is less likely
that the null hypothesis is true when this distance, in standard error terms, is large.

Statistical Significance and p-Values In order to ascertain which hypothesis is
better supported by the data we compute the probability of observing a value of our
test statistic that is as extreme or more extreme than the value we compute when the
null hypothesis is true. This probability is called the p-value of the test. The calcula-
tion of the p-value depends on the form of the alternative hypothesis. For tests on a
population mean, the p-value calculations are as shown in Table 5.4. g denotes the
population mean, Pr denotes a probability, and 7 denotes the value of 7 calculated
using sample data. The probability is calculated using a distribution known as the
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Fig. 5.4 Testing a population mean

t distribution. Using the ¢ distribution is appropriate as long as we have a random
sample, and either the population distribution is normal or the sample size is large
enough (a typical rule of thumb is n >30).

Small p-values are indicative of evidence against the null hypothesis. Typically,
any p-value >0.1 is considered to be supportive of the null hypothesis. As p-values
decrease below 0.1 we have increasingly stronger evidence that the null hypothesis
is not true.

A term associated with p-values is statistical significance. A significance level
is a value of the p-value. It is also known as an a—level (or alpha level). Common
significance levels are 0.1, 0.05, and 0.01. Significance levels are often referred to
in percentage terms by multiplying the significance level by 100. A test is termed
to be significant at level « if the p-value is < «. Thus, the statement “the test was
significant at the 5% level” indicates that the p-value was 0.05 or less. What this
means is that, if we conduct repeated tests of our two hypotheses when the null
hypothesis is true, we will find, in the long run, a significant result 5% of the time.

An Example: The One Sample t-Test We want to test whether or not the mean
BMI of the population of New York state adults is not in the obese range (i.e., <30).
Therefore, we will use SPSS to test the null hypothesis that the mean BMI is 30
against the alternative hypothesis that the mean BMI is <30.

Select Analyze>Compare Means>One-Sample T Test to open the One-Sam-
ple T Test dialog box shown in Fig. 5.4. Select and move BODY MASS INDEX
[BMI] (variable 107) to the Test Variable(s) box. Enter the value of the population
mean specified by the null hypothesis (30) in the 7est Value box.

Part of the standard output for this procedure is a CI for the difference from the
value of the population mean specified by the null hypothesis. (This is an alternative
method of constructing a CI for the population mean, if you enter a value of 0 in
the Test Value box.) The default confidence level is 95 %. If you want to use another
confidence level, click Options to open the One-Sample T Test: Options dialog box
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Fig. 5.5 Changing the confi-
dence level
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Table 5.5 Output for the ¢-test procedure
One-Sample Statistics
Std. Error
N Mean Std. Deviation Mean
BODY MASS INDEX 7417 26.8767 5.56992 .06467

One-Sample Test

Test Value = 30
95% Confidence Interval of the
Difference
Mean
t df Sig. (2-tailed) Difference Lower Upper
BODY MASS INDEX -48.293 7416 .000 -3.12335 -3.2501 -2.9966

shown in Fig. 5.5. Enter the desired confidence level, in percent, in the Confidence
Interval box and click Continue.

Click OK to conduct the test. Study the resulting output.

The one-sample #-test generates two tables, reproduced in Table 5.5. The first
table gives the sample size (N), the sample mean (Mean), the sample SD (Std. De-
viation), and the SEM (Std. Error Mean). The SEM is the sample SD divided by
the square root of the sample size. Recall that the SEM is the denominator in the
test statistic, 7.

The second table gives test results. At the top of the table is the value of the popu-
lation mean used in the null hypothesis. The leftmost box of the bottom row of the
table shows the variable that is being tested. The next box in the bottom row gives
the value of the test statistic (#). The column headed df gives the degrees of freedom
associated with the test. Degrees of freedom are a quantity that takes into account
the size of our sample. Degrees of freedom for this ¢ statistic are n—1. The value of
t and the degrees of freedom are used to compute the p-value for the test. The next
box headed Sig. (2-tailed) gives the p-value for the two-sided alternative.

If you want to conduct a one-tailed test, you can use this two-tailed p-value to ob-
tain the one-sided p-value by using Table 5.6. Let Sig denote the two-tailed p-value.

The next box of the bottom row of the One-Sample Test table is headed Mean
Difference and gives the value of X — M, . The next two boxes give the upper and
lower limits of the CI (in our case a 95 % CI) for the mean difference.
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Table 5.6 Calculating

one-tailed p-values Alternative Hypothesis One-tailed p-value
u> pyg
Ift>0: Sig/2
Ift <0: 1 —Sig/2
u< ng
If £ < 0: Sig/2
Ift=0: 1 - Sig/2

Consult the output and answer the following questions.

5.3.1 What is the value of the sample mean?

5.3.2 What is the value of the sample standard deviation?

5.3.3 What is the sample size?

5.3.4 What is the value of #?

5.3.5 What are the degrees of freedom?

5.3.6 What is the p-value for testing that the population mean is equal to
30 against the alternative hypothesis that the population mean is 30?

5.3.7 Does your p-value give evidence that the null hypothesis is false?

5.3.8 Have the technical requirements that we have a random sample and
either a normal population or a large sample size been satisfied?

5.4 Test of Normality

In those cases when the sample size is not large (i.e., <30) it is necessary to deter-
mine whether it is reasonable to assume that the underlying population has a normal
distribution. The normal distribution is the familiar bell-shaped curve. We saw in
the previous chapter that it is possible to look at a stem-and-leaf plot or a histogram
to see if the general shape of the distribution follows a bell curve. But there are more
definitive means available.

Open the file, Bodymass.sav [2]. It contains data on the BMI of 20 anorexic pa-
tients. It has the BMI at the beginning of a treatment program, the BMI at discharge,
and the patient’s preferred BMI based on the patient’s stated preferred weight at
admission. Suppose we wish to test the null hypothesis that the mean BMI at the
beginning of the treatment program is 18.5 (not underweight) against the alterna-
tive hypothesis that the mean BMI at the beginning of the program is <18.5 (under-
weight). Since the sample size is only 20, we need to verify that it is reasonable to
assume that the population distribution is normal.

Select Analyze >Descriptive Statistics > Explore. As shown below, place Body
mass at admittance [Admit] (variable 2) in the Dependent List box. Click Plots
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to open the Explore: Plots dialog box, and check Normality plots with tests. Click

Continue followed by OK. These steps are shown in Figs. 5.6 and 5.7.
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Table 5.7 Tests of normality

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Body mass at admittance .097 20 .200° .967 20 .700

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

Normal Q-Q Plot of Body mass at admittance

Expected Normal
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Fig. 5.8 A normal Q-Q plot

The output will include a table-labeled Tests of Normality. This table is repro-
duced in Table 5.7.

The table gives the results of the Kolmogorov-Smirnov test and the Shapiro-Wilk
test. For both tests, the null hypothesis is that the population distribution is normal,
and the alternative hypothesis is that the population distribution is not normal. If the
p-values which appear in the columns labeled Sig. are higher than 0.1 it is reason-
able to accept the null hypothesis that the population distribution is normal.

In addition to the test results, what is known as a normal quantile-quantile plot
(or simply a normal Q-Q plot) appears following the stem-and-leaf plot. This plot is
shown in Fig. 5.8. The term quantile is synonymous with percentile. If the sample
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Fig. 5.9 A detrended normal Q-Q plot
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results are consistent with a normal population distribution, the points on the plot
should generally follow the straight line that is drawn. The points should be a ran-
dom scattering about the line. Following the Q-Q plot is a detrended normal Q-O
plot. Tt is like the Q-Q plot except that the line is horizontal. The detrended plot is
shown in Fig. 5.9.

Study the output and answer the following questions.

5.4.1

542
543

544

54.5

What is the p-value for the Kolmogorov-Smirnov test? What does it
signify?

What is the p-value for the Shapiro-Wilk test? What does it signify?
Does the normal Q-Q plot indicate that a normal distribution is ap-
propriate?

Should we use the #-test to determine whether or not the mean body
mass index for anorexic patients entering treatment is <18.5?

If the answer to the previous question is “yes,” have SPSS conduct
the #-test of the null hypothesis that the mean body mass index for
anorexic patients entering treatment is equal to 18.5 against the alter-
native hypothesis that the mean body mass index for anorexic patients
entering treatment is < 18.5. Interpret your results.
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5.5 Nonparametric Test of Hypotheses: Testing a
Population Median

What if you have a small sample size and the population distribution does not ap-
pear to be normal? Researchers have found through computer simulations that it is
safe to use the -test if the population distribution deviates from normality by a slight
amount. Procedures which maintain their statistical properties when the underlying
technical requirements have not been met are said to be robust. Even though the #-test
is reasonably robust under departures from normality, it is safe to back up the analy-
sis by using a procedure that does not depend on the population having a specific
distribution. Such procedures are called nonparametric. A nonparametric alternative
to the t-test is the Wilcoxon signed ranks test. 1t tests the null hypothesis that the
population median is equal to a specified value against one of three possible alterna-
tives: the population median is greater than the value specified by the null hypoth-
esis, the population median is less than the value specified by the null hypothesis,
or the population median is not equal to the value specified by the null hypothesis.

The only technical requirement for using the Wilcoxon signed ranks test is that
we must have a random sample. Even though the #-test is appropriate we will test
the median BMI of the anorexic patients on admittance to treatment. We will test
the null hypothesis that the median BMI is equal to 18.5 against the alternative that
the median BMI is <18.5.

SPSS only conducts the Wilcoxon signed ranks test for an experimental situation
known as matched pairs. We will discuss matched pairs in detail in Chap. 11. This
procedure can, however, be adapted to conduct a single sample Wilcoxon signed
ranks test by creating a new variable containing the value of the median specified by
the null hypothesis. Select Transform >Compute Variable. As shown in Fig. 5.10,
enter nullmedian in the Target Variable box and enter /8.5 in the Numeric Expres-
sion. Click OK to create the new variable.

To conduct the Wilcoxon test, select Analyze >Nonparametric Tests>Legacy
Dialogs >2-Related Samples to open the Tivo-Related-Samples Tests dialog box
shown below. Select Body mass at admittance and nullmedian, and move them
as a pair to the Test Pair(s) List box by clicking the right pointing arrow. Make sure
that Wilcoxon is checked in the Test Type area. Click OK to conduct the test. These
steps are shown in Fig. 5.11. Study the output.

The output will include a Test Statistics box, shown in Table 5.8.

Z is the value of the test statistic, and Asymp. Sig. (2-tailed) gives the p-value for
the two-sided alternative.

The p-value can be converted to a one-tailed p-value by using Table 5.9. For
notation let i denote the population median, iz, denote the value of the population
median specified by the null hypothesis, and Sig denote the two-sided p-value.
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Table 5.8 Output for the Test Statistics®

Wilcoxon test

nullmedian -
Body mass at

admittance
z -3.920°
Asymp. Sig. (2-tailed) .000

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Table 5.9 Converting p-values to one tail p-values

Alternative Hypothesis One-tailed p-value
,‘7 > ,‘70

Ifz<o0: Sig/2

IfzZ =2 0: 1 - Sig/2
/; < /;0

IfzZ<0: Sig/2

If Z = 0: 1 - Sig/2

Study the output and answer the following questions.
5.5.1 What is the value of the test statistic?
5.5.2 What is the two-sided p-value?

5.5.3 What is the p-value for testing that the population median is 18.5
against the alternative that the population median is <18.5?
5.5.4 Do the data support the notion that anorexic patients are underweight

at admission to treatment?

5.6 Statistical Power

Since the Wilcoxon signed ranks test only requires a random sample, it is logical to
ask why we need the #-test, a test that imposes the additional requirement that either
the population has a normal distribution or that the sample is sufficiently large. The
answer lies in the power of the test. A statistical test that correctly finds evidence
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Table 5.10 Output for ¢ test

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean
REPORTED HEIGHT IN
INCHES 2916 69.76 3.011 .056
One-Sample Test
Test Value = 70
95% Confidence Interval of the
Difference
Mean
t df Sig. (2-tailed) Difference Lower Upper
REPORTED HEIGHT IN
INCHES -4.360 2915 .000 -.243 -.35 -13

against the null hypothesis is said to be more powerful than a test that correctly finds
evidence against the null hypothesis less often. It is a general rule that a test that places
more restrictions on the population distribution is more powerful than one that does
not. Therefore, when the requirements for using the #-test are met, it is used instead of
the Wilcoxon signed ranks test. The ¢-test is more powerful than the Wilcoxon.

5.7 Clinical Versus Statistical Significance

Let’s return to the data file, CDC BRFSS.sav, to test whether or not the mean re-
ported height for males is 70 in. This will be a two-sided test of the null hypothesis
that the mean height is 70 in. against the alternative hypothesis that the mean height
is not equal to 70 in.

Begin by declaring the value of 999 as missing for the variable, REPORTED
HEIGHT IN INCHES [HTIN3] (variable 75). Select those cases where SEX
[SEX] (variable 32) is 1 (male). Now use Analyze>Compare Means >One-Sam-
ple T Test with REPORTED HEIGHT IN INCHES in the Test Variable(s) box
and 70 in the Test Value box. Study the output shown in Table 5.10.

The output reports that the value for ¢ is —4.360, the degrees of freedom are
2915, and the resulting two-sided p-value is 0.000. (The reported p-value is rounded
to the third decimal place. To see the exact value, double-click the output table and
then double-click again the cell that displays the p-value.) The results of the #-test
provide very strong evidence that the mean height for males is not 70 in. However,
notice that the value of the sample mean is 69.76 in. In terms of the actual values,
the sample mean is not meaningfully different from 70 in. When dealing with large
sample sizes, small differences can be statistically significant. Although a differ-
ence may be statistically highly significant, that difference in practical or clinical
terms may not be significant at all.
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5.8 Exercise Questions

1. Do men who are 25 years old engage in moderate exercise on more than 4 days a
week? Load SPSS data file, CDC BRFSS.sav. The variable of interest is DAYS
PER WEEK OF MOD. PHYS. ACT [MODPADAY] (variable 44). Be sure that
the values of 77, 88, and 99 have been declared as missing. Test the null hypoth-
esis that the mean number of days for 25-year-old men who engage in moderate
physical activity is 4 against the alternative hypothesis that the mean number of
days is >4. In addition, construct a 99 % CI for the mean number of days that
respondents engage in moderate physical activity.

What is your sample size?

. What is the sample mean?

What is the value of the test statistic, #?

. What are the degrees of freedom?

What is the p-value for the test? Remember that we are running a one-sided

test.

What is your 99 % confidence interval?

g. According to the results of the #-test, can we reject the null hypothesis? Why
or why not?

h. What are the technical requirements for using the #-test? Have they been satis-

fied? Explain.

o po o

]

2. Imagine that you are in charge of a treatment program for anorexia, and you
want to know if your patients have a BMI >18.5 at the time of discharge from
the program. To find out, you analyze the data in SPSS data file, Bodymass.sav.
The variable you are interested in is Bodymass at discharge [Disch] (variable
4). Note that the sample size is 20.

a. Do the data indicate that a normal distribution is appropriate for the population?

b. If so, conduct a ¢-test of the null hypothesis that the mean BMI is 18.5 against
the alternative hypothesis that the mean BMI is > 18.5. If not, conduct a Wil-
coxon signed ranks test that the median BMI is 18.5 against the alternative
hypothesis that the median BMI is >18.5.

c. What is the value of your test statistic?

d. What is the p-value for your test? Remember that we are running a one-sided
test.

e. Can you confidently conclude from these results that the average patient
leaves your program with a BMI >18.5? Why or why not?

3. Do patients with advanced colon cancer who are treated with ascorbate have an
average survival time of 500 days? Use SPSS data file, Patient.sav [3], which
contains data from patients with various types of cancer. Focusing on patients
with colon cancer (use Data>Select Cases), analyze the variable, Survival
Days [Days] (variable 2). Note that the sample size is 17.
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Table 5.11 Normality test for PSA
Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Prostate-Specific Antigen 314 301 000 358 301 000
Level (ng/ml)

a. Lilliefors Significance Correction

a. Do the data indicate that a normal distribution is appropriate for the popula-
tion of colon cancer patients?

b. If so, conduct a #-test of the null hypothesis that the mean survival time is
500 days against the alternative hypothesis that the mean survival time is
not equal to 500 days. If not, conduct a Wilcoxon signed ranks test that the
median survival time is 500 days against the alternative hypothesis that the
median survival time is not equal to 500 days.

c. What is the value of your test statistic?

d. What is the p-value for your test?

e. Can you confidently conclude that the average survival time is not equal to
500 days? Why or why not?

4. The PSA levels and prostate volumes of 301 men were measured [4].

a. According to the results of the tests of normality displayed in Table 5.11, are
the PSA levels of men within the population from which the sample was taken
normally distributed? Defend your answer.

b. According to the normal Q-Q plot shown in Fig. 5.12, are the prostate vol-
umes of men within the population from which the sample was taken nor-
mally distributed? Defend your answer.

5. How many hours per night do college seniors sleep during the week day? To find
out, undergraduates were polled [5]. Sixteen were seniors. Because the sample
size was small and the population distribution was not normal, a one sample
t-test and a Wilcoxon signed ranks test were conducted. The #-test tested the null
hypothesis that the mean number of hours of sleep per night obtained within the
population of college seniors is equal to six against the alternative hypothesis
that the mean number of hours of sleep per night obtained within the population
of college seniors is >6. The Wilcoxon test tested the null hypothesis that the
median number of hours of sleep per night is equal to 6 against the alternative
hypothesis that the median number of hours of sleep is >6. The results of a two-
tailed test for each analysis are reported below:

— Sample mean: 6.56.

— Sample median: 6.75.

— One-sample -test: ¢,,=2.377, P=0.031.
Wilcoxon signed ranks test: Z=—2.087, P=0.037.



146 5 Introduction to Statistical Inference

Normal Q-Q Plot of Prostate-Specific Antigen Level (ng/ml)
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Fig. 5.12 Q-Q plot for PSA

a. The results of the two inferential tests are reported in the editorial style of the
American Medical Association. For the value of 7, the number “15” appears
as a subscript. To what does the “15” refer?

b. According to the results of the one-sample #-test, what is the one-tailed
p-value?

c. According to the results of the one-sample #-test, should we reject the null
hypothesis that the population mean is equal to 6 hours of sleep in favor of
the alternative hypothesis that the population mean is >6 h of sleep? Why or
why not?

d. Do the results of the nonparametric test support or contradict the results of the
t-test? Briefly defend your answer.

e. The sample mean (6.56 h) is about 0.5 h greater than the value stated in the
null hypothesis (6 h). Is this finding statistically significant? Why or why not?
In your opinion, is this finding clinically significant? Why or why not?
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1. CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: US Department of Health
and Human Services, Centers for Disease Control and Prevention (2005). Public domain. For
more information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

2. Bodymass.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski,
E.: A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permis-
sion of the Routledge Taylor and Francis Group, and Professor Shelley L Channon)

3. Patient.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, E.:
A Handbook of Small Data Sets. Chapman & Hall, London (1994). With the kind permission
of the Routledge Taylor and Francis Group, Dr. Linus Pauling, Jr. For context, see Cameron,
E., Pauling, L.: Supplemental ascorbate in the supportve treatment of cancer: re-evaluation
of prolongation of survival times in terminal human cancer. Proc. Natl. Acad. Sci. U SA 75,
4538-4542 (1978)

4. PAS.sav obtained from: Riffenburgh, R.H.: Statistics in Medicine, 2nd ed. Elsevier Academic
Press, Burlington (2006). (With the kind permissson of the Elsevier Books and Dr. Thomas K.
Huisman)

5. From: Bacchus, H.F., Boeltz, B.R., Rybinski, J.G., Brown, R.G., Holmes, W.H.: Sleep dura-
tion, body mass index, self-reported health and the academic performance of college students.
Unpublished data, Le Moyne College, Syracuse (2009)



Chapter 6
Inference for Proportions

Abstract An important goal in clinical research is estimating the proportion of a
population who has a particular disease or who will acquire the disease over a given
period of time, and identifying factors that are associated with the occurrence of
the disease. This chapter reviews how confidence intervals and tests of hypotheses
are used to estimate prevalence and incidence from sample data, and how various
measures of association based on sample proportions—the difference between two
proportions, relative risk and the odds ratio—are used to identify risk factors.

6.1 Overview

Researchers are often interested in the frequency with which a patient characteristic,
medical condition or disease is encountered within a population. With regard to
disease, researchers often document prevalence and incidence. Prevalence refers
to the proportion of a population who has the disease at a given point in time. For
example, an investigator might be interested in knowing the proportion of residents
of NY state who had hypertension at the end of the year 2005. Incidence refers to
the proportion of a population who acquire a disease over a given period of time.
For example, a researcher might be interested in knowing the proportion of NY
state residents who became hypertensive during the year 2005. In some instances,
researchers wish to know whether the proportion of a population with a given char-
acteristic, condition, or illness is equal to, greater than, or less than some particular
value. For example, an investigator might wish to know whether the proportion of a
population who needed to see a doctor but could not because of the cost associated
with an office visit is no more than some value, say, 10 %.

Since researchers cannot examine the entire population, they need to estimate a
population proportion using sample data. This means that they need to construct a
confidence interval (CI) for the population value and to test hypotheses regarding
the population proportion. SPSS does not have a built-in capability to construct Cls
or test hypotheses regarding population proportions. SPSS does, however, provide
the capability of writing external procedures to produce analysis that is not part of
SPSS program. They are known as SPSS scripts. We shall see how to use previously
written scripts to analyze population proportions.
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In addition, there are times when researchers want to compare the proportions of
two independent populations. For example, they might wish to determine if a dis-
ease is more prevalent among men or women in order to determine whether the oc-
currence of the disease is related to the patient’s sex. In these instances, researchers
construct CIs for the difference between two population proportions and conduct
tests of hypotheses regarding the difference between two population proportions.
As is the case with a single proportion, SPSS does not have a built-in capability for
performing these procedures but can make use of previously written scripts.

Estimating or testing the difference between two proportions can reveal whether
the likelihood of developing a particular medical condition or disease is greater
for people who share a certain characteristic or experience. Such characteristics or
experiences are called risk factors. Risk factors can also be identified by using two
proportions to compare the probability or odds of acquiring a disease for a person
exposed to the factor to the probability or odds for a person not exposed. Often the
comparison is made in terms of the ratio of the two probabilities or the two odds.
When the ratio consists of two probabilities, the result is known as relative risk.
When the ratio consists of two odds, the result is known as an odds ratio. Later in
the chapter, we will explore these two statistics and learn how to instruct SPSS to
compute them.

6.2 ClIs for Population Proportions

Suppose that we are interested in determining the proportion of people in a popula-
tion that has a certain condition. The population parameter of interest here is the
population proportion. The mathematical symbol for it is p. (Do not confuse this
symbol for p-value.) Looking back at our discussion of Cls for the population mean,
we note a couple of things. First, the basic form for the CI was

Statistic * (Critical value) (Standard error) (6.1)

Second, the statistic was the sample statistic corresponding to the population pa-
rameter. That is, the sample mean is the statistic associated with the population
mean. The same holds true for a CI for a population proportion. Before getting to
the details we need to define some terms. An observation that has the condition of
interest is said to be a success. An observation that does not have the condition of
interest is said to be a failure. The statistic associated with the population proportion
is the sample proportion. Its symbol is p and is called p hat. If we let X denote the
number of successes in our sample and let NV denote the sample size, then p hat is
computed by dividing the number of successes by the sample size. That is,

p=XIN. (6.2)

We need these terms in order to understand how to complete the dialog box for con-
structing the CIs and conducting the tests that we will be discussing in this chapter.
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ClIs for a proportion have the same interpretation as those for the population
mean. That is, 95 % confidence means that 95 % of all possible CIs based on sam-
ples of the same size from the same population will contain the population propor-
tion and 5 % will not.

An Example As an example, let us construct a 95 % CI for the proportion of adults
living in NY state in 2005 who were obese. Load the data file, CDC BRFSS.sav
[1], into SPSS. Be sure that 9 has been declared as a missing value for BODY
MASS INDEX-THREE LEVELS CATEGORY [@_BMI4CAT] (variable 79)
Select Analyze > Descriptive Statistics > Frequencies and enter BODY MASS
INDEX-THREE LEVELS CATEGORY in the Variable(s) box and click OK.
This will generate the frequency table in Table 6.1. The value in the Frequency col-
umn for the category labeled Obese will be the number of successes in the sample
(X), and the value in the Frequency column for the category labeled 7otal will be the
sample size (). You will need these to construct the CI. Note that the valid percent
divided by 100 is the sample proportion.

As we mentioned in the overview, SPSS does not have a built-in capability to
construct Cls for a population proportion. SPSS does have a capability to write
external programs called scripts that can perform procedures that are not part of
SPSS. A script has been written to construct Cls for a single population proportion.
It is called ciprop.sbs. Your instructor will tell you where to find it. The procedure
used by the script is appropriate as long as there are at least 10 successes and 10
failures in the sample.

To run the script select Utilities > Run Script. This will open the Run Script
dialog box shown in Fig. 6.1. In the Look in window, make your way to the script.
Run the script by either double-clicking the script or by clicking the script followed
by Run. This will open the Confidence Interval for a Proportion dialog box shown
in Fig. 6.2.

Table 6.1 Frequency table for three categories of body mass index
BODY MASS INDEX- THREE LEVELS CATEGORY

Cumulative
Frequency Percent Valid Percent Percent
Valid Neither Overweight nor 3007 38.6 405 405
Obese
Overweight 2703 34.7 77.0
Obese 1707 21.9 23.0 100.0
Total 7417 95.1 ON
Missing  Don't \3—79/ 4.9
know/Refused/Missing A :
Total / 7796 100.0
The number of cases = X, while the The valid percent divided by
total number of valid cases = V. 100 = X/ N, the sample
proportion of obesity.

\
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Fig. 6.1 Selecting the script, Confidence Interval for a Single Population Proportion
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Fig. 6.2 Generating a 95 % confidence interval for a single population proportion

If you have the value for p hat, enter it in the Phat or X box. If you have the num-
ber of successes (X), enter it in the Phat or X box. Enter the sample size () in the N
box. Enter the desired confidence level in percent in the Confidence Level box. The
resulting dialog box should look like the one in Fig. 6.2.

Click OK to construct the CI. The output is reproduced in Table 6.2.
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Table 6.2 95% Confidence interval for the proportion of obese NY state residence
95% Confidence Interval for P

N X Phat Lower Upper

7417 1707 | 0.230147 | 0.2205675 | 0.2397264

Answer the following questions:

6.2.1 What is the value of N?

6.2.2 What is the value of p hat?

6.2.3 What are the confidence limits for the proportion of the population
that is obese?

6.2.4 Does your CI contain the true proportion?

6.3 Testing a Single Proportion

There are situations where one wants to test whether or not the proportion of the
population that has a certain condition is equal to a specified value. This is the null
hypothesis. The possible alternative hypotheses are that the population proportion
is less than the value specified by the null hypothesis, the population proportion
is greater than the value specified by the null hypothesis, or the population pro-
portion is not equal to the value specified by the null hypothesis. The appropriate
alternative hypothesis will be dictated by the context of the investigation. Similar
to the case for testing population means, the test statistic is based on a sample
statistic—in this case, the sample proportion, p hat—and it computes a p-value.
The p-value is interpreted in the same way that p-values for testing the population
mean are interpreted.

An Example We wish to test whether or not less than 10 % of the population needed
to see a doctor within the last 12 months but could not because of the cost of an
office visit. The relevant variable in the Centers for Disease Control and Prevention
(CDC) data file is COULD NOT SEE DR. BECAUSE OF COST [MEDCOST)
(variable 9; 1=Yes, 2=No, 7=Don’t know/Not sure, 9=Refused).

Declare values of 7 and 9 as missing and assign the value labels. Select Ana-
lyze > Descriptive Statistics > Frequencies. Enter COULD NOT SEE DR. BE-
CAUSE OF COST in the Variable(s) box and click OK. Study the output which
should include the frequency table displayed in Table 6.3.

The value in the Frequencies column for Yes will be the number of successes
(X), and the value in the Frequencies column for Total will be the sample size (N).

As was the case for Cls, SPSS does not have a built-in capability to conduct tests
on a single population proportion, so we have provided a script, testprop.sbs, for
you. The procedure that it implements is appropriate if the sample size times the
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Table 6.3 Frequency of NY state residents unable to see a doctor because of cost
COULD NOT SEE DR. BECAUSE OF COST

Cumulative
Frequency Percent Valid Percent Percent
Valid Yes 742 9.5 9.5 9.5
No 7034 90.2 90.5 100.0
Total 7776 99.7 100.0
Missing  Don't know/Not 15 P
Sure
Refused 5 A
Total 20 3
Total 7796 100.0

&8 Test for a Proportion g

Phat or X 142

N |7776

Proportion 10

Greater Than

Alternative
Not Equal To

0K Cancel

Fig. 6.3 Generating a test of proportion against a one-tailed alternative hypothesis

proportion specified by the null hypothesis is at least 10 and the sample size times 1
minus the proportion specified by the null hypothesis is at least 10.

To run the script, select Utilities > Run Script. Run the testprop.sbs script
to open the Test for a Proportion dialog box. As was the case with the CI script,
enter either the value of p hat or the number of successes (X) in the Phat or X box,
and the sample size (N) in the N box. Enter the proportion specified by the null
hypothesis in the Proportion box. Select the appropriate alternative hypothesis by
clicking on it in the Alternative box. The resulting dialog box should look like the
one in Fig. 6.3.

Click OK to conduct the test. The output is reproduced in Table 6.4.
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Table 6.4 Results of a one-tailed test of a population proportion
Test of P =.10 vs. P Less Than.10

N X Phat Z P-value

7776 742 | 9.542181E-02 | -1.345707 | 8.919852E-02

Answer the following questions:

6.3.1 What is the sample size?

6.3.2 What is the value of p hat?

6.3.3 What is the value of Z?

6.3.4 What is the p-value for the test?

6.3.5. What does the test lead you to conclude regarding whether or not less
than 10% could not visit a doctor because of the cost?

6.4 CIs for the Difference Between Two Population
Proportions

There are situations where researchers will want to compare two population propor-
tions. For example, an investigator might be interested in comparing the proportion
of men who are obese to the proportion of women who are obese to determine
whether sex is a risk factor for obesity. One way to compare two population propor-
tions is to construct a CI for the difference between the two proportions. As was the
case with inferences regarding a single population proportion, SPSS does not have
a built-in capability for comparing two proportions. SPSS scripts are provided to
address this need. It is appropriate to use the script if you have at least five successes
and five failures in each sample.

An Example We wish to construct a 95 % CI for the difference between the propor-
tion of men who are obese and the proportion of women who are obese. We will be
using the variable BODY MASS INDEX-THREE LEVELS CATEGORY[@_
BMI4CAT] (variable 79).

Before running Analyze > Descriptive Statistics > Frequencies to get the sum-
mary statistics needed for the script, we need to split the file according to gender so
that we can obtain summary statistics separately for men and women. Select Data >
Split File to open the Split File dialog box. Check Organize output by groups and
enter SEX [SEX] (variable 32; 1=Male, 2=Female) in the Groups Based on box.
Click OK. Splitting the file will result in a separate analysis for each distinct value
of the grouping variable, SEX. Figures 6.4, 6.5 and 6.6 review these steps.

Run Analyze > Descriptive Statistics > Frequencies on BODY MASS IN-
DEX-THREE LEVELS CATEGORY. Study the output.

The frequency table for each sex is reproduced in Tables 6.5 and 6.6. Now that
we have obtained the numbers of obese respondents and the sample sizes of each
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Fig. 6.5 Organizing the output by sex
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Fig. 6.6 Splitting the data file by sex

Table 6.5 Distribution of BMI categories of a sample of male residents of NY state

SEX = Male
BODY MASS INDEX-THREE LEVELS CATEGORY?
Cumulative
Frequency Percent Valid Percent Percent
Valid Neither Overweight nor 911 310 316 316
Obese
Overweight 1302 444 45.2 76.8
Obese 670 22.8 23.2 100.0
Total 2883 98.3 100.0
Missing  Don't o 51 17
know/Refused/Missing
Total 2934 100.0
a. SEX = Male

sex, we can construct the CI for the difference between the proportions of men and
women who are obese.

We will construct the CI for the difference between the two proportions by sub-
tracting the women from the men. The group that is being subtracted from is called
generically population 1, and the group that is being subtracted is called generically
population 2. That is, the difference is population 1 minus population 2. So, in this
case population 1 will be the men and population 2 will be the women.
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Table 6.6 Distribution of BMI categories of a sample of female residents of NY state

SEX = Female
BODY MASS INDEX-THREE LEVELS CATEGORY?
Cumulative
Frequency Percent Valid Percent Percent
Valid Neither Overweight nor 2096 43.1 46.2 46.2
Obese
Overweight 1401 28.8 30.9 771
Obese 1037 213 22.9 100.0
Total 4534 93.3 100.0
Missing  pon't
know/Refused/Missing 328 6.7
Total 4862 100.0

a. SEX = Female

To construct the CI, we will use the script, ci2prop.sbs. It is appropriate to use
this script if each sample contains at least five successes and five failures. Select
Utilities > Run Script and run the script to open the Conf. Int. Diff. between Tivo
Proportions dialog box. Enter the number of obese men in the Phat 1 or XI box,
the sample size for the men in the N/ box, the number of obese women in the Phat
2 or X2 box, and the sample size for the women in the N2 box. Enter the desired
confidence level in the Confidence Level box. The resulting dialog box should look
like the one shown in Fig. 6.7.

Click OK to construct the CI. Table 6.7 displays the resulting output.

Answer the following questions:

6.4.1 What were the sample sizes for the men and the women?

6.4.2 What were the values of p hat for the men and for the women?

6.4.3 What are the confidence limits for the difference between the proportion
of men who are obese and the proportion of women who are obese?

Is this interval consistent with there being no difference in the popula-
tion between men and women with regard to obesity?

6.4.4

6.5 Testing Two Proportions

When comparing two proportions, a test of whether or not two proportions are equal
can be conducted. The null hypothesis is that the two proportions are equal. The
possible alternative hypotheses are that one proportion is greater than the other, one
proportion is less than the other, or the two proportions are not equal to each other.
Again, the context of the investigation indicates which alternative hypothesis is
appropriate.
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Fig. 6.7 Generating a 95% confidence interval for the difference between two population
proportions

Table 6.7 95 % confidence interval for the difference between two population proportions
95% Confidence Interval for P1 - P2

N X Phat Lower Upper
One 2883 670 | 0.2323968 | -1.599581E-02 2.335672E-02
Two 4534 1037 0.2287164

An Example We wish to test whether or not the proportion of men who are obese
is equal to the proportion women who are obese. The null hypothesis will be that
the two proportions are equal, and the alternative hypothesis will be that the two
proportions are not equal. As we did when we constructed the CI, population 1 will
be the men and population 2 will be the women.

The condition that must be satisfied in order to use the script that is appropriate
for this situation is a little complicated. First, unsplit the file by selecting Data >
Split File, checking Analyze all cases, do not create groups, and clicking OK. Now
run Analyze > Descriptive Statistics > Frequencies on BODY MASS INDEX-
THREE LEVELS CATEGORY to compute the proportion of respondents who
are obese. You may recall from Sect. 6.2 that the proportion of the entire sample that
is obese is 0.23. If each sample size times this proportion is at least 5, and if each
sample size times 1 minus this proportion is at least 5, then the procedure imple-
mented by the script is appropriate.

To conduct the test, select Utilities > Run Script and run the script test2prop.
sbs to open the Test for Equality of Two Proportions dialog box. Enter the number
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Fig. 6.8 Generating a two-tailed test of the difference between two proportions

Table 6.8 Results of a two-tailed test of the difference between two proportions
Test of P1 = P2 vs. P1 Not Equal To P2

N X Phat Z P-value
One 2883 670 | 0.2323968 0.3670656 0.7135701
Two 4534 1037 | 0.2287164

of obese men in the Phat 1 or XI box, the sample size for the men in the N/ box,
the number of obese women in the Phat 2 or X2 box and the sample size for the
women in the N2 box. Select the appropriate alternative hypothesis (Not Equal To)
by clicking it in the Alternative box. The resulting dialog box should look like the
one shown in Fig. 6.8.

Click OK to conduct the test. Table 6.8 displays the resulting output.

Answer the following questions:

6.5.1 What are the sample sizes for the men and women?

6.5.2 What are the sample proportions ( p hat) for the men and women?

6.5.3 What is the value of Z?

6.5.4 What is the p-value for the test?

6.5.5 Does the test indicate that the proportion of men who are obese is dif-
ferent from the proportion of women who are obese?

6.5.6 Have the necessary conditions for using this procedure been met?
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6.6 Relative Risk and Odds Ratios

Risk factors are associated with but have not been shown to cause the conditions or
diseases of interest. As we pointed out in Chap. 1, to establish that a factor causes a
particular outcome, it would be necessary to show that the factor preceded the out-
come in time (causes come before their effects) and that the outcome was not due to
the presence of some other variable or confounder that may have accompanied the
factor. To establish these two conditions convincingly, an experiment would have to
be conducted in which patients are at random either exposed or not exposed to the
factor in question. The proportion of those exposed to the factor (the experimental
group) who subsequently develop the outcome under investigation would then be
compared to the proportion of those in the group not exposed (the control group).

For ethical reasons, suspected causal factors cannot be studied experimentally
on humans. For example, it would be unethical to expose people to a suspected
carcinogen to see if it really causes cancer. However, researchers can still establish
that exposure to a factor is followed by an increase in the probability of disease or
illness by conducting a cohort study. As with an experiment, this study tracks the
incidence of an outcome in two groups, one which shares the risk factor and one
which does not. The ratio of these two proportions yields a statistic called relative
risk, the extent to which the probability of disease for those exposed to the risk
factor is greater than that of those not exposed. If the relative risk is statistically
significantly greater than 1, the researcher would have evidence that the variable
under study is a risk factor.

By measuring how often new instances of the outcome occur after the two
groups have been selected, the cohort study attempts to establish the appropriate
time sequence regarding the risk factor and its outcome. However, because the two
groups were not formed via random assignment, it is always possible that any ob-
served difference in risk between the two groups was due to factors associated with
the risk factor rather than to the risk factor itself. Therefore, relative risk in a cohort
study is evidence regarding whether the factor under study is a risk factor but is not
conclusive evidence that the factor is a cause of disease.

We saw in Chap. 1 that as useful as cohort studies are in identifying risk factors,
they can be difficult and expensive to conduct. For example, cohort studies can take
a long time to complete, patients can be difficult to track, and many patients may
be lost to the study over time. Consequently, researchers may choose alternative
designs to establish that exposure to a factor is associated with a higher likelihood
of disease or illness. Although these designs have their weaknesses, they are often
relatively easy, quick and inexpensive to conduct. Two such designs are the case-
control study and the cross-sectional study. Chapter 1 provides details about these
two designs, so here we will give a quick overview.

In a case-control study, the researcher works backward from the disease to the
suspected risk factor. First, two groups of people are identified. One, called cases,
already has the condition or illness. The second, called controls, does not. The re-
searcher then counts the number of cases and controls that had been exposed to the
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risk factor and determines whether the proportion of cases that had been exposed to
the factor is greater than the proportion of controls. In a cross-sectional study, the
researcher collects data from a sample of people without first selecting them on the
basis of either the risk factor (as would be the case in a cohort study) or disease (as
would be the case in a case-control study). The researcher then divides the sample
into those who it turns out had been exposed to the risk factor and those who had
not, and determines if the prevalence of disease in the first group is greater than in
the second.

Risk is defined as the probability of developing a negative health outcome over
a given period of time. Consequently, it is impossible for either the case-control or
cross-sectional study to assess risk as neither design identifies people who have yet
to experience the outcome and then follows them forward in time to determine the
proportion who during a specified time interval experience the outcome. Unable
to measure risk, researchers using case-control or cross-sectional studies cannot
calculate relative risk. But researchers can calculate the odds ratio, a statistic that
determines the extent to which the odds of experiencing the outcome in question is
greater for the group of people who had been exposed to the risk factor than for the
group who had not been exposed.

Unless the outcome is rare, an odds ratio will not equal the relative risk, so it
usually can not be used to make conclusions about how much more at risk people
become when they are exposed to a risk factor. But odds ratios can always be used
to determine if a risk factor and an outcome are related to one another. If the odds
ratio is statistically significantly greater than 1, the researcher has evidence that the
factor under study is a risk factor.

Relative Risk Let us analyze the CDC data to determine if being overweight is a
risk factor for poorer health. At this point, you may have recognized the CDC sur-
vey as an example of a cross-sectional study. If so, you realize that in order to use
the CDC data to estimate risk, we would have to assume that the variable we are
calling a potential risk factor (being overweight) preceded in time the variable we
are calling an outcome (poorer health). This is a tenuous assumption, but making it
will allow us to use these data as an example.

Reverse coding the risk factor and the outcome variable. When using SPSS
to calculate relative risk or odds ratios, cases that were exposed to the risk factor
should be identified with a numerical code that is lower than the code used for
cases that were not exposed to the risk factor. Unfortunately, in the CDC data set,
the opposite is true: In the variable, RISK FACTOR FOR OVERWEIGHT OR
OBESE [@_RFBMI4] (variable 80), respondents who were exposed to the risk
factor (i.e., people who were either overweight or obese) are coded with a 2, while
respondents who were not exposed (people who were neither overweight nor obese)
are coded with a 1. So before we begin, we will have to reverse this coding.

Similarly, when using SPSS to calculate relative risk or odds ratios, cases that
experienced the negative outcome should be identified with a numerical code that
is lower than the code used for cases that did not experience the outcome. Un-
fortunately, in the CDC data set, the opposite is true: In the variable, HEALTH
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STATUS [@_RFHLTH] (variable 58), respondents who experienced the outcome
(i.e., people who were in fair or poor health) are coded with a 2, while respondents
who did not experience the outcome (people who were in good or better health) are
coded with a 1. So we will have to reverse this coding as well.

To reverse the coding of the two variables, we will use Transform > Recode
into Different Variables. As this procedure was reviewed in earlier chapters, here
we will just outline the steps needed to reverse the coding of our risk factor and
outcome variable.

Select Transform > Recode Into Different Variables to bring up the Recode
into Different Variables dialog box. Move RISK FACTOR FOR OVERWEIGHT
OR OBESE to the Input Variable — Output Variable window. In the Name window,
enter as a name for the new variable, RISK_FACTOR_FOR_OVERWEIGHT _
OR_OBESE_RECODED. Then type a label for this new variable in the Label
window, RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED. Click
Change. The dialog box should look similar to the one shown in Fig. 6.9.

Now click Old and New Values to bring up the Recode into Different Variables:
Old and New Values dialog box. Into the Value window of the Old Value area, type
a “1” (without the quotation marks). Into the Value window of the New Value area,
type a “2.” Click Add. Return to the Value window of the Old Value area and type in
a“2,” and then enter a “1” into the Value window of the New Value area. Again click
Add. Finally, select All other values in the Old Value area and Copy old value(s) in
the New Value area. Click Add. The dialog box should now look like the one shown
in Fig. 6.10.

You will now have instructed SPSS to recode the old variable, RISK FACTOR
FOR OVERWEIGHT OR OBESE, into a new variable, RISK FACTOR FOR
OVERWEIGHT OR OBESE RECODED, such that cases that had been coded as
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Fig. 6.10 Defining new values

1 in the old variable will now be coded as 2 in the new variable, and cases that had
been coded as 2 in the old variable will now be coded as 1 in the new variable. By
reversing the scoring that was used in the old variable, the new variable will identify
respondents who are overweight or obese with a 1 instead of a 2, and those who are
not overweight or obese with a 2 instead of a 1. You have also told SPSS to retain
all remaining codes in the original variable. As a result, the code *“9,” which was
used with the old variable for cases involving either responses of “Don’t Know” or
“Refused,” or for missing values, will be copied over to the new variable. Now click
Continue and OK. The new variable will now be created.

Now reverse the scoring for the variable, HEALTH STATUS, so that those in
fair or poor health are coded with a 1 and those in good or better health are coded
with a 2. Name the new variable, HEALTH_STATUS_RECODED, and label it
HEALTH STATUS RECODED. Remember to copy the code for “Don’t Know”
and “Refused” responses and for missing data (all coded as “9”) to the new variable.

We will use these new variables to calculate relative risk and an odds ratio. How-
ever, before we begin, label the values of the new variable, RISK FACTOR FOR
OVERWEIGHT OR OBESE RECODED, such that 1 indicates “Yes” and 2 in-
dicates “No,” and the values of the new variable, HEALTH STATUS RECODED,
such that 1 indicates “Poorer Health” and 2 indicates “Better Health.” Then for both
variables, declare 9 as a missing value. While you are at Variable View, define the
measurement level for each variable as ordinal.

Relative Risk Now we can determine if being overweight may be a risk factor for
poorer health. We will do this by comparing the risk of poorer health for each of the
two categories of the risk factor.

Select Analyze > Descriptive Statistics > Crosstabs to bring up the Crosstabs
dialog box. One purpose of the Crosstabs procedure is to generate a table displaying
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the distribution of cases across the combinations of the values of two categorical
variables. In this instance, we want SPSS to display a table that shows the distribu-
tion of cases across the combinations of the two values of our risk factor, RISK
FACTOR FOR OVERWEIGHT OR OBESE RECODED, and the two values of
our outcome variable, HEALTH STATUS RECODED. SPSS requires that the risk
factor defines the rows of the table and the outcome variable the columns. So move
RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED to the Rows
window and HEALTH STATUS RECODED to the Columns window. To help us
to understand the table that will be generated, click Cells to bring up the Crosstabs:
Cell Display dialog box. Select Row in the Percentages area and then Continue. To
instruct SPSS to calculate the relative risk and odds ratio statistics, click Statistics
in the Crosstabs dialog box to bring up the Crosstabs: Statistics dialog box and
select Risk. Click Continue and then OK. These steps are displayed in Figs. 6.11,
6.12,6.13, 6.14, 6.15 and 6.16.

The output generated by this analysis is displayed in Tables 6.9, 6.10 and 6.11.
Table 6.9 is a Case Processing Summary that tells us that we had 7400 valid cases,
and 396 cases with missing values.

Table 6.10 is a Crosstabulation that displays the distribution of the valid cases
across the combinations of the values of the two variables. Note that the first two
rows of the table are defined by our risk factor and that the first two columns by our
outcome variable. The bottom row is the total of the rows above it while the last
column is the total of columns to the left of it.

The distribution of cases is represented both as counts and percentages. We see
from the last column of the first row that there were a total of 4397 cases who were
either overweight or obese. Of these 4397 cases, 837 or 19 % were in poorer health
and 3560 or 81% were in better health. We see from the last column of the second
row that there were a total of 3003 cases who were neither overweight nor obese, of
whom 384 or 12.8 % were in poorer health and 2619 or 87.2 % were in better health.

We can see from these data that for both weight groups, it was unlikely that
respondents would be in poorer health. However, were those who were overweight

Fig. 6.11 Opening the Cross-
tab dialog
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Fig. 6.16 Generating a cross-tabulation and risk estimates

Table 6.9 Number of valid and missing cases in the crosstabulation
Case Processing Summary

Cases
Valid Missing Total

N Percent N Percent N Percent
RISK FACTOR FOR \
OVERWEIGHT OR
OBESE RECODED * 7400 94.9% 5.1% 7796 100.0%
HEALTH STATUS
RECODED

Table 6.10 Health status of NY state residents as a function of their BMI category
RISK FACTOR FOR OVERWEIGHT OR OBESE RECODED * HEALTH STATUS RECODED Crosstabulation

HEALTH STATUS RECODED

Poorer Health Better Health Total

RISK FACTOR FOR Yes  Count 837 3560 4397
g\éggé"gggDoE'; % within RISK FACTOR
FOR OVERWEIGHT OR 19.0% 81.0% | 100.0%
OBESE RECODED
No  Count 384 2619 3003
% within RISK FACTOR
FOR OVERWEIGHT OR 12.8% 87.2% | 100.0%
OBESE RECODED
Total Count 1221 6179 7400
% within RISK FACTOR
FOR OVERWEIGHT OR 16.5% 83.5% | 100.0%

OBESE RECODED
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Table 6.11 Estimates of risk of poorer health
Risk Estimate

95% Confidence Interval

Value Lower Upper

Odds ratio and 95% Confidence Interval

Odds Ratio for RISK
FACTOR FOR
OVERWEIGHT OR 1.604 1.407 1.828
OBESE RECODED (Yes /
No)

Relative Risk and 95% Confidence
Interval

For cohort HEALTH
STATUS RECODED = 1.489 1.332 1.664
Poorer Health

For cohort HEALTH
STATUS RECODED = .928 910 .947
Better Health

N of Valid Cases 7400

or obese more likely to be in poorer health than those who were neither overweight
nor obese? To find out, we compare the proportion of poorer health for each group.
As we saw in the preceding paragraph, 19 % of those who were overweight or obese
were in poorer health while only 12.8 % of those who were neither overweight nor
obese were in poorer health. Consequently, the relative risk is 19% to 12.8% or
1.48. Respondents who were overweight or obese were almost 1.5 times as likely to
be in poorer health compared to their thinner counterparts.

If the proportion of poorer health were equal in both weight groups, relative risk
would equal 1. For example, if 12.8 % of both weight groups were in poorer health,
the risk to both groups would be the same and relative risk would equal 1. However,
in these data, relative risk was greater than 1. It appears that being overweight is a
risk factor for poorer health.

We say “appears” because it is always possible that the value of relative risk that
we obtain from our sample is due entirely to sampling variability. In this study, for
example, it is possible that the value of relative risk is in fact 1 in the population
from which the 7400 cases were drawn. Consequently, we need to determine how
certain we can be that the population value is not equal to 1. One way to do this is
by calculating a 95% CI around the sample value. If the CI does not contain the
value of 1, then we can be 95% confident that the population value is not equal to
1. SPSS generates these CIs for us.

SPSS also generates relative risk values and displays them, along with the ClIs,
in the Risk Estimate table of the output, shown in Table 6.11.
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To find the relative risk of being in poorer health if respondents are overweight or
obese, inspect the row labeled, For cohort HEALTH STATUS RECODED = Poorer
Health. In the column labeled Value you will find the sample value of relative risk,
1.489. (Since SPSS carries its calculations out to several decimal points, its values
of relative risk are often a bit different from those we calculate by hand.) You will
also find to the right of the value the lower and upper limits of the 95 % CI. As the
interval does not include the value of 1, we can conclude with 95% confidence
that for residents of NY state, being overweight or obese is a risk factor for poorer
health.

You may have noticed that in the Risk Estimate table, there is a row labeled, For
cohort HEALTH STATUS RECODED = Better Health. This row refers to the rela-
tive chances of being in better health for respondents who are overweight or obese.
This value is calculated in the same way that we calculated relative risk. (In fact, it
could be referred to as a relative risk estimate but since we do not usually think of
being in good health as a negative outcome, the term “risk” seems out of place in
this context.) As you can see, the value is 0.928. What does this value mean? To find
out, look at the column of the Crosstabulation table labeled, Better Health. What
proportion of those who were overweight or obese enjoyed better health? What
proportion of those who were neither overweight nor obese enjoyed better health?
Which proportion is smaller? How much smaller? At this point you should see that
the chances of being in better health for respondents who were obese were about
93 % of those of their thinner counterparts. Note that SPSS includes the 95 % CI for
this value as well.

Odds Ratio Another statistic for determining whether a factor places people at
risk is the odds ratio. As we explained above, using the odds ratio is more appro-
priate than using relative risk in our example as the CDC data come from a cross-
sectional study. Similar to relative risk, an odds ratio reflects the relative likelihood
of the occurrence of a negative outcome. However, while relative risk is expressed
in terms of probabilities, an odds ratio is expressed in terms of odds.

Refer back to the Crosstabulation table. For those who were overweight or obese,
837 were in poorer health while 3560 were in better health. Thus for overweight or
obese respondents, the odds of being in poorer health were 837 to 3560 or 0.235 to
1. What were the odds for those who were neither overweight nor obese? A check
of the table reveals 384 to 2619, or 0.147 to 1.

We can see from these data that for both weight groups, the odds were against
any respondent being in poorer health. However, were those who were overweight
or obese more likely to be in poorer health than those who were neither overweight
nor obese? To find out, we compare the two sets of odds and see that the odds of
being in poorer health for those who were overweight or obese (0.235) are about 1.6
times as large as the corresponding odds for those who were neither overweight nor
obese (0.147). If being overweight or obese was not a risk factor for poorer health,
then the odds for each of the weight groups would be equal and the odds ratio would
equal 1. However, in these data, the odds ratio is greater than 1 and so it appears that
being overweight is a risk factor for poorer health.
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We say “appears” because, as with a relative risk estimate, it is always possible
that the sample value of an odds ratio is due entirely to sampling variability. Con-
sequently, we need to know the upper and lower limits of the 95 % CI constructed
around the sample value to see if we can be 95 % confident that the population value
is not equal to 1. SPSS generates the CIs for us and displays it along with the odds
ratio in the first row of the Risk Estimate table. As you can see from that row, the
odds ratio equals 1.604 and the 95 % CI does not contain the value of 1. Once again,
we come to the confident conclusion that being overweight or obese is a risk factor
for poorer health.

We might mention that there are two additional ways to calculate odds ratios.
One involves the following three steps. First, multiply the two frequency counts
in the upper left and lower right cells of the Crosstabulation table (837 and 2619
in this case). Then multiply the remaining two frequency counts (3560 and 384).
Finally, divide the first product by the second. The second alternative method is to
divide the relative risk of the negative outcome (in this case, 1.489) by the relative
chances of the positive outcome (0.928).

Deriving an Odds Ratio from a Case-Control Study In the preceding example,
we treated being overweight or obese as a risk factor and interpreted the relative
risk and odds ratio to mean that people who are overweight or obese are more likely
to develop poorer health. We cannot be sure, however, that being overweight was
followed by a decline in health. For example, perhaps people who were in poorer
health became less physically active and therefore gained weight. To overcome the
problem of determining which variable came first in time, researchers can conduct a
case-control study. In case-control studies, the degree of association, if any, between
a suspected risk factor and an outcome is measured in terms of an odds ratio.

As an example of a case-control study, consider an investigation of whether age
at first pregnancy is a risk factor for cervical cancer. A total of 366 women who had
been pregnant at least once and were at the time of the study between the ages of 50
and 59 were selected. The cases were 49 women who had been diagnosed as having
cervical cancer. The controls were 317 women who did not have the disease. For
each group, the researchers counted the number of women who at their first preg-
nancy either were 25 years old or younger or were older than 25. Notice that in this
study, the risk factor clearly preceded the outcome.

The data from this study can be found in Cervical.sav [2]. This file is construct-
ed differently from others that we have seen so far. Instead of having 366 rows of
data, one for each woman, we have only four, one row for each combination of the
values of Age at First Pregnancy (25 or younger and Older than 25) and Disease
Status (Cervical Cancer and Controls). Each row contains the number of women in
each of the four combinations. For example, we have 42 women whose first preg-
nancy occurred when they were 25 or younger and who had been diagnosed with
cervical cancer. Figure 6.17 displays the data file. We show you this type of data file
to make the point that it is sometimes possible to conduct statistical analyses with
SPSS from summary data.
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| Count | Age | Status

1 42 25 or Younger Cenvical Cancer

E 203 25 or Younger Controls

3] 7 Older than 25 Cenvical Cancer

II] 114 Older than 25 Controls

Fig. 6.17 Cervical.sav data file
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Fig. 6.18 Opening the Weight Cases dialog

Before we can calculate an odds ratio, we must convert our summary data into
the original data set. Open the file and select Data > Weight Cases to bring up the
following Weight Cases dialog box. Select Weight cases by and move Number of
Cases to the Frequency Variable window. Click OK. These steps are displayed in
Figs. 6.18 and 6.19.

Now you are ready to compute the odds ratio. Using the Crosstab procedure,
ask SPSS to create a table with the risk factor (Age at First Pregnancy) as the row
variable and the outcome (Disease Status) as the column variable, and to generate
row percentages and risk statistics. Run the analysis. The output should be similar
to the output shown in Tables 6.12 and 6.13.
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Fig. 6.19 Assigning the weight cases by variable and executing the weight cases procedure

Study the output and answer the following questions:

6.6.1 What are the odds that women who were 25-years old or younger at
first pregnancy were diagnosed with cervical cancer?

6.6.2 Whatare the odds for women who were older than 25 at first pregnancy?

6.6.3 Are women who were 25-years old or younger at first pregnancy more
or less likely to be diagnosed with cervical cancer?

6.6.4 How much more (or less)?

6.6.5 Does age at first pregnancy appear to be a risk factor for cervical cancer?

6.6.6 Can we be 95 % confident that age at first pregnancy is a risk factor?
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Table 6.12 Distribution of cervical cancer as a function of age at first pregnancy

Age at First Pregnancy * Disease Status Crosstabulation

Disease Status
Cervical
Cancer Controls Total
Age at First Pregnancy 25 or Younger Count 42 203 245
% within Age at
First Pregnancy 17.1% 82.9% 100.0%
Older than 25 Count 7 114 121
% within Age at
First Pregnancy 5.8% 94.2% 100.0%
Total Count 49 317 366
% within Age at o
First Pregnancy 13.4% 86.6% 100.0%
Table 6.13 Estimates of risk of cervical cancer
Risk Estimate
95% Confidence Interval
Value Lower Upper
Odds Ratio for Age at
First Pregnancy (25 or 3.369 1.466 7.746
Younger / Older than 25)
For cohort Disease Status
_ . 2.963 1.372 6.400
= Cervical Cancer
For cohort Disease Status
_ .879 .818 .945
= Controls
N of Valid Cases 366

6.7 Exercise Questions

1. To answer the following questions, you will use the variable INCOME CAT-
EGORIES [@_INCOMG] (variable 83; 1 <US$ 15,000, 2=US$ 15,000 to less
than US$ 25,000, 3=US$ 25,000 to less than US$ 35,000, 4=US$ 35,000 to
less than US$ 50,000, 5=US$ 50,000 or more, 9=Don’t know/Not sure/Miss-
ing) in the CDC BRFSS data set. Be sure to declare the missing value before

proceeding.

a. What is the 90 % CI for the proportion of the population whose annual house-
hold income is less than $ 15,0007
b. What is the 95 % CI for the proportion of the population whose annual house-
hold income is less than USS$ 15,000?
c. What is the 99 % CI for the proportion of the population whose annual house-
hold income is less than $ 15,0007
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d. How do the widths of the three CIs you just reported differ from one another?
Why are they different?

2. Using the variable GENERAL HEALTH [GENHLTH] (variable 3; 1=Excel-
lent, 2=Very good, 3=Good, 4=Fair, 5=Poor, 7=Don’t know/Not Sure,
9=Refused) in the CDC BRFSS data set, determine whether more than half of
the adult population of NY state considers their general health to very good to
excellent. Be sure that any missing values have been declared before you begin.

a. How many people in the sample reported that they were in either very good
or excellent health?

b. What proportion of the people in the sample reported that they were in either
very good or excellent health?

c. What is the null hypothesis? What is the alternative hypothesis?

d. Can we confidently conclude that more than half of the adult population of
NY state consider themselves to be in very good to excellent health? Why or
why not?

3. In Question 1, you conducted analyses on INCOME CATEGORIES. Recode
this variable into a new variable so that people who earned less than US$ 15,000
are still coded as a 1 but all other non-missing values are coded as a 2. That is, a
value of 1 will be those whose annual household income is less than US$ 15,000,
and a value of 2 will be those whose annual household income is US$ 15,000
or more. Name the new variable something like, INCOME CATEGORIES 2
GROUPS. Now split the file (Data > Split File) according to this new variable
and conduct analyses that will answer the following questions:

a. How many people who earned less than US$ 15,000 reported that their gen-
eral health was either very good or excellent?

b. What proportion of people who earned less than US$ 15,000 reported that
their general health was either very good or excellent?

c. How many people who earned US$ 15,000 or more reported that their general
health was either very good or excellent?

d. What proportion of people who earned US$ 15,000 or more reported that their
general health was either very good or excellent?

e. What is the 95 % CI for the difference between these two proportions?

f. Judging from the CI for the difference between the two proportions, can we
be confident that the two population proportions are different? Why or why
not?

g. Check on your answer to f. above by testing whether the proportion of the
population whose annual income is less than US$ 15,000 who report that their
general health is either very good or excellent is different from the proportion
of the population whose annual household income is US$ 15,000 or more
who report that their general health is either very good or excellent. Were the
two proportions significantly different?

h. Were the requirements necessary for using the script in g. above satisfied?
Why or why not?
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Table 6.14 Distribution of
lung cancer

6 Inference for Proportions

Respondents kept birds Respondents had lung cancer
Yes No

Yes 98 101

No 141 328

Table 6.15 Distribution of injured collegiate athletes of varying physical flexibility

Flexibility at Beginning of Sports Season * Injured During the Sports Season
Crosstabulation

Injured During the
Sports Season
Yes No Total
Flexibility at Low Count 12 21 33
ggg'sr‘o”rlng of Sports % within Flexibility
at Beginning of 36.4% 63.6% 100.0%
Sports Season
High Count 12 60 72
% within Flexibility
at Beginning of 16.7% 83.3% 100.0%
Sports Season
Total Count 24 81 105
% within Flexibility
at Beginning of 22.9% 77.1% 100.0%
Sports Season

4. Researchers wanted to know whether owners of pet birds are at risk for contract-
ing lung cancer. To find out, they asked 239 people who had lung cancer and 429
who did not whether they had kept birds as pets. The data are in Petbirds.sav [3].
The results of the study are shown in Table 6.14.

a.

