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Preface

Purpose

Our objective is to provide a post-calculus introduction to the subject of probability that

• Has mathematical integrity and contains some underlying theory

• Shows students a broad range of applications involving real problem scenarios

• Is current in its selection of topics

• Is accessible to a wide audience, including mathematics and statistics majors (yes, there are a few

of the latter, and their numbers are growing), prospective engineers and scientists, and business

and social science majors interested in the quantitative aspects of their disciplines

• Illustrates the importance of software for carrying out simulations when answers to questions

cannot be obtained analytically

A number of currently available probability texts are heavily oriented toward a rigorous mathe-

matical development of probability, with much emphasis on theorems, proofs, and derivations. Even

when applied material is included, the scenarios are often contrived (many examples and exercises

involving dice, coins, cards, and widgets). So in our exposition we have tried to achieve a balance

between mathematical foundations and the application of probability to real-world problems. It is our

belief that the theory of probability by itself is often not enough of a “hook” to get students interested

in further work in the subject. We think that the best way to persuade students to continue their

probabilistic education beyond a first course is to show them how the methodology is used in practice.

Let’s first seduce them (figuratively speaking, of course) with intriguing problem scenarios and

applications. Opportunities for exposure to mathematical rigor will follow in due course.

Content

The book begins with an Introduction, which contains our attempt to address the following question:

“Why study probability?” Here we are trying to tantalize students with a number of intriguing

problem scenarios—coupon collection, birth and death processes, reliability engineering, finance,

queuing models, and various conundrums involving the misinterpretation of probabilistic information

(e.g., Benford’s Law and the detection of fraudulent data, birthday problems, and the likelihood of

having a rare disease when a diagnostic test result is positive). Most of the exposition contains

references to recently published results. It is not necessary or even desirable to cover very much of

this motivational material in the classroom. Instead, we suggest that instructors ask their students to

read selectively outside class (a bit of pleasure reading at the very beginning of the term should not be
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an undue burden!). Subsequent chapters make little reference to the examples herein, and separating

out our “pep talk” should make it easier to cover as little or much as an instructor deems appropriate.

Chapter 1 covers sample spaces and events, the axioms of probability and derived properties,

counting, conditional probability, and independence. Discrete random variables and distributions are

the subject of Chap. 2, and Chap. 3 introduces continuous random variables and their distributions.

Joint probability distributions are the focus of Chap. 4, including marginal and conditional

distributions, expectation of a function of several variables, correlation, modes of convergence, the

Central Limit Theorem, reliability of systems of components, the distribution of a linear combination,

and some results on order statistics. These four chapters constitute the core of the book.

The remaining chapters build on the core in various ways. Chapter 5 introduces methods of

statistical inference—point estimation, the use of statistical intervals, and hypothesis testing. In

Chap. 6 we cover basic properties of discrete-time Markov chains. Various other random processes

and their properties, including stationarity and its consequences, Poisson processes, Brownian

motion, and continuous-time Markov chains, are discussed in Chap. 7. The final chapter presents

some elementary concepts and methods in the area of signal processing.

One feature of our book that distinguishes it from the competition is a section at the end of almost

every chapter that considers simulation methods for getting approximate answers when exact results

are difficult or impossible to obtain. Both the R software and Matlab are employed for this purpose.

Another noteworthy aspect of the book is the inclusion of roughly 1100 exercises; the first four

core chapters together have about 700 exercises. There are numerous exercises at the end of each

section and also supplementary exercises at the end of every chapter. Probability at its heart is

concerned with problem solving. A student cannot hope to really learn the material simply by sitting

passively in the classroom and listening to the instructor. He/she must get actively involved in

working problems. To this end, we have provided a wide spectrum of exercises, ranging from

straightforward to reasonably challenging. It should be easy for an instructor to find enough problems

at various levels of difficulty to keep students gainfully occupied.

Mathematical Level

The challenge for students at this level should be to master the concepts and methods to a sufficient

degree that problems encountered in the real world can be solved. Most of our exercises are of this

type, and relatively few ask for proofs or derivations. Consequently, the mathematical prerequisites

and demands are reasonably modest. Mathematical sophistication and quantitative reasoning ability

are, of course, crucial to the enterprise. Univariate calculus is employed in the continuous distribution

calculations of Chap. 3 as well as in obtaining maximum likelihood estimators in the inference

chapter. But even here the functions we ask students to work with are straightforward—generally

polynomials, exponentials, and logs. A stronger background is required for the signal processing

material at the end of the book (we have included a brief mathematical appendix as a refresher for

relevant properties). Multivariate calculus is used in the section on joint distributions in Chap. 4 and

thereafter appears rather rarely. Exposure to matrix algebra is needed for the Markov chain material.

Recommended Coverage

Our book contains enough material for a year-long course, though we expect that many instructors

will use it for a single term (one semester or one quarter). To give a sense of what might be

reasonable, we now briefly describe three courses at our home institution, Cal Poly State University

(in San Luis Obispo, CA), for which this book is appropriate. Syllabi with expanded course outlines

are available for download on the book’s website at Springer.com.
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Title: Introduction to

Probability and

Simulation

Introduction to Probability

Models

Probability and Random Processes

for Engineers

Main

audience:

Statistics and math

majors

Statistics and math majors Electrical and computer

engineering majors

Prerequisites: Univariate calculus,

computer

programming

Univariate calculus, computer

programming, matrix algebra

Multivariate calculus, continuous-

time signals incl. Fourier analysis

Sections

covered:

1.1–1.6 1.1–1.6 1.1–1.5

2.1–2.6, 2.8 2.1–2.5, 2.8 2.1–2.5

3.1–3.4, 3.8 3.1–3.4, 3.8 3.1–3.5

4.1–4.3, 4.5 4.1–4.3, 4.5, 4.8 4.1–4.3, 4.5, 4.7

6.1–6.5 7.1–7.3, 7.5–7.6

7.5 8.1–8.2

Both of the first two courses place heavy emphasis on computer simulation of random phenomena;

instructors typically have students work in R. As is evident from the lists of sections covered,

Introduction to Probability Models takes the earlier material at a faster pace in order to leave a few

weeks at the end for Markov chains and some other applications (typically reliability theory and a bit

about Poisson processes). In our experience, the computer programming prerequisite is essential for

students’ success in those two courses.

The third course listed, Probability and Random Processes for Engineers, is our university’s

version of the traditional “random signals and noise” course offered by many electrical engineering

departments. Again, the first four chapters are covered at a somewhat accelerated pace, with about

30–40% of the course dedicated to time and frequency representations of random processes (Chaps. 7

and 8). Simulation of random phenomena is not emphasized in our course, though we make liberal

use of Matlab for demonstrations.

We are able to cover as much material as indicated on the foregoing syllabi with the aid of a not-

so-secret weapon: we prepare and require that students bring to class a course booklet. The booklet

contains most of the examples we present as well as some surrounding material. A typical example

begins with a problem statement and then poses several questions (as in the exercises in this book).

After each posed question there is some blank space so the student can either take notes as the solution

is developed in class or else work the problem on his/her own if asked to do so. Because students have

a booklet, the instructor does not have to write as much on the board as would otherwise be necessary

and the student does not have to do as much writing to take notes. Both the instructor and the students

benefit.

We also like to think that students can be asked to read an occasional subsection or even section on

their own and then work exercises to demonstrate understanding, so that not everything needs to be

presented in class. For example, we have found that assigning a take-home exam problem that

requires reading about the Weibull and/or lognormal distributions is a good way to acquaint students

with them. But instructors should always keep in mind that there is never enough time in a course of

any duration to teach students all that we’d like them to know. Hopefully students will like the book

enough to keep it after the course is over and use it as a basis for extending their knowledge of

probability!
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Introduction: Why Study Probability?

Some of you may enjoy mathematics for its own sake—it is a beautiful subject which provides many

wonderful intellectual challenges. Of course students of philosophy would say the same thing about

their discipline, ditto for students of linguistics, and so on. However, many of us are not satisfied just

with aesthetics and mental gymnastics. We want what we’re studying to have some utility, some

applicability to real-world problems. Fortunately, mathematics in general and probability in particu-

lar provide a plethora of tools for answering important professional and societal questions. In this

section, we’ll attempt to provide some preliminary motivation before forging ahead.

The initial development of probability as a branch of mathematics goes back over 300 years, where

it had its genesis in connection with questions involving games of chance. One of the earliest recorded

instances of probability calculation appeared in correspondence between the two very famous

mathematicians, Blaise Pascal and Pierre de Fermat. The issue was which of the following two

outcomes of die-tossing was more favorable to a bettor: (1) getting at least one 6 in four rolls of a fair

die (“fair” here means that each of the six outcomes 1, 2, 3, 4, 5, and 6 is equally likely to occur) or

(2) getting at least one pair of 6s when two fair dice are rolled 24 times in succession. By the end of

Chap. 1, you shouldn’t have any difficulty showing that there is a slightly better than 50-50 chance of

(1) occurring, whereas the odds are slightly against (2) occurring.

Games of chance have continued to be a fruitful area for the application of probability methodol-

ogy. Savvy poker players certainly need to know the odds of being dealt various hands, such as a full

house or straight (such knowledge is necessary but not at all sufficient for achieving success in card

games, as such endeavors also involve much psychology). The same holds true for the game of

blackjack. In fact, in 1962 the mathematics professor Edward O. Thorp published the book Beat the
Dealer; in it he employed probability arguments to show that as cards were dealt sequentially from a

deck, there were situations in which the likelihood of success favored the player rather than the dealer.

Because of this work, casinos changed the way cards were dealt in order to prevent card-counting

strategies from bankrupting them. A recent variant of this is described in the paper “Card Counting in

Continuous Time” (Journal of Applied Probability, 2012: 184-198), in which the number of decks

utilized is large enough to justify the use of a continuous approximation to find an optimal betting

strategy.

In the last few decades, game theory has developed as a significant branch of mathematics devoted

to the modeling of competition, cooperation, and conflict. Much of this work involves the use of

probability properties, with applications in such diverse fields as economics, political science, and

biology. However, especially over the course of the last 60 years, the scope of probability applications

has expanded way beyond gambling and games. In this section, we present some contemporary

examples of how probability is being used to solve important problems.
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Software Use in Probability

Modern probability applications often require the use of a calculator or software. Of course, we rely

on machines to perform every conceivable computation from adding numbers to evaluating definite

integrals. Many calculators and most computer software packages even have built-in functions that

make a number of specific probability calculations more convenient; we will highlight these through-

out the text. But the real utility of modern software comes from its ability to simulate random

phenomena, which proves invaluable in the analysis of very complicated probability models. We will

introduce the key elements of probability simulation in Sect. 1.7 and then revisit simulation in a

variety of settings throughout the book.

Numerous software packages can be used to implement a simulation. We will focus on two:

Matlab and R. Matlab is a powerful engineering software package published by MathWorks; many

universities and technology companies have a license for Matlab. A freeware package called Octave

has been designed to implement the majority of Matlab functions using identical syntax; consult

http://www.gnu.org/software/octave/. (Readers using Mac OS or Windows rather than GNU/Linux

will find links to compatible versions of Octave on this same website.) R is a freeware statistical

software package maintained by a core user group. The R base package and numerous add-ons are

available at http://cran.r-project.org/.

Throughout this textbook, we will provide side by side Matlab and R code for both probability

computations and simulation. It is not the goal, however, to serve as a primer in either language

(certainly, some prior knowledge of elementary programming is required). Both software packages

have extensive help menus and active online user support groups. Readers interested in a more

thorough treatment of these software packages should consultMatlab Primer by Timothy A. Davis or

The R Book by Michael J. Crawley.

Modern Application of Classic Probability Problems

The coupon collector problem has been well known for decades in the probability community. As an

example, suppose each box of a certain type of cereal contains a small toy. The manufacturer of this

cereal has included a total of ten toys in its cereal boxes, with each box being equally likely to yield

one of the ten toys. Suppose you want to obtain a complete set of these toys for a young relative or

friend. Clearly you will have to purchase at least ten boxes, and intuitively it would seem as though

you might have to purchase many more than that. How many boxes would you expect to have to

purchase in order to achieve your goal? Methods from Chap. 4 can be used to show that the average

number of boxes required is 10(1 + 1/2 + 1/3 + � � � + 1/10). If instead there are n toys, then

n replaces 10 in this expression. And when n is large, more sophisticated mathematical arguments

yield the approximation n(ln(n) + .58).

The article “A Generalized Coupon Collector Problem” (Journal of Applied Probability, 2011:
1081-1094) mentions applications of the classic problem to dynamic resource allocation, hashing in

computer science, and the analysis of delays in certain wireless communication channels (in this latter

application, there are n users, each receiving packets of data from a transmitter). The generalization

considered in the article involves each cereal box containing d different toys with the purchaser then

selecting the least collected toy thus far. The expected number of purchases to obtain a complete

collection is again investigated, with special attention to the case of n being quite large. An

application to the wireless communication scenario is mentioned.
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Applications to Business

The article “Newsvendor-Type Models with Decision-Dependent Uncertainty” (Mathematical
Methods of Operations Research, 2012, published online) begins with an overview of a class of

decision problems involving uncertainty. In the classical newsvendor problem, a seller has to choose

the amount of inventory to obtain at the beginning of a selling season. This ordering decision is made

only once, with no opportunity to replenish inventory during the season. The amount of demand D is

uncertain (what we will call in Chap. 2 a random variable). The cost of obtaining inventory is c per
unit ordered, the sale price is r per unit, and any unsold inventory at the end of the season has a

salvage value of v per unit. The optimal policy, that which maximizes expected profit, is easily

characterized in terms of the probability distribution of D (this distribution specifies how likely it is

that various values of D will occur).

In the revenue management problem, there are S units of inventory to sell. Each unit is sold for a

price of either r1 or r2 (r1 > r2). During the first phase of the selling season, customers arrive who will

buy at the price r2 but not at r1. In the second phase, customers arrive who will pay the higher price.

The seller wishes to know how much of the initial inventory should be held in reserve for the second

phase. Again the general form of the optimal policy that maximizes expected profit is easily

determined in terms of the distributions for demands in the two periods. The article cited in the

previous paragraph goes on to consider situations in which the distribution(s) of demand(s) must be

estimated from data and how such estimation affects decision making.

A cornerstone of probabilistic inventory modeling is a general result established more than

50 years ago: Suppose that the amount of inventory of a commodity is reviewed every T time periods

to decide whether more should be ordered. Under rather general conditions, it was shown that the

optimal policy—the policy that minimizes the long-run expected cost—is to order nothing if the

current level of inventory is at least an amount s but to order enough to bring the inventory level up to
an amount S if the current level is below s. The values of s and S are determined by various costs, the

price of the commodity, and the nature of demand for the commodity (how customer orders and order

amounts occur over time).

The article “A Periodic-Review Base-Stock Inventory System with Sales Rejection” (Operations
Research, 2011: 742-753) considers a policy appropriate when backorders are possible and lost sales

may occur. In particular, an order is placed every T time periods to bring inventory up to some level S.
Demand for the commodity is filled until the inventory level reaches a sales rejection thresholdM for

some M < S. Various properties of the optimal values of M and S are investigated.

Applications to the Life Sciences

Examples of the use of probability and probabilistic modeling can be found in many subdisciplines of

the life sciences. For example, Pseudomonas syringae is a bacterium which lives in leaf surfaces. The

article “Stochastic Modeling of Pseudomonas Syringae Growth in the Phyllosphere” (Mathematical
Biosciences, 2012: 106-116) proposed a probabilistic (synonymous with “stochastic”) model called a

birth and death process with migration to describe the aggregate distribution of such bacteria and

determine the mechanisms which generated experimental data. The topic of birth and death processes

is considered briefly in Chap. 7 of our book.

Another example of such modeling appears in the article “Means and Variances in Stochastic

Multistage Cancer Models” (Journal of Applied Probability, 2012: 590-594). The authors discuss a
widely used model of carcinogenesis in which division of a healthy cell may give rise to a healthy cell

and a mutant cell, whereas division of a mutant cell may result in two mutant cells of the same type or

possibly one of the same types and one with a further mutation. The objective is to obtain an
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expression for the expected number of cells at each stage and also a quantitative assessment of how

much the actual number might deviate from what is expected (that is what “variance” does).

Epidemiology is the branch of medicine and public health that studies the causes and spread of

various diseases. Of particular interest to epidemiologists is how epidemics are propagated in one or

more populations. The general stochastic epidemic model assumes that a newly infected individual is

infectious for a random amount of time having an exponential distribution (this distribution is

discussed in Chap. 3) and during this infectious period encounters other individuals at times

determined by a Poisson process (one of the topics in Chap. 7). The article “The Basic Reproduction
Number and the Probability of Extinction for a Dynamic Epidemic Model” (Mathematical
Biosciences, 2012: 31-35) considers an extension in which the population of interest consists of a

fixed number of subpopulations. Individuals move between these subpopulations according to a

Markov transition matrix (the subject of Chap. 6) and infectives can only make infectious contact

with members of their current subpopulation. The effect of variation in the infectious period on the

probability that the epidemic ultimately dies out is investigated.

Another approach to the spread of epidemics is based on branching processes. In the simplest such

process, a single individual gives birth to a random number of individuals; each of these in turn gives

birth to a random number of progeny, and so on. The article “The Probability of Containment for

Multitype Branching Process Models for Emerging Epidemics” (Journal of Applied Probability,
2011: 173-188) uses a model in which each individual “born” to an existing individual can have one

of a finite number of severity levels of the disease. The resulting theory is applied to construct a

simulation model of how influenza spread in rural Thailand.

Applications to Engineering and Operations Research

We want products that we purchase and systems that we rely on (e.g., communication networks,

electric power grids) to be highly reliable—have long lifetimes and work properly during those

lifetimes. Product manufacturers and system designers therefore need to have testing methods that

will assess various aspects of reliability. In the best of all possible worlds, data bearing on reliability

could be obtained under normal operating conditions. However, this may be very time consuming

when investigating components and products that have very long lifetimes. For this reason, there has

been much research on “accelerated” testing methods which induce failure or degradation in a much

shorter time frame. For products that are used only a fraction of the time in a typical day, such as

home appliances and automobile tires, acceleration might entail operating continuously in time but

under otherwise normal conditions. Alternatively, a sample of units could be subjected to stresses

(e.g., temperature, vibration, voltage) substantially more severe than what is usually experienced.

Acceleration can also be applied to entities in which degradation occurs over time—stiffness of

springs, corrosion of metals, and wearing of mechanical components. In all these cases, probability

models must then be developed to relate lifetime behavior under such acceleration to behavior in

more customary situations. The article “Overview of Reliability Testing” (IEEE Transactions on
Reliability, 2012: 282-291) gives a survey of various testing methodologies and models. The article

“A Methodology for Accelerated Testing by Mechanical Actuation of MEMS Devices” (Microelec-
tronics Reliability, 2012: 1382-1388) applies some of these ideas in the context of predicting lifetimes

for micro-electro-mechanical systems.

An important part of modern reliability engineering deals with building redundancy into various

systems in order to decrease substantially the likelihood of failure. A k-out-of-n:G system works or is

good only if at least k amongst the n constituent components work or are good, whereas a k-out-of-n:F
system fails if and only if at least k of the n components fail. The article “Redundancy Issues in

Software and Hardware Systems: An Overview” (Intl. Journal of Reliability, Quality, and Safety
Engineering, 2011: 61-98) surveys these and various other systems that can improve the performance
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of computer software and hardware. The so-called triple modular redundant systems, with 2-out-of-3:

G configuration, are now commonplace (e.g., Hewlett-Packard’s original NonStop server, and a

variety of aero, auto, and rail systems). The article “Reliability of Various 2-Out-of-4:G Redundant

Systems with Minimal Repair” (IEEE Transactions on Reliability, 2012: 170-179) considers using a

Poisson process with time-varying rate function to model how component failures occur over time so

that the rate of failure increases as a component ages; in addition, a component that fails undergoes

repair so that it can be placed back in service. Several failure modes for combined k-out-of-n systems

are studied in the article “Reliability of Combined m-Consecutive-k-out-of-n:F and Consecutive-kc-
out-of-n:F Systems” (IEEE Transactions on Reliability, 2012: 215-219); these have applications in

the areas of infrared detecting and signal processing.

A compelling reason for manufacturers to be interested in reliability information about their

products is that they can establish warranty policies and periods that help control costs. Many

warranties are “one dimensional,” typically characterized by an interval of age (time). However,

some warranties are “two dimensional” in that warranty conditions depend on both age and cumula-

tive usage; these are common in the automotive industry. The article “Effect of Use-Rate on System

Lifetime and Failure Models for 2DWarranty” (Intl. Journal of Quality and Reliability Management,
2011: 464-482) describes how certain bivariate probability models for jointly describing the behavior

of time and usage can be used to investigate the reliability of various system configurations.

The word queue is used chiefly by the British to mean “waiting line,” i.e., a line of customers or

other entities waiting to be served or brought into service. The mathematical development of models

for how a waiting line expands and contracts as customers arrive at a service facility, enter service,

and then finish began in earnest in the middle part of the 1900s and continues unabated today as new

application scenarios are encountered.

For example, the arrival and service of patients at some type of medical unit are often described by

the notation M/M/s, where the first M signifies that arrivals occur according to a Poisson process, the

second M indicates that the service time of each patient is governed by an exponential probability

distribution, and there are s servers available for the patients. The article “Nurse Staffing in Medical

Units: A Queueing Perspective” (Operations Research, 2011: 1320-1331) proposes an alternative

closed queueing model in which there are s nurses within a single medical unit servicing n patients,

where each patient alternates between requiring assistance and not needing assistance. The perfor-

mance of the unit is characterized by the likelihood that delay in serving a patient needing assistance

will exceed some critical threshold. A staffing rule based on the model and assumptions is developed;

the resulting rule differs significantly from the fixed nurse-to-patient staffing ratios mandated by the

state of California.

A variation on the medical unit situation just described occurs in the context of call centers, where

effective management entails a trade-off between operational costs and the quality of service offered

to customers. The article “Staffing Call Centers with Impatient Customers” (Operations Research,
2012: 461-474) considers an M/M/s queue in which customers who have to wait for service may

become frustrated and abandon the facility (don’t you sometimes feel like doing that in a doctor’s

office?). The behavior of such a system when n is large is investigated, with particular attention to the
staffing principle that relates the number of servers to the square root of the workload offered to the

call center.

The methodology of queueing can also be applied to find optimal settings for traffic signals. The

article “Delays at Signalized Intersections with Exhaustive Traffic Control” (Probability in Engi-
neering and Informational Sciences, 2012: 337-373) utilizes a “polling model,” which entails

multiple queues of customers (corresponding to different traffic flows) served by a single server in

cyclic order. The proposed vehicle-actuated rule is that traffic lights stay green until all lanes within a

group are emptied. The mean traffic delay is studied for a variety of vehicle interarrival-time

distributions in both light-traffic and heavy-traffic situations.
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Suppose two different types of customers, primary and secondary, arrive for service at a facility

where the servers have different service rates. How should customers be assigned to the servers? The

article “Managing Queues with Heterogeneous Servers” (Journal of Applied Probability, 2011:
435-452) shows that the optimal policy for minimizing mean wait time has a “threshold structure”:

for each server, there is a different threshold such that a primary customer will be assigned to that

server if and only if the queue length of primary customers meets or exceeds the threshold.

Applications to Finance

The most explosive growth in the use of probability theory and methodology over the course of the

last several decades has undoubtedly been in the area of finance. This has provided wonderful career

opportunities for people with advanced degrees in statistics, mathematics, engineering, and physics

(the son-in-law of one of the authors earned a Ph.D. in mechanical engineering and taught for several

years, but then switched to finance). Edward O. Thorp, whom we previously met as the man who

figured out how to beat blackjack, subsequently went on to success in finance, where he earned much

more money managing hedge funds and giving advice than he could ever have hoped to earn in

academia (those of us in academia love it for the intangible rewards we get—psychic income, if

you will).

One of the central results in mathematical finance is the Black-Scholes theorem, named after the

two Nobel-prize-winning economists who discovered it. To get the flavor of what is involved here, a

bit of background is needed. Suppose the present price of a stock is $20 per share, and it is known that

at the end of 1 year, the price will either double to $40 or decrease to $10 per share (where those prices

are expressed in current dollars, i.e., taking account of inflation over the 1-year period). You can enter

into an agreement, called an option contract, that allows you to purchase y shares of this stock (for any
value y) 1 year from now for the amount cy (again in current dollars). In addition, right now you can

buy x shares of the stock for 20x with the objective of possibly selling those shares 1 year from now.

The values x and y are both allowed to be negative; if, for example, x were negative, then you would

actually be selling shares of the stock now that you would have to purchase at either a cost of $40 per

share or $10 per share 1 year from now. It can then be shown that there is only one value of c,
specifically 50/3, for which the gain from this investment activity is 0 regardless of the choices of

x and y and the value of the stock 1 year from now. If c is anything other than 50/3, then there is an

arbitrage, an investment strategy involving choices of x and y that is guaranteed to result in a

positive gain.

A general result called the Arbitrage Theorem specifies conditions under which a collection of

investments (or bets) has expected return 0 as opposed to there being an arbitrage strategy. The basis

for the Black-Sholes theorem is that the variation in the price of an asset over time is described by a

stochastic process called geometric Brownian motion (see Sect. 7.6). The theorem then specifies a fair

price for an option contract on that asset so that no arbitrage is possible.

Modern quantitative finance is very complex, and many of the basic ideas are unfamiliar to

most novices (like the authors of this text!). It is therefore difficult to summarize the content of

recently published articles as we have done for some other application areas. But a sampling

of recently published titles emphasizes the role of probability modeling. Articles that appeared in

the 2012 Annals of Finance included “Option Pricing Under a Stressed Beta Model” and “Stochastic

Volatility and Stochastic Leverage”; in the 2012 Applied Mathematical Finance, we found

“Determination of Probability Distribution Measures from Market Prices Using the Method of

Maximum Entropy in the Mean” and “On Cross-Currency Models with Stochastic Volatility and

Correlated Interest Rates”; the 2012 Quantitative Finance yielded “Probability Unbiased Value-at-
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Risk Estimators” and “A Generalized Birth-Death Stochastic Model for High-Frequency Order Book

Dynamics.”

If the application of mathematics to problems in finance is of interest to you, there are now many

excellent masters-level graduate programs in quantitative finance. Entrance to these programs

typically requires a very solid background in undergraduate mathematics and statistics (including

especially the course for which you are using this book). Be forewarned, though, that not all

financially savvy individuals are impressed with the direction in which finance has recently moved.

Former Federal Reserve Chairman Paul Volcker was quoted not long ago as saying that the ATM

cash machine was the most significant financial innovation of the last 20 years; he has been a very

vocal critic of the razzle-dazzle of modern finance.

Probability in Everyday Life

In the hopefully unlikely event that you do not end up using probability concepts and methods in your

professional life, you still need to face the fact that ideas surrounding uncertainty are pervasive in our

world. We now present some amusing and intriguing examples to illustrate this.

The behavioral psychologists Amos Tversky and Daniel Kahneman spent much of their academic

careers carrying out studies to demonstrate that human beings frequently make logical errors when

processing information about uncertainty (Kahneman won a Nobel prize in economics for his work,

and Tversky would surely have also done so had the awards been given posthumously). Consider the

following variant of one Tversky-Kahneman scenario. Which of the following two statements is more

likely?

(A) Dr. D is a former professor.

(B) Dr. D is a former professor who was accused of inappropriate relations with some students,

investigation substantiated the charges, and he was stripped of tenure.

T-K’s research indicated that many people would regard statement B as being more likely, since it

gives a more detailed explanation of why Dr. D is no longer a professor. However, this is incorrect.

Statement B implies statement A. One of our basic probability rules will be that if one event B is

contained in another event A (i.e., if B implies A), then the smaller event B is less likely to occur or

have occurred than the larger event A. After all, other possible explanations for A are that Dr. D is

deceased or that he is retired or that he deserted academia for investment banking—all of those plus B

would figure in to the likelihood of A.

The survey article “Judgment under Uncertainty; Heuristics and Biases” (Science, 1974: 1124-
1131) by T-K described a certain town served by two hospitals. In the larger hospital about 45 babies

are born each day, whereas about 15 are born each day in the smaller one. About 50% of births are

boys, but of course the percentage fluctuates from day to day. For a 1-year period, each hospital

recorded days on which more than 60% of babies born were boys. Each of a number of individuals

was then asked which of the following statements he/she thought was correct: (1) the larger hospital

recorded more such days, (2) the smaller hospital recorded more such days, or (3) the number of such

days was about the same for the two hospitals. Of the 95 participants, 21 chose (1), 21 chose (2), and

53 chose (3). In Chap. 5 we present a general result which implies that the correct answer is in fact (2),

because the sample percentage is less likely to stray from the true percentage (in this case about 50%)

when the sample size is larger rather than small.

In case you think that mistakes of this sort are made only by those who are unsophisticated or

uneducated, here is yet another T-K scenario. Each of a sample of 80 physicians was presented with

the following information on treatment for a particular disease:
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With surgery, 10% will die during treatment, 32% will die within a year, 66% will die within 5 years. With

radiation, 0% will die during treatment, 23% will die within a year, 78% will die within 5 years.

Each of the 87 physicians in a second sample was presented with the following information:

With surgery, 90% will survive the treatment, 68% will survive at least 1 year, and 34% will survive at least

5 years. With radiation, 100% will survive the treatment, 77% will survive at least 1 year, and 22% will survive

at least 5 years.

When each physician was asked to indicate whether he/she would recommend surgery or radiation

based on the supplied information, 50% of those in the first group said surgery whereas 84% of those

in the second group said surgery.

The distressing thing about this conclusion is that the information provided to the first group of

physicians is identical to that provided to the second group, but described in a slightly different way.

If the physicians were really processing information rationally, there should be no significant

difference between the two percentages.

It would be hard to find a book containing even a brief exposition of probability that did not

contain examples or exercises involving coin tossing. Many such scenarios involve tossing a “fair”

coin, one that is equally likely to result in H (head side up) or T (tail side up) on any particular toss.

Are real coins actually fair, or is there a bias of some sort? Various analyses have shown that the result

of a coin toss is predicable at least to some degree if initial conditions (position, velocity, angular

momentum) are known. In practice, most people who toss coins (e.g., referees in a football game

trying to determine which team will kick off and which will receive) are not conversant in the physics

of coin tossing. The mathematician and statistician Persi Diaconis, who was a professional magician

for 10 years prior to earning his Ph.D. and mastered many coin and card tricks, has engaged in

ongoing collaboration with other researchers to study coin tossing. One result of these investigations

was the conclusion based on physics that for a caught coin, there is a slight bias toward heads—about

.51 versus .49. It is not, however, clear under which real-world circumstances this or some other bias

will occur.

Simulation of fair-coin tossing can be done using a random number generator available in many

software packages (about which we’ll say more shortly). If the resulting random number is between

0 and .5, we say that the outcome of the toss was H, and if the number is between .5 and 1, then a T

occurred (there is an obvious modification of this to incorporate bias). Now consider the following

sequence of 200 Hs and Ts:

THTHTTTHTTTTTHTHTTTHTTHHHTHHTHTHTHTTTTHHTTHHTTHHHT
HHHTTHHHTTTHHHTHHHHTTTHTHTHHHHTHTTTHHHTHHTHTTTHHTH
HHTHHHHTTHTHHTHHHTTTHTHHHTHHTTTHHHTTTTHHHTHTHHHHTH
TTHHTTTTHTHTHTTHTHHTTHTTTHTTTTHHHHTHTHHHTTHHHHHTHH

Did this sequence result from actually tossing a fair coin (equivalently, using computer simulation

as described), or did it come from someone who was asked to write down a sequence of 200 Hs and Ts

that he/she thought would come from tossing a fair coin? One way to address this question is to focus

on the longest run of Hs in the sequence of tosses. This run is of length 4 for the foregoing sequence.

Probability theory tells us that the expected length of the longest run in a sequence of n fair-coin

tosses is approximately log2(n) � 2/3. For n = 200, this formula gives an expected longest run of

length about 7. It can also be shown that there is less than a 10% chance that the longest run will have

a length of 4 or less. This suggests that the given sequence is fictitious rather than real, as in fact was

the case; see the very nice expository article “The Longest Run of Heads” (Mathematics Magazine,
1990, 196-207).

As another example, consider giving a fair coin to each of the two authors of this textbook. Carlton

tosses his coin repeatedly until obtaining the sequence HTT. Devore tosses his coin repeatedly until

the sequence HTH is observed. Is Carlton’s expected number of tosses to obtain his desired sequence

xxiv Introduction: Why Study Probability?



the same as Devore’s, or is one expected number of tosses smaller than the other? Most students to

whom we have asked these questions initially answered that the two expected numbers should be the

same. But this is not true. Some rather tricky probability arguments can be used to show that Carlton’s

expected number of tosses is eight, whereas Devore expects to have to make ten tosses. Very

surprising, no? A bit of intuition makes this more plausible. Suppose Carlton merrily tosses away

until at some point he has just gotten HT. So he is very excited, thinking that just one more toss will

enable him to stop tossing the coin and move on to some more interesting pursuit. Unfortunately his

hopes are dashed because the next toss is an H. However, all is not lost, as even though he must

continue tossing, at this point he is partway toward reaching his goal of HTT. If Devore sees HT at

some point and gets excited by light at the end of the tunnel but then is crushed by the appearance of a

T rather than an H, he essentially has to start over again from scratch. The charming nontechnical

book Probabilities: The Little Numbers That Rule Our Lives by Peter Olofsson has more detail on this

and other probability conundrums.

One of the all-time classic probability puzzles that stump most people is called the Birthday
Problem. Consider a group of individuals, all of whom were born in the same year (one that did not

have a February 29). If the group size is 400, how likely is it that at least two members of the group

share the same birthday? Hopefully a moment’s reflection will bring you to the realization that a

shared birthday here is a sure thing (100% chance), since there are only 365 possible birthdays for the

400 people. On the other hand, it is intuitively quite unlikely that there will be a shared birthday if the

group size is only five; in this case we would expect that all five individuals would have different

birthdays.

Clearly as the group size increases, it becomes more likely that two or more individuals will have

the same birthday. So how large does the group size have to be in order for it to be more likely than

not that at least two people share a birthday (i.e., that the likelihood of a shared birthday is more than

50%)? Which one of the following four group-size categories do you believe contains the correct

answer to this question?

(1) At least 100 (2) At least 50 but less than 100

(3) At least 25 but less than 50 (4) Fewer than 25

When we have asked this of students in our classes, a substantial majority opted for the first two

categories. Very surprisingly, the correct answer is category (4). In Chapter 1 we will show that with

as few as 23 people in the group, it is a bit more likely than not that at least two group members will

have the same birthday.

Two people having the same birthday implies that they were born within 24 h of one another, but

the converse is not true; e.g., one person might be born just before midnight on a particular day and

another person just after midnight on the next day. This implies that it is more likely that two people

will have been born within 24 h of one another than it is that they have the same birthday. It follows

that a smaller group size than 23 is needed to make it more likely than not that at least two people will

have been born within 24 h of one another. In Sect. 4.9 we show how this group size can be

determined.

Two people in a group having the same birthday is an example of a coincidence, an accidental and

seemingly surprising occurrence of events. The fact that even for a relatively small group size it is

more likely than not that this coincidence will occur should suggest that coincidences are often not as

surprising as they might seem. This is because even if a particular coincidence (e.g., “graduated from

the same high school” or “visited the same small town in Croatia”) is quite unlikely, there are so many

opportunities for coincidences that quite a few are sure to occur.
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Back to the follies of misunderstanding medical information: Suppose the incidence rate of a

particular disease in a certain population is 1 in 1000. The presence of the disease cannot be detected

visually, but a diagnostic test is available. The diagnostic test correctly detects 98% of all diseased

individuals (this is the sensitivity of the test, its ability to detect the presence of the disease), and 93%
of non-diseased individuals test negative for the disease (this is the specificity of the test, an indicator
of how specific the test is to the disease under consideration). Suppose a single individual randomly

selected from the population is given the test and the test result is positive. In light of this information,

how likely is it that the individual will have the disease?

First note that if the sensitivity and the specificity were both 100%, then it would be a sure thing

that the selected individual has the disease. The reason this is not a sure thing is that the test

sometimes makes mistakes. Which one of the following five categories contains the actual likelihood

of having the disease under the described conditions?

1. At least a 75% chance (quite likely)

2. At least 50% but less than 75% (moderately likely)

3. At least 25% but less than 50% (somewhat likely)

4. At least 10% but less than 25% (rather unlikely)

5. Less than 10% (quite unlikely)

Student responses to this question have overwhelmingly been in categories (1) or (2)—another

case of intuition going awry. The correct answer turns out to be category (5). In fact, even in

light of the positive test result, there is still only a bit more than a 1% chance that the individual is

diseased!

What is the explanation for this counterintuitive result? Suppose we start with 100,000 individuals

from the population. Then we’d expect 100 of those, or 100, to be diseased (from the 1 in 1000

incidence rate) and 99,900 to be disease free. From the 100 we expect to be diseased, we’d expect

98 positive test results (98% sensitivity). And from the 99,900 we expect to be disease free, we’d

expect 7% of those or 6993 to yield positive test results. Thus we expect many more false positives

than true positives. This is because the disease is quite rare and the diagnostic test is rather good but

not stunningly so. (In case you think our sensitivity and specificity are low, consider a certain D-dimer

test for the presence of a coronary embolism; its sensitivity and specificity are 88% and 75%,

respectively.)

Later in Chapter 1 (Example 1.31) we develop probability rules which can be used to show that the

posterior probability of having the disease conditional on a positive test result is .0138—a bit over

1%. This should make you very cautious about interpreting the results of diagnostic tests. Before you

panic in light of a positive test result, you need to know the incidence rate for the condition under

consideration and both the sensitivity and specificity of the test. There are also implications for

situations involving detection of something other than a disease. Consider airport procedures that are

used to detect the presence of a terrorist. What do you think is the incidence rate of terrorists at a given

airport, and how sensitive and specific do you think detection procedures are? The overwhelming

number of positive test results will be false, greatly inconveniencing those who test positive!

Here’s one final example of probability applied in everyday life: One of the following columns

contains the value of the closing stock index as of August 8, 2012, for each of a number of countries,

and the other column contains fake data obtained with a random number generator. Just by looking at

the numbers, without considering context, can you tell which column is fake and which is real?
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China 2264 3058

Japan 8881 9546

Britain 5846 7140

Canada 11,781 6519

Euro area 797 511

Austria 2053 4995

France 3438 2097

Germany 6966 4628

Italy 14,665 8461

Spain 722 598

Norway 480 1133

Russia 1445 4100

Sweden 1080 2594

Turkey 64,699 35,027

Hong Kong 20,066 42,182

India 17,601 3388

Pakistan 14,744 10,076

Singapore 3052 5227

Thailand 1214 7460

Argentina 2459 2159

⋮ ⋮ ⋮

The key to answering this question is a result called Benford’s Law. Suppose you start reading

through a particular issue of a publication like the New York Times or The Economist, and each time

you encounter any number (the amount of donations to a particular political candidate, the age of an

actor, the number of members of a union, and so on), you record the first digit of that number. Possible

first digits are 1, 2, 3, . . ., or 9. In the long run, how frequently do you think each of these nine possible

first digits will be encountered? Your first thought might be that each one should have the same long-

run frequency, 1/9 (roughly 11%). But for many sets of numbers this turns out not to be the case.

Instead the long-run frequency is given by the formula log10[(x + 1)/x], which gives .301, .176, .125,

. . ., .051, .046 for x = 1, 2, 3, . . ., 8, 9. Thus a leading digit is much more likely to be 1, 2, or 3 than

7, 8, or 9.

Examination of the foregoing lists of numbers shows that the first column conforms much more

closely to Benford’s Law than does the second column. In fact, the first column is real, whereas the

second one is fake. For Benford’s Law to be valid, it is generally required that the set of numbers

under consideration span several orders of magnitude. It does not work, for example, with batting

averages of major league baseball players, most of which are between .200 and .299, or with fuel

efficiency ratings (miles per gallon) for automobiles, most of which are currently between 15 and 30.

Benford’s Law has been employed to detect fraud in accounting reports, and in particular to detect

fraudulent tax returns. So beware when you file your taxes next year!

This list of amusing probability appetizers could be continued for quite a while. Hopefully what

we have shown thus far has sparked your interest in knowing more about the discipline. So without

further ado . . .
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Probability 1

Probability is the subdiscipline of mathematics that focuses on a systematic study of randomness and

uncertainty. In any situation in which one of a number of possible outcomes may occur, the theory of

probability provides methods for quantifying the chances, or likelihoods, associated with the various

outcomes. The language of probability is constantly used in an informal manner in both written and

spoken contexts. Examples include such statements as “It is likely that the Dow Jones Industrial

Average will increase by the end of the year,” “There is a 50–50 chance that the incumbent will seek

reelection,” “There will probably be at least one section of that course offered next year,” “The odds

favor a quick settlement of the strike,” and “It is expected that at least 20,000 concert tickets will be

sold.” In this chapter, we introduce some elementary probability concepts, indicate how probabilities

can be interpreted, and show how the rules of probability can be applied to compute the chances of

many interesting events. The methodology of probability will then permit us to express in precise

language such informal statements as those given above.

1.1 Sample Spaces and Events

In probability, an experiment refers to any action or activity whose outcome is subject to uncertainty.

Although the word experiment generally suggests a planned or carefully controlled laboratory testing
situation, we use it here in a much wider sense. Thus experiments that may be of interest include

tossing a coin once or several times, selecting a card or cards from a deck, weighing a loaf of bread,

measuring the commute time from home to work on a particular morning, determining blood types

from a group of individuals, or calling people to conduct a survey.

1.1.1 The Sample Space of an Experiment

DEFINITION

The sample space of an experiment, denoted by S, is the set of all possible outcomes of that

experiment.
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Example 1.1 The simplest experiment to which probability applies is one with two possible

outcomes. One such experiment consists of examining a single fuse to see whether it is defective.

The sample space for this experiment can be abbreviated as S ¼ {N, D}, where N represents not

defective, D represents defective, and the braces are used to enclose the elements of a set. Another

such experiment would involve tossing a thumbtack and noting whether it landed point up or point

down, with sample space S ¼ {U, D}, and yet another would consist of observing the gender of the

next child born at the local hospital, with S ¼ {M, F}. ■

Example 1.2 If we examine three fuses in sequence and note the result of each examination, then an

outcome for the entire experiment is any sequence of Ns and Ds of length 3, so

S ¼ {NNN, NND, NDN, NDD, DNN, DND, DDN, DDD}

If we had tossed a thumbtack three times, the sample space would be obtained by replacing N by U in

S above. A similar notational change would yield the sample space for the experiment in which the

genders of three newborn children are observed. ■

Example 1.3 Two gas stations are located at a certain intersection. Each one has six gas pumps.

Consider the experiment in which the number of pumps in use at a particular time of day is observed

for each of the stations. An experimental outcome specifies how many pumps are in use at the first

station and how many are in use at the second one. One possible outcome is (2, 2), another is (4, 1),

and yet another is (1, 4). The 49 outcomes in S are displayed in the accompanying table.

First station

Second station

0 1 2 3 4 5 6

0 (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)

1 (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

2 (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

3 (3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

4 (4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

5 (5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

6 (6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

The sample space for the experiment in which a six-sided die is thrown twice results from deleting the

0 row and 0 column from the table, giving 36 outcomes. ■

Example 1.4 A reasonably large percentage of C++ programs written at a particular company

compile on the first run, but some do not. Suppose an experiment consists of selecting and compiling

C++ programs at this location until encountering a program that compiles on the first run. Denote a

program that compiles on the first run by S (for success) and one that doesn’t do so by F (for failure).

Although it may not be very likely, a possible outcome of this experiment is that the first 5 (or 10 or

20 or . . .) are Fs and the next one is an S. That is, for any positive integer n we may have to examine

n programs before seeing the first S. The sample space is S ¼ {S, FS, FFS, FFFS, . . .}, which contains
an infinite number of possible outcomes. The same abbreviated form of the sample space is

appropriate for an experiment in which, starting at a specified time, the gender of each newborn

infant is recorded until the birth of a female is observed. ■
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1.1.2 Events

In our study of probability, we will be interested not only in the individual outcomes of S but also in

any collection of outcomes from S.

DEFINITION

An event is any collection (subset) of outcomes contained in the sample space S. An event is

said to be simple if it consists of exactly one outcome and compound if it consists of more than

one outcome.

When an experiment is performed, a particular event A is said to occur if the resulting experimen-

tal outcome is contained in A. In general, exactly one simple event will occur, but many compound

events will occur simultaneously.

Example 1.5 Consider an experiment in which each of three vehicles taking a particular freeway exit

turns left (L ) or right (R) at the end of the off-ramp. The eight possible outcomes that comprise the

sample space are LLL, RLL, LRL, LLR, LRR, RLR, RRL, and RRR. Thus there are eight simple events,

among which are E1 ¼ {LLL} and E5 ¼ {LRR}. Some compound events include

A ¼ {RLL, LRL, LLR} ¼ the event that exactly one of the three vehicles turns right

B ¼ {LLL, RLL, LRL, LLR} ¼ the event that at most one of the vehicles turns right

C ¼ {LLL, RRR} ¼ the event that all three vehicles turn in the same direction

Suppose that when the experiment is performed, the outcome is LLL. Then the simple event E1 has

occurred and so also have the events B and C (but not A). ■

Example 1.6 (Example 1.3 continued) When the number of pumps in use at each of two six-pump

gas stations is observed, there are 49 possible outcomes, so there are 49 simple events: E1 ¼ {(0, 0)},

E2 ¼ {(0, 1)}, . . . , E49 ¼ {(6, 6)}. Examples of compound events are

A ¼ {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} ¼ the event that the number of pumps in use is

the same for both stations

B ¼ {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)} ¼ the event that the total number of pumps in use is four

C ¼ {(0, 0), (0, 1), (1, 0), (1, 1)} ¼ the event that at most one pump is in use at each station ■

Example 1.7 (Example 1.4 continued) The sample space for the program compilation experiment

contains an infinite number of outcomes, so there are an infinite number of simple events. Compound

events include

A ¼ {S, FS, FFS} ¼ the event that at most three programs are examined

B ¼ {S, FFS, FFFFS} ¼ the event that exactly one, three, or five programs are examined

C ¼ {FS, FFFS, FFFFFS, . . .} ¼ the event that an even number of programs are examined ■
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1.1.3 Some Relations from Set Theory

An event is nothing but a set, so relationships and results from elementary set theory can be used to

study events. The following operations will be used to construct new events from given events.

DEFINITION

1. The complement of an event A, denoted by A0, is the set of all outcomes in S that are not
contained in A.

2. The intersection of two events A and B, denoted by A \ B and read “A and B,” is the event
consisting of all outcomes that are in both A and B.

3. The union of two events A and B, denoted by A [ B and read “A or B,” is the event

consisting of all outcomes that are either in A or in B or in both events (so that the union

includes outcomes for which both A and B occur as well as outcomes for which exactly one

occurs)—that is, all outcomes in at least one of the events.

Example 1.8 (Example 1.3 continued) For the experiment in which the number of pumps in use at a

single six-pump gas station is observed, let A ¼ {0, 1, 2, 3, 4}, B ¼ {3, 4, 5, 6}, and C ¼ {1, 3, 5}.

Then

A [ B ¼ 0; 1; 2; 3; 4; 5; 6f g ¼ S A [ C ¼ 0; 1; 2; 3; 4; 5f g

A \ B ¼ 3; 4f g A \ C ¼ 1; 3f g A0 ¼ 5; 6f g A [ Cð Þ0 ¼ 6f g ■

Example 1.9 (Example 1.4 continued) In the program compilation experiment, define A, B, and C as

in Example 1.7. Then

A [ B ¼ {S, FS, FFS, FFFFS}
A \ B ¼ {S, FFS}

A0 ¼ {FFFS, FFFFS, FFFFFS, . . .}

and

C0 ¼ {S, FFS, FFFFS, . . .} ¼ the event that an odd number of programs are examined ■

The complement, intersection, and union operators from set theory correspond to the not, and, and
or operators from computer science. Readers with prior programming experience may be aware of an

important relationship between these three operators, first discovered by the nineteenth-century

British mathematician Augustus De Morgan.

DE MORGAN’S LAWS

Let A and B be two events in the sample space of some experiment. Then

1. (A [ B)0 ¼ A0 \ B0

2. (A \ B)0 ¼ A0 [ B0

De Morgan’s laws state that the complement of a union is an intersection of complements, and the

complement of an intersection is a union of complements.
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Sometimes A and B have no outcomes in common, so that the intersection of A and B contains no

outcomes (see Exercise 11).

DEFINITION

When A and B have no outcomes in common, they are said to be disjoint ormutually exclusive

events. Mathematicians write this compactly as A \ B ¼ ∅, where ∅ denotes the event

consisting of no outcomes whatsoever (the “null” or “empty” event).

Example 1.10 A small city has three automobile dealerships: a GM dealer selling Chevrolets and

Buicks; a Ford dealer selling Fords and Lincolns; and a Chrysler dealer selling Jeeps and Chryslers. If

an experiment consists of observing the brand of the next car sold, then the events A ¼ {Chevrolet,

Buick} and B ¼ {Ford, Lincoln} are mutually exclusive because the next car sold cannot be both a

GM product and a Ford product. ■

Venn diagrams are often used to visually represent samples spaces and events. To construct a

Venn diagram, draw a rectangle whose interior will represent the sample space S. Then any event A is

represented as the interior of a closed curve (often a circle) contained in S. Figure 1.1 shows examples

of Venn diagrams.

The operations of union and intersection can be extended to more than two events. For any three

events A, B, and C, the event A \ B \ C is the set of outcomes contained in all three events, whereas

A [ B [ C is the set of outcomes contained in at least one of the three events. A collection of several

events is said to be mutually exclusive (or pairwise disjoint) if no two events have any outcomes in

common.

1.1.4 Exercises: Section 1.1 (1–12)

1. Ann and Bev have each applied for several jobs at a local university. Let A be the event that Ann

is hired and let B be the event that Bev is hired. Express in terms of A and B the events

(a) Ann is hired but not Bev.

(b) At least one of them is hired.

(c) Exactly one of them is hired.

2. Two voters, Al and Bill, are each choosing between one of three candidates—1, 2, and 3—who

are running for city council. An experimental outcome specifies both Al’s choice and Bill’s
choice, e.g., the pair (3,2).

(a) List all elements of S.
(b) List all outcomes in the event A that Al and Bill make the same choice.

(c) List all outcomes in the event B that neither of them votes for candidate 2.

A
A B A BA BA B

a b c d e

Fig. 1.1 Venn diagrams. (a) Venn diagram of events A and B (b) Shaded region is A \ B (c) Shaded region is A [ B
(d) Shaded region is A0 (e) Mutually exclusive events
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3. Four universities—1, 2, 3, and 4—are participating in a holiday basketball tournament. In the first

round, 1 will play 2 and 3 will play 4. Then the two winners will play for the championship, and

the two losers will also play. One possible outcome can be denoted by 1324: 1 beats 2 and 3 beats

4 in first-round games, and then 1 beats 3 and 2 beats 4.

(a) List all outcomes in S.
(b) Let A denote the event that 1 wins the tournament. List outcomes in A.

(c) Let B denote the event that 2 gets into the championship game. List outcomes in B.
(d) What are the outcomes in A [ B and in A \ B? What are the outcomes in A0?

4. Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go

straight (S). Consider observing the direction for each of three successive vehicles.

(a) List all outcomes in the event A that all three vehicles go in the same direction.

(b) List all outcomes in the event B that all three vehicles take different directions.

(c) List all outcomes in the event C that exactly two of the three vehicles turn right.

(d) List all outcomes in the event D that exactly two vehicles go in the same direction.

(e) List the outcomes in D0, C [ D, and C \ D.

5. Three components are connected to form a system as shown in the accompanying diagram.

Because the components in the 2–3 subsystem are connected in parallel, that subsystem will

function if at least one of the two individual components functions. For the entire system to

function, component 1 must function and so must the 2–3 subsystem.

2

1

3

The experiment consists of determining the condition of each component: S (success) for a

functioning component and F (failure) for a nonfunctioning component.

(a) What outcomes are contained in the event A that exactly two out of the three components

function?

(b) What outcomes are contained in the event B that at least two of the components function?

(c) What outcomes are contained in the event C that the system functions?

(d) List outcomes in C0, A [ C, A \ C, B [ C, and B \ C.

6. Each of a sample of four home mortgages is classified as fixed rate (F) or variable rate (V ).
(a) What are the 16 outcomes in S ?
(b) Which outcomes are in the event that exactly three of the selected mortgages are fixed rate?

(c) Which outcomes are in the event that all four mortgages are of the same type?

(d) Which outcomes are in the event that at most one of the four is a variable-rate mortgage?

(e) What is the union of the events in parts (c) and (d), and what is the intersection of these two

events?

(f) What are the union and intersection of the two events in parts (b) and (c)?

7. A family consisting of three persons—A, B, and C—belongs to a medical clinic that always has a

doctor at each of stations 1, 2, and 3. During a certain week, each member of the family visits the

clinic once and is assigned at random to a station. The experiment consists of recording the

station number for each member. One outcome is (1, 2, 1) for A to station 1, B to station 2, and

C to station 1.

(a) List the 27 outcomes in the sample space.

(b) List all outcomes in the event that all three members go to the same station.

(c) List all outcomes in the event that all members go to different stations.

(d) List all outcomes in the event that no one goes to station 2.
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8. A college library has five copies of a certain text on reserve. Two copies (1 and 2) are first

printings, and the other three (3, 4, and 5) are second printings. A student examines these books in

random order, stopping only when a second printing has been selected. One possible outcome is

5, and another is 213.

(a) List the outcomes in S.
(b) Let A denote the event that exactly one book must be examined. What outcomes are in A?

(c) Let B be the event that book 5 is the one selected. What outcomes are in B?
(d) Let C be the event that book 1 is not examined. What outcomes are in C?

9. An academic department has just completed voting by secret ballot for a department head. The

ballot box contains four slips with votes for candidate A and three slips with votes for candidate

B. Suppose these slips are removed from the box one by one.

(a) List all possible outcomes.

(b) Suppose a running tally is kept as slips are removed. For what outcomes does A remain

ahead of B throughout the tally?

10. A construction firm is currently working on three different buildings. Let Ai denote the event that

the ith building is completed by the contract date. Use the operations of union, intersection, and

complementation to describe each of the following events in terms of A1, A2, and A3, draw a Venn

diagram, and shade the region corresponding to each one.

(a) At least one building is completed by the contract date.

(b) All buildings are completed by the contract date.

(c) Only the first building is completed by the contract date.

(d) Exactly one building is completed by the contract date.

(e) Either the first building or both of the other two buildings are completed by the contract date.

11. Use Venn diagrams to verify De Morgan’s laws:
(a) (A [ B)0 ¼ A0 \ B0

(b) (A \ B)0 ¼ A0 [ B0

12. (a) In Example 1.10, identify three events that are mutually exclusive.

(b) Suppose there is no outcome common to all three of the events A, B, and C. Are these three
events necessarily mutually exclusive? If your answer is yes, explain why; if your answer is

no, give a counterexample using the experiment of Example 1.10.

1.2 Axioms, Interpretations, and Properties of Probability

Given an experiment and its sample space S, the objective of probability is to assign to each event A a

number P(A), called the probability of the event A, which will give a precise measure of the chance

that A will occur. To ensure that the probability assignments will be consistent with our intuitive

notions of probability, all assignments should satisfy the following axioms (basic properties) of

probability.

AXIOM 1

For any event A, P(A) � 0.
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AXIOM 2

P(S) ¼ 1.

AXIOM 3

If A1, A2, A3, . . . is an infinite collection of disjoint events, then

P A1 [ A2 [ A3 [ � � �ð Þ ¼
X1
i¼1

P Aið Þ

Axiom 1 reflects the intuitive notion that the chance of A occurring should be nonnegative. The

sample space is by definition the event that must occur when the experiment is performed (S contains
all possible outcomes), so Axiom 2 says that the maximum possible probability of 1 is assigned to

S. The third axiom formalizes the idea that if we wish the probability that at least one of a number of

events will occur and no two of the events can occur simultaneously, then the chance of at least one

occurring is the sum of the chances of the individual events.

You might wonder why the third axiom contains no reference to a finite collection of disjoint

events. It is because the corresponding property for a finite collection can be derived from our three

axioms. We want our axiom list to be as short as possible and not contain any property that can be

derived from others on the list.

PROPOSITION

P(∅) ¼ 0, where ∅ is the null event. This, in turn, implies that the property contained in

Axiom 3 is valid for a finite collection of disjoint events.

Proof First consider the infinite collection A1 ¼ ∅, A2 ¼ ∅, A3 ¼ ∅, . . .. Since∅ \ ∅ ¼ ∅, the

events in this collection are disjoint and [Ai ¼ ∅. Axiom 3 then gives

P ∅ð Þ ¼
X

P ∅ð Þ

This can happen only if P(∅) ¼ 0.

Now suppose that A1, A2, . . ., Ak are disjoint events, and append to these the infinite collection

Ak+1 ¼ ∅, Ak+2 ¼ ∅, Ak+3 ¼ ∅, . . .. Then the events A1, A2, . . ., Ak, Ak+1,. . . are disjoint, since

A \ ∅ ¼ ∅ for all events. Again invoking Axiom 3,

P [k
i¼1

Ai

 !
¼ P [1

i¼1
Ai

 !
¼
X1
i¼1

P Aið Þ ¼
Xk
i¼1

P Aið Þ þ
X1
i¼kþ1

P Aið Þ ¼
Xk
i¼1

P Aið Þ þ
X1
i¼kþ1

0 ¼
Xk
i¼1

P Aið Þ

as desired. ■

Example 1.11 Consider tossing a thumbtack in the air. When it comes to rest on the ground, either its

point will be up (the outcome U ) or down (the outcome D). The sample space for this event is

therefore S ¼ {U, D}. The axioms specify P(S) ¼ 1, so the probability assignment will be completed

by determining P(U ) and P(D). Since U and D are disjoint and their union is S, the foregoing

proposition implies that
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1 ¼ P Sð Þ ¼ P Uð Þ þ P Dð Þ
It follows that P(D) ¼ 1 � P(U ). One possible assignment of probabilities is P(U ) ¼ .5,

P(D) ¼ .5, whereas another possible assignment is P(U ) ¼ .75, P(D) ¼ .25. In fact, letting

p represent any fixed number between 0 and 1, P(U ) ¼ p, P(D) ¼ 1 � p is an assignment consistent

with the axioms. ■

Example 1.12 Consider testing batteries coming off an assembly line one by one until a battery

having a voltage within prescribed limits is found. The simple events are E1 ¼ {S}, E2 ¼ {FS},
E3 ¼ {FFS}, E4 ¼ {FFFS}, . . .. Suppose the probability of any particular battery being satisfactory

is .99. Then it can be shown that the probability assignment P(E1) ¼ .99, P(E2) ¼ (.01)(.99),

P(E3) ¼ (.01)2(.99), . . . satisfies the axioms. In particular, because the Eis are disjoint and S ¼ E1 [
E2 [ E3 [ . . . , Axioms 2 and 3 require that

1 ¼ P Sð Þ ¼ P E1ð Þ þ P E2ð Þ þ P E3ð Þ þ � � �
¼ :99 1þ :01þ :01ð Þ2 þ :01ð Þ3 þ � � �

h i
This can be verified using the formula for the sum of a geometric series:

aþ ar þ ar2 þ ar3 þ � � � ¼ a

1� r

However, another legitimate (according to the axioms) probability assignment of the same

“geometric” type is obtained by replacing.99 by any other number p between 0 and 1 (and .01 by

1 � p). ■

1.2.1 Interpreting Probability

Examples 1.11 and 1.12 show that the axioms do not completely determine an assignment of

probabilities to events. The axioms serve only to rule out assignments inconsistent with our intuitive

notions of probability. In the tack-tossing experiment of Example 1.11, two particular assignments

were suggested. The appropriate or correct assignment depends on the nature of the thumbtack and

also on one’s interpretation of probability. The interpretation that is most often used and most easily

understood is based on the notion of relative frequencies.

Consider an experiment that can be repeatedly performed in an identical and independent fashion,

and let A be an event consisting of a fixed set of outcomes of the experiment. Simple examples of such

repeatable experiments include the tack-tossing and die-tossing experiments previously discussed. If

the experiment is performed n times, on some of the replications the event A will occur (the outcome

will be in the set A), and on others, A will not occur. Let n(A) denote the number of replications on

which A does occur. Then the ratio n(A)/n is called the relative frequency of occurrence of the event
A in the sequence of n replications.

For example, let A be the event that a package sent within the state of California for 2-day delivery

actually arrives within 1 day. The results from sending ten such packages (the first ten replications)

are as follows.

Package # 1 2 3 4 5 6 7 8 9 10

Did A occur? N Y Y Y N N Y Y N N

Relative frequency of A 0 .5 .667 .75 .6 .5 .571 .625 .556 .5
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Figure 1.2a shows how the relative frequency n(A)/n fluctuates rather substantially over the course
of the first 50 replications. But as the number of replications continues to increase, Fig. 1.2b illustrates

how the relative frequency stabilizes.

More generally, both empirical evidence and mathematical theory indicate that any relative

frequency of this sort will stabilize as the number of replications n increases. That is, as n gets

arbitrarily large, n(A)/n approaches a limiting value we refer to as the long-run (or limiting) relative
frequency of the event A. The objective interpretation of probability identifies this limiting relative

frequency with P(A). A formal justification of this interpretation is provided by the Law of Large

Numbers, a theorem we’ll encounter in Chap. 4.

Suppose that probabilities are assigned to events in accordance with their limiting relative

frequencies. Then a statement such as “the probability of a package being delivered within 1 day

of mailing is .6” means that of a large number of mailed packages, roughly 60% will arrive within

1 day. Similarly, if B is the event that a certain brand of dishwasher will need service while under

warranty, then P(B) ¼ .1 is interpreted to mean that in the long run 10% of all such dishwashers will

need warranty service. This does notmean that exactly 1 out of every 10 will need service, or exactly

20 out of 200 will need service, because 10 and 200 are not the long run. Such mis-interpretations of

probability as a guarantee on short-term outcomes are at the heart of the infamous gambler’s fallacy.
This relative frequency interpretation of probability is said to be objective because it rests on a

property of the experiment rather than on any particular individual concerned with the experiment.

For example, two different observers of a sequence of coin tosses should both use the same

probability assignments since the observers have nothing to do with limiting relative frequency.

In practice, this interpretation is not as objective as it might seem, because the limiting relative

frequency of an event will not be known. Thus we will have to assign probabilities based on our

beliefs about the limiting relative frequency of events under study. Fortunately, there are many

experiments for which there will be a consensus with respect to probability assignments.

When we speak of a fair coin, we shall mean P(H ) ¼ P(T) ¼ .5, and a fair die is one for which

limiting relative frequencies of the six outcomes are all equal, suggesting probability assignments

P(⚀) ¼ � � � ¼ P(⚅) ¼ 1/6.

Because the objective interpretation of probability is based on the notion of limiting frequency, its

applicability is limited to experimental situations that are repeatable. Yet the language of probability

is often used in connection with situations that are inherently unrepeatable. Examples include:

“The chances are good for a peace agreement”; “It is likely that our company will be awarded the
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contract”; and “Because their best quarterback is injured, I expect them to score no more than

10 points against us.” In such situations we would like, as before, to assign numerical probabilities

to various outcomes and events (e.g., the probability is .9 that we will get the contract). We must

therefore adopt an alternative interpretation of these probabilities. Because different observers may

have different prior information and opinions concerning such experimental situations, probability

assignments may now differ from individual to individual. Interpretations in such situations are thus

referred to as subjective. The book by Winkler listed in the references gives a very readable survey of

several subjective interpretations. Importantly, even subjective interpretations of probability must

satisfy the three axioms (and all properties that follow from the axioms) in order to be valid.

1.2.2 More Probability Properties

COMPLEMENT RULE

For any event A, P(A) ¼ 1 � P(A0).

Proof Since by definition of A0, A [ A0 ¼ S while A and A0 are disjoint, 1 ¼ P(S) ¼P(A [ A0) ¼
P(A) + P(A0), from which the desired result follows. ■

This proposition is surprisingly useful because there are many situations in which P(A0) is more easily

obtained by direct methods than is P(A).

Example 1.13 Consider a system of five identical components connected in series, as illustrated in

Fig. 1.3.

Denote a component that fails by F and one that doesn’t fail by S (for success). Let A be the event

that the system fails. For A to occur, at least one of the individual components must fail. Outcomes in

A include SSFSS (1, 2, 4, and 5 all work, but 3 does not), FFSSS, and so on. There are, in fact,

31 different outcomes in A! However, A0, the event that the system works, consists of the single

outcome SSSSS. We will see in Sect. 1.5 that if 90% of all these components do not fail and different

components fail independently of one another, then P(A0) ¼ .95 ¼ .59. Thus P(A) ¼ 1 � .59 ¼ .41;

so among a large number of such systems, roughly 41% will fail. ■

In general, the Complement Rule is useful when the event of interest can be expressed as “at least

. . .,” because the complement “less than . . .” may be easier to work with. (In some problems, “more

than . . .” is easier to deal with than “at most . . .”) When you are having difficulty calculating P(A)
directly, think of determining P(A0).

PROPOSITION

For any event A, P(A) � 1.

1 2 3 4 5

Fig. 1.3 A system of five components connected in series
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This follows from the previous proposition: 1 ¼ P(A) + P(A0) � P(A), because P(A0) � 0 by

Axiom 1.

When A and B are disjoint, we know that P(A [ B) ¼ P(A) + P(B). How can this union probabil-

ity be obtained when the events are not disjoint?

ADDITION RULE

For any events A and B,

P(A [ B) ¼ P(A) + P(B) � P(A \ B).

Notice that the proposition is valid even if A and B are disjoint, since then P(A \ B) ¼ 0. The key

idea is that, in adding P(A) and P(B), the probability of the intersection A \ B is actually counted

twice, so P(A \ B) must be subtracted out.

Proof Note first that A [ B ¼ A [ (B \ A0), as illustrated in Fig. 1.4. Because A and (B \ A0) are
disjoint, P(A [ B) ¼ P(A) + P(B \ A0). But B ¼ (B \ A) [ (B \ A0) (the union of that part of B in

A and that part of B not in A). Furthermore, (B \ A) and (B \ A0) are disjoint, so that P(B) ¼
P(B \ A) + P(B \ A0). Combining these results gives

P A [ Bð Þ ¼ P Að Þ þ P B \ A0ð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ½ � ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ

Example 1.14 In a certain residential suburb, 60% of all households get internet service from the

local cable company, 80% get television service from that company, and 50% get both services from

the company. If a household is randomly selected, what is the probability that it gets at least one of

these two services from the company, and what is the probability that it gets exactly one of the

services from the company?

With A ¼ {gets internet service from the cable company} and B ¼ {gets television service from

the cable company}, the given information implies that P(A) ¼ .6, P(B) ¼ .8, and P(A \ B) ¼ .5.

The Addition Rule then applies to give

P gets at least one of these two services from the companyð Þ ¼
P A [ Bð Þ ¼ P

�
A
�þ P

�
B
�� P

�
A \ B

� ¼ :6þ :8� :5 ¼ :9

The event that a household gets only television service from the company can be written as A0 \ B,

i.e., (not internet) and television. Now Fig. 1.4 implies that

:9 ¼ P A [ Bð Þ ¼ P Að Þ þ P A0 \ Bð Þ ¼ :6þ P A0 \ Bð Þ
from which P(A0 \ B) ¼ .3. Similarly, P(A \ B0) ¼ P(A [ B) � P(B) ¼ .1. This is all illustrated in

Fig. 1.5, from which we see that

P exactly oneð Þ ¼ P A \ B0ð Þ þ P A0 \ Bð Þ ¼ :1þ :3 ¼ :4

A B
=

Fig. 1.4 Representing A [ B as a union of disjoint events ■
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The probability of a union of more than two events can be computed analogously. For three events

A, B, and C, the result is

P A [ B [ Cð Þ ¼ P Að Þ þ P Bð Þ þ P Cð Þ � P A \ Bð Þ � P A \ Cð Þ � P B \ Cð Þ þ P A \ B \ Cð Þ
This can be seen by examining a Venn diagram of A [ B [ C, which is shown in Fig. 1.6. When

P(A), P(B), and P(C) are added, outcomes in certain intersections are double counted and the

corresponding probabilities must be subtracted. But this results in P(A \ B \ C) being subtracted

once too often, so it must be added back. One formal proof involves applying the Addition Rule to

P((A [ B) [ C), the probability of the union of the two events A [ B and C; see Exercise 30. More

generally, a result concerning P(A1 [ � � � [ Ak) can be proved by induction or by other methods. The

pattern of additions and subtractions (or, equivalently, the method of deriving such union probability

formulas) is often called the inclusion–exclusion principle.

1.2.3 Determining Probabilities Systematically

When the number of possible outcomes (simple events) is large, there will be many compound events.

A simple way to determine probabilities for these events that avoids violating the axioms and derived

properties is to first determine probabilities P(Ei) for all simple events. These should satisfy

P(Ei) � 0 and Σi P(Ei) ¼ 1. Then the probability of any compound event A is computed by adding

together the P(Ei)s for all Eis in A:

P Að Þ ¼
X

all Eis in A

P Eið Þ

Example 1.15 During off-peak hours a commuter train has five cars. Suppose a commuter is twice as

likely to select the middle car (#3) as to select either adjacent car (#2 or #4), and is twice as likely to

select either adjacent car as to select either end car (#1 or #5). Let pi ¼ P(car i is selected) ¼ P(Ei).

Then we have p3 ¼ 2p2 ¼ 2p4 and p2 ¼ 2p1 ¼ 2p5 ¼ p4. This gives

1 ¼
X

P Eið Þ ¼ p1 þ 2p1 þ 4p1 þ 2p1 þ p1 ¼ 10p1

implying p1 ¼ p5 ¼ .1, p2 ¼ p4 ¼ .2, and p3 ¼ .4. The probability that one of the three middle cars

is selected (a compound event) is then p2 + p3 + p4 ¼ .8. ■

.5.1 .3

P(A   B′) P(A′   B)

Fig. 1.5 Probabilities for Example 1.14 ■

A B

C

Fig. 1.6 A [ B [ C
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1.2.4 Equally Likely Outcomes

In many experiments consisting of N outcomes, it is reasonable to assign equal probabilities to all

N simple events. These include such obvious examples as tossing a fair coin or fair die once (or any

fixed number of times), or selecting one or several cards from a well-shuffled deck of 52. With

p ¼ P(Ei) for every i,

1 ¼
XN
i¼1

P Eið Þ ¼
XN
i¼1

p ¼ p � N so p ¼ 1

N

That is, if there are N possible outcomes, then the probability assigned to each is 1/N.

Now consider an event A, with N(A) denoting the number of outcomes contained in A. Then

P Að Þ ¼
X
Ei in A

P Eið Þ ¼
X
Ei in A

1

N
¼ N Að Þ

N

Once we have counted the number N of outcomes in the sample space, to compute the probability

of any event we must count the number of outcomes contained in that event and take the ratio of the

two numbers. Thus when outcomes are equally likely, computing probabilities reduces to counting.

Example 1.16 When two dice are rolled separately, there are N ¼ 36 outcomes (delete the first row

and column from the table in Example 1.3). If both the dice are fair, all 36 outcomes are equally

likely, so P(Ei) ¼ 1/36. Then the event A ¼ {sum of two numbers is 8} consists of the five outcomes

( ⚁, ⚅), ( ⚂, ⚄), (⚃, ⚃), (⚄, ⚂), and (⚅, ⚁), so

P Að Þ ¼ N Að Þ
N

¼ 5

36
■

The next section of this book investigates counting methods in depth.

1.2.5 Exercises: Section 1.2 (13–30)

13. A mutual fund company offers its customers several different funds: a money-market fund,

three different bond funds (short, intermediate, and long-term), two stock funds (moderate and

high-risk), and a balanced fund. Among customers who own shares in just one fund, the

percentages of customers in the different funds are as follows:

Money-market 20% High-risk stock 18%

Short bond 15% Moderate-risk stock 25%

Intermediate bond 10% Balanced 7%

Long bond 5%

A customer who owns shares in just one fund is randomly selected.

(a) What is the probability that the selected individual owns shares in the balanced fund?

(b) What is the probability that the individual owns shares in a bond fund?

(c) What is the probability that the selected individual does not own shares in a stock fund?

14. Consider randomly selecting a student at a certain university, and let A denote the event that the

selected individual has a Visa credit card and B be the analogous event for a MasterCard.

Suppose that P(A) ¼ .5, P(B) ¼ .4, and P(A \ B) ¼ .25.
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(a) Compute the probability that the selected individual has at least one of the two types of

cards (i.e., the probability of the event A [ B).
(b) What is the probability that the selected individual has neither type of card?

(c) Describe, in terms of A and B, the event that the selected student has a Visa card but not a

MasterCard, and then calculate the probability of this event.

15. A computer consulting firm presently has bids out on three projects. Let Ai ¼ {awarded project i},

for i ¼ 1, 2, 3, and suppose that P(A1) ¼ .22, P(A2) ¼ .25, P(A3) ¼ .28, P(A1 \ A2) ¼ .11,

P(A1 \ A3) ¼ .05, P(A2 \ A3) ¼ .07, P(A1 \ A2 \ A3) ¼ .01. Express in words each of the

following events, and compute the probability of each event:

(a) A1 [ A2

(b) A1
0 \ A2

0 [Hint: Use De Morgan’s Law.]
(c) A1 [ A2 [ A3

(d) A1
0 \ A2

0 \ A3
0

(e) A1
0 \ A2

0 \ A3

(f) (A1
0 \ A2

0 ) [ A3

16. Suppose that 55% of all adults regularly consume coffee, 45% regularly consume soda, and 70%

regularly consume at least one of these two products.

(a) What is the probability that a randomly selected adult regularly consumes both coffee and

soda?

(b) What is the probability that a randomly selected adult doesn’t regularly consume either of

these two products?

17. Consider the type of clothes dryer (gas or electric) purchased by each of five different customers

at a certain store.

(a) If the probability that at most one of these customers purchases an electric dryer is .428,

what is the probability that at least two purchase an electric dryer?

(b) If P(all five purchase gas) ¼ .116 and P(all five purchase electric) ¼ .005, what is the

probability that at least one of each type is purchased?

18. An individual is presented with three different glasses of cola, labeled C, D, and P. He is asked
to taste all three and then list them in order of preference. Suppose the same cola has actually

been put into all three glasses.

(a) What are the simple events in this ranking experiment, and what probability would you

assign to each one?

(b) What is the probability that C is ranked first?

(c) What is the probability that C is ranked first and D is ranked last?

19. Let A denote the event that the next request for assistance from a statistical software consultant

relates to the SPSS package, and let B be the event that the next request is for help with SAS.

Suppose that P(A) ¼ .30 and P(B) ¼ .50.

(a) Why is it not the case that P(A) + P(B) ¼ 1?

(b) Calculate P(A0).
(c) Calculate P(A [ B).
(d) Calculate P(A0 \ B0).

20. A box contains six 40-W bulbs, five 60-W bulbs, and four 75-W bulbs. If bulbs are selected one

by one in random order, what is the probability that at least two bulbs must be selected to obtain

one that is rated 75 W?

21. Human visual inspection of solder joints on printed circuit boards can be very subjective. Part of

the problem stems from the numerous types of solder defects (e.g., pad nonwetting, knee

visibility, voids) and even the degree to which a joint possesses one or more of these defects.
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Consequently, even highly trained inspectors can disagree on the disposition of a particular

joint. In one batch of 10,000 joints, inspector A found 724 that were judged defective, inspector

B found 751 such joints, and 1159 of the joints were judged defective by at least one of the

inspectors. Suppose that one of the 10,000 joints is randomly selected.

(a) What is the probability that the selected joint was judged to be defective by neither of the

two inspectors?

(b) What is the probability that the selected joint was judged to be defective by inspector B but

not by inspector A?

22. A factory operates three different shifts. Over the last year, 200 accidents have occurred at the

factory. Some of these can be attributed at least in part to unsafe working conditions, whereas the

others are unrelated to working conditions. The accompanying table gives the percentage of

accidents falling in each type of accident–shift category.

Shift Unsafe conditions Unrelated to conditions

Day 10% 35%

Swing 8% 20%

Night 5% 22%

Suppose one of the 200 accident reports is randomly selected from a file of reports, and the shift

and type of accident are determined.

(a) What are the simple events?

(b) What is the probability that the selected accident was attributed to unsafe conditions?

(c) What is the probability that the selected accident did not occur on the day shift?

23. An insurance company offers four different deductible levels—none, low, medium, and high—

for its homeowner’s policyholders and three different levels—low, medium, and high—for its

automobile policyholders. The accompanying table gives proportions for the various categories

of policyholders who have both types of insurance. For example, the proportion of individuals

with both low homeowner’s deductible and low auto deductible is .06 (6% of all such

individuals).

Homeowner’s

Auto N L M H

L .04 .06 .05 .03

M .07 .10 .20 .10

H .02 .03 .15 .15

Suppose an individual having both types of policies is randomly selected.

(a) What is the probability that the individual has a medium auto deductible and a high

homeowner’s deductible?
(b) What is the probability that the individual has a low auto deductible? A low homeowner’s

deductible?

(c) What is the probability that the individual is in the same category for both auto and

homeowner’s deductibles?
(d) Based on your answer in part (c), what is the probability that the two categories are

different?

(e) What is the probability that the individual has at least one low deductible level?

(f) Using the answer in part (e), what is the probability that neither deductible level is low?

24. The route used by a driver in commuting to work contains two intersections with traffic signals.

The probability that he must stop at the first signal is .4, the analogous probability for the second
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signal is .5, and the probability that he must stop at one or more of the two signals is .6. What is

the probability that he must stop

(a) At both signals?

(b) At the first signal but not at the second one?

(c) At exactly one signal?

25. The computers of six faculty members in a certain department are to be replaced. Two of the

faculty members have selected laptop machines and the other four have chosen desktop

machines. Suppose that only two of the setups can be done on a particular day, and the two

computers to be set up are randomly selected from the six (implying 15 equally likely outcomes;

if the computers are numbered 1, 2, . . . , 6, then one outcome consists of computers 1 and

2, another consists of computers 1 and 3, and so on).

(a) What is the probability that both selected setups are for laptop computers?

(b) What is the probability that both selected setups are desktop machines?

(c) What is the probability that at least one selected setup is for a desktop computer?

(d) What is the probability that at least one computer of each type is chosen for setup?

26. Show that if one event A is contained in another event B (i.e., A is a subset of B), then
P(A) � P(B). [Hint: For such A and B, A and B \ A0 are disjoint and B ¼ A [ (B \ A0), as
can be seen from a Venn diagram.] For general A and B, what does this imply about the

relationship among P(A \ B), P(A), and P(A [ B)?
27. The three most popular options on a certain type of new car are a built-in GPS (A), a sunroof (B),

and an automatic transmission (C). If 40% of all purchasers request A, 55% request B, 70%

request C, 63% request A or B, 77% request A or C, 80% request B or C, and 85% request A or

B or C, compute the probabilities of the following events.

(a) The next purchaser will request at least one of the three options.

(b) The next purchaser will select none of the three options.

(c) The next purchaser will request only an automatic transmission and neither of the other two

options.

(d) The next purchaser will select exactly one of these three options.

[Hint: “A or B” is the event that at least one of the two options is requested; try drawing a Venn

diagram and labeling all regions.]

28. A certain system can experience three different types of defects. Let Ai (i ¼ 1, 2, 3) denote the

event that the system has a defect of type i. Suppose that

P(A1) ¼ .12 P(A2) ¼ .07 P(A3) ¼ .05

P(A1 [ A2) ¼ .13 P(A1 [ A3) ¼ .14

P(A2 [ A3) ¼ .10 P(A1 \ A2 \ A3) ¼ .01

(a) What is the probability that the system does not have a type 1 defect?

(b) What is the probability that the system has both type 1 and type 2 defects?

(c) What is the probability that the system has both type 1 and type 2 defects but not a type

3 defect?

(d) What is the probability that the system has at most two of these defects?

29. In Exercise 7, suppose that any incoming individual is equally likely to be assigned to any of

the three stations irrespective of where other individuals have been assigned. What is the

probability that

(a) All three family members are assigned to the same station?

(b) At most two family members are assigned to the same station?

(c) Every family member is assigned to a different station?

30. Apply the proposition involving the probability of A [ B to the union of the two events (A [ B)
and C in order to verify the result for P(A [ B [ C).
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1.3 Counting Methods

When the various outcomes of an experiment are equally likely (the same probability is assigned to

each simple event), the task of computing probabilities reduces to counting. Equally likely outcomes

arise in many games, including the six sides of a fair die, the two sides of a fair coin, and the 38 slots

of a fair roulette wheel. As mentioned at the end of the last section, if N is the number of outcomes in a

sample space and N(A) is the number of outcomes contained in an event A, then

P Að Þ ¼ N Að Þ
N

ð1:1Þ

If a list of the outcomes is available or easy to construct and N is small, then the numerator and

denominator of Eq. (1.1) can be obtained without the benefit of any general counting principles.

There are, however, many experiments for which the effort involved in constructing such a list is

prohibitive because N is quite large. By exploiting some general counting rules, it is possible to

compute probabilities of the form (1.1) without a listing of outcomes. These rules are also useful in

many problems involving outcomes that are not equally likely. Several of the rules developed here

will be used in studying probability distributions in the next chapter.

1.3.1 The Fundamental Counting Principle

Our first counting rule applies to any situation in which an event consists of ordered pairs of objects

and we wish to count the number of such pairs. By an ordered pair, we mean that, if O1 and O2 are

objects, then the pair (O1, O2) is different from the pair (O2, O1). For example, if an individual selects

one airline for a trip from Los Angeles to Chicago and a second one for continuing on to New York,

one possibility is (American, United), another is (United, American), and still another is (United,

United).

PROPOSITION

If the first element or object of an ordered pair can be selected in n1 ways, and for each of these
n1 ways the second element of the pair can be selected in n2 ways, then the number of pairs is

n1n2.

Example 1.17 A homeowner doing some remodeling requires the services of both a plumbing

contractor and an electrical contractor. If there are 12 plumbing contractors and 9 electrical

contractors available in the area, in how many ways can the contractors be chosen? If we denote

the plumbers by P1, . . ., P12 and the electricians by Q1, . . ., Q9, then we wish the number of pairs of

the form (Pi, Qj). With n1 ¼ 12 and n2 ¼ 9, the proposition yields N ¼ (12)(9) ¼ 108 possible ways

of choosing the two types of contractors. ■

In Example 1.17, the choice of the second element of the pair did not depend on which first

element was chosen or occurred. As long as there is the same number of choices of the second

element for each first element, the proposition above is valid even when the set of possible second

elements depends on the first element.
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Example 1.18 A family has just moved to a new city and requires the services of both an obstetrician

and a pediatrician. There are two easily accessible medical clinics, each having two obstetricians and

three pediatricians. The family will obtain maximum health insurance benefits by joining a clinic and

selecting both doctors from that clinic. In how many ways can this be done? Denote the obstetricians

by O1, O2, O3, and O4 and the pediatricians by P1, . . ., P6. Then we wish the number of pairs (Oi, Pj)

for which Oi and Pj are associated with the same clinic. Because there are four obstetricians, n1 ¼ 4,

and for each there are three choices of pediatrician, so n2 ¼ 3. Applying the proposition gives

N ¼ n1n2 ¼ 12 possible choices. ■

If a six-sided die is tossed five times in succession, then each possible outcome is an ordered

collection of five numbers such as (⚀, ⚂, ⚀, ⚁, ⚃) or (⚅, ⚄, ⚁, ⚁, ⚁). We will call an ordered

collection of k objects a k-tuple (so a pair is a 2-tuple and a triple is a 3-tuple). Each outcome of the

die-tossing experiment is then a 5-tuple. The following theorem, called the Fundamental Counting

Principle, generalizes the previous proposition to k-tuples.

FUNDAMENTAL COUNTING PRINCIPLE

Suppose a set consists of ordered collections of k elements (k-tuples) and that there are n1
possible choices for the first element; for each choice of the first element, there are n2 possible

choices of the second element;. . .; for each possible choice of the first k � 1 elements, there are

nk choices of the kth element. Then there are n1n2� � � nk possible k-tuples.

