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Chapter 1
Introduction: Biostatistics and R

Abstract The purpose of this lesson is to provide context for the science of
biostatistics and to highlight a few of the major contributors. Emphasis is given
to the role of data analysis for the various disciplines in the biological sciences
(e.g., agriculture, biology, clinical trials, ecology, environmental health, epidemi-
ology, genetics, health sciences, nutrition, public health, etc.). The practice of
biostatistics is then linked to the use of R, a free and open source software
environment. As explained, each problem in this text is associated with a .csv
(comma-separated values) ASCII file, a Code Book detailing data organization,
quality assurance through graphical presentations and descriptive statistics, selected
statistical analyses, summary of outcomes, and an addendum offering ideas on how
R can be used for additional insight into biostatistics.

Keywords Agriculture ¢ Biology ¢ Biostatistics * Census ¢ Clinical trials e
Code Book ¢ Comma-separated values ASCII file * Command Line Interface
(CLI) » Comprehensive R Archive Network (CRAN) ¢ CRAN Contributed Pack-
ages ¢ Data analysis * Descriptive statistics * Ecology ¢ Environmental health
* Epidemiology ¢ Genetics * Graphical User Interface (GUI) ¢ Health sciences °
Nutrition * Open source software ¢ Public health « R « S ¢ Scheme

1.1 Purpose of This Text

Scientists use empiricism to guide and validate decisions. Precision, orderliness,
analysis, and a sound background in statistics are directly associated with informed
judgment, decision-making, and the subsequent allocation of human, physical, and
fiscal resources — all to improve the human condition. The purpose of this text is to
provide an introduction to the use of R software as a platform for problems related
to biostatistics. Data identification, data organization, graphical and descriptive
portrayal of phenomena, and statistical tests through the use of R are all inherent
to this text.

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 1
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2__1,
© The Author(s) 2014



2 1 Introduction: Biostatistics and R

R supports a Graphical User Interface (GUI), the R Commander. This resource is
available as an external R package, Rcmdr. Remdr is fairly easy to use but eventually
there are limits on the use of R Commander.

R also supports a far more robust and useful syntax-based Command Line
Interface (CLI) approach to statistics. This text is focused on the use of R-based
syntax, working at the command line, to address data organization, statistical
analyses, and graphical presentations as they relate to biostatistics. A series of
small confidence-building activities are presented at the beginning of this text, with
more detail gradually introduced as the text is followed from beginning to end. All
examples are for biostatistics. The many examples presented in this text can be
easily applied to all areas of biostatistics, regardless of major area of study.

1.2 Development of Biostatistics

The term statistics is derived from status, the Latin term for state. Thus, the science
and practice of statistics, as we think of it today, was first associated with data
relating to the state, such as census counts and health records. Given the importance
of statistics as a part of state governance, there are more than a few accounts of
census-taking and health records from the earliest days of recorded history.

Going beyond mere record-keeping, an interest in the mathematics of chance
(e.g., probability) began to develop in the 1500s and 1600s, especially among
those who engaged in European court life. The early interest in probability may
not have been altruistic but was instead focused on gaining advantage in card games
and other forms of gambling. The use of probability to solve problems for societal
gain may not have been the first interest but instead attention was focused on the
question, Given that there a X cards in the deck, if I discard the Y card from my
hand, what is the chance that I will draw the Z card from the deck and improve my
chance of winning this game of cards?

This early interest in probability and eventually the evolving science of statistics
as a vehicle for social improvement eventually grew into what we think of as
biostatistics. It is far beyond the purpose of this introductory text on the use of
R in biostatistics to go into too much detail, but at a minimum it would be helpful
to look into the biography and contributions of the following founders of what we
now consider biostatistics:

* Blaise Pascal (1623-1662), prepared early writings on probability and developed
the Pascaline (e.g., mechanical calculator).

* John Graunt (1620-1674), published Natural and Political Observations Made
Upon the Bills of Mortality, perhaps the first widely-read text on demographics,
public health, and epidemiology.

* John Snow (1813-1858), advocated for epidemiology and the 1854 Broad Street
(London) Cholera Outbreak.
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* Florence Nightingale (1820-1910), although perhaps best known as an advocate
for our modern view of nursing, Diagram of the Causes of Mortality in the Army
in the East was a breakthrough publication that had strong implications for how
biostatistics could be used to improve public health.

* Ronald Fisher (1890-1962), the publication Statistical Methods for Research
Workers and other works are still central to how data are used in biostatistics.

Although Fisher may be the immediate answer if anyone were asked to identify a
famous biostatistician, Snow should also be singled out. To put the many individuals
who contributed to our current view of biostatistics into context, consider Snow’s
work during the mid-1850s London cholera (e.g., Vibrio cholerae) outbreak and his
then innovative use of mapping techniques based on data gained through exhaustive
empirical methods. Far from being an academic who dealt only in theory, Snow
put his own life at risk to obtain the data needed to validate that cholera was a
waterborne pathogen. Then, he used persuasive argumentation with public officials,
based on scientific outcomes, to confront the problem and take appropriate actions.

1.3 Development of R

R was first developed in the early-to-mid 1990s, drawing from programming fea-
tures previously used with S and Scheme. R provides an excellent environment for
the organization, statistical analysis, and graphical presentation of data. As opposed
to the well-known proprietary statistical analysis software programs, R is both open
source and free to download.

R is available through the Comprehensive R Archive Network (CRAN, http://
cran.us.r-project.org/). R supports all major operating systems: Linux, Mac, UNIX,
and Windows. Again, R is open source software and there is no direct cost for this
freely-available software.

The R environment is based on a set number of functions available in the package
initially downloaded. The download takes about 10—15 min, depending on speed of
Internet connectivity. Then, additional functions are available in external packages.
There are currently more than 3,000 external packages hosted through CRAN.

In the nearly 20 years since R was first developed the R community has grown
substantially. R has active Internet discussion groups and the R community also
supports an annual international conference, typically rotating between Europe and
North America.

It cannot be overstated that R is gaining international recognition as a preferred
medium for data organization, statistical analysis, and graphical presentation. Quite
simply, the free nature of open source software is appealing and the far-reaching use
of R is displayed in the many CRAN mirror sites that host R, currently ranging in
alphabetical order from Argentina to Vietnam.


http://cran.us.r-project.org/
http://cran.us.r-project.org/
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1.4 How R s Used in This Text

Each biologically-oriented problem addressed in this text is approached in the same
manner, to promote consistency, modularity, and ease of reuse:

All data are prepared in a .csv (comma-separated values) spreadsheet-type ASCII
file format and the data are then imported into R. The various .csv datasets
accompany the Web-based resource associated with this text.

A Code Book is used to communicate data organization and when needed, data
are organized into needed format.

Graphics are used to present a visual data check.

Descriptive statistics are further used to obtain a better understanding of the data.
The needed statistical analyses are conducted.

A summary of outcomes is presented.

An addendum is used to provide additional insight into the selected test and
options on how to enhance the use of R for each statistical test.

Again, small and easy-to-follow confidence-building examples are used at the

beginning of this text. Greater complexity is gradually introduced until the final
chapters in this text present the use of R in a fairly robust manner.



Chapter 2
Data Exploration, Descriptive Statistics,
and Measures of Central Tendency

Abstract The purpose of this lesson is to give attention to descriptive analysis,
measures of central tendency, and graphical presentation of data, which are essential
before any statistical analyses are conducted. Initial efforts should be placed on data
exploration and specifically the use of descriptive statistics and measures of central
tendency (e.g., mode, median, mean, standard deviation, etc.). A complete summary
of descriptive statistics is presented in this lesson, both for factor-type object
variables as well as numeric object variables of an interval or continuous nature.
An initial summary of graphical presentations available through R is provided, with
emphasis on publishable quality graphics deferred until later lessons.

Keywords Barplot ¢ Boxplot (box-and-whiskers plot) ¢ Boxplot statistics ®
Data exploration * Density plot  Descriptive statistics * Dotchart * Histogram
* Interquartile range (IQR) ¢ Length « Maximum ¢ Maximum location * Mean
* Measures of central tendency ¢ Median ¢ Minimum ¢ Minimum location e
Mode ¢ Quantile-quantile plot ¢ Quartiles * Range ¢ Scatter plot ¢ Sort
e Standard deviation e Stem-and-leaf plot e Stripchart ¢ Sum ¢ Summary
* Tukey’s five number summary * Variance

2.1 Background on This Lesson

2.1.1 Description of the Data

This lesson on descriptive statistics and measures of central tendency is taken from
a study that was conducted at a large high school in Florida, as part of a general
investigation of wellness and student health. The dataset for this lesson is fairly
small (N = 30 subjects) and represents only a small part of a much larger dataset,

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 5
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_ 2,
© The Author(s) 2014
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larger in terms of more subjects and larger in terms of more variables. This lesson
describes the use of R for descriptive statistics and measures of central tendency,
with outcomes presented as numerical statistics and simple graphical presentations.

For this lesson, consider the data gained by a school nurse who weighed all
30 students in Computer Programming III (Course Number 0201320), a Computer
Science Education course offered to Grade 12 (e.g., High School Seniors, usually
17-18 years old) students. Weight was measured in pounds, with accuracy at
the tenth of a pound. As the principal investigator, the school nurse is naturally
concerned with overall trends as well as individual measures. What was the average
weight? What was the lowest weight and what was the highest weight? What
was the variance in weight? Were there any trends that need attention, either for
immediate purposes or in the future? With proper analysis, this information could be
used, in part, as the basis for informed decision-making on wellness, food selections
in the cafeteria, policy and procedures for snack vending machines, etc.

This lesson provides an introduction, using a small sample of only 30 subjects,
of how descriptive statistics and measures of central tendency have value on their
own and also as indicators for the use of other statistical tests. Quite often when
examining data and relationships between and among data, it is useful to offer a
general view of the data. Saying this, consider the data conceivably associated with
this lesson. It would be more than somewhat useful to know:

e How many students were enrolled in the class and are eligible to have their
weights measured?

* How many students had their weights measured?

* What is the average weight and are there multiple definitions of the term average?
If there are multiple definitions for the term average, when is it appropriate to use
one view of the term average but not the other(s)?

* Did most weights cluster around the average weight, or was there a wide degree
of variance in weights?

* Were there any weights that seem to be exceptionally out-of-range (e.g., outliers),
demanding specific attention for these observed weights?

* Were there any weights that seem to be illogical, perhaps by accidental data entry
of alphabetical characters or similar errors in an object that has otherwise been
declared as a vector of numeric values?

* What was the range of weights, from the lowest (e.g., minimum) weight to the
highest (e.g., maximum) weight?

* Do the weights display normal distribution, approximating a bell-shaped curve,
or is the distribution skewed and if so, how? Are weights skewed to the left or
are weights skewed to the right?

Descriptive statistics and measures of central tendency, or representation
of the average:

* Mode: most frequent measure (An oddity of R is that the mode() function has
nothing to do with measures of central tendency, but there are convenient work-
arounds that provide mode as an average.)
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* Median: mid-point of an array of measures
* Mean: arithmetic average (Sum/N)

In the perfect bell-shaped curve, all three measures for average (e.g., mode,
median, and mean) would be equivalent, but of course this level of perfection is
rarely achieved.

Measures of dispersion, spread, or variance in range away from the average:

e Variance: the sum of squared deviations from the mean
e SD: the standard deviation, or the square root of the variance
» Range: the spread from the lowest measure to the highest measure

It is common to present in summary statistics a listing of these descriptive
statistics, to give the reader a general view of the data. It is also highly desirable
to provide graphical figures, visually representing trends.

This lesson has been designed as a demonstration of how R can be used to provide
descriptive statistics and measures of central tendency. The emphasis will be on the
use of functions found in the basic R package as well as a brief introduction to
the use of functions gained from external R packages. Complementary graphical
representations are also provided.

This lesson should provide a fairly detailed introduction to descriptive statistics
and measures of central tendency and how they are calculated and presented using R.
This topic is of special importance since nearly each statistical analysis associated
with parametric data (e.g., the use of interval or ratio data for Student’s t-Test,
Analysis of Variance, etc.) begins with descriptive statistics and measures of central
tendency.

2.1.2 Null Hypothesis (Ho)

Because this lesson is specific only to descriptive statistics, there is no associated
Null Hypothesis. The Null Hypothesis will be identified, however, in future lessons.

2.2 Data Import of a .csv Spreadsheet-Type Data File into R

The data for this lesson are from a much larger dataset. The complete dataset
was originally prepared in Gnumeric, an open source spreadsheet. After a set of
manipulations (largely Copy and Paste and later File and Save as) the dataset for
this lesson was put into .csv (e.g., comma-separated values) file format. The data
are in ASCII format and they are separated by commas. The data are not separated
by tabs and the data are not separated by spaces.

Eventually, the data were placed on an external harddrive (the F drive) in a direc-
tory marked as R_Biostatistics. All analyses and presentations start here.
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From this starting point, note below how R is set to work in the appropriate directory
and then how the read.table() function is used to read in the comma-separated values
.csv format ASCII file that contains the data.

HH## S R R

# Housekeeping Use for All Analyses
HHHHH S Y
rm(list = 1s()) # CAUTION: Remove all files in the working

# directory. If this action is not desired,
# use the rm() function one-by-one to remove
# the objects that are not needed.
setwd ("F: /R _Biostatistics")
# Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.
getwd () Confirm the working directory.
search () # Attached packages and objects.
HHAFHHHHH A R R R R R

H*+ HF H H HF H

Create an object called WeightG12Stu.df. The object WeightG12Stu.df will be
a dataframe, as indicated by the enumerated .df extension to the object name.
This object will represent the output of applying the read.table() function against
the comma-separated values file called WeightGrade12Students.csv. Note the argu-
ments used with the read.table() function, showing that there is a header with
descriptive variable names (header = TRUE) and that the separator between fields is

€9

a comma (sep = ).

WeightGl2Stu.df <- read.table (file =
"WeightGradel2Students.csv",
header = TRUE,

sep = ", ") # Import the .csv file
getwd () # Identify the working directory
1s() # List objects
attach (WeightGl2Stu.df) # Attach the data, for later use
str (WeightGl2Stu.df) # Identify structure
nrow (WeightGl2Stu.df) # List the number of rows
ncol (WeightGl2Stu.df) # List the number of columns
dim(WeightGl2Stu.df) # Dimensions of the data frame
names (WeightGl2Stu.df) # Identify names
colnames (WeightGl2Stu.df) # Show column names
rownames (WeightGl2Stu.df) # Show row names
head (WeightGl2Stu.df) # Show the head
tail (WeightGl2Stu.df) # Show the tail
WeightGl2Stu.df # Show the entire dataframe
summary (WeightGl2Stu.df) # Summary statistics
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2.3 Organize the Data and Display the Code Book

The dataframe WeightG12Stu.df is fairly simple and very little, if anything, needs
to be done to organize the data. That will not be the case in later lessons, but this
lesson was designed to serve as an easy-to-follow confidence-building introduction
to R so in turn a simple dataset was selected for this lesson.

For this simple lesson, the class() function, str() function, and duplicated()
function will be sufficient first steps to be sure that data are organized as desired.

class (WeightGl2Stu.df)
class (WeightGl2Stu.dfs$Subject) # DataFrame$ObjectName notation
class (WeightGl2Stu.dfsSWeight) # DataFrame$ObjectName notation

str (WeightGl2Stu.df) # Structure

duplicated (WeightGl2Stu.dfs$Subject) # Duplicates

The class for each object seems to be correct and there are no duplicate subjects
in the sample. A Code Book will help with future understanding of this dataset, even
if the data currently seem simple and obvious.

FHESHHHEFFHH R R RS

# Code Book #
HHAHAFHAHH A HAHHAH S H S S A R A
# #
# Subject ..., Factor (e.g. nominal) #
# A unique ID ranging from NO0OOO to N9999 #
# #
# Weight ................... Numeric (e.g., interval) #
# Weight (tenth of a pound) of Grade 12 #
# (approximately 17-18 years) high school #
# students #
HHAHAFHAH A HAHHAH S H S S A R A

Labels and recoding of individual object variables are not needed for this
simple dataset. However, these actions will be seen in future lessons. Again,
small confidence-building activities with easy-to-follow examples are used at the
beginning of this set of lessons, with more complexity introduced gradually.

2.4 Conduct a Visual Data Check

As desirable as numeric descriptive statistics and measures of central tendency may
be and are therefore often our first thought, to have a full understanding of the
data it is necessary to generate graphics, to actually see how data are organized.
Graphics provide an essential complement to our understanding of the data. In later
lessons other graphics will be demonstrated, but for initial purposes the graphical
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functions of primary interest are hist(), plot() and plot(density()), boxplot(), stem(),
stripchart(), dotchart(), and qgqnorm(). Many arguments are available, to embellish
these graphical figures, but for now the figures will be prepared in simple format.

The par(ask=TRUE) function and argument are used to freeze the presentation on
the screen, one figure at a time. Note how the top line of the figure, under File - Save
as, provides a variety of graphical formats to save each figure: Metafile, Postscript,
PDF, PNG, BMP, TIFF, and JPEG. It is also possible to perform a simple copy and
paste against each graphical image. It is also possible to save a graphical image by
using R syntax.

par (ask=TRUE)
hist (WeightGl2Stu.dfS$Weight) # Histogram

par (ask=TRUE)
plot (WeightGl2Stu.dfsWeight) # Plot

par (ask=TRUE)
plot (density (WeightGl2Stu.df$Weight)) # Density plot

par (ask=TRUE)
boxplot (WeightGl2Stu.df$Weight) # Boxplot

stem (WeightGl2Stu.df$Weight) # Stem-and-leaf plot

par (ask=TRUE)
stripchart (WeightGl2Stu.df$Weight) # Stripchat

par (ask=TRUE)
dotchart (WeightGl2Stu.df$Weight) # Dotchart

par (ask=TRUE)
ggnorm (WeightGl2Stu.df$Weight) # Quantile-Quantile plot

Again, these initial graphics are simple and currently have no meaningful embel-
lishments. They only serve as a first guide to general trends in data organization.
Embellishments to the graphics will be introduced in later lessons, by demonstrating
the many arguments used to present titles, prepare text and lines in bold and
color, etc.

2.5 Descriptive Analysis of the Data

A series of functions that come with the base R software at initial download can
be used to calculate a wide variety of descriptive statistics and measures of central
tendency, such as length(), is.na(), complete.cases(), summary(), mean(), sd(), var(),
median(), etc. A glaring omission is that the mode() function does not determine
the most frequently occurring value but instead provides information on the storage
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mode for a R-based object. A specialized function, found in an external R-based
package will be used to calculate mode, when mode is viewed as one of three
representations of average: mode, median, and mean.

Be sure to notice the DataFrame$ObjectName notation, or WeightG12Stu.df$
Weight in this case. This type of specificity calls for a degree of strong typing, but it
is a desirable practice and provides protection against unintended naming outcomes.

To learn more about the nature of each R function, use the built-in help
features found in R. At the R prompt, key help(function.name) (e.g., help(length),
help(summary), help(mean), etc.) to learn the exact nature of each R function.

length (WeightGl2Stu.dfsWeight)
# Length or N of a vector

is.na (WeightGl2Stu.df$Weight)
# Returns TRUE if indexed value is missing (e.g., NA) and
# FALSE if indexed value is not missing

complete.cases (WeightGl2Stu.dfS$Weight)
# Returns TRUE if indexed value is not missing (e.g., NA)
# and FALSE if indexed value is missing

summary (WeightGl2Stu.dfsWeight)
# Descriptive statistics, including NAs if any

Output from this simple application of the summary() function follows. The
output is basic and in many cases this information is more than sufficient to make
judgment on data organization and quality assurance issues.

> summary (WeightGl2Stu.df$Weight)
Min. 1st Qu. Median Mean 3rd Qu. Max.
94 .4 117.5 124.6 123.4 130.2 151.5
> # Descriptive statistics, including NAs if any

Other functions for descriptive statistics have value, however, and a few of
the many functions associated with descriptive statistics and measures of central
tendency are demonstrated below.

mean (WeightGl2Stu.df$Weight)
# Mean or arithmetic average

sd (WeightGl2Stu.df$Weight)
# Standard Deviation

var (WeightGl2Stu.df$Weight)
# Variance

median (WeightGl2Stu.dfsWeight)
# Median or midpoint

range (WeightGl2Stu.dfsWeight)
# Range, minimum and maximum
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min (WeightGl2Stu.dfsWeight)
# Minimum

which.min (WeightGl2Stu.dfs$Weight)
# Location (e.g., index) of the first occurrence of the
# minimum value

max (WeightGl2Stu.dfsWeight)
# Maximum

which.max (WeightGl2Stu.dfSWeight)
# Location (e.g., index) of the first occurrence of the
# maximum value

quantile (WeightGl2Stu.df$Weight)
# Quantiles, or values at: %, 25%, 50% 75%, and 100%

sort (WeightGl2Stu.df$Weight)
# Sort or order values in a vector

sum (WeightGl2Stu.dfSWeight)
# Arithematic sum of all values in a vector

boxplot.stats (WeightGl2Stu.dfS$Weight)
# Produce values for a vector related to a boxplot:
# lower whisker, lower hinge, median, upper hinge, upper
# whisker, N, and outliers

fivenum (WeightGl2Stu.dfsWeight)
# Tukey’s five number summary for a vector: minimum,
# lower-hinge, median, upper-hinge, and maximum

IQOR (WeightGl2Stu.dfsSWeight)
# Interquartile range of a vector (e.g., a measure of
# dispersion that is equal to the difference between the
# upper quartile and the lower quartile

table (WeightGl2Stu.dfsWeight)
# Contingency table (e.g., crosstab) of counts for each
# combination of vector values v factor levels
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2.6 Summary

Based on the descriptive statistics associated with this lesson, it is evident that the
typical student in Computer Programming III weighs approximately 124 pounds,
but of course there is variance in weight:

N o e 30
Missing ........ 0
Median ......... 124.6
Mean ........... 123.3533
SD ... e 12.90337
Minimum ........ 94 .4
Maximum ........ 151.5

A review of the histogram and density plot provides assurance that there is fairly
normal distribution of weights, following a broad approximation of the bell-shaped
curve. Further, the boxplot.stats() function indicated the presence of outliers, both
for the minimum weight and the maximum weight. A diligent researcher would look
more closely at the outliers, to be sure that the outlier-specific data are correct and
that these data do not represent an error in either measurement or data entry.

Quite simply, the descriptive statistics and measures of central tendency for
this sample of 30 subjects follows along with useful outcomes and given the
approximation of normal distribution of weights, there should be a fair degree of
confidence that the students in this sample could be used for other analyses from the
larger dataset for any statistical tests that demand normal distribution.

2.7 Addendum: Specialized External Packages
and Functions

To use the somewhat humorous expression from a set of well-known American
television commercials, But wait! There’s more! To be specific, there are possibly
more than 3,000 external R-based packages available. From these packages there are
thousands of specialized functions to supplement the set of functions available when
the base R software is initially downloaded. A few specialized functions specific to
descriptive statistics and measures of central tendency are demonstrated below.

Be sure to notice how some specialized functions provide not only numerical
statistics of immediate use but they also provide a graphical image, to further
reinforce the organization of data in question. Function arguments are typically
used to embellish graphical output, but in this lesson, function arguments have only
been used to any meaningful degree to embellish output from the epicalc::summ()
function, to provide a glimpse of potentials that will be enhanced in future lessons.
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install.packages ("asbio")

library (asbio) # Load the asbio package.
help (package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.

asbio: :Mode (WeightGl2Stu.dfsWeight)
# Mode, as average (e.g., mode, median, and mean) and not as
# storage mode

> asbio: :Mode (WeightGl2Stu.df$Weight)

[1] 120.9

> # Mode, as average (e.g., mode, median, and mean) and not as
> # storage mode

install .packages ("lessR")

library(lessR) # Load the lessR package.
help (package=lessR) # Show the information page.
sessionInfo() # Confirm all attached packages.

lessR: :SummaryStats (Weight, dframe=WeightGl2Stu.df)
# Provide a wide variety of summary statistics and identify
# outliers, if any

par (ask=TRUE)
lessR: :BoxPlot (Weight, dframe=WeightGl2Stu.df,
main="Boxplot of Weight Generated by the
lessR: :BoxPlot () Function")
# Produce a boxplot and accompanying descriptive statistics
# about the boxplot and add a title to the figure

par (ask=TRUE)

lessR: :Histogram (Weight, dframe=WeightGl2Stu.df,
main="Histogram of Weight Generated by the
lessR::Histogram() Function")

# Produce a histogram and accompanying descriptive statistics

# about the histogram and add a title to the figure

par (ask=TRUE)

lessR: :Density (Weight, dframe=WeightGl2Stu.df,

main="Density Curve, Histogram, and Normal Curve of Weight
Generated by the lessR::Density() Function")

Produce a density curve, histogram, and normal curve,
identify accompanying descriptive statistics about the

# density curve,and add a title to the figure

H H



2.8 Prepare to Exit, Save, and Later Retrieve This R Session 15

Density Curve, Histogram, and Normal Curve of Weight
Generated by the lessR::Density() Function

80 100 120 140 160
Weight

install.packages ("epicalc™")

library(epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

epicalc: :summ(WeightGl2Stu.df$Weight,
by=NULL, # No breakout statistics.
graph=TRUE, # Use graph=TRUE, if desired.
pch=20, ylab="auto",
main="Sorted Dotplot of Weight Generated by the
epicalc::summ() Function",
cex.X.axis=1.25, # Note X axis label size.
cex.Y.axis=1.25, # Note Y axis label size.
font.lab=2, dot.col="auto")

# Produce a sorted dotplot and accompanying descriptive

# statistics

2.8 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.

Use the following set of actions to exit from the current R session.

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.
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save.image ("R_Lesson DescriptiveStatistics.rdata")

getwd ()
1s ()

ls.str ()
list.files()

alarm()
a()

H*+ H HF H

#
#
#

Identify the current working directory.
List all objects in the working
directory.

List all objects, with finite detail.
List files at the PC directory.

Alarm, notice of upcoming action.
Quit this session.
Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.



Chapter 3
Student’s t-Test for Independent Samples

Abstract The purpose of this lesson is to use R to examine differences between
groups, specifically by using Student’s t-Test for Independent Samples. Overall,
Student’s t-Test is a very common test for determining differences when a singular
measured variable (e.g., IQ score, weight of dairy cow milk production per lactation,
length of shark dorsal fin, etc.) is compared to differences between a grouping
variable with two breakout groups (e.g., Female v Male humans, Guernsey v Jersey
cows, Mako v Great White sharks). The t-Test was developed in the early 1900s
by Gosset, as part of quality assurance work for a beverage company, but writing
under the pen name Student. Student’s t-Test is the appropriate test for comparing
differences between small samples, typically 30 or fewer, as opposed to samples
with more than 30 observations.

Keywords Barplot ¢ Boxplot (box-and-whiskers plot) ¢ Density plot
* Dotchart « Histogram ¢ Independent samples ¢ Matched pairs * Student’s
t-Test o t-statistic ® z-statistic

3.1 Background on This Lesson

3.1.1 Description of the Data

This lesson on Student’s t-Test for independent samples is taken from a biological
survey in a specific, but unnamed, area. The data involve two factor-type variables
(Gender and Region) and two variables of interval data, coded as M1 and M2. The
exact nature of M1 and M2 are currently unknown and are not needed for this lesson.
It is only important to know they are interval data.

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 17
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_3,
© The Author(s) 2014
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Regarding the number of observations (e.g., N) and the use of Student’s t-Test,
recall that:

* Student’s t-Test is still an appropriate and commonly used test with more than 30
observations.
* When N goes beyond 30 observations, t approximates z.

When using Student’s t-Test to determine if the difference between two groups
is indeed a true difference, or if the difference between the two groups is due only
to chance, ideally:

* Both groups should approximate normal distribution.
e It is best if random selection were used for all members of the two groups.

However, Student’s t-Test is sufficiently robust such that these two assumptions
are often not met, or perhaps not met as rigorously as desired.

Using data from a biological survey, this lesson presents four separate t-Tests, to
determine if there are differences in Gender (later recoded to Gender.recode, Female
v Male) by M1, Gender by M2, Region (North v South) by M1, and Region by M2.
The object variables M1 and M2 are both numeric but their nature (e.g., IQ score,
weight of milk production per lactation, length of dorsal fin, etc.) is masked from
the individual assigned to this set of analyses. The analysist only knows that the data
are of a biological nature and what little information is provided in the Code Book.
Further, the dataset is fairly small (N = 30) and there are no missing data.

3.1.2 Null Hypothesis (Ho)

There are four separate Null Hypothesis statements associated with this lesson. Each
Null Hypothesis is based a significance level of p <= 0.05.
Null Hypothesis (Ho):

* Ho: There is no statistically significant difference (p <= 0.05) in M1 values
by Gender (Female v Male).

* Ho: There is no statistically significant difference (p <= 0.05) in M2 values
by Gender (Female v Male).

* Ho: There is no statistically significant difference (p <= 0.05) in M1 values
by Region (North v South).

* Ho: There is no statistically significant difference (p <= 0.05) in M2 values
by Region (North v South).

Notice how the Null Hypothesis (Ho) uses p <= 0.05. The expression
p <= 0.05 is used to identify the declared probability level specific to the
Null Hypothesis. That is to say, after calculation of the t-statistic and subsequent
calculated p value, with correct interpretation of these statistics there will be a 5%
or less probability of an incorrect inference related to differences associated with
this test.
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Many exploratory inferential analyses in the biological and social sciences are
conducted at p <= 0.05. However, you will see some problems set at the more
restrictivep <= 0.0landevenp <= 0.001.

Along with the use of p, you will also see the term alpha in any discussions about
the level of probability, but p will be used in this lesson.

Be sure to note how numerical codes have been purposely used for some data
(e.g., Gender) in this lesson. Numerical codes are quite common and as such, the
creation of a later Code Book is essential so that there is agreement on what each
code represents.

3.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the dataset has been prepared in .csv (e.g., comma-separated values)
file format. The data are separated by commas. The data are not separated by tabs
and the data are not separated by spaces.

FHES T R R R R R

# Housekeeping Use for All Analyses
HHHHHHHHH A H R R R R R A
rm(list = 1s()) # CAUTION: Remove all files in the working

# directory. If this action is not desired,
# use the rm() function one-by-one to remove
# the objects that are not needed.
setwd ("F: /R _Biostatistics")
# Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.
getwd () Confirm the working directory.
search () # Attached packages and objects.
HHHHHHHHH A R R R R R A

Create an object called GenRegM 1M2.df. The object GenRegM 1M2.df will be
a dataframe, as indicated by the enumerated .df extension to the object name. This
object will represent the output of applying the read.table() function against the
comma-separated values file called GenderRegionM 1M2.csv. Note the arguments
used with the read.table() function, showing that there is a header with descriptive
variable names (header=TRUE) and that the separator between fields is a comma
(sep=",").
GenRegM1M2.df <- read.table (file =

"GenderRegionM1M2.csv",

header = TRUE,

sep = ", ") # Import the .csv file

H o H H HF
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getwd ()

1s()

attach (GenRegM1M2.df)
str (GenRegM1M2.df)

nrow (GenRegM1M2 .df)
ncol (GenRegM1M2.df)

dim (GenRegM1M2.df)
names (GenRegM1M2 .df)
colnames (GenRegM1M2 .df)
rownames (GenRegM1M2 .df)
head (GenRegM1M2.df)
tail (GenRegM1M2.df)
GenRegM1M2.df

summary (GenRegM1M2.df)

Identify the working directory
List objects

Attach the data, for later use
Identify structure

List the number of rows

List the number of columns
Dimensions of the data frame
Identify names

Show column names

Show row names

Show the head

Show the tail

Show the entire dataframe
Summary statistics

H H H HHHHHHHHHH

+H

By completing this action, an object called GenRegM 1M?2.df has been created.
This R-based object is a dataframe and it consists of the data originally included
in the file GenderRegionM 1M2.csv, a comma-separated .csv file. To avoid possible
conflicts, make sure that there are no prior R-based objects called GenRegM 1M?2.df.
The prior use of rm(list=1s()) accommodates this concern, removing all prior
objects in the current R session.

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located (see the Housekeeping section at the
beginning of this lesson).

3.3 Organize the Data and Display the Code Book

For this lesson, the class() function, str() function, and duplicated() function will be
used to be sure that data are organized as desired.

class (GenRegM1M2.df)

class (GenRegM1M2.dfsSubject) # DataFrame$ObjectName notation
class (GenRegM1M2 .df$Gender) # DataFrame$ObjectName notation
class (GenRegM1M2 .df$Region) # DataFrame$ObjectName notation
class (GenRegM1M2.df$M1) # DataFrame$ObjectName notation
class (GenRegM1M2.df$M2) # DataFrame$ObjectName notation
str (GenRegM1M2.df) # Structure

duplicated (GenRegM1M2.df) # Duplicates

The class for each object seems to be correct and there are no duplicate rows of
data in the dataframe. Saying this, a Code Book will help with future understanding
this dataset.

A Code Book is an essential aid for anyone involved in the day-to-day activities
of the research and statistics process. The Code Book is typically brief and only
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serves as a useful reminder for what can be easily forgotten months (or even weeks)
later, to make it easy to decipher what may otherwise be seen as arcane numeric
codes. Coding schemes that are intuitively obvious today can easily become obtuse
tomorrow.

The Code Book below represents how data are desired before analyses begin.
Recoding may be needed to put data into new formats.

FHE#H A HH R R R R

# Code Book #
HEHAHAHEHEHEHFHAHFH SRS R B HAH ARG HEHAHEHEH AR HEHEHEHEHAHE
# #
# Subject ... oL, Factor (e.g., nominal) #
# A unique ID ranging from 1 to 30 #
# #
# Gender ..... ... e Factor (e.g., nominal) #
# Female = 1 #
# Male =2 #
# #
# Region ........... .. ... .... Factor (e.g., nominal) #
# North #
# South #
# #
H ML .. Numeric (e.g., interval) #
# An unidentified biological variable #
# that ranges from 0.00 to 100.0 #
# #
H M2 e Numeric (e.g., interval) #
# An unidentified biological variable #
# that ranges from 0.000 to 2.000 #
HEHAHAHEHEHEHAHSHFH SRS HHAHAH ARG HEHAHEHEH AR R HEHEHEHAHE

The str() function is then again applied against the dataframe to see the nature of
each object variable as well as confirmation that the data are collectively viewed as
a dataframe:

str (GenRegM1M2.df)

Recall that the Code Book shows data in their desired formats, which often
requires some degree of recoding which has not yet occurred.

Once there is agreement that the data were brought into R in correct format, it is
usually necessary to organize the data to some degree:

* The object variable Subject is currently viewed as an integer. Some R users may
find it best to recode these identification-type numeric values into row names, but
in this lesson Subject will instead be recoded into a factor object variable.

* In this lesson note how integer numeric codes (e.g., 1 and 2) have been used in
the original file to identify groups for the factor object variable Gender. A set of
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simple R-based actions can easily: (1) transform (e.g., recode) the object variable
GenRegM1M2.df$Gender into a new object variable, (2) change the recoded
object variable from original integer format to enumerated factor format, and (3)
apply English text labels for the otherwise cryptic numeric codes (e.g., 1 and 2).

 In contrast, the groups for the factor object variable Region are presented in the
original file as standard English text (e.g., North and South).

* Values for M1 are currently whole numbers and as such they are first treated in R
as integers. A simple recode action will instead be used to put these values into
decimal format.

* Values for M2 are viewed as numeric values.

This transformation (again, typically called a recode action) is needed and the
process, using R-based syntax, follows. There may be some unnecessary (perhaps
redundant) actions with the following recode activities, but these are purposely done
to provide assurance that each variable is in desired format, both original variables
and well as the newly-created (e.g., enumerated) variables such as Gender.recode:

GenRegM1M2.dfsSubject <- as.factor(
GenRegM1M2 .df$Subject)

GenRegM1M2 .dfsGender.recode <- factor(
GenRegM1M2 .df$Gender,
labels=c ("Female", "Male"))
# Use factor() and not as.factor().