Is this investigation an experiment, a cohort study, a case-control study or a
cross-sectional study?

. To determine whether keeping pet birds is a risk factor, should we calculate

relative risk or an odds ratio? Why?
By hand calculate and report whichever statistic you think is appropriate.

. According to your calculations, does keeping pet birds seem to be a risk factor

for contracting lung cancer? Why or why not?

Open the data set, Petbirds.sav, and double check your calculations by
instructing SPSS to conduct the relevant cross-tabulation.

Does the 95 % CI include the value of 1?

. According to the 95% CI, can we conclude that keeping pet birds is a risk

factor for lung cancer? Why or why not?

. According to the 95 % CI, can we conclude that keeping pet birds is a cause

of lung cancer? Why or why not?

5. A team of physician assistant students measured the physical flexibility of col-
legiate athletes at the beginning of a sports season to determine if lack of flex-
ibility is a risk factor for being injured during the season [4]. The results of their
analysis are displayed in Tables 6.15 and 6.16.
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Table 6.16 Estimates of risk of injury

Risk Estimate

95% Confidence Interval

Value Lower Upper

Odds Ratio for Flexibility
at Beginning of Sports 2.857 1.114 7.328
Season (Low / High)

For cohort Injured During

the Sports Season = Yes 2.182 1.099 4.332
For cohort Injured During

the Sports Season = No 764 578 1.008
N of Valid Cases 105

a. Was this study an experiment, a cohort study, a case-control study or a cross-
sectional study? Explain.

b. What was the risk of injury for athletes who were high in flexibility? Low in
flexibility?

c. What was the relative risk of injury?

d. Was the relative risk of injury statistically significantly different from 1? How
do you know?

e. What were the odds of injury for athletes low in flexibility?

f. What is the odds ratio? Does it indicate that low flexibility is a risk factor for
injury?

g. Does the design of this study justify the use of relative risk or should the
researchers use the odds ratio instead? Explain.

Data Sets and References

1.

CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
Cervical.sav obtained from: Graham, S., Shotz, W.: Epidemiology of cancer of the cervix in
Buffalo, New York. J. Natl. Cancer Inst. 63(1), 23-27 (1979). (Public domain)

Petbirds.sav obtained from: Kohlmeier, L., Arminger, G., Bartolomeycik, S., Bellach, B.,
Rehm, J., Thamm, M.: Pet birds as a independent risk factor for lung cancer: case-control
study. Br. Med. J. 305, 986-989 (1992). (With the kind permission of the BMJ Publishing
Group Ltd.)

From: Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and
Reach Test as a measure of flexibility for predicting lower extremity injury in Division III
athletes. Unpublished data, Le Moyne College, Syracuse (2010)
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Chapter 7
Relationships in Categorical Data

Abstract This chapter investigates relationships in categorical data. It begins with
a discussion of contingency tables and clustered bar charts as descriptive measures.
The chi-square test for contingency tables is discussed. If the two categorical vari-
ables are found to be related, then the strength of that relationship is measured using
Cramér’s V for nominal variables and Gamma for ordinal variables.

7.1 Overview

An important goal of science is to determine if one variable causes another. As we
saw in Chap. 1, a first step toward establishing causal connections is to determine if
the two variables in question are related. Once a relationship has been established,
additional research can be conducted to determine if the relationship between the
two variables is causal and if so, the direction of the causality. In this chapter, we
look at several statistics that are used to determine whether two categorical vari-
ables are related. In Chap. 9, we will look at statistics that are used to determine
whether two quantitative variables are related.

To better understand the association between two variables, it is helpful to gener-
ate a visual display of the relationship between those variables. When the variables
are categorical, the relationship is depicted in the form of a two-way table called a
contingency table or in the form of a graph called a clustered bar chart. When the
variables are quantitative, the relationship between them is usually depicted in the
form of a graph known as a scatter plot. In this chapter, we focus on how to interpret
a contingency table. In Chap. 9, we will focus on how to interpret a scatter plot.

We pointed out in Chap. 5 that sample data are always subject to sampling vari-
ability. Random measurement errors and random differences across respondents
guarantee that sample results will be affected by chance factors. We also pointed out
that we can never know for sure the characteristics of a population. To overcome
this, we will need to conduct a test of hypotheses.

In addition to determining whether two variables are related, measures of as-
sociation can be used to quantify the strength of the relationship. Many do so along
a scale ranging from 0 to —1 for negative relationships, and 0 to +1 for positive
relationships. For data where it does not make sense for a relationship to have a
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direction (e.g., with some categorical data), these measures typically range from 0
to 1. The measures of association that we will study are Cramér s V, gamma, Pear-
son correlation, and Spearman’s Rho. The last two are intended to be used when
the data are quantitative, and they are the subject of Chap. 9. The first two are to be
used when the two variables are categorical, and they are the subject of this chapter.

7.2 Contingency Tables

Using the CDC data set, we will construct what statisticians call a contingency
table to see if there appears to be a relationship between the self-reported health of
respondents and their sex. Since we are interested in whether self-reported health
varies according to the sex of the respondent, it is common practice to refer to sex
as the explanatory variable, and to refer to self-reported health as the response
variable. When constructing a contingency table with two variables, the usual pro-
cedure is to have the explanatory variable be the column variable and the response
variable be the row variable. We will create a contingency table with sex as the col-
umn variable and self-reported health as the row variable. The intersection of each
column and row within the body of the table will display a count of the respondents
of a particular sex who gave a particular response (e.g., the number of men who said
that they were in excellent health), and the percentage of those of a particular sex
who gave a particular response (e.g,, the percentage of all men in our sample who
said that they were in excellent health).

Load the data file, CDC BRFSS.sav [1], into SPSS. Before proceeding be
sure that 7 and 9 have been declared missing values for the variable, GENERAL
HEALTH [GENHLTH] (variable 3). Begin by selecting Analyze>Descriptive
Statistics > Crosstabs. This will open the Crosstabs dialog box. Move the variable
GENERAL HEALTH into the Row(s) area, and the variable SEX [SEX] (variable
32) into the Column(s) area. We want to know for each sex the percent that gave
each response. Of the men, what percent said they were in excellent health, were in
very good health, and so on? Of the women, what percent said they were in excel-
lent health, very good health, and so on? Since we decided to make SEX a column
variable, each of these percentages is equal to the number of respondents in a given
column-row combination divided by the total number of respondents in that col-
umn. To instruct SPSS to generate these percentages, click the Cells button to open
the Crosstabs: Cell Display dialog box. As we want percentages calculated within
each sex, and since SEX is our column variable, check Column in the Percentages
area. Click Continue and then click OK. The steps for generating this analysis are
displayed in Figs. 7.1, 7.2, and 7.3.

Interpreting a contingency table displaying column percentages SPSS will now
generate a contingency table that shows the number of cases of men and women
who chose each of the GENERAL HEALTH response categories. The table is
reproduced in Table 7.1.
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The purpose of a contingency table is to reveal whether the distribution of re-
spondents across the values of one variable depends or is contingent upon the val-
ues of the other variable. Study the contingency table and see if the distribution
of respondents across the variable GENERAL HEALTH seems to depend on the
respondents’ sex.

The bottom row of the table provides the total for each sex and for all partici-
pants combined. According to the output, the sample consisted of 2930 men and
4847 women, for a total of 7777 respondents with valid responses. Note that each
of these three numbers comes from one of the columns, and that the percentages
reading down that column total to 100 %.

Each of the rows above the bottom row provides information about the number
of men and women who gave the corresponding response. For example, 639 men or
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Table 7.1 A cross-tabulation
GENERAL HEALTH * SEX Crosstabulation

SEX
Male Female Total
GENERAL HEALTH  Excellent Count 639 1013 1652
% within SEX 21.8% 20.9% 21.2%
Very good  Count 928 1612 2540
% within SEX 31.7% 33.3% 32.7%
Good Count 890 1393 2283

% within SEX 30.4% 28.7% 29.4%

Fair Count 355 624 979
% within SEX 12.1% 12.9% 12.6%

Poor Count 118 205 323
% within SEX 4.0% 4.2% 4.2%
Total Count 2930 4847 7777

% within SEX 100.0% 100.0% 100.0%
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21.8% of the 2930 men said their health was excellent and 1013 women or 20.8 %
of the 4847 women said they were in excellent health. Again note that we are read-
ing the data within a given column and that the percentages within a column add
up to 100 %.

Inspection of the table should tell us whether sex and reported general health are
related. However, when interpreting a cross-tabulation, pay close attention to the
percentages, especially when considering data where the number of respondents in
each group differs greatly. In this sample, for example, there are many more women
than men. Yet we see that the column percentages are very close for each gender.
The similarity of the column percentages indicates that perceptions of overall health
do not vary with a respondent’s gender. The terminology here is to say that SEX and
GENERAL HEALTH are independent.

In order to conclude that health varied with sex, we would have to see percent-
ages within the columns that are different from column to column. For example, in
the CDC data that we are analyzing, if 40 % of women said they were in excellent
health contrasted with 25 % of men saying they were in excellent health, we might
have reason to believe that women tend to be healthier than men.

We say that we might have reason to believe that women tend to be healthier
than men because we are dealing with sample data. It is possible that a difference
of this size (40 % of women versus 25 % of men) may not be inconsistent with what
one might expect to see due to sampling variability. As we saw in Chap. 5, to know
whether or not the trends we think we are seeing in our data are not just a fluke or
the result of random factors is an important function of statistical analysis. We will
return to this topic later in this chapter.

Interpreting a contingency table displaying row percentages The contingency
table above displayed column percentages. When studying whether or not two vari-
ables are related, it is often useful to generate two contingency tables, one in which
percentages are calculated within columns, another within rows. Let us look at the
contingency table when it displays row percentages.

Return to the Crosstabs: Cell Display dialog box. Replace column percentages
with row percentages and rerun the analysis.

The contingency table displaying the row percentages is shown in Table 7.2.

The frequencies within each cell of the cross-tabulation are exactly the same as
before, but the percentages are different. This is because the percentages are read
by reading across a given row. For example, recall that there were 639 men who
reported that they were in excellent health. In the first analysis, 639 was 21.8 % of
the 2930 men in the sample. In this analysis, 639 represents 38.7 % of the 1652 men
and women in the sample who said that they were in excellent health.

In the first analysis, we could see that there was no relationship between sex and
reported health because the column percentages in each row were quite close to
each other. In this analysis, we can see that no relationship existed between sex and
health by noting that the percentages of men and women in each row are essentially
the same as the overall percentages of men and women in the sample.
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Table 7.2 A contingency table with row percentages
GENERAL HEALTH * SEX Crosstabulation

SEX
Male Female Total

GENERAL HEALTH  Excellent Count 639 1013 1652
% within GENERAL HEALTH 38.7% 61.3% 100.0%

Very good Count 928 1612 2540

% within GENERAL HEALTH 36.5% 63.5% 100.0%

Good Count 890 1383 2283

% within GENERAL HEALTH 39.0% 61.0% 100.0%

Fair Count 355 624 979

% within GENERAL HEALTH 36.3% 63.7% 100.0%

Poor Count 118 205 323

% within GENERAL HEALTH 36.5% 63.5% 100.0%

Total Count 2930 4847 7777
% within GENERAL HEALTH TT% 62.3% 100.0%

7.3 Clustered Bar Charts

Sometimes displaying a cross-tabulation as a bar chart is useful. In this section, we
study a clustered bar chart of the cross-tabulation of GENERAL HEALTH and
SEX.

As we did in Chap. 3, select Graphs>Chart Builder to open the Chart Builder
dialog box. In the Gallery, select Bar: Now drag the clustered bar chart picture (the
second chart from the left in the top row) to the empty window above it. Drag GEN-
ERAL HEALTH to the X-Axis box, and drag SEX to the Cluster on X: set color
box. In the Element Properties dialog box, select Percentage(?) in the Statistic box.
Click Set Parameters and select Total for Each Legend Variable Category (same
fill color). Now click Continue, and then Apply followed by OK to produce the
graph. These steps are displayed in Figs. 7.4, 7.5, 7.6, 7.7 and 7.8).

The resulting graph is reproduced in Fig. 7.9. Which of the two cross-tabulations
in Sect. 7.2 does this graph seem to represent?

The graph in Fig. 7.9 shows the column percentages. To show the row percentag-
es, we would return to Chart Builder and reverse the positions of the two variables
by assigning SEX as the X-Axis variable and GENERAL HEALTH as the Cluster
on X: set color variable. This would produce the graph shown in Fig. 7.10. Look-
ing at this graph, would you say that men and women differed in their self-reported
health? Remember, about 38 % of the sample was male.
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7.4 Testing Hypotheses About Whether Two Categorical
Variables are Related

Imagine that we were to interview another random sample of 7000 or so New York-
ers. We would be very surprised if the data provided by the new sample turned out
to be exactly the same as those of the present sample. In fact, we should be very
suspicious of the sampling methodology if they were the same. Since sample data
are subject to random fluctuation, it is always possible that any relationship we ob-
serve between two variables in a sample was due only to chance, a fluke that should
not be taken to mean that the relationship we observed in the sample actually exists
in the population from which the sample was taken.
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Fig. 7.5 Setting the X-axis and clustering variables

Instead of assuming that what is true of the sample is necessarily true of the
population, we apply logic similar to that explained in Chap. 5 and conduct a test
of hypotheses to decide between two claims about the population. One claim, the
null hypotheses, states that in the population from which we took our sample, there
is no relationship between the two variables of interest. The second claim, the alter-
native hypothesis, states that there is a relationship. Using the sample data, we test
the null hypothesis by calculating the probability that the relationship between two
variables observed in our sample would occur if the null hypothesis is in fact true.
If that probability, which you will recognize as the p-value of the test, is small, we
can then confidently conclude that the relationship we found in the sample is a true
reflection of the relationship that exists in the population.
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Chi-square test When we are interested in whether or not two categorical vari-
ables are related in the population, the test of hypotheses we can conduct is known
as a chi-square test. The test tries to decide between the null hypothesis that there
is no relationship and the alternative hypothesis that there is. In this section, we
use chi-square to explore the relationship between the nominal variable, sex (male
versus female), and an ordinal measure of obesity (neither overweight nor obese,
overweight, or obese).
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Begin by declaring 9 as a missing value for the variable, BODY MASS IN-
DEX-THREE LEVELS CATEGORY [@ _ BMI4CAT] (variable 79). Next, return
to the cross-tabulations dialog box and click Reset. Then set up a cross-tabulation
with SEX [SEX] (variable 32) as the column variable and BODY MASS INDEX-
THREE LEVELS CATEGORY as the row variable. Click Statistics and check
Chi-square. Click Continue followed by Cells. Check column percentages and
click Continue. Finally, to demonstrate another way to generate a graph of our re-
sults, check Display clustered bar charts in the main cross-tabulation dialog box.
Click OK. These steps are displayed in Figs. 7.11, 7.12 and 7.13.

Study the output. The chi-square statistic that is of interest to us is labeled Pear-
son Chi-square. The p-value for the test appears in the Asymp. Sig. (2-sided) col-
umn.
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Statistical significance and the Type I Error Recall from Chap. 5 that scientists
feel that we can rule out chance as the sole cause of a sample result whenever the
p-value is <0.05. Whenever a p-value is <0.05, we know that if we took repeated
samples and conducted the same test we would see a value of chi-square equal to
or more extreme than what we found in only 5% or fewer of those tests if the null
hypothesis is true. When the p-value is this small, we say that the observed relation-
ship between the two variables was statistically significant at the 0.05 level.
Another way of looking at this goes as follows. If we use 0.05 as our cutoff for
saying that the observed relationship is statistically significant, 5% of the time we
will mistakenly conclude that a relationship we found between the two variables
in our sample also exists in the population. In statistics, this mistake is known as a
Type I Error. We never know when we have committed a Type I Error. However, we
do know that if the null hypothesis is true we will make this mistake 5 % of the time.
Scientists feel that a 5% error rate is acceptable. In addition, it is common practice
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for scientists to try to replicate each others’ results. If the outcomes can be repeated,
then the conclusion drawn is more likely to be valid.

Sometimes, an error rate of 5% seems too high. This might be true if the impli-
cations of one’s research are very important. In these cases, scientists will demand
an even lower error rate. In such a situation, scientists might opt for a significance
level of .01.

Any sample result associated with a p-value equal to or less than 0.05, 0.01, or
0.001 could be said to be statistically significant. Therefore, it is incumbent upon
researchers to explain which p-value was used to determine whether results were to
be labeled “significant.” In addition, researchers are encouraged to report the exact
p-value associated with each of their findings, e.g., p=0.02.

SPSS computes the p-value associated with many of its sample statistics. In
some cases, it can calculate the exact p-value. In other cases, it calculates an ap-
proximate value.
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The output Recall that the p-value for the test tells us the probability that the
observed relationship between the two variables is due just to chance. If the p-value
is <0.05, we conclude that there is a relationship between the two variables under
study in the population from which the sample was drawn. Table 7.3 and Fig. 7.14
show the output from the cross-tabulation we just conducted.

Answer the following questions.

7.4.1 According to Table 7.3, we can conclude that there is a relationship
between sex and BMI category among New York State residents. Why
can we make this conclusion?

7.4.2 How would you describe the relationship between sex and BMI cat-
egory?

7.4.3 The clustered bar graph (Fig. 7.14) displays frequencies, not percent-

ages. Would a graph of percentages have been more helpful? Why or
why not?
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Table 7.3 Crosstabs output
BODY MASS INDEX-THREE LEVELS CATEGORY * SEX Crosstabulation

SEX
Male Female Total

BODY MASS INDEX- Neither Overweight nor Count 911 20886 3007
CAREE LEVELS Obese %within SEX | 316% | 462% | 405%
Overweight Count 1302 1401 2703

% within SEX 45.2% 30.9% 36.4%

Obese Count 670 1037 1707

% within SEX 23.2% 22.9% 23.0%

Total Count 2883 4534 7417
% within SEX 100.0% 100.0% 100.0%

Chi-Square Tests

Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 191.497° 2 .000
Likelihood Ratio 192.439 2 .000
Linear-by-Linear
Association 65.529 1 000
N of Valid Cases 7417

a. 0 cells (.0%) have expected count less than 5. The minimum
expected count is 663.51.

7.5 Measuring the Strength of the Relationship:
Cramér’s V

The fact that a relationship observed in a sample is statistically significant means
that it is very likely that the relationship also exists in the population. However, a
significant relationship does not imply that the relationship is a strong one. For ex-
ample, a weak relationship between two variables can still be significant if the size
of the sample is sufficiently large. Consequently, when a relationship between two
variables is found to be significant, often the next step is to determine how closely
or strongly the two variables are associated with one another.

When both variables under study are categorical, a large number of measures
of association are available. For the rest of the chapter, we focus on two of them,
Cramér’s V and gamma. First, Cramér’s V. If either of the variables is nominal,
Cramér’s V is an appropriate measure of the degree to which the two variables are
related. To demonstrate we will use the CDC data set to determine if sex (male or
female) and access to health care (yes or no) are related.

To make interpretation of the output easier, begin by labeling the values of HAVE
HEALTH CARE COVERAGE [HLTHPLAN] (variable 7; 1=Yes; 2=No) and
declaring values of 7 and 9 for HAVE HEALTH CARE COVERAGE as missing.
Open the Crosstabs dialog box and click Reset. Then using SEX [SEX] (variable
32) as the column variable and HAVE HEALTH CARE COVERAGE as the row
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variable, run a cross-tabulation. Before conducting your analysis, click Cells and
ask SPSS to generate column percentages. Then click Statistics and check Chi-
square and Phi and Cramérs V in the Nominal area of the Statistics dialog box as
shown in Fig. 7.15.

Depending on how the values of the two variables are coded, Cramér’s V' can
range from 0 to + 1. If two variables are not at all related to one another, Cramér’s
V will equal 0; if both variables are perfectly related to one another, Cramér’s V'
will equal + 1. The phi coefficient that also appears in the output will have the same
magnitude as Cramér’s V in the case of a 2 X 2 table. For larger tables, phi should not
be used because it cannot achieve its maximum value. For these tables Cramér’s V'
has an achievable upper value of + 1, and therefore should be used.

In our example, if there is no relationship between the sex of the respondent and
whether or not he or she had access to a health care plan, then Cramér’s / would
equal 0. If Cramér’s V' were equal to or very close to 0, knowing whether the respon-
dent was male or female would not allow us to improve our ability to tell whether or
not he or she had a health-care plan. On the other hand, if males always had a plan
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and women never did, or if males never had a plan, and women always did, Cra-
mér’s V" would equal + 1. In these cases, knowing the sex of the respondent would
always tell us whether or not the respondent had a health care plan.

The output of the cross-tabulation is shown in Table 7.4.

Answer the following questions.

7.5.1 In our sample, were men or women more likely to have a health care
plan?

7.5.2  What is the value of Cramér’s V?

Testing hypotheses about Cramér’s /' Recall that sample data are always subject
to the effects of chance. As a consequence, we can never be certain that the results
we obtained from a given sample give us a true reading of the population from
which we drew the sample. For example, the Cramér’s V that we calculated in the
previous section was based on a sample of New York state residents, not the entire
population of people who live in the state. The value of Cramér’s V' that we com-
puted was true of the sample, but because of chance factors, may not approximate
the value of Cramér’s V that we would have calculated if we could have interviewed
everyone in the state. In fact, it is possible the value of Cramér’s V in the population
is actually zero. Hence we need to choose between two possibilities: the population
value of Cramér’s V'is equal to zero (the null hypothesis) or the population value of
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Table 7.4 Output from crosstabs
HAVE HEALTH CARE COVERAGE * SEX Crosstabulation

SEX
Male Female Total
HAVE HEALTH CARE Yes Count 2594 4475 7069
COVERAGE %within SEX | 88.8% | 92.4% | 91.0%
No Count 326 370 696
% within SEX 11.2% 7.6% 9.0%
Total Count 2920 4845 7765
% within SEX 100.0% 100.0% 100.0%
Symmetric Measures
Approx.
Value Sig.
Nominal by Nominal Phi -.060 .000
Cramer's V .060 .000
N of Valid Cases 7765

Cramér’s Vis not equal to zero (the alternative hypothesis). To make this choice, we
need to know the probability that the value of Cramér’s V' that we calculated based
on our sample would have been obtained if the population value was zero, i.e., if the
null hypothesis were true.

For each value of Cramér’s V' (and the phi coefficient), SPSS calculates an ap-
proximate p-value, and labels it Approx. Sig. As long as this p-value is <0.05, we
can confidently reject the null hypothesis and conclude that the sample value of
Cramér’s 7 was not solely due to chance, but also a result of a true relationship
within the population from which the sample was taken.

Answer the following questions.

7.5.3 In our analysis of the relationship between sex and having a health
care plan, what was the p-value associated with Cramér’s V'?

7.5.4 Can we reject the null hypothesis that Cramér’s V is equal to zero?
Why or why not?

7.5.5 In the population of New York State residents, can we conclude that
women are more likely to have a health care plan?

Comparing values of Cramér’s J across a categorical variable It is possible
that the strength of a relationship between two categorical variables varies across
values of a third categorical variable. Consequently, researchers often determine
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whether the value of Cramér’s V' (or whatever measure of association they are
using) depends on some other factor. For instance, in our example, we found that
women are more likely to have a health care plan than men. This conclusion applies
to the population of New York State as a whole, but there might be exceptions. For
example, maybe married couples share their spouses’ plan, and as a result there is no
difference between the percentages of married men and women who have a health
care plan. In this section, we determine if the relationship between sex and health
coverage depends on whether people are married or divorced.

Begin by checking that the values of the variable, MARITAL STATUS [MARI-
TAL] (variable 24; 1=Married, 2=Divorced, 3=Widowed, 4=Separated, 5=Never
married, 6=A member of an unmarried couple, and 9=Refused to answer) have
been labeled and that the value of 9 has been declared as a missing value. Then use
Data>Select Cases to restrict our analysis to married and divorced respondents.
Then return to the cross-tabulation dialog box that we set up in our previous analy-
sis and move MARITAL STATUS to the box labeled Layer I of 1. The dialog box
should now look similar to the one shown in Fig. 7.16.

Be sure that Phi and Cramérs V in the Crosstabs: Statistics dialog box is still
checked. Then click Continue and OK.

Table 7.5 gives the output that is generated by the above analysis.
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Table 7.5 Controlling for marital status
HAVE HEALTH CARE COVERAGE * SEX * MARITAL STATUS Crosstabulation

SEX
MARITAL STATUS Male Female Total
Married HAVE HEALTH CARE Yes Count 1466 2122 3588
COVERAGE %within SEX | 93.1% | 93.7% | 93.5%
No Count 108 143 251
% within SEX 6.9% 6.3% 6.5%
Total Count 1574 2265 3839
% within SEX 100.0% 100.0% 100.0%
Divorced  HAVE HEALTH CARE Yes Count 280 593 873
COVERAGE % within SEX 87.0% | 92.4% | 90.6%
No Count 42 49 91
% within SEX 13.0% 7.6% 9.4%
Total Count 322 642 964
% within SEX 100.0% 100.0% 100.0%
Total HAVE HEALTH CARE Yes Count 1746 2715 4461
COVERAGE %within SEX | 921% | 93.4% | 92.9%
No Count 150 192 342
% within SEX 7.9% 6.6% 7.1%
Total Count 1896 2907 4803
% within SEX 100.0% 100.0% 100.0%
Symmetric Measures
Approx.
MARITAL STATUS Value Sig.
Married Nominal by Nominal Phi -011 499
Cramer's V 011 499
N of Valid Cases 3839
Divorced  Nominal by Nominal Phi -.087 .007
Cramer's V .087 007
N of Valid Cases 964
Total Nominal by Nominal Phi -.025 .085
Cramer's V .025 .085
N of Valid Cases 4803

Answer the following questions.

7.5.6 Do the values of Cramér’s V vary across marital status?

7.5.7 Among married people within New York State, are men or women
more likely to have health coverage?

7.5.8 What about among New York’s divorced residents?

7.5.9 Is our earlier conclusion that women are more likely to have health
coverage generally true or are there exceptions? Explain.
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7.6 Measuring the Strength of the Relationship: Gamma

If both variables are ordinal, researchers are interested in determining not only how
strongly the two variables are related but in determining whether the relationship is
positive or negative. In a positive relationship, increases in one variable tend to be
associated with increases in the other. In a negative relationship, increases in one
variable tend to be associated with decreases in the other. One measure of associa-
tion between ordinal variables that measures both strength and direction is called
gamma. Gamma can range from —1 to + 1. The closer gamma is to either extreme,
the stronger is the relationship between the two variables. The sign tells the direc-
tion of the relationship. If the overall tendency is for an increase in one ordinal
variable to be associated with an increase in the other ordinal variable, gamma will
be positive. If the overall tendency is for an increase in one ordinal variable to be as-
sociated with a decrease in the other ordinal variable, then gamma will be negative.

Gamma is calculated as follows. First, two types of pairs of observations are
identified. A pair of observations, call them A and B, is said to be concordant if A
is higher than B in one variable and A is higher than B in the other variable. A pair
of observations is said to be discordant if A is higher than B in one variable, but B
is higher than A in the other variable. Next, the total number of concordant pairs
and the total number of discordant pairs are calculated. Gamma is then computed
as the difference between the number of concordant and discordant pairs relative to
the number of all pairs which are either concordant or discordant. If there are more
concordant pairs than discordant pairs, then gamma will be positive. If there are
more discordant pairs than concordant pairs, then gamma will be negative. Gamma
will be +1 if there are no discordant pairs, and gamma will be —1 if there are no
concordant pairs.

We will use gamma to study the relationship between reported health status (good
or better health versus fair or poor health) and BMI category (neither overweight
nor obese, overweight, obese). We will conduct the analysis on the entire sample.

Begin by returning to the Data>Select Cases dialog box. Select A/l cases and
click OK. Be sure that the value of 9 has been declared as missing for the vari-
able, HEALTH STATUS [@_RFHLTH] (variable 58; 1=Good or Better Health,
2=Fair or Poor Health) and that the value labels have been assigned. Then set up
a cross-tabulation with BODY MASS INDEX-THREE LEVELS CATEGORY
[@_BMI4CAT] (variable 79) as the column variable and HEALTH STATUS as
the row variable. Click Statistics and as shown in Fig. 7.17, check Gamma in the
ordinal area and Chi-square.

Click Continue. Now click Cells to be sure that column percentages have been
selected. After clicking Continue, run the analysis.

The output that is generated by this analysis is shown in Table 7.6.
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Fig. 7.17 Selecting gamma
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Answer the following questions.

7.6.1
7.6.2
7.6.3
7.6.4

Is there a significant relationship between the two variables?

What is the value of gamma?

Is the relationship positive or negative?

What conclusion can we draw about the relationship between BMI

category and the reported health for residents of New York state?

7.7 Exercise Questions

1. Using the variables INCOME CATEGORIES [@ /NCOMG ](variable 83) and
GENERAL HEALTH [GENHLTH] (variable 3) of the CDC BRFSS data set,
investigate whether the reported general health of adult residents of New York
State is related to their income. Before you begin, declare 7 and 9 as missing
values for GENERAL HEALTH and 9 for INCOME CATEGORIES. Then
generate a cross-tabulation between GENERAL HEALTH and INCOME
CATEGORIES. INCOME CATEGORIES will be the explanatory variable
so make it the column variable in the cross-tabulation. Include both row and

column percentages.
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Table 7.6 Analysis with gamma
HEALTH STATUS * BODY MASS INDEX-THREE LEVELS CATEGORY Crosstabulation

BODY MASS INDEX-THREE LEVELS
CATEGORY
Neither
Overweight
nor Obese Overweight Obese Total
HEALTH Good or Count 2619 2293 1267 6179
STATUS Better 9% within BODY
eaih MASS INDEX- 87.2% 85.0% 74.5% 83.5%
THREE LEVELS : : = =
CATEGORY
Fair or Count 384 404 433 1221
Poor I
Health % within BODY
MASS INDEX-
THREE LEVELS 12.8% 15.0% 25.5% 16.5%
CATEGORY
Total Count 3003 2697 1700 7400
% within BODY
MASS INDEX-
THREE LEVELS 100.0% 100.0% 100.0% 100.0%
CATEGORY
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 133.864° 2 .000
Likelihood Ratio 124.733 2 .000
Linear-by-Linear
Association 113.060 ! -000
N of Valid Cases 7400
a. 0 cells (.0%) have expected count less than 5. The minimum
expected count is 280.50.
Symmetric Measures
Asymp. Std. Approx. Approx.
Value Error® T Sig.
Ordinal by Ordinal  Gamma .258 .025 9.801 .000
N of Valid Cases 7400

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

a. Regardless of their reported health, how many respondents reported an annual
household income less than US$ 15,000?

b. What percent of the total sample reported an annual household income less
than US$ 15,0007

c. Regardless of their reported health, how many respondents reported a house-
hold income equal to or greater than US$ 50,0007

d. What percent of the total sample reported an annual household income equal
to or greater than US$ 50,0007

e. Of the respondents who reported an annual household income less than
US$15,000, what percentage also reported that they were in excellent health?
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f. Of the respondents who reported an annual household income equal to or
more than US$ 50,000, what percentage also reported that they were in excel-
lent health?

g. Of the respondents who reported an annual household income less than
USS$ 15 000, what percentage also reported that they were in poor health?

h. Ofthe respondents who reported an annual household income equal to or more
than US$ 50 000, what percentage also reported that they were in poor health?

i. Does it appear that reported general health and income level are related?
Defend your answer.

2. Determine if sex and smoking are related. Consider sex the explanatory variable.
To conduct this analysis, use the variables SEX [SEX] (variable 32; 1=Male,
2=Female) and CURRENT SMOKING STATUS RISK FACTOR [@
RFSMOK3] [variable 64; 1 =No (meaning that the respondent was not a smoker
at the time of the interview); 2=Yes (the respondent was a smoker); and 9=Do
Not Know/Refused to Answer/Missing] in the CDC BRFSS data set. Be sure
that the values of each variable have been labeled, and declare a value of 9 as
missing to limit the analysis to respondents whose smoking status was coded as
either No or Yes. Then conduct a cross-tabulation that generates a contingency
table with column percentages and that calculates Cramér’s V.

a. How many participants were included in the analysis?

b. What was the value of Cramér’s V'?

c. According to Cramér’s V, is there a statistically significant relationship
between sex and smoking status? If so, which sex is more likely to smoke?

d. Create a clustered bar graph of sex and smoking status. Put sex on the x-axis
and percent (not count) on the y-axis. Be sure that the percentages reflect the
column percentages of the contingency table.

3. Repeat the above analysis, but this time, determine if emotional support mod-
erates the extent to which sex and smoking are related. To conduct this analy-
sis, recode HOW OFTEN GET EMOT SUPPORT NEEDED [EMTSUPRT)
(variable 49; 1 =Always; 2=Usually; 3=Sometimes; 4=Rarely; and 5=Never)
into a new variable, EMOT SUPPORT 3 GROUPS. For the new variable,
instruct SPSS to code those who reported usually or always receiving support
as 1, sometimes receiving support as 2, and rarely or never as 3; and to copy the
remaining variables (7 and 9) from the old variable to the new one. Then for the
new variable, assign value labels (e.g., | =Usually or Always), and declare 7 and
9 as missing values. Finally, run the cross-tabulation of Question 2 with the new
variable as the layer variable.

a. Enter into Table 7.7 the values of Cramér’s V" for each level of emotional
support.

b. When does the prevalence of smoking significantly differ between men and
women?

4. Determine if the overall general health of New York State adults is related to the
time since they last had a routine checkup. The relevant variables are HEALTH
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Table 7.7 Cramér’s V'

Emotional Support Cramér’s V

Usually or Always
Sometimes

Rarely or Never

STATUS [@_RFHLTH] (variable 58; 1 =Good or Better Health; 2=Fair or Poor
Health; and 9=Do Not Know/Not Sure/Refused/Missing) and HOW LONG
SINCE LAST ROUTINE CHECKUP [CHECKUP] (variable 10; 1=Within
the Last Year; 2=Within the Last 2 Years; 3=Within the Last 5 Years; 4=Five
or More Years Ago; 7=Do Not Know/Not Sure; 8=Never; 9=Refused) in the
CDC BRFSS data set. Be sure that the value of 9 has been declared as missing
for the variable, HEALTH STATUS, and that the values of 7 and 9 have been
declared as missing for HOW LONG SINCE LAST ROUTINE CHECKUP.

In this analysis, we are interested only in those who have had a routine check-
up at least once in their lives, so using Data> Select Cases, exclude respondents
who had never had a checkup.

Then recode HOW LONG SINCE LAST ROUTINE CHECKUP into a
new variable, CHECKUP 2 GROUPS. In this new variable, assign a 1 to those
who reported that they had a checkup within the last 2 years and a 2 to those who
reported that they had a checkup over 2 years ago.

Next, declare 7 and 9 as missing for the new variable, and assign value labels
to the new variable, and if necessary, to the variable, HEALTH STATUS.

Now create a contingency table with HEALTH STATUS as the explanatory
variable and CHECKUP 2 GROUPS as the response variable. Include in the
analysis column percents. To quantify the degree of relationship between the
two variables, ask SPSS to calculate either Cramér’s V" or gamma, whichever you
believe is appropriate to the analysis.

®

How many participants are in the analysis?

b. In this analysis, is Cramér’s V or gamma the appropriate measure of associa-
tion? Why?

Report the value of Cramér’s 7 or gamma (whichever statistic you calculated).
d. Based on this statistic, how would you describe the relationship between gen-
eral health and time since last checkup?

o

5. Study the clustered bar chart in Fig. 7.18 and the output summarized Table 7.8.
These were generated by a cross-tabulation of the CDC data.
Based on these data, answer the following question: Within the population of
male New York State residents, are veterans more or less likely than nonveterans
to be heavy drinkers? Explain your answer.
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Fig. 7.18 Clustered bar chart (Question 5)

Table 7.8 Output (Question 5)

Symmetric Measures
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HEAVY DRINKING
AMONG MEN RISK
FACTOR.

.No

EdYes

Approx.
Value Sig.
Nominal by Nominal Phi .029 123
Cramer's V .029 123
N of Valid Cases 2832

Data Set and Reference

CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-

ioral risk factor surveillance system survey data. Atlanta: US Department of Health and Hu-
man Services, Centers for Disease Control and Prevention (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
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Chapter 8
Assessing Screening and Diagnostic Tests

Abstract Clinicians often use screening and diagnostic tests to identify asymptom-
atic patients, confirm diagnoses or assess treatment effectiveness. The usefulness
of these tests depends on their ability to correctly classify patients as having or not
having a particular disease. This ability is assessed by determining the extent to
which a test’s classifications agree with those of a criterion or gold standard. This
chapter reviews several measures of agreement, including the test’s positive and
negative predictive values, its true positive rate or sensitivity, its true negative rate
or specificity, and the ratio of its true positive rate to its false positive rate, or likeli-
hood ratio. The chapter concludes with a discussion of how a receiver operating
characteristic (ROC) curve is used to evaluate the accuracy of a test that generates
a range of quantitative values, and to select a cutoft value that optimizes sensitivity
and specificity.

8.1 Overview

In Chap. 6, we learned that prevalence is the proportion of a population that has
a given illness. Using this information, clinicians can get an initial sense of the
likelihood that an individual patient has a particular disease. However, the accuracy
of diagnosis can be greatly improved by including information generated by stan-
dardized clinical or laboratory tests. In some cases, a test can establish with great
confidence whether or not a patient has a given medical condition. Unfortunately,
such tests, referred to as criterion standards or gold standards, can have significant
disadvantages. For example, they may be expensive, invasive, pose serious risks
to patients, or cannot be used until after patients have died. Instead of using crite-
rion standards, clinicians often use screening and diagnostic tests. Clinicians use
screening tests to identify among asymptomatic patients those who have disease in
its early stages and diagnostic tests to confirm a diagnosis or to track the progress
of treatment. Although less accurate than a criterion standard, a good screening or
diagnostic test helps clinicians to adjust their initial judgments in the direction of
a more accurate assessment of the likelihood that the patient has a given disease.
The results of a screening or diagnostic test are said to be either positive or nega-
tive for the presence of disease. A positive result means that the test has classified
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the patient as having disease. A negative result means that the test has classified the
patient as being free of disease. For these classifications to be useful to the clinician,
they must tend to correctly identify whether or not the patient in fact has the disease.
Since the test classifies patients as positive or negative, and since patients either
have or do not have the disease, the screening or diagnostic usefulness of the test
can be assessed with a 2 x2 contingency table. In the last chapter, we learned how to
use contingency tables to study the relationship between two categorical variables.
In this chapter, we will see how contingency tables can be used to determine how
well screening and diagnostic tests detect disease. The categorical variables will be
the results of the screening or diagnostic test (positive versus negative) and the dis-
ease status of the patient as determined by a criterion test (disease is present versus
disease is absent).

8.2 Positive and Negative Predictive Values

One measure of the usefulness of a test is its positive predictive value (PPV), the
proportion of times a positive test result is followed by a positive result on a crite-
rion test. If a test has a high PPV, then patients who test positive on it will tend to
also test positive on the criterion test. Another measure is a test’s negative predictive
value (NPV), the proportion of times a negative test result is followed by a negative
result on the criterion test. If a test has a high NPV, then patients who test negative
on it will tend to also test negative on the criterion test. In this section, we will de-
termine the PPV and NPV of a screening exam, specifically a digital rectal exam
(DRE) that was conducted on 301 men to detect the presence of prostate cancer.
These data are stored in the file, PSA.sav [1]. Subsequent to the exam, the prostate
of each patient was biopsied. The researchers who conducted this study stored the
results of the DRE in a variable called DRE Result [dre] (variable 3; 1=Posi-
tive; 2=Negative) and the results of the biopsy in a variable called Biopsy Result
[biopsy] (variable 8, 1=Cancer Present; 2=Cancer Absent). Did the results of the
digital exam predict the results of the biopsy?

If we were to answer this question by hand, we would first set up a 2 x 2 contin-
gency table. Following customary procedures, we would label the two rows with
the possible results of the screening test, with the first row consisting of patients
who tested positive. We would label the columns with the two possible results of
the criterion test, with the first column consisting of patients identified as having
the disease. Then we would calculate the PPV of the DRE by computing the pro-
portion of patients who tested positive on the DRE who then tested positive on
the biopsy. To do this, we would consult the top row of the contingency table and
divide the number of patients who had a positive biopsy result by the total number
of patients who tested positive on the DRE. To calculate the NPV of the DRE, we
would compute the percentage of patients who tested negative on the DRE who then
subsequently tested negative on the biopsy. To do this, we would consult the second
row and divide the number of patients who had a negative biopsy result by the total
number of patients who tested negative on the DRE.
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Table 8.1 Positive and negative predictive values

DRE Result * Biopsy Result Crosstabulation

. .. Biopsy Result
Positive Predictive Value
Cancer Cancer
9 \ Present Absent Total
DRE Result Positive Count \ 68 117 185
% within DRE Result ( 36.8%J> 63.2% 100.0%
Negative  Count 27 89 116
% within DRE Result 23.3% 76.7%4) 100.0%
Total Count 95 206 301
% within DRE Result 6% 68.4% 100.0%

Negative Predictive Value /

Positive Predictive Value = Number of patients with the disease / Number of patients who
tested positive on the screening or diagnostic test = 68/185 =.368.

Negative Predictive Value = Number of patients without the disease / Number of patients who
tested negative on the screening or diagnostic test = 89/116 =.767.

To get SPSS to do all of this for us, load the file, PSA.sav, and select Ana-
lyze >Descriptive Statistics >Crosstabs. In the resulting dialog box, move DRE
Result to the Row(s) window, and Biopsy Result to the Column(s) window. Select
Cells, check Row percentages, and click Continue followed by OK. This will gen-
erate the contingency table that we need.

The contingency table would be similar to the one displayed in Table 8.1.

Answer the following questions:

8.2.1 How many patients tested positive on the DRE?

8.2.2 Of these, how many subsequently tested positive on the biopsy?

8.2.3 What is the positive PPV of the DRE?

8.2.4 If we were to predict that a patient who tested negative on the DRE
would also have a negative biopsy, how often would we be correct?

From the first row, we can see that 185 patients tested positive on the DRE. Of
these, 68 or 36.8 % subsequently tested positive on the biopsy. Thus, the PPV of the
DRE is 0.368. If we were to predict that patients who tested positive on the DRE
would subsequently have positive biopsy results, we would be correct about 37 %
of the time. From the second row, we can see that 116 patients tested negative on
the DRE. Of these, 89 or 76.7 % also tested negative on the biopsy. Thus, the NPV
is 0.767. We would be right about 77 % of the time if we were to predict that a pa-
tient who tested negative on the DRE would subsequently have a negative biopsy.
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Although predictive values are indicators of the ability of a test to detect disease,
they are sensitive to the prevalence of the disease within the population to which the
test was administered. If the disease is highly prevalent, the PPV will also be high.
If the same test were used to detect the disease in a population in which the disease
is rare, the PPV would be lower. Consequently, judging a test on the basis of its pre-
dictive values requires that prevalence rates be taken into account. This can make
comparing the usefulness of various tests difficult if the tests were administered
to populations with different prevalence rates. More helpful in evaluating tests are
diagnostic statistics that are independent of prevalence. We turn to those statistics
in the next section.

8.3 True Positives, True Negatives, False Positives,
and False Negatives

A screening or diagnostic test classifies patients as either positive or negative for
the presence of disease. If a patient has disease, the test should return a positive
result. If a patient does not have disease, the test should return a negative result.
Each of these correct classifications is called a true positive and a true negative,
respectively. Conversely, if a patient has disease, the test should not return a nega-
tive result, and if a patient does not have disease, the test should not return a posi-
tive result. Each of these two errors in classification is called a false negative and
a false positive, respectively. Table 8.2 displays the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN) that occurred in

Table 8.2 Contingency table for computing test accuracy, sensitivity, and specificity
DRE Result * Biopsy Result Crosstabulation

Biopsy Result

. Cancer Cancer
ity Present Absent Total

DRE Result  Positve  Count <TP — 3 [P =117 185

% within Biopsy Result ( 71.6% ] 56.8% 61.5%

Negative ~ Count [FN == 27 TN w39 116

% within Biopsy Result 28.4% ( 43.2%)) 38.5%

; 206 301

Total Count 9
% within Biopsy Result 0% 100.0% 100.0%
Specificity /

TP = Number of true positives. TN = Number of true negatives.
FP = Number of false positives. FN = Number of false negatives.

Sensit

Accuracy = (TP + TN)/Total number of classifications = 157/301 = .522.
Sensitivity = TP/Number of patients with disease = 68/95 = .716.
Specificity = TN/Number of patients without disease = 89/206 = .432.
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our example. The table displays the same frequency data reported in Table 8.1, but
the cell percentages are different as they are calculated within each column instead
of within each row. We will discuss those cell percentages in a moment.

The proportion of times a test makes a correct classification is its accuracy. Ac-
curacy is calculated by dividing the total number of correct classifications (TP plus
TN) by the total number of classifications. As we can see from Table 8.2, the ac-
curacy of the DRE is 68 TP plus 89 TN divided by 301 total classifications, or 157
correct classifications divided by 301 total classifications. This yields an accuracy
of 0.522. The DRE correctly classified patients about 52 % of the time.

Accuracy can give a global sense of the usefulness of a test but it does not re-
veal whether the test is more prone to making false negative errors (not detecting
disease when it is present) or false positive errors (detecting disease when none is
present). The relative seriousness of the consequences that follow from these errors
varies across situations, so clinicians try to use tests that for a given situation com-
mit the more serious error less often while keeping the frequency of the less serious
mistake within tolerable levels. For example, if a disease is more likely to be cured
if it is treated before patients show symptoms, then it is important that a screening
test identify within an asymptomatic population as many patients with the disease
as possible, even if this means that more patients who are disease-free will be mis-
diagnosed as having the disease. In this case, missing a patient who has the disease
(a false negative result) would be seen as the more serious error and a screening
test that minimizes FN would be preferred. Once patients have been screened, they
could then be given a diagnostic test to confirm the presence of the disease. In
this case, identifying a patient as having the disease when it is not present (a false
positive) would be considered the more serious mistake, and a diagnostic test that
minimizes FP would be preferred.

To assess the rate at which a screening or diagnostic test correctly classifies pa-
tients, its rates of TP and TN are calculated. The true positive rate is the proportion
of patients who in fact had the disease for whom the test had returned a positive
result. It is calculated by dividing the number of patients who had tested positive
on the screening or diagnostic test by the total number of patients who in fact had
the disease. Remember that whether or not the patient in fact had the disease is
determined by the criterion test. Consequently, we calculate the true positive rate
by consulting the first column of our contingency table. The true negative rate is
the proportion of patients who in fact did not have the disease for whom the screen-
ing or diagnostic test returned a negative result. It is calculated by consulting the
second column of the contingency table and dividing the number of patients who
tested negative on the screening or diagnostic test by the total number of patients
who were in fact disease-free.

To get SPSS to do these calculations for us, return to the Crosstabs dialog box,
click Cells, uncheck Row(s), and check Column(s). Click Continue and OK. The
output will include the contingency table displayed in Table 8.2.
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Answer the following questions:

8.3.1 What proportion of patients who by biopsy were diagnosed as having
prostate cancer had tested positive on the DRE?

8.3.2 What proportion of patients who by biopsy were diagnosed as not
having prostate cancer had tested negative on the DRE?

8.3.3 What are the true positive and true negative rates of the DRE?

8.3.4 For which group of patients was the DRE a better measure of the pres-
ence or absence of cancer, those who had cancer or those who were
cancer-free?

We can see from the first column that 95 patients were by biopsy diagnosed with
prostate cancer. Of these, 68 or 71.6 % had tested positive on the DRE. We can see
from the second column that 206 patients were by biopsy diagnosed as cancer-free.
Of these, 89 or 43.2% had tested negative on the screening test. Thus, the true
positive and true negative rates are 0.716 and 0.432, respectively. If a patient had
prostate cancer, the chances were about 72 % that the DRE would detect it. If a pa-
tient did not have cancer, the chances were about 43 % that the screening test would
classify the patient as cancer-free.

The true positive rate is the proportion of patients with disease who tested posi-
tive on the screening or diagnostic test. When cell percentages of the contingency
table are calculated within columns, the true positive rate can be found in the first
column of the first row. Notice that the two cell percentages in this column account
for 100% of all patients with disease. Who are the patients in the second row of
the first column? They are the remaining proportion of patients with disease whose
disease was not detected by the test. This proportion is the false negative rate and
is equal to 1 minus the true positive rate. In our example, the true positive rate was
0.716. As we can see in the second row of the first column, our true positive rate
means that the DRE missed 1 —0.716 or 28.4 % of patients who had prostate cancer.

The true negative rate is the proportion of patients without disease who tested
negative on the screening or diagnostic test. It can be found in the second row of the
second column. Notice that the two cell percentages in the second column account
for 100 % of patients who were disease-free. Who are the patients in the first row of
the second column? They are the remaining proportion of patients who were cancer-
free who were mistakenly diagnosed by the digital exam as having disease. This
proportion is the false positive rate and is equal to 1 minus the true negative rate.
In our example, the true negative rate was 0.432. As we can see in the first row of
the second column, this true negative rate means that 56.8 % of cancer-free patients
were erroneously diagnosed with cancer by the digital exam.

Recall that the accuracy of the digital exam was 0.522; it correctly classified a
little over half of the patients. We now know why: The exam missed about 28 % of
the patients who had prostate cancer and falsely detected cancer in about 57 % of
those who were cancer-free. The exam made both types of classification mistakes,
but was especially susceptible to making false positive errors.
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The statistics we have discussed in this section do not depend on the prevalence
of disease, but on the ability of a test to detect disease when it is present. Of course,
if the disease in question is uncommon, it might be difficult to find enough patients
with disease to adequately assess a test intended to detect it. Nevertheless, true and
false positive rates and true and false negative rates are characteristics of the test,
not of the population that is given the test.

8.4 Sensitivity and Specificity

If patients are given a test that has true positive and true negative rates equal to 1,
then they will test positive if and only if they have disease. Such a test would be
perfectly sensitive to the presence of the disease and generate a positive result each
and every time the disease is present. In addition, a positive result would be specific
to the presence of the disease: The test would always “come back” negative unless
the disease is present. For this reason, true positive and true negative rates are of-
ten referred to as the sensitivity and specificity of the test, respectively. Sensitivity
is equal to the true positive rate and specificity is equal to the true negative rate.
(If you have trouble keeping these terms straight, try using the “opposites rule.”
Sensitivity refers to true positives while specificity refers to true negatives.) In our
example, the sensitivity of the DRE was 0.716 and its specificity was 0.432. The
digital exam had fairly good sensitivity but much lower specificity: Usually patients
with prostate cancer tested positive, so the test was relatively sensitive, but as a high
percentage of patients who did not have cancer also tested positive, a positive test
result was not specific to the presence of prostate cancer.

Answer the following true or false questions:

8.4.1 The sensitivity and specificity of a test can be determined without giv-
ing it to patients who are disease-free.

8.4.2 The false positive rate of a test is equal to 1 minus specificity.

Because the sensitivity of a test is the same as the test’s true positive rate, the rate
of making FN is equal to 1 minus sensitivity. Because specificity is the same as the
test’s true negative rate, the rate of making FP is equal to 1 minus specificity. These
facts have some interesting implications. First, neither sensitivity nor specificity
depends on disease prevalence. They are characteristics of the test, not of the popu-
lation to which the test was administered, and so are convenient benchmarks for
assessing various tests that are administered to different populations. Second, if we
know the sensitivity of a test, we can easily calculate the test’s false negative rate,
and if we know the specificity of a test, we can easily calculate its false positive rate.

Third, the sensitivity of a test does not tell us its specificity as the two statistics
are based on separate patients groups: Sensitivity is about patients who have disease



212 8 Assessing Screening and Diagnostic Tests

and specificity is about patients who are disease-free. A high value of one does not
imply a high value of the other. Recall that in our example, sensitivity was relatively
high but specificity was relatively low. In fact, it is possible for the sensitivity of a
test to equal 1 and specificity to equal 0, and vice-versa. The former would occur
if the test classifies all patients, including those without disease, as positive, and
the latter if the test classifies all patients, including those with disease, as negative.
Consequently, when evaluating a test, both its sensitivity and specificity must be
separately computed.

Fourth, to calculate sensitivity and specificity, the test must be administered to
patients who have disease and to patients who do not. For example, the usefulness
of the DRE in detecting prostate cancer cannot be determined by administering the
exam solely to patients with prostate cancer.

8.5 Prior Odds, Posterior Odds, and the Likelihood Ratio

Another statistic that is useful in judging a screening or diagnostic test is its /ikeli-
hood ratio. This statistic compares the probability of testing positive of two patients:
one with disease and one who is disease-free. If the sensitivity and specificity of
a test are equal to 1, all patients who have the disease will test positive (thanks to
perfect sensitivity) but none of patients who are disease-free will (thanks to perfect
specificity). The true positive rate will equal 1 and the false positive rate, which,
remember, is equal to 1 minus specificity, will equal 0. Consequently, the probability
of testing positive for a patient who has disease will equal 1 and the probability of
testing positive for a patient without disease will equal 0. The test would be able to
discriminate between a patient with disease and a patient without disease 100% of
the time. Screening and diagnostic tests, however, produce one or both types of clas-
sifications errors, so they do not allow clinicians to be able to always distinguish be-
tween the two types of patients. However, a test does not have to be perfect to be use-
ful. But to be useful, the test must have at least some ability to discriminate between
a patient who has disease and a patient who does not. We can tell how well a test can
distinguish between patients with and without disease by comparing the true positive
rate to the false positive rate. If this comparison is done in terms of the ratio of the
true positive rate to the false positive rate, we have the likelihood ratio. A ratio of 1
indicates that the test has no ability to distinguish between patients with and without
disease. The higher the ratio, the better the test is at screening or diagnosing disease.

As an example of a test that cannot discriminate, let us imagine that the data from
the prostate cancer study were those displayed in Table 8.3.

Answer the following questions about these new data (Table 8.3):

8.5.1 What is the sensitivity or true positive rate of this DRE?

8.5.2 What is the probability that a patient with disease tested positive on
the digital exam?
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Table 8.3 Contingency table for a screening test with a likelihood ratio of 1
DRE Result * Biopsy Result Crosstabulation
Biopsy Result
Cancer Cancer
Present Absent Total
DRE Result Count 54 117 171
% within Biopsy Result 56.8% 56.8% 56.8%
Count 41 89 130
% within Biopsy Result 43.2% 43.2% 43.2%
Total Count 95 206 301
% within Biopsy Result 100.0% 100.0% 100.0%
Table 8.4 Contingency table for a screening test with a likelihood ratio of 6.216
DRE Result * Biopsy Result Crosstabulation
Biopsy Result
Cancer Cancer
Present Absent Total
DRE Result Count 86 30 116
% within Biopsy Result 90.5% 14.6% 38.5%
Count 9 176 185
% within Biopsy Result 9.5% 85.4% 61.5%
Total Count 95 206 301
% within Biopsy Result 100.0% 100.0% 100.0%

8.5.3 What is the false positive rate?
8.5.4 What is the probability that a patient without disease tested positive
on the digital exam?
8.5.5 In this example, is a patient with disease more likely to test positive
than a disease-free patient?

We can see from Table 8.3 that the sensitivity of the exam is now 0.568, down from
0.716 in our first example. We can also see that sensitivity is equal to the false posi-
tive rate. This means that the probability of a patient testing positive is the same
whether or not the patient has prostate cancer. Since both patients are equally likely
to test positive, a positive test offers no evidence that the patient has cancer—he is
equally likely to be disease-free. So in this example, the likelihood ratio is equal to 1
and a positive test result would be of no help to a clinician trying to decide whether
or not the patient has cancer.
Table 8.4 shows the results from the prostate cancer study that might have been
obtained if the digital exam had high levels of both sensitivity and specificity.
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Answer the following questions about these new data (Table 8.4):

8.5.6 What is the sensitivity or true positive rate of this DRE?

8.5.7 What is the probability that a patient with disease tested positive on
the digital exam?

8.5.8 What is the false positive rate?

8.5.9 What is the probability that a patient without disease tested positive on
the digital exam?

8.5.10 Is a patient with disease more likely to test positive than a disease-free
patient?

We can see from Table 8.4 that the sensitivity of the exam is now 0.905, up from
0.716 in our first example, specificity is now 0.854, up from 0.432, and that the false
positive rate is now 0.146, down from 0.568. We can also see that sensitivity is sub-
stantially greater than the false positive rate. In fact, it is 6.216 times greater. This
means that the probability of a patient testing positive is over six times greater for a
patient who has prostate cancer. So in this example, the likelihood ratio is equal to
6.216 and a positive test result is clear evidence of the presence of cancer.

Now let us see how useful the digital exam really was. Recall from Sect. 8.4 that
the sensitivity of the digital exam was 0.716 and its specificity was 0.432.

Answer the following questions:

8.5.11 What was the false positive rate of the exam?

8.5.12 What was the likelihood ratio?

8.5.13 What does the likelihood ratio tell us about the value of the exam in
detecting prostate cancer?

Prior and posterior odds Unless a test is free of classification errors, the clini-
cian can never be 100% certain that a positive test result means that the patient has
disease. But a positive result from a test that has a likelihood ratio greater than 1
should increase the clinician’s level of confidence that the patient has disease. The
higher the likelihood ratio of the test, the more impact a positive result will have on
the clinician’s confidence in the diagnosis. One way to think about the impact of a
positive test result on diagnosis is to imagine the following scenario.

A clinician who has no information about a patient other than some demographic
information is asked to estimate the probability that the patient has a particular dis-
ease. To make a judgment, the clinician uses the prevalence of the disease among
people who share the patients’ demographic profile. This judgment, arrived at prior
to obtaining additional information about the patient, is called the prior or pretest
probability of disease. To obtain more information about the patient, the clinician
then orders a test which returns a positive result. Based on this finding, the clinician
adjusts the prior probability. The clinician’s revised judgment of the chances that
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the patient has the disease is called the posterior or posttest probability. If the prior
and posterior probabilities are expressed as odds, the likelihood ratio of the test
that the clinician ordered will indicate the extent to which the prior odds should be
adjusted by a positive test result. Specifically,

Posterior Odds = Likelihood Ratio X Prior Odds. 8.1

This relationship between prior and posterior odds is called Bayes’ Rule, named
after the nineteenth century probability theorist who discovered it. When applied
to a medical test, Bayes’ Rule tells us that the impact of a positive test result on
a clinician’s judgment is directly related to the test’s likelihood ratio. This makes
sense since tests with large likelihood ratios are better able to discriminate between
patients with and without disease and so should have a greater impact.

If the prior odds of disease are based on disease prevalence, then Bayes’ Rule
also tells us that the odds that a patient who has tested positive has the disease are
equal to the prevalence of the disease (expressed as odds) times the likelihood ratio
of the test. To demonstrate, let us review the three versions of the digital exam data
that we have discussed thus far. In each, 95 of 301 patients had prostate cancer.
This is a prevalence of 0.316. Assume that these 301 patients were taken at random
from a population of men who fit a given demographic profile. Then the prevalence
of prostate cancer in that population would be estimated to be 0.316, and the prior
probability that any individual in that population has prostate cancer is also 0.316.
If a clinician had no information about a patient other than that he is a member of
this population, the clinician would estimate the patient’s chances of having cancer
as 31.6%. This is equivalent to prior odds of 0.316/0.684 or 0.462.

In our first hypothetical example, displayed in Table 8.3, the likelihood ratio was
equal to 1. In this example, the test had no ability to discriminate prostate cancer pa-
tients from healthy patients, so a positive result would have no impact on judgment.
In our second hypothetical example, displayed in Table 8.4, the likelihood ratio was
6.216. In this example, a positive test result would increase the odds of disease by
more than six-fold, so the posterior odds would be 6.216 x0.462 or 2.872. These
odds are equivalent to a posterior probability of 2.872/(1+2.872) or 0.742. Not
surprisingly, a positive result from a test as discriminating as the one in our second
hypothetical example would have a relatively large impact on diagnosis.