Example 1.19 (Example 1.17 continued) Suppose the home remodeling job involves first purchasing

several kitchen appliances. They will all be purchased from the same dealer, and there are five dealers

in the area. With the dealers denoted by D1, . . ., D5, there are N ¼ n1n2n3 ¼ (5)(12)(9) ¼ 540

3-tuples of the form (Di, Pj, Qk), so there are 540 ways to choose first an appliance dealer, then a

plumbing contractor, and finally an electrical contractor. ■

Example 1.20 (Example 1.18 continued) If each clinic has both three specialists in internal medicine

and two general surgeons, there are n1n2n3n4 ¼ (4)(3)(3)(2) ¼ 72 ways to select one doctor of each

type such that all doctors practice at the same clinic. ■

1.3.2 Tree Diagrams

In many counting and probability problems, a tree diagram can be used to represent pictorially all

the possibilities. The tree diagram associated with Example 1.18 appears in Fig. 1.7. Starting from a

point on the left side of the diagram, for each possible first element of a pair a straight-line segment

emanates rightward. Each of these lines is referred to as a first-generation branch. Now for any given

first-generation branch we construct another line segment emanating from the tip of the branch for

each possible choice of a second element of the pair. Each such line segment is a second-generation

branch. Because there are four obstetricians, there are four first-generation branches, and three

pediatricians for each obstetrician yields three second-generation branches emanating from each

first-generation branch.
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Generalizing, suppose there are n1 first-generation branches, and for each first-generation branch

there are n2 second-generation branches. The total number of second-generation branches is then

n1n2. Since the end of each second-generation branch corresponds to exactly one possible pair

(choosing a first element and then a second puts us at the end of exactly one second-generation

branch), there are n1n2 pairs, verifying our first proposition.

The Fundamental Counting Principle can also be illustrated by a tree diagram; simply construct a

more elaborate diagram by adding third-generation branches emanating from the tip of each second

generation, then fourth-generation branches, and so on, until finally kth-generation branches are

added.

The construction of a tree diagram does not depend on having the same number of second-

generation branches emanating from each first-generation branch. If the second clinic had four

pediatricians, then there would be only three branches emanating from two of the first-generation

branches and four emanating from each of the other two first-generation branches. A tree diagram can

thus be used to represent experiments for which the Fundamental Counting Principle does not apply.

1.3.3 Permutations

So far the successive elements of a k-tuple were selected from entirely different sets (e.g., appliance

dealers, then plumbers, and finally electricians). In several tosses of a die, the set from which

successive elements are chosen is always {⚀, ⚁, ⚂, ⚃, ⚄, ⚅}, but the choices are made “with

replacement” so that the same element can appear more than once. If the die is rolled once, there

are obviously 6 possible outcomes; for two rolls, there are 62 ¼ 36 possibilities, since we distinguish

( ⚂, ⚄) from (⚄, ⚂). In general, if k selections are made with replacement from a set of n distinct

objects (such as the six sides of a die), then the total number of possible outcomes is nk.

We now consider a fixed set consisting of n distinct elements and suppose that a k-tuple is formed

by selecting successively from this set without replacement, so that an element can appear in at most

one of the k positions.

O1 P1

P4

P4

P6

P5

P5

P3

P2

P2

P3

P1

P6

O2

O3

O4

Fig. 1.7 Tree diagram for

Example 1.18
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DEFINITION

Any ordered sequence of k objects taken without replacement from a set of n distinct objects is

called a permutation of size k of the objects. The number of permutations of size k that can be

constructed from the n objects is denoted by nPk.

The number of permutations of size k is obtained immediately from the Fundamental Counting

Principle. The first element can be chosen in n ways; for each of these n ways the second element can

be chosen in n � 1 ways; and so on. Finally, for each way of choosing the first k � 1 elements, the kth

element can be chosen in n � (k � 1) ¼ n � k + 1 ways, so

nPk ¼ n n� 1ð Þ n� 2ð Þ � � � � � n� k þ 2ð Þ n� k þ 1ð Þ
Example 1.21 Ten teaching assistants are available for grading papers in a particular course. The

first exam consists of four questions, and the professor wishes to select a different assistant to grade

each question (only one assistant per question). In how many ways can assistants be chosen to grade

the exam? Here n ¼ the number of assistants ¼ 10 and k ¼ the number of questions ¼ 4. The

number of different grading assignments is then 10P4 ¼ (10)(9)(8)(7) ¼ 5040. ■

Example 1.22 The Birthday Problem. Disregarding the possibility of a February 29 birthday,

suppose a randomly selected individual is equally likely to have been born on any one of the other

365 days. If ten people are randomly selected, what is the probability that all have different birthdays?

Imagine selecting 10 days, with replacement, from the calendar to represent the birthdays of the

ten randomly selected people. One possible outcome of this selection would be (March 31, December

30, . . ., September 27, February 12). There are 36510 such outcomes. The number of outcomes among

them with no repeated birthdays is

365ð Þ 364ð Þ� � � 356ð Þ ¼ 365P10

(any of the 365 calendar days may be selected first; if March 31 is chosen, any of the other 364 days is

acceptable for the second selection; and so on). Hence, the probability all ten randomly selected

people have different birthdays equals 365P10/365
10 ¼ .883. Equivalently, there’s only a .117 chance

that at least two people out of these ten will share a birthday. It’s worth noting that the first probability
can be rewritten as

365P10

36510
¼ 365

365
� 364
365

� � �356
365

We may think of each fraction as representing the chance the next birthday selected will be

different from all previous ones. (This is an example of conditional probability, the topic of the next
section.)

Now replace 10 with k (i.e., k randomly selected birthdays); what is the smallest k for which there

is at least a 50–50 chance that two or more people will have the same birthday? Most people

incorrectly guess that we need a very large group of people for this to be true; the most common

guess is that 183 people are required (half the days on the calendar). But the required value of k is

actually much smaller: the probability that k randomly selected people all have different birthdays

equals 365Pk/365
k, which not surprisingly decreases as k increases. Figure 1.8 displays this probability

for increasing values of k. As it turns out, the smallest k for which this probability falls below .5 is just

k ¼ 23. That is, there is less than a 50–50 chance (.4927, to be precise) of 23 randomly selected

people all having different birthdays, and thus a probability.5073 that at least two people in a random

sample of 23 will share a birthday.
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The expression for nPk can be rewritten with the aid of factorial notation. Recall that 7! (read “7

factorial”) is compact notation for the descending product of integers (7)(6)(5)(4)(3)(2)(1). More

generally, for any positive integer m, m! ¼ m(m � 1)(m � 2) � � � (2)(1). This gives 1! ¼ 1, and we

also define 0! ¼ 1.

Using factorial notation, (10)(9)(8)(7) ¼ (10)(9)(8)(7)(6!)/6! ¼ 10!/6!. More generally,

nPk ¼ n n� 1ð Þ � � � � � �n� k þ 1
� ¼ n n� 1ð Þ � � � � � n� k þ 1ð Þ n� kð Þ n� k � 1ð Þ � � � � � 2ð Þ 1ð Þ

n� kð Þ n� k � 1ð Þ � � � � � 2ð Þ 1ð Þ
which becomes

nPk ¼ n!

n� kð Þ!
For example, 9P3 ¼ 9!/(9 � 3)! ¼ 9!/6! ¼ 9 � 8 � 7 � 6!/6! ¼ 9 � 8 � 7. Note also that because

0! ¼ 1, nPn ¼ n!/(n � n)! ¼ n!/0! ¼ n!/1 ¼ n!, as it should.

1.3.4 Combinations

Often the objective is to count the number of unordered subsets of size k that can be formed from a set

consisting of n distinct objects. For example, in bridge it is only the 13 cards in a hand and not the

order in which they are dealt that is important; in the formation of a committee, the order in which

committee members are listed is frequently unimportant.

DEFINITION

Given a set of n distinct objects, any unordered subset of size k of the objects is called a

combination. The number of combinations of size k that can be formed from n distinct objects

will be denoted by
n
k

� �
or nCk.
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Fig. 1.8 P(no birthday match) in Example 1.22 ■
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The number of combinations of size k from a particular set is smaller than the number of

permutations because, when order is disregarded, some of the permutations correspond to the same

combination. Consider, for example, the set {A, B, C, D, E} consisting of five elements. There are

5P3 ¼ 5!/(5 � 3)! ¼ 60 permutations of size 3. There are six permutations of size 3 consisting of the

elements A, B, and C because these three can be ordered 3 � 2 � 1 ¼ 3! ¼ 6 ways: (A, B, C), (A, C, B),

(B, A, C), (B, C, A), (C, A, B), and (C, B, A). But these six permutations are equivalent to the single

combination {A, B, C}. Similarly, for any other combination of size 3, there are 3! permutations, each

obtained by ordering the three objects. Thus,

60 ¼ 5P3 ¼
5

3

� �
� 3! so

5

3

� �
¼ 60

3!
¼ 10

These ten combinations are

A;B;Cf g A;B;Df g A;B;Ef g A;C;Df g A;C;Ef g
A;D;Ef g B;C;Df g B;C;Ef g B;D;Ef g C;D;Ef g

When there are n distinct objects, any permutation of size k is obtained by ordering the k unordered

objects of a combination in one of k! ways, so the number of permutations is the product of k! and the

number of combinations. This gives

nCk ¼ n
k

� �
¼ nPk

k!
¼ n!

k! n� kð Þ!

Notice that
n
n

� �
¼ 1 and

n
0

� �
¼ 1 because there is only one way to choose a set of (all)

n elements or of no elements, and
n
1

� �
¼ n since there are n subsets of size 1.

Example 1.23 A bridge hand consists of any 13 cards selected from a 52-card deck without regard to

order. There are
52

13

� �
¼ 52!= 13! � 39!ð Þ different bridge hands, which works out to approximately

635 billion. Since there are 13 cards in each suit, the number of hands consisting entirely of clubs

and/or spades (no red cards) is
26

13

� �
¼ 26!= 13! � 13!ð Þ ¼ 10, 400, 600. One of these

26

13

� �
hands

consists entirely of spades, and one consists entirely of clubs, so there are
26

13

� �
� 2

� �
hands that

consist entirely of clubs and spades with both suits represented in the hand. Suppose a bridge hand is

dealt from a well-shuffled deck (i.e., 13 cards are randomly selected from among the 52 possibilities)

and let

A ¼ {the hand consists entirely of spades and clubs with both suits represented}

B ¼ {the hand consists of exactly two suits}

The N ¼ 52

13

� �
possible outcomes are equally likely, so
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P Að Þ ¼ N Að Þ
N

¼
26

13

� �
� 2

52

13

� � ¼ :0000164

Since there are
4

2

� �
¼ 6 combinations consisting of two suits, of which spades and clubs is one

such combination,

P Bð Þ ¼ N Bð Þ
N

¼
6

26

13

� �
� 2

� �
52

13

� � ¼ :0000983

That is, a hand consisting entirely of cards from exactly two of the four suits will occur roughly

once in every 10,000 hands. If you play bridge only once a month, it is likely that you will never be

dealt such a hand. ■

Example 1.24 A university warehouse has received a shipment of 25 printers, of which 10 are laser

printers and 15 are inkjet models. If 6 of these 25 are selected at random to be checked by a particular

technician, what is the probability that exactly 3 of those selected are laser printers (so that the other

3 are inkjets)?

Let D3 ¼ {exactly 3 of the 6 selected are inkjet printers}. Assuming that any particular set of

6 printers is as likely to be chosen as is any other set, we have equally likely outcomes, so P(D3) ¼
N(D3)/N, where N is the number of ways of choosing 6 printers from the 25 and N(D3) is the number

of ways of choosing 3 laser printers and 3 inkjet models. Thus N ¼ 25

6

� �
. To obtain N(D3), think of

first choosing 3 of the 15 inkjet models and then 3 of the laser printers. There are
15

3

� �
ways of

choosing the 3 inkjet models, and there are
10

3

� �
ways of choosing the 3 laser printers; by the

Fundamental Counting Principle, N(D3) is the product of these two numbers. So

P D3ð Þ ¼ N D3ð Þ
N

¼
15

3

� �
10

3

� �
25

6

� � ¼
15!

3!12!
� 10!
3!7!

25!

6!19!

¼ :3083

Let D4 ¼ {exactly 4 of the 6 printers selected are inkjet models} and define D5 and D6 in an

analogous manner. Notice that the events D3, D4, D5, and D6 are disjoint. Thus, the probability that at

least 3 inkjet printers are selected is

P D3 [ D4 [ D5 [ D6ð Þ ¼ P D3ð Þ þ P D4ð Þ þ P D5ð Þ þ P D6ð Þ

¼
15

3

� �
10

3

� �
25

6

� � þ
15

4

� �
10

2

� �
25

6

� � þ
15

5

� �
10

1

� �
25

6

� � þ
15

6

� �
10

0

� �
25

6

� � ¼ :8530

■
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Example 1.25 The article “Does Your iPod Really Play Favorites?” (The Amer. Statistician, 2009:

263-268) investigated the randomness of the iPod’s shuffling process. One professor’s iPod playlist

contains 100 songs, of which 10 are by the Beatles. Suppose the shuffle feature is used to play the

songs in random order. What is the probability that the first Beatles song heard is the fifth song

played?

In order for this event to occur, it must be the case that the first four songs played are not Beatles

songs (NBs) and that the fifth song is by the Beatles (B). The total number of ways to select the first

five songs is (100)(99)(98)(97)(96), while the number of ways to select these five songs so that the

first four are NBs and the next is a B is (90)(89)(88)(87)(10). The random shuffle assumption implies

that every sequence of 5 songs from amongst the 100 has the same chance of being selected as the first

5 played, i.e., each outcome (a list of 5 songs) is equally likely. Therefore the desired probability is

P 1st B is the 5thsong played
� � ¼ 90 � 89 � 88 � 87 � 10

100 � 99 � 98 � 97 � 96 ¼ 90P4 � 10
100P5

¼ :0679

Here is an alternative line of reasoning involving combinations. Rather than focusing on selecting

just the first 5 songs, think of playing all 100 songs in random order. The number of ways of choosing

10 of these songs to be the Bs (without regard to the order in which they are played) is
100

10

� �
. Now

if we choose 9 of the last 95 songs to be Bs, which can be done in
95

9

� �
ways, that leaves four NBs

and one B for the first five songs. Finally, there is only one way for these first five songs to start with

four NBs and then follow with a B (remember that we are considering unordered subsets). Thus

P 1st B is the 5thsong played
� � ¼

95

9

� �
100

10

� �

It is easily verified that this latter expression is in fact identical to the previous expression for the

desired probability, so the numerical result is again .0679.

By similar reasoning, the probability that one of the first five songs played is a Beatles song is

P(1st B is the 1st or 2nd or 3rd or 4th or 5th song played)

¼
99

9

� �
100

10

� �þ
98

9

� �
100

10

� �þ
97

9

� �
100

10

� �þ
96

9

� �
100

10

� �þ
95

9

� �
100

10

� � ¼ :4162

It is thus rather likely that a Beatles song will be one of the first five songs played. Such a

“coincidence” is not as surprising as might first appear to be the case. ■

1.3.5 Exercises: Section 1.3 (31–49)

31. An ATM personal identification number (PIN) consists of a four-digit sequence.

(a) How many different possible PINs are there if there are no restrictions on the possible

choice of digits?

(b) According to a representative at the authors’ local branch of Chase Bank, there are in fact

restrictions on the choice of digits. The following choices are prohibited: (1) all four digits
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identical; (2) sequences of consecutive ascending or descending digits, such as 6543;

(3) any sequence starting with 19 (birth years are too easy to guess). So if one of the

PINs in (a) is randomly selected, what is the probability that it will be a legitimate PIN (i.e.,

not be one of the prohibited sequences)?

(c) Someone has stolen an ATM card and knows the first and last digits of the PIN are 8 and

1, respectively. He also knows about the restrictions described in (b). If he gets three

chances to guess the middle two digits before the ATM “eats” the card, what is the

probability the thief gains access to the account?

(d) Recalculate the probability in (c) if the first and last digits are 1 and 1.

32. The College of Science Council has one student representative from each of the five science

departments (biology, chemistry, statistics, mathematics, physics). In how many ways can

(a) Both a council president and a vice president be selected?

(b) A president, a vice president, and a secretary be selected?

(c) Two council members be selected for the Dean’s Council?
33. A friend of ours is giving a dinner party. Her current wine supply includes 8 bottles of zinfandel,

10 of merlot, and 12 of cabernet (she drinks only red wine), all from different wineries.

(a) If she wants to serve 3 bottles of zinfandel and serving order is important, how many ways

are there to do this?

(b) If 6 bottles of wine are to be randomly selected from the 30 for serving, howmany ways are

there to do this?

(c) If 6 bottles are randomly selected, how many ways are there to obtain two bottles of each

variety?

(d) If 6 bottles are randomly selected, what is the probability that this results in two bottles of

each variety being chosen?

(e) If 6 bottles are randomly selected, what is the probability that all of them are the same

variety?

34. (a) Beethoven wrote 9 symphonies and Mozart wrote 27 piano concertos. If a university radio

station announcer wishes to play first a Beethoven symphony and then a Mozart concerto,

in how many ways can this be done?

(b) The station manager decides that on each successive night (7 days per week), a Beethoven

symphony will be played, followed by a Mozart piano concerto, followed by a Schubert

string quartet (of which there are 15). For roughly how many years could this policy be

continued before exactly the same program would have to be repeated?

35. A stereo store is offering a special price on a complete set of components (receiver, compact

disc player, speakers, turntable). A purchaser is offered a choice of manufacturer for each

component:

Receiver: Kenwood, Onkyo, Pioneer, Sony, Yamaha

Compact disc player: Onkyo, Pioneer, Sony, Panasonic

Speakers: Boston, Infinity, Polk

Turntable: Onkyo, Sony, Teac, Technics

A switchboard display in the store allows a customer to hook together any selection of

components (consisting of one of each type). Use the Fundamental Counting Principle to answer

the following questions:

(a) In how many ways can one component of each type be selected?

(b) In how many ways can components be selected if both the receiver and the compact disc

player are to be Sony?

(c) In how many ways can components be selected if none is to be Sony?
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(d) In how many ways can a selection be made if at least one Sony component is to be

included?

(e) If someone flips switches on the selection in a completely random fashion, what is the

probability that the system selected contains at least one Sony component? Exactly one

Sony component?

36. In five-card poker, a straight consists of five cards in adjacent ranks (e.g., 9 of clubs, 10 of hearts,

jack of hearts, queen of spades, king of clubs). Assuming that aces can be high or low, if you are

dealt a five-card hand, what is the probability that it will be a straight with high card 10? What is

the probability that it will be a straight? What is the probability that it will be a straight flush (all

cards in the same suit)?

37. A local bar stocks 12 American beers, 8 Mexican beers, and 9 German beers. You ask the

bartender to pick out a five-beer “sampler” for you. Assume the bartender makes the five

selections at random and without replacement.

(a) What is the probability you get at least four American beers?

(b) What is the probability you get five beers from the same country?

38. Computer keyboard failures can be attributed to electrical defects or mechanical defects. A

repair facility currently has 25 failed keyboards, 6 of which have electrical defects and 19 of

which have mechanical defects.

(a) How many ways are there to randomly select 5 of these keyboards for a thorough

inspection (without regard to order)?

(b) In how many ways can a sample of 5 keyboards be selected so that exactly 2 have an

electrical defect?

(c) If a sample of 5 keyboards is randomly selected, what is the probability that at least 4 of

these will have a mechanical defect?

39. The statistics department at the authors’ university participates in an annual volleyball tourna-

ment. Suppose that all 16 department members are willing to play.

(a) How many different six-person volleyball rosters could be generated? (That is, how many

years could the department participate in the tournament without repeating the same

six-person team?)

(b) The statistics department faculty consist of 5 women and 11 men. How many rosters

comprising exactly 2 women and 4 men can be generated?

(c) The tournament’s rules actually require that each team include at least two women. Under

this rule, how many valid teams could be generated?

(d) Suppose this year the department decides to randomly select its six players. What is the

probability the randomly selected team has exactly two women? At least two women?

40. A production facility employs 20 workers on the day shift, 15 workers on the swing shift, and

10 workers on the graveyard shift. A quality control consultant is to select 6 of these workers for

in-depth interviews. Suppose the selection is made in such a way that any particular group of

6 workers has the same chance of being selected as does any other group (drawing 6 slips without

replacement from among 45).

(a) How many selections result in all 6 workers coming from the day shift? What is the

probability that all 6 selected workers will be from the day shift?

(b) What is the probability that all 6 selected workers will be from the same shift?

(c) What is the probability that at least two different shifts will be represented among the

selected workers?

(d) What is the probability that at least one of the shifts will be unrepresented in the sample of

workers?
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41. An academic department with five faculty members narrowed its choice for department head to

either candidate A or candidate B. Each member then voted on a slip of paper for one of the

candidates. Suppose there are actually three votes for A and two for B. If the slips are selected for

tallying in random order, what is the probability that A remains ahead of B throughout the vote

count (e.g., this event occurs if the selected ordering is AABAB, but not for ABBAA)?
42. An experimenter is studying the effects of temperature, pressure, and type of catalyst on yield

from a chemical reaction. Three different temperatures, four different pressures, and five differ-

ent catalysts are under consideration.

(a) If any particular experimental run involves the use of a single temperature, pressure, and

catalyst, how many experimental runs are possible?

(b) How many experimental runs involve use of the lowest temperature and two lowest

pressures?

(c) Suppose that five different experimental runs are to be made on the first day of experimen-

tation. If the five are randomly selected from among all the possibilities, so that any group of

five has the same probability of selection, what is the probability that a different catalyst is

used on each run?

43. A box in a certain supply room contains four 40-W lightbulbs, five 60-W bulbs, and six 75-W

bulbs. Suppose that three bulbs are randomly selected.

(a) What is the probability that exactly two of the selected bulbs are rated 75 W?

(b) What is the probability that all three of the selected bulbs have the same rating?

(c) What is the probability that one bulb of each type is selected?

(d) Suppose now that bulbs are to be selected one by one until a 75-W bulb is found. What is the

probability that it is necessary to examine at least six bulbs?

44. Fifteen telephones have just been received at an authorized service center. Five of these

telephones are cellular, five are cordless, and the other five are corded phones. Suppose that

these components are randomly allocated the numbers 1, 2, . . ., 15 to establish the order in which

they will be serviced.

(a) What is the probability that all the cordless phones are among the first ten to be serviced?

(b) What is the probability that after servicing ten of these phones, phones of only two of the

three types remain to be serviced?

(c) What is the probability that two phones of each type are among the first six serviced?

45. Three molecules of type A, three of type B, three of type C, and three of type D are to be linked

together to form a chain molecule. One such chain molecule is ABCDABCDABCD, and another

is BCDDAAABDBCC.
(a) How many such chain molecules are there? [Hint: If the three A’s were distinguishable from

one another—A1, A2, A3—and the B’s, C’s, and D’s were also, how many molecules would

there be? How is this number reduced when the subscripts are removed from the A’s?]
(b) Suppose a chain molecule of the type described is randomly selected. What is the probabil-

ity that all three molecules of each type end up next to each other (such as in

BBBAAADDDCCC)?
46. A popular Dilbert cartoon strip (popular among statisticians, anyway) shows an allegedly

“random” number generator produce the sequence 999999 with the accompanying comment,

“That’s the problem with randomness: you can never be sure.” Most people would agree that

999999 seems less “random” than, say, 703928, but in what sense is that true? Imagine we

randomly generate a six-digit number, i.e., we make six draws with replacement from the digits

0 through 9.

(a) What is the probability of generating 999999?

(b) What is the probability of generating 703928?
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(c) What is the probability of generating a sequence of six identical digits?

(d) What is the probability of generating a sequence with no identical digits? (Comparing the

answers to (c) and (d) gives some sense of why some sequences feel intuitively more

random than others.)

(e) Here’s a real challenge: what is the probability of generating a sequence with exactly one

repeated digit?

47. Three married couples have purchased theater tickets and are seated in a row consisting of just six

seats. If they take their seats in a completely random fashion (random order), what is the

probability that Jim and Paula (husband and wife) sit in the two seats on the far left? What is

the probability that Jim and Paula end up sitting next to one another? What is the probability that

at least one of the wives ends up sitting next to her husband?

48. A starting lineup in basketball consists of two guards, two forwards, and a center.

(a) A certain college team has on its roster five guards, four forwards, and three centers. How

many different starting lineups can be created?

(b) Their opposing team in one particular game has three centers, four guards, four forwards,

and one individual (X) who can play either guard or forward. How many different starting

lineups can the opposing team create? [Hint: Consider lineups without X, with X as a guard,

and with X as a forward.]

(c) Now suppose a team has 4 guards, 4 forwards, 2 centers, and two players (X and Y) who can

play either guard or forward. If 5 of the 12 players on this team are randomly selected, what

is the probability that they constitute a legitimate starting lineup?

49. Show that
n
k

� �
¼ n

n� k

� �
. Give an interpretation involving subsets.

1.4 Conditional Probability

The probabilities assigned to various events depend on what is known about the experimental

situation when the assignment is made. Subsequent to the initial assignment, partial information

about or relevant to the outcome of the experiment may become available. Such information may

cause us to revise some of our probability assignments. For a particular event A, we have used P(A) to
represent the probability assigned to A; we now think of P(A) as the original or “unconditional”

probability of the event A.

In this section, we examine how the information “an event B has occurred” affects the probability

assigned to A. For example, A might refer to an individual having a particular disease in the presence

of certain symptoms. If a blood test is performed on the individual and the result is negative

(B ¼ negative blood test), then the probability of having the disease will change (it should decrease,

but not usually to zero, since blood tests are not infallible).

Example 1.26 Complex components are assembled in a plant that uses two different assembly lines,

A and A0. Line A uses older equipment than A0, so it is somewhat slower and less reliable. Suppose on

a given day line A has assembled 8 components, of which 2 have been identified as defective (B) and

6 as nondefective (B0), whereas A0 has produced 1 defective and 9 nondefective components. This

information is summarized in the accompanying table.
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Line

Condition

B B0

A 2 6

A0 1 9

Unaware of this information, the sales manager randomly selects 1 of these 18 components for a

demonstration. Prior to the demonstration

P line A component selectedð Þ ¼ P Að Þ ¼ N Að Þ
N

¼ 8

18
¼ :444

However, if the chosen component turns out to be defective, then the event B has occurred, so the

component must have been one of the 3 in the B column of the table. Since these 3 components are

equally likely among themselves, the probability the component was selected from line A, given that

event B has occurred, is

P A, given Bð Þ ¼ 2

3
¼ 2=18

3=18
¼ P A \ Bð Þ

P Bð Þ ð1:2Þ
■

In Eq. (1.2), the conditional probability is expressed as a ratio of unconditional probabilities. The

numerator is the probability of the intersection of the two events, whereas the denominator is the

probability of the conditioning event B. A Venn diagram illuminates this relationship (Fig. 1.9).

Given that B has occurred, the relevant sample space is no longer S but consists of just outcomes in

B, and A has occurred if and only if one of the outcomes in the intersection A \ B occurred. So the

conditional probability of A given B should, logically, be the ratio of the likelihoods of these two

events.

1.4.1 The Definition of Conditional Probability

Example 1.26 demonstrates that when outcomes are equally likely, computation of conditional

probabilities can be based on intuition. When experiments are more complicated, though intuition

may fail us, we want to have a general definition of conditional probability that will yield intuitive

answers in simple problems. Figure 1.9 and Eq. (1.2) suggest the appropriate definition.

A

B

“conditioning” on event B

B = new “sample
space”

A   B = what remains
of event A

Fig. 1.9 Motivating the definition of conditional probability
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DEFINITION

For any two events A and B with P(B) > 0, the conditional probability of A given that B has

occurred, denoted P(A|B), is defined by

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ : ð1:3Þ

Example 1.27 Suppose that of all individuals buying a certain digital camera, 60% include

an optional memory card in their purchase, 40% include an extra battery, and 30% include both

a card and battery. Consider randomly selecting a buyer and let A ¼ {memory card purchased} and

B ¼ {battery purchased}. Then P(A) ¼ .60, P(B) ¼ .40, and P(both purchased) ¼ P(A \ B) ¼ .30.

Given that the selected individual purchased an extra battery, the probability that an optional card was

also purchased is

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ ¼ :30

:40
¼ :75

That is, of all those purchasing an extra battery, 75% purchased an optional memory card.

Similarly,

P battery
��memory card

� � ¼ P B
��A� � ¼ P A \ Bð Þ

P Að Þ ¼ :30

:60
¼ :50

Notice that P(A|B) 6¼ P(A) and P(B|A) 6¼ P(B). Notice also that P(A|B) 6¼ P(B|A): these represent
two different probabilities computed using difference pieces of “given” information. ■

Example 1.28 A news magazine includes three columns entitled “Art” (A), “Books” (B), and
“Cinema” (C). Reading habits of a randomly selected reader with respect to these columns are

Read regularly A B C A \ B A \ C B \ C A \ B \ C

Probability .14 .23 .37 .08 .09 .13 .05

(See Fig. 1.10 on the next page.)

We thus have

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ ¼ :08

:23
¼ :348

P A
��B [ C

� � ¼ P A \ B [ Cð Þð Þ
P B [ Cð Þ ¼ :04þ :05þ :03

:47
¼ :12

:47
¼ :255

P A
��reads at least one� � ¼ P A

��A [ B [ C
� � ¼ P A \ A [ B [ Cð Þð Þ

P A [ B [ Cð Þ
¼ P Að Þ

P A [ B [ Cð Þ ¼
:14

:49
¼ :286

and

P A [ B
��C� � ¼ P A [ Bð Þ \ Cð Þ

P Cð Þ ¼ :04þ :05þ :08

:37
¼ :459
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1.4.2 The Multiplication Rule for P(A \ B)

The definition of conditional probability yields the following result, obtained by multiplying both

sides of Eq. (1.3) by P(B).

MULTIPLICATION RULE

P(A \ B) ¼ P(A|B) � P(B)

This rule is important because it is often the case that P(A \ B) is desired, whereas both P(B) and
P(A|B) can be specified from the problem description. By reversing the roles of A and B, the

Multiplication Rule can also be written as P(A \ B) ¼ P(B|A) � P(A).

Example 1.29 Four individuals have responded to a request by a blood bank for blood donations.

None of them has donated before, so their blood types are unknown. Suppose only type O+ is desired

and only one of the four actually has this type. If the potential donors are selected in random order for

typing, what is the probability that at least three individuals must be typed to obtain the desired type?

Define B ¼ {first type not O+} and A ¼ {second type not O+}. Since three of the four potential

donors are not O+, P(B) ¼ 3/4. Given that the first person typed is not O+, two of the three

individuals left are not O+, and so P(A|B) ¼ 2/3. The Multiplication Rule now gives

P at least three individuals are typedð Þ ¼ P first two typed are not Oþð Þ
¼ P A \ Bð Þ
¼ P A

��B� � � P Bð Þ

¼ 2

3
� 3
4
¼ 6

12

¼ :5 ■

The Multiplication Rule is most useful when the experiment consists of several stages in succes-

sion. The conditioning event B then describes the outcome of the first stage and A the outcome of the

second, so that P(A|B)—conditioning on what occurs first—will often be known. The rule is easily

extended to experiments involving more than two stages. For example,

P A1 \ A2 \ A3ð Þ ¼ P A3

��A1 \ A2

� � � P�A1 \ A2

�
¼ P A3

��A1 \ A2

� � � P A2

��A1

� � � P A1ð Þ

where A1 occurs first, followed by A2, and finally A3.

Example 1.30 For the blood typing experiment of Example 1.29,

.05
.02 .03 .07

.04 .08

.20
.51

A B

C

Fig. 1.10 Venn diagram for Example 1.28 ■
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P third type is Oþð Þ ¼ P third is
��first isn’t \ second isn’t

� � � P second isn’t
��first isn’t� � � P first isn’tð Þ

¼ 1

2
� 2
3
� 3
4
¼ 1

4
¼ :25 ■

When the experiment of interest consists of a sequence of several stages, it is convenient to

represent these with a tree diagram. Once we have an appropriate tree diagram, probabilities and

conditional probabilities can be entered on the various branches; this will make repeated use of the

Multiplication Rule quite straightforward.

Example 1.31 A chain of electronics stores sells three different brands of DVD players. Of its DVD

player sales, 50% are brand 1 (the least expensive), 30% are brand 2, and 20% are brand 3. Each

manufacturer offers a 1-year warranty on parts and labor. It is known that 25% of brand 1’s DVD
players require warranty repair work, whereas the corresponding percentages for brands 2 and 3 are

20% and 10%, respectively.

1. What is the probability that a randomly selected purchaser has bought a brand 1 DVD player that

will need repair while under warranty?

2. What is the probability that a randomly selected purchaser has a DVD player that will need repair

while under warranty?

3. If a customer returns to the store with a DVD player that needs warranty repair work, what is the

probability that it is a brand 1 DVD player? A brand 2 DVD player? A brand 3 DVD player?

The first stage of the problem involves a customer selecting one of the three brands of DVD player.

Let Ai ¼ {brand i is purchased}, for i ¼ 1, 2, 3. Then P(A1) ¼ .50, P(A2) ¼ .30, and P(A3) ¼ .20.

Once a brand of DVD player is selected, the second stage involves observing whether the selected

DVD player needs warranty repair. With B ¼ {needs repair} and B0 ¼ {doesn’t need repair}, the

given information implies that P(B|A1) ¼ .25, P(B|A2) ¼ .20, and P(B|A3) ¼ .10.

Brand 2

Bran
d 1

Brand 3

Repair

No repair

Repair

No repair

No repair

Repair

P(A 1)
 =

 .5
0

P(A2) = .30

P(A
3 ) = .20

P(B  A3) =
 .10

P(B   A2) =
 .20

P(B  A1) =
 .25 

P(B '   A1) = .75

P(B '   A2) = .80

P(B'   A3) = .90

P(B  A1)  P(A1) = P(B    A1) = .125

P(B  A2)  P(A2) = P(B    A2) = .060

P(B  A3)  P(A3) = P(B    A3) = .020

P(B) = .205

Fig. 1.11 Tree diagram for Example 1.31
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The tree diagram representing this experimental situation is shown in Fig. 1.11. The initial

branches correspond to different brands of DVD players; there are two second-generation branches

emanating from the tip of each initial branch, one for “needs repair” and the other for “doesn’t need
repair.” The probability P(Ai) appears on the ith initial branch, whereas the conditional probabilities

P(B|Ai) and P(B0|Ai) appear on the second-generation branches. To the right of each second-

generation branch corresponding to the occurrence of B, we display the product of probabilities on

the branches leading out to that point. This is simply the Multiplication Rule in action. The answer to

question 1 is thus P(A1 \ B) ¼ P(B|A1) � P(A1) ¼ .125. The answer to question 2 is

P Bð Þ ¼ P brand 1 and repairð Þ or brand 2 and repairð Þ or brand 3 and repairð Þ½ �
¼ P A1 \ Bð Þ þ P

�
A2 \ B

�þ P
�
A3 \ B

�
¼ :125þ :060þ :020 ¼ :205

Finally,

P A1

��B� � ¼ P A1 \ Bð Þ
P Bð Þ ¼ :125

:205
¼ :61

P A2

��B� � ¼ P A2 \ Bð Þ
P Bð Þ ¼ :060

:205
¼ :29

and

P A3

��B� � ¼ 1� P A1

��B� �� P A2

��B� � ¼ :10

Notice that the initial or prior probability of brand 1 is .50, whereas once it is known that the

selected DVD player needed repair, the posterior probability of brand 1 increases to .61. This is

because brand 1 DVD players are more likely to need warranty repair than are the other brands. The

posterior probability of brand 3 is P(A3|B) ¼ .10, which is much less than the prior probability

P(A3) ¼ .20. ■

1.4.3 The Law of Total Probability and Bayes’ Theorem

The computation of a posterior probability P(Aj|B) from given prior probabilities P(Ai) and condi-

tional probabilities P(B|Ai) occupies a central position in elementary probability. The general rule for

such computations, which is really just a simple application of the Multiplication Rule, goes back to

the Reverend Thomas Bayes, who lived in the eighteenth century. To state it we first need another

result. Recall that events A1, . . ., Ak are mutually exclusive if no two have any common outcomes. The

events are exhaustive if A1 [ � � � [ Ak ¼ S, so that one Ai must occur.

LAW OF TOTAL PROBABILITY

Let A1, . . ., Ak be mutually exclusive and exhaustive events. Then for any other event B,

P Bð Þ ¼ P B
��A1

� � � P�A1

�þ � � � þ P
�
B
��Ak

� � P�Ak

�
¼
Xk
i¼1

P B
��Ai

� �
P Aið Þ ð1:4Þ
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Proof Because the Ais are mutually exclusive and exhaustive, if B occurs it must be in conjunction

with exactly one of the Ais. That is, B ¼ (A1 and B) or . . . or (Ak and B) ¼ (A1 \ B) [ � � � [ (Ak \ B),
where the events (Ai \ B) are mutually exclusive. This “partitioning of B” is illustrated in Fig. 1.12.

Thus

P Bð Þ ¼
Xk
i¼1

P Ai \ Bð Þ ¼
Xk
i¼1

P B
��Ai

� �
P Aið Þ

as desired.

An example of the use of Eq. (1.4) appeared in answering question 2 of Example 1.31, where

A1 ¼ {brand 1}, A2 ¼ {brand 2}, A3 ¼ {brand 3}, and B ¼ {repair}.

Example 1.32 A student has three different e-mail accounts. Most of her messages, in fact 70%,

come into account #1, whereas 20% come into account #2 and the remaining 10% into account #3. Of

the messages coming into account #1, only 1% are spam, compared to 2% and 5% for account #2 and

account #3, respectively. What is the student’s overall spam rate, i.e., what is the probability a

randomly selected e-mail message received by her is spam?

To answer this question, let’s first establish some notation:

Ai ¼ {message is from account #i} for i ¼ 1, 2, 3; B ¼ {message is spam}

The given percentages imply that

P A1ð Þ ¼ :70,P
�
A2

� ¼ :20,P
�
A3

� ¼ :10

P B
��A1

� �¼ :01,P
�
B
��A2

� ¼ :02,P
�
B
��A3

� ¼ :05

Now it’s simply a matter of substituting into the equation for the Law of Total Probability:

P Bð Þ ¼ :01ð Þ :70ð Þ þ :02ð Þ :20ð Þ þ :05ð Þ :10ð Þ ¼ :016

In the long run, 1.6% of her messages will be spam. ■

BAYES’ THEOREM

Let A1, . . ., Ak be a collection of mutually exclusive and exhaustive events with P(Ai) > 0 for

i ¼ 1, . . ., k. Then for any other event B for which P(B) > 0,

P Aj

��B� � ¼ P Aj \ B
� �
P Bð Þ ¼ P B

��Aj

� �
P Aj

� �
Xk
i¼1

P B
��Ai

� �
P Aið Þ

j ¼ 1, . . . , k ð1:5Þ

A1

A2
A4

A3

B

Fig. 1.12 Partition of B by mutually exclusive and exhaustive Ais ■
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The transition from the second to the third expression in Eq. (1.5) rests on using the Multiplication

Rule in the numerator and the Law of Total Probability in the denominator.

The proliferation of events and subscripts in Eq. (1.5) can be a bit intimidating to probability

newcomers. When k ¼ 2, so that the partition of S consists of just A1 ¼ A and A2 ¼ A0, Bayes’
Theorem becomes

P A
��B� � ¼ P Að ÞP B

��A� �
P Að ÞP B

��A� �þ P A
0� �
P B

��A0� �
As long as there are relatively few events in the partition, a tree diagram (as in Example 1.29) can

be used as a basis for calculating posterior probabilities without ever referring explicitly to Bayes’
Theorem.

Example 1.33 Incidence of a rare disease. In the book’s Introduction, we presented the following

example as a common misunderstanding of probability in everyday life. Only 1 in 1000 adults is

afflicted with a rare disease for which a diagnostic test has been developed. The test is such that when

an individual actually has the disease, a positive result will occur 99% of the time, whereas an

individual without the disease will show a positive test result only 2% of the time. If a randomly

selected individual is tested and the result is positive, what is the probability that the individual has

the disease?

[Note: The sensitivity of this test is 99%, whereas the specificity—how specific positive results are

to this disease—is 98%. As an indication of the accuracy of medical tests, an article in the October

29, 2010 New York Times reported that the sensitivity and specificity for a new DNA test for colon

cancer were 86% and 93%, respectively. The PSA test for prostate cancer has sensitivity 85% and

specificity about 30%, while the mammogram for breast cancer has sensitivity 75% and specificity

92%. All tests are less than perfect.]

To use Bayes’ Theorem, let A1 ¼ {individual has the disease}, A2 ¼ {individual does not have

the disease}, and B ¼ {positive test result}. Then P(A1) ¼ .001, P(A2) ¼ .999, P(B|A1) ¼ .99, and

P(B|A2) ¼ .02. The tree diagram for this problem is in Fig. 1.13.

A1 =
 Has d

isea
se

A
2 = Doesn’t have disease

.001

.999 .02

.98

.01

.99

B = +Test

B = +Test

B′ = −Test

B′ = −Test

P(A1   B) = .00099

P(A2   B) = .01998

Fig. 1.13 Tree diagram

for the rare-disease

problem
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Next to each branch corresponding to a positive test result, the Multiplication Rule yields the

recorded probabilities. Therefore, P(B) ¼ .00099 + .01998 ¼ .02097, from which we have

P A1

��B� � ¼ P A1 \ Bð Þ
P Bð Þ ¼ :00099

:02097
¼ :047

This result seems counterintuitive; because the diagnostic test appears so accurate, we expect

someone with a positive test result to be highly likely to have the disease, whereas the computed

conditional probability is only .047. However, because the disease is rare and the test only moderately

reliable, most positive test results arise from errors rather than from diseased individuals. The

probability of having the disease has increased by a multiplicative factor of 47 (from prior .001 to

posterior .047); but to get a further increase in the posterior probability, a diagnostic test with much

smaller error rates is needed. If the disease were not so rare (e.g., 25% incidence in the population),

then the error rates for the present test would provide good diagnoses.

This example shows why it makes sense to be tested for a rare disease only if you are in a high-risk

group. For example, most of us are at low risk for HIV infection, so testing would not be indicated, but

those who are in a high-risk group should be tested for HIV. For some diseases the degree of risk is

strongly influenced by age. Young women are at low risk for breast cancer and should not be tested,

but older women do have increased risk and need to be tested. There is some argument about where to

draw the line. If we can find the incidence rate for our group and the sensitivity and specificity for the

test, then we can do our own calculation to see if a positive test result would be informative. ■

1.4.4 Exercises: Section 1.4 (50–78)

50. The population of a particular country consists of three ethnic groups. Each individual belongs

to one of the four major blood groups. The accompanying joint probability table gives the

proportions of individuals in the various ethnic group–blood group combinations.

Ethnic group

Blood group

O A B AB

1 .082 .106 .008 .004

2 .135 .141 .018 .006

3 .215 .200 .065 .020

Suppose that an individual is randomly selected from the population, and define events by

A ¼ {type A selected}, B ¼ {type B selected}, and C ¼ {ethnic group 3 selected}.

(a) Calculate P(A), P(C), and P(A \ C).

(b) Calculate both P(A|C) and P(C|A) and explain in context what each of these probabilities

represents.

(c) If the selected individual does not have type B blood, what is the probability that he or she

is from ethnic group 1?

51. Suppose an individual is randomly selected from the population of all adult males living in the

USA. Let A be the event that the selected individual is over 6 ft in height, and let B be the event

that the selected individual is a professional basketball player. Which do you think is larger,

P(A|B) or P(B|A)? Why?
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52. Return to the credit card scenario of Exercise 14, where A ¼ {Visa}, B ¼ {MasterCard},

P(A) ¼ .5, P(B) ¼ .4, and P(A \ B) ¼ .25. Calculate and interpret each of the following

probabilities (a Venn diagram might help).

(a) P(B|A)

(b) P(B0|A)
(c) P(A|B)

(d) P(A0|B)
(e) Given that the selected individual has at least one card, what is the probability that he or

she has a Visa card?

53. Reconsider the system defect situation described in Exercise 28.

(a) Given that the system has a type 1 defect, what is the probability that it has a type 2 defect?

(b) Given that the system has a type 1 defect, what is the probability that it has all three types

of defects?

(c) Given that the system has at least one type of defect, what is the probability that it has

exactly one type of defect?

(d) Given that the system has both of the first two types of defects, what is the probability that

it does not have the third type of defect?

54. The accompanying table gives information on the type of coffee selected by someone purchas-

ing a single cup at a particular airport kiosk.

Small Medium Large

Regular 14% 20% 26%

Decaf 20% 10% 10%

Consider randomly selecting such a coffee purchaser.

(a) What is the probability that the individual purchased a small cup? A cup of decaf coffee?

(b) If we learn that the selected individual purchased a small cup, what now is the probability

that s/he chose decaf coffee, and how would you interpret this probability?

(c) If we learn that the selected individual purchased decaf, what now is the probability that a

small size was selected, and how does this compare to the corresponding unconditional

probability from (a)?

55. A department store sells sport shirts in three sizes (small, medium, and large), three patterns

(plaid, print, and stripe), and two sleeve lengths (long and short). The accompanying tables give

the proportions of shirts sold in the various category combinations.

Short-sleeved

Size

Pattern

Plaid Print Stripe

S .04 .02 .05

M .08 .07 .12

L .03 .07 .08

Long-sleeved

Size

Pattern

Plaid Print Stripe

S .03 .02 .03

M .10 .05 .07

L .04 .02 .08

(a) What is the probability that the next shirt sold is a medium, long-sleeved, print shirt?

(b) What is the probability that the next shirt sold is a medium print shirt?
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(c) What is the probability that the next shirt sold is a short-sleeved shirt? A long-sleeved

shirt?

(d) What is the probability that the size of the next shirt sold is medium? That the pattern of the

next shirt sold is a print?

(e) Given that the shirt just sold was a short-sleeved plaid, what is the probability that its size

was medium?

(f) Given that the shirt just sold was a medium plaid, what is the probability that it was short-

sleeved? Long-sleeved?

56. One box contains six red balls and four green balls, and a second box contains seven red balls and

three green balls. A ball is randomly chosen from the first box and placed in the second box. Then

a ball is randomly selected from the second box and placed in the first box.

(a) What is the probability that a red ball is selected from the first box and a red ball is selected

from the second box?

(b) At the conclusion of the selection process, what is the probability that the numbers of red

and green balls in the first box are identical to the numbers at the beginning?

57. A system consists of two identical pumps, #1 and #2. If one pump fails, the system will still

operate. However, because of the added strain, the extra remaining pump is now more likely to

fail than was originally the case. That is, r ¼ P(#2 fails | #1 fails) > P(#2 fails) ¼ q. If at least

one pump fails by the end of the pump design life in 7% of all systems and both pumps fail during

that period in only 1%, what is the probability that pump #1 will fail during the pump design life?

58. A certain shop repairs both audio and video components. Let A denote the event that the next

component brought in for repair is an audio component, and let B be the event that the next

component is a compact disc player (so the event B is contained in A). Suppose that P(A) ¼ .6

and P(B) ¼ .05. What is P(B|A)?

59. In Exercise 15, Ai ¼ {awarded project i}, for i ¼ 1, 2, 3. Use the probabilities given there to

compute the following probabilities, and explain in words the meaning of each one.

(a) P(A2|A1)

(b) P(A2 \ A3|A1)

(c) P(A2 [ A3|A1)

(d) P(A1 \ A2 \ A3|A1 [ A2 [ A3)

60. Three plants manufacture hard drives and ship them to a warehouse for distribution. Plant I

produces 54% of the warehouse’s inventory with a 4% defect rate. Plant II produces 35% of the

warehouse’s inventory with an 8% defect rate. Plant III produces the remainder of the

warehouse’s inventory with a 12% defect rate.

(a) Draw a tree diagram to represent this information.

(b) A warehouse inspector selects one hard drive at random. What is the probability that it is a

defective hard drive and from Plant II?

(c) What is the probability that a randomly selected hard drive is defective?

(d) Suppose a hard drive is defective. What is the probability that it came from Plant II?

61. For any events A and B with P(B) > 0, show that P(A|B) + P(A0|B) ¼ 1.

62. If P(B|A) > P(B) show that P(B0|A) < P(B0). [Hint: Add P(B0|A) to both sides of the given

inequality and then use the result of the previous exercise.]

63. Show that for any three events A, B, and C with P(C) > 0, P(A [ B|C) ¼ P(A|C) + P(B|C) �
P(A \ B|C).

64. At a certain gas station, 40% of the customers use regular gas (A1), 35% use mid-grade gas (A2),

and 25% use premium gas (A3). Of those customers using regular gas, only 30% fill their tanks
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(event B). Of those customers using mid-grade gas, 60% fill their tanks, whereas of those using

premium, 50% fill their tanks.

(a) What is the probability that the next customer will request mid-grade gas and fill the tank

(A2 \ B)?

(b) What is the probability that the next customer fills the tank?

(c) If the next customer fills the tank, what is the probability that regular gas is requested?

mid-grade gas? Premium gas?

65. Suppose a single gene controls the color of hamsters: black (B) is dominant and brown (b) is

recessive. Hence, a hamster will be black unless its genotype is bb. Two hamsters, each with

genotype Bb, mate and produce a single offspring. The laws of genetic recombination state that

each parent is equally likely to donate either of its two alleles (B or b), so the offspring is equally

likely to be any of BB, Bb, bB, or bb (the middle two are genetically equivalent).

(a) What is the probability their offspring has black fur?

(b) Given that their offspring has black fur, what is the probability its genotype is Bb?

66. Refer back to the scenario of the previous exercise. In the figure below, the genotypes of both

members of Generation I are known, as is the genotype of the male member of Generation II. We

know that hamster II2 must be black-colored thanks to her father, but suppose that we don’t know
her genotype exactly (as indicated by B- in the figure).

BB

Bb

1

1

1

2

2

B–Generation II

Generation III

Generation I Bb

(a) What are the possible genotypes of hamster II2, and what are the corresponding

probabilities?

(b) If we observe that hamster III1 has a black coat (and hence at least one B gene), what is the

probability her genotype is Bb?

(c) If we later discover (through DNA testing on poor little hamster III1) that her genotype in

BB, what is the posterior probability that her mom is also BB?
67. Seventy percent of the light aircraft that disappear while in flight in a certain country are

subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator,

whereas 90% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has

disappeared.

(a) If it has an emergency locator, what is the probability that it will not be discovered?

(b) If it does not have an emergency locator, what is the probability that it will be discovered?

68. Components of a certain type are shipped to a supplier in batches of ten. Suppose that 50% of all

such batches contain no defective components, 30% contain one defective component, and 20%

contain two defective components. Two components from a batch are randomly selected and

tested. What are the probabilities associated with 0, 1, and 2 defective components being in the

batch under each of the following conditions?

(a) Neither tested component is defective.

(b) One of the two tested components is defective.

[Hint: Draw a tree diagram with three first-generation branches for the three different types of

batches.]
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69. Show that P(A \ B|C) ¼ P(A|B \ C) � P(B|C).
70. For customers purchasing a full set of tires at a particular tire store, consider the events

A ¼ {tires purchased were made in the USA}

B ¼ {purchaser has tires balanced immediately}

C ¼ {purchaser requests front-end alignment}

along with A0, B0, and C0. Assume the following unconditional and conditional probabilities:

P(A) ¼ .75 P(B|A) ¼ .9 P(B|A0) ¼ .8 P(C|A \ B) ¼ .8

P(C|A \ B0) ¼ .6 P(C|A0 \ B) ¼ .7 P(C|A0 \ B0) ¼ .3

(a) Construct a tree diagram consisting of first-, second-, and third-generation branches and

place an event label and appropriate probability next to each branch.

(b) Compute P(A \ B \ C).
(c) Compute P(B \ C).

(d) Compute P(C).

(e) Compute P(A|B \ C), the probability of a purchase of US tires given that both balancing

and an alignment were requested.

71. A professional organization (for statisticians, of course) sells term life insurance and major

medical insurance. Of those who have just life insurance, 70% will renew next year, and 80%

of those with only a major medical policy will renew next year. However, 90% of policyholders

who have both types of policy will renew at least one of them next year. Of the policy holders,

75% have term life insurance, 45% have major medical, and 20% have both.

(a) Calculate the percentage of policyholders that will renew at least one policy next year.

(b) If a randomly selected policy holder does in fact renew next year, what is the probability that

he or she has both life and major medical insurance?

72. The Reviews editor for a certain scientific journal decides whether the review for any particular

book should be short (1–2 pages), medium (3–4 pages) or long (5–6 pages). Data on recent

reviews indicate that 60% of them are short, 30% are medium, and the other 10% are long.

Reviews are submitted in either Word or LaTeX. For short reviews, 80% are in Word, whereas

50% of medium reviews and 30% of long reviews are in Word. Suppose a recent review is

randomly selected.

(a) What is the probability that the selected review was submitted in Word?

(b) If the selected review was submitted in Word, what are the posterior probabilities of it being

short, medium, and long?

73. A large operator of timeshare complexes requires anyone interested in making a purchase to first

visit the site of interest. Historical data indicates that 20% of all potential purchasers select a day

visit, 50% choose a one-night visit, and 30% opt for a two-night visit. In addition, 10% of day

visitors ultimately make a purchase, 30% of night visitors buy a unit, and 20% of those visiting

for two nights decide to buy. Suppose a visitor is randomly selected and found to have bought a

timeshare. How likely is it that this person made a day visit? A one-night visit? A two-night visit?

74. Consider the following information about travelers (based partly on a recent Travelocity poll):

40% check work e-mail, 30% use a cell phone to stay connected to work, 25% bring a laptop with

them, 23% both check work e-mail and use a cell phone to stay connected, and 51% neither check

work e-mail nor use a cell phone to stay connected nor bring a laptop. Finally, 88 out of every

100 who bring a laptop check work e-mail, and 70 out of every 100 who use a cell phone to stay

connected also bring a laptop.

(a) What is the probability that a randomly selected traveler who checks work e-mail also uses a

cell phone to stay connected?
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(b) What is the probability that someone who brings a laptop on vacation also uses a cell phone

to stay connected?

(c) If a randomly selected traveler checked work e-mail and brought a laptop, what is the

probability that s/he uses a cell phone to stay connected?

75. There has been a great deal of controversy over the last several years regarding what types of

surveillance are appropriate to prevent terrorism. Suppose a particular surveillance system has a

99% chance of correctly identifying a future terrorist and a 99.9% chance of correctly identifying

someone who is not a future terrorist. Imagine there are 1000 future terrorists in a population of

300 million (roughly the US population). If one of these 300 million people is randomly selected

and the system determines him/her to be a future terrorist, what is the probability the system is

correct? Does your answer make you uneasy about using the surveillance system? Explain.

76. At a large university, in the never-ending quest for a satisfactory textbook, the Statistics

Department has tried a different text during each of the last three quarters. During the fall

quarter, 500 students used the text by Professor Mean; during the winter quarter, 300 students

used the text by Professor Median; and during the spring quarter, 200 students used the text by

Professor Mode. A survey at the end of each quarter showed that 200 students were satisfied with

Mean’s book, 150 were satisfied with Median’s book, and 160 were satisfied with Mode’s book.
If a student who took statistics during one of these quarters is selected at random and admits to

having been satisfied with the text, is the student most likely to have used the book by Mean,

Median, or Mode? Who is the least likely author? [Hint: Draw a tree-diagram or use Bayes’
theorem.]

77. A friend who lives in Los Angeles makes frequent consulting trips to Washington, D.C.; 50% of

the time she travels on airline #1, 30% of the time on airline #2, and the remaining 20% of the

time on airline #3. For airline #1, flights are late into D.C. 30% of the time and late into L.A. 10%

of the time. For airline #2, these percentages are 25% and 20%, whereas for airline #3 the

percentages are 40% and 25%. If we learn that on a particular trip she arrived late at exactly one

of the two destinations, what are the posterior probabilities of having flown on airlines #1, #2, and

#3? Assume that the chance of a late arrival in L.A. is unaffected by what happens on the flight to

D.C. [Hint: From the tip of each first-generation branch on a tree diagram, draw three second-

generation branches labeled, respectively, 0 late, 1 late, and 2 late.]

78. In Exercise 64, consider the following additional information on credit card usage:

70% of all regular fill-up customers use a credit card.

50% of all regular non-fill-up customers use a credit card.

60% of all mid-grade fill-up customers use a credit card.

50% of all mid-grade non-fill-up customers use a credit card.

50% of all premium fill-up customers use a credit card.

40% of all premium non-fill-up customers use a credit card.

Compute the probability of each of the following events for the next customer to arrive (a tree

diagram might help).

(a) {mid-grade and fill-up and credit card}

(b) {premium and non-fill-up and credit card}

(c) {premium and credit card}

(d) {fill-up and credit card}

(e) {credit card}

(f) If the next customer uses a credit card, what is the probability that s/he purchased premium

gasoline?
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1.5 Independence

The definition of conditional probability enables us to revise the probability P(A) originally assigned
to Awhen we are subsequently informed that another event B has occurred; the new probability of A is

P(A|B). In our examples, it was frequently the case that P(A|B) differed from the unconditional

probability P(A), indicating that the information “B has occurred” resulted in a change in the chance

of A occurring. There are other situations, however, in which the chance that A will occur or has

occurred is not affected by knowledge that B has occurred, so that P(A|B) ¼ P(A). It is then natural to

think of A and B as independent events, meaning that the occurrence or nonoccurrence of one event

has no bearing on the chance that the other will occur.

DEFINITION

Two events A and B are independent if P(A|B) ¼ P(A) and are dependent otherwise.

The definition of independence might seem “unsymmetrical” because we do not demand that P(B|A)

¼ P(B) also. However, using the definition of conditional probability and the Multiplication Rule,

P B
��A� � ¼ P A \ Bð Þ

P Að Þ ¼ P A
��B� �

P Bð Þ
P Að Þ ð1:6Þ

The right-hand side of Eq. (1.6) is P(B) if and only if P(A|B) ¼ P(A) (independence), so the

equality in the definition implies the other equality (and vice versa). It is also straightforward to show

that if A and B are independent, then so are the following pairs of events: (1) A0 and B, (2) A and B0,
and (3) A0 and B0. See Exercise 82.

Example 1.34 Consider an ordinary deck of 52 cards comprising the four suits spades, hearts,

diamonds, and clubs, with each suit consisting of the 13 ranks ace, king, queen, jack, ten, . . ., and
two. Suppose someone randomly selects a card from the deck and reveals to you that it is a picture

card (that is, a king, queen, or jack). What now is the probability that the card is a spade? If we let

A ¼ {spade} and B ¼ {face card}, then P(A) ¼ 13/52, P(B) ¼ 12/52 (there are three face cards in

each of the four suits), and P(A \ B) ¼ P(spade and face card) ¼ 3/52. Thus

P A
��B� � ¼ P A \ Bð Þ

P Bð Þ ¼ 3=52

12=52
¼ 3

12
¼ 1

4
¼ 13

52
¼ P Að Þ

Therefore, the likelihood of getting a spade is not affected by knowledge that a face card had been

selected. Intuitively this is because the fraction of spades among face cards (3 out of 12) is the same as

the fraction of spades in the entire deck (13 out of 52). It is also easily verified that P(B|A) ¼ P(B), so

knowledge that a spade has been selected does not affect the likelihood of the card being a jack,

queen, or king. ■

Example 1.35 Consider a gas station with six pumps numbered 1, 2, . . ., 6 and let Ei denote the

simple event that a randomly selected customer uses pump i. Suppose that

P E1ð Þ ¼ P E6ð Þ ¼ :10, P E2ð Þ ¼ P E5ð Þ ¼ :15, P E3ð Þ ¼ P E4ð Þ ¼ :25

Define events A, B, C by
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A ¼ 2; 4; 6f g,B ¼ 1; 2; 3f g,C ¼ 2; 3; 4; 5f g
It is easy to determine that P(A) ¼ .50, P(A|B) ¼ .30, and P(A|C) ¼ .50. Therefore, events A and

B are dependent, whereas events A and C are independent. Intuitively, A and C are independent

because the relative division of probability among even- and odd-numbered pumps is the same among

pumps 2, 3, 4, 5 as it is among all six pumps. ■

Example 1.36 Let A and B be any two mutually exclusive events with P(A) > 0. For example, for a

randomly chosen automobile, let A ¼ {car is blue} and B ¼ {car is red}. Since the events are

mutually exclusive, if B occurs, then A cannot possibly have occurred, so P(A|B) ¼ 0 6¼ P(A). The

message here is that if two events are mutually exclusive, they cannot be independent. When A and

B are mutually exclusive, the information that A occurred says something about the chance of

B (namely, it cannot have occurred), so independence is precluded. ■

1.5.1 P(A \ B) When Events Are Independent

Frequently the nature of an experiment suggests that two events A and B should be assumed

independent. This is the case, for example, if a manufacturer receives a circuit board from each of

two different suppliers, each board is tested on arrival, and A ¼ {first is defective} and B ¼ {second

is defective}. If P(A) ¼ .1, it should also be the case that P(A|B) ¼ .1; knowing the condition of the

second board shouldn’t provide information about the condition of the first. Our next result shows

how to compute P(A \ B) when the events are independent.

PROPOSITION

A and B are independent if and only if

P A \ Bð Þ ¼ P Að Þ � P Bð Þ ð1:7Þ

Proof By the Multiplication Rule, P(A \ B) ¼ P(A|B) � P(B), and this equals P(A) � P(B) if and
only if P(A|B) ¼ P(A). ■

Because of the equivalence of independence with Eq. (1.7), the latter can be used as a definition of

independence.1

Example 1.37 It is known that 30% of a certain company’s washing machines require service while

under warranty, whereas only 10% of its dryers need such service. If someone purchases both a

washer and a dryer made by this company, what is the probability that both machines need warranty

service?

Let A denote the event that the washer needs service while under warranty, and let B be defined

analogously for the dryer. Then P(A) ¼ .30 and P(B) ¼ .10. Assuming that the two machines

function independently of each other, the desired probability is

1However, the multiplication property is satisfied if P(B) ¼ 0, yet P(A|B) is not defined in this case. To make the

multiplication property completely equivalent to the definition of independence, we should append to that definition

that A and B are also independent if either P(A) ¼ 0 or P(B) ¼ 0.
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P A \ Bð Þ ¼ P Að Þ � P Bð Þ ¼ :30ð Þ :10ð Þ ¼ :03

The probability that neither machine needs service is

P A0 \ B0ð Þ ¼ P A0ð Þ � P B0ð Þ ¼ :70ð Þ :90ð Þ ¼ :63

Note that, although the independence assumption is reasonable here, it can be questioned. In

particular, if heavy usage causes a breakdown in one machine, it could also cause trouble for the other

one. ■

Example 1.38 Each day, Monday through Friday, a batch of components sent by a first supplier

arrives at a certain inspection facility. Two days a week, a batch also arrives from a second supplier.

Eighty percent of all supplier 1’s batches pass inspection, and 90% of supplier 2’s do likewise. What

is the probability that, on a randomly selected day, two batches pass inspection? We will answer this

assuming that on days when two batches are tested, whether the first batch passes is independent of

whether the second batch does so. Figure 1.14 displays the relevant information.

P two passð Þ ¼ P two received \ both passð Þ
¼ P both pass

��two received
� � � P two receivedð Þ

¼ :8ð Þ :9ð Þ½ � :4ð Þ ¼ :288 ■

1.5.2 Independence of More than Two Events

The notion of independence can be extended to collections of more than two events. Although it is

possible to extend the definition for two independent events by working in terms of conditional and

unconditional probabilities, it is more direct and less cumbersome to proceed along the lines of the

last proposition.

2 batches

1 batch
.6

.4 .8

1st p
asse

s

.2
1st fails

.2
Fails

.8

Passe
s

.9

2nd passe
s

.1
2nd fails

.9

2nd passes

.1
2nd fails

.4    (.8    .9)

Fig. 1.14 Tree diagram for Example 1.38
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DEFINITION

Events A1, . . ., An aremutually independent if for every k (k ¼ 2, 3, . . ., n) and every subset of

indices i1, i2,. . . ., ik,

P Ai1 \ Ai2 \ � � � \ Aikð Þ ¼ P Ai1ð Þ � P Ai2ð Þ � � � � � P Aikð Þ

To paraphrase the definition, the events are mutually independent if the probability of the

intersection of any subset of the n events is equal to the product of the individual probabilities. In

using this multiplication property for more than two independent events, it is legitimate to replace one

or more of the Ais by their complements (e.g., if A1, A2, and A3 are independent events, then so are A
0
1,

A0
2, and A0

3.) As was the case with two events, we frequently specify at the outset of a problem the

independence of certain events. The definition can then be used to calculate the probability of an

intersection.

Example 1.39 The article “Reliability Evaluation of Solar Photovoltaic Arrays” (Solar Energy,

2002: 129–141) presents various configurations of solar photovoltaic arrays consisting of crystalline

silicon solar cells. Consider first the system illustrated in Fig. 1.15a. There are two subsystems

connected in parallel, each one containing three cells. In order for the system to function, at least one

of the two parallel subsystems must work. Within each subsystem, the three cells are connected in

series, so a subsystem will work only if all cells in the subsystem work. Consider a particular lifetime

value t0, and suppose we want to determine the probability that the system lifetime exceeds t0. Let Ai

denote the event that the lifetime of cell i exceeds t0 (i ¼ 1, 2, . . ., 6). We assume that the Ais are

independent events (whether any particular cell lasts more than t0 hours has no bearing on whether

any other cell does) and that P(Ai) ¼ .9 for every i since the cells are identical. Then applying the

Addition Rule followed by independence,

P system lifetime exceeds t0ð Þ ¼ P
	
A1 \ A2 \ A3ð Þ [ �A4 \ A5 \ A6

�

¼ P A1 \ A2 \ A3ð Þ þ P

�
A4 \ A5 \ A6

�
�P
	�
A1 \ A2 \ A3

� \ �A4 \ A5 \ A6

�

¼ :9ð Þ :9ð Þ :9ð Þ þ :9ð Þ :9ð Þ :9ð Þ
� :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ :9ð Þ

¼ :927

Alternatively,

P system lifetime exceeds t0ð Þ ¼ 1� P both subsystem lives are � t0ð Þ
¼ 1� P subsystem life is � t0ð Þ½ �2
¼ 1� 1� P subsystem life is > t0ð Þ½ �2

¼ 1� 1� :9ð Þ3
h i2

¼ :927

1 2 3

4 5 6

1 2 3

4 5 6

ba

Fig. 1.15 System configurations for Example 1.39: (a) series–parallel; (b) total-cross-tied
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Next consider the total-cross-tied system shown in Fig. 1.15b, obtained from the series–parallel

array by connecting ties across each column of junctions. Now the system fails as soon as an entire

column fails, and system lifetime exceeds t0 only if the life of every column does so. For this

configuration,

P system lifetime exceeds t0ð Þ ¼ P column lifetime exceeds t0ð Þ½ �3
¼ 1� P column lifetime is � t0ð Þ½ �3
¼ 1� P both cells in a column have lifetime � t0ð Þ½ �3

¼ 1� 1� :9ð Þ2
h i3

¼ :970 ■

Probabilities like those calculated in Example 1.39 are often referred to as the reliability of a

system. In Sect. 4.8, we consider in more detail the analysis of system reliability.

1.5.3 Exercises: Section 1.5 (79–100)

79. Reconsider the credit card scenario of Exercise 52, and show that A and B are dependent first by

using the definition of independence and then by verifying that the multiplication property does

not hold.

80. An oil exploration company currently has two active projects, one in Asia and the other in

Europe. Let A be the event that the Asian project is successful and B be the event that the

European project is successful. Suppose that A and B are independent events with P(A) ¼ .4 and

P(B) ¼ .7.

(a) If the Asian project is not successful, what is the probability that the European project is

also not successful? Explain your reasoning.

(b) What is the probability that at least one of the two projects will be successful?

(c) Given that at least one of the two projects is successful, what is the probability that only the

Asian project is successful?

81. In Exercise 15, is any Ai independent of any other Aj? Answer using the multiplication property

for independent events.

82. If A and B are independent events, show that A0 and B are also independent. [Hint: First use a

Venn diagram to establish a relationship among P(A0 \ B), P(B), and P(A \ B).]

83. Suppose that the proportions of blood phenotypes in a particular population are as follows:

A B AB O

.40 .11 .04 .45

Assuming that the phenotypes of two randomly selected individuals are independent of each

other, what is the probability that both phenotypes are O? What is the probability that the

phenotypes of two randomly selected individuals match?

84. The probability that a grader will make a marking error on any particular question of a multiple-

choice exam is .1. If there are ten questions on the exam and questions are marked indepen-

dently, what is the probability that no errors are made? That at least one error is made? If there

are n questions on the exam and the probability of a marking error is p rather than .1, give

expressions for these two probabilities.
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85. In October, 1994, a flaw in a certain Pentium chip installed in computers was discovered that

could result in a wrong answer when performing a division. The manufacturer initially claimed

that the chance of any particular division being incorrect was only 1 in 9 billion, so that it would

take thousands of years before a typical user encountered a mistake. However, statisticians are

not typical users; some modern statistical techniques are so computationally intensive that a

billion divisions over a short time period is not unrealistic. Assuming that the 1 in 9 billion figure

is correct and that results of divisions are independent from one another, what is the probability

that at least one error occurs in 1 billion divisions with this chip?

86. An aircraft seam requires 25 rivets. The seam will have to be reworked if any of these rivets is

defective. Suppose rivets are defective independently of one another, each with the same

probability.

(a) If 20% of all seams need reworking, what is the probability that a rivet is defective?

(b) How small should the probability of a defective rivet be to ensure that only 10% of all seams

need reworking?

87. A boiler has five identical relief valves. The probability that any particular valve will open on

demand is .95. Assuming independent operation of the valves, calculate P(at least one valve

opens) and P(at least one valve fails to open).

88. Two pumps connected in parallel fail independently of each other on any given day. The

probability that only the older pump will fail is. 10, and the probability that only the newer

pump will fail is .05. What is the probability that the pumping system will fail on any given day

(which happens if both pumps fail)?

89. Consider the system of components connected as in the accompanying picture. Components

1 and 2 are connected in parallel, so that subsystem works iff either 1 or 2 works; since 3 and 4 are

connected in series, that subsystem works iff both 3 and 4 work. If components work indepen-

dently of one another and P(component works) ¼ .9, calculate P(system works).

2

1

3 4

90. Refer back to the series–parallel system configuration introduced in Example 1.39, and suppose

that there are only two cells rather than three in each parallel subsystem [in Fig. 1.15a, eliminate

cells 3 and 6, and renumber cells 4 and 5 as 3 and 4]. Using P(Ai) ¼ .9, the probability that

system lifetime exceeds t0 is easily seen to be .9639. To what value would .9 have to be changed

in order to increase the system lifetime reliability from .9639 to .99? [Hint: Let P(Ai) ¼ p,

express system reliability in terms of p, and then let x ¼ p2.]
91. Consider independently rolling two fair dice, one red and the other green. Let A be the event that

the red die shows 3 dots, B be the event that the green die shows 4 dots, and C be the event that the

total number of dots showing on the two dice is 7.

(a) Are these events pairwise independent (i.e., are A and B independent events, are A and

C independent, and are B and C independent)?

(b) Are the three events mutually independent?

92. Components arriving at a distributor are checked for defects by two different inspectors (each

component is checked by both inspectors). The first inspector detects 90% of all defectives that
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are present, and the second inspector does likewise. At least one inspector fails to detect a defect

on 20% of all defective components. What is the probability that the following occur?

(a) A defective component will be detected only by the first inspector? By exactly one of the

two inspectors?

(b) All three defective components in a batch escape detection by both inspectors (assuming

inspections of different components are independent of one another)?

93. Seventy percent of all vehicles examined at a certain emissions inspection station pass the

inspection. Assuming that successive vehicles pass or fail independently of one another, calculate

the following probabilities:

(a) P(all of the next three vehicles inspected pass)

(b) P(at least one of the next three inspected fails)

(c) P(exactly one of the next three inspected passes)

(d) P(at most one of the next three vehicles inspected passes)

(e) Given that at least one of the next three vehicles passes inspection, what is the probability

that all three pass (a conditional probability)?

94. A quality control inspector is inspecting newly produced items for faults. The inspector searches

an item for faults in a series of independent fixations, each of a fixed duration. Given that a flaw is

actually present, let p denote the probability that the flaw is detected during any one fixation (this

model is discussed in “Human Performance in Sampling Inspection,” Human Factors, 1979: 99–
105).

(a) Assuming that an item has a flaw, what is the probability that it is detected by the end of the

second fixation (once a flaw has been detected, the sequence of fixations terminates)?

(b) Give an expression for the probability that a flaw will be detected by the end of the nth

fixation.

(c) If when a flaw has not been detected in three fixations, the item is passed, what is the

probability that a flawed item will pass inspection?

(d) Suppose 10% of all items contain a flaw [P(randomly chosen item is flawed) ¼ .1]. With the

assumption of part (c), what is the probability that a randomly chosen item will pass

inspection (it will automatically pass if it is not flawed, but could also pass if it is flawed)?

(e) Given that an item has passed inspection (no flaws in three fixations), what is the probability

that it is actually flawed? Calculate for p ¼ .5.

95. (a) A lumber company has just taken delivery on a lot of 10,000 2 � 4 boards. Suppose that

20% of these boards (2000) are actually too green to be used in first-quality construction.

Two boards are selected at random, one after the other. Let A ¼ {the first board is green}

and B ¼ {the second board is green}. Compute P(A), P(B), and P(A \ B) (a tree diagram

might help). Are A and B independent?

(b) With A and B independent and P(A) ¼ P(B) ¼ .2, what is P(A \ B)? How much difference

is there between this answer and P(A \ B) in part (a)? For purposes of calculating P(A \ B),

can we assume that A and B of part (a) are independent to obtain essentially the correct

probability?

(c) Suppose the lot consists of ten boards, of which two are green. Does the assumption of

independence now yield approximately the correct answer for P(A \ B)? What is the

critical difference between the situation here and that of part (a)? When do you think that

an independence assumption would be valid in obtaining an approximately correct answer

to P(A \ B)?
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96. Refer to the assumptions stated in Exercise 89 and answer the question posed there for the system

in the accompanying picture. How would the probability change if this were a subsystem

connected in parallel to the subsystem pictured in Fig. 1.15a?

2

1

5

3

6

7

4

97. Professor Stander Deviation can take one of two routes on his way home from work. On the first

route, there are four railroad crossings. The probability that he will be stopped by a train at any

particular one of the crossings is .1, and trains operate independently at the four crossings. The

other route is longer but there are only two crossings, independent of each other, with the same

stoppage probability for each as on the first route. On a particular day, Professor Deviation has a

meeting scheduled at home for a certain time. Whichever route he takes, he calculates that he will

be late if he is stopped by trains at at least half the crossings encountered.

(a) Which route should he take to minimize the probability of being late to the meeting?

(b) If he tosses a fair coin to decide on a route and he is late, what is the probability that he took

the four-crossing route?

98. For a customer who test drives three vehicles, define events Ai ¼ customer likes vehicle #i for

i ¼ 1, 2, 3. Suppose that P(A1) ¼ .55, P(A2) ¼ .65, P(A3) ¼ .70, P(A1 [ A2) ¼ .80, P(A2 \ A3)

¼ .40, and P(A1 [ A2 [ A3) ¼ .88.

(a) What is the probability that a customer likes both vehicle #1 and vehicle #2?

(b) Determine and interpret P(A2|A3).

(c) Are A2 and A3 independent events? Answer in two different ways.

(d) If you learn that the customer did not like vehicle #1, what now is the probability that s/he

liked at least one of the other two vehicles?

99. It’s a commonly held misconception that if you play the lottery n times, and the probability of

winning each time is 1/N, then your chance of winning at least once is n/N. That’s true if you buy
n tickets in 1 week, but not if you buy a single ticket in each of n independent weeks. Let’s
explore further.

(a) Suppose you play a game n independent times, with P(win) ¼ 1/N each time. Find an

expression for the probability you win at least once. [Hint: Consider the complement.]

(b) How does your answer to (a) compare to n/N for the easy task of rolling a ⚃ on a fair die

(so 1/N ¼ 1/6) in n ¼ 3 tries? In n ¼ 6 tries? In n ¼ 10 tries?

(c) How does your answer to (a) compare to n/N in the setting of Exercise 85: probability ¼ 1

in 9 billion, number of tries ¼ 1 billion?

(d) Show that when n is much smaller than N, the fraction n/N is not a bad approximation to (a).

[Hint: Use the binomial theorem from high school algebra.]

100. Suppose identical tags are placed on both the left ear and the right ear of a fox. The fox is then let

loose for a period of time. Consider the two events C1 ¼ {left ear tag is lost} and C2 ¼ {right

ear tag is lost}. Let p ¼ P(C1) ¼ P(C2), and assume C1 and C2 are independent events. Derive

an expression (involving p) for the probability that exactly one tag is lost, given that at most one

is lost (“Ear Tag Loss in Red Foxes,” J. Wildlife Manag., 1976: 164–167). [Hint: Draw a tree

diagram in which the two initial branches refer to whether the left ear tag was lost.]
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1.6 Simulation of Random Events

As probability models in engineering and the sciences have grown in complexity, many problems

have arisen that are too difficult to attack “analytically,” i.e., using mathematical tools such as those in

the previous sections. Instead, computer simulation provides us an effective way to estimate

probabilities of very complicated events (and, in later chapters, of other properties of random

phenomena). Here we introduce the principles of probability simulation, demonstrate a few examples

with Matlab and R code, and discuss the precision of simulated probabilities.

Suppose an investigator wishes to determine P(A), but either the experiment on which A is defined

or the A event itself is so complicated as to preclude the use of probability rules and properties. The

general method for estimating this probability via computer simulation is as follows:

– Write a program that simulates (mimics) the underlying random experiment.

– Run the program many times, with each run independent of all others.

– During each run, record whether or not the event A of interest occurs.

If the simulation is run a total of n independent times, then the estimate of P(A), denoted by P̂ Að Þ, is

P̂ Að Þ ¼ number of times A occurs

number of runs
¼ n Að Þ

n

For example, if we run a simulation program 10,000 times and the event of interest A occurs in

6174 of those runs, then our estimate of P(A) is P̂ Að Þ ¼ 6174=10, 000 ¼ :6174. Notice that our

definition is consistent with the long-run relative frequency interpretation of probability discussed in

Sect. 1.2.

1.6.1 The Backbone of Simulation: Random Number Generators

All modern software packages are equipped with a function called a random number generator

(RNG). A typical call to this function (such as ran or rand) will return a single, supposedly “random”

number, though such functions typically permit the user to request a vector or even a matrix of

“random” numbers. It is more proper to call these results pseudo-random numbers, since there is

actually a deterministic (i.e., non-random) algorithm by which the software generates these values.

We will not discuss the details of such algorithms here; see the book by Law listed in the references.

What will matter to us are the following two characteristics:

1. Each number created by an RNG is as likely to be any particular number in the interval [0, 1) as it

is to be any other number in this interval (up to computer precision, anyway).2

2. Successive values created by RNGs are independent, in the sense that we cannot predict the next

value to be generated from the current value (unless we somehow know the exact parameters of the

underlying algorithm).

2 In the language of Chap. 3, the numbers produced by an RNG follow essentially a uniform distribution on the interval

[0, 1).
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A typical simulation program manipulates numbers on the interval [0, 1) in a way that mimics the

experiment of interest; several examples are provided below. Arguably the most important building

block for such programs is the ability to simulate a basic event that occurs with a known probability, p.
Since RNGs produce values equally likely to be anywhere in the interval [0, 1), it follows that in the

long run a proportion p of them will lie in the interval [0, p). So, suppose we need to simulate an event

B with P(B) ¼ p. In each run of our simulation program, we can call for a single “random” number,

which we’ll call u, and apply the following rules:

– If 0 � u < p, then event B has occurred on this run of the program.

– If p � u < 1, then event B has not occurred on this run of the program.

Example 1.40 Let’s begin with an example in which the exact probability can be obtained analyti-

cally, so that we may verify that our simulation method works. Suppose we have two independent

devices which function with probabilities .6 and .7, respectively. What is the probability both devices

function? That at least one device functions?

Let B1 and B2 denote the events that the first and second devices function, respectively; we know

that P(B1) ¼ .6, P(B2) ¼ .7, and B1 and B2 are independent. Our first goal is to estimate the

probability of A ¼ B1 \ B2, the event that both devices function. The following “pseudo-code”

will allow us to find P̂ Að Þ.

0. Set a counter for the number of times A occurs to zero.

Repeat n times:

1. Generate two random numbers, u1 and u2. (These will help us determine whether B1 and B2 occur,

respectively.)

2. If u1 < .6 AND u2 < .7, then A has occurred. Add 1 to the count of occurrences of A.

Once the n runs are complete, then P̂ Að Þ ¼ count of the occurrences of Að Þ=n.
Figure 1.16 shows actual implementation code in both Matlab and R. We ran each program with

n ¼ 10,000 (as in the code); the event A occurred 4215 times in Matlab and 4181 times in R,

providing estimated probabilities of P̂ Að Þ ¼ :4215 and :4181, respectively. Compare this to the

exact probability of A: by independence, P(A) ¼ P(B1)P(B2) ¼ (.6)(.7) ¼ .42. Both of our

simulation estimates were “in the ballpark” of the right answer. We’ll discuss the precision of

these estimates shortly.

A=0;
for i=1:10000

u1=rand; u2=rand;
if u1<.6 && u2<.7

A=A+1;

a

end
end

b A<-0
for(i in 1:10000){

u1<-runif(1); u2<-runif(1)
if(u1<.6 && u2<.7){

A<-A+1
}

}

Fig. 1.16 Code for Example 1.40: (a) Matlab; (b) R
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By replacing the “and” operators && in Fig. 1.16 with “or” operators ||, we can estimate the

probability at least one device functions, P(B1 [ B2). In one simulation (again with n ¼ 10,000), the

event B1 [ B2 occurred 8802 times, giving the estimate P̂ B1 [ B2ð Þ ¼ :8802. This is quite close to

the exact probability:

P B1 [ B2ð Þ ¼ 1� P B
0
1 \ B

0
2

� �
¼ 1� 1� :6ð Þ 1� :7ð Þ ¼ :88 ■

Example 1.41 Consider the following game: You’ll flip a coin 25 times, winning $1 each time it

lands heads (H ) and losing $1 each time it lands tails (T). Unfortunately for you, the coin is biased in

such a way that P(H ) ¼ .4 and P(T) ¼ .6. What’s the probability you come out ahead, i.e., you have

more money at the end of the game than you had at the beginning? We’ll use simulation to find out.

Now each run of the simulation requires 25 “random” objects: the results of the 25 coin tosses.

What’s more, we need to keep track of howmuch money we’ve won or lost at the end of the 25 tosses.
Let A ¼ {we come out ahead}, and use the following pseudo-code:

0. Set a counter for the number of times A occurs to zero.

Repeat n times:

1. Set your initial dollar amount to zero.

2. Generate 25 random numbers u1, . . ., u25.
3. For each ui < .4, heads was tossed, so add 1 to your dollar amount. For each ui � .4, the flip was

tails and 1 is deducted.

4. If the final dollar amount is positive (i.e., $1 or greater), add 1 to the count of occurrences for A.

Once the n runs are complete, then P̂ Að Þ ¼ count of the occurrences of Að Þ=n.
Matlab and R code for Example 1.41 appear in Fig. 1.17. Our R code gave a final count of 1567

occurrences of A, out of 10,000 runs. Thus, the estimated probability that we come out ahead in this

game is P̂ Að Þ ¼ 1567=10, 000 ¼ :1567.

a b
A=0;
for i=1:10000

dollar=0;
for j=1:25

u=rand;
if u<.4

dollar=dollar+1;
else

dollar=dollar-1;
end

end
if dollar>0

A=A+1;
end

end

A <- 0
for (i in 1:10000){

dollar<-0
for (j in 1:25){

u<-runif(1)
if (u<.4){

dollar<-dollar+1
}
else{dollar<-dollar-1}

}
if (dollar>0){

A<-A+1
}

}

Fig. 1.17 Code for Example 1.41: (a) Matlab; (b) R ■
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Throughout this textbook, we will illustrate repeated simulation through “for” loops, as in

Figs. 1.16 and 1.17. Though this isn’t necessarily the most efficient way to code these examples,

we do so for clarity’s sake. Readers familiar with basic programming may realize that such operations

can be sped up by vectorization, i.e., by using a function call that generates all the required random

numbers simultaneously, rather than one at a time. Similarly, the if/else statements used in the

preceding programs to determine whether a random number lies in an interval can be rewritten in

terms of true/false bits, which automatically generate a 1 if a statement is true and a 0 otherwise. For

example, the Matlab code

if u<.5

A¼A+1;

end

can be replaced by the single line of code

A¼A+(u<.5);

If the statement in parentheses is true, Matlab assigns a value 1 to (u<.5), and so 1 is added to

the count A. Similar code works in R.