GenRegM1M2 .df$Region <- as.factor(
GenRegM1M2.dfsRegion)

GenRegM1M2 .dfSM1 <- as.numeric(
GenRegM1M2 .dfsM1)

GenRegM1M2 .dfsM2 <- as.numeric (
GenRegM1M2 .dfsM2)
getwd () # Identify the working directory
1s() # List objects
attach (GenRegM1M2 .df) # Attach the data, for later use
str (GenRegM1M2.df) # Identify structure
nrow (GenRegM1M2 .df) # List the number of rows
ncol (GenRegM1M2.df) # List the number of columns
dim (GenRegM1M2 .df) # Dimensions of the data frame
names (GenRegM1M2 .df) # Identify names
colnames (GenRegM1M2 .df) # Show column names
rownames (GenRegM1M2 .df) # Show row names
head (GenRegM1M2.df) # Show the head
tail (GenRegM1M2.df) # Show the tail
GenRegM1M2.df # Show the entire dataframe
summary (GenRegM1M2 .df) # Summary statistics
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The object variable GenRegM1M2.df$Gender.recode was created by putting
the object variable GenRegM 1M2.df$Gender into factor format. Labels were then
applied in sequential order for this new object, with Female used to represent every
occurrence of the numeric value 1 and Male used to represent every occurrence of
the numeric value 2.

The object variable GenRegM 1M2.df$M1 was recoded from integer format to
numeric format by applying the as.numeric() function.

Note the formal nomenclature used in this recode action and the use of
DataFrame$ObjectName notation when working with object variables that are part
of a dataframe. Note also how the $ symbol is used to separate the name of the
dataframe from the name of the Object: DataframeName$ObjectName.

3.4 Conduct a Visual Data Check

Graphics are important for multiple reasons. Throwaway graphics serve as a useful
quality assurance tool, identifying data that may be either out-of-range or illogical.
Graphics also provide a general sense of outcomes and comparisons between and
among variables. Although the precise statistics presented in tables are important
to those who regularly work with data, publishable quality graphics are perhaps
the most common medium for communication with the general public on research
findings.

First, prepare a throwaway graphic of each main variable simply to see general
trends and to also serve as a review of the data. Ignore any attempt to overly
embellish these initial figures. Recall that these initial graphics are only attempted
to see general trends and to also serve as a quality assurance tool.

par (ask=TRUE) # Plot of Subject
plot (GenRegM1M2 .df$Subject,
main="Plot of Subject")

par (ask=TRUE) # Dotchart of Gender
dotchart (GenRegM1M2 .df$Gender,
main="Dotchart of Gender Before Recode")

par (ask=TRUE) # Plot of Gender.recode
plot (GenRegM1M2 .df$Gender.recode,
main="Plot of Gender After Recode")

par (ask=TRUE) # Plot of Region
plot (GenRegM1M2 .dfS$Region,
main="Plot of Region")
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par (ask=TRUE) # Dotchart of M1
dotchart (GenRegM1M2 .dfsM1,
main="Dotchart of M1")

par (ask=TRUE) # Histogram of M1
hist (GenRegM1M2.dfsM1,
main="Histogram of M1")

par (ask=TRUE) # Dotchart of M2
dotchart (GenRegM1M2 .dfsM2,
main="Dotchart of M2")

par (ask=TRUE) # Histogram of M2
hist (GenRegM1M2.dfsM2,
main="Histogram of M2")

par (ask=TRUE) # Stacked barplot

barplot (table (GenRegM1M2.df$Gender.recode,
GenRegM1M2 .df$Region) ,
beside=FALSE, # Orientation of the barplot
main="Barplot of Gender (Stacked) and Region")

par (ask=TRUE) # Side-by-side barplot

barplot (table (GenRegM1M2.df$Gender.recode,
GenRegM1M2 .df$Region) ,
beside=TRUE, # Orientation of the barplot
main="Barplot of Gender (Side-by-Side) and Region")

More complex barplots may help provide details for Gender and Region that are
not quite apparent with simple barplots only. And, a legend may help better identify
groups and group membership, while still keeping the figures simple. To achieve
this aim, use the table() function to create a new object variable that represents
a crosstab table of GenRegM 1M2.df$Gender.recode by GenRegM 1M2.df$Region.
Then, note how this newly created object variable (GenderRegionM 1M2.crosstab)
is used in concert with the barplot() function and the legend argument.

GenderRegionM1M2.crosstab <-table( # Organize the data
GenRegM1M2 .df$Gender.recode, # into a table, to
GenRegM1M2 .dfS$Region) # ease later actions.

GenderRegionM1M2.crosstab
str (GenderRegionM1M2.crosstab) # Object structure
attributes (GenderRegionM1M2.crosstab) # Object attributes

par (ask=TRUE) # Stacked barplot with legend
barplot (GenderRegionM1M2.crosstab,
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main="Barplot of Gender (Stacked) and Region

With Legend",

legend=rownames (GenderRegionM1M2.crosstab) ,
beside=FALSE) # Orientation of the barplot

# Presentation of the legend needs improvement, but
# it is now possible to distinguish between groups.

par (ask=TRUE) # Side-by-side barplot with legend
barplot (GenderRegionM1M2.crosstab,
main="Barplot of Gender (Side-by-Side) and Region
With Legend",
legend=rownames (GenderRegionM1M2.crosstab) ,
beside=TRUE) # Orientation of the barplot
# Presentation of the legend needs improvement, but
# it i1s now possible to distinguish between groups.

25

Following along with the desire for more detail, the hist(), boxplot(), vio-
plot::vioplot(), and UsingR::simple.violinplot() functions will be used to provide
details on the two numeric object variables in this lesson, M1 and M2. Note how
information is provided at the singular level of detail and also by breakout groups.
Most importantly, note how a few lines of R syntax have been added, providing
greater clarity to graphical output while still keeping within the overall desire for

fairly easy-to-prepare and reproduce syntax.
par (ask=TRUE)

hist (GenRegM1M2.dfsM1,
breaks=10, main="Histogram of M1")

par (ask=TRUE)

boxplot (GenRegM1M2.dfS$M1,
horizontal=FALSE,
main="Vertical Boxplot of M1")

install.packages ("vioplot™")

library(vioplot) # Load the vioplot package.

help (package=vioplot) # Show the information page.

sessionInfo() # Confirm all attached pac
kages.

par (ask=TRUE)

vioplot::vioplot (GenRegM1M2.df$M1,
horizontal=FALSE, names=c("M1 Values"))
title("Vertical Violin Plot of M1")

par (ask=TRUE)

boxplot (GenRegM1M2.dfS$M1 ~ # Note ~ character
GenRegM1M2 .df$Gender.recode,
main="Boxplot of M1l by Gender")
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par (ask=TRUE)

boxplot (GenRegM1M2.dfS$M1 ~ # Note ~ character
GenRegM1M2 .dfS$Region,
main="Boxplot of M1l by Region")

install.packages ("UsingR")

library (UsingR) # Load the UsingR package.
help (package=UsingR) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

UsingR::simple.violinplot (GenRegM1M2.dfs$SM1 ~
GenRegM1M2 .df$Gender.recode)
title("Violin Plot of M1 by Gender")

par (ask=TRUE)

UsingR::simple.violinplot (GenRegM1M2.dfs$SM1 ~
GenRegM1M2.dfsRegion)
title("Violin Plot of M1 by Region")

par (ask=TRUE)
hist (GenRegM1M2.dfsM2,
breaks=10, main="Histogram of M2")

par (ask=TRUE)

boxplot (GenRegM1M2.dfS$M2,
horizontal=FALSE,
main="Vertical Boxplot of M2")

par (ask=TRUE)

vioplot::vioplot (GenRegM1M2.dfsM2,
horizontal=FALSE, names=c ("M2 Values"))
title("Vertical Violin Plot of M2")

par (ask=TRUE)

boxplot (GenRegM1M2.df$M2 ~ # Note ~ character
GenRegM1M2 .df$Gender.recode,
main="Boxplot of M2 by Gender")

par (ask=TRUE)

boxplot (GenRegM1M2.dfs$M2 ~ # Note ~ character
GenRegM1M2 .df$Region,
main="Boxplot of M2 by Region")

par (ask=TRUE)

UsingR: :simple.violinplot (GenRegM1M2.df$SM2 ~
GenRegM1M2 .df$Gender.recode)
title("Violin Plot of M2 by Gender")
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par (ask=TRUE)

UsingR::simple.violinplot (GenRegM1M2.dfsM2 ~
GenRegM1M2 .df$Region)
title("Violin Plot of M2 by Region")

After these initial figures are reviewed and when there is agreement that data
are correct and the general approach for graphics is acceptable, prepare a more
embellished figure if desired. Remember to make colors vibrant and use print that
is large and dark, whenever possible, to support future public display of the figure.

There are many R-based functions and arguments to select from when preparing
graphics. The base R tools that come with initial download typically meet immediate
needs for the production of graphics. However, with practice and more experience
be sure to explore the many additional R-based functions and graphics available in
the thousands of external packages currently available to the R community. These
additional functions and arguments often also produce statistics of some type, to go
along with production of the desired figure. Again, explore the many possibilities
available here and recall that when using R, rarely if ever is there one-and-only-one
function to support production of a desired graphic.

par (ask=TRUE) # Embellished graphic
barplot (table (GenRegM1M2.df$Gender.recode) ,

main="Barplot of Gender", # Title
xlab="Gender", ylab="Frequency", # X and Y axis
cex.axig=1.25, cex.names=1.25, cex.lab=1.25, # Size
col="red", font.lab=2) # Color - Font
par (ask=TRUE) # Embellished graphic
barplot (table (GenRegM1M2 .df$Region) ,
main="Barplot of Region", # Title
xlab="Trait", ylab="Frequency", # X and Y axis
cex.axis=1.25, cex.names=1.25, cex.lab=1.25, # Size
col="red", font.lab=2) # Color - Font

Although these figures, prepared by using the barplot() function, are both useful
and visually appealing, use the epicalc package to produce additional information
(e.g., frequency distributions and percentage representation) about the factor object
variables in question, Gender.recode and Region for this sample. The additional
statistics gained by using these specialized functions are information-rich and give
reason why specialized functions, such as epicalc::tableStack() and epicalc::tab1()
demand attention.

install.packages ("epicalc™")

library(epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.

epicalc: :tableStack (Gender.recode,
dataFrame=GenRegM1M2.df,
by="none", count=TRUE, decimal=2,
percent=c ("column", "row"),
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frequency=TRUE, name.test=TRUE,
total.column=TRUE, test=TRUE)

par (ask=TRUE) # Bar Plot of Gender.recode
epicalc::tabl (GenRegM1M2.df$Gender.recode,
decimal=2, Use the tabl() function
sort.group=FALSE, from the epicalc
cum.percent=TRUE, package to see details
graph=TRUE, about the selected
missing=TRUE, object wvariable. (The
bar.values=c ("frequency"), 1 of tabl is the one
horiz=FALSE, numeric character and
cex=1.15, it is not the letter
cex.names=1.15, 1).
cex.lab=1.15, cex.axis=1.15,
main="Gender: Breakout N Values",
ylab="Frequency of Gender, Includings NAs if Any",
col= c("pink", "blue"),
gen=TRUE)

H H H H H HH HH

epicalc: :tableStack (Region,
dataFrame=GenRegM1M2.df,
by="none", count=TRUE, decimal=2,
percent=c ("column", "row"),
frequency=TRUE, name.test=TRUE,
total.column=TRUE, test=TRUE)

par (ask=TRUE) # Bar Plot of Region
epicalc: :tabl (GenRegM1M2.dfsSRegion,
decimal=2,
sort.group=FALSE,
cum.percent=TRUE,
graph=TRUE,
missing=TRUE,
bar.values=c ("frequency") ,
horiz=FALSE,
cex=1.15,
cex.names=1.15,
cex.lab=1.15, cex.axis=1.15,
main="Region: Breakout N Values",
ylab="Frequency of Region, Includings NAs if Any",
col= c("red", "green"),
gen=TRUE)

Use the tabl () function
from the epicalc
package to see details
about the selected
object variable. (The

1 of tabl is the one
numeric character and
it is not the letter
1).

H oH H H H H HF H H

With useful information and publishable graphics provided for individual object
variables, it is now best to revisit GenderRegionM1M?2.crosstab, which was pre-
viously created as a crosstabs table of Gender.recode by Region and then use this
object throughout, to save time and trouble each time it is needed. However, the
barplots will now be presented with appropriate color codes and embellished with
vibrant fonts and heavy lines.
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str (GenderRegionM1M2.crosstab)
GenderRegionM1M2.crosstab
summary (GenderRegionM1M2.crosstab)

par (ask=TRUE) # Barplot of Gender.recode by Region
barplot (GenderRegionM1M2.crosstab,

main="Gender by Region (Stacked)", # Title
xlab="Region", ylab="Frequency", # X and Y axis
cex.axis=1.25, cex.names=1.25, cex.lab=1.25, # Size
font.lab=2, col=c("pink", "blue"), # Factor colors
legend=rownames (GenderRegionM1M2.crosstab), # Legend
ylim=c(0,20), # Y scale

beside=FALSE) # Stacked

# Note how the argument ylim=c(0,20) was used so that the
# legend would show in whitespace and not be lost showing
# against part of a bar.

par (ask=TRUE) # Barplot of Gender.recode by Region

barplot (GenderRegionM1M2.crosstab,
main="Gender by Region (Side-by-Side)", # Title
xlab="Region", ylab="Frequency", # X and Y axis
cex.axis=1.25, cex.names=1.25, cex.lab=1.25, # Size
font.lab=2, col=c("red", "green"), # Factor colors
legend=rownames (GenderRegionM1M2.crosstab) , # Legend
ylim=c(0,15), # Y scale

beside=TRUE) # Side-by-side
# Note how the argument ylim=c(0,15) was used so that the

# legend would show in whitespace and not be lost showing

# against part of a bar.

There are also many ways to show the numeric variables, individually and by
breakout groups. From among the many possible selections, the lattice package and
specifically the lattice::histogram() and lattice::bwplot() functions will be used to
show valuable displays of M1 and M2 individually and then by Gender and by
Region. A few examples of the many possible combinations are shown below.

install.packages ("lattice")

library(lattice) # Load the lattice package.
help (package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE) # 1 Column by 1 Row Histogram
lattice::histogram(~ GenRegM1M2.dfs$M1,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Histogram (Count) of M1",
xlab=1list ("M1", cex=1.15, font=2),
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x1lim=c(0,120), # Note the range.

ylab=1list ("Count", cex=1.15, font=2),
aspect=1, breaks=10,

layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::histogram(~ GenRegM1M2.dfs$M1 |
GenRegM1M2 .df$Gender.recode,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Histograms (Count) of M1 by Gender",
xlab=1list ("M1", cex=1.15, font=2),
x1lim=c(0,120), # Note the range.
ylab=1list ("Count", cex=1.15, font=2),
aspect=0.25, breaks=10,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par (ask=TRUE) # 1 Column by 1 Row Histogram
lattice::histogram(~ GenRegM1M2.dfS$M2,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Histogram (Count) of M2",
xlab=1list ("M2", cex=1.15, font=2),
xlim=c(0,2.25), # Note the range.
ylab=1list ("Count", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Histogram
lattice::histogram(~ GenRegM1M2.df$M2 |
GenRegM1M2 .dfS$Region,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Histograms (Count) of M2 by Region",
xlab=1list ("M2", cex=1.15, font=2),
x1lim=c(0,2.25), # Note the range.
ylab=1list ("Count", cex=1.15, font=2),
aspect=0.25, breaks=10,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")
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par (ask=TRUE) # Singular boxplot.

lattice: :bwplot (GenRegM1M2.df$M1,
par.settings = simpleTheme (1lwd=2),
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Boxplot of M1",
xlab=1ist ("M1", cex=1.15, font=2),
xlim=c(0,120), aspect=0.5, layout=c(1l,1),
col="red")

par (ask=TRUE) # Breakout group by measured object
lattice: :bwplot (GenRegM1M2.df$Gender.recode ~
GenRegM1M2 .dfs$M1,
par.settings = simpleTheme (1lwd=2),
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Boxplot of M1l by Gender",
xlab=1list ("M1", cex=1.15, font=2),
xlim=c (0,120),
ylab=1list ("Gender", cex=1.15, font=2),
aspect=0.5, layout=c(1l,1), col="red")

par (ask=TRUE) # Singular boxplot.

lattice: :bwplot (GenRegM1M2.df$M2,
par.settings = simpleTheme (1lwd=2),
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Boxplot of M2",
xlab=1list ("M2", cex=1.15, font=2),
xlim=c(0,2.5), aspect=0.5, layout=c(1l,1),
col="red")

par (ask=TRUE) # Breakout group by measured object
lattice: :bwplot (GenRegM1M2.df$Region ~
GenRegM1M2 .dfsM2,
par.settings = simpleTheme (1lwd=2),
par.strip.text=1list (cex=1.15, font=2),
scales=1ist (cex=1.15),
main="Boxplot of M2 by Region",
xlab=1list ("M2", cex=1.15, font=2),
xlim=c(0,2.5),
ylab=1list ("Region", cex=1.15, font=2),
aspect=0.5, layout=c(1,1), col="red")

Although histograms and boxplots are certainly useful graphical tools, the
density plot is especially helpful for visualizing how data are distributed individually
and by breakout groups.
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For this sample, first prepare throwaway density plots with the UsingR::Density
Plot() function and then, if the outcomes show promise, use the lattice::densityplot()
function for more aesthetic and visually appealing density plot images.

par (ask=TRUE)
UsingR: :DensityPlot (M1 ~ Gender.recode, data=GenRegM1M2.df)

par (ask=TRUE)
UsingR: :DensityPlot (M1 ~ Region, data=GenRegM1M2.df)

par (ask=TRUE)
UsingR: :DensityPlot (M2 ~ Gender.recode, data=GenRegM1M2.df)

par (ask=TRUE)
UsingR: :DensityPlot (M2 ~ Region, data=GenRegM1M2.df)

As demonstrated above, a density plot is certainly a useful tool to visualize how
measured data are organized, at the singular level and also by breakout groups.
Below, look at the way these density plots have been prepared again, but now with
more detail and presentation by using the lattice::densityplot() function. Although
statistical analyses are certainly necessary and should never be neglected, no matter
how visual presentations appear, in this lesson note how the density plot presentation
of M2 by Region brings to attention possible differences. Significant differences
may also be in play for other comparisons, but the visualization of M2 by Region is
striking and gives an early view of areas that need further attention.

par (ask=TRUE) # 1 Column by 1 Row Density Plot
lattice::densityplot (~ GenRegM1M2.df$M1,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Density Plot of M1",
xlab=1list ("M1", cex=1.15, font=2),
xlim=c(0,120), # Note the range.
ylab=1list ("Density", cex=1.15, font=2),
aspect=1,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice: :densityplot (~ GenRegM1M2.df$M1 |
GenRegM1M2.df$Gender.recode,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=list (cex=1.15),
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main="Density Plot of M1 by Gender",
xlab=1ist ("M1", cex=1.15, font=2),
x1lim=c(0,120), # Note the range.

ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25,

layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice::densityplot (~ GenRegM1M2.dfsM1 |
GenRegM1M2.dfsSRegion,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1ist (cex=1.15),
main="Density Plot of M1 by Region",
xlab=1ist ("M1", cex=1.15, font=2),
x1lim=c(0,120), # Note the range.
ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par (ask=TRUE) # 1 Column by 1 Row Density Plot
lattice::densityplot (~ GenRegM1M2.dfsM2,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1ist (cex=1.15),
main="Density Plot of M2",
xlab=1ist ("M2", cex=1.15, font=2),
xlim=c(0,2.25), # Note the range.
ylab=1list ("Density", cex=1.15, font=2),
aspect=1,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice::densityplot (~ GenRegM1M2.dfsM2 |
GenRegM1M2.dfsGender.recode,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1ist (cex=1.15),
main="Density Plot of M2 by Gender",
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xlab=1ist ("M2", cex=1.15, font=2),
xlim=c(0,2.25), # Note the range.

ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25,

layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

par (ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice::densityplot (~ GenRegM1M2.dfsM2 |
GenRegM1M2.dfsSRegion,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Density Plot of M2 by Region",
xlab=1ist ("M2", cex=1.15, font=2),
xlim=c(0,2.25), # Note the range.
ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25,
layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

Of course, the lattice package is by no means the only package with functions
that support breakout group comparisons for density plots. As shown previously,
consider the UsingR::DensityPlot() function as a first tool for preparation of
throwaway density-type graphical comparisons.

Although descriptive statistics and inferential tests (Student’s t-Test for this
lesson) are needed to make final judgment, the figures provide a fairly good idea
of general trends and how the data compare to each other, individually and by group
breakouts. Remember that the syntax used in this lesson can of course be used with
future analyses. Simply alter the syntax, typically the dataframe name and object
names, and adjust margins as needed to account for scales.

3.5 Descriptive Analysis of the Data

Given the different ways missing data can impact analyses, it is often helpful to first
check for missing data (which are not present in this lesson) by using the is.na()
function and the complete.cases() function against the entire dataset. Both functions
return a TRUE or FALSE response, depending on the function and the outcome of
whether data are missing or data are not missing.

is.na (GenRegM1M2.df) # Check for missing data
complete.cases (GenRegM1M2.df) # Check for complete cases
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For this simple dataset, the summary() function may be all that is necessary to
gain a sense of the data. Note how the summary() function is applied against the
entire dataset, thus yielding information about all object variables including those
that are not directly used in this sample, including ostensibly unnecessary informa-
tion about Subject and also Gender, prior to Gender’s recode into Gender.recode.

summary (GenRegM1M2 .df)

Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, review the prior
lesson Descriptive Statistics and Measures of Central Tendency for a comprehen-
sive review of the functions used for descriptive statistics, especially: length(),
asbio::Mode(), median(), mean(), sd(), table(), and finally summary().

length (GenRegM1M2 .df$Gender.recode) # N

length (GenRegM1M2 .df$Region) # N

length (GenRegM1M2 .dfS$M1) # N

length (GenRegM1M2 .dfS$M2) # N

install .packages ("asbio")

library (asbio) # Load the asbio package.
help (package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
asbio: :Mode (GenRegM1M2 .df$M1) # Mode

asbio: :Mode (GenRegM1M2 .df$M2) # Mode

median (GenRegM1M2.df$M1, na.rm=TRUE) # Median

median (GenRegM1M2.df$M2, na.rm=TRUE) # Median

mean (GenRegM1M2 .df$M1, na.rm=TRUE) # Mean
sd (GenRegM1M2 .df$M1,na.rm=TRUE ) # SD
# Measures of Central Tendency

mean (GenRegM1M2 .df$M2,na.rm=TRUE ) Mean
sd (GenRegM1M2 .df$M2, na.rm=TRUE) # SD
# Measures of Central Tendency

+H

table (GenRegM1M2 .df$Gender.recode)

# Frequency Distribution of Nominal Variable
table (GenRegM1M2.df$Region)

# Frequency Distribution of Nominal Variable

summary (GenRegM1M2.df)

The epicalc::summ() function is also useful in that it can provide descriptive
statistics and a representative figure of individual object variables.

par (ask=TRUE) # Use the epicalc package.
epicalc: :summ(GenRegM1M2 .dfS$M1,
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by=NULL, graph=TRUE, box=TRUE, # Make a boxplot
pch=18, ylab="auto",

main="Sorted Dotplot and Boxplot of M1",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")

# Note the descriptive statistics that go

# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(GenRegM1M2.dfsM1,
by=GenRegM1M2 .df$Gender.recode,
graph=TRUE, box=FALSE, # No boxplot
pch=18, ylab="auto",
main="Sorted Dotplot M1l by Gender",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(GenRegM1M2.dfsM1,
by=GenRegM1M2 .df$Region,
graph=TRUE, box=FALSE, # No boxplot
pch=18, ylab="auto",
main="Sorted Dotplot M1l by Region",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(GenRegM1M2.dfsM2,
by=NULL, graph=TRUE, box=TRUE, # Make a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of M2",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(GenRegM1M2.dfsM2,
by=GenRegM1M2 .df$Gender.recode,
graph=TRUE, box=FALSE, # No boxplot
pch=18, ylab="auto",
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main="Sorted Dotplot M2 by Gender",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")

# Note the descriptive statistics that go

# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(GenRegM1M2.dfsM2,
by=GenRegM1M2.df$Region,
graph=TRUE, box=FALSE, # No boxplot
pch=18, ylab="auto",
main="Sorted Dotplot M2 by Region",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

The epicalc::summ() by=NULL argument can be set to either TRUE or FALSE,
to either obtain or limit breakout descriptive statistics, as desired.

Although the epicalc::summ() function may be sufficient for production of
descriptive statistics by different groups, there are many other functions that serve
the same purpose. A few will be demonstrated, including the tapply() function
and the psych::describeBy() function. As time permits, explore the many other R
functions that serve a similar purpose.

tapply (M1, Gender.recode, summary, na.rm=TRUE,
data=GenRegM1M2.df) # Breakouts of M1 by Gender.recode

tapply (M2, Gender.recode, summary, na.rm=TRUE,
data=GenRegM1M2.df) # Breakouts of M2 by Gender.recode

tapply (M1, Region, summary, na.rm=TRUE,
data=GenRegM1M2.df) # Breakouts of M1 by Region

tapply (M2, Region, summary, na.rm=TRUE,
data=GenRegM1M2.df) # Breakouts of M2 by Region

install.packages ("psych")

library (psych) # Load the psych package.
help (package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.

psych: :describeBy (GenRegM1M2 .dfsM1,
GenRegM1M2.dfs$Gender.recode)
# Breakouts of M1 by Gender.recode

psych: :describeBy (GenRegM1M2.dfsM2,
GenRegM1M2.dfs$Gender.recode)
# Breakouts of M2 by Gender.recode
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psych: :describeBy (GenRegM1M2.dfsM1,
GenRegM1M2 .df$Region)
# Breakouts of M1l by Region

psych: :describeBy (GenRegM1M2 .df$M2,
GenRegM1M2 .df$Region)
# Breakouts of M2 by Region

The tables::tabular() function can be used to provide even more detail, in a fairly
attractive table format that can be easily copied or used in some other fashion in a
summary report.

install.packages ("tables")

library (tables) # Load the tables package.

help (package=tables) # Show the information page.
sessionInfo() # Confirm all attached packages.
tables::tabular ((Gender.recode + 1) ~ (n=1) + Format (digits=2)x*

(M1 + M2)* (min + max + mean + sd),
data=GenRegM1M2.df)
# Gender.recode (row) by M1 and M2 (columns)

Note how simple it would be to merely copy and then paste the output from R to
an editor, presentation program, etc.

M1 M2
Gender.recode n min max mean sd min max mean sd
Female 15 45.00 95.00 79.67 14.13 1.09 1.81 1.58 0.24
Male 15 57.00 97.00 86.80 9.75 1.13 1.81 1.46 0.24
All 30 45.00 97.00 83.23 12.47 1.09 1.81 1.52 0.24

Then, reuse the existing R-based syntax but now substitute as needed to focus on
output by Region instead of output by Gender.recode.

tables::tabular((Region + 1) ~ (n=1) + Format (digits=2)x*
(M1 + M2)* (min + max + mean + sd),
data=GenRegM1M2.df)
# Region (row) by M1 and M2 (columns)

Again, the output from the tables::tabular() function is quite useful and easily
moved from R to an editor or presentation program by using simple copy and paste
actions.

M1 M2
Region n min max mean sd min max mean sd
North 14 45.000 97.000 81.786 15.572 1.650 1.810 1.744 0.046
South 16 56.000 96.000 84.500 9.309 1.090 1.630 1.333 0.169
All 30 45.000 97.000 83.233 12.467 1.090 1.810 1.525 0.243

For those with specialized publishing purposes, the table output can also be
passed through the Hmisc::latex() function to generate output suitable for the
IXTEXword processing environment.
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install.packages ("Hmisc")

library (Hmisc) # Load the Hmisc package.
help (package=Hmisc) # Show the information page.
sessionInfo () # Confirm all attached packages.

Hmisc::latex(
tables::tabular ((Gender.recode + 1) ~ (n=1) + Format (digits=2)
(M1 + M2) % (min + max + mean + sd),
data=GenRegM1M2.df)
# Gender.recode (row) by M1 and M2 (columns)
# in LaTeX-ready format

Hmisc::latex(
tables::tabular((Region + 1) ~ (n=1) + Format (digits=2)x*

(M1 + M2)* (min + max + mean + sd),

data=GenRegM1M2.df)

# Region (row) by M1 and M2 (columns) in LaTeX-ready format
) # Wrap LaTeX around output, for those who use LaTex

From among the many possible R functions used for descriptive statistics,
whether statistics are presented as singular values or in some type of table format,
consider the prettyR::brkdn() function also.

install.packages ("prettyR")

library (prettyR) # Load the prettyR package.
help (package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.

prettyR: :brkdn (M1 ~ Gender.recode,
data=GenRegM1M2 .df, maxlevels=2,
num.desc=c ("mean", "sd", "valid.n"),
width=25, round.n=2)
# Gender.recode (row) by M1 (column)

prettyR::brkdn(M2 ~ Gender.recode,
data=GenRegM1M2 .df, maxlevels=2,
num.desc=c ("mean", "sd", "valid.n"),
width=25, round.n=2)
# Gender.recode (row) by M2 (column)

prettyR::brkdn (M1l ~ Region,
data=GenRegM1M2 .df, maxlevels=2,
num.desc=c ("mean", "sd", "valid.n"),
width=25, round.n=2)
# Region (row) by M1 (column)

prettyR::brkdn (M2 ~ Region,
data=GenRegM1M2 .df, maxlevels=2,
num.desc=c ("mean", "sd", "valid.n"),
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width=25, round.n=2)
# Region (row) by M2 (column)

Additional functions could be demonstrated, but the above functions should
provide a broad representation of how descriptive statistics and measures of central
tendency are determined when using R. With sufficient exposure, individual choice
and need determines which functions to use.

3.6 Conduct the Statistical Analysis

Be sure to notice that the dataset for this lesson was prepared in stacked format
only. As such, analyses for this lesson will not be approached from the perspective
of unstacked data. As a sidebar comment, review the help pages for the stack()
function and the unstack() function to learn more about this issue, which is not a
concern for this specific dataset but may be a concern for future analyses.

To provide some limit to the length of this lesson, assume that the focus of
this demonstration of Student’s t-Test is on analysis of differences in M1 by
Gender.recode, M2 by Gender.recode, M1 by Region, and M2 by Region. This
dataset would certainly support other analyses, but these other analyses are beyond
the scope of this lesson.

Note: Use the recoded object variable Gender.recode, to have output show as
English text instead of a cryptic letter or numeric code, which would be the case if
the object variable Gender, alone, were used. Further, see the assumption below on
the nature of equal variance. Consult the prior figures to gain a better perspective.

Ho: There is no statistically significant difference (p <= 0.05) in M1 values
by Gender (Female v Male).

t.test (GenRegM1M2.dfSM1 ~ # Measured variable
GenRegM1M2.dfsGender.recode, # Grouping variable
alternative="two.sided", # Two-sided t-Test
paired=FALSE, # Independent
na.rm=TRUE, # Missing data
var.equal=TRUE) # Equal variance

Outcome: t = -1.6094, df = 28, p-value = 0.1188

mean in group Female mean in group Male

79.66667 86.80000

Calculated p-value=0.1188, which is greater than p <= 0.05. There is no
statistically significant difference in M1 values by Gender (Female v Male).
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Ho: There is no statistically significant difference (p <= 0.05) in M2 values
by Gender (Female v Male).

Measured variable
Grouping variable
Two-sided t-Test
Independent
Missing data
Equal variance

t.test (GenRegM1M2 .dfS$M2 ~
GenRegM1M2.df$Gender.recode,
alternative="two.sided",
paired=FALSE,
na.rm=TRUE,
var.equal=TRUE)

H H HF H H H

Outcome: t = 1.3728, df = 28, p-value = 0.1807
mean in group Female mean in group Male
1.584667 1.464667

Calculated p-value=0.1807, which is greater than p <= 0.05. There is no
statistically significant difference in M2 values by Gender (Female v Male).

Ho: There is no statistically significant difference (p <= 0.05) in M1 values
by Region (North v South).

t.test (GenRegM1M2.dfS$M1 ~ # Measured variable
GenRegM1M2.dfSRegion, # Grouping variable
alternative="two.sided", # Two-sided t-Test
paired=FALSE, # Independent
na.rm=TRUE, # Missing data
var.equal=TRUE) # Equal variance

Outcome: t = -0.5882, df = 28, p-value = 0.5611

mean in group North mean in group South

81.78571 84.50000

Calculated p-value=0.5611, which is greater than p <= 0.05. There is no
statistically significant difference in M1 values by Region (North v South).

Ho: There is no statistically significant difference (p <= 0.05) in M2 values
by Region (North v South).

Measured variable
Grouping variable
Two-sided t-Test
Independent
Missing data
Equal variance

t.test (GenRegM1M2.dfSM2 ~
GenRegM1M2.dfsSRegion,
alternative="two.sided",
paired=FALSE,
na.rm=TRUE,
var.equal=TRUE)

H H H H H HF
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Outcome: t = 8.8014, df = 28, p-value = 1.49e-09
mean in group North mean in group South
1.743571 1.333125

Calculated p-value=1.49¢—09 (note the e-notation), which is less than
p <= 0.05. There is a statistically significant difference in M2 values by Region
(North v South).

Give notice to the means and p-values for each of these four separate t-Test
analyses. Attention to the p-value is perhaps the easiest way to view differences
for these analyses.

3.7 Summary

In this lesson, the graphics and statistics provided a great deal of information. Of
immediate importance, however, focus on the four Null Hypothesis statements and
the outcomes of each.

Although more detail about the nature of M1 and M2 would have been useful, for
the immediate purpose of this lesson this detail is not needed and may only cause
confusion, which is why the analysist knew very little about the biological survey.
What is important to know is that Gender and subsequently Gender.recode as well
as Region are factor-type object variables, each with two breakout values. Equally,
it is important to know that M1 and M2 are both numeric object variables.

Saying this, the analyses supported the observation that there is no statistically
significant difference (p <= 0.05)in M1 values by Gender, M2 values by Gender,
and M1 values by Region.

There is, however, a statistically significant difference (p <= 0.05) in M2
values by Region. Along with the statistical output generated from the Student’s
t-Test, notice the many figures where M2 values are presented by Region to gain a
better sense of the differences in M2 values by Region.

It may be redundant to end this lesson with syntax for a figure that was previously
provided, but look again at use of the lattice::densityplot() function and how the
graphical output provides a sense (and only a sense) of future Null Hypothesis
outcomes, as determined by use of Student’s t-Test. This figure will focus on the
one case where a statistically significant difference was observed, or M2 by Region
in this lesson.

Ho: There is no statistically significant difference (p <= 0.05) in M2 values
by Region (North v South).

par (ask=TRUE) # 1 Column by 2 Rows Density Plot
lattice::densityplot (~ GenRegM1M2.df$M2 |
GenRegM1M2 .df$Region,
type="count", # Note: count
par.settings=simpleTheme (1lwd=4) ,
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par.strip.text=1list (cex=1.15, font=2),
scales=1ist (cex=1.15),

main="Density Plot of M2 by Region",
xlab=1ist ("M2 by Region: t = 8.8014, df = 28,
p-value = 1.49e-09",

cex=1.15, font=2),

xlim=c(0,2.25), # Note the range.

ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25,

layout = c(1,2), # Note: 1 Column by 2 Rows.
col="red")

Density Plot of M2 by Region

~South

j I S

North

Density

T T T T
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M2 by Region: t=8.8014, df = 28,
p-value = 1.49e-09

Graphical output and statistical output should always be used in tandem, regard-
less of future reporting requirements and required form and style. For scientific
report writing, the statistical outcomes are typically of primary importance in terms
of what is included in a publication. Yet, for presentation purposes, graphical images
are desired. The ideal analysis includes both and is then tailored to meet specific
presentation needs, whether print or visual.