We can see from Table 8.2 that the actual likelihood ratio of the DRE was
0.716/0.568 or 1.26. A man who had prostate cancer would be only 1.26 times more
likely to test positive on the digital exam than a man who was disease-free. This
means that if a patient were to test positive for prostate cancer, his odds of having
the cancer would increase by a factor of only 1.26, and his chances of having the
cancer would increase from 31.6 to only 36.8 %. Because the test had limited ability
to discriminate prostate cancer patients from healthy patients, the impact of a posi-
tive test result on the clinician’s judgment would be small.

Calculating posterior probabilities by hand requires converting prior probabili-
ties to odds and then converting posterior odds back to probabilities. A faster way
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is to use Fagan's nomogram, displayed in Fig. 8.1. To obtain a posterior probabil-
ity, one draws a straight line from the prior probability value listed on the scale to
the left through the appropriate likelihood ratio on the center scale to the posterior
probability. The straight line in the nomogram of Fig. 8.1, for example, shows that
a prior probability of 0.31 converts to a posterior probability of 0.74 when the test
has a likelihood ratio of 6.2.

Before we leave the topic of likelihood ratios, we should point out that the likeli-
hood ratio we have been using always generates a posterior probability that is equal
to the PPV, that is, the probability that a patient who tests positive has disease. We
should also mention that another version of the likelihood ratio is relevant to the
prediction of the probability that a patient does not have disease. This version is
sometimes called the likelihood ratio for a negative result. It compares as a ratio the
proportion of patients without and with disease who test negative. When used with
the complement of prevalence (1 minus prevalence), it generates the NPV, that is,
the probability that a patient who tests negative does not have the disease.
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8.6 The Receiver Operating Characteristic (ROC) Curve

So far we have looked at diagnostic statistics that apply to tests that can return only
one of two values. In the last two sections, we will look at how these statistics are
applied to tests that generate a range of values that can be arranged along a quan-
titative scale, such as the prostate-specific antigen (PSA) test which measures the
level of prostate-specific antigen, expressed in units of ng/ml. For these tests, it is
necessary to determine a cutoff value. If patients who have disease tend to have
higher test values, then patients whose test values are above the cutoff are classified
as positive. If patients who have disease tend to have lower test values, then patients
whose test values are below the cutoff are classified as positive. Each of the numeri-
cal values generated by the test is a potential cutoff value. From these a cutoff is
chosen that most often yields TP and TN.

As an example, return to the PSA.sav data file. The file includes the PSA test
result for each of the 301 patients. Patients who have prostate cancer tend to have
higher PSA scores, so a positive test result will be any PSA score that is above the
cutoff. Imagine that we rank order the 301 patients by their PSA scores from the
lowest to the highest. We choose a cutoff value and classify all patients whose PSA
scores are above the cutoff as positive. In the ideal, every patient with prostate
cancer would be above the cutoff and every patient without cancer would be below.
This would give us a test with 100 % sensitivity and specificity, respectively. How-
ever, in reality, there will be patients who do not have prostate cancer but whose
PSA scores will be above the cutoff. These patients will be FP. For these patients,
the cutoff was too low. In addition, there will be patients who do have prostate can-
cer but whose PSA scores will be below the cutoff. These patients will be FN. For
these patients, the cutoff was too high. If we have so many FP that the specificity of
the test is too low, we could raise the cutoff value so that fewer cancer-free patients
with high PSA scores are classified as positive. Unfortunately, raising the cutoff
may result in some cancer patients with lower PSA scores no longer being classi-
fied as positive, resulting in a decrease in the sensitivity of the test. The challenge
then is to choose a cutoff value that strikes the best balance between sensitivity and
specificity. This is done by first computing the sensitivity and specificity for each
possible test result. In effect, for each possible test value, a 2 x 2 contingency table is
constructed in which patients whose scores are equal to or greater than the test value
(if patients with disease tend to have higher test scores) or equal to or less than the
test value (if patients with disease tend to have lower test scores) are classified as
positive, and sensitivity and specificity are calculated in the usual manner. Then the
test score that generates the best combination of sensitivity and specificity is chosen
to be the cutoff value. This procedure is labor intensive, especially if the test, such
as the PSA test, generates a large number of possible values. Fortunately, there is
a quicker method. Developed by signal detection theorists, engineers who design
machines that detect environmental threats (such as fire or carbon monoxide) quick-
ly without triggering an excessive number of false alarms, this method involves
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generating what is called a receiver operating characteristic curve, or ROC curve.
In this section, we will learn how to interpret an ROC curve.

Return to the PSA.sav data file. Each patient’s PSA value is stored in Prostate-
Specific Antigen Level (ng/ml) [psa] (variable 5). Values range from 0.3 to 221.0.
The average value was about 8.8. Select Analyze>ROC Curve to open the ROC
Curve dialog. In SPSS, the screening or diagnostic test is referred to as the fest vari-
able, and the criterion test as the state variable. So move Prostate-Specific Antigen
Level (ng/ml) to the Test Variable window and Biopsy Result to the State Variable
window. In the Value of State Variable, enter the value of the state variable that
indicates that the patient had disease. In the Display area, check all of the options.
We are now ready to generate the ROC curve, but before we do, click Options. By
default, SPSS assumes that higher values of the state variable indicate greater prob-
ability of disease, as is the case in our example. So in the Test Direction area, Larger
test result indicates more positive test should already have been selected. If lower
values had indicated greater probability, we would have selected Smaller test result
indicates more positive test. While we’re here, notice that the confidence interval
for the estimate of the area under the curve can be set in the Confidence level win-
dow. We will leave it at 95 %. Click Continue and then OK. The steps for assigning
test and state variables, and selecting output, test direction and confidence level are
displayed in Figs. 8.2 through 8.4.

#3 ROC Curve
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Fig. 8.2 Assigning the test and state variables, selecting output to display, and opening the Options
dialog
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Fig. 8.3 Selecting the test direction and confidence level

The output includes the Case Processing Summary displayed in Table 8.5. Us-
ing the state variable, the Summary displays the number of patients with (95) and
without (206) disease.

Figure 8.5 displays the ROC curve. This graph plots the test’s false positive and
true positive rates generated by each of the possible cutoff points. The false positive
rate, or 1 minus specificity, is plotted along the x-axis and the true positive rate, or
sensitivity, is plotted along the y-axis. To understand the graph, imagine what would
happen if we attempted to diagnose each of the 301 patients in our earlier example
on the basis of information that is entirely irrelevant to the question of whether or
not cancer is present: the patient’s height. Let us assume that our shortest patient is
5 ft, 0 in. tall and our tallest is 6 ft, 3 in. tall. Let us begin by setting the cutoff to a
height greater than the height of the tallest person. Say we set it to 6 ft, 4 in. We then
classify all patients whose height is above the cutoff as positive for prostate cancer,
and plot the resulting sensitivity and false positive rates.
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Fig. 8.4 Generating an ROC curve

Answer the following questions:

8.6.1 What would be the sensitivity of our hypothetical test for prostate
cancer?

8.6.2 What would be the hypothetical test’s specificity?

In setting the cutoff to a level greater than the height of the tallest patient, all of the
patients are below the cutoff and so we end up classifying none of them as having
prostate cancer. This means that none of the patients who in fact have the cancer

Table 8.5 Case processing Case Processing Summary
summary
Valid N
Biopsy Result (listwise)
Positive® 95
Negative 206

Larger values of the test result

variable(s) indicate stronger

evidence for a positive actual

state.

a. The positive actual state is
Cancer Present.
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Fig. 8.5 ROC curve displaying the PSA test’s true positive rate (sensitivity) as a function of its
false positive rate (1 minus specificity)

are correctly diagnosed, yielding a sensitivity of 0, but all of the patients who are
cancer-free are classified as negative, yielding a specificity of 1. When we plot the
values generated by our cutoff for the false positive rate (which, remember, is equal
to 1 minus specificity) and sensitivity, the x- and y-coordinates are 0 and 0. Our first
data point would be in the lower left-hand corner of the graph.

Next we lower the cutoff to 6 ft, classify all patients taller than that as having the
cancer, grind out the values for sensitivity and 1 minus specificity and plot them on
the graph. We do all of this a third time, but with the cutoff lowered to 5.5 ft.

8.6.3 As we lower the cutoff, what happens to sensitivity?
8.6.4 To specificity?
8.6.5 To the false positive rate?

Finally, we set the cutoff to a value smaller than the height of the shortest person,
say, 4 ft, 11 in., repeat our calculations and plot the results. When we’re done, we
connect the four data points.
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8.6.6 What are the coordinates that derive from our last set of calculations?
8.6.7 When we connect the four data points, what do we see?

Lowering the cutoff to 6 ft results in our now having patients who are above the
cutoff. Since height and prostate cancer are unrelated, it is likely that some of the
patients above the cutoff will have cancer and some not. All of them will be classi-
fied as testing positive, however. The likely result of lowering the cutoff then will
be that sensitivity will increase because we are now classifying some of the cancer
patients as positive, but specificity will decrease because we are no longer clas-
sifying all of the cancer-free patients as negative. So lowering the cutoff increases
both sensitivity and the false positive rate. Lowering the cutoff yet again will likely
result in further increases in sensitivity and 1 minus specificity. Setting the cutoff to
a height smaller than the shortest patient increases both to 1: Since all of the patients
will be above the cutoff, all of those with cancer will be classified as positive but
none of those without cancer will be classified as negative.

If we were to plot the coordinates generated by this exercise, we would see that
both sensitivity and the false positive rate increase at about the same rate as we
lower the cutoff. If we were to connect the four data points, we would see that we
had drawn a curve that closely follows a diagonal line extending from the coordi-
nates (0, 0) in the lower left-hand corner to the coordinates (1, 1) in the upper right.

Return to the graph that we generated with SPSS (Fig. 8.5). In it you will see
a diagonal line. This is the ROC curve that would be generated if we were to try
to diagnose a very large number of patients by using test information that has zero
diagnostic value. Notice that the slope of the line is equal to 1. This tells us that
lowering the cutoff has the same impact on sensitivity as it has on the false positive
rate. Notice too that the ratio of any pair of coordinates on this line is equal to 1.
This ratio is the likelihood ratio. Recall from Sect. 8.5 that a test with no diagnostic
value will have a likelihood ratio of 1.

The diagonal line serves as a visual baseline or reference for determining the
diagnostic value of a test. The better a test is at distinguishing between patients
with and without disease, the further from the diagonal the test’s ROC curve will
be. Study the ROC curve for the PSA test. The curve begins and ends at or near the
(0, 0) and (1, 1) coordinates, as all ROC curves must. As we follow the curve from
lower left to upper right, we see that decreasing the cutoff increases sensitivity. De-
creasing the cutoff also increases the false positive rate, but not as much. As a result,
the curve for a while moves further and further away from the diagonal, showing
visually the positive impact that decreasing the cutoff has on the test’s diagnostic
ability. For example, decreasing the cutoff to what turns out to be a value of about
6 increases sensitivity to about 0.73 while increasing the false positive rate to only
about 0.36. Eventually, though, further decreases in the cutoff produce a slower rate
of increase in sensitivity relative to the increase in the false positive rate, the diag-
nostic value of the test declines as the false positive rate catches up to sensitivity,
and the curve moves closer and closer to the diagonal.
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Fig. 8.6 Determining optimal values of sensitivity and specificity from an ROC curve

Visual inspection of an ROC curve helps clinicians to determine the cutoff value
that best discriminates between patients with disease and patients without. First the
optimal combination of sensitivity and false positive rate is identified. This will be
the pair of coordinates that is furthest away from the diagonal along a line perpen-
dicular to the diagonal. These coordinates are then read off from the graph as shown
in Fig. 8.6.

The coordinates are about 0.36 for the false positive rate and 0.73 for sensitivity.
Now that we know these values, we can determine the cutoff by consulting the Co-
ordinates of the Curve table that is included in SPSS output. This table, a fragment
of which is reproduced in Table 8.6, presents the cutoffs and the values of sensitivity
and 1 minus specificity. SPSS lists the cutoffs in terms of values that lie between
actual values. We find the coordinates that are in the neighborhood of 0.73 and 0.36,
and determine that the sensitivity and false positive rate that yield the highest likeli-
hood ratio are 0.726 and 0.354. According to the table, these were generated by a
cutoff equal to or greater than 6.15. So our cutoff is 6.1. Classifying patients with a
PSA value greater than 6.1 generates the optimal combination of sensitivity, which
is about 0.73, and specificity, which is about 0.65.
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Table 8.6 Using the Coor- Coordinates of the Curve
dinates of the Curve table to
determine the cutoff value Test Result Variable(s): Prostate-Specific
that yields the optimum Antigen Level (ng/ml)
combination of sensitivity
and specificity Positive if
Greater Than
or Equal To? Sensitivity | 1 - Specificity
-.700 1.000 1.000
.350 1.000 .981
450 .989 .971
Rows Omitted
5.950 737 .369
6.050 737 .364
6.150 726 354 I
6.250 .716 .350
6.350 .695 .345
Remainder of Table Omitted

Area Under the Curve Returning to the output that we generated earlier, we find
the Area Under the Curve table, reproduced in Table 8.7. The Area Under the Curve
table displays information about the overall diagnostic value of a test. To under-
stand what it is this table is telling us, imagine that from our sample of 301 men, a
patient who has prostate cancer and a patient who does not are selected at random.
We are asked to identify which of the two patients has prostate cancer. Say we
choose the patient who is taller. What is the probability that we chose correctly? If a
man’s height is unrelated to whether or not he has prostate cancer, then choosing on
the basis of height is equivalent to guessing, and the probability of our choosing cor-
rectly would be 0.5. It turns out that the area under an ROC curve is the probability

Table 8.7 Area under the curve and its standard error, p-value and 95 % confidence interval

Area Under the Curve

Test Result Variable(s): Prostate-Specific Antigen Level (ng/ml)

Asymptotic 95% Confidence
Interval
Asymptotic
Area Std. Error® Sig.b Lower Bound Upper Bound
707 .032 .000 .645 770

The test result variable(s): Prostate-Specific Antigen Level (ng/ml) has at least
one tie between the positive actual state group and the negative actual state
group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5
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of choosing correctly in this situation. Recall that a test that has no diagnostic value
produces in the long run the diagonal line in our graph. Notice that the diagonal
line divides the area of the graph in half, and so the area under the diagonal is 0.5.
According to the Area Under the Curve table in Table 8.7, the area under the ROC
curve of the PSA test is 0.707. This value means that when deciding which of the
two randomly paired patients has prostate cancer, we would choose correctly about
71% of the time if we select the patient with the higher PSA score.

The 0.707 value is based on a sampling of men and so is subject to sampling
variability. The null hypothesis is that if we had administered the PSA test to all men
within the population from which our 301 men were drawn, the area under the curve
would be 0.5. According to the highly significant p-value, however, we can very
confidently reject the null hypothesis and conclude that the PSA test discriminates
between a patient with cancer and a patient who is cancer-free better than at chance
level. The 95% confidence interval indicates that while the area under the curve
in the sample is 0.707, we can be 95 % confident that in the population the area is
somewhere between about 0.645 and 0.770.

Comparing the diagnostic value of two or more tests The area under the curve
can be used to compare the overall diagnostic value of two or more tests. In the
PSA.sav file, the variable, Prostate-specific Antigen Density Level [psad] (vari-
able 7), contains each patient’s PSA level relative to the volume (ml) of his prostate
gland. Return to the ROC Curve dialog box, and as shown in Fig. 8.7, add Prostate-
specific Antigen Density Level to the 7est Variable window and click OK.
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Fig. 8.7 Generating ROC curves to compare the diagnostic value of two tests



226 8 Assessing Screening and Diagnostic Tests
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Fig. 8.8 ROC curves of two screening tests

Study the ROC curves of the two tests, shown in Fig. 8.8. (We edited the format-
ting of the curves a bit so that the two can be more easily distinguished from one
another in grayscale.) According to these data, PSA density levels more accurately
detect the presence of prostate cancer than do PSA levels, especially when the false
positive rate is below about 0.4.

Table 8.8 displays some of the remainder of the output.

Using Table 8.8, answer the following questions:

8.6.8 What is the area under the curve for PSA density levels?
8.6.9 Is this area significantly greater than 50 %?

8.6.10 What is this area’s 95 % confidence interval?

8.7 Exercise Questions

1. Wanting a noncultural alternative to the laboratory diagnosis of gonorrhea in
urogenital samples, investigators tested the accuracy of a DNA probe. Walk-in
patients at a sexually transmitted disease clinic were tested. A conventional labo-
ratory test was the criterion standard. The data for female patients can be found
in Table 8.9 and in the file, Gonorrhea.sav [2]. Doing your calculations either
by hand or using SPSS, answer the following questions:
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Table 8.8 Area under the curve of each of two screening tests

Area Under the Curve
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Asymptotic 95% Confidence
Interval
Asymptotic

Test Result Variable(s) Area Std. Error® Sig.b Lower Bound Upper Bound
Prostate-Specific Antigen

Level (ng/ml) 707 .032 .000 .645 770
Prostate-specific Antigen

Density Level .760 .031 .000 .700 .821

The test result variable(s): Prostate-Specific Antigen Level (ng/ml), Prostate-specific Antigen Density Level
has at least one tie between the positive actual state group and the negative actual state group. Statistics
may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

Table 8.9 Culture and DNA DNA probe result | Laboratory test result (criterion)
probe results — -
Positive Negative
Positive 42 3
Negative 4 155

What was the PPV of the DNA probe?

. What was the sensitivity of the DNA probe?

What was the probe’s likelihood ratio?

. What were the prior or pretest odds that a patient had gonorrhea?

If a patient tested positive for gonorrhea, what were the posterior or posttest
odds that she had the disease?

f. On the nomogram in Fig. 8.9, show how the posterior probability would be
found.

N

. Researchers asked a radiologist to rate the CT images of 109 patients for neuro-
logical disease. Fifty-one of the patients were known to be abnormal. The radi-
ologist made the ratings along a 5-place scale ranging from definitely normal (1)
to definitely abnormal (5). The data can be found in the file, CT Scan.sav [3].
The data are in summary form; the file lists the number of normal patients whose
CT images were definitely normal, the number of normal patients whose images
were probably normal, and so on. So before going any further, open the file,
select Data>Weight Cases and ask SPSS to weight each case by its frequency.
The variable, CT Rating [CT Rating] (variable 1) contains the radiologist’s rat-
ings. The variable, Disease Status (variable 2; 0=normal, 1=abnormal) is the
criterion variable. Construct an ROC curve.

a. By visual inspection of the curve, what appears to be the optimum combina-
tion of sensitivity and specificity of the radiologist’s ratings?
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Fig. 8.9 Nomogram for Pre-test Post-test
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b. What cutoff value should be used to optimize the diagnostic value of the radi-
ologist’s ratings? Explain how you arrived at your answer.

3. The file, Xray.sav [4], consists of 150 patients who underwent surgery to deter-
mine if they had suffered a bone fracture due to disease. The file contains the
results of three biochemical tests intended to detect the disease: BiochemA [fest/]
(variable 4), BiochemB [zest2] (variable 5), and BiochemC [test3] (variable 6).
The disease status of the patient as determined by the surgery is in Disease Posi-
tive [disease] (variable 7). We wish to know which of the three biochemical tests
best detects the presence of the disease.

a. Figures 8.10 through 8.12 display three pairs of histograms. Each pair shows
the distribution of the results of one of the biochemical tests for patients who
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had the disease (labeled by the researchers as “Disease positive present”) and
patients who did not have the disease (“Disease positive absent™). Judging
from these histograms, which test should best discriminate between patients
with disease and disease-free patients? Explain

b. Generate a set of ROC curves that compares the diagnostic performance of

these three tests. Based on visual inspection of the ROC curves, which bio-
chemical test best detects this disease? How can you tell from the graph?

c. Focusing on the best of the three tests, what is the area under its curve? Is it

significantly different from 50 %?

d. Staying with the best of the three tests, what appears from the graph to be the

optimal combination of sensitivity and specificity?

e. If you wanted to use the best of the three tests as a screening tool, would you

use the cutoff that generates the optimum level of sensitivity, a level of sensi-
tivity higher than the optimum or a level lower than the optimum? Explain.
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Data Sets and References

1. PAS.sav obtained from: Riffenburgh, R.H.: Statistics in Medicine, 2nd edn. Elsevier Academic,
Burlington (2006). (With the kind permission of the Elsevier Books and Dr. Thomas K. Huis-
man)

2. Gonorrhea.sav obtained from: Granato, P.A., Franz, M.R.: Evaluation of a prototype DNA
probe test for the noncultural diagnosis of gonorrhea. J. Clin. Microbiol. 27(4), 632—635
(1989). (With the kind permission of the American Society for Microbiology)

3. CT Scan.sav obtained from: Hanley, J.A., McNeil, B.J.: The meaning and use of the area under
a Receiver Operating Characteristic (ROC) curve. Radiology 143(1), 29-36 (1982). (With the
kind permission of the Radiological Society of North America)

4. Xray.sav obtained from: Peat, J., Barton, B.: Medical Statistics: A Guide to Data Analysis and
Critical Appraisal. Blackwell, Malden (2005). (With the kind permission of John Wiley and
Sons)



Chapter 9
Relationships in Quantitative Data

Abstract This chapter investigates assessing relationships between two quantita-
tive variables. Scatter plots are introduced as a graphical way to determine whether
a relationship exists between the two variables and assess the shape, direction, and
strength of the relationship. When the relationship is linear, the Pearson correlation
coefficient is introduced to measure the strength of the relationship. Tests and con-
fidence intervals on the Pearson correlation coefficient are discussed. For nonlinear
relationships Spearman’s rho is discussed.

9.1 Overview

We learned in Chap. 7 that contingency tables and clustered bar graphs are used to
display the relationship between two categorical variables. However, if the vari-
ables of interest are quantitative, the relationship between the two can be displayed
with a scatter plot (also known as a scatter diagram). With this technique, we can
determine whether a relationship exists, and if so, whether it is linear or not, wheth-
er it is positive or negative, and whether the relationship is weak or strong. In this
chapter, we learn about scatter plots. In Chap. 7, we also learned about two statistics
that are used to measure the extent to which two categorical variables are related:
Cramér’s V and gamma. In this chapter, we learn about two statistics that allow
us to measure the strength of relationship between two quantitative variables: the
Pearson correlation coefficient and Spearman’s rho.

Two quantitative variables are related if, for a given value of one variable, there
is a tendency for the second variable to have a certain value. A graphical means for
determining if a relationship exists is a scatter plot. Each observational unit has two
quantitative measurements taken on it. One is called the explanatory variable, and
the other is called the response variable. On an x-y coordinate system, the explana-
tory variable forms the horizontal axis, and the response variable forms the vertical
axis. The values of the two variables for each observational unit form an (x,y) pair
that is plotted. The resulting plot of these points is a scatter plot.

To determine if a relationship exists, we look for a pattern in the scatter plot. If
there is no pattern, then we say that the two variables are not related. If there is a
pattern, then we can say that the two variables are related. If the pattern seems to
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follow a straight line, then we say that the relationship is /inear. If the pattern is such
that an increase in one variable is associated with an increase in the other variable,
then we say that the relationship is positive. If the pattern reveals that an increase in
one variable is associated with a decrease in the other variable, then we say that the
relationship is negative.

The strength of the relationship is determined by the degree to which the pattern
follows a straight line or some sort of curve. If the points follow a line or curve
closely, then the relationship is said to be strong. As the points follow a line or curve
less well, then the relationship is weaker.

9.2 Scatter Plots

In this section, we interpret scatter plots. Begin by loading the data file, CDC
BRFSS.sav [1], into SPSS. In order to generate a meaningful scatter plot, it will
be necessary to exclude from our analyses answers of “do not know,” etc. So de-
clare the values of 7777 and the range 9000-9999 as missing for the variable RE-
PORTED WEIGHT IN POUNDS [WEIGHT?2] (variable 29), and 999 for the vari-
able REPORTED HEIGHT IN INCHES [HTIN3] (variable 75). (Do not confuse
the latter variable with a similar one that is expressed in feet and inches.) Select
Graphs>Chart Builder and open the Chart Builder dialog box. As shown in
Fig. 9.1, select Scatter/Dot from the Gallery and drag the picture of the simple scat-
ter plot (the one in the upper left-hand corner) to the window directly above it. Drag
REPORTED WEIGHT IN POUNDS to the Y-A4xis box, and drag REPORTED
HEIGHT IN INCHES to the X-Axis box. It is general practice to put the explana-
tory variable on the horizontal axis and the response variable on the vertical axis of
a scatter plot. Click OK.
Study the output, reproduced in Fig. 9.2.

Answer the following questions.

9.2.1 Does a relationship between the two variables seem to exist?
9.2.2 If so, does the relationship appear to be linear?

9.2.3 Does it appear to be positive or negative?

9.2.4 Does the relationship appear to be strong or weak?

Best Fitting Straight Line Although visual inspection of a scatter plot can often
reveal whether two variables are linearly related, it is helpful to plot the straight line
that best describes that relationship.

Double-click on the scatter plot we just generated to open the Chart Editor. As
shown in Fig. 9.3, click the Add Fit Line at Total icon. SPSS will then display the
best fitting straight line. It also displays in the upper right-hand corner of the plot a
quantity labeled R Sq Linear which we will discuss a bit later. To close Chart Editor,
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Fig. 9.1 Creating a scatter plot

click X in the upper right-hand corner of the editor. The resulting scatter plot is
shown in Fig. 9.3.

Assuming that values along the x-axis increase from left to right, and values
along the y-axis increase from bottom to top, a positive relationship will be indi-
cated by a line that extends from the lower left to upper right (i.e., the line will have
a positive slope). For negative relationships, the line will extend from upper left to
lower right (i.e., the line will have a negative slope). If there is no linear relationship
between the two variables, the line will be relatively flat.

9.2.5 What relationship between weight and height is indicated by the best
fitting straight line in the scatter plot?
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Fig. 9.2 A Scatter plot of weight versus height

Note that in the scatter plot we generated, a large number of data points do not
fall exactly on the best fitting line. This scatter of points around the line indicates
that the relationship between height and weight is not perfect. The more the data
points gravitate toward the line, the stronger is the relationship between the two
variables. If the relationship is linear and perfect, all of the points will fall on the
line. Finding two variables which are perfectly linearly related to one another is a
very rare occurrence.

R Squared: Proportion of Variability in Y Accounted for by Variability in
X The fact that the scatter plot does not show a perfect relationship is evidence
that factors other than those used to create the scatter plot influence the relation-
ship between them. After all, if values of the Y variable were related only to values
of the X variable and to nothing else, the relationship between the two variables
would be perfect and all of the data points would fall on the best fitting line. In the
jargon of statisticians, all of the variability in the Y scores would be accounted for
or explained by variability in the X scores. However, it is rare that the values of any
one variable are related only to one other variable. Almost always, the Y variable
will be related to many variables, not just to the X variable.

Weight, for example, is related to height, but it is also related to other factors as
well. To fully account for variability in people’s weight, one would have to take into
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account not only each person’s height but also each person’s diet, exercise habits,
etc. The more factors we can take into account in addition to height, the more we
will be able to account for the variability in people’s weight.

In theory, if we could measure every factor that affects the Y variable, we could
explain 100 % of the variability in that variable. For example, if we could measure
every factor that determines weight, we could explain 100 % of the variability in
people’s weight. However, when we measure only one factor, it is likely that we
will be able to account for only a small percentage of the variability in the Y vari-
able. For example, knowing the height of each person in a group of people would
not allow us to account for all of the variability in their weight. However, knowing
people’s height will at least allow us to account for some of the variability in their
weight.
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The amount of variability in the ¥ variable accounted for by the X variable is pro-
vided by SPSS when we instruct the program to insert the best fitting straight line.
This amount is the quantity R Sg Linear we mentioned earlier. The R Sq stands for
R Squared and refers to the square of the correlation between the X and Y variables.
(We will take a closer look at correlation later in this chapter.) The Linear reminds
us that we are measuring the degree to which the two variables have a linear re-
lationship. The value of R Sgq Linear is the proportion of the observed variability
in the Y variable accounted for by the X variable. If there is a perfect relationship
between X and ¥, R Sq Linear will equal 1.0 and 100 % of the variation in Y will
be accounted for by variation in X. If there is no linear relationship between X and
Y, R Sq Linear will equal 0, and 0% of the variation in Y will be accounted for by
variation in X. Keep in mind that, if the relationship between the two variables is not
linear, then R squared will underestimate the strength of the relationship.

For example, in the scatter plot depicting the relationship between weight and
height, R Sq Linear is equal to 0.271. This value means that 27.1 % of the variabil-
ity in the weights of the respondents can be accounted for by the variation in their
heights. This value also means that 72.9% of the variability in people’s weights
cannot be attributed to height but to other factors, whatever they might be.

It is not unusual that relationships between variables studied in research are much
weaker than the relationship between weight and height depicted in the scatter plot.
At least two problems arise when studying weak relationships. First, large samples
may be needed for weak relationships to be statistically significant. Second, studies
of weak relationships can raise questions regarding the theoretical or clinical sig-
nificance of the variables under investigation.

9.3 Pearson Correlation Coefficient

We look now at measures of association known as correlation coefficients. These
give a numerical measure of the strength of the relationship between two variables.
If both variables under study are quantitative and the relationship is linear, the Pear-
son correlation coefficient is the statistic of choice. We will use this statistic to study
the relationship between height and weight.

As shown in Fig. 9.4, select Analyze > Correlate >Bivariate to bring up the Bi-
variate Correlations dialog box. Move REPORTED WEIGHT IN POUNDS and
REPORTED HEIGHT IN INCHES into the Variables box. Be sure that Pear-
son has been selected in the Correlation Coefficients area. As we are dealing with
quantitative data, let us generate some means and standard deviations as well. Click
Options to open the Bivariate Correlations: Options dialog box. Check Means and
standard deviations. Notice that in the Missing Values area, Exclude cases pairwise
has been selected by SPSS. Now click Continue (Fig. 9.5).

Before we run the analysis, notice that in the Tests of Significance area, Two-
tailed has been selected. Unless we instruct SPSS to do otherwise, it will conduct a
two-tailed test of significance. Now click OK and study the output.
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Fig. 9.4 Selecting correlation

The output includes a table, shown in Table 9.1, that displays means and standard
deviations of the two variables.

9.3.1 What was the average height and weight of the sample?

The output also includes a table displaying Pearson correlation coefficients. The
table, sometimes called a correlation matrix, is shown in Table 9.2.

In a matrix, the names of the variables are listed both down the rows and across
the columns. The correlation between any two variables listed within the table is
displayed in the cell that forms the intersection between the appropriate row and
column. The matrix is symmetric, so it does not matter whether you first select the
appropriate column and then move down to the appropriate row, or you first select
the appropriate row and move across to the appropriate column. In a matrix gener-
ated by SPSS, most of the cells also display the p-values associated with the correla-
tions and the number of cases that were used in calculating them. The correlation is
labeled Pearson Correlation, the p-value Sig (2-tailed), and the sample size, N. Let
us look at each of these three entries more closely.
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Table 9.1 Summary statistics

Descriptive Statistics
Mean Std. Deviation N
REPORTED WEIGHT IN
POUNDS 168.18 40.348 7454
REPORTED HEIGHT IN
INCHES 66.21 3.949 7718

Table 9.2 Correlation results
Correlations

REPORTED | REPORTED
WEIGHT IN HEIGHT IN
POUNDS INCHES
REPORTED WEIGHT IN Pearson Correlation 1 520"
POUNDS Sig. (2-tailed) 000
N 7454 7404
REPORTED HEIGHT IN Pearson Correlation 520" 1
INCHES Sig. (2-tailed) 1000
N 7404 7718

**. Correlation is significant at the 0.01 level (2-tailed).
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Pearson Correlation Pearson correlation coefficients vary from —1 to 0 to+1.
The closer the value is to+ 1 or —1, the stronger is the relationship between the two
variables. A positive correlation indicates that increases in one variable are associ-
ated with increases in the other, while a negative correlation indicates that increases
in one variable are associated with decreases in the other. Note that because the
matrix displays the correlations between all possible pairings of the variables in the
analysis, the correlation between each variable and itself is also displayed. These
values are always equal to 1 and can be found on a diagonal from the uppermost left
cell to the lowermost right cell.

p-value Immediately below each of the correlations that do not lie along the diago-
nal is the p-value. As we learned in Chap. 5, a p-value is the probability of observing
a value of a test statistic that is equal to or greater than the value we computed if the
null hypothesis were true. SPSS tests the null hypothesis that the population correla-
tion is zero, that is, that the two variables are uncorrelated. If the p-value is <0.05,
we reject the null hypothesis in favor of the alternative hypothesis. If we conduct
a two-tailed test, the alternative hypothesis is that the population correlation is not
equal to zero. If we conduct a one-tailed test, the alternative hypothesis is either that
the population correlation is greater than zero or that the population correlation is
less than zero. Recall that by default, SPSS conducts a two-tailed test. We did not
ask SPSS to conduct a one-tailed test, so in our analysis the alternative hypothesis
is that the population correlation is not equal to zero.

Sample Size The sample sizes displayed in the matrix refer to the numbers of cases
upon which the correlations are based. By default, SPSS excludes cases pairwise, that
is, it will omit cases with missing data with reference only to the two variables for
which it is about to calculate the correlation coefficient. If the analysis involves the cal-
culation of two or more correlations, different correlations may be based on different
numbers of cases or on different subsets of cases. If you want to avoid these outcomes,
check Exclude cases listwise in the Missing Values area of the Bivariate Correlations:
Options dialog box. SPSS will exclude all cases that have missing data on any of the
variables involved in the analysis before it calculates the correlations. The resulting
correlations will be based on the same subset of cases and will of course have the same
sample size. However, the resulting sample size can be appreciably smaller than those
that would have been obtained had cases been excluded on a pairwise basis.

Study the correlation matrix and answer the following questions.

9.3.2 What is the value of the Pearson correlation in our analysis?

9.3.3 Would you describe the relationship between weight and height as
positive or negative?

9.3.4 Would you describe the relationship between weight and height as
weak or strong?

9.3.5 What is the p-value associated with the correlation?

9.3.6 What does the p-value tell us?

9.3.7 What was the sample size?
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Confidence Intervals and Null Hypotheses About Nonzero Values of Popula-
tion Correlations If we wish to construct a confidence interval for a population
correlation or test a null hypothesis that the population correlation is some value
other than zero, we need to use a procedure known as Fisher's Z Transformation,
developed by Ronald A. Fisher. Fisher found that if both variables come from nor-
mal populations, then transformation

Z=lln(1+_’”) ©.1)
2 1-r

where In is the natural logarithm and 7 is the sample correlation. If both variables
have a normal distribution, Z has a normal distribution. This means that we can
use the z transformation to convert the values of the sample correlation and the
population correlation posited by the null hypothesis. We can then use the normal
distribution to compute a p-value. We can also construct a confidence interval for
the converted correlation and transform that interval back to obtain a confidence
interval for the population correlation.

These procedures are not built-in features of SPSS. However, we can use a script
called correlation.sbs to implement them. The script is located in the same place as
the scripts we used in Chap. 6.

To illustrate the script, suppose we wish to test whether the population correla-
tion between REPORTED WEIGHT IN POUNDS and REPORTED HEIGHT
IN INCHES is greater than 0.5, and we wish to construct a 99 % confidence interval
for this correlation. Select Utilities>Run Script and run correlation.sbs to open
the Inference for a Population Correlation dialog box shown below. In the Sample
Correlation box, enter the Pearson correlation that we obtained earlier (0.52). In
the Test Correlation box, enter the value of the population correlation being tested
in the null hypothesis (0.50). In the Sample Size box, enter the size of the sample
(7404), and in the Confidence Level (%) box, enter in percent the desired confidence
level (99) for the Pearson correlation. Click Greater Than in the Alternative box.
The dialog box should look like the one shown in Fig. 9.6.

Click OK.

The Z-transformation produces the output shown in Table 9.3.

9.3.8 What is the value of Z for the test?

9.3.9 What is the p-value for the test?

9.3.10 Does the p-value indicate that the population correlation is >0.5?
9.3.11 What is the 99 % confidence interval for the population correlation?
9.3.12 Is it consistent with the test result?

When you opened the dialog box for the script, you may have noticed that the 7est
Correlation box contained a default value of 0, and the Confidence Level (%) box
contained a default value of 95. If all you want to do is conduct a hypothesis test on
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Fig. 9.6 Correlation script

dialog box Sample Correlation 52
Test Correlation -5
Sample Size 7404
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Confidence Level (%)

Alternative |Less Than
Not Equal To

0K Cancel |

Table 9.3 Test and confidence interval for a correlation
Test of Correlation =.5 vs. Correlation Greater Than .5

Sample Corr. Sample Size Z P-value

.52 7404 2.325673 1.001801E-02

99% Confidence Interval for a Correlation

N Sample Corr. Lower Upper
7404 0.52 0.4978159 0.5415041

the population correlation, simply set up the dialog box for the desired test, without
specifying a confidence level. If all you want to do is construct a confidence inter-
val for the population correlation, set up the dialog box for the desired confidence
interval without specifying a test correlation.
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9.4 Spearman’s Rho Coefficient

There are times when the Pearson correlation is not the most appropriate measure
of the relationship between two quantitative variables. One such time is when the
relationship between two quantitative variables is better described by a curve rather
than by a straight line. Since Pearson correlation is a measure of the strength of a
linear relationship, it is not the appropriate measure of association for curvilinear
relationships.

Some curvilinear relationships are monotonic while others are nonmonotonic.
Both types of relationships take the form of a curve, but for monotonic relationships,
the curve never reverses direction from positive to negative or from negative to posi-
tive. For nonmonotonic relationships, the curve reverses direction at least once. A
relationship that is U shaped is an example of a nonmonotonic relationship. For
monotonic relationships, Spearman’s rho is a better choice than Pearson correla-
tion. Spearman’s rho coefficients are Pearson correlation coefficients calculated on
the basis of the ranked values of the data. For example, if we were to ask SPSS to
calculate the correlation between height and weight using Spearman’s rho, SPSS
would first assign a ranking to each respondent’s weight (to indicate whether a given
respondent’s weight was the heaviest, second heaviest, etc.) and height (to indicate
whether the respondent’s height was the tallest, second tallest, etc.). SPSS would
then calculate the Pearson correlation coefficient between the two sets of rankings.

Spearman’s rho coefficients have many of the same properties as the Pearson
correlation. They range from —1 to 0 to +1 and have the same meaning. For ex-
ample, if weight and height were perfectly positively related, the tallest respondent
would also be the heaviest, the second tallest would also be the second heaviest,
etc., and rho would equal 1. The difference between Pearson and rho coefficients
is that if the data follow some sort of nonlinear monotonic curve, the value of the
Pearson correlation will underestimate the strength of the relationship. However, be
aware that if the curve is nonmonotonic, Spearman’s rho may also underestimate the
strength of the relationship.

Another instance where Pearson correlation would be inappropriate occurs
when either of the two variables is not normally distributed. In these circumstances,
Spearman’s rho is preferred. Whether each of the two variables is normally distrib-
uted can be determined by using the techniques explained in Chap. 5.

An Example The file, Bodymass.sav [2], contains three BMI scores of each of 20
hospitalized female anorexics: her BMI when she was admitted, her preferred BMI
as reported upon admittance, and her BMI at discharge. Let us determine the nature
of the relationship between Preferred body mass [Prefer] (variable 3) and Body
mass at admittance [Admit] (variable 2).

Load the data file. Using Analyze>Descriptive Statistics>Explore, conduct
tests of normality on each variable. Then using Chart Builder, generate a scatter plot
of the two variables. Put Body mass at admittance on the x-axis.

The results of the tests of normality are shown in Table 9.4, and the scatter plot
is shown in Fig. 9.7.



9.4 Spearman’s Rho Coefficient

Answer the following questions.
9.4.1 Are both variables normally distributed?
9.4.2 Does the relationship between the two variables appear to be linear

or nonlinear?

9.4.3 Does the relationship appear to be monotonic or nonmonotonic?
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9.4.4 Which correlation coefficient should we compute: Pearson or Spear-

man’s rho?

Table 9.4 Tests of normality

Tests of Normality

Kolmogorov-Smirmnov® Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Body mass at admittance .097 20 .200° 967 20 700
Preferred body mass 212 20 .019 .BB9 20 .026
*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction
22.004
(=]
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Fig. 9.7 Scatter plot
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Table 9.5 Pearson correlation
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Correlations

Preferred Body mass at
body mass admittance
Preferred body mass Pearson Correlation 1 572"
Sig. (2-tailed) .008
N 20 20
Body mass at admittance Pearson Correlation 572" 1
Sig. (2-tailed) .008
N 20 20
**. Correlation is significant at the 0.01 level (2-tailed).
Table 9.6 Spearman’s rho
Correlations
Preferred Body mass at
body mass admittance
Spearman's rho Preferred body mass Caorrelation Coefficient 1.000 742"
Sig. (2-tailed) . 000
N 20 20
Body mass at admittance  Correlation Coefficient 742" 1.000
Sig. (2-tailed) .000 .
N 20 20

**. Correlation is significant at the 0.01 level (2-tailed).

We can see from the tests of normality that we can reject the null hypothesis that
preferred body mass is normally distributed, and we can see from the scatter plot
that the relationship between the two variables is not linear. Either of these findings
would lead us to compute Spearman’s rho instead of Pearson correlation. Note that
the relationship is monotonic.

To compute Spearman’s rho, open the Bivariate Correlations dialog box, move
Preferred body mass and Body mass at admittance to the Variables box, and in
the Correlation Coefficients area, select Spearman. Leave Pearson checked so we
can compare the two coefficients. Click OK and study the correlation matrices.

The matrix displaying the Pearson correlation is shown in Table 9.5, and the
matrix displaying Spearman’s rho is shown in Tables 9.6.

Both matrices look very similar to one another. However, the matrix displaying
the rho coefficients includes the phrase Spearman’s rho in the upper left-hand cor-
ner and identifies each coefficient as a Correlation Coefficient.
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Answer the following questions.

9.4.5 What is the value of Spearman’s rho?

9.4.6 How confident can we be that the population correlation is not equal
to zero?

9.4.7 How does the value of Spearman’s rho compare to the value of the
Pearson correlation?

9.5 Exercise Questions

1. Open the file, Framingham.sav [3]. This file contains a subset of data from the
Framingham Heart Study, a prospective cohort study of cardiovascular disease
among residents of Framingham, Massachusetts. Generate a scatter plot depict-
ing the degree of linear relationship between Diastolic Blood Pressure [dbp]
(variable 3) and Body Mass Index [hmi] (variable 8). Plot Diastolic Blood Pres-
sure on the y-axis and Body Mass Index on the x-axis. After you have generated
the scatter plot, insert the best fitting straight line.

2. Which of the following best describes the relationship depicted in the scatter plot
between diastolic blood pressure and BMI you generated in question 1? Explain
your answer.

a. There is no relationship.

. There is a weak positive relationship.
There is a strong positive relationship.
. There is a weak negative relationship.
There is a strong negative relationship.

o a0 o

3. According to the scatter plot you generated in question 1, how much variability in
diastolic blood pressure is accounted for by variability in BMI? How do you know?

4. Figure 9.8 shows a set of four scatter plots depicting the relationship between
diastolic blood pressure and BMI. These plots were generated in Chart Builder
by assigning Gender [sex] (variable 1) as the Rows Panel variable and Coronary
Heart Disease [chdfate] (variable 5) as the Columns Panel variable. For which
group of patients is diastolic blood pressure and BMI most strongly related?
How do you know?

. Female patients without coronary heart disease
. Female patients with coronary heart disease

. Male patients without coronary heart disease

. Male patients with coronary heart disease

(=T e N

5. This question focuses on the relationship between Systolic Blood Pressure [shp]
(variable 2) and Diastolic Blood Pressure among the entire sample in the Fram-
ingham data set.
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Coronary Heart Disease

No Yes

9 Relationships in Quantitative Data

Diastolic Blood
Pressure

Diastolic Blood
Pressure

.
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= 1.14%
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lepuas

Yes;MaleR? Linear = 0.095
Yes;FemaleR? Linear = 0.105:
No;MaleR? Linear = 0.110
No;FemaleR? Linear = 0.143

Fig. 9.8 A set of scatter plots of diastolic blood pressure versus body mass index (Question 4)

a. Create a correlation matrix that displays the correlation between systolic and
diastolic blood pressure.
b. What is the value of the Pearson correlation between systolic and diastolic
blood pressure?

oo

. What is the sample size upon which the correlation is based?
. What is the p-value for the test of the alternative hypothesis that the correla-

tion between systolic and diastolic blood pressure in the population of Fram-
ingham residents is not zero?
e. What is the p-value for the test of the alternative hypothesis that the correla-
tion between systolic and diastolic blood pressure in the population of Fram-
ingham residents is >0.70? (Hint: You will need to conduct another analysis
to answer this question.)
f. What is the 95 % confidence interval for the correlation between systolic and
diastolic blood pressure?
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Fig. 9.9 Scatter plot for Question 6

6. Figure 9.9 is a scatter plot of the relationship between forced expiratory volume
(FEV) and age for girls between the ages of 8 and 18 who do not smoke. These
data are in FEV.sav [4]. The values of the Pearson correlation and Spearman’s
rho coefficients are shown in Table 9.7.

a.

» o ao o

Does the relationship between FEV and age appear to be linear? Is it mono-
tonic? Explain.

. What are the two values of the Pearson and Spearman’s rho correlations?

What are the p-values for each correlation?

. What is the null hypothesis for each correlation?

Can we reject the null hypothesis for each correlation?
Which correlation is the better choice for these data: Pearson or Spearman’s
rho? Why?
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Table 9.7 Correlation results for Question 6
Correlations

Correlations

Age FEV
(years) (liters)

Age (years) Pearson Correlation 1 578"

Sig. (2-tailed) .000

N 214 214
FEV (liters)  Pearson Correlation 578" 1

Sig. (2-tailed) .000

N 214 214

**_Correlation is significant at the 0.01 level (2-tailed).

Nonparametric Correlations

Correlations

Age FEV
(years) (liters)
Spearman'stho  Age (years)  Correlation Coefficient 1.000 636"
Sig. (2-tailed) . .000
N 214 214
FEV (liters)  Correlation Coefficient 636 1.000
Sig. (2-tailed) .000
N 214 214

**. Correlation is significant at the 0.01 level (2-tailed).

Data Sets and References

1.

CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
Bodymass.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski,
E.: A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permis-
sion of the Routledge Taylor and Francis Group, and Professor Shelley L Channon).
Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean
Coady, National Heart, Blood, and Lung Institute).

FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics, 6th ed. Thomson Brooks/
Cole, Belmont (2006). With the kind permission of Professor Bernard Rosner. For context,
see Tager, 1.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on
pulmonary function in children. American Journal of Epidemiology. 110, 15-26 (1979).
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Chapter 10
Comparing Means of Independent Samples

Abstract This chapter reviews the independent-samples #-test and the one-way
analysis of variance, inferential statistics that are commonly used to test null and
alternative hypotheses about mean differences among independent populations.
Because both procedures assume equal population variances, Levene’s test for
homogeneity of variances is discussed, as are methods for hypothesis testing when
homogeneity of variances cannot be safely assumed. The chapter continues by
using a measure of effect size, partial eta squared, to distinguish between statisti-
cal and clinical significance, and concludes with a discussion of post hoc multiple
comparisons and contrast analysis.

10.1 Overview

Often researchers make two sets of measurements and then, using a test of hypoth-
eses, compare the two sets to determine if the difference observed in the sample
measurements is attributable to the population from which the data were drawn.
Sometimes the measurements are made of two different groups of participants. For
example, the blood pressure of hypertensive patients who had received a new treat-
ment might be compared to that of a group who had received a standard treatment.
In this type of study, researchers are said to be comparing two independent samples.
Sometimes the two sets of observations are made of the same group of participants.
For example, the blood pressure of hypertensive patients who had received a new
treatment might be compared to the blood pressure of the same group of patients
before they had received the treatment. In this type of study, researchers are said to
be making paired comparisons.

If the observations are quantitative (e.g., blood pressure), researchers can com-
pute the means of the two sets of observations and assess whether the observed
difference is significant by using what is known as a t-fest. If the two sets of ob-
servations are made of two different groups (e.g., the mean blood pressure of hy-
pertensive patients receiving a new treatment is to be compared to the mean blood
pressure of hypertensive patients receiving a standard treatment), an independent-
samples t-test will be used. If the two sets of observations are of the same group
(e.g., the mean blood pressure of hypertensive patients who had received a new
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treatment is to be compared to the mean blood pressure of the same group of pa-
tients before they had received the treatment), a paired-samples t-test will be used.
In this chapter, we focus on comparing independent samples. In the next chapter, we
will study paired comparisons.

When comparing independent samples, the observations ideally will have been
made within the context of a controlled experiment in which an explanatory vari-
able is manipulated by the researcher to determine its causal impact on a response
variable. For example, a new treatment for hypertension might be given to an ex-
perimental group of hypertensive patients while a standard treatment is given to a
control group of hypertensives. Whether a patient is given the new or standard treat-
ment would be decided at random. In these cases, if the results of a statistical test
support the hypothesis that the difference between two sets of observations is attrib-
utable to the general population rather than to random sampling variability, a causal
relationship between the explanatory and response variables can be established.
Often, though, comparisons are made across sets of observations in studies that do
not involve manipulation of an explanatory variable. For example, the explanatory
variable might be gender, race, age, or economic status, or it might be whether or
not participants in the course of their daily lives had been exposed to a risk factor.
In these observational studies, investigators cannot randomly assign participants to
various values of the explanatory variable. Consequently, the results of a hypothesis
test reveal only if the difference in the response variable can be confidently attrib-
uted to the population from which the sample was taken rather than to sampling
variability, but the cause of the difference cannot be established.

An alternative to the #-test is a procedure known as one-way analysis of variance
(one-way ANOVA). As with the #-test, one-way ANOVA can be used to compare
two group means. However, one-way ANOVA can also be used to compare three or
more means at one time. In this chapter, we explore one-way ANOVA as a method
of comparing two or more means.

In order to conduct a #-test or a one-way ANOVA, the response variable must
be quantitative. Usually, the explanatory variable is categorical. For example, in a
randomized controlled trial of a new hypertensive medication, the explanatory vari-
able might be whether or not hypertensive patients were given the new or standard
drug. In an observational study of salt intake and blood pressure, the explanatory
variable might be whether or not participants self-report that they avoid salty foods.
Sometimes though, the explanatory variable is quantitative. If the explanatory vari-
able is quantitative, its values are few in number, and there are a sufficient number
of cases at each of those values to allow for a meaningful comparison of group
averages, then a #-test or one-way ANOVA might be conducted. Otherwise, the rela-
tionship between the explanatory and response variable would be assessed by other
techniques. For example, the investigator might calculate the Pearson correlation
between the two quantitative variables, or first transform the quantitative explana-
tory variable into a categorical variable and then conduct the #-test or ANOVA if
the transformed variable generates two groups or conduct the ANOVA if the trans-
formed variable generates more than two groups.
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For example, in a randomized controlled trial, an investigator might determine
the relative effect of two different amounts of a new hypertension medication by
giving the smaller dose to a group of 50 hypertensive patients and the larger dose to
a second group of 50 hypertensives. The investigator would then compare the aver-
age blood pressure of both groups by using either a #-test or a one-way ANOVA. On
the other hand, in an observational study of the relationship between salt intake and
blood pressure, an investigator might analyze participants’ diets to obtain a quanti-
tative measure of daily salt intake. Since the measure of salt intake would generate
a large number of possible values, the investigator would compute the correlation
between salt intake and blood pressure, or if the sample size is sufficiently large to
allow for a meaningful analysis of group means, transform the amount of daily salt
intake into a categorical variable (e.g., by grouping participants in terms of whether
their salt intake was in the first, second, third or fourth quartile), and then compare
the mean blood pressure of the resulting groups.

As we saw in Chap. 5 and as we will see later in this chapter, it is possible for
differences among sets of observations to be statistically significant even if the dif-
ferences are small. For example, an experimental group of hypertensive patients
who received a marginally effective treatment might experience a small yet statisti-
cally significant reduction in blood pressure. Therefore, in addition to determining
whether differences among groups are statistically significant, researchers conduct-
ing experiments will quantify the size of the impact of the causal variable on the
response variable, and researchers conducting observational studies will quantify
the strength of the relationship between the explanatory and response variables.
One method by which to do this is by computing what is called effect size. In this
chapter, we look at a measure of effect size that can be computed when a one-way
ANOVA is used.

10.2 Comparing Two Means: The Independent-Samples
t-Test

In this section, we demonstrate how two means are compared when using the inde-
pendent-samples #-test. The two means will be the average body mass index (BMI)
values of male and female residents of NY.

Load the data file, CDC BRFSS.sav [1], into SPSS. As shown in Figs. 10.1,
10.2, 10.3 and 10.4, select Analyze > Compare Means > Independent-Samples
T-Test to open the Independent-Samples T-Test dialog box. Move BODY MASS
INDEX [BMI] (variable 107) into the Test Variable(s) box and SEX [SEX] (vari-
able 32) into the Grouping Variable box. You will notice that Sex(?,?) is displayed
in the Grouping Variable box. The question marks indicate that you need to define
what value of the grouping variable corresponds to the first group and what value
corresponds to the second group. To do this, click Define Groups to open the De-
fine Groups dialog box. Type “1” in the Group I box, and “2” in the Group 2 box.
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Fig. 10.1 Opening the Independent-Samples T-Test dialog
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Fig. 10.2 Selecting the test and grouping variables and opening the Define Groups dialog

(Do not include the quotation marks.) Typing in these numbers will tell SPSS which
values of SEX we wish to use. Of course, there are only the two values, but we have
to tell SPSS anyway. Click Continue and then OK.

The output of the #-test consists of two tables. The first is Table 10.1, Group
Statistics. It displays some descriptive statistics.
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Fig. 10.3 Defining groups
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Fig. 10.4 Executing the independent-samples t-test

Table 10.1 Group statistics generated by an independent-samples t-test

Group Statistics
Std. Error
SEX N Mean Std. Deviation Mean
BODY MASS INDEX  Male 2883 27.4496 4.85540 .09043
Female 4534 26.5124 5.95192 .08839
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Table 10.2 Segment of the Indpendent-Samples Test table showing Levene’s test for equality of
variances

B Independent Samples Test
Use this #-value if equal variances can -
b d Levene's Test for Equality
¢ assumed. of Variances
4\
F \w .

BODY MASS INDEX Equal variances assumed 105.145 .000 m
Equal variances not assumed o @

Use this z-value if equal variances
cannot be assumed.

Study the Group Statistics table and answer the following questions.

10.2.1 How many men were included in the analysis? Women?

10.2.2 What were their respective means and standard deviations?

10.2.3 Imagine that we were to repeat the survey 100 times, and each time we
computed the mean BMI of men and of women. When we were fin-
ished, we would have a set of 100 mean BMI scores for men, and a set
of 100 BMI scores for women. Which set of means—those for men or
those for women—would show greater variability? How do you know?

10.2.4 If we calculated the standard deviation of the 100 mean BMI scores
of men, approximately what would it equal?

The second table, Independent-Samples Test, shows the results of two different #-
tests. Table 10.2 is a segment of that table.

The #-test on the first row of Table 10.2 should be used if it is safe to assume
that the two population variances (variance is the square of standard deviation)
are equal. If equality of variances cannot be assumed, the #-test on the second row
should be used. To make this determination, researchers refer to the results of what
is known as Levene § test. For this test, the null hypothesis is that the two population
variances are equal, and the alternative hypothesis is that they are not equal. The
p-value for this test appears in the Sig. box in the Levene s Test for Equality of Vari-
ances area. It has the same interpretation as the other p-values we have encountered.

10.2.5 Were the two sample standard deviations equal?

10.2.6 If not, what does the p-value for Levene’s test lead us to con-
clude about whether or not this difference can be attributed to the
populations?

10.2.7 What is the p-value?

10.2.8 Is the difference in sample variances significant at the 0.05 level?
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Table 10.3 Results of the independent-samples t-test
Independent Samples Test

t df Sig. (2-tailed)
BODY MASS INDEX Equal variances assumed 7.087 7415 .000
Equal variances not assumed 7.411 6973.107 .000

If the difference in sample variances is significant at the 0.05 level, we conclude that
the difference in the variances of the BMI scores of the 7000 or so men and women
in our sample was due to a difference in the variance of BMI scores of the millions
of men and women in the population from which the sample was taken. Otherwise,
we conclude that the difference in the variances of the BMI scores of the 7000 or so
men and women in our sample was due just to chance, and that there is no difference
in the variance of BMI scores of the millions of men and women in the population
from which the sample was taken.

10.2.9 Based on the results of Levene’s test, which version of the indepen-
dent-samples z-test should we use to decide whether or not the differ-
ence in sample means is significant?

Now we are ready to determine if the data support the null hypothesis that the mean
BMI of men is the same as the mean BMI of women or the alternative hypothesis
that the mean BMI of men differs from the mean BMI of women. Table 10.3 is that
portion of the Independent-Samples Test that displays the results of the indepen-
dent-samples #-test.

Using the appropriate row of the table, find the #-value. This value is in the column
labeled ¢, and is calculated using a formula that uses three properties of the data: the
size of the difference between the two group means (the sample mean from group 2
is subtracted from the sample mean from group 1), the variability of the scores within
each group, and the number of observations in each group. The result is the #-value.
In our example, what is the #-value? Be sure to be reading from the appropriate row.

Values of ¢ can be either positive or negative, depending on the direction of the
difference between the two means. If the sample mean from group 1 is greater than
the sample mean from group 2, the #-value will be positive. If the sample mean from
group 1 is less than the sample mean from group 2, the z-value will be negative. If
the two sample means are equal, the #-value will equal zero. Does your observed
t-value indicate that the difference between the two sample mean BMI scores is
positive, negative or zero?
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Table 10.4 Mean difference, and its standard error and 95 % confidence interval

t-test for Equality of Means

95% Confidence Interval of the
Difference
Std. Error
Mean Difference Difference Lower Upper
BODY MASS INDEX Equal variances assumed .93720 13224 67797 1.19643
Equal variances not assumed 93720 12645 68932 1.18509

Before the p-value is calculated, the number of degrees of freedom is computed.
There is a different formula for each of the two versions of the ¢-test. Degrees of
freedom reflect sample size. The larger the sample, the greater is the number of
degrees of freedom.

10.2.10 What are the degrees of freedom in our example for the #-test that is
appropriate for this situation? Look in the column labeled df.

The number of degrees of freedom and the 7-value are then used to calculate the
p-value. The p-value is the probability of observing a value of ¢ as or more extreme
under the assumption that the null hypothesis—the two population means BMI
scores are equal—is true. The p-values will decrease as ¢ increases or the number of
degrees of freedom increases. When both are large, p-values are quite small, often
less than 0.001.

What is the p-value in our example? To find out, read from the table in the col-
umn labeled Sig. (2-tailed). The term 2-tailed indicates that this is the p-value for
the alternative hypothesis that the two population means are not equal to each other.
Do the data support the null or the alternative hypothesis? That is, can we say that
the difference is statistically significant?

The rest of the output in Independent-Samples Test provides information regard-
ing the construction of a 95% confidence interval for the difference between the
two population means (the mean for group 2 subtracted from the mean for group
1). This information is displayed in Table 10.4. The table displays the size of the
difference between the two means in our sample (found in the column labeled Mean
Difference), the standard error of the difference (found under Std. Error Difference),
and the 95 % confidence interval of the difference, with its lower and upper values.

To see if you understand these statistics, answer the following questions.

10.2.11 Does the confidence interval indicate that the population mean BMI
for men is greater than the population mean BMI for women? Less
than? Neither? Why?

10.2.12 Can we be sure this conclusion is correct? Why or why not?
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10.3 Comparing Two Means: One-way Analysis
of Variance

An alternative to the independent-samples #-test is known as one-way analysis of
variance, or one-way ANOVA. In addition to comparing two means, one-way ANO-
VA can be used to compare three or more group means at the same time. For ex-
ample, we might wish to compare the mean blood pressure of hypertensive patients
who were given a new drug with that of patients who were kept on standard drug
treatment with that of patients who were given an alternative to a drug treatment,
say, an exercise and diet regimen. The #-test cannot handle more than two means at
a time, so in this case, one-way ANOVA would be the test of choice. Later in this
chapter, we will look at how the ANOVA approaches the analysis of three or more
means.

One-way ANOVA can be used to compare two means when it may be safely
assumed that the population variances are equal. Earlier, we saw that the variances
in BMI varied significantly across gender. Because it is not appropriate to use the
standard one-way ANOVA in this example, we will change our example and look
at the relationship between BMI and coronary heart disease. On average, who has
the larger BMI: patients who have coronary heart disease or patients who do not?
To answer this question, we will analyze data from the Framingham Heart Study, a
prospective cohort study of cardiovascular disease.