The previous two examples have both assumed independence of certain events: the functionality

of neighboring devices, or the outcomes of successive coin flips. With the aid of some built-in

packages within Matlab and R, we can also simulate counting experiments similar to those in

Sect. 1.3, even though draws without replacement from a finite population are not independent. To

illustrate, let’s use simulation to estimate some of the combinatorial probabilities from Sect. 1.3.

Example 1.42 Consider again the situation presented in Example 1.24: A university warehouse has

received a shipment of 25 printers, of which 10 are laser printers and 15 are inkjet models; a particular

technician will check 6 of these 25 printers, selected at random. Of interest is the probability of the

event D3 ¼ {exactly 3 of the 6 selected are inkjet printers}. Although the initial probability of

selecting an inkjet printer is 15/25, successive selections are not independent (the conditional

probability that the next printer is also an inkjet is not 15/25). So, the method of the preceding

examples does not apply.

Instead, we use the sampling tool built into our software, as follows:

0. Set a counter for the number of times D3 occurs to zero.

Repeat n times:

1. Sample 6 numbers, without replacement, from the integers 1 through 25. (1–15 correspond to the

labels for the 15 inkjet printers and 16–25 identify the 10 laser printers.)

2. Count how many of these 6 numbers fall between 1 and 15, inclusive.

3. If exactly 3 of these 6 numbers fall between 1 and 15, add 1 to the count of occurrences for D3.

Once the n runs are complete, then P̂ D3ð Þ ¼ count of the occurrences of D3ð Þ=n.
Matlab and R code for this example appear in Fig. 1.18. Vital to the execution of this simulation is

the fact that both software packages have a built-in mechanism for randomly sampling without

replacement from a finite set of objects (here, the integers 1–25). For more information on these

functions, type help randsample in Matlab or help(sample) in R.
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In both sets of code, the line sum(printers<¼15) performs two actions. First,

printers<¼15 converts each of the 6 numbers in the vector printers into a 1 if the entry is

between 1 and 15 (and into a 0 otherwise). Second, sum() adds up the 1s and 0s, which is equivalent

to identifying how many 1s appear (i.e., how many of the 6 numbers fell between 1 and 15).

Our R code resulted in event D3 occurring 3054 times, so P̂ D3ð Þ ¼ 3054=10, 000 ¼ :3054, which

is quite close to the “exact” answer of .3083 found in Example 1.24. The other probability of interest,

the chance of randomly selecting at least 3 inkjet printers, can be estimated by modifying one line of

code: change inkjet¼¼3 to inkjet>¼3. One simulation provided a count of 8522 occurrences

in 10,000 trials, for an estimated probability of .8522 (close to the combinatorial solution of .8530).■

1.6.2 Precision of Simulation

In Example 1.40, we gave two different estimates P̂ Að Þ for a probability P(A). Which is more

“correct”? Without knowing P(A) itself, there’s no way to tell. However, thanks to the theory we will
develop in subsequent chapters, we can quantify the precision of simulated probabilities. Of course,

we must have written code that faithfully simulates the random experiment of interest. Further, we

assume that the results of each single run of our program are independent of the results of all other

runs. (This generally follows from the aforementioned independence of computer-generated random

numbers.)

If this is the case, then a measure of the disparity between the true probability P(A) and the

estimated probability P̂ Að Þ based on n runs of the simulation is given by:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ Að Þ 1� P̂ Að Þ	 


n

s
ð1:8Þ

This measure of precision is called the (estimated) standard error of the estimate P̂ Að Þ ; see
Sect. 2.4 for a derivation. Expression (1.8) tells us that the amount by which P̂ Að Þ typically differs

from P(A) depends upon two values: P̂ Að Þ itself, and the number of runs n. You can make sense of the

former this way: if P(A) is very small, then P̂ Að Þ will presumably be small as well, in which case

they cannot deviate by very much since both are bounded below by zero. (Standard error quantifies

the absolute difference between them, not the relative difference.) A similar comment applies if P(A)

is very large, i.e., near 1.

As for the relationship to n, Expression (1.8) indicates that the amount by which P̂ Að Þ will

typically differ from P(A) is inversely proportional to the square root of n. So, in particular, as

a b
D=0;
for i=1:10000

printers=randsample(25,6);
inkjet=sum(printers<=15);
if inkjet==3

D=D+1;
end

end

D<-0
for (i in 1:10000){

printers<-sample(25,6)
inkjet<-sum(printers<=15)
if (inkjet==3){

D<-D+1
}

}

Fig. 1.18 Matlab and R code for Example 1.42
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n increases the tendency is for P̂ Að Þ to vary less and less. This speaks to the precision of P̂ Að Þ: our
estimate becomes more precise as n increases, but not at a very fast rate.

Let’s think a bit more about this relationship: suppose your simulation results thus far were too

imprecise for your tastes. By how much would you have to increase the number of runs to gain one

additional decimal place of precision? That’s equivalent to reducing the estimated standard error by a

factor of 10. Since precision is proportional to 1=
ffiffiffi
n

p
, you would need to increase n by a factor of

100 to achieve the desired improvement, e.g., if using n ¼ 10,000 runs is insufficient for your

purposes, then you’ll need 1,000,000 runs to get one additional decimal place of precision. Typically,

this will mean running your program 100 times longer—not a big deal if 10,000 runs only take a

nanosecond but prohibitive if they require, say, an hour.

Example 1.43 (Example 1.41 continued) Based on n ¼ 10,000 runs, we estimated the probability of

coming out ahead in a certain game to be P̂ Að Þ ¼ :1567. Substituting into Eq. (1.8), we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:1567 1� :1567½ �

10, 000

s
¼ :0036

This is the (estimated) standard error of our estimate .1567. We interpret as follows: some

simulation experiments with n ¼ 10,000 will result in an estimated probability that is within .0036

of the actual probability, whereas other such experiments will give an estimated probability that

deviates by more than .0036 from the actual P(A); .0036 is roughly the size of a typical deviation

between the estimate and what it is estimating. ■

In Chap. 5, we will return to the notion of standard error and develop a so-called confidence
interval estimate for P(A): a range of numbers we can be very certain contains P(A).

1.6.3 Exercises: Section 1.6 (101–120)

101. Refer to Example 1.40.

(a) Modify the code in Fig. 1.16 to estimate the probability that exactly one of the two devices
functions properly. Then find the exact probability using the techniques from earlier

sections of this chapter, and compare it to your estimated probability.

(b) Calculate the estimated standard error for the estimated probability in (a).

102. Imagine you have five independently operating components, each working properly with

probability .8. Use simulation to estimate the probability that

(a) All five components work properly.

(b) At least one of the five components works properly.

[Hints for (a) and (b): You can adapt the code from Example 1.40, but the and/or

statements will become tedious. Consider using the max and min functions instead.]

(c) Calculate the estimated standard errors for your answers in (a) and (b).

103. Consider the system depicted in Exercise 96. Assume the seven components operate indepen-

dently with the following probabilities of functioning properly: .9 for components 1 and 2; .8

for each of components 3, 4, 5, 6; and .95 for component 7. Write a program to estimate the

reliability of the system (i.e., the probability the system functions properly).

104. You have an opportunity to answer six trivia questions about your favorite sports team, and

you will win a pair of tickets to their next game if you can correctly answer at least three of the
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questions. Write a simulation program to estimate the chance you win the tickets under each of

the following assumptions.

(a) You have a 50–50 chance of getting any question right, independent of all others.

(b) Being a true fan, you have a 75% chance of getting any question right, independent of all

others.

(c) The first three questions are fairly easy, so you have a .75 chance of getting each of those

right. However, the last three questions are much harder, and you only have a .3

probability of correctly answering each of those.

105. In the game “Now or Then” on the television show The Price is Right, the contestant faces a

wheel with six sectors. Each sector contains a grocery item and a price, and the contestant must

decide whether the price is “now” (i.e., the item’s price the day of the taping) or “then” (the

price at some specified past date, such as September 2003). The contestant wins a prize

(bedroom furniture, a Caribbean cruise, etc.) if s/he guesses correctly on three adjacent sectors.
That is, numbering the sectors 1–6 clockwise, correct guesses on sectors 5, 6, and 1 wins the

prize but not on sectors 5, 6, and 3, since the latter are not all adjacent. (The contestant gets to

guess on all six sectors, if need be.)

Write a simulation program to estimate the probability the contestant wins the prize, assuming

her/his guesses are independent from item to item. Provide estimated probabilities under each of

the following assumptions: (1) each guess is “wild” and thus has probability.5 of being correct,

and (2) the contestant is a good shopper, with probability.8 of being correct on any item.

106. Refer to the game in Example 1.41. Under the same settings as in that example, estimate the

probability the player is ahead at any time during the 25 plays. [Hint: This occurs if the player’s
dollar amount is positive at any of the 25 steps in the loop. So, you will need to keep track of

every value of the dollar variable, not just the final result.]

107. Refer again to Example 1.41. Estimate the probability that the player experiences a “swing” of

at least $5 during the game. That is, estimate the chance that the difference between the largest

and smallest dollar amounts during the game is at least 5. (This would happen, for instance, if

the player was at one point ahead at +$2 but later fell behind to �$3.)

108. Each of this book’s authors has a fair coin. Carlton tosses his coin repeatedly until obtaining the
sequence HTT. Devore tosses his coin until the sequence HTH is obtained.

(a) Write a program to simulate Carlton’s coin tossing and, separately, Devore’s. Your

program should keep track of the number of tosses each author requires on each simulation

run to achieve his target sequence.

(b) Estimate the probability that Devore obtains his sequence with fewer tosses than Carlton

requires to obtain his sequence.

109. There’s a 40-question multiple-choice exam we sometimes administer in our lower-level

statistics classes. The exam has a peculiar feature: 10 of the questions have two options,

13 have three options, 13 have four options, and the other 4 have five options. (FYI, this is

completely real!) What is the probability that, purely by guessing, a student could get at least

half of these questions correct? Write a simulation program to answer this question.

110. Major League Baseball teams play a 162-game season, during which fans are often excited by

long winning streaks and frustrated by long losing streaks. But how unusual are these streaks,

really? How long a streak would you expect if the team’s performance were independent from

game to game?
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Write a program that simulates a 162-game season, i.e., a string of 162 wins and losses, with

P(win) ¼ p for each game (the value of p to be specified later). Use your program with at least

10,000 runs to answer the following questions.

(a) Suppose you’re rooting for a “.500” team—that is, p ¼ .5. What is the probability of

observing a streak of at least five wins in a 162-game season? Estimate this probability with

your program, and include a standard error.

(b) Suppose instead your team is quite good: a .600 team overall, so p ¼ .6. Intuitively, should

the probability of a winning streak of at least five games be higher or lower? Explain.

(c) Use your program with p ¼ .6 to estimate the probability alluded to in (b). Is your answer

higher or lower than (a)? Is that what you anticipated?

111. A derangement of the numbers 1 through n is a permutation of all n those numbers such that

none of them is in the “right place.” For example, 34251 is a derangement of 1 through 5, but

24351 is not because 3 is in the 3rd position. We will use simulation to estimate the number of

derangements of the numbers 1 through 12.

(a) Write a program that generates random permutations of the integers 1, 2, . . ., 12. Your

program should determine whether or not each permutation is a derangement.

(b) Based on your program, estimate P(D), where D ¼ {a permutation of 1–12 is a

derangement}.

(c) From Sect. 1.3, we know the number of permutations of n items. (How many is that for

n ¼ 12?) Use this information and your answer to part (b) to estimate the number of

derangements of the numbers 1 through 12.

[Hint for part (a): Use random sampling without replacement as in Example 1.42. Alternatively,

the randperm command in Matlab can also be employed.]

112. The book’s Introduction discussed the famous Birthday Problem, which was solved in Example

1.22 of Sect. 1.3. Now suppose you have 500 Facebook friends. Make the same assumptions

here as in the Birthday Problem.

(a) Write a program to estimate the probability that, on at least 1 day during the year,

Facebook tells you three (or more) of your friends share that birthday. Based on your

answer, should you be surprised by this occurrence?

(b) Write a program to estimate the probability that, on at least 1 day during the year,

Facebook tells you five (or more) of your friends share that birthday. Based on your

answer, should you be surprised by this occurrence?

[Hint: Generate 500 birthdays with replacement, then determine whether any birthday occurs

three or more times (five or more for part (b)). The table function in R or tabulate in

Matlab may prove useful.]

113. Consider the following game: you begin with $20. You flip a fair coin, winning $10 if the coin

lands heads and losing $10 if the coin lands tails. Play continues until you either go broke or

have $100 (i.e., a net profit of $80). Write a simulation program to estimate:

(a) The probability you win the game.

(b) The probability the game ends within ten coin flips.

[Note: This is a special case of the Gambler’s Ruin problem, which we’ll explore in much

greater depth in Exercise 145 and again in Chap. 6.]

114. Consider the Coupon Collector’s Problem described in the Introduction: 10 different coupons

are distributed into cereal boxes, one per box, so that any randomly selected box is equally likely

to have any of the 10 coupons inside. Write a program to simulate the process of buying cereal

boxes until all 10 distinct coupons have been collected. For each run, keep track of how many

58 1 Probability

http://dx.doi.org/10.1007/978-3-319-52401-6_6


cereal boxes you purchased to collect the complete set of coupons. Then use your program to

answer the following questions.

(a) What is the probability you collect all 10 coupons with just 10 cereal boxes?

(b) Use counting techniques to determine the exact probability in (a). [Hint: Relate this to the

Birthday Problem.]

(c) What is the probability you require more than 20 boxes to collect all 10 coupons?

(d) Using techniques from Chap. 4, it can be shown that it takes about 29.3 boxes, on the

average, to collect all 10 coupons. What’s the probability of collecting all 10 coupons in

fewer than average boxes (i.e., less than 29.3)?

115. In the Introduction we mentioned a famous puzzle from the early days of probability,

investigated by Pascal and Fermat. Which of the following events is more likely: to roll at

least one ⚅ in four rolls of a fair die, or to roll at least one ⚅⚅ in 24 rolls of two fair dice?

(a) Write a program to simulate a set of four die rolls many times, and use the results to

estimate P(at least one ⚅ in 4 rolls).

(b) Now adapt your program to simulate rolling a pair of dice 24 times. Repeat this simulation

many times, and use your results to estimate P(at least one ⚅⚅ in 24 rolls).

116. The Problem of the Points. Pascal and Fermat also explored a question concerning how to divide

the stakes in a game that has been interrupted. Suppose two players, Blaise and Pierre, are

playing a game where the winner is the first to achieve a certain number of points. The game gets

interrupted at a moment when Blaise needs n more points to win and Pierre needs m more to

win. How should the game’s prize money be divvied up? Fermat argued that Blaise should

receive a proportion of the total stake equal to the chance he would have won if the game hadn’t
been interrupted (and Pierre receives the remainder).

Assume the game is played in rounds, the winner of each round gets 1 point, rounds are

independent, and the two players are equally likely to win any particular round.

(a) Write a program to simulate the rounds of the game that would have happened after play

was interrupted. A single simulation run should terminate as soon as Blaise has n wins or

Pierre has m wins (equivalently, Blaise has m losses). Use your program to estimate P
(Blaise gets 10 wins before 15 losses), which is the proportion of the total stake Blaise

should receive if n ¼ 10 and m ¼ 15.

(b) Use your same program to estimate the relevant probability when n ¼ m ¼ 10. Logically,

what should the answer be? Is your estimated probability close to that?

(c) Finally, let’s assume Pierre is actually the better player: P(Blaise wins a round) ¼ .4.

Again with n ¼ 10 andm ¼ 15, what proportion of the stake should be awarded to Blaise?

117. Twenty faculty members in a certain department have just participated in a department chair

election. Suppose that candidate A has received 12 of the votes and candidate B the other

8 votes. If the ballots are opened one by one in random order and the candidate selected on each

ballot is recorded, use simulation to estimate the probability that candidate A remains ahead of

candidate B throughout the vote count (which happens if, for example, the result is

AA. . .AB. . .B but not if the result is AABABB. . .).

118. Show that the (estimated) standard error for P̂ Að Þ is at most 1=
ffiffiffiffiffi
4n

p
.

119. Simulation can be used to estimate numerical constants, such as π. Here’s one approach:

consider the part of a disk of radius 1 that lies in the first quadrant (a quarter-circle). Imagine

two random numbers, x and y, both between 0 and 1. The pair (x, y) lies somewhere in the first

quadrant; let A denote the event that (x, y) falls inside the quarter-circle.

(a) Write a program that simulates pairs (x, y) in order to estimate P(A), the probability that a

randomly selected pair of points in the square [0, 1] �[0, 1] lies in the quarter-circle of

radius 1.
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(b) Using techniques from Chap. 4, it can be shown that the exact probability of A is π/4 (which
makes sense, because that’s the ratio of the quarter-circle’s area to the square’s area). Use
that fact to come up with an estimate of π from your simulation. How close is your estimate

to 3.14159. . .?

120. Consider the quadratic equation ax2 + bx + c ¼ 0. Suppose that a, b, and c are random numbers

between 0 and 1 (like those produced by an RNG). Estimate the probability that the roots of this

quadratic equation are real. [Hint: Think about the discriminant.] This probability can be

computed exactly using methods from Chap. 4, but a triple integral is required.

1.7 Supplementary Exercises (121–150)

121. A small manufacturing company will start operating a night shift. There are 20 machinists

employed by the company.

(a) If a night crew consists of 3 machinists, how many different crews are possible?

(b) If the machinists are ranked 1, 2, . . ., 20 in order of competence, how many of these crews

would not have the best machinist?

(c) How many of the crews would have at least 1 of the 10 best machinists?

(d) If one of these crews is selected at random to work on a particular night, what is the

probability that the best machinist will not work that night?

122. A factory uses three production lines to manufacture cans of a certain type. The accompanying

table gives percentages of nonconforming cans, categorized by type of nonconformance, for

each of the three lines during a particular time period.

Line 1 Line 2 Line 3

Blemish 15 12 20

Crack 50 44 40

Pull-Tab Problem 21 28 24

Surface Defect 10 8 15

Other 4 8 2

During this period, line 1 produced 500 nonconforming cans, line 2 produced 400 such cans,

and line 3 was responsible for 600 nonconforming cans. Suppose that one of these 1,500 cans is

randomly selected.

(a) What is the probability that the can was produced by line 1? That the reason for noncon-

formance is a crack?

(b) If the selected can came from line 1, what is the probability that it had a blemish?

(c) Given that the selected can had a surface defect, what is the probability that it came from

line 1?

123. An employee of the records office at a university currently has ten forms on his desk awaiting

processing. Six of these are withdrawal petitions and the other four are course substitution

requests.

(a) If he randomly selects six of these forms to give to a subordinate, what is the probability

that only one of the two types of forms remains on his desk?

(b) Suppose he has time to process only four of these forms before leaving for the day. If these

four are randomly selected one by one, what is the probability that each succeeding form is

of a different type from its predecessor?
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124. One satellite is scheduled to be launched from Cape Canaveral in Florida, and another launching

is scheduled for Vandenberg Air Force Base in California. Let A denote the event that the

Vandenberg launch goes off on schedule, and let B represent the event that the Cape Canaveral

launch goes off on schedule. If A and B are independent events such that P(A) > P(B),

P(A [ B) ¼ .626, and P(A \ B) ¼ .144, determine the values of P(A) and P(B).
125. A transmitter is sending a message by using a binary code, namely, a sequence of 0s and 1s.

Each transmitted bit (0 or 1) must pass through three relays to reach the receiver. At each relay,

the probability is .20 that the bit sent will be different from the bit received (a reversal). Assume

that the relays operate independently of one another.

Transmitter ! Relay 1 ! Relay 2 ! Relay 3 ! Receiver

(a) If a 1 is sent from the transmitter, what is the probability that a 1 is sent by all three relays?

(b) If a 1 is sent from the transmitter, what is the probability that a 1 is received by the

receiver? [Hint: The eight experimental outcomes can be displayed on a tree diagram with

three generations of branches, one generation for each relay.]

(c) Suppose 70% of all bits sent from the transmitter are 1s. If a 1 is received by the receiver,

what is the probability that a 1 was sent?

126. Individual A has a circle of five close friends (B, C, D, E, and F). A has heard a certain rumor

from outside the circle and has invited the five friends to a party to circulate the rumor. To begin,

A selects one of the five at random and tells the rumor to the chosen individual. That individual

then selects at random one of the four remaining individuals and repeats the rumor. Continuing,

a new individual is selected from those not already having heard the rumor by the individual

who has just heard it, until everyone has been told.

(a) What is the probability that the rumor is repeated in the order B, C, D, E, and F?

(b) What is the probability that F is the third person at the party to be told the rumor?

(c) What is the probability that F is the last person to hear the rumor?

127. Refer to the previous exercise. If at each stage the person who currently “has” the rumor does

not know who has already heard it and selects the next recipient at random from all five possible

individuals, what is the probability that F has still not heard the rumor after it has been told ten

times at the party?

128. According to the article “Optimization of Distribution Parameters for Estimating Probability of

Crack Detection” (J. of Aircraft, 2009: 2090-2097), the following “Palmberg” equation is

commonly used to determine the probability Pd(c) of detecting a crack of size c in an aircraft

structure:

Pd cð Þ ¼ c=c*
� �β

1þ c=c*ð Þβ

where c* is the crack size that corresponds to a .5 detection probability (and thus is an

assessment of the quality of the inspection process).

(a) Verify that Pd(c*) ¼ .5.

(b) What is Pd(2c*) when β ¼ 4?

(c) Suppose an inspector inspects two different panels, one with a crack size of c* and the

other with a crack size of 2c*. Again assuming β ¼ 4 and also that the results of the two

inspections are independent of one another, what is the probability that exactly one of the

two cracks will be detected?

(d) What happens to Pd(c) as β ! 1?

129. A sonnet is a 14 line poem in which certain rhyming patterns are followed. The writer Raymond

Queneau published a book containing just 10 sonnets, each on a different page. However, these
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were such that the first line of a sonnet could come from the first line on any of the 10 pages, the

second line could come from the second line on any of the ten pages, and so on (successive lines

were perforated for this purpose).

(a) How many sonnets can be created from the 10 in the book?

(b) If one of the sonnets counted in (a) is selected at random, what is the probability that all

14 lines come from exactly two of the ten pages?

130. A chemical engineer is interested in determining whether a certain trace impurity is present in a

product. An experiment has a probability of .80 of detecting the impurity if it is present. The

probability of not detecting the impurity if it is absent is .90. The prior probabilities of the

impurity being present and being absent are .40 and .60, respectively. Three separate

experiments result in only two detections. What is the posterior probability that the impurity

is present?

131. Fasteners used in aircraft manufacturing are slightly crimped so that they lock enough to avoid

loosening during vibration. Suppose that 95% of all fasteners pass an initial inspection. Of the

5% that fail, 20% are so seriously defective that they must be scrapped. The remaining fasteners

are sent to a recrimping operation, where 40% cannot be salvaged and are discarded. The other

60% of these fasteners are corrected by the recrimping process and subsequently pass

inspection.

(a) What is the probability that a randomly selected incoming fastener will pass inspection

either initially or after recrimping?

(b) Given that a fastener passed inspection, what is the probability that it passed the initial

inspection and did not need recrimping?

132. One percent of all individuals in a certain population are carriers of a particular disease. A

diagnostic test for this disease has a 90% detection rate for carriers and a 5% detection rate for

noncarriers. Suppose the test is applied independently to two different blood samples from the

same randomly selected individual.

(a) What is the probability that both tests yield the same result?

(b) If both tests are positive, what is the probability that the selected individual is a carrier?

133. A system consists of two components. The probability that the second component functions in a

satisfactory manner during its design life is .9, the probability that at least one of the two

components does so is .96, and the probability that both components do so is .75. Given that the

first component functions in a satisfactory manner throughout its design life, what is the

probability that the second one does also?

134. A certain company sends 40% of its overnight mail parcels via express mail service E1. Of these

parcels, 2% arrive after the guaranteed delivery time (denote the event “late delivery” by L ). If a

record of an overnight mailing is randomly selected from the company’s file, what is the

probability that the parcel went via E1 and was late?

135. Refer to the previous exercise. Suppose that 50% of the overnight parcels are sent via express

mail service E2 and the remaining 10% are sent via E3. Of those sent via E2, only 1% arrive late,

whereas 5% of the parcels handled by E3 arrive late.

(a) What is the probability that a randomly selected parcel arrived late?

(b) If a randomly selected parcel has arrived on time, what is the probability that it was not sent

via E1?

136. A company uses three different assembly lines—A1, A2, and A3—to manufacture a particular

component. Of those manufactured by line A1, 5% need rework to remedy a defect, whereas 8%

of A2’s components need rework and 10% of A3’s need rework. Suppose that 50% of all

components are produced by line A1, 30% are produced by line A2, and 20% come from line
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A3. If a randomly selected component needs rework, what is the probability that it came from line

A1? From line A2? From line A3?

137. Disregarding the possibility of a February 29 birthday, suppose a randomly selected individual

is equally likely to have been born on any one of the other 365 days. If ten people are randomly

selected, what is the probability that either at least two have the same birthday or at least two

have the same last three digits of their Social Security numbers? [Note: The article “Methods for

Studying Coincidences” (F. Mosteller and P. Diaconis, J. Amer. Statist. Assoc., 1989: 853–861)
discusses problems of this type.]

138. One method used to distinguish between granitic (G) and basaltic (B) rocks is to examine a

portion of the infrared spectrum of the sun’s energy reflected from the rock surface. Let R1, R2,

and R3 denote measured spectrum intensities at three different wavelengths; typically, for

granite R1 < R2 < R3, whereas for basalt R3 < R1 < R2. When measurements are made

remotely (using aircraft), various orderings of the Ris may arise whether the rock is basalt or

granite. Flights over regions of known composition have yielded the following information:

Granite Basalt

R1 < R2 < R3 60% 10%

R1 < R3 < R2 25% 20%

R3 < R1 < R2 15% 70%

Suppose that for a randomly selected rock in a certain region, P(granite) ¼ .25 and

P(basalt) ¼ .75.

(a) Show that P(granite|R1 < R2 < R3) > P(basalt|R1 < R2 < R3). If measurements yielded

R1 < R2 < R3, would you classify the rock as granite or basalt?

(b) If measurements yielded R1 < R3 < R2, how would you classify the rock? Answer the

same question for R3 < R1 < R2.

(c) Using the classification rules indicated in parts (a) and (b), when selecting a rock from this

region, what is the probability of an erroneous classification? [Hint: Either G could be

classified as B or B as G, and P(B) and P(G) are known.]

(d) If P(granite) ¼ p rather than .25, are there values of p (other than 1) for which a rock would

always be classified as granite?

139. In a Little League baseball game, team A’s pitcher throws a strike 50% of the time and a ball

50% of the time, successive pitches are independent of each other, and the pitcher never hits a

batter. Knowing this, team B’s manager has instructed the first batter not to swing at anything.

Calculate the probability that

(a) The batter walks on the fourth pitch.

(b) The batter walks on the sixth pitch (so two of the first five must be strikes), using a counting

argument or constructing a tree diagram.

(c) The batter walks.

(d) The first batter up scores while no one is out (assuming that each batter pursues a no-swing

strategy).

140. Consider a woman whose brother is afflicted with hemophilia, which implies that the woman’s
mother has the hemophilia gene on one of her two X chromosomes (almost surely not both,

since that is generally fatal). Thus there is a 50–50 chance that the woman’s mother has passed

on the bad gene to her. The woman has two sons, each of whom will independently inherit the

gene from one of her two chromosomes. If the woman herself has a bad gene, there is a 50–50

chance she will pass this on to a son. Suppose that neither of her two sons is afflicted with

hemophilia. What then is the probability that the woman is indeed the carrier of the hemophilia

gene? What is this probability if she has a third son who is also not afflicted?
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141. A particular airline has 10 a.m. flights from Chicago to New York, Atlanta, and Los Angeles.

Let A denote the event that the New York flight is full and define events B and C analogously for

the other two flights. Suppose P(A) ¼ .6, P(B) ¼ .5, P(C) ¼ .4 and the three events are

independent. What is the probability that

(a) All three flights are full? That at least one flight is not full?

(b) Only the New York flight is full? That exactly one of the three flights is full?

142. Consider four independent events A1, A2, A3, and A4 and let pi ¼ P(Ai) for i ¼ 1, 2, 3, 4. Express

the probability that at least one of these four events occurs in terms of the pis, and do the same

for the probability that at least two of the events occur.

143. A box contains the following four slips of paper, each having exactly the same dimensions:

(1) win prize 1; (2) win prize 2; (3) win prize 3; (4) win prizes 1, 2, and 3. One slip will be

randomly selected. Let A1 ¼ {win prize 1}, A2 ¼ {win prize 2}, and A3 ¼ {win prize 3}. Show

that A1 and A2 are independent, that A1 and A3 are independent, and that A2 and A3 are also

independent (this is pairwise independence). However, show that P(A1 \ A2 \ A3) 6¼P(A1) �
P(A2) � P(A3), so the three events are not mutually independent.

144. Jurors may be a priori biased for or against the prosecution in a criminal trial. Each juror is

questioned by both the prosecution and the defense (the voir dire process), but this may not

reveal bias. Even if bias is revealed, the judge may not excuse the juror for cause because of the

narrow legal definition of bias. For a randomly selected candidate for the jury, define events B0,

B1, and B2 as the juror being unbiased, biased against the prosecution, and biased against the

defense, respectively. Also let C be the event that bias is revealed during the questioning

and D be the event that the juror is eliminated for cause. Let bi ¼ P(Bi) for i ¼ 0, 1, 2,

c ¼ P(C|B1) ¼ P(C|B2), and d ¼ P(D|B1 \ C) ¼ P(D|B2 \ C) [“Fair Number of Peremptory

Challenges in Jury Trials,” J. Amer. Statist. Assoc., 1979: 747–753].

(a) If a juror survives the voir dire process, what is the probability that he/she is unbiased

(in terms of the bis, c, and d)? What is the probability that he/she is biased against the

prosecution? What is the probability that he/she is biased against the defense? [Hint:

Represent this situation using a tree diagram with three generations of branches.]

(b) What are the probabilities requested in (a) if b0 ¼ .50, b1 ¼ .10, b2 ¼ .40 (all based on

data relating to the famous trial of the Florida murderer Ted Bundy), c ¼ .85

(corresponding to the extensive questioning appropriate in a capital case), and d ¼ .7

(a “moderate” judge)?

145. Gambler’s Ruin. Allan and Beth currently have $2 and $3, respectively. A fair coin is tossed. If

the result of the toss is heads, Allan wins $1 from Beth, whereas if the coin toss results in tails,

then Beth wins $1 from Allan. This process is then repeated, with a coin toss followed by the

exchange of $1, until one of the two players goes broke (one of the two gamblers is ruined). We

wish to determine a2 ¼ P(Allan is the winner j he starts with $2). To do so, let’s also consider

ai ¼ P(Allan wins j he starts with $i) for i ¼ 0, 1, 3, 4, and 5.

(a) What are the values of a0 and a5?

(b) Use the Law of Total Probability to obtain an equation relating a2 to a1 and a3. [Hint:
Condition on the result of the first coin toss, realizing that if it is heads, then from that point

Allan starts with $3.]

(c) Using the logic described in (b), develop a system of equations relating ai (i ¼ 1, 2, 3, 4) to

ai�1 and ai+1. Then solve these equations. [Hint: Write each equation so that ai � ai�1 is on

the left hand side. Then use the result of the first equation to express each other ai � ai�1 as

a function of a1, and add together all four of these expressions (i ¼ 2, 3, 4, 5).]
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(d) Generalize the result to the situation in which Allan’s initial fortune is $a and Beth’s is $b.
[Note: The solution is a bit more complicated if p ¼ P(Allan wins $1) 6¼ .5. We’ll explore
Gambler’s Ruin again in Chap. 6.]

146. The Matching Problem. Four friends—Allison, Beth, Carol, and Diane—who have identical

calculators are studying for a statistics exam. They set their calculators down in a pile before

taking a study break and then pick them up in random order when they return from the break.

(a) What is the probability all four friends pick up the correct calculator?

(b) What is the probability that at least one of the four gets her own calculator? [Hint: Let A be

the event that Alice gets her own calculator, and define events B, C, and D analogously for

the other three students. How can the event {at least one gets her own calculator} be

expressed in terms of the four events A, B,C, andD? Now use a general law of probability.]

(c) Generalize the answer from part (b) to n individuals. Can you recognize the result when n is

large (the approximation to the resulting series)?

147. An event A is said to attract event B if P(B|A) > P(B) and repel B if P(B|A) <P(B). (This refines

the notion of dependent events by specifying whether A makes B more likely or less likely to

occur.)

(a) Show that if A attracts B, then A repels B0.
(b) Show that if A attracts B, then A0 repels B.
(c) Prove the Law of Mutual Attraction: event A attracts event B if, and only if, B attracts A.

148. The Secretary Problem. A personnel manager is to interview four candidates for a job. These are

ranked 1, 2, 3, and 4 in order of preference and will be interviewed in random order. However, at

the conclusion of each interview, the manager will know only how the current candidate

compares to those previously interviewed. For example, the interview order 3, 4, 1, 2 generates

no information after the first interview, shows that the second candidate is worse than the first,

and that the third is better than the first two. However, the order 3, 4, 2, 1 would generate the

same information after each of the first three interviews. The manager wants to hire the best

candidate but must make an irrevocable hire/no hire decision after each interview. Consider the

following strategy: Automatically reject the first s candidates and then hire the first subsequent

candidate who is best among those already interviewed (if no such candidate appears, the last

one interviewed is hired).

For example, with s ¼ 2, the order 3, 4, 1, 2 would result in the best being hired, whereas the

order 3, 1, 2, 4 would not. Of the four possible s values (0, 1, 2, and 3), which one maximizes P

(best is hired)? [Hint: Write out the 24 equally likely interview orderings: s ¼ 0 means that the

first candidate is automatically hired.]

149. Jay and Maurice are playing a tennis match. In one particular game, they have reached deuce,

which means each player won three points. Now in order to finish the game, one of the two

players must get two points ahead of the other. For example, Jay will win if he wins the next two

points (JJ), or if Maurice wins the next point and Jay the three points after that (MJJJ), or if the

result of the next six points is JMMJJJ, etc.

(a) Suppose that the probability of Jay winning a point is .6 and outcomes of successive points

are independent of one another. What is the probability that Jay wins the game? [Hint: In

the law of total probability, let A1 ¼ {Jay wins each of the next two points}, A2 ¼
{Maurice wins each of the next two points}, and A3 ¼ {each player wins one of the next

two points}. Also let p ¼ P(Jay wins the game). How does p compare to P(Jay wins the

game|A3)?]

(b) If Jay wins the game, what is the probability that he needed only two points to do so?
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150. Here is a variant on one of the puzzles mentioned in the book’s Introduction. A fair coin is

tossed repeatedly until either the sequence TTH or the sequence THT is observed. Let B be the

event that stopping occurs because TTH was observed (i.e., that TTH is observed before THT).

Calculate P(B). [Hint: Consider the following partition of the sample space: A1 ¼ {1st toss is

H}, A2 ¼ {1st two tosses are TT}, A3 ¼ {1st three tosses are THT}, and A4 ¼ {1st three tosses

are THH}. Also denote P(B) by p. Apply the Law of Total Probability, and pwill appear on both

sides in various places. The resulting equation is easily solved for p.]
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Discrete Random Variables and Probability
Distributions 2

Suppose a city’s traffic engineering department monitors a certain intersection during a one-hour

period in the middle of the day. Many characteristics might be of interest to the observers, including

the number of vehicles that enter the intersection, the largest number of vehicles in the left turn lane

during a signal cycle, the speed of the fastest vehicle going through the intersection, the average speed

of all vehicles entering the intersection. The value of each one of the foregoing variable quantities is

subject to uncertainty—we don’t know a priori how many vehicles will enter, what the maximum

speed will be, etc. So each of these is referred to as a random variable—a variable quantity whose

value is determined by what happens in a chance experiment.

There are two fundamentally different types of random variables, discrete and continuous. In this

chapter we examine the basic properties and introduce the most important examples of discrete

random variables. Chapter 3 covers the same territory for continuous random variables.

2.1 Random Variables

In any experiment, numerous characteristics can be observed or measured, but in most cases an

experimenter will focus on some specific aspect or aspects of a sample. For example, in a study of

commuting patterns in a metropolitan area, each individual in a sample might be asked about

commuting distance and the number of people commuting in the same vehicle, but not about IQ,

income, family size, and other such characteristics. Alternatively, a researcher may test a sample of

components and record only the number that have failed within 1000 hours, rather than record the

individual failure times.

In general, each outcome of an experiment can be associated with a number by specifying a rule of

association (e.g., the number among the sample of ten components that fail to last 1,000 h or the total

weight of baggage for a sample of 25 airline passengers). Such a rule of association is called a

random variable—a variable because different numerical values are possible and random because

the observed value depends on which of the possible experimental outcomes results (Fig. 2.1).
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DEFINITION

For a given sample space S of some experiment, a random variable (rv) is any rule that

associates a number with each outcome in S. In mathematical language, a random variable is a

function whose domain is the sample space and whose range is some subset of real numbers.

Random variables are customarily denoted by uppercase letters, such as X and Y, near the end of

our alphabet. We will use lowercase letters to represent some particular value of the corresponding

random variable. The notation X(s) ¼ x means that x is the value associated with the outcome s by

the rv X.

Example 2.1 When a student attempts to connect to a university computer system, either there is a

failure (F) or there is a success (S). With S ¼ {S, F}, define an rv X by X(S) ¼ 1, X(F) ¼ 0. The rv

X indicates whether (1) or not (0) the student can connect. ■

In Example 2.1, the rv X was specified by explicitly listing each element of S and the associated

number. If S contains more than a few outcomes, such a listing is tedious, but it can frequently be

avoided.

Example 2.2 Consider the experiment in which a telephone number in a certain area code is dialed

using a random number dialer (such devices are used extensively by polling organizations), and

define an rv Y by

Y ¼ 1 if the selected number is unlisted

0 if the selected number is listed in the directory

�

For example, if 5282966 appears in the telephone directory, then Y(5282966) ¼ 0, whereas

Y(7727350) ¼ 1 tells us that the number 7727350 is unlisted. A word description of this sort is

more economical than a complete listing, so we will use such a description whenever possible. ■

In Examples 2.1 and 2.2, the only possible values of the random variable were 0 and 1. Such a

random variable arises frequently enough to be given a special name, after the individual who first

studied it.

DEFINITION

Any random variable whose only possible values are 0 and 1 is called a Bernoulli random

variable.

We will often want to define and study several different random variables from the same sample

space.

−2 −1 1 20

Fig. 2.1 A random variable
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Example 2.3 Example 1.3 described an experiment in which the number of pumps in use at each of

two gas stations was determined. Define rvs X, Y, and U by

X ¼ the total number of pumps in use at the two stations

Y¼ the difference between the number of pumps in use at station 1 and the number in use at station 2

U ¼ the maximum of the numbers of pumps in use at the two stations

If this experiment is performed and s¼ (2, 3) results, then X((2, 3))¼ 2 + 3¼ 5, so we say that the

observed value of X is x ¼ 5. Similarly, the observed value of Y would be y ¼ 2 � 3 ¼ �1, and the

observed value of U would be u ¼ max(2, 3) ¼ 3. ■

Each of the random variables of Examples 2.1–2.3 can assume only a finite number of possible

values. This need not be the case.

Example 2.4 Consider an experiment in which 9-V batteries are examined until one with an

acceptable voltage (S) is obtained. The sample space is S ¼ {S, FS, FFS, . . . }. Define an rv X by

X ¼ the number of batteries examined before the experiment terminates

Then X(S)¼ 1, X(FS)¼ 2, X(FFS)¼ 3, . . ., X(FFFFFFS)¼ 7, and so on. Any positive integer is a

possible value of X, so the set of possible values is infinite. ■

Example 2.5 Suppose that in some random fashion, a location (latitude and longitude) in the

continental USA is selected. Define an rv Y by

Y ¼ the height, in feet, above sea level at the selected location

For example, if the selected location were (39�500N, 98�350W), then we might have Y((39�500N,
98�350W)) ¼ 1748.26 ft. The largest possible value of Y is 14,494 (Mt. Whitney), and the smallest

possible value is �282 (Death Valley). The set of all possible values of Y is the set of all numbers in

the interval between �282 and 14,494; that is, the range of Y is

y : �282 � y � 14, 494f g ¼ �282, 14, 494½ �
and there are infinitely-many numbers in this interval. ■

2.1.1 Two Types of Random Variables

Determining the values of variables such as the number of visits to a website during a 24-h period or

the number of patients in an emergency room at a particular time requires only counting. On the other

hand, determining values of variables such as fuel efficiency of a vehicle (mpg) or reaction time to a

stimulus necessitates making a measurement of some sort. The following definition formalizes the

distinction between these two different kinds of variables.
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DEFINITION

A discrete random variable is an rv whose possible values constitute either a finite set or a

countably infinite set (e.g., the set of all integers, or the set of all positive integers).

A random variable is continuous if both of the following apply:

1. Its set of possible values consists either of all numbers in a single interval on the number line

(possibly infinite in extent, e.g., from �1 to 1) or all numbers in a disjoint union of such

intervals (e.g., [0, 10] [ [20, 30]).

2. No possible value of the variable has positive probability, that is, P(X ¼ c) ¼ 0 for any

possible value c.

Although any interval on the number line contains infinitely-many numbers, it can be shown that

there is no way to create a listing of all these values—there are just too many of them. The second

condition describing a continuous random variable is perhaps counterintuitive, since it would seem to

imply a total probability of zero for all possible values. But we shall see in Chap. 3 that intervals of

values have positive probability; the probability of an interval will decrease to zero as the width of the

interval shrinks to zero. In practice, discrete variables virtually always involve counting the number

of something, whereas continuous variables entail making measurements of some sort.

Example 2.6 All random variables in Examples 2.1–2.4 are discrete. As another example, suppose

we select married couples at random and do a blood test on each person until we find a husband

and wife who both have the same Rh factor. With X ¼ the number of blood tests to be performed,

possible values of X are {2, 4, 6, 8, . . .}. Since the possible values have been listed in sequence, X is a

discrete rv. ■

To study basic properties of discrete rvs, only the tools of discrete mathematics—summation and

differences—are required. The study of continuous variables in Chap. 3 will require the continuous

mathematics of the calculus—integrals and derivatives.

2.1.2 Exercises: Section 2.1 (1–10)

1. A concrete beam may fail either by shear (S) or flexure (F). Suppose that three failed beams are

randomly selected and the type of failure is determined for each one. Let X ¼ the number of

beams among the three selected that failed by shear. List each outcome in the sample space along

with the associated value of X.

2. Give three examples of Bernoulli rvs (other than those in the text).

3. Using the experiment in Example 2.3, define two more random variables and list the possible

values of each.

4. Let X ¼ the number of nonzero digits in a randomly selected zip code. What are the possible

values of X? Give three possible outcomes and their associated X values.

5. If the sample space S is an infinite set, does this necessarily imply that any rv X defined from S

will have an infinite set of possible values? If yes, say why. If no, give an example.

6. Starting at a fixed time, each car entering an intersection is observed to see whether it turns left

(L ), right (R), or goes straight ahead (A). The experiment terminates as soon as a car is observed

to turn left. Let X¼ the number of cars observed. What are possible X values? List five outcomes

and their associated X values.
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7. For each random variable defined here, describe the set of possible values for the variable, and

state whether the variable is discrete.

(a) X ¼ the number of unbroken eggs in a randomly chosen standard egg carton

(b) Y ¼ the number of students on a class list for a particular course who are absent on the first

day of classes

(c) U ¼ the number of times a duffer has to swing at a golf ball before hitting it

(d) X ¼ the length of a randomly selected rattlesnake

(e) Z ¼ the amount of royalties earned from the sale of a first edition of 10,000 textbooks

(f) Y ¼ the acidity level (pH) of a randomly chosen soil sample

(g) X ¼ the tension (psi) at which a randomly selected tennis racket has been strung

(h) X ¼ the total number of coin tosses required for three individuals to obtain a match

(HHH or TTT)

8. Each time a component is tested, the trial is a success (S) or failure (F). Suppose the component is

tested repeatedly until a success occurs on three consecutive trials. Let Y denote the number of

trials necessary to achieve this. List all outcomes corresponding to the five smallest possible

values of Y, and state which Y value is associated with each one.

9. An individual named Claudius is located at the point 0 in the accompanying diagram.

A2

A1 A4B4

A3

B3B1

B2

0

Using an appropriate randomization device (such as a tetrahedral die, one having four sides),

Claudius first moves to one of the four locations B1, B2, B3, B4. Once at one of these locations, he

uses another randomization device to decide whether he next returns to 0 or next visits one of the

other two adjacent points. This process then continues; after each move, another move to one of

the (new) adjacent points is determined by tossing an appropriate die or coin.

(a) Let X ¼ the number of moves that Claudius makes before first returning to 0. What are

possible values of X? Is X discrete or continuous?

(b) If moves are allowed also along the diagonal paths connecting 0 to A1, A2, A3, and A4,

respectively, answer the questions in part (a).

10. The number of pumps in use at both a six-pump station and a four-pump station will be

determined. Give the possible values for each of the following random variables:

(a) T ¼ the total number of pumps in use

(b) X ¼ the difference between the numbers in use at stations 1 and 2

(c) U ¼ the maximum number of pumps in use at either station

(d) Z ¼ the number of stations having exactly two pumps in use

2.2 Probability Distributions for Discrete Random Variables

When probabilities are assigned to various outcomes in S, these in turn determine probabilities

associated with the values of any particular rv X. The probability distribution of X says how the

total probability of 1 is distributed among (allocated to) the various possible X values.
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Example 2.7 Six batches of components are ready to be shipped by a supplier. The number of

defective components in each batch is as follows:

Batch #1 #2 #3 #4 #5 #6

Number of defectives 0 2 0 1 2 0

One of these batches is to be randomly selected for shipment to a customer. Let X be the number of

defectives in the selected batch. The three possible X values are 0, 1, and 2. Of the six equally likely

simple events, three result in X ¼ 0, one in X ¼ 1, and the other two in X ¼ 2. Let p(0) denote the

probability that X ¼ 0 and p(1) and p(2) represent the probabilities of the other two possible values

of X. Then

p 0ð Þ ¼ P X ¼ 0ð Þ ¼ P
�
batch 1 or 3 or 6 is sent

� ¼ 3

6
¼ :500

p 1ð Þ ¼ P X ¼ 1ð Þ ¼ P
�
batch 4 is sent

� ¼ 1

6
¼ :167

p 2ð Þ ¼ P X ¼ 2ð Þ ¼ P
�
batch 2 or 5 is sent

� ¼ 2

6
¼ :333

That is, a probability of .500 is distributed to the X value 0, a probability of .167 is placed on the

X value 1, and the remaining probability, .333, is associated with the X value 2. The values of X along

with their probabilities collectively specify the probability distribution or probability mass function of
X. If this experiment were repeated over and over again, in the long run X¼ 0 would occur one-half of

the time, X ¼ 1 one-sixth of the time, and X ¼ 2 one-third of the time. ■

DEFINITION

The probability distribution or probability mass function (pmf) of a discrete rv is defined for

every number x by
p(x) ¼ P(X ¼ x) ¼ P(all s 2 S: X(s) ¼ x).1

In words, for every possible value x of the random variable, the pmf specifies the probability of

observing that value when the experiment is performed. The conditions p(x)� 0 and Σp(x)¼ 1, where

the summation is over all possible x, are required of any pmf.

Example 2.8 Consider randomly selecting a student at a large public university, and define a

Bernoulli rv by X ¼ 1 if the selected student does not qualify for in-state tuition (a success from

the university administration’s point of view) and X ¼ 0 if the student does qualify. If 20% of all

students do not qualify, the pmf for X is

p(0) ¼ P(X ¼ 0) ¼ P(the selected student does qualify) ¼ .8

p(1) ¼ P(X ¼ 1) ¼ P(the selected student does not qualify) ¼ .2

p(x) ¼ P(X ¼ x) ¼ 0 for x 6¼ 0 or 1.

1P(X¼ x) is read “the probability that the rv X assumes the value x.” For example, P(X¼ 2) denotes the probability that

the resulting X value is 2.
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p xð Þ ¼
:8 if x ¼ 0

:2 if x ¼ 1

0 if x 6¼ 0 or 1

8<
:

Figure 2.2 is a picture of this pmf, called a line graph.

Example 2.9 Consider a group of five potential blood donors—A, B, C, D, and E—of whom only A

and B have type O+ blood. Five blood samples, one from each individual, will be typed in random

order until an O+ individual is identified. Let the rv Y¼ the number of typings necessary to identify an

O+ individual. Then the pmf of Y is

p 1ð Þ ¼ P Y ¼ 1ð Þ ¼ P
�
A or B typed first

� ¼ 2

5
¼ :4

p 2ð Þ ¼ P Y ¼ 2ð Þ ¼ P
�
C,D, or E first, and then A or B

�
¼ P C,D, or E firstð Þ � P�A or B next

�� C,D, or E first
� ¼ 3

5
� 2
4
¼ :3

p 3ð Þ ¼ P Y ¼ 3ð Þ ¼ P
�
C,D, or E first and second, and then A or B

� ¼ 3

5
� 2
4
� 2
3
¼ :2

p 4ð Þ ¼ P Y ¼ 4ð Þ ¼ P
�
C,D, and E all done first

� ¼ 3

5
� 2
4
� 1
3
¼ :1

p yð Þ ¼ 0 for y 6¼ 1, 2, 3, 4:

The pmf can be presented compactly in tabular form:

y 1 2 3 4

p(y) .4 .3 .2 .1

where any y value not listed receives zero probability. Figure 2.3 shows the line graph for this pmf.

1

1
x

0

p(x)

Fig. 2.2 The line graph for the pmf in Example 2.8 ■

.5

1
y

0 2 3 4

p(y)

Fig. 2.3 The line graph for the pmf in Example 2.9 ■
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The name “probability mass function” is suggested by a model used in physics for a system of

“point masses.” In this model, masses are distributed at various locations x along a one-dimensional

axis. Our pmf describes how the total probability mass of 1 is distributed at various points along the

axis of possible values of the random variable (where and how much mass at each x).

Another useful pictorial representation of a pmf is called a probability histogram. Above each

y with p(y) > 0, construct a rectangle centered at y. The height of each rectangle is proportional to

p(y), and the base is the same for all rectangles. When possible values are equally spaced, the base is

frequently chosen as the distance between successive y values (though it could be smaller). Figure 2.4

shows two probability histograms.

2.2.1 A Parameter of a Probability Distribution

In Example 2.8, we had p(0) ¼ .8 and p(1) ¼ .2. At another university, it may be the case that p(0) ¼
.9 and p(1) ¼ .1. More generally, the pmf of any Bernoulli rv can be expressed in the form p(1) ¼ α
and p(0) ¼ 1 � α, where 0 < α < 1. Because the pmf depends on the particular value of α, we often
write p(x; α) rather than just p(x):

p x; αð Þ ¼
1� α if x ¼ 0

α if x ¼ 1

0 otherwise

8<
: ð2:1Þ

Then each choice of α in Expression (2.1) yields a different pmf.

DEFINITION

Suppose p(x) depends on a quantity that can be assigned any one of a number of possible values,

with each different value determining a different probability distribution. Such a quantity is

called a parameter of the distribution. The collection of all probability distributions for

different values of the parameter is called a family of probability distributions.

The quantity α in Expression (2.1) is a parameter. Each different number α between 0 and

1 determines a different member of a family of distributions; two such members are

p x; :6ð Þ ¼
:4 if x ¼ 0

:6 if x ¼ 1

0 otherwise

8<
: and p x; :5ð Þ ¼

:5 if x ¼ 0

:5 if x ¼ 1

0 otherwise

8<
:

Every probability distribution for a Bernoulli rv has the form of Expression (2.1), so it is called the

family of Bernoulli distributions.

0 1 1 2 3 4

ba

Fig. 2.4 Probability histograms: (a) Example 2.8; (b) Example 2.9
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Example 2.10 Starting at a fixed time, we observe the gender of each newborn child at a certain

hospital until a boy (B) is born. Let p ¼ P(B), assume that successive births are independent, and

define the rv X by X ¼ number of births observed. Then

p 1ð Þ ¼ P X ¼ 1ð Þ ¼ P
�
B
� ¼ p

p 2ð Þ ¼ P X ¼ 2ð Þ ¼ P
�
GB
� ¼ P

�
G
� � P�B� ¼ �1� p

�
p

and

p 3ð Þ ¼ P X ¼ 3ð Þ ¼ P
�
GGB

� ¼ P
�
G
� � P�G� � P�B� ¼ �1� p

�
2p

Continuing in this way, a general formula emerges:

p xð Þ ¼ 1� pð Þx�1p x ¼ 1, 2, 3, . . .
0 otherwise

�
ð2:2Þ

The quantity p in Expression (2.2) represents a number between 0 and 1 and is a parameter of the

probability distribution. In the gender example, p ¼ .51 might be appropriate, but if we were looking

for the first child with Rh-positive blood, then we might have p ¼ .85. The random variable X has

what is known as a geometric distribution, which we will discuss in Sect. 2.6. ■

2.2.2 The Cumulative Distribution Function

For some fixed value x, we often wish to compute the probability that the observed value of X will be

at most x. For example, let X be the number of beds occupied in a hospital’s emergency room at a

certain time of day, and suppose the pmf of X is given by

x 0 1 2 3 4

p(x) .20 .25 .30 .15 .10

Then the probability that at most two beds are occupied is P(X � 2) ¼ p(0) + p(1) + p(2) ¼ .75.

Furthermore, since X � 2.7 iff X � 2, we also have P(X � 2.7) ¼ .75, and similarly P(X � 2.999) ¼
.75. Since 0 is the smallest possible X value, P(X � �1.5) ¼ 0, P(X � �10) ¼ 0, and in fact for any

negative number x, P(X � x) ¼ 0. And because 4 is the largest possible value of X, P(X � 4) ¼ 1,

P(X � 9.8) ¼ 1, and so on.

Very importantly, P(X < 2) ¼ p(0) + p(1) ¼ .45 < .75 ¼ P(X � 2), because the latter probability

includes the probability mass at the x value 2 whereas the former probability does not. More

generally, P(X < x) < P(X � x) whenever x is a possible value of X. Furthermore, P(X � x) is a

well-defined and computable probability for any number x.

DEFINITION

The cumulative distribution function (cdf) F(x) of a discrete rv X with pmf p(x) is defined for
every number x by

F xð Þ ¼ P X � xð Þ ¼
X

y : y� x

p yð Þ ð2:3Þ

For any number x, F(x) is the probability that the observed value of X will be at most x.
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Example 2.11 A store carries flash drives with 1, 2, 4, 8, or 16 GB of memory. The accompanying

table gives the distribution of X ¼ the amount of memory in a purchased drive:

x 1 2 4 8 16

p(x) .05 .10 .35 .40 .10

Let’s first determine F(x) for each of the five possible values of X:

F 1ð Þ ¼ P X � 1ð Þ ¼ P X ¼ 1ð Þ ¼ p 1ð Þ ¼ :05

F 2ð Þ ¼ P X � 2ð Þ ¼ P X ¼ 1 or 2ð Þ ¼ p 1ð Þ þ p 2ð Þ ¼ :15

F 4ð Þ ¼ P X � 4ð Þ ¼ P X ¼ 1 or 2 or 4ð Þ ¼ p 1ð Þ þ p 2ð Þ þ p 4ð Þ ¼ :50

F 8ð Þ ¼ P X � 8ð Þ ¼ p 1ð Þ þ p 2ð Þ þ p 4ð Þ þ p 8ð Þ ¼ :90

F 16ð Þ ¼ P X � 16ð Þ ¼ 1

Now for any other number x, F(x) will equal the value of F at the closest possible value of X to the

left of x. For example,

F 2:7ð Þ ¼ P X � 2:7ð Þ ¼ P X � 2ð Þ ¼ F 2ð Þ ¼ :15

F 7:999ð Þ ¼ P X � 7:999ð Þ ¼ P X � 4ð Þ ¼ F 4ð Þ ¼ :50

If x is less than 1, F(x) ¼ 0 [e.g., F(.58) ¼ 0], and if x is at least 16, F(x)¼ 1 [e.g., F(25) ¼ 1]. The

cdf is thus

F xð Þ ¼

0 x < 1

:05 1 � x < 2

:15 2 � x < 4

:50 4 � x < 8

:90 8 � x < 16

1 16 � x

8>>>>>><
>>>>>>:

A graph of this cdf is shown in Fig. 2.5.

For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat

between possible values. Such a graph is called a step function.

20151050

1.0

0.8

0.6

0.4

0.2

0.0
x

F(x)

Fig. 2.5 A graph of the cdf of Example 2.11 ■
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Example 2.12 In Example 2.10, any positive integer was a possible X value, and the pmf was

p xð Þ ¼ 1� pð Þx�1p x ¼ 1, 2, 3, . . .
0 otherwise

�

For any positive integer x,

F xð Þ ¼
X
y�x

p yð Þ ¼
Xx
y¼1

1� pð Þy�1p ¼ p
Xx�1

y¼0

1� pð Þy ð2:4Þ

To evaluate this sum, we use the fact that the partial sum of a geometric series is

Xk
y¼0

ay ¼ 1� akþ1

1� a

Using this in Eq. (2.4), with a ¼ 1 � p and k ¼ x � 1, gives

F xð Þ ¼ p � 1� 1� pð Þx
1� 1� pð Þ ¼ 1� 1� pð Þx x a positive integer

Since F is constant in between positive integers,

F xð Þ ¼ 0 x < 1

1� 1� pð Þ x½ � x � 1

�
ð2:5Þ

where [x] is the largest integer � x (e.g., [2.7] ¼ 2). Thus if p ¼ .51 as in the birth example, then the

probability of having to examine at most five births to see the first boy is F(5) ¼ 1 � (.49)5 ¼ 1 �
.0282 ¼ .9718, whereas F(10) � 1.0000. This cdf is graphed in Fig. 2.6.

In our examples thus far, the cdf has been derived from the pmf. This process can be reversed to

obtain the pmf from the cdf whenever the latter function is available. Suppose, for example, that

X represents the number of defective components in a shipment consisting of six components, so that

possible X values are 0, 1, . . ., 6. Then

0 1 2 3 4 5 50 51

1

x

F(x)

Fig. 2.6 A graph of F(x) for Example 2.12 ■
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p 3ð Þ ¼ P X ¼ 3ð Þ
¼ p 0ð Þ þ p 1ð Þ þ p 2ð Þ þ p 3ð Þ½ � � p 0ð Þ þ p 1ð Þ þ p 2ð Þ½ �
¼ P X � 3ð Þ � P

�
X � 2

�
¼ F 3ð Þ � F

�
2
�

More generally, the probability that X falls in a specified interval is easily obtained from the cdf.

For example,

P 2 � X � 4ð Þ ¼ p 2ð Þ þ p 3ð Þ þ p 4ð Þ
¼ p 0ð Þ þ � � � þ p 4ð Þ½ � � p 0ð Þ þ p 1ð Þ½ �
¼ P X � 4ð Þ � P

�
X � 1

�
¼ F 4ð Þ � F

�
1
�

Notice that P(2� X� 4) 6¼ F(4)� F(2). This is because the X value 2 is included in 2� X� 4, so

we do not want to subtract out its probability. However, P(2< X� 4)¼ F(4)� F(2) because X¼ 2 is

not included in the interval 2 < X � 4.

PROPOSITION

For any two numbers a and b with a � b,

P a � X � bð Þ ¼ F bð Þ � F a�ð Þ
where “a�” represents the largest possible X value that is strictly less than a. In particular, if the
only possible values are integers and if a and b are integers, then

P a � X � bð Þ ¼ P X ¼ a or aþ 1 or . . . or bð Þ
¼ F bð Þ � F a� 1ð Þ

Taking a ¼ b yields P(X ¼ a) ¼ F(a) � F(a � 1) in this case.

The reason for subtracting F(a�) rather than F(a) is that we want to include P(X¼ a); F(b)� F(a)

gives P(a< X � b). This proposition will be used extensively when computing binomial and Poisson

probabilities in Sects. 2.4 and 2.5.

Example 2.13 Let X¼ the number of days of sick leave taken by a randomly selected employee of a

large company during a particular year. If the maximum number of allowable sick days per year is

14, possible values of X are 0, 1, . . ., 14. With F(0) ¼ .58, F(1) ¼ .72, F(2) ¼ .76, F(3) ¼ .81, F(4) ¼
.88, and F(5) ¼ .94,

P 2 � X � 5ð Þ ¼ P X ¼ 2, 3, 4, or 5ð Þ ¼ F 5ð Þ � F 1ð Þ ¼ :22

and

P X ¼ 3ð Þ ¼ F 3ð Þ � F 2ð Þ ¼ :05 ■

2.2.3 Another View of Probability Mass Functions

It is often helpful to think of a pmf as specifying a mathematical model for a discrete population.
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Example 2.14 Consider selecting at random a household in a certain region, and Let X¼ the number

of individuals in the selected household. Suppose the pmf of X is as follows:

x 1 2 3 4 5 6 7 8 9 10

p(x) .140 .175 .220 .260 .155 .025 .015 .005 .004 .001

This is very close to the household size distribution for rural Thailand given in the article “The

Probability of Containment for Multitype Branching Process Models for Emerging Epidemics” (J. of
Applied Probability, 2011: 173–188), which modeled influenza transmission.

Suppose this is based on one million households. One way to view this situation is to think of the

population as consisting of 1,000,000 households, each one having its own X value; the proportion

with each X value is given by p(x) in the above table. An alternative viewpoint is to forget about the

households and think of the population itself as consisting of X values—14% of these values are

1, 17.5% are 2, and so on. The pmf then describes the distribution of the possible population values

1, 2, . . ., 10. ■

Once we have such a population model, we will use it to compute values of various population

characteristics such as the mean, which describes the center of the population distribution, and the

standard deviation, which describes the extent of spread about the center. Both of these are developed

in the next section.

2.2.4 Exercises: Section 2.2 (11–28)

11. Let X be the number of students who show up at a professor’s office hours on a particular day.

Suppose that the only possible values of X are 0, 1, 2, 3, and 4, and that p(0) ¼ .30, p(1) ¼ .25,

p(2) ¼ .20, and p(3) ¼ .15.

(a) What is p(4)?

(b) Draw both a line graph and a probability histogram for the pmf of X.

(c) What is the probability that at least two students come to the office hour? What is the

probability that more than two students come to the office hour?

(d) What is the probability that the professor shows up for his office hour?

12. Airlines sometimes overbook flights. Suppose that for a plane with 50 seats, 55 passengers have

tickets. Define the random variable Y as the number of ticketed passengers who actually show up

for the flight. The probability mass function of Y appears in the accompanying table.

y 45 46 47 48 49 50 51 52 53 54 55

p(y) .05 .10 .12 .14 .25 .17 .06 .05 .03 .02 .01

(a) What is the probability that the flight will accommodate all ticketed passengers who show

up?

(b) What is the probability that not all ticketed passengers who show up can be

accommodated?

(c) If you are the first person on the standby list (which means you will be the first one to get on

the plane if there are any seats available after all ticketed passengers have been

accommodated), what is the probability that you will be able to take the flight? What is

this probability if you are the third person on the standby list?
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13. A mail-order computer business has six telephone lines. Let X denote the number of lines in use

at a specified time. Suppose the pmf of X is as given in the accompanying table.

x 0 1 2 3 4 5 6

p(x) .10 .15 .20 .25 .20 .06 .04

Calculate the probability of each of the following events.

(a) {at most three lines are in use}

(b) {fewer than three lines are in use}

(c) {at least three lines are in use}

(d) {between two and five lines, inclusive, are in use}

(e) {between two and four lines, inclusive, are not in use}

(f) {at least four lines are not in use}

14. A contractor is required by a county planning department to submit one, two, three, four, or five

forms (depending on the nature of the project) in applying for a building permit. Let Y ¼ the

number of forms required of the next applicant. The probability that y forms are required is

known to be proportional to y—that is, p(y) ¼ ky for y ¼ 1, . . ., 5.

(a) What is the value of k? [Hint: ∑y ¼ 1
5 p(y) ¼ 1.]

(b) What is the probability that at most three forms are required?

(c) What is the probability that between two and four forms (inclusive) are required?

(d) Could p(y) ¼ y2/50 for y ¼ 1, . . ., 5 be the pmf of Y?

15. Many manufacturers have quality control programs that include inspection of incoming

materials for defects. Suppose a computer manufacturer receives computer boards in lots of

five. Two boards are selected from each lot for inspection. We can represent possible outcomes

of the selection process by pairs. For example, the pair (1, 2) represents the selection of boards

1 and 2 for inspection.

(a) List the ten different possible outcomes.

(b) Suppose that boards 1 and 2 are the only defective boards in a lot of five. Two boards are to

be chosen at random. Define X to be the number of defective boards observed among those

inspected. Find the probability distribution of X.

(c) Let F(x) denote the cdf of X. First determine F(0) ¼ P(X � 0), F(1), and F(2), and then

obtain F(x) for all other x.

16. Some parts of California are particularly earthquake-prone. Suppose that in one such area, 25%

of all homeowners are insured against earthquake damage. Four homeowners are to be selected

at random; let X denote the number among the four who have earthquake insurance.

(a) Find the probability distribution of X. [Hint: Let S denote a homeowner who has insurance

and F one who does not. Then one possible outcome is SFSS, with probability (.25)(.75)

(.25)(.25) and associated X value 3. There are 15 other outcomes.]

(b) Draw the corresponding probability histogram.

(c) What is the most likely value for X?

(d) What is the probability that at least two of the four selected have earthquake insurance?

17. A new battery’s voltage may be acceptable (A) or unacceptable (U ). A certain flashlight requires

two batteries, so batteries will be independently selected and tested until two acceptable ones

have been found. Suppose that 90% of all batteries have acceptable voltages. Let Y denote the

number of batteries that must be tested.

(a) What is p(2), that is, P(Y ¼ 2)?

(b) What is p(3)? [Hint: There are two different outcomes that result in Y ¼ 3.]
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(c) To have Y ¼ 5, what must be true of the fifth battery selected? List the four outcomes for

which Y ¼ 5 and then determine p(5).
(d) Use the pattern in your answers for parts (a)–(c) to obtain a general formula for p(y).

18. Two fair six-sided dice are tossed independently. Let M ¼ the maximum of the two tosses, so

M(1, 5) ¼ 5, M(3, 3) ¼ 3, etc.

(a) What is the pmf of M? [Hint: First determine p(1), then p(2), and so on.]

(b) Determine the cdf of M and graph it.

19. A library subscribes to two different weekly news magazines, each of which is supposed to

arrive in Wednesday’s mail. In actuality, each one may arrive on Wednesday, Thursday, Friday,

or Saturday. Suppose the two arrive independently of one another, and for each one P(W) ¼ .3,

P(Th) ¼ .4, P(F) ¼ .2, and P(S) ¼ .1. Let Y ¼ the number of days beyond Wednesday that it

takes for both magazines to arrive (so possible Y values are 0, 1, 2, or 3). Compute the pmf of Y.

[Hint: There are 16 possible outcomes; Y(W, W) ¼ 0, Y(F, Th) ¼ 2, and so on.]

20. Three couples and two single individuals have been invited to an investment seminar and have

agreed to attend. Suppose the probability that any particular couple or individual arrives late is .4

(a couple will travel together in the same vehicle, so either both people will be on time or else

both will arrive late). Assume that different couples and individuals are on time or late indepen-

dently of one another. Let X ¼ the number of people who arrive late for the seminar.

(a) Determine the probability mass function of X. [Hint: label the three couples #1, #2, and #3

and the two individuals #4 and #5.]

(b) Obtain the cumulative distribution function of X, and use it to calculate P(2 � X � 6).

21. As described in the book’s Introduction, Benford’s Law arises in a variety of situations as a model

for the first digit of a number:

p xð Þ ¼ P 1st digit is xð Þ ¼ log10
xþ 1

x

� �
, x ¼ 1, 2, . . . , 9

(a) Without computing individual probabilities from this formula, show that it specifies a

legitimate pmf.

(b) Now compute the individual probabilities and compare to the distribution where 1, 2, . . .,
9 are equally likely.

(c) Obtain the cdf of X, a rv following Benford’s law.
(d) Using the cdf, what is the probability that the leading digit is at most 3? At least 5?

22. Refer to Exercise 13, and calculate and graph the cdf F(x). Then use it to calculate the

probabilities of the events given in parts (a)–(d) of that problem.

23. Let X denote the number of vehicles queued up at a bank’s drive-up window at a particular time

of day. The cdf of X is as follows:

F xð Þ ¼

0 x < 0

:06 0 � x < 1

:19 1 � x < 2

:39 2 � x < 3

:67 3 � x < 4

:92 4 � x < 5

:97 5 � x < 6

1 6 � x

8>>>>>>>>>><
>>>>>>>>>>:

Calculate the following probabilities directly from the cdf:

(a) p(2), that is, P(X ¼ 2)

(b) P(X > 3)
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(c) P(2 � X � 5)

(d) P(2 < X < 5)

24. An insurance company offers its policyholders a number of different premium payment options.

For a randomly selected policyholder, let X ¼ the number of months between successive

payments. The cdf of X is as follows:

F xð Þ ¼

0 x < 1

:30 1 � x < 3

:40 3 � x < 4

:45 4 � x < 6

:60 6 � x < 12

1 12 � x

8>>>>>><
>>>>>>:

(a) What is the pmf of X?
(b) Using just the cdf, compute P(3 � X � 6) and P(4 � X).

25. In Example 2.10, let Y ¼ the number of girls born before the experiment terminates. With

p¼ P(B) and 1� p¼ P(G), what is the pmf of Y? [Hint: First list the possible values of Y, starting
with the smallest, and proceed until you see a general formula.]

26. Alvie Singer lives at 0 in the accompanying diagram and has four friends who live at A, B, C, and

D. One day Alvie decides to go visiting, so he tosses a fair coin twice to decide which of the four
to visit. Once at a friend’s house, he will either return home or else proceed to one of the two

adjacent houses (such as 0, A, or C when at B), with each of the three possibilities having

probability 1/3. In this way, Alvie continues to visit friends until he returns home.

B

C

A

D

0

(a) Let X ¼ the number of times that Alvie visits a friend. Derive the pmf of X.
(b) Let Y¼ the number of straight-line segments that Alvie traverses (including those leading to

and from 0). What is the pmf of Y?

(c) Suppose that female friends live at A and C and male friends at B and D. If Z ¼ the number

of visits to female friends, what is the pmf of Z?

27. After all students have left the classroom, a statistics professor notices that four copies of the text

were left under desks. At the beginning of the next lecture, the professor distributes the four

books in a completely random fashion to each of the four students (1, 2, 3, and 4) who claim to

have left books. One possible outcome is that 1 receives 2’s book, 2 receives 4’s book, 3 receives
his or her own book, and 4 receives 1’s book. This outcome can be abbreviated as (2, 4, 3, 1).

(a) List the other 23 possible outcomes.

(b) Let X denote the number of students who receive their own book. Determine the pmf of X.
28. Show that the cdf F(x) is a nondecreasing function; that is, x1 < x2 implies that F(x1) � F(x2).

Under what condition will F(x1) ¼ F(x2)?
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2.3 Expected Value and Standard Deviation

Consider a university with 15,000 students and let X ¼ the number of courses for which a randomly

selected student is registered. The pmf of X follows. Since p(1)¼ .01, we know that (.01) � (15,000)¼
150 of the students are registered for one course, and similarly for the other x values.

x 1 2 3 4 5 6 7

(2.6)p(x) .01 .03 .13 .25 .39 .17 .02

Number registered 150 450 1950 3750 5850 2550 300

To compute the average number of courses per student, i.e., the average value of X in the

population, we should calculate the total number of courses and divide by the total number of

students. Since each of 150 students is taking one course, these 150 contribute 150 courses to the

total. Similarly, 450 students contribute 2(450) courses, and so on. The population average value of

X is then

1 150ð Þ þ 2 450ð Þ þ 3 1950ð Þ þ � � � þ 7 300ð Þ
15,000

¼ 4:57 ð2:7Þ

Since 150/15,000 ¼ .01 ¼ p(1), 450/15,000 ¼ .03 ¼ p(2), and so on, an alternative expression for

Eq. (2.7) is

1 � p 1ð Þ þ 2 � p 2ð Þ þ � � � þ 7 � p 7ð Þ ð2:8Þ
Expression (2.8) shows that to compute the population average value of X, we need only the

possible values of X along with their probabilities (proportions). In particular, the population size is

irrelevant as long as the pmf is given by (2.6). The average or mean value of X is then a weighted

average of the possible values 1, . . ., 7, where the weights are the probabilities of those values.

2.3.1 The Expected Value of X

DEFINITION

Let X be a discrete rv with set of possible values D and pmf p(x). The expected value ormean
value of X, denoted by E(X) or μX or just μ, is

E Xð Þ ¼ μX ¼ μ ¼
X
x2D

x � p xð Þ

Example 2.15 For the pmf of X ¼ number of courses in (2.6),

μ¼ 1 � p 1ð Þ þ 2 � p 2ð Þ þ � � � þ 7 � p 7ð Þ
¼ 1ð Þ :01ð Þ þ 2ð Þ :03ð Þ þ � � � þ 7ð Þ :02ð Þ
¼ :01þ :06þ :39þ 1:00þ 1:95þ 1:02þ :14 ¼ 4:57

If we think of the population as consisting of the X values 1, 2, . . ., 7, then μ ¼ 4.57 is the population

mean (we will often refer to μ as the population mean rather than the mean of X in the population).

Notice that μ here is not 4, the ordinary average of 1, . . ., 7, because the distribution puts more weight

on 4, 5, and 6 than on other X values. ■
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In Example 2.15, the expected value μ was 4.57, which is not a possible value of X. The word

expected should be interpreted with caution because one would not expect to see an X value of 4.57

when a single student is selected.

Example 2.16 Just after birth, each newborn child is rated on a scale called the Apgar scale. The

possible ratings are 0, 1, . . ., 10, with the child’s rating determined by color, muscle tone, respiratory

effort, heartbeat, and reflex irritability (the best possible score is 10). Let X be the Apgar score of

a randomly selected child born at a certain hospital during the next year, and suppose that the pmf

of X is

x 0 1 2 3 4 5 6 7 8 9 10

p(x) .002 .001 .002 .005 .02 .04 .18 .37 .25 .12 .01

Then the mean value of X is

E Xð Þ ¼ μ ¼ 0ð Þ :002ð Þ þ 1ð Þ :001ð Þ þ 2ð Þ :002ð Þ þ � � � þ 8ð Þ :25ð Þ þ 9ð Þ :12ð Þ þ 10ð Þ :01ð Þ
¼ 7:15

(Again, μ is not a possible value of the variable X.) If the stated model is correct, then the mean

Apgar score for the population of all children born at this hospital next year will be 7.15. ■

Example 2.17 Let X ¼ 1 if a randomly selected component needs warranty service and ¼ 0 other-

wise. If the chance a component needs warranty service is p, then X is a Bernoulli rv with pmf p(1) ¼
p and p(0) ¼ 1 � p, from which

E Xð Þ ¼ 0 � p 0ð Þ þ 1 � p 1ð Þ ¼ 0 1� pð Þ þ 1 pð Þ ¼ p

That is, the expected value of X is just the probability that X takes on the value 1. If we

conceptualize a population consisting of 0s in proportion 1 � p and 1s in proportion p, then the

population average is μ ¼ p. ■

There is another frequently used interpretation of μ. Consider observing a first value x1 of X, then a
second value x2, a third value x3, and so on. After doing this a large number of times, calculate the

sample average of the observed xis. This average will typically be close to μ; a more rigorous version

of this statement is provided by the Law of Large Numbers in Chap. 4. That is, μ can be interpreted as
the long-run average value of X when the experiment is performed repeatedly. This interpretation is

often appropriate for games of chance, where the “population” is not a concrete set of individuals but

rather the results of all hypothetical future instances of playing the game.

Example 2.18 A standard American roulette wheel has 38 spaces. Players bet on which space a

marble will land in once the wheel has been spun. One of the simplest bets is based on the color of the

space: 18 spaces are black, 18 are red, and 2 are green. So, if a player “bets on black,” s/he has an

18/38 chance of winning. Casinos consider color bets an “even wager,” meaning that a player who

bets $1 on black, say, will profit $1 if the marble lands in a black space (and lose the wagered $1

otherwise).

Let X ¼ the return on a $1 wager on black. Then the pmf of X is

x �$1 +$1

p(x) 20/38 18/38
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and the expected value of X is E(X) ¼ (�1)(20/38) + (1)(18/38) ¼ �2/38 ¼ �$.0526. If a player

makes $1 bets on black on successive spins of the roulette wheel, in the long run s/he can expect to

lose about 5.26 cents per wager. Since players don’t necessarily make a large number of wagers, this

long-run average interpretation is perhaps more apt from the casino’s perspective: in the long run,

they will gain an average of 5.26 cents for every $1 wagered on black at the roulette table. ■

Thus far, we have assumed that the mean of any given distribution exists. If the set of possible

values of X is unbounded, so that the sum for μX is actually an infinite series, the expected value of

X might or might not exist (depending on whether the series converges or diverges).

Example 2.19 From Example 2.10, the general form for the pmf of X¼ the number of children born

up to and including the first boy is

p xð Þ ¼ 1� pð Þx�1p x ¼ 1, 2, 3, . . .
0 otherwise

�

The expected value of X therefore entails evaluating an infinite summation:

E Xð Þ ¼
X
D

x � p xð Þ ¼
X1
x¼1

xp 1� pð Þx�1 ¼ p
X1
x¼1

x 1� pð Þx�1 ¼ p
X1
x¼1

� d

dp
1� pð Þx

� 	
ð2:9Þ

If we interchange the order of taking the derivative and the summation in Eq. (2.9), the sum is that

of a geometric series. (In particular, the infinite series converges for 0 < p < 1.)

After the sum is computed and the derivative is taken, the final result is E(X) ¼ 1/p. That is, the
expected number of children born up to and including the first boy is the reciprocal of the chance of

getting a boy. This is actually quite intuitive: if p is near 1, we expect to see a boy very soon, whereas

if p is near 0, we expect many births before the first boy. For p ¼ .5, E(X) ¼ 2.

Exercise 48 at the end of this section presents an alternative method for computing the mean of this

particular distribution. ■

Example 2.20 Let X, the number of interviews a student has prior to getting a job, have pmf

p xð Þ ¼ k=x2 x ¼ 1, 2, 3, . . .
0 otherwise

�

where k is such that ∑x ¼ 1
1 (k/x2) ¼ 1. (Because ∑x ¼ 1

1 (1/x2) ¼ π2/6, the value of k is 6/π2.) The
expected value of X is

μ ¼ E Xð Þ ¼
X1
x¼1

x
k

x2
¼ k
X1
x¼1

1

x
ð2:10Þ

The sum on the right of Eq. (2.10) is the famous harmonic series of mathematics and can be shown

to diverge. E(X) is not finite here because p(x) does not decrease sufficiently fast as x increases;

statisticians say that the probability distribution of X has “a heavy tail.” If a sequence of X values is

chosen using this distribution, the sample average will not settle down to some finite number but will

tend to grow without bound. ■
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2.3.2 The Expected Value of a Function

Often we will be interested in the expected value of some function h(X) rather than X itself. An easy

way of computing the expected value of h(X) is suggested by the following example.

Example 2.21 The cost of a certain vehicle diagnostic test depends on the number of cylinders X in

the vehicle’s engine. Suppose the cost function is h(X) ¼ 20 + 3X + .5X2. Since X is a random

variable, so is Y ¼ h(X). The pmf of X and the derived pmf of Y are as follows:

x 4 6 8 ) y 40 56 76

p(x) .5 .3 .2 p(y) .5 .3 .2

With D* denoting possible values of Y,

E Yð Þ ¼ E


h Xð Þ� ¼ X

y2 D*

y � p yð Þ ¼ 40ð Þ�:5�þ �56��:3�þ �76��:2� ¼ $52

¼ h 4ð Þ � �:5�þ h
�
6
� � �:3�þ h

�
8
� � �:2� ¼X

D

h xð Þ � p xð Þ ð2:11Þ

According to Eq. (2.11), it was not necessary to determine the pmf of Y to obtain E(Y ); instead, the
desired expected value is a weighted average of the possible h(x) (rather than x) values. ■

PROPOSITION

If the rv X has a set of possible values D and pmf p(x), then the expected value of any function

h(X), denoted by E[h(X)] or μh(X), is computed by

E h Xð Þ½ � ¼
X
D

h xð Þ � p xð Þ

This is sometimes referred to as the Law of the Unconscious Statistician.

According to this proposition, E[h(X)] is computed in the same way that E(X) itself is, except that
h(x) is substituted in place of x. That is, E[h(X)] is a weighted average of possible h(X) values, where

the weights are the probabilities of the corresponding original X values.

Example 2.22 A computer store has purchased three computers at $500 apiece. It will sell them for

$1,000 apiece. The manufacturer has agreed to repurchase any computers still unsold after a specified

period at $200 apiece. Let X denote the number of computers sold, and suppose that p(0) ¼ .1,

p(1) ¼ .2, p(2) ¼ .3, and p(3) ¼ .4. With h(X) denoting the profit associated with selling X units, the

given information implies that h(X)¼ revenue� cost¼ 1000X + 200(3� X)� 1500¼ 800X� 900.

The expected profit is then

E h Xð Þ½ � ¼ h 0ð Þ � p 0ð Þ þ h 1ð Þ � p 1ð Þ þ h 2ð Þ � p 2ð Þ þ h 3ð Þ � p 3ð Þ
¼ 800 0ð Þ � 900ð Þ :1ð Þ þ 800 1ð Þ � 900ð Þ :2ð Þ þ 800 2ð Þ � 900ð Þ :3ð Þ þ 800 3ð Þ � 900ð Þ :4ð Þ
¼ �900ð Þ :1ð Þ þ �100ð Þ :2ð Þ þ 700ð Þ :3ð Þ þ 1500ð Þ :4ð Þ ¼ $700 ■

Because an expected value is a sum, it possesses the same properties as any summation; specifi-

cally, the expected value “operator” can be distributed across addition and across multiplication by

constants. This important property is known as linearity of expectation.
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LINEARITY OF EXPECTATION

For any functions h1(X) and h2(X) and any constants a1, a2, and b,

E a1h1 Xð Þ þ a2h2 Xð Þ þ b½ � ¼ a1E h1 Xð Þ½ � þ a2E h2 Xð Þ½ � þ b

In particular, for any linear function aX + b,

E aX þ bð Þ ¼ a � E Xð Þ þ b ð2:12Þ
(or, using alternative notation, μaX+b ¼ a � μX + b).

Proof Let h(X) ¼ a1h1(X) + a2h2(X) + b, and apply the previous proposition:

E


a1h1 Xð Þ þ a2h2

�
X
�þ b

� ¼X
D

a1h1 xð Þ þ a2h2 xð Þ þ b
� � p�x� �

¼ a1
X
D

h1 xð Þ � p xð Þ þ a2
X
D

h2 xð Þ � p xð Þ

þ b
X
D

p xð Þ distributive property of addition

¼ a1E


h1 Xð Þ�þ a2E



h2
�
X
��þ b



1
� ¼ a1E



h1
�
X
��þ a2E



h2
�
X
��þ b

The special case of aX + b is obtained by setting a1 ¼ a, h1(X) ¼ X, and a2 ¼ 0. ■

By induction, linearity of expectation applies to any finite number of terms. In Example 2.21, it is

easily computed that E(X) ¼ 4(.5) + 6(.3) + 8(.2) ¼ 5.4 and E(X2) ¼ ∑ x2 � p(x) ¼ 42(.5) + 62(.3) +

82(.2) ¼ 31.6. Applying linearity of expectation to Y ¼ h(X) ¼ 20 + 3X + .5X2, we obtain

μY ¼ E 20þ 3X þ :5X2

 � ¼ 20þ 3E Xð Þ þ :5E X2

� � ¼ 20þ 3 5:4ð Þ þ :5 31:6ð Þ ¼ $52,

which matches the result of Example 2.21.

The special case Eq. (2.12) states that the expected value of a linear function equals the linear

function evaluated at the expected value E(X). Since h(X) in Example 2.22 is linear and E(X) ¼ 2,

E[h(X)]¼ 800(2) � 900 ¼ $700, as before. Two special cases of Eq. (2.12) yield two important rules

of expected value.