3.8 Addendum: t-Statistic v z-Statistic

It was previously mentioned that the t-Statistic (e.g., t) begins to approximate the
z-Statistic (e.g., z) when the number of subjects in a sample increases, especially
after 30 subjects. Look at the enumerated dataset below and determine if the data
(Systolic Blood Pressure by Gender) support this statement.
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3.8.1 Create the Enumerated Dataset

Use R-based syntax to create a hypothetical dataset, sufficient to meet the needs of
this demonstration. Because sampling is used in this demonstration, the composition
of the dataset will change each time this syntax is used. Correspondingly, results for
the t-Test and z-Test will also change each time.

Gender <- c(rep("Male", 1200), rep("Female", 800))
str (Gender)

length (Gender)

Gender

table (Gender)

Gender <- sample (Gender, 2000)
str (Gender)

length (Gender)

Gender

table (Gender)

Systolic <- round(rnorm (2000, 120, 25))
str (Systolic)

length (Systolic)

Systolic

summary (Systolic)

BloodPressure.df <- data.frame (Gender, Systolic)

attach (BloodPressure.df)
str (BloodPressure.df)
BloodPressure.df

summary (BloodPressure.df)

3.8.2 Calculate the t-Statistic

Use R syntax to conduct a Student’s t-Test of variables in the dataset that was just
created. Sampling was used to create this sample dataset so remember that values
change each time the dataset in this addendum is created.

t.test (BloodPressure.df$Systolic ~ # Measured variable
BloodPressure.df$Gender, Grouping variable
alternative="two.sided", Two-sided t-Test
paired=FALSE, Independent
na.rm=TRUE, Missing data
var.equal=TRUE) Equal variance

H H H H H
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Outcome: t = 0.578, df = 1998, p-value = 0.5633
mean in group Female mean in group Male
120.0037 119.3425

3.8.3 Calculate the z-Statistic

Use the coin package and specifically the coin::independence test() function to
conduct a z-Test against variables in the dataset that was just created.

install.packages ("coin")

library (coin) # Load the coin package.
help (package=coin) # Show the information page.
sessionInfo() # Confirm all attached packages.

coin: :independence test (Systolic ~ Gender,
data=BloodPressure.df)

Outcome: Systolic by Gender (Female, Male)
Z = 0.5781, p-value = 0.5632

Notice, in this sample of 2,000 subjects, that within the scope of rounding, t
approximates z and the two p-values are also approximately equal:

t-statistic
z-statistic

0.5633
0.5632

0.578 and p-value
0.5781 and p-value

Caution: Again, results are dependent on composition of the dataset, which
was created by using the R-based sample() function. The t-Statistic and z-Statistic
change as the dataset changes but it is expected that t and z will approximate each
other each time the syntax in this addendum is used.

Student’s t-Test is certainly appropriate for small samples (N <= 30 subjects),
but the z-statistic may be of more interest when the number of subjects is fairly
large.

3.9 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.

Use the following set of actions to exit from the current R session.

getwd () # Identify the current working directory.
1s() # List all objects in the working
# directory.
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ls.stxr () # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image ("R_Lesson_t-Test_ Independent-Samples.rdata")

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.

alarm() # Alarm, notice of upcoming action.
aql) Quit this session.
# Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.

++



Chapter 4
Student’s t-Test for Matched Pairs

Abstract The purpose of this lesson is to use R to examine differences to a singular
measured variable between pairs, specifically by using Student’s t-Test for Matched
Pairs. Along with the use of Student’s t-Test to compare differences between two
separate groups against a singular measured variable, Student’s t-Test can also
be used to compare differences to a single measured variable when subjects are
matched against a counterpart. This lesson also provides an introduction to the use
of unstacked data as compared to the use of stacked data. Finally, the issues of
sample size (especially N of 30 or so) and sample representation are introduced in
this lesson.

Keywords Independent samples ¢  Matched pairs ¢ Pre-test
* Post-test * Repeated measures ¢ Stacked data  Student’s t-Test e t-statistic
* Unstacked data

4.1 Background on This Lesson

4.1.1 Description of the Data

This lesson on Student’s t-Test for Matched Pairs has been designed to determine
if there is a statistically significant difference (p <= 0.05) in the weight (Kg) of
individual biological specimens after the application of a mineral supplement in the
feeding program. The individual charged with responsibility for data analysis knows
very little about the specifics of the data, the nature of the biological specimen, the
feeding program, and the added supplement.

For now, it is only sufficient to know that the biological specimens are all adults
of both genders and that they are on a maintenance feeding program. That is to say,
they receive sufficient feed and water to maintain their weight, but an overt attempt

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 47
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at weight gain is not a goal for the current feeding program. The feeding program,
access to water, available rations, ventilation and housing, etc. remained constant
and consistent throughout the experimental period.

Individual specimens were all weighed on the same day. Immediately after
weighing the specimens a mineral supplement was introduced into the feeding
program. The mineral supplement is tasteless and odorless, has no noticeable
texture, and it is assumed to have no impact on feed palatability. After a set,
but unidentified, period of time, individual subjects are weighed again, all on the
same day. Weights are in Kg and this measurement is viewed as a numeric value.
Note how the specimens are not divided into breakout groups (e.g., there is no
grouping by gender, breed, color, height at the withers, etc.). Equally, the feeding
program and application of the mineral supplement are also consistent, with no
grouping or special treatment of any type.

This arrangement is a representation of a simple pre-test and post-test experiment
and by design, Student’s t-Test for Matched Pairs will be used for statistical
analysis:

* Subjects are organized into one common group where individual subjects are
matched against their initial pre-test measurement and their final post-test
measurement.

* Subjects are measured with an initial pre-test. In this case, the pre-test was weight
(Kg) at beginning of the treatment (e.g., feeding program).

* Subjects then experience some type of treatment. In this case, the treatment was
an added mineral supplement.

* The nature of the treatment and duration of the treatment is the same for all
subjects.

* Subjects are measured with a terminal post-test. In this case, the post-test was
weight (Kg) at the end of the treatment (e.g., feeding program).

The matched pairs for this experiment are the pre-test and post-test weights for
each individual subject. That is to say, individual subjects are their own matched
pair, with weight KgPreSupplement taken at the beginning of the feeding program
and weight KgPostSupplement taken again at the end of the treatment.

Review prior discussion on the development, nature, and use of Student’s t-Test.
The pre-test and post-test approach (e.g., repeated measures) used in this lesson is
a common approach for Student’s t-Test for Matched Pairs. As a sidebar comment,
closely related subjects are often used as matched pairs, such as classmates who
experienced similar instruction, human siblings, livestock litter mates, etc., but this
is not the approach used in this lesson. In this lesson, individual subjects are their
own match, in a pre-test and post-test situation.

This sample will be interesting in that it is a fairly large dataset of 150 subjects
and it also introduces the realities of working with missing data. There is a missing
post-test datum for Subject 19. There is always a host of reasons why data may be
missing from a dataset: the subject may have been unavailable for measurement,
the subject may have died, the field technician may have recorded a weight that
is simply not valid (e.g., illogical or out-of-range), field notes for this measurement
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may have been either lost or damaged beyond use, the data entry specialist may have
failed to enter the datum, etc. Missing data are never desirable, but it is a condition
that must be considered since it is common.

Given the nature of the data for this lesson, it is judged that a Student’s t-Test for
Matched Pairs is an appropriate approach in the attempt to determine if there is any
statistically significant difference in weights (Kg) between pre-test measures and
post-test measures: KgPreSupplement and KgPostSupplement. Again, recall that
there are no planned breakout analyses by gender, varying supplement strengths,
varying supplement application periods, etc.

4.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in the pre-test weight
(Kg) of unidentified adult biological specimens and the post-test weight (Kg) of
unidentified adult biological specimens at the termination of a feeding program,
where a tasteless and odorless mineral supplement was introduced into the feeding
program.

4.1.3 Unstacked Data and Stacked Data

Data for Student’s t-Test typically involves identification of the grouping variable
(e.g., binary variable; Male v Female, Location 1 v Location 2, supplemental light
in the housing unit v natural light only in the housing unit, etc.) and the measured
variable. There are two ways that data can be presented in electronic format for a
Student’s t-Test analysis and then used in R. Again, data can be unstacked and data
can be stacked. An example about dogs, which is different from the focus of this
lesson, will help clarify these two methods for data organization.

Unstacked Data

Unstacked data for ten separate subjects (2-year old Labrador Retrievers) for gender
and weight (Lbs.) follow:

Weight.LabDog.Female Weight .LabDog.Male
51 55
53 61
50 58
49 60

52 64
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With unstacked data, the two columns are typically next to each other. The
standard way to use R to conduct a Student’s t-Test with unstacked data is to use
a comma to separate identification of the two data columns:

t.test (Columnl, Column2) # Unstacked data uses , and not ~
t.test (Weight.LabDog.Female, Weight.LabDog.Male)

Of course, arguments can always be added to this general means of conducting a
Student’s t-Test.

Stacked Data

Although the experienced researcher will be able to work with data organized in
either format (unstacked or stacked), it is perhaps more common to see data put into
stacked format than unstacked format.

Stacked data for ten separate subjects (2-year old Labrador Retrievers) for gender
and weight (Lbs.) follow:

Gender Weight .LabDog
Female 51
Female 53
Female 50
Female 49
Female 52
Male 55
Male 61
Male 58
Male 60
Male 64

The grouping variable, also called the binary variable, is Gender (e.g., Female
and Male). The measured datum is Weight.LabDog, measured in Lbs.

With stacked data, as shown above, the data are organized so that data for the
grouping variable (Gender, Female and Male) are placed in one column and the
corresponding measured data (Weight.LabDog, measured in Lbs.) are found in an
adjacent column.

The standard way to use R to conduct a Student’s t-Test with stacked data is to
use a tilde to separate the variable representing the measured data and the variable
representing the two groups.

t.test (Measured.Data.Variable ~ Grouping.Variable)
t.test (Weight.LabDog ~ Gender) # Stacked data uses ~ and not ,

Of course, arguments can always be added to this general means of conducting a
Student’s t-Test.
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4.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the data have been organized as unstacked data. The dataset has been
prepared in .csv (e.g., comma-separated values) file format. The data are separated
by commas. The data are not separated by tabs and the data are not separated
by spaces.

Assume that the data were originally transferred from paper field notes into a
Gnumeric-based spreadsheet, saved in .gnumeric file format. After the spreadsheet
was reviewed by staff and put into final form, it was then saved in .csv file format,
to facilitate data import action into R and transfer in a common format to interested
colleagues. As is evident when the data are reviewed, there is a missing datum, due
to difficulties encountered during field operations.

HHE# R

# Housekeeping Use for All Analyses
HEHSHHEHE S S
rm(list = 1s()) # CAUTION: Remove all files in the working

# directory. If this action is not desired,
# use the rm() function one-by-one to remove
# the objects that are not needed.
setwd ("F: /R _Biostatistics")
# Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.
getwd () Confirm the working directory.
search () # Attached packages and objects.
HHAFHHHHH A R R R R R R

Create an object called PrePostWtUnstack.df. The object PrePostWtUnstack.df
will be a dataframe, as indicated by the enumerated .df extension to the object name.
This object will represent the output of applying the read.table() function against the
comma-separated values file called Weight PrePost Supplement Unstacked.csv.
Note the arguments used with the read.table() function, showing that there is a
header with descriptive variable names (header=TRUE) and that the separator
between fields is a comma (sep=",").

H* HF H H HF

PrePostWtUnstack.df <- read.table (file =
"Weight PrePost_Supplement_ Unstacked.csv",
header = TRUE,
Sep = n,n)

+H+

Import the .csv file

getwd () # Identify the working directory
1s() # List objects

attach (PrePostWtUnstack.df) # Attach the data, for later use
str (PrePostWtUnstack.df) # Identify structure

nrow (PrePostWtUnstack.df) # List the number of rows
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List the number of columns
Dimensions of the dataframe

ncol (PrePostWtUnstack.df) #
dim(PrePostWtUnstack.df) #

names (PrePostWtUnstack.df) # Identify names
colnames (PrePostWtUnstack.df) # Show column names
rownames (PrePostWtUnstack.df) # Show row names
head (PrePostWtUnstack.df) # Show the head
tail (PrePostWtUnstack.df) # Show the tail
PrePostWtUnstack.df # Show the entire dataframe
summary (PrePostWtUnstack.df) # Summary statistics

By completing this action, an object called PrePostWtUnstack.df has been
created. This R-based object is a dataframe and it consists of the data origi-
nally included in the file Weight PrePost Supplement Unstacked.csv, a comma-
separated .csv file. To avoid possible conflicts, make sure that there are no
prior R-based objects called PrePostWtUnstack.df. The prior use of rm(list=1s())
accommodates this concern, removing all prior objects in the current R session.

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located (see the Housekeeping section at the
beginning of this lesson).

Additionally, when showing the entire dataset, notice the listing for Subject
19 and how NA (the R notation for missing data) has been inserted for the
KgPostSupplement datum. Review the help page for the read.table() function to
see how blank fields, which applies for Subject 19, are viewed as missing values
and that NA is inserted during execution of the read.table() function.

4.3 Organize the Data and Display the Code Book

For this lesson, the class() function, str() function, and duplicated() function will be
used to be sure that data are organized as desired.

PrePostWtUnstack.df)
PrePostWtUnstack.df$Subject)
PrePostWtUnstack.df$KgPreSupplement)
PrePostWtUnstack.df$KgPostSupplement)

class
class
class
class

—~ o~~~

str (PrePostWtUnstack.df) # Structure

duplicated (PrePostWtUnstack.df) # Duplicates

The class for each object seems to be correct and there are no duplicate rows of
data in the dataframe. Saying this, a Code Book will help with future understanding
of this dataset.

A Code Book is an essential aid for anyone involved in the day-to-day activities
of the research and statistics process. The Code Book is typically brief and only
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serves as a useful reminder for what can be easily forgotten months (or even weeks)
later, to make it easy to decipher what may otherwise be seen as arcane numeric
codes. Coding schemes that are intuitive today can easily become obtuse tomorrow.

The Code Book below represents how data are desired before analyses begin.
Recoding may be needed to put data into new formats.

FHESHHHFFHH R R RS

# Code Book #
HHAHAFHAEHH A HAHHAH S H A S R R A
# #
# Subject ........ ... Factor (e.g., nominal) #
# A unique ID ranging from 1 to 150 #
# #
# KgPreSupplement  ........ Numeric (e.g., interval) #
# Weight (Kg) of an unidentified biological #
# specimen, ranging from 5.00 to 20.00 #
# #
# KgPostSupplement  ....... Numeric (e.g., interval) #
# Weight (Kg) of an unidentified biological #
# specimen, ranging from 5.00 to 20.00 #
HHAHAFHAEHH A HAHH A H S H A S S A R A

The str() function is then again applied against the dataframe to see the nature of
each object variable as well as confirmation that the data are collectively viewed as
a dataframe:

str (PrePostWtUnstack.df)

Recall that the Code Book shows data in their desired formats, which often
requires some degree of recoding which has not yet occurred.

Once there is agreement that the data were brought into R in correct format, it is
usually necessary to organize the data to some degree:

* The object variable Subject is currently viewed as an integer. Some R users may
find it best to recode these identification-type numeric values into row names, but
in this lesson Subject will instead be recoded into a factor object variable.

* Values for KgPreSupplement are viewed as numeric values.

* Values for KgPostSupplement are viewed as numeric values.

This transformation (again, typically called a recode action) is needed and the
process, using R-based syntax, follows. There may be some unnecessary (perhaps
redundant) actions with the following recode activities, but these are purposely done
to provide assurance that each variable is in desired format:

PrePostWtUnstack.df$Subject <- as.factor(
PrePostWtUnstack.df$Subject)

PrePostWtUnstack.df$KgPreSupplement <- as.numeric(
PrePostWtUnstack.df$KgPreSupplement)
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PrePostWtUnstack.df$KgPostSupplement <- as.numeric(
PrePostWtUnstack.df$KgPostSupplement)

getwd () # Identify the working directory
1s() # List objects

attach (PrePostWtUnstack.df) # Attach the data, for later use
str (PrePostWtUnstack.df) # Identify structure

nrow (PrePostWtUnstack.df) # List the number of rows

ncol (PrePostWtUnstack.df) # List the number of columns

dim (PrePostWtUnstack.df) # Dimensions of the dataframe
names (PrePostWtUnstack.df) # Identify names

colnames (PrePostWtUnstack.df) # Show column names

rownames (PrePostWtUnstack.df) # Show row names

head (PrePostWtUnstack.df) # Show the head

tail (PrePostWtUnstack.df) # Show the tail
PrePostWtUnstack.df # Show the entire dataframe
summary (PrePostWtUnstack.df) # Summary statistics

Note the formal nomenclature used in this recode action and the use of
DataFrame$ObjectName notation when working with object variables that are part
of a dataframe. Note also how the $ symbol is used to separate the name of the
dataframe from the name of the object: DataFrame$ObjectName notation.

4.4 Conduct a Visual Data Check

Now that the data are all in proper format, it would be common to immediately
apply the t-Test algorithm for matched pairs against the data and to complete this
analysis. However, it is best to first prepare a few graphical displays of the data and
to then reinforce comprehension of the data with descriptive statistics and measures
of central tendency.

A few throwaway graphics will likely be sufficient at first, but fully-embellished
graphical images may be needed later, for either publication or presentation. The
full set of lessons, both prior lessons and future lessons, provide many examples of
how graphics enhance understanding of the data.

par (ask=TRUE)
plot (PrePostWtUnstack.df$Subject,
main="Plot of Subject")

par (ask=TRUE)

plot (density (PrePostWtUnstack.df$KgPreSupplement,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Pre-Supplement Weight (Kg)",
lwd=6, col="red", font.axis=2, font.lab=2)
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par (ask=TRUE)

plot (density (PrePostWtUnstack.dfSKgPostSupplement,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Post-Supplement Weight (Kg)",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)
hist (PrePostWtUnstack.df$KgPreSupplement,
main="Histogram of Pre-Supplement")

par (ask=TRUE)
hist (PrePostWtUnstack.dfSKgPostSupplement,
main="Histogram of Post-Supplement")

The throwaway graphics plot(), plot(density()), and hist(), along with other
simple graphical functions, are all quite useful. As seen using the plot() function
against PrePostWtUnstack.df$Subject, it seems that all subjects are included
in the dataset. Further, the plot(density()) and hist() functions against the two
numeric variables (PrePostWtUnstack.df$KgPreSupplement and PrePostWtUn-
stack.df$KgPostSupplement) generally follow normal distribution of values (e.g.,
approximate the bell-shaped curve). Saying this, a few more slightly embellished
graphics will help better understand the nature of the data.

par (ask=TRUE)

boxplot (PrePostWtUnstack.df$KgPreSupplement,
main="Boxplot of Weight (Kg) Pre-Supplement",
xlab="Weight (Kg)",
ylim=c(0,20), col="red", range=0)

box ()

Note how PrePostWtUnstack.df$KgPreSupplement was used in this boxplot
instead of KgPreSupplement. It is usually best to use DataFrame$ObjectName
notation when naming object variables. Descriptive object names are desirable since
they support internal documentation and subsequently promote good programming
practice (gpp). Of course, the same naming approach applies for the object variable
PrePostWtUnstack.df$KgPostSupplement.

par (ask=TRUE)

boxplot (PrePostWtUnstack.df$KgPostSupplement,
main="Boxplot of Weight (Kg) Post-Supplement",
xlab="Weight (Kg)",
ylim=c(0,20), col="red", range=0)

box ()

par (ask=TRUE)
boxplot (PrePostWtUnstack.df$KgPreSupplement,
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PrePostWtUnstack.df$KgPostSupplement,
main="Boxplot of Weight (Kg) Pre-Supplement and
Post Supplement",
names=c ("Pre-Supplement Weight (Kg)",
"Post-Supplement Weight (Kg)"),
ylim=c(0,20), col="red", range=0)
box ()

Although it is useful to have separate boxplots, it is also useful to have the two
distributions, as boxplots, displayed side-by-side. This action allows for a visual
comparison of the distribution of both object variables.

Histograms also provide a general view of the data. The histograms below are
slightly embellished.

par (ask=TRUE)

hist (PrePostWtUnstack.dfSKgPreSupplement,
main="Embellished Histogram of Weight (Kg)
Pre-Supplement",
xlab="Weight (Kg)", font.lab=2, font.axis=2,
freq=TRUE, xlim=c(0,20), ylim=c(0,35), col="red")

box ()

par (ask=TRUE)

hist (PrePostWtUnstack.df$KgPostSupplement,
main="Embellished Histogram of Weight (Kg)
Post-Supplement",
xlab="Weight (Kg)", font.lab=2, font.axis=2,
freg=TRUE, xlim=c(0,20), ylim=c(0,35), col="red")

box ()

install.packages ("UsingR")

library (UsingR) # Load the UsingR package.
help (package=UsingR) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

UsingR: :simple.hist.and.boxplot (
PrePostWtUnstack.df$KgPreSupplement,
main="Histogram, Rug, and Boxplot of Weight (Kg)
Pre-Supplement")

par (ask=TRUE)

UsingR: :simple.hist.and.boxplot (
PrePostWtUnstack.df$KgPostSupplement,
main="Histogram, Rug, and Boxplot of Weight (Kg)
Post-Supplement")
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The UsingR::simple.hist.and.boxplot() function combines a histogram, rug, and
a boxplot. Key help(rug) to learn more about this useful tool for another way of
displaying data distributions.

install.packages ("descr")

library (descr) # Load the descr package.

help (package=descr) # Show the information page.
sessionInfo() # Confirm all attached packages.
savelwd <- par(lwd=6) # Heavy line

par (ask=TRUE)
descr: ::histkdnc (PrePostWtUnstack.df$KgPreSupplement,
breaks = 0, include.lowest = TRUE, right = TRUE,

col = "wheatl", border="black",
main =" Histogram of Weight (Kg) Pre-Supplement with
Density Plot Overlay (Red) and Normal Curve (Blue)",
xlab = "Weight (Kg)", font.lab=2, font.axis=2)

box ()

par (savelwd) # Return to original value.

savelwd <- par(lwd=6) # Heavy line

par (ask=TRUE)

descr:::histkdnc (PrePostWtUnstack.df$KgPostSupplement,
breaks = 0, include.lowest = TRUE, right = TRUE,

col = "wheatl", border="black",
main =" Histogram of Weight (Kg) Post-Supplement with
Density Plot Overlay (Red) and Normal Curve (Blue)",
xlab = "Weight (Kg)", font.lab=2, font.axis=2)

box ()

par (savelwd) # Return to original value.

The descr:::histkdnc() function generates an attractive and concise display,
enhancing visualization of data distribution.

par (ask=TRUE)
Pre.histogram <- hist (PrePostWtUnstack.df$KgPreSupplement)

par (ask=TRUE)
plot (Pre.histogram,
main="Histogram of Pre-Supplement Weight (Kg)
with Added Frequency Values",
xlab="Weight (Kg)", font.lab=2, font.axis=2,
freq=TRUE, xlim=c(0,20), ylim=c(0,35), col="red")
text (Pre.histogram$mids,
Pre.histogram$counts+2,
label=c(Pre.histogram$counts), font=2)
box ()

par (ask=TRUE)
Post.histogram <- hist (PrePostWtUnstack.df$KgPostSupplement)
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par (ask=TRUE)
plot (Post.histogram,
main="Histogram of Post-Supplement Weight (Kg)
with Added Frequency Values",
xlab="Weight (Kg)", font.lab=2, font.axis=2,
freg=TRUE, xlim=c(0,20), ylim=c(0,35), col="red")
text (Post.histogram$mids,
Post.histogram$counts+2,
label=c (Post.histogramscounts), font=2)
box ()

In the above example, a histogram is first prepared for the selected object
variable. Then, text is added to the histogram, showing the number of values
(e.g., count, frequency values, etc.) for each bar.

install.packages ("Hmisc")

library (Hmisc) # Load the Hmisc package.

help (package=Hmisc) # Show the information page.
sessionInfo() # Confirm all attached packages.
savefont <- par (font=2) # Bold text

savefont.lab <- par (font.lab=2) # Bold labels

savefont.axis <- par(font.axis=2) # Bold axis

par (Ask=TRUE)

Side by Side Histogram <- Hmisc::histbackback (
PrePostWtUnstack.df$KgPreSupplement,
PrePostWtUnstack.df$KgPostSupplement,
xlab=c ("Pre-Supplement Weight (Kg)",

"Post-Supplement Weight (Kg)"),
ylab="Weight (Kg)", probability=TRUE, axes=TRUE,
xlim=c(-0.25, 0.25),
main="Pre-Supplement Weight (Kg) v Post-Supplement
Weight (Kg)")

barplot (-Side by Side Histograms$left, # See the - sign

col="red" , horiz=TRUE, space=0, add=TRUE, axes=FALSE)
barplot (Side_ by Side Histogram$right,

col="blue", horiz=TRUE, space=0, add=TRUE, axes=FALSE)
legend ("topleft™",

bty="n", fill="red", "Pre-Supplement ")
legend ("bottomright",

bty="n", fill="blue", "Post-Supplement ")

par (savefont) # Return to default setting

par (savefont.lab) # Return to default setting

par (savefont.axis) # Return to default setting

box ()

A set of side-by-side histograms is a powerful tool for visualizing the distribution
of two numeric object vectors. The Hmisc::histbackback() function is one of the best
tools for this purpose.
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Overlapping density plots are another useful tool for displaying data distribution
of two separate object variables. Of course, the selected inferential analysis
(Student’s t-Test for Matched Pairs in this lesson) is used to determine if there is
a statistically significant difference between the two distributions.

par (ask=TRUE)

plot (density (PrePostWtUnstack.df$KgPreSupplement,
na.rm=TRUE) ,
main="Density Plot of Pre-Supplement Weight (Kg) and
Post Supplement Weight (Kg)",
xlab="Weight (Kg)", font.lab=2, font.axis=2, xlim=c(0,20),
ylim=c(0,0.22), # Adjust to meet the specific data
lwd=8, lty=1, col="red")

lines (density (PrePostWtUnstack.df$KgPostSupplement,
na.rm=TRUE) ,
font.lab=2, font.axis=2,

xlim=c (0,20), # Adjust to meet the specific data
lwd=8, 1lty=6, col="blue")
savefont <- par (font=2) # Bold text

legend("topleft",
bty="n", fill="red", "Pre-Supplement Weight (Kg) ")
legend ("topright",

bty="n", fill="blue", "Post-Supplement Weight (Kg) ")
par (savefont) # Return to default setting
box ()

Density Plot of Pre-Supplement Welght (Kg) and
Post Supplement Weight (Kg)

@ Pre-Supplement Waight (Hg) | Post-Supplement Weight g}

o /‘

0 1 10 16 20

Weight (Kg)

In this figure, the distribution of values for the two object variables KgPreSup-
plement and KgPostSupplement is not an exact facsimile of values in a normal
curve, but the distribution is adequate and these graphical images help in judging the
appropriate use of the parametric Student’s t-Test for Matched Pairs, where normal
distribution is desired, but rarely achieved at the level of perfection.
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4.5 Descriptive Analysis of the Data

This dataset introduces the need for attention to missing data. Given the different
ways missing data can impact analyses, it is often helpful to first check for missing
data by using the is.na() function and the complete.cases() function against the
entire dataset. Both functions return a TRUE or FALSE response, depending on
the function and the outcome of whether data are missing or data are not missing.

is.na (PrePostWtUnstack.df) # Check for missing data
complete.cases (PrePostWtUnstack.df) # Check for complete cases

For the dataset PrePostWtUnstack.df note how there is a missing KgPostSupple-
ment datum for Subject 19 and of course, this event shows when using the is.na()
function and the complete.cases() function.

For this simple dataset, the summary() function may be all that is necessary to
gain a sense of the data. Note how the summary() function is applied against the
entire dataset, thus yielding information about all object variables, including the
object variable Subject.

summary (PrePostWtUnstack.df)

When viewing the summary() function output, give attention to the listing of NA
for KgPostSupplement. Again, the summary() function is very useful and it should
always be a first selection when preparing descriptive analyses.

Although the summary() function is often sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, review the prior
lesson Descriptive Statistics and Measures of Central Tendency for a comprehen-
sive review of the functions used for descriptive statistics, especially: length(),
asbio::Mode(), median(), mean(), sd(), table(), and finally summary(). As needed
(but not always, depending on specific functions), the na.rm=TRUE argument or
some other similar convention will be used to accommodate missing data.

length (PrePostWtUnstack.df$KgPreSupplement) # N
length (PrePostWtUnstack.df$KgPostSupplement) # N

install.packages ("asbio")

library (asbio) # Load the asbio package.

help (package=asbio) # Show the information page.
sessionInfo () # Confirm all attached packages.

asbio: :Mode (PrePostWtUnstack.df$KgPreSupplement) # Mode
asbio: :Mode (PrePostWtUnstack.df$KgPostSupplement) # Mode

The asbio::Mode() function does not easily accommodate missing values, if at
all. Given this challenge, a simple use of R syntax should be all that is needed to
hand-calculate mode, the most frequently occurring value in an array of values.

mode.of . KgPreSupplement <-
names (sort (-table (PrePostWtUnstack.df$KgPreSupplement))) [1]
mode.of . KgPreSupplement # Hand calculate mode with NAs



4.5 Descriptive Analysis of the Data 61

mode .of .KgPostSupplement <-
names (sort (-table (PrePostWtUnstack.df$KgPostSupplement))) [1]
mode . of . KgPostSupplement # Hand calculate mode with NAs

median (PrePostWtUnstack.df$KgPreSupplement,

na.rm=TRUE) # Median
median (PrePostWtUnstack.df$KgPostSupplement,
na.rm=TRUE) # Median

mean (PrePostWtUnstack.df$KgPreSupplement, na.rm=TRUE) # Mean
sd (PrePostWtUnstack.df $KgPreSupplement,na.rm=TRUE ) # SD
# Measures of Central Tendency

mean (PrePostWtUnstack.df $KgPostSupplement,na.rm=TRUE )# Mean
sd (PrePostWtUnstack.df$KgPostSupplement, na.rm=TRUE) # SD
# Measures of Central Tendency

summary (PrePostWtUnstack.df)

The epicalc::summ() function is also useful in that it can provide descriptive
statistics and a representative figure of individual object variables.

install.packages ("epicalc")

library(epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(PrePostWtUnstack.df$KgPreSupplement,
by=NULL, graph=TRUE, box=TRUE, # Generate a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of
Pre-Supplement Weight (Kg)",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

par (ask=TRUE) # Use the epicalc package.

epicalc: :summ(PrePostWtUnstack.df$KgPostSupplement,
by=NULL, graph=TRUE, box=TRUE, # Generate a boxplot
pch=18, ylab="auto",
main="Sorted Dotplot and Boxplot of
Pre-Supplement Weight (Kg)",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2,
dot.col="auto")
# Note the descriptive statistics that go
# along with the epicalc::summ() function.

Although the epicalc::summ() function may be sufficient for production of
descriptive statistics, there are many other functions that serve the same purpose.
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A few will be demonstrated, including the prettyR::describe() function, the
psych::describe() function, and the lessR::SummaryStats() function. As time
permits, explore the many other R functions that serve a similar purpose.

install.packages ("prettyR")

library (prettyR) # Load the prettyR package.
help (package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.

prettyR: :describe (PrePostWtUnstack.df $KgPreSupplement)
prettyR: :describe (PrePostWtUnstack.df $KgPostSupplement)

install.packages ("psych")

library (psych) # Load the psych package.
help (package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.

psych: :describe (PrePostWtUnstack.df $KgPreSupplement)
psych: :describe (PrePostWtUnstack.df $KgPostSupplement)

install.packages ("lessR")

library(lessR) # Load the lessR package.
help (package=1lessR) # Show the information page.
sessionInfo () # Confirm all attached packages.

lessR: :SummaryStats (KgPreSupplement, data=PrePostWtUnstack.df)
lessR::SummaryStats (KgPostSupplement, data=PrePostWtUnstack.df)

The tables::tabular() function can be used to provide even more detail, in a fairly
attractive table format that can be easily copied or used in some other fashion in a
summary report.

install.packages(“tables™)

library (tables) # Load the tables package.
help (package=tables) # Show the information page.
sessionInfo () # Confirm all attached packages.

tables::tabular (KgPreSupplement* (length + min + max + mean) ~
1, data=PrePostWtUnstack.df)

tables: :tabular (KgPostSupplement« (length + min + max + mean) ~
1, data=PrePostWtUnstack.df )

The tables::tabular() function cannot immediately accommodate missing values,
such as the case for Subject 19 — KgPostSupplement. A simple enumeration of a
new set of functions for length, min, max, and mean will take care of this concern.

LENGTH <- function(x) base::length(x) # Redundant for length
MIN <- function(x) base::min(x, na.rm=TRUE)
MAX <- function(x) base::max(x, na.rm=TRUE)
MEAN <- function(x) base::mean(x, na.rm=TRUE)

tables::tabular (KgPreSupplement* (length + min + max + mean) ~
1, data=PrePostWtUnstack.df)
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tables::tabular (KgPostSupplement* (LENGTH + MIN + MAX + MEAN) -~
1, data=PrePostWtUnstack.df ) # Note the use of CAPS here

Additional functions could be demonstrated, but the above functions should
provide a broad representation of how descriptive statistics and measures of central
tendency are determined when using R. Our immediate concern for the two object
variables in question is again easily viewed by using the summary() function:

> summary (PrePostWtUnstack.df)

Subject KgPreSupplement KgPostSupplement

1 : 1 Min. : 5.57 Min. : 5.57
2 1 1st Qu.: 9.28 l1st Qu.: 9.64
3 1 Median :10.60 Median :10.89
4 1 Mean :10.79 Mean :11.19
5 1 3rd Qu.:12.24 3rd Qu.:12.56
6 1 Max. :16.47 Max. :16.30
(Other) : 144 NA's :1

With sufficient experience, preferences and individual choice will help deter-
mines which functions to use. For now it is only necessary to determine if
there is a statistically significant difference in KgPreSupplement as compared to
KgPostSupplement.

4.6 Conduct the Statistical Analysis

The dataset for this part of the lesson was prepared in unstacked format. A brief
demonstration of the same data, but presented as a dataset in stacked format, follows
later in this lesson. Review the help pages for the stack() function and the unstack()
function to learn more about this issue.

Although a great deal of information has been given to visual presentations of
data distribution and descriptive statistics, our primary emphasis for this lesson
revolves around Student’s t-Test for Matched Pairs.

Use the t.test() function and note in the two examples, below, differences in the
way variance is viewed: default selection, declared equal variance, declared unequal
variance.

t.test (PrePostWtUnstack.df$KgPreSupplement, # Measured variable
PrePostWtUnstack.df$KgPostSupplement, Measured variable
paired=TRUE, Matched pairs
na.rm=TRUE) Missing data

H*+ HF H

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206
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t.test (PrePostWtUnstack.df$KgPreSupplement,
PrePostWtUnstack.df$KgPostSupplement,
alternative="two.sided",
paired=TRUE,
na.rm=TRUE,
var.equal=TRUE)

Measured variable
Measured variable
Two-sided t-Test
Matched pairs
Missing data
Equal variance

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206

t.test (PrePostWtUnstack.df$KgPreSupplement, # Measured variable
PrePostWtUnstack.df$KgPostSupplement, # Measured variable
alternative="two.sided", # Two-sided t-Test
paired=TRUE, # Matched pairs
na.rm=TRUE, # Missing data
var.equal=FALSE) # Equal variance

# is not TRUE

0

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206

Notice how a comma and not a tilde was used to separate the unstacked objects
PrePostWtUnstack.df$KgPreSupplement and PrePostWtUnstack.df$KgPostSup-
plement. There is no grouping (e.g., binary) variable with unstacked data as there is
with stacked data since the two sets of unstacked data represent their own groups.
By design, look at the error message below, which was generated by R when a ~
instead of a, was used with unstacked data.

t.test (PrePostWtUnstack.df$KgPreSupplement ~ # Mesured variable

PrePostWtUnstack.df$KgPostSupplement, # Measred variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

Outcome: Error grouping factor must have exactly 2 levels

Key help(t.test) at the R prompt to learn more about the many arguments
associated with the t.test() function. Of special importance for many circumstances
is the issue of the declared confidence interval.