Open the file, Framingham.sav [2]. This file consists of a sample of 4699 men
and women whose cardiovascular health was monitored for an average of about
22 years. As shown in Figs. 10.5, 10.6, 10.7 and 10.8, select Analyze > Compare
Means > One-Way ANOVA to open the One-Way ANOVA dialog box. Move BODY
MASS INDEX [bmi] (variable 8) into the Dependent List box and Coronary Heart
Disease [chdfate] (variable 5; 0=No; 1=Yes) into the Factor box. Click Options to

Analyze ing Graphs Utilities Add-ons Window Help
- A A B
Descriptive Statistics > 222 B Rl
Table, L
" [ means...
General Linear Mod g One-Sample T Test...
i i +
Sl w Independent-Samples T Test..
Mixed Models 4
= B Paired-Samples T Test .
Correlate 2 .
‘ One-Way ANOVA...
Rearession

Fig. 10.5 Opening the One-Way ANOVA dialog
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open the One-Way ANOVA: Options dialog box. Check Descriptive, Homogeneity
of variance test, Brown—Forsythe, and Welch, and then click Continue and OK.

Table 10.5 is the first table of the output, and gives for each category of coronary
heart disease the sample size, the mean BMI, the standard deviation of the BMI val-
ues, the standard error of the mean BMI, the 95 % confidence interval for the mean,
and the maximum and minimum observed values of BMI.

Table 10.6 is the second table of the output, and reports the Levene test for equal-
ity of variances of the BMI values in the two disease categories. The null hypothesis
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Fig. 10.8 Executing a one-way ANOVA

Table 10.5 Descriptive statistics generated by a one-way ANOVA on the BMI of patients with and
wthout coronary heart disease (rows labelled yes and no, respectively)

Descriptives

Body Mass Index

95% Confidence

Interval for

Mean
N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum
No 3218 25.19 4.010 .071 25.06 25.33 16 51
Yes 1472 26.59 4.116 107 26.38 26.80 17 58
Total 4690 25.63 4.095 .060 25.51 25.75 16 58

Table 10.6 Levene test of the homegeneity of variances in the BMI of patients with and without

conronary heart disease

Test of Homogeneity of Variances

Body Mass Index

Levene
Statistic

df1

df2

Sig.

.006

4688

.937

is that the two population variances are equal, and the alternative hypothesis is that

the two population variances differ.

If the Levene test indicates that it is safe to assume that the two variances are
equal, then it is appropriate to use the F statistic given in the ANOVA table shown
in Table 10.7 to test whether or not the group means are equal. The null hypothesis
is that the group means are equal, and the alternative hypothesis is that the group

means are not the same.
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Table 10.7 One-way analysis of variance testing the null hypothesis that the mean BMI of patients
with and wthout coronary heart disease are equal

ANOVA
Body Mass Index
Sum of
Squares df Mean Square F Sig.
Between Groups 1964.313 1 1964.313 120.135 .000
Within Groups 76653.063 4688 16.351
Total 78617.376 4689

Table 10.8 Tests of the null hypothesis when equal variances in the BMI of patients with and
without coronary heart disease cannot be assumed

Robust Tests of Equality of Means
Body Mass Index

Statistic® df1 df2 Sig.
Welch 117.810 1 2785.143 .000
Brown-Forsythe 117.810 1 2785.143 .000

a. Asymptotically F distributed.

Table 10.8 is the last table of the output, and gives the results of the Welch test
and the Brown—Forsythe test for equality of group means. These tests are appropri-
ate when the Levene test indicates that it is not safe to assume that the two variances
are the same. Again, the null hypothesis is that the group means are equal, and the
alternative hypothesis is that the group means differ.

Values of ¢, F, and the Welch and the Brown—Forsythe statistics have several
common characteristics. Each of the four statistics is a ratio in which the numerator
reflects the size of the difference between the two group means, and the denomina-
tor reflects the variability of the scores within each group and the size of the sample.
In addition, larger values of each of the four statistics result in smaller p-values.
However, F ratios and the Welch and Brown—Forsythe statistics can never be nega-
tive. They begin at 0 and go up from there. A value of 0 results when the sample
means are equal, giving evidence that there is no difference between the population
means. In the case of testing the difference between two group means, you may note
that the value of the F ratio is equal to the square of the value of the #-test statistic
when the two population variances are equal.

As 1s the case with the #-value, the calculations of the F ratio and the Welch and
Brown—Forsythe statistics have degrees of freedom associated with them. However,
unlike the #-value, each of the latter three statistics has two values for the degrees of
freedom, one associated with the numerator of the statistic and one associated with
the denominator of the statistic. For the F ratio, the numerator degrees of freedom
are equal to the number of group means being tested minus 1, while the denomina-
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tor degrees of freedom have the same value as those for the equal variances z-test.
The numerator degrees of freedom for the Welch and the Brown—Forsythe statistics
are the same as that of the F ratio, but there is a rather complicated formula for ar-
riving at the degrees of freedom for the denominator.

The value of the F ratio, the Welch statistic or the Brown—Forsythe statistic, and
its associated degrees of freedom are used to compute a p-value. If we can assume
equal variances, the p-value associated with the #-test will be the same as that for
the one-way ANOVA. In this situation, whether we conduct a #-test or a one-way
ANOVA, we will come to the same conclusion as to whether the difference between
the two group means was statistically significant.

Study the output in Tables 10.5, 10.6, 10.7 and 10.8, and answer the following

questions.

10.3.1 What is the mean BMI of patients who have coronary heart disease?

10.3.2 What is the mean BMI of patients who do not have coronary heart
disease?

10.3.3 What test or tests of equality of means should we use with these
data? Why?

10.3.4 What is the value of the test statistic that compares the two means?

10.3.5 What is the p-value associated with the test statistics that compares
the two means?

10.3.6 Can we confidently conclude that in the population of Framingham
residents, coronary heart disease and BMI arerelated? Why or why not?

10.4 Effect Size

Large values of ¢ or one-way ANOVA statistics occur when the difference between
the two sample means is large, the variability of scores within each of the two
groups is small, or when the number of scores in each group is large. Since large
values of these statistics are associated with small p-values, and since statistically
significant results are usually desirable, researchers will often conduct studies in
such a way as to maximize the average difference in scores between the two groups
under study, minimize the variability of scores within each group, and maximize the
size of the sample.

For example, in an experimental investigation of whether a newly developed
hypertensive drug reduces blood pressure, a researcher might maximize the differ-
ence between the average blood pressure of the experimental and control groups
by administering to the experimental group as large a dose of the new drug as is
safely possible. To minimize the variability of blood pressure readings in each of the
two groups, the researcher would take care to measure blood pressure at the same
time of day each day, and in the same way with the same equipment. To maximize
sample size, the researcher would recruit large numbers of patients.
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Fig. 10.9 Opening the Univariate dialog

It should be pointed out that there are cases when a tiny and clinically unimport-
ant difference between two group means can still result in a significant p-value.
For example, the impact on blood pressure of a newly developed drug may be sta-
tistically significant but perhaps only because the researcher recruited a very large
number of patients. The impact of the drug might be quite small, so small as to have
little or no clinical or practical significance. So, not only will researchers look for
statistical significance but they will also use a measure of effect size to determine
if the difference between the means is meaningful. These statistics gauge whether
a statistically significant difference between two groups reflects a weak, moderate
or strong relationship between the two variables under investigation. These mea-
sures involve taking into account the size of the difference between the means of
the two groups, the variability of the scores within each group and the size of the
sample. The details of these measures vary from one to the other, but all quantify
the strength of relationship between two variables.

Partial eta squared In this section, we use a measure of effect size called par-
tial eta squared to determine the strength of relationship between sex and BMI. In
the exercise questions, we leave it to you to determine the strength of relationship
between coronary heart disease and BMI in our Framingham data set. Partial eta
squared varies from 0 to 1. The closer the value of partial eta squared is to 0, the
weaker is the relationship between the two variables. The closer the value is to 1,
the stronger is the relationship.

In order to compute partial eta squared with SPSS, we need to use an alternative
procedure to conducting the one-way analysis of variance. Return to the Centers
for Disease Control and Prevention (CDC) data set. As shown in Figs. 10.9, 10.10
and 10.11, select Analyze > General Linear Model > Univariate to open the Uni-
variate dialog box. Move BODY MASS INDEX [BMI] (variable 107) to the De-
pendent Variable box and SEX [SEX] (variable 32) to the Fixed Factor(s) box. To
obtain the value for partial eta squared and the group means, click Options to bring
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Fig. 10.10 Selecting the dependent variable and factor, and opening the Options dialog

up the Univariate: Options dialog box. Move (OVERALL) and SEX to the Display
Means for box, and check Descriptive statistics and Estimates of effect size in the
Display area. Click Continue and then OK (Fig. 10.12).

The output includes Table 10.9, which displays sample sizes, and Table 10.10,
which displays means and standard deviations. The sample sizes, means, and stan-
dard deviations should be identical to those generated by the #-test we conducted in
Sect. 10.2 and displayed in Table 10.1.

What is different in the output is the content of a third table, Table 10.11. This
table is called Tests of Between-Subjects Effects, and displays the test statistic and
the measure of effect size.

To find the test statistic, that is, the F ratio, first locate the column labeled F in
the table. Then read down the column until you encounter the F ratio that is found
in the row labeled with the name of the factor of interest, in our example, SEX. Once
you have found the F ratio, the p-value associated with it can be found in the Sig.
column in that row. This p-value is based on the assumption that the variances in
BMI are the same for each sex.

10.4.1 What is value of the F ratio?
10.4.2 What is the p-value?
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Fig. 10.11 Selecting output to be displayed

To determine the values for degrees of freedom associated with the F ratio, look in
the df column of the table. The entry in the row corresponding to the factor of inter-
est (sex in this example) gives the numerator degrees of freedom. The denominator
degrees of freedom can be found by continuing down the df column to the row

labeled Error.

10.4.3 What are the numerator and denominator degrees of freedom?

To find the value of partial eta squared, look in the last column of the table in the
row corresponding to the factor of interest, in our case, SEX.
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Fig. 10.12 Using the Univariate dialog to execute a one-way ANOVA
) Between-Subjects Factors
Table 10.9 Sample sizes of male
and female residents of NY Value Label N
SEX 1 Male 2883
2 Female 4534

Table 10.10 Descriptive statistics of the BMI of male and female residents of NY
Descriptive Statistics

Dependent Variable: BODY MASS INDEX

SEX Mean Std. Deviation N

Male 27.4496 4.85540 2883
Female 26.5124 5.95192 4534
Total 26.8767 5.56992 7417
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Table 10.11 Output from a one-way ANOVA displaying the strength of the relationship between
sex and BMI among residents of NY

Tests of Between-Subjects Effects
Dependent Variable: BODY MASS INDEX

Numerator and
denominator degrees of

[ F-ratio

[ p-value

Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Corrected Model 1547.980° 1 1547.980 50.227 .000 .007
Intercept 5131835.343 5131835.343 166 I3 0og as
SEX 1547.980 1 ) 1547.980 @ @
Error 228525.978 7415 30.819
Total 5587776.825
Corrected Total 230073.958 7416
a. R Squared = .007 (Adjusted R Sgdargd = .007)

Effect size j

10.4.4 What is the value of partial eta squared?
10.4.5 Based on that value, how strong is the relationship between sex and
BMI?

Statistical Significance and Effect Size We can now put together two important
concepts: statistical significance and effect size.

10.4.6 Based on your analysis of the CDC data, would you say that there
is or is not a difference between the population mean BMIs of men
and women?

10.4.7

moderate, or large?

If you say that there is a difference, would you say that it is small,

Remember, a statistically significant relationship between two variables does not
necessarily mean that the relationship is a powerful one. The relationship between
sex and BMI is a case in point. Although the mean BMI of men was significantly
different from the mean BMI of women, sex and BMI were only weakly related. In
fact, the effect size is tiny, suggesting that the difference in BMI between the two

sexes may have little or no practical or clinical significance.

10.5 Comparing More than Two Means

As we noted earlier in this chapter, ANOVA is typically used when one wishes
to compare three or more means. In this section, we explore how ANOVA can be
used for this purpose. As an example, we study the average BMI of four groups
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Table 10.12 Descriptive statistics of the BMI of NY residents of varying levels of education
Descriptives

BODY MASS INDEX

N Mean Std. Deviation Std. Error
Did not graduate High School 584 28.2939 5.72488 .23690
Graduated High School 2096 27.6262 5.90429 12897
Attended College or 1708 | 27.2022 5.86608 14194
Technical School
Graduated from College or 3002 | 25.8973 4.93031 08998
Technical School
Total 7390 26.8786 5.56995 .06479

Table 10.13 Levene’s test of homogeneity of variances in the BMI of NY residents of varying
levels of education

Test of Homogeneity of Variances
BODY MASS INDEX

Levene
Statistic df1 df2 Sig.
21.902 3 7386 .000

of respondents in the CDC data set: those who did not graduate from high school,
those who graduated from high school, those who attended college or technical
school, and those who graduated from college or technical school.

Begin by declaring cases that have values for the variable, LEVEL OF ED-
UCATION COMPLETED [@_EDUCAG] (variable 82), equal to 9 as missing.
Then select Analyze > Compare Means > One-Way ANOVA to open the one-way
ANOVA dialog box. Move LEVEL OF EDUCATION COMPLETED to the Fac-
tor box, and BODY MASS INDEX (variable 107) to the Dependent List box. In the
Options dialog box, be sure that the statistics Descriptive, Homogeneity of variance
test, Brown—Forsythe, and Welch have been selected. Now run the analysis.

As we saw in Sect. 10.3, the output consists of a table of descriptive statistics.
Table 10.12 displays the sample sizes, means, standard deviations, and standard
errors from this table. The output also consists of Levene’s test for equality of vari-
ances (Table 10.13), the ANOVA table (Table 10.14) and the results of the Brown—
Forsythe and Welch tests of the equality of means when equality of variances cannot
be assumed (Table 10.15).
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Table 10.14 One-way analysis of variance testing the null hypothesis that the mean BMI of NY
residents of varying levels of education are equal

ANOVA
BODY MASS INDEX
Sum of
Squares df Mean Square F Sig.
Between Groups 5410.714 3 1803.571 59.515 .000
Within Groups 223827.831 7386 30.304
Total 229238.544 7389

Table 10.15 Tests of the null hypothesis when equal variances in the BMI of NY residents of
varying levels of education cannot be assumed

Robust Tests of Equality of Means
BODY MASS INDEX

Statistic® df1 df2 Sig.
Welch 62.811 3 | 2252.593 .000
Brown-Forsythe 56.333 3 3942.539 .000

a. Asymptotically F distributed.

However, the analysis we conducted in Sect. 10.3 compared two sample means,
the average BMI of males and the average BMI of females. Our analysis here com-
pares four sample means: the average BMI of respondents who did not graduate
from high school, the average BMI of high school graduates, the average BMI of
those who attended college or technical school, and the average BMI of college or
technical school graduates.

Recall that the null hypothesis tested by ANOVA is that the population means are
equal, and that the alternative hypothesis is that the population means are not equal.
In the present example, the null hypothesis is that within the population of NY
residents, the mean BMIs of those who did not finish high school, of high school
graduates, of those who did not finish college or technical school, and of college
graduates are all the same. The alternative hypothesis is that the population means
of these four groups are not all the same.

Study the four group means and the associated tests of the equality of those

means, and answer the following questions.

10.5.1 If we assume that the variances in BMI of the four population groups
are equal, what is the value of the test statistic that tests the null
hypothesis?

10.5.2 If we assume that the population variances are equal, what is the
probability that we would obtain a test statistic that is equal to or
greater than the value we obtained if the null hypothesis is true?
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10.5.3 Can we safely assume that the population variances are equal?
Why or why not?

10.5.4 If we cannot safely assume that the variances are equal, can we re-
ject the null hypothesis that the four population means are equal?
Why or why not?

In this example, even if we cannot assume that the population variances are the
same, we can confidently reject the null hypothesis in favor of the alternative hy-
pothesis that in the population of NY residents, the mean BMI scores of these four
education groups are not the same. It is important to point out, however, that the
null hypothesis states that the population means are equal, and that the alternative
hypothesis states that the population means are not equal. By rejecting the null hy-
pothesis, we are concluding that the four population means are not equal. However,
we are not stating that all four means are different from one another. All we know at
this point is that at least one of the four population means differs from at least one
other. We will have to conduct some additional analyses to find out which of the
four means differs significantly from which of the others.

You might be thinking at this point that the next step is to conduct a series of
t-tests on every possible pair of means to determine which pairings yield p-values
<0.05. Unfortunately, a problem with this approach is that the probability that at
least one of the comparisons will be significant will be greater than the alpha level
set for each comparison. That is, after we have completed all of our #-tests, our Type
I error rate, the rate at which we rejected a true null hypothesis, will be 5%. In our
example, for instance, we have four mean BMIs. A set of four means allows for as
many as six pairings (the mean BMI of the first group versus the mean of the sec-
ond, the mean of the first versus the mean of the third, the mean of the first versus
the mean of the fourth, the mean of the second versus the mean of the third, and so
on). If we were to compare one and only one pair of means, and if we were to set
alpha to 0.05, the probability that we would reject the null hypothesis when it is in
fact true would be 0.05. However, if we were to conduct #-tests on two or more pair-
ings, and set alpha to 0.05 for each comparison, the probability of making a Type I
error on at least one of those comparisons will be greater than 0.05.

When conducting multiple comparisons of group means, it is necessary that we
use statistical techniques that are designed to keep the overall probability of mak-
ing a Type I error at the desired alpha level (e.g., 0.05). There are many such tech-
niques. Some, called post hoc comparisons, conduct a series of comparisons, each
involving two group means. In our example, we might compare the mean BMI
of each group against the mean BMI of each of the other three. Other techniques,
called contrasts, can compare the means of subsets of groups. For instance, in our
example, we could compare the mean BMI of the three groups of respondents who
did not graduate from college with the mean BMI of college graduates.

Post hoc comparisons We will turn our attention first to two examples of post hoc
comparisons: Bonferroni and Tamhane’s T2. The former is used when equality of
variances can be assumed; the latter when equality of variances cannot be assumed.
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Fig. 10.14 Selecting Bonferroni and Tamhane’s T2

Although equality of variances cannot be assumed in our example, we will include
the Bonferroni test here to show you how to use it, and because it is frequently used
by researchers when equality of variances can be assumed.

Return to the One-Way ANOVA dialog box. As shown in Figs. 10.13, 10.14 and
10.15, click Post Hoc to open the One-Way ANOVA: Post Hoc Multiple Comparisons
dialog box. Select Bonferroni and Tamhane’s T2 under Equal Variances Assumed
and Equal Variances Not Assumed, respectively. Click Continue and then OK.

The output consists of the information that we generated earlier plus a table called,
Multiple Comparisons. This table, a fragment of which is shown in Table 10.16,
displays the results of the Bonferroni and Tamhane’s T2 analyses.
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Table 10.16 Bonferroni and Tamhane’s T2 post hoc multiple comparisons

Multiple Comparisons

Dependent Variable: BODY MASS INDEX

Technical School

Graduated from College 23 :
or Technical School }

(I) LEVEL OF (J) LEVEL OF
EDUCATION EDUCATION Mean
COMPLETED COMPLETED Difference (I-J) Std. Error Sig.
Bonferroni Did not graduate  Graduated High School 66771 .25758
High School )
Attended College or 1.09170 26388 000

Bonferroni p-values generated by comparing the mean BMI of New Yorkers
who did not graduate from high school against the BMI means of the other

_—

S ——
Tamhane Did not graduate ~ Graduated High School 66771
High School Attended College or 1.09170°
Technical School :
Graduated from College 23
or Technical School 2
p—

Tamhane p-values generated by comparing the mean BMI of New Yorkers who
did not graduate from high school against the BMI means of the other three

=

*. The mean difference is significant at the 0.05 level.
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The table compares the mean BMI of each group against the mean of each of the
other three groups. For each comparison, the table displays the difference between
the two means, the standard error of the difference, the p-value, and the lower and
upper bounds of the confidence interval that achieves an overall 95% confidence
level for all of the intervals. For each comparison, the null hypothesis is that the two
population means are equal. The alternative hypothesis is that the two population
means are not equal. For example, the Bonferroni p-value generated by comparing
the mean BMI of those who did not graduate from high school (28.29) against the
mean BMI of high school graduates (27.63) is 0.057. The Tamhane p-value for this
comparison is 0.078. On the other hand, both the Bonferroni and Tamhane p-values
generated by comparing the mean BMI of those who did not graduate from high
school (again, 28.29) against the mean BMI of people who attended college or tech-
nical school (27.20) is less than 0.001. Because we cannot assume that the variance
in BMI is constant across the four levels of education, we would focus on the Tam-
hane findings, but as it turned out, both types of post hoc comparisons happened to
lead to same results: We reject the null hypothesis for the second comparison but
not for the first.

Answer the following questions.

10.5.5 According to the Bonferroni test, does the mean BMI of those who
did not graduate from high school significantly differ from the mean
BMI of college or technical school graduates?

10.5.6 According to the Bonferroni test, what is the standard error of the
difference between the mean BMI of those who did not graduate
from high school and the mean BMI of those who attended college
or technical school?

10.5.7 Do either of the answers to the previous questions differ if one uses
the Tamhane’s T2 test?

Contrasts Sometimes it is useful to conduct a contrast analysis by which we com-
pare the mean of a subset of groups against the mean of another subset of groups. In
our example, we might wish to know if the mean BMI of those with at least some
post-high school education differs from the rest of the population. To find out, we
could compare the mean BMI of two subsets of groups. One group would consist of
those who either attended college or technical school or who graduated from college
or technical school. The second group would consist of those who attended high
school or graduated from high school. In this section, we carry out this contrast.
Return to the One-Way ANOVA dialog box. Click Contrasts to open the One-
Way ANOVA: Contrasts dialog box. To conduct a contrast, we must assign a number
to each of the four groups of respondents. These numbers are called coefficients and
will indicate to SPSS the comparison or contrast we wish to generate. Certain rules
must be followed when assigning coefficients. First, groups assigned the same coef-
ficient are allocated to the same subset. Second, the sum of the coefficients should
be equal to zero. Third, groups that are to be excluded from an analysis should be
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assigned coefficients equal to zero. Fourth, coefficients are entered into SPSS one
at a time and in the ascending order of the values of the variable that defines the
groups that are being compared.

In our example, we wish to group together respondents who either attended high
school or graduated from high school. Therefore, we will assign those two groups
the same coefficient. Although we could use any number, we will use “1.” The re-
maining groups (those who attended college or technical school or who graduated
from college or technical school) will be assigned their own coefficient. Since the
sum of the coefficients should equal zero, we will assign “—1” to those two groups.
We will use all four groups, so none of the groups will be assigned a zero coef-
ficient.

The variable, LEVEL OF EDUCATION COMPLETED, has four values rang-
ing from 1 to 4, where 1 represents those who attended high school, 2 represents
those who graduated from high school, 3 represents those who attended college
or technical school, and 4 those who graduated from college or technical school.
Therefore, the first coefficient we enter into SPSS will be assigned to those who
attended high school, the second coefficient to high school graduates, and so on. As
a result, the sequence by which we will enter the four coefficients into SPSS will
bel,1,—1,and —1.

Enter each of the coefficients, one at a time and in the correct sequence, into the
Coefficients area of the One-Way ANOVA: Contrasts dialog box. To do this, enter
the first coefficient (1) into the Coefficients box, and then click Add. Repeat for
the remaining three coefficients. When you have finished, you will see a column of
the four coefficients in the box to the right of the Add button. Click Continue. The
steps for setting up a contrast are depicted in Figs. 10.16 and 10.17.

Back in the One-Way ANOVA dialog box, click OK to conduct the analysis. In
addition to the information that we have already discussed, the output will contain a
Contrast Coefficients table, reproduced in Table 10.17. This table displays the four
coefficients that we assigned.

The output will also contain a Contrast Tests table, reproduced in Table 10.18.
This table tells us whether the two means were significantly different as determined
by a z-test.

Two values of ¢ are reported, one under the assumption of equal variances, the
other when this assumption is not made. The null hypothesis is that the population
means of the two groups are equal. The alternative hypothesis is that the population
means of the two groups are not equal.

10.5.8 Is the mean BMI of those who had at least some college or techni-
cal school experience significantly different from the mean BMI of
those who did not attend college or technical school?

10.5.9 Does your answer depend on whether or not we assume that the pop-
ulation variances are equal?
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Fig. 10.16 Adding the first
of four contrast coefficients

Fig. 10.17 Four contrast
coefficients to test the mean
BMI of New Yorkers with
no more than a high school
education against the mean
BMI of New Yorkers with
at least some postsecondary
education
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Table 10.17 The four contrast coefficients
Contrast Coefficients
LEVEL OF EDUCATION COMPLETED
Did not Attended Graduated
Graduate College or from College
High Graduated Technical or Technical
Contrast School High School School School
1 1 1 -1 -1

Table 10.18 Contrast testing the mean BMI of New Yorkers with no more than a high school edu-

cation against the mean BMI of New Yorkers with at least some postsecondary education

Contrast Tests

Value of Sig. (2-
Contrast Contrast Std. Error t df tailed)
BODY MASS INDEX Assume equal variances 1 2.8206 .30690 9.191 7386 .000
Does not assume equal
variances 1 2.8206 31780 8.875 1760.526 .000

10.6 Exercise Questions

1. Using the CDC data set, conduct a #-test for independent samples to determine
if the number of minutes of weekly vigorous physical activity in which people
engage varies between those who are overweight or obese and those who are
neither overweight nor obese. Number of minutes is stored in the variable, MIN-
UTES OF VIGOROUS PHYSICAL ACTIVITY [@_VIGPAMN] (variable
95). BMI categories are stored in the variable, RISK FACTOR FOR OVER-
WEIGHT OR OBESE [@_RFBM]I4] (variable 80; 1 =No, 2=Yes).

a. What was the average number of minutes of vigorous activity for those who
were neither overweight nor obese (people coded as “No”)?

b. What was the average number of minutes of vigorous activity for those who
were either overweight or obese?

c. What is the numerical difference between the two averages?

d. Can we assume that the variance in the number of minutes of vigorous activ-
ity is the same across the two BMI categories? Why or why not?

e. How many degrees of freedom are associated with the #-value that would be
appropriate to use in the analysis?

f. Do the data indicate that you can reject the null hypothesis that the two popu-
lation mean number of minutes differ? Why or why not?

. Conduct a one-way ANOVA to determine if on average the number of minutes
of weekly vigorous activity varies among three groups: those who are neither
overweight nor obese, those who are overweight, and those who are obese. BMI
category is stored in the variable, BODY MASS INDEX-THREE LEVELS
CATEGORY [@_BMI4CAT] (variable 79). Be sure that 9 is declared as a



278

10 Comparing Means of Independent Samples

Table 10.19 Descriptive Statistics

BMI category Mean Standard

deviation

Neither overweight nor obese

Overweight

Obese

missing value for the BMI variable. Include in your analysis Bonferroni or Tam-
hane T2 tests, whichever is more appropriate.

a.
b.

Complete the table of descriptive statistics (Table 10.19).
Should we use one of the robust tests of equality of means to test the null
hypothesis that the three population means are equal? Why or why not?

. How many numerator degrees of freedom are associated with the test statistic

that we should use?

. Do the data indicate that the three population means differ across the three

BMI categories?

Which post hoc test is more appropriate for these data, Bonferroni or Tam-
hane? Why?

Which of the following statements is supported by the analysis. On average,
minutes of weekly vigorous activity differed significantly between:

i. People who were neither overweight nor obese and people who were
overweight.

ii. People who were neither overweight nor obese and people who were
obese.

iii. People who were overweight and people who were obese.

3. Using a contrast, determine if the mean BMI of college and technical school
graduates is significantly different from the mean BMI of the remainder of
the sample. Educational level is stored in LEVEL OF EDUCATION COM-
PLETED [@_EDUCAG] (variable 82). Be sure that 9 has been declared as
missing.

a.
b.

What are the values of the contrast coefficients?
What are the degrees of freedom associated with this contrast if equal vari-
ances cannot be assumed?

. What is the t-value associated with this contrast if equal variances cannot be

assumed?

. Can we reject the null hypothesis that the mean BMI of college and technical

school graduates is equal to the mean BMI of the rest of the population?

4. Using the Framingham data set and partial eta squared, determine the strength
of relationship between Body Mass Index [bmi] (variable 8) and Gender [sex]
(variable 1) and between Body Mass Index and Coronary Heart Disease [chd-
fate] (variable 5).
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Table 10.20 Test of homogeneity of variances for Question 5
Test of Homogeneity of Variances
Levene
Statistic df1 df2 Sig.
Prostate-Specific
. P 38.905 299 .000
Antigen Level (ng/ml)
Log PSA 1.350 299 .246
Table 10.21 One-way analysis of variance for Question 5
ANOVA
Sum of
Squares df Mean Square F Sig.
Prostate-Specific Antigen Between Groups 6349.643 1 6349.643 23.899 .000
Level (ng/ml) Within Groups 79440.520 299 265.687
Total 85790.163 300
Log PSA Between Groups 7.310 1 7.310 37.141 .000
Within Groups 58.846 299 197
Total 66.155 300

a. Is gender significantly related to BMI? How do you know?

b. Is coronary heart disease significantly related to BMI?

c. What are the values of partial eta squared for the relationships between BMI
and gender, and BMI and coronary heart disease?

d. Does BMI seem to be more strongly related to gender or to coronary heart
disease?

. Aresearcher wished to know whether average PSA levels differ between patients
with prostate cancer and patients without. Suspecting that the variance in PSA
scores could not be assumed to be equal across the two groups, she performed
a log transformation and included log PSA values in her one-way ANOVA. The
software that she used did not include robust tests of equality of means, but it did
generate Tables 10.20 and 10.21. Which F ratio should she report? Why?

. Using the Sit-and-Reach Test, a team of physician assistant students measured
the flexibility of three groups of collegiate athletes: football players, male ath-
letes playing a sport other than football, and female athletes playing any sport
[3]. The F ratio was significant so the researchers conducted post hoc compari-
sons. Tables 10.22 and 10.23 are fragments of the output generated by a one-way
ANOVA.

After inspecting these results, the team conducted a contrast in which they
compared the mean flexibility of both groups of male athletes against the mean
flexibility of the female athletes. The results are displayed in Table 10.24.
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Table 10.22 Descriptive statistics for Question 6

Flexibility
Std.
N Mean Deviation Std. Error
Football Players 96 33.0862 7.36286 75147
Males Playing
Another Sport 30 31.9704 8.99715 1.64265
Female Athletes 24 37.6088 6.93294 1.41518
Total 150 33.5867 7.81231 .63787
Table 10.23 Post hoc multiple comparisons for Question 6
Multiple Comparisons
Dependent Variable: Flexibility
Tamhane
Mean
Difference Std.
(1) Group (J) Group (1-J) Error Sig.
Football Players Males Playing
Another Sport 1.11586 1.80638 .903
Female .
Athletes -4.52257 1.60232 .023
Males Playing Football
Another Sport Players -1.11586 1.80638 .903
Female *
Athletes -5.63843 2.16818 .036
Female Athletes Football 452057 1.60232 023
Players
Males Playing *
Another Sport 5.63843 2.16818 .036
*. The mean difference is significant at the 0.05 level.
Table 10.24 Contrast tests for Question 6
Contrast Tests
Value of
Contrast Contrast Std. Error t df Sig. (2-tailed)
Flexibility =~ Assume equal variances 1 -10.1610 3.50921 -2.896 147 .004
\E’:rie:n';gtsassume equal 1 -10.1610 | 3.35767 -3.026 41.746 004




Data Sets and References 281

a. According to the post hoc comparisons, was the average flexibility of the two

groups of male athletes significantly different?

b. What conclusion should we draw from the contrast?

Data Sets and References

1.

CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC): Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014
Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd edn. Cambridge University Press, New York (2009). (With the kind permission of
Sean Coady, National Heart, Blood, and Lung Institute)

From: Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and
Reach Test as a Measure of Flexibility for Predicting Lower Extremity Injury in Division III
Athletes. Unpublished data. Le Moyne College, Syracuse (2010)


http://www.cdc.gov/brfss

Chapter 11
Comparing Means of Related Samples

Abstract This chapter reviews the paired-samples 7-test and the repeated measures
analysis of variance (ANOVA). These are inferential statistics commonly used to
test the difference between the means of populations that are related to each other,
such as the means of a quantitative measurement taken of the same group of par-
ticipants on two or more occasions. Because the ANOVA assumes the presence of a
condition known as sphericity, the chapter also reviews Mauchly’s test of sphericity
and methods for hypothesis testing when sphericity cannot be assumed.

11.1 Overview

In the previous chapter, we considered analyses that compare quantitative mea-
surements taken from independent groups of participants. The procedures were the
independent samples #-test when there were two groups and the one-way ANOVA
when there were three or more groups. There are, however, many situations when
it is more desirable to take multiple measurements on the same participant. For
example, the blood pressure of hypertensive patients who had received a new treat-
ment might be compared to the blood pressure of the same group of patients before
they had received the treatment. In this type of study, researchers are said to be us-
ing a paired comparisons analysis. Sometimes three or more sets of observations
are made of the same group of participants. In this type of study, researchers are said
to be using a repeated measures analysis.

Ideally, the observations will have been made within the context of a controlled
experiment or randomized controlled trial. This type of study can determine the
causal impact of an explanatory variable on a response variable. In such experi-
ments, the advantage of paired comparisons and repeated measures analyses is that,
because the measurements are being made on the same subject, any differences
detected across those measurements can be more confidently attributed to the ex-
planatory variable under investigation rather than to some patient-related factor that
might have been confounded with the treatment.

For example, imagine that we conduct a parallel-groups trial in which we give a
new treatment for hypertension to one group of patients and a standard treatment to
another. Imagine further that because of genetic factors, the blood pressure of some
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of our patients is innately higher than some of the others. To control for these ge-
netic factors, we randomly decide which patient receives which treatment. We find
that the posttreatment average blood pressure of the patients given the new treat-
ment is lower than that of the patients given the standard treatment. We also find
that the results of a #-test for independent samples support the hypothesis that this
difference can be generalized to the population from which the patients were taken,
that is, the difference between the average blood pressure of the two groups was not
due solely to chance. In this situation, we could be confident that the difference in
average blood pressure between the two groups was not due to differences between
the two groups in their genetic makeup. But we could not be certain. Despite the
random assignment of the patients to the two treatment groups, it would still be
possible that, just by chance, the genetic makeup of the two treatment groups dif-
fered, and differed enough to cause the observed difference in their average blood
pressure readings.

Now imagine that we conduct a crossover trial in which we give each patient the
standard treatment and after some specified period of time measure his or her blood
pressure. We then give each patient the new treatment and after the same specified
amount of time has passed, take his or her blood pressure again. We compare the
two blood pressure readings of each patient and discover that on average, the blood
pressure reading following the new treatment is lower. We also find that the results
of a statistical test allow us to generalize our findings to the population from which
the sample of patients was taken. In this situation, both treatment groups consisted
of the same set of patients, so we could be certain that genetic factors were not
responsible for our observed difference in blood pressure between the new and stan-
dard treatments.

Although experiments can generate confident cause-and-effect conclusions, it is
often necessary in medical research to make comparisons across multiple measure-
ments that were taken outside the context of an experiment. For example, we might
conduct a prospective cohort study of air traffic controllers to see if hypertension is
associated with long-term exposure to stress. Here, the results of a hypothesis test
would still reveal if any increases in the response variable (in our example, blood
pressure) can be confidently generalized to the population from which the sample
was taken, but we would not be able to establish with confidence that the cause of
the increase was our explanatory variable (long-term exposure to stress).

In this chapter, we study two statistical tests that are used when researchers com-
pare measurements of a quantitative response variable taken from the same set of
participants on two or more occasions. If two measurements are taken, a paired
comparisons analysis is carried out by conducting a paired-samples t-test. The dif-
ference between the two measurements on each subject is calculated, the mean dif-
ference across all subjects is computed, and the resulting sample of differences
is subjected to the one-sample #-test from Chap. 5. When there are three or more
quantitative measurements taken on the same group of subjects, a repeated mea-
sures analysis is carried out by conducting a repeated measures analysis of variance
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(also known as a repeated measures ANOVA) to compare the means of these mul-
tiple measurements. This analysis is analogous to how we used one-way ANOVA
to compare the means of three or more independent groups in the previous chapter.

We will begin with the paired-samples #-test and compare the severity of head-
aches experienced by patients before and after acupuncture. We will then repeat the
analysis using the repeated measures procedure.

11.2 Paired-Samples 7-Test

The file, Acupuncture.sav [1], consists of data from 401 male and female patients
who suffered from chronic headache. For 4 weeks prior to the beginning of the
study, patients rated the severity of their headaches along a scale ranging from “No
headache” to “Intense, incapacitating headache.” From these ratings, a baseline
measure of headache severity was computed, such that the higher the rating, the
more severe the headache. Each patient was then randomly assigned to one of two
conditions: Acupuncture and Control. Patients assigned to the acupuncture group
were referred by their general practitioners to acupuncturists who offered weekly
sessions for a period of 3 months. Patients in the control group were not referred.
Three months (3-month follow-up) and again 12 months (1-year follow-up) later, a
second and third measure of headache severity was obtained. We will use a paired-
samples #-test to compare the baseline and 3-month follow-up ratings of headache
severity provided by the patients who were referred to acupuncture treatment.

Begin by loading the file. The group to which each patient was assigned is stored
in the variable, Group [group] (variable 6; 0=Control; 1=Acupuncture). We want
to focus on the acupuncture group, so use Select>Cases to filter out the control
cases. Then select Analyze>Compare Means > Paired-Samples T-Test to bring
up the Paired-Samples T-Test dialog box. Move Headache Severity at Baseline
[As0] (variable 7) to the Variable I box of the Paired Variables window. This can
be done either by selecting the variable and clicking the right-pointing arrow or
by dragging the variable. Now move the second variable, Headache Severity at 3
Month Follow-up [hs3] (variable 8) to the Variable 2 box. Click OK. These steps
are shown in Figs. 11.1, 11.2 and 11.3 and 11.4.

Much of the output is presented in Tables 11.1 and 11.2.

As you can see, the output is somewhat different from that of an independent-
samples #-test. For example, there is no test to determine if the variances of the
two populations of scores are significantly different. Since the paired-samples #-test
begins by subtracting the value of one variable from that of the other variable to
get a single sample of differences, we have only one set of scores: the differences
between the two variables.

Although the output is not displayed exactly as is the output from an indepen-
dent-samples #-test, you should be able to answer the following questions:
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Fig. 11.2 Selecting baseline headache severity

11.2.1 What is the sample size?

11.2.2 What is the average severity rating at baseline? At 3-month follow-
up?

11.2.3 What is the average difference in the two sets of ratings?

11.2.4 What is the null hypothesis?

11.2.5 What is the alternative hypothesis? How do you know?

11.2.6  Were the two set of ratings significantly different?
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Table 11.1 Summary statistics
Paired Samples Statistics
Std.
Std. Error
Mean N Deviation Mean
Pair1  Headache Severityat | o5 5058 | 173 | 1531463 | 1.16435
Baseline
Headache Severity at
3 Months Follow-up 19.05 173 15.651 1.190
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Table 11.2 Output for the paired-samples t-test

Paired Samples Test

Paired Differences

95% Confidence
Interval of the
Difference
Std. Std. Error Sig. (2-
Mean Deviation Mean Lower Upper t df tailed)
Pair 1 Headache
Severity at
Baseline -
Headache 6.45376 12.22871 .92973 4.61860 8.28891 6.942 172 .000
Severity at 3
Months Follow-up

o I ——
e Repeated Measures -

Fig. 11.5 Selecting repeated measures ANOVA

11.3 Repeated Measures Analysis of Variance

In this section, we repeat the above analysis using the ANOVA. Later in the section,
we will compare three means.

Comparing Two Means Remember that when we make a pair-wise comparison,
we are comparing the scores of one group with a second set of scores from the same
set of participants. Therefore, we cannot use the same ANOVA that is used as an
alternative to the independent-samples #-test. Instead, we must use an ANOVA that
is an alternative to the paired-samples #-test. In the language of analysis of variance,
we need to conduct what is called a repeated measures ANOVA. The term “repeated
measures” denotes that two or more measurements were taken of each case, i.c.,
each participant was measured more than once.

As shown in Figs. 11.5, 11.6, 11.7, 11.8, 11.9 and 11.10, select Analyze >Gen-
eral Linear Model>Repeated Measures to open the Repeated Measures Define
Factor(s) dialog box. Type a name for our repeated measures variable into the box
labeled, Within-Subject Factor Name. For example, you could type in “Time” (no
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quotation marks) to indicate that we are making a comparison over time. In the
Number of Levels box, enter the number of levels or values of the repeated measures
factor. We have two values—baseline and 3-month follow-up—so enter “2” (again
no quotation marks). Click the Add button in the Number of Levels area. Next,
enter into the Measure Name box a name of the variable that was assessed. The
severity of each patient’s headache was measured, so you might type “Severity”
into the box. Click Add in the Measure Name area. Now click Define to bring up
the Repeated Measures dialog box. In the Repeated Measures dialog box, highlight
Headache Severity at Baseline and move it into the Within-Subjects Variable win-
dow by clicking the right-pointing arrow or by dragging the variable over. Then
move Headache Severity at 3-Month Follow-up into the same window. Now click
Options to bring up the Repeated Measures: Options dialog box. Move the entries
(OVERALL) and Time from the Factor(s) and Factor Interactions box on the left
to the Display Means for box on the right. This will tell SPSS to print the overall
mean and the means for the two groups of data (that is, the mean headache severity
at baseline and the mean headache severity at 3-month follow-up). In the Display
area, select Descriptive statistics so we can generate standard deviations and such.
Click Continue and then OK.
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name @ Repeated Measures Define Factor(s) E

Within-Subject Factor Name:

Number of Levels: |:|

Time(2)
Add
Change
Remove
Measure Name:

Output from a repeated measures ANOVA can be complex, but fortunately, we
need be concerned with only a subset of it, reproduced in Tables 11.3, 11.4, 11.5
and 11.6.

Table 11.3, titled Descriptive Statistics, reports the means, standard deviations
and sample size of the repeated measurements.

Table 11.4, titled 2. Time, reports means, standard errors, and confidence inter-
vals of the repeated measures variable, in our case, Time.

11.3.1 How do the values of the statistics in the above tables compare to
those in Sect. 11.2?

The Mauchly's Test of Sphericity table shown in Table 11.5 gives the results of a
test of sphericity. Roughly speaking, sphericity is analogous to the requirement in
one-way ANOVA that every group has the same variance. The null hypothesis is
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Fig. 11.8 Selecting the first within-subjects variable

that there is sphericity, and the alternative hypothesis is that sphericity is not pres-
ent. If the test is significant, one of the adjustments—Greenhouse-Geisser, Hyunh-
Feldt, or Lower-bound—in the Tests of Within-Subjects Effects table has to be used.
Sphericity is relevant when the repeated measures factor has three or more values.
As we have only two values (baseline and 3-month follow-up), we can move on.

In the Tests of Within-Subjects Effects table, shown in Table 11.6, we find the F
ratio, the degrees of freedom, and the p-value. These statistics are interpreted in the
same way as those of ANOVA tables we have encountered before.

11.3.2 What is the F ratio?
11.3.3 What are the degrees of freedom associated with the F ratio?
11.3.4 What is the p-value?

Comparing More than Two Means Repeated measures ANOVA can be used
to compare three or more measurements on subjects. Just as we could view one-
way ANOVA as an extension of the independent samples ¢-test to more than two
independent samples, we can view repeated measures ANOVA as an extension of
the paired-samples #-test to more than two measurements. Also, as with one-way
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Fig. 11.9 Defining the second within-subjects variable and selecting Options

ANOVA, when we determine that there is a difference in treatment levels we can
conduct multiple comparisons to try to ascertain how the treatment levels differ.
To demonstrate, we will once again analyze the headache severity ratings of the
acupuncture study, but this time we will include ratings from the 1-year follow-up.

Return to the Repeated Measures Define Factor(s) dialog box. In this analysis,
we are adding a third measurement—severity ratings at 1-year follow-up. These
data are stored in the variable, Headache Severity at 1-Year Follow-up [/s/2]
(variable 9). So first we need to tell SPSS that we now have three levels of our
Time factor. To do this, highlight Time(2), change the Number of Levels from 2 to
3, and click Change. To add the third measurement to the analysis, click Define to
open the Repeated Measures dialog box and move Headache Severity at 1-Year
Follow-up to the Within-Subjects Variable window. Because we now are comparing
three means, we may want to conduct a multiple comparisons analysis, so click Op-
tions, check Compare main effects and select Bonferroni in the Confidence interval
adjustment box. Click Continue.

When measurements are taken over time from the same set of participants, it is
often useful to display the means of each of those measurements in a graph called
a means plot. We could construct such a graph with Chart Builder but we can also
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Fig. 11.10 Generating descriptive statistics

Table 11.3 Descriptive statistics
Descriptive Statistics

Mean Std. Deviation N
Headache Severity at 25.5058 15.31463 173
Baseline
Headache Severity at 3
Months Follow-up 19.05 15651 173

do so from within the ANOVA dialog boxes. Back in the Repeated Measures dialog
box, click Plots, move Time to the Horizontal Axis window, click Add and then
Continue. Click OK to conduct the analysis. These steps are shown in Figs. 11.11,
11.12, 11.13 and 11.14.
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Table 11.4 Means and standard errors of repeated measures variables

2. Time
Measure: Severity
95% Confidence Interval
Std.

Time Mean Error Lower Bound Upper Bound

1 25.506 1.164 23.208 27.804

2 19.052 1.190 16.703 21.401

Table 11.5 Sphericity test
Mauchly's Test of Sphericity”
Measure: Severity
Epsilonb
Approx. Chi- Greenhouse-

Within Subjects Effect Mauchly's W Square df Sig. Geisser Huynh-Feldt Lower-bound
Time 1.000 .000 0 . 1.000 1.000 1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity
matrix.
a. Design: Intercept
Within Subjects Design: Time
b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-
Subjects Effects table.

Table 11.6 Within-subjects tests
Tests of Within-Subjects Effects

Measure: Severity

Type Ill Sum

Source of Squares df Mean Square F Sig.
Time Sphericity Assumed 3602.810 1 3602.810 48.185 .000

Greenhouse-Geisser 3602.810 1.000 3602.810 48.185 .000

Huynh-Feldt 3602.810 1.000 3602.810 48.185 .000

Lower-bound 3602.810 1.000 3602.810 48.185 .000
Error(Time) Sphericity Assumed 12860.551 172 74.771

Greenhouse-Geisser 12860.551 172.000 74.771

Huynh-Feldt 12860.551 172.000 74.771

Lower-bound 12860.551 172.000 74.771

The interpretation of the repeated measures output, shown in Tables 11.7, 11.8,
11.9 and 11.10, is the same as the interpretation of the output we saw earlier in this
chapter.

The Pair-wise Comparisons output shown in Table 11.11 is similar to the mul-
tiple comparisons output we studied in the preceding chapter, and is interpreted in
the same manner.

The means plot displays the three mean ratings across the three points in time.
The values of the means are plotted along the y-axis. The points in time (baseline,
3-months follow-up and 1-year follow-up) are plotted along the x-axis from left to
right (Fig. 11.15).



11.3 Repeated Measures Analysis of Variance

Fig. 11.11 Changing the
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Study the output and answer the following questions:

11.3.5
11.3.6
11.3.7

11.3.8
11.3.9

11.3.10
11.3.11
11.3.12

11.3.13

Is Mauchly’s Test of Sphericity significant?

Will you need to adjust for lack of sphericity?

Regarding the mean severity ratings at baseline, 3-month follow-up
and 1-year follow-up, what are the null and alternative hypotheses?
What is the F ratio?

What are the numerator and denominator degrees of freedom associ-
ated with the F ratio?

What is the p-value?

Can we reject the null hypothesis in favor of the alternative?

What does the means plot tell us about how the ratings of severity
changed over time?

According to the pair-wise comparisons, can we confidently con-
clude that for the population of patients who suffer from chronic
headache and who are referred to acupuncture for treatment, head-
ache severity will be less at 1-year follow-up than at 3-month follow-
up? Why or why not?
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Fig. 11.12 Adding a third variable and selecting Options

Our analysis of these data reveals that the ratings of severity provided by the pa-
tients in the acupuncture group were at 3-month follow-up significantly lower than
the ratings they provided at the beginning of the study. Because the 3-month fol-
low-up ratings were obtained after the patients had received a series of acupunc-
ture sessions, it would be tempting to conclude that the acupuncture treatment was
responsible for the decline in reported severity. However, before we can draw this
conclusion, we should consider the possibility that those severity ratings might have
declined over time even if the patients had not received acupuncture. To evaluate
this possibility, we will need to determine whether the control patients also reported
a decline in severity. One way to do this is to repeat our analysis on control patients.
We will leave this analysis to you as an exercise. Another would be to include all
patients in the analysis—those who had acupuncture and those who did not—and
determine in a single analysis whether control patients also reported a decline in se-
verity at 3 months, and if so, whether the decline was significantly less than that re-
ported by the patients who had undergone acupuncture treatment. Such an analysis
would require what is called a two-way analysis of variance, the topic of the next
chapter.
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Fig. 11.14 Requesting plots
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Table 11.7 Descriptive statistics

11 Comparing Means of Related Samples

Descriptive Statistics

Mean Std. Deviation N

Headache Severity at 24.6714 1417965 159

Baseline

Headache Severity at 3

Months Follow-up 18.01 14.846 159

Headache Severity at One | 45 5656185 | 1376234672 159

Year Follow-up
Table 11.8 Variable estimates

2. Time
Estimates
Measure: Severity
95% Confidence Interval
Std.

Time Mean Error Lower Bound Upper Bound

1 24.671 1.125 22.450 26.892

2 18.009 1177 15.684 20.335

3 16.266 1.091 14.110 18.421

Table 11.9 Sphericity test
Mauchly's Test of Sphericity”
Measure: Severity
Epswlonb
Approx. Chi- Greenhouse-

Within Subjects Effect Mauchly's W Square df Sig. Geisser Huynh-Feldt Lower-bound
Time .992 1.204 2 .548 992 1.000 500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity

matrix.
a. Design: Intercept
Within Subjects Design: Time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-

Subjects Effects table.

11.4 Exercise Questions

1. Using a t-test for paired samples, compare the headache severity ratings of con-
trol patients at baseline and at 3-month follow-up.

. What was the average severity rating at baseline?

. How many degrees of freedom are associated with the z-value?

a
b. What was the average severity rating at 3 months?
c
d

. What is the ¢-value?
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Table 11.10 Within-subjects tests
Tests of Within-Subjects Effects
Measure: Severity
Type Il Sum
Source of Squares df Mean Square F Sig.
Time Sphericity Assumed 6258.206 2 3129.103 40.887 .000
Greenhouse-Geisser 6258.206 1.985 3153.014 40.887 .000
Huynh-Feldt 6258.206 2.000 3129.103 40.887 .000
Lower-bound 6258.206 1.000 6258.206 40.887 .000
Error(Time)  Sphericity Assumed 24183.854 316 76.531
Greenhouse-Geisser 24183.854 313.604 77.116
Huynh-Feldt 24183.854 316.000 76.531
Lower-bound 24183.854 158.000 153.062

Table 11.11 Pair-wise comparisons

Pairwise Comparisons

Measure: Severity

95% Confidence Interval for
DifferenceP
Mean

Difference Std. Lower Upper

() Time  (J) Time (1-J) Error Sig.p Bound Bound
1 2 6.662" .939 .000 4.391 8.933
3 8.406" 1.011 .000 5.960 10.851
2 1 -6.662" .939 .000 -8.933 -4.391
3 1.744 .993 243 -.658 4.146
3 1 -8.406" 1.011 .000 -10.851 -5.960
2 -1.744 .993 243 -4.146 .658

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

e. What is the p-value?
f. Were the ratings of severity on average statistically significantly lower at 3
months?

. Using a one-way repeated measures ANOVA, compare the headache severity

ratings of control patients at baseline, 3-month follow-up, and 1-year follow-up.
Include a multiple comparisons analysis and a plot of the three means.

a. What are the means for each of the severity measurements?
Baseline:
3-month follow-up:
12-month follow-up:

b. Will you need to adjust for lack of sphericity? Why or why not?
c. What is the value of the F ratio that compares the three mean severity ratings?
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Profile Plots

Estimated Marginal Means of Severity
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Fig. 11.15 Profile plot

d. What are the numerator and denominator df that are associated with this F
ratio?
df :
df;:
e. According to the multiple comparisons analysis, was the mean severity rating
at 12 months significantly different from the mean severity rating at baseline?

f. Complete the following table:

Mean headache severity ratings

Time

Group Baseline 3-month follow-up 12-month follow-up

Acupuncture

Control
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Table 11.12 Output for Question 4
Descriptive Statistics

301

Mean Std. Deviation N

Body mass at admittance 14.4270 1.78327 20

Preferred body mass 17.3130 2.22382 20

Body mass at discharge 17.7280 3.65422 20

Table 11.13 Output for Question 4
Mauchly's Test of Sphericity®
Measure: BMI
Epsilon®
Approx. Chi- Greenhouse-

Within Subjects Effect Mauchly's W Square df Sig. Geisser Huynh-Feldt Lower-bound
Type_of BMI 549 10.807 2 005 689 725 500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity

matrix.
a. Design: Intercept

Within Subjects Design: Type_of _BMI
b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-

Subjects Effects table.

g. Does it appear from the table that acupuncture reduces headache severity at 3
months? Why or why not?

3. The past two chapters introduced you to two versions of the #-test: independent
samples and paired samples.

a. Which of these two tests should be used to compare the mean severity ratings

at 3 months of the acupuncture and control groups? Why?

b. Conduct the analysis. What is the #-value?
c. Were the mean severity ratings of the two groups at 3 months significantly

different?

. The file Bodymass.sav [2] contains body mass data on 20 anorexia patients.

Each patient was measured on admittance, assigned a preferred body mass, and
measured body mass on discharge. These data were analyzed with a repeated
measures ANOVA. Multiple comparisons were included. Study the output,
reproduced in Tables 11.12, 11.13, 11.14 and 11.15.

oo o

Do you need to adjust for the lack of sphericity? Why or why not?
. What is the value of the F ratio?

Is the F ratio statistically significant?
. What do the pair-wise comparisons show about the differences among pre-

ferred body mass, body mass at admittance, and body mass on discharge?
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Table 11.14 Output for Question 4
Tests of Within-Subjects Effects

Measure: BMI
Type Il Sum
Source of Squares df Mean Square F Sig.
Type_of_BMI Sphericity Assumed 129.319 2 64.659 12.244 .000
Greenhouse-Geisser 129.319 1.378 93.846 12.244 .001
Huynh-Feldt 129.319 1.450 89.158 12.244 .001
Lower-bound 129.319 1.000 129.319 12.244 .002
Error(Type_of BMI)  Sphericity Assumed 200.673 38 5.281
Greenhouse-Geisser 200.673 26.182 7.665
Huynh-Feldt 200.673 27.559 7.282
Lower-bound 200.673 19.000 10.562

Table 11.15 Output for Question 4

Pairwise Comparisons

Measure: BMI
95% Confidence Interval for
Mean Difference”
Difference
(1) Type_of_BMI (J) Type_of_BMI (I-J) Std. Error Sig.” Lower Bound Upper Bound
1 2 2.886° 423 .000 -3.998 1.774
3 -3.301° .804 .002 -5.411 -1.191
2 1 2.886° 423 .000 1.774 3.998
3 -415 .871 1.000 -2.702 1.872
3 1 3.301° 804 .002 1.191 5.411
2 415 .871 1.000 -1.872 2.702

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

Data Sets and References

1. Acupuncuture.sav obtained from: Vickers, A.J., Rees, R.-W., Zollman, C.E., et al.: Acupuncture
for chronic headache in primary care: large, pragmatic, randomised trial. BMJ. (2004). doi:
10.1136/bm;j.38029.421863.EB. (With the kind permission of Professor Andrew J. Vickers)

2. Bodymass.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski,
E.: A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permis-
sion of the Routledge Taylor and Francis Group, and Professor Shelley L Channon)



Chapter 12
Analysis of Variance with Two Factors

Abstract Previous chapters have presented statistical techniques for studying the
relationship between a response variable and a single explanatory variable. The
remaining chapters discuss techniques that investigate the relationship between
a response variable and two or more explanatory variables, and that determine
whether the impact of one explanatory variable varies across values of a second.
In this chapter, two-way analysis of variance, also known as two-way ANOVA, is
reviewed. This technique is appropriate when the response variable is quantitative,
and is used to test null hypotheses about the main effects of two categorical explana-
tory variables, and the interaction effect between them. Three examples of two-way
ANOVA are discussed: one in which both explanatory variables are independent
groups, one in which both are repeated measures, and one in which one variable is
independent groups and one is repeated measures.

12.1 Overview

As we saw in the last chapter, in many circumstances researchers wish to compare
the means of three or more groups. If the measurements are quantitative, a one-way
analysis of variance (ANOVA) is often employed. Unlike the independent samples
t-test, one-way ANOVA can accommodate more than two means at a time. For
example, the blood pressure means of three groups of hypertensive patients—those
who had received a new treatment, had received a standard treatment, or had re-
ceived no treatment—could be compared in a single analysis.

In addition to being able to compare several means simultaneously, ANOVA can
also assess the effects of two or more categorical factors in a single analysis, and
whether the effect of a factor changes across values of another. For example, a two-
way ANOVA could assess whether blood pressure was significantly related to the
sex of hypertensive patients who had participated in a clinical trial of a new treat-
ment, whether the treatment significantly reduced their blood pressure, and whether
the benefit of the treatment was significantly greater for men or women. If race
were added to this analysis, a three-way ANOVA could be employed to study the
individual and combined effects of race, sex, and treatment.

© Springer International Publishing Switzerland 2014 303
W. H. Holmes, W. C. Rinaman, Statistical Literacy for Clinical Practitioners,
DOI 10.1007/978-3-319-12550-3_12
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Ideally, the observations will have been made within the context of a controlled
experiment in which two or more causal factors were manipulated by the research-
er. In these cases, if the results of an ANOVA reveal significant differences across
groups, then causality can be established. Often, though, comparisons are made
across factors that cannot be manipulated (e.g., gender, race, prior exposure to a
risk factor). In these cases, the results of an ANOVA reveal only if differences
across groups are statistically significant. The cause of the differences cannot be
established.

In theory, there is no limit to the number of factors that can be included in an
ANOVA. However, experiments that include a large number of factors can be very
expensive and time consuming to conduct. Moreover, the relationships among a
large number of factors can be quite complex and difficult to understand. Conse-
quently, researchers seldom conduct an ANOVA that includes more than a handful
of factors.

In this chapter, we will focus on the two-way ANOVA. In our first analysis, both
factors will be independent groups. In the second analysis, both will be repeated
measures. In the third, we will conduct a two-way ANOVA with one independent
groups factor and one repeated measures factor.

12.2 ANOVA with One Independent Groups Factor

Before we conduct an ANOVA with two independent groups factors, let us take
another look at the one-way ANOVA. Recall that the one-way ANOVA has one
independent groups factor. In this section, we will ascertain whether the body mass
index (BMI) of female respondents between the ages of 35 and 54, inclusive, is
related to engagement in physical activity. Note that in the analysis, we will have a
quantitative response variable and a categorical explanatory variable. Note also that
an independent-samples #-test would be appropriate as an alternative to the ANOVA
in this situation as we will be comparing the means of two groups. In this instance,
though, we will choose the ANOVA so as to facilitate our later discussion of two-
way ANOVA.

Load the data file, CDC BRFSS.sav [1]. Begin by assigning labels to the values
of the variable, NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR
[@_RFNOPA] (variable 102; 1=Engaged in Physical Activity, 2=Did not Engage
in Physical Activity), and declare the value of 9 as missing. Next, label two of the
values of the variable, SIX LEVEL IMPUTED AGE CATEGORY [@_AGE G]
(variable 74) as follows: 3=35 to 44 and 4=45 to 54. Then, using Data>Select Cas-
es, select female respondents who belong to either the 35 to 44 or 45 to 54 age cat-
egory. Respondents’ sex is stored in SEX [SEX] (variable 32; 1 =Male, 2=Female).

SPSS offers two procedures that will carry out an ANOVA involving one inde-
pendent groups factor. One procedure, called One-Way ANOVA, can be used only
when there is one explanatory factor and the factor is independent groups. The
second procedure, called General Linear Model (GLM) is much more flexible.
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Fig. 12.1 Opening the Univariate dialog

For example, GLM can conduct an ANOVA with two or more factors and the fac-
tors can be either independent groups or repeated measures. We will use GLM in
this chapter.