1. For any constant a, μaX ¼ a � μX (take b ¼ 0).

2. For any constant b, μX+b ¼ μX + b ¼ E(X) + b (take a ¼ 1).

Multiplication of X by a constant a changes the unit of measurement (from dollars to cents, where

a¼ 100, inches to cm, where a¼ 2.54, etc.). Rule 1 says that the expected value in the new units equals

the expected value in the old units multiplied by the conversion factor a. Similarly, if the constant b is

added to each possible value of X, then the expected value will be shifted by that same amount.

One commonly made error is to substitute μX directly into the function h(X) when h is a nonlinear
function, in which case Eq. (2.12) does not apply. Consider Example 2.21: the mean of X is 5.4, and

it’s tempting to infer that the mean of Y ¼ h(X) is simply h(5.4). However, since the function h(X) ¼
20 + 3X +.5X2 is not linear, this does not yield the correct answer:

h 5:4ð Þ ¼ 20þ 3 5:4ð Þ þ :5 5:4ð Þ2 ¼ 50:78 6¼ 52 ¼ μY

In general, μh(X) does not equal h(μX) unless the function h(x) is linear.
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2.3.3 The Variance and Standard Deviation of X

The expected value of X describes where the probability distribution is centered. Using the physical

analogy of placing point mass p(x) at the value x on a one-dimensional axis, if the axis were then

supported by a fulcrum placed at μ, there would be no tendency for the axis to tilt. This is illustrated

for two different distributions in Fig. 2.7.

Although both distributions pictured in Fig. 2.7 have the same mean/fulcrum μ, the distribution of
Fig. 2.7b has greater spread or variability or dispersion than does that of Fig. 2.7a. Our goal now is to

obtain a quantitative assessment of the extent to which the distribution spreads out about its mean

value.

DEFINITION

Let X have pmf p(x) and expected value μ. Then the variance of X, denoted by Var(X) or σX
2 or

just σ2, is

Var Xð Þ ¼
X
D

x� μð Þ2 � p xð Þ
h i

¼ E X � μð Þ2
h i

The standard deviation (SD) of X, denoted by SD(X) or σX or just σ, is

σX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p

The quantity h(X) ¼ (X � μ)2 is the squared deviation of X from its mean, and σ2 is the expected
squared deviation—i.e., a weighted average of the squared deviations from μ. Taking the square root
of the variance to obtain standard deviation returns us to the original units of the variable, e.g., if X is

measured in dollars, then both μ and σ also have units of dollars. If most of the probability distribution

is close to μ, as in Fig. 2.7a, then σ will typically be relatively small. However, if there are x values far

from μ that have large probabilities (as in Fig. 2.7b), then σ will be larger.

Example 2.23 Consider again the distribution of the Apgar score X of a randomly selected newborn

described in Example 2.16. The mean value of X was calculated as μ ¼ 7.15, so

Var Xð Þ ¼ σ2 ¼
X10
x¼0

x� 7:15ð Þ2 � p xð Þ ¼ 0� 7:15ð Þ2 :002ð Þ þ . . .þ 10� 7:15ð Þ2 :01ð Þ ¼ 1:5815

The standard deviation of X is SD Xð Þ ¼ σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5815

p ¼ 1:26. ■

.5 .5

1 2 3 5
x

1 2 3 5 6 7 8

ba
p(x) p(x)

x

Fig. 2.7 Two different probability distributions with μ ¼ 4
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A rough interpretation of σ is that its value gives the size of a typical or representative distance

from μ (hence, “standard deviation”). Because σ ¼ 1.26 in the preceding example, we can say that

some of the possible X values differ by more than 1.26 from the mean value 7.15 whereas other

possible X values are closer than this to 7.15; roughly, 1.26 is the size of a typical deviation from the

mean Apgar score.

Example 2.24 (Example 2.18 continued) The variance of X ¼ the return on a $1 bet on black is

σ2X ¼ �1� �2=38ð Þð Þ2 � 20=38ð Þ þ 1� �2=38ð Þð Þ2 � 18=38 ¼ 0:99723

and the standard deviation is σX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:99723

p ¼ 0:9986 � $1. The two possible values of X are �$1

and +$1; since betting on black is almost a break-even wager (the mean is quite close to 0), the typical

difference between an actual return X and the average return μX is roughly one dollar. ■

A natural probability question arises: how often does X fall within this “typical distance of the

mean”? That is, what’s the chance that a rv X lies between μX � σX and μX + σX? What about the

likelihood that X is within two standard deviations of its mean? There are no universal answers:

for different pmfs, varying amounts of probability may lie within one (or two or three) standard

deviation(s) of the expected value. That said, the following theorem, due to Russian mathematician

Pafnuty Chebyshev, partially addresses questions of this sort.

CHEBYSHEV’S INEQUALITY

Let X be a discrete rv with mean μ and standard deviation σ. Then, for any k � 1,

P
��X � μ

�� � kσ
� � � 1

k2

That is, the probability X is at least k standard deviations away from its mean is at most 1/k2.

An equivalent statement to Chebyshev’s inequality is that every random variable has a probability

of at least 1 � 1/k2 to fall within k standard deviations of its mean.

Proof Let A denote the event |X� μ|� kσ; or, equivalently, the set of values {x : |x� μ|� kσ}. Begin
by writing out the definition of Var(X):

Var Xð Þ ¼
X
D

x� μð Þ2 � p xð Þ
h i

¼
X
A

x� μð Þ2 � p xð Þ
h i

þ
X
A
0

x� μð Þ2 � p xð Þ
h i

�
X
A

x� μð Þ2 � p xð Þ
h i

because the discarded term is � 0

�
X
A

kσð Þ2 � p xð Þ
h i

because x� μð Þ2 � �kσ�2 on the set A

¼ kσð Þ2
X
A

p xð Þ ¼ �kσ�2P�A� ¼ k2σ2P
���X � μ

�� � kσ
�

The Var(X) term on the left-hand side is the same as the σ2 term on the right-hand side; cancelling

the two, we are left with 1 � k2P(|X � μ| � kσ), and Chebyshev’s inequality follows. ■
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For k ¼ 1, Chebyshev’s inequality states that P(|X � μ| � σ) � 1, which isn’t very informative

since all probabilities are bounded above by 1. In fact, distributions can be constructed for which

100% of the distribution is at least 1 standard deviation from the mean, so that the rv X has probability

0 of falling less than one standard deviation from its mean (see Exercise 47). Substituting k ¼
2, Chebyshev’s inequality states that the chance any rv is at least 2 standard deviations from its mean

cannot exceed 1/22¼ .25¼ 25%. Equivalently, every distribution has the property that at least 75% of

its “mass” lies within 2 standard deviations of its mean value (in fact, for many distributions, the exact

probability is much larger than this lower bound).

2.3.4 Properties of Variance

An alternative to the defining formula for Var(X) reduces the computational burden.

PROPOSITION

Var Xð Þ ¼ σ2 ¼ E X2
� �� μ2

This equation is referred to as the variance shortcut formula.

In using this formula, E(X2) is computed first without any subtraction; then μ is computed, squared,

and subtracted (once) from E(X2). This formula is more efficient because it entails only one

subtraction, and E(X2) does not require calculating squared deviations from μ.

Example 2.25 Referring back to the Apgar score scenario of Examples 2.16 and 2.23,

E X2
� � ¼X10

x¼1

x2 � p xð Þ ¼ 02
� �

:002ð Þ þ 12
� �

:001ð Þ þ � � � þ 102
� �

:01ð Þ ¼ 52:704

Thus, σ2 ¼ 52.704 � (7.15)2 ¼ 1.5815 as before, and again σ ¼ 1.26. ■

Proof of the Variance Shortcut Formula Expand (X � μ)2 in the definition of Var(X), and then

apply linearity of expectation:

Var Xð Þ ¼ E


X � μð Þ2� ¼ E



X2 � 2μX þ μ2

�
¼ E X2

� �� 2μE
�
X
�þ μ2 by linearity of expectation

¼ E X2
� �� 2μ � μþ μ2 ¼ E

�
X2
�� 2μ2 þ μ2 ¼ E X2

� �� μ2 ■

The quantity E(X2) in the variance shortcut formula is called the mean-square value of the

random variable X. Engineers may be familiar with the root-mean-square, or RMS, which is the

square root of E(X2). Do not confuse this with the square of the mean of X, i.e., μ2! For example, if

X has a mean of 7.15, the mean-square value of X is not (7.15)2, because h(x) ¼ x2 is not linear.

(In Example 2.25, the mean-square value of X is 52.704.) It helps to look at the two formulas side-

by-side:
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E X2
� � ¼X

D

x2 � p xð Þ versus μ2 ¼
X
D

x � p xð Þ
 !2

The order of operations is clearly different. In fact, it can be shown (see Exercise 46) that

E(X2) � μ2 for every random variable, with equality if and only if X is constant.

The variance of a function h(X) is the expected value of the squared difference between h(X) and

its expected value:

Var h Xð Þ½ � ¼ σ2h Xð Þ ¼
X
D

h xð Þ � μh Xð Þ
 �2

� p xð Þ
� 	

¼
X
D

h2 xð Þ � p xð Þ
" #

�
X
D

h xð Þ � p xð Þ
" #2

When h(x) is a linear function, Var[h(X)] has a much simpler expression (see Exercise 43 for

a proof).

PROPOSITION

Var aX þ bð Þ ¼ σ2aXþb ¼ a2 � σ2X and σaXþb ¼
��a�� � σX ð2:13Þ

In particular,

σaX ¼ aj j � σX and σXþb ¼ σX

The absolute value is necessary because a might be negative, yet a standard deviation cannot

be. Usually multiplication by a corresponds to a change in the unit of measurement (e.g., kg to lb or

dollars to euros); the sd in the new unit is just the original sd multiplied by the conversion factor. On

the other hand, the addition of the constant b does not affect the variance, which is intuitive, because

the addition of b changes the location (mean value) but not the spread of values. Together, Eqs. (2.12)

and (2.13) comprise the rescaling properties of mean and standard deviation.

Example 2.26 In the computer sales scenario of Example 2.22, E(X) ¼ 2 and

E X2
� � ¼ 02

� �
:1ð Þ þ 12

� �
:2ð Þ þ 22

� �
:3ð Þ þ 32

� �
:4ð Þ ¼ 5

so Var(X) ¼ 5 � (2)2 ¼ 1. The profit function Y ¼ h(X) ¼ 800X � 900 is linear, so Eq. (2.13) applies

with a ¼ 800 and b ¼ �900. Hence Y has variance a2σX
2 ¼ (800)2(1) ¼ 640,000 and standard

deviation $800. ■

2.3.5 Exercises: Section 2.3 (29–48)

29. The pmf of the amount of memory X (GB) in a purchased flash drive was given in Example 2.11 as

x 1 2 4 8 16

p(x) .05 .10 .35 .40 .10

(a) Compute and interpret E(X).
(b) Compute Var(X) directly from the definition.

(c) Obtain and interpret the standard deviation of X.
(d) Compute Var(X) using the shortcut formula.
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30. An individual who has automobile insurance from a company is randomly selected. Let Y be the

number of moving violations for which the individual was cited during the last 3 years. The pmf

of Y is

y 0 1 2 3

p(y) .60 .25 .10 .05

(a) Compute E(Y ).
(b) Suppose an individual with Y violations incurs a surcharge of $100Y2. Calculate the

expected amount of the surcharge.

31. Refer to Exercise 12 and calculate Var(Y) and σY. Then determine the probability that Y is

within 1 standard deviation of its mean value.

32. An appliance dealer sells three different models of upright freezers having 13.5, 15.9, and 19.1

cubic feet of storage space, respectively. Let X ¼ the amount of storage space purchased by the

next customer to buy a freezer. Suppose that X has pmf

x 13.5 15.9 19.1

p(x) .2 .5 .3

(a) Compute E(X), E(X2), and Var(X).
(b) If the price of a freezer having capacity X cubic feet is 17X + 180, what is the expected

price paid by the next customer to buy a freezer?

(c) What is the standard deviation of the price 17X + 180 paid by the next customer?

(d) Suppose that although the rated capacity of a freezer is X, the actual capacity is h(X) ¼
X � .01X2. What is the expected actual capacity of the freezer purchased by the next

customer?

33. Let X be a Bernoulli rv with pmf as in Example 2.17.

(a) Compute E(X2).

(b) Show that Var(X) ¼ p(1 � p).
(c) Compute E(X79).

34. Suppose that the number of plants of a particular type found in a rectangular sampling region

(called a quadrat by ecologists) in a certain geographic area is an rv X with pmf

p xð Þ ¼ c=x3 x ¼ 1, 2, 3, . . .
0 otherwise

�

Is E(X) finite? Justify your answer. (This is another distribution that statisticians would call

heavy-tailed.)

35. A small market orders copies of a certain magazine for its magazine rack each week. Let X ¼
demand for the magazine, with pmf

x 1 2 3 4 5 6

p(x)
1

15

2

15

3

15

4

15

3

15

2

15

Suppose the store owner actually pays $2.00 for each copy of the magazine and the price to

customers is $4.00. If magazines left at the end of the week have no salvage value, is it better to

order three or four copies of the magazine? [Hint: For both three and four copies ordered,

express net revenue as a function of demand X, and then compute the expected revenue.]
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36. Let X be the damage incurred (in $) in a certain type of accident during a given year. Possible

X values are 0, 1000, 5000, and 10,000, with probabilities .8, .1, .08, and .02, respectively.

A particular company offers a $500 deductible policy. If the company wishes its expected profit

to be $100, what premium amount should it charge?

37. The n candidates for a job have been ranked 1, 2, 3, . . ., n. Let X ¼ the rank of a randomly

selected candidate, so that X has pmf

p xð Þ ¼ 1=n x ¼ 1, 2, 3, . . . , n
0 otherwise

�

(this is called the discrete uniform distribution). Compute E(X) and Var(X) using the shortcut

formula. [Hint: The sum of the first n positive integers is n(n + 1)/2, whereas the sum of their

squares is n(n + 1)(2n + 1)/6.]

38. Let X¼ the outcome when a fair die is rolled once. If before the die is rolled you are offered either

$100 dollars or h(X) ¼ 350/X dollars, would you accept the guaranteed amount or would you

gamble? [Hint: Determine E[h(X)], but be careful: the mean of 350/X is not 350/μ.]
39. In the popular game Plinko on The Price Is Right, contestants drop a circular disk (a “chip”) down

a pegged board; the chip bounces down the board and lands in a slot corresponding to one of five

dollar mounts. The random variable X ¼ winnings from one chip dropped from the middle slot

has roughly the following distribution.

x $0 $100 $500 $1000 $10,000

p(x) .39 .03 .11 .24 .23

(a) Graph the probability mass function of X.
(b) What is the probability a contestant makes money on a chip?

(c) What is the probability a contestant makes at least $1000 on a chip?

(d) Determine the expected winnings. Interpret this number.

(e) Determine the corresponding standard deviation.

40. A supply company currently has in stock 500 lb of fertilizer, which it sells to customers in 10-lb

bags. Let X equal the number of bags purchased by a randomly selected customer. Sales data

shows that X has the following pmf:

x 1 2 3 4

p(x) .2 .4 .3 .1

(a) Compute the average number of bags bought per customer.

(b) Determine the standard deviation for the number of bags bought per customer.

(c) Define Y to be the amount of fertilizer left in stock, in pounds, after the first customer.

Construct the pmf of Y.

(d) Use the pmf of Y to find the expected amount of fertilizer left in stock, in pounds, after the

first customer.

(e) Write Y as a linear function of X. Then use rescaling properties to find the mean and standard

deviation of Y.
(f) The supply company offers a discount to each customer based on the formulaW¼ (X� 1)2.

Determine the expected discount for a customer.

(g) Does your answer in part (f) equal (μX � 1)2? Why or why not?

(h) Calculate the standard deviation of W.
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41. Refer back to the roulette scenario in Examples 2.18 and 2.24. Two other ways to wager at

roulette are betting on a single number, or on a four-number “square.” The pmfs for the returns on

a $1 wager on a number and a square are displayed below. (Payoffs for winning are always based

on the odds of losing a wager under the assumption the two green spaces didn’t exist.)
Single number:

x �$1 +$35

p(x) 37/38 1/38

Square:

x �$1 +$8

p(x) 34/38 4/38

(a) Determine the expected return from a $1 wager on a single number, and then on a square.

(b) Compare your answers from (a) to Example 2.18. What can be said about the expected

return for a $1 wager? Based on this, does expected return reflect most players’ intuition that
betting on black is “safer” and betting on a single number is “riskier”?

(c) Now calculate the standard deviations for the two pmfs above.

(d) How do the standard deviations of the three betting schemes (color, single number, square)

compare? How do these values appear to relate to players’ intuitive sense of risk?
42. (a) Draw a line graph of the pmf of X in Exercise 35. Then determine the pmf of �X and draw

its line graph. From these two pictures, what can you say about Var(X) and Var(�X)?
(b) Use the proposition involving Var(aX + b) to establish a general relationship between

Var(X) and Var(�X).

43. Use the definition of variance to prove that Var(aX + b) ¼ a2σX
2. [Hint: From Eq. (2.12),

μaX+b ¼ aμX + b.]

44. Suppose E(X) ¼ 5 and E[X(X � 1)] ¼ 27.5.

(a) Determine E(X2). [Hint: E[X(X � 1)] ¼ E(X2 � X) ¼ E(X2) � E(X).]
(b) What is Var(X)?

(c) What is the general relationship among the quantities E(X), E[X(X � 1)], and Var(X)?

45. Write a general rule for E(X � c) where c is a constant. What happens when you let c ¼ μ, the
expected value of X?

46. Let X be a rv with mean μ. Show that E(X2) � μ2, and that E(X2) > μ2 unless X is a constant.

[Hint: Consider variance.]
47. Refer to Chebyshev’s inequality in this section.

(a) What is the value of the upper bound for k ¼ 2? k ¼ 3? k ¼ 4? k ¼ 5? k ¼ 10?

(b) Compute μ and σ for the distribution of Exercise 13. Then evaluate for the values of k given
in part (a). What does this suggest about the upper bound relative to the corresponding

probability?

(c) Suppose you will win $d if a fair coin flips heads and lose $d if it lands tails. Let X be the

amount you get from a single coin flip. Compute E(X) and SD(X). What is the probability

X will be less than one standard deviation from its mean value?

(d) Let X have three possible values, �1, 0, and 1, with probabilities 1
18
, 8
9
, and 1

18
respectively.

What is P(|X � μ| � 3σ), and how does it compare to the corresponding Chebyshev bound?

(e) Give a distribution for which P(|X � μ| � 5σ) ¼ .04.

48. For a discrete rv X taking values in {0, 1, 2, 3, . . .}, we shall derive the following alternative

formula for the mean:
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μX ¼
X1
x¼0

1� F xð Þ½ �

(a) Suppose for now the range of X is {0, 1, . . . N} for some positive integer N. By regrouping

terms, show that

XN
x¼0

x � p xð Þ½ � ¼ p 1ð Þ þ p
�
2
�þ p

�
3
�þ � � � þ p

�
N
�

þp 2ð Þ þ p
�
3
�þ � � � þ p

�
N
�

þp 3ð Þ þ � � � þ p
�
N
�
⋮

þp Nð Þ
(b) Rewrite each row in the above expression in terms of the cdf of X, and use this to

establish that

XN
x¼0

x � p xð Þ½ � ¼
XN�1

x¼0

1� F xð Þ½ �

(c) Let N!1 in part (b) to establish the desired result, and explain why the resulting formula

works even if the maximum value of X is finite. [Hint: If the largest possible value of X is N,

what does 1 � F(x) equal for x � N?] (This derivation also implies that a discrete rv X has a

finite mean iff the series ∑ [1 � F(x)] converges.)

(d) Let X have the pmf from Examples 2.10 and 2.19. Use the cdf of X and the alternative mean

formula just derived to determine μX.

2.4 The Binomial Distribution

Many experiments conform either exactly or approximately to the following list of requirements:

1. The experiment consists of a sequence of n smaller experiments called trials, where n is fixed in

advance of the experiment.

2. Each trial can result in one of the same two possible outcomes (dichotomous trials), which we

denote by success (S) or failure (F).

3. The trials are independent, so that the outcome on any particular trial does not influence the

outcome on any other trial.

4. The probability of success is constant from trial to trial (homogeneous trials); we denote this

probability by p.

DEFINITION

An experiment for which Conditions 1–4 are satisfied—a fixed number of dichotomous,

independent, homogeneous trials—is called a binomial experiment.
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Example 2.27 The same coin is tossed successively and independently n times. We arbitrarily use

S to denote the outcome H (heads) and F to denote the outcome T (tails). Then this experiment

satisfies Conditions 1–4. Tossing a thumbtack n times, with S ¼ point up and F ¼ point down, also

results in a binomial experiment. ■

Some experiments involve a sequence of independent trials for which there are more than two

possible outcomes on any one trial. A binomial experiment can then be created by dividing the

possible outcomes into two groups.

Example 2.28 The color of pea seeds is determined by a single genetic locus. If the two alleles at this

locus are AA or Aa (the genotype), then the pea will be yellow (the phenotype), and if the allele is aa,

the pea will be green. Suppose we pair off 20 Aa seeds and cross the two seeds in each of the ten pairs

to obtain ten new genotypes. Call each new genotype a success S if it is aa and a failure otherwise.

Then with this identification of S and F, the experiment becomes binomial with n ¼ 10 and p ¼
P(aa genotype). If each member of the pair is equally likely to contribute a or A, then p ¼ P(a) �
P(a) ¼ (1/2)(1/2) ¼ .25. ■

Example 2.29 A student has an iPod playlist containing 50 songs, of which 35 were recorded prior to

the year 2015 and the other 15 were recorded more recently. Suppose the random play function is

used to select five from among these 50 songs, without replacement, for listening during a walk

between classes. Each selection of a song constitutes a trial; we regard a trial as a success if the

selected song was recorded before 2015. Then clearly

P S on first trialð Þ ¼ 35

50
¼ :70

It may surprise you that the (unconditional) chance the second song is a success also equals .70!

To see why, apply the Law of Total Probability:

P S on second trialð Þ ¼ P SS [ FSð Þ
¼ P S on firstð ÞP S on secondjS on firstð Þ

þ P F on firstð ÞP S on secondjF on firstð Þ

¼ 35

50
� 34
49

þ 15

50
� 35
49

¼ 35

50

34

49
þ 15

49

� �
¼ 35

50
¼ :70

Similarly, it can be shown that P(S on ith trial) ¼ .70 for i ¼ 3, 4, 5, so the trials are homogeneous

(Condition 4), with p ¼ .70. However the trials are not independent (Condition 3), because for

example,

P S on fifth trial
��SSSS� � ¼ 31

46
¼ :67 whereas P S on fifth trial

��FFFF� � ¼ 35

46
¼ :76

(This matches our intuitive sense that later song selections “depend on” what was chosen before

them.) The experiment is not binomial because the trials are not independent. In general, if sampling

is without replacement, the experiment will not yield independent trials. If songs had been selected

with replacement, then trials would have been independent, but this might have resulted in the same

song being listened to more than once. ■

Example 2.30 Suppose a state has 500,000 licensed drivers, of whom 400,000 are insured. A sample

of 10 drivers is chosen without replacement. The ith trial is labeled S if the ith driver chosen is
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insured. Although this situation would seem identical to that of Example 2.29, the important

difference is that the size of the population being sampled is very large relative to the sample size.

In this case

P S on second
��S on first

� � ¼ 399, 999

499, 999
� :80000

and

P S on tenth
��S on first nine

� � ¼ 399, 991

499, 991
¼ :799996 � :80000

These calculations suggest that although the trials are not exactly independent, the conditional

probabilities differ so slightly from one another that for practical purposes the trials can be regarded

as independent with constant P(S) ¼ .8. Thus, to a very good approximation, the experiment is

binomial with n ¼ 10 and p ¼ .8. ■

We will use the following convention in deciding whether a “without-replacement” experiment

can be treated as being (approximately) binomial.

RULE

Consider sampling without replacement from a dichotomous population of size N. If the sample

size (number of trials) n is at most 5% of the population size, the experiment can be analyzed as

though it were exactly a binomial experiment.

By “analyzed,” we mean that probabilities based on the binomial experiment assumptions will be

quite close to the actual “without-replacement” probabilities, which are typically more difficult to

calculate. In Example 2.29, n/N ¼ 5/50 ¼ .1 > .05, so the binomial experiment is not a good

approximation, but in Example 2.30, n/N ¼ 10/500,000 < .05.

2.4.1 The Binomial Random Variable and Distribution

In most binomial experiments, it is the total number of successes, rather than knowledge of exactly

which trials yielded successes, that is of interest.

DEFINITION

Given a binomial experiment consisting of n trials, the binomial random variableX associated

with this experiment is defined as

X ¼ the number of successes among the n trials

Suppose, for example, that n ¼ 3. Then there are eight possible outcomes for the experiment:

SSS SSF SFS SFF FSS FSF FFS FFF

From the definition of X, X(SSF) ¼ 2, X(SFF) ¼ 1, and so on. Possible values for X in an n-trial

experiment are x ¼ 0, 1, 2, . . ., n.
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NOTATION

We will write X ~ Bin(n, p) to indicate that X is a binomial rv based on n trials with success

probability p. Because the pmf of a binomial rv X depends on the two parameters n and p, we

denote the pmf by b(x; n, p).

Our next goal is to derive a formula for the binomial pmf. Consider first the case n ¼ 4 for which

each outcome, its probability, and corresponding x value are listed in Table 2.1. For example,

P SSFSð Þ ¼ P Sð Þ � P�S� � P�F� � P�S� independent trials

¼ p � p � 1� pð Þ � p constant P Sð Þ
¼ p3 � 1� pð Þ

In this special case, we wish to determine b(x; 4, p) for x ¼ 0, 1, 2, 3, and 4. For b(3; 4, p), we
identify which of the 16 outcomes yield an x value of 3 and sum the probabilities associated with each

such outcome:

b 3; 4; pð Þ ¼ P FSSSð Þ þ P SFSSð Þ þ P SSFSð Þ þ P SSSFð Þ ¼ 4p3 1� pð Þ
There are four outcomes with x ¼ 3 and each has probability p3(1 � p); the probability depends

only on the number of S’s, not the order of S’s and F’s. So

b 3; 4; pð Þ ¼ number of outcomes

with X ¼ 3

� �
� probability of any particular

outcome with X ¼ 3

� �

Similarly, b(2; 4, p) ¼ 6p2(1 � p)2, which is also the product of the number of outcomes with X ¼
2 and the probability of any such outcome.

In general,

b x; n; pð Þ ¼ number of sequences of

length n consisting of x S’s

� �
� probability of any

particular such sequence

� �

Since the ordering of S’s and F’s is not important, the second factor in the previous equation is

px(1 � p)n�x (for example, the first x trials resulting in S and the last n � x resulting in F). The first

factor is the number of ways of choosing x of the n trials to be S’s—that is, the number of

combinations of size x that can be constructed from n distinct objects (trials here).

Table 2.1 Outcomes and probabilities for a binomial experiment with four trials

Outcome x Probability Outcome x Probability

SSSS 4 p4 FSSS 3 p3(1 � p)

SSSF 3 p3(1 � p) FSSF 2 p2(1 � p)2

SSFS 3 p3(1 � p) FSFS 2 p2(1 � p)2

SSFF 2 p2(1 � p)2 FSFF 1 p(1 � p)3

SFSS 3 p3(1 � p) FFSS 2 p2(1 � p)2

SFSF 2 p2(1 � p)2 FFSF 1 p(1 � p)3

SFFS 2 p2(1 � p)2 FFFS 1 p(1 � p)3

SFFF 1 p(1 � p)3 FFFF 0 (1 � p)4
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THEOREM

b x; n; pð Þ ¼
n
x

� �
px 1� pð Þn�x x ¼ 0, 1, 2, . . . , n

0 otherwise

8<
:

Example 2.31 Each of six randomly selected cola drinkers is given a glass containing cola S and one

containing cola F. The glasses are identical in appearance except for a code on the bottom to identify

the cola. Suppose there is actually no tendency among cola drinkers to prefer one cola to the other.

Then p¼ P(a selected individual prefers S)¼ .5, so with X¼ the number among the six who prefer S,

X ~ Bin(6, .5).

Thus

P X ¼ 3ð Þ ¼ b 3; 6; :5ð Þ ¼ 6

3

� �
:5ð Þ3 :5ð Þ3 ¼ 20 :5ð Þ6 ¼ :313

The probability that at least three prefer S is

P X � 3ð Þ ¼
X6
x¼3

b x; 6; :5ð Þ ¼
X6
x¼3

6

x

� �
:5ð Þx :5ð Þ6�x ¼ :656

and the probability that at most one prefers S is

P X � 1ð Þ ¼
X1
x¼0

b x; 6; :5ð Þ ¼ :109 ■

2.4.2 Computing Binomial Probabilities

Even for a relatively small value of n, the computation of binomial probabilities can be tedious.

Software and statistical tables are both available for this purpose; both are typically in terms of the cdf

F(x) ¼ P(X � x) of the distribution, either in lieu of or in addition to the pmf. Various other

probabilities can then be calculated using the proposition on cdfs from Sect. 2.2.

NOTATION

For X ~ Bin(n, p), the cdf will be denoted by

B x; n; pð Þ ¼ P X � xð Þ ¼
Xx
y¼0

b y; n; pð Þ x ¼ 0, 1, . . . , n

Table 2.2 at the end of this section provides the code for performing binomial calculations in both

Matlab and R. In addition, Appendix Table A.1 tabulates the binomial cdf for n ¼ 5, 10, 15, 20, 25 in

combination with selected values of p.

Example 2.32 Suppose that 20% of all copies of a particular textbook fail a binding strength test. Let

X denote the number among 15 randomly selected copies that fail the test. Then X has a binomial

distribution with n ¼ 15 and p ¼ .2.
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(a) The probability that at most 8 fail the test is

P X � 8ð Þ ¼
X8
y¼0

b y; 15; :2ð Þ ¼ B 8; 15; :2ð Þ

This is found at the intersection of the p ¼ .2 column and x ¼ 8 row in the n ¼ 15 part of

Table A.1: B(8; 15, .2) ¼ .999. In Matlab, we may type binocdf(8,15,.2); in R, the

command is pbinom(8,15,.2).

(b) The probability that exactly 8 fail is P X ¼ 8ð Þ ¼ b 8; 15; :2ð Þ ¼ 15

8

� �
:2ð Þ8 :8ð Þ7 ¼ :0034. We

can calculate this in Matlab or R with binopdf(8,15,.2)and dbinom(8,15,.2),

respectively. To use Table A.1, write

P X ¼ 8ð Þ ¼ P X � 8ð Þ � P X � 7ð Þ ¼ B 8; 15; :2ð Þ � B 7; 15; :2ð Þ
which is the difference between two consecutive entries in the p ¼ .2 column. The result is

.999 � .996 ¼ .003.

(c) The probability that at least 8 fail is P(X � 8) ¼ 1 � P(X � 7) ¼ 1 � B(7; 15, .2). The cdf

may be evaluated using Matlab or R as above, or by looking up the entry in the x ¼ 7 row of the

p ¼ .2 column in Table A.1. In any case, we find P(X � 8) ¼ 1 � .996 ¼ .004.

(d) Finally, the probability that between 4 and 7, inclusive, fail is

P 4 � X � 7ð Þ ¼ P X ¼ 4, 5, 6, or 7ð Þ ¼ P
�
X � 7

�� P
�
X � 3

�
¼ B 7; 15; :2ð Þ � B

�
3; 15, :2

� ¼ :996� :648 ¼ :348

Notice that this latter probability is the difference between the cdf values at x ¼ 7 and x ¼ 3, not

x ¼ 7 and x ¼ 4. ■

Example 2.33 An electronics manufacturer claims that at most 10% of its power supply units need

service during the warranty period. To investigate this claim, technicians at a testing laboratory

purchase 20 units and subject each one to accelerated testing to simulate use during the warranty

period. Let p denote the probability that a power supply unit needs repair during the period (i.e., the

proportion of all such units that need repair). The laboratory technicians must decide whether the data

resulting from the experiment supports the claim that p � .10. Let X denote the number among the

20 sampled that need repair, so X ~ Bin(20, p). Consider the decision rule

Reject the claim that p � .10 in favor of the conclusion that p > .10 if x � 5 (where x is the

observed value of X), and consider the claim plausible if x � 4

The probability that the claim is rejected when p ¼ .10 (an incorrect conclusion) is

P X � 5 when p ¼ :10ð Þ ¼ 1� B 4; 20; :1ð Þ ¼ 1� :957 ¼ :043

The probability that the claim is not rejected when p ¼ .20 (a different type of incorrect

conclusion) is

P X � 4 when p ¼ :2ð Þ ¼ B 4; 20; :2ð Þ ¼ :630

The first probability is rather small, but the second is intolerably large. When p ¼ .20, so that the

manufacturer has grossly understated the percentage of units that need service, and the stated decision
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rule is used, 63% of all samples of size 20 will result in the manufacturer’s claim being judged

plausible!

One might recognize that the probability of this second type of erroneous conclusion could be

made smaller by changing the cutoff value 5 in the decision rule to something else. However,

although replacing 5 by a smaller number would indeed yield a probability smaller than .630, the

other probability would then increase. The only way to make both “error probabilities” small is to

base the decision rule on an experiment involving many more units (i.e., to increase n). ■

2.4.3 The Mean and Variance of a Binomial Random Variable

For n ¼ 1, the binomial distribution becomes the Bernoulli distribution. From Example 2.17, the

mean value of a Bernoulli variable is μ ¼ p, so the expected number of S’s on any single trial is p.

Since a binomial experiment consists of n trials, intuition suggests that for X ~ Bin(n, p), E(X) ¼ np,

the product of the number of trials and the probability of success on a single trial. The expression for

Var(X) is not so obvious.

PROPOSITION

If X ~ Bin(n, p), then E(X) ¼ np, Var(X) ¼ np(1 � p) ¼ npq, and SD Xð Þ ¼ ffiffiffiffiffiffiffiffi
npq

p
(where

q ¼ 1 � p).

Thus, calculating the mean and variance of a binomial rv does not necessitate evaluating

summations of the sort we employed in Sect. 2.3. The proof of the result for E(X) is sketched in

Exercise 74.

Example 2.34 If 75% of all purchases at a store are made with a credit card and X is the number

among ten randomly selected purchases made with a credit card, then X ~ Bin(10, .75). Thus E(X) ¼
np ¼ (10)(.75) ¼ 7.5, Var(X) ¼ np(1 � p) ¼ 10(.75)(.25) ¼ 1.875, and σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1:875
p ¼ 1:37. Again,

even though X can take on only integer values, E(X) need not be an integer. If we perform a large

number of independent binomial experiments, each with n ¼ 10 trials and p ¼ .75, then the average

number of S’s per experiment will be close to 7.5. ■

An important application of the binomial distribution is to estimating the precision of simulated

probabilities, as in Sect. 1.6. The relative frequency definition of probability justified defining an

estimate of a probability P(A) by P̂ Að Þ ¼ X=n, where n is the number of runs of the simulation

program and X equals the number of runs in which event A occurred. Assuming the runs of our

simulation are independent (and they usually are), the rv X has a binomial distribution with

parameters n and p ¼ P(A). From the preceding proposition and the rescaling properties of mean

and standard deviation, we have

E P̂ Að Þ� � ¼ E
1

n
X

� �
¼ 1

n
� E Xð Þ ¼ 1

n
npð Þ ¼ p ¼ P Að Þ

Thus we expect the value of our estimate to coincide with the probability being estimated, in the

sense that there is no reason for P̂ Að Þ to be systematically higher or lower than P(A). Also,
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SD P̂ Að Þ� � ¼ SD
1

n
X

� �
¼ 1

n

����
���� � SD Xð Þ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Að Þ 1� P Að Þ½ �

n

r
ð2:14Þ

Expression (2.14) is called the standard error of P̂ Að Þ (essentially a synonym for standard

deviation) and indicates the amount by which an estimate P̂ Að Þ “typically” varies from the true

probability P(A). However, this expression isn’t of much use in practice: we most often simulate a

probability when P(A) is unknown, which prevents us from using Eq. (2.14). As a solution, we simply

substitute the estimate P̂ ¼ P̂ Að Þ into this expression and get

SD P̂ Að Þ� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ 1� P̂
� �

n

s

This is the estimated standard error formula (1.8) given in Sect. 1.6. Very importantly, this

estimated standard error gets closer to 0 as the number of runs, n, in the simulation increases.

2.4.4 Binomial Calculations with Software

Many software packages, including Matlab and R, have built-in functions to evaluate both the pmf

and cdf of the binomial distribution (and many other named distributions). Table 2.2 summarizes the

relevant code in both packages. The use of these functions was illustrated in Example 2.32.

2.4.5 Exercises: Section 2.4 (49–74)

49. Determine whether each of the following rvs has a binomial distribution. If it does, identify the

values of the parameters n and p (if possible).

(a) X ¼ the number of ⚃s in 10 rolls of a fair die

(b) X ¼ the number of multiple-choice questions a student gets right on a 40-question test,

when each question has four choices and the student is completely guessing

(c) X ¼ the same as (b), but half the questions have four choices and the other half have three

(d) X ¼ the number of women in a random sample of 8 students, from a class comprising

20 women and 15 men

(e) X ¼ the total weight of 15 randomly selected apples

(f) X ¼ the number of apples, out of a random sample of 15, that weigh more than 150 g

50. Compute the following binomial probabilities directly from the formula for b(x; n, p):
(a) b(3; 8, .6)

(b) b(5; 8, .6)

(c) P(3 � X � 5) when n ¼ 8 and p ¼ .6

(d) P(1 � X) when n ¼ 12 and p ¼ .1

Table 2.2 Binomial probability calculations in Matlab and R

Function: pmf cdf

Notation: b(x; n, p) B(x; n, p)

Matlab: binopdf(x, n, p) binocdf(x, n, p)

R: dbinom(x, n, p) pbinom(x, n, p)

102 2 Discrete Random Variables and Probability Distributions

http://dx.doi.org/10.1007/978-3-319-52401-6_1#Sec28


51. Use Appendix Table A.1 or software to obtain the following probabilities:

(a) B(4; 10, .3)
(b) b(4; 10, .3)

(c) b(6; 10, .7)

(d) P(2 � X � 4) when X ~ Bin(10, .3)

(e) P(2 � X) when X ~ Bin(10, .3)

(f) P(X � 1) when X ~ Bin(10, .7)

(g) P(2 < X < 6) when X ~ Bin(10, .3)

52. When circuit boards used in the manufacture of DVD players are tested, the long-run percentage

of defectives is 5%. Let X ¼ the number of defective boards in a random sample of size n ¼
25, so X ~ Bin(25, .05).

(a) Determine P(X � 2).

(b) Determine P(X � 5).

(c) Determine P(1 � X � 4).

(d) What is the probability that none of the 25 boards is defective?

(e) Calculate the expected value and standard deviation of X.
53. A company that produces fine crystal knows from experience that 10% of its goblets have

cosmetic flaws and must be classified as “seconds.”

(a) Among six randomly selected goblets, how likely is it that only one is a second?

(b) Among six randomly selected goblets, what is the probability that at least two are seconds?

(c) If goblets are examined one by one, what is the probability that at most five must be

selected to find four that are not seconds?

54. Suppose that only 25% of all drivers come to a complete stop at an intersection having flashing

red lights in all directions when no other cars are visible. What is the probability that, of

20 randomly chosen drivers coming to an intersection under these conditions,

(a) At most 6 will come to a complete stop?

(b) Exactly 6 will come to a complete stop?

(c) At least 6 will come to a complete stop?

55. Refer to the previous exercise.

(a) What is the expected number of drivers among the 20 that come to a complete stop?

(b) What is the standard deviation of the number of drivers among the 20 that come to a

complete stop?

(c) What is the probability that the number of drivers among these 20 that come to a complete

stop differs from the expected number by more than 2 standard deviations?

56. Suppose that 30% of all students who have to buy a text for a particular course want a new copy

(the successes!), whereas the other 70% want a used copy. Consider randomly selecting

25 purchasers.

(a) What are the mean value and standard deviation of the number who want a new copy of the

book?

(b) What is the probability that the number who want new copies is more than two standard

deviations away from the mean value?

(c) The bookstore has 15 new copies and 15 used copies in stock. If 25 people come in one by

one to purchase this text, what is the probability that all 25 will get the type of book they

want from current stock? [Hint: Let X¼ the number who want a new copy. For what values

of X will all 25 get what they want?]

(d) Suppose that new copies cost $100 and used copies cost $70. Assume the bookstore has

50 new copies and 50 used copies. What is the expected value of total revenue from the sale

of the next 25 copies purchased? [Hint: Let h(X)¼ the revenue when X of the 25 purchasers

want new copies. Express this as a linear function.]
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57. Exercise 30 (Sect. 2.3) gave the pmf of Y, the number of traffic citations for a randomly selected

individual insured by a company. What is the probability that among 15 randomly chosen such

individuals

(a) At least 10 have no citations?

(b) Fewer than half have at least one citation?

(c) The number that have at least one citation is between 5 and 10, inclusive?

58. A particular type of tennis racket comes in a midsize version and an oversize version. Sixty

percent of all customers at a store want the oversize version.

(a) Among ten randomly selected customers who want this type of racket, what is the probabil-

ity that at least six want the oversize version?

(b) Among ten randomly selected customers, what is the probability that the number who want

the oversize version is within 1 standard deviation of the mean value?

(c) The store currently has seven rackets of each version. What is the probability that all of the

next ten customers who want this racket can get the version they want from current stock?

59. Twenty percent of all telephones of a certain type are submitted for service while under warranty.

Of these, 60% can be repaired, whereas the other 40% must be replaced with new units. If a

company purchases ten of these telephones, what is the probability that exactly two will end up

being replaced under warranty?

60. The College Board reports that 2% of the two million high school students who take the SAT

each year receive special accommodations because of documented disabilities (Los Angeles

Times, July 16, 2002). Consider a random sample of 25 students who have recently taken the test.

(a) What is the probability that exactly 1 received a special accommodation?

(b) What is the probability that at least 1 received a special accommodation?

(c) What is the probability that at least 2 received a special accommodation?

(d) What is the probability that the number among the 25 who received a special accommoda-

tion is within 2 standard deviations of the number you would expect to be accommodated?

(e) Suppose that a student who does not receive a special accommodation is allowed 3 hours for

the exam, whereas an accommodated student is allowed 4.5 hours. What would you expect

the average time allowed the 25 selected students to be?

61. Suppose that 90% of all batteries from a supplier have acceptable voltages. A certain type of

flashlight requires two type-D batteries, and the flashlight will work only if both its batteries have

acceptable voltages. Among ten randomly selected flashlights, what is the probability that at least

nine will work? What assumptions did you make in the course of answering the question posed?

62. A k-out-of-n system functions provided that at least k of the n components function. Consider

independently operating components, each of which functions (for the needed duration) with

probability .96.

(a) In a 3-component system, what is the probability that exactly two components function?

(b) What is the probability a 2-out-of-3 system works?

(c) What is the probability a 3-out-of-5 system works?

(d) What is the probability a 4-out-of-5 system works?

(e) What does the component probability (previously .96) need to equal so that the 4-out-of-5

system will function with probability at least .9999?

63. Bit transmission errors between computers sometimes occur, where one computer sends a 0 but

the other computer receives a 1 (or vice versa). Because of this, the computer sending a message

repeats each bit three times, so a 0 is sent as 000 and a 1 as 111. The receiving computer

“decodes” each triplet by majority rule: whichever number, 0 or 1, appears more often in a triplet

is declared to be the intended bit. For example, both 000 and 100 are decoded as 0, while 101 and
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011 are decoded as 1. Suppose that 6% of bits are switched (0 to 1, or 1 to 0) during transmission

between two particular computers, and that these errors occur independently during transmission.

(a) Find the probability that a triplet is decoded incorrectly by the receiving computer.

(b) Using your answer to part (a), explain how using triplets reduces communication errors.

(c) How does your answer to part (a) change if each bit is repeated five times (instead of three)?

(d) Imagine a 25 kilobit message (i.e., one requiring 25,000 bits to send). What is the expected

number of errors if there is no bit repetition implemented? If each bit is repeated three

times?

64. A very large batch of components has arrived at a distributor. The batch can be characterized as

acceptable only if the proportion of defective components is at most.10. The distributor decides

to randomly select 10 components and to accept the batch only if the number of defective

components in the sample is at most 2.

(a) What is the probability that the batch will be accepted when the actual proportion of

defectives is .01? .05? .10? .20? .25?

(b) Let p denote the actual proportion of defectives in the batch. A graph of P(batch is accepted)

as a function of p, with p on the horizontal axis and P(batch is accepted) on the vertical axis,
is called the operating characteristic curve for the acceptance sampling plan. Use the results

of part (a) to sketch this curve for 0 � p � 1.

(c) Repeat parts (a) and (b) with “1” replacing “2” in the acceptance sampling plan.

(d) Repeat parts (a) and (b) with “15” replacing “10” in the acceptance sampling plan.

(e) Which of the three sampling plans, that of part (a), (c), or (d), appears most satisfactory, and

why?

65. An ordinance requiring that a smoke detector be installed in all previously constructed houses has

been in effect in a city for 1 year. The fire department is concerned that many houses remain

without detectors. Let p¼ the true proportion of such houses having detectors, and suppose that a

random sample of 25 homes is inspected. If the sample strongly indicates that fewer than 80% of

all houses have a detector, the fire department will campaign for a mandatory inspection program.

Because of the costliness of the program, the department prefers not to call for such inspections

unless sample evidence strongly argues for their necessity. Let X denote the number of homes

with detectors among the 25 sampled. Consider rejecting the claim that p � .8 if X � 15.

(a) What is the probability that the claim is rejected when the actual value of p is .8?

(b) What is the probability of not rejecting the claim when p ¼ .7? When p ¼ .6?

(c) How do the “error probabilities” of parts (a) and (b) change if the value 15 in the decision

rule is replaced by 14?

66. A toll bridge charges $1.00 for passenger cars and $2.50 for other vehicles. Suppose that during

daytime hours, 60% of all vehicles are passenger cars. If 25 vehicles cross the bridge during a

particular daytime period, what is the resulting expected toll revenue? [Hint: Let X ¼ the number

of passenger cars; then the toll revenue h(X) is a linear function of X.]

67. A student who is trying to write a paper for a course has a choice of two topics, A and B. If topic A

is chosen, the student will order two books through interlibrary loan, whereas if topic B is chosen,

the student will order four books. The student believes that a good paper necessitates receiving

and using at least half the books ordered for either topic chosen. If the probability that a book

ordered through interlibrary loan actually arrives in time is .9 and books arrive independently of

one another, which topic should the student choose to maximize the probability of writing a good

paper? What if the arrival probability is only .5 instead of .9?

68. Twelve jurors are randomly selected from a large population. Each juror arrives at her or his

conclusion about the case before the jury independently of the other jurors.
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(a) In a criminal case, all 12 jurors must agree on a verdict. Let p denote the probability that a

randomly selected member of the population would reach a guilty verdict based on the

evidence presented (so a proportion 1� pwould reach “not guilty”). What is the probability,

in terms of p, that the jury reaches a unanimous verdict one way or the other?

(b) For what values of p is the probability in part (a) the highest? For what value of p is the

probability in (a) the lowest? Explain why this makes sense.

(c) In most civil cases, only a nine-person majority is required to decide a verdict. That is, if

nine or more jurors favor the plaintiff, then the plaintiff wins; if at least nine jurors side with

the defendant, then the defendant wins. Let p denote the probability that someone would

side with the plaintiff based on the evidence. What is the probability, in terms of p, that the
jury reaches a verdict one way or the other? How does this compare with your answer to part

(a)?

69. Customers at a gas station pay with a credit card (A), debit card (B), or cash (C). Assume that

successive customers make independent choices, with P(A) ¼ .5, P(B) ¼ .2, and P(C) ¼ .3.

(a) Among the next 100 customers, what are the mean and variance of the number who pay with

a debit card? Explain your reasoning.

(b) Answer part (a) for the number among the 100 who don’t pay with cash.

70. An airport limousine can accommodate up to four passengers on any one trip. The company will

accept a maximum of six reservations for a trip, and a passenger must have a reservation. From

previous records, 20% of all those making reservations do not appear for the trip. In the following

questions, assume independence, but explain why there could be dependence.

(a) If six reservations are made, what is the probability that at least one individual with a

reservation cannot be accommodated on the trip?

(b) If six reservations are made, what is the expected number of available places when the

limousine departs?

(c) Suppose the probability distribution of the number of reservations made is given in the

accompanying table.

Number of reservations 3 4 5 6

Probability .1 .2 .3 .4

Let X denote the number of passengers on a randomly selected trip. Obtain the probability mass

function of X.
71. Let X be a binomial random variable with fixed n.

(a) Are there values of p (0 � p � 1) for which Var(X) ¼ 0? Explain why this is so.

(b) For what value of p is Var(X) maximized? [Hint: Either graph Var(X) as a function of p or

else take a derivative.]

72. (a) Show that b(x; n, 1 � p) ¼ b(n � x; n, p).

(b) Show that B(x; n, 1 � p) ¼ 1 � B(n � x � 1; n, p). [Hint: At most x S’s is equivalent to at

least (n � x) F’s.]
(c) What do parts (a) and (b) imply about the necessity of including values of p greater than .5 in

Table A.1?

73. Refer to Chebyshev’s inequality given in Sect. 2.3. Calculate P(|X � μ| � kσ) for k ¼ 2 and

k ¼ 3 when X ~ Bin(20, .5), and compare to the corresponding upper bounds. Repeat this for

X ~ Bin(20, .75).

74. Show that E(X) ¼ np when X is a binomial random variable. [Hint: Express E(X) as a sum with

lower limit x¼ 1. Then factor out np, let y¼ x� 1 so that the sum is from y¼ 0 to y¼ n� 1, and

show that the sum equals 1.]
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2.5 The Poisson Distribution

The binomial distribution was derived by starting with an experiment consisting of trials and applying

the laws of probability to various outcomes of the experiment. There is no simple experiment on

which the Poisson distribution is based, although we will shortly describe how it can be obtained from

the binomial distribution by certain limiting operations.

DEFINITION

A random variable X is said to have a Poisson distribution with parameter μ (μ > 0) if the pmf

of X is

p x; μð Þ ¼ e�μμx

x!
x ¼ 0, 1, 2, . . .

We shall see shortly that μ is in fact the expected value of X, so the notation here is consistent with

our previous use of the symbol μ. Because μmust be positive, p(x; μ)> 0 for all possible x values. The
fact that ∑x ¼ 0

1 p(x; μ) ¼ 1 is a consequence of the Maclaurin infinite series expansion of eμ, which

appears in most calculus texts:

eμ ¼ 1þ μþ μ2

2!
þ μ3

3!
þ � � � ¼

X1
x¼0

μx

x!
ð2:15Þ

If the two extreme terms in Eq. (2.15) are multiplied by e�μ and then e�μ is placed inside the

summation, the result is

1 ¼
X1
x¼0

e�μμx

x!

which shows that p(x; μ) fulfills the second condition necessary for specifying a pmf.

Example 2.35 Let X denote the number of creatures of a particular type captured in a trap during a

given time period. Suppose that X has a Poisson distribution with μ ¼ 4.5, so on average traps will

contain 4.5 creatures. [The article “Dispersal Dynamics of the Bivalve Gemma gemma in a Patchy

Environment” (Ecol. Monogr., 1995: 1–20) suggests this model; the bivalve Gemma gemma is a

small clam.] The probability that a trap contains exactly five creatures is

P X ¼ 5ð Þ ¼ e�4:5 4:5ð Þ5
5!

¼ :1708

The probability that a trap has at most five creatures is

P X � 5ð Þ ¼
X5
x¼0

e�4:5 4:5ð Þx
x!

¼ e�4:5 1þ 4:5þ 4:52

2!
þ � � � þ 4:55

5!

� 	
¼ :7029

■

2.5.1 The Poisson Distribution as a Limit

The rationale for using the Poisson distribution in many situations is provided by the following

proposition.
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PROPOSITION

Suppose that in the binomial pmf b(x; n, p) we let n ! 1 and p ! 0 in such a way that np

approaches a value μ > 0. Then b(x; n, p) ! p(x; μ).

Proof Begin with the binomial pmf:

b x; n; pð Þ ¼ n
x

� �
px 1� pð Þn�x ¼ n!

x! n� xð Þ! p
x 1� pð Þn�x

¼ n � n� 1ð Þ � � � � � n� xþ 1ð Þ
x!

px 1� pð Þn�x

Now multiply both the numerator and denominator by nx:

b x; n; pð Þ ¼ n

n

n� 1

n
� � � n� xþ 1

n
� npð Þx

x!
� 1� pð Þn
1� pð Þx

Taking the limit as n ! 1 and p ! 0 with np ! μ,

lim
n!1 b x; n; pð Þ ¼ 1 � 1� � �1 � μ

x

x!
� lim

n!1
1� np=nð Þn

1

� �

The limit on the right can be obtained from the calculus theorem that says the limit of (1 � an/n)
n

is e�a if an ! a. Because np ! μ,

lim
n!1 b x; n; pð Þ ¼ μx

x!
� lim
n!1 1� np

n

 �n
¼ μxe�μ

x!
¼ p x; μð Þ

■

According to the proposition, in any binomial experiment for which the number of trials n is large
and the success probability p is small, b(x; n, p) � p(x; μ) where μ ¼ np. It is interesting to note that

Siméon Poisson discovered the distribution that bears his name by this approach in the 1830s.

Table 2.3 shows the Poisson distribution for μ ¼ 3 along with three binomial distributions with

np ¼ 3, and Fig. 2.8 (from R) plots the Poisson along with the first two binomial distributions.

The approximation is of limited use for n ¼ 30, but of course the accuracy is better for n ¼ 100 and

much better for n ¼ 300.

Table 2.3 Comparing the Poisson and three binomial distributions

x n ¼ 30, p ¼ .1 n ¼ 100, p ¼ .03 n ¼ 300, p ¼ .01 Poisson, μ ¼ 3

0 0.042391 0.047553 0.049041 0.049787

1 0.141304 0.147070 0.148609 0.149361

2 0.227656 0.225153 0.224414 0.224042

3 0.236088 0.227474 0.225170 0.224042

4 0.177066 0.170606 0.168877 0.168031

5 0.102305 0.101308 0.100985 0.100819

6 0.047363 0.049610 0.050153 0.050409

7 0.018043 0.020604 0.021277 0.021604

8 0.005764 0.007408 0.007871 0.008102

9 0.001565 0.002342 0.002580 0.002701

10 0.000365 0.000659 0.000758 0.000810
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Example 2.36 Suppose you have a 4-megabit modem (4,000,000 bits/s) with bit error probability

10�8. Assume bit errors occur independently, and assume your bit rate stays constant at 4 Mbps. What

is the probability of exactly 3 bit errors in the next minute? Of at most 3 bit errors in the next minute?

Define a random variable X ¼ the number of bit errors in the next minute. From the description,

X satisfies the conditions of a binomial distribution; specifically, since a constant bit rate of 4 Mbps

equates to 240,000,000 bits transmitted per minute, X ~ Bin(240000000, 10�8). Hence, the probabil-

ity of exactly three bit errors in the next minute is

P X ¼ 3ð Þ ¼ b 3; 240000000; 10�8
� � ¼ 240000000

3

� �
10�8
� �3

1� 10�8
� �239999997

For a variety of reasons, some calculators will struggle with this computation. The expression for

the chance of at most 3 bit errors, P(X� 3), is even worse. (The inability to compute such expressions

in the nineteenth century, even with modest values of n and p, was Poisson’s motive to derive an

easily computed approximation.)

We may approximate these binomial probabilities using the Poisson distribution with μ ¼ np ¼
240000000(10�8) ¼ 2.4. Then

P X ¼ 3ð Þ � p 3; 2:4ð Þ ¼ e�2:42:43

3!
¼ :20901416

Similarly, the probability of at most 3 bit errors in the next minute is approximated by

P X � 3ð Þ �
X3
x¼0

p x; 2:4ð Þ ¼
X3
x¼0

e�2:42:4x

x!
¼ :77872291

Using modern software, the exact probabilities (i.e., using the binomial model) are .2090141655

and .7787229106, respectively. The Poisson approximations agree to eight decimal places and are

clearly more computationally tractable. ■

Many software packages will compute both p(x; μ) and the corresponding cdf P(x; μ) for specified
values of x and μ upon request; the relevant Matlab and R functions appear in Table 2.4 at the end of

ox
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ox
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this section. Appendix Table A.2 exhibits the cdf P(x; μ) for μ ¼ .1, .2, . . ., 1, 2, . . ., 10, 15, and 20.

For example, if μ¼ 2, then P(X� 3)¼ P(3; 2)¼ .857, whereas P(X¼ 3)¼ P(3; 2)� P(2; 2)¼ .180.

2.5.2 The Mean and Variance of a Poisson Random Variable

Since b(x; n, p)! p(x; μ) as n!1, p! 0, np! μ, one might guess that the mean and variance of a

binomial variable approach those of a Poisson variable. These limits are np ! μ and np(1 � p) ! μ.

PROPOSITION

If X has a Poisson distribution with parameter μ, then E(X) ¼ Var(X) ¼ μ.

These results can also be derived directly from the definitions of mean and variance (see Exercise

88 for the mean).

Example 2.37 (Example 2.35 continued) Both the expected number of creatures trapped and the

variance of the number trapped equal 4.5, and σX ¼ ffiffiffi
μ

p ¼ ffiffiffiffiffiffiffi
4:5

p ¼ 2:12. ■

2.5.3 The Poisson Process

A very important application of the Poisson distribution arises in connection with the occurrence of

events of a particular type over time. As an example, suppose that starting from a time point that we

label t ¼ 0, we are interested in counting the number of radioactive pulses recorded by a Geiger

counter. If we make certain assumptions2 about the way in which pulses occur—chiefly, that the

number of pulses grows roughly linearly with time—then it can be shown that the number of pulses in

any time interval of length t can be modeled by a Poisson distribution with mean μ ¼ λt for an
appropriate positive constant λ. Since the expected number of pulses in an interval of length t is λt, the
expected number in an interval of length 1 is λ. Thus λ is the long run number of pulses per unit

of time.

If we replace “pulse” by “event,” then the number of events occurring during a fixed time interval

of length t has a Poisson distribution with parameter λt. Any process that has this distribution is called
a Poisson process, and λ is called the rate of the process. Other examples of situations giving rise to a

Poisson process include monitoring the status of a computer system over time, with breakdowns

constituting the events of interest; recording the number of accidents in an industrial facility over

time; answering 911 calls at a particular location; and observing the number of cosmic-ray showers

from an observatory.

Example 2.36 hints at why this might be reasonable: if we “digitize” time—that is, divide time into

discrete pieces, such as transmitted bits—and look at the number of the resulting time pieces that

include an event, a binomial model is often applicable. If the number of time pieces is very large and

the success probability close to zero, which would occur if we divided a fixed time frame into ever-

smaller pieces, then we may invoke the Poisson approximation from earlier in this section.

2 In Sect. 7.5, we present the formal assumptions required in this situation and derive the Poisson distribution that results

from these assumptions.
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Example 2.38 Suppose pulses arrive at the Geiger counter at an average rate of 6 per minute, so that

λ¼ 6. To find the probability that in a 30-s interval at least one pulse is received, note that the number

of pulses in such an interval has a Poisson distribution with parameter λt ¼ 6(.5) ¼ 3 (.5 min is used

because λ is expressed as a rate per minute). Then with X ¼ the number of pulses received in the 30-s

interval,

P X � 1ð Þ ¼ 1� P X ¼ 0ð Þ ¼ 1� e�330

0!
¼ :950

In a 1-h interval (t ¼ 60), the expected number of pulses is μ ¼ λt ¼ 6(60) ¼ 360, with a standard

deviation of σ ¼ ffiffiffi
μ

p ¼ ffiffiffiffiffiffiffiffi
360

p ¼ 18:97. According to this model, in a typical hour we will observe

360 	 19 pulses arrive at the Geiger counter. ■

Instead of observing events over time, consider observing events of some type that occur in a two-

or three-dimensional region. For example, we might select on a map a certain region R of a forest, go

to that region, and count the number of trees. Each tree would represent an event occurring at a

particular point in space. Under appropriate assumptions (see Sect. 7.5), it can be shown that the

number of events occurring in a region R has a Poisson distribution with parameter λ � a(R), where
a(R) is the area of R. The quantity λ is the expected number of events per unit area or volume.

2.5.4 Poisson Calculations with Software

Table 2.4 gives the Matlab and R commands for calculating Poisson probabilities.

2.5.5 Exercises: Section 2.5 (75–89)

75. Let X, the number of flaws on the surface of a randomly selected carpet of a particular type, have

a Poisson distribution with parameter μ ¼ 5. Use software or Appendix Table A.2 to compute

the following probabilities:

(a) P(X � 8)

(b) P(X ¼ 8)

(c) P(9 � X)
(d) P(5 � X � 8)

(e) P(5 < X < 8)

76. Let X be the number of material anomalies occurring in a particular region of an aircraft

gas-turbine disk. The article “Methodology for Probabilistic Life Prediction of Multiple-

Anomaly Materials” (Amer. Inst. of Aeronautics and Astronautics J., 2006: 787–793) proposes

a Poisson distribution for X. Suppose μ ¼ 4.

(a) Compute both P(X � 4) and P(X < 4).

(b) Compute P(4 � X � 8).

Table 2.4 Poisson

probability calculations
Function: pmf cdf

Notation: p(x; μ) P(x; μ)

Matlab: poisspdf(x, μ) poisscdf(x, μ)

R: dpois(x, μ) ppois(x, μ)
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(c) Compute P(8 � X).

(d) What is the probability that the observed number of anomalies exceeds the expected

number by no more than one standard deviation?

77. Suppose that the number of drivers who travel between a particular origin and destination during

a designated time period has a Poisson distribution with parameter μ ¼ 20 (suggested in the

article “Dynamic Ride Sharing: Theory and Practice,” J. of Transp. Engr., 1997: 308–312).

What is the probability that the number of drivers will

(a) Be at most 10?

(b) Exceed 20?

(c) Be between 10 and 20, inclusive? Be strictly between 10 and 20?

(d) Be within 2 standard deviations of the mean value?

78. Consider writing onto a computer disk and then sending it through a certifier that counts the

number of missing pulses. Suppose this number X has a Poisson distribution with parameter μ¼
.2. (Suggested in “Average Sample Number for Semi-Curtailed Sampling Using the Poisson

Distribution,” J. Qual. Tech., 1983: 126–129.)

(a) What is the probability that a disk has exactly one missing pulse?

(b) What is the probability that a disk has at least two missing pulses?

(c) If two disks are independently selected, what is the probability that neither contains a

missing pulse?

79. An article in the Los Angeles Times (Dec. 3, 1993) reports that 1 in 200 people carry the

defective gene that causes inherited colon cancer. In a sample of 1000 individuals, what is the

approximate distribution of the number who carry this gene? Use this distribution to calculate

the approximate probability that

(a) Between 5 and 8 (inclusive) carry the gene.

(b) At least 8 carry the gene.

80. Suppose that only .10% of all computers of a certain type experience CPU failure during the

warranty period. Consider a sample of 10,000 computers.

(a) What are the expected value and standard deviation of the number of computers in the

sample that have the defect?

(b) What is the (approximate) probability that more than 10 sampled computers have the

defect?

(c) What is the (approximate) probability that no sampled computers have the defect?

81. If a publisher of nontechnical books takes great pains to ensure that its books are free of

typographical errors, so that the probability of any given page containing at least one such

error is .005 and errors are independent from page to page, what is the probability that one of its

400-page novels will contain exactly one page with errors? At most three pages with errors?

82. In proof testing of circuit boards, the probability that any particular diode will fail is .01.

Suppose a circuit board contains 200 diodes.

(a) How many diodes would you expect to fail, and what is the standard deviation of the

number that are expected to fail?

(b) What is the (approximate) probability that at least four diodes will fail on a randomly

selected board?

(c) If five boards are shipped to a particular customer, how likely is it that at least four of them

will work properly? (A board works properly only if all its diodes work.)

83. The article “Expectation Analysis of the Probability of Failure for Water Supply Pipes”

(J. Pipeline Syst. Eng. Pract. 2012.3:36–46) recommends using a Poisson process to model

the number of failures in commercial water pipes. The article also gives estimates of the failure
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rate λ, in units of failures per 100 miles of pipe per day, for four different types of pipe and for

many different years.

(a) For PVC pipe in 2008, the authors estimate a failure rate of 0.0081 failures per 100 miles of

pipe per day. Consider a 100-mile-long segment of such pipe. What is the expected number

of failures in 1 year (365 days)? Based on this expectation, what is the probability of at

least one failure along such a pipe in 1 year?

(b) For cast iron pipe in 2005, the authors’ estimate is λ ¼ 0.0864 failures per 100 miles per

day. Suppose a town had 1500 miles of cast iron pipe underground in 2005. What is the

probability of at least one failure somewhere along this pipe system on any given day?

84. Organisms are present in ballast water discharged from a ship according to a Poisson process with

a concentration of 10 organisms/m3 (the article “Counting at Low Concentrations: The Statistical

Challenges of Verifying Ballast Water Discharge Standards” (Ecological Applications, 2013:

339–351) considers using the Poisson process for this purpose).

(a) What is the probability that one cubic meter of discharge contains at least 8 organisms?

(b) What is the probability that the number of organisms in 1.5 m3 of discharge exceeds its mean

value by more than one standard deviation?

(c) For what amount of discharge would the probability of containing at least one organism be

.999?

85. Suppose small aircraft arrive at an airport according to a Poisson process with rate λ¼ 8 per hour,

so that the number of arrivals during a time period of t hours is a Poisson rv with parameter

μ ¼ 8t.

(a) What is the probability that exactly 6 small aircraft arrive during a 1-h period? At least 6?

At least 10?

(b) What are the expected value and standard deviation of the number of small aircraft that

arrive during a 90-min period?

(c) What is the probability that at least 20 small aircraft arrive during a 2.5-h period? That at

most 10 arrive during this period?

86. The number of people arriving for treatment at an emergency room can be modeled by a Poisson

process with a rate parameter of five per hour.

(a) What is the probability that exactly four arrivals occur during a particular hour?

(b) What is the probability that at least four people arrive during a particular hour?

(c) How many people do you expect to arrive during a 45-min period?

87. Suppose that trees are distributed in a forest according to a two-dimensional Poisson process with

rate λ, the expected number of trees per acre, equal to 80.

(a) What is the probability that in a certain quarter-acre plot, there will be at most 16 trees?

(b) If the forest covers 85,000 acres, what is the expected number of trees in the forest?

(c) Suppose you select a point in the forest and construct a circle of radius.1 mile. Let X ¼ the

number of trees within that circular region. What is the pmf of X? [Hint: 1 sq mile ¼
640 acres.]

88. Let X have a Poisson distribution with parameter μ. Show that E(X) ¼ μ directly from the

definition of expected value. [Hint: The first term in the sum equals 0, and then x can be canceled.

Now factor out μ and show that what is left sums to 1.]

89. In some applications the distribution of a discrete rv X resembles the Poisson distribution except

that zero is not a possible value of X. For example, let X¼ the number of tattoos that an individual

wants removed when s/he arrives at a tattoo removal facility. Suppose the pmf of X is
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p xð Þ ¼ k
e�θθx

x!
x ¼ 1, 2, 3, . . .

(a) Determine the value of k. [Hint: The sum of all probabilities in the Poisson pmf is 1, and this

pmf must also sum to 1.]

(b) If the mean value of X is 2.313035, what is the probability that an individual wants at most

5 tattoos removed?

(c) Determine the standard deviation of X when the mean value is as given in (b).

[Note: The article “An Exploratory Investigation of Identity Negotiation and Tattoo Removal”

(Academy of Marketing Science Review, vol. 12, #6, 2008) gave a sample of 22 observations on

the number of tattoos people wanted removed; estimates of μ and σ calculated from the data were

2.318182 and 1.249242, respectively.]

2.6 Other Discrete Distributions

This section introduces discrete distributions that are closely related to the binomial distribution.

Whereas the binomial distribution is the approximate probability model for sampling without

replacement from a finite dichotomous (S-F) population, the hypergeometric distribution is the

exact probability model for the number of S’s in the sample. The binomial rv X is the number of

S’s when the number n of trials is fixed, whereas the negative binomial distribution arises from fixing

the number of S’s desired and letting the number of trials be random.

2.6.1 The Hypergeometric Distribution

The assumptions leading to the hypergeometric distribution are as follows:

1. The population or set to be sampled consists of N individuals, objects, or elements (a finite

population).

2. Each individual can be characterized as a success (S) or a failure (F), and there areM successes in

the population.

3. A sample of n individuals is selected without replacement in such a way that each subset of size

n is equally likely to be chosen.

The random variable of interest is X ¼ the number of S’s in the sample. The probability

distribution of X depends on the parameters n, M, and N, so we wish to obtain the pmf P(X ¼ x) ¼
h(x; n, M, N).

Example 2.39 During a particular period a university’s information technology office received

20 service orders for problems with laptops, of which 8 were Macs and 12 were PCs. A sample of

five of these service orders is to be selected for inclusion in a customer satisfaction survey. Suppose

that the five are selected in a completely random fashion, so that any particular subset of size 5 has the

same chance of being selected as does any other subset (think of putting the numbers 1, 2, . . ., 20 on

20 identical slips of paper, mixing up the slips, and choosing five of them). What then is the

probability that exactly 2 of the selected service orders were for PC laptops?
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In this example, the population size is N ¼ 20, the sample size is n ¼ 5, and the number of S’s
(PC ¼ S) and F’s (Mac ¼ F) in the population areM ¼ 12 and N �M ¼ 8, respectively. Let X ¼ the

number of PCs among the five sampled service orders. Because all outcomes (each consisting of five

particular orders) are equally likely,

P X ¼ 2ð Þ ¼ h 2; 5; 12; 20ð Þ ¼ number of outcomes having X ¼ 2

number of possible outcomes

The number of possible outcomes in the experiment is the number of ways of selecting 5 from

the 20 objects without regard to order—that is,
20

5

� �
. To count the number of outcomes having

X ¼ 2, note that there are
12

2

� �
ways of selecting two of the PC orders, and for each such way there

are
8

3

� �
ways of selecting the three Mac orders to fill out the sample. The Fundamental Counting

Principle from Sect. 1.3 then gives
12

2

� �
� 8

3

� �
as the number of outcomes with X ¼ 2, so

h 2; 5; 12; 20ð Þ ¼
12

2

� �
8

3

� �
20

5

� � ¼ 77

323
¼ :238

■

In general, if the sample size n is smaller than the number of successes in the population (M ),

then the largest possible X value is n. However, if M < n (e.g., a sample size of 25 and only

15 successes in the population), then X can be at most M. Similarly, whenever the number of

population failures (N � M ) exceeds the sample size, the smallest possible X value is 0 (since all

sampled individuals might then be failures). However, if N �M < n, the smallest possible X value is

n � (N �M ). Summarizing, the possible values of X satisfy the restriction max(0, n � N + M)� x�
min(n, M ). An argument parallel to that of the previous example gives the pmf of X.

PROPOSITION

If X is the number of S’s in a random sample of size n drawn from a population consisting ofM

S’s and (N � M ) F’s, then the probability distribution of X, called the hypergeometric
distribution, is given by

P X ¼ xð Þ ¼ h x; n;M;Nð Þ ¼
M
x

� �
N �M
n� x

� �
N
n

� � ð2:16Þ

for x an integer satisfying max(0, n � N + M) � x � min(n, M ).3

3 If we define
a
b

� �
¼ 0 for a < b, then h(x; n, M, N) may be applied for all integers 0 � x � n.
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In Example 2.39, n ¼ 5, M ¼ 12, and N ¼ 20, so h(x; 5, 12, 20) for x ¼ 0, 1, 2, 3, 4, 5 can be

obtained by substituting these numbers into Eq. (2.16).

Example 2.40 Capture–recapture. Five individuals from an animal population thought to be near

extinction in a region have been caught, tagged, and released to mix into the population. After they

have had an opportunity to mix, a random sample of 10 of these animals is selected. Let X ¼ the

number of tagged animals in the second sample. If there are actually 25 animals of this type in the

region, what is the probability that (a) X ¼ 2? (b) X � 2?

Application of the hypergeometric distribution here requires assuming that every subset of ten

animals has the same chance of being captured. This in turn implies that released animals are no

easier or harder to catch than are those not initially captured. Then the parameter values are n ¼
10, M ¼ 5 (five tagged animals in the population), and N ¼ 25, so

h x; 10; 5; 25ð Þ ¼
5

x

� �
20

10� x

� �
25

10

� � x ¼ 0, 1, 2, 3, 4, 5

For part (a),

P X ¼ 2ð Þ ¼ h 2; 10; 5; 25ð Þ ¼
5

2

� �
20

8

� �
25

10

� � ¼ :385

For part (b),

P X � 2ð Þ ¼ P X ¼ 0, 1, or 2ð Þ ¼
X2
x¼0

h x; 10; 5; 25ð Þ

¼ :057þ :257þ :385 ¼ :699
■

Matlab, R, and other software packages will easily generate hypergeometric probabilities; see

Table 2.5 at the end of this section. Comprehensive tables of the hypergeometric distribution are

available, but because the distribution has three parameters, these tables require much more space

than tables for the binomial distribution.

As in the binomial case, there are simple expressions for E(X) and Var(X) for hypergeometric rvs.

PROPOSITION

The mean and variance of the hypergeometric rv X having pmf h(x; n, M, N ) are

E Xð Þ ¼ n �M
N

Var Xð Þ ¼ N � n

N � 1

� �
� n �M

N
1�M

N

� �

The ratio M/N is the proportion of S’s in the population. Replacing M/N by p in E(X) and Var(X)

gives
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E Xð Þ ¼ np ð2:17Þ

Var Xð Þ ¼ N � n

N � 1

� �
� np 1� pð Þ

Expression (2.17) shows that the means of the binomial and hypergeometric rvs are equal, whereas

the variances of the two rvs differ by the factor (N � n)/(N � 1), often called the finite population
correction factor. This factor is less than 1, so the hypergeometric variable has smaller variance than

does the binomial rv. The correction factor can be written (1 � n/N )/(1 � 1/N ), which is approxi-

mately 1 when n is small relative to N.

Example 2.41 (Example 2.40 continued) In the animal-tagging example, n ¼ 10, M ¼ 5, and N ¼
25, so p ¼ 5

25
¼ :2 and

E Xð Þ ¼ 10 :2ð Þ ¼ 2

Var Xð Þ ¼ 25� 10

25� 1
10ð Þ :2ð Þ :8ð Þ ¼ :625ð Þ 1:6ð Þ ¼ 1

If the sampling were carried out with replacement, Var(X) ¼ 1.6.

Suppose the population size N is not actually known, so the value x is observed and we wish to

estimate N. It is reasonable to equate the observed sample proportion of S’s, x/n, with the population

proportion, M/N, giving the estimate

N̂ ¼ M � n
x

For example, if M ¼ 100, n ¼ 40, and x ¼ 16, then N̂ ¼ 250. ■

Our rule in Sect. 2.4 stated that if sampling is without replacement but n/N is at most .05, then the

binomial distribution can be used to compute approximate probabilities involving the number of S’s
in the sample. A more precise statement is as follows: Let the population size, N, and number of

population S’s, M, get large with the ratio M/N approaching p. Then h(x; n, M, N ) approaches the

binomial pmf b(x; n, p); so for n/N small, the two are approximately equal provided that p is not too

near either 0 or 1. This is the rationale for our rule.

2.6.2 The Negative Binomial and Geometric Distributions

The negative binomial distribution is based on an experiment satisfying the following conditions:

1. The experiment consists of a sequence of independent trials.

2. Each trial can result in either a success (S) or a failure (F).
3. The probability of success is constant from trial to trial, so P(S on trial i) ¼ p for i ¼ 1, 2, 3 . . ..

4. The experiment continues (trials are performed) until a total of r successes has been observed,

where r is a specified positive integer.

The random variable of interest is X¼ the number of trials required to achieve the rth success, and

X is called a negative binomial random variable. In contrast to the binomial rv, the number of
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successes is fixed and the number of trials is random. Possible values of X are r, r + 1, r + 2, . . ., since
it takes at least r trials to achieve r successes.

Let nb(x; r, p) denote the pmf of X. The event {X¼ x} is equivalent to {r� 1 S’s in the first (x� 1)

trials and an S on the xth trial}, e.g., if r¼ 5 and x¼ 15, then there must be four S’s in the first 14 trials
and trial 15 must be an S. Since trials are independent,

nb x; r; pð Þ ¼ P X ¼ xð Þ ¼ P r � 1S’s on the first x� 1 trialsð Þ � P Sð Þ ð2:18Þ
The first probability on the far right of Eq. (2.18) is the binomial probability

x� 1

r � 1

� �
pr�1 1� pð Þ x�1ð Þ� r�1ð Þ

where P Sð Þ ¼ p

Simplifying and then multiplying by the extra factor of p at the end of Eq. (2.18) yields the

following.

PROPOSITION

The pmf of the negative binomial rv X with parameters r ¼ desired number of S’s and p ¼
P(S) is

nb x; r; pð Þ ¼ x� 1

r � 1

� �
pr 1� pð Þx�r x ¼ r, r þ 1, r þ 2, . . .

Example 2.42 A pediatrician wishes to recruit four couples, each of whom is expecting their first

child, to participate in a new natural childbirth regimen. Let p¼ P(a randomly selected couple agrees

to participate). If p ¼ .2, what is the probability that exactly 15 couples must be asked before 4 are

found who agree to participate? Substituting r ¼ 4, p ¼ .2, and x ¼ 15 into nb(x; r, p) gives

nb 15; 4; 2ð Þ ¼ 15� 1

4� 1

� �
:24:811 ¼ :050

The probability that at most 15 couples need to be asked is

P X � 15ð Þ ¼
X15
x¼4

nb x; 4; :2ð Þ ¼
X15
x¼4

x� 1

3

� �
:24:8x�4 ¼ :352

■

In the special case r ¼ 1, the pmf is

nb x; 1; pð Þ ¼ 1� pð Þx�1p x ¼ 1, 2, . . . ð2:19Þ
In Example 2.10, we derived the pmf for the number of trials necessary to obtain the first S, and the

pmf there is identical to Eq. (2.19). The random variable X¼ number of trials required to achieve one

success is referred to as a geometric random variable, and the pmf in Eq. (2.19) is called the

geometric distribution. The name is appropriate because the probabilities constitute a geometric

series: p, (1 � p)p, (1 � p)2p, . . .. To see that the sum of the probabilities is 1, recall that the sum of a

geometric series is a + ar + ar2 + . . . ¼ a/(1 � r) if |r| < 1, so for p > 0,
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pþ 1� pð Þpþ 1� pð Þ2pþ � � � ¼ p

1� 1� pð Þ ¼ 1

In Example 2.19, the expected number of trials until the first S was shown to be 1/p. Intuitively, we
would then expect to need r � 1/p trials to achieve the rth S, and this is indeed E(X). There is also a

simple formula for Var(X).

PROPOSITION

If X is a negative binomial rv with parameters r and p, then

E Xð Þ ¼ r

p
Var Xð Þ ¼ r 1� pð Þ

p2

Example 2.43 (Example 2.42 continued) With p ¼ .2, the expected number of couples the doctor

must speak to in order to find 4 that will agree to participate is r/p ¼ 4/.2 ¼ 20. This makes sense,

since with p ¼ .2 ¼ 1/5 it will take five attempts, on average, to achieve one success. The

corresponding variance is 4(1 � .2)/(.2)2 ¼ 80, for a standard deviation of about 8.9. ■

Since they are based on similar experiments, some caution must be taken to distinguish the

binomial and negative binomial models, as seen in the next example.

Example 2.44 In many communication systems, a receiver will send a short signal back to the

transmitter to indicate whether a message has been received correctly or with errors. (These signals

are often called an acknowledgement and a non-acknowledgement, respectively. Bit sum checks and

other tools are used by the receiver to determine the absence or presence of errors.) Assume we are

using such a system in a noisy channel, so that each message is sent error-free with probability .86,

independent of all other messages. What is the probability that in 10 transmissions, exactly 8 will

succeed? What is the probability the system will require exactly 10 attempts to successfully transmit

8 messages?

While these two questions may sound similar, they require two different models for solution.

To answer the first question, let X represent the number of successful transmissions out of 10. Then

X ~ Bin(10, .86), and the answer is

P X ¼ 8ð Þ ¼ b 8; 10; :86ð Þ ¼ 10

8

� �
:86ð Þ8 :14ð Þ2 ¼ :2639

However, the event {exactly 10 attempts required to successfully transmit 8 messages} is more

restrictive: not only must we observe 8 S’s and 2 F’s in 10 trials, but the last trial must be a success.

Otherwise, it took fewer than 10 tries to send 8 messages successfully. Define a variable Y ¼ the

number of transmissions (trials) required to successfully transmit 8 messages. Then Y is negative

binomial, with r ¼ 8 and p ¼ .86, and the answer to the second question is

P Y ¼ 10ð Þ ¼ nb 10; 8; :86ð Þ ¼ 10� 1

8� 1

� �
:86ð Þ8 :14ð Þ2 ¼ :2111

Notice this is smaller than the answer to the first question, which makes sense because (as we

noted) the second question imposes an additional constraint. In fact, you can think of the “�1” terms

in the negative binomial pmf as accounting for this loss of flexibility in the placement of S’s and F’s.
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Similarly, the expected number of successful transmissions in 10 attempts is E(X) ¼ np ¼ 10(.86)

¼ 8.6, while the expected number of attempts required to successfully transmit 8 messages is E(Y ) ¼
r/p ¼ 8/.86 ¼ 9.3. In the first case, the number of trials (n ¼ 10) is fixed, while in the second case the

desired number of successes (r ¼ 8) is fixed. ■

By expanding the binomial coefficient in front of pr(1 � p)x�r and doing some cancellation, it can

be seen that nb(x; r, p) is well-defined even when r is not an integer. This generalized negative
binomial distribution has been found to fit observed data quite well in a wide variety of applications.

2.6.3 Alternative Definition of the Negative Binomial Distribution

There is not universal agreement on the definition of a negative binomial random variable (or, by

extension, a geometric rv). It is not uncommon in the literature, as well as in some textbooks, to see

the number of failures preceding the rth success called “negative binomial”; in our notation, this

simply equals X � r. Possible values of this “number of failures” variable are 0, 1, 2, . . .. Similarly,

the geometric distribution is sometimes defined in terms of the number of failures preceding the first

success in a sequence of independent and identical trials. If one uses these alternative definitions, then

the pmf and mean formula must be adjusted accordingly. (The variance, however, will stay the same.)

The developers of Matlab and R are among those who have adopted this alternative definition; as a

result, we must be careful with our inputs to the relevant software functions. The pmf syntax for the

distributions in this section are cataloged in Table 2.5; cdfs may be invoked by changing pdf to cdf

in Matlab or the initial letter d to p in R. Notice the input argument x � r for the negative binomial

functions: both software packages request the number of failures, rather than the number of trials.

For example, suppose X has a hypergeometric distribution with n ¼ 10, M ¼ 5, N ¼ 25 as in

Example 2.40. Using Matlab, we may calculate P(X¼ 2)¼ hygepdf(2,25,5,10) and P(X� 2)

¼ hygecdf(2,25,5,10). The corresponding R function calls are dhyper(2,5,20,10) and

phyper(2,5,20,10), respectively. If X is the negative binomial variable of Example 2.42 with

parameters r¼ 4 and p¼ .2, then the chance of requiring 15 trials to achieve 4 successes (i.e., 11 total

failures) can be found in Matlab with nbinpdf(11,4, .2) and in R using the command

dnbinom(11,4, .2).

2.6.4 Exercises: Section 2.6 (90–106)

90. An electronics store has received a shipment of 20 table radios that have connections for an iPod

or iPhone. Twelve of these have two slots (so they can accommodate both devices), and the

other eight have a single slot. Suppose that six of the 20 radios are randomly selected to be

stored under a shelf where radios are displayed, and the remaining ones are placed in a

Table 2.5 Matlab and R code for hypergeometric and negative binomial calculations

Hypergeometric Negative Binomial

Function: pmf pmf

Notation: h(x; n, M, N) nb(x; r, p)

Matlab: hygepdf(x, N, M, n) nbinpdf(x � r, r, p)

R: dhyper(x, M, N � M, n) dnbinom(x � r, r, p)
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storeroom. Let X ¼ the number among the radios stored under the display shelf that have

two slots.