As demonstrated below, a 95 % confidence interval is the default confidence for
the t.test() function. Note how it was not necessary to declare this argument in the
following syntax:

# No declared confidence level - use default
t.test (PrePostWtUnstack.df$KgPreSupplement,
PrePostWtUnstack.df$KgPostSupplement,
alternative="two.sided",
paired=TRUE, na.rm=TRUE, var.equal=TRUE)
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Outcome: 95 percent confidence interval:
-0.4829758 -0.2825275

There may be times, however, when a different confidence interval is needed.
To achieve that aim, merely use the conf= argument, as demonstrated below:

# Adjust to 90 percent confidence interval.
t.test (PrePostWtUnstack.df$KgPreSupplement,
PrePostWtUnstack.df$KgPostSupplement,
alternative="two.sided",
paired=TRUE, na.rm=TRUE,
conf=0.9, # Not default selection
var.equal=TRUE)

Outcome: 90 percent confidence interval:
-0.4667002 -0.2988032

As useful as the t.test() function is, it is often a good idea to analyze the same
dataset with a complementary function, as a redundant data check. For comparison
of statistics generated by the t.test() function, consider the lessR::ttest() function.
Although the interface for how outcomes are presented with the lessR::ttest()
function will be different than how outcomes show with the t.test() function, the
statistics should be equivalent, with the possible observation of rounding.

# Use of the lessR::ttest() function as a redundant

# check on the t.test() function

lessR::ttest (KgPreSupplement, KgPostSupplement,
data=PrePostWtUnstack.df, paired=TRUE)

Outcome: t-value = -7.547, df = 148, p-value = 0.000

As with all other R functions, first learn the basics and work with default settings.
Then use the help pages and other learning resource materials. RSeek (http://rseek.
org) is especially helpful to initiate search strategies.

4.7 Summary

In this lesson, the graphics and statistics provided a great deal of information.
Of immediate importance, however, focus on outcomes of the Student’s t-Test for
Matched Pairs, used to address the Null Hypothesis.

Assuming that the two variances are equal, the following statistics of importance
have been gained from two sets of analyses (descriptive statistics and Student’s
t-Test) for this problem:

n mean sd
KgPreSupplement 150 10.79 2.22
KgPostSupplement 149 11.19 2.07


http://rseek.org
http://rseek.org
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t = -7.5467, df = 148, p-value = 0.000000000004206

Attention to the p-value is perhaps the easiest way to view differences for this
problem:

e The calculated p-value is 0.000000000004206.
* The declared p-value, from the previously stated Null Hypothesis, is 0.05.
e The calculated p-value is less than the declared p-value.

Therefore, the Null Hypothesis is rejected (e.g., not accepted) and it can be
claimed that there is a difference (p <= 0.05) between KgPreSupplement and
KgPostSupplement. The weight (Kg) for subjects was greater after the supplement
was provided than the weight (Kg) of subjects before the supplement was provided
and this difference is not due to chance but instead represents a true difference.
Whether it was intended or not, subjects gained weight after application of the
treatment (e.g., introduction of a mineral supplement into a maintenance feeding
program).

There is no knowledge if gender, breed, or any other factor-type variable had any
possible influence of outcomes. Data were not provided for these factors. Instead,
as this pre-test and post-test repeated measures lesson was structured, it is only
known that matched subjects, overall at p <= 0.05, had a significant difference
in weight after administration of the feeding supplement compared to weights before
administration of the supplement.

As an additional comment, know that in some texts, the phrase The null
hypothesis was rejected. may instead be stated as The null hypothesis was not
accepted. but discussion on differences in the fine points of these two phrases is
beyond the purpose of this introductory lesson.

4.8 Addendum 1: Stacked Data and Student’s t-Test
for Matched Pairs

For this lesson, the data have been organized into two separate datasets, to demon-
strate how R accommodates both unstacked data (the main body of this lesson) and
stacked data (this addendum). Both datasets, however, have been prepared in .csv
(e.g., comma-separated values) file format. The data are separated by commas. The
data are not separated by tabs and the data are not separated by spaces.

In this addendum, the same data that were previously presented in unstacked
format are now brought into R in stacked format. To avoid excessive redundancy
only a few analyses will be presented, with emphasis on how Student’s t-Test for
Matched Pairs is organized with stacked data.

Create an object called PrePostWtStack.df. The object PrePostWtStack.df will
be a dataframe, as indicated by the enumerated .df extension to the object name.
This object will represent the output of applying the read.table() function against
the comma-separated values file called Weight PrePost Supplement Stacked.csv.
Note the arguments used with the read.table() function, showing that there is a
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header with descriptive variable names (header=TRUE) and that the separator
between fields is a comma (sep=",").

PrePostWtStack.df <- read.table (file =
"Weight PrePost_Supplement_ Stacked.csv",
header = TRUE,

sep = ",") # Import the .csv file
getwd () # Identify the working directory
1s() # List objects
attach (PrePostWtStack.df) # Attach the data, for later use
str (PrePostWtStack.df) # Identify structure
nrow (PrePostWtStack.df) # List the number of rows
ncol (PrePostWtStack.df) # List the number of columns
dim(PrePostWtStack.df) # Dimensions of the dataframe
names (PrePostWtStack.df) # Identify names
colnames (PrePostWtStack.df) # Show column names
rownames (PrePostWtStack.df) # Show row names
head (PrePostWtStack.df) # Show the head
tail (PrePostWtStack.df) # Show the tail
PrePostWtStack.df # Show the entire dataframe
summary (PrePostWtStack.df) # Summary statistics

By completing this action, an object called PrePostWtStack.df has been created.
This R-based object is a dataframe and it consists of the data originally included
in the file Weight PrePost Supplement Stacked.csv, a comma-separated .csv file.
To avoid possible conflicts, make sure that there are no prior R-based objects called
PrePostWtStack.df.

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class (PrePostWtStack.df)

class (PrePostWtStack.dfSPair)

class (PrePostWtStack.dfSTimePeriod)

class (PrePostWtStack.dfS$Kg)

str (PrePostWtStack.df) # Structure
duplicated (PrePostWtStack.df) # Duplicates

The class for each object seems to be correct and there are no duplicate rows of
data in the dataframe. Saying this, a Code Book will help with future understanding
of this dataset.

FHEFHHHHFFHH R R RS

# Code Book #
HHFHHHBHFHHH S H SRS H S H
# #

# Palr . e Factor (e.g., nominal) #
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A unique ID ranging from 1 to 150

TimePeriod Factor (e.g., nominal)
PreSupplement

PostSupplement

Numeric (e.g., interval)
Weight (Kg) of an unidentified biological

specimen, ranging from 5.00 to 20.00 #

HHAHAFHAEHH A HAHH A H S H S R R R

H H H HHHHHHFH
H H H H H H HH

The str() function is then again applied against the dataframe to see the nature of
each object variable as well as confirmation that the data are collectively viewed as
a dataframe:

str (PrePostWtStack.df)

Once there is agreement that the data were brought into R in correct format, it is
usually necessary to organize the data to some degree:

* The object variable Pair is currently viewed as an integer. Some R users may find
it best to recode these identification-type numeric values into row names, but in
this lesson Pair will instead be recoded into a factor object variable.

¢ Values for TimePeriod are in alpha-format and are viewed as factor values.

* Values for Kg are viewed as numeric values.

This transformation (again, typically called a recode action) is needed and the
process, using R-based syntax, follows. There may be some unnecessary (perhaps
redundant) actions with the following recode activities, but these are purposely done
to provide assurance that each variable is in desired final format:

PrePostWtStack.df$SPair
PrePostWtStack.dfsPair)

PrePostWtStack.dfs$TimePeriod
PrePostWtStack.dfS$STimePeriod)

PrePostWtStack.df$Kg
PrePostWtStack.dfs$Kg)

getwd ()

1s()

attach (PrePostWtStack.df)
str (PrePostWtStack.df)

nrow (PrePostWtStack.df)
ncol (PrePostWtStack.df)

dim (PrePostWtStack.df)
names (PrePostWtStack.df)
colnames (PrePostWtStack.df)
rownames (PrePostWtStack.df)

H o HF H HF H H H H H

<- as.factor(

<- as.factor(

<- as.numeric(

Identify the working directory
List objects

Attach the data, for later use
Identify structure

List the number of rows

List the number of columns
Dimensions of the dataframe
Identify names

Show column names

Show row names
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head (PrePostWtStack.df)
tail (PrePostWtStack.df)
PrePostWtStack.df

69

Show the head
Show the tail
Show the entire dataframe

#
#
#
#

summary (PrePostWtStack.df) Summary statistics

Data in this active R session are in two formats, originally as unstacked data
(PrePostWtUnstack.df) and also as stacked data (PrePostWtStack.df). It is best to
check the data to be sure that everything is correct. The summary() function may be
the easiest way to see if data are equivalent.

# Check data in the unstacked dataset
summary (PrePostWtUnstack.df$KgPostSupplement)
summary (PrePostWtUnstack.df$KgPreSupplement)

# Check data in the stacked dataset,
# function to force breakout analyses
tapply (Kg, TimePeriod, summary, na.rm=TRUE,

data=PrePostWtStack.df)

# Breakouts of Kg by TimePeriod (e.g.,

# PreSupplement or PostSupplement)

using the tapply ()

The two datasets are equivalent, as expected. Given this equivalence, apply the
t.test() function against both datasets to confirm that inferential outcomes are also
equivalent.

# Student’s t-Test for matched pairs, unstacked data
# Default selections.

t.test (PrePostWtUnstack.df$KgPreSupplement, #

against

Measured variable

PrePostWtUnstack.df$KgPostSupplement, # Measured variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206

# Student’s t-Test for matched pairs, against stacked data

# Default selections.

t.test (PrePostWtStack.dfS$Kg ~ # Measured variable
PrePostWtStack.df$TimePeriod, # Grouping variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

ERROR MESSAGE: not all arguments have the same length

The error is of course generated because there is a missing PostSupplement
datum for Pair 19. To accommodate this problem of unequal length, a simple kludge
is used, where Pair 19 is deleted from the PrePostWtStack.df dataset. Because of
this action there will now be an equal number of comparisons (e.g., pairs) between
PreSupplement and PostSupplement.

Show the original dataset (PrePostWtStack.df), with all rows.
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PrePostWtStack.df
nrow (PrePostWtStack.df) # List the number of rows.

Determine which rows in PrePostWtStack.df$Pair represent Pair 19, the pair
responsible for the missing data.

which (PrePostWtStack.dfsPair == "19")

Create a new dataset (NewPrePostWtStack.df), eliminating row 19 and row 169
since these are the two rows that have data for Pair 19.

NewPrePostWtStack.df <- PrePostWtStack.df[c(-19,-169),]

Show the new dataset (NewPrePostWtStack.df), which should not have data for
Pair 19.

NewPrePostWtStack.df
nrow (NewPrePostWtStack.df) # List the number of rows

Use the newly created dataset NewPrePostWtStack.df to conduct the Student’s
t-Test for matched pairs using stacked data, but now with no concern about unequal
lengths (e.g., missing data for one of the pairs).

# Student’s t-Test for matched pairs, against stacked data

t.test (NewPrePostWtStack.df$Kg ~ # Measured variable
NewPrePostWtStack.df$TimePeriod, # Grouping variable
paired=TRUE, # Matched pairs
na.rm=TRUE) # Missing data

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206

There may be more elegant ways to resolve the problem of how missing data
impact Student’s t-Test for Matched Pairs, but this action works and it also showed
how data can be managed to meet needs, which was a secondary purpose for
showing this approach.

4.9 Addendum 2: The Impact of N on Student’s t-Test

The results of the Student’s t-Test for Matched Pairs provided evidence that there
was a statistically significant difference (p <= 0.5) in Pre-Supplement Weight
(Kg) and Post-Supplement Weight (Kg) for the entire dataset of 150 subjects, where
individual biological specimens were matched against their weight change (if any)
after a supplement of some type was introduced into the feeding program:

n mean sd
KgPreSupplement 150 10.79 2.22
KgPostSupplement 149 11.19 2.07

Outcome: t = -7.5467, df = 148, p-value = 0.000000000004206
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Think of the cost (actual dollars and time-on-task) for managing a research
study with 150 biological subjects. Going beyond the initial purchase cost, these
specimens need housing, feed, water, ventilation, exercise, seven-day-a-week daily
care and management, etc. The cost of care for biological specimens is by no means
insignificant. Is it possible to obtain the same general outcomes with a smaller, and
therefore less expensive, sample of 30 subjects? To explore this question, obtain the
base statistics from the original sample, then use the sample() function against the
dataframe to obtain a sample of only 30 subjects.

head (PrePostWtUnstack.df) # N = 150
tail (PrePostWtUnstack.df) # N = 150
psych: :describe (PrePostWtUnstack.df) # N = 150
# Apply the sample() function
Sample30.PrePostWtUnstack.df <- PrePostWtUnstack.df [
sample (1:dim(PrePostWtUnstack.df) [1],
size=30, replace=FALSE),]
head (Sample30.PrePostWtUnstack.df) # N = 30
tail (Samplel30.PrePostWtUnstack.df) # N = 30
psych: :describe (Sample30.PrePostWtUnstack.df) # N = 30

# ---> N = 150 < ---

# Assumption that the two variances are equal.

t.test (PrePostWtUnstack.df$KgPreSupplement,
PrePostWtUnstack.df$KgPostSupplement,
alternative="two.sided",
paired=TRUE, na.rm=TRUE, var.equal=TRUE)

# ---> N = 30 < ---

Assumption that the two variances are equal.

t.test (Samplel30.PrePostWtUnstack.df$KgPreSupplement,
Sample30.PrePostWtUnstack.df$KgPostSupplement,
alternative="two.sided",
paired=TRUE, na.rm=TRUE, var.equal=TRUE)

H

Observe the p-value for when N =150 and then observe the p-value for when
N=30. Use the sample() function multiple times, to see if results are generally
consistent. Results will depend on the 30 subjects included in the selected sample
so of course the p-value will change for each sample of 30 subjects.

Typically, as seen in this sample, the general outcome is upheld so that for both
N =150 and N =30, there is a statistically significant difference (p <= 0.05) in
Pre-Supplement Weight (Kg) and the matched Post-Supplement Weight (Kg). And
of course, a sample of N =30 would be far less expensive and subsequently easier
to manage than a sample of N =150. Research and statistical analyses are as much
about budgets and the prudent management of resources as they are about generated
p-values and graphical output.
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Although there are those who think it is impressive to focus on gaining a large
sample, it is perhaps more important to focus on the issue of sample representation.
Is the above iteration of 30 subjects representative of the collection of all 150
subjects? That issue is beyond the purpose of this lesson, but sample representation
should always be considered when conducting statistical analyses, regardless of the
computing platform or selected software.

4.10 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.

Use the following set of actions to exit from the current R session.

getwd () # Identify the current working directory.
1s () # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image ("R _Lesson t-Test MatchedPairs.rdata")

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.
alarm() # Alarm, notice of upcoming action.
gl() # Quit this session.

# Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.



Chapter 5
Oneway Analysis of Variance (ANOVA)

Abstract The purpose of this lesson is to provide guidance on how R can be used to
compare differences to a singular measured variable between three or more groups
using Oneway Analysis of Variance (ANOVA). Along with instruction on the use of
R and R syntax associated with Oneway ANOVA, this lesson will also reinforce the
use of descriptive statistics and graphical figures to complement outcomes from the
parametric Oneway ANOVA.

Keywords ANOVA e« Analysis of Variance ¢ Duncan’s multiple range test
* Least Significant Difference (LSD) ¢ Mean comparison technique ¢ Oneway
ANOVA - Student-Newman-Keuls (SNK) ¢ Tukey’s Honestly Significant
Difference (Tukey HSD) ¢ Scheffé

5.1 Background on This Lesson

5.1.1 Description of the Data

This lesson on Oneway Analysis of Variance (ANOVA) is used to determine if there
are differences in measurements of a biological specimen by a factor variable with
five breakout groups. The exact nature of the dataset is not provided in this lesson.
The focus of this lesson is on two specific variables, a factor-type variable with five
breakout groups (F2b) and a numeric variable (M1).

For this lesson, assume that data are from biological specimens of the same type
and that there are data from more than 4,000 subjects:

* Perhaps the data are from dairy cattle and the five breakout groups are dairy
cattle breeds (Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey) while the
measurement in question for this sample is some measure of milk production at
end of lactation for first lactation.

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 73
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_5,
© The Author(s) 2014
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* Perhaps the biological specimen represents hay as a forage crop and the five
breakout are specific types of hay (alfalfa, clover, fescue, orchard grass, and
timothy) while the measurement in question for this sample is some measure
of protein for first cut hay.

* Perhaps the data are from humans and the five breakout groups are for race-
ethnicity classifications in the United States (American Indian or Alaskan
Native, Asian or Pacific Islander, Black non-Hispanic, Hispanic, and White non-
Hispanic) while the measurement in question is some measure of blood pressure
after 15 min of exercise on a treadmill.

A common statistical technique to determine if differences exist between three or
more groups (however the concept of group is defined) is Oneway Analysis of Vari-
ance (ANOVA). ANOVA methodology involves the determination of differences for
either:

* One group with multiple (typically, three or more) variations
* One variable, compared to multiple (typically, three or more) groups

For this lesson, merely assume that subjects are all of the same genus and
species and that the measurement in question (M1) is both reliable and valid. The
measurement in question will then be viewed by the five breakout groups (F2b) of
the factor in question. Oneway ANOVA (Analysis of Variance) was correctly judged
to be the appropriate test for this analysis of summative differences in measurement
of M1 by the five breakout groups for F2b.

When using Oneway ANOVA for three or more groups, an immediate concern
is how to interpret findings if the Null Hypothesis is not accepted. When only two
groups are compared (such as the case when Student’s t-Test is used) and if the Null
Hypothesis is not accepted, then it is known that the difference between Group A
and Group B is a true difference (at the declared level of significance, or p levels
suchasp <= 0.050rp <= 0.01).

What happens, however, if the Null Hypothesis for Oneway ANOVA with three
groups is rejected? There is a known difference in group means, but where?

Comparisons, for Group A, Group B, and Group C could possibly include the
following:

» Is the difference between Group A and Group B (or Group B and A, depending
on ordering) the only reason for failure to accept the Null Hypothesis?

* Is the difference between Group A and Group C (or Group C and A, depending
on ordering) the only reason for failure to accept the Null Hypothesis?

 Is the difference between Group B and Group C (or Group C and B, depending
on ordering) the only reason for failure to accept the Null Hypothesis?

» Isthere a difference in all three groups, where Group A is separate from all others,
Group B is separate from all others, and Group C is separate from all others?

Oneway ANOVA designs can be quite complex but discussion on research design
is beyond the scope of this lesson. Instead, it is only necessary to mention that
Oneway ANOVA calls for careful attention to breakout statistics for all groups
and of course, complexity is only magnified as the number of groups increases
beyond three.
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Given how there are multiple comparisons to consider with Oneway ANOVA,
give attention to the following mean comparison tests, which are commonly used
for the purpose of comparing differences between means in a Oneway ANOVA:

Oneway ANOVA mean comparison techniques

Duncan  Duncan’s multiple range test

LSD Least-Significant Difference

Scheffé ~ Scheffé’s test

SNK Student-Newman-Keuls

Tukey Tukey’s Honestly Significant Difference (HSD)

Statistical tests that can account for increased complexity are needed if mean-
ingful decisions involving statistics in the large are to be effected. Again, be sure to
consider the increased complexity of decision-making and comparisons supported
by a simple Oneway ANOVA. As an advance organizer, even more complex
comparisons and analyses are supported in Twoway ANOVA, but that is not the
purpose of this lesson.

The dataset is fairly large (N > 4,000) and there are missing data. Further, the
dataset includes both factor-type variables and numeric-type variables that are not
used in this lesson. Even though these variables are not used, they need to be
accommodated, in part to be sure that the entire dataset is correct.

Be sure to note how numerical codes have been purposely used for some factor-
type data in this lesson. Numerical codes are quite common and as such, the creation
of a later Code Book is essential so that there is agreement on what each code
represents.

5.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in M1 values by F2b
breakout groups (Group F2b-1, Group F2b-2, Group F2b-3, Group F2b-4, and
Group F2b-5).

5.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the dataset has been prepared in .csv (e.g., comma-separated values)
file format. The data are separated by commas. The data are not separated by tabs
and the data are not separated by spaces.



76 5 Oneway Analysis of Variance (ANOVA)

HHE# S

# Housekeeping Use for All Analyses #
HHAFHHHHH A R R R R R
date () # Current system time and date.

R version and version release date.
List all objects in the working
directory.
CAUTION: Remove all files in the working
directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.
ls.str() List all objects, with finite detail.
getwd () # Identify the current working directory.
setwd ("F: /R _Biostatistics")

# Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.
getwd () Confirm the working directory.
list.files() # List files at the PC directory.
HHAFHHHHH A R R R R R

R.version.string
1s()

#
#
#
rm(list = 1s()) #
#
#
#
#

H*+ HF H H HF H

BioSpmen.df <- read.table (file =
"Biological Specimen.csv",
header = TRUE,

sep = ", ") # Import the .csv file
getwd () # Identify the working directory
1s() # List objects
attach (BioSpmen.df) # Attach the data, for later use
str (BioSpmen.df) # Identify structure
nrow (BioSpmen.df) # List the number of rows
ncol (BioSpmen.df) # List the number of columns
dim(BioSpmen.df) # Dimensions of the data frame
names (BioSpmen.df) # Identify names
colnames (BioSpmen.df) # Show column names
rownames (BioSpmen.df) # Show row names
head (BioSpmen.df) # Show the head
tail (BioSpmen.df) # Show the tail
BioSpmen.df # Show the entire data frame
summary (BioSpmen.df) # Summary statistics

By completing this action, an object called BioSpmen.df has been created. This
R-based object is a data frame and it consists of the data originally included in
the file Biological Specimen.csv, a comma-separated .csv file. To avoid possible
conflicts, make sure that there are no prior R-based objects called BioSpmen.df. The
prior use of rm(list = 1s()) accommodates this concern, removing all prior objects in
the current R session.
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Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located (see the Housekeeping section at the
beginning of this lesson).

5.3 Organize the Data and Display the Code Book

Now that the data have been imported into R, it is usually necessary to check the
data for format and then make any changes that may be needed, to organize the data.
As a typical example, consider the common practice of numeric codes, as factors,
for Gender. If Gender were coded as 1 and 2 instead of Female (1) and Male (2), it
would be necessary to do something so that 1 and 2 are seen as factor (e.g., group)
values and not integers more suited for math operations. Of course, this concept
applies to all other cases where numeric codes are used to identify factors (e.g.,
groups). In this lesson, that concept applies to the numeric codes used to identify
the five breakout groups for object variables F2b.

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class (BioSpmen.df)

(

class (BioSpmen.df$ID) # DataFramesObjectName notation
class (BioSpmen.df$M1) # DataFrame$ObjectName notation
class (BioSpmen.df$M2) # DataFrame$ObjectName notation
class (BioSpmen.df$M3a) # DataFrame$ObjectName notation
class (BioSpmen.df$M3b) # DataFrame$ObjectName notation
class (BioSpmen.df$M3c) # DataFrame$ObjectName notation
class (BioSpmen.df$F1) # DataFramesObjectName notation
class (BioSpmen.df$F2a) # DataFramesObjectName notation
class (BioSpmen.dfS$F2b) # DataFramesObjectName notation
str (BioSpmen.df) # Structure

duplicated (BioSpmen.df) # Duplicates

The class for each object seems to be correct and there are no duplicate rows of
data in the data frame. Saying this, a Code Book will help with future understanding
this dataset.

A Code Book is an essential aid for anyone involved in the day-to-day activities
of the research and statistics process. The Code Book is typically brief and only
serves as a useful reminder for what can be easily forgotten months (or even weeks)
later, to make it easy to decipher what may otherwise be seen as arcane numeric
codes. Coding schemes that are intuitively obvious today can easily become obtuse
tomorrow.

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.
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FHESHAHEFFHH R R RS

# Code Book #
HHFHHHBHFHHH S HH SRS H S
# #

ID e Factor (e.g., nominal)
A unique ID ranging from 1 to 4,660

ML .o Numeric (e.g., interval)
An unidentified biological wvariable
that ranges from 0.00 to 600.0

1 2 Numeric (e.g., interval)
An unidentified biological wvariable
that ranges from 0.00 to 10.00

M3a Numeric (e.g., interval)
An unidentified biological wvariable
that ranges from 0.00 to 4.00

M3b Numeric (e.g., interval)
An unidentified biological wvariable
that ranges from 0.00 to 4.00

M3c Numeric (e.g., interval)
An unidentified biological wvariable
that ranges from 0.00 to 4.00

3 Factor (e.g., nominal)
Group F1l-1
Group F1-2
|32 Factor (e.g., nominal)

Group F2a-1
Group F2a-2

F2b . oo Factor (e.g., nominal)
Group F2b-1
Group F2b-2
Group F2b-3
Group F2b-4
Group F2b-5 #
HHAHAFHAEHH A HAHH A RS H S R R R R

# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
#

#

In an effort to promote self-documentation and readability, it is often desirable to
label all object variables. First, use the epicalc::des() function and the str() function
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to see the nature of the data frame. Then, use the epicalc::label.var() function to
provide descriptive labels for each variable. Of course, be sure to load the epicalc
package, if it is not operational from prior analyses.

install.packages ("epicalc")

library(epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.

epicalc: :des (BioSpmen.df)
str (BioSpmen.df)

epicalc::label.var (ID, "Subject ID", dataFrame=BioSpmen.df
epicalc::label.var (M1, "Variable M1", dataFrame=BioSpmen.df
epicalc::label.var (M2 "Variable M2", dataFrame=BioSpmen.df

epicalc::label.var (M3 "Variable M3a", dataFrame=BioSpmen.df
epicalc::label.var (M3 "Variable M3c", dataFrame=BioSpmen.df
epicalc::label.var(F1l, "Variable F1", dataFrame=BioSpmen.df

epicalc::label.var (F2a, "Variable F2a", dataFrame=BioSpmen.df

( )
( )
(M2, )
(M3a )
epicalc::label.var (M3b, "Variable M3b", dataFrame=BioSpmen.df)
(M3c )
( )
( )
epicalc::label.var (F2b, "Variable F2b", dataFrame=BioSpmen.df)

Then confirm the description of each object variable, to be sure that all actions
were deployed correctly.

epicalc::des (BioSpmen.df)
str (BioSpmen.df)

With assurance that the data frame is in correct format and that labels are correct,
coerce objects into correct format.

BioSpmen.df$ID <- as.factor (BioSpmen.df$ID)
BioSpmen.dfsMl <- as.numeric (BioSpmen.dfsMl1)
BioSpmen.dfsM2 <- as.numeric (BioSpmen.dfsM2)
BioSpmen.dfS$M3a <- as.numeric (BioSpmen.dfs$M3a)
BioSpmen.dfS$M3b <- as.numeric (BioSpmen.df$M3b)
BioSpmen.dfS$M3c <- as.numeric (BioSpmen.df$M3c)
BioSpmen.dfS$F1 <- as.factor (BioSpmen.df$F1)
BioSpmen.dfS$F2a <- as.factor (BioSpmen.df$F2a)
BioSpmen.dfS$F2b <- as.factor (BioSpmen.df$F2b)

As a sidebar comment, at the R prompt, key help(as.numeric) and then key
help(as.integer) to see the differences between these two R functions and when it
may be best to use each.

Again, confirm the structure of the dataset, using both the epicalc::des() function
and the str() function.

epicalc::des (BioSpmen.df)
str (BioSpmen.df)
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Then, in a somewhat redundant fashion and to merely further confirm the nature
of the dataset, use the base package (obtained when R is first downloaded) levels()
function against the factor object variables, to reinforce understanding of the data.

levels (BioSpmen.df$F1)
levels (BioSpmen.df$F2a)
levels (BioSpmen.df$F2b)

Use the summary() function against the object BioSpmen.df, which is a data
frame, to gain an initial sense of descriptive statistics and frequency distributions.

summary (BioSpmen.df)

Although the dataset seems to be in correct format, it is somewhat difficult to
work with numeric values for factor object variables: F1, F2a, and F2b. Use the Code
Book to review the meaning for each factor code and then note how this problem
is easy to accommodate, but also remember that there are other ways to use R to
achieve this aim.

BioSpmen.df$Fl.recode <- factor(BioSpmen.df$F1,
labels = c("Group F1-1",
"Group F1-2")) # Apply the labels () function.
head (BioSpmen.df$F1l.recode) # View the first lines of data.
summary (BioSpmen.df$Fl.recode) # View descriptive statistics.

par (ask=TRUE)

epicalc::tabl (BioSpmen.df$F1l.recode,
decimal=2,
sort.group=FALSE,
cum.percent=TRUE,
graph=TRUE,

Use the tabl() function
from the epicalc
package to see details
about the selected
object variable. (The
missing=TRUE, 1 of tabl is the one
bar.values=c ("frequency"), numeric character and
horiz=FALSE, # it is not the letter 1.
cex=1.15, cex.names=1.15, cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable F1",

ylab="Frequency of Fl1 Factor Levels",

col=c("black", "red", "green"), gen=TRUE)

H oH H HH H

Note how the epicalc::tab1() function is quite useful in that it generates a text-
based frequency distribution table and it also generates a frequency distribution
graphic. The text-based frequency table is especially helpful in the way it provides
cumulative frequencies that account for missing data.

BioSpmen.df$F2a.recode <- factor (BioSpmen.df$F2a,
labels = c("Group F2a-1",
"Group F2a-2")) # Apply the labels() function.
head (BioSpmen.df$F2a.recode) # View the first lines of data.
summary (BioSpmen.df$F2a.recode) # View descriptive statistics.
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par (ask=TRUE)

epicalc::tabl (BioSpmen.df$F2a.recode, # Use the tabl() function
decimal=2, from the epicalc
sort.group=FALSE,
cum.percent=TRUE,
graph=TRUE,

package to see details
about the selected
object wvariable. (The
missing=TRUE, 1 of tabl is the one
bar.values=c ("frequency"), numeric character and
horiz=FALSE, # it is not the letter 1.
cex=1.15, cex.names=1.15, cex.lab=1.15, cex.axisg=1.15,
main="Factor Levels for Object Variable F2a",
ylab="Frequency of F2a Factor Levels",

col=c("black", "red", "green"), gen=TRUE)

H H H H HF H

BioSpmen.df$F2b.recode <- factor (BioSpmen.df$F2b,

labels = c("Group F2b-1", "Group F2b-2",
"Group F2b-3", "Group F2b-4",

"Group F2b-5")) # Apply the labels () function.

head (BioSpmen.dfS$F2b.recode) # View the first lines of data.

summary (BioSpmen.df$F2b.recode) # View descriptive statistics.

par (ask=TRUE)

epicalc: :tabl (BioSpmen.df$F2b.recode, # Use the tabl () function
decimal=2, # from the epicalc
sort.group=FALSE, # package to see details
cum.percent=TRUE, # about the selected
graph=TRUE, # object variable. (The
missing=TRUE, # 1 of tabl is the one
bar.values=c ("frequency"), # numeric character and

horiz=FALSE, # it is not the letter 1.
cex=1.15, cex.names=1.15, cex.lab=1.15, cex.axis=1.15,
main="Factor Levels for Object Variable F2b",
ylab="Frequency of F2b Factor Levels",
col=c("black", "red", "green", "blue",

"purple", "sienna"), gen=TRUE)

Review the output, below, for the frequency distribution of the object variable
F2b.recode. Think about how it would be fairly easy to copy this output and paste it
into a word processing program.

BioSpmen.df$F2b.recode
Frequency % (NA+) cum.% (NA+) % (NA-) cum.% (NA-)

Group F2b-1 2104 45.15 45.15 45.45 45.45
Group F2b-2 670 14.38 59.53 14 .47 59.93
Group F2b-3 707 15.17 74.70 15.27 75.20
Group F2b-4 609 13.07 87.717 13.16 88.36
Group F2b-5 539 11.57 99.33 11.64 100.00
NA's 31 0.67 100.00 0.00 100.00

Total 4660 100.00 100.00 100.00 100.00
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Again, there are possibly many ways to recode the factor levels in object variables
F1, F2a, and F2b. The method used in this example was fairly simple and used the
labels() function.

Now, merely use the attach() function again to assure that all data are attached to
the data frame.

attach (BioSpmen.df)
head (BioSpmen.df)
tail (BioSpmen.df)

summary (BioSpmen.df) # Quality assurance data check.
str (BioSpmen.df) # List all objects, with finite detail.
ls.str (BioSpmen.df) # List all objects, with finite detail.

As an additional data check, use the table() function to see how data have been
summarized using the newly created names in the original and coerced factor-type
object variables.

table (BioSpmen.dfsSF1, useNA
table (BioSpmen.dfsFl.recode, useNA

c("always"))
c("always"))

table (BioSpmen.dfsF2a, useNA
table (BioSpmen.dfSF2a.recode, useNA

c("always"))
c("always"))

table (BioSpmen.dfsF2b, useNA
table (BioSpmen.dfSF2b.recode, useNA

c("always"))
c("always"))

Note how the argument useNA = c(“always”) is used with the table function, to
force identification of missing values.

This type of redundancy and attention to detail at this stage of development may
seem unnecessary, but it more than helps reduce later errors caused by a simple
oversight.

5.4 Conduct a Visual Data Check

With the data in proper format, it would be common to immediately attempt the
appropriate inferential analyses, Oneway ANOVA for this lesson. However, it is
best to first prepare a few graphical displays of the data and to then reinforce
comprehension of the data with descriptive statistics and measures of central
tendency.

The summary() function, min() function, and max() function are all certainly
useful for data checking, but there are also many advantages to a visual data
check process. In this case, simple plots can be very helpful in looking for data
that may be either illogical or out-of-range. These initial plots will be, by design,
simple and should be considered throwaways as they are intended only for initial
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diagnostic purposes. More complex figures, often of publishable quality can then
be prepared from these initial throwaway graphics, by careful selection of functions
and arguments.

Although the emphasis in this lesson is on Oneway ANOVA for the factor-type
object variable F2b (five breakout groups) and the numeric-type object variable M1
(values can range from 0.00 to 600.00), a simple graphic will be prepared for each
variable, largely as a quality assurance check against the entire dataset. Experienced
researchers practice quality assurance in multiple ways and at multiple times.

names (BioSpmen.df) # Confirm all object variables.

par (ask=TRUE)
plot (BioSpmen.dfsID,
main="BioSpmen.dfs$ID Visual Data Check")

par (ask=TRUE)

plot (density (BioSpmen.dfsM1,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of M1",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (BioSpmen.dfsM2,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of M2",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (BioSpmen.dfsM3a,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of M3a",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (BioSpmen.dfs$M3b,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of M3b",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (BioSpmen.dfs$M3c,
na.rm=TRUE) , # Required for the density() function
main="Density Plot of M3c",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)
plot (BioSpmen.df$F1l.recode,
main="BioSpmen.df$F1l.recode Visual Data Check")
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par (ask=TRUE)
plot (BioSpmen.df$F2a.recode,
main="BioSpmen.dfs$F2a.recode Visual Data Check")

par (ask=TRUE)
plot (BioSpmen.df$F2b.recode,
main="BioSpmen.df$F2b.recode Visual Data Check",
col=gray(4:0/4))
# Note the gray shading scheme and how the values range
# from 0 to 4 and not 1 to 5. Counts that begin with 0
# represent a common means of counting in computer science.