As shown in Figs. 12.1 and 12.2, select Analyze > General Linear Model > Uni-
variate to bring up the Univariate dialog box. Move BODY MASS INDEX [BMI]
(variable 107) into the Dependent Variable box. Now move NO PHYSICAL AC-
TIVITY OR EXERCISE RISK FACTOR into the Fixed Factor(s) box.

We will want to create a means plot so as shown in Fig. 12.2, click Plots to
bring up the Univariate: Profile Plots dialog box. Then as shown in Fig. 12.3, move
the physical activity variable into the Horizontal Axis box, click Add, followed by
Continue.

Next, we will want to generate some descriptive statistics and an effect size anal-
ysis, so in the Univariates dialog, click Options to bring up the Univariate: Options
dialog box shown in Fig. 12.4. Move (OVERALL) and the physical activity variable
to the Display Means for box, and check Descriptive statistics in the Display area.
Click Continue. Back in the Univariates dialog, click OK.

Study the resulting output reproduced in Tables 12.1 and 12.2, and Fig. 12.5. The
output should have a familiar look, thanks to Chap. 10.

Answer the following questions regarding the null hypothesis that the popula-

tion BMI means of the two physical activity groups are equal:

12.2.1 What is the mean BMI for each of the two physical activity groups?

12.2.2 Are these means accurately reflected in the means plot?

12.2.3 What is the value of the F ratio?

12.2.4 What are the numerator and denominator degrees of freedom?

12.2.5 What is the p-value?

12.2.6 Do the data indicate that BMI is related to physical activity for
female residents of N'Y state who are between the ages of 35 and 547
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Fig. 12.3 Requesting a means plot of the main effect of physical activity
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Fig. 12.4 Requesting tables displaying the overall mean, the means of the main effect of age, and

descriptive statistics

Table 12.1 Descriptive statistics for no physical activity or exercise risk factor
2. NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR

Dependent Variable: BODY MASS INDEX

NO PHYSICAL ACTIVITY 95% Confidence Interval

OR EXERCISE RISK Std.

FACTOR Mean Error Lower Bound Upper Bound

£ngaged in Physical 26.336 149 26.045 26.628
ctivity

Did not Engage in

Physical Activity 28.112 516 27.100 29.124
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Table 12.2 Test of the null hypothesis that BMI is unrelated to engagement in physical activity
Tests of Between-Subjects Effects

Dependent Variable:

BODY MASS INDEX

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 404.750° 1 404.750 10.939 .001
Intercept 380472.394 1 380472.394 10282.819 .000
@_RFNOPA 404.750 1 404.750 10.939 .001
Error 66971.424 1810 37.001
Total 1337213.025 1812
Corrected Total 67376.174 1811

a. R Squared = .006 (Adjusted R Squared = .005)

Estimated Marginal Means of BODY MASS INDEX

28.50

28.00

N

N

[N

o
1

Estimated Marginal Means
n
~
o
o
|

26.50

26.00

T
Engaged in Physical Activity

NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR

T
Did not Engage in Physical Activity

Fig. 12.5 Means plot of the main effect of physical activity on body mass index

12.3 ANOVA with Two Independent Groups Factors

In the previous section, we saw that BMI was significantly related to engagement
in physical activity. In the jargon of the ANOVA, we found what is called a sig-
nificant main effect of physical activity. In this section, we will see if BMI is also
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Fig. 12.6 Adding age category as a second factor to the analysis of variance

related to respondents’ age category. That is, we will see if there is also a signifi-
cant main effect of age category. In addition, we will see whether the relationship
between physical activity and BMI depends upon the respondents’ age category.
In the jargon of ANOVA, we will see if there exists a significant interaction effect
between physical activity and age category.

Before we begin, notice that by adding a second factor to our analysis, we will
now have a two-way ANOVA. The term “two-way” indicates that we are categoriz-
ing participants in two ways—by whether or not they engaged in physical activity
and by their age category. Notice too that our second factor is independent groups.
So we will be carrying out a two-way ANOVA in which both factors are indepen-
dent groups variables.

Return to the Univariate dialog box, and as shown in Fig. 12.6, move SIX LEV-
EL IMPUTED AGE CATEGORY into the Fixed Factor(s) box to tell SPSS that
we wish to add age category as a factor. Remember that earlier we used Select
Cases to limit the analysis to two age categories, women between the ages of 35 and
44 and women between the ages of 45 and 54.

In the previous analysis, we asked SPSS to plot the mean BMI of those who
had engaged in physical activity and the mean BMI of those who had not. Recall
that these two means were significantly different. The resulting plot, therefore, dis-
played a significant main effect of physical activity. Now let us add a plot for the
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Fig. 12.7 Adding a request for a means plots of the main effect of age category

age variable. This plot will show the mean BMI of each of the two age groups and
indicate whether there is a main effect of age category. We will also create what is
known as an interaction plot to see whether there is an interaction effect involving
physical activity and age category, that is, if the relationship between physical activ-
ity and BMI varies with age category.

To generate these graphs, click Plots in the Univariate dialog box. As shown
in Fig. 12.7, move SIX LEVEL IMPUTED AGE CATEGORY to the Horizon-
tal Axis box, and click Add. This plot will display the mean BMI of the two age
categories. Next, as shown in Fig. 12.8, move the physical activity variable to the
Horizontal Axis box and SIX LEVEL IMPUTED AGE CATEGORY to the Sepa-
rate Lines box. Click Add. This plot will display the mean BMI of four independent
groups: women who were between the ages of 35 and 44 who had engaged in physi-
cal activity, women who were between the ages of 35 and 44 who had not, women
between the ages of 45 and 54 who had engaged in physical activity, and women
between the ages of 45 and 54 who had not. Now click Continue to get back to the
Univariate dialog box.

Back in the Univariate dialog, click Options. As shown in Fig. 12.9, add the
age variable and its interaction with physical activity to the Display Means for box.
Click Continue followed by OK to run the analysis.
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Fig. 12.8 Adding a request for a means plot of the interaction effect between physical activity
and age category

Main Effects The output has much the same look as before, but now there is more
of it as a result of adding a second factor to the analysis. The output begins with
information about sample sizes, shown in Table 12.3.

Table 12.4 displays the mean BMI of the 1673 women who had engaged in
physical activity and the mean BMI of the 139 women who had not. Figure 12.10
is the plot of those two means. This information is relevant to the main effect of
physical activity.

Table 12.5 displays the mean BMI of the 849 women between the ages of 35
and 44, and the mean BMI of the 963 women between the ages of 45 and 54.
Figure 12.11 is the plot of those two means. This information is relevant to the main
effect of age category.

Judging by the output thus far, it appears that both physical activity and age
category are related to BMI. However, these findings may have been due to random
sampling variability. So for each of two main effects we observed in our sample,
we need to determine the probability that it would occur if there is no such effect in
the population of NY state women. To do this, we refer to the p-value of each main
effect. To find these values, we would consult the table labeled, Tests of Between-
Subjects Effects, shown in Table 12.6.

This table is similar to the one we created when we conducted our one-way
ANOVA earlier in the chapter, but it now includes the F ratio, degrees of freedom,
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Fig. 12.9 Adding a request for tables displaying the means of the main effect of age category and
the interaction effect between physical activity and age category

and p-value associated with not only the relationship between physical activity and
BMI but with the relationship between age category and BMI as well.

12.3.1 Do the data indicate that the population BMI means differ across the
two physical activity groups?

12.3.2 Did we find a significant main effect of physical activity?

12.3.3 Do the data indicate that the population BMI means differ across the
two age groups?

12.3.4 Did we find a significant main effect of age category?
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Table 12.3 Sample sizes of the independent groups factors
Between-Subjects Factors

Value Label N
NO PHYSICAL ACTIVITY 1 Engaged in
OR EXERCISE RISK Physical 1673
FACTOR Activity
2 Did not

Engage in

Physical 139

Activity
SIX LEVEL IMPUTED 3 35to 44 849
AGE CATEGORY 45 to 54 963

Table 12.4 Means of the main effect of physical activity on BMI
2. NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR

Dependent Variable: BODY MASS INDEX

NO PHYSICAL ACTIVITY 95% Confidence Interval
OR EXERCISE RISK Std.

FACTOR Mean Error Lower Bound Upper Bound
Engaged in Physical 26.335 149 26.044 26.626
Activity

Did not Engage in 27.578 541 26.517 28.640

Physical Activity

Interaction Effect The inclusion of age as a second factor results in output that
tells us whether the relationship between physical activity and BMI varies accord-
ing to the age category of the participant. When the strength or direction of a rela-
tionship between one factor and a response variable depends on the values of a
second factor, an interaction effect between the two factors is said to be present.
To determine whether there is an interaction effect, we can inspect the mean BMI
values of each of the four groups of women, and compare the difference between
the two mean BMI values of the women between the ages of 35 and 44 who had and
had not engaged in physical activity with the difference between the two mean BMI
values of the women between the ages of 45 and 54 who had and had not engaged
in physical activity. Tables 12.7 and 12.8 display this information. Table 12.7 high-
lights the BMI means of the two physical activity groups for women between 34
and 44, while Table 12.8 highlights the BMI means of women between 45 and 54.
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Estimated Marginal Means of BODY MASS INDEX
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NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR

Fig. 12.10 Means plot of the main effect of physical activity on BMI

Table 12.5 Means of the main effect of age category on BMI
3. SIX LEVEL IMPUTED AGE CATEGORY

Dependent Variable: BODY MASS INDEX

95% Confidence Interval
SIX LEVEL IMPUTED Std.
AGE CATEGORY Mean Error Lower Bound Upper Bound
35to 44 26.076 451 25.192 26.961
45 to 54 27.837 .334 27.181 28.493

Answer the following questions:

12.3.5 Judging from the 4 BMI means, which age group seems to benefit
from engagement in physical activity?

12.3.6 Does the pattern of the 4 BMI means suggest an interaction effect
between engagement in physical activity and age category?

We see that for the younger group of women, those who had engaged in physical
activity and those who had not had about the same average BMI, but that for the
older women, those who had engaged in physical activity had an average BMI sub-
stantially lower than those who had not engaged in physical activity.
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Estimated Marginal Means of BODY MASS INDEX

28.00

27.50

27.00

Estimated Marginal Means

26.50

26.00

T T
35 to 44 45 to 54
SIX LEVEL IMPUTED AGE CATEGORY

Fig. 12.11 Means plot of the main effect of age category on BMI
Table 12.6 Tests of the null hypotheses that BMI is unrelated to physical activity or age category

Tests of Between-Subjects Effects
Dependent Variable: BODY MASS INDEX

Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 781.2127 3 260.404 7.070 .000
Intercept 339780.242 1 339780.242 | 9224.762 .000
@_RFNOPA 180.745 1 180.745 4.907 .027
@_AGE_G 362.417 1 362.417 9.839 .002
@_RFNOPA* @_AGE_G 334.322 1 334.322 9.077 .003
Error 66594.962 1808 36.833
Total 1337213.025 1812
Corrected Total 67376.174 1811

a. R Squared = .012 (Adjusted R Squared = .010)

Comparing the effect of physical activity on the average BMI of older women to
the effect of physical activity on the average BMI of younger women is made easier
by inspecting the interaction plot that displays these four means. Study this display,
shown in Fig. 12.12. (We modified the formatting of the figure slightly to better dis-
tinguish in grayscale the two age categories.) Note whether the relationship between
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Table 12.7 BMI means of women between the ages of 35 and 54 who engaged or did not engage
in physical activity, with the BMI means of the younger group highlighted
4. NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR * SIX LEVEL IMPUTED AGE CATEGORY
Dependent Variable: BODY MASS INDEX

NO PHYSICAL ACTIVITY Mean 95% Confidence Interval
OR EXERCISE RISK SIX LEVEL IMPUTED

FACTOR AGE CATEGORY Std. Error Lower Bound Upper Bound

==

Engaged in Physical 35to0 44 26.300 214 25.879 26.721
Activity 451054 206 25.967 26.773
Did not Engage in Physical 35 to 44 25.852 .876 24.134 27.570
Activity 451054 2304 636 28.056 30.552

Table 12.8 BMI means of women between the ages of 35 and 54 who engaged or did not engage
in physical activity, with the BMI means of the older group highlighted
4. NO PHYSICAL ACTIVITY OR EXERCISE RISK FACTOR * SIX LEVEL IMPUTED AGE CATEGORY
Dependent Variable: BODY MASS INDEX

NO PHYSICAL ACTIVITY 95% Confidence Interval
OR EXERCISE RISK SIX LEVEL IMPUTED
FACTOR AGE CATEGORY Mean Std. Error Lower Bound Upper Bound
Engaged in Physical 35to0 44 0 214 25.879 26.721
Activity 451054 26.370 206 25.967 26.773
Did not Engage in Physical 35 to 44 .876 24.134 27.570
Activity 451054 29.304 636 28.056 30.552
N—"
Estimated Marginal Means of BODY MASS INDEX
SIX LEVEL
IMPUTED
AGE
29.00 CATEGORY
: ---- 35t044
— 451054
(2]
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E
=
(/]
w
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Engaged in Physical Activity ~ Did not Engage in Physical Activity
NO PHYSICAL ACTIVITY OR EXERCISE RISK

FACTOR

Fig. 12.12 Means plot of the interaction effect between physical activity and age category on BMI
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Table 12.9 Test of the interaction effect between physical activity and age category on BMI
Tests of Between-Subjects Effects
Dependent Variable: BODY MASS INDEX
Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 781.212% 3 260.404 7.070 .000
Intercept 339780.242 1 339780.242 9224.762 .000
@_RFNOPA 180.745 1 180.745 4.907 .027
AGE G 362.417 1 36_2.417 9.839 .002
@_RFNOPA * @ AGE_G 334.322 1 334.322 9.077 .oo?]
Error 66594.962 1808 36.833
Total 1337213.025 1812
Corrected Total 67376.174 1811

a. R Squared = .012 (Adjusted R Squared = .010)

physical activity and BMI seems to differ across the two age categories. To be sure
that you understand the graph, see if you can find in the graph each of the four
means singled out in Tables 12.7 and 12.8.

The graph tells us that the relationship between whether or not women were
physically active and their BMI depended on the age category of the women. In the
language of ANOVA, we can say that engagement in physical activity appears to
interact with age.

As you may have guessed from the interaction plot, an interaction effect is evi-
denced by the lack of parallelism between the lines displayed in the graph. How-
ever, as with any sample result, the lack of parallelism in our sample may have
been due to random sampling variability and not to an interaction in the population.
Consequently, we need to test the null hypothesis that there is no interaction in the
population against the alternative hypothesis that there is an interaction. In other
words, we need to determine the probability that the sample interaction effect would
have occurred if there were no interaction effect in the population.

We can discover this probability by consulting the row in the 7ests of Between-
Subjects Effects table, displayed in Table 12.9. If we consult the row labeled @_RF-
NOPA*@_AGE G, we will find the F-ratio for the interaction effect and its associ-
ated p-value.

Answer the following questions:

12.3.7 Was the interaction effect between physical activity and age category
statistically significant?

12.3.8 Can we reject the null hypothesis that in the population from which
the sample was taken, physical activity benefits both age groups
equally?

According to Table 12.9, the probability that the interaction we observed in our
sample would have occurred if there is no interaction in the population is 0.003.
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This probability tells us that it is highly unlikely that we would have observed in our
sample the interaction between physical activity and age category if there were no
such interaction in the population of NY state women. Therefore, from our sample,
we can infer with great confidence that the relationship between physical activity
and BMI for female residents of NY depends on whether they are 35-44 years of
age or 45-54 years of age.

The existence of a significant interaction effect forces us to be cautious about
how we interpret the separate effects of each of the factors involved in the interac-
tion, that is, how we interpret the main effects. For example, consider again the plot
of the main effect of physical activity, shown in Fig. 12.10. This graph compares
the mean BMI of those who had been physically active with those who had not, re-
gardless of their age category. Our inspection of the interaction plot, reproduced in
Fig. 12.12, tells us that we would be mistaken if we were to conclude that the main
effect of physical activity describes equally well the relationship between physical
activity and BMI for both age groups.

12.4 ANOVA with Two Repeated Measures Factors

In the preceding analysis, we conducted a two-way ANOVA in which each factor
formed independent groups. In the next two sections, you will learn how to interpret
a two-way ANOVA when at least one of the factors is repeated measures. We will
begin with a study that used two repeated measures factors.

The file, Blood.sav [2], consists of systolic and diastolic blood pressures (mm
Hg) of 15 hypertensive patients who had been given the drug, captopril. Each pa-
tient’s blood pressure was measured twice, immediately before and 2 h after the
drug was administered. Let us investigate the effects of this drug on blood pressure.

We will begin by studying the structure of the data file, reproduced in Fig. 12.13.
Note that, as usual, each row contains the data from each participant. In this data set,
the first variable refers to patient number (1 through 15), and the next four variables
contain the blood pressure readings. Note the ordering of the last four columns: The
researchers chose to enter the systolic readings before the diastolic, and for each
type of blood pressure, the before reading prior to the after reading.

We will determine if systolic blood pressure was greater than diastolic (which of
course it should have been), whether blood pressure dropped significantly after the
drug was given, and whether the drug had the same effect on systolic and diastolic
blood pressure. In the language of ANOVA, we will see if there was a significant
main effect of type of blood pressure (systolic vs. diastolic), a significant main ef-
fect of time of measurement (before vs. after), and a significant interaction effect
between time of measurement and type of blood pressure.

As with our earlier two-way ANOVA, the outcome variable is quantitative and
the explanatory variables are categorical. But this time both explanatory factors are
repeated measures. This is because each patient had both types of blood pressure
readings taken at both points in time. Consequently, we will be conducting a two-
way repeated measures ANOVA.
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Patient | SystolicBefore SystolicAfter DiastolicBefore DiastolicAfter
1 1 210 201 130 125
2 2 169 165 122 121
3 3 187 166 124 121
4 4 160 157 104 106
5 5 167 147 112 101
6 6 176 145 101 85
7 7 185 168 121 98
8 8 206 180 124 105
9 9 173 147 115 103
10 10 146 136 102 98
1 1 174 151 98 90
12 12 201 168 119 98
13 13 198 179 106 110
14 14 148 129 107 103
15 15 154 131 100 82

Fig. 12.13 Blood.sav data set

Select Analyze>General Linear Model > Repeated Measures to bring up
the Repeated Measures Define Factor(s) dialog box. In the Within-Subject Factor
Name box, we will enter a name for the repeated measures factor, Tipe of Blood
Pressure. To minimize typing time and output space, just enter the word, Tipe.
In the Number of Levels box, enter 2, and then click Add. Now enter the second
repeated measures factor, Time of Measurement, by entering the word, Time, into
the Within-Subject Factor Name box. In the Number of Levels box, enter 2, and
then click Add. In the Measure Name box, enter the name of our response variable,
Blood Pressure, by entering the word, Pressure. Click Add. These steps are shown
in Figs. 12.14, 12.15, 12.16, and 12.17.

At this point, we have told SPSS to execute an ANOVA with two repeated mea-
sures factors we have called Type and Time on an response variable we have called
Pressure We have also told SPSS that each of the two factors has two values. SPSS
will therefore expect that there will be a column of data for each of the four combi-
nations of the values of the two factors. Our next step is to tell SPSS which column
of data corresponds to which combination of the values of the factors.

As shown in Fig. 12.17, click Define to bring up the Repeated Measures dialog
displayed in Fig. 12.18. Here, we will match up each relevant column of data listed
in the window to the left to each of the combinations of the values of the factors,
Type and Time, listed in the Within-Subjects Variables window to the right.

Let us look more closely at the Within-Subjects Variables window. Note that the
names of the repeated measures factors, Type and Time, are listed in parentheses
just above the window. The factors are listed in the order we entered them in the
previous dialog box. Type is listed first, Time second. Below the names of the fac-
tors and also within parentheses are two digits, 1 and 2, followed by the name of



320 12 Analysis of Variance with Two Factors

Graphs  Utilites Add-ons  Window

» 9 B N
A B B
»
» r'cAﬂer_ var var
* | & univariate...
»
Mixed Models )
Correlate
Rearassinn 4 =

Fig. 12.14 Opening the Repeated Measures Define Factor(s) dialog

Fig. 12.15 Defining type of r )
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measures factor
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our response variable, that is, (1,1, Pressure), (1,2, Pressure) and so on. Recall that
each factor has two levels: Systolic and Diastolic for the factor, Type; and Before
and After for the factor, Time. For each pair of digits, the first number refers to one
of the two levels of the first factor, Type; and the second number refers to one of the
two values of the second factor, Time.
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Fig. 12.16 Defining time of
measurement as a repeated
measures factor

Fig. 12.17 Naming the
response variable and open-
ing the Repeated Measures
dialog
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Fig. 12.18 Repeated measures dialog

Our next step is to move each column of blood pressure readings listed in the
window to the left to the Within-Subjects Variables window. Highlight Systolic:
Before and then click the right arrow to move this set of readings to the 1,1 com-
bination of 7ype and Time. In the same manner, move Systolic: After to the 1,2
combination of Type and Time. Repeat for the remaining two combinations of Type
and 7ime and you should have produced the dialog box shown in Fig. 12.19.

Now, we will set up our plots for the main effects of 7ype and Time and the
interaction between the two. As shown in Fig. 12.19, click Plots and create three
graphs in the Repeated Measures: Profile Plots dialog: one which will display the
relationship between mean blood pressure and type of blood pressure (i.e., a graph
that will list the values of Type on the horizontal line), one which will display the
relationship between mean blood pressure and the time of measurement (i.e., a
graph that will list the values of 7ime on the horizontal line), and one which will
display the relationship between mean blood pressure and time of measurement
for each type of blood pressure (i.c., a graph that will list the values of Time on
the horizontal line and display the two types of blood pressure as separate lines).
When you have finished, the Repeated Measures: Profile Plots dialog should look
like Fig. 12.20.
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Fig. 12.19 Selecting the variables corresponding to the four combinations of the repeated mea-
sures factors, and opening the Repeated Measures: Profile Plots dialog

Click Continue to return to the Repeated Measures dialog, and then Options to
open the Repeated Measures: Options dialog. Tell SPSS to display means for all
factors and factor interactions. Then select Descriptive statistics. When you have
finished, the Options dialog should look like the one in Fig. 12.21. Click Continue
to return to the Repeated Measures dialog box, and OK to run the analysis.

Main Effects The output should have a familiar look, thanks to our review of one-
way repeated measures ANOVA in Chap. 11. This time though we have descriptive
statistics, means plots, and F-ratios relevant to the investigation of two main effects
instead of just one, and for the investigation of an interaction effect.

Let us begin our study of the output with a trivial question: Was systolic blood
pressure significantly different from diastolic? Inspection of the means displayed
in Table 12.10 or of the corresponding means plot in Fig. 12.22 tells us not surpris-
ingly that on the average, systolic blood pressure was greater than diastolic.

To determine whether these two means were significantly different, that is, to
determine whether there was a significant main effect of type of blood pressure, we
do what we had done in Chap. 11—we consult the table labeled 7ests of Within-Sub-
Jects Effects. We find the row labeled Type and its corresponding F-ratio, degrees of
freedom, and p-value. That row can be found in Table 12.11.
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Requesting means plots of the main effects of type of pressure and time of measure-

ment, and of the interaction between type of pressure and time of measurement

Answer the following questions:

12.4.1
12.4.2

12.4.3
12.4.4

12.4.5

What was the value of the F-ratio?

What were the numerator and denominator degrees of freedom asso-
ciated with the F-ratio?

What was the p-value associated with the F-ratio?

Can we reject the null hypothesis that in the population from which
the sample was taken, mean systolic and diastolic blood pressures
are equal?

In this analysis, we do not have to be concerned about whether we
can assume sphericity. Why?

According to the table, mean systolic blood pressure was significantly different
from mean diastolic blood pressure. That is, a significant main effect of type of
blood pressure was found.

Now let us focus on whether the drug seemed to have an effect on blood pres-
sure. Inspection of Table 12.12 or of the corresponding means plot in Fig. 12.23 tells
us that blood pressure declined following administration of the drug.

To determine whether these two means were significantly different, that is, to
determine whether there was a significant main effect of type of blood pressure, we
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Fig. 12.21 Requesting tables displaying the overall mean, the means of the main and interaction
effects, and descriptive statistics

consult the row labeled Time in the Tests of Within-Subjects Effects table. That row
can be found in Table 12.13.

Answer the following questions:
12.4.6 Were the two means displayed in Table 12.13 significantly different?

12.4.7 Does the analysis support the conclusion that captopril reduces blood
pressure?

Interaction Effect Our last finding has to do with whether the relationship between
time of measurement and blood pressure depended on the type of blood pressure mea-
sured. Inspection of the means found in Table 12.14 or of the corresponding interaction
plot of Fig. 12.24 suggests that although both types of blood pressure declined after
administration of the drug, the decline was somewhat greater for systolic pressure.
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Table 12.10 Mean systolic and diastolic blood pressure readings

2. Type
Measure: Pressure
95% Confidence Interval
Std.
Type Mean Error Lower Bound Upper Bound
1 167.467 5.107 156.514 178.419
2 107.700 2.770 101.759 113.641

Estimated Marginal Means of Pressure

160

140

120 A

Estimated Marginal Means

100

Type

Fig. 12.22 Means plot of the main effect of type of blood pressure: systolic (Type=1) versus
diastolic (Type=2)

To determine whether there was a significant interaction effect between the type
of blood pressure and the time of measurement, we consult the row labeled Zime *
TBype in Tests of Within-Subjects Effect. That row is included in Table 12.15.

Answer the following questions:

12.4.8 Was the interaction effect statistically significant?

12.4.9 Can we reject the null hypothesis that captopril reduces systolic and
diastolic blood pressure equally?
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Table 12.11 Test of the null hypothesis that the population systolic and diastolic blood pressure
means are equal

Tests of Within-Subjects Effects

Measure: Pressure

Type Il Sum

Source of Squares df Mean Square F Sig.
Type Sphericity Assumed 53580.817 1 53580.817 240.856 .000

Greenhouse-Geisser 53580.817 1.000 53580.817 240.856 .000

Huynh-Feldt 53580.817 1.000 53580.817 240.856 .000

Lower-bound 53580.817 1.000 53580.817 240.856 .000
Error(Type) Sphericity Assumed 3114.433 14 222.460

Greenhouse-Geisser 3114.433 14.000 222.460

Huynh-Feldt 3114.433 14.000 222.460

Lower-bound 3114.433 14.000 222.460

Table 12.12 Mean blood pressure readings before (Time=1) and after (Time=2) administration
of captopril

3. Time
Measure: Pressure
95% Confidence Interval
Std.
Time Mean Error Lower Bound Upper Bound
1 144.633 3.694 136.710 152.557
2 130.533 3.852 122.271 138.795

As usual, the existence of a significant interaction forces us to be careful when we
interpret the main effects. As we can see by comparing Figs. 12.23 and 12.24, the
main effect of time of measurement (mean blood pressure before vs. mean blood
pressure after; Fig. 12.23) somewhat underestimates the drug’s effect on systolic
blood pressure and somewhat overestimates the drug’s effect on diastolic blood
pressure (Fig. 12.24).

12.5 ANOVA with One Independent Groups and One
Repeated Measure Factor

As our last example of a two-way ANOVA, we will return to a study that we en-
countered in the previous chapter: the effects of acupuncture on severity of chronic
headaches. In this study, 401 male and female patients who suffered from chronic
headache were randomly assigned to one of two conditions: Acupuncture and Con-
trol. Patients assigned to the acupuncture group were referred by their general prac-
titioners to acupuncturists who offered weekly sessions for a period of 3 months.
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Fig. 12.23 Means plot of the main effect of time of measurement on blood pressure: before
(Time=1) and after (Time=2) administration of captopril

Table 12.13 Test of the null hypothesis that the population blood pressure means before and after
administration of captopril are equal
Tests of Within-Subjects Effects

Measure: Pressure

Type Il Sum

Source of Squares df Mean Square F Sig.
Time Sphericity Assumed 2982.150 1 2982.150 46.179 .000

Greenhouse-Geisser 2982.150 1.000 2982.150 46.179 .000

Huynh-Feldt 2982.150 1.000 2982.150 46.179 .000

Lower-bound 2982.150 1.000 2982.150 46.179 .000
Error(Time) Sphericity Assumed 904.100 14 64.579

Greenhouse-Geisser 904.100 14.000 64.579

Huynh-Feldt 904.100 14.000 64.579

Lower-bound 904.100 14.000 64.579

Patients in the control group were not referred. Three months (3-month follow-up)
and again 12 months (1-year follow-up) later, the severity of the patients’ headaches
was assessed and compared to their baseline severity ratings obtained at the begin-
ning of the study.
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Table 12.14 Mean systolic (Type=1) and diastolic (Type=2) blood pressures before (Time=1)
and after (Time=2) administration of captopril

4. Type * Time
Measure: Pressure
95% Confidence Interval
Std.
Type Time Mean Error Lower Bound Upper Bound
1 1 176.933 5.310 165.545 188.322
2 158.000 5.165 146.922 169.078
2 1 112.333 2.704 106.534 118.133
2 103.067 3.242 96.114 110.020
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Fig. 12.24 Means plot of systolic (Type=1) and diastolic (Type=2) blood pressures before
(Time=1) and after (Time=2) administration of captopril
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Table 12.15 Test of the null hypothesis that the effects of captopril on systolic and diastolic blood
pressures are equal
Tests of Within-Subjects Effects

Measure: Pressure

Type Ill Sum

Source of Squares df Mean Square F Sig.
Type * Time Sphericity Assumed 350.417 1 350.417 26.399 .000

Greenhouse-Geisser 350.417 1.000 350.417 26.399 .000

Huynh-Feldt 350.417 1.000 350.417 26.399 .000

Lower-bound 350.417 1.000 350.417 26.399 .000
Error(Type*Time) Sphericity Assumed 185.833 14 13.274

Greenhouse-Geisser 185.833 14.000 13.274

Huynh-Feldt 185.833 14.000 13.274

Lower-bound 185.833 14.000 13.274

In the previous chapter, we used a paired-samples f-test to compare the baseline
and 3-month follow-up severity ratings of the patients who were referred to acu-
puncture treatment. There we saw that the mean severity rating at 3-month follow-
up was significantly less than at baseline. However, before we can credit this de-
cline to the acupuncture treatment, we have to determine whether this decline was
greater than any that might have been reported by the control group. So this time
we will compare the baseline to 3-month follow-up changes in severity ratings of
the acupuncture and control groups. We will do this by using a two-way ANOVA.

Data from this study are in Acupuncture.sav [3]. The group to which each pa-
tient was assigned is stored in the variable, Group [group] (variable 6; 0=Control,
I =Acupuncture). Because each group consists of a different set of patients, the
group variable is independent groups. Each patient within each group rated his or
her headache severity at baseline, 3-month follow-up and 1-year follow-up. These
measurements are stored in the variables Headache Severity at Baseline [/50]
(variable 7), Headache Severity at 3 Months Follow-up [/s3] (variable 8), and
Headache Severity at One Year Follow-up [/4s/2] (variable 9). This set of three
measurements will constitute a repeated measures variable that we will call Time
of Measurement. Note that the two-way ANOVA will consist of a categorical vari-
able that is independent groups (Group) and a second categorical variable that is
repeated measures (Time of Measurement). As is always the case with ANOVA,
the response variable is quantitative. In this case, the response variable is Headache
Severity.

12.5.1 If we were to predict that acupuncture is effective in treating chronic
headache, would we predict an interaction effect between Groups
and Time of Measurement? Why or why not?

Load the data file, Acupuncture.sav. Because our analysis will include a repeated
measures factor, select Analyze > General Linear Model > Repeated Measures
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Fig. 12.25 Defining the ( )
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to bring up the now familiar Repeated Measures Define Factor(s) dialog box. As-
sign a name to the repeated measures factor—the name 7ime will do—and tell SPSS
that it has two levels. Then assign a Measure Name. This is our response variable.
Severity will do. When you have finished, the dialog box should look similar to the
one in Fig. 12.25.

As shown in Fig. 12.25, click Define to bring up the Repeated Measures dialog
box. Move the baseline and 3-month follow-up variables to the Within-Subjects
Variables window.

At this point, you have told SPSS that you wish to conduct an ANOVA on a re-
sponse variable called Severity, that the ANOVA has one explanatory factor, Zime,
and that the factor is repeated measures and has two values. If we were to run the
analysis now, we would generate a one-way repeated measures ANOVA. But we
want a two-way ANOVA. What’s missing?

We need to tell SPSS that there is a second factor, Group, and that the sec-
ond factor is independent groups. To do this, move Group into the window labeled
Between-Subjects Factor(s) by selecting it and clicking the right pointing arrow to
the left of the Between-Subjects Factor(s) window. Now the dialog box should look
like the one in Fig. 12.26.
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Fig. 12.26 Assigning variables corresponding to the two values of the repeated measures factor,
selecting the independent groups factor, and opening the Repeated Measures: Profile Plots dialog

Next, click Plots and tell SPSS to plot the main effects of 7ime and Group and
the interaction between the two factors. For the interaction plot, put 7ime on the X-
axis. When you’re done, the Profile Plots dialog should look like Fig. 12.27. Click
Continue.

Back in the Repeated Measures dialog, click Options and instruct SPSS to gen-
erate descriptive statistics for all of the variables, as shown in Fig. 12.28. Click
Continue and then OK to run the analysis.

The layout of the output is the same as with the analyses of Sects. 12.3 and 12.4
in that the output provides information about two factors. For example, the output
will display the means that correspond to the four combinations of the two factors
(Table 12.16), and a means plot of those means (Fig. 12.29). This time, though, one
of the factors is independent groups and the other repeated measures. Consequently,
to see if the study generated a significant main effect of Group, inspect the table
labeled Tests of Between-Subjects Effects (Table 12.17). To see if the study gener-
ated a significant main effect of 7ime or a significant interaction between Group and
Time, inspect the table labeled Test of Within-Subjects Effects (Table 12.18).
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Fig. 12.27 Requesting means plots of the main effects of time of measurement and group, and of
the interaction effect between the two factors

Study the output, remembering that higher severity ratings indicate greater

headache severity. Then answer the following questions:

12.5.2 What was the p-value for the main effect of Group?

12.5.3 Was the mean severity rating at 3-month follow-up significantly less
than the mean severity rating at baseline?

12.5.4 What was the mean headache severity rating of the acupuncture
group at 3-month follow-up?

12.5.5 Did the acupuncture group experience an average change in severity
at 3-month follow-up that was significantly different from the aver-
age change experienced by the control group?

12.5.6 What was the p-value for the interaction effect?

12.5.7 Do the statistical results of this study support the hypothesis that
acupuncture reduces headache severity? Why or why not?
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Fig. 12.28 Requesting tables displaying the overall mean, the means of the main and interaction

effects, and descriptive statistics

Table 12.16 Mean headache severity ratings of the control and acupuncture groups at baseline

(Time=1) and 3-month follow-up (Time=2)

4. Group * Time

Measure: Severity

std. 95% Confidence Interval
Group Time Mean Error Lower Bound Upper Bound
Control 1 27.225 1.283 24.701 29.750
2 24 477 1.341 21.839 27.116
Acupuncture 1 25.506 1.207 23.131 27.880
2 19.052 1.261 16.571 21.533
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Fig. 12.29 Means plot of the headache severity ratings of the control and acupuncture groups at
baseline (Time= 1) and 3-month follow-up (Time=2)

Table 12.17 Test of the main effect of group

Tests of Between-Subjects Effects

Measure: Severity

Transformed Variable: Average

Type lll Sum
Source of Squares df Mean Square F Sig.
Intercept 376171.096 1 376171.096 817.759 .000
group 2072.390 1 2072.390 4.505 .035
Error 149040.813 324 460.003
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Table 12.18 Tests of the main effect of time of measurement and the interaction effect between
time of measurement and group

Tests of Within-Subjects Effects

Measure: Severity

Type Il Sum
Source of Squares df Mean Square F Sig.
Time Sphericity Assumed 3437.685 1 3437.685 51.129 .000
Greenhouse-Geisser 3437.685 1.000 3437.685 51.129 .000
Huynh-Feldt 3437.685 1.000 3437.685 51.129 .000
Lower-bound 3437.685 1.000 3437.685 51.129 .000
Time * group Sphericity Assumed 557.389 1 557.389 8.290 .004
Greenhouse-Geisser 557.389 1.000 557.389 8.290 .004
Huynh-Feldt 557.389 1.000 557.389 8.290 .004
Lower-bound 557.389 1.000 557.389 8.290 .004
Error(Time) Sphericity Assumed 21784.506 324 67.236
Greenhouse-Geisser 21784.506 324.000 67.236
Huynh-Feldt 21784.506 324.000 67.236
Lower-bound 21784.506 324.000 67.236
12.6 Exercise Questions

1. For people between the ages of 35 and 44, is participation in physical activity
associated with mental health? Is the answer to this question different for men
and women? To find out, a researcher analyzed the CDC BRFSS data set. The
results of the analysis are displayed in Figs. 12.30 and 12.31, and in Table 12.19.

a.

b
c.
d

o

What is the response variable?

. Is the response variable categorical or quantitative?

What are the explanatory variables?

. Are the explanatory variables independent groups or repeated measures

factors?

Ignoring gender, was mental health significantly related to physical activity?
Report the values of the F-ratio, degrees of freedom, and p-value associated
with the main effect of physical activity.

. Describe the main effect of physical activity.
. Does the relationship between physical activity and mental health differ sig-

nificantly for men and women? What was the p-value associated with this
finding?
Describe the interaction effect between physical activity and sex.

2. Using a crossover design, a researcher gave five patients two drugs in tablet
form. Drug A was given first. After a washout out period, each patient was given
Drug B. For each drug, the researcher measured the level of antibiotic blood
serum present at four points in time following ingestion: 1 h, 2 h, 3 h and 6 h.
The data are in the file, Groups.sav [4]. Conduct a two-way ANOVA.

a.
b.

What is the response variable? Is it categorical or quantitative?
What are the explanatory variables? Are they independent groups or repeated
measures factors?
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Estimated Marginal Means of Days Mental Not Good
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Fig. 12.30 Means plot of the relationship between reported number of days during the past month

ment

al health was “not good” and physical activity (Question 1)

Fill in the empty 15 cells of Table 12.20 with the appropriate means.

d. Did the two drugs differ significantly in the overall amount of antibiotic blood

serum they produced? What is the p-value associated with this finding?

. Did the number of hours following ingestion produce a significant main ef-
fect? What are the values of the means associated with this effect?
Did the effect of the number of hours following ingestion significantly de-
pend on which drug had been ingested? What is the p-value associated with
the answer to this question?

. When you answered questions 2e and 2f, did you have to take into account the
results of the Mauchly's Test of Sphericity? Why or why not?

3. Return to the acupuncture data and include the 1-year follow-up measurement in
the analysis.

a.

If we were to predict that acupuncture is effective in treating chronic head-
ache, would we predict an interaction effect between groups and time of mea-
surement? Why or why not?

. Did the mean severity ratings at baseline, 3-month follow-up, and 1-year
follow-up significantly differ? What is the p-value associated with this main
effect?

‘What was the p-value for the main effect of Group?
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Fig. 12.31 Means plot of the relationship between reported number of days during the past month

mental health was “not good” and physical activity for men and women (Question 1)

Table 12.19 Tests of the main and interaction effects (Question 1)
Tests of Between-Subjects Effects

Dependent Variable: Days Mental Health Not Good

Type llI

Sum of
Source Squares df Mean Square F Sig.
Corrected Model 2757.973% 3 919.324 6.325 .000
Intercept 15553.614 1 15553.614 107.015 .000
SEX 1118.256 1 1118.256 7.694 .006
@_RFNOPA 1621.658 1 1621.658 11.158 .001
SEX * @_RFNOPA 1664.158 1 1664.158 11.450 .001
Error 216848.946 1492 145.341
Total 256897.000 1496
Corrected Total 219606.919 1495

a. R Squared = .013 (Adjusted R Squared = .011)
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Table 12.20 Mean antibiotic blood serum

339

Hours following ingestion

Drug

1

2

Across hours

Drug A

Drug B

Across Drugs

d. Did the decline in severity from baseline to 1-year follow-up differ across
the acupuncture and control groups? What is the p-value associated with this
finding?

e. Do the statistical results of this study support the hypothesis that acupuncture
reduces headache severity? Why or why not?

Data Sets and References

. CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. US Department of Health and Human
Services, Centers for Disease Control and Prevention, Atlanta (2005). Public domain. For more
information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

. Blood.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, E.: A
Handbook of Small Data Sets. Chapman & Hall, London (1994). With the kind permission of
the Routledge Taylor and Francis Group, and Professor Graham A. MacGregor. For context,
see MacGregor, G.A., Markandu, N.D., Roulston, J.E., Jones, J.C.: Essential hypertension: ef-
fect of an oral inhibitor of angiotensin-converting enzyme. Br. Med. J. 2, 11061109 (1979)

. Acupuncture.sav obtained from: Vickers, A.J., Rees, R.W., Zollman, C.E., et al.: Acupunc-
ture for chronic headache in primary care: large, pragmatic, randomised trial. BMJ. (2004).
doi:10.1136/bmj.38029.421863.EB. (With the kind permission of Professor Andrew J. Vickers)
. Groups.sav obtained from: Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowski, E.:
A Handbook of Small Data Sets. Chapman & Hall, London (1994). (With the kind permission
of Professor David J. Hand)



Chapter 13
Simple Linear Regression

Abstract The principle of least squares is introduced to determine the best fitting
straight line. The coefficient of determination is discussed as a measure of how well
the straight line fits the data. Estimation and testing of the slope and intercept coeffi-
cients is introduced. Confidence intervals on the predictions made by the regression
line are discussed. Finally, residual analysis is presented.

13.1 Overview

In Chap. 9, we considered measuring the strength of relationship between two quan-
titative variables by using the Pearson correlation coefficient. There we learned that
a correlation of +1 indicates that two quantitative variables have a perfect linear
relationship with a positive slope, a value of — 1 indicates a perfect linear relation-
ship with a negative slope, and that correlations with a magnitude near zero indicate
a very weak linear relationship. When the variables do exhibit a linear relationship,
researchers often would like to know the equation of the straight line that describes
the relationship. The equation of a straight line has the following form:

y=a+bx (13.1)

In the equation, b represents the slope (the change in y for a one unit increase in x)
and a represents the y-intercept (the value of y when x equals 0). In this context, the
y variable is often called the dependent variable and the x variable is often called
the independent variable. Once researchers have the equation of this line, it can be
used to make predictions of y for a given value of x.

Before trying to determine the slope and intercept of the straight line, research-
ers first create a scatter plot to see if the relationship between the two variables is
linear. If the relationship is linear, then researchers use a method, known as /east
squares, to find the slope and intercept that “best” describes the linear relationship
seen in the data.

The straight line equation describes a linear relationship observed in a sample of
data. If the sample had been taken at random from a larger population, the sample’s
slope and intercept will be affected by random sampling variability. In other words, if
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another random sample were to be taken, the values of its slope and intercept would
likely be at least a little different from those of the first sample. Because of this ran-
dom variability, the values of the slope and intercept of a given sample may not be
indicative of those of the population. Moreover, the predictions of y based on the sam-
ple will likely not be the same as those based on another sample randomly drawn from
the same population. Consequently, after determining the best fitting straight line for
a sample of data, researchers construct confidence intervals (Cls) for the population
slope and intercept, test hypotheses regarding their values, and construct CIs for pre-
dictions generated by the equation of that line. In this chapter, we will review these
procedures. In the next chapter, we will apply these techniques to situations in which
predictions of the dependent variable are based on two or more independent variables.

13.2 Describing the Best Fitting Straight Line

In this chapter, we will use data from a study of the pulmonary function of 654 boys
and girls between the ages of 3 and 19. The data file includes the forced expiratory
volume (FEV) of each child, that is, the amount of air (measured in liters) each child
exhaled forcefully in one second. The age, height, and sex of the child, and whether
the child was a smoker or nonsmoker are also recorded. We will focus on predict-
ing the FEV of nonsmokers between the ages of 9 and 14. We will begin our study
by creating a scatter plot to determine if there appears to be a linear relationship
between FEV and age.

Scatter Plots As we saw in Chap. 9, a graphical means for determining if a relation-
ship exists between a quantitative explanatory variable and a quantitative response
variable is a scatter plot. In the context of regression, the explanatory variable is
called the independent variable and the response variable is called the dependent
variable. In our example, age will be the independent variable and FEV will be the
dependent variable.

On an x-y coordinate system, the independent variable forms the horizontal axis,
and the dependent variable forms the vertical axis. The values of the two variables
for each case form an (x,y) pair that is plotted. The resulting plot of these points is a
scatter plot. We then look at the pattern of the plotted points to determine the degree
to which the two variables are related and whether or not the relationship appears to
be linear. The degree to which the plot follows some sort of a curve will show the
strength of the relationship. The more the points follow a curve, the stronger is the
relationship. If the curve shows that there is a tendency for x and y to both increase,
the relationship is said to be positive. If the curve shows that there is a tendency for y
to decrease as x increases, the relationship is said to be negative. If the points follow
a curve that is a straight line, then the relationship is said to be /inear, otherwise it
is said to be non-linear.

Open the file, FEV.sav [1]. This file consists of the following variables: Age
(years) [4Age] (variable 1), FEV (liters) [FEV] (variable 2), Height (inches) [ Height]
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(variable 3), Sex [Sex] (variable 4; 0 = female, 1 = male), and Smoking Status
[Smoke] (variable 5; 0 = nonsmoker, 1 = smoker). We wish to focus on nonsmokers
who are between the ages of 9 and 14, inclusive, so begin by selecting cases of non-
smokers within this age range. There are 348 of them distributed across the six age
groups. Chapter 2 explains how to use Data >Select Cases to choose cases in SPSS.

To draw the scatter plot, we will follow the same procedure we followed in
Chap. 9. Select Graphs>Chart Builder, select Scatter/Dot from the Gallery, and
drag the picture of the simple scatter plot (the one in the upper left corner) to the
empty window above it. Drag the independent variable, Age (years) [Age] (variable
1) to the x-Axis box, and drag the dependent variable, FEV (liters) [FEV] (variable
2) to the y-Axis box. When you are finished, the dialog box should look like the one
shown in Fig. 13.1.

€8 Chart Buider fr——

Variables: Chart preview Uses example dala

& FEV (iters) FEV)

& Height (inches) fHel__
&b Sex([Sex)

&b Smolking Status [S
&b (Age »=9) & (Age <...

i

%Em 11

Dual Axes

(oK paste | Reset | Cancel | eip |

Fig. 13.1 Requesting a scatter plot
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Fig. 13.2 A scatter plot

Click OK to draw the scatter plot. The resulting plot should look similar to the
one shown in Fig. 13.2.

Answer the following questions.

13.2.1 Is there a relationship between FEV (liters) and Age (years)?
13.2.2 Is the relationship positive or negative?

13.2.3 Does the relationship appear to be strong, moderate, or weak?
13.2.4 Does the relationship appear to be linear?

Equation of the Best Fitting Straight Line Since there appears to be a linear rela-
tionship between FEV (liters) and Age (years), it is appropriate to try to determine
the equation of the straight line that “best” describes that relationship. The goal is
to try to find the equation of the straight line that comes closest to all of the points
in our scatter plot. In order to do this, we need to quantify how far all of the points
are from the line and then find the slope and intercept of the line that minimizes this
quantity. The principle we will use is known as least squares. For a candidate line
we will draw a vertical line from each point in the scatter to the line. If we let the y
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Fig. 13.3 Selecting a linear regression

value of where one of these verticals intercepts the candidate line be denoted by y,
the distance from the point to the line would be y — 3 . This quantity is known as
a residual. We calculate the residual for each point in the data. These residuals are
then squared and the squares are summed to obtain what is known as the residual
sum of squares,

S -3 (132)

The slope and intercept of the straight line that minimizes the residual sum of
squares are known as the least squares estimates (i.e., they make the residual sum
of squares have its least value). The equation of the straight line that uses the slope
and intercept obtained in this manner is known as the least squares fit or the least
squares regression line for the data. The equation of the least squares line will be

y=a+bx (13.3)

SPSS can compute the slope and intercept for the least squares regression line. As
shown in Figs. 13.3, 13.4, 13.5, and 13.6, select Analyze>Regression>Linear
to bring up the Linear Regression dialog box. Place the independent (x) variable,
Age (years), in the Independent(s) box, and place the dependent (y) variable, FEV
(liters), in the Dependent box. Click OK to run the regression.

The output will contain a number of items. We will explain them eventually, but
for now we are interested in determining the equation of the least squares regression
line. The slope and intercept of that line are found in the Coefficients table shown
in Table 13.1.
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Fig. 13.5 Selecting the independent variable
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Table 13.1 Coefficients table
Coefficients®
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .073 229 317 751
Age (years) .264 .021 557 12.472 .000

a. Dependent Variable: FEV (liters)

They are in the column labeled B in the Unstandardized Coefficients area. The
value in the row labeled (Constant) is the intercept, and the value in the row with
the name of the independent variable is the slope. Notice that the slope is positive,
indicating that the relationship between the two variables is positive.

13.2.5

What is the value of the y-intercept?

13.2.6 What is the slope of the line?

13.2.7

What is the equation of the least squares regression line?
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13.3 The Coefficient of Determination

We can see from our analysis that the equation of the straight line that best describes
the linear relationship between FEV and age is

$=0.073+0.264x (13.4)

This equation means that for any given individual in our study, we would predict
that his or her FEV is 0.073 plus an amount equal to 0.264 times his or her age. For
example, the first participant in the data set has an age of 9 years. This individual
would be predicted to have an FEV of 0.073+0.264(9) or about 2.449 L. The ac-
tual FEV of this person was 1.7080 L, so a logical question is whether or not the
least squares regression fits the data well. A partial answer to this is addressed by
a quantity known as the coefficient of determination, or R°. It tells us what propor-
tion of the observed variability in the dependent variable is “explained” by the least
squares regression line.

The observed variability is measured by what is known as the total sum of
squares. The equation for it is

7SS =Y (y,-¥) (13.5)

This variability reflects the extent to which values of the dependent variable vary
around the mean of those values. If we had no information about a sample other
than the mean, we would use the mean as our estimate of the value of the dependent
variable for each individual. For example, the mean FEV of our 348 children is
2.89683 L. If this is all we know about them, then our best guess of the FEV of each
of the 348 children would be 2.89683 L. Consequently, TSS also indicates the ex-
tent to which using the mean to predict individual values of the dependent variable
would be off the mark. It turns out that this sum of squares can be broken into the
sum of two other sums of squares, called the regression sum of squares, RSS, and
the residual or error sum of squares, ESS. The equation looks like

SO =Y G-+ Y05 (13.6)
TSS = RSS + ESS

In the equation, y,is the actual FEV of a given child, y is the mean FEV of the
sample, and fl. is the predicted value of FEV for that child. You will note that the re-
sidual sum of squares is the quantity that the least squares method tries to minimize.
The regression sum of squares is referred to as the amount of the variability in y that
is “explained” by the regression line, and the residual sum of squares is the amount
of the variability in y that is “unexplained” by the regression line. Therefore, the
proportion of the total variability in y that is “explained” by the regression will be
the ratio RSS/TSS. This quantity is the coefficient of determination, or R%. Since it
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Table 13.2 Model summary

Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate
1 5572 310 .308 .5795303

a. Predictors: (Constant), Age (years)

is a proportion, its range of possible values is from 0 to 1. A value of 1 indicates
a perfect fit to the data. That is, the data follow a straight line exactly. A value of
0 indicates that the independent variable is of absolutely no help in predicting the
value of the dependent variable. We would be no better off than if we had used the
mean of the sample to make our estimates. We put the term “explained” in quotes to
emphasize that “explained” in this context does not imply a cause-and-effect rela-
tion between the independent and dependent variables.

In SPSS, the coefficient of determination for a regression can be found in the
Model Summary table under R Square. This table is shown in Table 13.2. The Model
Summary table also contains R which is the positive square root of the coefficient of
determination; Adjusted R Square, which will be discussed in the next chapter, and
Std. Error of the Estimate, which will be discussed in the next section. Study the
output and answer the following questions.

13.3.1 What is the value of R??
13.3.2 What is the quality of the fit?

The value of R? tells us that the regression line fits the data reasonably well, ac-
counting for 31 % of the variability in FEV. We saw in Chap. 9 that we can ask SPSS
to draw the best fitting straight line through the points in a scatter plot by double
clicking the plot and clicking the Add Fit Line at Total icon. Doing this with the
scatter plot we generated earlier in this chapter allows us to visualize the goodness
of fit of the regression line. The plot is shown in Fig. 13.7.

We can see from the plot that the data show a weak to moderate tendency to
gravitate around the regression line. Notice the value of R? linear in the upper right-
hand corner of the graph. This is the coefficient of determination. Its value will
match the value displayed in the Model Summary table.

Let us take a closer look at the regression line. In the scatter plot in Fig. 13.7, the
x-axis has been extended leftward to its zero point. We did this to show the intercept
of the regression line.

The regression line consists of the predicted values of FEV across the values
of age. The strength of the relationship between FEV and age is indicated by how
closely these predicted values match actual values. For example, as we saw earlier,
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Fig. 13.7 Scatter plot with regression line

the participant who had an age of 9 years would be predicted to have an FEV of
about 2.449 L. This child’s actual FEV was 1.7080 L, so the predicted value falls
short of the actual value by a residual of about of —0.741 L. Another 9-year old
had an actual FEV of 2.9880 L. In fact, most of the 9-year olds in the sample had
an actual FEV different from the predicted value of 2.449 L. These relationships
are displayed in the plot shown in Fig. 13.8. The boxed points are the actual FEV
values, and the arrow shows the predicted FEV value (or what we referred to as y
in the equations above).

There are 348 people in the sample. If we were to square all 348 residuals and
then sum them, the result would be the residual or error sum of squares, ESS. Recall
that this quantity is equal to 1 minus the coefficient of determination. Thus, our
analysis tells us that the straight line that best describes the relationship between
FEV and age cannot account for 69.9% of the variability in FEV values. On the
other hand, our analysis also tells us that taking into account the linear relationship
between FEV and age greatly improves our ability to make accurate estimates of
FEV beyond that which we would have been able to make by using the mean of the
sample.
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Fig. 13.8 Illustrating errors

13.4 Estimating and Testing Population Coefficients

Estimation If the data used to get the least squares regression line are a random
sample from a larger population, we would like to know whether or not the results
are indicative of a true linear relationship in the population. In order to do this,
we need a model for the population that would produce a scatter plot such as we
observed in the sample. That means that we will need a straight line that follows the
trend in the data. In addition, we need some randomly generated values that produce
the scatter about this line. In order to obtain this, the so-called classical regression
model looks like the following:

y,=a+fx+e, (13.7)

where y, is an actual value of , « is the population y-intercept, § is the population
slope, x, is a known, fixed value of x, and ¢;is a random value that is assumed to
have a normal distribution with a mean of 0 and a standard deviation of ¢. Thus, the
parameters of the model are «, §, and . Since we do not know the values of these
parameters, we need to use our sample data to estimate them. The estimator for « is
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Table 13.3 Converting Alternative Hypothesis p-value
2-tailed p-values to 1-tailed
p-values B>0
Ifb>0 Sig/2
Ifb<0 1-Sig/2
<0
Ifb>0 1-Sig/2
If b<0 Sig/2

the least squares value for the intercept, a. The estimator for 4 is the least squares
estimator for the slope, b. Finally, ¢ is estimated by

1 .
S:\/Ez(yi_yi) (13.8)

It is called the standard error of the estimate. In SPSS, the standard error of the es-
timate is found in the Model Summary table under Std. Error of the Estimate. Study
the output and answer the following questions:

13.4.1 What is the value of the estimate for ¢/?
13.4.2 What is the value of the estimate for 3?
13.4.3 What is the value of the estimate for ¢?

Testing Hypotheses with the t Distribution Our next step is to determine whether
or not the regression equation on our data is indicative of a true linear relationship
between the independent and dependent variables in the population from which the
data were drawn. To do this, we will test the null hypothesis that the population
slope, £, is equal to 0. The alternative hypothesis can be either that the population
slope is positive, or that the population slope is negative, or that the population is
not equal to 0. SPSS conducts this test in two different ways. We will discuss the
first in this section and address the second method in the next section. The first uses
a test statistic that has a ¢ distribution. The value of the test statistic and the p-value
for the two-sided alternative hypothesis can be found in the Coefficients table in
the columns labeled ¢ and Sig. In the row for the independent variable, the value of
the test statistic is in the ¢ column and the two-tailed p-value is in the Sig. column.
As usual, small p-values correspond to evidence against the null hypothesis. You
will note that if you divide the value in the B column by the value in the Std. Error
column you get the ¢ value to within rounding. If the alternative hypothesis is one-
sided, the two-sided p-value is obtained as described in Table 13.3. Sig. is the two-
tailed p-value from the Coefficients table.
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In the row labeled (Constant) the ¢ value and the p-value are for the two-sided
test that the population intercept, ¢, is equal to 0. If the p-value for this test is large
(usually greater than 0.1), you might want to consider fitting a model where the
intercept is set to 0. This is done by clicking Options in the regression main dialog
box to bring up the dialog box shown in Fig. 13.9. Unchecking Include constant in
equation will do a least squares fit with « set to 0.

Study the Coefficients table shown in Sect. 13.2 (Table 13.1) and answer the
following questions:

13.4.4

13.4.5
13.4.6
13.4.7

13.4.8
13.4.9

What is the ¢ value for testing the null hypothesis that the population
slope is 0?

What is the two-sided p-value for this test?

What should you conclude regarding the population slope?

What is the ¢ value for testing the null hypothesis that the population
intercept is 0?

What is the two-sided p-value for this test?

What should you conclude regarding the population intercept?
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Testing Hypotheses with the F Distribution The second method for testing the
null hypothesis that the population slope is 0 uses the F distribution. The only alter-
native hypothesis for this test is that the population slope is not equal to 0. The test
is summarized in the ANOVA table. Recall that ANOVA is an acronym for ANalysis
Of VAriance. The ANOVA table contains the following information. The Model
contains the names of the sums of squares that are the basis for the F test. The Sum
of Squares column contains the values of those sums of squares. Recall from our
discussion of R? earlier that the total sum of squares is TSS, the regression sum
of squares is RSS, the residual sum of squares in ESS and that the regression and
residual sums of squares sum to the total sum of squares.

Each sum of squares has degrees of freedom associated with it. They appear in
the df column. The degrees of freedom for regression is 1, the number of indepen-
dent variables in our model. The residual degrees of freedom in n—2, where 7 is the
sample size. Coincidentally, n—2 is number of degrees of freedom used in the 7 tests
we just discussed. Finally, the total degrees of freedom is n—1. Note that the regres-
sion and residual degrees of freedom sum to the total degrees of freedom.

The entries in the Mean Square column are arrived at by dividing the sum of
squares by its degrees of freedom. The mean square for total is not computed be-
cause it is not used in the test. It is interesting to note that the square of the standard
error of the estimate is equal to the residual mean square to within rounding. The
entry in F is the value of the test statistic. It is obtained by dividing the regression
mean square by the residual mean square. It has associated with it a pair of degrees
of freedom, one for the numerator mean square, and one for the denominator mean
square. The numerator degrees of freedom are always listed first, followed by the
denominator degrees of freedom. Large values of F indicate evidence against the
null hypothesis. The entry in Sig. is the p-value for the F test. As usual, the smaller
the p-value, the greater is the strength of evidence against the null hypothesis.

At this point, it is logical to ask why we need two different tests for determining
whether or not the population slope is 0. We really do not. It turns out that the 7 and
F tests are equivalent only in regression models with a single independent variable.
In the next chapter, we shall see that the F test is different from the # test when we
consider models with two or more independent variables. To see that the # and F/
tests are equivalent in this setting note that the F value is the square of the ¢ value
for testing the slope to within rounding.

Table 13.4 is the ANOVA table reproduced from the output.

13.4.10 What is the value of the regression sum of squares?

13.4.11 What is the value of the residual sum of squares?

13.4.12 What are the degrees of freedom for the regression sum of squares?

13.4.13 What are the degrees of freedom for the residual sum of squares?

13.4.14 Verify that each mean square is obtained by dividing the sum of
squares by its corresponding degrees of freedom.
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Table 13.4 Regression ANOVA table

ANOVA?®
Sum of
Model Squares df Mean Square F Sig.
1 Regression 52.242 1 52.242 155.550 .000°
Residual 116.206 346 .336
Total 168.448 347

a. Dependent Variable: FEV (liters)
b. Predictors: (Constant), Age (years)

13.4.15 Verify that the value of the F statistic is the ratio of the regression
mean square divided by the residual mean square?