(a) What kind of a distribution does X have (name and values of all parameters)?

(b) Compute P(X ¼ 2), P(X � 2), and P(X � 2).

(c) Calculate the mean value and standard deviation of X.
91. Each of 12 refrigerators has been returned to a distributor because of an audible, high-pitched,

oscillating noise when the refrigerator is running. Suppose that 7 of these refrigerators have a

defective compressor and the other 5 have less serious problems. If the refrigerators are

examined in random order, let X be the number among the first 6 examined that have a defective

compressor. Compute the following:

(a) P(X ¼ 5)

(b) P(X � 4)

(c) The probability that X exceeds its mean value by more than 1 standard deviation.

(d) Consider a large shipment of 400 refrigerators, of which 40 have defective compressors. If

X is the number among 15 randomly selected refrigerators that have defective compressors,

describe a less tedious way to calculate (at least approximately) P(X � 5) than to use the

hypergeometric pmf.

92. An instructor who taught two sections of statistics last term, the first with 20 students and the

second with 30, decided to assign a term project. After all projects had been turned in, the

instructor randomly ordered them before grading. Consider the first 15 graded projects.

(a) What is the probability that exactly 10 of these are from the second section?

(b) What is the probability that at least 10 of these are from the second section?

(c) What is the probability that at least 10 of these are from the same section?

(d) What are the mean and standard deviation of the number among these 15 that are from the

second section?

(e) What are the mean and standard deviation of the number of projects not among these first

15 that are from the second section?

93. A geologist has collected 10 specimens of basaltic rock and 10 specimens of granite. The

geologist instructs a laboratory assistant to randomly select 15 of the specimens for analysis.

(a) What is the pmf of the number of granite specimens selected for analysis?

(b) What is the probability that all specimens of one of the two types of rock are selected for

analysis?

(c) What is the probability that the number of granite specimens selected for analysis is within

1 standard deviation of its mean value?

94. A personnel director interviewing 11 senior engineers for four job openings has scheduled six

interviews for the first day and five for the second day of interviewing. Assume the candidates

are interviewed in random order.

(a) What is the probability that x of the top four candidates are interviewed on the first day?

(b) How many of the top four candidates can be expected to be interviewed on the first day?

95. Twenty pairs of individuals playing in a bridge tournament have been seeded 1, . . ., 20. In the

first part of the tournament, the 20 are randomly divided into 10 east–west pairs and 10 north–

south pairs.

(a) What is the probability that x of the top 10 pairs end up playing east–west?

(b) What is the probability that all of the top five pairs end up playing the same direction?

(c) If there are 2n pairs, what is the pmf of X ¼ the number among the top n pairs who end up

playing east–west? What are E(X) and Var(X)?
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96. A second-stage smog alert has been called in an area of Los Angeles County in which there are

50 industrial firms. An inspector will visit 10 randomly selected firms to check for violations of

regulations.

(a) If 15 of the firms are actually violating at least one regulation, what is the pmf of the

number of firms visited by the inspector that are in violation of at least one regulation?

(b) If there are 500 firms in the area, of which 150 are in violation, approximate the pmf of part

(a) by a simpler pmf.

(c) For X ¼ the number among the 10 visited that are in violation, compute E(X) and Var(X)

both for the exact pmf and the approximating pmf in part (b).

97. A shipment of 20 integrated circuits (ICs) arrives at an electronics manufacturing site. The site

manager will randomly select 4 ICs and test them to see whether they are faulty. Unknown to the

site manager, 5 of these 20 ICs are faulty.

(a) Suppose the shipment will be accepted if and only if none of the inspected ICs is faulty.

What is the probability this shipment of 20 ICs will be accepted?

(b) Now suppose the shipment will be accepted if and only if at most one of the inspected ICs

is faulty. What is the probability this shipment of 20 ICs will be accepted?

(c) How do your answers to (a) and (b) change if the number of faculty ICs in the shipment is

3 instead of 5? Recalculate (a) and (b) to verify your claim.

98. Suppose that 20% of all individuals have an adverse reaction to a particular drug. A medical

researcher will administer the drug to one individual after another until the first adverse reaction

occurs. Define an appropriate random variable and use its distribution to answer the following

questions.

(a) What is the probability that when the experiment terminates, four individuals have not had

adverse reactions?

(b) What is the probability that the drug is administered to exactly five individuals?

(c) What is the probability that at most four individuals do not have an adverse reaction?

(d) How many individuals would you expect to not have an adverse reaction, and how many

individuals would you expect to be given the drug?

(e) What is the probability that the number of individuals given the drug is within one standard

deviation of what you expect?

99. Suppose that p ¼ P(female birth) ¼ .5. A couple wishes to have exactly two female children in

their family. They will have children until this condition is fulfilled.

(a) What is the probability that the family has x male children?

(b) What is the probability that the family has four children?

(c) What is the probability that the family has at most four children?

(d) How many children would you expect this family to have? How many male children would

you expect this family to have?

100. A family decides to have children until it has three children of the same gender. Assuming P(B)

¼ P(G) ¼ .5, what is the pmf of X ¼ the number of children in the family?

101. Three brothers and their wives decide to have children until each family has two female

children. Let X ¼ the total number of male children born to the brothers. What is E(X), and

how does it compare to the expected number of male children born to each brother?

102. According to the article “Characterizing the Severity and Risk of Drought in the Poudre River,

Colorado” (J. of Water Res. Planning and Mgmnt., 2005: 383–393), the drought length Y is the

number of consecutive time intervals in which the water supply remains below a critical value y0
(a deficit), preceded and followed by periods in which the supply exceeds this value (a surplus).

The cited paper proposes a geometric distribution with p ¼ .409 for this random variable.
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(a) What is the probability that a drought lasts exactly 3 intervals? At least 3 intervals?

(b) What is the probability that the length of a drought exceeds its mean value by at least one

standard deviation?

103. Individual A has a red die and B has a green die (both fair). If they each roll until they obtain five

“doubles” (⚀⚀, . . ., ⚅⚅), what is the pmf of X ¼ the total number of times a die is rolled? What

are E(X) and SD(X)?

104. A carnival game consists of spinning a wheel with 10 slots, nine red and one blue. If you land on

the blue slot, you win a prize. Suppose your significant other really wants that prize, so you will

play until you win.

(a) What is the probability you’ll win on the first spin?

(b) What is the probability you’ll require exactly 5 spins? At least 5 spins? At most five spins?

(c) What is the expected number of spins required for you to win the prize, and what is the

corresponding standard deviation?

105. A kinesiology professor, requiring volunteers for her study, approaches students one by one at a

campus hub. She will continue until she acquires 40 volunteers. Suppose that 25% of students

are willing to volunteer for the study, that the professor’s selections are random, and that the

student population is large enough that individual “trials” (asking a student to participate) may

be treated as independent.

(a) What is the expected number of students the kinesiology professor will need to ask in order

to get 40 volunteers? What is the standard deviation?

(b) Determine the probability that the number of students the kinesiology professor will need

to ask is within one standard deviation of the mean.

106. Refer back to the communication system of Example 2.44. Suppose a voice packet can be

transmitted a maximum of 10 times, i.e., if the 10th attempt fails, no 11th attempt is made to

retransmit the voice packet. Let X ¼ the number of times a message is transmitted. Assuming

each transmission succeeds with probability p, determine the pmf of X. Then obtain an

expression for the expected number of times a packet is transmitted.

2.7 Moments and Moment Generating Functions

The expected values of integer powers of X and X � μ are often referred to as moments, terminology

borrowed from physics. In this section, we’ll discuss the general topic of moments and develop a

shortcut for computing them.

DEFINITION

The kth moment of a random variable X is E(Xk), while the kth moment about the mean
(or kth central moment) of X is E[(X � μ)k], where μ ¼ E(X).

For example, μ ¼ E(X) is the “first moment” of X and corresponds to the center of mass of the

distribution of X. Similarly, Var(X) ¼ E[(X � μ)2] is the second moment of X about the mean, which

is known in physics as the moment of inertia.
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Example 2.45 A popular brand of dog food is sold in 5, 10, 15, and 20 lb bags. Let X be the weight of

the next bag purchased, and suppose the pmf of X is

x 5 10 15 20

p(x) .1 .2 .3 .4

The first moment of X is its mean:

μ ¼ E Xð Þ ¼
X
x2D

xp xð Þ ¼ 5 :1ð Þ þ 10 :2ð Þ þ 15 :3ð Þ þ 20 :4ð Þ ¼ 15 lbs

The second moment about the mean is the variance:

σ2 ¼ E X � μð Þ2
h i

¼
X
x2D

x� μð Þ2p xð Þ

¼ 5� 15ð Þ2 :1ð Þ þ 10� 15ð Þ2 :2ð Þ þ 15� 15ð Þ2 :3ð Þ þ 20� 15ð Þ2 :4ð Þ ¼ 25,

for a standard deviation of 5 lb. The third central moment of X is

E


X � μð Þ3� ¼X

x2D

x� μð Þ3p xð Þ

¼ 5� 15ð Þ3�:1�þ �10� 15
�
3
�
:2
�þ �15� 15

�
3
�
:3
�þ �20� 15

�
3
�
:4
� ¼ �75

We’ll discuss an interpretation of this last number next. ■

It is not difficult to verify that the third moment about the mean is 0 if the pmf of X is symmetric.

So, we would like to use E[(X � μ)3] as a measure of lack of symmetry, but it depends on the scale of

measurement. If we switch the unit of weight in Example 2.45 from pounds to ounces or kilograms,

the value of the third moment about the mean (as well as the values of all the other moments) will

change. But we can achieve scale independence by dividing the third moment about the mean by σ3:

E X � μð Þ3
h i

σ3
¼ E

X � μ

σ

� �3" #
ð2:20Þ

Expression (2.20) is our measure of departure from symmetry, called the skewness coefficient.

The skewness coefficient for a symmetric distribution is 0 because its third moment about the mean is

0. However, in the foregoing example the skewness coefficient is E[(X � μ)3]/σ3 ¼ �75/53 ¼ �0.6.

When the skewness coefficient is negative, as it is here, we say that the distribution is negatively

skewed or that it is skewed to the left. Generally speaking, it means that the distribution stretches

farther to the left of the mean than to the right.

If the skewness were positive, then we would say that the distribution is positively skewed or that it

is skewed to the right. For example, reverse the order of the probabilities in the p(x) table above, so the
probabilities of the values 5, 10, 15, 20 are now .4, .3, .2, and .1, (customers now favor much smaller

bags of dog food). Exercise 119 shows that this changes the sign but not the magnitude of the

skewness coefficient, so it becomes +0.6 and the distribution is skewed right. Both distributions are

illustrated in Fig. 2.9.
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2.7.1 The Moment Generating Function

Calculation of the mean, variance, skewness coefficient, etc. for a particular discrete rv requires

extensive, sometimes tedious, summation. Mathematicians have developed a tool, the moment

generating function, that will allow us to determine the moments of a distribution with less effort.

Moreover, this function will allow us to derive properties of several of our major probability

distributions here and in subsequent sections of the book.

DEFINITION

The moment generating function (mgf) of a discrete random variable X is defined to be

MX tð Þ ¼ E etX
� � ¼X

x2D

etxp xð Þ

where D is the set of possible X values. The moment generating function exists iff MX(t) is

defined for an interval that includes zero as well as positive and negative values of t.

For any random variable X, the mgf evaluated at t ¼ 0 is

MX 0ð Þ ¼ E e0X
� � ¼X

x2D

e0xp xð Þ ¼
X
x2D

1p xð Þ ¼ 1

That is,MX(0) is the sum of all the probabilities, so it must always be 1. However, in order for the

mgf to be useful in generating moments, it will need to be defined for an interval of values of

t including 0 in its interior. The moment generating function fails to exist in cases when moments

themselves fail to exist (see Example 2.49 below).

Example 2.46 The simplest example of an mgf is for a Bernoulli distribution, where only the

X values 0 and 1 receive positive probability. Let X be a Bernoulli random variable with p(0) ¼
1/3 and p(1) ¼ 2/3. Then

MX tð Þ ¼ E etX
� � ¼X

x2D

etxp xð Þ ¼ et�0 � ð1=3Þ þ et�1 � ð2=3Þ ¼ ð1=3Þ þ ð2=3Þet

A Bernoulli random variable will always have an mgf of the form p(0) + p(1)et, a well-defined

function for all values of t. ■
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Fig. 2.9 Departures from symmetry: (a) skewness coefficient< 0 (skewed left); (b) skewness coefficient> 0 (skewed

right)
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A key property of the mgf is its “uniqueness,” the fact that it completely characterizes the

underlying distribution.

MGF UNIQUENESS THEOREM

If the mgf exists and is the same for two distributions, then the two distributions are identical.

That is, the moment generating function uniquely specifies the probability distribution; there is

a one-to-one correspondence between distributions and mgfs.

The proof of this theorem, originally due to Laplace, requires some sophisticated mathematics and

is beyond the scope of this textbook.

Example 2.47 Let X, the number of claims submitted on a renter’s insurance policy on a given

year, have mgfMX(t)¼ .7 + .2et + .1e2t. It follows that Xmust have the pmf p(0) ¼ .7, p(1) ¼ .2, and

p(2)¼ .1—because if we use this pmf to obtain the mgf, we getMX(t), and the distribution is uniquely
determined by its mgf. ■

Example 2.48 Consider testing individuals’ blood samples one by one in order to find someone

whose blood type is Rh+. Suppose X, the number of tested samples, has a geometric distribution with

p ¼ .85:

p xð Þ ¼ :85 :15ð Þx�1
for x ¼ 1, 2, 3, ::::

Determining the moment generating function here requires using the formula for the sum of a

geometric series: 1 + r + r2 + � � � ¼ 1/(1 � r) for |r| < 1. The moment generating function is

MX tð Þ ¼ E etXð Þ ¼
X
x2D

etxp xð Þ ¼
X1
x¼1

etx:85 :15ð Þx�1 ¼ :85et
X1
x¼1

et x�1ð Þ :15ð Þx�1

¼ :85et
X1
x¼1

:15etð Þx�1 ¼ :85et


1þ :15et þ :15etð Þ2 þ � � �� ¼ :85et

1� :15et

The condition on r requires |.15et| < 1. Dividing by.15 and taking logs, this gives t < �ln(.15) �
1.90, i.e., this function is defined in the interval (�1, 1.90). The result is an interval of values that

includes 0 in its interior, so the mgf exists. As a check, MX(0) ¼ .85/(1 � .15) ¼ 1, as required. ■

Example 2.49 Reconsider Example 2.20, where p(x) ¼ k/x2, x ¼ 1, 2, 3, . . .. Recall that E(X) does
not exist for this distribution, portending a problem for the existence of the mgf:

MX tð Þ ¼ E etX
� � ¼X1

x¼1

etx
k

x2

With the help of tests for convergence such as the ratio test, we find that the series converges if and

only if et � 1, which means that t � 0, i.e., the mgf is only defined on the interval (�1, 0]. Because

zero is on the boundary of this interval, not the interior of the interval (the interval must include both

positive and negative values), the mgf of this distribution does not exist. In any case, it could not be

useful for finding moments, because X does not have even a first moment (mean). ■
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2.7.2 Obtaining Moments from the MGF

We now turn to the computation of moments from the mgf. For any positive integer r, let MX
(r)(t)

denote the rth derivative of MX(t). By computing this and then setting t ¼ 0, we get the rth moment

about 0.

THEOREM

If the mgf of X exists, then E(Xr) is finite for all positive integers r, and

E Xrð Þ ¼ M
rð Þ
X 0ð Þ ð2:21Þ

Proof The proof of the existence of all moments is beyond the scope of this book. We will show that

Eq. (2.21) is true for r ¼ 1 and r ¼ 2. A proof by mathematical induction can be used for general r.
Differentiate:

d

dt
MX tð Þ ¼ d

dt

X
x2D

extp xð Þ ¼
X
x2D

d

dt
extp xð Þ ¼

X
x2D

xextp xð Þ

where we have interchanged the order of summation and differentiation. (This is justified inside the

interval of convergence, which includes 0 in its interior.) Next set t ¼ 0 to obtain the first moment:

M
0
X 0ð Þ ¼ M

1ð Þ
X 0ð Þ ¼

X
x2D

xex 0ð Þp xð Þ ¼
X
x2D

xp xð Þ ¼ E Xð Þ

Differentiating a second time gives

d2

dt2
MX tð Þ ¼ d

dt

X
x2D

xextp xð Þ ¼
X
x2D

x
d

dt
extp xð Þ ¼

X
x2D

x2extp xð Þ

Set t ¼ 0 to get the second moment:

M
00
X 0ð Þ ¼ M

2ð Þ
X 0ð Þ ¼

X
x2D

x2p xð Þ ¼ E X2
� �

■

For the pmfs in Examples 2.45 and 2.46, this may seem like needless work—after all, for simple

distributions with just a few values, we can quickly determine the mean, variance, etc. The real utility

of the mgf arises for more complicated distributions.

Example 2.50 (Example 2.48 continued) Recall that p¼ .85 is the probability of a person having Rh

+ blood and we keep checking people until we find one with this blood type. If X is the number of

people we need to check, then p(x) ¼ .85(.15)x�1, x ¼ 1, 2, 3, . . ., and the mgf is

MX tð Þ ¼ E etX
� � ¼ :85et

1� :15et

Differentiating with the help of the quotient rule,

M
0
X tð Þ ¼ :85et

1� :15etð Þ2
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Setting t¼ 0 then gives μ ¼ E(X) ¼ MX

0
(0) ¼ 1/.85 ¼ 1.176. This corresponds to the formula 1/p

for a geometric distribution.

To get the second moment, differentiate again:

M
00
X tð Þ ¼ :85et 1þ :15etð Þ

1� :15etð Þ3

Setting t ¼ 0, E X2
� � ¼ M

00
X 0ð Þ ¼ 1:15

:852
. Now use the variance shortcut formula:

Var Xð Þ ¼ σ2 ¼ E X2
� �� μ2 ¼ 1:15

:852
� 1

:85

� �2

¼ :15

:852
¼ :2076

This matches the variance formula (1 � p)/p2 given without proof toward the end of Sect. 2.6. ■

As mentioned in Sect. 2.3, it is common to transform a rv X using a linear function Y ¼ aX + b.

What happens to the mgf when we do this?

PROPOSITION

Let X have the mgf MX(t) and let Y ¼ aX + b. Then MY(t) ¼ ebtMX(at).

Example 2.51 Let X be a Bernoulli random variable with p(0) ¼ 20/38 and p(1) ¼ 18/38. Think of

X as the number of wins, 0 or 1, in a single play of roulette. If you play roulette at an American casino

and bet on red, then your chances of winning are 18/38 because 18 of the 38 possible outcomes are

red. From Example 2.46, MX(t) ¼ 20/38 + et(18/38). Suppose you bet $5 on red, and let Y be your

winnings. If X ¼ 0 then Y ¼ �5, and if X ¼ 1 then Y ¼ 5. The linear equation Y ¼ 10X � 5 gives the

appropriate relationship.

This equation is of the form Y ¼ aX + b with a ¼ 10 and b ¼ �5, so by the foregoing proposition

MY tð Þ ¼ ebtMX atð Þ ¼ e�5tMX

�
10t
�

¼ e�5t 20

38
þ e10t

18

38

� 	
¼ e�5t � 20

38
þ e5t � 18

38

This implies that the pmf of Y is p(�5) ¼ 20/38 and p(5) ¼ 18/38; moreover, we can compute the

mean (and other moments) of Y directly from this mgf. ■

2.7.3 MGFs of Common Distributions

Several of the distributions presented in this chapter (binomial, Poisson, negative binomial) have

fairly simple expressions for their moment generating functions. These mgfs, in turn, allow us to

determine the means and variances of the distributions without some rather unpleasant summation.

(Additionally, we will use these mgfs to prove some more advanced distributional properties in

Chap. 4.)

To start, determining the moment generating function of a binomial rv requires use of the binomial

theorem: aþ bð Þn ¼Pn
x¼0

n
x

� �
axbn�x. Then
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MX tð Þ ¼ E etXð Þ ¼
X
x2D

etxb x; n; pð Þ ¼
Xn
x¼0

etx
n
x

� �
px 1� pð Þn�x

¼
Xn
x¼0

n
x

� �
petð Þx 1� pð Þn�x ¼ pet þ 1� pð Þn a ¼ pet; b ¼ 1� p½ �

The mean and variance can be obtained by differentiating MX(t):

M
0
X tð Þ ¼ n pet þ 1� pð Þn�1pet ) μ ¼ M

0
X

�
0
� ¼ np;

M
00
X tð Þ ¼ n n� 1ð Þ�pet þ 1� p

�
n�2petpet þ n

�
pet þ 1� p

�
n�1pet )

E X2
� �¼ M

00
X 0ð Þ ¼ n

�
n� 1

�
p2 þ np )

σ2 ¼ Var Xð Þ ¼ E
�
X2
�� μ2

¼ n n� 1ð Þp2 þ np� n2p2 ¼ np� np2 ¼ np
�
1� p

�
,

in accord with the proposition in Sect. 2.4.

Derivation of the Poisson mgf utilizes the series expansion ∑x ¼ 0
1 ux/x! ¼ eu:

MX tð Þ ¼ E etxð Þ ¼
X1
x¼0

etxe�μ μ
x

x!
¼ e�μ

X1
x¼0

μetð Þx
x!

¼ e�μeμe
t ¼ eμ et�1ð Þ

Successive differentiation then gives the mean and variance identified in Sect. 2.5 (see Exercise 127).

Finally, derivation of the negative binomial mgf is based on Newton’s generalization of the

binomial theorem. The result (see Exercise 124) is

MX tð Þ ¼ pet

1� 1� pð Þet
� �r

The geometric mgf is just the special case r ¼ 1 (cf. Example 2.48 above). There is unfortunately

no simple expression for the mgf of a hypergeometric rv.

2.7.4 Exercises: Section 2.7 (107–128)

107. For the entry-level employees of a certain fast food chain, the pmf of X ¼ highest grade level

completed is specified by p(9) ¼ .01, p(10) ¼ .05, p(11) ¼ .16, and p(12) ¼ .78.

(a) Determine the moment generating function of this distribution.

(b) Use (a) to find E(X) and SD(X).
108. For a new car the number of defects X has the distribution given by the accompanying table.

Find MX(t) and use it to find E(X) and SD(X).

x 0 1 2 3 4 5 6

p(x) .04 .20 .34 .20 .15 .04 .03

109. In flipping a fair coin let X be the number of tosses to get the first head. Then p(x) ¼ .5x for

x ¼ 1, 2, 3, . . .. Find MX(t) and use it to get E(X) and SD(X).
110. If you toss a fair die with outcome X, p(x) ¼ 1/6 for x ¼ 1, 2, 3, 4, 5, 6. Determine MX(t).

111. Find the skewness coefficients of the distributions in the previous four exercises. Do these

agree with the “shape” of each distribution?
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112. Given MX(t) ¼ .2 + .3et + .5e3t, find p(x), E(X), Var(X).

113. If MX(t) ¼ 1/(1 � t2), find E(X) and Var(X).
114. Show that g(t) ¼ tet cannot be a moment generating function.

115. Using a calculation similar to the one in Example 2.48 show that, if X has a geometric

distribution with parameter p, then its mgf is

MX tð Þ ¼ pet

1� 1� pð Þet

Assuming that Y has mgf MY(t) ¼ .75et/(1 � .25et), determine the probability mass function

p(y) with the help of the uniqueness property.

116. (a) Prove the result in the second proposition: MaX+b(t) ¼ ebtMX(at).

(b) Let Y ¼ aX + b. Use (a) to establish the relationships between the means and variances of

X and Y.

117. Let MX tð Þ ¼ e5tþ2t2 and let Y ¼ (X � 5)/2. Find MY(t) and use it to find E(Y ) and Var(Y).

118. Let X have the moment generating function of Example 2.48 and let Y ¼ X � 1. Recall that X is

the number of people who need to be checked to get someone who is Rh+, so Y is the number of

people checked before the first Rh+ person is found. Find MY(t).

119. Let X be the number of points earned by a randomly selected student on a 10 point quiz, with

possible values 0, 1, 2, . . ., 10 and pmf p(x), and suppose the distribution has a skewness

coefficient of c. Now consider reversing the probabilities in the distribution, so that p(0) is

interchanged with p(10), p(1) is interchanged with p(9), and so on. Show that the skewness

coefficient of the resulting distribution is �c. [Hint: Let Y ¼ 10 � X and show that Y has the

reversed distribution. Use this fact to determine μY and then the value of skewness coefficient for
the Y distribution.]

120. Let MX(t) be the moment generating function of a rv X, and define a new function by

LX tð Þ ¼ ln MX tð Þ½ �
Show that (a) LX(0) ¼ 0, (b) LX

0
(0) ¼ μ, and (c) LX

00
(0) ¼ σ2.

121. Refer back to Exercise 120. If MX tð Þ ¼ e5tþ2t2 then find E(X) and Var(X) by differentiating

(a) MX(t)
(b) LX(t)

122. Refer back to Exercise 120. If MX tð Þ ¼ e5 et�1ð Þ then find E(X) and Var(X) by differentiating

(a) MX(t)
(b) LX(t)

123. Obtain the moment generating function of the number of failures, n � X, in a binomial

experiment, and use it to determine the expected number of failures and the variance of the

number of failures. Are the expected value and variance intuitively consistent with the

expressions for E(X) and Var(X)? Explain.

124. Newton’s generalization of the binomial theorem can be used to show that, for any positive

integer r,

1� uð Þ�r ¼
X1
k¼0

r þ k � 1

r � 1

� �
uk

Use this to derive the negative binomial mgf presented in this section. Then obtain the mean and

variance of a binomial rv using this mgf.
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125. If X is a negative binomial rv, then Y¼ X� r is the number of failures preceding the rth success.

Obtain the mgf of Y and then its mean value and variance.

126. Refer back to Exercise 120. Obtain the negative binomial mean and variance from LX(t) ¼
ln[MX(t)].

127. (a) Use derivatives of MX(t) to obtain the mean and variance for the Poisson distribution.

(b) Obtain the Poisson mean and variance from LX(t)¼ ln[MX(t)]. In terms of effort, how does

this method compare with the one in part (a)?

128. Show that the binomial moment generating function converges to the Poisson moment

generating function if we let n ! 1 and p ! 0 in such a way that np approaches a value

μ > 0. [Hint: Use the calculus theorem that was used in showing that the binomial pmf

converges to the Poisson pmf.] There is, in fact, a theorem saying that convergence of the

mgf implies convergence of the probability distribution. In particular, convergence of the

binomial mgf to the Poisson mgf implies b(x; n, p) ! p(x; μ).

2.8 Simulation of Discrete Random Variables

Probability calculations for complex systems often depend on the behavior of various random

variables. When such calculations are difficult or impossible, simulation is the fallback strategy. In

this section, we give a general method for simulating an arbitrary discrete random variable and

consider implementations in existing software for simulating common discrete distributions.

Example 2.52 Refer back to the distribution of Example 2.11 for the random variable X ¼ the

amount of memory (GB) in a purchased flash drive, and suppose we wish to simulate X. Recall from

Sect. 1.6 that we begin with a “standard uniform” random number generator, i.e., a software function

that generates evenly distributed numbers in the interval [0, 1). Our goal is to convert these decimals

into the values of X with the probabilities specified by its pmf: 5% 1s, 10% 2s, 35% 4s, and so on. To

that end, we partition the interval [0, 1) according to these percentages: [0, .05) has probability .05;

[.05, .15) has probability .1, since the length of the interval is .1; [.15, .50) has probability .50� .15¼
.35; etc. Proceed as follows: given a value u from the RNG,

– If 0 � u < .05, assign the value 1 to the variable x.

– If .05 � u < .15, assign x ¼ 2.

– If .15 � u < .50, assign x ¼ 4.

– If .50 � u < .90, assign x ¼ 8.

– If .90 � u < 1, assign x ¼ 16.

Repeating this algorithm n times gives n simulated values of X. Programs in Matlab and R that

implement this algorithm appear in Fig. 2.10; both return a vector, x, containing n ¼ 10,000

simulated values of the specified distribution.

Figure 2.11 shows a graph of the results of executing the code, in the form of a histogram: the

height of each rectangle corresponds to the relative frequency of each x value in the simulation (i.e.,

the number of times that value occurred, divided by 10,000). The exact pmf of X is superimposed for

comparison; as expected, simulation results are similar, but not identical, to the theoretical

distribution.
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Later in this section, we will present a faster, built-in way to simulate discrete distributions in

Matlab and R. The method introduced here will, however, prove useful in adapting to the case of

continuous random variables in Chap. 3. ■

In the preceding example, the selected subintervals of [0, 1) were not our only choices—any five

intervals with lengths .05, .10, .35, .40, and .10 would produce the desired result. However, those

particular five subintervals have one desirable feature: the “cut points” for the intervals (i.e., 0, .05,

.15, .50, .90, and 1) are precisely the possible heights of the graph of the cdf, F(x). This permits a

geometric interpretation of the algorithm, which can be seen in Fig. 2.12. The value u provided by the

RNG corresponds to a position on the vertical axis between 0 and 1; we then “invert” the cdf by

matching this u-value back to one of the gaps in the graph of F(x), denoted by dashed lines in

Fig. 2.12. If the gap occurs at horizontal position x, then x is our simulated value of the rv X for that

run of the simulation. This is often referred to as the inverse cdf method for simulating discrete

random variables. The general method is spelled out in the accompanying box.

x=zeros(10000,1);
for i=1:10000

u=rand; 
if u<.05

x(i)=1;
elseif u<.15

x(i)=2;
elseif u<.50

x(i)=4;
elseif u<.90

x(i)=8;
else

x(i)=16;
end

end

x <- NULL
for (i in 1:10000){

u=runif(1)
if (u<.05)

x[i]<-1
else if (u<.15)

x[i]<-2
else if (u<.50)

x[i]<-4
else if (u<.90)

x[i]<-8
else

x[i]<-16
}

ba

Fig. 2.10 Simulation code: (a) Matlab; (b) R
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Fig. 2.11 Simulation and exact distribution for Example 2.52
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Inverse cdf Method for Simulating Discrete Random Variables

Let X be a discrete random variable taking on values x1 < x2 < . . . with corresponding

probabilities p1, p2, . . .. Define F0 ¼ 0; F1 ¼ F(x1) ¼ p1; F2 ¼ F(x2) ¼ p1 + p2; and, in general,
Fk ¼ F(xk) ¼ p1 + � � � + pk ¼ Fk�1 + pk. To simulate a value of X, proceed as follows:

1. Use an RNG to produce a value, u, from [0, 1).

2. If Fk�1 � u < Fk, then assign x ¼ xk.

Example 2.53 (Example 2.52 continued): Suppose the prices for the flash drives, in increasing order

of memory size, are $10, $15, $20, $25, and $30. If the store sells 80 flash drives in a week, what’s the
probability they will make a gross profit of at least $1800?

Let Y ¼ the amount spent on a flash drive, which has the following pmf:

y 10 15 20 25 30

p(y) .05 .10 .35 .40 .10

The gross profit for 80 purchases is the sum of 80 values from this distribution. Let A ¼ {gross

profit � $1800}. We can use simulation to estimate P(A), as follows:

0. Set a counter for the number of times A occurs to zero.

Repeat n times:

1. Simulate 80 values y1, . . ., y80 from the above pmf (using for example an inverse cdf program

similar to those displayed in Fig. 2.10).

2. Compute the week’s gross profit, g ¼ y1 + � � � + y80.
3. If g � 1800, add 1 to the count of occurrences for A.

Once the n runs are complete, then P̂ Að Þ ¼ count of the occurrences of Að Þ=n.
Figure 2.13 shows the resulting values of g for n¼ 10,000 simulations in R. In effect, our program

is simulating a random variableG¼ Y1 + . . . + Y80 whose pmf is not known (in light of all the possible

4 8 16210
0

.05

.15

.50

.90

1

x

u

F(x)Fig. 2.12 The inverse cdf

method for Example 2.52
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G values, it would not be worthwhile to attempt to determine its pmf analytically). The highlighted

bars in Fig. 2.13 correspond to g values of at least $1800; in our simulation, such values

occurred 1940 times. Thus, P̂ Að Þ ¼ 1940=10, 000 ¼ :194, with an estimated standard error offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:194 1� :194ð Þ=10, 000p ¼ :004. ■

2.8.1 Simulations Implemented in R and Matlab

Earlier in this section, we presented the inverse cdf method as a general way to simulate discrete

distributions applicable in any software. In fact, one can simulate generic discrete rvs in both Matlab

and R by clever use of the built-in randsample and sample functions, respectively. We saw these

functions in the context of probability simulation in Chap. 1. Both are designed to generate a random

sample from any selected set of values (even including text values, if desired); the “clever” part is that

both can accommodate a set of weights. The following short example illustrates their use.

To simulate, say, 35 values from the pmf in Example 2.52, one can use the following code in

Matlab:

randsample([1,2,4,8,16],35,true,[.05, .10, .35, .40, .10])

The function takes four arguments: the list of x-values, the desired number of simulated values (the

“sample size”), whether to sample with replacement (here, true), and the list of probabilities in the

same order as the x-values. The corresponding call in R is

sample(c(1,2,4,8,16),35,TRUE,c(.05, .10, .35, .40, .10))

Thanks to the ubiquity of the binomial, Poisson, and other distributions in probability modeling,

many software packages have built-in tools for simulating values from these distributions. Table 2.6

summarizes the relevant functions in Matlab and R; the input argument size refers to the desired

number of simulated values of the distribution.

1600

F
re

qu
en

cy

0

500

1000

1500

1650 1700 1750
g

1800 1850 1900

Fig. 2.13 Simulated distribution of weekly gross profit for Example 2.53
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A word of warning (really, a reminder) about the way software treats the negative binomial distribu-

tion: bothMatlab and R define a negative binomial rv as the number of failures preceding the rth success,
which differs from our definition. Assuming you want to simulate the number of trials required

to achieve r successes, execute the code in the last line of Table 2.6 and then add r to each value.

Example 2.54 The number of customers shipping express mail packages at a certain store during

any particular hour of the day is a Poisson rv with mean 5. Each such customer has 1, 2, 3, or

4 packages with probabilities .4, .3, .2, and .1, respectively. Let’s carry out a simulation to estimate

the probability that at most 10 packages are shipped during any particular hour.

Define an event A ¼ {at most 10 packages shipped in an hour}. Our simulation to estimate P(A)

proceeds as follows.

0. Set a counter for the number of times A occurs to zero.

Repeat n times:

1. Simulate the number of customers in an hour, C, which is Poisson with μ ¼ 5.

2. For each of the C customers, simulate the number of packages shipped according to the pmf above.

3. If the total number of packages shipped is at most 10, add 1 to the counter for A.

Matlab and R code to implement this simulation appear in Fig. 2.14.

InMatlab, 10,000 simulations resulted in 10 or fewer packages 5752 times, for an estimated probability

of P̂ Að Þ ¼ :5752, with an estimated standard error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:5752 1� :5752ð Þ=10,000p ¼ :0049. ■

2.8.2 Simulation Mean, Standard Deviation, and Precision

In Sect. 1.6 and in the preceding examples, we used simulation to estimate the probability of an event.

But consider the “gross profit” variable G in Example 2.53: since we have 10,000 simulated values of

this variable, we should be able to estimate its mean μG and its standard deviation σG. More generally,

Table 2.6 Functions to simulate major discrete distributions in Matlab and R

Distribution Matlab code R code

Binomial binornd(n, p, size, 1) rbinom(size, n, p)

Poisson poissrnd(μ, size, 1) rpois(size, μ)

Hypergeometric hygernd(N,M, n, size, 1) rhyper(size,M, N � M, n)

Negative binomial nbinrnd(r, p, size, 1) rnbinom(size, r, p)

A=0;
for i=1:10000

c=poissrnd(5,1); 
packages = randsample([1,2,3,4],c,

true,[.4,.3,.2,.1]);
if sum(packages)<=10

A=A+1;
end

end

A <- 0
for (i in 1:10000){

c<-rpois(1,5)
packages <- sample(c(1,2,3,4),c,

TRUE,c(.4,.3,.2,.1))
if (sum(packages)<=10){

A<-A+1
}

}

ba

Fig. 2.14 Simulation code for Example 2.54: (a) Matlab; (b) R
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suppose we have simulated n values x1, . . ., xn of a random variable X. Then the following quantities

based on our observed values serve as suitable estimates.

DEFINITION

For a set of numerical values x1, . . ., xn, the sample mean, denoted by �x, is

�x ¼ x1 þ � � � þ xn
n

¼ 1

n

Xn
i¼1

xi

The sample standard deviation of these numerical values, denoted by s, is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � �xð Þ2
s

If x1, . . ., xn represent simulated values of a random variable X, then we may estimate the

expected value and standard deviation of X by μ̂ ¼ �x and σ̂ ¼ s, respectively.

The justification for the use of the divisor n � 1 in s will be discussed in Chap. 5.

In Sect. 1.6, we introduced the standard error of an estimated probability, which quantifies the

precision of a simulation result P̂ Að Þ as an estimate of a “true” probability P(A). By analogy, it is

possible to quantify the amount by which a sample mean, �x, will generally differ from the

corresponding expected value μ. For n simulated values of a random variable, with sample standard

deviation s, the (estimated) standard error of the mean is

sffiffiffi
n

p ð2:22Þ

Expression (2.22) will be derived in Chap. 4. As with an estimated probability, the formula

indicates that the precision of �x increases (i.e., its standard error decreases) as n increases, but not

very quickly. To increase the precision of �x as an estimate of μ by a factor of 10 (one decimal place)

requires increasing the number of simulation runs, n, by a factor of 100. Unfortunately, there is no

general formula for the standard error of s as an estimate of σ.

Example 2.55 (Ex. 2.53 continued) The 10,000 simulated values of the random variable G, which

we denote by g1, . . ., g10000, are displayed in the histogram in Fig. 2.13. From these simulated values,

we can estimate both the expected value and standard deviation of G:

μ̂ G ¼ �g ¼ 1

10,000

X10, 000
i¼1

gi ¼ 1759:62

σ̂ G ¼ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

10,000 � 1

X10, 000
i¼1

gi � �gð Þ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9999

X10,000
i¼1

gi � 1759:62ð Þ2
vuut ¼ 43:50

We estimate that the average weekly gross profit from flash drive sales is $1759.62, with a standard

deviation of $43.50. Neither of these computations was performed by hand, of course: if the n simulated

values of a variable are stored in a vector x, then mean(x) and sd(x) in R will provide the sample

mean and standard deviation, respectively. In Matlab, the calls are mean(x) and std(x).

Applying Eq. (2.22), the (estimated) standard error of �g is s=
ffiffiffi
n

p ¼ 43:50=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10,000

p ¼ 0:435.

If 10,000 runs are used to simulate G, it’s estimated that the resulting sample mean will differ from
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E(G) by roughly 0.435. (In contrast, the sample standard deviation, s, estimates that the gross profit

for a single week—i.e., a single observation g—typically differs from E(G) by about $43.50.) ■

In Chap. 4, we will see how the expected value and variance of random variables like G, that are

sums of a fixed number of other rvs, can be obtained analytically.

Example 2.56 The “help desk” at a university’s computer center receives both hardware and

software queries. Let X and Y be the number of hardware and software queries, respectively, in a

given day. Each can be modeled by a Poisson distribution with mean 20. Because computer center

employees need to be allocated efficiently, of interest is the difference between the sizes of the two

queues: D ¼ |X � Y|. Let’s use simulation to estimate (1) the probability the queue sizes differ by

more than 5; (2) the expected difference; (3) the standard deviation of the difference.

Figure 2.15 shows Matlab and R code to simulate this process. In both languages, the code exploits

the built-in Poisson simulator, as well as the fact that 10,000 simulated values may be called

simultaneously.

The line sum((D>5)) performs two operations: first, (D>5) determines if each simulated

d value exceeds 5, returning a logical vector of bits; second, sum() tallies the “success” bits (1s or

TRUEs) and gives a count of the number of times the event {D > 5} occurred in the 10,000

simulations. The results from one run in Matlab were

P̂ D > 5ð Þ ¼ 3843

10, 000
¼ :3843 μ̂ D ¼ �d ¼ 5:0380 σ̂ D ¼ s ¼ 3:8436

A histogram of the simulated values of D appears in Fig. 2.16.

ba
X=poissrnd(20,10000,1);
Y=poissrnd(20,10000,1);
D=abs(X-Y);
sum((D>5))
mean(D)
std(D)

X<-rpois(10000,20)
Y<-rpois(10000,20)
D<-abs(X-Y)
sum((D>5))
mean(D)
sd(D)

Fig. 2.15 Simulation code for Example 2.56: (a) Matlab; (b) R
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Fig. 2.16 Simulation histogram of D in Example 2.56 ■

2.8 Simulation of Discrete Random Variables 137

http://dx.doi.org/10.1007/978-3-319-52401-6_4


2.8.3 Exercises: Section 2.8 (129–141)

129. Consider the pmf given in Exercise 30 for the random variable Y ¼ the number of moving

violations for which the a randomly selected insured individual was cited during the last

3 years. Write a program to simulate this random variable, then use your simulation to estimate

E(Y ) and SD(Y ). How do these compare to the exact values of E(Y ) and SD(Y )?

130. Consider the pmf given in Exercise 32 for the random variable X ¼ capacity of a purchased

freezer. Write a program to simulate this random variable, then use your simulation to estimate

E(X) and SD(X). How do these compare to the exact values of E(X) and SD(X)?
131. Suppose person after person is tested for the presence of a certain characteristic. The probabil-

ity that any individual tests positive is .75. Let X¼ the number of people who must be tested to

obtain five consecutive positive test results. Use simulation to estimate P(X � 25).

132. The matching problem. Suppose that N items labeled 1, 2, . . ., N are shuffled so that they are in

random order. Of interest is howmany of these will be in their “correct” positions (e.g., item #5

situated at the 5th position in the sequence, etc.) after shuffling.

(a) Write a program that simulates a permutation of the numbers 1 to N and then records the

value of the variable X ¼ number of items in the correct position.

(b) Set N ¼ 5 in your program, and use at least 10,000 simulations to estimate E(X), the
expected number of items in the correct position.

(c) Set N ¼ 52 in your program (as if you were shuffling a deck of cards), and use at least

10,000 simulations to estimate E(X). What do you discover? Is this surprising?

133. Exercise 109 of Chap. 1 referred to a multiple-choice exam in which 10 of the questions have

two options, 13 have three options, 13 have four options, and the other 4 have five options. Let

X ¼ the number of questions a student gets right, assuming s/he is completely guessing.

(a) Write a program to simulate X, and use your program to estimate the mean and standard

deviation of X.

(b) Estimate the probability a student will score at least one standard deviation above

the mean.

134. Example 2.53 of this section considered the gross profit G resulting from selling flash drives to

80 customers per week. Of course, it isn’t realistic for the number of customers to remain fixed

from week to week. So, instead, imagine the number of customers buying flash drives in a

week follows a Poisson distribution with mean 80, and that the amount paid by each customer

follows the distribution for Y provided in that example. Write a program to simulate the

random variable G, and use your simulation to estimate

(a) The probability that weekly gross sales are at least $1,800.

(b) The mean of G.
(c) The standard deviation of G.

135. Exercise 21 (Sect. 2.2) investigated Benford’s law, a discrete distribution with pmf given by

p(x) ¼ log10((x + 1)/x) for x ¼ 1, 2, . . ., 9. Use the inverse cdf method to write a program that

simulates the Benford’s law distribution. Then use your program to estimate the expected

value and variance of this distribution.

136. Recall that a geometric rv has pmf p(x) ¼ p(1 � p)x�1 for x ¼ 1, 2, 3, . . .. In Example 2.12, it

was shown that the cdf of this distribution is given by F(x)¼ 1� (1� p)x for positive integers x.

(a) Write a program that implements the inverse cdf method to simulate a geometric

distribution. Your program should have as inputs the numerical value of p and the desired
sample size.

(b) Use your program to simulate 10,000 values from a geometric rv X with p ¼ .85. From

these values, estimate each of the following: P(X � 2), E(X), SD(X). How do these

compare to the corresponding exact values?
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137. Tickets for a particular flight are $250 apiece. The plane seats 120 passengers, but the airline

will knowingly overbook (i.e., sell more than 120 tickets), because not every paid passenger

shows up. Let t denote the number of tickets the airline sells for this flight, and assume the

number of passengers that actually show up for the flight, X, follows a Bin(t, .85) distribution.

Let B ¼ the number of paid passengers who show up at the airport but are denied a seat on the

plane, so B ¼ X � 120 if X > 120 and B ¼ 0 otherwise. If the airline must compensate these

passengers with $500 apiece, then the profit the airline makes on this flight is 250t � 500B.
(Notice t is fixed, but B is random.)

(a) Write a program to simulate this scenario. Specifically, your program should take in t as

an input and return many values of the profit variable 250t � 500B.
(b) The airline wishes to determine the optimal value of t, i.e., the number of tickets to sell

that will maximize their expected profit. Run your program for t¼ 140, 141, . . ., 150, and

record the average profit from many runs under each of these settings. What value of

t appears to return the largest value? [Note: If a clear winner does not emerge, you might

need to increase the number of runs for each t value!]

138. Imagine the following simple game: flip a fair coin repeatedly, winning $1 for every head and

losing $1 for every tail. Your net winnings will potentially oscillate between positive and

negative numbers as play continues. How many times do you think net winnings will change

signs in, say, 1000 coin flips? 5000 flips?

(a) Let X ¼ the number of sign changes in 1000 coin flips. Write a program to simulate X, and

use your program to estimate the probability of at least 10 sign changes.

(b) Use your program to estimate E(X) and SD(X). Does your estimate for E(X) match your

intuition for the number of sign changes?

(c) Repeat parts (a)–(b) with 5000 flips.

139. Exercise 39 (Sect. 2.3) describes the game Plinko from The Price is Right. Each contestant drops
between one and 5 chips down the Plinko board, depending on how well s/he prices several

small items. Suppose the random variable C ¼ number of chips earned by a contestant has the

following distribution:

c 1 2 3 4 5

p(c) .03 .15 .35 .34 .13

The winnings from each chip follow the distribution presented in Exercise 39. Write a program

to simulate Plinko; you will need to consider both the number of chips a contestant earns and

how much money is won on each of those chips. Use your simulation estimate the answers to the

following questions:

(a) What is the probability a contestant wins more than $11,000?

(b) What is a contestant’s expected winnings?

(c) What is the corresponding standard deviation?

(d) In fact, a player gets one Plinko chip for free and can earn the other four by guessing the

prices of small items (waffle irons, alarm clocks, etc.). Assume the player has a 50–50

chance of getting each price correct, so we may write C ¼ 1 + R, where R ~ Bin(4, .5). Use

this revised model for C to estimate the answers to (a)–(c).

140. Recall the Coupon Collector’s Problem described in the book’s Introduction and again in

Exercise 114 of Chap. 1. Let X ¼ the number of cereal boxes purchased in order to obtain all

10 coupons.

(a) Use a simulation program to estimate E(X) and SD(X). Also compute the estimated

standard error of your sample mean.

2.8 Simulation of Discrete Random Variables 139

http://dx.doi.org/10.1007/978-3-319-52401-6_1


(b) How does your estimate of E(X) compare to the theoretical answer given in the

Introduction?

(c) Repeat (a) with 20 coupons required instead of 10. Does it appear to take roughly twice as

long to collect 20 coupons as 10? More than twice as long? Less?

141. A small high school holds its graduation ceremony in the gym. Because of seating constraints,

students are limited to a maximum of four tickets to graduation for family and friends. Suppose

30% of students want four tickets, 25% want three, 25% want two, 15% want one, and 5%

want none.

(a) Write a simulation for 150 graduates requesting tickets, where students’ requests follow
the distribution described above. In particular, keep track of the variable T ¼ the total

number of tickets requested by these 150 students.

(b) The gym can seat a maximum of 410 guests. Based on your simulation, estimate the

probability that all students’ requests can be accommodated.

2.9 Supplementary Exercises (142–170)

142. Consider a deck consisting of seven cards, marked 1, 2, . . ., 7. Three of these cards are selected

at random. Define an rv W by W ¼ the sum of the resulting numbers, and compute the pmf of

W. Then compute E(W ) and Var(W ). [Hint: Consider outcomes as unordered, so that (1, 3, 7)

and (3, 1, 7) are not different outcomes. Then there are 35 outcomes, and they can be listed.]

(This type of rv actually arises in connection with Wilcoxon’s rank-sum test, in which there is

an x sample and a y sample and W is the sum of the ranks of the x’s in the combined sample.)

143. After shuffling a deck of 52 cards, a dealer deals out 5. Let X¼ the number of suits represented

in the five-card hand.

(a) Show that the pmf of X is

x 1 2 3 4

p(x) .002 .146 .588 .264

[Hint: p(1) ¼ 4P(all are spades), p(2) ¼ 6P(only spades and hearts with at least one of

each), and p(4) ¼ 4P(2 spades \ one of each other suit).]

(b) Compute E(X) and SD(X).
144. The negative binomial rv X was defined as the number of trials necessary to obtain the rth S.

Let Y ¼ the number of F’s preceding the rth S. In the same manner in which the pmf of X was

derived, derive the pmf of Y.
145. Of all customers purchasing automatic garage-door openers, 75% purchase a chain-driven

model. Let X ¼ the number among the next 15 purchasers who select the chain-driven model.

(a) What is the pmf of X?
(b) Compute P(X > 10).

(c) Compute P(6 � X � 10).

(d) Compute E(X) and SD(X).
(e) If the store currently has in stock 10 chain-driven models and 8 shaft-driven models, what

is the probability that the requests of these 15 customers can all be met from existing

stock?

146. A friend recently planned a camping trip. He has two flashlights, one that required a single 6-V

battery and another that used two size-D batteries. He had previously packed two 6-V and four

140 2 Discrete Random Variables and Probability Distributions



size-D batteries in his camper. Suppose the probability that any particular battery works is

p and that batteries work or fail independently of one another. Our friend wants to take just one
flashlight. For what values of p should he take the 6-V flashlight?

147. Binary data are transmitted over a noisy communication channel. The probability that a

received binary digit is in error due to channel noise is 0.05. Assume that such errors occur

independently within the bit stream.

(a) What is the probability that the 3rd error occurs on the 50th transmitted bit?

(b) On average, how many bits will be transmitted correctly before the first error?

(c) Consider a 32-bit “word.” What is the probability of exactly 2 errors in this word?

(d) Consider the next 10,000 bits. What approximating model could we use for X ¼ the

number of errors in these 10,000 bits? Give both the name of the model and the value(s) of

the parameter(s).

148. A manufacturer of flashlight batteries wishes to control the quality of its product by rejecting

any lot in which the proportion of batteries having unacceptable voltage appears to be too high.

To this end, out of each large lot (10,000 batteries), 25 will be selected and tested. If at least

5 of these generate an unacceptable voltage, the entire lot will be rejected. What is the

probability that a lot will be rejected if

(a) 5% of the batteries in the lot have unacceptable voltages?

(b) 10% of the batteries in the lot have unacceptable voltages?

(c) 20% of the batteries in the lot have unacceptable voltages?

(d) What would happen to the probabilities in parts (a)–(c) if the critical rejection number

were increased from 5 to 6?

149. Of the people passing through an airport metal detector, .5% activate it; let X ¼ the number

among a randomly selected group of 500 who activate the detector.

(a) What is the (approximate) pmf of X?
(b) Compute P(X ¼ 5).

(c) Compute P(X � 5).

150. An educational consulting firm is trying to decide whether high school students who have

never before used a handheld calculator can solve a certain type of problem more easily with a

calculator that uses reverse Polish logic or one that does not use this logic. A sample of

25 students is selected and allowed to practice on both calculators. Then each student is asked

to work one problem on the reverse Polish calculator and a similar problem on the other. Let

p ¼ P(S), where S indicates that a student worked the problem more quickly using reverse

Polish logic than without, and let X ¼ number of S’s.
(a) If p ¼ .5, what is P(7 � X � 18)?

(b) If p ¼ .8, what is P(7 � X � 18)?

(c) If the claim that p ¼ .5 is to be rejected when either X � 7 or X � 18, what is the

probability of rejecting the claim when it is actually correct?

(d) If the decision to reject the claim p ¼ .5 is made as in part (c), what is the probability that

the claim is not rejected when p ¼ .6? When p ¼ .8?

(e) What decision rule would you choose for rejecting the claim p ¼ .5 if you wanted the

probability in part (c) to be at most.01?

151. Consider a disease whose presence can be identified by carrying out a blood test. Let p denote

the probability that a randomly selected individual has the disease. Suppose n individuals are

independently selected for testing. One way to proceed is to carry out a separate test on each of

the n blood samples. A potentially more economical approach, group testing, was introduced

during World War II to identify syphilitic men among army inductees. First, take a part of each
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blood sample, combine these specimens, and carry out a single test. If no one has the disease, the

result will be negative, and only the one test is required. If at least one individual is diseased, the

test on the combined sample will yield a positive result, in which case the n individual tests are

then carried out. If p ¼ .1 and n ¼ 3, what is the expected number of tests using this procedure?

What is the expected number when n ¼ 5? [The article “Random Multiple-Access Communi-

cation and Group Testing” (IEEE Trans. Commun., 1984: 769–774) applied these ideas to a

communication system in which the dichotomy was active/idle user rather than diseased/

nondiseased.]

152. Let p1 denote the probability that any particular code symbol is erroneously transmitted through

a communication system. Assume that on different symbols, errors occur independently of one

another. Suppose also that with probability p2 an erroneous symbol is corrected upon receipt.

Let X denote the number of correct symbols in a message block consisting of n symbols (after

the correction process has ended). What is the probability distribution of X?
153. The purchaser of a power-generating unit requires c consecutive successful start-ups before the

unit will be accepted. Assume that the outcomes of individual start-ups are independent of one

another. Let p denote the probability that any particular start-up is successful. The random

variable of interest is X ¼ the number of start-ups that must be made prior to acceptance. Give

the pmf of X for the case c ¼ 2. If p ¼ .9, what is P(X � 8)? [Hint: For x � 5, express p(x)

“recursively” in terms of the pmf evaluated at the smaller values x � 3, x � 4, . . ., 2.] (This
problem was suggested by the article “Evaluation of a Start-Up Demonstration Test,” J. Qual.

Tech., 1983: 103–106.)

154. A plan for an executive travelers’ club has been developed by an airline on the premise that 10%

of its current customers would qualify for membership.

(a) Assuming the validity of this premise, among 25 randomly selected current customers,

what is the probability that between 2 and 6 (inclusive) qualify for membership?

(b) Again assuming the validity of the premise, what are the expected number of customers

who qualify and the standard deviation of the number who qualify in a random sample of

100 current customers?

(c) Let X denote the number in a random sample of 25 current customers who qualify for

membership. Consider rejecting the company’s premise in favor of the claim that p> .10 if

x � 7. What is the probability that the company’s premise is rejected when it is actually

valid?

(d) Refer to the decision rule introduced in part (c). What is the probability that the company’s
premise is not rejected even though p ¼ .20 (i.e., 20% qualify)?

155. Forty percent of seeds from maize (modern-day corn) ears carry single spikelets, and the other

60% carry paired spikelets. A seed with single spikelets will produce an ear with single spikelets

29% of the time, whereas a seed with paired spikelets will produce an ear with single spikelets

26% of the time. Consider randomly selecting ten seeds.

(a) What is the probability that exactly five of these seeds carry a single spikelet and produce

an ear with a single spikelet?

(b) What is the probability that exactly five of the ears produced by these seeds have single

spikelets? What is the probability that at most five ears have single spikelets?

156. A trial has just resulted in a hung jury because eight members of the jury were in favor of a

guilty verdict and the other four were for acquittal. If the jurors leave the jury room in random

order and each of the first four leaving the room is accosted by a reporter in quest of an

interview, what is the pmf of X ¼ the number of jurors favoring acquittal among those

interviewed? How many of those favoring acquittal do you expect to be interviewed?
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157. A reservation service employs five information operators who receive requests for information

independently of one another, each according to a Poisson process with rate λ ¼ 2 per minute.

(a) What is the probability that during a given 1-min period, the first operator receives no

requests?

(b) What is the probability that during a given 1-min period, exactly four of the five operators

receive no requests?

(c) Write an expression for the probability that during a given 1-min period, all of the

operators receive exactly the same number of requests.

158. Grasshoppers are distributed at random in a large field according to a Poisson process with

parameter λ ¼ 2 per square yard. How large should the radius r of a circular sampling region be

taken so that the probability of finding at least one grasshopper in the region equals .99?

159. A newsstand has ordered five copies of a certain issue of a photography magazine. Let X ¼ the

number of individuals who come in to purchase this magazine. If X has a Poisson distribution

with parameter μ ¼ 4, what is the expected number of copies that are sold?

160. Individuals A and B begin to play a sequence of chess games. Let S ¼ {A wins a game}, and

suppose that outcomes of successive games are independent with P(S) ¼ p and P(F) ¼ 1 �
p (they never draw). They will play until one of them wins ten games. Let X ¼ the number of

games played (with possible values 10, 11, . . ., 19).

(a) For x ¼ 10, 11, . . ., 19, obtain an expression for p(x) ¼ P(X ¼ x).
(b) If a draw is possible, with p ¼ P(S), q ¼ P(F), 1 � p � q ¼ P(draw), what are the possible

values of X? What is P(20 � X)? [Hint: P(20 � X) ¼ 1 � P(X < 20).]

161. A test for the presence of a disease has probability .20 of giving a false-positive reading

(indicating that an individual has the disease when this is not the case) and probability.10 of

giving a false-negative result. Suppose that ten individuals are tested, five of whom have the

disease and five of whom do not. Let X ¼ the number of positive readings that result.

(a) Does X have a binomial distribution? Explain your reasoning.

(b) What is the probability that exactly three of the ten test results are positive?

162. The generalized negative binomial pmf is given by

nb x; r; pð Þ ¼ k r; xð Þ 
 pr 1� pð Þx x ¼ 0, 1, 2, . . .

where

k r; xð Þ ¼
xþ r � 1ð Þ xþ r � 2ð Þ . . . xþ r � xð Þ

x!
x ¼ 1, 2, . . .

1 x ¼ 0

8<
:

Let X, the number of plants of a certain species found in a particular region, have this

distribution with p ¼ .3 and r ¼ 2.5. What is P(X ¼ 4)? What is the probability that at least

one plant is found?

163. There are two certified public accountants (CPAs) in a particular office who prepare tax returns

for clients. Suppose that for one type of complex tax form, the number of errors made by the first

preparer has a Poisson distribution with mean μ1, the number of errors made by the second

preparer has a Poisson distribution with mean μ2, and that each CPA prepares the same number

of forms of this type. Then if one such form is randomly selected, the function

p x; μ1; μ2ð Þ ¼ :5e�μ1
μ x
1

x!
þ :5e�μ2

μ x
2

x!
x ¼ 0, 1, 2, . . .

gives the pmf of X ¼ the number of errors in the selected form.
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(a) Verify that p(x; μ1, μ2) is a legitimate pmf (� 0 and sums to 1).

(b) What is the expected number of errors on the selected form?

(c) What is the standard deviation of the number of errors on the selected form?

(d) How does the pmf change if the first CPA prepares 60% of all such forms and the second

prepares 40%?

164. The mode of a discrete random variable X with pmf p(x) is that value x* for which p(x) is largest

(the most probable x value).
(a) Let X ~ Bin(n, p). By considering the ratio b(x + 1; n, p)/b(x; n, p), show that b(x; n, p)

increases with x as long as x < np � (1 � p). Conclude that the mode x* is the integer

satisfying (n + 1)p � 1 � x* � (n + 1)p.
(b) Show that if X has a Poisson distribution with parameter μ, the mode is the largest integer

less than μ. If μ is an integer, show that both μ � 1 and μ are modes.

165. For a particular insurance policy the number of claims by a policy holder in 5 years is Poisson

distributed. If the filing of one claim is four times as likely as the filing of two claims, find the

expected number of claims.

166. If X is a hypergeometric rv, show directly from the definition that E(X) ¼ nM/N (consider only

the case n <M ). [Hint: Factor nM/N out of the sum for E(X), and show that the terms inside the

sum are a match to the pmf h(y; n � 1, M � 1, N � 1), where y ¼ x � 1.]

167. Suppose a store sells two different coffee makers of a particular brand, a basic model selling for

$30 and a fancy one selling for $50. Let X be the number of people among the next 25 purchasing

this brand who choose the fancy one. Then h(X)¼ revenue¼ 50X + 30(25� X)¼ 20X + 750, a

linear function. If the choices are independent and have the same probability, then how is

X distributed? Find the mean and standard deviation of h(X). Explain why the choices might not

be independent with the same probability.

168. Let X be a discrete rv with possible values 0, 1, 2, . . . or some subset of these. The function

ψ sð Þ ¼ E sXð Þ ¼
X1
x¼0

sx � p xð Þ is called the probability generating function (pgf) of X.

(a) Suppose X is the number of children born to a family, and p(0) ¼ .2, p(1) ¼ .5, and p(2) ¼
.3. Determine the pgf of X.

(b) Determine the pgf when X has a Poisson distribution with parameter μ.
(c) Show that ψ(1) ¼ 1.

(d) Show that ψ0(0) ¼ p(1). (You’ll need to assume that the derivative can be brought inside

the summation, which is justified.) What results from taking the second derivative with

respect to s and evaluating at s ¼ 0? The third derivative? Explain how successive

differentiation of ψ(s) and evaluation at s ¼ 0 “generates the probabilities in the distribu-

tion.” Use this to recapture the probabilities of (a) from the pgf. [Note: This shows that the

pgf contains all the information about the distribution—knowing ψ(s) is equivalent to

knowing p(x).]
169. Consider a collection A1, . . ., Ak of mutually exclusive and exhaustive events (a partition) and a

random variable X whose distribution depends on which of the Ais occurs. (e.g., a commuter

might select one of three possible routes from home to work, with X representing commute

time.) Let E(X | Ai) denote the expected value of X given that event Ai occurs. Then, analogous to

the Law of Total Probability, it can be shown that the overall mean of X is given by the weighted

average E(X) ¼ ∑ E(X|Ai)P(Ai)

(a) The expected duration of a voice call to a particular office telephone number is 3 min,

whereas the expected duration of a data call to that same number is 1 min. If 75% of all

calls are voice calls, what is the expected duration of the next call?
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(b) A bakery sells three different types of chocolate chip cookies. The number of chocolate

chips on a type i cookie has a Poisson distribution with mean μi ¼ i + 1 (i¼ 1, 2, 3). If 20%

of all customers select a cookie of the first type, 50% choose the second type, and 30% opt

for the third type, what is the expected number of chocolate chips in the next customer’s
cookie?

170. Consider a sequence of identical and independent trials, each of which will be a success S or

failure F. Let p ¼ P(S) and q ¼ P(F).
(a) Let X ¼ the number of trials necessary to obtain the first S, a geometric rv. Here is an

alternative approach to determining E(X). Apply the weighted average formula from the

previous exercise with k ¼ 2, A1 ¼ {S on 1st trial}, and A2 ¼ A0. Show that E(X) ¼ 1/p.
[Hint: Denote E(X) by μ. Given that the first trial is a failure, one trial has been performed

and, starting from the 2nd trial, we are still looking for the first S. This implies that E(X|A0)
¼ 1 + μ.]

(b) Now let Y ¼ the number of trials necessary to obtain two consecutive S’s. It is not possible
to determine E(Y ) directly from the definition of expected value, because there is no

formula for the pmf of Y; the complication is the word consecutive. Use the weighted

average formula to determine E(Y). [Hint: Consider the partition with k¼ 3 and A1 ¼ {F},

A2 ¼ {SS}, A3 ¼ {SF}.]
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Continuous Random Variables
and Probability Distributions 3

As emphasized at the beginning of Chap. 2, the two important types of random variables are discrete

and continuous. In this chapter, we study the second general type of random variable that arises in

many applied problems. Sections 3.1 and 3.2 present the basic definitions and properties of continu-

ous random variables, their probability distributions, and their various expected values. The normal

distribution, arguably the most important and useful model in all of probability and statistics, is

introduced in Sect. 3.3. Sections 3.4 and 3.5 discuss some other continuous distributions that are often

used in applied work. In Sect. 3.6, we introduce a method for assessing whether given sample data is

consistent with a specified distribution. Section 3.7 presents methods for obtaining the distribution of

a rv Y from the distribution of Xwhen the two are related by some equation Y¼ g(X). The last section
of this chapter is dedicated to the simulation of continuous rvs.

3.1 Probability Density Functions and Cumulative Distribution Functions

A discrete random variable (rv) is one whose possible values either constitute a finite set or else can be

listed in an infinite sequence (a list in which there is a first element, a second element, etc.). A random

variable whose set of possible values is an entire interval of numbers is not discrete.

Recall from the beginning of Chap. 2 that a random variable X is continuous if (1) its possible
values comprise either a single interval on the number line (for some A < B, any number x between

A and B is a possible value) or a union of disjoint intervals, and (2) P(X¼ c)¼ 0 for any number c that

is a possible value of X.

Example 3.1 If in the study of the ecology of a lake, we make depth measurements at randomly

chosen locations, then X ¼ the depth at such a location is a continuous rv. Here A is the minimum

depth in the region being sampled, and B is the maximum depth. ■

Example 3.2 If a chemical compound is randomly selected and its pH X is determined, then X is a

continuous rv because any pH value between 0 and 14 is possible. If more is known about the

compound selected for analysis, then the set of possible values might be a subinterval of [0, 14], such

as 5.5 � x � 6.5, but X would still be continuous. ■
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Example 3.3 Let X represent the amount of time a randomly selected customer spends waiting for a

haircut. Your first thought might be that X is a continuous random variable, since a measurement is

required to determine its value. However, there are customers lucky enough to have no wait

whatsoever before climbing into the barber or stylist’s chair. So it must be the case that P(X ¼ 0)

> 0. Conditional on no chairs being empty, however, the waiting time will be continuous since

X could then assume any value between some minimum possible time A and a maximum possible

time B. This random variable is neither purely discrete nor purely continuous but instead is a mixture

of the two types. ■

One might argue that although in principle variables such as height, weight, and temperature are

continuous, in practice the limitations of our measuring instruments restrict us to a discrete (though

sometimes very finely subdivided) world. However, continuous models often approximate real-world

situations very well, and continuous mathematics (the calculus) is frequently easier to work with than

the mathematics of discrete variables and distributions.

3.1.1 Probability Distributions for Continuous Variables

Suppose the variable X of interest is the depth of a lake at a randomly chosen point on the surface. Let

M¼ the maximum depth (in meters), so that any number in the interval [0,M] is a possible value of X.

If we “discretize” X by measuring depth to the nearest meter, then possible values are nonnegative

integers less than or equal to M. The resulting discrete distribution of depth can be pictured using a

probability histogram. If we draw the histogram so that the area of the rectangle above any possible

integer k is the proportion of the lake whose depth is (to the nearest meter) k, then the total area of all

rectangles is 1. A possible histogram appears in Fig. 3.1a.

If depth is measured much more precisely and the same measurement axis as in Fig. 3.1a is used,

each rectangle in the resulting probability histogram is much narrower, although the total area of all

rectangles is still 1. A possible histogram is pictured in Fig. 3.1b; it has a much smoother appearance

than the histogram in Fig. 3.1a. If we continue in this way to measure depth more and more finely, the

resulting sequence of histograms approaches a smooth curve, as pictured in Fig. 3.1c. Because for

each histogram the total area of all rectangles equals 1, the total area under the smooth curve is also

1. The probability that the depth at a randomly chosen point is between a and b is just the area under

the smooth curve between a and b. It is exactly a smooth curve of the type pictured in Fig. 3.1c that

specifies a continuous probability distribution.

cba

0 M 0 M 0 M

Fig. 3.1 (a) Probability histogram of depth measured to the nearest meter; (b) probability histogram of depth

measured to the nearest centimeter; (c) a limit of a sequence of discrete histograms
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DEFINITION

Let X be a continuous rv. Then a probability distribution or probability density function

(pdf) of X is a function f(x) such that for any two numbers a and b with a � b,

P a � X � bð Þ ¼
ðb
a

f ðxÞdx

That is, the probability that X takes on a value in the interval [a, b] is the area above this

interval and under the graph of the density function, as illustrated in Fig. 3.2. The graph of f(x) is

often referred to as the density curve.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

1. f(x) � 0 for all x

2.
Ð
�1
1 f(x)dx ¼ [area under the entire graph of f(x)] ¼ 1

Example 3.4 The direction of an imperfection with respect to a reference line on a circular object

such as a tire, brake rotor, or flywheel is often subject to uncertainty. Consider the reference line

connecting the valve stem on a tire to the center point, and let X be the angle measured clockwise to

the location of an imperfection. One possible pdf for X is

f ðxÞ ¼
1

360
0 � x < 360

0 otherwise

8<:
The pdf is graphed in Fig. 3.3. Clearly f(x)� 0. The area under the density curve is just the area of a

rectangle: heightð Þ baseð Þ ¼ 1

360

� �
ð360Þ ¼ 1. The probability that the angle is between 90� and 180� is

P 90 � X � 180ð Þ ¼
ð180
90

1

360
dx ¼ x

360

���x¼180

x¼90
¼ 1

4
¼ :25

The probability that the angle of occurrence is within 90� of the reference line is

P 0 � X � 90ð Þ þ P 270 � X < 360ð Þ ¼ :25þ :25 ¼ :50

a b
x

f(x)

Fig. 3.2 P(a � X � b) ¼ the area under the density curve between a and b
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Because the pdf in Fig. 3.3 is completely “level” (i.e., has a uniform height) on the interval

[0, 360], X is said to have a uniform distribution.

DEFINITION

A continuous rv X is said to have a uniform distribution on the interval [A, B] if the pdf of X is

f x;A,Bð Þ ¼
1

B� A
A � x � B

0 otherwise

8<:
The statement that X has a uniform distribution on [A, B] will be denoted X � Unif[A, B].

The graph of any uniform pdf looks like the graph in Fig. 3.3 except that the interval of positive

density is [A, B] rather than [0, 360).

In the discrete case, a probability mass function (pmf) tells us how little “blobs” of probability

mass of various magnitudes are distributed along the measurement axis. In the continuous case,

probability density is “smeared” in a continuous fashion along the interval of possible values. When

density is smeared evenly over the interval, a uniform pdf, as in Fig. 3.3, results.

When X is a discrete random variable, each possible value is assigned positive probability. This is

not true of a continuous random variable, because the area under a density curve that lies above any

single value is zero:

P X ¼ cð Þ ¼ P c � X � cð Þ ¼
ðc
c

f ðxÞ dx ¼ 0

The fact that P(X ¼ c) ¼ 0 when X is continuous has an important practical consequence: The

probability that X lies in some interval between a and b does not depend on whether the lower limit

a or the upper limit b is included in the probability calculation:

P a � X � bð Þ ¼ P a < X < bð Þ ¼ P a < X � bð Þ ¼ P a � X < bð Þ ð3:1Þ
In contrast, if X were discrete and both a and b were possible values of X (e.g., X� Bin(20, .3) and

a ¼ 5, b ¼ 10), then all four of the probabilities in Eq. (3.1) would be different. This also means that

whether we include the endpoints of the range of values for a continuous rv X is somewhat arbitrary;

for example, the pdf in Example 3.4 could be defined to be positive on (0, 360) or [0, 360] rather than

[0, 360), and the same applies for a uniform distribution on [A, B] in general.

The zero probability condition has a physical analog. Consider a solid circular rod (with cross-

sectional area of 1 in2 for simplicity). Place the rod alongside a measurement axis and suppose that the

density of the rod at any point x is given by the value f(x) of a density function. Then if the rod is sliced

x

1

360

3600
x

36027018090

f (x) f (x)

Shaded area = P(90 ≤ X ≤ 180) 

Fig. 3.3 The pdf and probability for Example 3.4 ■
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at points a and b and this segment is removed, the amount of mass removed is
Ð
a
b f(x)dx; however, if

the rod is sliced just at the point c, no mass is removed. Mass is assigned to interval segments of the

rod but not to individual points.

So, if P(X ¼ c) ¼ 0 when X is a continuous rv, then what does f(c) represent? After all, if X were

discrete, its pmf evaluated at x ¼ c, p(c), would indicate the probability that X equals c. To help

understand what f(c) means, consider a small window near x ¼ c—say, [c, c + Δx]. Using a rectangle
to approximate the area under f(x) between c and c + Δx (the usual “Riemann approximation” idea

from calculus), one obtains
Ð
c
c + Δxf(x)dx � Δx � f(c), from which

f ðcÞ �

ðcþΔx

c

f ðxÞdx
Δx

¼ P c � X � cþ Δxð Þ
Δx

This indicates that f(c) is not a probability, but rather roughly the probability of an interval divided

by the length of the chosen interval. If we associate mass with probability and remember that interval

length is the one-dimensional analog of volume, then f represents their quotient, mass per volume,

more commonly known as density (hence, the name pdf). The height of the function f(x) at a particular

point reflects how “dense” the values of X are near that point—taller sections of f(x) contain more

probability within a fixed interval length than do shorter sections.

Example 3.5 “Time headway” in traffic flow is the elapsed time between the time that one car

finishes passing a fixed point and the instant that the next car begins to pass that point. Let X ¼ the

time headway for two randomly chosen consecutive cars on a freeway during a period of heavy flow.

The following pdf of X is essentially the one suggested in “The Statistical Properties of Freeway

Traffic” (Transp. Res., 11: 221–228):

f ðxÞ ¼ :15e�:15 x�:5ð Þ x � :5

0 otherwise

(

The graph of f(x) is given in Fig. 3.4; there is no density associated with headway times less than .5,

and headway density decreases rapidly (exponentially fast) as x increases from .5. The fact that the

graph of f(x) is taller near x ¼ .5 and shorter near, say, x ¼ 10 indicates that time headway values are

more dense near the left boundary, i.e., there is a higher proportion of time headways in the interval

[.5, 1.5] than in [10, 11], even though these two intervals have the same length.

Clearly, f(x) � 0; to show that

ð1
�1

f(x)dx ¼ 1 we use the calculus result

ð1
a

e� kxdx ¼ (1/k)e– ka.

Then ð1
�1

f ðxÞdx ¼
ð:5
�1

0 dxþ
ð1
:5

:15e�:15 x�5ð Þdx

¼ :15e:075
ð1
:5

e�:15xdx ¼ :15e:075 � 1

:15
e�:15ð:5Þ ¼ 1

The probability that headway time is at most 5 seconds is
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P X � 5ð Þ ¼
ð5
�1

f ðxÞ dx ¼
ð5
:5

:15e�:15 x�:5ð Þ dx ¼ :15e:075
ð5
:5

e�:15xdx

¼ :15e:075 � �1

:15
e�:15x

����x¼5

x¼:5

¼ e:075 �e�:75 þ e�:075
� � ¼ 1:078 �:472þ :928ð Þ ¼ :491

Since X is a continuous rv, .491 also equals P(X< 5), the probability that headway time is (strictly)

less than 5 s. The difference between these two events is {X¼ 5}, i.e., that headway time is exactly 5 s,

which has probability zero: P(X ¼ 5) ¼Ð 5
5
f(x)dx ¼ 0.

This last statement may feel uncomfortable to you: Is there really zero chance that the headway

time between two cars is exactly 5 s? If time is treated as continuous, then “exactly 5 s” means X ¼
5.000. . ., with an endless repetition of 0s. That is to say, X isn’t rounded to the nearest second (or even

tenth of a second); we are asking for the probability that X equals one specific number, 5.000. . ., out

of the (uncountably) infinite collection of possible values of X. ■

Unlike discrete distributions such as the binomial, hypergeometric, and negative binomial, the

distribution of any given continuous rv cannot usually be derived using simple probabilistic

arguments. Instead, one must make a judicious choice of pdf based on prior knowledge and available

data. Fortunately, some general pdf families have been found to fit well in a wide variety of

experimental situations; several of these are discussed later in the chapter.

Just as in the discrete case, it is often helpful to think of the population of interest as consisting of

X values rather than individuals or objects. The pdf is then a model for the distribution of values in this

numerical population, and from this model various population characteristics (such as the mean) can

be calculated.

Several of the most important concepts introduced in the study of discrete distributions also play

an important role for continuous distributions. Definitions analogous to those in Chap. 2 involve

replacing summation by integration.

3.1.2 The Cumulative Distribution Function

The cumulative distribution function (cdf) F(x) for a discrete rv X gives, for any specified number x,

the probability P(X � x). It is obtained by summing the pmf p(y) over all possible values y satisfying
y� x. The cdf of a continuous rv gives the same probabilities P(X � x) and is obtained by integrating

the pdf f(y) between the limits �1 and x.

x

.15

5 10 15

f (x)
P(X ≤ 5)

.5

Fig. 3.4 The density curve for headway time in Example 3.5
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DEFINITION

The cumulative distribution function F(x) for a continuous rv X is defined for every number

x by

FðxÞ ¼ P X � xð Þ ¼
ðx
�1

f ðyÞdy

For each x, F(x) is the area under the density curve to the left of x. This is illustrated in

Fig. 3.5, where F(x) increases smoothly as x increases.

Example 3.6 Let X, the thickness of a membrane, have a uniform distribution on [A, B]. The density
function is shown in Fig. 3.6.

For x< A, F(x)¼ 0, since there is no area under the graph of the density function to the left of such

an x. For x�B,F(x)¼ 1, since all the area is accumulated to the left of such an x. Finally, forA� x<B,

FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
A

1

B� A
dy ¼ 1

B� A
� y
����y¼x

y¼A

¼ x� A

B� A

The entire cdf is

FðxÞ ¼
0 x < A

x� A

B� A
A � x < B

1 x � B

8>><>>:

f(x) F(x)

x x

F(8)

Shaded area = F(8)

.5 1.0

.8

.6

.4

.2

0

.4

.3

.2

.1

0
5 6 7 8 9 10 5 6 7 8 9 10

Fig. 3.5 A pdf and associated cdf

1

A B A Bxx

f(x)

B − A
1

B − A

Shaded area = F(x)

Fig. 3.6 The pdf for a

uniform distribution

3.1 Probability Density Functions and Cumulative Distribution Functions 153



The graph of this cdf appears in Fig. 3.7.

3.1.3 Using F(x) to Compute Probabilities

The importance of the cdf here, just as for discrete rvs, is that probabilities of various intervals can be

computed from a formula or table for F(x).

PROPOSITION

Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,

P X > að Þ ¼ 1�FðaÞ
and for any two numbers a and b with a < b,

P a � X � bð Þ ¼ FðbÞ�FðaÞ

Figure 3.8 illustrates the second part of this proposition; the desired probability is the shaded area

under the density curve between a and b, and it equals the difference between the two shaded

cumulative areas. This is different from what is appropriate for a discrete integer-valued rv (e.g.,

binomial or Poisson): P(a � X � b) ¼ F(b) � F(a � 1) when a and b are integers.

Example 3.7 Suppose the pdf of the magnitude X of a dynamic load on a bridge (in newtons) is

given by

f ðxÞ ¼
1

8
þ 3

8
x 0 � x � 2

0 otherwise

8<:
For any number x between 0 and 2,

A B x

1

F(x)

Fig. 3.7 The cdf for a uniform distribution ■

a b b a

f(x)

= −

Fig. 3.8 Computing P(a � X � b) from cumulative probabilities

154 3 Continuous Random Variables and Probability Distributions



FðxÞ ¼
ðx
�1

f ðyÞdy ¼
ðx
0

1

8
þ 3

8
y

� �
dy ¼ x

8
þ 3x2

16

Thus

FðxÞ ¼
0 x < 0

x

8
þ 3x2

16
0 � x � 2

1 2 < x

8>><>>:
The graphs of f(x) and F(x) are shown in Fig. 3.9. The probability that the load is between 1 and

1.5 N is

P 1 � X � 1:5ð Þ ¼ Fð1:5Þ � Fð1Þ ¼ 1

8
ð1:5Þ þ 3

16
ð1:5Þ2

� �
� 1

8
ð1Þ þ 3

16
ð1Þ2

� �
¼ 19

64
¼ :297

The probability that the load exceeds 1 N is

P X > 1ð Þ ¼ 1� P X � 1ð Þ ¼ 1� Fð1Þ ¼ 1� 1

8
ð1Þ þ 3

16
ð1Þ2

� �
¼ 11

16
¼ :688

The beauty of the cdf in the continuous case is that once it is available, any probability involving

X can easily be calculated without any further integration.

3.1.4 Obtaining f(x) from F(x)

For X discrete, the pmf is obtained from the cdf by taking the difference between two F(x) values. The

continuous analog of a difference is a derivative. The following result is a consequence of the

Fundamental Theorem of Calculus.

PROPOSITION

If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the derivative F0(x)
exists, F0(x) ¼ f(x).

1
8

7
8

20 2

1

xx

f(x) F (x)

Fig. 3.9 The pdf and cdf for Example 3.7 ■
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Example 3.8 (Example 3.6 continued) When X � Unif[A, B], F(x) is differentiable except at

x ¼ A and x ¼ B, where the graph of F(x) has sharp corners. Since F(x) ¼ 0 for x < A and F(x)
¼ 1 for x > B, F0(x) ¼ 0 ¼ f(x) for such x. For A < x < B,

FðxÞ ¼ d

dx

x� A

B� A

� �
¼ 1

B� A
¼ f ðxÞ ■

3.1.5 Percentiles of a Continuous Distribution

When we say that an individual’s test score was at the 85th percentile of the population, we mean that

85% of all population scores were below that score and 15% were above. Similarly, the 40th

percentile is the score that exceeds 40% of all scores and is exceeded by 60% of all scores.

DEFINITION

Let p be a number between 0 and 1. The (100p)th percentile of the distribution of a continuous

rv X, denoted by ηp, is defined implicitly by the equation

p ¼ F ηp
� � ¼ ðηp

�1
f ðyÞdy ð3:2Þ

Assuming we can find the inverse of F(x), this can also be written as

ηp ¼ F�1ðpÞ

In particular, the median of a continuous distribution is the 50th percentile, η.5 or F
�1(.5).

That is, half the area under the density curve is to the left of the median and half is to the right of

the median. We will occasionally denote the median of a distribution simply as η (i.e., without
the .5 subscript).

According to Expression (3.2), ηp is that value on the measurement axis such that 100p% of the

area under the graph of f(x) lies to the left of ηp and 100(1 � p)% lies to the right. Thus η.75, the 75th
percentile, is such that the area under the graph of f(x) to the left of η.75 is .75. Figure 3.10 illustrates

the definition.

f(x) F(x)

x x

p = F(hp)

Shaded area = p

.5 1.0

.8

.6

.4

.2

0

.4

.3

.2

.1

0
5 6 7 8

hp

9 10 5 6 7 8 9 10
hp

Fig. 3.10 The (100p)th percentile of a continuous distribution
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Example 3.9 The distribution of the amount of gravel (in tons) sold by a construction supply

company in a given week is a continuous rv X with pdf

f ðxÞ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
The cdf of sales for any x between 0 and 1 is

FðxÞ ¼
ðx
0

3

2
1� y2
� �

dy ¼ 3

2
y� y3

3

� �����y¼x

y¼0

¼ 3

2
x� x3

3

� �
The graphs of both f(x) and F(x) appear in Fig. 3.11. The (100p)th percentile of this distribution

satisfies the equation

p ¼ F ηp
� � ¼ 3

2
ηp �

η3p
3

 !

that is,

η3p � 3ηp þ 2p ¼ 0

For the median, p¼ .5 and the equation to be solved is η3 � 3η + 1 ¼ 0; the solution is η ¼ .347. If

the distribution remains the same from week to week, then in the long run 50% of all weeks will result

in sales of less than .347 tons and 50% in more than .347 tons.

A continuous distribution whose pdf is symmetric—which means that the graph of the pdf to the

left of some point is a mirror image of the graph to the right of that point—has median η equal to the

point of symmetry, since half the area under the curve lies to either side of this point. Figure 3.12

gives several examples. The amount of error in a measurement of a physical quantity is often assumed

to have a symmetric distribution.

f(x) F(x)

2 1

.5

0 1 0 1.347x x

Fig. 3.11 The pdf and cdf for Example 3.9 ■

xx x
A B

f(x) f (x) f (x)

h h h

Fig. 3.12 Medians of symmetric distributions
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3.1.6 Exercises: Section 3.1 (1–18)

1. The current in a certain circuit as measured by an ammeter is a continuous random variable

X with the following density function:

f ðxÞ ¼ :075 xþ :2 3 � x � 5

0 otherwise

(

(a) Graph the pdf and verify that the total area under the density curve is indeed 1.

(b) Calculate P(X � 4). How does this probability compare to P(X < 4)?