The purpose of these initial plots is to gain a general sense of the data and to
equally look for outliers. In an attempt to look for outliers, the ylim argument has
been avoided, so that all data are plotted. Extreme values may or may not be outliers,
but they are certainly interesting and demand attention.

This sample lesson has been designed to look into the nature of the numeric-type
object variable M1 and the factor-type object variable F2b. Given the nature of M1
values, it may also be a good idea to supplement the plot(density()) function with the
hist() function and the boxplot() function, to gain a another view of the continuous
values for this object variable. Although object variable M1 does not show perfect
normal distribution along a bell-shaped curve, it is assumed that the distribution of
M1 approximates those conditions needed for correct use of Oneway ANOVA. Then
other functions used in the lattice package and the sm package may have potential
use, to further explain how data are organized.

par (ask=TRUE)
hist (BioSpmen.dfsMl,
main="BioSpmen.dfsM1l Visual Data Check (Histogram)?",

font=2, # Bold text
cex.lab=1.15, # Large font
col="red") # Vibrant color

par (ask=TRUE)
boxplot (BioSpmen.dfsMl,
horizontal=TRUE,
main="Horizontal Boxplot of M1l Values",
xlab="M1 Values (Limit = 0.00 to 600.00)",
ylim=c(300,625), # Note the selection for ylim.
cex.lab=1.15, cex.axis=1.15, border="blue", col="red")
box ()

par (ask=TRUE)

boxplot (BioSpmen.dfsM1 ~ BioSpmen.df$F2b.recode,
horizontal=FALSE,
main="Vertical Boxplot of M1 Values by F2b Groups",
ylim=c(350,550), # Adjust range for mix() and max()
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ylab="M1 Values (Limit = 0.00 to 600.00)",

xlab="F2b Groups",

cex.lab=1.15, cex.axis=1.15, border="blue", col="red")
box ()

Vertical Boxplot of M1 Values by F2b Groups

550
L

0.00 to 600,00
500
;

450

M1 Values (Limit
400
L

350

T T T T T
Group F2b-1 Group F2b-2 Group F2b-3 Group F2b-4 Group F2b-5
F2b Groups

If all group names do not appear in the graphic, adjust the cex-type settings to a
lower value. As is nearly always the case with R, settings are generally a matter of
balance between personal preferences and presentation requirements. And remem-
ber that these settings can always be reviewed by keying help(function.name), to
learn more about the R function and the many arguments and options supported by
the function, such as help(par).

Note: It is largely a personal preference to display a boxplot in either horizontal
mode or vertical mode. To meet the needs of various readers, it is common to use
both orientations.

install.packages ("lattice")

library(lattice) # Load the lattice package.
help (package=lattice) # Show the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE) # 1 Column by 1 Row Histogram
lattice::histogram(~ BioSpmen.df$M1,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1ist (cex=1.15, font=2),
scales=1list (cex=1.15),
main="Histogram (Count) of M1",
xlab=1ist ("M1", cex=1.15, font=2),
x1lim=c(300,600), # Note the range.
ylab=1list ("Count", cex=1.15, font=2),
aspect=1, breaks=10,
layout = c(1,1), # Note: 1 Column by 1 Row.
col="red")



86

par (ask=TRUE)

5 Oneway Analysis of Variance (ANOVA)

# 1 Column by 5 Rows Histogram

lattice::histogram(~ BioSpmen.dfsMl |

BioSpmen.dfsF2b.recode, # Pipe,
type="count", # Note: count
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1ist (cex=1.15,
scales=1list (cex=1.15),
main="Histograms
xlab=list ("M1",
x1lim=c (300,600),
ylab=1list ("Count", cex=1.15,
aspect=0.25, breaks=10,
layout c(1,5), # Note:
col="red")

cex=1.15,

par (ask=TRUE)

not

or ,

font=2),

(Count) of M1 by F2b.recode",
font=2),

# Note the range.

font=2),

1 Column by 5 Rows.

# 1 Column by 5 Rows Histogram

lattice::histogram(~ BioSpmen.df$M1 |

BioSpmen.dfsF2b.recode, # Pipe,

type="density", # Note: density
par.settings=simpleTheme (1lwd=2) ,
par.strip.text=1list (cex=1.15,
scales=1list (cex=1.15),

not ~ or ,

font=2),

main="Histograms (Density) of M1l by F2b.recode",

xlab=1list ("M1",
cex=1.15, font=2),
x1lim=c (300,600),

# Note the range.

ylab=1list ("Density", cex=1.15, font=2),
aspect=0.25, breaks=10,
layout = c(1,5), # Note: 1 Column by 5 Rows.

col="red")

par (ask=TRUE)

# Breakout group by measured object.

lattice: :bwplot (BioSpmen.df$F2b.recode ~

BioSpmen.dfsM1, # Tilde,
par.settings simpleTheme (1wd=2
par.strip.text=1ist (cex=1.15,
scales=1list (cex=1.15),

not | or ,

)y

font=2),

main="Boxplot of M1 by F2b Breakout Groups",

xlab=list ("M1",
x1lim=c (300,600),
ylab=1list ("F2b Breakout Groups",
aspect=0.5, layout=c(1,1), col="

cex=1.15, font=2

install.packages ("sm")

).

cex=1.15,
red")

font=2),

library (sm)
help (package=sm)
sessionInfol()

saveline.width <- par(lwd=6)

# Load the sm package.
# Show the information page.
# Confirm all attached packages.

# Generate a heavy line
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savecex.axis <- par(cex.axis=1.25) # Adjust axis
par (ask=TRUE)
sm: :sm.density.compare (BioSpmen.df$M1, BioSpmen.dfS$F2b.recode,
xlab=1list ("M1 Values (Limit = 0.00 to 600.00)",
cex=1.15, font=2),
ylab=1list ("Density", cex=1.25, font=2),
x1lim=c(300,650), # Adjust to actual wvalues
ylim=c(0,0.03)) # Experiment with the ylim values
title (main="Density Plot of M1 Values by F2b Groups")
colorfill <- c(2:(2+length(levels (BioSpmen.df$F2b.recode))))
legend(locator(l), levels (BioSpmen.dfS$SF2b.recode),
fill=colorfill)
par (saveline.width); par(savecex.axis)
# Note how the line width is accommodated and then set back
# to the original value.
# Place the legend in any desired location by clicking the
# left mouse button.

5.5 Descriptive Analysis of the Data

This dataset continues the need for attention to missing data. Given the different
ways missing data can impact analyses, it is often helpful to first check for missing
data by using the is.na() function and the complete.cases() function against the
entire dataset. Both functions return a TRUE or FALSE response, depending on
the function and the outcome of whether data are missing or data are not missing.

is.na (BioSpmen.df) # Check for missing data
complete.cases (BioSpmen.df) # Check for complete cases

For the dataset BioSpmen.df note how there are many rows where there are
missing data for individual object variables. The exact nature of the dataset is not
known and for now there is no judgment placed on why there are missing data.
For the purpose of this lesson, it is only necessary to recognize that there are
missing data and to use appropriate functions and arguments to accommodate this
observation.

Even for this fairly large dataset, the summary() function may be all that is
necessary to gain a sense of the data. Note how the summary() function is applied
against the entire dataset, thus yielding information about all object variables,
including the object variable ID.

summary (BioSpmen.df)

Give attention to the listing of NAs for those object variables with missing data.
Again, the summary() function is very useful and it should always be a first selection
when preparing descriptive analyses.
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Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, review the prior
lesson Descriptive Statistics and Measures of Central Tendency for a comprehen-
sive review of the functions used for descriptive statistics, especially: length(),
asbio::Mode(), median(), mean(), sd(), table(), and finally summary(). As needed
(but not always, depending on specific functions), the na.rm=TRUE argument or
some other similar convention will be used to accommodate missing data.

length (BioSpmen.df$F2b) # N of F2b
length (BioSpmen.df$M1) # N of M1

mode.of .M1 <-
names (sort (-table (BioSpmen.dfsM1))) [1]

mode.of .M1 # Hand calculate mode with NAs
median (BioSpmen.df$M1, na.rm=TRUE) # Median
mean (BioSpmen.df$M1, na.rm=TRUE) # Mean
sd (BioSpmen.dfsM1,na.rm=TRUE ) # SD

# Measures of Central Tendency

summary (BioSpmen.df)

Descriptive statistics at the summary level are always useful, but breakout
statistics are also needed to gain a more complete understanding of the data.
There are many ways to obtain breakout statistics, but the tapply() function,
epicalc::summ() function, prettyR::brkdn() function, psych:::describe.by() function,
Hmisc::bystats() function, and the lessR::SummaryStats() function are among the
most detailed and easiest to use, to discern differences between breakout groups
such as the breakout groups for BioSpmen.df$F2b.recode associated with this
lesson: Group F2b-1, Group F2b-2, Group F2b-3, Group F2b-4, and Group F2b-5.

tapply (M1, F2b.recode, summary, na.rm=TRUE, data=BioSpmen.df)
# M1 by F2b.recode, using tapply()

par (ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(BioSpmen.dfsM1, by=BioSpmen.dfS$F2b.recode,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of M1 by F2b.recode",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
# Note the descriptive statistics and not only the graphic
# that go along with the epicalc::summ() function.

install.packages ("prettyR")

library (prettyR) # Load the prettyR package.

help (package=prettyR) # Show the information page.
sessionInfo() # Confirm all attached packages.
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prettyR: :describe.factor (BioSpmen.dfS$F2b.recode)
prettyR: :describe.numeric (BioSpmen.dfsM1)
prettyR: :brkdn (M1 ~ F2b.recode, BioSpmen.df)

install.packages ("psych")

library (psych) # Load the psych package.
help (package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.

psych: :describe.by (BioSpmen.df$M1, BioSpmen.dfsF2b.recode,
mat=TRUE) # Matrix output

install.packages ("Hmisc")

library (Hmisc) # Load the Hmisc package.
help (package=Hmisc) # Show the information page.
sessionInfo () # Confirm all attached packages.

Hmisc: :bystats (BioSpmen.df$M1, BioSpmen.df$F2b.recode,
nmiss=TRUE)

Mean of BioSpmen.dfsM1l by

N Missing Mean
Group F2b-1 2064 40 469.8119
Group F2b-2 650 20 460.5897
Group F2b-3 6091 16 461.4755
Group F2b-4 600 9 469.9272
Group F2b-5 515 24 466.9942
NA 9 22 457.0444
ALL 4529 131 466.8859

install.packages ("lessR")

library (lessR) # Load the lessR package.
help (package=1lessR) # Show the information page.
sessionInfo () # Confirm all attached packages.

lessR::SummaryStats (M1, by=F2b.recode, data=BioSpmen.df,
digits.d=2) # Force to two places beyond the decimal

5.6 Conduct the Statistical Analysis

The preceding graphical images and descriptive statistics, both summary descriptive
statistics and breakout descriptive statistics, provide a fairly good idea of the M1
values, overall and by breakout group (F2b.recode breakout groups in this lesson):

Breakout Descriptive Statistics of M1 Values by F2b.recode in
Ascending Rank Order by Mean
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group n mean sd median
Group F2b-2 650 460.59 19.729 458.44
Group F2b-3 691 461.48 17.798 461.58
Group F2b-5 515 466.99 18.198 467.86
Group F2b-1 2064 469.81 16.981 471.00
Group F2b-4 600 469.93 17.498 471.00

5.6.1 Exploratory Oneway ANOVA

The prior graphical images and descriptive statistics are all certainly useful and
provide a sense of the data. Even so, for this lesson a Oneway ANOVA will
help determine if mean differences by breakout groups (e.g., Group F2b-1, Group
F2b-2, Group F2b-3, Group F2b-4, Group F2b-5) for M1 are true differences at
p <= 0.05 or if the differences are instead due only to chance.

Perhaps the simplest Oneway ANOVA test calls for use of the oneway.test()
function. View the use of the oneway.test() function as an exploratory tool for
Oneway ANOVA. The output is fairly terse, but sufficient information is provided
to determine if there is a statistically significant difference in means by breakout
groups, or means for M1 by F2b.recode breakout groups in this lesson. However,
little else is provided.

oneway.test (M1 ~ F2b.recode, data = BioSpmen.df,
var.equal=FALSE) # Assume variance is not equal

# Outcome: F = 51.914, p-value < 0.00000000000000022

oneway.test (M1 ~ F2b.recode, data = BioSpmen.df,
var.equal=TRUE) # Assume variance is equal

# Outcome: F = 55.036, p-value < 0.00000000000000022

Consistently, both applications of the oneway.test() function provides evidence
that there is a statistically significant difference in M1 values by F2b.recode breakout
groups. That is to say, calculated p is <= 0.00000000000000022 which is certainly
less than the criterion p value of 0.05.

However, other Oneway ANOVA functions are available with the base set of R
functions and these other functions are far more informative than output from the
simple oneway.test() function. The desire with these other functions is to obtain
detailed analyses to ultimately determine not only if there are differences in mean
values for M1 by F2b.recode breakout groups, but exactly which breakout groups
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show similarity and which breakout groups show differences. To achieve these aims,
the Im() function, anova() function, aov() function, and the TukeyHSD() function
will all be used to determine if there are differences in M1 values by F2b.recode
breakout groups and where those differences exist.

5.6.2 Oneway ANOVA Method 1: Im() and anova() Functions

There are more than a few ways to accommodate a Oneway ANOVA of M1 values
by F2b subgroups. The first method demonstrated below calls for:

* Create a new object that is the output of applying the Im() function against the
identified data, to fit a linear model.

* Apply the anova() function against this new object, to generate an Analysis of
Variance table, including: Degrees of Freedom (Df), Sum of Squares (Sum Sq),
Mean Square (Mean Sq), F value, and Calculated p-value (Pr(>F).

* Apply the summary() function against this new object, to gain a sense of output
and the overall level of significance (p-value).

M1l.by.F2b.ANOVA.Methodl <- 1m(M1 ~ F2b.recode -1,
data=BioSpmen.df, na.action=na.exclude)
# Create the object M1l.by.F2b.ANOVA.Methodl

M1l.by.F2b.ANOVA.Methodl
anova (M1.by.F2b.ANOVA.Methodl)
Analysis of Variance Table

Response: M1

Df F value Pr (>F)
F2b.recode 5 626809 < 0.00000000000000022
Residuals 4515

summary (M1.by.F2b.ANOVA.Methodl)

Note how this analysis accommodates missing data. The -1 argument provides a
fit model without an intercept. Groups are compared only to each other.

This method, based on use of the Im() function, provides evidence that there is
a statistically significant difference at p <= 0.05 for M1 values and F2b.recode
breakout groups. Note, however, that groupwise comparisons are absent. It is cur-
rently unclear which F2b subgroups differ in statistical significance (p <= 0.05)
of M1 values.



92 5 Oneway Analysis of Variance (ANOVA)

5.6.3 Oneway ANOVA Method 2: aov() and TukeyHSD()
Functions

For greater specificity in determining groupwise differences for the measured object
variable, it is necessary to use some type of group mean comparison technique. The
common TukeyHSD() function is used in this lesson to provide that level of detail in
the examination of M1 values by F2b.recode breakout groups. The Oneway ANOVA
method demonstrated below calls for:

e Create an object that is the result of the aov() function applied against the
measured object variable and the grouping object variable.

* Apply the summary() function against this new object, to gain a sense of ANOVA
table output and the overall level of calculated significance (p-value).

* Apply the TukeyHSD() function against this new object to view group member
by group member p-value comparisons, to see which group members have
similar outcomes for the measured object variable and which group members
have different outcomes for the measured object variable, within the context
of p-values. As a reminder of different mean comparison techniques, the
TukeyHSD() function refers to Tukey’s Honest Significant Difference.

If a significant difference is found, give attention to how the standard nomencla-
ture of *** ** and * is used to identify significance levels.

Given this background, note how the aov() function in tandem with the
TukeyHSD() function are more than useful in an attempt to understand outcomes
from a Oneway ANOVA.

M1l.by.F2b.ANOVA.Method2 <- aov (Ml ~ F2b.recode,
data=BioSpmen.df)
# Create the object M1l.by.F2b.ANOVA.Method?2

M1l.by.F2b.ANOVA.Method2

summary (M1.by.F2b.ANOVA.Method2)

TukeyHSD (M1 .by.F2b.ANOVA.Method2)
# Multiple comparisons.

# This analysis accommodates missing data.

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = M1 ~ F2b.recode, data = BioSpmen.df)

SF2b.recode

p adj
Group F2b-2-Group F2b-1 0.0000000
Group F2b-3-Group F2b-1 0.0000000
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Group F2b-4-Group F2b-1 0.9999132
Group F2b-5-Group F2b-1 0.0110770
Group F2b-3-Group F2b-2 0.8915424
Group F2b-4-Group F2b-2 0.0000000
Group F2b-5-Group F2b-2 0.0000001
Group F2b-4-Group F2b-3 0.0000000
Group F2b-5-Group F2b-3 0.0000010
Group F2b-5-Group F2b-4 0.0467172

In this sample, M1.by.F2b. ANOVA .Method2 was the result of the aov() function
applied against the measured object variable (M1) and the grouping object variable
(F2b.recode).

The summary() function provided evidence that there was an overall statistically
significant difference at p <= 0.05. Note how the calculated p-value (p <=
0.0000000000000002) is indeed less than 0.05.

The TukeyHSD() function provided more specificity, giving detailed outcomes
on where there are statistically significant differences (p <= 0.05) for M1 values
by F2b.recode breakout groups and equally, were there is no difference for M1
values by F2b subgroups.

5.7 Summary

In this lesson, the graphics and statistics provided a great deal of information. Of
immediate importance, however, focus on the Null Hypothesis statement and the
breakout analyses deriving from use of the TukeyHSD() function:

Null Hypothesis (Ho): There is no statistically significant difference
(p <= 0.05)in M1 values by F2b breakout groups (Group F2b-1, Group F2b-2,
Group F2b-3, Group F2b-4, and Group F2b-5).

For this lesson, there are overall statistically significant difference (p <= 0.05)
in M1 values by F2b.recode breakout groups. Oneway ANOVA served as the
primary approach to determine if a statistically significant difference existed and
the TukeyHSD() function then served as the tool by which finite comparisons of M1
by F2b.recode comparisons were made

Review the table immediately below, made by editing the output associated with
this lesson, to see which F2b.recode breakout groups are significantly different from
each other (p <= 0.05) and which are not.

Comparison of F2b Breakout Groups to M1 Mean Values and
Statistical Significance (p <= 0.05)

Group Mean Group Mean p adj p <= 0.05
Group F2b-2 460.59 Group F2b-1 469.81 0.00000 Yes
Group F2b-3 461.48 Group F2b-1 469.81 0.00000 Yes
Group F2b-4 469.93 Group F2b-1 469.81 0.99991 No
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.01108 Yes
.89154 No
.00000 Yes
.00000 Yes
.00000 Yes
.00000 Yes
.04672 Yes

Group F2b-5 466.99 Group F2b-1 469.81
Group F2b-3 461.48 Group F2b-2 460.59
Group F2b-4 469.93 Group F2b-2 460.59
Group F2b-5 466.99 Group F2b-2 460.59
Group F2b-4 469.93 Group F2b-3 461.48
Group F2b-5 466.99 Group F2b-3 461.48
Group F2b-5 466.99 Group F2b-4 469.93

O O O O O O O

Overall, there is no statistically significant difference (p <= 0.05) in M1
values for the following F2b.recode breakout groups: (1) Group F2b-4 (Mean =
469.93) and Group F2b-1 (Mean = 469.81) and (2) Group F2b-3 (Mean = 461.48)
and Group F2b-2 (Mean = 460.59). For all other comparisons, differences are
statistically significant (p <= 0.05).

Give attention, however, to the calculated p value of 0.04672 for comparison of
Group F2b-5 (Mean = 466.99) and Group F2b-4 (Mean = 469.93). As time permits,
note how a p value of 0.04672 begins to approximate the declared p value of 0.05 and
then read on this distinction between statistical difference and practical difference,
but more discussion of this topic is beyond the purpose of this lesson.

A graphical representation of the TukeyHSD values may help better reinforce
the group comparisons. To achieve this aim, merely create an object that holds the
TukeyHSD values and then plot these values.

M1.hsd <- TukeyHSD (M1.by.F2b.ANOVA.Method2)

M1.hsd

A plot of Ml.hsd is generally helpful for when only a few subgroups are
compared to each other. See below if in this lesson, where there are five subgroups,
if the plot is of any practical value for presentation to others.

savefont <- par (font=2) # Font bold
savecex.lab <- par(cex=0.50) # Label size
par (ask=TRUE)

plot (M1.hsd, las=3, col="red")

par (savefont) ; par (savecex.lab)

Given the complexity of this figure and the need for small font size, other
graphical images may better reinforce the outcomes of this Oneway ANOVA, where
M1 values have been analyzed for the five F2b.recode breakout groups.

The gplot() function using the ggplot2 package can be used to create a simple
graphic, reinforcing distribution of M1 values by F2b.recode breakout groups.

install.packages ("ggplot2")

library (ggplot2) # Load the ggplot2 package.
help (package=ggplot2) # Show the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE)
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ggplot2::gplot (F2b.recode, M1,
data=BioSpmen.df,
main="M1 Values by F2b Subgroups",
geom = "auto",
position="dodge") +theme bw()
# Note the placement of +theme bw() .

The ggplot2::gplot() function is interesting, but the stripchart() function is also
useful and it may yield a more complete view of how data are distributed, allowing
another comparison of M1 values by F2b.recode breakout groups.

par (ask=TRUE)

stripchart (BioSpmen.df$M1~BioSpmen.dfS$F2b.recode,
method="jitter", jitter=.1, vertical=TRUE,
main="Jitter Stripchart of M1l Values by F2b Subgroups",
xlab="F2b Subgroups", ylab="M1l values", cex.lab=1.25,
cex.axis=1.25, ylim=c(325,600), pch=19, col="darkred")

Finally, go back to the graphical images at the level of group comparisons (Mean
and Confidence Interval) to see how these images parallel the Oneway ANOVA
findings. Syntax for complementary graphical images of M1 by F2b.recode follows,
based on use of the sciplot::lineplot() function and the s20x::boxqq() function.

install.packages ("sciplot")

library(sciplot) # Load the sciplot package.
help (package=sciplot) # Show the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE)

sciplot::1lineplot.CI (F2b.recode, M1,
main="Mean and CI M1 Values by F2b Subgroups:
M1 Scale = 450 to 475",
xlab="F2b Subgroup", ylab="M1 Value",
font=2, font.lab=2, legend=FALSE, type="b",
x.cont=FALSE, 1lwd=3, col="red",
err.width=.5, err.col="darkblue", err.lty="solid",
ylim=c(450,475))
# Notice how the Mean and CI of M1 for each F2b.recode
# breakout group is easier to see by adjusting the M1
# scale (450 to 475) on the Y axis.

install.packages ("s20x")

library (s20x) # Load the s20x package.
help (package=s20x) # Show the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE)
s20x: :boxqgqq (M1 ~ F2b.recode, data=BioSpmen.df)
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Mean and CI M1 Values by F2b Subgroups:
M1 Scale =450 to 475

475
1

470

M1 Value

T T T T T
Group F2b-1 Group F2b-2 Group F2b-3 Group F2b4 Group FZb5

F2b Subgroup

5.8 Addendum: Other Packages for Display
of Oneway ANOVA

An advantage of R is that the user community has contributed literally thousands of
additional packages that supplement the many functions available in the base pack-
age, when R is first downloaded. Not surprisingly, Oneway ANOVA is addressed
in some of these additional packages. A few are demonstrated in this addendum,
focusing on the functions included in the lessR package and the s20x package.

par (ask=TRUE)
lessR::ANOVA (M1 ~ F2b.recode, data=BioSpmen.df,
digits.d=2, res.rows="all")

The lessR:: ANOVA() function generates descriptive statistics, an ANOVA table,
a Oneway table, Tukey multiple comparisons of means and residuals, and separate
graphics.

par (ask=TRUE)
s20x::levene.test (M1 ~ factor (F2b.recode),
show.table=TRUE, BioSpmen.df)

par (ask=TRUE)

s20x: :onewayPlot (M1 ~ factor (F2b.recode),
BioSpmen.df, strip=FALSE, vert= TRUE,
verbose=TRUE, conf.level=0.95, pooled=TRUE,
interval.type="tukey")

par (ask=TRUE)
s20x: :summarylway (1lm (M1 ~ F2b.recode,
BioSpmen.df), inttype="tukey", print.out=TRUE,



5.9 Prepare to Exit, Save, and Later Retrieve This R Session 97

raw.plot=TRUE)
# Note how the 1Im() function was used in this
# presentation.

The s20x package has more than a few functions that are related to Analysis of
Variance and it should be examined as a supplement to the use of standard functions.

An additional package that may have value is the granova package, which is also
used for graphical display of ANOVA-type activities.

Whatever test is selected, be sure to review the text output and not only the
figures. A great deal of useful information, beyond what is regularly provided with
a standard Oneway ANOVA test, is available through use of various functions and
arguments found in external packages.

5.9 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.

getwd () # Identify the current working directory.
1s () # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image ("R _Lesson Oneway ANOVA.rdata")

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
1s.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.
alarm() # Alarm, notice of upcoming action.
gl() # Quit this session.

# Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.



Chapter 6
Twoway Analysis of Variance (ANOVA)

Abstract The purpose of this lesson on Twoway Analysis of Variance (ANOVA)
is to provide guidance on how R can be used to see if two or more group means
(e.g., Mean of Variable X for Gender breakouts and Race breakouts, Mean of
Variable Y for Breed breakouts and Feeding Program Breakouts, etc.) differ due
to chance, or if observed differences are indeed the result of true difference between
phenomena. Specifically, the Twoway ANOVA statistical test has been structured
to examine differences (and possible interactions) when variables have two or
more separate categories. The degree of complexity supported by Twoway ANOVA
begins to model real-world concerns for the many ways variables, and possible
interaction between variables, impacts outcomes.

Keywords ANOVA ¢ Analysis of Variance ¢ Factorial design ¢ Interaction
* Mean comparison technique * Oneway ANOVA ¢ Twoway ANOVA

6.1 Background on This Lesson

6.1.1 Description of the Data

This lesson on Twoway Analysis of Variance (ANOVA) focused on human subjects
as the biological specimen in question and specifically attempts to determine if there
are differences in Systolic Blood Pressure by Gender and by Race. The data are from
a sample of 2,000 subjects and there are no missing data.

When Twoway ANOVA is used, this one test makes it is possible to determine:

 Is there a difference because of variables acting independently of each other?
 Is there a difference because of joint effects (i.e., interaction)?

Along with instruction on the use of R and R syntax associated with Twoway
ANOVA, this lesson will also reinforce the use of graphical figures and descriptive

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 99
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_6,
© The Author(s) 2014
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statistics to complement outcomes from the parametric Twoway ANOVA. A number
of external R-based packages and functions are also introduced in this lesson.
Numerical codes are not used for the factor-type data in this lesson. The terms
Female and Male are used for Gender and the terms Black, Other, and White have
been used for Race.

Twoway ANOVA designs, along with all factorial-type ways by which data
are organized, can become exceedingly complex. This lesson serves as a first
introduction to the use of R with Twoway ANOVA. Separate resources should be
viewed on research design, independent of selected statistical analysis software.

Statistical tests that can account for increased complexity are needed if mean-
ingful decisions involving statistics in the large are to be effected. Again, be sure to
consider the increased complexity of decision-making and comparisons supported
by increasingly complex factorial designs, such as Twoway ANOVA.

6.1.2 Null Hypothesis (Ho)

There is no statistically significant difference (p <= 0.05) in Systolic Blood
Pressure by Gender (Female and Male), by Race (Black, Other, White), and by
the interaction of Gender and Race.

6.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the dataset has been prepared in .csv (e.g., comma-separated values)
file format. The data are separated by commas. The data are not separated by tabs
and the data are not separated by spaces.

FHES T R R R R

# Housekeeping Use for All Analyses #
HHHHHHHHH S R R R R R R R
date () # Current system time and date.

R version and version release date.
List all objects in the working
directory.
CAUTION: Remove all files in the working
directory. If this action is not desired,
use the rm() function one-by-one to remove
the objects that are not needed.
ls.str () List all objects, with finite detail.
getwd () # Identify the current working directory.
setwd ("F: /R _Biostatistics")
# Set to a new working directory.
# Note the single forward slash and double
# quotes.

R.version.string
1s()

#
#
#
rm(list = 1s()) #
#
#
#
#
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This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.

getwd () Confirm the working directory.

list.files() # List files at the PC directory.

HEHSHH S

H*+ HF H H*

Systolic.df <- read.table (file =
"GenderRaceBPWeight.csv",
header = TRUE,

sep = ",") # Import the .csv file
getwd () # Identify the working directory
1s() # List objects
attach (Systolic.df) # Attach the data, for later use
str (Systolic.df) # Identify structure
nrow (Systolic.df) # List the number of rows
ncol (Systolic.df) # List the number of columns
dim(Systolic.df) # Dimensions of the data frame
names (Systolic.df) # Identify names
colnames (Systolic.df) # Show column names
rownames (Systolic.df) # Show row names
head (Systolic.df) # Show the head
tail (Systolic.df) # Show the tail
Systolic.df # Show the entire data frame
summary (Systolic.df) # Summary statistics

By completing these actions, an object called Systolic.df has been created and
accommodated. This R-based object is a data frame and it consists of the data
originally included in the file GenderRaceBPWeight.csv, a comma-separated .csv
file. To avoid possible conflicts, make sure that there are no prior R-based objects
called Systolic.df. The prior use of rm(list = Is()) accommodates this concern,
removing all prior objects in the current R session.

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located (see the Housekeeping section at the
beginning of this lesson).

6.3 Organize the Data and Display the Code Book

Now that the data have been imported into R, it is usually necessary to check the data
for format and then make any changes that may be needed, to organize the data. For
this dataset, English-text has been used to distinguish between factor-type object
variable breakouts: Gender (Female and Male) and Race (Black, Other, White).
Recoding is not needed in this lesson.
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For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class (Systolic.df)

(
class (Systolic.dfs$ID) # DataFrame$ObjectName notation
class (Systolic.dfsGender) # DataFrame$ObjectName notation
class (Systolic.dfsRace) # DataFrame$ObjectName notation
class (Systolic.dfsSystolic) # DataFrame$ObjectName notation
class (Systolic.dfsDiastolic) # DataFrame$ObjectName notation
class (Systolic.dfS$Weight) # DataFrame$ObjectName notation
str (Systolic.df) # Structure
duplicated(Systolic.df) # Duplicates

The class for each object seems to be correct and there are no duplicate rows of
data in the data frame. Saying this, a Code Book will help with future understanding
this dataset.

A Code Book is an essential aid for anyone involved in the day-to-day activities
of the research and statistics process. The Code Book is typically brief and only
serves as a useful reminder for what can be easily forgotten months (or even weeks)
later, to make it easy to decipher what may otherwise be seen as arcane numeric
codes. Coding schemes that are intuitively obvious today can easily become obtuse
tomorrow.

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.

FHE#H A HH R R R R

# Code Book #
HEHAHAHEHEHEHFHAHFH SRS R B A HAHAEHEHEHAHEHEH AR R HEHEHAH A HE
# #
H ID et e e e e e e e Factor (e.g., nominal) #
# A unique ID ranging from S0001 to S2000 #
# #
# Gender ..... ... e Factor (e.g., nominal) #
# Female #
# Male #
# #
H RACE o ittt et e e Factor (e.g., nominal) #
# Black #
# Other #
# White #
# #
# Systolic .......... ... ..., Numeric (e.g., interval) #
# Systolic Blood Pressure that ranges #
# from <= 70 to >= 200 #
# #
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Diastolic ................ Numeric (e.g., interval)
Diastolic Blood Pressure that ranges
from <= 50 to >= 120

Weight ................... Numeric (e.g., interval)
Weight (Lbs.) of Adults, ranging

from <= 90 to >= 300 #

HHAHAFHAEHH A HAFH A RS H S R R R R

H H H H H HF

#
#
#
#
#
#
#
#

In an effort to promote self-documentation and readability, it is often desirable to
label all object variables. First, use the epicalc::des() function and the str() function
to see the nature of the data frame. Then, use the epicalc::label.var() function to
provide descriptive labels for each variable. Of course, be sure to load the epicalc
package, if it is not operational from prior analyses.

install.packages ("epicalc™")

library (epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo () # Confirm all attached packages.

epicalc::des(Systolic.df)
str (Systolic.df)

epicalc::label.var "Subject ID", dataFrame=Systolic.df

(I )
epicalc::label.var(Gender, "Gender", dataFrame=Systolic.df)
epicalc::label.var (Race, "Race", dataFrame=Systolic.df)
epicalc::label.var (Systolic, "Systolic", dataFrame=Systolic.df)
epicalc::label.var (Diastolic, "Diastolic", dataFrame=Systolic.df)
epicalc::label.var (Weight, "Weight", dataFrame=Systolic.df)

Then confirm the description of each object variable, to be sure that all actions
were deployed correctly.

epicalc: :des(Systolic.df)
str (Systolic.df)

With assurance that the data frame is in correct format and that labels are
correct, coerce objects into correct format. Notice how variables are named:
DataFrame$ObjectName.

Systolic.df$ID <- as.factor(Systolic.d£f$ID)
Systolic.dfsGender <- as.factor(Systolic.dfs$Gender)
Systolic.dfsRace <- as.factor(Systolic.dfsRace)

Systolic.dfsSystolic <- as.numeric(Systolic.dfsSystolic)
Systolic.dfsDiastolic <- as.numeric(Systolic.dfsDiastolic)
Systolic.dfswWeight <- as.numeric(Systolic.dfsWeight)

As a sidebar comment, at the R prompt, key help(as.numeric) and then key
help(as.integer) to see the differences between these two R functions and when it
may be best to use each.
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Again, confirm the structure of the dataset, using both the epicalc::des() function
and the str() function.

epicalc::des(Systolic.df)
str(Systolic.df)

Then, in a somewhat redundant fashion and to merely further confirm the nature
of the dataset, use the base package (obtained when R is first downloaded) levels()
function against the factor object variables, to reinforce understanding of the data.

levels (Systolic.df$Gender)
levels (Systolic.dfSRace)

Use the summary() function against the object Systolic.df, which is a data frame,
to gain an initial sense of descriptive statistics and frequency distributions.

summary (Systolic.df)

Now, merely use the attach() function again to assure that all data are attached to
the data frame.

attach(Systolic.df)

head (Systolic.df)

tail (Systolic.df)

summary (Systolic.df) # Quality assurance data check

str (Systolic.df) # List all objects, with finite detail
ls.str(Systolic.df) # List all objects, with finite detail

This type of redundancy and attention to detail at this stage of development may
seem unnecessary, but it more than helps reduce later errors caused by a simple
oversight.

6.4 Conduct a Visual Data Check

Now that the data are all in proper format, it would be common to immediately
attempt the appropriate inferential analyses, Twoway ANOVA for this lesson.
However, it is best to first prepare a few graphical displays of the data and to
then reinforce comprehension of the data with descriptive statistics and measures
of central tendency.