13.4.16 What is the p-value for this test?

13.4.17 Based on this p-value does it appear that the population slope coef-
ficient is 0? Why or why not.

Confidence Intervals There are times when you want to construct Cls for the pop-
ulation slope and intercept. These Cls have the same interpretation as Cls we have
encountered in previous chapters. That is, a 95 % CI means that 95 % of all possible
intervals will contain the population parameter of interest. SPSS can construct Cls
for the population slope and intercept. In the main regression dialog box click Sta-
tistics to bring up the dialog box shown in Fig. 13.10.

In the Regression Coefficient area check Confidence intervals. Enter the desired
confidence level, in percent, in the Level(%5) box. For our example, use a 95 % con-
fidence level. Click Continue and OK to run the regression in the usual manner.
The requested CIs will be appended on the right-hand side of the Coefficients table
in the output, as shown in Table 13.5.

Study the output shown in Table 13.5 and answer the following questions.

13.4.18 What is the 95 % CI for the population slope?

13.4.19 What is the 95 % CI for the population intercept?

13.4.20 Are these Cls consistent with the results of the t tests reported in
the table?

13.5 Prediction Intervals

The regression equation we obtained was based on the sample of 348 subjects.
If we were to collect another sample of 348 subjects we would obtain a different
regression equation. The predictions for values of the dependent variable using the
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Fig. 13.10 Requesting confidence intervals

Table 13.5 Confidence intervals

Coefficients®

Standardized (" 95.0% Confidence Interval for B )
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) .073 229 317 751 =377 522
Age (years) .264 .021 557 12.472 .000 N_ 222 .305/

a. Dependent Variable: FEV (liters)

second regression equation would differ from those obtained using the first regres-
sion equation. So, in addition to making point predictions for the dependent vari-
able, we would like to construct Cls for the predictions. Such intervals are known
as prediction intervals. There are two types of prediction intervals depending on
how you interpret what the regression equation predicts. The value of the dependent
variable that the regression predicts can represent the mean value of the dependent
variable for that value of the independent variable. The other possibility is that the
value of the dependent variable that the regression equation predicts represents the
value of the next individual having that value of the independent variable. Clearly,
we are more confident in the accuracy of predicting a mean compared to an individ-
ual. This is reflected in the fact that prediction intervals for means are narrower than
prediction intervals for individuals. It is up to the investigator to interpret whether
the predictions represent means or individuals. SPSS allows for both possibilities.
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Fig. 13.11 Requesting point predictions and prediction intervals

To construct prediction intervals for values of the independent variable in the data
set, click Save in the main regression dialog box to bring up the dialog box shown in
Fig. 13.11. To compute and save the point predictions check Unstandardized in the
Predicted Values area. To obtain the prediction intervals check Mean and Individual
in the Prediction Intervals area. Enter the desired confidence level, in percent, in the
Confidence Interval box. Click Continue and run the regression in the usual manner.

The various predictions and CIs will be appended to the data set as new columns
of data. Predictions and Cls for the first 10 participants are shown in Fig. 13.12.

The point predictions appear in a new variable, labeled PRE I. For the first
participant, the model predicts an FEV of 2.444. The next two columns present
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PRE1 | LMCL1 UMCI_1 uc_1 ] uci_1 |
244403 235005 253801 1.30032 358774
244403 2.35006 253801 1.30032 358774
244403 235005 253801 1.30032 358774
244403 2.35006 253801 1.30032 358774
244403 2.35005 253801 1.30032 3.58774
244403 235005 253801 1.30032 3.58774
244403 235005 253801 1.30032 358774
244403 235005 253801 1.30032 358774
244403 235005 253801 1.30032 358774
244403 235005 253801 1.30032 358774

Fig. 13.12 Point predictions and prediction intervals

| Age FEV Height Sex Smoke fiter_S
18 42200 6.0 1 0 0
B 18 4.0860 67.0 1 1 0
-l 18 4.4040 705 1 1 0
B 19 5.1020 720 1 0 0
_Be— 19 36190 66.0 0 1 0
S 19 33450 655 0 1
&5 15 )

Fig. 13.13 Adding a new independent variable value

the upper and lower confidence limits of predicted means as two new variables,
LMCI I and UMCI 1, respectively. For the first participant, these values tell us that
we can be 95 % confident that the average predicted FEV of 9-year-old children will
be between 2.35 and 2.538 L. The upper and lower confidence limits for individual
predictions will appear as the next two new variables, LICI I and UICI 1, respec-
tively. These values tell us that we can be 95 % confident that the predicted FEV for
any given 9-year-old child will be between 1.3 and 3.59 L. Notice that for any given
value of age, the CI for predicting an individual child’s FEV is wider than the CI for
predicting the mean FEV.

Often, we will want to make point predictions or get prediction interval limits for
values of the independent variable that are not in the data set. To do this, we enter
the desired value(s) for the independent variable to the bottom of the data set, leave
the dependent variable empty, and run the regression saving the predicted values
and the prediction intervals. To see how this works, enter a value of 15 in case 655
of Age (years) and a value of 1 in filter_$, as shown in Fig. 13.13.

Compute the regression saving the unstandardized predicted values and 95 % pre-
diction intervals for both the mean and individuals. This will produce a second set
of predictions and Cls for all of the individuals, and for the new entry. Each of the
second set of variables will have “ 2” attached to the variable names. See Fig. 13.14.

It is probably not obvious from looking at the values that are stored in the Data
View, but predictions intervals get wider as we move from the center of the data to
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PRE_2 LMCI 2 UMC1 2 uc 2 uict_2

4.02505 3.83693 421317 286978 5.18031

Fig. 13.14 A new set of predictions and prediction intervals

extremities. This reflects the fact that predictions are more accurate in the center of
the data set than they are at the end points. Making predictions beyond the endpoints
of the data should be made with care as you need to make the assumption that the
pattern of the relationship that you see in the data does not change for values of the
independent variable larger or smaller than the largest or smallest value in the data.
It is a little hard to see, but the scatter plot shown in Fig. 13.15 shows the predicted
values for the dependent variable and the two sets of prediction intervals. The up-
permost and lowermost lines are the prediction interval for individuals. The next
two are the prediction interval for means. The center line shows the point predic-
tions. If you look closely, you can see that, as we move from the center of the data,
the upper and lower confidence limits get farther apart.

Answer the following questions:

13.5.1 What was the point prediction for a value of Age of 15?

13.5.2 What are the upper and lower 95 % prediction limits when we inter-
pret the predicted value to be a mean for a 9-year old?

13.5.3 What is the width of this interval?

13.5.4 What are the upper and lower 95 % prediction limits when we inter-
pret the predicted value to be an individual for a 9-year old?

13.5.5 What is the width of this interval?

13.5.6 Which prediction interval is wider?

13.6 Residual Analysis

The validity of the ¢ tests, the F test, the CIs of the population slope and inter-
cept, and the prediction interval we have been discussing depends on the regres-
sion model requirements that there is a linear relationship between the independent
and dependent variables, and that the error terms have a normal distribution with a
mean of 0 and a standard deviation that is constant for all values of the independent
variable. We need to verify that these conditions have been met. This is done by
examining the residuals that result from the least squares curve fit. Recall that the
residual for the ith case is y, — p, . These are the estimates for the value of the error
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Fig. 13.15 Plot of prediction intervals

term. If the relationship between the independent and dependent variables is linear,
the data points should be randomly scattered about the regression line. If the error
terms have the same standard deviation, the distance the data points are from the
regression line should not show a tendency to get closer or farther from the regres-
sion as the value of the independent variable increases.

These properties can be investigated by examining a scatter plot of the residuals
versus the predicted values of the dependent variable. Such a scatter plot is known as
a residual plot. If there is a linear relationship between the independent and depen-
dent variables and the error terms have a constant standard deviation, the residual
plot should show a random scatter with no discernable pattern or a tendency to show
a wider or narrower dispersion as you move from left to right. Whether or not the
error terms have a normal distribution can be assessed by examining a normal proba-
bility plot of the residuals. As was the case with the normal probability plots we saw
in Chap. 5, if the residuals show a relatively random scatter about the straight line
that is drawn, then it is safe to assume that the error terms have a normal distribution.
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Fig. 13.16 Requesting residual plots

These plots can be obtained in SPSS by clicking Plots in the main regression
dialog box to bring up the dialog box shown in Fig. 13.16.

The residual plot is obtained by placing ZRESID in the Y box and ZPRED in the
X box. The leading Z means that the residuals and predicted values have been trans-
formed to have a mean of 0 and a standard deviation of 1. The normal probability
plot is obtained by checking Normal probability plot in the Standardized Residual
Plots area. When the dialog box has been set up as shown in Fig. 13.16, click Con-
tinue and run the regression in the usual manner. The requested plots will be drawn
in an output window, and are shown in Figs. 13.17 and 13.18.

Study the output and answer the following questions:

13.6.1 Does the residual plot have a random pattern with relatively constant
dispersion about 0?

13.6.2 Does the normal probability plot reveal a pattern that is consistent
with a normal distribution?

13.6.3 Does the regression model requirement of a linear relationship
between the independent and dependent variables appear to have
been met?

13.6.4 Do the regression model requirements that the error terms have a nor-
mal distribution with a constant standard deviation appear to be met?

13.6.5 Are the results of the ¢ tests, the F test, the CIs on the population slope
and intercept, and the prediction intervals reliable?
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Fig. 13.17 Normal probability plot of residuals

13.7

Exercise Questions

1. Figure 13.19 is a scatter plot of the relationship between diastolic blood pres-
sure and BMI of patients participating in the Framingham heart study. The plot
displays the best fitting straight line. Load the data file Framingham.sav [2] and
conduct a regression on these data.

a.
b.

Report the equation of the best fitting straight line.

According to the value of the slope, how much does diastolic blood pressure
increase for every increase of one unit of BMI?

What is the value of the coefficient of determination?

. What does the value of the coefficient of determination that you just reported

tell us about the relationship between diastolic blood pressure and BMI?
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Fig. 13.18 Scatter plot of residuals

e. What is the predicted diastolic blood pressure of an individual patient with a
BMI of 30?
f. What would be the 95 % CI for this prediction?

2. Tables 13.6 and 13.7 show some of the output generated by the analysis in Ques-
tion 1 above.

What is the value of the 7 test for the population slope?

. What is the two-sided p-value?

What should you conclude regarding whether or not the population slope is 0?
. What is the value of the F-ratio?

What are the degrees of freedom for the numerator and the denominator?
What is the p-value associated with the F-ratio?

. What should you conclude from this p-value?

QHo a0 o

3. Imagine that we conduct a regression analysis on the Framingham data set to
determine the relationship between BMI and age for men. The resulting coef-
ficients are displayed in Table 13.8. Can we conclude from Table 13.8 that BMI
and age are related? Why or why not?

4. The regression analysis of Question 3 generated the plots shown in Figs. 13.20
and 13.21.
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Fig. 13.19 Scatter plot for Question 1
Table 13.6 Output for Question 2
ANOVA®
Sum of
Model Squares df Mean Square F Sig.
1 Regression 102595.981 1 102595.981 731.391 .000°
Residual 657610.220 4688 140.275
Total 760206.201 4689
a. Dependent Variable: Diastolic Blood Pressure
b. Predictors: (Constant), Body Mass Index
Table 13.7 Output for Question 2
Coefficients®
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 53.249 1.096 48.566 .000
Body Mass Index 1.142 .042 .367 27.044 .000

a. Dependent Variable: Diastolic Blood Pressure
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Table 13.8 Coefficients table for Question 3
Coefficients®”
Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 25.381 412 61.623 .000
Age, in years .012 .009 .031 1.410 .159

a. Gender = Male

b. Dependent Variable: Body Mass Index

Expected Cum Prob

0.0

Normal P-P Plot of Regression Standardized Residual

Dependent Variable : Body Mass Index

Gender : Male

0.0

0.2

Fig. 13.20 Plot for Question 4
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Scatterplot
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Fig. 13.21 Plot for Question 4

a. List three conditions that are required by a regression analysis.
b. According to the plots above, did the data meet these conditions? Why or why
not?

Data Sets and References

1. FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics, 6th edn. Thomson Brooks/
Cole, Belmont (2006). With the kind permission of Professor Bernard Rosner. For context,
see Tager, I.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on
pulmonary function in children. Am. J. Epidemiol. 110, 15-26 (1979)

2. Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd edn. Cambridge University Press, New York (2009). (With the kind permission of
Sean Coady, National Heart, Blood, and Lung Institute)



Chapter 14
Multiple Linear Regression

Abstract This chapter provides an overview of multiple linear regression, a sta-
tistical technique that predicts values of a quantitative dependent variable from
values of two or more independent variables. By including more than one indepen-
dent variable, a multiple linear regression can often account for more variability
in the dependent variable than can a simple regression, can assess the relationship
between the dependent variable and an independent variable after controlling for
the presence of other independent variables, and can determine whether the effect
of an independent variable varies across levels of another. Topics reviewed include
the multiple correlation coefficient, adjusted R?,interpreting and testing unstandard-
ized and standardized slope coefficients, using categorical and dummy variables as
predictors, and testing for the presence of interaction effects.

14.1 Overview

In the previous chapter, we saw how to use a scatter plot to judge whether a straight
line describes the relationship between two quantitative variables, how to ascertain
the equation of the straight line that best describes the relationship, and how to use
that equation to predict the values of a dependent variable from the values of an
independent variable. We also saw that when two variables are not perfectly related,
the data points will scatter around the best fitting straight line rather than falling on
it, and the predicted values will often not match actual values exactly. In clinical
research, two variables are rarely perfectly related, so predictions rarely exactly
coincide with actual values. To improve the accuracy of prediction, researchers can
employ not just one independent variable but a set of two or more variables that
are linearly related to the dependent variable. The logic here is that the dependent
variable is likely to be a function of a number of factors, not just one, and therefore
predictions of the dependent variable will be more accurate if these additional fac-
tors are taken into account. In this chapter, we look at a statistical technique that
yields a prediction equation that allows researchers to predict values of a dependent
variable from values of two or more independent variables. The technique is called
multiple linear regression.

© Springer International Publishing Switzerland 2014 367
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The prediction equation in a multiple regression analysis takes the following
form:

y=a+bx +bx,+...+b,x,, (14.1)

where p is the predicted value of the dependent variable, x,,x,, and x, are the
values of each of k independent variables, a is the intercept, and b,, b,, and b, are
the slope coefficients. The values of the intercept and slope coefficients are com-
puted so that the sum of the squared differences between the predicted and actual
values of y is as small as possible. That is, the intercept and slope coefficients are
least squares estimates that minimize the residual sum of squares. The relationship
between each independent variable and the dependent variable is assumed to be
linear, and as is the case with simple regression, the residuals are assumed to be
normally distributed. Both of these assumptions can be checked in the manner ex-
plained in the previous chapter.

Often the independent variables are related not only to the dependent variable
but to one another. When independent variables correlate with one another, infor-
mation about the dependent variable that one predictor provides is to some extent
redundant with the information provided by the other predictors. This overlap in
information provided by the independent variables can affect the predictive value of
one or more of the variables. Slope coefficients generated by a regression analysis
take the interrelationships among the independent variables into account. Conse-
quently, slope coefficients reflect the degree to which an independent variable is
related to the dependent variable after the impact of the remaining predictors has
been taken into account or statistically controlled.

Factors that are correlated with both the independent and dependent variables but
which are not taken into account are called confounding variables. 1deally, potential
confounding variables are taken into account while the study is in progress through ex-
perimental control. That is, in the context of an experiment or randomized controlled
trial, the dependent variable is measured after all potential confounding variables have
been accounted for by either holding them constant or by randomly assigning partici-
pants to experimental conditions. However, in clinical research, it is often necessary
to collect data outside the context of an experiment. In these cases, after the data have
been collected, multiple regression analysis might be used to adjust for the presence
of confounding variables. Note however that statistical control can be used only for
confounding variables of which we are aware and for which we have measurements.

In this chapter, we use data from a study of the pulmonary function of 654 boys and
girls between the ages of 3 and 19. The data file includes the forced expiratory volume
(FEV) of each child, that is, the amount of air (measured in liters) each child exhaled
forcefully in one second. The age, height, and sex of the child and whether the child
was a smoker or nonsmoker are also recorded. We focus on predicting the FEV of non-
smokers between the ages of 9 and 14. In so doing, we learn how to conduct a multiple
regression analysis, how to determine whether the inclusion of additional independent
variables improved prediction, and how to interpret slope coefficients. As we did in the
previous chapter, we also learn how to determine whether the relationships between
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Fig. 14.1 Scatter plot of the relationship between forced expiratory volume (FEV) and age for 348
children who do not smoke

the independent and dependent variables we observed in our sample are indicative of
those relationships within the population from which the sample was taken.

14.2 Assessing the Impact of a Single Predictor on
Prediction Accuracy

We begin by revisiting our analyses of the relationship between FEV and age that
we conducted in Chap. 13.

Scatter Plot Recall that the file, FEV.sav [1], consists of the following variables:
Age (years) [Age] (variable 1), FEV (liters) [FEV] (variable 2), Height (inches)
[Height] (variable 3), Sex [Sex] (variable 4; 0= female, 1= male), and Smoking
Status [Smoke] (variable 5; 0= nonsmoker, 1= smoker). Following the instructions
of the previous chapter, create a scatter plot with FEV (liters) on the y-axis and
Age (years) on the x-axis, and then insert the best fitting straight line. As we did
in Chap. 13, use Data > Select Cases to restrict your plot to nonsmokers who are
between the ages of 9 and 14, inclusive.

The resulting scatter plot is displayed in Fig. 14.1. (We asked SPSS not to dis-
play the equation for the best fitting straight line.)
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Answer the following questions:

14.2.1 Does the relationship between FEV and age appear to be linear?

14.2.2 How would you describe the relationship between FEV and age?

14.2.3 What is the value of R*? What percent of the variability in FEV is
accounted for by age?

Simple Linear Regression Repeat our simple linear regression of Chap. 13 in
which FEV (liters) is the dependent variable and Age (years) is the independent
variable. The output is shown in Tables 14.1, 14.2, 14.3.

Answer the following questions:

14.2.4 What is thecorrelation, R, between FEV and age?

14.2.5 What is the coefficient of determination, R* ? Does this value match
the value displayed in the scatter plot?

14.2.6  What is the value of the standard error of the estimate, s ?

14.2.7 What is the total sum of squares? Of this, how much is accounted
for by the prediction line? How much is due to errors in prediction?
What proportion of the total sum of squares is accounted for by the
regression?

14.2.8 What is the intercept? Is it significantly different from zero?

14.2.9 What is the unstandardized slope coefficient? Is it significantly dif-
ferent from zero?

14.2.10 The prediction equation for this analysis is of the form,
y = a+bx, . Compute by hand the number of liters we would expect
would be forcefully exhaled by a 9-year-old.

Visualizing Prediction Accuracy You should have found that age accounts for
31% of the variability in FEV and that we would expect a 9-year-old to exhale
about 2.44 L. Before we go any further, let us try to visualize some of these findings.
First, return to the Linear Regression dialog box and ask SPSS to generate unstan-
dardized predicted values of FEV using age as the independent variable. After the
predicted values have been generated, go to Data View and see if the predicted FEV
of a 9-year-old you computed by hand matches the value computed by SPSS. While
you are at Data View, compare the predicted value for a 9-year-old with the actual
values of some of the 9-year-olds. A segment of those data is shown in Fig. 14.2.
There are 93 children in the data file who are 9 years old (and do not smoke). The
predicted FEV for each of them is 2.44403. Notice though that the actual values are
sometimes above the predicted value and sometimes below. This is in part because
of random errors associated with the taking of an FEV and in part because FEV is a
function of not only age but other factors as well. As a result, our predicted values
are off the mark to some extent, sometimes underpredicting and sometimes overpre-
dicting actual FEV values. Notice that the same can be said of other age groups. For
example, the actual FEV values for 10-year-olds vary around their predicted value.
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Table 14.1 Model summary for regression using age to predict forced expiratory volume

Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate
1 557° 310 .308 .5795303

a. Predictors: (Constant), Age (years)

Table 14.2 ANOVA table for regression using age to predict forced expiratory volume

ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 52.242 1 52.242 | 155.550 .000°
Residual 116.206 346 .336
Total 168.448 347

a. Dependent Variable: FEV (liters)
b. Predictors: (Constant), Age (years)

Table 14.3 Intercept and slope coefficient for the regression using age to predict forced expiratory
volume
Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .073 229 317 751
Age (years) .264 .021 .557 12.472 .000

a. Dependent Variable: FEV (liters)

Another way to visualize our findings is to return to our scatter plot of the re-
lationship between FEV and age that you created earlier. A version of the plot,
borrowed from Chap. 13, is shown in Fig. 14.3. The points within the rectangle are
the actual FEV values of our 93 9-year-old nonsmokers. The arrow indicates the
predicted value of FEV for these 93 kids, about 2.44. Once again we see that our
predicted value is too low for some of our 9-year-olds and too high for others.

A third way to visualize our data is to generate either a scatter plot of the actual
values of FEV and the values of FEV predicted on the basis of age, or, as we did
in Chap. 13, draw a residuals plot of the differences between the actual and pre-
dicted values. Those two plots are presented in Figs. 14.4 and 14.5, respectively. As
Fig. 14.4 shows, small values of FEV predicted on the basis of age are associated
with small actual values, moderate predicted values are associated with moderate
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| Age | FEV |Height| Sex | Smoke | fiter S | PRE_1
24870] 640 Female Nonsmoker Selected] 244403
1.5910] 57.0 Female Nonsmoker Selected| 2.44403
26880] 595 Female Nonsmoker Selected] 2.44403
1.5580] 53.0 Male Nonsmoker Selected] 244403
1.8950] 57.0 Male Nonsmoker Selected] 244403
2.3520] 59.0 Male Nonsmoker Selected] 244403
10 3.0860 620 Female Nonsmoker Selected 2.70753
10 25680 635 Female Nonsmoker Selected 2.70753
10 31320 595 Female Nonsmoker Selected 2.70753
10 23280 64.0 Male Nonsmoker Selected 2.70753
10 18110 57.0 Male Nonsmoker Selected 2.70753
10 25610 62.0 Male Nonsmoker Selected 2.70753

W W W W w W

Fig. 14.2 Actual values of forced expiratory volume (FEV) and predicted values (Pre_I) based
on each child’s age
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Fig. 14.3 Scatter plot highlighting the distribution of actual values of forced expiratory volume
(FEV) of 9-year-olds around their predicted value
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Fig. 14.4 Scatter plot of the relationship between the actual values of forced expiratory volume
(FEV) and the unstandardized FEV values predicted on the basis of each child’s age

actual values, and large predicted values are associated with large actual values. So
it appears that predicting FEV on the basis of a child’s age has merit. However,
both plots show that our predictions are far from perfect. Clearly, if we want to pre-
dict a child’s FEV more precisely, we need to do more than base predictions on the
child’s age.

14.3 Improving Prediction by Adding a Second Predictor

We have seen that knowing children’s ages allows us to account for a portion of the
variability in the volume of air they can forcefully exhale. In fact, the value of R’

tells us that age accounts for 31 % of the variability in FEV for children between the
ages of 9 and 14. This leaves 69 % of the variability unaccounted for. Let us see if
adding a second independent variable improves prediction.

Each child’s height is included in the data set. Do you think height should be
included in our prediction equation? Height would seem to be a likely candidate
for our second predictor if we can assume that taller children exhale more air than
shorter children. However, the predictive value of independent variables is the
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Fig. 14.5 Residuals plot of the differences between the actual values of forced expiratory volume
(FEV) and the values of FEV predicted on the basis of each child’s age

greatest when the variables are not only correlated with the dependent variable but
are uncorrelated with one another. As children get older, they tend to get taller, so
the heights and ages of the children in our sample are likely to be correlated. If the
correlation between age and height is too high, knowledge of a child’s height does
not convey information about the child’s FEV that was not already revealed by the
child’s age. So before we include height as our second independent variable, we
should determine the extent to which it is correlated with FEV and with age. We
can do this by selecting Analyze > Correlate > Bivariate to generate a correlation
matrix that includes the variables FEV (liters), Age (years), and Height (inches).
The resulting correlation matrix is reproduced in Table 14.4.

Answer the following questions:

14.3.1 Is the correlation between FEV and age the same as the correlation
you found in Sect. 14.2? It should be.

14.3.2 What is the correlation between FEV and height? Does this corre-
lation suggest that including height in our prediction equation will
improve the prediction?

14.3.3 Were age and height correlated? Does this correlation suggest that
including height in our prediction equation will improve prediction?
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Table 14.4 Matrix displaying correlations among forced expiratory volume, age, and height
Correlations

FEV Height
(liters) Age (years) (inches)
FEV (liters) Pearson Correlation 1 557" 800"
Sig. (2-tailed) .000 .000
N 348 348 348
Age (years) Pearson Correlation 557" 1 545"
Sig. (2-tailed) .000 .000
N 348 348 348
Height (inches) Pearson Correlation 800" 545" 1
Sig. (2-tailed) .000 .000
N 348 348 348

**_Correlation is significant at the 0.01 level (2-tailed).

You should have found that height is indeed correlated with FEV. This finding sug-
gests that including height in the prediction equation makes sense. However, you
should have found that height is also correlated with age, so it remains to be seen
whether predictions of FEV that are based on both a child’s age and height will be
more accurate than predictions based on the child’s age alone. Let us conduct a
multiple regression to find out.

Multiple Linear Regression Return to the Linear Regression dialog box and move
Height (inches) into the Independent(s): window as shown in Fig. 14.6. Run the
analysis and study the output.

Although our prediction equation now includes two predictors, the output
will have a familiar look. Let us begin with the Model Summary table, shown in
Table 14.5.

As before, R is the correlation between the predicted and actual values of the
dependent variable, FEV. However, in a multiple regression analysis, R is called the
multiple correlation coefficient to indicate that the predicted values are based on two
(or more) independent variables. In our case, R is the correlation between actual
values of FEV and values of FEV predicted on the basis of each child’s age and
height. As with simple linear regression, R* is the proportion of variability in FEV
accounted for by our prediction equation. However, in multiple regression analysis,
the equation has two (or more) independent variables. In our case, the prediction
equation includes age and height, rather than just age alone, so R? is the proportion
of variability in FEV accounted for when each child’s age and height are considered.

Answer the following questions:

14.3.4 What is the correlation between actual and predicted values of FEV
when predictions of FEV are based on each child’s age and height?
How does the multiple correlation coefficient compare to the value
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of R when our predictions of FEV were based only on each child’s

age?

14.3.5 What is the value of R* in our multiple regression analysis? How
does this value compare to the value of R*> when our predictions
were based only on age?

14.3.6 Do predictions of FEV based on age and height seem to be more ac-
curate than predictions based on age alone?

£ Linear Regression ool
Dependent @
& Age (years) [Age) | | & FEVqiters) FEV)
& Height(inches) [Hei... | g0 4 o6 _Pots |
& sese s
&b Smoking Status [S... Previous E

& (Age >=98&Age <=
& Unstandardized Pre..,
& Unstandardized Pre.

Age (vears)[Age] N\

Method: |Enter -

Selection Variable:

Case Labels:

Fig. 14.6 Adding height to the regression

Table 14.5 Model summary of regression using age and height to predict forced expiratory volume

Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate
1 .813? .661 .659 4065937

a. Predictors: (Constant), Height

(inches), Age (years)
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Fig. 14.7 Scatter plot of the relationship between the actual values of forced expiratory volume
(FEV) and the values of FEV predicted on the basis of each child’s age and height

Adjusted R® At this point, it seems clear that adding height to the prediction
equation improved the prediction. However, any time an independent variable is
added to the prediction equation, R> will always increase even if the added pre-
dictor has no predictive value. Therefore, it is necessary to adjust the value of R’
to control for the number of predictors in the equation. This new value of R’ is
called adjusted R* and can be found in the Model Summary table. When comparing
multiple regression models with a different number of independent variables, the
adjusted R? should be used. Compare this value with the value of adjusted R> when
we used age as our sole predictor.

14.3.7 Which regression model does a better job of predicting FEV?

Visualizing Prediction Accuracy In the next section, we will look at the predic-
tion equation that we generated with our multiple regression analysis. But first let
us look at a visual display of the goodness of fit of that equation. Fig. 14.7 displays
a plot of the actual FEV values and predicted values of FEV based on age and
height. The residuals plot is displayed in Fig. 14.8. Compare these plots with the
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Fig. 14.8 Residuals plot of the differences between the actual values of forced expiratory volume
(FEV) and the values of FEV predicted on the basis of each child’s age and height

corresponding plots in which the predicted values are based on age alone (Figs. 14.4
and 14.5).

14.3.8 Which prediction equation fits the data better?

14.4 Interpreting Standardized and Unstandardized
Slope Coefficients

As do simple regression analyses, multiple regressions generate Coefficients tables
that include information about intercepts and slopes. Recall, however, that in a mul-
tiple regression, the prediction equation includes two or more independent vari-
ables. Therefore, the Coefficients table includes the unstandardized slope of each of
the predictors. In our case, we have two independent variables, age and height, so
the prediction equation takes the form,

y=a+bx +b,x,. (14.2)
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Table 14.6 Intercept and unstandardized slope coefficients for age and height
Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .359 -16.719 .000
Age (years) > .018 A71 4.587 .000
Height (inches) .007 707 18.919 .000

a. Dependent Variable: FEV (liters)

The values of the intercept (a) and the slopes (5, b,) of the two predictors, age
(x,) and height (x,) can be found in the Coefficients table reproduced in Table 14.6.

14.4.1 Specify the prediction equation for our multiple regression analy-
sis by filling in the following blanks: Predicted values of FEV
= + (Age) + (Height).

14.4.2 Imagine that you were about to measure the FEV of a 9-year-old
child who is 53 inches tall and does not smoke. Compute by hand the
number of liters you would expect the child to exhale.

14.4.3 Does the predicted value you calculated match the value that SPSS
generated?

Unstandardized Slope Coefficients Let us take a closer look at the slope coef-
ficients. The values of the coefficients take into account the degree to which the
independent variables are related to the dependent variable and to one another,
and whether those relationships are positive or negative. As was the case in simple
regression, we must look at the results of the #-tests to determine whether or not
the computed slope coefficient is statistically significantly different from zero. If
a slope coefficient is statistically significantly different from zero, then the value
of a slope assigned to a given independent variable tells us how much change in
the dependent variable is associated on average with change in that independent
variable above and beyond the impact of the other independent variables. Indepen-
dent variables that either are not related to the dependent variable or do not tell us
anything about the dependent variable that we do not already know from the other
predictors will have slope coefficients that are not statistically significantly dif-
ferent from zero. A statistically significant positive slope tells us that increases in
the independent variable are associated with increases in the dependent variable. A
statistically significant negative slope tells us that increases in the independent vari-
able are associated with decreases in the dependent variable.

As an example of how to interpret slopes, recall that the unstandardized slope
coefficients generated by our multiple regression were 0.081 for age and 0.127 for
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height, and both of them were statistically significantly different from zero. Thus,
each independent variable contributes to the prediction above and beyond the con-
tribution of the other. This explains why predicted values based on age and height
do a better job of accounting for the variability in FEV than do predicted values
based on age alone. While knowing a child’s age tells us something about what the
child’s FEV will be, knowing the child’s height gives us additional information.
When it comes to understanding FEV, apparently there is more to the story than
just age.

Both coefficients are positive, telling us that increases in either age or height are
associated with increases in FEV. The value of each of the unstandardized slopes
tells us how much of an increase. Recall that FEV was measured in liters, age in
years, and height in inches. The values of the slopes tell us that for children of a
given height, FEV increases on average by 0.081 L for every one year increase in
age, and that for children of a given age, FEV increases on average by 0.127 L for
every one inch increase in height.

Standardized Coefficients We need to be a little careful about using the slopes
to determine the relative importance of each of the independent variables. It might
seem logical to assume that the larger the slope, the greater is the impact of the
independent variable, indicating that the independent variable with the largest
slope could be considered the most important predictor. However, the magnitude
of unstandardized slopes is affected by the units of measurement associated with
the independent and dependent variables, so comparing unstandardized slopes can
be misleading. To be able to compare slopes meaningfully, it is necessary that they
be calculated on the basis of variables that are expressed in terms of the same unit
of measurement. This is accomplished by calculating slopes after the values of
each independent and dependent variable have been transformed into standardized
scores. A standardized score, also known as a Z-score, is the number of standard
deviations the original score is above or below the mean of those scores. Z-scores
have a mean of 0 and a standard deviation of 1.

As an example, consider the ages of the nonsmokers in the entire sample. The
average age is 9.53 years with a standard deviation of 2.74 years. A 13-year-old
within this sample is older than the average child by 3.47 years (13—9.53) which is
about 1.27 standard deviations above the mean (3.47/2.741=1.27) . A 3-year-old
is 6.53 years younger than the average child or 2.38 standard deviations below the
mean. Thus, the age of any child in the sample who is 13 years old can be expressed
as a standardized score of 1.27 while the age of any 3-year-old can be expressed as
a standardized score of —2.38.

If we transform the values of our independent and dependent variables into stan-
dardized scores, FEV will no longer be expressed in terms of feet, age in terms of
years, or height in terms of inches. Instead, all of our variables will be expressed in
terms of the same unit of measurement—the number of standard deviations above
or below the mean. If we then calculate slope coefficients from standardized scores,
the slopes will be expressed in terms of standard deviations rather than in terms
of the original units of measurement. These slopes are called standardized or beta
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Table 14.7 Standardized slope coefficients for age and height

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -5.995 .359 -16.719 .000
Age (years) .081 .018 A71 4.587 .000
Height (inches) 127 .007 707 18.919 .000

a. Dependent Variable: FEV (liters)

coefficients and are displayed in the Coefficients table as shown in Table 14.7. You
will notice that there is no value reported for the intercept. This is because the
intercept is always equal to zero when the data are standardized. According to the
table, a one standard deviation increase in age is associated with an increase in FEV
scores of 0.171 standard deviation while a one standard deviation increase in height
is associated with an increase in FEV scores of 0.707 standard deviation. Now that
we have converted all of our variables to the same scale of measurement, we can
meaningfully compare the two slopes. When we do so, we see that a one standard
deviation change in height results in a much larger change in FEV, in standard de-
viation terms, than does age.

Use Caution When Interpreting Slope Coefficients When comparing slopes, it
is important to remember that a slope coefficient for a given independent variable
is sensitive to the presence of the other independent variables within the regression
model. Standardized and unstandardized slopes can vary as independent variables
are added or removed from the prediction equation. As an example, the unstandard-
ized coefficient for height when age is included in the model is 0.081. However,
we saw in Table 14.3 that the unstandardized slope coefficient for age when it was
the only predictor was 0.264. We will see in the next section that this coefficient
will change again when sex is added to the model. Because slope coefficients are
dependent upon the set of independent variables that happen to be in the prediction
equation, the results of a regression analysis do not indicate in some absolute sense
the predictive, theoretical, or clinical importance of a given variable.

Slope coefficients can also be sensitive to the presence of outliers, especially
when sample sizes are small. In addition, coefficients reflect the range of values of
the independent variables of the sample. Extrapolating or making predictions using
values that lie outside those upon which the prediction equation was fitted is risky.
In our example, the slopes for age and height were based on kids between the ages
of 9 and 14. There is no guarantee that our prediction equation would provide an
equally good fit for people outside this age range. Finally, even if the values of the
independent variables are within the range, the prediction equation may not general-
ize to populations different from the one from which the sample that generated the
equation was taken. In our example, there is no guarantee that our prediction equa-
tion would be accurate in predicting the FEV of children who smoke.
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Table 14.8 Model summary for regression using age, height, and sex to predict forced expiratory
volume
Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate
1 8142 .662 .660 4065354

a. Predictors: (Constant), Sex, Age (years), Height (inches)

14.5 Using Categorical Predictors

Independent variables are often quantitative, but they can be categorical as well. In
this section, we add gender to our prediction equation and see if knowing a child’s
sex as well as his or her age and height improves the prediction. In our sample of 9-
to 14-year-olds, the boys, on average, are over 2 in. taller than the girls. Given that
height and gender are related, do you think that including gender in our regression
model will improve prediction?

Return to the Linear Regression dialog box and move Sex into the Independents:
window. Run the analysis. The resulting Model Summary and Coefficients tables are
displayed in Tables 14.8 and 14.9, respectively.

14.5.1 According to the Model Summary table, did the addition of sex
seem to account for variability in FEV not accounted for by age and
height? How can you tell?

14.5.2 Did including sex reduce s? How can you tell?

The Coefficients table now shows slope coefficients for three independent vari-
ables: age, height, and sex. The interpretation of the first two coefficients is similar
to our interpretation of the slopes we have studied thus far, so see if you can answer
the following questions:

14.5.3 After controlling for sex and height, does FEV increase or decrease
on average as children get older? By how much per year?

14.5.4 After controlling for sex and age, what is the average impact on FEV
of an increase of one standard deviation of height?

14.5.5 Did the slope coefficients for age and height differ in this analysis
from their values generated in Sect. 14.4? Why or why not?
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Table 14.9 Intercept and slope coefficients for regression using age, height, and sex to predict
forced expiratory volume
Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -5.892 372 -15.853 .000
Age (years) .085 .018 A79 4.704 .000
Height (inches) 124 .007 .692 17.314 .000
Sex .049 .047 .035 1.048 295

a. Dependent Variable: FEV (liters)

Age (years) and Height (inches) are quantitative variables. When we interpreted
their slope coefficients, we took into account that the slopes were positive, and
therefore, we knew that increases in the predictors were associated with increases in
FEV. When a predictor is categorical, the slope is interpreted in terms of the numeri-
cal values assigned to the categories. Usually these values are 0 and 1. A positive
slope means that changes from 0 to 1 are associated with increases in the dependent
variable while a negative slope means that changes from 0 to 1 are associated with
decreases in the dependent variable. In our analysis, we have a categorical variable,
Sex. Its categories, female and male, were assigned the values of 0 and 1, respec-
tively. Its unstandardized slope coefficient is 0.049. Although the slope coefficient
is positive, it makes no sense to conclude that increases in sex were associated with
an average increase of 0.049 L of FEV. However, we can conclude that changes
from 0 to 1were associated with an average increase of 0.049 L of FEV. Because
girls were assigned the value of 0 and boys the value of 1, we can conclude that after
controlling for age and height, the boys in the sample had an average FEV that was
0.049 L greater than that of girls in the sample.

Including sex in the regression equation has the net effect that there are essen-
tially two parallel regression lines with the regression line for boys being 0.049 L
higher than that for girls. If it is suspected that the two lines may not be parallel,
then one equation for boys and a separate one for girls will be fitted, or as we will
discuss later in this chapter, an interaction variable will be added to the prediction
equation.

Dummy Variables Sex is but one of many categorical variables that clinical
researchers might include in regression analyses. For example, race (white versus
nonwhite), marital status (married versus single), or smoking status (smoker versus
nonsmoker) might be relevant predictors. When a categorical variable has more
than two categories, however, it must be converted into a set of dummy variables.
The number of dummy variables is equal to the number of categories minus 1. Each
dummy variable represents a category and has two numerical values, 0 and 1.

For example, imagine a study of the effects of smoking on pulmonary func-
tion as measured by FEV. Patients are categorized as smokers, former smokers, or
nonsmokers. As there are three categories, two dummy variables would be needed
to represent the smoking status of each patient. One dummy variable would cor-
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Table 14.10 Hypothetical unstandardized slope coefficients for two dummy variables (Smoker
and Former Smoker) representing a categorical variable (smoking status) with three values

Dummy variable
Smoking status Smoker Former smoker Coefficient
Smoker 1 0 —0.25
Former Smoker 0 1 —0.10
Nonsmoker 0 0 -
(reference)

respond to one of the three categories, the other to one of the remaining two. In
our example, we might name one of the dummy variables, Smoker, and use it to
indicate whether each patient is a smoker or not. We might name the other dummy
variable, Former Smoker, and use it to indicate whether each patient is a former
smoker or not. As shown in Table 14.10, smokers would be assigned the value of
1 on the first dummy variable and a 0 on the second. Former smokers would be
assigned a 0 on the first dummy variable and a 1 on the second. The category not
represented by its own dummy variable is called the reference category. Cases fall-
ing into the reference category are assigned a 0 on each of the dummy variables.
In our example, the reference category is nonsmokers. Nonsmokers, being neither
smokers nor former smokers, would be assigned a 0 on both dummy variables. The
decision as to which category will be the reference can be arbitrary, but often it rep-
resents a group that was not exposed to a health risk or to a treatment.

In order to create these dummy variables in SPSS, we would need to use Trans-
form > Recode into Different Variables twice. We would create the variable
Smoker by using it to give smokers a value of 1 and everyone else a value of 0.
Then, we would use Transform a second time to create the variable Former Smok-
er, this time giving every former smoker a value of 1 and everyone else a value of 0.

Slope coefficients assigned to dummy variables are interpreted relative to the
reference category. In our example, if the unstandardized slope coefficient for the
dummy variable, Smoker, were —0.25, then we would know that the average FEV
of smokers was 0.25 L less than that of the average nonsmoker. If the slope coeffi-
cient for the dummy variable Former Smoker was —0.10, then we would know that
the average former smoker exhaled 0.10 L of air less than the average nonsmoker.
You will have an opportunity to create dummy variables in one of the exercise
questions.

Use Caution when Adding Predictor Variables In theory, researchers can keep
adding predictors until they are satisfied that they have accounted for as much vari-
ability in the dependent variable as possible. However, when including additional
predictors, researchers keep the following in mind. First, investigators prefer to use
independent variables that are uncorrelated with one another so that each predictor
provides maximum unique information about the dependent variable. The more the
independent variables are correlated with one another, the more redundant they are
with one another, and thus, the less useful they are collectively as predictors. In fact,
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independent variables that are too highly correlated with one another can have slope
coefficients that are not statistically significantly different from zero despite the fact
that they are correlated with the dependent variable. For this reason, when the cor-
relation between two predictors is quite high, researchers consider using one or the
other predictor, but not both.

Second, at some point adding more predictors is likely to capitalize on random
variation present in the given sample and produce results that will not replicate
across samples. To guard against generating unstable coefficients, it is often rec-
ommended that the sample be 10-20 times as large as the number of independent
variables.

Third, blindly adding additional predictors may increase the value of adjusted
R, but is unlikely to generate a prediction equation that makes theoretical sense.
Finally, scientists prefer theories that are parsimonious. The theory that uses the
least number of causal factors to explain an outcome is generally preferred. In terms
of multiple regression analysis, the goal is to discover the prediction equation that
accounts for the maximum amount of variability with the fewest number of inde-
pendent variables.

14.6 Testing Model Coefficients

If the data can be considered to have been randomly drawn from a larger popula-
tion, we will want to use our sample statistics to estimate corresponding population
parameters. To do this, we follow procedures similar to those explained in the previ-
ous chapter for simple regression. However, in the case of multiple regression, we
will have two or more predictors so that the population model becomes

Y=o+ ﬂ1x1[+ﬁ2x2i+“‘+ﬁkxki+gi’ (14.3)

where y, is an actual value of y for the ;& member of the population, « is the
population y-intercept, A, f,,... 5, are the population slopes for k predictors,
X,;s Xy, ... X, are known, fixed values of each of the predictors, and & is a random
value that is assumed to have a normal distribution with a mean of 0 and a standard
deviation of o Thus, the population parameters are o £, f3,,... f,, and 0. Our
estimator for ¢« is the least squares value for the intercept, a. Our estimators for
B, B,,... B, are the least squares values for the slopes b,b,...b, , respectively.
Finally, o is estimated by the standard error of the estimate, s, which in the case of
multiple regression is calculated as follows:

1 2
S—JmZ(%‘%) : (14.4)

In this section, we see how to test hypotheses about population parameters and to
generate their confidence intervals.
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Fig. 14.9 Requesting 95 % confidence intervals for the intercept and slope coefficients

Confidence Intervals for Coefficients Return to the Linear Regression dialog box
of our last analysis, choose Statistics and select Confidence Intervals in the Regres-
sion Coefficients area. In this example, we generate a 95% confidence interval,
so be sure that the correct level of confidence is displayed in the Level (%) win-
dow. When you are finished, the dialog box should be similar to the one shown in
Fig. 14.9. Run the analysis.

The output is identical to that which we generated in Sect. 14.5 except that now
the Coefficients table displayed in Table 14.9 include confidence intervals for our
population parameters. These confidence intervals are shown in Table 14.11.

Study the confidence intervals and answer the following questions:

14.6.1 Which of the slope coefficients are significantly different from zero?

14.6.2 Can we be at least 95 % confident that in the population from which
thechildrenofoursampleweredrawn,achild’ssexisassociatedwithFEV
independent of the child’s age and height?

14.6.3 What is the 95 % confidence interval for the slope for height? Why
is it important to know whether the value of zero is included in this
interval?
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Table 14.11 Coefficients table displaying 95% confidence intervals for the intercept and slope
coefficients

Unstandardized Coefficients (95.0% Confidence Interval for B\
Model B Std. Error Lower Bound Upper Bound
1 (Constant) -5.892 372 -6.623 -5.161
Age (years) .085 .018 .049 1120
Height (inches) 124 .007 110 138
Sex .049 047 N_ -.043 141

Table 14.12 Testing the null hypothesis that all population slope coefficients are zero

ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 111.595 3 37.198 225.075 .000°
Residual 56.853 344 .165
Total 168.448 347

a. Dependent Variable: FEV (liters)
b. Predictors: (Constant), Sex, Age (years), Height (inches)

Testing Hypotheses About Coefficients The ANOVA table, shown in Table 14.12,
displays the results of a test of the null hypothesis that all of the population slopes
are equal to zero. In our example, we have three predictors, so the ANOVA tests the
null hypothesis that

B=B.=p.=0. (145)

The alternative hypothesis is that one or more population slopes are not equal to
Zero.

Before we see whether we can reject the null hypothesis, take a moment to note
the values for regression, residual, and total sum of squares in Table 14.12. Now
consult Table 14.13 to compare these values to those generated by our analysis
in which the prediction equation used only Age (years) or used Age (years) and
Height (inches). The total sum of squares of the three analyses will of course be the
same as the total is the variability in actual values of FEV. However, the regression
and residual sum of squares differ across the three analyses.
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Table 14.13 Effect of adding independent variables on regression and residual sum of squares

Independent variable(s)

Age Age and height Age, height, and sex
Regression 52.242 111.413 111.595
Residual 116.206 57.035 56.853
Total 168.448 168.448 168.448

Study Table 14.13 and answer the following questions:

14.6.4 Which analysis has the greatest regression sum of squares? Why?

14.6.5 The analysis with the greatest regression sum of squares also has the
lowest residual sum of squares? Why?

Returning to the null hypothesis that the population slope coefficients for age,
height, and sex equal zero, the probability that the values of the sample slopes
would be obtained if the null hypothesis is true can be found in the column labeled
Sig of Table 14.12.

14.6.6 Accordingto Table 14.12, should we accept or reject the null hypothesis?
14.6.7 Should we conclude that at least one of our three sample slopes is
statistically significantly different from zero?

The results of our ANOVA told us that it is extremely unlikely that the population
slopes are all equal to zero. To determine which of the slopes is significantly dif-
ferent from zero, t-tests are conducted on each sample slope. For each test, the null
hypothesis is that the population slope is equal to zero. The alternative hypothesis
is that the population slope is not equal to zero. A f-test on the intercept is also
conducted to test the null hypothesis that the population intercept is equal to zero
against the alternative hypothesis that the intercept is not equal to zero. As with a
simple regression, the results of the #-tests are reported in the Coefficients table ex-
cept this time the table displays #- and p-values for more than one slope. The table
also contains confidence intervals for each of the parameters if confidence levels
had been requested. Remember that the reported p-values are two-tailed. If the alter-
native hypothesis is either that the population parameter is greater than zero or that
the population parameter is less than zero, the reported p-values need to be adjusted
as explained in the previous chapter.

Refer back to Table 14.9, which displays the results of the #-tests of the slope

coefficients for age, height, and sex, and answer the following question:

14.6.8 Are the three slope coefficients statistically significantly different
from zero? If not, which one(s) is/are not? How do you know?
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14.7 Interaction Effects

The regression models that we have been using assume that the relationship be-
tween a given independent variable and the dependent variable is the same across
all levels of any other independent variables included in the prediction equation.
When the relationship between an independent variable and a dependent variable is
not the same across the values of another independent variable, statisticians say that
there is an interaction effect between the two independent variables. The regres-
sion analyses that we have conducted thus far assume that there are no interaction
effects. In this section, we see how to determine whether interaction effects are
present.

Begin by setting up a regression analysis in which FEV (liters) is the dependent
variable and Age (years) and Sex are the independent variables. Once you have set
up the analysis, the Linear Regression dialog box should look similar to the one
displayed in Fig. 14.10.

Click OK to generate the table of coefficients shown in Table 14.14.

These coefficients tell us that both the age and sex of the child contribute to FEV.
FEV increases on average by 0.262 L for every one year increase in age, and boys
on average have an FEV that is 0.337 L greater than girls.

This analysis assumes that the relationship between age and FEV is the same for
both boys and girls. By assuming that there is no interaction effect between sex and
age, the analysis leads to the conclusion that an increase in 1 year of age is associ-
ated with an increase of 0.262 L of FEV, regardless of whether the child is a boy or
girl.

A common way to test the assumption that there is no interaction effect between
two independent variables is to include in the prediction equation a variable that
represents the interaction and determine whether the slope coefficient associated
with this variable is significantly different from zero. In our example, the model
becomes

y, = o+ fx + foxx, + &, (14.6)
where y, is the actual value of FEV for the ;% member of the population, ¢« is the
population y-intercept, x,, is the age of the ;» member of the population, x, ,x,.
is the interaction between age and sex for the ;# member of the population, and
B and g, are the slope coefficients for age and the interaction between age and
sex, respectively. As before, ¢ is a random value that is assumed to have a normal
distribution with a mean of 0 and a standard deviation of o The presence of a sig-
nificant interaction effect is then determined by testing the slope coefficient, j, .

To conduct this analysis, we must first create a variable that represents the inter-
action between the two independent variables. To do this, we create a new variable
that is equal to the product of the two independent variables. In our example, we are
interested in knowing whether the relationship between age and FEV varies by sex,
so we begin by multiplying age and sex together.
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Fig. 14.10 Requesting a regression using age and sex to predict forced expiratory volume (FEV)

Table 14.14 Intercept and slope coefficients generated by regression using age and sex to predict
forced expiratory volume

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) -.100 221 -.450 .653
Age (years) .262 .020 .555 12.959 .000
Sex .337 .060 241 5.639 .000

a. Dependent Variable: FEV (liters)

Select Transform > Compute Variable to bring up the Compute Variable dia-
log box. Since we are multiplying one variable by the other, it would be common
practice to call this variable, Age*Sex. Unfortunately, SPSS allows asterisks to be
used in variable labels but not in variable names. Accordingly, enter Age Sex in the
Target Variable box, then after clicking Type & Label, enter Age*Sex in the Label
area. Click Continue. In the Numeric Expression area, instruct SPSS to multiply
Age (years) and Sex together. Click OK. These steps are displayed in Figs. 14.11
and 14.12.



14.7 Interaction Effects 391

e i i )

oo, f_W_'f COF & Noncentral COF

&b (Age >
. Conver
& Age @ Compute Variable: Type ... “ j m’xmm

Date Arithmetic
Date Creation

Functions and Specal Variables

Fig. 14.11 Naming and labeling the variable representing the interaction effect between age and
sex

Return to the Linear Regression dialog box. In the Independent(s) area, replace
Sex with Age*Sex. The dialog box should now be similar to the one shown in
Fig. 14.13. Click OK.

Study the resulting output, in particular the coefficients table, reproduced in
Table 14.15.

We can see from the table that the slope coefficients for both Age (years) and the
interaction between age and sex, Age*Sex, are significant. The significant slope for
Age (years) tells us that overall, FEV is positively associated with age: For every 1
year increase in age, there is a 0.243 L increase in the FEV. The significant slope for
the interaction effect however tells us that the slope that describes the relationship
between FEV and age is not the same for boys and girls. We can also see this in the
prediction equation.

According to the coefficients table, the prediction equation is as follows:

FEV =0.092+0.243 (Age) + 0.034 (Age * Sex). (14.7)

To interpret the equation, remember that sex was coded such that girls were as-
signed a 0 and boys a 1. For girls, the equation becomes:

FEV =0.092+ 0.243 (Age)+0.034 (Age*0). (14.8)
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Table 14.15 Intercept and slope coefficients generated by regressing the forced expiratory volume
on age and the interaction effect between age and sex
Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) .092 217 426 .670
Age (years) .243 .020 513 11.954 .000
Age*Sex .034 .005 .268 6.245 .000

a. Dependent Variable: FEV (liters)

Because the value of Sex for girls is zero, the prediction equation for girls simpli-
fies to:

FEV =0.092+0.243 (Age). (14.9)

For boys, the prediction equation is as follows:

FEV = 0.092+0.243 (Age) + 0.034 (Age*1). (14.10)

Because the value of Sex for boys is 1, the prediction equation becomes:

FEV = 0.092+0.243 (Age) + 0.034 (Age). (14.11)

This in turn becomes:

FEV =0.092+0.277 (Age). (14.12)

Thus, for both boys and girls, FEV is positively associated with age, but the increase
is significantly greater for boys (slope of 0.277) than it is for girls (slope of 0.243).

14.8 Exercise Questions

1. Conduct a simple linear regression analysis on the FEV (liters) of children
between the ages of 9 and 14, inclusive, using Smoking Status as the predictor.

a. Complete the following prediction equation:

FEV = + (Smoking Status).

b. What is the proportion of variability in the FEV that is accounted for by the
children’s smoking status?
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c. On average, what is the difference in the FEV between kids who smoked and
kids who did not? liter.

d. According to your analysis, which group had the larger average FEV—smok-
ers or nonsmokers? Does this finding make sense? Why or why not?

2. Add Age (years) to Smoking Status and run the multiple regression analysis.

a. Complete the following prediction equation:

FEV = + (Smoking Status) + (Age)

b. After taking into account age, what is the average difference in the FEV
between kids who smoked and kids who did not? liter.

c. After adjusting for age, which group had the larger average FEV—smokers or
nonsmokers? Does this finding make sense? Why or why not?

d. Given the results of your multiple regression analysis, what might explain the
slope coefficient for Smoking Status in the simple linear regression of Ques-
tion 1?

e. What is the value of adjusted R’ ? How does it compare to the correspond-
ing value of the simple linear regression of Question 1? Does including age
improve prediction?

3. Curious about the fitness and exercise habits of male and female volunteer fire-
fighters, a physician assistant student asked firefighters to report anonymously
their sex, age, height, weight, and the number of days per week they exercised.
She then converted height and weight into the body mass index (BMI). The data
can be found in Firefighters.sav [2] as Sex [Sex] (variable 1; 0=M, 1=F), Age
[Age] (variable 2; 1=18 to 29, 2=30 to 40, 3=41 to 50, and 4=over 50), Fre-
quency of Exercise [7imesPerWeek] (variable 6), and Body Mass Index [BM]]
(variable 7). Conduct a multiple regression analysis in which Body Mass Index
is the dependent variable and Sex and Frequency of Exercise are the indepen-
dent variables.

a. Report below the unstandardized slope coefficient for each of the two

predictors.
Sex:
Frequency of Exercise:

b. Based on her own experience as a firefighter, the researcher expected that the
BMI of the average male firefighter who does not exercise would be above
the normal range, that is, above 25. According to the results of your regression
analysis, was she correct? How can you tell?

c. The researcher predicted that the BMI is negatively related to the frequency
of exercise. In terms of slope coefficients, what is the null hypothesis associ-
ated with this expectation? What is the alternative hypothesis? Should the test
of hypothesis be one- or two-tailed? Why?

d. Regarding the slope coefficient associated with the exercise hypothesis stated
in 3c, should we accept or reject the null hypothesis? Why or why not?
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Table 14.16 Coefficients table for question 5: regression of forced expiratory volume on age for
children aged 10 years or younger

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
(Constant) 278 .106 2.628 .009
Age (years) 232 .013 .668 17.233 .000
Age*Sex .007 .005 .051 1.309 191

a. Dependent Variable: FEV (liters)

Table 14.17 Coefficients table for question 5: regression of forced expiratory volume on age for
children older than 10 years

Coefficients®

Standardized
Unstandardized Coefficients Coefficients
Model B Std. Error Beta t Sig.
(Constant) 1.305 .284 4.603 .000
Age (years) 1130 .023 .310 5.646 .000
Age*Sex .059 .006 .503 9.151 .000

a. Dependent Variable: FEV (liters)

e. Which of the two predictors was more strongly related to the BMI? How do
you know?

f. Using the unstandardized slope coefficient, describe in words the relationship
between BMI and frequency of exercise.

g. In words, reexpress the relationship between BMI and frequency of exercise
in terms of the standardized slope coefficient.

4. Repeat the regression analysis of Question 3, but this time include in the regres-
sion model dummy variables that will allow you to determine whether the aver-
age BMI of firefighters between the ages of 18 and 29 is significantly different
from the average BMI of each of the remaining three age groups.

a. Given the number of independent variables, is the sample sufficiently large to
justify conducting the analysis? Why or why not?

b. Does including age improve goodness of fit? How do you know?

c. According to this analysis, what is the average difference in the BMI between
the two youngest age groups after adjusting for the other independent vari-
ables? Between the youngest and the oldest? Is either of these differences
statistically significant?
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5. Imagine that an investigator used the FEV data set to test the hypothesis that for

children who do not smoke and who are 10 years old or younger, FEV increases
with age at the same rate for boys and girls, but that for children who do not
smoke but are over the age of 10, the rate of increase is greater for boys (SEX
=1) than for girls (SEX =0). To test the hypothesis, the researcher conducted a
multiple linear regression for each of the two age groups of children who do not
smoke. The resulting coefficients tables are displayed in Tables 14.16 and 14.17.

a. What is the prediction equation for children who are older than 10 years of
age?

FEV= + (Age) + (Age*Sex).

b. What is the slope coefficient for age for boys who are older than 10 years of
age?
c. Was the researcher’s hypothesis supported by the analysis? Why or why not?

Data Sets and References

1.

FEV.sav obtained from: Rosner, B.: Fundamentals of Biostatistics. 6th ed. Thomson Brooks/
Cole, Belmont, CA (2006). With the kind permission of Professor Bernard Rosner. For context,
see Tager, [.B., Weiss, S.T., Rosner, B., Speizer, F.E.: Effect of parental cigarette smoking on
pulmonary function in children. Am. J. Epidemiol. 110, 15-26 (1979)

Firefighters.sav obtained from: Marlow, C.E., Cappelletti, E.M., Holmes, W.H.: Relationship
between availability of exercise equipment and BMI among volunteer firefighters. Unpub-
lished data, Le Moyne College, Syracuse (2006)



Chapter 15
Logistic Regression

Abstract This chapter deals with predicting a categorical response variable that
has two categories. The chapter begins with using a single independent variable
to make this prediction. It moves on to discuss the case where there are two cat-
egorical independent variables. Next comes a discussion of making predictions with
a mixture of quantitative and categorical independent variables. Finally, adjusted
odds ratios are considered followed by testing for an interaction effect between the
independent variables.

15.1 Overview

In Chap. 13, we considered predicting a quantitative response variable using simple
linear regression with a single independent variable. In Chap. 14, we expanded those
ideas to multiple regression where two or more independent variables were used to
predict the value of a quantitative response variable. There are occasions, however,
where the response variable may be categorical. For example, we may be interested
in the relationship, if any, between a patient’s age and whether or not the patient
has coronary heart disease. In such a case, the response variable could consist of
two values, 0 if the patient does not have coronary heart disease, and 1 if the patient
does have coronary heart disease. Fitting a simple linear regression line of the form

y=a+bx, (15.1)

where b represents the slope (the change in y for a one unit increase in x) and a
represents the y-intercept (the value of y when x equals 0) to these data presents
some difficulties. For instance, if the predicted value of y is not equal to 0 or 1, how
do we know whether to predict that the patient has coronary heart disease or not?
One possible fix is not to use the presence or absence of coronary heart disease as
the predicted response variable, but rather the probability that the patient will have
coronary heart disease. If we let p be the probability of having coronary heart dis-
ease, then the simple regression equation would be of the form.

p=a+bx. (15.2)
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One problem with this approach is that it can generate values of p that are greater
than 1 or less than 0. Since the probability of having coronary heart disease can
neither exceed 1 nor be negative, we need to predict a dependent variable that can
take on any positive or negative value, but from which we can derive probabilities.
The solution is twofold. First, the regression equation is used to predict the odds that
the patient has coronary heart disease. Recall from Chap. 6 that a probability can be
expressed as odds through the following transformation:

oDDS = £ (15.3)
I-p

For example, if the probability that a patient has coronary heart disease is 0.20, the
odds that she has the disease are 0.20 to 0.80 or 0.25. This means that the probability
that she has the disease is one-fourth the probability that she does not have the dis-
ease. Recall also that the odds can be greater than 1. For example, if the probability
that a second patient has coronary heart disease is 0.80, the odds that she has the
disease are 0.80 to 0.20 or 4. The probability that she has the disease is four times
the probability that she does not have the disease.