(c) Calculate P(3.5 � X � 4.5) and P(X > 4.5).

2. Suppose the reaction temperature X (in �C) in a chemical process has a uniform distribution with

A ¼ �5 and B ¼ 5.

(a) Compute P(X < 0).

(b) Compute P(�2.5 < X < 2.5).

(c) Compute P(�2 � X � 3).

(d) For k satisfying �5 < k < k + 4 < 5, compute P(k < X < k + 4). Interpret this in words.

3. Suppose the error involved in making a measurement is a continuous rv X with pdf

f ðxÞ ¼ :09375 4� x2ð Þ � 2 � x � 2

0 otherwise

(

(a) Sketch the graph of f(x).
(b) Compute P(X > 0).

(c) Compute P(�1 < X < 1).

(d) Compute P(X < �.5 or X > .5).

4. Let X denote the vibratory stress (psi) on a wind turbine blade at a particular wind speed in a wind

tunnel. The article “Blade Fatigue Life Assessment with Application to VAWTS” (J. Solar

Energy Engr., 1982: 107–111) proposes the Rayleigh distribution, with pdf

f x; θð Þ ¼
x

θ2
� e�x2= 2θ2ð Þ x > 0

0 otherwise

8<:
as a model for X, where θ is a positive constant.

(a) Verify that f(x; θ) is a legitimate pdf.

(b) Suppose θ ¼ 100 (a value suggested by a graph in the article). What is the probability that

X is at most 200? Less than 200? At least 200?

(c) What is the probability that X is between 100 and 200 (again assuming θ ¼ 100)?

(d) Give an expression for the cdf of X.

5. A college professor never finishes his lecture before the end of the hour and always finishes his

lectures within 2 min after the hour. Let X¼ the time that elapses between the end of the hour and

the end of the lecture and suppose the pdf of X is
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f ðxÞ ¼ kx2 0 � x � 2

0 otherwise

(

(a) Find the value of k and draw the corresponding density curve. [Hint: Total area under the

graph of f(x) is 1.]
(b) What is the probability that the lecture ends within 1 min of the end of the hour?

(c) What is the probability that the lecture continues beyond the hour for between 60 and 90 s?

(d) What is the probability that the lecture continues for at least 90 s beyond the end of the hour?

6. The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer

can be regarded as a continuous rv X with pdf

f ðxÞ ¼ k 1� x� 3ð Þ2
h i

0

8<: 2 � x � 4

otherwise

(a) Sketch the graph of f(x).

(b) Find the value of k.
(c) What is the probability that the actual tracking weight is greater than the prescribed weight?

(d) What is the probability that the actual weight is within .25 g of the prescribed weight?

(e) What is the probability that the actual weight differs from the prescribed weight by more

than .5 g?

7. The article “Second Moment Reliability Evaluation vs. Monte Carlo Simulations for Weld

Fatigue Strength” (Quality and Reliability Engr. Intl., 2012: 887-896) considered the use of a

uniform distribution with A¼ .20 and B¼ 4.25 for the diameter X of a certain type of weld (mm).

(a) Determine the pdf of X and graph it.

(b) What is the probability that diameter exceeds 3 mm?

(c) What is the probability that diameter is within 1 mm of the mean diameter?

(d) For any value a satisfying .20 < a < a + 1 < 4.25, what is P(a < X < a + 1)?

8. Commuting to work requires getting on a bus near home and then transferring to a second bus. If

the waiting time (in minutes) at each stop has a Unif[0, 5] distribution, then it can be shown that

the total waiting time Y has the pdf

f ðyÞ ¼

1

25
y 0 � y < 5

2

5
� 1

25
y 5 � y � 10

0 y < 0 or y > 10

8>>>><>>>>:
(a) Sketch the pdf of Y.

(b) Verify that
Ð1
�1f(y)dy ¼ 1.

(c) What is the probability that total waiting time is at most 3 min?

(d) What is the probability that total waiting time is at most 8 min?

(e) What is the probability that total waiting time is between 3 and 8 min?

(f) What is the probability that total waiting time is either less than 2 min or more than 6 min?
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9. Consider again the pdf of X ¼ time headway given in Example 3.5. What is the probability that

time headway is

(a) At most 6 s?

(b) More than 6 s? At least 6 s?

(c) Between 5 and 6 s?

10. A family of pdfs that has been used to approximate the distribution of income, city population

size, and size of firms is the Pareto family. The family has two parameters, k and θ, both> 0, and

the pdf is

f x; k, θð Þ ¼
k � θk
xkþ1

x � θ

0 x < θ

8<:
(a) Sketch the graph of f(x; k, θ).
(b) Verify that the total area under the graph equals 1.

(c) If the rv X has pdf f(x; k, θ), obtain an expression for the cdf of X.

(d) For θ < a < b, obtain an expression for the probability P(a � X � b).

(e) Find an expression for the (100p)th percentile ηp.
11. Let X denote the amount of time a book on 2-h reserve is actually checked out, and suppose the

cdf is

FðxÞ ¼
0 x < 0

x2

4
0 � x < 2

1 2 � x

8>><>>:
Use this to compute the following:

(a) P(X � 1)

(b) P(.5 � X � 1)

(c) P(X > 1.5)

(d) The median checkout duration η [Hint: Solve F(η) ¼ .5.]

(e) F0(x) to obtain the density function f(x)

12. The cdf for X ¼ measurement error of Exercise 3 is

FðxÞ ¼

0 x < �2

1

2
þ 3

32
4x� x3

3

� �
�2 � x < 2

1 2 � x

8>>><>>>:
(a) Compute P(X < 0).

(b) Compute P(�1 < X < 1).

(c) Compute P(X > .5).

(d) Verify that f(x) is as given in Exercise 3 by obtaining F0(x).
(e) Verify that η ¼ 0.

13. Example 3.5 introduced the concept of time headway in traffic flow and proposed a particular

distribution for X¼ the headway between two randomly selected consecutive car. Suppose that in

a different traffic environment, the distribution of time headway has the form
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f ðxÞ ¼
k

x4
x > 1

0 x � 1

8<:
(a) Determine the value of k for which f(x) is a legitimate pdf.

(b) Obtain the cumulative distribution function.

(c) Use the cdf from (b) to determine the probability that headway exceeds 2 s and also the

probability that headway is between 2 and 3 s.

14. Let X denote the amount of space occupied by an article placed in a 1-ft3 packing container. The

pdf of X is

f ðxÞ ¼ 90x8 1� xð Þ 0 < x < 1

0 otherwise

(

(a) Graph the pdf. Then obtain the cdf of X and graph it.

(b) What is P(X � .5) [i.e., F(.5)]?

(c) Using part (a), what is P(.25 < X � .5)? What is P(.25 � X � .5)?

(d) What is the 75th percentile of the distribution?

15. Answer parts (a)–(d) of Exercise 14 for the random variable X, lecture time past the hour, given in

Exercise 5.

16. The article “A Model of Pedestrians’ Waiting Times for Street Crossings at Signalized

Intersections” (Transportation Research, 2013: 17–28) suggested that under some circumstances

the distribution of waiting time X could be modeled with the following pdf:

f x; θ, τð Þ ¼
θ

τ
1� x=τð Þθ�1

0 � x < τ

0 otherwise

8<:
where θ, τ > 0.

(a) Graph f(x; θ, 80) for the three cases θ ¼ 4, 1, and .5 (these graphs appear in the cited article)

and comment on their shapes.

(b) Obtain the cumulative distribution function of X.

(c) Obtain an expression for the median of the waiting time distribution.

(d) For the case θ ¼ 4 and τ ¼ 80, calculate P(50 � X � 70) without doing any additional

integration.

17. Let X be a continuous rv with cdf

FðxÞ ¼

0 x � 0

x

4
1þ ln

4

x

� �� �
0 < x � 4

1 x > 4

8>>><>>>:
[This type of cdf is suggested in the article “Variability in Measured Bedload-Transport Rates”

(Water Resources Bull., 1985: 39–48) as a model for a hydrologic variable.] What is

(a) P(X � 1)?

(b) P(1 � X � 3)?

(c) The pdf of X?
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18. Let X be the temperature in �C at which a chemical reaction takes place, and let Y be the

temperature in �F (so Y ¼ 1.8X + 32).

(a) If the median of the X distribution is η, show that 1.8η + 32 is the median of the

Y distribution.

(b) How is the 90th percentile of the Y distribution related to the 90th percentile of the

X distribution? Verify your conjecture.

(c) More generally, if Y¼ aX + b, how is any particular percentile of the Y distribution related to

the corresponding percentile of the X distribution?

3.2 Expected Values and Moment Generating Functions

In Sect. 3.1 we saw that the transition from a discrete cdf to a continuous cdf entails replacing

summation by integration. The same thing is true in moving from expected values of discrete

variables to those of continuous variables.

3.2.1 Expected Values

For a discrete random variable X, the mean μX or E(X) was defined as a weighted average and

obtained by summing x � p(x) over possible X values. Here we replace summation by integration and

the pmf by the pdf to get a continuous weighted average.

DEFINITION

The expected value or mean value of a continuous rv X with pdf f(x) is

μ ¼ μX ¼ EðXÞ ¼
ð1
�1

x � f ðxÞ dx

Example 3.10 (Example 3.9 continued) The pdf of weekly gravel sales X was

f ðxÞ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
so

EðXÞ ¼
ð1
�1

x � f ðxÞdx ¼
ð1
0

x � 3
2

1� x2
� �

dx ¼ 3

2

ð1
0

x� x3
� �

dx ¼ 3

2

x2

2
� x4

4

� �����x¼1

x¼0

¼ 3

8

If gravel sales are determined week after week according to the given pdf, then the long-run

average value of sales per week will be .375 ton. ■

Similar to the interpretation in the discrete case, the mean value μ can be regarded as the balance

point (or fulcrum or center of mass) of a continuous distribution. In Example 3.10, if a piece of

cardboard were cut out in the shape of the region under the density curve f(x), then it would balance if

supported at μ ¼ 3/8 along the bottom edge. When a pdf f(x) is symmetric, then it will balance at its
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point of symmetry, which must be the mean μ. Recall from Sect. 3.1 that the median is also the point

of symmetry; in general, if a distribution is symmetric and the mean exists, then it is equal to the

median.

Often we wish to compute the expected value of some function h(X) of the rv X. If we think of h(X)

as a new rv Y, methods from Sect. 3.7 can be used to derive the pdf of Y, and E(Y ) can be computed

from the definition. Fortunately, as in the discrete case, there is an easier way to compute E[h(X)].

PROPOSITION

If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

μhðXÞ ¼ E hðXÞ½ 	 ¼
ð1
�1

hðxÞ � f ðxÞ dx

This is sometimes called the Law of the Unconscious Statistician.

Importantly, except in the case where h(x) is a linear function (see later in this section), E[h(X)] is

not equal to h(μX), the function h evaluated at the mean of X.

Example 3.11 The variation in a certain electrical current source X (in milliamps) can be modeled by

the pdf

f ðxÞ ¼ 1:25� :25x 2 � x � 4

0 otherwise

(

The average current from this source is

EðXÞ ¼
ð4
2

x 1:25� :25xð Þdx ¼ 17

6
¼ 2:833mA

If this current passes through a 220-Ω resistor, the resulting power (in microwatts) is given by the

expression h(X) ¼ (current)2(resistance) ¼ 220X2. The expected power is given by

E hðXÞð Þ ¼ E 220X2
� � ¼ ð4

2

220x2 1:25� :25xð Þdx ¼ 5500

3
¼ 1833:3μW

Notice that the expected power is not equal to 220(2.833)2, a common error that results from

substituting the mean current μX into the power formula. ■

Example 3.12 Two species are competing in a region for control of a limited amount of a resource.

Let X ¼ the proportion of the resource controlled by species 1 and suppose X has pdf

f ðxÞ ¼ 1 0 � x � 1

0 otherwise

(

which is a uniform distribution on [0, 1]. (In her book Ecological Diversity, E. C. Pielou calls this the

“broken-stick” model for resource allocation, since it is analogous to breaking a stick at a randomly

chosen point.) Then the species that controls the majority of this resource controls the amount
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h Xð Þ ¼ max X, 1� Xð Þ ¼
1� X if 0 � X <

1

2

X if
1

2
� X � 1

8><>:
The expected amount controlled by the species having majority control is then

E hðXÞ½ 	 ¼
ð1
�1

max x, 1� xð Þ � f ðxÞdx ¼
ð1
0

max x, 1� xð Þ � 1 dx

¼
ð1=2
0

1� xð Þ � 1 dxþ
ð1
1=2

x � 1 dx ¼ 3

4 ■

In the discrete case, the variance of X was defined as the expected squared deviation from μ and

was calculated by summation. Here again integration replaces summation.

DEFINITION

The variance of a continuous random variable X with pdf f(x) and mean value μ is

σ2X ¼ VarðXÞ ¼
ð1
�1

x� μð Þ2 � f ðxÞ dx ¼ E X � μð Þ2
h i

The standard deviation of X is σX ¼ SDðXÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞp

:

As in the discrete case, σ2X is the expected or average squared deviation about the mean μ, and σX
can be interpreted roughly as the size of a representative deviation from the mean value μ. Note that
σX has the same units as X itself.

Example 3.13 Let X� Unif[A, B]. Since a uniform distribution is symmetric, the mean of X is at the

density curve’s point of symmetry, which is clearly the midpoint (A + B)/2. This can be verified by

integration:

μ ¼
ðB
A

x � 1

B� A
dx ¼ 1

B� A

x2

2
jB

A
¼ 1

B� A

B2 � A2

2
¼ Aþ B

2

The variance of X is then given by

σ2 ¼
ðB
A

x� μð Þ2 � 1

B� A
dx ¼ 1

B� A

ðB
A

x� Aþ B

2

� �2
dx

¼ 1

B� A

ð B�Að Þ=2

� B�Að Þ=2
u2 du substitute u ¼ x� Aþ B

2

¼ 2

B� A

ð B�Að Þ=2

0

u2du symmetry

¼ 2

B� A

u3

3
j B�Að Þ=2
0

¼ 2

B� A

B� Að Þ3
23 � 3 ¼ B� Að Þ2

12
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The standard deviation of X is the square root of the variance: σ ¼ B�Að Þ= ffiffiffiffiffi
12

p
. Notice that the

standard deviation of a Unif[A, B] distribution is proportional to the length of the interval, B � A,

which matches our intuitive notion that a larger standard deviation corresponds to greater “spread” in

a distribution. ■

Section 2.3 presented several properties of expected value, variance, and standard deviation for

discrete random variables. Those same properties hold for the continuous case; proofs of these results

are obtained by replacing summation with integration in the proofs presented in Chap. 2.

PROPOSITION

Let X be a continuous rv with pdf f(x), mean μ, and standard deviation σ. Then the following

properties hold.

1. (variance shortcut) Var(X) ¼ E(X2) � μ2 ¼
ð1
�1

x2 � f(x)dx �
ð1
�1

x � f ðxÞdx
� �2

2. (Chebyshev’s inequality) For any constant k � 1,

P X � μj j � kσð Þ � 1

k2

3. (linearity of expectation) For any functions h1(X) and h2(X) and any constants a1, a2, and b,

E a1h1ðXÞ þ a2h2ðXÞ þ b½ 	 ¼ a1E h1ðXÞ½ 	 þ a2E h2ðXÞ½ 	 þ b

4. (rescaling) For any constants a and b,

E aX þ bð Þ ¼ aμþ b Var aX þ bð Þ ¼ a2σ2 σaXþb ¼ aj jσ

Example 3.14 (Example 3.10 continued) For X ¼ weekly gravel sales, we computed E(X) ¼ 3/8.

Since

E X2
� � ¼ ð1

�1
x2 � f ðxÞdx ¼

ð1
0

x2 � 3
2

1� x2
� �

dx ¼ 3

2

ð1
0

x2 � x4
� �

dx ¼ 1

5
,

VarðXÞ ¼ 1

5
� 3

8

� �2
¼ 19

320
¼ :059 and σX ¼

ffiffiffiffiffiffiffiffiffi
:059

p
¼ :244

Suppose the amount of gravel actually received by customers in a week is h(X) ¼ X � .02X2; the

second term accounts for the small amount that is lost in transport. Then the average weekly amount

received by customers is

E X � :02X2
� � ¼ EðXÞ � :02E X2

� � ¼ 3

8
� :02 � 1

5
¼ :371 tons ■

Example 3.15 When a dart is thrown at a circular target, consider the location of the landing point

relative to the bull’s eye. Let X be the angle in degrees measured from the horizontal, and assume that

X � Unif[0, 360). By Example 3.13, E(X) ¼ 180 and SDðXÞ ¼ 360=
ffiffiffiffiffi
12

p
. Define Y to be the angle
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measured in radians between�π and π, so Y¼ (2π/360)X� π. Then, applying the rescaling properties
with a ¼ 2π/360 and b ¼ �π,

EðYÞ ¼ 2π
360

� EðXÞ � π ¼ 2π
360

180� π ¼ 0

and

σY ¼ 2π
360

���� ���� � σX ¼ 2π
360

360ffiffiffiffiffi
12

p ¼ 2πffiffiffiffiffi
12

p ■

3.2.2 Moment Generating Functions

Moments and moment generating functions for discrete random variables were introduced in

Sect. 2.7. These concepts carry over to the continuous case.

DEFINITION

The moment generating function (mgf) of a continuous random variable X is

MXðtÞ ¼ E etX
� � ¼ ð1

�1
etxf ðxÞdx:

As in the discrete case, the moment generating function exists iff MX(t) is defined for an

interval that includes zero as well as positive and negative values of t.

Just as before, when t ¼ 0 the value of the mgf is always 1:

MXð0Þ ¼ E e0X
� � ¼ ð1

�1
e0xf ðxÞdx ¼

ð1
�1

f ðxÞdx ¼ 1:

Example 3.16 At a store, the checkout time X in minutes has the pdf f(x) ¼ 2e�2x, x � 0; f(x) ¼
0 otherwise. Then

MXðtÞ ¼
ð1
�1

etxf ðxÞdx ¼
ð1
0

etx 2e�2x
� �

dx ¼
ð1
0

2e� 2�tð Þxdx

¼ � 2

2� t
e� 2�tð Þxj1

0
¼ 2

2� t
� 2

2� t
lim
x!1 e� 2�tð Þx

The limit above exists (in fact, it equals zero) provided the coefficient on x is negative, i.e.,

�(2� t)< 0. This is equivalent to t < 2. The mgf exists because it is defined for an interval of values

including 0 in its interior, specifically (�1, 2). For t in that interval, the mgf of X isMX(t)¼ 2/(2� t).
Notice that MX(0) ¼ 2/(2 � 0) ¼ 1. Of course, from the calculation preceding this example we

know that MX(0) ¼ 1 must always be the case, but it is useful as a check to set t ¼ 0 and see if the

result is 1. ■

Recall that in Sect. 2.7 we had a uniqueness property for the mgfs of discrete distributions. This

proposition is equally valid in the continuous case: two distributions have the same pdf if and only if

they have the same moment generating function, assuming that the mgf exists. For example, if a
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random variable X is known to have mgfMX(t) ¼ 2/(2 � t) for t < 2, then from Example 3.16 it must

necessarily be the case that the pdf of X is f(x) ¼ 2e�2x for x � 0 and f(x) ¼ 0 otherwise.

In the discrete case we also had a theorem on how to get moments from the mgf, and this theorem

applies also in the continuous case: the rth moment of a continuous rv with mgf MX(t) is given by

E Xrð Þ ¼ M
ðrÞ
X ð0Þ,

the rth derivative of the mgf with respect to t evaluated at t ¼ 0, if the mgf exists.

Example 3.17 (Example 3.16 continued) The mgf of the rv X¼ checkout time at the store was found

to beMX(t)¼ 2/(2� t)¼ 2(2 � t)�1 for t < 2. To find the mean and standard deviation, first compute

the derivatives:

M
0
XðtÞ ¼ �2 2� tð Þ�2 �1ð Þ ¼ 2

2� tð Þ2

M
0 0
XðtÞ ¼

d

dt
2 2� tð Þ�2
h i

¼ �4 2� tð Þ�3 �1ð Þ ¼ 4

2� tð Þ3

Setting t to 0 in the first derivative gives the expected checkout time as

EðXÞ ¼ M
ð1Þ
X ð0Þ ¼ M

0
Xð0Þ ¼ :5min:

Setting t to 0 in the second derivative gives the second moment

E X2
� � ¼ M

ð2Þ
X ð0Þ ¼ M

0 0
Xð0Þ ¼ :5,

from which the variance of the checkout time is Var(X)¼ σ2¼ E(X2)� [E(X)]2¼ .5�.52¼.25 and the

standard deviation is σ ¼ ffiffiffiffiffiffiffi
:25

p ¼ :5min: ■

We will sometimes need to transform X using a linear function Y ¼ aX + b. As discussed in the

discrete case, if X has the mgf MX(t) and Y ¼ aX + b, then MY(t) ¼ ebtMX(at).

Example 3.18 Let X � Unif[A, B]. As verified in Exercise 32, the moment generating function of

X is

MXðtÞ ¼
eBt � eAt

B� Að Þt t 6¼ 0

1 t ¼ 0

8<:
In particular, consider the situation in Example 3.15. Let X, the angle measured in degrees, be

uniform on [0, 360], so A ¼ 0 and B ¼ 360. Then

MXðtÞ ¼ e360t � 1

360t
t 6¼ 0, MXð0Þ ¼ 1

Now let Y¼ (2π/360)X� π, so Y is the angle measured in radians between�π and π. Using the mgf

rule for linear transformations with a ¼ 2π/360 and b ¼ �π, we get
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MYðtÞ ¼ ebtMXðatÞ ¼ e�πtMX
2πt
360

� �
¼ e�πt e

360 2π=360ð Þt � 1

360
2πt
360

� �
¼ eπt � e�πt

2πt
t 6¼ 0, MYð0Þ ¼ 1

This matches the general form of the moment generating function for a uniform random variable

with A ¼ �π and B ¼ π. Thus, by the mgf uniqueness property, Y � Unif[�π, π]. ■

3.2.3 Exercises: Section 3.2 (19–38)

19. Reconsider the distribution of checkout duration X described in Exercise 11. Compute the

following:

(a) E(X)

(b) Var(X) and SD(X)

(c) If the borrower is charged an amount h(X) ¼ X2 when checkout duration is X, compute the

expected charge E[h(X)].

20. The article “Modeling Sediment and Water Column Interactions for Hydrophobic Pollutants”

(Water Res., 1984: 1169–1174) suggests the uniform distribution on the interval [7.5, 20] as a

model for depth (cm) of the bioturbation layer in sediment in a certain region.

(a) What are the mean and variance of depth?

(b) What is the cdf of depth?

(c) What is the probability that observed depth is at most 10? Between 10 and 15?

(d) What is the probability that the observed depth is within 1 standard deviation of the mean

value?

Within 2 standard deviations?

21. For the distribution of Exercise 14,

(a) Compute E(X) and SD(X).

(b) What is the probability that X is more than 1 standard deviation from its mean value?

22. Consider the pdf given in Exercise 6.

(a) Obtain and graph the cdf of X.

(b) From the graph of f(x), what is the median, η?
(c) Compute E(X) and Var(X).

23. Let X � Unif[A, B].

(a) Obtain an expression for the (100p)th percentile.

(b) Obtain an expression for the median, η. How does this compare to the mean μ, and why

does that make sense for this distribution?

(c) For n a positive integer, compute E(Xn).

24. Consider the pdf for total waiting time Y for two buses
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f ðyÞ ¼

1

25
y 0 � y < 5

2

5
� 1

25
y 5 � y � 10

0 otherwise

8>>>><>>>>:
introduced in Exercise 8.

(a) Compute and sketch the cdf of Y. [Hint: Consider separately 0 � y < 5 and 5 � y � 10 in

computing F(y). A graph of the pdf should be helpful.]

(b) Obtain an expression for the (100p)th percentile. [Hint: Consider separately 0< p< .5 and

.5 � p < 1.]

(c) Compute E(Y ) and Var(Y ). How do these compare with the expected waiting time and

variance for a single bus when the time is uniformly distributed on [0, 5]?

(d) Explain how symmetry can be used to obtain E(Y ).

25. An ecologist wishes to mark off a circular sampling region having radius 10 m. However, the

radius of the resulting region is actually a random variable R with pdf

f ðrÞ ¼
3

4
1� 10� rð Þ2
h i

9 � r � 11

0 otherwise

8<:
What is the expected area of the resulting circular region?

26. The weekly demand for propane gas (in 1000s of gallons) from a particular facility is an rv

X with pdf

f ðxÞ ¼ 2 1� 1

x2

� �
1 � x � 2

0 otherwise

8<:
(a) Compute the cdf of X.

(b) Obtain an expression for the (100p)th percentile. What is the value of the median, η?
(c) Compute E(X). How do the mean and median of this distribution compare?

(d) Compute Var(X) and SD(X).

(e) If 1.5 thousand gallons are in stock at the beginning of the week and no new supply is due

in during the week, how much of the 1.5 thousand gallons is expected to be left at the end

of the week? [Hint: Let h(x) ¼ amount left when demand is x.]

27. If the temperature at which a compound melts is a random variable with mean value 120�C and

standard deviation 2�C, what are the mean temperature and standard deviation measured in �F?
[Hint: �F ¼ 1.8�C + 32.]

28. Let X have the Pareto pdf introduced in Exercise 10:

f x; k, θð Þ ¼
k � θk
xkþ1

x � θ

0 x < θ

8<:
(a) If k > 1, compute E(X).
(b) What can you say about E(X) if k ¼ 1?

(c) If k > 2, show that Var(X) ¼ kθ2(k � 1)�2(k � 2)�1.
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(d) If k ¼ 2, what can you say about Var(X)?

(e) What conditions on k are necessary to ensure that E(Xn) is finite?

29. The time (min) between successive visits to a particular Web site has pdf f(x) ¼ 4e�4x, x � 0;

f(x) ¼ 0 otherwise. Use integration by parts to obtain E(X) and SD(X).

30. Consider the weights, in grams, of walnuts harvested at a nearby farm. Suppose this weight

distribution can be modeled by the following pdf:

f ðxÞ ¼ :5� x

8
0 � x � 4

0 otherwise

8<:
(a) Show that E(X) ¼ 4/3 and Var(X) ¼ 8/9.

(b) The skewness coefficient is defined as E[(X� μ)3]/σ3. Show that its value for the given pdf is

.566. What would the skewness be for a perfectly symmetric pdf?

31. The delta method provides approximations to the mean and variance of a nonlinear function h(X)

of a rv X. These approximations are based on a first-order Taylor series expansion of h(x) about

x ¼ μ, the mean of X:

hðXÞ � h1ðXÞ ¼ h μð Þ þ h
0
μð Þ X�μð Þ

(a) Show that E[h1(X)] ¼ h(μ). (This is the delta method approximation to E[h(X)].)

(b) Show that Var[h1(X)] ¼ [h0(μ)]2Var(X). (This is the delta method approximation to

Var[h(X)].)
(c) If the voltage v across a medium is fixed but current I is random, then resistance will also be

a random variable related to I by R¼ v/I. If μI ¼ 20 and σI ¼ .5, calculate approximations to

μR and σR.
(d) Let R have the distribution in Exercise 25, whose mean and variance are 10 and 1/5,

respectively. Let h(R) ¼ πR2, the area of the ecologist’s sampling region. How does

E[h(R)] from Exercise 25 compare to the delta method approximation h(10)?
(e) It can be shown that Var[h(R)]¼ 14008π2/175. Compute the delta method approximation to

Var[h(R)] using the formula in (b). How good is the approximation?

32. Let X � Unif[A, B], so its pdf is f(x) ¼ 1/(B � A), A � x � B, f(x) ¼ 0 otherwise. Show that the

moment generating function of X is

MXðtÞ ¼
eBt � eAt

B� Að Þt t 6¼ 0

1 t ¼ 0

8><>:
33. Let X�Unif[0, 1]. Find a linear function Y¼ g(X) such that the interval [0, 1] is transformed into

[�5, 5]. Use the relationship for linear functionsMaX+b(t)¼ ebtMX(at) to obtain the mgf of Y from

the mgf of X. Compare your answer with the result of Exercise 32, and use this to obtain the pdf

of Y.

34. If the pdf of a measurement error X is f(x)¼ .5e�|x|,�1< x<1, show thatMXðtÞ ¼ 1= 1� t2ð Þ
for |t| < 1.

35. Consider the rv X ¼ time headway in Example 3.5.

(a) Find the moment generating function and use it to find the mean and variance.

(b) Now consider a random variable whose pdf is
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f ðxÞ ¼ :15e�:15x x � 0

0 otherwise

(

Find the moment generating function and use it to find the mean and variance. Compare with

(a), and explain the similarities and differences.

(c) Let Y ¼ X � .5 and use the relationship for linear functionsMaX + b(t) ¼ ebtMX(at) to obtain
the mgf of Y from (a). Compare with the result of (b) and explain.

36. Define LX(t) ¼ ln[MX(t)]. It was shown in Exercise 120 of Chap. 2 that LX
0 (0) ¼ E(X) and

LX
00 (0) ¼ Var(X).
(a) Determine MX(t) for the pdf in Exercise 29, and use this mgf to obtain E(X) and Var(X).

How does this compare, in terms of difficulty, with the integration by parts required in that

exercise?

(b) Determine LX(t) for this same distribution, and use LX(t) to obtain E(X) and Var(X). How

does the computational effort here compare with that of (a)?

37. Let X be a nonnegative, continuous rv with pdf f(x) and cdf F(x).
(a) Show that, for any constant t > 0,ð1

t

x � f ðxÞdx � t � P X > tð Þ ¼ t � 1� FðtÞ½ 	

(b) Assume the mean of X is finite (i.e., the integral defining μ converges). Use part (a) to show

that

lim
t!1 t � 1� FðtÞ½ 	 ¼ 0

[Hint: Write the integral for μ as the sum of two other integrals, one from 0 to t and another

from t to 1.]

38. Let X be a nonnegative, continuous rv with cdf F(x).

(a) Assuming the mean μ of X is finite, show that

μ ¼
ð1
0

1� FðxÞ½ 	dx

[Hint: Apply integration by parts to the integral above, and use the result of the previous

exercise.] This is the continuous analog of the result established in Exercise 48 of Chap. 2.

(b) A similar argument can be used to show that the kth moment of X is given by

E Xk
� � ¼ k

ð1
0

xk�1 1� FðxÞ½ 	dx

and that E(Xk) exists iff tk[1 � F(t)] ! 0 as t ! 1. (This was the topic of a 2012 article in The

American Statistician.) Suppose the lifetime X, in weeks, of a low-grade transistor under

continuous use has cdf F(x) ¼ 1 � (x + 1)�3 for x > 0. Without finding the pdf of X, determine

its mean and its standard deviation.
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3.3 The Normal (Gaussian) Distribution

The normal distribution, often called the Gaussian distribution by engineers, is the most important

one in all of probability and statistics. Many numerical populations have distributions that can be fit

very closely by an appropriate normal curve. Examples include heights, weights, and other physical

characteristics, measurement errors in scientific experiments, measurements on fossils, reaction times

in psychological experiments, measurements of intelligence and aptitude, scores on various tests, and

numerous economic measures and indicators. Even when the underlying distribution is discrete, the

normal curve often gives an excellent approximation. In addition, even when individual variables

themselves are not normally distributed, sums and averages of the variables will, under suitable

conditions, have approximately a normal distribution; this is the content of the Central Limit Theorem

discussed in Chap. 4.

DEFINITION

A continuous rv X is said to have a normal distribution (or Gaussian distribution) with
parameters μ and σ, where �1 < μ < 1 and σ > 0, if the pdf of X is

f x; μ, σð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þ �1 < x < 1 ð3:3Þ

The statement that X is normally distributed with parameters μ and σ is often abbreviated

X � N(μ, σ).

Figure 3.13 presents graphs of f(x;μ,σ) for several different (μ, σ) pairs. Each resulting density

curve is symmetric about μ and bell-shaped, so the center of the bell (point of symmetry) is both the

mean of the distribution and the median. The value of σ is the distance from μ to the inflection points

of the curve (the points at which the curve changes between turning downward to turning upward).

Large values of σ yield density curves that are quite spread out about μ, whereas small values of σ
yield density curves with a high peak above μ and most of the area under the density curve quite close

to μ. Thus a large σ implies that a value of X far from μmay well be observed, whereas such a value is

quite unlikely when σ is small.

Clearly f(x; μ, σ) � 0, but a somewhat complicated calculus argument is required to prove thatÐ1
�1 f(x; μ, σ)dx ¼ 1 (see Exercise 66). It can be shown using calculus (Exercise 67) or moment

generating functions (Exercise 68) that E(X)¼ μ and Var(X)¼ σ2, so the parameters μ and σ are the
mean and the standard deviation, respectively, of X.

m m + s m  m + sm m + s

Fig. 3.13 Normal density curves
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3.3.1 The Standard Normal Distribution

To compute P(a � X � b) when X � N(μ, σ), we must evaluateðb
a

1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þdx ð3:4Þ

None of the standard integration techniques can be used here, and there is no closed-form

expression for the integral. Table 3.1 at the end of this section provides the code for performing

such normal distribution calculations in both Matlab and R. For the purpose of hand calculation of

normal distribution probabilities, we now introduce a special normal distribution.

DEFINITION

The normal distribution with parameter values μ ¼ 0 and σ ¼ 1 is called the standard normal

distribution. A random variable that has a standard normal distribution is called a standard
normal random variable and will be denoted by Z. The pdf of Z is

f z; 0, 1ð Þ ¼ 1ffiffiffiffiffi
2π

p e�z2=2 �1 < z < 1

The cdf of Z is P Z � zð Þ ¼
ðz
�1

1ffiffiffiffiffi
2π

p e�y2=2dy, which we will denote by Φ(z).

The standard normal distribution does not frequently serve as a model for a naturally arising

population, since few variables have mean 0 and standard deviation 1. Instead, it is a reference

distribution from which information about other normal distributions can be obtained. Appendix

Table A.3 gives values ofΦ(z) for z¼�3.49,�3.48, . . ., 3.48, 3.49 and is referred to as the standard

normal table or z table. Figure 3.14 illustrates the type of cumulative area (probability) tabulated in

Table A.3. From this table, various other probabilities involving Z can be calculated.

Example 3.19 Here we demonstrate how the z table is used to calculate various probabilities

involving a standard normal rv.

(a) P(Z � 1.25) ¼ Φ(1.25), a probability that is tabulated in Table A.3 at the intersection of the row

marked 1.2 and the column marked .05. The number there is .8944, so P(Z� 1.25)¼ .8944. See

Fig. 3.15a. In Matlab, we may type normcdf(1.25,0,1); in R, use pnorm(1.25,0,1)

or just pnorm(1.25).

(b) P(Z > 1.25) ¼ 1 � P(Z � 1.25) ¼ 1 � Φ(1.25), the area under the standard normal curve to the

right of 1.25 (an upper-tail area). Since Φ(1.25) ¼ .8944, it follows that P(Z > 1.25) ¼ .1056.

Since Z is a continuous rv, P(Z � 1.25) also equals .1056. See Fig. 3.15b.

0 z

Standard normal (z) curve

Shaded area = Φ(z) Fig. 3.14 Standard

normal cumulative areas

tabulated in Appendix

Table A.3
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(c) P(Z � �1.25) ¼ Φ(�1.25), a lower-tail area. Directly from the z table, Φ(�1.25) ¼ .1056. By

symmetry of the normal curve, this is identical to the probability in (b).

(d) P(�.38 � Z � 1.25) is the area under the standard normal curve above the interval [�.38, 1.25].

From Sect. 3.1, if Z is a continuous rv with cdf F(z), then P(a� Z� b)¼ F(b)� F(a). This gives

P(�.38� Z� 1.25)¼Φ(1.25)�Φ(�.38)¼ .8944� .3520¼ .5424. (See Fig. 3.16.) To evaluate

this probability in Matlab, type normcdf(1.25,0,1)-normcdf(.38,0,1); in R,

type pnorm(1.25,0,1)-pnorm(-.38,0,1) or just pnorm(1.25)-pnorm(-.38).

From Sect. 3.1, we have that the (100p)th percentile of the standard normal distribution, for any

p between 0 and 1, is the solution to the equation Φ(z) ¼ p. So, we may write the (100p)th percentile

of the standard normal distribution as ηp ¼Φ�1( p). Matlab, R, or the z table can be used to obtain this
percentile.

Example 3.20 The 99th percentile of the standard normal distribution, Φ�1(.99), is the value on the

horizontal axis such that the area under the curve to the left of the value is .9900, as illustrated in

Fig. 3.17. To solve the “inverse” problem Φ(z) ¼ p, the standard normal table is used in an inverse

fashion: Find in the middle of the table .9900; the row and column in which it lies identify the 99th

z percentile. Here .9901 lies in the row marked 2.3 and column marked .03, soΦ(2.33)¼ .9901� .99

and the 99th percentile is approximately z ¼ 2.33. By symmetry, the first percentile is the negative of

the 99th percentile, so it equals �2.33 (1% lies below the first and above the 99th). See Fig. 3.18.

z curve z curve

0

ba

1.251.25 0

Shaded area = Φ(1.25) 

P(Z > 1.25)

Fig. 3.15 Normal curve areas (probabilities) for Example 3.19

0 1.25−.38 0−.38

−=

0 1.25

z curve

Fig. 3.16 P(�.38 � Z � 1.25) as the difference between two cumulative areas ■

z curve

99th percentile

0

Shaded area = .9900Fig. 3.17 Finding the 99th

percentile
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To find the 99th percentile of the standard normal distribution in Matlab, use the command

norminv(.99,0,1); in R, qnorm(.99,0,1) or just qnorm(.99) produces that same

value of roughly z ¼ 2.33. ■

3.3.2 Non-standardized Normal Distributions

When X � N(μ, σ), probabilities involving X may be computed by “standardizing.” A standardized

variable has the form (X � μ)/σ. Subtracting μ shifts the mean from μ to zero, and then dividing by σ
scales the variable so that the standard deviation is 1 rather than σ.

Standardizing amounts to nothing more than calculating a distance from the mean and then

reexpressing the distance as some number of standard deviations. For example, if μ ¼ 100 and σ ¼
15, then x ¼ 130 corresponds to z ¼ (130 � 100)/15 ¼ 30/15 ¼ 2.00. That is, 130 is 2 standard

deviations above (to the right of) the mean value. Similarly, standardizing 85 gives (85 � 100)/15 ¼
�1.00, so 85 is 1 standard deviation below the mean. According to the next proposition, the z table
applies to any normal distribution provided that we think in terms of number of standard deviations

away from the mean value.

PROPOSITION

If X � N(μ, σ), then the “standardized” rv Z defined by

Z ¼ X � μ

σ

has a standard normal distribution. Thus

P a � X � bð Þ ¼ P
a� μ

σ
� Z � b� μ

σ

� �
¼ Φ

b� μ

σ

� �
�Φ

a� μ

σ


 �
,

P X � að Þ ¼ Φ
a� μ

σ


 �
, P X � bð Þ ¼ 1�Φ

b� μ

σ

� �
,

and the (100p)th percentile of the N(μ, σ) distribution is given by

ηp ¼ μþΦ�1ðpÞ � σ:

Conversely, if Z� N(0, 1) and μ and σ are constants (with σ > 0), then the “un-standardized”

rv X ¼ μ + σZ has a normal distribution with mean μ and standard deviation σ.

Proof Let X � N(μ, σ) and define Z ¼ (X � μ)/σ as in the statement of the proposition. Then the cdf

of Z is given by

Shaded area = .01

z curve

0

−2.33 = 1st percentile 2.33 = 99th percentile

Fig. 3.18 The relationship

between the 1st and 99th

percentiles
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FzðzÞ ¼ P Z � zð Þ
¼ P

X � μ

σ
� z

� �
¼ P X � μþ zσð Þ ¼

ðμþzσ

�1
f x; μ, σð Þdx ¼

ðμþzσ

�1

1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þdx

Now make the substitution u ¼ (x � μ)/σ. The new limits of integration become �1 to z, and the

differential dx is replaced by σ du, resulting in

FzðzÞ ¼
ðz
�1

1

σ
ffiffiffiffiffi
2π

p e�u2=2σdu ¼
ðz
�1

1ffiffiffiffiffi
2π

p e�u2=2du ¼ ΦðzÞ

Thus, the cdf of (X � μ)/σ is the standard normal cdf, which establishes that (X � μ)/σ � N(0, 1).
The probability formulas in the statement of the proposition follow directly from this main result,

as does the formula for the (100p)th percentile:

p ¼ P X � ηp
� � ¼ P

X � μ

σ
� ηp � μ

σ

� �
¼ Φ

ηp � μ

σ


 �
) ηp � μ

σ
¼ Φ�1ðpÞ )

ηp ¼ μþΦ�1ðpÞ � σ

The converse statement Z � N(0, 1) ) μ + σZ � N(μ, σ) is derived similarly. ■

The key idea of this proposition is that by standardizing, any probability involving X can be

expressed as a probability involving a standard normal rv Z, so that the z table can be used. This is

illustrated in Fig. 3.19.

Software eliminates the need for standardizing X, although the standard normal distribution is still

important in its own right. Table 3.1 at the end of this section details the relevant R and Matlab

commands, which are also illustrated in the following examples.

Example 3.21 The time that it takes a driver to react to the brake lights on a decelerating vehicle is

critical in avoiding rear-end collisions. The article “Fast-Rise Brake Lamp as a Collision-Prevention

Device” (Ergonomics, 1993: 391–395) suggests that reaction time for an in-traffic response to a brake

signal from standard brake lights can be modeled with a normal distribution having mean value 1.25 s

and standard deviation of .46 s. What is the probability that reaction time is between 1.00 s and 1.75 s?

If we let X denote reaction time, then standardizing gives 1.00 � X � 1.75 if and only if

1:00� 1:25

:46
� X � 1:25

:46
� 1:75� 1:25

:46

The middle expression, by the previous proposition, is a standard normal rv. Thus

xm 0

(x− m)/s

N(m,s)
N(0,1)

=

Fig. 3.19 Equality of

nonstandard and standard

normal curve areas
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P 1:00 � X � 1:75ð Þ ¼ P
1:00� 1:25

:46
� Z � 1:75� 1:25

:46

� �
¼ P �:54 � Z � 1:09ð Þ ¼ Φð1:09Þ �Φ �:54ð Þ
¼ :8621� :2946 ¼ :5675

This is illustrated in Fig. 3.20. The same answer may be produced in Matlab with the command

normcdf(1.75,1.25,.46)-normcdf(1.00, 1.25,.46); Matlab gives the answer .5681,

which is more accurate than the value .5675 above (due to rounding the z-values to two decimal

places). The analogous R command is pnorm(1.75,1.25,.46)-pnorm(1.00,1.25,.46).

Similarly, if we view 2 s as a critically long reaction time, the probability that actual reaction time

will exceed this value is

P X > 2ð Þ ¼ P Z >
2� 1:25

:46

� �
¼ P Z > 1:63ð Þ ¼ 1�Φð1:63Þ ¼ :0516

This probability is determined in Matlab and R by executing the commands

1-normcdf(2,1.25,.46) and 1-pnorm(2,1.25,.46), respectively. ■

Example 3.22 The amount of distilled water dispensed by a machine is normally distributed with

mean value 64 oz and standard deviation .78 oz. What container size c will ensure that overflow

occurs only .5% of the time? If X denotes the amount dispensed, the desired condition is that P(X> c)

¼ .005, or, equivalently, that P(X � c) ¼ .995. Thus c is the 99.5th percentile of the normal

distribution with μ ¼ 64 and σ ¼ .78. The 99.5th percentile of the standard normal distribution is

Φ�1(.995) � 2.58, so

c ¼ η:995 ¼ 64þ ð2:58Þð:78Þ ¼ 64þ 2:0 ¼ 66:0 oz

This is illustrated in Fig. 3.21.

1.25

1.751.00

0

1.09−.54

z curve

Normal, m = 1.25, s = .46 P(1.00 ≤ X ≤ 1.75)Fig. 3.20 Normal curves

for Example 3.21

c = 99.5th percentile = 66.0

Shaded area = .995

m = 64
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The Matlab and R commands to calculate this percentile are norminv(.995,64,.78) and

qnorm(.995,64,.78), respectively. ■

Example 3.23 The return on a diversified investment portfolio is normally distributed. What is the

probability that the return is within 1 standard deviation of its mean value? This question can be

answered without knowing either μ or σ, as long as the distribution is known to be normal; in other

words, the answer is the same for any normal distribution. Going one standard deviation below μ
lands us at μ � σ, while μ + σ is one standard deviation above the mean. Thus

P
X is within one standard

deviation of its mean

� �
¼ P μ� σ � X � μþ σð Þ

¼ P

�
μ� σ � μ

σ
� Z � μþ σ � μ

σ

�
¼ P �1 � Z � 1ð Þ
¼ Φ 1ð Þ �Φð�1� ¼ :6826

The probability that X is within 2 standard deviations of the mean is P(�2 � Z � 2) ¼ .9544 and

the probability that X is within 3 standard deviations of the mean is P(�3 � Z � 3) ¼ .9973. ■

The results of Example 3.23 are often reported in percentage form and referred to as the empirical

rule (because empirical evidence has shown that histograms of real data can very frequently be

approximated by normal curves).

EMPIRICAL RULE

If the population distribution of a variable is (approximately) normal, then

1. Roughly 68% of the values are within 1 SD of the mean.

2. Roughly 95% of the values are within 2 SDs of the mean.

3. Roughly 99.7% of the values are within 3 SDs of the mean.

3.3.3 The Normal MGF

The moment generating function provides a straightforward way to establish several important results

concerning the normal distribution.

PROPOSITION

The moment generating function of a normally distributed random variable X is

MXðtÞ ¼ eμtþσ2t2=2

Proof Consider first the special case of a standard normal rv Z. Then

MZðtÞ ¼ E etZ
� � ¼ ð1

�1
etz

1ffiffiffiffiffi
2π

p e�z2=2dz ¼
ð1
�1

1ffiffiffiffiffi
2π

p e� z2�2tzð Þ=2dz

Completing the square in the exponent, we have
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MZðtÞ ¼ et
2=2

ð1
�1

1ffiffiffiffiffi
2π

p e� z2�2tzþt2ð Þ=2dz ¼ et
2=2

ð1
�1

1ffiffiffiffiffi
2π

p e� z�tð Þ2=2dz

The last integral is the area under a normal density curve with mean t and standard deviation 1, so

the value of the integral is 1. Therefore, MZðtÞ ¼ et
2=2.

Now let X be any normal rv with mean μ and standard deviation σ. Then, by the proposition earlier
in this section, (X� μ)/σ ¼ Z, where Z is standard normal. Rewrite this relationship as X¼ μ + σZ, and
use the property MaY+b(t) ¼ ebtMY(at):

MXðtÞ ¼ MμþσZðtÞ ¼ eμtMZ σtð Þ ¼ eμteσ
2t2=2 ¼ eμtþσ2t2=2 ■

The normal mgf can be used to establish that μ and σ are indeed the mean and standard deviation of

X, as claimed earlier (Exercise 68). Also, by the mgf uniqueness property, any rv X whose moment

generating function has the form specified above is necessarily normally distributed. For example,

if it is known that the mgf of X is MXðtÞ ¼ e8t
2

, then X must be a normal rv with mean μ ¼ 0 and

standard deviation σ ¼ 4 (since the N(0, 4) distribution has e8t
2

as its mgf).

Itwas established earlier in this section that ifX�N(μ, σ) andZ¼ (X� μ)/σ, thenZ�N(0, 1), and vice

versa. This standardizing transformation is actually a special case of a much more general property.

PROPOSITION

Let X � N(μ, σ). Then for any constants a and b with a 6¼ 0, aX + b is also normally distributed.

That is, any linear rescaling of a normal rv is normal.

The proof of this proposition uses mgfs and is left as an exercise (Exercise 70). This proposition

provides a much easier proof of the earlier relationship between X and Z. The rescaling formulas and

this proposition combine to give the following statement: if X is normally distributed and Y ¼ aX +

b (with a 6¼ 0), then Y is also normal, with mean μY ¼ aμX + b and standard deviation σY ¼ |a|σX.

3.3.4 The Normal Distribution and Discrete Populations

The normal distribution is often used as an approximation to the distribution of values in a discrete

population. In such situations, extra care must be taken to ensure that probabilities are computed in an

accurate manner.

Example 3.24 IQ (as measured by a standard test) is known to be approximately normally

distributed with μ ¼ 100 and σ ¼ 15. What is the probability that a randomly selected individual

has an IQ of at least 125? Letting X ¼ the IQ of a randomly chosen person, we wish P(X � 125). The

temptation here is to standardize X � 125 immediately as in previous examples. However, the IQ

population is actually discrete, since IQs are integer-valued, so the normal curve is an approximation

to a discrete probability histogram, as pictured in Fig. 3.22.

The rectangles of the histogram are centered at integers, so IQs of at least 125 correspond to

rectangles beginning at 124.5, as shaded in Fig. 3.22. Thus we really want the area under the

approximating normal curve to the right of 124.5. Standardizing this value gives P(Z � 1.63) ¼
.0516. If we had standardized X� 125, we would have obtained P(Z� 1.67)¼ .0475. The difference

is not great, but the answer .0516 is more accurate. Similarly, P(X ¼ 125) would be approximated by

the area between 124.5 and 125.5, since the area under the normal curve above the single value

125 is zero.
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The correction for discreteness of the underlying distribution in Example 3.24 is often called a

continuity correction; it adjusts for the use of a continuous distribution in approximating a proba-

bility involving a discrete rv. It is useful in the following application of the normal distribution to the

computation of binomial probabilities. The normal distribution was actually created as an approxi-

mation to the binomial distribution (by Abraham de Moivre in the 1730s).

3.3.5 Approximating the Binomial Distribution

Recall that the mean value and standard deviation of a binomial random variable X are μ ¼ np and

σ ¼ ffiffiffiffiffiffiffiffi
npq

p
, respectively. Figure 3.23a displays a probability histogram for the binomial distribution

with n ¼ 20, p ¼ .6 [so μ ¼ 20(.6) ¼ 12 and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20ð:6Þð:4Þp ¼ 2:19]. A normal curve with mean

value and standard deviation equal to the corresponding values for the binomial distribution has been

superimposed on the probability histogram. Although the probability histogram is a bit skewed

(because p 6¼ .5), the normal curve gives a very good approximation, especially in the middle part

of the picture. The area of any rectangle (probability of any particular X value) except those in the

extreme tails can be accurately approximated by the corresponding normal curve area. For example,

P X ¼ 10ð Þ ¼ 20

10

� �
ð:6Þ10ð:4Þ10 ¼ :117, whereas the area under the normal curve between 9.5 and

10.5 is P(�1.14 � Z � �.68) ¼ .120.

On the other hand, a normal distribution is a poor approximation to a discrete distribution that is

heavily skewed. For example, Figure 3.23b shows a probability histogram for the Bin(20, .1)

125

Fig. 3.22 A normal approximation to a discrete distribution ■
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Fig. 3.23 Binomial probability histograms with normal approximation curves superimposed: (a) n ¼ 20 and p ¼ .6

(a good fit); (b) n ¼ 20 and p ¼ .1 (a poor fit)
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distribution and the normal pdf with the same mean and standard deviation (μ ¼ 2 and σ ¼ 1.34).

Clearly, we would not want to use this normal curve to approximate binomial probabilities, even with

a continuity correction.

PROPOSITION

Let X be a binomial rv based on n trials with success probability p. Then if the binomial

probability histogram is not too skewed, X has approximately a normal distribution with μ¼ np

and σ ¼ ffiffiffiffiffiffiffiffi
npq

p
. In particular, for x ¼ a possible value of X,

P(X � x) ¼ B(x; n, p) � (area under the normal curve to the left of x + .5)

¼ Φ
xþ :5� npffiffiffiffiffiffiffiffi

npq
p

� �
In practice, the approximation is adequate provided that both np � 10 and nq � 10.

If either np < 10 or nq < 10, the binomial distribution may be too skewed for the (symmetric)

normal curve to give accurate approximations.

Example 3.25 Suppose that 25% of all licensed drivers in a state do not have insurance. Let X be the

number of uninsured drivers in a random sample of size 50 (somewhat perversely, a success is an

uninsured driver), so that p¼ .25. Then μ ¼ 12.5 and σ ¼ 3.062. Since np¼ 50(.25)¼ 12.5� 10 and

nq ¼ 37.5 � 10, the approximation can safely be applied:

P X � 10ð Þ ¼ B 10; 50, :25ð Þ � Φ
10þ :5� 12:5

3:062

� �
¼ Φ �:6532ð Þ ¼ :2568

Similarly, the probability that between 5 and 15 (inclusive) of the selected drivers are uninsured is

P 5 � X � 15ð Þ ¼ B 15; 50, :25ð Þ � B 4; 50, :25ð Þ
� Φ

15:5� 12:5

3:062

� �
�Φ

4:5� 12:5

3:062

� �
¼ :8319

The exact probabilities are .2622 and .8348, respectively, so the approximations are quite good.

In the last calculation, the probability P(5 � X � 15) is being approximated by the area under

the normal curve between 4.5 and 15.5—the continuity correction is used for both the upper and

lower limits. ■

The wide availability of software for doing binomial probability calculations, even for large values

of n, has considerably diminished the importance of the normal approximation. However, it is

important for another reason. When the objective of an investigation is to make an inference about

a population proportion p, interest will focus on the sample proportion of successes bP ¼ X=n rather

than on X itself. Because this proportion is just X multiplied by the constant 1/n, the earlier rescaling

proposition tells us that bP will also have approximately a normal distribution (with mean μ ¼ p and

standard deviation σ ¼ ffiffiffiffiffiffiffiffiffiffi
pq=n

p
) provided that both np � 10 and nq � 10. This normal approximation

is the basis for several inferential procedures to be discussed in Chap. 5.
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It is quite difficult to give a direct proof of the validity of this normal approximation (the first one

goes back about 270 years to de Moivre). In Chap. 4, we’ll see that it is a consequence of an important

general result called the Central Limit Theorem.

3.3.6 Normal Distribution Calculations with Software

Many software packages, including Matlab and R, have built-in functions to determine both

probabilities under a normal curve and quantiles (aka percentiles) of any given normal distribution.

Table 3.1 summarizes the relevant code in both packages.

In the special case of a standard normal distribution, R (but not Matlab) will allow the user to drop

the last two arguments, μ and σ. That is, the R commands pnorm(x) and pnorm(x,0,1) yield the

same result for any number x, and a similar comment applies to qnorm. Both software packages also

have built-in function calls for the normal pdf: normpdf(x,μ,σ) and dnorm(x,μ,σ), respectively.
However, these two commands are generally only used when one desires to graph a normal density

curve (x vs. f(x; μ, σ)), since the pdf evaluated at particular x does not represent a probability, as

discussed in Sect. 3.1.

3.3.7 Exercises: Section 3.3 (39–70)

39. Let Z be a standard normal random variable and obtain each of the following probabilities,

drawing pictures wherever appropriate.

(a) P(0 � Z � 2.17)

(b) P(0 � Z � 1)

(c) P(�2.50 � Z � 0)

(d) P(�2.50 � Z � 2.50)

(e) P(Z � 1.37)

(f) P(�1.75 � Z )

(g) P(�1.50 � Z � 2.00)

(h) P(1.37 � Z � 2.50)

(i) P(1.50 � Z )

(j) P(|Z| � 2.50)

40. In each case, determine the value of the constant c that makes the probability statement correct.

(a) Φ(c) ¼ .9838

(b) P(0 � Z � c) ¼ .291

(c) P(c � Z) ¼ .121

(d) P(�c � Z � c) ¼ .668

(e) P(c � |Z|) ¼ .016

Table 3.1 Normal probability and quantile calculations in Matlab and R

Function: cdf quantile, i.e., the (100p)th percentile

Notation: Φ x�μ
σ

� �
ηp ¼ μ + Φ� 1( p) � σ

Matlab: normcdf(x, μ, σ) norminv(p, μ, σ)

R: pnorm(x, μ, σ) qnorm(p, μ, σ)
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41. Find the following percentiles for the standard normal distribution. Interpolate where

appropriate.

(a) 91st

(b) 9th

(c) 75th

(d) 25th

(e) 6th

42. Suppose the force acting on a column that helps to support a building is a normally distributed

random variable X with mean value 15.0 kips and standard deviation 1.25 kips. Compute the

following probabilities.

(a) P(X � 15)

(b) P(X � 17.5)

(c) P(X � 10)

(d) P(14 � X � 18)

(e) P(|X � 15| � 3)

43. Mopeds (small motorcycles with an engine capacity below 50 cc) are very popular in Europe

because of their mobility, ease of operation, and low cost. The article “Procedure to Verify the

Maximum Speed of Automatic Transmission Mopeds in Periodic Motor Vehicle Inspections”

(J. of Automobile Engr., 2008: 1615-1623) described a rolling bench test for determining

maximum vehicle speed. A normal distribution with mean value 46.8 km/h and standard

deviation 1.75 km/h is postulated. Consider randomly selecting a single such moped.

(a) What is the probability that maximum speed is at most 50 km/h?

(b) What is the probability that maximum speed is at least 48 km/h?

(c) What is the probability that maximum speed differs from the mean value by at most 1.5

standard deviations?

44. Let X be the birth weight, in grams, of a randomly selected full-term baby. The article “Fetal

Growth Parameters and Birth Weight: Their Relationship to Neonatal Body Composition”

(Ultrasound in Obstetrics and Gynecology, 2009: 441–446) suggests that X is normally

distributed with mean 3500 and standard deviation 600.

(a) Sketch the relevant density curve, including tick marks on the horizontal scale.

(b) What is P(3000 < X < 4500), and how does this compare to P(3000 � X � 4500)?

(c) What is the probability that the weight of such a newborn is less than 2500 g?

(d) What is the probability that the weight of such a newborn exceeds 6000 g (roughly

13.2 lb)?

(e) How would you characterize the most extreme .1% of all birth weights?

(f) Use the rescaling proposition from this section to determine the distribution of birth weight

expressed in pounds (shape, mean, and standard deviation), and then recalculate the

probability from part (c). How does this compare to your previous answer?

45. Based on extensive data from an urban freeway near Toronto, Canada, “it is assumed that free

speeds can best be represented by a normal distribution” (“Impact of Driver Compliance on the

Safety and Operational Impacts of Freeway Variable Speed Limit Systems,” J. of Transp. Engr.,

2011: 260–268). The mean and standard deviation reported in the article were 119 km/h and

13.1 km/h, respectively.

(a) What is the probability that the speed of a randomly selected vehicle is between 100 and

120 km/h?

(b) What speed characterizes the fastest 10% of all speeds?
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(c) The posted speed limit was 100 km/h. What percentage of vehicles was traveling at speeds

exceeding this posted limit?

(d) If five vehicles are randomly and independently selected, what is the probability that at

least one is not exceeding the posted speed limit?

(e) What is the probability that the speed of a randomly selected vehicle exceeds 70 miles/h?

46. The defect length of a corrosion defect in a pressurized steel pipe is normally distributed with

mean value 30 mm and standard deviation 7.8 mm (suggested in the article “Reliability

Evaluation of Corroding Pipelines Considering Multiple Failure Modes and Time-Dependent

Internal Pressure,” J. of Infrastructure Systems, 2011: 216–224).

(a) What is the probability that defect length is at most 20 mm? Less than 20 mm?

(b) What is the 75th percentile of the defect length distribution, i.e., the value that separates the

smallest 75% of all lengths from the largest 25%?

(c) What is the 15th percentile of the defect length distribution?

(d) What values separate the middle 80% of the defect length distribution from the smallest

10% and the largest 10%?

47. The plasma cholesterol level (mg/dL) for patients with no prior evidence of heart disease who

experience chest pain is normally distributed with mean 200 and standard deviation 35.

Consider randomly selecting an individual of this type. What is the probability that the plasma

cholesterol level

(a) Is at most 250?

(b) Is between 300 and 400?

(c) Differs from the mean by at least 1.5 standard deviations?

48. Suppose the diameter at breast height (in.) of trees of a certain type is normally distributed with

μ ¼ 8.8 and σ ¼ 2.8, as suggested in the article “Simulating a Harvester-Forwarder Softwood

Thinning” (Forest Products J., May 1997: 36–41).

(a) What is the probability that the diameter of a randomly selected tree will be at least 10 in.?

Will exceed 10 in.?

(b) What is the probability that the diameter of a randomly selected tree will exceed 20 in.?

(c) What is the probability that the diameter of a randomly selected tree will be between 5 and

10 in.?

(d) What value c is such that the interval (8.8 � c, 8.8 + c) includes 98% of all diameter values?

(e) If four trees are independently selected, what is the probability that at least one has a

diameter exceeding 10 in.?

49. There are two machines available for cutting corks intended for use in wine bottles. The first

produces corks with diameters that are normally distributed with mean 3 cm and standard

deviation .1 cm. The second machine produces corks with diameters that have a normal

distribution with mean 3.04 cm and standard deviation .02 cm. Acceptable corks have diameters

between 2.9 and 3.1 cm. Which machine is more likely to produce an acceptable cork?

50. Human body temperatures for healthy individuals have approximately a normal distribution with

mean 98.25 �F and standard deviation .75 �F. (The past accepted value of 98.6 �F was obtained by

converting the Celsius value of 37�, which is correct to the nearest integer.)

(a) Find the 90th percentile of the distribution.

(b) Find the 5th percentile of the distribution.

(c) What temperature separates the coolest 25% from the others?

51. The article “Monte Carlo Simulation—Tool for Better Understanding of LRFD” (J. Struct. Engr.,

1993: 1586–1599) suggests that yield strength (ksi) for A36 grade steel is normally distributed

with μ ¼ 43 and σ ¼ 4.5.
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(a) What is the probability that yield strength is at most 40? Greater than 60?

(b) What yield strength value separates the strongest 75% from the others?

52. The automatic opening device of a military cargo parachute has been designed to open when the

parachute is 200 m above the ground. Suppose opening altitude actually has a normal distribution

with mean value 200 m and standard deviation 30 m. Equipment damage will occur if the

parachute opens at an altitude of less than 100 m. What is the probability that there is equipment

damage to the payload of at least one of five independently dropped parachutes?

53. The temperature reading from a thermocouple placed in a constant-temperature medium is

normally distributed with mean μ, the actual temperature of the medium, and standard deviation

σ. What would the value of σ have to be to ensure that 95% of all readings are within .1� of μ?
54. Vehicle speed on a particular bridge in China can be modeled as normally distributed (“Fatigue

Reliability Assessment for Long-Span Bridges under Combined Dynamic Loads fromWinds and

Vehicles,” J. of Bridge Engr., 2013: 735–747).
(a) If 5% of all vehicles travel less than 39.12 mph and 10% travel more than 73.24 mph, what

are the mean and standard deviation of vehicle speed? [Note: The resulting values should

agree with those given in the cited article.]

(b) What is the probability that a randomly selected vehicle’s speed is between 50 and 65 mph?

(c) What is the probability that a randomly selected vehicle’s speed exceeds the speed limit of

70 mph?

55. If adult female heights are normally distributed, what is the probability that the height of a

randomly selected woman is

(a) Within 1.5 SDs of its mean value?

(b) Farther than 2.5 SDs from its mean value?

(c) Between 1 and 2 SDs from its mean value?

56. A machine that produces ball bearings has initially been set so that the true average diameter of

the bearings it produces is .500 in. A bearing is acceptable if its diameter is within .004 in. of this

target value. Suppose, however, that the setting has changed during the course of production, so

that the bearings have normally distributed diameters with mean value .499 in. and standard

deviation .002 in. What percentage of the bearings produced will not be acceptable?

57. The Rockwell hardness of a metal is determined by impressing a hardened point into the surface

of the metal and then measuring the depth of penetration of the point. Suppose the Rockwell

hardness of an alloy is normally distributed with mean 70 and standard deviation 3. (Rockwell

hardness is measured on a continuous scale.)

(a) If a specimen is acceptable only if its hardness is between 67 and 75, what is the probability

that a randomly chosen specimen has an acceptable hardness?

(b) If the acceptable range of hardness is (70 � c, 70 + c), for what value of c would 95% of all

specimens have acceptable hardness?

(c) If the acceptable range is as in part (a) and the hardness of each of ten randomly selected

specimens is independently determined, what is the expected number of acceptable

specimens among the ten?

(d) What is the probability that at most eight of ten independently selected specimens have a

hardness of less than 73.84? [Hint: Y ¼ the number among the ten specimens with hardness

less than 73.84 is a binomial variable; what is p?]
58. The weight distribution of parcels sent in a certain manner is normal with mean value 12 lb and

standard deviation 3.5 lb. The parcel service wishes to establish a weight value c beyond which

there will be a surcharge. What value of c is such that 99% of all parcels are at least 1 lb under the

surcharge weight?
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59. Suppose Appendix Table A.3 containedΦ(z) only for z� 0. Explain how you could still compute

(a) P(�1.72 � Z � �.55)

(b) P(�1.72 � Z � .55)

Is it necessary to tabulate Φ(z) for z negative? What property of the standard normal curve

justifies your answer?

60. Chebyshev’s inequality (Sect. 3.2) states that for any number k satisfying k� 1, P(|X� μ|� kσ) is
no more than 1/k2. Obtain this probability in the case of a normal distribution for k ¼ 1, 2, and

3, and compare to Chebyshev’s upper bound.

61. Let X denote the number of flaws along a 100-m reel of magnetic tape (an integer-valued

variable). Suppose X has approximately a normal distribution with μ ¼ 25 and σ ¼ 5. Use the

continuity correction to calculate the probability that the number of flaws is

(a) Between 20 and 30, inclusive.

(b) At most 30. Less than 30.

62. Let X have a binomial distribution with parameters n¼ 25 and p. Calculate each of the following

probabilities using the normal approximation (with the continuity correction) for the cases p¼ .5,

.6, and .8 and compare to the exact probabilities calculated from Appendix Table A.1.

(a) P(15 � X � 20)

(b) P(X � 15)

(c) P(20 � X)
63. Suppose that 10% of all steel shafts produced by a process are nonconforming but can be

reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let

X denote the number among these that are nonconforming and can be reworked. What is the

(approximate) probability that X is

(a) At most 30?

(b) Less than 30?

(c) Between 15 and 25 (inclusive)?

64. Suppose only 70% of all drivers in a state regularly wear a seat belt. A random sample of

500 drivers is selected. What is the probability that

(a) Between 320 and 370 (inclusive) of the drivers in the sample regularly wear a seat belt?

(b) Fewer than 325 of those in the sample regularly wear a seat belt? Fewer than 315?

65. In response to concerns about nutritional contents of fast foods, McDonald’s announced that it

would use a new cooking oil for its french fries that would decrease substantially trans fatty acid

levels and increase the amount of more beneficial polyunsaturated fat. The company claimed that

97 out of 100 people cannot detect a difference in taste between the new and old oils. Assuming

that this figure is correct (as a long-run proportion), what is the approximate probability that in a

random sample of 1000 individuals who have purchased fries at McDonald’s,

(a) At least 40 can taste the difference between the two oils?

(b) At most 5% can taste the difference between the two oils?

66. The following proof that the normal pdf integrates to 1 comes courtesy of Professor Robert

Young, Oberlin College. Let f(z) denote the standard normal pdf, and consider the function of two

variables

g x, yð Þ ¼ f ðxÞ � f ðyÞ ¼ 1ffiffiffiffiffi
2π

p e�x2=2 1ffiffiffiffiffi
2π

p e�y2=2 ¼ 1

2π
e� x2þy2ð Þ=2

Let V denote the volume under g(x, y) above the xy-plane.

(a) Let A denote the area under the standard normal curve. By setting up the double integral for

the volume underneath g(x, y), show that V ¼ A2.
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(b) Using the rotational symmetry of g(x, y), V can be determined by adding up the volumes of

shells from rotation about the y-axis:

V ¼
ð1
0

2πr � 1
2π

e�r2=2dr

Show this integral equals 1, then use (a) to establish that the area under the standard normal

curve is 1.

(c) Show that
Ð1
�1 f(x; μ, σ)dx¼ 1. [Hint: Write out the integral, and then make a substitution to

reduce it to the standard normal case. Then invoke (b).]

67. Suppose X � N(μ, σ).
(a) Show via integration that E(X) ¼ μ. [Hint: Make the substitution u ¼ (x � μ)/σ, which will

create two integrals. For one, use the symmetry of the pdf; for the other, use the fact that the

standard normal pdf integrates to 1.]

(b) Show via integration that Var(X) ¼ σ2. [Hint: Evaluate the integral for E[(X�μ)2] rather
than using the variance shortcut formula. Use the same substitution as in part (a).]

68. The moment generating function can be used to find the mean and variance of the normal

distribution.

(a) Use derivatives of MX(t) to verify that E(X) ¼ μ and Var(X) ¼ σ2.
(b) Repeat (a) using LX(t)¼ ln[MX(t)], and compare with part (a) in terms of effort. (Refer back

to Exercise 36 for properties of the function LX(t).)

69. There is no nice formula for the standard normal cdf Φ(z), but several good approximations have

been published in articles. The following is from “Approximations for Hand Calculators Using

Small Integer Coefficients” (Math. Comput., 1977: 214–222). For 0 < z � 5.5,

P Z � zð Þ ¼ 1�ΦðzÞ � :5exp � 83zþ 351ð Þzþ 562

703=zð Þ þ 165

� �� 
The relative error of this approximation is less than .042%. Use this to calculate approximations

to the following probabilities, and compare whenever possible to the probabilities obtained from

Appendix Table A.3.

(a) P(Z � 1)

(b) P(Z < �3)

(c) P(�4 < Z < 4)

(d) P(Z > 5)

70. (a) Use mgfs to show that if X has a normal distribution with parameters μ and σ, then Y¼ aX +

b (a linear function of X) also has a normal distribution. What are the parameters of the

distribution of Y [i.e., E(Y ) and SD(Y)]?
(b) If when measured in �C, temperature is normally distributed with mean 115 and standard

deviation 2, what can be said about the distribution of temperature measured in �F?

3.4 The Exponential and Gamma Distributions

The graph of any normal pdf is bell-shaped and thus symmetric. In many practical situations, the

variable of interest to the experimenter might have a skewed distribution. A family of pdfs that yields

a wide variety of skewed distributional shapes is the gamma family. We first consider a special case,

the exponential distribution, and then generalize later in the section.
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3.4.1 The Exponential Distribution

The family of exponential distributions provides probability models that are widely used in engineer-

ing and science disciplines.

DEFINITION

X is said to have an exponential distribution with parameter λ (λ > 0) if the pdf of X is

f x; λð Þ ¼ λe�λx x > 0

0 otherwise

(

Some sources write the exponential pdf in the form (1/β)e�x/β, so that β ¼ 1/λ. Graphs of several
exponential pdfs appear in Fig. 3.24.

The expected value of an exponentially distributed random variable X is

EðXÞ ¼
ð1
0

x � λe�λxdx

Obtaining this expected value requires integration by parts. The variance of X can be computed

using the shortcut formula Var(X) ¼ E(X2) � [E(X)]2; evaluating E(X2) uses integration by parts

twice in succession. In contrast, the exponential cdf is easily obtained by integrating the pdf. The

results of these integrations are as follows.

PROPOSITION

Let X be an exponential variable with parameter λ. Then the cdf of X is

0 1 2 3 4 5 6 7 8

f(x;λ)

2

1.5

1

.5

0 x

λ = 2

λ = 1
λ = .5

Fig. 3.24 Exponential

density curves
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F x; λð Þ ¼ 0 x � 0

1� e�λx x > 0

(

The mean and standard deviation of X are both equal to 1/λ.

Under the alternative parameterization, the exponential cdf becomes 1 � e�x/β for x > 0, and the

mean and standard deviation are both equal to β.

Example 3.23 The response time X at an on-line computer terminal (the elapsed time between the

end of a user’s inquiry and the beginning of the system’s response to that inquiry) has an exponential

distribution with expected response time equal to 5 s. Then E(X)¼ 1/λ¼ 5, so λ¼ .2. The probability

that the response time is at most 10 s is

P X � 10ð Þ ¼ F 10; 2ð Þ ¼ 1� e�ð:2Þð10Þ ¼ 1� e�2 ¼ 1� :135 ¼ :865

The probability that response time is between 5 and 10 s is

P 5 � X � 10ð Þ ¼ F 10; 2ð Þ � F 5; 2ð Þ ¼ 1� e�2
� �� 1� e�1

� � ¼ :233 ■

The exponential distribution is frequently used as a model for the distribution of times between the

occurrence of successive events, such as customers arriving at a service facility or calls coming in to a

call center. The reason for this is that the exponential distribution is closely related to the Poisson

distribution introduced in Chap. 2. We will explore this relationship fully in Sect. 7.5 (Poisson

Processes).

Another important application of the exponential distribution is to model the distribution of

component lifetimes. A partial reason for the popularity of such applications is the “memoryless”
property of the exponential distribution. Suppose component lifetime is exponentially distributed

with parameter λ. After putting the component into service, we leave for a period of t0 hours and then

return to find the component still working; what now is the probability that it lasts at least an

additional t hours? In symbols, we wish P(X � t + t0 | X � t0). By the definition of conditional

probability,

P X � tþ t0jX � t0ð Þ ¼ P X � tþ t0ð Þ \ X � t0ð Þ½ 	
P X � t0ð Þ

But the event X � t0 in the numerator is redundant, since both events can occur if and only if

X � t + t0. Therefore,

P X � tþ t0jX � t0ð Þ ¼ P X � tþ t0ð Þ
P X � t0ð Þ ¼ 1� F tþ t0; λð Þ

1� F t0; λð Þ ¼ e�λ tþt0ð Þ

e�λt0
¼ e�λt

This conditional probability is identical to the original probability P(X � t) that the component

lasted t hours. Thus the distribution of additional lifetime is exactly the same as the original

distribution of lifetime, so at each point in time the component shows no effect of wear. In other

words, the distribution of remaining lifetime is independent of current age (we wish that were true

of us!).

Although the memoryless property can be justified at least approximately in many applied

problems, in other situations components deteriorate with age or occasionally improve with age

(at least up to a certain point). More general lifetime models are then furnished by the gamma,
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Weibull, and lognormal distributions (the latter two are discussed in the next section). Lifetime

distributions are at the heart of reliability models, which we’ll consider in depth in Sect. 4.8.

3.4.2 The Gamma Distribution

To define the family of gamma distributions, which generalizes the exponential distribution, we first

need to introduce a function that plays an important role in many branches of mathematics.

DEFINITION

For α > 0, the gamma function Γ(α) is defined by

Γ αð Þ ¼
ð1
0

xα�1e�xdx

The most important properties of the gamma function are the following:

1. For any α > 1, Γ(α) ¼ (α � 1) � Γ(α � 1) (via integration by parts)

2. For any positive integer n, Γ(n) ¼ (n � 1)!

3. Γ 1
2

� � ¼ ffiffiffi
π

p

The following proposition will prove useful for several computations that follow.

PROPOSITION

For any α, β > 0, ð1
0

xα�1e�x=βdx ¼ βαΓ αð Þ ð3:5Þ

Proof Make the substitution u ¼ x/β, so that x ¼ βu and dx ¼ β du:ð1
0

xα�1e�x=βdx ¼
ð1
0

βuð Þα�1e�uβdu ¼ βα
ð1
0

uα�1e�udu ¼ βαΓ αð Þ

The last equality comes from the definition of the gamma function. ■

With the preceding proposition in mind, we make the following definition.

DEFINITION

A continuous random variable X is said to have a gamma distribution if the pdf of X is

f x; α, βð Þ ¼
1

βαΓ αð Þ x
α�1e�x=β x > 0

0 otherwise

8<: ð3:6Þ

where the parameters α and β satisfy α > 0, β > 0. When β ¼ 1, X is said to have a standard
gamma distribution, and its pdf may be denoted f(x; α).
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The exponential distribution results from taking α ¼ 1 and β ¼ 1/λ.
It’s clear that f(x; α, β) � 0 for all x; the previous proposition guarantees that this function

integrates to 1, as required. Figure 3.25a illustrates the graphs of the gamma pdf for several (α, β)
pairs, whereas Fig. 3.25b presents graphs of the standard gamma pdf. For the standard pdf, when

α � 1, f(x; α) is strictly decreasing as x increases; when α > 1, f(x; α) rises to a maximum and then

decreases. Because of this difference, α is referred to as a shape parameter. The parameter β in

Eq. (3.6) is called the scale parameter because values other than 1 either stretch or compress the pdf

in the x direction.

The mean and variance of a gamma random variable are

EðXÞ ¼ μ ¼ αβ VarðXÞ ¼ σ2 ¼ αβ2

These can be calculated directly from the gamma pdf using integration by parts, or by employing

properties of the gamma function along with Expression (3.5); see Exercise 83. Notice these are

consistent with the aforementioned mean and variance of the exponential distribution: with α¼ 1 and

β ¼ 1/λ we obtain E(X) ¼ 1(1/λ) ¼ 1/λ and Var(X) ¼ 1(1/λ)2 ¼ 1/λ2.
In the special case where the shape parameter α is a positive integer, n, the gamma distribution is

sometimes rewritten with the substitution λ ¼ 1/β, and the resulting pdf is

f x; n, 1=λð Þ ¼ λn

n� 1ð Þ! x
n�1e�λx, x > 0

This is often called an Erlang distribution, and it plays a central role in the study of Poisson

processes (again, see Sect. 7.5; notice that the n ¼ 1 case of the Erlang distribution is actually the

exponential pdf). In Chap. 4, it will be shown that the sum of n independent exponential rvs follows

this Erlang distribution.

When X is a standard gamma rv, the cdf of X, which for x > 0 is

G x; αð Þ ¼ P X � xð Þ ¼
ðx
0

1

Γ αð Þ y
α�1e�ydy ð3:7Þ

is called the incomplete gamma function. (In mathematics literature, the incomplete gamma

function sometimes refers to Eq. (3.7) without the denominator Γ(α) in the integrand.) In Appendix

Table A.4, we present a small tabulation of G(x; α) for α ¼ 1, 2, . . . , 10 and x ¼ 1, 2, . . . , 15.

1 2 3 4 51 2 3 4 5 6 7
0

0.5

1.0
 13

ba

x 0

0.5

1.0

x

f (x; a, b) f (x; a)

a = 1

a = 2, b =

a = 1, b = 1

a = 2, b = 2

a = 2, b = 1

a = .6

a = 2 a = 5 

Fig. 3.25 (a) Gamma density curves; (b) standard gamma density curves
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Table 3.2 at the end of this section provides the Matlab and R commands related to the gamma cdf,

which are illustrated in the following examples.

Example 3.27 Suppose the reaction time X (in seconds) of a randomly selected individual to a

certain stimulus has a standard gamma distribution with α ¼ 2. Since X is continuous,

P 3 � X � 5ð Þ ¼ P X � 5ð Þ�P X � 3ð Þ ¼ G 5; 2ð Þ�G 3; 2ð Þ
¼ :960�:801 ¼ :159

This probability can be obtained in Matlab with gamcdf(5,2,1)-gamcdf(3,2,1) and in R

with pgamma(5,2)-pgamma(3,2).

The probability that the reaction time is more than 4 s is

P X > 4ð Þ ¼ 1�P X � 4ð Þ ¼ 1�G 4; 2ð Þ ¼ 1�:908 ¼ :092 ■

The incomplete gamma function can also be used to compute probabilities involving gamma

distributions for any β > 0.

PROPOSITION

Let X have a gamma distribution with parameters α and β. Then for any x > 0, the cdf of X is

given by

P X � xð Þ ¼ G
x

β
; α

� �
,

the incomplete gamma function evaluated at x/β.

The proof is similar to that of Eq. (3.5).

Example 3.28 Suppose the survival time X in weeks of a randomly selected male mouse exposed to

240 rads of gamma radiation has, rather fittingly, a gamma distribution with α ¼ 8 and β ¼ 15. (Data

in Survival Distributions: Reliability Applications in the Biomedical Services, by A. J. Gross and

V. Clark, suggest α � 8.5 and β � 13.3.) The expected survival time is E(X) ¼ (8)(15) ¼ 120 weeks,

whereas SDðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8Þð15Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffi

1800
p ¼ 42:43 weeks. The probability that a mouse survives

between 60 and 120 weeks is

P 60 � X � 120ð Þ ¼ P X � 120ð Þ�P X � 60ð Þ
¼ G 120=15; 8ð Þ�G 60=15; 8ð Þ
¼ G 8; 8ð Þ�G 4; 8ð Þ ¼ :547�:051 ¼ :496

In Matlab, the command gamcdf(120,8,15)-gamcdf(60,8,15) yields the desired prob-

ability; the corresponding R code is pgamma(120,8,1/15)-pgamma(60,8,1/15).

The probability that a mouse survives at least 30 weeks is

P X � 30ð Þ ¼ 1�P X < 30ð Þ ¼ 1�P X � 30ð Þ ¼ 1�G 30=15; 8ð Þ ¼ :999 ■
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3.4.3 The Gamma MGF

The integral proposition earlier in this section makes it easy to determine the mean and variance of a

gamma rv. However, the moment generating function of the gamma distribution — and, as a special

case, of the exponential model — will prove critical in establishing some of the more advanced

properties of these distributions in Chap. 4.

Proposition

The moment generating function of a gamma random variable is

MXðtÞ ¼ 1

1� βtð Þα t < 1=β

Proof By definition, the mgf is

MXðtÞ ¼ E etX
� � ¼ ð1

0

etx
xα�1

Γ αð Þβα e
�x=βdx ¼ 1

Γ αð Þβα
ð1
0

xα�1e� �tþ1=βð Þxdx

Now use Expression (3.5): provided �t + 1/β > 0, i.e., t < 1/β,

1

Γ αð Þβα
ð1
0

xα�1e� �tþ1=βð Þxdx ¼ 1

Γ αð Þβα � Γ αð Þ 1

�tþ 1=β

� �α

¼ 1

1� βtð Þα ■

The exponential mgf can then be determined with the substitution α ¼ 1, β ¼ 1/λ:

MXðtÞ ¼ 1

1� 1=λð Þtð Þ1 ¼
λ

λ� t
t < λ

3.4.4 Gamma and Exponential Calculations with Software

Table 3.2 summarizes the syntax for gamma and exponential probability calculations in Matlab

and R, which follows the pattern of the other distributions. In a sense, the exponential commands are

redundant, since they are just a special case (α ¼ 1) of the gamma distribution.

Notice that Matlab and R parameterize the distributions differently: in Matlab, both the gamma

and exponential functions require β (that is, 1/λ) as the last input, whereas the R functions take as their

last input the “rate” parameter λ ¼ 1/β. So, for the gamma rv with parameters α ¼ 8 and β ¼ 15 from

Example 3.28, the probability P(X � 30) would be evaluated as gamcdf(30,8,15) in Matlab but

pgamma(30,8,1/15) in R. This inconsistency of gamma inputs can be remedied by using a name

assignment in the last argument in R; specifically, pgamma(30,8,scale¼15) will instruct R to

Table 3.2 Matlab and R code for gamma and exponential calculations

Gamma Exponential

Function: cdf cdf

Notation: G(x/β; α) F(x; λ) ¼ 1 � e�λx

Matlab: gamcdf(x, α, β) expcdf(x, 1/λ)

R: pgamma(x, α, 1/β) pexp(x, λ)
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use β ¼ 15 in its gamma probability calculation and produce the same answer as the previous

expressions. Interestingly, as of this writing the same option does not exist in the pexp function.

To graph gamma or exponential distributions, one can request their pdfs by replacing cdf with

pdf (in Matlab) or the leading letter p with d (in R). To find quantiles of either of these distributions,

the appropriate replacements are inv and q, respectively. For example, the 75th percentile of the

gamma distribution from Example 3.28 can be determined with gaminv(.75,8,15) in Matlab or

qgamma(.75,8,scale¼15) in R (both give 145.2665 weeks).

3.4.5 Exercises: Section 3.4 (71–83)

71. Let X ¼ the time between two successive arrivals at the drive-up window of a local bank. If

X has an exponential distribution with λ ¼ 1, compute the following:

(a) The expected time between two successive arrivals

(b) The standard deviation of the time between successive arrivals

(c) P(X � 4)

(d) P(2 � X � 5)

72. Let X denote the distance (m) that an animal moves from its birth site to the first territorial

vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential

distribution with parameter λ ¼ .01386 (as suggested in the article “Competition and Dispersal

from Multiple Nests,” Ecology, 1997: 873–883).

(a) What is the probability that the distance is at most 100 m? At most 200 m? Between

100 and 200 m?

(b) What is the probability that distance exceeds the mean distance by more than 2 standard

deviations?