Although the emphasis in this lesson is on Twoway ANOVA for the factor-type
object variables Gender (two breakout groups), Race (three breakout groups) and
the numeric-type object variable Systolic (values can range from <= 70 to >= 200),
a simple graphic will be prepared for each variable, largely as a quality assurance
check against the entire dataset.
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names (Systolic.df) # Confirm all object variables.

par (ask=TRUE)
plot (Systolic.d£f$SID,
main="Systolic.df$ID Visual Data Check")

par (ask=TRUE)
plot (Systolic.dfsGender,
main="Systolic.df$Gender Visual Data Check")

par (ask=TRUE)
plot (Systolic.dfSRace,
main="Systolic.df$Race Visual Data Check",
col=gray(2:0/2))
# Note the gray shading scheme and how the values range
# from 0 to 2 and not 1 to 3. Counts that begin with 0
# represent a common means of counting in computer science.

par (ask=TRUE)

plot (density (Systolic.dfsSystolic,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Systolic",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (Systolic.dfs$Diastolic,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Diastolic",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (Systolic.dfsSWeight,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Weight",
lwd=6, col="red", font.axis=2, font.lab=2)

The purpose of these initial plots is to gain a general sense of the data and to
equally look for outliers. In an attempt to look for outliers, the ylim argument has
been avoided, so that all data are plotted. Extreme values may or may not be outliers,
but they are certainly interesting and demand attention.

Given that the purpose of this Twoway ANOVA is to examine the variables
Gender, Race, and Systolic, graphics will not be included for the remaining variables
Diastolic and Weight. Of course, the R-based syntax is this lesson could easily be
used as a template for these other variables.

The bar plot is a very common tool for the presentation of graphics, specifically
for factor-type variables. Note how the table() function is used to improve on R
syntax in tandem with the barplot() function.
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par (ask=TRUE)
barplot (table (Systolic.dfsGender) ,
main="Barplot of Gender",
xlab="Gender", ylab="Number of Subjects",
col="red", cex.axis=1.25, cex.names=1.25, cex.lab=1.25)

par (ask=TRUE)
barplot (table (Systolic.dfs$Race),
main="Barplot of Race",
xlab="Race", ylab="Number of Subjects",
col="red", cex.axis=1.25, cex.names=1.25, cex.lab=1.25)

Create an object that represents the output of the table() function against Race
and Gender and then use this object instead of keying the table function each time.

GenderAndRace <- table(Systolic.df$Race, Systolic.df$Gender)

par (ask=TRUE)
barplot (GenderAndRace,
beside=FALSE, # Stacked
main="Stacked Barplot of Gender and Race",
xlab="Gender by Race", ylab="Number of Subjects",
col=c("red", "green", "blue"),
cex.axis=1.25, cex.names=1.25, cex.lab=1.25)
legend("topleft",
c("Black", "Other", "White"),
col=c("red", "green", "blue"), pch=15, lwd=1)
# Note the placement of the legend.

par (ask=TRUE)

barplot (GenderAndRace,
beside=TRUE, # Grouped
main="Grouped (Side-by-Side) Barplot of Gender and Race",
xlab="Gender by Race", ylab="Number of Subjects",

col=c("red", "green", "blue"),

cex.axis=1.25, cex.names=1.25, cex.lab=1.25)
legend("topleft", # Note the placement of the legend.

c("Black", "Other", "White"),

col=c("red", "green", "blue"), pch=15, lwd=1)

# Note the placement of the legend.

The boxplot (e.g., box-and-whiskers plot) is equally a common tool for the
presentation of graphics, but for numeric-type variables instead of factor-type
variables. As an interesting addition to the boxplot() function, add output from
the fivenum() function (Tukey’s 5 : minimum, lower-hinge, median, upper-hinge,
maximum) in a legend. The, add output from the boxplot.stats() function (lower-
whisker, lower-hinge, median, upper-hinge, upper-whisker) as an additional legend.
This additional detail will produce a free-standing graphics that is exceptionally
information-rich.
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fivenum(Systolic.df$Systolic, na.rm=TRUE)
boxplot.stats(Systolic.dfsSystolic)

par (ask=TRUE)

boxplot (Systolic.df$Systolic,
main="Boxplot of Systolic",
col="red", 1lwd=2, cex.axis=1.25,
ylab="Systolic", cex.lab=1.25)

savefamily <- par(family="mono") # Courier font

savefont <- par (font=2) # Bold
legend ("topleft™",
legend = c(

"> fivenum(Systolic.df$Systolic, na.rm=TRUE)",
"[1] 78 108 122 140 198 ",

"MINIMUM . oe e e e e e e e e e e e e e e e e e e 078",
"Lower-Hinge ..........iiiuiieuinee... 108",
"Median .« ov it e e e 122",
"Upper-Hinge .........cciiiiieiine... 140",
TMaXIMUM & oo et e e e e e e e e e e e e e e e e e 198"),

ncol=1, locator(l), xjust=1,
text.col="darkblue",
cex=1.05, inset=0.02, bty="n")

par (savefamily)

par (savefont)

savefamily <- par(family="mono") # Courier font

savefont <- par (font=2) # Bold

legend ("topright",
legend = c(
"> boxplot.stats(Systolic.df$Systolic) ",
"$Sstats ",

"[1] 78 108 122 140 188 ",

"Lower-Whisker .......... ... ... ... 078",
"Lower-Hinge ..........iiiuiieuinnn... 108",
"Median . ov it e e 122",
"Upper-Hinge .........c.iiiiienine... 140",
"Upper-Whisker ........... ... ... ..., 188"),

ncol=1, locator(l), xjust=1,
text.col="darkblue",
cex=1.05, 1inset=0.02, bty="n")

par (savefamily); par (savefont)

mtext ("The small bubbles indicate outliers.",
side=1, cex=0.75, font=2)
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Boxplot of Systolic

200

> fivenum{Systolic.df§Systolic, na.rm=TRUE) 8 > boxplot.stats(Systolic.df§Systelic)

[1]) 78 108 122 140 198 —_— $stats

[1]1 78 108 122 140 188

180

[ Y g
Lower-Hinge ..
Median .......
Upper-Hinge .. .

Lower-Whisker ..........ccevvinnnans
Lower-Hinge ..
Hedian .......
Uppez-Hinge ..
Upper-Whisker

160

Systolic
140

120
1

100

@ —_—

The small bubbles imdicate outliers.

par (ask=TRUE)

boxplot (Systolic.dfs$sSystolic ~ Systolic.dfS$Gender,
main="Boxplot of Systolic by Gender",
col=c("pink", "blue"), cex.axis=1.25,
ylab="Systolic", cex.lab=1.25)

mtext ("The small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

par (ask=TRUE)

boxplot (Systolic.df$Systolic ~ Systolic.df$Race,
main="Boxplot of Systolic by Race",
col=c("red", "green", "blue"), cex.axis=1.25,
ylab="Systolic", cex.lab=1.25)

mtext ("The small bubbles indicate outliers.",
side=1, cex=0.75, font=2)

The histogram is another tool for displaying data distribution, typically into
organized ranges or bins. Note how the lattice package supports fairly detailed
histograms, where a great deal of information is conveniently organized into one
attractive image.

install.packages ("lattice")

library(lattice) # Load the lattice package.
help (package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

hist (Systolic.df$Systolic,
main="Histogram of Systolic",
xlab="Systolic", col="red", cex.axis=1.25,
cex.lab=1.25, font=2)
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par (ask=TRUE)

lattice::histogram(~ Systolic | Gender,
data=Systolic.df, type="percent",
main="Histogram (lattice::histogram() Function) of Systolic
by Gender: Percent",
xlab=1list ("Gender", cex=1.15, font=2),
xlim=c(0,250), ylab=list ("Systolic", cex=1.15, font=2),
layout=c(2,1), col="red")

par (ask=TRUE)
lattice::histogram(~ Systolic | Gender,
data=Systolic.df, type="density",
main="Histogram (lattice::histogram() Function) of Systolic
by Gender: Density",
xlab=1list ("Gender", cex=1.15, font=2),
x1lim=c(0,250), ylab=list("Systolic", cex=1.15, font=2),
layout=c(2,1), col="red")

par (ask=TRUE)

lattice::histogram(~ Systolic | Race,
data=Systolic.df, type="percent",
main="Histogram (lattice::histogram() Function) of Systolic
by Race: Percent",
xlab=1ist ("Race", cex=1.15, font=2),
xlim=c(0,250), ylab=list("Systolic", cex=1.15, font=2),
layout=c(3,1), col="red")

par (ask=TRUE)

lattice::histogram(~ Systolic | Race,
data=Systolic.df, type="density",
main="Histogram (lattice::histogram() Function) of Systolic
by Race: Density",
xlab=1list ("Race", cex=1.15, font=2),
x1lim=c(0,250), ylab=list ("Systolic", cex=1.15, font=2),
layout=c(3,1), col="red")

Specialized R-based tools exist that combine multiple types of graphical tools
that together generate one convenient and attractive image. Immediately below, the
descr::histkdnc() function places into one image a density curve, a normal curve,
and a histogram.

install.packages ("descr")

library (descr) # Load the descr package.

help (package=descr) # Show the information page.
sessionInfo () # Confirm all attached packages.
savelwd <- par (lwd=4) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label
savecex.axlis <- par(cex.axis=1.25) # Axis
par (ask=TRUE)
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descr::histkdnc (Systolic.df$Systolic,
main="Histogram (descr::histkdnc() Function) of Systolic:
Superimposed Normal Curve (Blue) and
Density Curve (Red)",
xlab="Systolic", col=grey(0.95)) # Allow contrast with lines
par (savelwd) ; par(savefont); par(savecex.lab);
par (savecex.axis) # Use ; to move to next line and save space
Histogram (descr::histkdnc() Function) of Systolic:

Superimposed Normal Curve (Blue) and
Density Curve (Red)
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Although the violin plot is not as common as the boxplot, it should be considered
as a possible selection for how numerical data are distributed. Note below how the
vioplot package and the UsingR package both support functions that generate violin
plots.

install.packages ("vioplot")

library(vioplot) # Load the vioplot package.

help (package=vioplot) # Show the information page.
sessionInfo() # Confirm all attached packages.
savelwd <- par(lwd=3) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label
savecex.axls <- par(cex.axis=1.25)# Axis
par (ask=TRUE)
vioplot::vioplot (Systolic.df$Systolic,
names=c ("Systolic"), col="red")
title("Violin Plot (vioplot::vioplot() Function) of Systolic")
par (savelwd) ; par(savefont); par(savecex.lab);
par (savecex.axis)

install.packages ("UsingR")

library (UsingR) # Load the UsingR package.

help (package=UsingR) # Show the information page.
sessionInfo() # Confirm all attached packages.
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savelwd <- par (lwd=3) # Heavy line

savefont <- par(font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label

savecex.axls <- par(cex.axis=1.25)# Axis

par (ask=TRUE)

UsingR::simple.violinplot (Systolic.df$Systolic ~
Systolic.df$Gender, lty=1, col="red", ylim=c(0,250))
title("Violin Plot (UsingR::simple.violinplot () Function)
of Systolic by Gender")

par (savelwd) ; par(savefont); par(savecex.lab);

par (savecex.axis)

savelwd <- par (lwd=3) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label

savecex.axls <- par(cex.axis=1.25)# Axis

UsingR::simple.violinplot (Systolic.df$Systolic ~
Systolic.df$Race, lty=1, col="red", ylim=c(0,250))
title("Violin Plot (UsingR::simple.violinplot () Function)
of Systolic by Race")

par (savelwd) ; par(savefont); par(savecex.lab);

par (savecex.axis)

There is seemingly no limit to the number of R-based functions that support
graphics and visualization of the data. Experiment as time permits with others.

6.5 Descriptive Analysis of the Data

Given the different ways missing data can impact analyses, it is often helpful to
first check for missing data by using the is.na() function and the complete.cases()
function against the entire dataset. Both functions return a TRUE or FALSE
response, depending on the function and the outcome of whether data are missing
or data are not missing.

is.na(Systolic.df) # Check for missing data
complete.cases (Systolic.df) # Check for complete cases

Even for this fairly large dataset, the summary() function may be all that is
necessary to gain a sense of the data. As typically used, the summary() function
is applied against the entire dataset, thus yielding information about all object
variables, including the object variable ID.

summary (Systolic.df)

Give attention to the listing of NAs, if any, for those object variables with missing
data. Again, the summary() function is very useful and it should always be a first
selection when preparing descriptive analyses.
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Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, review the prior
lesson Descriptive Statistics and Measures of Central Tendency for a comprehen-
sive review of the functions used for descriptive statistics, especially: length(),
asbio::Mode(), median(), mean(), sd(), table(), and finally summary(). As needed
(but not always, depending on specific functions), the na.rm=TRUE argument or
some other similar convention will be used to accommodate missing data.

length (Systolic.df) N of the dataset

length (Systolic.df$ID) of ID
length (Systolic.df$Gender) of Gender
of Race

length (Systolic.df$Systolic)
length (Systolic.df$Diastolic)
length (Systolic.df$Weight)

of Systolic
of diastolic

( #
( #
( #
length (Systolic.df$Race) #
( #
( #
( # of Weight

2222243

Again, the dataset seems to be in correct form and to conserve space, descriptive
statistics, frequency distributions, and measures of central tendency will only be
provided for Gender, Race, and Systolic — the focus of this Twoway ANOVA.

install.packages ("asbio")

library (asbio) # Load the asbio package.

help (package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.
asbio: :Mode (Systolic.df$Systolic) # Mode

mode.of .Systolic <-
names (sort (-table (Systolic.df$Systolic))) [1]
mode.of .Systolic # Hand calculate mode with NAs

Both methods were used to display mode, to show how the asbio::Mode()
function provides both modal values for when the data are bimodal. In contrast,
the hand calculation displays only the first (e.g., lowest) value representing mode.

median (Systolic.df$Systolic, na.rm=TRUE) # Median
mean (Systolic.df$Systolic, na.rm=TRUE) # Mean
sd (Systolic.df$Systolic,na.rm=TRUE ) # SD

summary (Systolic.df)

Descriptive statistics at the summary level are always useful, but breakout
statistics are also needed to gain a more complete understanding of the data. Many
functions are presented in this lesson to demonstrate how breakout statistics are
obtained when using R. The key here is to discern differences in Systolic Blood
Pressure values for the two Gender breakout groups (e.g., Female and Male) and the
three Race breakout Groups (e.g., Black, Other, and White).
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tapply (Systolic, Gender, summary, na.rm=TRUE,
data=Systolic.df) # Systolic by Gender

par (ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(Systolic.dfs$Systolic, by=Systolic.df$Gender,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Systolic by Gender",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
# Note the descriptive statistics and not only the graphic
# that go along with the epicalc::summ() function.

tapply (Systolic, Race, summary, na.rm=TRUE,
data=Systolic.df) # Systolic by Gender

par (ask=TRUE) # Use the epicalc package for breakout analyses
epicalc::summ(Systolic.df$Systolic, by=Systolic.df$Race,
graph=TRUE, pch=18, ylab="auto",
main="Sorted Dotplot of Systolic by Race",
cex.X.axis=1.15, cex.Y.axis=1.15, font.lab=2, dot.col="auto")
# Note the descriptive statistics and not only the graphic
# that go along with the epicalc::summ() function.

Again, simple frequency distributions and descriptive statistics are needed to gain
a general idea of the data. More detail and greater precision can come later. These
initial attempts are simple and are only prepared to provide an initial view of the
data.

table (Systolic.dfsGender)
table (Systolic.dfsRace)
table (Systolic.dfsGender, Systolic.df$Race)

The epicalc package is quite useful for those who work in biostatistics and use R.
A few of the many functions associated with the epicalc package are shown below,
largely to show frequency distributions and percentage representation.

epicalc::tableStack (Gender, dataFrame=Systolic.df,
by="none", count=TRUE, decimal=2,
percent=c ("column", "row"), frequency=TRUE,
name.test=FALSE, total.column=TRUE, test=FALSE)

epicalc::tableStack (Race, dataFrame=Systolic.df,
by=Gender, count=TRUE, decimal=2,
percent=c ("column", "row"), frequency=TRUE,
name.test=FALSE, total.column=TRUE, test=FALSE)

epicalc::tableStack (Race, dataFrame=Systolic.df,
by="none", count=TRUE, decimal=2,
percent=c ("column", "row"), frequency=TRUE,
name.test=FALSE, total.column=TRUE, test=FALSE)
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epicalc::tableStack (Gender, dataFrame=Systolic.df,
by=Race, count=TRUE, decimal=2,
percent=c ("column", "row"), frequency=TRUE,
name.test=FALSE, total.column=TRUE, test=FALSE)

par (ask=TRUE)

epicalc::tabl(Systolic.df$Gender, # Bar Plot
decimal=2, Use the tabl () function
sort.group=FALSE, from the epicalc
cum.percent=TRUE, package to see details
graph=TRUE, about the selected
missing=TRUE, object wvariable. (The
bar.values=c ("frequency"), 1 of tabl is the one
horiz=FALSE, numeric character and
cex=1.15, it is not the letter
cex.names=1.15, 1).
cex.lab=1.15, cex.axisg=1.15,
main="Factor Levels for Object Variable Gender",
ylab="Frequency of Gender, Includings NAs if Any",
col= c("pink", "blue"), gen=TRUE)

H oH H HH H HHH

par (ask=TRUE)

epicalc::tabl (Systolic.dfs$Race,
decimal=2,
sort.group=FALSE,
cum.percent=TRUE, package to see details
graph=TRUE, about the selected

# Bar Plot

#
#
#
#

missing=TRUE, # object variable. (The

#
#
#
#

Use the tabl() function
from the epicalc

bar.values=c ("frequency"), 1 of tabl is the one
horiz=FALSE, numeric character and
cex=1.15, it is not the letter
cex.names=1.15, 1).

cex.lab=1.15, cex.axis=1.15,

main="Factor Levels for Object Variable Race",
ylab="Frequency of Race, Includings NAs if Any",

col= c("red", "green", "blue"), gen=TRUE)

The catspec package and specifically the catspec::ctab() function support a very
rich display of frequency distributions. This resource should be used, especially if
there is a desire to copy and past the frequency distribution table from R into a word
processed technical report.

install.packages ("catspec")

library (catspec) # Load the catspec package.
help (package=catspec) # Show the information page.
sessionInfo() # Confirm all attached packages.

catspec: :ctab (Systolic.df$Gender,
dec.places=2,
type=c("n", "row", "total") ,
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style="wide", percentages=TRUE,
addmargins=TRUE)

catspec: :ctab(Systolic.dfSRace,
dec.places=2,
type=c("n", "row", "total"),
style="wide", percentages=TRUE,
addmargins=TRUE)

catspec: :ctab (Systolic.df$Gender, Systolic.dfSRace,
dec.places=2,
type=c("n", "row", "column", "total"), style="long",
percentages=TRUE, addmargins=TRUE)

Var2 Black Other White Sum

Varl
Female Count 244.00 163.00 393.00 800.00
Row % 30.50 20.38 49.12 100.00
Column % 40.67 40.75 39.30 120.72
Total % 12.20 8.15 19.65 40.00
Male Count 356.00 237.00 607.00 1200.00
Row % 29.67 19.75 50.58 100.00
Column % 59.33 59.25 60.70 179.28
Total % 17.80 11.85 30.35 60.00
Sum Count 600.00 400.00 1000.00 2000.00
Row % 60.17 40.12 99.71 200.00
Column % 100.00 100.00 100.00 300.00
Total % 30.00 20.00 50.00 100.00

catspec: :ctab(Systolic.df$Race, Systolic.df$Gender,
dec.places=2,
type=c("n", "row", "column", "total"), style="long",
percentages=TRUE, addmargins=TRUE)

The ved::structable() function is equally useful for the display of increasingly
complex frequency distributions.

install.packages ("vcd")

library (vcd) # Load the vcd package.
help (package=vcd) # Show the information page.
sessionInfo() # Confirm all attached packages.

vced: :structable (Gender ~ Race, data=Systolic.df)

ved: :structable (Race ~ Gender, data=Systolic.df)

As is nearly always the case with R, there is no one-and-only-one way to obtain
breakout statistics. Look at the Boolean approach shown below and the way use of
== (== and not = and equally there is no space between the two == characters)
for selection purposes has been used, to obtain Systolic breakout statistics first by
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Gender, then by Race, and then by Gender and Race. There are no missing values for
this data set so it is not necessary to use na.rm=TRUE or any other accommodation
for missing values (e.g., NA).

mean (Systolic.

mean (Systolic.
mean (Systolic.
mean (Systolic.
mean (Systolic.
mean (Systolic

mean (Systolic.

dfsSystolic)

dfsSystolic [Systolic.
df$Systolic[Systolic.
dfsSystolic [Systolic.
df$Systolic[Systolic.
.df$Systolic [Systolic.

df$Systolic[Systolic.

Systolic.dfSRace=="Black"])

mean (Systolic.

df$Systolic[Systolic.

Systolic.df$Race=="0Other"])

mean (Systolic.

dfsSystolic [Systolic.

Systolic.df$SRace=="White"])

mean (Systolic.

df$Systolic[Systolic.

Systolic.df$Race=="Black"])

mean (Systolic.

dfsSystolic [Systolic.

Systolic.df$Race=="0Other"])

mean (Systolic.

dfsSystolic [Systolic.

Systolic.df$SRace=="White"])

df$Gender=="Female"])
dfSGender=="Male"])
dfSRace=="Black"])
df SRace=="0Other"])
df$Race=="White"])

df SGender=="Female" &
df SGender=="Female" &
df$Gender=="Female" &

dfSGender=="Male" &
df$Gender=="Male" &
df$Gender=="Male" &

The number of R-based functions used for descriptive statistics is certainly large,
but that should be expected given the importance of descriptive statistics. Below,
consider the use of the fields package and the tables package.

install.packages ("fields")

library(fields)

help (package=fields)

sessionInfo ()

fields::

fields::
fields::

stats (Systolic.dfsSystolic,
stats (Systolic.dfsSystolic,

# Load the fields package.

# Show the information page.

# Confirm all attached packages.

stats (Systolic.dfsSystolic)

install.packages ("tables")

library(tables)

help (package=tables)

sessionInfo()

tables: :tabular

by=Systolic.dfs$Gender)
by=Systolic.df$Race)

# Load the tables package.

# Show the information page.

# Confirm all attached packages.

( (Gender + 1) ~ (n=1)

+ Format (digits=2)

(Systolic + Diastolic + Weight)* (min + max + mean + sd),

data=Systolic

.df )
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tables::tabular( (Race + 1) ~ (n=1) + Format (digits=2)
(Systolic + Diastolic + Weight)* (min + max + mean + sd),
data=Systolic.df )

Many other packages and functions from these packages could be presented,
but are excluded from this lesson to conserve space. If time permits, look into the
etable::tabular.ade() function and the descr::compmeans() function. Other functions
that serve this purpose exist and formal searches at RSeek (http://rseek.org) should
be useful for this purpose.

6.6 Conduct the Statistical Analysis

The preceding graphical images and descriptive statistics, both summary descriptive
statistics and breakout descriptive statistics, provide a fairly good idea of Systolic
Blood Pressure statistics, overall and by Gender and Race:

Systolic Blood Pressure by Gender and by Race

Gender Race N MIN MAX MEAN SD

Female Black 244 78.0 198 129 24 .4
Female Other 163 80.0 188 123 22.8
Female White 393 80.0 190 122 24.1
Female Total 800 78.0 198 125 24.1
Male Black 356 80.0 198 130 22.7
Male Other 237 80.0 182 120 24.0
Male White 607 78.0 190 121 23.1
Male Total 1200 78.0 198 124 23.5

The data have now been brought into this R session and reviewed using graphical
images, frequency distributions, and measures of central tendency, with presentation
at the summary level and breakout levels. Given that these many actions are
acceptable, the data are ready for inferential analyses, such as Twoway ANOVA
in this lesson.

The task now is to use Twoway ANOVA to determine if there are statistically
significant differences (p <= 0.05) in Systolic Blood Pressure between (1) the
two Gender breakout groups (e.g., Female and Male), (2) the three breakout groups
for Race (e.g., Black, Other, and White), and any possible interaction between
Gender and Race. Remember that as useful as the graphical images and descriptive
statistics may be, an inferential test is needed for final determination of statistically
significant differences.

R supports many possible ways to perform a Two-Way ANOVA. A few different
methods for Twoway ANOVA are shown below.
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Use the formula for a Two-Way Factorial Design ANOVA, which is typically
based on the aov() function and is represented as:

# fitl <- aov(y ~ A + B + A:B, data=dataframe)
# summary (fitl)

# fit2 <- aov(y ~ A+B, data=dataframe)
# summary (£it2)

y = Measured datum, (e.g., Weight, Exam Score, etc.)

A = Factor Variable A (e.g., Gender, Race-Ethnicity, etc.)

B = Factor Variable B (e.g., Soil Type, Breed Type, etc.)

A:B = Interaction of Factor Variable A and Factor Variable B
Both ANOVA formulas yield the same result.

Twoway ANOVA Method 1

fitl <- aov(y ~ A + B + A:B, data=dataframe)
Systolic.GenderRace.fitl <-
aov (Systolic ~ Gender + Race + Gender:Race,
data=Systolic.df)

summary (Systolic.GenderRace.fitl)

> summary (Systolic.GenderRace.fitl)
Df Sum Sqg Mean Sq F value Pr (>F)

Gender 1 458 458 0.831 0.362
Race 2 28221 14110 25.617 1.04e-11 **x=*
Gender:Race 2 735 368 0.668 0.513
Residuals 1994 1098329 551

Signif. codes: 0O %x* 0.001 %% 0.01  0.05 0.1 1
>

Twoway ANOVA Method 2

fit2 <- aov(y ~ AxB, data=dataframe)

Systolic.GenderRace.fit2 <-
aov (Systolic ~ GenderxRace,
data=Systolic.df)

summary (Systolic.GenderRace.fit2)

> summary (Systolic.GenderRace.fit2)

Df Sum Sg Mean Sqg F wvalue Pr (>F)
Gender 1 458 458 0.831 0.362
Race 2 28221 14110 25.617 1.04e-11 *x=*
Gender:Race 2 735 368 0.668 0.513
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Residuals 1994 1098329 551

Signif. codes: 0 xx+ 0.001 % 0.01  0.05 0.1 1
>

The immediate interpretation of this Twoway ANOVA for Systolic Blood Pressure
by Gender, by Race, and interaction by Gender and Race is that:

» There is no statistically significant difference in Systolic Blood Pressure by
Gender (p <= 0.05). The calculated p value (p <= 0.362) exceeds the
criterion p value (p <= 0.05) and therefore the Null Hypothesis is confirmed
for this part of the Twoway ANOVA.

* However, there is a statistically significant difference in Systolic Blood Pressure
by Race (p <= 0.05). The calculated p value (p <= 1.04e-11, note the
use of e-notation) is indeed less than the criterion p value (p <- 0.05) and
therefore the Null Hypothesis is rejected (e.g., not accepted) for this part of the
Twoway ANOVA. For further confirmation of this finding of significance, look
at the three » characters immediately after the p value for Race and compare
these three * characters to the significance codes listing immediately below the
ANOVA table.

» There is no statistically significant interaction for Systolic Blood Pressure by
Gender and by Race (p <= 0.05). The calculated p value (p <= 0.513)
exceeds the criterion p value (p <= 0.05) and therefore a significant interac-
tion cannot be confirmed.

To gain a sense of the descriptive statistics (summary and breakout), use the
model.tables() function for another view of Grand Mean and Mean and N (“rep” for
replication in this output) for each cell in the factorial table.

print (model.tables (Systolic.GenderRace.fitl, "means"), digits=5)
print (model.tables (Systolic.GenderRace.fit2, "means"), digits=5)
> print (model.tables (Systolic.GenderRace.fit2, "means"), digits=5)

Tables of means
Grand mean

123.934

Gender
Female Male
124.52 123.54
rep 800.00 1200.00

Race
Black Other White
129.67 121.18 121.59
rep 600.00 400.00 1000.00

Gender:Race
Race
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Gender Black Other White
Female 129.15 122.60 122.44

rep 244.00 163.00 393.00
Male 130.03 120.22 121.03
rep 356.00 237.00 607.00

As shown in the output from application of the model.tables() function, the Grand
mean (e.g., the mean for all subjects) for Systolic Blood Pressure is 123.94. The
breakout means, however, are perhaps of most interest in this lesson.

» There was no statistically significant difference (p <= 0.05) in Systolic Blood
Pressure by Gender and perhaps not surprisingly, the two means for Systolic
Blood Pressure by Gender are: Female = 124.52 and Male = 123.54.

» There was a statistically significant difference (p <= 0.05) in Systolic Blood
Pressure by Race and correspondingly, the three means for Systolic Blood
Pressure by Race are: Black = 129.67, Other = 121.18, and White = 121.59.

The mean Systolic Blood Pressure for Black subjects greatly exceeds Systolic
Blood Pressure mean values for Other subjects and White subjects and it is
now known that there is a statistically significant difference (p <= 0.05). More
information is needed, however, to make finite declarations of findings.

As a throwaway diagnostic, use the plot.design() function to see general trends
for Systolic counts by each breakout group. In this figure, the mean difference in
Systolic Blood Pressure for Black subjects, compared to Other subjects and White
subjects, is quite obvious but again, an inferential test such as Twoway ANOVA is
needed for final determination of difference.

par (ask=TRUE)

plot.design(Systolic ~ Gender + Race,
data=Systolic.df,
main="Systolic Blood Pressure (Mean) by Gender and by Race",
lwd=3, font=2, cex.lab=1.25)

Systolic Blood Pressure (Mean) by Gender and by Race
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Recall that interactions can possibly mask main effects, but there was no
statistically significant (p <= 0.05) interaction in this example. Even so, an
interaction plot is a useful tool for visualizing possible interactions and to visualize
outcomes from multiple perspectives.

savelwd <- par(lwd=4) # Heavy line
savefont <- par (font=2) # Bold
savecex.lab <- par(cex.lab=1.25) # Label
savecex.axis <- par(cex.axis=1.25) # Axis

par (ask=TRUE)
interaction.plot (Systolic.df$Gender, Systolic.dfS$Race,

Systolic.dfs$Systolic, # Note the ordering of variables.
main="Interaction Plot: Gender, Race, and Systolic",
fun=mean, # Use mean instead of median.
legend=TRUE, trace.label="Race", fixed=TRUE,
col=c("red", "green", "blue"),
lwd=4, lty=c("solid", "dashed", "dotdash"),
xlab=" ", # Blank label to allow for output.
ylab="Systolic", font.lab=2, ylim=c(115,135), xtick=TRUE)

par (savelwd) # Return to original setting.

par (savefont) # Return to original setting.

par (savecex.lab) # Return to original setting.

par (savecex.axis) # Return to original setting.

savelwd <- par(lwd=4) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label

savecex.axis <- par(cex.axis=1.25) # Axis

par (ask=TRUE)

interaction.plot (Systolic.df$Race, Systolic.dfs$Gender,
Systolic.dfs$Systolic, # Note the ordering of variables.
main="Interaction Plot: Race, Gender, and Systolic",
fun=mean, # Use mean instead of median.
legend=TRUE, trace.label="Gender", fixed=TRUE,
col= c("pink", "blue"),
lwd=4, lty=c("solid", "dashed"),

xlab=" ", # Blank label to allow for output.
ylab="Systolic", font.lab=2, ylim=c(115,135), xtick=TRUE)
par (savelwd) # Return to original setting.
par (savefont) # Return to original setting.
par (savecex.lab) # Return to original setting.
par (savecex.axis) # Return to original setting.
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6.7 Summary

The graphics and statistics in this lesson provide a great deal of information, for
this one sample, about Systolic Blood Pressure with emphasis on Gender and Race.
For a complete summary, it is perhaps best to first revisit the Null Hypothesis and
the breakout analyses deriving from use of the aov() function and the model.tables()
function:

Null Hypothesis (Ho): There is no statistically significant difference
(p <= 0.05) in Systolic Blood Pressure by Gender (Female and Male), by
Race (Black, Other, White), and by the interaction of Gender and Race.

Focusing on the Null Hypothesis and the aov() function, the Twoway ANOVA
table confirmed that there was a statistically significant difference (p <= 0.05)in
Systolic Blood Pressure by Race but there was no statistically significant difference
(p <= 0.05)in Systolic Blood Pressure by either Gender or by the interaction of
Gender and Race. Again, revisit the prior finding that:

» There was no statistically significant difference (p <= 0.05) in Systolic Blood
Pressure by Gender (Female = 124.52 and Male = 123.54).

» There was a statistically significant difference (p <= 0.05) in Systolic Blood
Pressure by Race (Black = 129.67, Other = 121.18, and White = 121.59.

» There is no statistically significant interaction (p <= 0.05) of Systolic Blood
Pressure by Gender and by Race.

To gain more precision, however (especially to determine more about differences
by Race, where significant difference was found), apply the post hoc TukeyHSD()
function, which is of course associated with Oneway ANOVA, against Systolic and
Race. Then, use the plot() function against the TukeyHSD() function to visually
reinforce findings.

Systolic.by.Race.OnewayANOVA <- aov(Systolic ~ Race,
data=Systolic.df)
# Oneway ANOVA of Systolic by Race
Systolic.by.Race.OnewayANOVA
summary (Systolic.by.Race.OnewayANOVA)
TukeyHSD (Systolic.by.Race.OnewayANOVA) # Apply TukeyHSD ()
> TukeyHSD (Systolic.by.Race.OnewayANOVA) # Apply TukeyHSD ()
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Systolic ~ Race, data = Systolic.df)
Race

p adj
Other-Black 0.0000001
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White-Black 0.0000000
White-Other 0.9556985
>

The p adj column of the TukeyHSD() function provides evidence that there
is a statistically significant difference (p <= 0.05) for the following Race
comparisons: Other-Black and White-Black. Note how the p values for these two
combinations are both <= 0.05.

In contrast, the p value for White-Other, shown above as 0.9556985, exceeds
p <= 0.05 and accordingly there is no difference in Systolic Blood Pressure
between White subjects and Other subjects.

Finally, plot the TukeyHSD findings, to visually reinforce where there are
differences in Systolic Blood Pressure by Race and where there are not.

savelwd <- par (lwd=4) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.25) # Label

savecex.axis <- par(cex.axis=1.25) # Axis

par (ask=TRUE)

plot (TukeyHSD (Systolic.by.Race.OnewayANOVA) ,
las=3, col.axis="darkblue", col="red")

par (savelwd) # Return to original setting.
par (savefont) # Return to original setting.
par (savecex.lab) # Return to original setting.
par (savecex.axis) # Return to original setting.
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Differences in mean levels of Race

In summary, this Twoway ANOVA provided evidence that Gender had no impact
on Systolic Blood Pressure, Race had an impact on Systolic Blood Pressure with
Black subjects showing significantly higher Systolic Blood Pressure readings than
their counterparts, and there was no observed interaction between Gender and Race.
To be more precise:
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» There was no statistically significant difference (p <= 0.05) in Systolic Blood
Pressure between Female subjects and Male subjects.

* There was, however, a statistically significant difference (p <= 0.05) in
Systolic Blood Pressure by Race.

— There was an observed difference between Black subjects and Other subjects
and there was also an observed difference between Black subjects and White
subjects. In both cases, Black subjects had Systolic Blood Pressure values
that were significantly higher than the Systolic Blood Pressure values of their
counterparts from the two other Race breakout groups.

— There was no observed difference in Systolic Blood Pressure between White
subjects and Other subjects.

* Finally, there was no statistically significant interaction (p <= 0.05) in Sys-
tolic Blood Pressure by Gender and Race.

When viewing these conclusions, observe the caution that replication and rigid
attention to established protocols are inherent to the research process. This sample
is merely one attempt in this overall assessment of factors impacting health-related
concerns and concomitantly biostatistics.