Using the odds as the dependent variable allows us to predict values greater than
1. Unfortunately, odds cannot be negative, but their natural logarithms can. So the
second step of our two-step solution is to use the regression equation to predict the
natural logarithm of the odds that the patient has coronary heart disease. The natu-
ral logarithm of a number « is the power of the number e (approximately equal to
2.71828) that gives a. For example, the natural logarithm of 10 is about 2.303 be-
cause 2.71828>*” =10. Natural logarithms can be positive or negative. If the odds
of disease are 4, for example, the natural logarithm of those odds would be 1.386. If
the odds of disease are 0.25, the natural logarithm of those odds would be —1.386.

The natural logarithm of the odds is called the /ogit. It is the logit that will be
predicted by the regression equation. Therefore, the resulting model will be

ln( P )=a+bx. (15.4)
I-p

The symbol /n stands for the natural logarithm. Once we have the equation of this
line, we can use it to make predictions of the logit for any value of the independent
variable, x. Once we have the logit for a given value of x, we can convert it to the
odds’ original units to get the odds that a patient with a given value of x has the coro-
nary heart disease. From those odds, we can derive the probability that the patient
has the disease with the following:

e oDDS (15.5)
1+ODDS
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Alternatively, we can use the following equation to derive the probability directly
from the logit:
a+bx

e (15.6)

a+bx *

P 1+e
That is, to get p, we raise e to the power equal to a+bx (in other words, to the power
equal to the logit), then divide by 1+e to the power equal to a+bx.

Raising e to a given power can be easily done with the exponential function, e,
found on any scientific calculator. The Windows operating system also includes a
scientific calculator. The function raises the number e to any power specified by the
user. In this case, that power would be equal to the logit.

Once we have the predicted value of p, we can decide whether to classify the
patient as having or not having coronary heart disease. Typically, if the predicted
value of p is greater than 0.5, we would predict that the patient has coronary heart
disease, and if the predicted value of p is not greater than 0.5, we would predict that
the patient does not have coronary heart disease.

For technical reasons, the slope and intercept in the equation using the inde-
pendent variable to predict the logit cannot be obtained using the method of least
squares that was used in simple and multiple linear regression. Another method,
known as maximum likelihood, must be used. This method essentially uses trial-
and-error to obtain a solution. SPSS uses this method to obtain estimates of the
slope and intercept coefficients.

15.2 Logistic Regression with One Predictor

In this section, we will see how logistic regression is used to study the relationship
between probability of disease and a single predictor. The disease will be coronary
heart disease and the predictor will be the patient’s age.

Load the data file Coronary Heart Disease.sav [1] into SPSS. Our goal is to use
Age [Age] (variable 3) to predict Coronary Heart Disease [ CHD] (variable 4). Age
contains a patient’s age in years, and Coronary Heart Disease contains a value of 0
if the patient does not have coronary heart disease and a value of 1 if the patient does
have the coronary heart disease. This coding scheme is typical of medical research.
Risk factors are coded such that higher numbers reflect more of the factor, and the
disease is coded such that its absence is assigned a 0 and its presence a 1. To con-
duct a logistic regression, select Analyze > Regression>Binary Logistic as shown
in Fig. 15.1 to bring up the dialog box shown in Fig. 15.2. The term binary simply
means that the categorical response variable has only two categories.

Place the quantitative independent variable (Age) in the Covariates box and
the categorical dependent variable in the Dependent box. The resulting dialog box
should look like the one shown in Fig. 15.2. Click OK to run the logistic regression.
Output like that shown below will appear in an output window.



400

15 Logistic Regression

v v v v v v v w

v v w v v wv wv w

Fig. 15.2 Performing the logistic regression
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Table 15.1 Case processing summary
Case Processing Summary

Unweighted Cases® N Percent
Selected Cases Included in Analysis 100 100.0

Missing Cases 0 .0

Total 100 100.0
Unselected Cases 0 .0
Total 100 100.0
a. If weight is in effect, see classification table for the total number

of cases.

Table 15.2 The model with no predictors
Block 0: Beginning Block

Classification Table®”

Predicted
Coronary Heart Disease
Percentage
Observed No Yes Correct
Step 0 Coronary Heart Disease No 57 0 100.0
Yes 43 0 .0
Overall Percentage 57.0

a. Constant is included in the model.
b. The cut value is .500

The Table 15.1 summarizes the number of cases in the study.

SPSS runs two models. The first contains no independent variables. This is
called the beginning block. Three tables summarize the results of this model, the
first of which is of interest to us and is displayed in Table 15.2.

The classification table shown in Table 15.2 tells us how accurately we can cat-
egorize our patients as having or not having coronary heart disease when we ignore
the independent variable. We can see from the table that the majority of the patients
(57 out of 100) did not have coronary heart disease. Consequently, if we were to
ignore the age of each patient, we would most often be correct in classifying our
patients if we categorize all 100 as being free of the disease. This would allow us to
correctly categorize 57 % of our patients. Later in the output, we will see if taking
age into account increases the accuracy.

The second model contains all of the independent variables. This is called
Block 1.
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Table 15.3 Omnibus tests of model coefficients
Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 1 Step 29.310 1 .000
Block 29.310 1 .000
Model 29.310 1 .000

Table 15.4 Model summary
Model Summary

-2 Log Cox & Snell R Nagelkerke R
Step likelihood Square Square
1 107.353° .254 .341

a. Estimation terminated at iteration number 5 because
parameter estimates changed by less than .001.

The Table 15.3 gives the results of testing that all of the population slope coef-
ficients are 0. This is analogous to the ANOVA F-test in linear regressions. The null
hypothesis is that all slope coefficients are 0, and the alternative hypothesis is that
at least one slope coefficient is not equal to 0. The degrees of freedom are equal to
the number of independent variables.

* The model summary shown in Table 15.4 includes an entry called —2 log likeli-
hood. This value has to do with the maximum likelihood estimation process and
is not very informative.

 Logistic regression does not have a quantity that is analogous to R’ in linear re-
gression. A number of quantities, called pseudo-R-squares, have been proposed
to create such a quantity. The model summary gives two of the more popular
ones. None of them is very reliable.

The classification table shown in Table 15.5 shows how well the logistic regres-
sion correctly classifies a subject as to whether or not he or she has coronary heart
disease when the independent variable is taken into account. Comparing this clas-
sification table with the one in Block 0, we see that by taking the patients’ ages into
account, the percentage of correct classifications increased from 57 to 74 %. The
74 % value is found by adding the number of patients that were correctly classified
(45+29="74), dividing that sum by the total number of patients classified (100) and
multiplying that result by 100. The cut value footnote indicates that patients were
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Table 15.5 Final classification table

Classification Table®

Predicted
Coronary Heart Disease Percentage

Observed No Yes Correct
Step 1 Coronary Heart Disease  No 45 12 78.9
Yes 14 29 67.4
Overall Percentage 74.0

a. The cut value is .500
Table 15.6 Variables in the equation
Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step 1°  Age A1 .024 21.254 1 .000 1.117
Constant -5.309 1.134 21.935 1 .000 .005

a. Variable(s) entered on step 1: Age.

classified as having coronary heart disease if their predicted values for p were above
0.5.

Table 15.6 shows the variables in the equation and is analogous to the coeffi-

cients table in linear regression.

The value in the B column in the row for the independent variable is the slope
coefficient.

The value in the B column in the row labeled Constant is the intercept.

The values in the S.E. column are the standard errors for the slope and intercept
coefficients, respectively.

The values in the Wald column are the square of the B coefficient divided by the
standard error. It is analogous to the individual #-test in simple and multiple re-
gression. The null hypothesis is that the population coefficient is equal to 0, and
the alternative hypothesis is that the coefficient does not equal to 0.

The df column shows that there is 1 degree of freedom associated with each Wald
statistic.

The Sig. column gives the p-value for each Wald test. The p-values are inter-
preted in the usual way.

The Exp(B) gives the value of e raised to the power of the B coefficient. For the
independent variable, the entry is the odds ratio and indicates the change in the
odds for a 1-unit increase in the independent variable. The entry for the intercept
are the odds (not the odds ratio) for patients for whom the independent variable

is coded as 0. In our example, the intercept coefficient is not useful as age cannot
be 0.
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Study the output of Block I and answer the following questions:

15.2.1 What is the logistic regression equation?

15.2.2 What percentage of the patients is correctly classified as to whether
or not they have coronary heart disease using this equation?

15.2.3 Is the patient’s age useful information?

15.2.4 What is the change in the odds ratio for a one year increase in a pa-
tient’s age?

15.2.5 What is the log of the odds that a 60-year-old patient will have coro-
nary heart disease?

Predicted Probabilities and Confidence Intervals for Odds Ratios You should
have found that the log of the odds that a 60-year-old patient will have coronary
heart disease is —5.309+0.111(60) or 1.351. This is the logit for a 60-year-old
patient. As we explained earlier, we could then derive the model’s predicted prob-
ability that a 60-year-old patient will have coronary heart disease by raising e to
the power of 1.351 to get the odds expressed in its original units (the odds would
be about 3.8) and then calculate the probability from those odds. Alternatively, we
could derive the predicted probability directly by raising e to the power of the logit
and dividing the result by 1 +e raised to the power of the logit. Yet another option
is to instruct SPSS to generate the predicted probabilities for us. In this section, we
will see how. We will also see how to get confidence intervals for the odds ratios.

To get each patient’s predicted probability of having coronary heart disease, first
set up the logistic regression in the usual manner. Then click Save. In the resulting
dialog box shown in Fig. 15.3, choose Probabilities. Click Continue.

To get the confidence intervals, click Options to bring up the dialog box shown
in Fig. 15.4. Now check CI for exp(B) and enter the desired confidence level in
percent in the % box. In this example, enter 95 % if it is not already there. Click
Continue followed by OK.

The predicted probabilities generated by the prediction equation will appear in
the last column of the data file, a section of which is shown in Fig. 15.5. We saw
earlier that the log of the odds that a 60-year-old patient will have coronary heart
disease is 1.351. We can see from the column labeled PRE _1 that this value of the
logit corresponds to a probability of 0.79344. Thus, the prediction equation predicts
that a 60-year-old patient has about a 79 % chance of having coronary heart disease.

15.2.6 According to the prediction model, what are the chances that a
69-year-old patient would have coronary heart disease?

The confidence interval of the odds ratio will be appended to the Variables in the
Equation table as shown Table 15.7.
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Fig. 15.3 Requesting probabilities

15.2.7 According to this output, what is the 95 % confidence interval for the
odds ratio associated with age?

15.3 Logistic Regression with Two Categorical Predictors

Our logistic regression consisted of a single predictor, and the predictor was quan-
titative. However, a logistic regression can include two or more independent vari-
ables and the independent variables can be categorical. In this section, we will look
at an example of a logistic regression in which we have two categorical indepen-
dent variables. In the next section, we will look at an example that includes both
categorical and quantitative variables. If the categorical variable has only two cat-
egories, such as gender, then Exp(B) gives the change in the odds for going from
one category to the next. If the categorical variable has three or more categories,
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Fig. 15.4 Requesting confidence intervals
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Fig. 15.5 Data file displaying predicted probabilities

Table 15.7 Confidence interval for the odds ratio

Variables in the Equation

95% C.I. for EXP(B)

B S.E. Wald df Sig. Exp(B) Lower Upper
Step 1? Age A1 .024 21.254 1 .000 1.117 1.066 1.171
Constant -5.309 1.134 21.935 1 .000 .005

a. Variable(s) entered on step 1: Age.
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then things get a little bit trickier. In this section, we will stick to categorical vari-
ables with two categories.

Load the data file, Diabetes.sav [2]. This file was compiled by physician as-
sistant students who interviewed patients at a clinic for the uninsured in order to
document the prevalence of diabetes mellitus type 2 and its risk factors among
patients who have no health insurance. The dependent variable is Diabetes Status
[Diabetes] (variable 8). It has two values. Following standard practice, a 0 was as-
signed if the patient reported that he or she did not have diabetes and a 1 if he or
she did. Several risk factors were assessed. In our example, we will focus on two:
Family History [Family] of diabetes (variable 9) and Hypertension [Hyperten-
sion] (variable 10). As is usually the case with research on risk factors, a 0 indicates
the absence of the factor while a 1 represents its presence.

To run the regression, select Analyze >Regression >Binary Logistic to bring up
the Logistic Regression dialog box. Enter the categorical dependent variable (Dia-
betes Status) in the Dependent box. Enter the two independent variables (Family
History and Hypertension) in the Covariates box. The dialog box should now be
similar to the one shown in Fig. 15.6.

Next we have to declare that the two predictors are categorical. To do this, click
Categorical as shown in Fig. 15.6 to bring up the Define Categorical Variables dia-
log box. Move the two categorical variables to the Categorical Covariates area. For
each variable, select whether the reference category will be the lowest numbered
category (First) or the highest numbered category (Last). Last is the default choice.

& Smoking Status [S__
& B Bu)

& Bl Category [BMICaT]
&b Hyperlipidemia [Hyp..
&b Family History [Fami
&b Hypertension [Hyper

Method: | Enter x|

Selection Variable:
2| ] R

(Lo ) (aste J { Reset ) Cancel | e |

\ J

Fig. 15.6 Declaring categorical predictors
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Fig. 15.7 Declaring Family as categorical
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Fig. 15.8 Declaring Hypertension as categorical

By convention, patients who are not exposed to the risk factor are defined as the
reference group, so First is the appropriate choice for both variables. For each vari-
able, highlight it, choose First and click Change. Click Continue followed by OK
to conduct the regression. These steps are displayed in Figs. 15.7 and 15.8.

The output is as follows. The Case Processing Summary in Table 15.8 is similar
in structure to the one in our first example.
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Table 15.8 Case processing summary

Case Processing Summary

409

Unweighted Cases® N Percent
Selected Cases Included in Analysis 131 100.0
Missing Cases 0 .0
Total 131 100.0
Unselected Cases 0 .0
Total 131 100.0

a. If weight is in effect, see classification table for the total number

of cases.

Table 15.9 Information on the variables in the model
Dependent Variable Encoding

Original Value

Internal
Value

No
Yes

Categorical Variables Codings

Parameter
coding
Frequency (1)
Hypertension No 67 .000
Yes 64 1.000
Family History  No 79 .000
Yes 52 1.000

Table 15.9 displays the output that explains the codes assigned by SPSS to the
dependent variable and to the categorical independent variables.

» Tables 15.10 and 15.11 are the similar in structure to those in the first example.
Notice in the Classification Table that when we ignore the independent variables,
we can accurately categorize 72.5 % of the patients as to whether or not they had
diabetes. The accuracy rate is as high as it is because the bulk of the subjects in
the study do not have diabetes.
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Table 15.10 Predictions in the empty model

Block 0: Beginning Block

Classification Table®”

Predicted
Diabetes Status
Percentage
Observed No Yes Correct
Step 0 Diabetes Status  No 95 0 100.0
Yes 36 0 .0
Overall Percentage 72.5
a. Constant is included in the model.
b. The cut value is .500
Table 15.11 Wald test for the empty model
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 0 Constant -.970 .196 24.582 1 .000 379
Table 15.12 Tests on variables not in the model
Variables not in the Equation
Score df Sig.
Step 0 Variables Family(1) 12.139 1 .000
Hypertension(1) 13.581 1 .000
Overall Statistics 25.251 2 .000

» Table 15.12 shows whether or not each independent variable would be signifi-
cant if it were entered in the model.

» Tables 15.13, 15.14, and 15.15 give the same type of information as in the first
example.

* Asinthe first example, Table 15.16 displays the slope coefficients, their standard
errors, the results of the test statistic, and the exponents of the slope coefficients.
For family history of diabetes, we see that the slope coefficient is 1.554. The ex-
ponent of this (that is, e'>>%) is the odds ratio, 4.731. The odds of having diabetes
for a patient who has a family history of diabetes is about 4.7 times greater than
those who do not have a family history of the disease. The p-value tells us that
the odds ratio is significantly different from 1.
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Table 15.13 Omnibus test of the model
Omnibus Tests of Model Coefficients
Chi-square df Sig.
Step 1 Step 27.031 .000
Block 27.031 .000
Model 27.031 .000
Table 15.14 Model summary
Model Summary
-2 Log Cox & Snell R Nagelkerke R
Step likelihood Square Square
1 127.021° .186 .270
a. Estimation terminated at iteration number 5 because
parameter estimates changed by less than .001.
Table 15.15 Final classification table
Classification Table®
Predicted
Diabetes Status
Percentage
Observed No Yes Correct
Step 1 Diabetes Status  No 84 11 88.4
Yes 21 15 41.7
Overall Percentage 75.6
a. The cut value is .500
Table 15.16 Results for variables in the model
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 17 Family(1) 1.554 449 11.997 1 .001 4.731
Hypertension(1) 1.700 470 13.069 1 .000 5.472
Constant -2.680 475 31.834 1 .000 .069

a. Variable(s) entered on step 1: Family, Hypertension.



412 15 Logistic Regression

» The entry for hypertension shows that the odds ratio for the second predictor is
also significantly different from 1, and that the odds of having diabetes for a pa-
tient who has hypertension is about 5.5 times greater than those who do not have
hypertension.

» The entry for Constant gives the odds for cases for whom all values of the inde-
pendent variables are 0. In research on risk factors, the cases not exposed to any
of the risk factors are assigned a 0 for each factor. Consequently, the information
in this row tells us the odds that a patient has diabetes if he or she has neither a
family history of diabetes nor hypertension. These odds are sometimes referred
to as the baseline odds. In our example, the log of the baseline odds is —2.68,
while the baseline odds are 0.069. If we were to convert the baseline odds into
a probability, we would see that the chances that a patient from this population
would have diabetes if he or she does not have a family history of diabetes and
is not hypertensive is about 6.5 % (0.069/1.069=0.0645).

Using Odds Ratios and Baseline Odds to Estimate Odds of Disease Once the
odds ratio for each risk factor has been determined, the extent to which the exposure
to various combinations of those factors increases the odds of disease can also be
determined by multiplying together the odd ratios in question. For instance, accord-
ing to our example data, amongst patients who are uninsured, the odds of having
diabetes increase almost five fold for those who have a family history of diabetes
and over five times for those who are hypertensive. By how much do the odds
increase for patients who are unfortunate enough to have been exposed to both risk
factors? To find out, we multiply the two sets of odds ratios together and see that if
patients have a family history of diabetes and are hypertensive, their odds of having
diabetes increase by almost a factor of 26 (4.731 % 5.472=25.888).

The odds ratios can be combined with baseline odds to predict the odds of dis-
ease for cases exposed to various risk factors and combinations of risk factors. This
is done by multiplying the baseline odds by the odds ratios in question. For in-
stance, in our example, the baseline odds are the odds of diabetes for patients who
have no family history of diabetes and are not hypertensive. If we multiply those
odds (0.069) by the odds ratio for family history (4.731), we see that the predicted
odds of disease for patients who have a family history, but are not hypertensive are
0.3264, a value that corresponds to a probability of about 0.25. If we multiply the
baseline odds by the odds ratio for hypertension, we would get the odds of disease
for patients who are hypertensive, but do not have a family history of diabetes.

Answer the following question:
15.3.1 What would be the odds of disease for patients who have a family
history of diabetes and are hypertensive?
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15.4 Logistic Regression with Quantitative
and Categorical Predictors

In this section, we will conduct another logistic regression. This time though we
will use one quantitative and two categorical independent variables, and one of the
categorical variables will have more than two categories. In the example, we will try
to predict whether or not a patient died after having been admitted to an intensive
care unit (the dependent variable) based on one quantitative and two categorical
independent variables: the patient’s age (quantitative), the type of admission (cat-
egorical), and the patient’s level of consciousness at admission (categorical).

When using a categorical variable that has more than two categories, one of
those categories must be selected as a reference category. In research on risk fac-
tors, the reference category is usually the one that represents the absence of the risk
factor. Otherwise, it is usually the category that is most frequent in the data. The
SPSS will calculate B coefficients for each of the other categories for a change from
the reference category to that category. This means that Exp(B) will give the change
in the odds for going from the reference category to the other category. The ratio
of the Exp(B) values of two non-reference categories yields the change in the odds
between two non-reference categories.

Load the data file ICU.sav [3] into SPSS. The file contains data on patients in an
intensive care unit. The variable Vital Status [STA] (variable 2) contains a 0 if the
patient survived and a 1 if the patient died. The variable, Age [AGE] (variable 3), con-
tains the patient’s age in years. The variable, Type of Admission [7YP] (variable 14),
indicates the type of admission to the intensive care unit. A value of 0 indicates that
the admission was elective, and a value of 1 indicates that the admission was an emer-
gency. The variable, Level of Consciousness [LOC] (variable 21), gives the level of
consciousness when the patient was admitted to the intensive care unit. A value of 0
represents no coma or stupor, a value of 1 represents a patient in a deep stupor, and
a value of 2 represents a patient in a coma. We wish to use Age, Type of Admission
and Level of Consciousness to predict whether or not a particular patient survived.

To run the regression, open the Logistic Regression dialog box, enter the cat-
egorical dependent variable (Vital Status) in the Dependent box, and the three in-
dependent variables (Age, Type of Admission and Level of Consciousness) in the
Covariates box, as shown in Fig. 15.9.

To declare that Type of Admission and Level of Consciousness are categorical,
click Categorical to bring up the Define Categorical Variables dialog box. Move
the two categorical variables to the Categorical Covariates area. For each variable,
select whether the reference category will be the lowest numbered category (First)
or the highest numbered category (Last).

As we saw in the previous section, Last is the default choice. Since most patients
come to an intensive care unit on an emergency basis, Last is the appropriate choice
for Type of Admission. However, since most patients come to an intensive care unit
conscious, choose First for Level of Consciousness and click Change. Click Con-
tinue followed by OK to conduct the regression. This is displayed in Fig. 15.10.
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Fig. 15.9 Selecting the variables in the model

Fig. 15.10 Declaring the categorical variables in the model

A portion of the output is shown below. Interpretation of Tables 15.17 and 15.18

of the output is similar to our previous example.
As in the previous example, the table displaying the codes of the categorical vari-

ables in Table 15.19 depicts the codes assigned by SPSS to the categorical variables.
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Table 15.17 Case processing summary
Case Processing Summary

Unweighted Cases® N Percent
Selected Cases Included in Analysis 199 99.5
Missing Cases 1 5
Total 200 100.0
Unselected Cases 0 .0
Total 200 100.0
a. If weight is in effect, see classification table for the total number
of cases.
Table 15.18 Values of the Dependent Variable Encoding
dependent variable

Internal
Original Value Value

Lived 0

Died 1

Table 15.19 Encoding for the categorical predictors
Categorical Variables Codings

Parameter coding
Frequency (1) (2)
Level of Consciousness No Coma or Stupor 185 .000 .000
Deep Stupor 5 1.000 .000
Coma 9 .000 1.000
Type of Admission Elective 52 1.000
Emergency 147 .000

For a categorical variable with only two categories, the reference category is given
a value of 0, and the other category is given a value of 1. For a categorical variable
with three categories, SPSS creates two internal variables called dummy variables,
each of which takes on either a 0 or a 1. For patients in the reference category,
the SPSS sets both dummy variables to 0. The other categories get a value of 0 in
one dummy variable and a value of 1 in the other. For categorical variables with
more than three categories, the pattern is similar. For k categories, SPSS creates -1
dummy variables. The reference category always receives a value of 0 for all of the
dummy variables. The other categories receive a value of 1 for one of the dummy
variables and a value of 0 in all of the other dummy variables. The logic of creat-
ing dummy variables is similar to the logic we used in Chap. 14 on multiple linear
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Table 15.20 Classification table for the empty model
Block 0: Beginning Block

Classification Table®”

Predicted
Vital Status
Percentage
Observed Lived Died Correct
Step 0 Vital Status Lived 159 0 100.0
Died 40 0 .0
Overall Percentage 79.9
a. Constant is included in the model.
b. The cut value is .500
Table 15.21 Test of the empty model
Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step0  Constant -1.380 A77 60.866 1 .000 .252

Table 15.22 Tests of variables not in the model
Variables not in the Equation

Score df Sig.
Step 0 Variables  AGE 6.918 1 .009
TYP(1) 11.580 1 .001
LOC 41.357 2 .000
LOC(1) 20.387 1 .000
LOC(2) 19.525 1 .000
Overall Statistics 56.404 4 .000

regression except that there we would have had to create the dummy variables our-
selves by using Transform >Recode into Different Variables. Here SPSS creates
the dummy variables automatically.

» The interpretation of Tables 15.20 and 15.21 is similar to the previous example.
» Table 15.22 shows whether or not each independent variable would be significant
if entered in the model. Whether or not the dummy variable for its corresponding
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Table 15.23 Test of final model
Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 1 Step 55.101 4 .000
Block 55.101 4 .000
Model 55.101 4 .000

Table 15.24 Final model summary
Model Summary

-2 Log Cox & Snell R Nagelkerke R
Step likelihood Square Square
1 144.612° 242 .382

a. Estimation terminated at iteration number 20 because
maximum iterations has been reached. Final solution
cannot be found.

Table 15.25 Final classification table
Classification Table®

Predicted
Vital Status
Percentage
Observed Lived Died Correct
Step 1 Vital Status Lived 157 2 98.7
Died 28 12 30.0
Overall Percentage 84.9

a. The cut value is .500

category would be significant if entered in the model is provided by the LOC(1)
and LOC(2) entries.
Tables 15.23, 15.24, and 15.25 give the same type of information as in the previ-
ous examples.
From Table 15.26 we see that for every additional year in the age of a patient, the
logit increases by 0.033, resulting in odds ratio of 1.034. The entry for the type
of admission tells us that the odds of dying for patients who chose to be admitted
are 0.06 of those for patients who were of emergency admissions.
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Table 15.26 Tests of the individual variables in the equation

Variables in the Equation

B SE. Wald df Sig. Exp(B)
Step 1°  AGE 033 012 8.008 1 .005 1.034
TYP(1) 2815 1.038 7.349 1 .007 060
LOoC 8.245 2 016
LOC(1) 23577 | 16716.083 .000 1 999 1.735E+10
LOC(2) 2423 844 8.245 1 .004 11.280
Constant -3.348 776 | 18.591 1 .000 035

a. Variable(s) entered on step 1: AGE, TYP, LOC.

The entry for LOC shows that, overall, the level of consciousness is a significant
variable. There is no slope coefficient or an odds ratio because the variable has
been replaced by the dummy variables in the model.

LOC(1) and LOC(2) represent the difference between the reference category and
the other two categories. LOC(1) is for deep stupor and LOC(2) is for coma. We
see that the slope for LOC(1) is not significantly different from 0. This means
that the odds ratio is not significantly different from 1, and not the extremely
high value (1.735x10'") that is shown in the output. Thus, the odds of dying for
a patient who is in a deep stupor are the same as for a patient who is neither in a
stupor nor in a coma. However, the slope coefficient for LOC(2) is significantly
different from 0, indicating that the odds of dying for a patient who is admitted
in a coma are 11.28 times as high as for a patient with no coma or stupor.

If you wanted the odds ratio for a patient arriving in a coma compared to a person
arriving in a deep stupor, you would divide the odds ratio for a patient arriving
in a coma by the odds ratio for a patient arriving in a deep stupor. In this case,
since the odds ratio for a patient arriving in a deep stupor compared to a patient
arriving in neither a deep stupor nor a coma is 1, the odds ratio comparing the
odds of the coma patient against the odds of the patient in a deep stupor works
out again to 11.28, indicating that a person in a coma is 11.28 times more likely
to die than is a patient arriving in a deep stupor.

The entry for Constant gives the odds for a patient for whom all values of the
independent variable are 0. Since in this example a patient’s age cannot be 0, this
value is uninteresting.

15.5 Adjusted Odds Ratios

Logistic regression models often include several independent variables. One reason
for this is to improve the fit of the model to the data. Another is to determine the
relationship between a dependent variable and a given independent variable after
controlling for the presence of other independent variables. In either case, the re-
sulting odds ratios are referred to as adjusted odds ratios, as their values take into
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Table 15.27 Variables in the equation table with type of admission removed
Variables in the Equation

B SE. Wald df Sig. Exp(B)
Step 17 AGE 028 012 5.310 1 021 1.028
LOC 11.699 2 .003
LOC(1) 22.948 | 17882.024 .000 1 999 | 9249041421
LOC(2) 2.860 836 |  11.699 1 .001 17.464
Constant -3.403 794 18.362 1 .000 033

a. Variable(s) entered on step 1: AGE, LOC.

account or adjust for the relationships among the independent variables included
in the model. As a consequence, the adjusted odds ratio for a given predictor may
change as independent variables are added to or removed from the model. This is
analogous to the way in which the slope coefficients in mutilple regression change
as independent variables are added or removed. In order to see this, remove Type of
Admission from our previous analysis of Sect. 15.4, and run the regression.

The Variables in the Equation table you generated in Block 1 should match the
one shown in Table 15.27. Compare this table to Table 15.26.

Answer the following questions:
15.5.1 Did the adjusted odds ratio for Age change?
15.5.2 How about the dummy variables for Level of Consciousness?

15.6 Testing for an Interaction Effect

As with multiple regression, logistic regression assumes that the effect of an inde-
pendent variable is constant across the values of the other independent variables in
the model, that is, there are no interaction effects. This assumption can be tested
in a logistic regression in the same way it is tested in a multiple regression. First,
a new variable representing the interaction between the two independent variables
of interest is created by multiplying the two independent variables together. The
resulting variable is then added to the model. If the slope coefficient associated with
the interaction term is significant, then we would have evidence that the effect of
one of the independent variables depends on the value of the other. For example,
a logistic regression investigating the effects of age and sex on vital status would
assume that the effect of age is the same for both men and women. To test this as-
sumption, we would multiply age by sex to obtain a variable that represents the
interaction between these two predictors, replace the independent variable Sex with
this interaction term, and run the analysis. If the slope coefficient for the interac-
tion is significant, we would have evidence that the relationship between age and
survival depends on the sex of the patient.
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As was the case in Chap. 14, Transform>Compute Variable would be used
to create the interaction variable. In our example, the interaction variable might be
called Age*Sex. The logistic regression would then be conducted in which Age and
Age*Sex would be the independent variables and Vital Status the dependent vari-
able. You will get a chance to do this in the exercises.

15.7 Exercise Questions

1. This exercise question uses the intensive care unit (ICU) data set.

a.

Use Analyze>Descriptive Statistics>Crosstabs to create a contingency
table comparing Vital Status [S7A4] (variable 2; 0=Lived, 1=Died) with His-
tory of Chronic Renal Failure [CRN] (variable 8; 0=No, 1 =Yes). Calculate
by hand the odds of a patient with a history of chronic renal failure dying.
Calculate by hand the odds of a patient with no history of chronic renal fail-
ure dying. Divide the odds of a patient with a history of chronic renal failure
dying by the odds of a patient of a person with no history of chronic renal
failure dying. What is the resulting odds ratio?

. Conduct a binary logistic regression using the categorical variable History of

Chronic Renal Failure as the independent variable and Vital Status as the
dependent variable. What is the odds ratio for chronic renal failure? How does
it compare with your answer from Question 1a? What does this odds ratio tell
you about the likelihood of survival of patients with a history of renal failure
compared to patients with no history of renal failure?

2. This exercise question continues using the ICU data set.

a.

Repeat the logistic regression of the previous question, but add Age, Sex, and
Level of Consciousness as independent variables. Report the odds ratio for
renal failure.

. Compare the odds ratio you just reported with that of Question 1. How do

they compare? Explain any difference that you see.
What is the 95 % confidence interval of the odds ratio for renal failure?

. What is the predicted probability of death for a 69-year-old man who has a

history of renal failure and arrives at the ICU in a coma?

3. Conduct a logistic regression on the ICU data using Age and the interaction
between age and sex as the independent variables.

a.
b.
c.

What is the slope coefficient for the interaction term?

What is the p-value for the interaction term?

According to the analysis, does the relationship between age and likelihood of
survival depend on the sex of the patient? Why or why not?

. Ateam of physician assistant students wanted to know whether the lack of flexibil-

ity is a risk factor for lower extremity injuries among male collegiate athletes [4].
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Table 15.28 Output for Question 4
Variables in the Equation

B S.E. Wald df Sig. Exp(B)
Step 1% Flexibiity 4.122 2 27
Flexibiity(1) .350 527 442 1 .506 1.419
Flexibiity(2) 1.027 515 3.986 1 .046 2.794
Constant -1.587 .366 18.817 1 .000 .205

a. Variable(s) entered on step 1: Flexibiity.

To find out, the research team measured the flexibility of male Division III ath-
letes at the beginning of the fall of season. Flexibility was measured by asking the
athletes to reach towards their toes as far as possible while sitting on the floor with
their legs outstretched in front of them. The distance each athlete was able to reach
served as the measure of flexibility. The researchers then classified each athlete
into one of three categories of flexibility: low (coded as 2), moderate (1), and
high (0). At the end of the season, the team recorded the number of practice and
game days that each athlete had missed during the season due to a lower extremity
injury. Athletes who missed at least 1 day were classified as having been injured.
The team conducted a logistic regression in which injury status was the dependent
variable, and the level of flexibility was the independent variable. A fragment of
output is below. The high flexibility category was the reference group. Study the
output shown in Table 15.28 and then complete the following sentences.

a. The log of the odds (or the logit) of injury for an athlete who is highly flexible

is while the /og of the odds (or the logit) of injury for an athlete
who is low in flexibility is

b. The odds of injury for an athlete who is 1ow in flexibility are times
the odds of injury for an athlete who is high in flexibility.

c. The odds of injury for an athlete who is low in flexibility are while

the odds of injury for an athlete who is high in flexibility are
d. The probability of injury for an athlete who is low in flexibility is
while the probability of injury for an athlete who is high in flexibility is

e. One of the findings of this study tests the null/alternative (choose one) hypoth-
esis that athletes who are moderate in flexibility are no more likely to be
injured than the athletes who are high in flexibility. This hypothesis should be
accepted/rejected (choose one).

Data Sets and References

1. Coronary Heart Disease.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Logistic
Regression. Wiley, New York (1989). (With the kind permission of Professors David W.
Hosmer and Stanley Lemeshow)
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2. Diabetes.sav obtained from: Cassel, S., Mahoney, G., Troia, L., Volles, A., Henry, N.J., Holmes,
W.H.: Prevalence of Risk Factors for Type 2 Diabetes Mellitus in a Population Served by a
Health Clinic for the Uninsured. Unpublished data, Le Moyne College, Syracuse, New York
(2010)

3. ICU.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley,
New York (1989). (With the Kind Permission of John Wiley and Sons, and Professors David
W. Hosmer and Stanley Lemeshow)

4. Barker, S., Jerome, J., Woods, D., Zaika, C., Brown, R.G., Holmes, W.H.: The Sit and Reach
Test as a Measure of Flexibility for Predicting Lower Extremity Injury in Division III Athletes.
Unpublished data, Le Moyne College, Syracuse, New York (2010)



Chapter 16
Survival Analysis

Abstract This chapter reviews the analysis of time to event data. Following a dis-
cussion of censored observations, the Kaplan—Meier estimator of the survival func-
tion, median and mean survival times, and comparing two survival functions with
the log-rank test are reviewed. A second method of comparing survival functions
is then introduced—Cox proportional hazards model. Topics include hazard and
cumulative hazard functions, interpreting a hazard ratio, Cox regression, and testing
for interactions among the covariates.

16.1 Overview

In Chap. 13 we considered predicting a quantitative response variable using simple
linear regression with a single independent variable. In Chap. 14 we expanded those
ideas to multiple regression where two or more independent variables were used
to predict the value of a quantitative response variable. Chapter 15 considered the
models where the dependent variable was a categorical variable having two cat-
egories. In this chapter we will consider a very different situation which will give
rise to a different kind of regression—survival analysis. Survival analysis is used in
longitudinal studies to assess the impact of factors on the amount of time that passes
between a patient’s entry into the study and the occurrence of a specified critical
event. For example, survival analysis is used to study factors that affect the recur-
rence of a tumor following treatment, the length of hospital stay following surgery,
or survival time following diagnosis.

Consider a hypothetical study that is interested in the survival time of patients
having a certain type of cancer. Suppose the study ran from January 1, 2005 through
December 31, 2010. After a patient had a confirmed diagnosis of having cancer, the
patient would have been followed until death due to this type of cancer, until the end
of the study, or until the patient was lost to follow-up (i.e., left the area, died due to
some other cause, etc.). There would be a number of possible independent variables.
Some might be age, alcohol use, and smoking.

The dependent variable in our hypothetical example is the time until death or
survival time. However, measuring survival time (and more generally, time to
event) can be somewhat complicated. Time is measured as the time from entry in
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the study until either death, termination of the study, or the patient leaves the study.
The complication is that while we will know the time of death, and thus the survival
times of patients who die while the study is ongoing, we will not know the time of
death of patients who are still alive at the end of the study or who leave the study
while still alive. Because the time variable is not the actual time to death for every
patient, we cannot use the descriptive methods we studied in the previous chapters
that summarize quantitative data, and we cannot use multiple linear regression to
determine the effect of various independent variables on survival time.

When the time to event for a patient is not known, that patient’s time measure-
ments are said to be censored. An observation that is censored is not to be confused
with one that is missing. If an observation is missing for a particular patient, the
variable of interest was not measured for that patient, and we have no information
about the patient for that variable. With censored data, the variable of interest was
measured, but only until the time the patient left the study while still not having
experience the event, or until the study ended. Consequently, that patient’s data are
not so much missing as they are incomplete. For example, in a survival time study,
we would not know the survival time of a patient who left the study after 2 years of
observation. However, we would know that the patient lived for at least 2 years. In
this chapter, we will investigate descriptive and regression methods that have been
designed for the analysis of censored time to event data.

16.2 Kaplan—Meier Estimator of the Survival Function

To begin, we shall consider what is known as the survival function. Simply stated,
the survival function, S(?), is the probability that a patient will survive longer than ¢
time periods. We will consider what is known as the Kaplan—Meier estimator of the
survival function. This estimator has the advantage that it accounts for the possible
effect of censored patients on the probability of survival. It goes as follows:

a. Let n, = the number of patients known to be at risk at time period i.

b. Let d; = the number of patients who die at time period i.

c. Then for patients that are alive at the start of time period 7, the estimated prob-
ability of surviving time period i given that d, dies during time period i is

b= (16.1)

n.

i

d. Then the estimated probability that a patient survives the first ¢ time periods is

S(t)= p, X py XX p,. (16.2)
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Table 16.1 Survival times Patient | Survival time | Censored?
of five hypothetical cancer
patients 1 10 No

2 4 No

3 7 No

4 6 Yes

5 5 No

To illustrate, consider the following simple example. Suppose we have five pa-
tients who are diagnosed as having cancer. Table 16.1 gives their survival times and
whether or not each time measurement is censored.
Since each patient is still alive until time period 4,
5-0

=P, =P=—_"

16.3
5 1. (16.3)

So, fort=1, 2, and 3,

S(t)=1. (16.4)
During the time period 4, there are five patients in the study and one of them (Pa-
tient 2) dies. Therefore,

5-1
P =2—=08. (16.5)

Consequently,

S(4)=1x1x1x0.8=0.8. (16.6)
Now there are four patients in the study. During the time period 5, a second patient
(Patient 5) dies, giving

4-1
ps=——=0.75, (16.7)

and
S(5)=0.8x0.75=0.6. (16.8)
Now there are three patients remaining. During the time period 6, Patient 4 leaves

the study, leaving two patients in the study. Therefore,

1, 16.9
5 (16.9)

Ps
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Table 16.2 Survival table of five hypothetical cancer patients
Survival Table
Cumulative Proportion Surviving
at the Time N of N of
Cumulative Remaining
Time Status Estimate Std. Error Events Cases
1 4.000 No .800 179 1 4
2 5.000 | No .600 219 2 3
3 6.000 | Yes . . 2 2
4 7.000 | No .300 .239 3 1
5 10.000 | No .000 .000 4 0
and
S(6)=0.6x1=0.6. (16.10)
During time period 7, another patient (Patient 3) dies, giving
2-1
p,="—=05, (16.11)
2
and
S(7)=0.6x0.5=0.3. (16.12)

There is one patient left in the study up until time period 10. Therefore,

S@®)=S5(9)=0.3. (16.13)
Finally, that patient dies during time period 10, giving
1-1
Do =T=0, (16.14)
and
S(10)=0.3x0=0. (16.15)

The Kaplan—Meier estimator of the survival function can be displayed in a survival
table or as a graph. Both as generated by SPSS for the above five patients are pre-
sented in Table 16.2 and Fig. 16.1, respectively. Let us look at the table first.

In Table 16.2, the outcome (death or censored) for each patient is indicated in
the order in which it occurred. The first column lists the numerical order, the second
column the time period in which the event occurred, and the third whether the event
was censored. For example, the first two events occurred during time periods 4 and
5, respectively, and were deaths. The third event occurred during time period 6 and
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Fig. 16.1 Survival function of five hypothetical cancer patients

was the departure of a patient from the study. The fourth column presents the cumu-
lative proportion of the five patients who survived through the corresponding time
period. For example, at the end of the time period 7, 0.30 or 30 % of the original five
patients were still alive. These cumulative proportions constitute the estimated sur-
vival function, that is, Kaplan—Meier estimates of the probability of surviving over
time. The fifth column presents each estimate’s standard error—a measure of the
extent to which the estimate would vary across a large number of samples. The last
two columns display running totals of patients who died and patients who remained
in the study. Note that the fate of each patient is listed in the table. For this reason,
the survival tables can be quite lengthy in studies of large numbers of patients.

Now let us look at the graphical display of the survival function, presented in
Fig. 16.1. This plots the cumulative proportion of patients surviving at each time
period and depicts a series of steps. The height of a step reflects the proportion of
all patients enrolled in the study who survived to the end of the corresponding time
period. Whenever a patient dies, the height of the step decreases. It is common
practice to illustrate the censoring of a patient’s outcome with a cross at the time of
censoring occurred.
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Fig. 16.2 Median survival time: point in time at which the cumulative survival is 0.5. In this
example, the median is 7 years.

Median and Mean Survival Times The Kaplan—Meier survival function can be
used to estimate mean and median survival times. The median survival time is the
time period at the end of which 50 % of the patients enrolled have survived. As you
can see in Fig. 16.2, the median survival time for our hypothetical data would be
estimated to be 7 years. The estimate of the mean survival time is more complicated.
It is found by calculating what is known as the “area under the curve,” that is, the
total area under the steps of the graph of the survival function. The area under each
step is the area of the rectangle that is formed. In our hypothetical example shown in
Fig. 16.3, the leftmost rectangle has a height of 1 with a base of 4; the next rectangle
has a height of 0.8 with a base of 1; the third rectangle has a height of 0.6 with a base
of 2; and the rightmost rectangle has a height of 0.3 with a base of 3. The area under
the curve is the sum of the areas of these four rectangles or 6.9 years.

Another Example with Real Data Now that we have studied a hypothetical
example of a survival function, let us look at a real one: the survival function of 481
male and female patients from the Worcester Heart Attack Study who had experi-
enced one or more myocardial infarctions. The patients were observed following
their most recent heart attack for an average of about 5 years. The file containing



16.2 Kaplan-Meier Estimator of the Survival Function 429

Survival Function

—I1Survival Function
1.0 1 —+—Censored

0.94 Area=1.0%x4.0=4.0

0.8 —

07- Area=0.8x1.0=0.8

0.6

0.5

Cum Survival

0.4

0.3

0.2

0.1

0.0

Time

Fig. 16.3 Mean survival time: total area under the survival function. In this example, the mean
equals 4.0+0.8+1.2+0.9 or 6.9 years.

these data is called WHAS.sav [1], and it consists of the following variables. Total
Length of Follow-up from Hospital Admission (days) [LENFOL] (variable 13)
gives the time in days from the date a patient entered the study until the end of the
patient’s follow-up time. Status as of Last Follow-up [FSTAT] (variable 14) con-
tains a 1 if the patient died and a 0 if the patient was alive at the end of the follow-
up. Our goal is to compute and graph the Kaplan—Meier estimator for the survival
function and to calculate the mean and median survival times.

Load the data file. Select Analyze >Survival > Kaplan—Meier. In the dialog box
that opens, enter the survival time variable, Total Length of Follow-up from Hos-
pital Admission (days), in the 7ime box. Enter the variable that indicates whether
the value for time is censored or not, Status as of Last Follow-up, in the Status
box. Click Define Event. In the resulting dialog box, enter the value that indicates
that the subject died (a value of 1) into the Single value box. Click Continue. These
steps are displayed in Figs. 16.4 and 16.5.

Back in the Kaplan—-Meier dialog, notice that FSTAT(?) has been replaced
by FSTAT(1) in the Status box. This change can be seen in Fig. 16.6. Now click
Options. In the resulting dialog, select Mean and median survival in the Statistics
area if it is not already checked, and select Survival in the Plots area. So as not to
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Fig. 16.4 Generating a Kaplan—Meier survival function: assigning the time and status variables,
and opening the Define Event for Status Variable dialog
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Fig. 16.5 Generating a Kaplan—Meier survival function: defining the event value
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Fig. 16.6 Generating a Kaplan—Meier survival function: opening the Options dialog

Fig. 16.7 Generating a
Kaplan—Meier survival func-
tion: requesting mean and
median survival times and

a survival plot

Be sure that Survival
table(s) is unchecked.

generate a lengthy survival table, uncheck Survival table(s) in the Statistics area.
When you have finished, the dialog box should look similar to the one in Fig. 16.7.
Now click Continue followed by OK.

The output will consist of two tables and a plot of the survival function. The first
table is the Case Processing Summary, shown in Table 16.3. The first column re-
ports the sample size. The second column displays the number of patients who died.
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Table 16.3 Case processing summary for a Kaplan—-Meier survival analysis
Case Processing Summary

Censored

Total N N of Events N Percent

481 249 232 48.2%

Table 16.4 Mean and median survival times in days of 481 patients who had experienced at least
one myocardial infarction
Means and Medians for Survival Time

Mean® Median
95% Confidence Interval 95% Confidence Interval
Estimate Std. Error Lower Bound Upper Bound Estimate Std. Error Lower Bound Upper Bound
2916.981 125.151 2671.685 3162.278 2335.000 305.616 1735.993 2934.007

a. Estimation is limited to the largest survival time if it is censored.

The last two columns report the number and percentage of patients who were alive
at the last follow-up observation.

The second table, shown in Table 16.4, reports the mean and median survival
times and their 95 % confidence intervals.

The plot of the survival function is displayed in Fig. 16.8. Note that the survival
function does not go to zero, indicating that the longest survival times were from
the censored data.

Answer the following questions:

16.2.1 How many patients had died by the last follow-up observation?
16.2.2 What is the mean survival time?

16.2.3 What is the median survival time?

16.2.4 What is the 95 % confidence level for the median?

16.2.5 What is the area under the curve? days.
16.2.6  What percent of the sample lived for at least 2335 days?
%.

16.3 Comparing Two Survival Functions

In clinical research, the survival functions of two groups of patients are often com-
pared. As an example, we will compare the survival times of patients whose myo-
cardial infarctions (MIs) were their first (first MI group) to the survival times of
patients with a history of MIs (recurrent MI group).

Select Analyze>Survival>Kaplan—Meier to open the dialog box shown in
Fig. 16.9. Enter the group identifying the variable, MI Order [MIORD] (variable
7), in the Factor box. To determine whether the survival functions of the two groups
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Fig. 16.8 Survival function of 481 Patients who had experienced at least one myocardial infarction
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Fig. 16.9 Comparing two survival functions: assigning a group identifying variable or factor,

and opening the Compare Factor dialog
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Fig. 16.10 Comparing two survival functions: selecting the log rank test

Table 16.5 Case processing summary
Case Processing Summary

Censored
MI Order Total N N of Events N Percent
First 308 142 166 53.9%
Recurrent 173 107 66 38.2%
Overall 481 249 232 48.2%

are statistically significantly different, click Compare Factor to bring up the dialog
box shown in Fig. 16.10. Select Log rank, a test statistics that tests the null hypoth-
esis that the two population survival functions are the same. Click Continue and
then OK.

The output will include the following tables. The Case Processing Summary
table (Table 16.5) displays the sample size of each of the two groups—the number
of deaths within each group and the number of cases within each group that were
censored.

The Means and medians for survival time table (Table 16.6) presents the infor-
mation about the mean and median survival times of the two groups.

The Overall Comparisons table (Table 16.7) displays the results of the log rank
test (also known as the Mantel-Cox test). This tests the null hypothesis that the two
population survival functions are the same.

The output will also include a plot similar to the one shown in Fig. 16.11. (We
added text boxes to identify more clearly the survival functions of the two groups.)
We can see that patients with recurrent MI die more quickly.
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Table 16.6 Mean and median survival times of first and recurrent MI patients
Means and Medians for Survival Time
Mean® Median
95% Confidence Interval 95% Confidence Interval
MI Order Estimate Std. Error Lower Bound Upper Bound Estimate Std. Error Lower Bound Upper Bound
First 3215.980 156.319 2909.594 3522.366 3171.000 548.935 2095.088 4246.912
Recurrent 2388.059 202.967 1990.244 2785.874 879.000 503.804 .000 1866.456
Overall 2916.981 125.151 2671.685 3162.278 2335.000 305.616 1735.993 2934.007
a. Estimation is limited to the largest survival time if it is censored.
Table 16.7 Results of the log rank test
Overall Comparisons
Chi-Square df Sig.
Log Rank (Mantel-Cox) 12.358 1 .000

Test of equality of survival distributions for the different levels of

MI Order.
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Fig. 16.11 Survival functions of First MI and Recurrent MI patients. (A myocardial infarction)
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16.3.1 What are the mean and median survival times for a patient with no
history of myocardial infarction?

16.3.2 For a patient with recurrent MI?

16.3.3 Do the two survival functions significantly differ?

16.4 Hazard Functions, the Proportional Hazards Model,
and Relative Risk

We now turn to the estimation of relative risk. This begins with the introduction of
what is known as a hazard function.

Hazard Functions Generally speaking, the hazard function, /(2), is the instanta-
neous rate at which patients are dying at time #. The connection with the survival
function goes as follows. If at time ¢ no one has died, then at that point in time the
graph of S(z) will be flat and /(z) will equal to 0. This means that there is no risk of
dying at time #. On the other hand, if at time # many people die, then at that point in
time, the graph of S(z) will drop rapidly and the value of 4(?) will be large, indicating
that the risk of dying at time ¢ is high.

Cumulative Hazard Functions Often a graph that displays the total hazard expe-
rienced up to time ¢ is generated. This is called the cumulative hazard function,
H(t). To generate a graph of the cumulative hazard function in SPSS, select Ana-
lyze >Survival > Kaplan—Meier > Options, and as shown in Fig. 16.12, check Haz-
ard in the Plots area, and then click Continue. Back in the Kaplan—Meier dialog,
click OK.

The resulting graph is shown in Fig. 16.13. For patients with a history of MI, the
cumulative hazard increases quickly at first, increases at a lower, but steady rate
thereafter, and then levels off. For patients without a history of MI, risk of death
rises less sharply at first, and then mirrors the increases in risk experienced by the
patients with recurrent MI.

The Proportional Hazards Model, Hazard Ratios, and Relative Risk Typically,
researchers are interested in determining whether the exposure to a risk factor or to
a treatment regimen affects the risk of dying. For example, a cohort study of cardiac
patients might be conducted to determine if the risk of death is higher for patients
who have a history of MI as compared to those whose Ml is their first, or a random-
ized controlled trial might be conducted to determine if a new treatment reduces the
risk of death as compared to a standard treatment. Determining whether the expo-
sure to a risk factor is related to risk of death can be done by comparing the hazard
function of the group exposed to the factor to the group that has not been exposed.
Similarly, assessing the efficacy of a new treatment can be done by comparing the
hazard function of patients exposed to a new treatment to a control group that has
received the standard treatment.
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Fig. 16.12 Requesting a r
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The simplest model for comparing hazard functions is known as the proportional
hazards model. 1f h () is the hazard function of the nonexposed or control group,
then this model assumes that /() is proportional to /,(¢) for all 7, or

() _
%m_h (16.16)

for all # In our example of cardiac patients, the exposed group would be those
patients with a history of MI, and their hazard function would be £ (¢) . The non-
exposed group would be those patients with no history of MI, and their hazard
function would be p (¢). If we were to assume proportional hazards, then we would
assume that the ratio of the hazard functions of the two groups of cardiac patients
is the same over time.

The simplest proportional hazards model is one that only makes use of the fact
that a patient is in either the exposed group or the control group. As applied to our
example, the model looks like the following. Let #,(¢) be the hazard function for
patients with no history of MI. Let =1 if the ith patient has a history of MI and 0
if not. Then the proportional hazards model will be

h(t) = hy(t)e” (16.17)
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Fig. 16.13 Cumulative hazard functions of first and recurrent M1 patients

where e is a constant approximately equal to 2.71828 and 3 is an unknown param-
eter that needs to be estimated. Let us take a closer look at this equation.
Note that if the ith patient has a history of MI, then the equation becomes

h(t) = hy(t)e”. (16.18)

If we divide both sides of the equation by 4, (¢), then

W) _

Vil
R (16.19)

The quantity e” is the ratio of the hazard associated with the patients with recurrent
MI to the hazard associated with the patients with their first MI. This ratio is called
the hazard ratio. A hazard ratio greater than 1 indicates that the exposure is associ-
ated with increased risk, while a hazard ratio less than 1 indicates that exposure is
associated with decreased risk. In this situation, it turns out that the hazard ratio is
also the relative risk of the exposed group compared to the control group.
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This model was developed by David Cox in 1972, and it is commonly referred to
as the Cox proportional hazards model. You may have recognized that e is the base
of the natural logarithm and e” is an antilog or exponent. According to the Cox mod-
el, we obtain the hazard ratio or relative risk by first estimating the value of £ and
then raising the base of the natural logarithm by this value. f is a population slope
coefficient. The process of estimating it is commonly referred to as Cox regression.

16.5 Cox Regression with One Covariate

In this section, we will see how Cox regression is used to estimate the value of § by
investigating the risk of death for cardiac patients who have a history of MI relative
to the risk of death for cardiac patients who have experienced their first MI. In the
next section, we will again estimate the relative risk, but after taking into account
each patient’s age.

Select Analyze>Survival>Cox Regression to bring up the dialog box shown
in Fig. 16.14. Enter the survival time variable, Total Length of Follow-up from
Hospital Admission (days), in the 7ime box. Enter the censoring variable, Status

@Coxkegre&sion— N . R Yen - fou

Time: P
’|D[|D] > -~ || Categorical
9 Age (years) AGE] | & Total Length of Followu... | —
y Sl e | s
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Fig. 16.14 Generating a Cox regression: assigning the time and status variables, and opening
the Define Event for Status Variable dialog
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Fig. 16.15 Generating a Cox Regression: defining the event value

as of Last Follow-up, in the Status box. Click Define Event and enter the value that
indicates that a patient’s datum was not censored (a value of 1) into the Single value
box, as shown in Fig. 16.15. Click Continue.

We wish to compare the risk of death of two groups of patients. In the jargon of
Cox regression, the variable that distinguishes one group from the other is called a
covariate. A covariate is analogous to an independent variable in linear regression,
and like an independent variable, can be either categorical or quantitative. Our co-
variate is MI Order and it is categorical. So back at the Cox Regression dialog box,
enter the covariate in the Covariates box. Then click Categorical to bring up the
Define Categorical Covariates dialog box, and move MI Order to the Categorical
Covariates area. As is customary, we wish to make the value of 0 (i.e., no history of
MI) the reference category. Therefore, check First in the Change Contrast area and
then click Change. Now click Continue. These steps are displayed in Figs. 16.16
and 16.17.

Back in the Cox Regression dialog, notice that MIORD in the Covariates area
has now changed to MIORD(Cat). We are now ready to generate the regression. But
first let us ask SPSS to display the confidence interval for the relative risk estimate.
Click Options and select CI for exp(B). The confidence level can be set to 90, 95,
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Fig. 16.16 Generating a Cox Regression: identifying the predictor variable and opening the
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Fig. 16.17 Generating a Cox Regression: identifying the categorical variable and reference
category
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Fig. 16.18 Generating a Cox regression: requesting a 95 % confidence interval for the hazard ratio

Table 16.8 Case processing summary for a Cox regression

Case Processing Summary

N Percent
Cases available in Event® 249 51.8%
analysis Censored 232 | 48.2%
Total 481 100.0%
Cases dropped Cases with missing values 0 0.0%
Cases with negative time 0 0.0%
Censored cases before
the earliest eventin a 0 0.0%
stratum
Total 0 0.0%
Total 481 100.0%

a. Dependent Variable: Total Length of Followup from Hospital Admission (days)

or 99%. Set it to 95 % if it has not already been selected. When you have finished,
the dialog will be similar to the one in Fig. 16.18. Click Continue and OK to run

the regression.

You will see results like the following in an output window. We shall give a brief
explanation of what is there. The Case Processing Summary (Table 16.8) shows that
there were 481 patients in the study. Of those, 249 died before the end of the study,
and 232 were still alive at the last follow-up observation.

Categorical Variable Codings (Table 16.9) shows the internal coding of the
group identifying variable.
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Table 16.9 Categorical variable codings for a Cox regression in which the categorical variable is
myocardial infarction order (MIORD)

Categorical Variable Codings®

Frequency (1)
MIORD®  0=First 308 0
1=Recurrent 173 1

a. Category variable: MIORD (MI Order)
b. Indicator Parameter Coding

Table 16.10 Omnibus tests Block 0 Beginning BIOCk

of model coefficients for a

Cox regression at Block 0 Omnibus

Tests of
Model
Coefficients

-2 Log
Likelihood

2841.217

Table 16.11 Omnibus tests of model coefficients for a Cox regression at block 1
Block 1: Method = Enter

Omnibus Tests of Model Coefficients®

Overall (score; Change From Previous Ste Change From Previous Block
21og ( ) — g P g
Likelihood Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
2829.460 12.295 1 .000, 11.756 1 .001 11.756 1 .001

a. Beginning Block Number 1. Method = Enter -

Estimation is done by an iterative method known as maximum likelihood. This
is the same method that was mentioned in the chapter on logistic regression. The
Omnibus Tests of Model Coefficients table for the beginning block (Table 16.10)
shows the starting value for the process.

Table 16.11 displays the Omnibus Tests of Model Coefficients at Block 1. This
version of the table is analogous to the ANOVA table in regression. A small p-value
for the Overall (score) portion of the table indicates that the population slope coef-
ficient is not zero.

The Variables in the Equation table (Table 16.12) is analogous to the Coefficients
table in the regression.
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Table 16.12 Variables in the equation for a Cox regression
Variables in the Equation

95.0% ClI for Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper
MIORD 446 128 12.095 1 .001 1.562 1.215 2.008
Table 16.13 Mean of Covariate Means
covariate predictor in a Cox
regression Mean
MIORD .360

* B is the estimate of the parameter £, and is 0.446 with a standard error (SE) of
0.128.

» The Wald statistics is like that in logistic regression. It is the square of B/SE, and
it has a chi-square distribution with 1 degree of freedom. The null hypothesis is
that f=0, and the alternative hypothesis is that f=#0.

* The p-value (Sig.) indicates that there is strong evidence that f#0.

* Exp(B)=1.562. This is the relative risk. This shows that a patient with a history
of MI is about 1.6 times more likely to die than a patient with no history of MI.

» The 95% confidence interval for the relative risk ranges from 1.215 to 2.008.

Covariate Means (Table 16.13) gives the sample mean of the independent variable.
This quantity is of little interest to us.

16.6 Cox Regression with Two Covariates

We now turn to a discussion of the inclusion of more than one covariate in the
model. Specifically, we will see what happens in our running example if we include
in the model the age of the patient on entry in the study. The patients’ ages can be
found in Age (years) [AGE] (variable 2). The new model will be

R () = hy (£)e" (16.20)

Return to the Cox Regression dialog box and move Age (years) to the Covariates
box. The resulting dialog box should look like the one shown in Fig. 16.19. Click
OK to run the regression.

The resulting output is pretty much the same as that shown in Sect. 16.5. The
main difference is in the Variables in the Equation table. It is shown in Table 16.14.