(c) What is the value of the median distance?

73. In studies of anticancer drugs it was found that if mice are injected with cancer cells, the survival

time can be modeled with the exponential distribution. Without treatment the expected survival

time was 10 h. What is the probability that

(a) A randomly selected mouse will survive at least 8 h? At most 12 h? Between 8 and 12 h?

(b) The survival time of a mouse exceeds the mean value by more than 2 standard deviations?

More than 3 standard deviations?

74. Data collected at Toronto Pearson International Airport suggests that an exponential distribution

with mean value 2.725 h is a good model for rainfall duration (Urban Stormwater Management

Planning with Analytical Probabilistic Models, 2000, p.69).
(a) What is the probability that the duration of a particular rainfall event at this location is at

least 2 h? At most 3 h? Between 2 and 3 h?

(b) What is the probability that rainfall duration exceeds the mean value by more than

2 standard deviations? What is the probability that it is less than the mean value by more

than one standard deviation?

75. Evaluate the following:

(a) Γ(6)
(b) Γ(5/2)
(c) G(4; 5) (the incomplete gamma function)

(d) G(5; 4)

(e) G(0; 4)
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76. Let X have a standard gamma distribution with α ¼ 7. Evaluate the following:

(a) P(X � 5)

(b) P(X < 5)

(c) P(X > 8)

(d) P(3 � X � 8)

(e) P(3 < X < 8)

(f) P(X < 4 or X > 6)

77. Suppose that when a type of transistor is subjected to an accelerated life test, the lifetime

X (in weeks) has a gamma distribution with mean 24 weeks and standard deviation 12 weeks.

(a) What is the probability that a transistor will last between 12 and 24 weeks?

(b) What is the probability that a transistor will last at most 24 weeks? Is the median of the

lifetime distribution less than 24? Why or why not?

(c) What is the 99th percentile of the lifetime distribution?

(d) Suppose the test will actually be terminated after t weeks. What value of t is such that only

.5% of all transistors would still be operating at termination?

78. The two-parameter gamma distribution can be generalized by introducing a third parameter γ,
called a threshold or location parameter: replace x in Eq. (3.6) by x� γ and x� 0 by x� γ. This
amounts to shifting the density curves in Fig. 3.25 so that they begin their ascent or descent at γ
rather than 0. The article “Bivariate Flood Frequency Analysis with Historical Information

Based on Copulas” (J. of Hydrologic Engr., 2013: 1018–1030) employs this distribution to

model X ¼ 3-day flood volume (108 m3). Suppose that values of the parameters are α ¼ 12, β ¼
7, γ ¼ 40 (very close to estimates in the cited article based on past data).

(a) What are the mean value and standard deviation of X?

(b) What is the probability that flood volume is between 100 and 150?

(c) What is the probability that flood volume exceeds its mean value by more than one

standard deviation?

(d) What is the 95th percentile of the flood volume distribution?

79. If X has an exponential distribution with parameter λ, derive an expression for the (100p)th
percentile of the distribution. Then specialize to obtain the median.

80. A system consists of five identical components connected in series as shown:

1 2 3 4 5

As soon as one component fails, the entire system will fail. Suppose each component has a

lifetime that is exponentially distributed with λ¼ .01 and that components fail independently of

one another. Define events Ai¼ {ith component lasts at least t hours}, i¼ 1, . . ., 5, so that the Ais

are independent events. Let X ¼ the time at which the system fails—that is, the shortest

(minimum) lifetime among the five components.

(a) The event {X � t} is equivalent to what event involving A1, . . ., A5?

(b) Using the independence of the five Ais, compute P(X� t). Then obtain F(t)¼ P(X� t) and
the pdf of X. What type of distribution does X have?

(c) Suppose there are n components, each having exponential lifetime with parameter λ. What

type of distribution does X have?

81. Based on an analysis of sample data, the article “Pedestrians’ Crossing Behaviors and Safety at

Unmarked Roadways in China” (Accident Analysis and Prevention, 2011: 1927–1936) pro-
posed the pdf f(x) ¼ .15e�.15(x � 1) when x � 1 as a model for the distribution of X ¼ time (sec)

spent at the median line. This is an example of a shifted exponential distribution, i.e., an

exponential model beginning at an x-value other than 0.

3.4 The Exponential and Gamma Distributions 195



(a) What is the probability that waiting time is at most 5 s? More than 5 s?

(b) What is the probability that waiting time is between 2 and 5 s?

(c) What is the mean waiting time?

(d) What is the standard deviation of waiting times?

[Hint: For (c) and (d), you can either use integration or write X ¼ Y + 1, where Y has an

exponential distribution with parameter λ ¼ .15. Then, apply rescaling properties of mean

and standard deviation.]

82. The double exponential distribution has pdf

f ðxÞ ¼ :5λe�λ xj j for �1 < x < 1
The article “Microwave Observations of Daily Antarctic Sea-Ice Edge Expansion and Contri-

bution Rates” (IEEE Geosci. and Remote Sensing Letters, 2006: 54-58) states that “the

distribution of the daily sea-ice advance/retreat from each sensor is similar and is approximately

double exponential.” The standard deviation is given as 40.9 km.

(a) What is the mean of a random variable with pdf f(x)? [Hint: Draw a picture of the

density curve.]

(b) What is the value of the parameter λ when σX ¼ 40.9?

(c) What is the probability that the extent of daily sea-ice change is within 1 standard deviation

of the mean value?

83. (a) Find the mean and variance of the gamma distribution using integration and Expression

(3.5) to obtain E(X) and E(X2).

(b) Use the gamma mgf to find the mean and variance.

3.5 Other Continuous Distributions

The normal, gamma (including exponential), and uniform families of distributions provide a wide

variety of probability models for continuous variables, but there are many practical situations in

which no member of these families fits a set of observed data very well. Statisticians and other

investigators have developed other families of distributions that are often appropriate in practice.

3.5.1 The Weibull Distribution

The family of Weibull distributions was introduced by the Swedish physicist Waloddi Weibull in

1939; his 1951 article “A Statistical Distribution Function of Wide Applicability” (J. Appl. Mech., 18:
293–297) discusses a number of applications.

DEFINITION

A randomvariableX is said to have aWeibull distributionwith parametersα and β (α> 0, β> 0)

if the pdf of X is

f x; α, βð Þ ¼
α

βα
xα�1e� x=βð Þα x � 0

0 x < 0

8<: ð3:8Þ
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In some situations there are theoretical justifications for the appropriateness of the Weibull

distribution, but in many applications f(x; α, β) simply provides a good fit to observed data for

particular values of α and β. When α ¼ 1, the pdf reduces to the exponential distribution (with λ ¼
1/β), so the exponential distribution is a special case of both the gamma and Weibull distributions.

However, there are gamma distributions that are not Weibull distributions and vice versa, so one

family is not a subset of the other. Both α and β can be varied to obtain a number of different

distributional shapes, as illustrated in Fig. 3.26. Note that β is a scale parameter, so different values

stretch or compress the graph in the x-direction; α is referred to as a shape parameter. Integrating to

obtain E(X) and E(X2) yields

μ ¼ βΓ 1þ 1

α

� �
σ2 ¼ β2 Γ 1þ 2

α

� �
� Γ 1þ 1

α

� �� �2( )

The computation of μ and σ2 thus necessitate using the gamma function from Sect. 3.4. (The

moment generating function of the Weibull distribution is very complicated, and so we do not include

it here.) On the other hand, the integration
Ð x
0
f(y; α, β)dy is easily carried out to obtain the cdf of X:
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F x; α, βð Þ ¼ 0 x < 0

1� e� x=βð Þα x � 0

�
ð3:9Þ

Example 3.29 In recent years the Weibull distribution has been used to model engine emissions of

various pollutants. Let X denote the amount of NOx emission (g/gal) from a randomly selected four-

stroke engine of a certain type, and suppose that X has a Weibull distribution with α ¼ 2 and

β ¼ 10 (suggested by information in the article “Quantification of Variability and Uncertainty in

Lawn and Garden Equipment NOx and Total Hydrocarbon Emission Factors,” J. Air Waste Manag.
Assoc., 2002: 435–448). The corresponding density curve looks exactly like the one in Fig. 3.26 for

α¼ 2, β ¼ 1 except that now the values 50 and 100 replace 5 and 10 on the horizontal axis (because β
is a “scale parameter”). Then

P X � 10ð Þ ¼ F 10; 2, 10ð Þ ¼ 1� e� 10=10ð Þ2 ¼ 1� e�1 ¼ :632

Similarly, P(X � 25) ¼ .998, so the distribution is almost entirely concentrated on values between

0 g/gal and 25 g/gal. The value c which separates the 5% of all engines having the largest amounts of

NOx emissions from the remaining 95%, satisfies

:95 ¼ F c; 2, 10ð Þ ¼ 1� e� c=10ð Þ2

Isolating the exponential term on one side, taking logarithms, and solving the resulting equation

gives c � 17.3 g/gal as the 95th percentile of the emission distribution. ■
Frequently, in practical situations, a Weibull model may be reasonable except that the smallest

possible X value may be some value γ other than zero (Exercise 78 considered this for a gamma

model). The quantity γ can then be regarded as a third parameter of the distribution, which is what

Weibull did in his original work. For, say, γ ¼ 3, all curves in Fig. 3.26 would be shifted 3 units to the

right. This is equivalent to saying that X � γ has the pdf Eq. (3.8), so that the cdf of X is obtained by

replacing x in Eq. (3.9) by x � γ.

Example 3.30 An understanding of the volumetric properties of asphalt is important in designing

mixtures that will result in high-durability pavement. The article “Is a Normal Distribution the Most

Appropriate Statistical Distribution for Volumetric Properties in Asphalt Mixtures” (J. of Testing and
Evaluation, Sept. 2009: 1–11) used the analysis of some sample data to recommend that for a

particular mixture, X ¼ air void volume (%) be modeled with a three-parameter Weibull distribution.

Suppose the values of the parameters are γ ¼ 4, α¼ 1.3, and β ¼ .8, which are quite close to estimates

given in the article.

For x � 4, the cumulative distribution function is

F x; α, β, γð Þ ¼ F x; 1:3, :8, 4ð Þ ¼ 1� e� x�4ð Þ=:8½ 	1:3

The probability that the air void volume of a specimen is between 5% and 6% is

P 5 � X � 6ð Þ ¼ F 6; 1:3, :8, 4ð Þ � F 5; 1:3, :8, 4ð Þ ¼ e� 5�4ð Þ=:8½ 	1:3 � e� 6�4ð Þ=:8½ 	1:3

¼ :263� :037 ¼ :226

Figure 3.27 shows a graph of the correspondingWeibull density function, in which the shaded area

corresponds to the probability just calculated.
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3.5.2 The Lognormal Distribution

Lognormal distributions have been used extensively in engineering, medicine, and more recently,

finance.

DEFINITION

A nonnegative rv X is said to have a lognormal distribution if the rv Y ¼ ln(X) has a normal

distribution. The resulting pdf of a lognormal rv when ln(X) is normally distributed with

parameters μ and σ is

f x; μ; σð Þ ¼
1ffiffiffiffiffi
2π

p
σx
e� ln xð Þ�μ½ 	2= 2σ2ð Þ x � 0

0 x < 0

8<:
Be careful here: the parameters μ and σ are not the mean and standard deviation of X but of ln(X).

The mean and variance of a lognormal random variable can be shown to be

EðXÞ ¼ eμþσ2=2 VarðXÞ ¼ e2μþσ2 � eσ
2 � 1


 �
In Chap. 4, we will present a theoretical justification for this distribution in connection with the

Central Limit Theorem, but as with other distributions, the lognormal can be used as a model even in

the absence of such justification. Figure 3.28 illustrates graphs of the lognormal pdf; although a

normal curve is symmetric, a lognormal curve has a positive skew.

Because ln(X) has a normal distribution, the cdf of X can be expressed in terms of the cdf Φ(z) of a

standard normal rv Z. For x � 0,

F x; μ, σð Þ ¼ P X � xð Þ ¼ P ln Xð Þ � ln xð Þ½ 	 ¼ P
lnðXÞ � μ

σ
� lnðxÞ � μ

σ

� �
¼ P Z � lnðxÞ � μ

σ

� �
¼ Φ

lnðxÞ � μ

σ

� � ð3:10Þ

Differentiating F(x; μ, σ) with respect to x gives the pdf f(x; μ, σ) above.
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Fig. 3.27 Weibull density curve with threshold ¼ 4, shape ¼ 1.3, scale ¼ .8 ■

3.5 Other Continuous Distributions 199

http://dx.doi.org/10.1007/978-3-319-52401-6_4


Example 3.31 According to the article “Predictive Model for Pitting Corrosion in Buried Oil and

Gas Pipelines” (Corrosion, 2009: 332–342), the lognormal distribution has been reported as the best

option for describing the distribution of maximum pit depth data from cast iron pipes in soil. The

authors suggest that a lognormal distribution with μ¼ .353 and σ ¼ .754 is appropriate for maximum

pit depth (mm) of buried pipelines. For this distribution, the mean value and variance of pit depth are

EðXÞ ¼ e:353þð:754Þ2=2 ¼ e:6383 ¼ 1:893

VarðXÞ ¼ e2ð:353Þþð:754Þ2 � eð:754Þ
2 � 1


 �
¼ ð3:57697Þð:765645Þ ¼ 2:7387

The probability that maximum pit depth is between 1 and 2 mm is

P 1 � X � 2ð Þ ¼ P lnð1Þ � ln Xð Þ � ln 2ð Þð Þ ¼ P 0 � ln Xð Þ � :693ð Þ

¼ P
0� :353

:754

� �
� Z � :693� :353

:754

� �
¼ Φð:45Þ �Φ �:47ð Þ ¼ :354

This probability is illustrated in Fig. 3.29.

What value c is such that only 1% of all specimens have a maximum pit depth exceeding c? The
desired value satisfies
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:99 ¼ P X � cð Þ ¼ Φ
lnðcÞ � :353

:754

� �
Appendix Table A.3 indicates that z ¼ 2.33 is the 99th percentile of the standard normal

distribution, which implies that

lnðcÞ � :353

:754
¼ 2:33

Solving for c gives ln(c) ¼ 2.1098 and c ¼ 8.247. Thus 8.247 mm is the 99th percentile of the

maximum pit depth distribution. ■

As with the Weibull distribution, a third parameter γ can be introduced so that the distribution has

positive density for x > γ rather than for x > 0.

3.5.3 The Beta Distribution

All families of continuous distributions discussed so far except for the uniform distribution have

positive density over an infinite interval (although typically the density function decreases rapidly to

zero beyond a few standard deviations from the mean). The beta distribution provides positive density

only for X in an interval of finite length.

DEFINITION

A random variable X is said to have a beta distribution with parameters α, β (both positive), A,
and B if the pdf of X is

f x; α, β,A,Bð Þ ¼
1

B� A
� Γ αþ βð Þ
Γ αð Þ � Γ βð Þ

x� A

B� A

� �α�1 B� x

B� A

� �β�1

A � x � B

0 otherwise

8<:
The case A ¼ 0, B ¼ 1 gives the standard beta distribution.

Figure 3.30 illustrates several standard beta pdfs. Graphs of the general pdf are similar, except they

are shifted and then stretched or compressed to fit over [A, B]. Unless α and β are integers, integration
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1

2

3

4

5

0

a = b = .5

a = 2
b = .5

a = 5
b = 2

x

f(x; a, b )Fig. 3.30 Standard beta

density curves
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of the pdf to calculate probabilities is difficult, so either a table of the incomplete beta function or

software is generally used.

The standard beta distribution is commonly used to model variation in the proportion or percent-

age of a quantity occurring in different samples, such as the proportion of a 24-h day that an

individual is asleep or the proportion of a certain element in a chemical compound.

The mean and variance of X are

μ ¼ Aþ B� Að Þ � α

αþ β
σ2 ¼ B� Að Þ2αβ

αþ βð Þ2 αþ β þ 1ð Þ
The moment generating function of the beta distribution is too complicated to be useful.

Example 3.32 Project managers often use a method labeled PERT—for program evaluation and

review technique—to coordinate the various activities making up a large project. (One successful

application was in the construction of the Apollo spacecraft.) A standard assumption in PERT analysis

is that the time necessary to complete any particular activity once it has been started has a beta

distribution with A ¼ the optimistic time (if everything goes well) and B ¼ the pessimistic time

(if everything goes badly). Suppose that in constructing a single-family house, the time X (in days)

necessary for laying the foundation has a beta distribution with A ¼ 2, B ¼ 5, α ¼ 2, and β ¼ 3. Then

α/(α + β) ¼ .4, so E(X) ¼ 2 + (3)(.4) ¼ 3.2. For these values of α and β, the pdf of X is a simple

polynomial function. The probability that it takes at most 3 days to lay the foundation is

P X � 3ð Þ ¼
ð3
2

1

3
� 4!

1! � 2!
x� 2

3

� �
5� x

3

� �2

dx

¼ 4

27

ð3
2

x� 2ð Þ 5� xð Þ2dx ¼ 4

27
� 11
4

¼ 11

27
¼ :407 ■

Software, including Matlab and R, can be used to perform probability calculations for the Weibull,

lognormal, and beta distributions. Interested readers should consult the help menus in those packages.

3.5.4 Exercises: Section 3.5 (84–100)

84. The lifetime X (in hundreds of hours) of a type of transistor has a Weibull distribution with

parameters α ¼ 2 and β ¼ 3. Compute the following:

(a) E(X) and Var(X)

(b) P(X � 6)

(c) P(1.5 � X � 6)

(This Weibull distribution is suggested as a model for time in service in “On the Assess-

ment of Equipment Reliability: Trading Data Collection Costs for Precision,” J. Engrg.
Manuf., 1991: 105–109.)

85. The authors of the article “A Probabilistic Insulation Life Model for Combined Thermal-

Electrical Stresses” (IEEE Trans. Electr. Insul., 1985: 519–522) state that “the Weibull distri-

bution is widely used in statistical problems relating to aging of solid insulating materials

subjected to aging and stress.” They propose the use of the distribution as a model for time

(in hours) to failure of solid insulating specimens subjected to ac voltage. The values of the

parameters depend on the voltage and temperature; suppose α ¼ 2.5 and β ¼ 200 (values

suggested by data in the article).
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(a) What is the probability that a specimen’s lifetime is at most 250? Less than 250? More

than 300?

(b) What is the probability that a specimen’s lifetime is between 100 and 250?

(c) What value is such that exactly 50% of all specimens have lifetimes exceeding that value?

86. Let X ¼ the time (in 10�1 weeks) from shipment of a defective product until the customer

returns the product. Suppose that the minimum return time is γ ¼ 3.5 and that the excess X� 3.5

over the minimum has a Weibull distribution with parameters α ¼ 2 and β ¼ 1.5 (see the article

“Practical Applications of the Weibull Distribution,” Indust. Qual. Control, 1964: 71–78).

(a) What is the cdf of X?

(b) What are the expected return time and variance of return time? [Hint: First obtain both

E(X � 3.5) and Var(X � 3.5).]

(c) Compute P(X > 5).

(d) Compute P(5 � X � 8).

87. Let X have a Weibull distribution. Verify that μ ¼ βΓ(1 + 1/α). [Hint: In the integral for E(X),

make the change of variable y ¼ (x/β)α, so that x ¼ βy1/α.]
88. (a) In Exercise 84, what is the median lifetime of such tubes? [Hint: Use Expression (3.9).]

(b) In Exercise 86, what is the median return time?

(c) If X has a Weibull distribution with the cdf from Expression (3.9), obtain a general

expression for the (100p)th percentile of the distribution.

(d) In Exercise 86, the company wants to refuse to accept returns after t weeks. For what value

of t will only 10% of all returns be refused?

89. Let X denote the ultimate tensile strength (ksi) at �200� of a randomly selected steel specimen

of a certain type that exhibits “cold brittleness” at low temperatures. Suppose that X has a

Weibull distribution with α ¼ 20 and β ¼ 100.

(a) What is the probability that X is at most 105 ksi?

(b) If specimen after specimen is selected, what is the long-run proportion having strength

values between 100 and 105 ksi?

(c) What is the median of the strength distribution?

90. The article “On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design

Loads from the Environmental Contour Method” (Intl. J. of Offshore and Polar Engr., 2005:

132–140) proposes the Weibull distribution with α ¼ 1.817 and β ¼ .863 as a model for 1-h

significant wave height (m) at a certain site.

(a) What is the probability that wave height is at most .5 m?

(b) What is the probability that wave height exceeds its mean value by more than one standard

deviation?

(c) What is the median of the wave-height distribution?

(d) For 0 < p < 1, give a general expression for the 100pth percentile of the wave-height

distribution.

91. Nonpoint source loads are chemical masses that travel to the main stem of a river and its

tributaries in flows that are distributed over relatively long stream reaches, in contrast to those

that enter at well-defined and regulated points. The article “Assessing Uncertainty in Mass

Balance Calculation of River Nonpoint Source Loads” (J. of Envir. Engr., 2008: 247–258)

suggested that for a certain time period and location, nonpoint source load of total dissolved

solids could be modeled with a lognormal distribution having mean value 10,281 kg/day/km and

a coefficient of variation CV ¼ .40 (CV ¼ σX/μX).
(a) What are the mean value and standard deviation of ln(X)?
(b) What is the probability that X is at most 15,000 kg/day/km?
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(c) What is the probability that X exceeds its mean value, and why is this probability not .5?

(d) Is 17,000 the 95th percentile of the distribution?

92. The authors of the article “Study on the Life Distribution of Microdrills” (J. of Engr. Manufac-

ture, 2002: 301-305) suggested that a reasonable probability model for drill lifetime was a

lognormal distribution with μ ¼ 4.5 and σ ¼ .8.

(a) What are the mean value and standard deviation of lifetime?

(b) What is the probability that lifetime is at most 100?

(c) What is the probability that lifetime is at least 200? Greater than 200?

93. Use Equation (3.10) to write a formula for the median η of the lognormal distribution. What is the

median for the load distribution of Exercise 91?

94. As in the case of the Weibull distribution, the lognormal distribution can be modified by the

introduction of a third parameter γ such that the pdf is shifted to be positive only for x > γ. The
article cited in Exercise 46 suggested that a shifted lognormal distribution with shift ¼ 1.0, mean

value ¼ 2.16, and standard deviation ¼ 1.03 would be an appropriate model for the rv X ¼
maximum-to-average depth ratio of a corrosion defect in pressurized steel.

(a) What are the values of μ and σ for the proposed distribution?

(b) What is the probability that depth ratio exceeds 2?

(c) What is the median of the depth ratio distribution?

(d) What is the 99th percentile of the depth ratio distribution?

95. Sales delay is the elapsed time between the manufacture of a product and its sale. According to

the article “Warranty Claims Data Analysis Considering Sales Delay” (Quality and Reliability

Engr. Intl., 2013: 113–123), it is quite common for investigators to model sales delay using a

lognormal distribution. For a particular product, the cited article proposes this distribution with

parameter values μ ¼ 2.05 and σ2 ¼ .06 (here the unit for delay is months).

(a) What are the variance and standard deviation of delay time?

(b) What is the probability that delay time exceeds 12 months?

(c) What is the probability that delay time is within one standard deviation of its mean value?

(d) What is the median of the delay time distribution?

(e) What is the 99th percentile of the delay time distribution?

(f) Among 10 randomly selected such items, how many would you expect to have a delay time

exceeding 8 months?

96. The article “The Statistics of Phytotoxic Air Pollutants” (J. Roy. Statist Soc., 1989: 183–198)

suggests the lognormal distribution as a model for SO2 concentration above a forest. Suppose the

parameter values are μ ¼ 1.9 and σ ¼ .9.

(a) What are the mean value and standard deviation of concentration?

(b) What is the probability that concentration is at most 10? Between 5 and 10?

97. What condition on α and β is necessary for the standard beta pdf to be symmetric?

98. Suppose the proportion X of surface area in a randomly selected quadrat that is covered by a

certain plant has a standard beta distribution with α ¼ 5 and β ¼ 2.

(a) Compute E(X) and Var(X).
(b) Compute P(X � .2).

(c) Compute P(.2 � X � .4).

(d) What is the expected proportion of the sampling region not covered by the plant?

99. Let X have a standard beta density with parameters α and β.
(a) Verify the formula for E(X) given in the section.

(b) Compute E[(1� X)m]. If X represents the proportion of a substance consisting of a particular

ingredient, what is the expected proportion that does not consist of this ingredient?
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100. Stress is applied to a 20-in. steel bar that is clamped in a fixed position at each end. Let Y ¼ the

distance from the left end at which the bar snaps. Suppose Y/20 has a standard beta distribution

with E(Y ) ¼ 10 and VarðYÞ ¼ 100=7.

(a) What are the parameters of the relevant standard beta distribution?

(b) Compute P(8 � Y � 12).

(c) Compute the probability that the bar snaps more than 2 in. from where you expect it

to snap.

3.6 Probability Plots

An investigator will often have obtained a numerical sample consisting of n observations and wish to

know whether it is plausible that this sample came from a population distribution of some particular

type (e.g., from a normal distribution). For one thing, many formal procedures from statistical

inference (Chap. 5) are based on the assumption that the population distribution is of a specified

type. The use of such a procedure is inappropriate if the actual underlying probability distribution

differs greatly from the assumed type. Additionally, understanding the underlying distribution can

sometimes give insight into the physical mechanisms involved in generating the data. An effective

way to check a distributional assumption is to construct what is called a probability plot. The basis

for our construction is a comparison between percentiles of the sample data and the corresponding

percentiles of the assumed underlying distribution.

3.6.1 Sample Percentiles

The details involved in constructing probability plots differ a bit from source to source. Roughly

speaking, sample percentiles are defined in the same way that percentiles of a population distribution

are defined. The sample 50th percentile (i.e., the sample median) should separate the smallest 50% of

the sample from the largest 50%, the sample 90th percentile should be such that 90% of the sample

lies below that value and 10% lies above, and so on. Unfortunately, we run into problems when we

actually try to compute the sample percentiles for a particular sample of n observations. If, for

example, n ¼ 10, then we can split off 20% or 30% of the data, but there is no value that will split off

exactly 23% of these ten observations. To proceed further, we need an operational definition of

sample percentiles (this is one place where different people and different software packages do

slightly different things).

Statistical convention states that when n is odd, the sample median is the middle value in the

ordered list of sample observations, for example, the sixth-largest value when n¼ 11. This amounts to

regarding the middle observation as being half in the lower half of the data and half in the upper half.

Similarly, suppose n ¼ 10. Then if we call the third-smallest value the 25th percentile, we are

regarding that value as being half in the lower group (consisting of the two smallest observations) and

half in the upper group (the seven largest observations). This leads to the following general definition

of sample percentiles.
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DEFINITION

Order the n sample observations from smallest to largest. Then the ith-smallest observation in

the list is taken to be the sample [100(i � .5)/n]th percentile.

For example, if n ¼ 10, the percentages corresponding to the ordered sample observations are 100

(1� .5)/10¼ 5%, 100(2� .5)/10¼ 15%, 25%, . . ., and 100(10� .5)/10¼ 95%. That is, the smallest

observation is designated the sample 5th percentile, the next-smallest value the sample 15th percen-

tile, and so on. All other percentiles could then be determined by interpolation, e.g., the sample 10th

percentile would then be halfway between the 5th percentile (smallest sample observation) and the

15th percentile (second smallest observation) of the n ¼ 10 values. For the purposes of a probability

plot, such interpolation will not be necessary, because a probability plot will be based only on the

percentages 100(i � .5)/n corresponding to the n sample observations.

3.6.2 A Probability Plot

We now wish to determine whether our sample data could plausibly have come from some particular

population distribution (e.g., a normal distribution with μ ¼ 10 and σ ¼ 3). If the sample was actually

selected from the specified distribution, the sample percentiles (ordered sample observations) should

be reasonably close to the corresponding population distribution percentiles. That is, for i ¼ 1, 2, . . .,

n there should be reasonable agreement between the ith-smallest sample observation and the

theoretical [100(i � .5)/n]th percentile for the specified distribution. Consider the (sample percentile,

population percentile) pairs—that is, the pairs

ith smallest sample

observation
,

�
100 i� :5ð Þ=n�th percentile

of the population distribution

� �
for i ¼ 1, . . ., n. Each such pair can be plotted as a point on a two-dimensional coordinate system. If

the sample percentiles are close to the corresponding population distribution percentiles, the first

number in each pair will be roughly equal to the second number, and the plotted points will then fall

close to a 45� line. Substantial deviations of the plotted points from a 45� line suggest that the

assumed distribution might be wrong.

Example 3.33 The value of a physical constant is known to an experimenter. The experimenter

makes n = 10 independent measurements of this value using a measurement device and records the

resulting measurement errors (error = observed value� true value). These observations appear in the

accompanying table.

Percentage 5 15 25 35 45

Sample observation �1.91 �1.25 �.75 �.53 .20

z percentile �1.645 �1.037 �.675 �.385 �.126

Percentage 55 65 75 85 95

Sample observation .35 .72 .87 1.40 1.56

z percentile .126 .385 .675 1.037 1.645

Is it plausible that the random variable measurement error has a standard normal distribution? The

needed standard normal (z) percentiles are also displayed in the table and were determined as follows:
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the 5th percentile of the distribution under consideration, N(0,1), is given by Φ(z) = .05. From

software or Appendix Table A.3, the solution is roughly z = �1.645. The other nine population (z)

percentiles were found in a similar fashion.

Thus the points in the probability plot are (�1.91,�1.645), (�1.25,�1.037), . . ., and (1.56,1.645).

Figure 3.31 shows the resulting plot. Although the points deviate a bit from the 45� line, the

predominant impression is that this line fits the points reasonably well. The plot suggests that the

standard normal distribution is a realistic probability model for measurement error.

An investigator is typically not interested in knowing whether a completely specified probability

distribution, such as the normal distribution with μ ¼ 0 and σ ¼ 1 or the exponential distribution with

λ ¼ .1, is a plausible model for the population distribution from which the sample was selected.

Instead, the investigator will want to know whether some member of a family of probability

distributions specifies a plausible model—the family of normal distributions, the family of exponen-

tial distributions, the family of Weibull distributions, and so on. The values of the parameters of a

distribution are usually not specified at the outset. If the family of Weibull distributions is under

consideration as a model for lifetime data, the issue is whether there are any values of the parameters

α and β for which the corresponding Weibull distribution gives a good fit to the data. Fortunately, it is

almost always the case that just one probability plot will suffice for assessing the plausibility of an

entire family. If the plot deviates substantially from a straight line, but not necessarily the 45� line, no
member of the family is plausible.

To see why, let’s focus on a plot for checking normality. As mentioned earlier, such a plot can be

very useful in applied work because many formal statistical procedures are appropriate (i.e., give

accurate inferences) only when the population distribution is at least approximately normal. These

procedures should generally not be used if a normal probability plot shows a very pronounced

departure from linearity. The key to constructing an omnibus normal probability plot is the relation-

ship between standard normal (z) percentiles and those for any other normal distribution, which was

presented in Sect. 3.3:

percentile for a

N μ; σð Þ distribution ¼ μþ σ � corresponding z percentileð Þ
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Fig. 3.31 Plots of pairs (observed value, z percentile) for the data of Example 3.33 ■
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If each sample observation were exactly equal to the corresponding N(μ, σ) percentile, then the

pairs (observation, μ + σ � [z percentile]) would fall on the 45� line, y = x. But since μ + σz is itself a
linear function, the pairs (observation, z percentile) would also fall on a straight line, just not the line
with slope 1 and y-intercept 0. (The latter pairs would pass through the line z = x/σ � μ/σ, but the
equation itself isn’t important.)

DEFINITION

A plot of the n pairs

(ith-smallest observation, [100(i � .5)/n]th z percentile)

on a two-dimensional coordinate system is called a normal probability plot. If the sample

observations are in fact drawn from a normal distribution then the points should fall close to a

straight line (although not necessarily a 45� line). Thus a plot for which the points fall close to

some straight line suggests that the assumption of a normal population distribution is plausible.

Example 3.34 The accompanying sample consisting of n¼ 20 observations on dielectric breakdown

voltage of a piece of epoxy resin appeared in the article “Maximum Likelihood Estimation in the

3-Parameter Weibull Distribution” (IEEE Trans. Dielectrics Electr. Insul., 1996: 43–55). Values of
(i � .5)/n for which z percentiles are needed are (1 � .5)/20 ¼ .025, (2 � .5)/20¼ .075, . . ., and .975.

Observation 24.46 25.61 26.25 26.42 26.66 27.15 27.31 27.54 27.74 27.94

z percentile �1.96 �1.44 �1.15 �.93 �.76 �.60 �.45 �.32 �.19 �.06

Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88

z percentile .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96

Figure 3.32 shows the resulting normal probability plot. The pattern in the plot is quite straight,

indicating it is plausible that the population distribution of dielectric breakdown voltage is normal.

27262524 28 29 30 31
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0

Voltage

z percentile

Fig. 3.32 Normal probability plot for the dielectric breakdown voltage sample ■
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There is an alternative version of a normal probability plot in which the z percentile axis is

replaced by a nonlinear probability axis. The scaling on this axis is constructed so that plotted points

should again fall close to a line when the sampled distribution is normal. Figure 3.33 shows such a

plot from Matlab, obtained using the normplot command, for the breakdown voltage data of

Example 3.34. The plot remains essentially the same, and it is just the labeling of the axis that

changes.

3.6.3 Departures from Normality

A nonnormal population distribution can often be placed in one of the following three categories:

1. It is symmetric and has “lighter tails” than does a normal distribution; that is, the density curve

declines more rapidly out in the tails than does a normal curve.

2. It is symmetric and heavy-tailed compared to a normal distribution.

3. It is skewed; that is, the distribution is not symmetric, but rather tapers off more in one direction

than the other.

A uniform distribution is light-tailed, since its density function drops to zero outside a finite

interval. The density function f(x)¼ 1/[π(1 + x2)], for�1< x<1, is one example of a heavy-tailed

distribution, since 1/(1 + x2) declines much less rapidly than does e�x2=2. Lognormal and Weibull

distributions are among those that are skewed. When the points in a normal probability plot do not

adhere to a straight line, the pattern will frequently suggest that the population distribution is in a

particular one of these three categories.

Figure 3.34 illustrates typical normal probability plots corresponding to three situations above.

If the sample was selected from a light-tailed distribution, the largest and smallest observations are
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usually not as extreme as would be expected from a normal random sample. Visualize a straight line

drawn through the middle part of the plot; points on the far right tend to be above the line (z percentile

> observed value), whereas points on the left end of the plot tend to fall below the straight line

(z percentile< observed value). The result is an S-shaped pattern of the type pictured in Fig. 3.34a. For

sample observations from a heavy-tailed distribution, the opposite effect will occur, and a normal

probability plot will have an S shape with the opposite orientation, as in Fig. 3.34b. If the underlying

distribution is positively skewed (a short left tail and a long right tail), the smallest sample

observations will be larger than expected from a normal sample and so will the largest observations.

In this case, points on both ends of the plot will fall below a straight line through the middle part,

yielding a curved pattern, as illustrated in Fig. 3.34c. For example, a sample from a lognormal

distribution will usually produce such a pattern; a plot of (ln(observation), z percentile) pairs should

then resemble a straight line.

Even when the population distribution is normal, the sample percentiles will not coincide exactly

with the theoretical percentiles because of sampling variability. How much can the points in the

probability plot deviate from a straight-line pattern before the assumption of population normality is

no longer plausible? This is not an easy question to answer. Generally speaking, a small sample from

a normal distribution is more likely to yield a plot with a nonlinear pattern than is a large sample.
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Fig. 3.34 Probability plots that suggest a non-normal distribution: (a) a plot consistent with a light-tailed distribution;
(b) a plot consistent with a heavy-tailed distribution; (c) a plot consistent with a (positively) skewed distribution
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The book Fitting Equations to Data by Daniel Cuthbert and Fred Wood presents the results of a

simulation study in which numerous samples of different sizes were selected from normal

distributions. The authors concluded that there is typically greater variation in the appearance of

the probability plot for sample sizes smaller than 30, and only for much larger sample sizes does a

linear pattern generally predominate. When a plot is based on a small sample size, only a very

substantial departure from linearity should be taken as conclusive evidence of nonnormality. A

similar comment applies to probability plots for checking the plausibility of other types of

distributions.

3.6.4 Beyond Normality

Consider a generic family of probability distributions involving two parameters, θ1 and θ2, and let

F(x; θ1, θ2) denote the corresponding cdf. The family of normal distributions is one such family, with

θ1 ¼ μ, θ2 ¼ σ, and F(x; μ, σ) ¼ Φ[(x � μ)/σ]. Another example is the Weibull family, with θ1 ¼ α,
θ2 ¼ β, and

F x; α, βð Þ ¼ 1� e� x=βð Þα

Still another family of this type is the gamma family, for which the cdf is an integral involving the

incomplete gamma function that cannot be expressed in any simpler form.

The parameters θ1 and θ2 are said to be location and scale parameters, respectively, if F(x; θ1, θ2)
is a function of (x � θ1)/θ2. The parameters μ and σ of the normal family are location and scale

parameters, respectively. Changing μ shifts the location of the bell-shaped density curve to the right

or left, and changing σ amounts to stretching or compressing the measurement scale (the scale on the

horizontal axis when the density function is graphed). Another example is given by the cdf

F x; θ1, θ2ð Þ ¼ 1� e�e x�θ1ð Þ=θ2 �1 < x < 1
A random variable with this cdf is said to have an extreme value distribution. It is used in

applications involving component lifetime and material strength.

The parameter β of the Weibull distribution is a scale parameter. However, α is not a location

parameter but instead is called a shape parameter. The same is true for the parameters α and β of the
gamma distribution. In the usual form, the density function for any member of either the gamma or

Weibull distribution is positive for x > 0 and zero otherwise. A location (or shift) parameter can be

introduced as a third parameter γ (we did this for the Weibull distribution in Sect. 3.5) to shift the

density function so that it is positive if x > γ and zero otherwise.

When the family under consideration has only location and scale parameters, the issue of whether

any member of the family is a plausible population distribution can be addressed by a single

probability plot. This is exactly what we did to obtain an omnibus normal probability plot. One

first obtains the percentiles of the standardized distribution, i.e. the one with θ1 ¼ 0 and θ2 ¼ 1, for

percentages 100(i � .5)/n (i ¼ 1, . . ., n). The n (observation, standardized percentile) pairs give the

points in the plot.

Somewhat surprisingly, this methodology can be applied to yield an omnibus Weibull probability

plot. The key result is that if X has a Weibull distribution with shape parameter α and scale parameter

β, then the transformed variable ln(X) has an extreme value distribution with location parameter θ1 ¼
ln(β) and scale parameter θ2 ¼ 1/α (see Exercise 169). Thus a plot of the
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ln observationð Þ, extreme value standardized percentileð Þ
pairs that shows a strong linear pattern provides support for choosing the Weibull distribution as a

population model.

Example 3.35 The accompanying observations are on lifetime (in hours) of power apparatus

insulation when thermal and electrical stress acceleration were fixed at particular values (“On the

Estimation of Life of Power Apparatus Insulation Under Combined Electrical and Thermal Stress,”

IEEE Trans. Electr. Insul., 1985: 70–78). A Weibull probability plot necessitates first computing the

5th, 15th, . . ., and 95th percentiles of the standard extreme value distribution. The (100p)th percentile

ηp satisfies

p ¼ F ηp; 0, 1
� � ¼ 1� e�eηp

from which ηp ¼ ln(�ln(1 � p)).

Observation 282 501 741 851 1072 1122 1202 1585 1905 2138

ln(Obs.) 5.64 6.22 6.61 6.75 6.98 7.02 7.09 7.37 7.55 7.67

Percentile �2.97 �1.82 �1.25 �.84 �.51 �.23 .05 .33 .64 1.10

The pairs (5.64, �2.97), (6.22, �1.82), . . ., (7.67, 1.10) are plotted as points in Fig. 3.35. The

straightness of the plot argues strongly for using the Weibull distribution as a model for insulation

life, a conclusion also reached by the author of the cited article.

The gamma distribution is an example of a family involving a shape parameter for which there is

no transformation into a distribution that depends only on location and scale parameters. Construction

of a probability plot necessitates first estimating the shape parameter from sample data (some general

methods for doing this are described in Chap. 5).

Sometimes an investigator wishes to know whether the transformed variable Xθ has a normal

distribution for some value of θ (by convention, θ ¼ 0 is identified with the logarithmic transforma-

tion, in which case X has a lognormal distribution). The book Graphical Methods for Data Analysis
by John Chambers et al. discusses this type of problem as well as other refinements of probability

plotting.
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Fig. 3.35 A Weibull probability plot of the insulation lifetime data ■
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3.6.5 Probability Plots in Matlab and R

Matlab, along with many statistical software packages (including R), have built-in probability

plotting commands that vitiate the need for manual calculation of percentiles from the assumed

population distribution. In Matlab, the normplot(x) command will produce a graph like the one

seen in Fig. 3.33, assuming the vector x contains the observed data. The R command qqnorm(x)

creates a similar graph, except that the axes are transposed (ordered observations on the vertical axis,

theoretical quantiles on the horizontal). Both Matlab and R have a package called probplot that,

with appropriate specifications of the inputs, can create probability plots for distributions besides

normal (e.g., Weibull, exponential, extreme value). Refer to the help documentation in those

languages for more information.

3.6.6 Exercises: Section 3.6 (101–111)

101. The accompanying normal probability plot was constructed from a sample of 30 readings on

tension for mesh screens behind the surface of video display tubes. Does it appear plausible that

the tension distribution is normal?

0
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102. A sample of 15 female collegiate golfers was selected and the clubhead velocity (km/h) while

swinging a driver was determined for each one, resulting in the following data (“Hip Rotational

Velocities during the Full Golf Swing,” J. of Sports Science and Medicine, 2009: 296-299):

69.0 69.7 72.7 80.3 81.0

85.0 86.0 86.3 86.7 87.7

89.3 90.7 91.0 92.5 93.0

The corresponding z percentiles are

�1.83 �1.28 �0.97 �0.73 �0.52

�0.34 �0.17 0.0 0.17 0.34

0.52 0.73 0.97 1.28 1.83

Construct a normal probability plot. Is it plausible that the population distribution is normal?

103. Construct a normal probability plot for the following sample of observations on coating

thickness for low-viscosity paint (“Achieving a Target Value for a Manufacturing Process:

A Case Study,” J. Qual. Tech., 1992: 22–26). Would you feel comfortable estimating population

mean thickness using a method that assumed a normal population distribution?
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.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

104. The article “A Probabilistic Model of Fracture in Concrete and Size Effects on Fracture

Toughness” (Mag. Concrete Res., 1996: 311–320) gives arguments for why fracture toughness

in concrete specimens should have a Weibull distribution and presents several histograms of

data that appear well fit by superimposed Weibull curves. Consider the following sample of size

n ¼ 18 observations on toughness for high-strength concrete (consistent with one of the

histograms); values of pi ¼ (i � .5)/18 are also given.

Observation .47 .58 .65 .69 .72 .74

pi .0278 .0833 .1389 .1944 .2500 .3056

Observation .77 .79 .80 .81 .82 .84

pi .3611 .4167 .4722 .5278 .5833 .6389

Observation .86 .89 .91 .95 1.01 1.04

pi .6944 .7500 .8056 .8611 .9167 .9722

Construct a Weibull probability plot and comment.

105. The propagation of fatigue cracks in various aircraft parts has been the subject of extensive

study. The accompanying data consists of propagation lives (flight hours/104) to reach a given

crack size in fastener holes for use in military aircraft (“Statistical Crack Propagation in Fastener

Holes Under Spectrum Loading,” J. Aircraft, 1983: 1028-1032):

.736 .863 .865 .913 .915 .937 .983 1.007

1.011 1.064 1.109 1.132 1.140 1.153 1.253 1.394

Construct a normal probability plot for this data. Does it appear plausible that propagation life

has a normal distribution? Explain.

106. The article “The Load-Life Relationship for M50 Bearings with Silicon Nitride Ceramic Balls”

(Lubricat. Engrg., 1984: 153–159) reports the accompanying data on bearing load life (million

revs.) for bearings tested at a 6.45 kN load.

47.1 68.1 68.1 90.8 103.6 106.0 115.0

126.0 146.6 229.0 240.0 240.0 278.0 278.0

289.0 289.0 367.0 385.9 392.0 505.0

(a) Construct a normal probability plot. Is normality plausible?

(b) Construct a Weibull probability plot. Is the Weibull distribution family plausible?

107. The accompanying data on rainfall (acre-feet) from 26 seed clouds is taken from the article “A

Bayesian Analysis of a Multiplicative Treatment Effect in Weather Modification”

(Technometrics, 1975: 161-166). Construct a probability plot that will allow you to assess the

plausibility of the lognormal distribution as a model for the rainfall data, and comment on what

you find.

4.1 7.7 17.5 31.4 32.7 40.6 92.4

115.3 118.3 119.0 129.6 198.6 200.7 242.5

255.0 274.7 274.7 302.8 334.1 430.0 489.1

703.4 978.0 1656.0 1697.8 2745.6

214 3 Continuous Random Variables and Probability Distributions



108. The accompanying observations are precipitation values during March over a 30-year period in

Minneapolis–St. Paul.

.77 1.20 3.00 1.62 2.81 2.48

1.74 .47 3.09 1.31 1.87 .96

.81 1.43 1.51 .32 1.18 1.89

1.20 3.37 2.10 .59 1.35 .90

1.95 2.20 .52 .81 4.75 2.05

(a) Construct and interpret a normal probability plot for this data set.

(b) Calculate the square root of each value and then construct a normal probability plot based

on this transformed data. Does it seem plausible that the square root of precipitation is

normally distributed?

(c) Repeat part (b) after transforming by cube roots.

109. Allowable mechanical properties for structural design of metallic aerospace vehicles requires an

approval method for statistically analyzing empirical test data. The article “Establishing

Mechanical Property Allowables for Metals” (J. of Testing and Evaluation, 1998: 293-299)
used the accompanying data on tensile ultimate strength (ksi) as a basis for addressing the

difficulties in developing such a method.

122.2 124.2 124.3 125.6 126.3 126.5 126.5 127.2 127.3

127.5 127.9 128.6 128.8 129.0 129.2 129.4 129.6 130.2

130.4 130.8 131.3 131.4 131.4 131.5 131.6 131.6 131.8

131.8 132.3 132.4 132.4 132.5 132.5 132.5 132.5 132.6

132.7 132.9 133.0 133.1 133.1 133.1 133.1 133.2 133.2

133.2 133.3 133.3 133.5 133.5 133.5 133.8 133.9 134.0

134.0 134.0 134.0 134.1 134.2 134.3 134.4 134.4 134.6

134.7 134.7 134.7 134.8 134.8 134.8 134.9 134.9 135.2

135.2 135.2 135.3 135.3 135.4 135.5 135.5 135.6 135.6

135.7 135.8 135.8 135.8 135.8 135.8 135.9 135.9 135.9

135.9 136.0 136.0 136.1 136.2 136.2 136.3 136.4 136.4

136.6 136.8 136.9 136.9 137.0 137.1 137.2 137.6 137.6

137.8 137.8 137.8 137.9 137.9 138.2 138.2 138.3 138.3

138.4 138.4 138.4 138.5 138.5 138.6 138.7 138.7 139.0

139.1 139.5 139.6 139.8 139.8 140.0 140.0 140.7 140.7

140.9 140.9 141.2 141.4 141.5 141.6 142.9 143.4 143.5

143.6 143.8 143.8 143.9 144.1 144.5 144.5 147.7 147.7

Use software to construct a normal probability plot of this data, and comment.

110. Let the ordered sample observations be denoted by y1, y2, . . ., yn (y1 being the smallest and yn the

largest). Our suggested check for normality is to plot the (yi, Φ�1[(i � .5)/n]) pairs. Suppose we
believe that the observations come from a distribution with mean 0, and let w1, . . ., wn be the

ordered absolute values of the observed data. A half-normal plot is a probability plot of the

wis. More specifically, since P(|Z| � w) ¼ P(�w � Z � w) ¼ 2Φ(w)� 1, a half-normal plot is a

plot of the (wi,Φ�1[(pi + 1)/2]) pairs, where pi¼ (i� .5)/n. The virtue of this plot is that small or

large outliers in the original sample will now appear only at the upper end of the plot rather than

at both ends. Construct a half-normal plot for the following sample of measurement errors, and

comment:

�3.78, �1.27, 1.44, �.39, 12.38, �43.40, 1.15, �3.96, �2.34, 30.84.
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111. The following failure time observations (1000s of hours) resulted from accelerated life testing

of 16 integrated circuit chips of a certain type:

82.8 11.6 359.5 502.5 307.8 179.7

242.0 26.5 244.8 304.3 379.1 212.6

229.9 558.9 366.7 203.6

Use the corresponding percentiles of the exponential distribution with λ ¼ 1 to construct a

probability plot. Then explain why the plot assesses the plausibility of the sample having been

generated from any exponential distribution.

3.7 Transformations of a Random Variable

Often we need to deal with a transformation Y ¼ g(X) of the random variable X. Here g(X) could be a
simple change of time scale. If X is the time to complete a task in minutes, then Y ¼ 60X is the

completion time expressed in seconds. How can we get the pdf of Y from the pdf of X? Consider first a

simple example.

Example 3.36 The interval X in minutes between calls to a 911 center is exponentially distributed

with mean 2 min, so its pdf is fX(x) ¼ .5e�.5x for x > 0. In order to get the pdf of Y ¼ 60X, we first
obtain its cdf:

FYðyÞ ¼ P Y � yð Þ ¼ P 60X � yð Þ ¼ P X � y=60ð Þ ¼ FX y=60ð Þ

¼
ð y=60

0

:5e�:5xdx ¼ 1� e�y=120

Differentiating this with respect to y gives fY(y) ¼ (1/120)e�y/120 for y > 0. We see that the

distribution of Y is exponential with mean 120 s (2 min).

There is nothing special here about the mean 2 and the multiplier 60. It should be clear that if we

multiply an exponential random variable with mean μ by a positive constant c we get another

exponential random variable with mean cμ. ■

Sometimes it isn’t possible to evaluate the cdf in closed form. Could we still find the pdf of

Y without evaluating the integral? Yes, thanks to the following theorem.

TRANSFORMATION THEOREM

Let X have pdf fX(x) and let Y¼ g(X), where g is monotonic (either strictly increasing or strictly

decreasing) on the set of all possible values of X, so it has an inverse function X¼ h(Y ). Assume

that h has a derivative h0(y). Then

f YðyÞ ¼ f X hðyÞð Þ � h
0ðyÞ�� �� ð3:11Þ

Proof Here is the proof assuming that g is monotonically increasing. The proof for g monotonically

decreasing is similar. First find the cdf of Y:
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FYðyÞ ¼ P Y � yð Þ ¼ P gðXÞ � yð Þ ¼ P X � hðyÞð Þ ¼ FX hðyÞð Þ
The third equality above, wherein g(X) � y is true iff X � g�1(y) ¼ h(y), relies on g being a

monotonically increasing function. Now differentiate the cdf with respect to y, using the Chain Rule:

f YðyÞ ¼
d

dy
FYðyÞ ¼ d

dy
FX hðyÞð Þ ¼ F

0
X hðyÞð Þ � h0 ðyÞ ¼ f X hðyÞð Þ � h0 ðyÞ

The absolute value on the derivative in Eq. (3.11) is needed only in the other case where g is

decreasing. The set of possible values for Y is obtained by applying g to the set of possible values

for X. ■

Example 3.37 Let’s apply the Transformation Theorem to the situation introduced in Example 3.36.

There Y ¼ g(X) ¼ 60X and X ¼ h(Y ) ¼ Y/60.

f YðyÞ ¼ f X hðyÞð Þ h0 ðyÞ�� �� ¼ :5e�:5x 1

60

���� ���� ¼ 1

120
e�y=120 y > 0

This matches the pdf of Y derived through the cdf in Example 3.36. ■

Example 3.38 Let X � Unif[0, 1], so fX(x) ¼ 1 for 0 � x � 1, and define a new variable Y ¼ 2
ffiffiffiffi
X

p
.

The function g(x) ¼ 2
ffiffiffi
x

p
is monotone on [0, 1], with inverse x ¼ h(y) ¼ y2/4. Apply the

Transformation Theorem:

f YðyÞ ¼ f X hðyÞð Þ h0 ðyÞ�� �� ¼ ð1Þ 2y
4

���� ���� ¼ y

2
0 � y � 2

The range 0 � y � 2 comes from the fact that y ¼ 2
ffiffiffi
x

p
maps [0, 1] to [0, 2]. A graphical

representation may help in understanding why the transformation Y ¼ 2
ffiffiffiffi
X

p
yields fY(y) ¼ y/2 if

X � Unif[0, 1]. Figure 3.36a shows the uniform distribution with [0, 1] partitioned into ten

subintervals. In Fig. 3.36b the endpoints of these intervals are shown after transforming according

to y¼2
ffiffiffi
x

p
. The heights of the rectangles are arranged so each rectangle still has area .1, and therefore

the probability in each interval is preserved. Notice the close fit of the dashed line, which has the

equation fY(y) ¼ y/2.
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Fig. 3.36 The effect on the pdf if X is uniform on [0, 1] and Y ¼ 2
ffiffiffiffi
X

p
■
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Example 3.39 The variation in a certain electrical current source X (in milliamps) can be modeled by

the pdf

f XðxÞ ¼
1:25� :25x 2 � x � 4

0 otherwise

(

If this current passes through a 220-Ω resistor, the resulting power Y (in microwatts) is given by the

expression Y ¼ 220X2. The function y ¼ g(x) ¼ 220x2 is monotonically increasing on the range of X,

the interval [2, 4], and has inverse function x ¼ hðyÞ ¼ g�1ðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
. (Notice that g(x) is a

parabola and thus not monotone on the entire real number line, but for the purposes of the theorem

g(x) only needs to be monotone on the range of the rv X.) Apply Eq. (3.11):

f YðyÞ ¼ f X hðyÞð Þ � h
0 ðyÞ�� ��

¼ f X
ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
 �
� d

dy

ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p���� ����
¼ 1:25� :25

ffiffiffiffiffiffiffiffiffiffiffiffi
y=220

p
 �
� 1

2
ffiffiffiffiffiffiffiffiffiffi
220y

p ¼ 5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1

1760

The set of possible Y-values is determined by substituting x ¼ 2 and x ¼ 4 into g(x) ¼ 220x2; the

resulting range for Y is [880, 3520]. Therefore, the pdf of Y ¼ 220X2 is

f YðyÞ ¼
5

8
ffiffiffiffiffiffiffiffiffiffi
220y

p � 1

1760
880 � y � 3520

0 otherwise

8<:
The pdfs of X and Y appear in Fig. 3.37.

The Transformation Theorem requires a monotonic transformation, but there are important

applications in which the transformation is not monotone. Nevertheless, it may be possible to use

the theorem anyway with a little trickery.
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Fig. 3.37 pdfs from Example 3.39: (a) pdf of X; (b) pdf of Y ■
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Example 3.40 In this example, we start with a standard normal random variable Z, and we transform

to Y ¼ Z2. Of course, this is not monotonic over the interval for Z, (�1, 1). However, consider the

transformation U ¼ |Z|. Because Z has a symmetric distribution, the pdf of U is fU(u)¼ fZ(u) + fZ(�u)

¼ 2 fZ(u). (Don’t despair if this is not intuitively clear, because we’ll verify it shortly. For the time

being, assume it to be true.) Then Y ¼ Z2 ¼ |Z|2 ¼ U2, and the transformation in terms of U is

monotonic because its set of possible values is [0,1). Thus we can use the Transformation Theorem

with h(y) ¼ y1/2:

f YðyÞ ¼ f U hðyÞ½ 	 h
0 ðyÞ�� �� ¼ 2f X hðyÞ½ 	 h

0 ðyÞ�� ��
¼ 2ffiffiffiffiffi

2π
p e�:5 y1=2ð Þ2 1

2
y�1=2

���� ���� ¼ 1ffiffiffiffiffiffiffi
2πy

p e�y=2 y > 0

This distribution is known as the chi-squared distribution with one degree of freedom. Chi-squared
distributions arise frequently in statistical inference procedures, such as those in Chap. 5.

You were asked to believe intuitively that fU(u) ¼ 2fZ(u). Here is a little derivation that works as

long as the distribution of Z is symmetric about 0. If u > 0,

FUðuÞ ¼ P U � uð Þ ¼ P Zj j � uð Þ ¼ P �u � Z � uð Þ ¼ 2P 0 � Z � uð Þ
¼ 2 FZðuÞ�FZð0Þ½ 	:

Differentiating this with respect to u gives fU(u) ¼ 2 fZ(u). ■

Example 3.41 Sometimes the Transformation Theorem cannot be used at all, and you need to use the

cdf. Let fX(x) ¼ (x + 1)/8, �1 � x � 3, and Y ¼ X2. The transformation is not monotonic on [�1, 3];

and, since fX(x) is not an even function, we can’t employ the symmetry trick of the previous example.

Possible values of Y are {y: 0 � y � 9}. Considering first 0 � y � 1,

FYðyÞ ¼ P Y � yð Þ ¼ P X2 � y
� � ¼ P � ffiffiffi

y
p � X � ffiffiffi

y
p� � ¼ ð ffiffiyp

� ffiffi
y

p
uþ 1

8
du ¼

ffiffiffi
y

p
4

Then, on the other subinterval, 1 < y � 9,

FYðyÞ ¼ P Y � yð Þ ¼ P X2 � y
� � ¼ P � ffiffiffi

y
p � X � ffiffiffi

y
p� � ¼ P �1 � X � ffiffiffi

y
p� �

¼
ð ffiffiyp

�1

uþ 1

8
du ¼ 1þ yþ 2

ffiffiffi
y

p� �
=16

Differentiating, we get

f YðyÞ ¼

1

8
ffiffiffi
y

p 0 < y � 1

yþ ffiffiffi
y

p
16y

1 < y � 9

0 otherwise

8>>>>><>>>>>:
Figure 3.38 shows the pdfs of both X and Y.
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3.7.1 Exercises: Section 3.7 (112–128)

112. Relative to the winning time, the time X of another runner in a ten kilometer race has pdf fX(x)¼
2/x3, x > 1. The reciprocal Y ¼ 1/X represents the ratio of the time for the winner divided by the

time of the other runner. Find the pdf of Y. Explain why Y also represents the speed of the other

runner relative to the winner.

113. Let X be the fuel efficiency in miles per gallon of an extremely inefficient vehicle (a military

tank, perhaps?), and suppose X has the pdf fX(x) ¼ 2x, 0 < x < 1. Determine the pdf of Y ¼ 1/X,

which is fuel efficiency in gallons per mile. [Note: The distribution of Y is a special case of the

Pareto distribution (see Exercise 10).]

114. Let X have the pdf fX(x) ¼ 2/x3, x > 1. Find the pdf of Y ¼ ffiffiffiffi
X

p
.

115. Let X have an exponential distribution with mean 2, so f XðxÞ ¼ 1
2
e�x=2, x > 0. Find the pdf of

Y ¼ ffiffiffiffi
X

p
. [Note: Suppose you choose a point in two dimensions randomly, with the horizontal

and vertical coordinates chosen independently from the standard normal distribution. Then

X has the distribution of the squared distance from the origin and Y has the distribution of the

distance from the origin. Y has a Rayleigh distribution (see Exercise 4).]

116. If X is distributed as N(μ, σ), find the pdf of Y ¼ eX. Verify that the distribution of Y matches the

lognormal pdf provided in Sect. 3.5.

117. If the side of a square X is random with the pdf fX(x) ¼ x/8, 0 < x < 4, and Y is the area of the

square, find the pdf of Y.
118. Let X � Unif[0, 1]. Find the pdf of Y ¼ �ln(X).

119. Let X � Unif[0, 1]. Find the pdf of Y ¼ tan[π(X � .5)]. [Note: The random variable Y has the

Cauchy distribution, named after the famous mathematician.]

120. If X � Unif[0, 1], find a linear transformation Y ¼ cX + d such that Y is uniformly distributed on

[A, B], where A and B are any two numbers such that A< B. Is there any other solution? Explain.

121. If X has the pdf fX(x) ¼ x/8, 0 < x < 4, find a transformation Y ¼ g(X) such that Y � Unif[0, 1].

[Hint: The target is to achieve fY(y) ¼ 1 for 0 � y � 1. The Transformation Theorem will allow

you to find h(y), from which g(x) can be obtained.]

122. If a measurement error X is uniformly distributed on [�1, 1], find the pdf of Y¼ |X|, which is the
magnitude of the measurement error.

123. If X � Unif[�1, 1], find the pdf of Y ¼ X2.

1 2 3

ba

1 5 90

fX (x) fY ( y)

yx
−1

1/8

3/8

1/4

1/2

0.05

0

0.15

0.1

0.2

Fig. 3.38 pdfs from Example 3.41: (a) pdf of X; (b) pdf of Y ■
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124. Ann is expected at 7:00 pm after an all-day drive. She may be as much as 1 h early or as much as

3 h late. Assuming that her arrival time X is uniformly distributed over that interval, find the pdf

of |X � 7|, the unsigned difference between her actual and predicted arrival times.

125. If X � Unif[�1, 3], find the pdf of Y ¼ X2.

126. If a measurement error X is distributed as N(0, 1), find the pdf of |X|, which is the magnitude of

the measurement error.

127. A circular target has radius 1 foot. Assume that you hit the target (we shall ignore misses) and

that the probability of hitting any region of the target is proportional to the region’s area. If you

hit the target at a distance Y from the center, then let X¼ πY2 be the corresponding circular area.
Show that

(a) X is uniformly distributed on [0, π]. [Hint: Show that FX(x) ¼ P(X � x) ¼ x/π.]
(b) Y has pdf fY(y) ¼ 2y, 0 < y < 1.

128. In Exercise 127 suppose instead that Y is uniformly distributed on [0, 1]. Find the pdf of

X ¼ πY2. Geometrically speaking, why should X have a pdf that is unbounded near 0?

3.8 Simulation of Continuous Random Variables

In Sects. 1.6 and 2.8, we discussed the need for simulation of random events and discrete random

variables in situations where an “analytic” solution is very difficult or simply not possible. This

section presents methods for simulating continuous random variables, including some of the built-in

simulation tools of Matlab and R.

3.8.1 The Inverse CDF Method

Section 2.8 introduced the inverse cdf method for simulating discrete random variables. The basic

idea was this: generate a Unif[0, 1) random number and align it with the cdf of the random variable

X we want to simulate. Then, determine which X value corresponds to that cdf value. We now extend

this methodology to the simulation of values from a continuous distribution; the heart of the algorithm

relies on the following theorem, often called the probability integral transform.

THEOREM

Consider any continuous distribution with pdf f and cdf F. Let U � Unif[0, 1), and define a

random variable X by

X ¼ F�1ðUÞ ð3:12Þ
Then the pdf of X is f.

Before proving this theorem, let’s consider its practical usage: Suppose we want to simulate a

continuous rv whose pdf is f(x), i.e., obtain successive values of X having pdf f(x). If we can compute

the corresponding cdf F(x) and apply its inverse F�1 to standard uniform variates u1, . . ., un, the

theorem states that the resulting values x1 ¼ F�1(u1), . . ., xn ¼ F�1(un) will follow the desired

distribution f. (We’ll discuss the practical difficulties of implementing this method a little later.)

A graphical description of the algorithm appears in Fig. 3.39.
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Proof Apply the Transformation Theorem (Sect. 3.7) with fU(u) ¼ 1 for 0 � u < 1, X ¼ g(U ) ¼
F�1(U ), and thus U ¼ h(X) ¼ g�1(X) ¼ F(X). The pdf of the transformed variable X is

f XðxÞ ¼ f U hðxÞð Þ � h
0 ðxÞ�� �� ¼ f U FðxÞð Þ � F

0 ðxÞ�� �� ¼ 1 � f ðxÞj j ¼ f ðxÞ

In the last step, the absolute values may be removed because a pdf is always nonnegative. ■

The following box explains the implementation of the inverse cdf method justified by the

preceding theorem.

INVERSE CDF METHOD

It is desired to simulate n values from a distribution with pdf f(x). Let F(x) be the corresponding

cdf. Repeat n times:

1. Use a random-number generator (RNG) to produce a value, u, from [0, 1).

2. Assign x ¼ F�1(u).

The resulting values x1, . . ., xn form a simulation of a random variable with the original pdf, f(x).

Example 3.42 Consider the electrical current distribution model of Example 3.11, where the pdf of

X is given by f(x) ¼ 1.25 � .25x for 2 � x � 4. Suppose a simulation of X is required as part of some

larger system analysis. To implement the above method, the inverse of the cdf of X is required. First,

compute the cdf:

FðxÞ ¼ P X � xð Þ ¼
ðx
2

f ðyÞdy

¼
ðx
2

1:25� :25yð Þdy ¼ �0:125x2 þ 1:25x� 2, 2 � x � 4

To find the probability integral transform Eq. (3.12), set u ¼ F(x) and solve for x:

u ¼ F xð Þ ¼ �0:125x2 þ 1:25x� 2 ) x ¼ F�1 uð Þ ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p

The equation above has been solved using the quadratic formula; care must be taken to select the

solution whose values lie in the interval [2, 4] (the other solution, x ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p
, does not have

that feature). Beginning with the usual Unif[0, 1) RNG, the algorithm for simulating X is the

following: given a value u from the RNG, assign x ¼ 5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8u

p
. Repeating this algorithm

n times gives n simulated values of X. Programs in Matlab and R that implement this algorithm

appear in Fig. 3.40; both return a vector, x, containing n ¼ 10,000 simulated values of the specified

distribution.

1

u1

u2

0

F(x)

F −1(u2) F −1(u1)
x

Fig. 3.39 The inverse cdf

method, illustrated
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As discussed in Chap. 1, both of these programs can be accelerated by “vectorizing” the operations

rather than using a for loop. In fact, a single line of code in either language can produce the desired result:

in Matlab: x¼5-sqrt(9-8*rand(10000,1))

in R: x<-5-sqrt(9-8*runif(10000))

The pdf of the rv X and a histogram of simulation results from R appear in Fig. 3.41.

Example 3.43 The lifetime of a certain type of drill bit has an exponential distribution with mean

100 h. An analysis of a large manufacturing process that uses these drill bits requires the simulation of

this lifetime distribution, which can be achieved through the inverse cdf method. From Sect. 3.4, the

cdf of this distribution is F(x) ¼ 1 � e�.01x, and so the inverse cdf is x ¼ F�1(u) ¼ �100ln(1 � u).
Applying this function to Unif[0, 1) random numbers will generate the desired simulation. (Don’t let

the negative sign at the front worry you: since 0 � u < 1, 1 � u lies between 0 and 1, and so its

logarithm is negative and the resulting value of x is actually positive.)

As a check, the code x¼-100*log(1-rand(10000,1)) was submitted to Matlab and the

resulting sample mean and sd were obtained using mean(x) and std(x). Exponentially distributed

rvs have standard deviation equal to the mean, so the theoretical answers are μ ¼ 100 and σ ¼ 100.

The Matlab simulation yielded x ¼ 99:3724 and s ¼ 100.8908, both of which are reasonably close to

100 and validate the inverse cdf formula.

In general, an exponential distribution with mean μ (equivalently, parameter λ ¼ 1/μ) can be

simulated using the transform x ¼ �μln(1 � u). ■

The preceding two examples illustrated the inverse cdf method for fairly simple density functions:

a linear polynomial and an exponential function. In practice, the algebraic complexity of f(x) can

x=zeros(10000,1);
for i=1:10000

u=rand; 
x(i)=5-sqrt(9-8*u);

end

x <- NULL
for (i in 1:10000){

u<-runif(1)
x[i]<-5-sqrt(9-8*u)

}

a b

Fig. 3.40 Simulation code for Example 3.42: (a) Matlab; (b) R
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Fig. 3.41 (a) Theoretical pdf and (b) R simulation results for Example 3.42 ■
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often be a barrier to implementing this simulation technique. After all, the algorithm requires that we

can (1) obtain the cdf F(x) in closed form and (2) find the inverse function of F in closed form.

Consider, for example, attempting to simulate values from the N(0, 1) distribution: its cdf is the

function denoted Φ(z) and given by the integral expression 1=
ffiffiffiffiffi
2π

p� � Ð z
�1 e�u2=2du. There is no

closed-form expression for this integral, let alone a method to solve u ¼ Φ(z) for z and implement

Eq. (3.12). (As a reminder, the lack of a closed-form expression forΦ(z) is the reason that software or
tables are always required for calculations involving normal probabilities.) Thankfully, most software

packages, including Matlab and R, have built-in tools to simulate normally distributed variates (using

a very clever algorithm called the Box-Muller method; see Sect. 4.6). We’ll discuss built-in simula-

tion tools at the end of this section.

As the next example illustrates, even when F(x) can be determined in closed form we cannot

necessarily implement the inverse cdf method, because F(x) cannot always be inverted. This

difficulty surfaces in practice when attempting to simulate values from a gamma distribution, for

instance.

Example 3.44 The measurement error X (in mV) of a particular volt-meter has the following

distribution: f(x) ¼ (4 � x2)/9 for �1 � x � 2 (and f(x) ¼ 0 otherwise). To use the inverse cdf

method to simulate X, begin by calculating its cdf:

F xð Þ ¼
ð x
�1

4� y2

9
dy ¼ �x3 þ 12xþ 11

27

To implement step 2 of the inverse cdf method requires solving F(x)¼ u for x; since F(x) is a cubic
polynomial, this is not a simple task. Advanced computer algebra systems can solve this equation,

though the general solution is unwieldy (and such a solution doesn’t exist at all for 5th-degree and

higher polynomials). Readers familiar with numerical analysis methods may recognize that, for any

specified numerical value of u, a root-finding algorithm (such as Newton–Raphson) can be

implemented to approximate the solution x. This latter method, however, is computationally inten-

sive, especially if it’s desirable to generate 10,000 or more simulated values of x. ■

The preceding example suggests that the inverse cdf method is insufficient for simulating all

continuous distributions in practice. We next consider an alternative algorithm that, while less

efficient, has a broader scope.

3.8.2 The Accept–Reject Method

When the inverse cdf method of simulation cannot be implemented, the accept–reject method

provides an alternative. The downside of the accept–reject method, as will be explained below, is

that only some of the random numbers generated by software will be used (“accepted”), while others

will be “rejected.” As a result, one needs to create more—sometimes, many more—random variates

than the desired number of simulated values.

Suppose we wish to simulate a random variable X, whose pdf is f(x). The key to the accept–reject

method is to begin with a different pdf, call it g(x), that satisfies two properties: (1) we can already

simulate values from g(x), so g is either algebraically simple or else built into our software package;

(2) the set of possible x-values for the distribution specified by g(x) equals (or exceeds) that of f(x).

For example, to simulate the distribution in Example 3.44, whose range of x-values is [�1, 2], one

might select for g(x) the uniform distribution on [�1, 2], i.e., g(x)¼ 1/3 for�1� x� 2. If X takes on

values across [0, 1), then an exponential pdf would be a logical choice for g(x).
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ACCEPT–REJECT METHOD

It is desired to simulate n values from a distribution with pdf f(x). Let g(x) be some other pdf

such that the ratio f/g is bounded, i.e., there exists a constant c such that f(x)/g(x) � c for all x.

(The constant c is sometimes called the majorization constant.) Proceed as follows:

1. Generate a variate, y, from the distribution g. This value y is called a candidate.

2. Generate a standard uniform variate, u.

3. If u � c � g(y) � f (y), then assign x ¼ y (i.e., “accept” the candidate). Otherwise, discard

(“reject”) y and return to step 1.

These steps are repeated until n candidate values have been accepted. The resulting accepted
values x1, . . ., xn form a simulation of a random variable with the original pdf, f(x).

A proof that the method works—i.e., that the resulting values really do simulate the target

distribution f(x)— requires material from Chap. 4 (see Exercise 22 at the end of Sect. 4.1).

Figure 3.42 illustrates the key step in this algorithm. A candidate y has been generated on the

common interval of the pdfs f and g. Given y, the left-hand side of the inequality in step 3, U � c � g(y),
is uniformly distributed on the interval from 0 to c � g(y) (since U itself is standard uniform). If it

happens that u � c � g(y) falls between 0 and f(y), i.e., lies underneath the target pdf f, then that y-value
is accepted as coming from f; otherwise, y is rejected.

As a corollary to proving the validity of the accept–reject method, it can also be shown that the

probability any particular candidate y is accepted equals 1/c. (The value of c must always exceed 1;

can you see why?) Since successive candidates are independent, it follows that the number of

candidates required to generate a single acceptable value has a geometric distribution, and the

expected number of candidates to generate one x from f(x) is 1/(1/c) ¼ c. By extension, the expected

number of candidates required to generate our simulation sample of size n is cn. Consequently, the
majorization constant c should always be made as small as possible, i.e., we should find the smallest

value c such that f(x)/g(x) � c for all x under consideration.

Example 3.45 (Example 3.44 continued) In order to simulate 10,000 values from f(x) ¼ (4 � x2)/9,

�1 � x � 2, we will rely on our ability to generate variates from g(x) ¼ 1/3 on �1 � x � 2,

the uniform pdf. To implement the accept–reject method, we must determine the majorization

constant, c, by looking at the ratio f/g:

f(x)

c.g(x)

c.g(y)

f (y)
Reject

Accept
0

y (candidate)

Fig. 3.42 The accept–

reject method
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f ðxÞ
gðxÞ ¼

4� x2ð Þ=9
1=3

¼ 4� x2

3
� 4� 02

3
¼ 4

3
for�1 � x � 2

The expression 4 � x2 represents a downward-facing parabola with vertex at x ¼ 0, so it is clearly

maximized at 0. We conclude that c ¼ 4/3 is the smallest possible majorization constant, and that is

what we shall use. To create the desired simulation, the following steps are repeated until 10,000

values are accepted in step 3.

1. Generate y from the uniform distribution on [�1, 2].

2. Generate u from the standard uniform RNG.

3. If u � 4
3
� 1
3
� 4� y2

9
, assign x ¼ y; otherwise, discard y and return to step 1.

Figure 3.43 shows the preceding algorithm implemented in Matlab and R. Both programs result in

a vector of 10,000 simulated values from the pdf f(x). Figure 3.44 shows f(x) alongside the simulated

values from Matlab. Since c ¼ 4/3, it’s expected to require 4/3(10,000) ¼ 13,333 iterations of the

while loop to create the desired simulation size; by adding a counter to the program, one run of the

Matlab code was found to use 13,303 candidates.

a b
x=zeros(10000,1);
i=0;
while i<10000

y=-1+3*rand;
u=rand; 
if u*4/3*1/3<=(4-y^2)/9

i=i+1;
x(i)=y;

end
end

x <- NULL
i <- 0
while (i<10000){

y <- -1+3*runif(1)
u <- runif(1)
if (u*4/3*1/3<=(4-y^2)/9){

i <- i+1
x[i] <- y

}
}

Fig. 3.43 Simulation code for Example 3.45: (a) Matlab; (b) R
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Fig. 3.44 pdf and histogram of simulated values for Example 3.45
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You may have noticed that step 3 may be simplified: the inequality u � (4 � y2)/4 would be

equivalent to the one presented. In fact, it is very common to see this final step of the accept–reject

algorithm written as “accept y iff u � f(y)/[c � g(y)].” ■

For more information on the accept–reject method and selection of a sensible “candidate”

distribution g(x) consult the text Simulation by Ross listed in the references.

3.8.3 Built-In Simulation Packages for Matlab and R

As was true for the most common discrete distributions, many software packages have built-in tools

for simulating values from the continuous models named in this chapter. Table 3.3 summarizes the

relevant functions in Matlab and R for the uniform, normal, gamma, and exponential distributions;

the variable n refers to the desired number of simulated values of the distribution. Both packages

include similar commands for the Weibull, lognormal, and beta distributions.

As was the case with the cdf commands discussed in Sect. 3.4, Matlab and R parameterize the

gamma and exponential distributions differently: Matlab always requires the “scale” parameter β ¼
1/λ, while R takes in the “rate” parameter λ ¼ 1/β. (In the gamma simulation command, this can be

overridden by naming the final argument scale, as in rgamma(n,α,scale ¼ β).) In R, the

command rnorm(n) will generate standard normal variates (i.e., with μ ¼ 0 and σ ¼ 1), but the

μ and σ arguments are required in Matlab. Similarly, R will generate standard uniform variates

(A ¼ 0 and B ¼ 1), the basis for many of our simulation methods, with the command runif(n).

Matlab’s corresponding syntax is rand(n,1); if you type rand(100) instead of rand(100,1),

you will receive a 100-by-100 matrix of Unif[0, 1) values.

3.8.4 Precision of Simulation Results

Sect. 2.8 discusses in detail the precision of estimates associated with simulating discrete random

variables. The same results apply in the continuous case. In particular, the estimated standard error in

using a sample proportion bp to estimate the true probability of an event is still
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp 1� bpð Þ=np

, where

n is the simulation size. Also, the estimated standard error in using a sample mean, x, to estimate the

true expected value μ of a (continuous) rv X is s=
ffiffiffi
n

p
, where s is the sample standard deviation of the

simulated values of X. Refer back to Sect. 2.8 for more details.

Table 3.3 Functions to simulate major continuous distributions in Matlab and R

Distribution Matlab code R code

Unif[A, B] unifrnd(A, B, n, 1) runif(n, A, B)

N(μ, σ) normrnd(μ, σ, n, 1) rnorm(n, μ, σ)

Gamma(α, β) gamrnd(α, β, n, 1) rgamma(n, α, 1/β)

Exponential(λ) exprnd(1/λ, n, 1) rexp(n, λ)

3.8 Simulation of Continuous Random Variables 227

http://dx.doi.org/10.1007/978-3-319-52401-6_2#Sec38
http://dx.doi.org/10.1007/978-3-319-52401-6_2#Sec38


3.8.5 Exercises: Section 3.8 (129–139)

129. The amount of time (hours) required to complete an unusually short statistics homework

assignment is modeled by the pdf f(x) ¼ x/2 for 0 < x < 2 (and ¼ 0 otherwise).

(a) Obtain the cdf and then its inverse.

(b) Write a program to simulate 10,000 values from this distribution.

(c) Compare the sample mean and standard deviation of your 10,000 simulated values to the

theoretical mean and sd of this distribution (which you can determine by calculating the

appropriate integrals).

130. The Weibull distribution was introduced in Sect. 3.5.

(a) Find the inverse cdf for the Weibull distribution.

(b) Write a program to simulate n values from a Weibull distribution. Your program should

have three inputs: the desired number of simulated values n and the two parameters α and β.
It should have a single output: an n 
 1 vector of simulated values.

(c) Use your program from part (b) to simulate 10,000 values from aWeibull(4, 6) distribution

and estimate the mean of this distribution. The correct value of the mean is 6Γ(5/4) �
5.438; how close is your sample mean?

131. Consider the pdf for the rv X ¼ magnitude (in newtons) of a dynamic load on a bridge, given in

Example 3.7:

f xð Þ ¼
1

8
þ 3

8
x 0 � x � 2

0 otherwise

8<:
Write a program to simulate values from this distribution using the inverse cdf method.

132. In distributed computing, any given task is split into smaller sub-tasks which are handled by

separate processors (which are then recombined by a multiplexer). Consider a distributed

computing system with 4 processors, and suppose for one particular purpose that pdf of

completion time for a particular sub-task (microseconds) on any one of the processors is

given by

f ðxÞ ¼
20

3x2
4 � x � 10

0 otherwise

8<:
That is, the sub-task completion times X1, X2, X3, X4 of the four processors each have the above

pdf.

(a) Write a program to simulate the above pdf using the inverse cdf method.

(b) The overall time to complete any task is the largest of the four sub-task completion times: if

we call this variable Y, then Y ¼ max(X1, X2, X3, X4). (We assume that the multiplexing

time is negligible). Use your program in part (a) to simulate 10,000 values of the rv Y.
Create a histogram of the simulated values of Y, and also use your simulation to estimate

both E(Y ) and SD(Y ).

133. Exercise 16 in Sect. 3.1 introduced the following model for wait times at street crossings:

f x; θ, τð Þ ¼
θ

τ
1� x=τð Þθ�1

0 � x < τ

0 otherwise

8<:
where θ > 0 and τ > 0 are the parameters of the model.
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(a) Write a function to simulate values from this distribution, implementing the inverse cdf

method. Your function should have three inputs: the desired number of simulated values

n and values for the two parameters for θ and τ.
(b) Use your function in part (a) to simulate 10,000 values from this wait time distribution with

θ ¼ 4 and τ ¼ 80. Estimate E(X) under these parameter settings. How close is your estimate

to the correct value of 16?

134. Explain why the transformation x ¼ �μln(u) may be used to simulate values from an exponen-

tial distribution with mean μ. (This expression is slightly simpler than the one established in this

section.)

135. Recall the rv X ¼ amount of gravel (in tons) sold by a construction supply company in a given

week from Example 3.9, whose pdf is

f xð Þ ¼
3

2
1� x2
� �

0 � x � 1

0 otherwise

8<:
Consider simulating values from this distribution using the accept–reject methodwith aUnif[0, 1]

“candidate” distribution, i.e., g(x)¼ 1 for 0 � x� 1.

(a) Find the smallest majorization constant c so that f(x)/g(x) � c for all x in [0, 1].

(b) Write a program to simulate values from this distribution.

(c) On the average, how many candidate values must your program generate in order to create

10,000 “accepted” values?

(d) Simulate 10,000 values from this distribution, and use these to estimate the mean μ of this

distribution. How close is your sample mean to the true value of μ (which you can

determine using the appropriate integral)?

(e) The supply company’s management looks at quarterly data for X, i.e., values X1, . . ., X13 for

13 weeks (one quarter of a year). Of particular interest is the variableM¼min(X1, . . ., X13),

the least amount of gravel sold in one week during a quarter. Use your program in (b) to

simulate the rv M, and use the results of at least 10,000 simulated values of M to estimate

P(M < .1), the chance that the worst sales week in a quarter saw less than .1 tons of gravel

sold. [Hint: Simulate each Xi 10,000 times for i ¼ 1, . . ., 13, and then compute the

minimum of each set of 13 values to create a value for M.]

136. The time required to complete a 3-h final exam is modeled by the following pdf:

f ðxÞ ¼
4

27
x2 3� xð Þ 0 � x � 3

0 otherwise

8<:
Consider simulating values from this distribution using the accept–reject method with a

uniform “candidate” distribution on the interval [0, 3].

(a) Find the smallest majorization constant c so that f(x)/g(x) � c for all x in [0, 3]. [Hint:

What is the pdf of the uniform distribution on [0, 3]?]

(b) Write a program to simulate values from this distribution.

(c) On the average, how many candidate values must your program generate in order to

create 10,000 “accepted” values?

(d) A professor has 20 students taking her class (lucky professor!). Assume her 20 students’

completion times on the final exam can be modeled as 20 independent observations from

the above pdf. The professor must stay at the final exam until all 20 students are finished

(i.e., until the last student leaves). Use your program in (b) to simulate the rv L ¼ time, in
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hours, that the professor sits proctoring her final exam to 20 students. Use your simulation

to estimate P(L � 35/12), the probability she will have to stay into the last 5 min of the

final exam period.

137. The half-normal distribution has the following pdf:

f ðxÞ ¼
ffiffiffi
2

π

r
� e�x2=2 x � 0

0 otherwise

8><>:
This is the distribution of |Z|, where Z � N(0, 1); equivalently, it’s the pdf that arises by

“folding” the standard normal distribution in half along its line of symmetry. Consider

simulating values from this distribution using the accept–reject method with a candidate

distribution g(x) ¼ e�x for x � 0 (i.e., an exponential pdf with λ ¼ 1).

(a) Find the inverse cdf corresponding to g(x). (This will allow us to simulate values from the

candidate distribution.)

(b) Find the smallest majorization constant c so that f(x)/g(x) � c for all x � 0. [Hint: Use
calculus to determine where the ratio f(x)/g(x) is maximized.]

(c) On the average, how many candidate values will be required to generate 10,000

“accepted” values?

(d) Write a program to construct 10,000 values from a half-normal distribution.

138. As discussed previously, the normal distribution cannot be simulated using the inverse cdf

method. One possibility for simulating from a standard normal distribution is to employ the

accept–reject method with candidate distribution

gðxÞ ¼ 1

π 1þ x2ð Þ �1 < x < 1

(This is the Cauchy distribution.)

(a) Find the cdf and inverse cdf corresponding to g(x). (This will allow us to simulate values

from the candidate distribution.)

(b) Find the smallest majorization constant c so that f(x)/g(x) � c for all x, where f(x) is the

standard normal pdf. [Hint: Use calculus to determine where the ratio f(x)/g(x) is

maximized.]