6.8 Addendum: Other Packages for Display
of Twoway ANOVA

R has the advantage that the user community has contributed more than 3,000
packages to supplement the many functions available in the base package, when
R is first downloaded. As expected, Twoway ANOVA is the focus of some of
these additional packages. A few of these other R functions will be demonstrated
below. The information gained from these additional R functions provides a rich
understanding of the data and they provide additional insight into interaction(s),
when present. Experienced researchers purposely use redundant approaches to test
data, to gain perspective from multiple viewpoints.

install.packages ("s20x")

library (s20x) # Load the s20x package.
help (package=s20x) # how the information page.
sessionInfo () # Confirm all attached packages.

par (ask=TRUE)
s20x: :boxgg (Systolic ~ Gender, data=Systolic.df)

par (ask=TRUE)
s20x: :boxgg (Systolic ~ Race, data=Systolic.df)
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The s20x::interactionPlots() function does not work correctly if there are missing
data. Of course, this issue is not a concern in this sample. If it were, the dataset would
need to be adjusted so that each case has a full set of data but equally recall that this
action is not always desirable.

par (ask=TRUE)

s20x: :interactionPlots (Systolic ~ Gender+Race,
Systolic.df,
xlab="Gender", xlab2="Race",
ylab="Systolic Blood Pressure",
type="hsd", tick.length=0.1,
interval.distance=0.1, col.width=3/4,
xlab.distance=1, xlen=1.25, ylen=1.25)
# There are four options to the type= argument:
# tukey, hsd, 1lsd, and ci.

Going back to the prior creation of Systolic.GenderRace.fitl and Systolic.
GenderRace.fit2, notice how the s20x::summary2way() function can be used to
generate a Two-Way ANOVA table.

s20x: :summary2way (Systolic.GenderRace.fitl,
page="table", digit=5, conf.level=0.95,
print.out=TRUE)

s20x: :summary2way (Systolic.GenderRace.fitl,
page="means", digit=5, conf.level=0.95,
print.out=TRUE)

s20x: :summary2way (Systolic.GenderRace.fit2,
page="table", digit=5, conf.level=0.95,
print.out=TRUE)

s20x: :summary2way (Systolic.GenderRace.fit2,
page="means", digit=5, conf.level=0.95,
print.out=TRUE)

Cell-means Matrix:
Race
Black Other White Gender
Gender Female 129.15 122.60 122.44 124.73
Male 130.03 120.22 121.03 123.76
Race 129.59 121.41 121.74 124.25

Numeric Summary:

Size Mean Median Std Dev Midspread
All Data 2000 123.934 122 23.75192 32
By Gender
Female 800 124.52 122 24.09742 32

Male 1200 123.54333 124 23.52075 32.5
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By Race

Black 600 129.67333 128 23.42865 34
Other 400 121.19 118 23.5425 34
White 1000 121.588 121 23.45371 34
Combinations:

Female.Black 244 129.14754 128 24 .42884 34.5
Female.Other 163 122.60123 120 22.8426 30
Female.White 393 122.44275 122 24.05897 34
Male.Black 356 130.03371 130 22.7456 32.5
Male.Other 237 120.21941 116 24.0117 34
Male.White 607 121.0346 120 23.05648 34

Give special attention to the page=“means” argument and how it provides
detailed summary statistics for: overall, by the different factor object variables,
and by combinations of the different factor object variables. This printout is quite
valuable and may be of interest beyond statistics in the ANOVA table.

The output from use of the s20x package is especially rich and it should always
be considered, both for the Two-Way ANOVA output as well as the way breakout
descriptive statistics are presented.

Revisit the previously created objects Systolic.GenderRace.fitl and Sys-
tolic.GenderRace.fit2 and use them again, now with the car package. Although
it is beyond the purpose of this lesson, as time permits review the different models
commonly used with ANOVA and equally, review the many designs that are possible
with ANOVA. Specifically, review documentation for the car::Anova() function to
see possible cautions with type=“III" and why it should be used only after careful
consideration.

install.packages ("car")

library (car) # Load the car package.
help (package=car) # Show the information page.
sessionInfo() # Confirm all attached packages.

car: :Anova (Systolic.GenderRace.fitl)
car: :Anova (Systolic.GenderRace.fitl, type="II")
car: :Anova (Systolic.GenderRace.fitl, type="III")

car: :Anova (Systolic.GenderRace.fit2)
car: :Anova (Systolic.GenderRace.fit2, type="II")
car: :Anova (Systolic.GenderRace.fit2, type="III")

6.9 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.
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getwd ()
1s()

ls.str ()
list.files()

# Identify the current working directory.
# List all objects in the working

# directory.

# List all objects, with finite detail.

# List files at the PC directory.

save.image ("R _Lesson Twoway ANOVA.rdata")

getwd ()
1s()

ls.str ()
list.files()

alarm()
q()

# Identify the current working directory.
# List all objects in the working

# directory.

# List all objects, with finite detail.

# List files at the PC directory.

# Alarm, notice of upcoming action.
# Quit this session.
# Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.



Chapter 7
Correlation and Linear Regression

Abstract The purpose of this lesson on correlation and linear regression is to
provide guidance on how R can be used to determine the association between two
variables and to then use this degree of association to predict future outcomes.
Past behavior is the best predictor of future behavior. This concept applies in
the biological sciences, physical sciences, social sciences, and also in economics.
By knowing past relationships between variables (e.g., correlation), it is then
possible to build a prediction equation to foretell future values for selected variables
(e.g., regression). This lesson will focus on Pearson’s Product Moment Coefficient
of Correlation (Pearson’s r, perhaps the most common test for determining if there
is an association between phenomena) and linear regression.

Keywords Association ¢ Coefficient of correlation * Correlation ¢ Linear regres-
sion * Minimal Adequate Model (MAM) * Pearson’sr * Regression * Regression
line » Scatter plot * Scatter plot matrix * SPLOM e Stepwise regression

7.1 Background on This Lesson

7.1.1 Description of the Data

This lesson on correlation (e.g., association) and linear regression focused on
livestock in a contemporary feeder operation as the biological specimen in question.
This lesson has been prepared to determine if there is a correlation in final weight by
measures associated with vigor (e.g., a measure of general health and appearance).
The data are from a sample of 3,308 animals and there are some missing data.
Some livestock operations use a farm to fork approach, where animals are
born and over time raised for slaughter all at one location, under the control of a
single management team. In contrast, this sample is based on a specialized feeder

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 129
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_7,
© The Author(s) 2014
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approach, where livestock are raised to a certain weight by one operator, sold,
and then moved to a specialized location where they are fed, managed, and finally
finished-out to a desired weight suitable for slaughter.

This lesson is specific to how R is used to determine measures of correlation and
linear regression. If needed, review the many materials easily available on the nature
of correlation and how Pearson’s r ranges from —1.0 (perfect negative or declining
association) to +1.0 (perfect positive or ascending association).

As a brief example of correlation, consider the following scenario that borrows
from public health. Assume that at the national level, there is a negative correlation
between miles of paved roads per capita and the rate (e.g., percentage) of infant
mortality:

* Let X equal miles of paved roads per capita.
e Let Y equal the rate of infant mortality.

In this scenario, as X increases Y decreases. That is to say, as the miles of
paved roads per capita in a country increases the rate of infant mortality (e.g., the
percentage of babies who die at or soon after birth) decreases.

Why does this occur? Well, that is a totally different concern. Do not assume that
cause and effect (e.g., causation) is in place here. Sure, a few mothers may get to the
hospital faster, and therefore have children who survive birth, if they can drive on a
paved road as opposed to the use of unreliable transportation on unpaved roads. but
that is hardly the reason for the broad association between roads and healthy babies.
Other factors, such as economic wealth, societal issues, and general development
of infrastructure are also prime concerns that impact this public health measure.
It could be stated that miles of paved roads per capita only serves as a proxy for
public health and wellness.

Other than subject identification number, there are no factor-type data in this
lesson. Weights are presented as pounds (e.g., Lbs.). Vigor is viewed as a numeric
measure of general health and appearance, using a scale that ranges from Low Vigor
to High Vigor, or a scale of 0.00 to 10.00.

7.1.2 Null Hypothesis (Ho)

Because there are more than a few correlations associated with this dataset
(e.g., X:X, XY, X:Z, etc.), a generic Null Hypothesis (Ho) is presented below:

There is no statistically significant correlation (p <= 0.05) between Variable
X and Variable Y.
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7.2 Data Import of a .csv Spreadsheet-Type Data File into R

For this lesson, the dataset has been prepared in .csv (e.g., comma-separated values)
file format. The data are separated by commas. The data are not separated by tabs
and the data are not separated by spaces.

FHES T R R R R

# Housekeeping Use for All Analyses #
HHHHHHHHH A H R R R R R R R
date () # Current system time and date.
R.version.string # R version and version release date.
1s() # List all objects in the working
# directory.
rm(list = 1s()) # CAUTION: Remove all files in the working
# directory. If this action is not desired,
# use the rm() function one-by-one to remove
# the objects that are not needed.
ls.str () # List all objects, with finite detail.

getwd () # Identify the current working directory.
setwd ("F: /R _Biostatistics")

# Set to a new working directory.
Note the single forward slash and double
quotes.
This new directory should be the directory
where the data file is located, otherwise
the data file will not be found.
getwd () Confirm the working directory.
list.files() # List files at the PC directory.
HHHHHHHHH A H R R R R R R R R

H H H H H

LStockVg.df <- read.table (file =
"Livestock Vigor.csv",
header = TRUE,

sep = ",") # Import the .csv file
getwd () # Identify the working directory
1s() # List objects
attach (LStockVg.df) # Attach the data, for later use
str (LStockVg.df) # Identify structure
nrow (LStockVg.df) # List the number of rows
ncol (LStockVg.df) # List the number of columns
dim(LStockVg.df) # Dimensions of the data frame
names (LStockVg.df) # Identify names
colnames (LStockVg.df) # Show column names
rownames (LStockVg.df) # Show row names
head (LStockVg.df) # Show the head
tail (LStockVg.df) # Show the tail
LStockVvg.df # Show the entire data frame
summary (LStockVg.df) # Summary statistics
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An object called LStockVg.df has now been created and accommodated. This
R-based object is a data frame and it consists of the data originally included in the
file Livestock Vigor.csv, a comma-separated .csv file. To avoid possible conflicts,
make sure that there are no prior R-based objects called LStockVg.df. The prior
use of rm(list=Is()) accommodates this concern, removing all prior objects in the
current R session.

Note how it was only necessary to key the filename for the .csv file and not the
full pathname since the R working directory is currently set to the directory and/or
subdirectory where this .csv file is located (see the Housekeeping section at the
beginning of this lesson).

7.3 Organize the Data and Display the Code Book

Now that the data have been imported into R, it is usually necessary to check the
data for format and then make any changes that may be needed, to organize the
data. This dataset is fairly large (N = 3,308 subjects) but the data are fairly simple
in terms of organization. Since the focus is on numeric-type object variables, only.
As anew feature that has not yet been introduced in this set of lessons, a rowname
will be used with this dataset, using the rownames() function. Although this action
is not required, rownames may be helpful when working with increasingly large
datasets. The rownames() function assigns a unique identifier for each row in this
dataset of 3,308 rows, each beginning with the term Animal in this example.

rownames (LStockVg.df) <- paste(’Animal’, 1:3308)

tail (LStockVvg.df) # Show the tail, now to confirm rownames

For this lesson, the class() function, str() function, and duplicated() function will
be used to be sure that data are organized as desired.

class
class
class
class
class
class
class
class

LStockVg.df)
LStockVg.dfsSubject)
LStockVg.dfsWeightInitial)
LStockVg.dfsWeightFinish)
LStockVg.dfsVigorInitial)
LStockVg.dfsvVigorl00Lbs)
LStockVg.dfsvVigor200Lbs)
LStockVg.dfs$VigorFinish)

~ e~ o~ o~~~ o~ —

Following along with all prior lessons and general standards of good pro-
gramming practices, DataFrame$ObjectName notation has been used for object
variables.

str (LStockVg.df) # Structure

duplicated (LStockVg.df) # Duplicates
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The class for each object seems to be correct and there are no duplicate rows of
data in the data frame. Saying this, a Code Book will help with future understanding
this dataset.

A Code Book is an essential aid for anyone involved in the day-to-day activities
of the research and statistics process. The Code Book is typically brief and only
serves as a useful reminder for what can be easily forgotten months (or even weeks)
later, to make it easy to decipher what may otherwise be seen as arcane numeric
codes. Coding schemes that are intuitively obvious today can easily become obtuse
tomorrow.

Now that the class(), str(), and duplicated() functions have been used for basic
diagnostics, consult the Code Book and coerce each object, as needed, into its
correct class.

FHEFHAHHFFHH R R R RS

# Code Book #
HHFHHHB SR HH S H B EHHSEHHE  HH H H  H H  HH
# #

Subject ... .. Factor (e.g., nominal)
A unique ID ranging from S0001 to S3308

WeightInitial ............. Numeric (e.g., interval)
Initial feeder stock weight, with
average weight about 35 1lbs

WeightFinish .............. Numeric (e.g., interval)
Finished feeder stock weight, with
average weight about 250 lbs

# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# VigorInitial ............. Numeric (e.g., interval) #
# A measure of general health and appearance, #
# ranging from 0.00 to 10.00 #
# #
# Vigorl00Lbs .............. Numeric (e.g., interval) #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #
# #

A measure of general health and appearance,
ranging from 0.00 to 10.00

Vigor200Lbs .............. Numeric (e.g., interval)
A measure of general health and appearance,
ranging from 0.00 to 10.00

VigorFinish .............. Numeric (e.g., interval)
A measure of general health and appearance,
ranging from 0.00 to 10.00

HHAHAFHAEH A HAHHAH S H S R R
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In an effort to promote self-documentation and readability, it is often desirable to
label all object variables. First, use the epicalc::des() function and the str() function
to see the nature of the data frame. Then, use the epicalc::label.var() function to
provide descriptive labels for each variable. Of course, be sure to load the epicalc
package, if it is not operational from prior analyses.

install.packages ("epicalc™")

library(epicalc) # Load the epicalc package.
help (package=epicalc) # Show the information page.
sessionInfo() # Confirm all attached packages.

epicalc: :des (LStockVg.df)
str (LStockVg.df)

epicalc::label.var (Subject, "Animal ID",
dataFrame=LStockVg.df)

epicalc::label.var (WeightInitial, "Weight When Purchased",
dataFrame=LStockVg.df)

epicalc::label.var (WeightFinish, "Weight When Sold",
dataFrame=LStockVg.df)

epicalc::label.var (VigorInitial, "Vigor When Purchased",
dataFrame=LStockVg.df)

epicalc::label.var (Vigorl00Lbs, "Vigor at 100 Pounds",
dataFrame=LStockVg.df)

epicalc::label.var (Vigor200Lbs, "Vigor at 200 Pounds",
dataFrame=LStockVg.df)

epicalc::label.var (VigorFinish, "Vigor at Sale",

dataFrame=LStockVg.df)

Then confirm the description of each object variable, to be sure that all actions
were deployed correctly.

epicalc::des (LStockVg.df)
str (LStockVg.df)

With assurance that the data frame is in correct format and that labels are correct,
coerce objects into correct format. Once again, notice how variables are named:
DataFrame$ObjectName.

LStockVg.dfsSubject <- as.factor(
LStockVg.dfsSubject)
LStockVg.dfsWeightInitial <- as.numeric (
LStockVg.dfsWeightInitial)
LStockVg.dfsWeightFinish <- as.numeric(
LStockVg.dfsWeightFinish)
LStockVg.dfsVigorInitial <- as.numeric
LStockVg.dfsVigorInitial)
LStockVg.df$Vigorl00Lbs <- as.numeric (
LStockVg.dfsVigorl00Lbs)
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LStockVg.dfsVigor200Lbs <- as.numeric (
LStockVg.df$Vigor200Lbs)

LStockVg.dfsVigorFinish <- as.numeric (
LStockVg.dfs$VigorFinish)

As a sidebar comment, at the R prompt, key help (as.numeric) and then key help
(as.integer) to see the differences between these two R functions and when it may
be best to use each.

Again, confirm the structure of the dataset, using both the epicalc::des() function
and the str() function.

epicalc::des (LStockVg.df)
str (LStockVg.df)

Use the summary() function against the object LStockVg.df, which is a data
frame, to gain an initial sense of descriptive statistics and frequency distributions.

summary (LStockVg.df)

Now, merely use the attach() function again to assure that all data are attached to
the data frame.

attach (LStockVg.df)

head (LStockVvg.df)

tail (LStockVg.df)

summary (LStockVg.df) # Quality assurance data check

print (LStockVg.df)

Be sure to observe which part of the dataset shows on the screen when the print()
function is used with a large dataset. The head() function and tail() function may be
better alternate selections, here.

Finally, review the structure of the dataset to be assured, again, that data are in
correct format.

str (LStockVg.df) # List all objects, with finite detail
ls.str (LStockVg.df) # List all objects, with finite detail

These many actions may be somewhat redundant, but this initial work is well-
worth the effort in view of quality assurance. Every effort must be made to be sure
that the data are in correct and desired format. Merely glancing at the dataset, either
in an external spreadsheet or by using the print() function, is simply insufficient to
meet quality assurance requirements.

7.4 Conduct a Visual Data Check

Now that the data are all in proper format, it would be common to immediately
attempt the appropriate inferential analyses, Pearson’s Product-Moment Coefficient
of Correlation (e.g., Pearson’s r) and later a linear regression for this lesson.
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However, it is best to first prepare a few graphical displays of the data and to
then reinforce comprehension of the data with descriptive statistics and measures
of central tendency

The value of a visual data check goes far beyond what is gained with output
from the summary() function and similar functions. Simple plots can be very helpful
in looking for data that may be either illogical or out-of-range. These initial plots
should be considered throwaways as they are intended only for diagnostic purposes.
More complex figures, often of publishable quality can then be prepared from these
initial throwaway graphics, by careful selection of functions and arguments. R-based
figures can be simple or detailed, as needed.

Although the emphasis in this lesson is on Pearson’s r and later a linear
regression, a simple graphic will be prepared for each variable, largely as a quality
assurance check against the entire dataset.

names (LStockVg.df) # Confirm all object wvariables.

par (ask=TRUE)
plot (LStockVg.df$Subject,
main="LStockVg.dfsSubject Visual Data Check")

par (ask=TRUE) ; plot (sort (LStockVg.df$WeightInitial))
par (ask=TRUE) ; plot (sort (LStockVg.dfS$WeightFinish))
par (ask=TRUE) ; plot (sort (LStockVg.df$VigorInitial))
par (ask=TRUE) ; plot (sort (LStockVg.df$Vigorl00Lbs) )
par (ask=TRUE) ; plot (sort (LStockVg.df$Vigor200Lbs) )
par (ask=TRUE) ; plot (sort (LStockVg.df$VigorFinish))

# Sorting makes it easier to look for extreme values

By using the ; character in the above examples, two operations (use of the par()
function and use of the plot() function) could be placed on the same line. The sort()
function provides a useful way of ordering data, again to look for data that may be
either illogical or out-of-range.

The density plot is very useful to look for a general display of the data, largely to
see distribution patterns and adherence to any semblance of normal distribution.

par (ask=TRUE)

plot (density (LStockVg.dfsWeightInitial,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of WeightInitial",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (LStockVg.dfsWeightFinish,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of WeightFinish",
lwd=6, col="red", font.axis=2, font.lab=2)
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par (ask=TRUE)

plot (density (LStockVg.df$VigorInitial,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of VigorInitial",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (LStockVg.df$Vigorl00Lbs,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Vigorl00Lbs",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (LStockVg.df$Vigor200Lbs,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of Vigor200Lbs",
lwd=6, col="red", font.axis=2, font.lab=2)

par (ask=TRUE)

plot (density (LStockVg.df$VigorFinish,
na.rm=TRUE) , # Required for the density () function
main="Density Plot of VigorFinish",
lwd=6, col="red", font.axis=2, font.lab=2)

The boxplot (e.g., box-and-whiskers plot) is a traditional tool for viewing the
distribution of data, with an emphasis on standard descriptive statistics. See help
pages for the fivenum() function and the boxplot.stats() function, along with the
boxplot() function, to learn more about this visual tool.

par (ask=TRUE)

boxplot (LStockVg.dfsWeightInitial,
main="Boxplot of Weight When Purchased",
col="red", lwd=2, cex.axis=1.25,
ylab="Weight in Pounds", cex.lab=1.25)

par (ask=TRUE)

boxplot (LStockVg.dfsWeightFinish,
main="Boxplot of Weight When Sold",
col="red", lwd=2, cex.axis=1.25,
ylab="Weight in Pounds", cex.lab=1.25)

par (ask=TRUE)

boxplot (LStockVg.df$VigorInitial,
main="Boxplot of Vigor When Purchased",
col="red", lwd=2, cex.axis=1.25,
ylab="Vigor (Scale = 0 to 10)", cex.lab=1.25)
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par (ask=TRUE)

boxplot (LStockVg.df$Vigorl00Lbs,
main="Boxplot of Vigor at 100 Pounds",
col="red", lwd=2, cex.axis=1.25,
ylab="Vigor (Scale = 0 to 10)", cex.lab=1.25)

par (ask=TRUE)

boxplot (LStockVg.dfs$Vigor200Lbs,
main="Boxplot of Vigor at 200 Pounds",
col="red", lwd=2, cex.axis=1.25,
ylab="Vigor (Scale = 0 to 10)", cex.lab=1.25)

par (ask=TRUE)
boxplot (LStockVg.dfsVigorFinish,
main="Boxplot of Vigor at Sale",
col="red", lwd=2, cex.axis=1.25,
ylab="Vigor (Scale = 0 to 10)", cex.lab=1.25)

par (ask=TRUE)

boxplot (LStockVg.df [, 2:3], # Variables 2 to 3
main="Comparative Boxplots of Weight",
col="red", lwd=2, cex.axis=1.25,
ylab="Weight in Pounds", cex.lab=1.25)

par (ask=TRUE)

boxplot (LStockVg.df [, 4:7], # Variables 4 to 7
main="Comparative Boxplots of Vigor",
col="red", lwd=2, cex.axis=1.25,

ylab="Vigor (Scale = 0 to 10)", cex.lab=1.25)
Comparative Boxplots of Vigor
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The histogram is another traditional tool used to view data distribution.
Be careful to distinguish between output of a histogram (e.g. hist() function),
output of a column chart (e.g., barplot() function), and the type of data needed for
each visual aid.

par (ask=TRUE)

hist (LStockVg.dfs$WeightInitial,
main="Histogram of Weight When Purchased",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Weight in Pounds", ylab="Number of Animals")

par (ask=TRUE)

hist (LStockVg.dfsWeightFinish,
main="Histogram of Weight When Sold",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Weight in Pounds", ylab="Number of Animals")

par (ask=TRUE)

hist (LStockVg.df$vigorInitial,
main="Histogram of Vigor When Purchased",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Vigor (Scale = 0 to 10)", ylab="Number of Animals")

par (ask=TRUE)

hist (LStockVg.df$Vigorl00Lbs,
main="Histogram of Vigor at 100 Pounds",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Vigor (Scale = 0 to 10)", ylab="Number of Animals")

par (ask=TRUE)

hist (LStockVvg.dfsVvigor200Lbs,
main="Histogram of Vigor at 200 Pounds",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Vigor (Scale = 0 to 10)", ylab="Number of Animals")

par (ask=TRUE)

hist (LStockVg.df$VigorFinish,
main="Histogram of Vigor at Sale",
col="red", lwd=2, cex.axis=1.25, cex.lab=1.25,
xlab="Vigor (Scale = 0 to 10)", ylab="Number of Animals")

The purpose of these initial plots is to gain a general sense of the data and to
equally look for outliers. In an attempt to look for outliers, the ylim argument has
been avoided, so that all data are plotted. Extreme values may or may not be outliers,
but they are certainly interesting and demand attention.
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7.5 Descriptive Analysis of the Data

Given the different ways missing data can impact analyses, it is often helpful to
first check for missing data by using the is.na() function and the complete.cases()
function against the entire dataset. Both functions return a TRUE or FALSE
response, depending on the function and the outcome of whether data are missing
or data are not missing.

is.na (LStockVvg.df) # Check for missing data
complete.cases (LStockVg.df) # Check for complete cases

For the dataset LStockVg.df note how there are a few rows where there are
missing data for individual object variables. But, because the dataset is large
(N = 3,308 subjects), everything does not always show on the screen in a convenient
manner. Even so, for the purpose of this lesson, it is only necessary to recognize
that there are missing data and to use appropriate functions and arguments to
accommodate this observation.

Although this dataset is fairly large, the summary() function may be all that is
necessary to gain a sense of the data. As typically used, the summary() function
is applied against the entire dataset, thus yielding information about all object
variables, including the object variable Subject.

summary (LStockVg.df)

Give attention to the listing of NAs, if any, for those object variables with missing
data. Again, the summary() function is very useful and it should always be a first
selection when preparing descriptive analyses.

Although the summary() function is quite sufficient, descriptive statistics for
individual object variables may be desired. To achieve this aim, review the prior
lesson Descriptive Statistics and Measures of Central Tendency for a comprehen-
sive review of the functions used for descriptive statistics, especially: length(),
asbio::Mode(), median(), mean(), sd(), table(), and finally summary(). As needed
(but not always, depending on specific functions), the na.rm=TRUE argument or
some other similar convention will be used to accommodate missing data.

Again, the dataset seems to be in correct form. There are no factor-type object
variables in the dataset used for breakout analyses. All object variables in this
dataset, with the exception of Subject, are numeric. To supplement the summary()
function and determine mode, the following functions found in external packages
will be used for their rich output: asbio::Mode and Zelig::-Mode.

install.packages ("asbio")

library (asbio) # Load the asbio package.
help (package=asbio) # Show the information page.
sessionInfo() # Confirm all attached packages.

install.packages ("Zelig")
library (zZelig) # Load the Zelig package.
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help (package=Zelig)
sessionInfo ()

# Show the information page.
# Confirm all attached packages.

With these external packages brought into this R session, prepare descriptive
statistics of selected variables in the LStockVg.df dataset. Use this process for all
variables, as needed.

mean (LStockVg.dfsWeightFinish, na.rm=TRUE)
sd (LStockVg.df$WeightFinish, na.rm=TRUE)
median (LStockVg.df$WeightFinish, na.rm=TRUE)
asbio: :Mode (LStockVg.df$WeightFinish)

Zelig: :Mode (LStockVg.df$WeightFinish)

range (LStockVg.dfs$WeightFinish, na.rm=TRUE) # Main descriptives

These one-by-one calculations of descriptive statistics are useful, but there are
other functions that provide in one simple operation a composite of all needed
descriptive statistics. For this lesson, look at the use of the fields::stats() function
and the lessR::SummaryStats() function. Each function provides the same general
level of information about the selected variables, so selection is largely a matter of
preference.

install .packages ("fields")
library(fields)
help (package=fields)

# Load the fields package.
# Show the information page.

sessionInfo() # Confirm all attached packages.
fields::stats (LStockVg.df$WeightInitial)

fields: :stats(LStockVg.dfSWeightFinish)

fields::stats (LStockVg.df$VigorInitial)

fields::stats (LStockVg.df$Vigorl00Lbs)

fields::stats (LStockVg.df$Vigor200Lbs)

fields::stats (LStockVg.df$VigorFinish)

fields::stats (LStockVg.df) # Entire dataset

install.packages ("lessR")
library(lessR)
help (package=1lessR)

# Load the lessR package.
# Show the information page.

sessionInfo() # Confirm all attached packages.
lessR: :SummaryStats (WeightInitial, dframe=LStockVg.df)
lessR: :SummaryStats (WeightFinish, dframe=LStockVg.df)
lessR: :SummaryStats (VigorInitial, dframe=LStockVg.df)
lessR: :SummaryStats (Vigorl00Lbs, dframe=LStockVg.df)
lessR: :SummaryStats (Vigor200Lbs, dframe=LStockVg.df)
lessR: :SummaryStats (VigorFinish, dframe=LStockVg.df)
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7.6 Conduct the Statistical Analysis

The preceding graphical images and descriptive statistics provide a fairly good idea
of the data in this dataset, dealing with the weight and vigor at various stages in the
life cycle of livestock in a contemporary feeder operation:

Descriptive Statistics of Weight and Vigor

N NAs Mean SD
WeightInitial 3308 0 35.01 1.99
WeightFinish 3299 9 249.86 11.84
VigorInitial 3308 0 8.83 0.42
Vigorl00Lbs 3304 4 8.62 0.45
Vigor200Lbs 3294 14 8.71 0.40
VigorFinish 3299 9 8.80 0.38

There is every reason to think that the data are in correct format and that the data
are ready for inferential analyses, such as calculation of Pearson’s r and simple (e.g.,
one predictor variable) linear regression.

7.6.1 Correlation Using Pearson’s r

The task now is to use correlation to first determine the correlation between X and
Y, of which there are multiple X:Y combinations in this dataset. Only then would
there be sufficient context and understanding of the data to build a regression-based
prediction equation using R syntax.

R supports many possible ways to determine Pearson’s r, either individual
calculations, or correlation values in a table-like presentation. Different ways of
showing calculation of Pearson’s r are shown below, from among many different
ways to achieve this aim.

Using the term brute force, look at the way multiple individual correlations
are prepared below. View this presentation as a declining cascade of comparisons
between X:Y, recognizing that an initial comparison of X:Y equates to a later
comparison of Y:X (e.g, that is to say the calculation of Pearsons’s r coefficient
of correlation for X:Y is the same as the calculation of Pearsons’s r coefficient of
correlation for Y:X).

cor.test (LStockVg.df$WeightInitial, LStockVg.df$WeightFinish)
cor.test (LStockVg.dfsWeightInitial, LStockVg.df$VigorInitial)
cor.test (LStockVg.df$WeightInitial, LStockVg.df$Vigorl00Lbs)
cor.test (LStockVg.dfsWeightInitial, LStockVg.df$vigor200Lbs)
cor.test (LStockVg.df$WeightInitial, LStockVg.df$VigorFinish)
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cor.test (LStockVg.dfsWeightFinish, LStockVg.dfsvigorInitial)
cor.test (LStockVg.df$WeightFinish, LStockVg.df$Vigorl00Lbs)
cor.test (LStockVg.df$WeightFinish, LStockVg.df$vigor200Lbs)
cor.test (LStockVg.df$WeightFinish, LStockVg.df$VigorFinish)

cor.test (LStockVg.df$VigorInitial, LStockVg.df$Vigorl00Lbs)
cor.test (LStockVg.df$VigorInitial, LStockVg.df$vVigor200Lbs)
cor.test (LStockVg.df$VigorInitial, LStockVg.df$VigorFinish)

cor.test (LStockVg.df$Vigorl00Lbs, LStockVg.dfsVigor200Lbs)
cor.test (LStockVg.df$vVigorl00Lbs, LStockVg.dfsvigorFinish)

cor.test (LStockVg.df$vVigor200Lbs, LStockVg.dfsvigorFinish)

The cor.test() function is quite descriptive, yielding information on the p-value
and Pearson’s r coefficient of correlation (Pearson’s r is the default method for
correlation when using the cor.test() function). Be careful to distinguish between
p-values and Pearson’s r correlations, however. As an example, look at the output
for the cor.test() function when applied against VigorInitial and VigorFinish:

> cor.test (LStockVg.dfsVigorInitial, LStockVg.df$VigorFinish)
Pearson’s product-moment correlation

data: LStockVg.df$VigorInitial and LStockVg.df$VigorFinish
t = 20.1132, df = 3297, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2998468 0.3606473
sample estimates:
cor
0.33059
>

The calculated p-value is less than or equal to 0.00000000000000022 and as such
there is a statistically significant correlation (p <= 0.05) between Vigorlnitial
and VigorFinish. All we know from the p-value statistic is that there is (or is
not) a statistically significant correlation, and in this example there is a significant
correlation.

The Pearson’s r coefficient of correlation is 0.33059. Recall that Pearson’s r is
the default method for determining correlation with the cor.test() function.

It is now known that the correlation (Pearons’s r) between Vigorlnitial
and VigorFinish is 0.33059 and that this correlation is statistically significant
(p <= 0.05). That is to say, as the measure for VigorInitial increases there is a
corresponding increase in the measure for VigorFinish. It should be noted, however,
that coefficients of correlation are very sensitive to N and this should be recalled
when considering the practical implications of these analyses.

Although these multiple individual correlations are adequate, there are a few
simple ways to avoid all of this redundant typing and instead use R-based functions
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that simplify the process. Equally, the output to the screen of these simplified
operations is generally easy to read and does not call for scrolling up and down
the screen to find desired statistics.

First, because it is not necessary, remove the Subject column from the data frame
so that only the data pertinent (e.g., the measured object variables, the two measures
for weight and the four measures for vigor in this lesson) to this set of correlations
are retained. Although this action is not essential, it will make implementation of the
analyses a bit easier than if the LStockVg.df$Subject object variable were retained.

str (LStockVg.df)
head (LStockVvg.df)

LStockVg.dfsSubject <- NULL # Remove the Subject column
attach (LStockVg.df) # Confirm data are attached

str (LStockVg.df)
head (LStockVvg.df)

Now that the revised LStockVg.df data frame is in corrected format, with Subject
removed, apply the cor() function and Hmisc::rcor() function to generate attractive
and easy-to-read correlation output.

The cor() function produces a convenient correlation matrix of Pearson’s r values.
Be sure to notice how the X:X, Y:Y, Z:Z, etc. correlations always show as 1.00 and
appear as a sloping diagonal, from top left to bottom right. This type of output is
common to any correlation matrix and it is by no means unique to R.

cor (LStockVg.df, use="complete.obs", method="pearson")

The Hmisc::rcorr() function is information-rich and it generates three types of
output: Pearson’s r values for each comparison of X:Y, N for each X:Y comparison
with missing values taken out of the comparisons, and X:Y p-values.

install.packages ("Hmisc")

library (Hmisc) # Load the Hmisc package.
help (package=Hmisc) # Show the information page.
sessionInfo() # Confirm all attached packages.

Hmisc: :rcorr (as.matrix (LStockVg.df, type=pearson))

Note above how the data frame must be accommodated as a matrix for the
Hmisc::rcorr() function to work. This requirement is easily accommodated by
wrapping the as.matrix() function around the data frame name, as shown above.

The placement of Pearson’s r correlation values, Ns, and p-values in an organized
fashion is highly valued, but going back to a constant theme in these lessons
on the use of R for biostatistics, visual presentations are perhaps the best way
to gain attention of the typical reader. Consider the tools shown below on how



7.6 Conduct the Statistical Analysis 145

to present multiple correlation comparisons in one convenient image, using the
pairs() function, the lattice::splom() function, the psych::pairs.panels() function, the
car::scatterplotMatrix() function, and the psych::cor.plot() function. Each function
addresses the same general theme, but presentation is slightly different, allowing a
variety of selections for final presentation.