» Note that the value of B for MI Order changed from 0.446 to 0.422. As was the
case in multiple regression and logistic regression, each B coefficient is sensi-
tive to the presence of the other covariates. Thus, once the contribution of Age



16.6  Cox Regression with Two Covariates

445

Qutemien Wm0 W 0
Time:
L =
; zgf():ws)mﬂ ¥ | [ Total Length of Followu...| Em
G e e, | [ [rom s
& Peak Cardiac Enzy... FSTAT(1) |
| | Cosocsnocccon. Detoe Event _Optons.._
. Left Heart Failure C...
& MI Order [MIORD) rBlock 10f 1 i m
i | g& MI Type MITYPE)
| | & Cohort Year [YEAR] fimyons (et
| | & Grouped Cohort Yea... Covariates:
& Length of Hospital S... -
:' & Discharge Status fro... w’ C20 !
Method: Enter z)
Strata:
2 | |

Fig. 16.19 Adding a second predictor to a Cox regression

Table 16.14 Variables in the equation for a Cox regression with two predictors

Variables in the Equation

95.0% ClI for Exp(B)

B SE Wald df Sig. Exp(B) Lower Upper
MIORD 422 128 10.819 1 .001 1.525 1.186 1.961
AGE .044 .005 67.445 1 .000 1.045 1.034 1.056

(years) is accounted for, the risk of dying for an MI patient with a history of MI
relative to that of an MI patient with no such history decreases to ¢**** or 1.525.
* The value of B for the patient’s age is 0.044. The Wald test shows that this value
is significantly different from 0. In addition, Exp(B) is 1.045, indicating that the
relative risk of dying increases by a factor of 1.045 for every additional year in
the age of the patient at the time of entry into the study. Note that Exp(B) is the
estimate of ¢’ in the proportional hazards model. The value of Exp(B) can be
used to obtain the relative risk for, say, a change in age of 2 years. This works as

follows.

Risk at year 2 Risk at year 2 « Risk at year 1 .

Risk at year 0 ~ Risk at year 1 Risk at year 0 B

o =().

(16.21)
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If we follow the same line of reasoning, we would obtain the relative risk for a
change in age of 5 years by raising Exp(B) to a power of 5. So, the relative risk for
an increase in age of 5 years would be (1.045)’ =1.246. This means that of two
patients who at enrollment differed in their ages by 5 years, the risk of death for
the older patient is estimated to be about 25 % higher than the risk of death for the
younger.

Answer the following question.
16.6.1 What would be the relative risk for an increase in age of 7 years?

16.7 Interaction Effects

The Cox regression assumes that the impact of each covariate is independent of the
other covariates in the model. For example, the previous analysis assumes that the
impact of age on the risk of death does not depend on whether or not the patient
has a history of MI. This assumption can be assessed by testing for the presence
of an interaction. We first encountered the notion of an interaction in regression in
Chap. 14. There we learned that an interaction is tested by creating an interaction
variable that is the product of the two variables of interest, entering the interaction
variable into the regression model as a predictor, and determining if its slope coeffi-
cient is significantly different from zero. In this section, we will test for the presence
of an interaction between age and history of MI.

Select Transform > Compute Variable to bring up the Compute Variable dialog
box. Enter Age MIOrder in the Target Variable box, and then click Type & Label.
Give the new variable a label of Age*MI Order and click Continue. Back in the
Compute Variable dialog, enter Age*MI Order in the Numeric Expression box.
Click OK to create the interaction variable. These steps are shown in Figs. 16.20,
16.21 and 16.22.

Select Analyze>Survival>Cox Regression. Set up the regression as in
Sect. 16.6 with the exception that MI Order is replaced by Age*MI Order. The
resulting dialog box should look like the one shown in Fig. 16.23. Click OK to run
the regression.

We will focus on the Variables in the Equation table, shown in Table 16.15.

From the p-values, we see that both Age (years) and Age*MI Order have the
slope coefficients that are highly significantly different from zero. The interpreta-
tion of the slope coefficients goes as follows. The equation is

0.042* Age+0.006* Age™* MI Order. (16.22)
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Recall that M7 Order was coded 0 for a cardiac patient with no history of MI, and 1
for a cardiac patient having a history of MI. So for a patient with no history of MI,
the equation becomes

0.042* Age. (16.23)
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Fig. 16.23 Adding an interaction variable to a Cox regression
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Table 16.15 Variables in the equation table for a Cox regression testing for the presence of an
interaction
Variables in the Equation

B SE Wald df Sig. Exp(B)
AGE 042 .005 60.342 1 .000 1.043
Age_MIOrder .006 .002 11.070 1 .001 1.006

Since Exp(B) =1.043, the relative risk is 1.043 for every additional year in the age
of a patient with no history of MI.
For a patient with a history of MI, the equation becomes

0.042* Age+0.006* Age = 0.048* Age. (16.24)

For a patient with a history MI, the value of Exp(0.048) is the product of the Exp(B)
values given in the table, or (1.043)(1.006)=1.049. This means that the relative risk
for a patient with a history of MI is 1.049 for every additional year in age.

16.8 Exercise Questions

These exercise questions use the Framingham Heart Study data set, Framingham.
sav [2]. The variables in the data set include:

* Gender [sex] (variable 1; 0=Male, 1 =Female).

* Serum Cholesterol [sc/] (variable 4).

* Coronary Heart Disease [chdfate] (variable 5; 1 =Yes, 0=No). This is the cen-
soring variable for the event, coronary heart disease.

Follow-up in Days [followup] (variable 6). This is the time to event variable.
Body Mass Index [bmi] (variable 8).

1. Open the data file and draw the Kaplan—Meier estimator survival function com-
paring the survival times (or in this context, the times to event) of males against
females. There are over 4000 subjects in this study. So, avoid producing the sur-
vival table by unchecking Survival table(s) in the Statistics area of the Options
dialog box. Include in the analysis a test of the null hypothesis that the two popu-
lation survival (time to event) functions are equal.

a. Describe the survival (time to event) function.

b. Do men and women significantly differ in the distribution of their survival
times? How do you know?

c. What are the mean and median survival times for male patients?

2. Use Cox regression to determine the risk of a man developing coronary heart
disease relative to the risk of a woman developing coronary heart disease. How
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Table 16.16 Output for Question 4
Variables in the Equation

B SE Wald df Sig. Exp(B)
age .066 .003 419.685 1 .000 1.069
Age_Gender -.014 .001 164.960 1 .000 .986

much more likely is it for a man to develop coronary heart disease relative to a
woman?

3. Use Cox regression with Gender, Serum Cholesterol, and Body Mass Index as

predictors of follow-up time.

a. Are the B coefficients for each of these covariates significantly different from
zero?

b. What is the risk of a male subject developing coronary heart disease relative
to that of a female subject?

c. What is the change in risk for a one unit increase in BMI?

d. What is the change in risk for a one point increase in serum cholesterol?

e. What is the change in risk for a 10-point increase in serum cholesterol?

4. Using the Framingham data, a researcher found an interaction between Age (in
years) and Gender. The results of the analysis are included in Table 16.16.
a. How did the researcher create the variable, Age Gender?
b. What is the relative risk for each additional year in the age of a male?
c. What is the relative risk for each additional year in the age of a female?

Data Sets and References

1. WHAS:.sav obtained from: Hosmer, D.W., Lemeshow, S.: Applied Survival Analysis. Wiley,
New York (1999). (With the kind permission of John Wiley and Sons, and Professors David W.
Hosmer and Stanley Lemeshow)

2. Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers. 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean
Coady, National Heart, Blood, and Lung Institute)MI myocardial infarction



Chapter 17
Regression Analysis of Count Data

Abstract This chapter reviews negative binomial regression. Often used to docu-
ment incidence and mortality rates, this form of regression generates a rate ratio to
assess the degree of relationship between a predictor variable and the frequency
with which an event occurs over a given period of time. The chapter begins with a
discussion of the case of a single predictor variable, and then moves on to a discus-
sion of two or more predictors, and of testing for the presence of interactions. As
an example of the difference between cumulative incidence and incidence rate, the
concept of person-years, and the use of an offset variable, the chapter concludes
with an application of negative binomial regression to count data collected over
unequal follow-up times.

17.1 Overview

In Chap. 13 we considered predicting a quantitative response variable using simple
linear regression with a single independent variable. In Chap. 14, we expanded
those ideas to multiple regression where two or more independent variables were
used to predict the value of a quantitative dependent variable. Chapter 15 consid-
ered logistic regression models where the dependent variable was a categorical vari-
able having two categories, and Chap. 16 applied Cox regression to survival data.
In this chapter, we will consider a kind of regression that is appropriate when the
dependent variable consists of count data. The number of doctor-visits made by pa-
tients during a 2-week period or the number of new cases of coronary heart disease
that occur in a year are examples of count data. Because the response variable is the
frequency with which an outcome occurs per some unit of time, this kind of regres-
sion is useful for studying the rate at which an outcome occurs, such as the annual
incidence of a given disease.

Several regression models can be used when the dependent variable is a count
taken over a fixed period of time. The one we will consider in this chapter is known
as negative binomial regression. This kind of regression is so named because it is
based on the assumption that the count variable is distributed as a random variable
known as a negative binomial. There is an important special case of negative bino-
mial regression that is applicable in a situation when it is possible to safely assume
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that the mean and variance of the frequency of the outcome variable are equal. In
such a case, the count variable can be assumed to be distributed as a Poisson ran-
dom variable, and a technique known as Poisson regression can be used. The steps
in conducting a Poisson regression and the manner in which its output are inter-
preted are very similar to those employed with negative binomial regression, so we
will not discuss Poisson regression in this chapter.

Let the observed count for patient i be denoted by y,. We assume that there are
k predictors, x,;,X,;,...,%, that are observed for patient i. The negative binomial
regression model fits the following equation:

In(y,) =B, +Bx, +Box,, +-+ B.x, (17.1)

The In(y,) term is the natural logarithm of the count. We first encountered the use
of the natural logarithm in regression in Chap. 15. There we learned that logistic
regression is used to predict the logit, the natural logarithm of the odds of a binary
event, such as the log of the odds that a patient has coronary heart disease. The rea-
son why the predicted outcome in negative binary regression is the log of the actual
count is similar to the reason that the logit is the predicted outcome in the logistic
regression. Taking the log of the counts produces values which can be any real num-
ber. This eliminates the issue of how to handle predicted counts that are negative.

As in logistic regression, the parameters in a negative binomial regression are
s, that is, the population intercept coefficient and the population slope coefficients
associated with each of the independent variables. The goal of negative binomial
regression is to use sample data to obtain estimates of the fs. As is the case in
logistic regression, an iterative procedure known as the method of maximum likeli-
hood is used to obtain these estimates. However, in logistic regression, the expo-
nents of predicted outcome variables and intercepts are odds, and the exponents of
slope coefficients are odds ratios. In negative binomial regression, the exponents
of predicted outcome variables and intercepts are rates, and the exponents of slope
coefficients are rate ratios.

17.2 Negative Binomial Regression with One Predictor

In this section, we will conduct a negative binomial regression to determine if the
rate at which Australian patients visit their doctors is related to the patients’ general
health. The data come from a study of 5190 adult Australians on whom information
about several health-related factors was collected, including the number of times
they each had visited a doctor in a 2-week period.

Calculating a Rate Before we conduct the regression, it might be helpful to first
take a closer look at what a rate is. In medical research, a rate usually refers to the
number of times an outcome of some kind occurs over a given unit of time. In our
example, the outcome is the number of visits to the doctor and the unit of time is



17.2  Negative Binomial Regression with One Predictor 453

Table 17.1 Frequency distribution of doctor visits
Number of consultations with a doctor or specialist in the past 2 weeks

Cumulative
Frequency Percent | Valid Percent Percent

Valid O 4141 79.8 79.8 79.8
1 782 15.1 15.1 94.9
2 174 34 34 98.2
3 30 .6 .6 98.8
4 24 5 5 99.2
5 9 2 2 99.4
6 12 2 2 99.7
7 12 2 2 99.9
8 5 1 1 100.0
9 1 0 0 100.0
Total 5190 100.0 100.0

2 weeks (or as Australians might put it—a fortnight). The rate can be expressed in
terms of a single patient (e.g., the number of visits per patient per fortnight) or, if the
rate is small, in terms of some multiple of patients (e.g., the number of doctor-visits
per 1000 patients per fortnight). If the outcome in question is a disease, the rate is
called the incidence rate. If the event is death, the rate is called the mortality rate.

Table 17.1 is a frequency distribution of the number of doctor visits made by
our sample of 5190 Australians over a fortnight. We can see from the frequency
distribution that during the 2-week interval, most of the samples did not visit their
doctors at all. But we can also see that 782 patients each visited their doctors once.
Another 174 individuals saw their doctors twice, resulting in a total of 348 visits.
Thirty patients each saw their doctors three times, for a total of 90 visits, 24 patients
made a total of 96 visits, nine a total of 45 visits, and so on. If we were to count
up the total number of visits made by the entire sample, we would see that over a
fortnight the 5190 patients as a group made a total of 1566 visits. If we divide the
total number of visits by the total number of patients, we get a rate of 0.3017 visits
per patient (1566 visits/5190 patients =0.3017 visits/patient) per fortnight. If we
multiply the numerator and denominator of our rate by 1000, we get a 2-week rate
of 301.7 visits per 1000 patients. This latter rate means that we can expect that in
every fortnight, a 1000 adult Australians will make about 300 doctor-visits.

Conducting a Negative Binomial Regression You may have noticed from our
calculation of the rate of doctor visits that a rate is the average number of times
an outcome occurs per person over a single unit of time. In our example, the rate
of 0.3017 is the average number of visits made per patient over a fortnight. As
with all averages, a rate summarizes what is true of a group of patients as a whole,
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but does not necessarily equal the rate of any given patient within that group. For
example, our frequency analysis makes clear that our rate of 0.3017 visits per per-
son overestimates the frequency of visits for those 4141 patients who made zero
visits and underestimates it for the remainder of the patients. Our next step then is
to conduct a negative binomial regression to uncover those factors that explain or
account for the variation we observed across patients in their frequency of visits.
Possible explanatory factors might be the general health of the patient, the patient’s
sex and age, the number of illnesses the patient had experienced during the 2-week
period, and so on.

The file, Doctor Visits.sav [1], contains the number of doctor visits made in a
fortnight by our sample of 5190 Australian patients. The number of doctor visits is
in the variable, Number of consultations with a doctor or specialist in the past
2 weeks [doctorco] (variable 13). This will be the count response. The file also
contains a number of possible predictors. We will begin by using the patient scores
on a general health questionnaire to predict their number of doctor visits. The ques-
tionnaire scores are in the variable, General health questionnaire score [/score]
(variable 10). This will be the predictor. In the data set, this score varies from 0 to
12. The higher the score, the poorer was the patient’s general health.

Open the data file and select Analyze >Generalized Linear Models > General-
ized Linear Models. Select the Type of Model tab if it is not selected to open the
dialog box shown in Fig. 17.1. Check Negative binomial with log link. (Note that
if we wished to conduct a Poisson regression, we would choose Poisson log linear
instead. The remaining steps for setting up the regression are the same for both
negative binomial and Poisson.)

Select the Response tab to open the dialog box shown in Fig. 17.2. Enter Num-
ber of consultations with a doctor or specialist in the past 2 weeks in the Depen-
dent Variable box.

Click the Predictors tab to open the dialog box shown in Fig. 17.3. The categori-
cal predictors are called Factors in the dialog box, and quantitative predictors are
called Covariates. Health questionnaire scores are quantitative, so enter General
health questionnaire score in the Covariates box.

Click the Model tab to open the dialog box shown in Fig. 17.4. Select General
health questionnaire score in the Factors and Covariates boxes and place it in the
Model box. Make sure that Main effects is selected for the Type button in the Build
Term(s) area.

We want the output to include the exponents of the intercept and slope coef-
ficients, so click the Statistics tab to open the dialog box shown in Fig. 17.5, and
check Include exponential parameter estimates in the Print area.

If you wish to have SPSS generate the predicted number of doctor visits for each
patient, click the Save tab to bring up the dialog box shown in Fig. 17.6. Check
Predicted value of mean of response. This will generate a new variable called Pre-
dicted Value of Mean of Response [MeanPredicted] that will store for each patient
his or her predicted number of visits based on the regression model. By default,
SPSS sets the number of decimal places for this variable to zero and displays its
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Fig. 17.1 Selecting negative binomial regression

values to the nearest whole number. To see more exact values, go to Variable View
after the variable has been created and change its Decimals setting.

The values stored in Predicted Value of Mean of Response are the exponents
of the original log values generated by the prediction equation. If you wish to see
these log values, check in the Save tab Predicted value of linear predictor. This will
result in the creation of a new variable called Predicted Value of Linear Predictor
[XBPredicted] whose values will be displayed to the third decimal place.

Click OK to run the regression. As was the case with logistic and Cox regres-
sions, there are a number of items in the output. We shall go through them pointing
out the ones that are relevant.

» The dependent variable entry in the Model Information table (Table 17.2) states
that the response variable is the number of doctor visits in a 2-week period.

» The probability distribution entry in Table 17.2 shows that this is a negative bi-
nomial regression.

» The link function entry in the table shows that the link function is a natural loga-
rithm.
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Fig. 17.2 Selecting the response variable

» The Case Processing Summary table shows that all of the 5190 cases were used
in the analysis (Table 17.3).

» The Continuous Variable Information table (Table 17.4) gives the sample size,
minimum observed value, maximum observed value, the mean, and the standard
deviation for each quantitative variable that was used in the current model. As we
shall see later, there is a separate table for categorical variables.

» Notice in Table 17.4 that the mean of the dependent variable is 0.30. This is the
rate rounded off to the second decimal place of doctor visits per patient over a
2-week period.

» The Goodness of Fit table (Table 17.5) contains a number of statistics that are
used to assess the degree to which the negative binomial regression correctly
predicts the number of doctor visits for each patient. These can be considered
to be very roughly similar to R’ in linear regressions. They are used to com-
pare different models when trying to find the best set of predictor variables.
For these measures, with the exception of Log Likelihood, the smaller is the
better.
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Fig. 17.3 Selecting the predictor variable

* The Omnibus Test table (Table 17.6) contains the results of testing the null hy-
pothesis that the population slope coefficients for all of the predictor variables
are 0 against the alternative hypothesis that at least one of them is not. This is
analogous to the ANOVA F-test in the linear regression. This result shows that
the population slope coefficient for General health questionnaire score is not 0.

» The Tests of Model Effects table (Table 17.7) reproduces the same information
that appears in Table 17.8.

» The Parameter Estimates table (Table 17.8) is analogous to the Coefficients table
in linear regression. The (Intercept) row shows that the population intercept,
B, is estimated to be —1.479. The standard error is used to calculate the Wald
test statistics and the confidence interval. The confidence interval shows that we
are 95 % confident that the population intercept is between —1.549 and —1.4009.
The Hypothesis Test area gives the results of testing the null hypothesis that the
population intercept is 0 against the alternative hypothesis that the population
intercept is not 0. The p-value (Sig.) shows that we can safely reject the null
hypothesis.

* Recall that the intercept (—1.479 in this case) is a natural logarithm. The Exp(B)
entry on the (Intercept) row of Table 17.8 displays the exponent of the intercept.
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Fig. 17.4 Selecting the model

The exponent of the intercept is the rate of the outcome under investigation for
patients whose value on the predictor variable is zero. In our example, the ex-
ponent of the intercept is 0.228 (¢™'*” = 0.228). Our regression model estimates
that the population rate of doctor visits for patients with a health questionnaire
score of 0 is 0.228 visits per patient per fortnight. The confidence interval for the
exponent tells us that we are 95 % confident that the population rate for patients
with a health score of 0 is between 0.212 and 0.244.

The hscore row of Table 17.8 shows that the slope coefficient for the health
questionnaire scores is estimated to be 0.166. We can be 95 % confident that the
true slope is between 0.145 and 0.188. The Wald test of the null hypothesis that
the slope coefficient is 0 against the alternative hypothesis that it is not O tells us
that the null can be safely rejected.

Recall that slope coefficients are natural logarithms. The Exp(B) entry on the
hscore row displays the exponent of the Ascore slope coefficient. The exponent
of the slope coefficient is a rate ratio and indicates the extent to which the rate
changes for every one unit increase in the predictor variable. A rate ratio equal to
1 indicates that the predictor variable is unrelated to the rate under investigation.
In our example, the exponent is 1.181. Our regression model estimates that the
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Fig. 17.5 Requesting exponential parameter estimates

rate of doctor visits increases by a ratio of 1.181 for every one unit increase in the
health score. Put another way, the rate at which Australian patients visit their doc-
tors increases by about 18 % for every one unit increase in their general health
scores (remember, higher scores on the health questionnaire used in this study
reflect poorer health). The confidence interval tells us that we are 95 % confident
that the population rate ratio is between 1.156 and 1.207. Recall that the p-value
in the (Sig.) column allows us to confidently reject the null hypothesis that the
slope coefficient (0.166) is equal to zero. This also means that we can confidently
reject the null hypothesis that the population rate ratio is equal to 1.
» The entry for (Scale) in Table 17.8 is of no interest.

Answer the following questions about the negative binomial regression we

just conducted.

17.2.1 What are the missing values in the following prediction equation?
Predicted log of the rate of doctor visits= A
(hscore).

17.2.2  Using the prediction equation in Question 17.2.1, calculate by hand the
log of the rate of doctor-visits for a patient with a health score of 10.
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Fig. 17.6 Saving predictions

Table 17.2 Model information
Model Information

Dependent Variable Number of consultations with a
doctor or specialist in the past 2
weeks.

Probability Distribution Negative binomial (1)

Link Function Log

17.2.3 What is the predicted number of visits for a patient with a health
score of 10?

17.2.4 The p-value in the Parameter Estimates table told us that we can
reject the null hypothesis that the population rate ratio is equal to 1.
The 95% confidence interval for the rate ratio also tells us that we
can reject the null hypothesis. How can we tell from the confidence
interval that the null hypothesis can be rejected?
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Table 17.3 Case processing summary Case Processing Summary
N Percent
Included 5190 100.0%
Excluded 0 0.0%
Total 5190 100.0%
Table 17.4 Information about the predictor variable
Continuous Variable Information
N Minimum Maximum Mean Std. Deviation
Dependent Variable Number of consultations
with a doctor or specialist 5190 0 9 .30 .798
in the past 2 weeks
Covariate General health
questionnaire score 5190 0 12 1.22 2124

Table 17.5 Goodness of fit test results
Goodness of Fit®

Value df Value/df
Deviance 3776.544 5188 .728
Scaled Deviance 3776.544 5188
Pearson Chi-Square 7675.801 5188 1.480
Scaled Pearson Chi- 7675.801 5188
Square
Log Likelihood® -3546.042
Akaike's Information
Criterion (AIC) 7096.083
Finite Sample Corrected
AIC (AICC) 7096.085
Bayesian Information
Criterion (BIC) 7109.192
Consistent AIC (CAIC) 7111.192

Dependent Variable: Number of consultations with a doctor or

specialist in the past 2 weeks.
Model: (Intercept), hscore

a. Information criteria are in smaller-is-better form.
b. The full log likelihood function is displayed and used in

computing information criteria.
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Table 17.6 Test of the overall model

Omnibus Test

17

a

Likelihood
Ratio Chi-
Square df Sig.
223.786 1 .000

Dependent Variable: Number of
consultations with a doctor or specialist
in the past 2 weeks.
Model: (Intercept), hscore
a. Compares the fitted model against the

intercept-only model.

Table 17.7 Tests of the slope and intercept coefticients
Tests of Model Effects

Type Il
Wald Chi-
Source Square df Sig.
(Intercept) 1706.478 1 .000
hscore 227.325 1 .000

Table 17.8 Parameter estimates

Dependent Variable: Number of consultations with a
doctor or specialist in the past 2 weeks.
Model: (Intercept), hscore

Parameter Estimates

Regression Analysis of Count Data

95% Wald 95% Wald
Confidence Confidence
Interval Hypothesis Test Interval for Exp(B)
Std. Wald Chi-
Parameter B Error Lower Upper Square df Sig. Exp(B) Lower Upper
(Intercept) 1.479 .0358 -1.549 -1.409 1706.478 1 .000 228 212 244
hscore .166 .0110 145 .188 227.325 1 .000 1.181 1.156 1.207
(Scale) 1?2
(Negative binomial) 12

Dependent Variable: Number of consultations with a doctor or specialist in the past 2 weeks.

Model: (Intercept), hscore
a. Fixed at the displayed value.

17.3 Testing Two or More Predictors

As was the case with the other regression models we have considered, it is possible
to use multiple predictors. The predictors may be either categorical or quantitative.
Recall that we said earlier that categorical predictors in this setting are called fac-
tors and quantitative predictors are called covariates. As an example, we will add to
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Fig. 17.7 Adding the new predictors

our regression model the patient’s sex and age as well as the number of illnesses the
patient had experienced during the 2-week period.

Select Analyze>Generalized Linear Models>Generalized Linear Models.
Set up the dialog boxes for the Type of Model and Response tabs as was done in
Sect. 7.2. Then click the Predictors tab to open the dialog box shown in Fig. 17.7.
Place the two categorical variables Sex [sex] (variable 1; 0=Male; 1=Female) and
Number of illnesses in past 2 weeks [i//ness] (variable 8, 0=0, 1=1...5=5 or more)
in the Factors box. Place the two quantitative variables General health question-
naire score [/score] and Age in years [age] (variable 2) in the Covariates box.

Click the Model tab to open the dialog box shown in Fig. 17.8, Place all of the
variables from the Factors and Covariates boxes into the Model box. Make sure
that Main Effects is selected for the Type button in the Build Term(s) area.

Be sure that Include exponential parameter estimates has been checked in the
Statistics tab. Now click OK to run the regression. The regression output is shown
in Tables 17.9, 17.10, 17.11, 17.12, 17.13, 17.14, 17.15 and 17.16.

» Tables 17.9 and 17.10 are identical to the earlier example.
» The Categorical Variable Information shown in Table 17.11 lists each categori-
cal variable used in the regression. For each one, it shows a frequency table for
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Fig. 17.8 Creating the new model

Table 17.9 Model information

Model Information

Dependent Variable

Probability Distribution
Link Function

Number of consultations with a
doctor or specialist in the past 2
weeks.

Negative binomial (1)
Log

Table 17.10 Case processing
summary

Case Processing Summary

N Percent
Included 5190 100.0%
Excluded 0 0.0%
Total 5190 100.0%
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Table 17.11 Information on the categorical predictors
Categorical Variable Information

N Percent

Factor Sex Male 2488 47.9%

Female 2702 52.1%

Total 5190 100.0%

Number of illnesses in 0 1554 29.9%

past 2 weeks 1 1638 31.6%

2 946 18.2%

3 542 10.4%

4 274 5.3%

5 or more 236 4.5%

Total 5190 100.0%

Table 17.12 Information on the quantitative predictors
Continuous Variable Information
N Minimum Maximum Mean Std. Deviation
Dependent Variable Number of consultations
with a doctor or specialist 5190 0 9 .30 798
in the past 2 weeks

Covariate General health 5190 0 12 122 2124

questionnaire score ) .
Age, in years 5190 19 72 40.64 20.478

each of the possible categories. For example, it shows that 47.9 % of the patients
were male and 52.1 % were female.

* As in the first example, the continuous variable information table shown in Ta-
ble 17.12 gives the sample size, minimum, maximum, mean, and standard devia-
tion for each quantitative variable used in the regression.

* The Goodness of Fit table shown in Table 17.13 gives the same goodness of
fit measures as in the first example. Compare the values with those there. No-
tice that, with the exception of Log Likelihood, the values here are smaller than
the earlier ones. This shows that using multiple predictors does a better job of
predicting the log of the counts than just using General health questionnaire
score.

* Again, the Omnibus Test table shown in Table 17.14 gives the results of testing
that the slope coefficients for all of the predictors are simultaneously 0 against
the alternative hypothesis that at least one is not 0. As before, we can safely con-
clude that at least one predictor has a non-zero population slope coefficient.

* Asbefore, the Tests of Model Effects table shown in Table 17.15 gives results that
are duplicated in the next table.
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Table 17.13 Goodness of fit test results
Goodness of Fit®

Value df Value/df
Deviance 3383.332 5181 .653
Scaled Deviance 3383.332 5181
Pearson Chi-Square 6810.524 5181 1.315
Scaled Pearson Chi- 6810524 5181
Square
Log Likelihood® -3349.435
Akaike's Information
Criterion (AIC) 6716.871
Finite Sample Corrected
AIC (AICC) 6716.905
Bayesian Information
Criterion (BIC) 6775.861
Consistent AIC (CAIC) 6784.861

Dependent Variable: Number of consultations with a doctor or

specialist in the past 2 weeks.

Model: (Intercept), sex, illness, hscore, age

a. Information criteria are in smaller-is-better form.

b. The full log likelihood function is displayed and used in
computing information criteria.

Table 17.14 Overall model test Omnibus Test®
Likelihood
Ratio Chi-
Square df Sig.
616.998 8 .000

Dependent Variable: Number of

consultations with a doctor or specialist

in the past 2 weeks.

Model: (Intercept), sex, iliness, hscore,

age

a. Compares the fitted model against the
intercept-only model.

* Again, Table 17.16 is analogous to the Coefficients table in a linear regression.
For each predictor and the intercept, it gives the estimated B coefficient, its stan-
dard error, a 95% confidence interval for the actual value, the results of a test
of the null hypothesis that the S coefficient is 0 against the alternative hypoth-
esis that it is not 0, and the exponent and its 95 % confidence interval. We shall
discuss the results for Sex, Number of illnesses in past 2 weeks, and General
health questionnaire score.
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Table 17.15 Test of individual predictors
Tests of Model Effects
Type Il
Wald Chi-
Source Square df Sig.
(Intercept) 440.261 1 .000
sex 8.849 1 .003
iliness 213.648 5 .000
hscore 77.330 1 .000
age 46.083 1 .000
Dependent Variable: Number of consultations with a
doctor or specialist in the past 2 weeks.
Model: (Intercept), sex, illness, hscore, age
Table 17.16 Results for individual predictors
Parameter Estimates
95% Wald 95% Wald
Confidence Confidence Interval
Interval Hypothesis Test for Exp(B)
Std. Wald Chi-
Parameter B Error Lower Upper Square df Sig. Exp(B) Lower Upper
(Intercept) 41126 | 1457 | -1.411 -840 59.748 1 .000 324 244 432
[sex=0] -189 | .0636 -314 -.065 8.849 1 003 828 730 937
[sex=1] 0° . . . . . . 1 . .
[illness=0] -1.790 | 1440 | -2.072 | -1.508 154.445 1 .000 167 126 221
[ilness=1] -559 | .1182 -791 -327 22.347 1 000 572 454 721
[iliness=2] -346 | .1202 -581 -110 8.260 1 004 708 559 896
[iliness=3] 391 | 1204 -645 -138 9.145 1 002 676 525 871
[iliness=4] 170 | 1425 | -449 109 1.424 1 233 844 638 1.115
[iliness=5] 0° . . . . . . 1 . .
hscore 104 | .0119 081 128 77.330 1 000 [ 1110 | 1.085 1.136
age 010 | .0015 007 013 46.083 1 000 [ 1.010 | 1.007 1.013
(Scale) 1°
(Negative binomial) 1°

Dependent Variable: Number of consultations with a doctor or specialist in the past 2 weeks.
Model: (Intercept), sex, illness, hscore, age

a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

* For Sex, there are two entries, one for a value of 0 (male) and one for a value
of 1 (female). For a categorical variable with just two categories, the category
with the higher numerical value is by default the reference group. Consequently,
women are the reference group. The entry in the B column for sex=0 is —0.189,
meaning that the population slope coefficient for males is estimated to be —0.189.
That is, on an average, the log of the number of doctor visits for a male patient is
-0.189 less than for a female patient, although the 95 % confidence interval tells
us that we can be 95 % confident that the average difference between men and
women in the population may be as large as —0.314 or as small as —0.065. The
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results of the Wald test shows that there is a p-value of 0.003, meaning that there
is moderately strong evidence that the true slope coefficient for Sex is not 0. The
exponent is the rate ratio for sex and is equal to 0.828, indicating that the number
of visits made by men is about 0.83 of those made by women. We can be 95 %
confident that the population rate ratio is between 0.730 and 0.937.

* For Number of illnesses in past 2 weeks, there are six categories. So, SPSS
estimates a slope coefficient for each category, again with the highest numbered
category being the reference group. The Wald tests indicate that the slope coef-
ficients for 0 through 3 illnesses are not 0. However, we must accept the null
hypothesis that the slope coefficient for 4 illnesses is zero. The exponents and
their confidence intervals refer to the rate ratios. For example, the rate ratio for 0
illnesses is 0.167, indicating that the number of visits made in a 2-week period by
patients who had no illnesses during those 2 weeks is about 17 % of the number
of visits made by patients who had 5 or more illnesses, although we are 95%
confident that the true rate ratio could be as low as 0.126 or as high as 0.221.
The rate ratios for patients with 0 to 3 illnesses are significantly different from
1, indicating that we can be confident that in the population of Australian adults,
patients with 3 illnesses or less visit their doctors less often than patients with 5
or more illnesses. However, the rate ratio for patients with 4 illnesses is not sig-
nificantly different from 1, so we cannot be confident that the Australian patients
with 4 illnesses see their doctors less often than do the Australian patients with 5
or more illnesses.

* For General health questionnaire score, we see that the slope coefficient is
estimated to be 0.104. The Wald test has a p-value less than 0.001, giving strong
evidence that the population slope coefficient is not 0. Compare the B value for
this variable with the first example (Table 17.8). They are not the same. As was
the case in the other types of regression we have studied, the slope coefficients
give the change in the response variable for a one unit increase in the predictor
in the presence of the other predictors. Notice also that the two intercept coef-
ficients are not the same.

Answer the following questions:
17.3.1 Is the slope coefficient for Age significantly different from 0?
17.3.2 What is the rate ratio for Age? Is it significantly different from 1?

Changing the Reference Category In the previous analysis, the category with the
highest numerical value was by default the reference category for each categorical
variable. If you wish the reference groups to be the categories with the lowest nu-
merical values, click the Predictors tab to open the dialog shown in Fig. 17.3, and
then click Options to open the Generalized Linear Models: Options dialog shown
in Fig. 17.9. Select Descending in the Category Order for Factors area followed by
Continue.
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17.4 Testing for an Interaction Effect

As with the other forms of regression we have studied, interaction effects among
predictors can be tested in a negative binomial regression. In this section, we will
investigate the possible interaction between a patient’s age and gender. We proceed
in a similar manner as was introduced in Chap. 14 by creating an interaction vari-
able that is the product of age and gender, and then including the new variable in
the regression model.

Select Transform>Compute Variable to open the dialog box shown in
Fig. 17.10. Give the target variable a name of age sex and a label of Age*Sex. In
the numeric expression box enter age*sex and click OK to create the interaction
variable.

Select Analyze>Generalized Linear Models>Generalized Linear Models
and set up the dialog boxes for the Type of Model and Response tabs as before. Set
up the dialog box in the Predictors tab so that Age and Age*Sex are in the Covari-
ates box. In the dialog box for the Model tab, move both Age and Age*Sex to the
Model box. In the Build Term(s) area, make sure that Type is set to Main Effects. Be
sure that Predicted value of mean of response has been checked in the dialog box of
the Save tab. Finally, click OK to run the regression.
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Fig. 17.10 Creating the interaction variable
Table 17.17 Information for the model with an interaction term
Parameter Estimates
95% Wald 95% Wald
Confidence Confidence Interval
Interval Hypothesis Test for Exp(B)
Wald
Std. Chi-
Parameter B Error Lower Upper Square df Sig. Exp(B) Lower Upper
(Intercept) -1.846 0714 -1.986 -1.706 669.103 1 000 158 137 182
age .013 .0018 .009 .016 51.405 1 000 1.013 1.009 1.017
age_sex .003 .0013 .000 .005 5.032 1 025 1.003 1.000 1.005
(Scale) 1?2
(Negative binomial) 1?2

Dependent Variable: Number of consultations with a doctor or specialist in the past 2 weeks
Model: (Intercept), age, age_sex
a. Fixed at the displayed value.

Examine the output for the regression. We will concentrate on the Parameter
Estimates table shown in Table 17.17.

The Wald tests for the intercept and slope coefficient for Age show that there
is very strong evidence that they are different from 0. The Wald test for the slope
coefficient for the interaction term shows that there is some evidence that there is an
interaction between Age and Sex. The resulting regression equation is

In(y,) = —1.846+0.013 Age + 0.003AGE * SEX

(17.2)
= —1.846+(0.013+0.003SEX) AGE.



17.5 Regression with Unequal Follow-up Times 471

Sex equals to 0 for a male patient and 1 for a female patient. Accordingly, for a male
patient the regression equation is

In(y,) =-1.846+0.0134GE. 17.3)

The exponent of 0.013 is 1.013, as shown in the Parameter Estimates table
(Table 17.17). This means that for every additional year in the age of a male patient,
the average number of doctor visits in a 2-week period increases by a factor of
1.013, or by 1.3 %.

For a female patient the regression equation is

In(y,) =-1.846+0.016 AGE. 17.4)

Using a scientific calculator, we find that the exponent 0f 0.016 is 1.016. This means
that for every additional year in the age of a female patient, the average number of
doctor visits in a 2-week period increases by a factor of 1.016, or by 1.6 %.

An alternative method for computing the exponent for female patients is to mul-
tiply the two rate ratios displayed in the Parameter Estimates table—1.013 (the rate
ratio for age) times 1.003 (the rate ratio for the interaction) equals 1.6 %. The rate of
increase in the number of doctor visits per fortnight for every 1| year increase in age
is 0.3 % greater for female patients.

17.5 Regression with Unequal Follow-up Times

So far we have been analyzing the data from a study in which the interval of time
across which counts were made was constant across all patients. For each patient,
the time frame was always 2 weeks. However, in medical studies, the interval of
time across which the counts are made often varies from one patient to the next. For
example, in studies of disease incidence, patients who are free of the disease are fol-
lowed from the time they are enrolled into the study until the time they develop the
disease, withdraw from the study or the study is ended, whichever comes first. This
results in unequal time intervals or follow-up times across patients. For example, the
disease might appear in some patients 1 year following enrollment, but not in others
until 5 years after enrollment. Among patients who remain disease-free, some might
leave the study 6 months after enrollment while others might not leave until years
later. If we want to know how often on an average the disease appears each year, we
need to take into account each patient’s follow-up time.

Calculating Rates When Follow-up Times Are Unequal When follow-up times
are unequal, the number of times the event under investigation occurred across all
patients who had enrolled in the study is divided by the total follow-up times of all
of the patients. Often follow-up times are measured in terms of years, but any con-
venient unit of time can be used, such as days, weeks, months, and so on. If the time
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interval is expressed in terms of years, then the total follow-up time is expressed in
terms of person-years, and the resulting rate is expressed in terms of the number of
events that occurred per person-year. As one person-year of follow-up is equivalent
to observing one person for 1 year, the resulting rate tells us the number of times the
event occurs per person per year.

For example, the data set, Framingham.sav [2], contains observations from a
cohort study of the heart health of 4699 men and women with varying cholesterol
levels. Of these patients, 1473 or about 31 % developed coronary heart disease dur-
ing follow-up. The remaining patients were believed to be disease-free either at the
time the data set was created or at the time the patients were lost to follow-up. The
31% figure is the cumulative incidence of the disease, the number of patients who
at some point during follow-up developed the disease compared to the total number
of enrolled patients. To calculate an incidence rate, that is, the number of incidents
of heart disease that occur each year, we need to take into account each patient’s
follow-up time.

Each patient was followed on an average for roughly 22 years with individual
follow-up times varying from 18 days (about 0.05 year) to 32 years. If we wish to
calculate the annual incidence rate of heart disease, we would compare the number
of patients who developed heart disease (1473) to the total number of person-years
during which the entire sample of 4699 patients was observed. Adding up the num-
ber of years each patient was observed, we discover that those 4699 patients were
followed for a total of about 103,710 person-years. We now divide the number of
cases of heart disease (1473) by the number of person-years of follow-up (103,710)
and find that the incidence rate is about 0.0142 per person-year. If we multiply the
rate by 1000, the rate becomes 14.2 new cases of heart disease per 1000 person-
years. One thousand person-years is equivalent to observing 1000 patients for 1
year, so the rate of 0.0142 per person-year is equivalent to a rate of 14.2 new cases
of heart disease per 1000 patients per year. Based on these data, we would expect
that on an average, about 14 out of every 1000 patients would develop heart disease
over the course of a year.

Negative Binomial Regression with Unequal Follow-ups When follow-up times
are unequal, a negative binomial regression must take into account the follow-up
time of each patient. This is done by including in the regression analysis an offset
variable that stores the natural logarithm of the follow-up times. Using the offset
variable, the analysis generates the parameter estimates after controlling for the
length of the follow-up time of each patient. For example, using an offset variable
that stores the natural logarithm of the number of years each patient in the Fram-
ingham data set was followed, we could determine whether the annual rate of heart
disease is related to sex and cholesterol level.

Open the data file, Framingham.sav. In this file, the follow-up times are stored
in the variable, Follow-up in Days [followup] (variable 6). This variable will be the
basis of our offset variable. However, in order that we can express our findings in
terms of person-years, we will first transform each patient’s days of follow-up into
years of follow-up, and then take the natural log of the result to create the offset
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Fig. 17.11 Creating the offset variable

variable. In order to take leap years into account, we will define a year as 365.25
days. Open Transform>Compute Variable, and as shown in the dialog box of
Fig. 17.11, name the target variable followup years, and enter into the Numeric
Expression window the following:

In( followup /365.25). (17.5)

If you wish, you can give the new variable a label, such as, Follow-up Years.

The natural logarithm function can be found in the Arithmetic group. When you
have finished, click OK. This is shown in Fig. 17.11.

Now we are ready to set up the regression. Open the Generalized Linear Models
dialog box and select Negative binomial with log-link in the dialog box of the Tipe
of Model tab. In the dialog box of the Response tab, move Coronary Heart Dis-
ease [chdfate] (variable 5) to the Dependent Variable window. Click the Predictors
tab, and as shown in the dialog box of Fig. 17.12, move Gender [sex] (variable 1;
0=Male, 1 =Female) to the Factors window and Serum Cholesterol [sc/] (variable
4) to the Covariates window. Now move the offset variable, followup years, to the
Offset Variable window.

In the dialog box of the Model tab, move the two predictors to the Model win-
dow, and in Statistics, check Include exponential parameter estimates. Click OK.



474 17 Regression Analysis of Count Data

sure [sog]
sure [dbp]

& S22y Meom of Baseine Exam jmonn)
Z0jq

i

Fig. 17.12 Selecting the predictor and offset variables

Table 17.18 Information on the quantitative variables in the model
Continuous Variable Information

N Minimum Maximum Mean Std. Deviation
Dependent Variable Coronary Heart Disease 4666 0 1 .31 464
Covariate Serum Cholesterol 4666 115 568 228.29 44.543
Offset Follow-up Years 4666 -3.01 3.47 2.9138 .73350

The output will be very similar in form to the output we have reviewed earlier,
and it is interpreted in the same manner. We will focus on the Continuous Variable
Information and Parameter Estimates tables.

As before, the Continuous Variable Information table (Table 17.18) displays de-
scriptive statistics for the dependent variable and any covariates. It also displays de-
scriptive statistics for the offset variable, which in our case is the natural log of the
follow-up times measured in years. Consulting the exponent function of any scien-
tific calculator, we can tell that the follow-up times ranged from 0.05 years (0.05 is
the exponent of —3.01, the minimum value of the offset) to 32.14 years (32.14 is the
exponent of 3.47, the maximum value), with a mean of 18.43 years (the exponent
0f 2.9138). Notice that the number of patients in this analysis (4666) is 33 less than
the total sample size. This is because cholesterol levels were missing for 33 patients.
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Table 17.19 Estimates of the parameters in the model
Parameter Estimates
95% Wald
Confidence
Interval Hypothesis Test
Std. Wald Chi-
Parameter B Error Lower Upper Square df Sig. Exp(B)
(Intercept) -6.481 .1686 -6.811 -6.150 1478.332 1 .000 .002
[sex=0] .706 .0626 .584 .829 127.283 1 .000 2.027
[sex=1] 0? . . . . . . 1
scl .009 .0007 .007 .010 162.931 1 .000 1.009
(Scale) 1°
(Negative binomial) 1°

Dependent Variable: Coronary Heart Disease
Model: (Intercept), sex, scl, offset = Followup_years
a. Set to zero because this parameter is redundant.
b. Fixed at the displayed value.

Note also that the mean for coronary heart disease is 0.31. This is equivalent to the
cumulative incidence of heart disease for the 4666 patients.

The Parameter Estimates table, a fragment of which is shown in Table 17.19, is
interpreted in the same manner as before.

Study the table and answer the following questions.
What are the missing values in the following prediction equation for
a male patient with a cholesterol level of 200?

17.5.1

17.5.2

17.5.3

17.5.4

In (rate of coronary heart disease)=

(200).

+

+

The exponent of the log rate of coronary heart disease for a male with
a cholesterol level of 200 is about 0.019. According to these results,
how many new cases of coronary heart disease each year can we
expect for every 1000 men with a cholesterol level of 200?
According to these data, the rate of coronary heart disease for men is
times the rate for women.

Do the results allow us to conclude that in the population from which
the Framingham patients were drawn, the rate of coronary heart dis-
ease is greater in men than in women? Why or why not?

17.6 Exercise Questions

The first three exercise questions use the Centers for Disease Control and Preven-
tion (CDC) data set, CDC BRFSS.sav [3]. Open the file. This file contains the re-
sponses of New York state residents to a telephone survey conducted in 2005 by the
CDC. Respondents were asked to report the number of days during the past month
in which their physical health was not good. These data are contained in NUMBER
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OF DAYS PHYSICAL HEALTH NOT GOOD [PHYSHLTH] (variable 4). The
CDC coded a response of 0 days as 88 to signify “none.” The CDC also asked
respondents to report their sex and to categorize their general health. These re-
sponses are located in the variables SEX [SEX] (variable 32; 1 =Male, 2=Female),
and GENERAL HEALTH [GENHLTH] (variable 3; 1 =Excellent, 2=Very Good,
3=Good, 4=Fair, and 5=Poor). The respondents reported their height and weight
as well. From these responses the CDC calculated each respondent’s BODY MASS
INDEX [BMI] (variable 107).

Recode (Transform>Recode into Different Variables) NUMBER OF DAYS
PHYSICAL HEALTH NOT GOOD into a new variable called NEW PHYSI-
CAL HEALTH [NEWPHYSHLTH] so that all instances of 88 are recoded as 0.
Then in Variable View declare all instances of 77 and 99 in the new variable as miss-
ing. Be sure that for GENERAL HEALTH, values of 7 and 9 have been declared
as missing.

1. Conduct a negative binomial regression using BODY MASS INDEX as a pre-
dictor and NEW PHYSICAL HEALTH as the response.

a. Is BMI a significant predictor of the number of days a New Yorker’s health is
not good? How do you know?

. What is the slope coefficient for BODY MASS INDEX?

What is the rate ratio for BODY MASS INDEX?

. Is the rate ratio significantly different from 1? How do you know?

Complete the following sentence: The number of days per month during which

the physical health of New Yorkers is not good increases by % for

every | unit of increase in BMI.

o oo o

2. Conduct a negative binomial regression using SEX, GENERAL HEALTH and
BODY MASS INDEX as predictors and NEW PHYSICAL HEALTH as the
response.

a. What are the slope coefficient and its p-value for SEX?

b. On average, which sex experienced significantly more days during which
their physical health was not good?

c. Was the respondents’ general health significantly related to the number of days
during which their physical health was not good? Describe the relationship.

d. In what way, if any, does the relationship between BODY MASS INDEX
and the response variable change when SEX and GENERAL HEALTH are
included as predictors?

3. Table 17.20 shows the output from a negative binomial regression in which
BODY MASS INDEX and an interaction variable between SEX and BODY
MASS INDEX (SEX BMI) were the predictors and NEW PHYSICAL
HEALTH was the response.

a. What is the slope coefficient for the interaction term?

b. What is the BMI slope coefficient for men? And for women?

c. Which of the following conclusions is supported by the data, at least as of
2005? For residents of New York state,
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Table 17.20 Output for Question 3
Parameter Estimates

95% Wald
Confidence
Interval Hypothesis Test
Std. Wald Chi-

Parameter B Error Lower Upper Square df Sig. Exp(B)
(Intercept) .337 .0632 213 460 28.423 1 .000 1.400
BMI .029 .0027 .024 .035 115.298 1 .000 1.030
SEX_BMI .005 .0010 .003 .006 21.422 1 .000 1.005
(Scale) 1?
(Negative binomial) 1?

Dependent Variable: NEW PHYSICAL HEALTH
Model: (Intercept), BMI, SEX_BMI
a. Fixed at the displayed value.

i. BMI is equally related to the response variable for men and women.

ii. BMI is more strongly related to the response variable for men than for
women.

iii. BMI is more strongly related to the response variable for women than for
men.

4. Open the file, Caerphilly.sav [4]. This file contains data from a study of the
incidence of myocardial infarction (MI) or stroke among a cohort of 2398 Welsh
men who were followed for an average of about 9.5 person-years. The follow-
up times are recorded in the variable, Person-years at Risk [pyar] (variable 5).
At enrollment, each patient’s smoking status was recorded and is stored in the
variable, Smoking Status [Smoking Status] (variable 4; 0=Never Smoked,
I =Former Smokers, 2=Mild Smokers, 3= Moderate or Heavy Smokers). Body
mass index, BMI [BMI] (variable 2), was also recorded and used to create the
variable, BMI Category [BMI group] (variable 3; 1=Underweight, 2=Nor-
mal, 3=0verweight, 4=0bese). The variable, Non-fatal MI or Stroke [CVD]
(variable 7), stores the outcomes experienced by the patients during follow-up.
Patients were assigned the value of 1 if during follow-up they either experienced
an MI or a stroke; otherwise, they were assigned a 0. Conduct a negative bino-
mial regression in which the dependent variable is Non-fatal MI or Stroke and
the predictor variable is Smoking Status. In the analysis, assign patients who
never smoked to the reference category.

a. What percentage of these 2398 men either suffered an MI or a stroke during
the follow-up?

b. What is the log of the rate of MI or stroke for men who never smoked?

c. Complete the following sentence: According to the prediction equation, the
rate of MI or stroke for men who are moderate or heavy smokers is
times that of men who never smoked.

d. According to the regression analysis, how many new cases of MI or stroke
on average will occur each year among 1000 Welsh men who are moderate or
heavy smokers?
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Table 17.21 Output for Question 5
Parameter Estimates

95% Wald
Confidence
Interval Hypothesis Test
Std. Wald Chi-

Parameter B Error Lower Upper Square df Sig. Exp(B)
(Intercept) -6.309 4473 -7.186 -5.433 198.979 1 .000 .002
[SmokingStatus=3] 714 .1986 .325 1.103 12.930 1 .000 2.042
[SmokingStatus=2] .815 1840 455 1.176 19.644 1 .000 2.260
[SmokingStatus=1] .507 1757 163 .851 8.326 1 .004 1.660
[SmokingStatus=0] 0° . . . . . . 1
BMI .040 .0154 .009 .070 6.606 1 .010 1.040
(Scale) 1°
(Negative binomial) 1°

Dependent Variable: Non-fatal Ml or Stroke

Model: (Intercept), SmokingStatus, BMI, offset = Offset
a. Set to zero because this parameter is redundant.

b. Fixed at the displayed value.

5. Table 17.21 displays output from a negative binomial regression of the Caer-
philly.sav data described in Question 4. In the analysis, the predictor variables
are Smoking Status and BMI.

a. The offset variable was equal to the natural logarithm of which of the
following?

i. Person-years at Risk
ii. Smoking Status

iii. BMI

iv. Non-fatal MI or Stroke

b. Complete the following sentence: According to the output in Table 17.21, the
rate of MI or stroke increases by % for every 1 unit increase in the
BMI.

c. Using a calculator and the data displayed in the output in Table 17.21, com-
pute and report the average number of new cases of MI or stroke that are
expected to occur each year among every 1000 Welsh men who have a BMI
of 30 and are moderate or heavy smokers.

d. The rate you computed in 5c should be times the rate of new cases
of MI or stroke that are expected to occur each year among 1000 Welsh men
who have a BMI of 30 but have never smoked.

Data Sets and References

1. Doctor Visits.sav obtained from: Cameron, A.C., Trivedi, P.K.: Regression Analysis of
Count Data. 2nd ed. Econometric Society Monograph No. 53. Cambridge University Press,
Cambridge (2013). (With the kind permission of Professor A. Colin Cameron)
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2. Framingham.sav obtained from: Dupont, W.D.: Statistical Modeling for Biomedical Research-
ers, 2nd ed. Cambridge University Press, New York (2009). (With the kind permission of Sean
Coady, National Heart, Blood, and Lung Institute)

3. CDC BRFSS.sav obtained from: Centers for Disease Control and Prevention (CDC). Behav-
ioral Risk Factor Surveillance System Survey Data. Atlanta, Georgia: US Department of Health
and Human Services, Centers for Disease Control and Prevention (2005). Public domain. For
more information about the BRFSS, visit http://www.cdc.gov/brfss/. Accessed 16 Nov 2014

4. Caerphilly.sav obtained from: Caerphilly Prospective Study. With the kind permission of the
Caerphilly Prospective Study Steering Committee, Professor Yoav Ben-Shlomo, Secretary. For
more information about the Caerphilly Prospective Study, consult the Caerphilly Prospective
Study website at http://www.bris.ac.uk/social-community-medicine/projects/caerphilly/about/.
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H
Hazard function, 436

cumulative hazard function, 436
Hazard ratio, 2, 9, 438

I
Importing an Excel spreadsheet, 26
Incidence, 18, 149
Incidence rate, 453, 472
Inclusion/exclusion eligibility criteria, 10
Independent variable, 341, 342
Inferential statistics, 2, 19, 127
Intention-to-treat analysis, 13
Interaction effect
in analysis of variance, 309, 313-318,
325-327,332
in regression analysis, 389-393, 419-420,
446-449, 469471

L

Labeling SPSS output, 51-52

Least squares method, 341, 345

Levene’s test, 256-257, 269

Linear regression
coefficient of determination or R squared,

348-350

intercept, 341
least squares regression line, 345
prediction intervals, 355-359
residual analysis, 359-362
slope coefficient, 341
standardized, 380381
unstandardized, 347,378-380
standard error of the estimate, 352
sum of squares
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regression sum of squares, 348, 388
residual or error sum of squares, 348,
388
total sum of squares, 348, 388
Linear relationship, 234, 342
negative, 234, 342
positive, 234, 342
strength of relationship, 234, 342
Logistic regression
adjusted odds ratio, 418-419
baseline odds, 412
classification table, 401, 402
converting odds to probabilities, 398
converting probabilities to odds, 398
intercept, 403
exponent, 403
logit, 398
predicted probabilities, 404
slope coefficient, 397,403,410
exponent, 410
with one predictor, 399405
with quantitative and categorical predictors,
413-418
with two categorical predictors, 405412

M
Masking, 10
Mauchly’s test of sphericity, 290-291
Maximum likelihood method, 399, 443, 452
Measures of association
between categorical variables, see
Chi-square test; Cramér’s V; Gamma
between quantitative variables, see Pearson
correlation coefficient; Spearman’s
rho coefficient
Measures of central tendency
arithmetic mean, 88
geometric mean, 113, 117
median, 92
trimmed mean, 92
Measures of spread
interquartile range, 93
range, 92
standard deviation, 92
variance, 92
Mortality rate, 2, 453

N
Negative binomial regression
intercept, 454, 457
exponent, 454, 457458, 466
slope coefficient, 452, 454, 458, 466-468
exponent, 459
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with one predictor, 452462 Risk, 162
with two or more predictors, 462-469 Risk factor, 6, 9, 150
with unequal follow-up times, 471475
offset variable, 472 S
person-years, 472 Sample versus population, 2
Nonparametric test, 140 Sample statistic, 128, 133, 150, 153
Wilcoxon signed ranks test, 140—142 Saving an SPSS data file
as an Excel file, 40
(0} as an SPSS file, 38
Odds, 6, 150, 170, 398 Saving SPSS output
Odds ratio, 2, 6, 162, 170-174, 403,410, 412, as an Excel or PDF file, 55
418 as an SPSS file, 55
Opening SPSS data files, 26 Scripts, 151
Outliers, 87, 96 Selecting cases
all cases, 44
P by category, 41-44
Paired comparisons analysis, 251, 283 by more than one condition, 49-51
Pairwise comparisons, 11, 294 by range of responses, 49
Partial eta squared, 264268 Sorting a dialog box variable list, 51
Pasting SPSS output into Word, 53 Spearman’s rho, 2, 244-247
Pearson correlation coefficient, 238243 Sphericity, 290-291
correlation matrix, 239 Splitting a file, 155
Fisher’s Z transformation, 242 Standard error of the mean, 96-97, 133
Percentages, 6064 Standardized score (Z-score), 380
cumulative percent, 64 Statistical power, 142—143
valid percent, 64 Statistical significance, 133—-136
Poisson regression, 9, 452, 454 alpha level, 134
Population parameter, 96, 127, 128 contrasted with clinical significance, 143
Post hoc comparisons, 271-274 significance level, 134, 143, 189
Predictor variable, 19, 36, 458 p-value, 12, 133134, 189
Prevalence, 18, 149 Type I error, 189
Printing SPSS output, 53 Structure of SPSS data files
Probability, 150, 398 column width, 35
Protective factor, 6, 9 data type, 28
missing values, 33-35
Q number of decimal places, 31

value labels, 32
values alignment, 36
variable label, 31-32

variable measure, 36
R squared, 236-238 variable name, 28
Adjusted R squared, 377 variable role. 36

Random measurement error, 5, 7 variable width, 30
Random sample, 128, 134, 140
Random sampling variability, 2, 5, 6, 9, 10,

Quantitative or scale variable, 36, 59

R

Study designs
case report, 45

. 124 case series, 4-5
Rate Tatlof 2,9, 11,452, 458, 468 case-control study, 5-8, 17, 161-162
Relative risk, 2, 9, 150, 161, 162—-170, 438, cohort study, 810, 16-18, 161
444, 445-446

prospective cohort study, 1617

retrospective cohort study, 1617
cross-sectional study, 18, 162
meta-analysis, 14-15

Repeated measures analysis, 283, 284-285
Replication, 13

Residual confounding, 8

Response variable, 180, 233, 234
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randomized controlled trial, 1013
crossover trial, 11-12
parallel group trial, 10-11
systematic review, 14—15
Survival analysis
survival function, 424, 427
Kaplan-Meier estimator, 424432
comparing two survival functions, 432-436
survival table, 426427
survival time, 423-424
mean survival time, 428, 432
median survival time, 428, 432

T
Test of hypotheses, 132-136
alternative hypothesis, 132—133
one-tailed or one-sided, 132
two-tailed or two-sided, 132
null hypothesis, 132—133
robust test, 140
testing a mean, see #-test, one sample 7-test
testing a median, see Nonparametric test,
Wilcoxon signed ranks test
testing a Pearson correlation coefficient,
241-243
testing a single proportion, 153—155
testing a slope coefficient
from a Cox regression, 444
from a linear regression, 352, 354,
387-388
from a logistic regression, 403, 410,
417-418
from a negative binomial regression,
458-459, 466468
testing an intercept
from a linear regression, 353
from a logistic regression, 403
from a negative binomial regression,
457, 466
testing for the presence of sphericity, see
Mauchly’s test of sphericity
testing the equality of two proportions,
158-160
testing the equality of two survival
functions, see Survival analysis,
Kaplan-Meier estimator
testing the equality (homogeneity) of
variances, see Levene’s test
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testing whether two categorical variables
are related, see Chi-square test
Test of normality, 136—139
Test statistic, 19, 133, 135, 140, 153, 241, 265,
352,410
Brown-Forsythe, 262-263
chi-square, 19, 187
F, 19,261,265, 354
t,19, 135,352
Wald, 19, 403, 444
Welch, 262-263
Z, 19, 140, 155, 160
Time to event, 19, 423
Transforming variables, 7073
log transformation, 106107
to change the shape of a distribution,
106-110
to create an interaction variable for a
regression, 390
to create a dummy variable, 384
to create an offset variable, 472-473
to create a quantitative variable, 104-106
to equalize variability across groups,
110-111
to recode a categorical variable into another
categorical variable, 72—73
to recode a quantitative variable into a
categorical variable, 7071
to reverse the coding of a variable,
163-164
Treatment effectiveness, 13
Treatment efficacy, 13
t-test
paired-samples ¢-test, 18, 252, 284,
285-288
one sample #-test, 134—-136
independent-samples #-test, 17, 253-258

\%

Variable view, 28-37

Viewer window, 41
contents pane, 64
outline pane, 64

\%4
Washout period, 11
Weighting cases, 172
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