The pairs() function is likely the first choice for production of a visual correlation
matrix. Of course, the visual representation of X:Y is very helpful as a supplement
to the otherwise static Pearson’s r coefficient statistics.

par (ask=TRUE)
pairs(~WeightInitial+WeightFinish+VigorInitial+Vigorl00Lbs+
Vigor200Lbs+VigorFinish, data=LStockVg.df, col="red",
main="Scatter Plot Matrix (SPLOM) of Weights and Vigor
in a Livestock Finishing Operation")

Scatter Plot Matrix (SPLOM) of Weight and Vigor
in a Livestock Finishing Operation
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The lattice::splom() function is also useful, but be sure to see how the presen-
tation improves as the number of comparisons is set to a limited number, or in the
examples below as the number of comparisons is reduced from six to three.

install.packages ("lattice")

library(lattice) # Load the lattice package.
help (package=lattice) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

lattice::splom(~LStockVg.df, font=2, col="red",
main="Scatter Plot Matrix (SPLOM) of Weights and Vigor
in a Livestock Finishing Operation")
# All 6 variables for this splom
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par (ask=TRUE)

lattice::splom(~LStockVg.df[4:6], font=2, col="red",
main="Scatter Plot Matrix (SPLOM) of Vigor in a
Livestock Finishing Operation")
# Look at the way only variables 4, 5, and 6 are used

Scatter Plot Matrix (SPLOM) of Vigor in a
Livestock Finishing Operation
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Scatter Plot Matrix

Following along with the different ways R supports the creation of a scatter plot
matrix (SPLOM), consider use of the psych::pairs.panels() function. The output is as
appealing as the other SPLOM-type functions and it may be easier to read. Be sure
to notice how the output includes a histogram and density plot of each individual
variable and then a scatter plot of each X:Y comparison.

install.packages ("psych")

library (psych) # Load the psych package.
help (package=psych) # Show the information page.
sessionInfo() # Confirm all attached packages.

par (ask=TRUE)

psych: :pairs.panels (LStockVg.df,
method="pearson", rug=TRUE, hist.col="red",
main="Scatter Plot Matrix (SPLOM) (Lower Diagonal) and
Pearson’s r (Upper Diagonal) of Weight and Vigor")
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Scatter Plot Matrix (SPLOM) (Lower Diagonal) and
Pearson’s r (Upper Diagonal) of Weight and Vigor
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The car::scatterplotMatrix() function provides another view of a scatter plot
matrix. Again, there are many options and eventually individual preferences often
determine selected functions.
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install.packages ("car")

library(car) # Load the car package.
help (package=car) # Show the information page.
sessionInfo() # Confirm all attached packages.

car::scatterplotMatrix (~ VigorInitial + Vigorl0O0Lbs +
Vigor200Lbs + VigorFinish, # Only vigor indicators
main="Scatterplot Matrix of All Vigor Indicators",
transform=TRUE, data=LStockVg.df, smoother=loessLine,
legend.plot=TRUE, rowlattop=TRUE)

As an interesting change from the traditional SPLOM, look at output from the
psych::cor.plot() function and how color gradients are used to signify the degree of
correlation (—1.0 to 41.0) and subsequently Pearson’s r, ranging from —1.0 (Dark
Red) to 0.00 (White) to +1.00 (Dark Blue).

par (ask=TRUE)

psych: :cor.plot (cor (LStockVg.df,
use="complete.obs", method="pearson"),
main="Color-Gradient Correlation Plot of Weight and Vigor:
Dark Red for Pearson’s r = -1.0 to Dark Blue for
Pearson’s r = +1.0", font.lab=2, font.axis=2)
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Color-Gradient Correlation Plot of Weight and Vigor:
Dark Red for Pearson's r = -1.0 to Dark Blue for
P 's r=+1.0
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If individual scatter plots of X:Y are needed, the car package has a few
useful functions. A regression line can be inserted into a figure generated from the
plot() function by using the car:regline() function. Or, simply use the
car::scatterplot() function to generate an individual scatter plot with accompanying
regression lines. In the examples shown below, from among the many X:Y
comparisons, look at the two ways a regression line has been added to the
presentation, for VigorFinish (Y axis) by Vigor200Lbs (X axis) in this example.

savelwd <- par
savefont <- par
savecex.lab <- par
savecex.axis <- par
par (ask=TRUE)
plot (VigorFinish ~ Vigor200Lbs, # Y axis ~ X axis
data=LStockVg.df,
xlab="Vigor at 200 Pounds", ylab="Vigor at Sale",
main="Scatter Plot of Vigor at 200 Pounds (X) by Vigor at
Sale (Y) With Regression Line",
pch=c (16))
car::regline (1Im(VigorFinish ~ Vigor200Lbs,
data=LStockVg.df), lty=1, col="red")
par (savelwd) ; par(savefont); par(savecex.lab);
par (savecex.axis)

lwd=4) # Heavy line
font=2) # Bold
cex.lab=1.25) # Label
cex.axis=1.25) # Axis

savelwd <- par
savefont <- par
savecex.lab <- par
savecex.axis <- par
par (ask=TRUE)
car::scatterplot (VigorFinish ~ Vigor200Lbs, #Y ~ X

data=LStockVg.df,

xlab="Vigor at 200 Pounds", ylab="Vigor at Sale",

lwd=4) # Heavy line
font=2) # Bold
cex.lab=1.5) # Label
cex.axis=1.5) # Axis
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main="Scatter Plot of Vigor at 200 Pounds (X) by Vigor at
Sale (Y) With Regression Line and Ellipse",
reg.line=TRUE, boxplots="xy", grid=FALSE, pch=15,
font.lab=2, font.axis=2, lty=1, cex.main=1.5,
ellipse=TRUE, robust=TRUE )
# Data-concentration ellipse and center of ellipse
legend("topleft",
xjust=1, bty="y", box.lwd=1, box.col="red",
text.col="red", text.font=2,
" Pearson’s r = 0.9466428 ")
par (savelwd) ; par(savefont); par(savecex.lab)
par (savecex.axis)

The X:Y scatter plot is well-established in biostatistics and there are many ways
to prepare and present a scatter plot. A fairly new approach, however, is to use the
bagplot to show the degree of association between two separate variables, X:Y.
The bagplot is a bivariate boxplot, where 50 % of all points are contained in the
central bag. A fence surrounds the bag and from this fence the remaining points
radiate out, giving a view of distribution points and consequently extreme values if
there are any. Compare the visualization of the association between Vigor200Lbs
(X axis) and VigorFinish (Y axis) in a bagplot (below) as compared to the more
traditional X:Y scatter plot of these two object variables, as shown above.

install.packages ("aplpack")

library (aplpack) # Load the aplpack package.

help (package=aplpack) # Show the information page.
sessionInfo () # Confirm all attached packages.
savelwd <- par(lwd=2) # Heavy line

savefont <- par (font=2) # Bold

savecex.lab <- par(cex.lab=1.5) # Label

savecex.axls <- par(cex.axis=1.5) # Axis

par (ask=TRUE)

aplpack: :bagplot (LStockVg.df$Vigor200Lbs,
LStockVg.dfsVigorFinish,
main="Bagplot of Vigor at 200 Pounds (X) by Vigor at Sale (Y)
With Central Bag, Fence, and Distribution Points",
na.rm=TRUE, # Accommodate missing data
xlab="Vigor at 200 Pounds", ylab="Vigor at Sale",

show.outlier=TRUE, # At the R prompt, key )
show.whiskers=TRUE, # help (bagplot) to see details for
show. looppoints=TRUE, # each argument, show.outlier,
show.bagpoints=TRUE, # show.whiskers,etc. Then, decide
show.loophull=TRUE, # which arguments meet individual
show.baghull=TRUE, # needs.
pch=c(22)) # Filled square red symbol

par (savelwd) ; par(savefont); par(savecex.lab)

par (savecex.axis)
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Bagplot of Vigor at 200 Pounds (X) by Vigor at Sale (Y)
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7.6.2 Linear Regression

For this lesson, the main interest in terms of importance should be directed at
the object variable WeightFinish. Profits for this livestock finishing operation are
made or lost based on WeightFinish: how quickly desired (in this lesson, 250
pounds) WeightFinish is achieved, the amount and cost of management and feed
needed to reach desired WeightFinish, etc. Given this interest in WeightFinish,
the remaining task for this lesson is to prepare a prediction equation for those
object variables that show significant (and practical) correlation with WeightFinish:
Vigorlnitial, Vigor100Lbs, Vigor200Lbs, VigorFinish. Although it is beyond the
immediate purpose of this lesson, it might be helpful to also look into the issue
of multicollinearity, but again, multicollinearity is beyond the purpose of this
introductory lesson.

To achieve this aim, prepare a prediction equation (solve for Y-hat, or Y to be
precise when using an editor that supports specialized symbols) for each individual
variable of interest (Vigorlnitial, Vigor100Lbs, Vigor200Lbs, VigorFinish) against
WeightFinish. For each prediction equation, the focus is on a simple linear regres-
sion, where one and only one object variable is put into the prediction equation.

Prediction of WeightFinish Using VigorInitial

Fit.WeightFinish.by.VigorInitial <- lm(WeightFinish ~
VigorInitial, data=LStockVg.df)

anova (Fit.WeightFinish.by.VigorInitial)
# Confirm significance
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Response: WeightFinish

Df Sum Sg Mean Sqg F wvalue Pr (>F)
VigorInitial 1 21214 21214.4 158.43 < 2.2e-16 *x*
Residuals 3297 441471 133.9

summary (Fit.WeightFinish.by.VigorInitial)
# Obtain statistics needed for prediction equation

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 196.4606 4.2470 46.26 <2e-16 x*xx*
VigorInitial 6.0438 0.4802 12.59 <2e-16 xxx*

Based on this output, there is certainly significance (p <= 0.05) and the
prediction equation is:

Y-hat = a + b(x)

WeightFinish = 196.4606 + VigorInitial (6.0438)

Assume that an individual animal had a Vigorlnitial value of 8.85. What is the
predicted value for WeightFinish? Apply the above prediction equation:

WeightFinish 196.4606 + (8.85 % 6.0438)
WeightFinish 196.4606 + 53.48763
WeightFinish = 249.94823

The livestock manager now knows that for this large-scale feeder operation, an
animal with a VigorInitial value of approximately 8.85 will yield a finishing weight
(WeightFinish) of approximately 250 pounds.

As an interesting complement to this part of the lesson, apply the predict()
function against the model to see possibilities at the level of individual subjects:

predict (Fit .WeightFinish.by.VigorInitial, interval= "prediction")
# Be sure to view the Warning message on future responses

Prediction of WeightFinish Using Vigor100Lbs

Fit.WeightFinish.by.Vigorl00Lbs <- lm(WeightFinish ~
Vigorl00Lbs, data=LStockVg.df)

anova (Fit.WeightFinish.by.Vigor100Lbs)
# Confirm significance
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Response: WeightFinish

Df Sum Sg Mean Sqg F wvalue Pr (>F)
Vigorl00Lbs 1 59658 59658 488.04 < 2.2e-16 *x*x
Residuals 3297 403027 122

summary (Fit.WeightFinish.by.Vigorl100Lbs)
# Obtain statistics needed for prediction equaltion

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 168.5647 3.6849 45.74 <2e-16 xxx*
Vigorl00Lbs 9.4289 0.4268 22.09 <2e-16 x*x

Based on this output, there is certainly significance (p <= 0.05) and the
prediction equation is:

Y-hat = a + b(x)

WeightFinish = 168.5647 + Vigorl00Lbs (9.4289)

Assume that an individual animal had a Vigor100Lbs value of 8.63. What is the
predicted value for WeightFinish? Apply the above prediction equation:

WeightFinish = 168.5647 + (8.63 % 9.4289)
WeightFinish 168.5647 + 81.371407
WeightFinish = 249.936107

The livestock manager now knows that for this large-scale feeder operation, an
animal with a Vigor100Lbs value of approximately 8.63 will yield a finishing weight
(WeightFinish) of approximately 250 pounds.

As an interesting complement to this part of the lesson, apply the predict()
function against the model to see possibilities at the level of individual subjects:

predict (Fit.WeightFinish.by.Vigorl00Lbs, interval= "prediction")
# Be sure to view the Warning message on future responses

Prediction of WeightFinish Using Vigor200Lbs

Fit.WeightFinish.by.Vigor200Lbs <- lm(WeightFinish ~
Vigor200Lbs, data=LStockVg.df)

anova (Fit.WeightFinish.by.Vigor200Lbs)
# Confirm significance

Response: WeightFinish
Df Sum Sg Mean Sqg F wvalue Pr (>F)



7.6 Conduct the Statistical Analysis 153

VigorZOOLbS 1 49547 49547 396.04 < 2.2e-16 *x*x*
Residuals 3291 411730 125

summary (Fit.WeightFinish.by.Vigor200Lbs)
# Obtain statistics needed for prediction equaltion

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 164.7449 4.2814 38.48 <2e-16 xxx*
Vigor200Lbs 9.7679 0.4908 19.90 <2e-16 x*x

Based on this output, there is certainly significance (p <= 0.05) and the
prediction equation is:

Y-hat = a + b(x)

WeightFinish = 164.7449 + Vigor200Lbs (9.7679)

Assume that an individual animal had a Vigor200Lbs value of 8.04. What is the
predicted value for WeightFinish? Apply the above prediction equation:

# WeightFinish 164.7449 + (8.04 * 9.7679)
# WeightFinish 164.7449 + 78.533916
# WeightFinish = 243.278816

The livestock manager now knows that for this large-scale feeder operation, an
animal with a Vigor200Lbs value of approximately 8.04 will yield a finishing weight
(WeightFinish) of approximately 243 pounds, which is less than the desired weight
of 250 pounds and this discrepancy may greatly impact profits.

As an interesting complement to this part of the lesson, apply the predict()
function against the model to see possibilities at the level of individual subjects:

predict (Fit.WeightFinish.by.Vigor200Lbs, interval= "prediction")
# Be sure to view the Warning message on future responses

Prediction of WeightFinish Using VigorFinish

Fit.WeightFinish.by.VigorFinish <- 1lm(WeightFinish ~
VigorFinish, data=LStockVg.df)

anova (Fit .WeightFinish.by.VigorFinish)
# Confirm significance

Response: WeightFinish
Df Sum Sg Mean Sqg F wvalue Pr (>F)
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VigorFinish 1 46444 46444 367.88 < 2.2e-16 **x*
Residuals 3297 416241 126

summary (Fit.WeightFinish.by.VigorFinish)
# Obtain statistics needed for prediction equaltion

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 162.575 4.555 35.69 <2e-16 xxx*
VigorFinish 9.916 0.517 19.18 <2e-16 xxx

Based on this output, there is certainly significance (p <= 0.05) and the
prediction equation is:

Y-hat = a + b(x)

WeightFinish = 162.575 + VigorFinish(9.916)

Assume that an individual animal had a VigorFinish value of 9.06. What is the
predicted value for WeightFinish? Apply the above prediction equation:

# WeightFinish 162.575 + (9.06 % 9.916)
# WeightFinish 162.575 + 89.83896
# WeightFinish = 252.41396

The livestock manager now knows that for this large-scale feeder operation, an
animal with a VigorFinish value of approximately 9.06 will yield a finishing weight
(WeightFinish) of approximately 252 pounds.

As an interesting complement to this part of the lesson, apply the predict()
function against the model to see possibilities at the level of individual subjects:

predict (Fit.WeightFinish.by.VigorFinish, interval= "prediction")
# Be sure to view the Warning message on future responses

7.7 Summary

The dataset for this lesson was selected because it provided a demonstration of how
researchers need to consider significant correlations but also practical correlations.
The graphics and statistics provided a great deal of basic information. However,
focus on outcomes of the many X:Y correlations (based on Pearson’s r) and the few
linear regressions which were provided to gain a sense of prediction.

As an example, look at the correlation between WeightFinish and VigorInitial.
The Pearson’s r coefficient of correlation for this comparison is 0.2143682 and
the correlation between the two variables is statistically significant (p <= 0.05).
It may not seem overly dramatic to have a Pearson’s r of 0.2143682 when looking at
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other correlations such as the Pearson’s r for Vigor200Lbs and VigorFinish, which
exceeds 0.95.

However, correlation is very sensitive to N and for this large livestock finishing
operation of more than 3,300 animals a statistically significant correlation that also
has a Pearson’s r of 0.2143682 simply cannot be ignored. Given the economy
of scale gained with large operations, the operator has the potential to greatly
increase profits even by only small changes in management practices when there
is a Pearson’s r of 0.2143682 for selected variables and conditions that impact
those variables, especially with our increasing interest in data in the large or
Big Data. Even a small increase in Vigorlnitial can greatly impact profits given
the association between Vigorlnitial and WeightFinish. Does the same finding
apply to WeightFinish and the three other vigor-related variables: Vigor100Lbs,
Vigor200Lbs, and VigorFinish?

This lesson also dealt with the development of a prediction equation, or the
attempt to use currently known values to solve for a future variable. As stated earlier,
past behavior is the best predictor of future behavior and regression-based prediction
equations are based on this concept.

This lesson focused on the use of one variable to predict the future value of
another variable, or in this lesson the use of vigor-type values to predict finished
weight. A manual effort was used for this simple prediction equation and this lesson
will introduce the manual introduction of two predictor variables in the Addendum.
More automated practices at prediction are also introduced in the Addendum.

The constant reminder of correlation and regression is the need to avoid any
attempt to apply causation. That is to say, X may be correlated (e.g., associated) with
Y, but that does not mean that X causes Y. Consider the well-accepted observation
that family income is a predictor of grade point average (GPA) in the first year of
college. That does not mean that a rise in family income immediately results in
an increase in GPA and this is certainly not a guaranteed outcome at the level of
individual subjects. Family income does not cause GPA. Performance on exams
causes GPA. Instead, the two variables (family income and GPA) are correlated to
each other. This example from the social sciences should be recalled when applying
the use of correlation and regression to biostatistics. Causation cannot be assumed
even when selected variables are used to build a future prediction equation.

7.8 Addendum: Multiple Regression

From among the many variables used in this lesson, never forget that the finishing
operator responsible for the livestock needs to be practical. Consider the four
measures for vigor: Vigorlnitial, Vigor100Lbs, Vigor200Lbs, VigorFinish. The
desired weight at time of sale, when the livestock are taken to slaughter, is about
250 pounds. The manager has the best opportunity to influence finished weight by
applying sound practices at the beginning (when VigorInitial is measured) and early
on (when Vigorl0OLbs is measured). Management options that influence future
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finished weight at 250 pounds are limited when Vigor200Lbs is measured and of
course practices are even more limited when VigorFinish is measured.

7.8.1 Hand-Calculate Multiple Regression

Given the importance of early intervention, construct a model for VigorEarly, which
takes into account management practices up to the time Vigor100Lbs is measured.
Look at how two (or more) variables can be manually entered into the construction
of a prediction equation for Y-hat, Y.

Fit.WeightFinish.by.VigorEarly <- lm(WeightFinish ~
VigorInitial + Vigorl0O0Lbs,
data=LStockVvg.df)
# Note how this model includes two predictors and
# enumeration of a new concept, VigorEarly

anova (Fit .WeightFinish.by.VigorEarly)
# Confirm significance

Response: WeightFinish

Df Sum Sg Mean Sg F value Pr (>F)
VigorInitial 1 21214 21214 175.67 < 2.2e-16 *xx*
Vigorl00Lbs 1 43447 43447 359.78 < 2.2e-16 *xxx
Residuals 3296 398024 121
summary (Fit.WeightFinish.by.VigorEarly) # Prediction equation

# Obtain statistics needed for prediction equaltion

Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 149.1843 4.7412 31.465 < 2e-16 *x*x
VigorInitial 3.1004 0.4817 6.437 1.4e-10 *x*x
Vigorl00Lbs 8.4996 0.4481 18.968 < 2e-16 *xxx

Before Y, for what is now a multiple regression, is calculated, apply the
coefficients() function and the na.action() function against the enumerated Im-type
object Fit. WeightFinish.by.VigorEarly, to gain a better sense of the model.

coefficients (Fit.WeightFinish.by.VigorEarly)
na.action (Fit.WeightFinish.by.VigorEarly)

Based on this output, there is certainly significance (p <= 0.05) and the
prediction equation is:

Y-hat = a + b(x) + b(y)

WeightFinish = 149.1843 + VigorInitial(3.1004) + VigorlOOLbs (8.4996)
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Assume that an individual animal had a Vigorlnitial value of 8.73 and a
Vigor100Lbs vale of 8.63. What is the predicted value for WeightFinish? Apply
the above prediction equation:

WeightFinish 149.1843 + (8.73 * 3.1004) + (8.63 x 8.4996)
WeightFinish = 149.1843 + 27.066492 + 73.351548
WeightFinish = 249.60234

The livestock manager now knows that for this large-scale feeder operation, an
animal with a VigorInitial value of 8.73 and a Vigor100Lbs vale of 8.63 will yield a
finishing weight (WeightFinish) of approximately 250 pounds.

Although it may be a bit redundant, apply the cor.test() function against
Vigorlnitial and Vigor100Lbs to see the relationship between these two variables
and then reinforce the outcome with a visual image of the correlation. A plot would
also help establish the relationship.

cor.test (LStockVg.dfsVigorInitial, LStockVg.df$Vigorl00Lbs)

savefont <- par (font=2) # Bold

par (ask=TRUE)

plot (LStockVg.dfsVigorInitial, LStockVg.df$Vigorl00Lbs,
xlab="Vigor at Purchase (Approximately 35 Pounds)",
ylab="Vigor at 100 Pounds",
font.lab=2, font.axis=2, cex.lab=1.5, cex.main=1.5,
pch=c(15), # square block
main="Scatter Plot of Vigor at Purchase (X) by Vigor at
100 Pounds (Y) with Added Regression Line")

abline (1m(Vigorl00Lbs ~ VigorInitial, data =LStockVg.df),
lwd=6, col="red")

legend ("bottomleft™",
bty="n", "p-value <= 0.00000000000000022")

legend ("bottomright",
bty="n", "Pearson’s r = 0.9466428 "

par (savefont)

Scatter Plot of Vigor at Purchase (X) by Vigor at
100 Pounds (Y) with Added Regression Line

=
=

Vigor at 100 Pounds

75
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Vigor at Purchase (Approximately 35 Pounds)
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7.8.2 Minimal Adequate Model (MAM) for Regression

Multiple regression is not restricted to the use of only two predictors (VigorInitial
and Vigorl0OLbs, shown above) and it equally does not need to be a hand-
calculation. Below, notice how all four indicators of vigor (Vigorlnitial,
Vigor100Lbs, Vigor200Lbs, and VigorFinish) are automatically introduced into
a prediction equation. A Minimal Adequate Model (MAM) approach will be used
for this approach at multiple regression.

Fit.Model .WeightFinish.Vigor <- lm(WeightFinish ~
VigorInitial + Vigorl00Lbs + Vigor200Lbs + VigorFinish,
data=LStockVg.df)

summary (Fit .Model .WeightFinish.Vigor)

Coefficients:
Estimate Std. Error t value Pr(s|t])

(Intercept) 149.9997 5.2669 28.480 < 2e-16 **x
VigorInitial 3.1481 0.4849 6.492 9.72e-11 ***
Vigorl00Lbs 9.5630 1.1021 8.677 < 2e-16 *x%*
Vigor200Lbs -2.6569 1.8965 -1.401 0.161
VigorFinish 1.4491 1.5721 0.922 0.357

summary.aov (Fit.Model .WeightFinish.Vigor)

Df Sum Sg Mean Sq F value Pr(>F)

VigorInitial 1 21197 21197 175.67 <2e-16 xxx*
Vigorl00Lbs 1 43088 43088 357.08 <2e-16 **x*
Vigor200Lbs 1 139 139 1.15 0.284
VigorFinish 1 103 103 0.85 0.357
Residuals 3288 396751 121

The p-value for VigorFinish exceeds 0.05 and is the greatest of the two object
variables that exceed 0.05. Remove VigorFinish from the model, to see the effect of
this action on model building and then attempt the same set of actions, but now with
the selected object variable removed from the model.

Fit.Model .WeightFinish.Vigor2 <- update (
Fit.Model.WeightFinish.Vigor, .~.-VigorFinish,
data=LStockVg.df)

Note the . character that goes before the ~ character and the . character that
comes after the ~ character. In this case, the . character means same. The important
thing to recall is that VigorFinish is removed from the model, by placing a -
character in front of the object variable to be removed.
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summary (Fit .Model .WeightFinish.Vigor2)

Coefficients:
Estimate Std. Error t value Pr(s|t])

(Intercept) 151.2207 5.0975 29.666 < 2e-16 *x*x
VigorInitial 3.1721 0.4842 6.552 6.58e-11 **x*
Vigorl00Lbs 9.5520 1.1020 8.668 < 2e-16 *x%*
Vigor200Lbs -1.3466 1.2555 -1.073 0.284

summary.aov (Fit.Model .WeightFinish.Vigor2)

Df Sum Sg Mean Sq F value Pr(>F)

VigorInitial 1 21197 21197 175.68 <2e-16 **x*
Vigorl00Lbs 1 43088 43088 357.10 <2e-16 *x*=*
Vigor200Lbs 1 139 139 1.15 0.284
Residuals 3289 396853 121

Vigor200Lbs remains at a p-value level greater than 0.05. Remove the remaining
object variable for which there is no significance (p <= 0.05), or Vigor200Lbs
in this example.

Fit.Model .WeightFinish.Vigor3 <- update (
Fit.Model .WeightFinish.Vigor2, .~.-Vigor200Lbs,
data=LStockVg.df)

summary (Fit .Model .WeightFinish.Vigor3)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 149.1843 4.7412 31.465 < 2e-16 *x*=*
VigorInitial 3.1004 0.4817 6.437 1.4e-10 *#*+%
Vigorl00Lbs 8.4996 0.4481 18.968 < 2e-16 *xx*

summary.aov (Fit.Model .WeightFinish.Vigor3)

Df Sum Sg Mean Sg F value Pr (>F)

VigorInitial 1 21214 21214 175.7 <2e-16 x%xx
Vigorl00Lbs 1 43447 43447 359.8 <2e-16 *x%xx
Residuals 3296 398024 121

And now all remaining predictors (VigorInitial and Vigor100Lbs) are significant.
Use these predictors, as needed, for practical considerations in development of a
prediction equation and possible attention to management practices. Biostatistics is
not divorced from economics and in many situations the two can easily complement
each other.
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7.8.3 Stepwise Regression

As always with R, there is generally more than one way of attempting an analysis.
In the below example of multiple regression note how a stepwise regression is used,
as opposed to the earlier Minimal Adequate Model (MAM).

Because missing values impact stepwise regression and because there are only
a few missing values in this dataset of 3,308 subjects, use the na.omit() function to
remove all cases with missing data.

str (LStockVg.df)
summary (LStockVg.df)

LStockVg.df <- na.omit (LStockVg.df)
# Remove all cases with missing values

str (LStockVg.df)
summary (LStockVg.df)

Note the change from 3,308 observations of six variables to 3,293 observations
of six variables.

With the dataset now in correct format, apply the step() function to conduct the
stepwise regression. Again, it is beyond the purpose of this introductory lesson on
R to go into too much detail on the theory of regression and differences in methods,
such as the difference (if any) between a forward stepwise regression, backward
stepwise regression, etc. Fortunately, there are no limits to the available resources.
Take advantage of these resources.

Construct the object Fit. Model. WeightFinish.Vigor again, incorporating all four
vigor measures. Recall that as opposed to the prior construction of this model, all
cases with missing values have been removed but of course there were only a few
cases with missing data.

Fit.Model .WeightFinish.Vigor <- lm(WeightFinish ~
VigorInitial + Vigorl00Lbs + Vigor200Lbs + VigorFinish,
data=LStockVg.df)

# Reminder: all cases with missing data were removed

summary (Fit .Model .WeightFinish.Vigor)

Coefficients:
Estimate Std. Error t value Pr(s|t])

(Intercept) 149.9997 5.2669 28.480 < 2e-16 *x*x
VigorInitial 3.1481 0.4849 6.492 9.72e-11 **%*
Vigorl00Lbs 9.5630 1.1021 8.677 < 2e-16 *x%*
Vigor200Lbs -2.6569 1.8965 -1.401 0.161
VigorFinish 1.4491 1.5721 0.922 0.357
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summary.aov (Fit .Model .WeightFinish.Vigor)

Df Sum Sg Mean Sq F value Pr(>F)

VigorInitial 1 21197 21197 175.67 <2e-16 xxx*
Vigorl00Lbs 1 43088 43088 357.08 <2e-16 **x*
Vigor200Lbs 1 139 139 1.15 0.284
VigorFinish 1 103 103 0.85 0.357
Residuals 3288 396751 121

Apply the step() function to begin the stepwise regression process. For this
example, use a backward stepwise regression. Notice, below, how the model steps
(in a backward fashion) until only those object variables of importance to the
construction of a prediction equation remain. The coefficients are then shown for
those remaining variables, VigorInitial and Vigor100Lbs in this example.

step (Fit.Model .WeightFinish.Vigor, direction="backward")

Start: AIC=15788.44
WeightFinish ~ VigorInitial + Vigorl100Lbs + Vigor200Lbs + VigorFinish

Df Sum of Sg RSS AIC

- VigorFinish 1 102.5 396853 15787
- Vigor200Lbs 1 236.8 396988 15788
<none> 396751 15788
- VigorInitial 1 5086.3 401837 15828
- VigorlOOLbs 1 9086.0 405837 15861

Step: AIC=15787.29
WeightFinish ~ VigorInitial + Vigorl00Lbs + Vigor200Lbs

Df Sum of Sg RSS AIC

- Vigor200Lbs 1 138.8 396992 15786
<none> 396853 15787
- VigorInitial 1 5179.1 402033 15828
- VigorlO0OLbs 1 9066.1 405920 15860

Step: AIC=15786.44
WeightFinish ~ VigorInitial + Vigor1l00Lbs

Df Sum of Sg RSS AIC

<none> 396992 15786
- VigorInitial 1 5065 402058 15826
- Vigorl00Lbs 1 43088 440080 16124
Call:

Im(formula=WeightFinish ~ VigorInitial+Vigorl00Lbs, data=LStockVg.df)

Coefficients:
(Intercept) VigorInitial Vigorl00Lbs
149.228 3.123 8.472
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From the output of this backward stepwise regression it is now known that the
prediction equation that best fits the model is:

Y-hat = a + b(x) + b(y)

WeightFinish = 149.228 + VigorInitial(3.123) + Vigorl00Lbs(8.472)

Compare the similarity of this prediction equation, generated through the use
of a backward stepwise regression with all cases complete (e.g., all cases with
missing data were removed from the dataset) to the prior prediction equation that
was manually prepared and may have included cases that had missing data.

From a practical viewpoint, the importance of this stepwise regression is that the
manager of the livestock finishing operation can influence final weight early on, up
to the time weights approach 100 pounds. At 200 pounds and beyond the manager
would have less direct influence on attainment of final weight.

As an interesting exercise, use the predict() function to determine the model-
based prediction of final weight for an animal with a vigor value of 8.00 for all four
vigor measures: VigorInitial, Vigor100Lbs, Vigor200Lbs, and VigorFinish.

predict (Fit.Model .WeightFinish.Vigor, list (VigorInitial=8.00,
Vigorl00Lbs=8.00, Vigor200Lbs=8.00, VigorFinish=8.00))

1
242.0264

Given these parameters, the animal would have a finished weight of 242.0264,
which is below the desired finished weight of 250 pounds. Now look at what
happens if VigorlInitial and Vigor100Lbs are both increased to 8.55 while all other
measures remain the same.

predict (Fit.Model .WeightFinish.Vigor, list (VigorInitial=8.55,
Vigorl00Lbs=8.55, Vigor200Lbs=8.00, VigorFinish=8.00))

1
249.0175

Correlation and regression are focused on groups and not specific individuals.
Even so, it is interesting to adjust predictors and to use this exercise as a tool
in model building for future desired results. This limited exercise may help the
livestock finishing operator justify the purchase cost of feeder stock that meet or
exceed Vigorlnitial=8.55 and to also apply management practices to be sure that
Vigor100Lbs=8.55. Again, this is merely one example of how biostatistics can
contribute to both better knowledge of the biological sciences and also contribute
to economics.
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7.9 Prepare to Exit, Save, and Later Retrieve This R Session

It is common to prepare R syntax in a separate file, using a simple ASCII text editor.
If time permits, experiment with Crimson Editor, Tinn-R, or vim, but there are many
other possible selections.

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
ls.stxr () # List all objects, with finite detail.
list.files() # List files at the PC directory.

save.image ("R _Lesson Correlation-Regression.rdata")

getwd () # Identify the current working directory.
1s() # List all objects in the working

# directory.
ls.str () # List all objects, with finite detail.
list.files() # List files at the PC directory.
alarm() # Alarm, notice of upcoming action.
aql() # Quit this session.

# Prepare for Save workspace image? query.

Use the R Graphical User Interface (GUI) to load the saved rdata file: File
and then Load Workspace. Otherwise, use the load() function, keying the full
pathname, to load the .rdata file and retrieve the session.

Recall, however, that it may be just as useful to simply use a R script file
(typically saved as a .txt ASCII-type file) and recreate the analyses and graphics,
provided the data files remain available.



Chapter 8
Future Actions and Next Steps

Abstract The purpose of this lesson is to provide a brief summary of this text and
to introduce a few topics that should be considered once initial skills in the use of R
for biostatistics have been mastered. Along with a few ideas on external resources,
contact information for the author is also provided.

Keywords Biostatistics * Code Book ¢ Comma-separated values ASCII file e
.csv * Command Line Interface (CLI)  Comprehensive R Archive Network
(CRAN) e« Data analysis * Descriptive statistics ¢ Graphical User Interface
(GUI) » Open source software * R

8.1 Use of This Text

Scientists use empiricism to guide and validate decisions. Precision, orderliness,
analysis, and a sound background in statistics are directly associated with informed
judgment, decision-making, and the subsequent allocation of human, physical, and
fiscal resources — all to improve the human condition. The purpose of this text is to
provide an introduction to the use of R software as a platform for analyses related to
biostatistics. Data identification, data organization, use of a Code Book, graphical
and descriptive portrayal of phenomena, and statistical tests through the use of R are
all inherent to this text.

This text serves as an introduction to the use of R in biostatistics. This text has
specifically been structured to demonstrate the use of R syntax as opposed to the use
of a point-and-select Graphical User Interface. This approach, using syntax at the
Command Line Interface, gives the most flexibility to the user in the attempt to reach
desired outcomes. With even only minimal (if any) experience with programming,
the examples in this text empower the user to organize data, prepare graphical
images as desired, assess descriptive statistics and measures of central tendency,
and complete a wide range of statistical analyses typically found in biostatistics.

T.W. MacFarland, Introduction to Data Analysis and Graphical Presentation 165
in Biostatistics with R, SpringerBriefs in Statistics, DOI 10.1007/978-3-319-02532-2_8,
© The Author(s) 2014
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Again, this text covered descriptive statistics (e.g., mode, median, mean, SD,
range, etc.) and then provided an introduction to some of the leading inferential tests
in biostatistics: Student’s t-Test, ANOVA, Correlation and Regression. Along with
the standard statistical tests, a fair degree of emphasis was placed on the preparation
of supporting graphics. Statistical tests are needed and should never be avoided,
but when making public presentations graphical images are the media that generate
interest and further attention to final outcomes.

8.2 Future Use of R for Biostatistics

The R user community is international and it is growing. R is free and at first
the notion of free software may be the compelling consideration for the use of R.
Before too long, however, the power and flexibility of R becomes apparent. For
those who regularly engage in research, and subsequently associated statistical
analyses, the freedom to explore different analyses and to share ideas with like-
minded researchers, through the use of user-generated packages, simply cannot be
ignored. Again, eventually the power and flexibility of R overrides cost issues for
those with advanced needs.

Going beyond the limits of an introductory text, those with further interest in the
use of R for biostatistics should consider additional topics such as:

» Data serving as markers for date and time
* Dose-response analysis

* Logistic regression

* Missing data and data imputation

* Nonparametric statistics

* Odds and odds ratios

* Power

* Risk assessment

* Sampling and required sample size
* Survey analysis

* Survival analysis

Small and easy-to-follow confidence-building examples have been used through-
out this text. Complexity, often through the use of arguments and functions from
external packages, was gradually introduced. The final chapters use a fairly robust
approach to the use of R. Even with this gradual approach, the emphasis has been
on good programming practices, easy-to-follow actions, and emphasis on graphical
presentations, modularity, and syntax reuse.
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8.3 External Resources

The Web-page for this text, provided by the publisher, should be a first resource
for access to sample sections of selected chapters, access to the .csv datasets, etc.
External resources, such as R-specific listserv e-mail discussion groups, should also
be considered. Use the many resources provided by the Comprehensive R Archive
Network (CRAN, http://cran.us.r-project.org/) also. Of course, what may seem to
be countless resources on R are also available by using RSeek (http://rseek.org).

8.4 Contact the Author

Contact the author (Dr. Thomas W. MacFarland, Senior Research Associate and
Associate Professor, Nova Southeastern University, Fort Lauderdale, Florida, USA,
tommac @nova.edu) if there are any questions about the use of this text, details on
the accompanying .csv datasets, or if additional pointers on R for biostatistics are
needed. When using e-mail, use a meaningful and descriptive term in the Subject
header so that the message does not get sent to a SPAM folder or otherwise ignored.


http://cran.us.r-project.org/
http://rseek.org
tommac@nova.edu
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