(c) On the average, how many candidate values will be required to generate 10,000 “accepted”

values?

(d) Write a program to construct 10,000 values from a standard normal distribution.

(e) Suppose that you now wish to simulate from a N(μ, σ) distribution. How would you modify

your program in part (d)?

139. Explain why the majorization constant c in the accept–reject algorithm must be � 1. [Hint: If

c < 1, then f(x) < g(x) for all x. Why is this bad?]

3.9 Supplementary Exercises (140–172)

140. An insurance company issues a policy covering losses up to 5 (in thousands of dollars). The loss,

X, follows a distribution with density function:
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f ðxÞ ¼
3

x4
x � 1

0 x < 1

8<:
What is the expected value of the amount paid under the policy?

141. Let X¼ the time it takes a read/write head to locate a desired record on a computer disk memory

device once the head has been positioned over the correct track. If the disks rotate once every

25 msec, a reasonable assumption is that X is uniformly distributed on the interval [0, 25].

(a) Compute P(10 � X � 20).

(b) Compute P(X � 10).

(c) Obtain the cdf F(x).
(d) Compute E(X) and SD(X).

142. A 12-in. bar clamped at both ends is subjected to an increasing amount of stress until it snaps.

Let Y ¼ the distance from the left end at which the break occurs. Suppose Y has pdf

f ðyÞ ¼
y

24
1� y

12


 �
0 � y � 12

0 otherwise

8<:
Compute the following:

(a) The cdf of Y, and graph it.

(b) P(Y � 4), P(Y > 6), and P(4 � Y � 6).

(c) E(Y ), E(Y2), and SD(Y ).
(d) The probability that the break point occurs more than 2 in. from the expected break point.

(e) The expected length of the shorter segment when the break occurs.

143. Let X denote the time to failure (in years) of a hydraulic component. Suppose the pdf of X is f(x)
¼ 32/(x + 4)3 for x > 0.

(a) Verify that f(x) is a legitimate pdf.

(b) Determine the cdf.

(c) Use the result of part (b) to calculate the probability that time to failure is between 2 and

5 years.

(d) What is the expected time to failure?

(e) If the component has a salvage value equal to 100/(4 + x) when its time to failure is x, what

is the expected salvage value?

144. The completion time X for a task has cdf F(x) given by

0 x < 0

x3

3
0 � x < 1

1� 1

2

7

3
� x

� �
7

4
� 3

4
x

� �
1 � x � 7

3

1 x � 7

3

8>>>>>>>>><>>>>>>>>>:
(a) Obtain the pdf f(x) and sketch its graph.

(b) Compute P(.5 � X � 2).

(c) Compute E(X).

145. The breakdown voltage of a randomly chosen diode of a certain type is known to be normally

distributed with mean value 40 V and standard deviation 1.5 V.
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(a) What is the probability that the voltage of a single diode is between 39 and 42?

(b) What value is such that only 15% of all diodes have voltages exceeding that value?

(c) If four diodes are independently selected, what is the probability that at least one has a

voltage exceeding 42?

146. The article “Computer Assisted Net Weight Control” (Qual. Prog., 1983: 22–25) suggests a
normal distribution with mean 137.2 oz and standard deviation 1.6 oz, for the actual contents

of jars of a certain type. The stated contents was 135 oz.

(a) What is the probability that a single jar contains more than the stated contents?

(b) Among ten randomly selected jars, what is the probability that at least eight contain more

than the stated contents?

(c) Assuming that the mean remains at 137.2, to what value would the standard deviation

have to be changed so that 95% of all jars contain more than the stated contents?

147. When circuit boards used in the manufacture of compact disk players are tested, the long-run

percentage of defectives is 5%. Suppose that a batch of 250 boards has been received and that

the condition of any particular board is independent of that of any other board.

(a) What is the approximate probability that at least 10% of the boards in the batch are

defective?

(b) What is the approximate probability that there are exactly 10 defectives in the batch?

148. The article “Reliability of Domestic-Waste Biofilm Reactors” (J. Envir. Engr., 1995:

785–790) suggests that substrate concentration (mg/cm3) of influent to a reactor is normally

distributed with μ ¼ .30 and σ ¼ .06.

(a) What is the probability that the concentration exceeds .25?

(b) What is the probability that the concentration is at most .10?

(c) How would you characterize the largest 5% of all concentration values?

149. Let X ¼ the hourly median power (in decibels) of received radio signals transmitted between

two cities. The authors of the article “Families of Distributions for Hourly Median Power and

Instantaneous Power of Received Radio Signals” (J. Res. Nat. Bureau Standards, vol. 67D,

1963: 753–762) argue that the lognormal distribution provides a reasonable probability model

for X. If the parameter values are μ ¼ 3.5 and σ ¼ 1.2, calculate the following:

(a) The mean value and standard deviation of received power.

(b) The probability that received power is between 50 and 250 dB.

(c) The probability that X is less than its mean value. Why is this probability not .5?

150. Let X be a nonnegative continuous random variable with cdf F(x) and mean E(X).

(a) The definition of expected value is E(X)¼ Ð1
0
xf(x)dx. Replace the first x inside the integral

with
Ð x
0
1 dy to create a double integral expression for E(X). [The “order of integration”

should be dy dx.]

(b) Rearrange the order of integration, keeping track of the revised limits of integration, to

show that

EðXÞ ¼
ð1
0

ð1
y

f ðxÞdxdy

(c) Evaluate the dx integral in (b) to show that E(X) ¼ Ð1
0
[1 � F(y)]dy. (This provides an

alternate derivation of the formula established in Exercise 38.)

(d) Use the result of (c) to verify that the expected value of an exponentially distributed rv with

parameter λ is 1/λ.
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151. The reaction time (in seconds) to a stimulus is a continuous random variable with pdf

f ðxÞ ¼
3

2x2
1 � x � 3

0 otherwise

8<:
(a) Obtain the cdf.

(b) What is the probability that reaction time is at most 2.5 s? Between 1.5 and 2.5 s?

(c) Compute the expected reaction time.

(d) Compute the standard deviation of reaction time.

(e) If an individual takes more than 1.5 s to react, a light comes on and stays on either until one

further second has elapsed or until the person reacts (whichever happens first). Determine

the expected amount of time that the light remains lit. [Hint: Let h(X) ¼ the time that the

light is on as a function of reaction time X.]
152. The article “Characterization of Room Temperature Damping in Aluminum-Indium Alloys”

(Metallurgical Trans., 1993: 1611-1619) suggests that aluminum matrix grain size (μm) for an

alloy consisting of 2% indium could be modeled with a normal distribution with mean 96 and

standard deviation 14.

(a) What is the probability that grain size exceeds 100 μm?

(b) What is the probability that grain size is between 50 and 80 μm?

(c) What interval (a, b) includes the central 90% of all grain sizes (so that 5% are below a and

5% are above b)?
153. The article “Determination of the MTF of Positive Photoresists Using the Monte Carlo Method”

(Photographic Sci. Engrg., 1983: 254–260) proposes the exponential distribution with parame-

ter λ ¼ .93 as a model for the distribution of a photon’s free path length (mm) under certain

circumstances. Suppose this is the correct model.

(a) What is the expected path length, and what is the standard deviation of path length?

(b) What is the probability that path length exceeds 3.0? What is the probability that path

length is between 1.0 and 3.0?

(c) What value is exceeded by only 10% of all path lengths?

154. The article “The Prediction of Corrosion by Statistical Analysis of Corrosion Profiles” (Corro-
sion Sci., 1985: 305–315) suggests the following cdf for the depth X of the deepest pit in an

experiment involving the exposure of carbon manganese steel to acidified seawater:

F x; θ1, θ2ð Þ ¼ e�e� x�θ1ð Þ=θ2 �1 < x < 1
(This is called the largest extreme value distribution or Gumbel distribution.) The investigators
proposed the values θ1 ¼ 150 and θ2 ¼ 90. Assume this to be the correct model.

(a) What is the probability that the depth of the deepest pit is at most 150? At most 300?

Between 150 and 300?

(b) Below what value will the depth of the maximum pit be observed in 90% of all such

experiments?

(c) What is the density function of X?
(d) The density function can be shown to be unimodal (a single peak). Above what value on

the measurement axis does this peak occur? (This value is the mode.)

(e) It can be shown that E(X) � .5772θ2 + θ1. What is the mean for the given values of θ1 and
θ2, and how does it compare to the median and mode? Sketch the graph of the density

function.
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155. Let t ¼ the amount of sales tax a retailer owes the government for a certain period. The article

“Statistical Sampling in Tax Audits” (Statistics and the Law, 2008: 320–343) proposes

modeling the uncertainty in t by regarding it as a normally distributed random variable with

mean value μ and standard deviation σ (in the article, these two parameters are estimated from

the results of a tax audit involving n sampled transactions). If a represents the amount the

retailer is assessed, then an underassessment results if t > a and an overassessment if a > t. We

can express this in terms of a loss function, a function that shows zero loss if t ¼ a but increases
as the gap between t and a increases. The proposed loss function is L(a, t)¼ t� a if t> a and¼
k(a � t) if t � a (k > 1 is suggested to incorporate the idea that over-assessment is more serious

than under-assessment).

(a) Show that a * ¼ μ + σΦ� 1(1/(k + 1)) is the value of a that minimizes the expected loss,

where Φ� 1 is the inverse function of the standard normal cdf.

(b) If k ¼ 2 (suggested in the article), μ ¼ $100,000, and σ ¼ $10,000, what is the optimal

value of a, and what is the resulting probability of over-assessment?

156. A mode of a continuous distribution is a value x* that maximizes f(x).

(a) What is the mode of a normal distribution with parameters μ and σ?
(b) Does the uniform distribution with parameters A and B have a single mode? Why or why

not?

(c) What is the mode of an exponential distribution with parameter λ? (Draw a picture.)

(d) If X has a gamma distribution with parameters α and β, and α > 1, determine the mode.

[Hint: ln[f(x)] will be maximized if and only if f(x) is, and it may be simpler to take the

derivative of ln[f(x)].]
157. The article “Error Distribution in Navigation” (J. Institut. Navigation, 1971: 429–442) suggests

that the frequency distribution of positive errors (magnitudes of errors) is well approximated by

an exponential distribution. Let X ¼ the lateral position error (nautical miles), which can be

either negative or positive. Suppose the pdf of X is

f ðxÞ ¼ :1e�:2 xj j � 1 < x < 1
(a) Sketch a graph of f(x) and verify that f(x) is a legitimate pdf (show that it integrates to 1).

(b) Obtain the cdf of X and sketch it.

(c) Compute P(X� 0), P(X� 2), P(�1� X� 2), and the probability that an error of more than

2 miles is made.

158. The article “Statistical Behavior Modeling for Driver-Adaptive Precrash Systems” (IEEE
Trans. on Intelligent Transp. Systems, 2013: 1-9) proposed the following distribution for

modeling the behavior of what the authors called “the criticality level of a situation” X.

f x; λ1, λ2, pð Þ ¼ pλ1e�λ1x þ 1� pð Þλ2e�λ2x x � 0

0 otherwise

(

This is often called the hyperexponential or mixed exponential distribution.

(a) What is the cdf F(x; λ1, λ2, p)?
(b) Ifp¼ .5, λ1¼ 40, λ2¼ 200 (values of the λs suggested in the cited article), calculateP(X> .01).

(c) If X has f(x; λ1, λ2, p) as its pdf, what is E(X)?
(d) Using the fact that E(X2) ¼ 2/λ2 when X has an exponential distribution with parameter λ,

compute E(X2) when X has pdf f(x; λ1, λ2, p). Then compute Var(X).
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(e) The coefficient of variation of a random variable (or distribution) is CV ¼ σ/μ. What is the

CV for an exponential rv? What can you say about the value of CV when X has a

hyperexponential distribution?

(f) What is the CV for an Erlang distribution with parameters λ and n as defined in Sect. 3.4?

[Note: In applied work, the sample CV is used to decide which of the three distributions

might be appropriate.]

(g) For the parameter values given in (b), calculate the probability that X is within one standard

deviation of its mean value. Does this probability depend upon the values of the λs (it does
not depend on λ when X has an exponential distribution)?

159. Suppose a state allows individuals filing tax returns to itemize deductions only if the total of all

itemized deductions is at least $5,000. Let X (in 1000s of dollars) be the total of itemized

deductions on a randomly chosen form. Assume that X has the pdf

f x; αð Þ ¼ k=xα

0

�
x � 5

otherwise

(a) Find the value of k. What restriction on α is necessary?

(b) What is the cdf of X?

(c) What is the expected total deduction on a randomly chosen form? What restriction on α is

necessary for E(X) to be finite?

(d) Show that ln(X/5) has an exponential distribution with parameter α � 1.

160. Let Ii be the input current to a transistor and Io be the output current. Then the current gain is

proportional to ln(Io/Ii). Suppose the constant of proportionality is 1 (which amounts to choosing

a particular unit of measurement), so that current gain ¼ X ¼ ln(Io/Ii). Assume X is normally

distributed with μ ¼ 1 and σ ¼ .05.

(a) What type of distribution does the ratio Io/Ii have?
(b) What is the probability that the output current is more than twice the input current?

(c) What are the expected value and variance of the ratio of output to input current?

161. The article “Response of SiCf/Si3N4 Composites Under Static and Cyclic Loading—An Exper-

imental and Statistical Analysis” (J. Engr. Materials Tech., 1997: 186–193) suggests that tensile

strength (MPa) of composites under specified conditions can be modeled by a Weibull distribu-

tion with α ¼ 9 and β ¼ 180.

(a) Sketch a graph of the density function.

(b) What is the probability that the strength of a randomly selected specimen will exceed 175?

Will be between 150 and 175?

(c) If two randomly selected specimens are chosen and their strengths are independent of each

other, what is the probability that at least one has strength between 150 and 175?

(d) What strength value separates the weakest 10% of all specimens from the remaining 90%?

162. (a) Suppose the lifetime X of a component, when measured in hours, has a gamma distribution

with parameters α and β. Let Y ¼ lifetime measured in minutes. Derive the pdf of Y.

(b) If X has a gamma distribution with parameters α and β, what is the probability distribution
of Y ¼ cX?

163. Based on data from a dart-throwing experiment, the article “Shooting Darts” (Chance, Summer

1997: 16–19) proposed that the horizontal and vertical errors from aiming at a point target

should be independent of each other, each with a normal distribution having mean 0 and

standard deviation σ. It can then be shown that the pdf of the distance V from the target to the

landing point is
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f ðvÞ ¼ v

σ2
� e�v2= 2σ2ð Þ v > 0

(a) This pdf is a member of what family introduced in this chapter?

(b) If σ ¼ 20 mm (close to the value suggested in the paper), what is the probability that a dart

will land within 25 mm (roughly 1 in.) of the target?

164. The article “Three Sisters Give Birth on the Same Day” (Chance, Spring 2001: 23–25) used the
fact that three Utah sisters had all given birth on March 11, 1998, as a basis for posing some

interesting questions regarding birth coincidences.

(a) Disregarding leap year and assuming that the other 365 days are equally likely, what is the

probability that three randomly selected births all occur on March 11? Be sure to indicate

what, if any, extra assumptions you are making.

(b) With the assumptions used in part (a), what is the probability that three randomly selected

births all occur on the same day?

(c) The author suggested that, based on extensive data, the length of gestation (time between

conception and birth) could be modeled as having a normal distribution with mean value

280 days and standard deviation 19.88 days. The due dates for the three Utah sisters were

March 15, April 1, and April 4, respectively. Assuming that all three due dates are at the

mean of the distribution, what is the probability that all births occurred on March 11?

[Hint: The deviation of birth date from due date is normally distributed with mean 0.]

(d) Explain how you would use the information in part (c) to calculate the probability of a

common birth date.

165. Exercise 49 introduced two machines that produce wine corks, the first one having a normal

diameter distribution with mean value 3 cm and standard deviation .1 cm and the second having

a normal diameter distribution with mean value 3.04 cm and standard deviation .02

cm. Acceptable corks have diameters between 2.9 and 3.1 cm. If 60% of all corks used come

from the first machine and a randomly selected cork is found to be acceptable, what is the

probability that it was produced by the first machine?

166. A function g(x) is convex if the chord connecting any two points on the function’s graph lies

above the graph. When g(x) is differentiable, an equivalent condition is that for every x, the
tangent line at x lies entirely on or below the graph. (See the accompanying figure.) How does

g(μ) ¼ g[E(X)] compare to the expected value E[g(X)]? [Hint: The equation of the tangent line

at x ¼ μ is y ¼ g(μ) + g0(μ) � (x � μ). Use the condition of convexity, substitute X for x, and take
expected values. Note: Unless g(x) is linear, the resulting inequality (usually called Jensen’s

inequality) is strict (< rather than �); it is valid for both continuous and discrete rvs.]

Tangent
line

Chord

x

167. Let X have a Weibull distribution with parameters α ¼ 2 and β. Show that Y ¼ 2X2/β2 has an
exponential distribution with λ ¼ 1/2.

236 3 Continuous Random Variables and Probability Distributions



168. Let X have the pdf f(x) ¼ 1/[π(1 + x2)] for �1 < x < 1 (a central Cauchy distribution), and

show that Y¼ 1/X has the same distribution. [Hint: Consider P(|Y|� y), the cdf of |Y|, then obtain
its pdf and show it is identical to the pdf of |X|.]

169. Let X have a Weibull distribution with shape parameter α and scale parameter β. Show that the

transformed variable Y¼ ln(X) has an extreme value distribution as defined in Section 3.6, with

θ1 ¼ ln(β) and θ2 ¼ 1/α.
170. A store will order q gallons of a liquid product to meet demand during a particular time period.

This product can be dispensed to customers in any amount desired, so demand during the period

is a continuous random variable X with cdf F(x). There is a fixed cost c0 for ordering the product

plus a cost of c1 per gallon purchased. The per-gallon sale price of the product is d. Liquid left

unsold at the end of the time period has a salvage value of e per gallon. Finally, if demand

exceeds q, there will be a shortage cost for loss of goodwill and future business; this cost is f per

gallon of unfulfilled demand. Show that the value of q that maximizes expected profit, denoted

by q*, satisfies

P satisfying demandð Þ ¼ F q*ð Þ ¼ d � c1 þ f

d � eþ f

Then determine the value of F(q*) if d ¼ $35, c0 ¼ $25, c1 ¼ $15, e ¼ $5, and f ¼ $25.

[Hint: Let x denote a particular value of X. Develop an expression for profit when x � q and

another expression for profit when x > q. Now write an integral expression for expected profit

(as a function of q) and differentiate.]

171. An individual’s credit score is a number calculated based on that person’s credit history that

helps a lender determine how much s/he should be loaned or what credit limit should be

established for a credit card. An article in the Los Angeles Times gave data which suggested

that a beta distribution with parameters A ¼ 150, B ¼ 850, α ¼ 8, β ¼ 2 would provide a

reasonable approximation to the distribution of American credit scores. [Note: credit scores are

integer-valued.]

(a) Let X represent a randomly selected American credit score. What are the mean and

standard deviation of this random variable? What is the probability that X is within

1 standard deviation of its mean?

(b) What is the approximate probability that a randomly selected score will exceed 750 (which

lenders consider a very good score)?

172. Let V denote rainfall volume andW denote runoff volume (both in mm). According to the article

“Runoff Quality Analysis of Urban Catchments with Analytical Probability Models”

(J. of Water Resource Planning and Management, 2006: 4–14), the runoff volume will be 0 if

V � vd and will be k(V � vd) if V > vd. Here vd is the volume of depression storage (a constant),

and k (also a constant) is the runoff coefficient. The cited article proposes an exponential

distribution with parameter λ for V.
(a) Obtain an expression for the cdf of W. [Note: W is neither purely continuous nor purely

discrete; instead it has a “mixed” distribution with a discrete component at 0 and is

continuous for values w > 0.]

(b) What is the pdf ofW for w > 0? Use this to obtain an expression for the expected value of

runoff volume.
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Joint Probability Distributions and Their
Applications 4

In Chaps. 2 and 3, we studied probability models for a single random variable. Many problems in

probability and statistics lead to models involving several random variables simultaneously. For

example, we might consider randomly selecting a college student and defining X ¼ the student’s high

school GPA and Y ¼ the student’s college GPA. In this chapter, we first discuss probability models

for the joint behavior of several random variables, putting special emphasis on the case in which the

variables are independent of each other. We then study expected values of functions of several

random variables, including covariance and correlation as measures of the degree of association

between two variables.

Many problem scenarios involve linear combinations of random variables. For example, suppose

an investor owns 100 shares of one stock and 200 shares of another. If X1 and X2 are the prices per

share of the two stocks, then the value of investor’s portfolio is 100X1 + 200X2. Sections 4.3 and 4.5

enumerate the properties of linear combinations of random variables, including the celebrated

Central Limit Theorem (CLT), which characterizes the behavior of a sum X1 + X2 + . . . + Xn

as n increases.

The fifth section considers conditional distributions, the distributions of some random variables

given the values of other random variables, e.g., the distribution of fuel efficiency conditional on the

weight of a vehicle.

In Sect. 3.7, we developed methods for obtaining the distribution of some function g(X) of a
random variable. Section 4.6 extends these ideas to transformations of two or more rvs. For example,

if X and Y are the scores on a two-part exam, we might be interested in the total score X + Y and also

X/(X + Y ), the proportion of total points achieved on the first part.

The chapter ends with sections on the bivariate normal distribution (Sect. 4.7), the reliability of

devices and systems (Sect. 4.8), “order statistics” such as the median and range obtained by ordering

sample observations from smallest to largest (Sect. 4.9), and simulation techniques for jointly

distributed random variables (Sect. 4.10).

4.1 Jointly Distributed Random Variables

There are many experimental situations in which more than one random variable (rv) will be of

interest to an investigator. For example X might be the number of books checked out from a public

library on a particular day and Y the number of videos checked out on the same day. Or X and Ymight
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be the height and weight, respectively, of a randomly selected adult. In general, the two rvs of interest

could both be discrete, both be continuous, or one could be discrete and the other continuous. In

practice, the two “pure” cases—both of the same type—predominate. We shall first consider joint

probability distributions for two discrete rvs, then for two continuous variables, and finally for more

than two variables.

4.1.1 The Joint Probability Mass Function for Two Discrete Random Variables

The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is

placed on each possible X value. The joint pmf of two discrete rvs X and Y describes how much

probability mass is placed on each possible pair of values (x, y).

DEFINITION

Let X and Y be two discrete rvs defined on the sample space S of an experiment. The joint

probability mass function p(x, y) is defined for each pair of numbers (x, y) by

p x; yð Þ ¼ P X ¼ x and Y ¼ yð Þ

A function p(x, y) can be used as a joint pmf provided that p(x, y) � 0 for all x and y and

∑x ∑y p(x, y) ¼ 1. Let A be any set consisting of pairs of (x, y) values, such as {(x, y): x + y < 10}.

Then the probability that the random pair (X, Y ) lies in A is obtained by summing the joint pmf over

pairs in A:

P X; Yð Þ 2 Að Þ ¼
XX
x;yð Þ2 A

p x; yð Þ

Example 4.1 A large insurance agency services a number of customers who have purchased both a

homeowner’s policy and an automobile policy from the agency. For each type of policy, a deductible

amount must be specified. For an automobile policy, the choices are $100 and $250, whereas for a

homeowner’s policy, the choices are 0, $100, and $200. Suppose an individual with both types of

policy is selected at random from the agency’s files. Let X ¼ the deductible amount on the auto

policy and Y ¼ the deductible amount on the homeowner’s policy. Possible (X, Y) pairs are then

(100, 0), (100, 100), (100, 200), (250, 0), (250, 100), and (250, 200); the joint pmf specifies the

probability associated with each one of these pairs, with any other pair having probability zero.

Suppose the joint pmf is as given in the accompanying joint probability table:

y

p(x, y) 0 100 200

x 100 .20 .10 .20

250 .05 .15 .30

Then p(100, 100) ¼ P(X ¼ 100 and Y ¼ 100) ¼ P($100 deductible on both policies) ¼ .10. The

probability P(Y � 100) is computed by summing probabilities of all (x, y) pairs for which y � 100:

P Y � 100ð Þ ¼ p 100; 100ð Þ þ p 250; 100ð Þ þ p 100; 200ð Þ þ p 250; 200ð Þ ¼ :75

■
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Looking at the joint probability table in Example 4.1, we see that P(X ¼ 100), i.e. pX(100), equals
.20þ .10þ .20¼ .50, and similarly pX(250)¼ .05þ .15þ .30¼ .50 as well. That is, the pmf of X at a

specified number is calculated by fixing an x value (say, 100 or 250) and summing across all possible

y values; e.g., pX(250) ¼ p(250,0) þ p(250,100) þ p(250,200). The pmf of Y can be obtained by

analogous summation (adding “down” the table instead of “across”). In fact, by adding across rows

and down columns, we could imagine writing these probabilities in the margins of the joint

probability table; for this reason, pX and pY are called the marginal distributions of X and Y.

DEFINITION

The marginal probability mass functions of X and of Y, denoted by pX(x) and pY(y),

respectively, are given by

pX xð Þ ¼
X
y

p x; yð Þ pY yð Þ ¼
X
x

p x; yð Þ

Thus to obtain the marginal pmf of X evaluated at, say, x ¼ 100, the probabilities p(100, y) are

added over all possible y values. Doing this for each possible X value gives the marginal pmf of

X alone (i.e., without reference to Y ). From the marginal pmfs, probabilities of events involving only

X or only Y can be computed.

Example 4.2 (Example 4.1 continued) The possible X values are x ¼ 100 and x ¼ 250, so comput-

ing row totals in the joint probability table yields

pX 100ð Þ ¼ p 100; 0ð Þ þ p 100; 100ð Þ þ p 100; 200ð Þ ¼ :50

and

pX 250ð Þ ¼ p 250; 0ð Þ þ p 250; 100ð Þ þ p 250; 200ð Þ ¼ :50

The marginal pmf of X is then

pX xð Þ ¼ :5
0

�
x ¼ 100, 250

otherwise

Similarly, the marginal pmf of Y is obtained from column totals as

pY yð Þ ¼
:25
:50
0

8<
:

y ¼ 0, 100

y ¼ 200

otherwise

so P(Y � 100) ¼ pY(100) + pY(200) ¼ .75 as before. ■

4.1.2 The Joint Probability Density Function for Two Continuous
Random Variables

The probability that the observed value of a continuous rv X lies in a one-dimensional set A (such as

an interval) is obtained by integrating the pdf f(x) over the set A. Similarly, the probability that the pair

(X, Y ) of continuous rvs falls in a two-dimensional set A (such as a rectangle) is obtained by

integrating a function called the joint density function.
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DEFINITION

Let X and Y be continuous rvs. Then f(x, y) is the joint probability density function for X and

Y if for any two-dimensional set A,

P X; Yð Þ 2 Að Þ ¼
ðð
A

f x; yð Þdxdy

In particular, if A is the two-dimensional rectangle {(x, y): a � x � b, c � y � d}, then

P X; Yð Þ 2 Að Þ ¼ P a � X � b, c � Y � dð Þ ¼
ð b
a

ð d
c

f x; yð Þdydx

For f(x, y) to be a joint pdf, it must satisfy f(x, y) � 0 and
Ð1
�1

Ð1
�1 f(x, y)dxdy ¼ 1. We can

think of f(x, y) as specifying a surface at height f(x, y) above the point (x, y) in a three-dimensional

coordinate system. Then P((X, Y ) 2 A) is the volume underneath this surface and above the region A,

analogous to the area under a curve in the one-dimensional case. This is illustrated in Fig. 4.1.

Example 4.3 A bank operates both a drive-up facility and a walk-up window. On a randomly

selected day, let X ¼ the proportion of time that the drive-up facility is in use (at least one customer

is being served or waiting to be served) and Y ¼ the proportion of time that the walk-up window is in

use. Then the set of possible values for (X, Y ) is the rectangle {(x, y): 0 � x � 1, 0 � y � 1}.

Suppose the joint pdf of (X, Y ) is given by

f x; yð Þ ¼
6

5
xþ y2
� �

0 � x � 1, 0 � y � 1

0 otherwise

8<
:

To verify that this is a legitimate pdf, note that f(x, y) � 0 andð1
�1

ð1
�1

f x; yð Þdxdy ¼
ð1
0

ð1
0

6

5
xþ y2
� �

dxdy ¼
ð1
0

ð1
0

6

5
xdxdyþ

ð1
0

ð1
0

6

5
y2dxdy

¼
ð1
0

6

5
xdx þ

ð1
0

6

5
y2dy ¼ 6

10
þ 6

15
¼ 1

The probability that neither facility is busy more than one-quarter of the time is

y

x

f(x, y)

Surface f(x, y)

A = Shaded
      rectangle 

Fig. 4.1 P((X,Y ) 2 A) ¼
volume under density

surface above A
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P 0 � X � 1

4
, 0 � Y � 1

4

� �
¼
ð1=4
0

ð1=4
0

6

5
xþ y2
� �

dxdy ¼ 6

5

ð1=4
0

ð1=4
0

xdxdy þ 6

5

ð1=4
0

ð1=4
0

y2dxdy

¼ 6

20
� x

2

2

����
x¼1=4

x¼0

þ 6

20
� y

3

3

����
y¼1=4

y¼0

¼ 7

640
¼ :0109

■
The marginal pmf of one discrete variable results from summing the joint pmf over all values of

the other variable. Similarly, the marginal pdf of one continuous variable is obtained by integrating

the joint pdf over all values of the other variable.

DEFINITION

The marginal probability density functions of X and Y, denoted by fX(x) and fY(y), respec-

tively, are given by

f X xð Þ ¼
ð1
�1

f x; yð Þdy for�1 < x < 1

f Y yð Þ ¼
ð1
�1

f x; yð Þdx for�1 < y < 1

Example 4.4 (Example 4.3 continued) The marginal pdf of X, which gives the probability distribu-

tion of busy time for the drive-up facility without reference to the walk-up window, is

f X xð Þ ¼
ð1
�1

f x; yð Þdy ¼
ð1
0

6

5
xþ y2
� �

dy ¼ 6

5
xþ 2

5

for 0 � x � 1 and 0 otherwise. Similarly, the marginal pdf of Y is

f Y yð Þ ¼
6

5
y2 þ 3

5
0 � y � 1

0 otherwise

8<
:

Then, for example,

P
1

4
� Y � 3

4

� �
¼
ð3=4
1=4

6

5
y2 þ 3

5

� �
dy ¼ 37

80
¼ :4625 ■

In Example 4.3, the region of positive joint density was a rectangle, which made computation of

the marginal pdfs relatively easy. Consider now an example in which the region of positive density is

a more complicated figure.

Example 4.5 A nut company markets cans of deluxe mixed nuts containing almonds, cashews, and

peanuts. Suppose the net weight of each can is exactly 1 lb, but the weight contribution of each type of

nut is random. Because the three weights sum to 1, a joint probability model for any two gives all

necessary information about the weight of the third type. Let X ¼ the weight of almonds in a selected

can and Y ¼ the weight of cashews. Then the region of positive density is D ¼ {(x, y): 0 � x � 1,

0 � y � 1, x + y � 1}, the shaded region pictured in Fig. 4.2.
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Now let the joint pdf for (X, Y ) be

f x; yð Þ ¼ 24xy
0

�
0 � x � 1, 0 � y � 1, xþ y � 1

otherwise

For any fixed x, f(x, y) increases with y; for fixed y, f(x, y) increases with x. This is appropriate
because the word deluxe implies that most of the can should consist of almonds and cashews rather

than peanuts, so that the density function should be large near the upper boundary and small near the

origin. The surface determined by f(x, y) slopes upward from zero as (x, y) moves away from

either axis.

Clearly, f(x, y) � 0. To verify the second condition on a joint pdf, recall that a double integral is

computed as an iterated integral by holding one variable fixed (such as x as in Fig. 4.2), integrating

over values of the other variable lying along the straight line passing through the value of the fixed

variable, and finally integrating over all possible values of the fixed variable. Thusð1
�1

ð1
�1

f x; yð Þdydx ¼
ðð
D

f x; yð Þdydx ¼
ð1
0

ð1�x

0

24xydy

� �
dx

¼
ð1
0

24x
y2

2

����
y¼1�x

y¼0

( )
dx ¼

ð1
0

12x 1� xð Þ2dx ¼ 1

To compute the probability that the two types of nuts together make up at most 50% of the can, let

A ¼ {(x, y): 0 � x � 1, 0 � y � 1, and x + y � .5}, as shown in Fig. 4.3. Then

P X; Yð Þ 2 Að Þ ¼
ðð
A

f x; yð Þdxdy ¼
ð:5
0

ð:5�x

0

24xydydx ¼ :0625

x

(0, 1)

x(1, 0)

y

x+y = 1

(x, 1−x)

Fig. 4.2 Region of

positive density for

Example 4.5

x 1.50

1

.5

0

y = .5 − x 

A = Shaded region 

x+y = 1x+
y = .5

Fig. 4.3 Computing P((X, Y ) 2 A) for Example 4.5
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The marginal pdf for almonds is obtained by holding X fixed at x (again, as in Fig. 4.2) and

integrating f(x, y) along the vertical line through x:

f X xð Þ ¼
ð1
�1

f x; yð Þdy ¼
ð1�x

0

24xydy ¼ 12x 1� xð Þ2 0 � x � 1

0 otherwise

8<
:

By symmetry of f(x, y) and the region D, the marginal pdf of Y is obtained by replacing x and X in

fX(x) by y and Y, respectively. ■

4.1.3 Independent Random Variables

In many situations, information about the observed value of one of the two variables X and Y gives

information about the value of the other variable. In Example 4.1, the marginal probability of X at

x ¼ 250 was .5, as was the probability that X ¼ 100. If, however, we are told that the selected

individual had Y ¼ 0, then X ¼ 100 is four times as likely as X ¼ 250. Thus there is a dependence

between the two variables.

In Chap. 1 we pointed out that one way of defining independence of two events is to say that A and

B are independent if P(A \ B) ¼ P(A) � P(B). Here is an analogous definition for the independence

of two rvs.

DEFINITION

Two random variables X and Y are said to be independent if for every pair of x and y values,

p x; yð Þ ¼ pX xð Þ � pY yð Þ when X and Y are discrete

or

f x; yð Þ ¼ f X xð Þ � f Y yð Þ when X and Y are continuous

ð4:1Þ

If Eq. (4.1) is not satisfied for all (x, y), then X and Y are said to be dependent.

The definition says that two variables are independent if their joint pmf or pdf is the product of the

two marginal pmfs or pdfs.

Example 4.6 In the insurance situation of Examples 4.1 and 4.2,

p 100; 100ð Þ ¼ :10 6¼ :5ð Þ :25ð Þ ¼ pX 100ð Þ � pY 100ð Þ
so X and Y are not independent. Independence of X and Y requires that every entry in the joint

probability table be the product of the corresponding row and column marginal probabilities. ■

Example 4.7 (Example 4.5 continued) Because f(x, y) in the nut scenario has the form of a product,

X and Y might appear to be independent. However, although f X
3
4

� � ¼ f Y
3
4

� � ¼ 9
16
, f 3

4
; 3
4

� � ¼ 0 6¼
9
16
� 9
16
, so the variables are not in fact independent. To be independent, f(x, y) must have the form

g(x) � h(y) and the region of positive density must be a rectangle whose sides are parallel to the

coordinate axes. ■

Independence of two random variables most often arises when the description of the experiment

under study tells us that X and Y have no effect on each other. Then once the marginal pmfs or pdfs
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have been specified, the joint pmf or pdf is simply the product of the two marginal functions. It

follows that

P a � X � b, c � Y � dð Þ ¼ P a � X � bð Þ � P c � Y � dð Þ
Example 4.8 Suppose that the lifetimes of two components are independent of each other and that

the first lifetime, X1, has an exponential distribution with parameter λ1 whereas the second, X2, has an

exponential distribution with parameter λ2. Then the joint pdf is

f x1; x2ð Þ ¼ f X1

�
x1
� � f X2

�
x2
�

¼ λ1e�λ1x1 � λ2e�λ2x2 ¼ λ1λ2e�λ1x1�λ2x2 x1 > 0, x2 > 0

0 otherwise

�

Let λ1 ¼ 1/1000 and λ2 ¼ 1/1200, so that the expected lifetimes are 1000 h and 1200 h, respec-

tively. The probability that both component lifetimes are at least 1500 h is

P X1 � 1500,X2 � 1500ð Þ ¼ P
�
X1 � 1500

� � P�X2 � 1500
�

¼
ð1
1500

λ1e
�λ1x1dx1 �

ð1
1500

λ2e
�λ2x2dx2

¼ e�λ1 1500ð Þ � e�λ2 1500ð Þ ¼ :2231ð Þ�:2865� ¼ :0639

The probability that the sum of their lifetimes, X1 + X2, is at most 3000 h requires a double integral

of the joint pdf:

P X1 þ X2 � 3000ð Þ ¼ P X1 � 3000� X2ð Þ ¼
ð3000
0

ð3000�x2

0

f x1; x2ð Þdx1dx2

¼
ð3000
0

ð3000�x2

0

λ1λ2e�λ1x1�λ2x2dx1dx2 ¼
ð3000
0

λ2e�λ2x2 �e�λ1x1
	 
3000�x2

0
dx2

¼
ð3000
0

λ2e�λ2x2 1� e�λ1 3000�x2ð Þ	 

dx2 ¼ λ2

ð3000
0

e�λ2x2 � e�3000λ1e λ1�λ2ð Þx2	 

dx2 ¼ :7564 ■

4.1.4 More Than Two Random Variables

To model the joint behavior of more than two random variables, we extend the concept of a joint

distribution of two variables.

DEFINITION

If X1, X2, . . ., Xn are all discrete random variables, the joint pmf of the variables is the function

p x1; x2; . . . ; xnð Þ ¼ P X1 ¼ x1 \ X2 ¼ x2 \ . . . \ Xn ¼ xnð Þ
If the variables are continuous, the joint pdf of X1, X2, . . ., Xn is the function f(x1, x2, . . ., xn)

such that for any n intervals [a1, b1], . . ., [an, bn],

P a1 � X1 � b1, . . . , an � Xn � bnð Þ ¼
ðb1
a1

. . .

ðbn
an

f x1; . . . ; xnð Þdxn . . . dx1
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Example 4.9 A binomial experiment consists of n dichotomous (success-failure), homogenous

(constant success probability) independent trials. Now consider a trinomial experiment in which

each of the n trials can result in one of three possible outcomes. For example, each successive

customer at a store might pay with cash, a credit card, or a debit card. The trials are assumed

independent. Let p1 ¼ P(trial results in a type 1 outcome) and define p2 and p3 analogously for type

2 and type 3 outcomes. The random variables of interest here are Xi ¼ the number of trials that result

in a type i outcome for i ¼ 1, 2, 3.

In n ¼ 10 trials, the probability that the first five are type 1 outcomes, the next three are type 2,

and the last two are type 3—i.e., the probability of the experimental outcome 1111122233—is

p1
5 � p23 � p32. This is also the probability of the outcome 1122311123, and in fact the probability of

any outcome that has exactly five 1s, three 2s, and two 3s. Now to determine the probability

P(X1 ¼ 5, X2 ¼ 3, and X3 ¼ 2), we have to count the number of outcomes that have exactly five

1s, three 2s, and two 3s. First, there are
10

5

� �
ways to choose five of the trials to be the type

1 outcomes. Now from the remaining five trials, we choose three to be the type 2 outcomes, which can

be done in
5

3

� �
ways. This determines the remaining two trials which consist of type 3 outcomes. So

the total number of ways of choosing five 1s, three 2s, and two 3s is

10

5

� �
� 5

3

� �
¼ 10!

5!5!
� 5!

3!2!
¼ 10!

5!3!2!
¼ 2520

Thus we see that P(X1 ¼ 5, X2 ¼ 3, X3 ¼ 2) ¼ 2520p1
5 � p23 � p32. Generalizing this to n trials

gives

p x1; x2; x3ð Þ ¼ P X1 ¼ x1, x2,X2 ¼ x2,X3 ¼ x3ð Þ ¼ n!

x1!x2!x3!
px11 p

x2
2 p

x3
3

for x1 ¼ 0, 1, 2, . . .; x2 ¼ 0, 1, 2, . . .; x3 ¼ 0, 1, 2, . . . such that x1 + x2 + x3 ¼ n. Notice that whereas
there are three random variables here, the third variable X3 is actually redundant, because for example

in the case n ¼ 10, having X1 ¼ 5 and X2 ¼ 3 implies that X3 ¼ 2 (just as in a binomial experiment

there are actually two rvs—the number of successes and number of failures—but the latter is

redundant).

As an example, the genotype of a pea section can be either AA, Aa, or aa. A simple genetic model

specifies P(AA) ¼ .25, P(Aa) ¼ .50, and P(aa) ¼ .25. If the alleles of ten independently obtained

sections are determined, the probability that exactly five of these are Aa and two are AA is

p 2; 5; 3ð Þ ¼ 10!

2!5!3!
:25ð Þ2 :50ð Þ5 :25ð Þ3 ¼ :0769 ■

The trinomial scenario of Example 4.9 can be generalized by considering a multinomial experi-

ment consisting of n independent and identical trials, in which each trial can result in any one of

r possible outcomes. Let pi ¼ P(outcome i on any particular trial), and define random variables by

Xi ¼ the number of trials resulting in outcome i (i ¼ 1, . . ., r). The joint pmf of X1, . . ., Xr is called the

multinomial distribution. An argument analogous to what was done in Example 4.9 gives the joint

pmf of X1, . . ., Xr :
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p x1; . . . ; xrð Þ ¼
n!

x1!x2!� � �xr! p
x1
1 � � � � � pxrr for xi ¼ 0, 1, 2, . . .with x1 þ � � � þ xr ¼ n

0 otherwise

8<
:

The case r ¼ 2 reduces to the binomial distribution, with X1 ¼ number of successes and X2 ¼
n � X1 ¼ number of failures. Both the multinomial and binomial distributions model discrete rvs

(counts). Next, let’s consider some examples with more than two continuous random variables.

Example 4.10 When a certain method is used to collect a fixed volume of rock samples in a region,

there are four resulting rock types. Let X1, X2, and X3 denote the proportion by volume of rock types

1, 2, and 3 in a randomly selected sample (the proportion of rock type 4 is 1 � X1 � X2 � X3, so a

variable X4 would be redundant). If the joint pdf of X1, X2, X3 is

f x1; x2; x3ð Þ ¼ kx1x2 1� x3ð Þ
0

(
0 � x1 � 1, 0 � x2 � 1, 0 � x3 � 1, x1 þ x2 þ x3 � 1

otherwise

then k is determined by

1 ¼
ð1
�1

ð1
�1

ð1
�1

f x1; x2; x3ð Þdx3dx2dx1

¼
ð1
0

ð1�x1

0

ð1�x1�x2

0

kx1x2 1� x3ð Þdx3
� �

dx2

� �
dx1

This iterated integral has value k/144, so k ¼ 144. The probability that rocks of types 1 and

2 together account for at most 50% of the sample is

P X1 þ X2 � :5ð Þ ¼
ððð

0 � xi � 1 for i ¼ 1, 2, 3

x1 þ x2 þ x3 � 1, x1 þ x2 � :5

� � f x1; x2; x3ð Þdx3dx2dx1

¼
ð:5
0

ð:5�x1

0

ð1�x1�x2

0

144x1x2 1� x3ð Þdx3
� �

dx2

� �
dx1 ¼ :6066 ■

The notion of independence of more than two random variables is similar to the notion of

independence of more than two events. Random variables X1, X2, . . ., Xn are said to be independent

if for every subset Xi1 ,Xi2 , . . . ,Xik of the variables (each pair, each triple, and so on), the joint pmf or

pdf of the subset is equal to the product of the marginal pmfs or pdfs. Thus if the variables are

independent with n ¼ 4, then the joint pmf or pdf of any two variables is the product of the two

marginals, and similarly for any three variables and all four variables together. Most important, once

we are told that n variables are independent, then the joint pmf or pdf is the product of the nmarginals.

Example 4.11 If X1, . . ., Xn represent the lifetimes of n components, the components operate

independently of each other, and each lifetime is exponentially distributed with parameter λ, then

f x1; x2; . . . ; xnð Þ ¼ λe�λx1
� � � λe�λx2

� � � � � � � λe�λxn
� �

¼ λne�λΣxi x1 > 0, x2 > 0, . . . , xn > 0

0 otherwise

�
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If these n components are connected in series, so that the system will fail as soon as a single

component fails, then the probability that the system lasts past time t is

P X1 > t, . . . ,Xn > tð Þ ¼
ð1
t

. . .

ð1
t

f x1; . . . ; xnð Þdx1 . . . dxn

¼
ð1
t

λe�λx1dx1

� �
� � �

ð1
t

λe�λxndxn

� �
¼ e�λt
� �n ¼ e�nλt

Therefore,

P system lifetime � tð Þ ¼ 1� e�nλt for t � 0

which shows that system lifetime has an exponential distribution with parameter nλ; the expected

value of system lifetime is 1/(nλ).
A variation on the foregoing scenario appeared in the article “A Method for Correlating Field Life

Degradation with Reliability Prediction for Electronic Modules” (Quality and Reliability Engr. Intl.,

2005: 715–726). The investigators considered a circuit card with n soldered chip resistors. The failure

time of a card is the minimum of the individual solder connection failure times (mileages here). It was

assumed that the solder connection failuremileageswere independent, that failuremileagewould exceed

t if and only if the shear strength of a connection exceeded a threshold d, and that each shear strength was
normally distributed with a mean value and standard deviation that depended on the value of mileage t:

μ(t) ¼ a1 � a2t and σ(t) ¼ a3 + a4t (a weld’s shear strength typically deteriorates and becomes more

variable as mileage increases). Then the probability that the failure mileage of a card exceeds t is

P T > tð Þ ¼ 1�Φ
d � a1 � a2tð Þ

a3 þ a4t

� �� �n

The cited article suggested values for d and the ais based on data. In contrast to the exponential

scenario, normality of individual lifetimes does not imply normality of system lifetime. ■

Example 4.11 gives you a taste of the sub-field of probability called reliability, the study of how

long devices and/or systems operate; see Exercises 16 and 17 as well. We will explore reliability in

great depth in Sect. 4.8.

4.1.5 Exercises: Section 4.1 (1–22)

1. A service station has both self-service and full-service islands. On each island, there is a single

regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-

service island at a particular time, and let Y denote the number of hoses on the full-service island in

use at that time. The joint pmf of X and Y appears in the accompanying table.

y

p(x, y) 0 1 2

x

0 .10 .04 .02

1 .08 .20 .06

2 .06 .14 .30

(a) What is P(X ¼ 1 and Y ¼ 1)?

(b) Compute P(X � 1 and Y � 1).

(c) Give a word description of the event {X 6¼ 0 and Y 6¼ 0}, and compute the probability of this

event.
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(d) Compute the marginal pmf of X and of Y. Using pX(x), what is P(X � 1)?

(e) Are X and Y independent rvs? Explain.

2. A large but sparsely populated county has two small hospitals, one at the south end of the county

and the other at the north end. The south hospital’s emergency room has 4 beds, whereas the north

hospital’s emergency room has only 3 beds. Let X denote the number of south beds occupied at a

particular time on a given day, and let Y denote the number of north beds occupied at the same time

on the same day. Suppose that these two rvs are independent, that the pmf of X puts probability

masses .1, .2, .3, .2, and .2 on the x values 0, 1, 2, 3, and 4, respectively, and that the pmf of

Y distributes probabilities .1, .3, .4, and .2 on the y values 0, 1, 2, and 3, respectively.

(a) Display the joint pmf of X and Y in a joint probability table.

(b) Compute P(X � 1 and Y � 1) by adding probabilities from the joint pmf, and verify that this

equals the product of P(X � 1) and P(Y � 1).

(c) Express the event that the total number of beds occupied at the two hospitals combined is at

most 1 in terms of X and Y, and then calculate this probability.

(d) What is the probability that at least one of the two hospitals has no beds occupied?

3. A market has both an express checkout line and a superexpress checkout line. Let X1 denote the

number of customers in line at the express checkout at a particular time of day, and let X2 denote

the number of customers in line at the superexpress checkout at the same time. Suppose the joint

pmf of X1 and X2 is as given in the accompanying table.

x2
0 1 2 3

0 .08 .07 .04 .00

1 .06 .15 .05 .04

x1 2 .05 .04 .10 .06

3 .00 .03 .04 .07

4 .00 .01 .05 .06

(a) What is P(X1 ¼ 1, X2 ¼ 1), that is, the probability that there is exactly one customer in each

line?

(b) What is P(X1 ¼ X2), that is, the probability that the numbers of customers in the two lines are

identical?

(c) Let A denote the event that there are at least two more customers in one line than in the other

line. Express A in terms of X1 and X2, and calculate the probability of this event.

(d) What is the probability that the total number of customers in the two lines is exactly four? At

least four?

(e) Determine the marginal pmf of X1, and then calculate the expected number of customers in

line at the express checkout.

(f) Determine the marginal pmf of X2.

(g) By inspection of the probabilities P(X1 ¼ 4), P(X2 ¼ 0), and P(X1 ¼ 4, X2 ¼ 0), are X1 and

X2 independent random variables? Explain.

4. Suppose 51% of the individuals in a certain population have brown eyes, 32% have blue eyes, and

the remainder have green eyes. Consider a random sample of 10 people from this population.

(a) What is the probability that 5 of the 10 people have brown eyes, 3 of 10 have blue eyes, and

the other 2 have green eyes?

(b) What is the probability that exactly one person in the sample has blue eyes and exactly one

has green eyes?
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(c) What is the probability that at least 7 of the 10 people have brown eyes? [Hint: Think of

brown as a success and all other eye colors as failures.]

5. At a certain university, 20% of all students are freshmen, 18% are sophomores, 21% are juniors,

and 41% are seniors. As part of a promotion, the university bookstore is running a raffle for which

all students are eligible. Ten students will be randomly selected to receive prizes (in the form of

textbooks for the term).

(a) What is the probability the winners consist of two freshmen, two sophomores, two juniors,

and four seniors?

(b) What is the probability the winners are split equally among underclassmen (freshmen and

sophomores) and upperclassmen (juniors and seniors)?

(c) The raffle resulted in no freshmen being selected. The freshman class president complained

that something must be amiss for this to occur. Do you agree? Explain.

6. According to the Mars Candy Company, the long-run percentages of various colors of M&M’s

milk chocolate candies are as follows:

Blue: 24% Orange: 20% Green: 16% Yellow: 14% Red: 13% Brown: 13%

(a) In a random sample of 12 candies, what is the probability that there are exactly two of each

color?

(b) In a random sample of 6 candies, what is the probability that at least one color is not included?

(c) In a random sample of 10 candies, what is the probability that there are exactly 3 blue candies

and exactly 2 orange candies?

(d) In a random sample of 10 candies, what is the probability that there are at most 3 orange

candies? [Hint: Think of an orange candy as a success and any other color as a failure.]

(e) In a random sample of 10 candies, what is the probability that at least 7 are either blue,

orange, or green?

7. The number of customers waiting for gift-wrap service at a department store is an rv X with

possible values 0, 1, 2, 3, 4 and corresponding probabilities .1, .2, .3, .25, .15. A randomly selected

customer will have 1, 2, or 3 packages for wrapping with probabilities .6, .3, and .1, respectively.

Let Y ¼ the total number of packages to be wrapped for the customers waiting in line (assume that

the number of packages submitted by one customer is independent of the number submitted by any

other customer).

(a) Determine P(X ¼ 3, Y ¼ 3), that is, p(3, 3).
(b) Determine p(4, 11).

8. Let X denote the number of Canon digital cameras sold during a particular week by a certain store.

The pmf of X is

x 0 1 2 3 4

pX(x) .1 .2 .3 .25 .15

Sixty percent of all customers who purchase these cameras also buy an extended warranty. Let

Y denote the number of purchasers during this week who buy an extended warranty.

(a) What is P(X ¼ 4, Y ¼ 2)? [Hint: This probability equals P(Y ¼ 2jX ¼ 4) � P(X ¼ 4); now

think of the four purchases as four trials of a binomial experiment, with success on a trial

corresponding to buying an extended warranty.]

(b) Calculate P(X ¼ Y ).

(c) Determine the joint pmf of X and Y and then the marginal pmf of Y.
9. The joint probability distribution of the number X of cars and the number Y of buses per signal

cycle at a proposed left-turn lane is displayed in the accompanying joint probability table.
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y

p(x, y) 0 1 2

0 .025 .015 .010
1 .050 .030 .020
2 .125 .075 .050

x 3 .150 .090 .060
4 .100 .060 .040
5 .050 .030 .020

(a) What is the probability that there is exactly one car and exactly one bus during a cycle?

(b) What is the probability that there is at most one car and at most one bus during a cycle?

(c) What is the probability that there is exactly one car during a cycle? Exactly one bus?

(d) Suppose the left-turn lane is to have a capacity of five cars, and one bus is equivalent to three

cars. What is the probability of an overflow during a cycle?

(e) Are X and Y independent rvs? Explain.

10. A stockroom currently has 30 components of a certain type, of which 8 were provided by supplier

1, 10 by supplier 2, and 12 by supplier 3. Six of these are to be randomly selected for a particular

assembly. Let X ¼ the number of supplier 1’s components selected, Y ¼ the number of supplier

2’s components selected, and p(x, y) denote the joint pmf of X and Y.

(a) What is p(3, 2)? [Hint: Each sample of size 6 is equally likely to be selected. Therefore,

p(3, 2) ¼ (number of outcomes with X ¼ 3 and Y ¼ 2)/(total number of outcomes). Now

use the product rule for counting to obtain the numerator and denominator.]

(b) Using the logic of part (a), obtain p(x, y). (This can be thought of as a multivariate

hypergeometric distribution—sampling without replacement from a finite population

consisting of more than two categories.)

11. Each front tire of a vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air

pressure in each tire is a random variable—X for the right tire and Y for the left tire, with joint pdf

f x; yð Þ ¼ k x2 þ y2ð Þ 20 � x � 30, 20 � y � 30

0 otherwise

�

(a) What is the value of k?

(b) What is the probability that both tires are underfilled?

(c) What is the probability that the difference in air pressure between the two tires is at most 2 psi?

(d) Determine the (marginal) distribution of air pressure in the right tire alone.

(e) Are X and Y independent rvs?

12. Annie and Alvie have agreed to meet between 5:00 and 6:00 p.m. for dinner at a local health-food

restaurant. Let X ¼ Annie’s arrival time and Y ¼ Alvie’s arrival time. Suppose X and Y are

independent with each uniformly distributed on the interval [5, 6].

(a) What is the joint pdf of X and Y?

(b) What is the probability that they both arrive between 5:15 and 5:45?

(c) If the first one to arrive will wait only 10 min before leaving to eat elsewhere, what is the

probability that they have dinner at the health-food restaurant? [Hint: The event of interest is

A ¼ x; yð Þ :j x� y j� 1
6

 �
:]

13. Two different professors have just submitted final exams for duplication. Let X denote the

number of typographical errors on the first professor’s exam and Y denote the number of such

errors on the second exam. Suppose X has a Poisson distribution with parameter μ1, Y has a

Poisson distribution with parameter μ2, and X and Y are independent.
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(a) What is the joint pmf of X and Y?

(b) What is the probability that at most one error is made on both exams combined?

(c) Obtain a general expression for the probability that the total number of errors in the two

exams is m (where m is a nonnegative integer). [Hint: A ¼ {(x, y): x + y ¼ m} ¼ {(m, 0),

(m � 1, 1), . . ., (1, m � 1), (0, m)}. Now sum the joint pmf over (x, y) 2 A and use the

binomial theorem, which says that

Xm
k¼0

m
k

� �
akbm�k ¼ aþ bð Þm

for any a, b.]

14. Two components of a computer have the following joint pdf for their useful lifetimes X and Y:

f x; yð Þ ¼ xe�x 1þyð Þ x � 0 and y � 0

0 otherwise

�

(a) What is the probability that the lifetime X of the first component exceeds 3?

(b) What are the marginal pdfs of X and Y? Are the two lifetimes independent? Explain.

(c) What is the probability that the lifetime of at least one component exceeds 3?

15. You have two lightbulbs for a particular lamp. Let X ¼ the lifetime of the first bulb and Y ¼ the

lifetime of the second bulb (both in thousands of hours). Suppose that X and Y are independent

and that each has an exponential distribution with parameter λ ¼ 1.

(a) What is the joint pdf of X and Y?

(b) What is the probability that each bulb lasts at most 1000 h (i.e., X � 1 and Y � 1)?

(c) What is the probability that the total lifetime of the two bulbs is at most 2? [Hint: Draw a

picture of the region A ¼ {(x, y): x � 0, y � 0, x + y � 2} before integrating.]

(d) What is the probability that the total lifetime is between 1 and 2?

16. Suppose that you have ten lightbulbs, that the lifetime of each is independent of all the other

lifetimes, and that each lifetime has an exponential distribution with parameter λ.
(a) What is the probability that all ten bulbs fail before time t?

(b) What is the probability that exactly k of the ten bulbs fail before time t?
(c) Suppose that nine of the bulbs have lifetimes that are exponentially distributed with

parameter λ and that the remaining bulb has a lifetime that is exponentially distributed

with parameter θ (it is made by another manufacturer). What is the probability that exactly

five of the ten bulbs fail before time t?

17. Consider a system consisting of three components as pictured. The system will continue to function

as long as the first component functions and either component 2 or component 3 functions. Let X1,

X2, and X3 denote the lifetimes of components 1, 2, and 3, respectively. Suppose the Xis are

independent of each other and each Xi has an exponential distribution with parameter λ.

1

2

3

(a) Let Y denote the system lifetime. Obtain the cumulative distribution function of Y and

differentiate to obtain the pdf. [Hint: F(y) ¼ P(Y � y); express the event {Y � y} in terms

of unions and/or intersections of the three events {X1 � y}, {X2 � y}, and {X3 � y}.]
(b) Compute the expected system lifetime.
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18. (a) For f(x1, x2, x3) as given in Example 4.10, compute the joint marginal density function of

X1 and X3 alone (by integrating over x2).
(b) What is the probability that rocks of types 1 and 3 together make up at most 50% of the

sample? [Hint: Use the result of part (a).]

(c) Compute the marginal pdf of X1 alone. [Hint: Use the result of part (a).]
19. An ecologist selects a point inside a circular sampling region according to a uniform distribution.

Let X ¼ the x coordinate of the point selected and Y ¼ the y coordinate of the point selected. If
the circle is centered at (0, 0) and has radius r, then the joint pdf of X and Y is

f x; yð Þ ¼
1

πr2
x2 þ y2 � r2

0 otherwise

8<
:

(a) What is the probability that the selected point is within r/2 of the center of the circular

region? [Hint: Draw a picture of the region of positive density D. Because f(x, y) is constant

on D, computing a probability reduces to computing an area.]

(b) What is the probability that both X and Y differ from 0 by at most r/2?

(c) Answer part (b) for r=
ffiffiffi
2

p
replacing r/2.

(d) What is the marginal pdf of X? Of Y? Are X and Y independent?

20. Each customer making a particular Internet purchase must pay with one of three types of

credit cards (think Visa, MasterCard, AmEx). Let Ai (i ¼ 1, 2, 3) be the event that a type

i credit card is used, with P(A1) ¼ .5, P(A2) ¼ .3, P(A3) ¼ .2. Suppose that the number of

customers who make a purchase on a given day, N, is a Poisson rv with parameter μ. Define
rvs X1, X2, X3 by Xi ¼ the number among the N customers who use a type i card (i ¼ 1, 2, 3).

Show that these three rvs are independent with Poisson distributions having parameters .5μ, .3μ,
and .2μ, respectively. [Hint: For non-negative integers x1, x2, x3, let n ¼ x1 + x2 + x3. Then

P(X1 ¼ x1, X2 ¼ x2, X3 ¼ x3) ¼ P(X1 ¼ x1, X2 ¼ x2, X3 ¼ x3, N ¼ n). Now condition on

N ¼ n, in which case the three Xis have a trinomial distribution (multinomial with 3 categories)

with category probabilities .5, .3, and .2.]

21. Consider randomly selecting two points A and B on the circumference of a circle by selecting

their angles of rotation, in degrees, independently from a uniform distribution on the interval [0,

360]. Connect points A and B with a straight line segment. What is the probability that this

random chord is longer than the side of an equilateral triangle inscribed inside the circle?

(This is called Bertrand’s Chord Problem in the probability literature. There are other ways of

randomly selecting a chord that give different answers from the one appropriate here.) [Hint:

Place one of the vertices of the inscribed triangle at A. You should then be able to intuit the

answer visually without having to do any integration.]

22. Section 3.8 introduced the accept–reject method for simulating continuous rvs. Refer back to that

algorithm in order to answer the questions below.

(a) Show that the probability a candidate value is “accepted” equals 1/c. [Hint:According to the
algorithm, this occurs iff U � f(Y )/cg(Y ), where U ~ Unif[0, 1) and Y ~ g. Compute the

relevant double integral.]

(b) Argue that the average number of candidates required to generate a single accepted value is c.
(c) Show that the accept–reject method does result in an observation from the pdf f by

showing that P(accepted value � x) ¼ F(x), where F is the cdf corresponding to f.

[Hint: Let X denote the accepted value. Then P(X � x) ¼ P(Y � x | Y accepted) ¼
P(Y � x \ Y accepted)/P(Y accepted).]
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4.2 Expected Values, Covariance, and Correlation

We previously saw that any function h(X) of a single rv X is itself a random variable. However, to

compute E[h(X)], it was not necessary to obtain the probability distribution of h(X); instead, E[h(X)]

was computed as a weighted average of h(X) values, where the weight function was the pmf p(x) or

pdf f(x) of X. A similar result holds for a function h(X, Y ) of two jointly distributed random variables.

PROPOSITION

Let X and Y be jointly distributed rvs with pmf p(x, y) or pdf f(x, y) according to whether the

variables are discrete or continuous. Then the expected value of a function h(X, Y ), denoted by

E[h(X, Y )] or μh(X,Y ), is given by

E h X; Yð Þ½ � ¼

X
x

X
y

h x; yð Þ � p x; yð Þ if X and Y are discreteð1
�1

ð1
�1

h x; yð Þ � f x; yð Þdxdy if X and Y are continuous

8>><
>>: ð4:2Þ

This is sometimes referred to as the Law of the Unconscious Statistician.

The method of computing the expected value of a function h(X1, . . ., Xn) of n random variables is

similar to Eq. (4.2). If the Xis are discrete, E[h(X1, . . ., Xn)] is an n-dimensional sum; if the Xis are

continuous, it is an n-dimensional integral.

Example 4.12 Five friends have purchased tickets to a concert. If the tickets are for seats 1–5 in a

particular row and the tickets are randomly distributed among the five, what is the expected number of

seats separating any particular two of the five friends? Let X and Y denote the seat numbers of the first

and second individuals, respectively. Possible (X, Y) pairs are {(1, 2), (1, 3), . . ., (5, 4)}, and the joint
pmf of (X, Y) is

p x; yð Þ ¼
1

20
x ¼ 1, . . . , 5; y ¼ 1, . . . , 5; x 6¼ y

0 otherwise

8<
:

The number of seats separating the two individuals is h(X, Y ) ¼ jX � Yj � 1. The accompanying

table gives h(x, y) for each possible (x, y) pair.

x

h(x, y) 1 2 3 4 5

1 – 0 1 2 3

2 0 – 0 1 2

y 3 1 0 – 0 1

4 2 1 0 – 0

5 3 2 1 0 –
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Thus

E h X; Yð Þ½ � ¼
XX

x;yð Þ
h x; yð Þ � p x; yð Þ ¼

X5
x ¼ 1

x 6¼ y

X5
y ¼ 1

j x� y j �1ð Þ � 1
20

¼ 1

■

Example 4.13 In Example 4.5, the joint pdf of the amount X of almonds and amount Y of cashews in

a 1-lb can of nuts was

f x; yð Þ ¼ 24xy 0 � x � 1, 0 � y � 1, xþ y � 1

0 otherwise

�

If 1 lb of almonds costs the company $6.00, 1 lb of cashews costs $10.00, and 1 lb of peanuts costs

$3.50, then the total cost of the contents of a can is

h X; Yð Þ ¼ 6X þ 10Y þ 3:5 1� X � Yð Þ ¼ 3:5þ 2:5X þ 6:5Y

(since 1 � X � Y of the weight consists of peanuts). The expected total cost is

E h X; Yð Þ½ � ¼
ð1
�1

ð1
�1

h x; yð Þ � f x; yð Þdxdy

¼
ð1
0

ð1�x

0

3:5þ 2:5xþ 6:5yð Þ � 24xy dydx ¼ $7:10 ■

4.2.1 Properties of Expected Value

In Chaps. 2 and 3, we saw that expected values can be distributed across addition, subtraction, and

multiplication by constants. In the language of mathematics, expected value is a linear operator. This

was a simple consequence of expectation being a sum or an integral, both of which are linear. This

obvious but important property, linearity of expectation, extends to more than one variable.

LINEARITY OF EXPECTATION

Let X and Y be random variables. Then, for any functions h1, h2 and any constants a1, a2, b,

E a1h1 X; Yð Þ þ a2h2 X; Yð Þ þ b½ � ¼ a1E h1 X; Yð Þ½ � þ a2E h2 X; Yð Þ½ � þ b

In the previous example, E(3.5 + 2.5X + 6.5Y ) can be rewritten as 3.5 + 2.5E(X) + 6.5E(Y ); the
means of X and Y can be computed either by using Eq. (4.2) or by first finding the marginal pdfs of

X and Y and then computing the appropriate single integrals.

As another illustration, linearity of expectation tells us that for any two rvs X and Y,

E 5XY2 � 4XY þ eX þ 12
� � ¼ 5E XY2

� �� 4E XYð Þ þ E eX
� �þ 12 ð4:3Þ

In general, we cannot distribute the expected value operation any further. But when h(X, Y ) is

a product of a function of X and a function of Y, the expected value simplifies in the case of

independence.
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THEOREM

Let X and Y be independent random variables. If h(X, Y) ¼ g1(X) � g2(Y), then
E h X; Yð Þ½ � ¼ E g1 Xð Þ � g2 Yð Þ½ � ¼ E g1 Xð Þ½ � � E g2 Yð Þ½ �

Proof We present the proof here for two continuous rvs; the discrete case is similar. Apply Eq. (4.2):

E
	
h X; Yð Þ
 ¼ E

	
g1
�
X
� � g2�Y�
 ¼

ð1
�1

ð1
�1

g1 xð Þ � g2 yð Þ � f �x, y�dx dy by
�
4:2
�

¼
ð1
�1

ð1
�1

g1 xð Þ � g2 yð Þ � f X xð Þ � f Y
�
y
�
dx dy because X and Y are independent

¼
ð1
�1

g1 xð Þ � f X xð Þdx
� � ð1

�1
g2 yð Þ � f Y yð Þdy

� �
¼ E

	
g1 Xð Þ
E	g2�Y�
 ■

So, if X and Y are independent, Eq. (4.3) simplifies further, to 5E(X)E(Y2) � 4E(X)E(Y) +

E(eX) + 12. Not surprisingly, both linearity of expectation and the foregoing corollary can be

extended to more than two random variables.

4.2.2 Covariance

When two random variables X and Y are not independent, it is frequently of interest to assess how

strongly they are related to each other.

DEFINITION

The covariance between two rvs X and Y is

Cov X; Yð Þ ¼ E
	�
X � μX

��
Y � μY

�


¼

X
x

X
y

x� μXð Þ y� μYð Þp x; yð Þ if X and Y are discrete

ð1
�1

ð1
�1

x� μXð Þ y� μYð Þf x; yð Þdxdy if X and Y are continuous

8>><
>>:

The rationale for the definition is as follows. Suppose X and Y have a strong positive relationship to

each other, by which we mean that large values of X tend to occur with large values of Y and small

values of X with small values of Y (e.g., X ¼ height and Y ¼ weight). Then most of the probability

mass or density will be associated with (x � μX) and (y � μY) either both positive (both X and

Y above their respective means) or both negative (X and Y simultaneously below average). So, the

product (x � μX) (y � μY) will tend to be positive. Thus for a strong positive relationship, Cov(X, Y)

should be quite positive, because it’s the expectation of a generally positive quantity. For a strong

negative relationship, the signs of (x � μX) and (y � μY) will tend to be opposite, resulting in a

negative product. Thus for a strong negative relationship, Cov(X, Y) should be quite negative. If X and

Y are not strongly related, positive and negative products will tend to cancel each other, yielding a

covariance near 0. Figure 4.4 illustrates the different possibilities. The covariance depends on both
the set of possible pairs and the probabilities. In Fig. 4.4, the probabilities could be changed without

altering the set of possible pairs, and this could drastically change the value of Cov(X, Y ).
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Example 4.14 The joint and marginal pmfs for X ¼ automobile policy deductible amount and

Y ¼ homeowner policy deductible amount in Example 4.1 were

y

p(x, y) 0 100 200

100 .20 .10 .20
x

250 .05 .15 .30

x 100 250 y 0 100 200

pX(x) .5 .5 pY(y) .25 .25 .50

from which μX ¼ ∑x � pX(x) ¼ 175 and μY ¼ 125. Therefore,

Cov X; Yð Þ ¼
XX

x; yð Þ
x� 175ð Þ y� 125ð Þp x; yð Þ

¼ 100� 175ð Þ�0� 125
��
:20
�þ � � � þ �250� 175

��
200� 125

��
:30
� ¼ 1875 ■

The following proposition summarizes some important properties of covariance.

PROPOSITION

For any two random variables X and Y,

1. Cov(X, Y) ¼ Cov(Y, X)

2. Cov(X, X) ¼ Var(X)

3. (Covariance shortcut formula) Cov(X, Y) ¼ E(XY) � μX � μY
4. (Distributive property of covariance) For any rv Z and any constants, a, b, c,

Cov aX þ bY þ c,Zð Þ ¼ aCov X; Zð Þ þ bCov Y; Zð Þ

Proof Property 1 is obvious from the definition of covariance. To establish property 2, replace Ywith

X in the definition:

Cov X;Xð Þ ¼ E X � μXð Þ X � μXð Þ½ � ¼ E X � μXð Þ2
h i

¼ Var Xð Þ

y
cba

x

yy

x x

mY mY mY

mX mX mX

Fig. 4.4 p(x, y) ¼ .10 for each of ten pairs corresponding to indicated points; (a) positive covariance; (b) negative
covariance; (c) covariance near zero
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To prove property 3, apply linearity of expectation:

Cov X; Yð Þ ¼ E
	
X � μXð Þ�Y � μY

�

¼ E XY � μXY � μYX þ μXμYð Þ
¼ E XYð Þ � μXE

�
Y
�� μYE

�
X
�þ μXμY

¼ E XYð Þ � μXμY � μXμY þ μXμY ¼ E
�
XY
�� μXμY

Property 4 also follows from linearity of expectation (Exercise 39). ■

According to property 3, the covariance shortcut, no intermediate subtractions are necessary to

calculate covariance; only at the end of the computation is μX � μY subtracted from E(XY).

Example 4.15 (Example 4.5 continued) The joint and marginal pdfs of X ¼ amount of almonds and

Y ¼ amount of cashews were

f x; yð Þ ¼ 24xy 0 � x � 1, 0 � y � 1, xþ y � 1

0 otherwise

�

f X xð Þ ¼ 12x 1� xð Þ2 0 � x � 1

0 otherwise

�

with fY(y) obtained by replacing x by y in fX(x). It is easily verified that μX ¼ μY ¼ 2

5
, and

E XYð Þ ¼
ð1
�1

ð1
�1

xyf x; yð Þdxdy ¼
ð1
0

ð1�x

0

xy � 24xy dydx ¼ 8

ð1
0

x2 1� xð Þ3dx ¼ 2

15

Thus Cov X; Yð Þ ¼ 2

15
� 2

5

� �
2

5

� �
¼ 2

15
� 4

25
¼ � 2

75
. A negative covariance is reasonable here

because more almonds in the can implies fewer cashews. ■

4.2.3 Correlation

It would appear that the relationship in the insurance example is quite strong since Cov(X, Y ) ¼ 1875,

whereas in the nut example Cov X; Yð Þ ¼ �2=75 would seem to imply quite a weak relationship.

Unfortunately, the covariance has a serious defect that makes it impossible to interpret a computed

value of the covariance. In the insurance example, suppose we had expressed the deductible amount

in cents rather than in dollars. Then 100X would replace X, 100Y would replace Y, and the resulting

covariance would be Cov(100X, 100Y ) ¼ (100)(100)Cov(X, Y) ¼ 18,750,000. [To see why,

apply properties 1 and 4 of the previous proposition.] If, on the other hand, the deductible amounts

had been expressed in hundreds of dollars, the computed covariance would have changed to

(.01)(.01)(1875) ¼ .1875. The defect of covariance is that its computed value depends critically on

the units of measurement. Ideally, the choice of units should have no effect on a measure of strength

of relationship. This is achieved by scaling the covariance.
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DEFINITION

The correlation coefficient of X and Y, denoted by Corr(X, Y ), or ρX,Y, or just ρ, is defined by

ρX,Y ¼ Cov X; Yð Þ
σX � σY

Example 4.16 It is easily verified that in the insurance scenario of Example 4.14, E(X2) ¼ 36,250,

σX
2 ¼ 36,250 � (175)2 ¼ 5625, σX ¼ 75, E(Y2) ¼ 22,500, σY

2 ¼ 6875, and σY ¼ 82.92. This gives

ρ ¼ 1875

75ð Þ 82:92ð Þ ¼ :301 ■

The following proposition shows that ρ remedies the defect of Cov(X, Y) and also suggests how to

recognize the existence of a strong (linear) relationship.

PROPOSITION

For any two rvs X and Y,

1. Corr(X, Y) ¼ Corr(Y, X)
2. Corr(X, X) ¼ 1

3. (Scale invariance property) If a, b, c, d are constants and ac > 0,

Corr aX þ b, cY þ dð Þ ¼ Corr X; Yð Þ
4. –1 � Corr(X, Y ) � 1

Proof Property 1 is clear from the definition of correlation and the corresponding property of

covariance. For Property 2, write Corr(X, X) ¼ Cov(X, X)/[σX � σX] ¼ Var(X)/σX
2 ¼ 1. The second-

to-last step uses Property 2 of covariance. The proofs of Properties 3 and 4 appear as exercises. ■

Property 3 (scale invariance) says precisely that the correlation coefficient is not affected by a

linear change in the units of measurement. If, say, Y ¼ completion time for a chemical reaction in

seconds and X ¼ temperature in �C, then Y/60 ¼ time in minutes and 1.8X + 32 ¼ temperature

in �F, but Corr(X, Y) will be exactly the same as Corr(1.8X + 32, Y/60).
According to Properties 2 and 4, the strongest possible positive relationship is evidenced by

ρ ¼ +1, whereas the strongest possible negative relationship corresponds to ρ ¼ –1. Therefore, the

correlation coefficient provides information about both the nature and strength of the relationship

between X and Y: the sign of ρ indicates whether X and Y are positively or negatively related, and the

magnitude of ρ describes the strength of that relationship on an absolute 0–1 scale.

While superior to covariance, the correlation coefficient ρ is actually not a completely general

measure of the strength of a relationship.
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PROPOSITION

1. If X and Y are independent, then ρ ¼ 0, but ρ ¼ 0 does not imply independence.

2. ρ ¼ 1 or –1 iff Y ¼ aX + b for some numbers a and b with a 6¼ 0.

Exercise 38 and Example 4.17 relate to Statement 1, and Statement 2 is investigated in Exercises

41 and 42(d).

This proposition says that ρ is a measure of the degree of linear relationship between X and Y, and

only when the two variables are perfectly related in a linear manner will ρ be as positive or negative as
it can be. A ρ less than 1 in absolute value indicates only that the relationship is not completely linear,

but there may still be a very strong nonlinear relation. Also, ρ ¼ 0 does not imply that X and Y are

independent, but only that there is complete absence of a linear relationship. When ρ ¼ 0, X and Y are

said to be uncorrelated. Two variables could be uncorrelated yet highly dependent because of a

strong nonlinear relationship, so be careful not to conclude too much from knowing that ρ ¼ 0.

Example 4.17 Let X and Y be discrete rvs with joint pmf

p x; yð Þ ¼ :25 x; yð Þ ¼ �� 4, 1
�
,
�
4, � 1

�
,
�
2, 2
�
,
�� 2, � 2

�
0 otherwise

�

The points that receive positive probability mass are identified on the (x, y) coordinate system in

Fig. 4.5. It is evident from the figure that the value of X is completely determined by the value of Y and

vice versa, so the two variables are completely dependent. However, by symmetry μX ¼ μY ¼ 0 and

E(XY) ¼ (�4)(.25) + (�4)(.25) + (4)(.25) + (4)(.25) ¼ 0, so Cov(X, Y) ¼ E(XY) � μX � μY ¼ 0

and thus ρX,Y ¼ 0. Although there is perfect dependence, there is also complete absence of any linear

relationship!

The next result provides an alternative view of zero correlation.

PROPOSITION

Two rvs X and Y are uncorrelated if, and only if, E[XY] ¼ μX � μY.

Proof By its definition, Corr(X, Y) ¼ 0 iff Cov(X, Y) ¼ 0. Apply the covariance shortcut formula:

ρ ¼ 0 , Cov X; Yð Þ ¼ 0 , E XY½ � � μX � μY ¼ 0 , E XY½ � ¼ μX � μY ■

2

1

1 2 3 4−1

−1

−2

−2

−3−4

Fig. 4.5 The population of pairs for Example 4.17 ■

4.2 Expected Values, Covariance, and Correlation 261



Contrast this with an earlier proposition from this section: if X and Y are independent rvs, then
E[g1(X)g2(Y )] ¼ E[g1(X)] � E[g2(Y )] for all functions g1 and g2. Thus, independence is stronger than
zero correlation, the latter being the special case corresponding to g1(X) ¼ X and g2(Y ) ¼ Y.

4.2.4 Correlation Versus Causation

A value of ρ near 1 does not necessarily imply that increasing the value of X causes Y to increase.

It implies only that large X values are associated with large Y values. For example, in the population

of children, vocabulary size and number of cavities are quite positively correlated, but it is certainly

not true that cavities cause vocabulary to grow. Instead, the values of both these variables tend to

increase as the value of age, a third variable, increases. For children of a fixed age, there is probably a

very low correlation between number of cavities and vocabulary size. In summary, association (a high

correlation) is not the same as causation.

4.2.5 Exercises: Section 4.2 (23–42)

23. The two most common types of errors made by programmers are syntax errors and logic errors.

Let X denote the number of syntax errors and Y the number of logic errors on the first run of a

program. Suppose X and Y have the following joint pmf for a particular programming

assignment:

x

p(x,y) 0 1 2 3

y

0 .71 .03 .02 .01

1 .04 .06 .03 .01

2 .03 .03 .02 .01

(a) What is the probability a program has more syntax errors than logic errors on the first run?

(b) Find the marginal pmfs of X and Y.
(c) Are X and Y independent? How can you tell?

(d) What is the average number of syntax errors in the first run of a program? What is the

average number of logic errors?

(e) Suppose an evaluator assigns points to each program with the formula 100 � 4X � 9Y.

What is the expected point score for a randomly selected program?

24. An instructor has given a short quiz consisting of two parts. For a randomly selected student, let

X ¼ the number of points earned on the first part and Y ¼ the number of points earned on the

second part. Suppose that the joint pmf of X and Y is given in the accompanying table.

y

p(x, y) 0 5 10 15

x

0 .02 .06 .02 .10

5 .04 .15 .20 .10

10 .01 .15 .14 .01

(a) If the score recorded in the grade book is the total number of points earned on the two parts,

what is the expected recorded score E(X + Y)?
(b) If the maximum of the two scores is recorded, what is the expected recorded score?
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25. The difference between the number of customers in line at the express checkout and the number

in line at the superexpress checkout in Exercise 3 is X1 � X2. Calculate the expected difference.

26. Six individuals, including A and B, take seats around a circular table in a completely random

fashion. Suppose the seats are numbered 1, . . ., 6. Let X ¼ A’s seat number and Y ¼ B’s seat

number. If A sends a written message around the table to B in the direction in which they are

closest, how many individuals (including A and B) would you expect to handle the message?

27. A surveyor wishes to lay out a square region with each side having length L. However, because of
measurement error, he instead lays out a rectangle in which the north–south sides both have

length X and the east–west sides both have length Y. Suppose that X and Y are independent and

that each is uniformly distributed on the interval [L � A, L + A] (where 0 < A < L ). What is the

expected area of the resulting rectangle?

28. Consider a small ferry that can accommodate cars and buses. The toll for cars is $3, and the toll

for buses is $10. Let X and Y denote the number of cars and buses, respectively, carried on a

single trip. Suppose the joint distribution of X and Y is as given in the table of Exercise 9. Compute

the expected revenue from a single trip.

29. Annie and Alvie have agreed to meet for lunch between noon (0:00 p.m.) and 1:00 p.m. Denote

Annie’s arrival time by X, Alvie’s by Y, and suppose X and Y are independent with pdfs

f X xð Þ ¼ 3x2 0 � x � 1

0 otherwise

�

f Y yð Þ ¼ 2y
0

�
0 � y � 1

otherwise

What is the expected amount of time that the one who arrives first must wait for the other person?

[Hint: h(X, Y ) ¼ jX � Yj.]
30. Suppose that X and Y are independent rvs with moment generating functions MX(t) and MY(t),

respectively. If Z ¼ X + Y, show that MZ(t) ¼ MX(t) � MY(t). [Hint: Use the proposition on the

expected value of a product.]

31. Compute the correlation coefficient ρ for X and Y of Example 4.15 (the covariance has already

been computed).

32. (a) Compute the covariance for X and Y in Exercise 24.

(b) Compute ρ for X and Y in the same exercise.

33. (a) Compute the covariance between X and Y in Exercise 11.

(b) Compute the correlation coefficient ρ for this X and Y.

34. Reconsider the computer component lifetimes X and Y as described in Exercise 14. Determine E
(XY). What can be said about Cov(X, Y) and ρ?

35. Refer back to Exercise 23.

(a) Calculate the covariance of X and Y.
(b) Calculate the correlation coefficient of X and Y. Interpret this value.

36. In practice, it is often desired to predict the value of a variable Y from the known value of some

other variable, X. For example, a doctor might wish to predict the lifespan Y of someone who

smokes X cigarettes a day, or an engineer may require predictions of the tensile strength Y of steel

made with concentration X of a certain additive. A linear predictor of Y is anything of the form

Ŷ ¼ aþ bX; the “hat” ^ on Y indicates prediction.

A common measure of the quality of a predictor is given by the mean square prediction error:

E Y � Ŷ
� �2h i
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(a) Show that the choices of a and b that minimize mean square prediction error are

b ¼ ρ � σY
σX

a ¼ μY � b � μX

where ρ ¼ Corr(X, Y). The resulting expression for Ŷ is often called the best linear predictor
of Y, given X. [Hint: Expand the expression for mean square prediction error, apply linearity

of expectation, and then use calculus.]

(b) Determine the mean square prediction error for the best linear predictor. How does the value

of ρ affect this quantity?

37. (a) Recalling the definition of σ2 for a single rv X, write a formula that would be appropriate for

computing the variance of a function h(X, Y) of two random variables. [Hint: Remember

that variance is just a special expected value.]

(b) Use this formula to compute the variance of the recorded score h(X, Y) [¼max(X, Y )] in part

(b) of Exercise 24.

38. Show that when X and Y are independent, Cov(X, Y ) ¼ Corr(X, Y) ¼ 0.

39. Use linearity of expectation to establish the covariance property

Cov aX þ bY þ c,Zð Þ ¼ aCov X; Zð Þ þ bCov Y; Zð Þ
40. (a) Use the properties of covariance to show that Cov(aX + b, cY + d) ¼ acCov(X, Y ).

(b) Use part (a) along with the rescaling property of standard deviation to show that

Corr(aX + b, cY + d) ¼ Corr(X, Y ) when ac > 0 (this is the scale invariance property of

correlation).

(c) What happens if a and c have opposite signs, so ac < 0?

41. Show that if Y ¼ aX + b (a 6¼ 0), then Corr(X, Y ) ¼ +1 or –1. Under what conditions will

ρ ¼ +1?

42. Let ZX be the standardized X, ZX ¼ (X � μX)/σX, let ZY be the standardized Y, ZY ¼ (Y � μY)/σY,
and let ρ ¼ Corr(X, Y).
(a) Show that Corr(X, Y) ¼ Cov(ZX, ZY) ¼ E(ZXZY).

(b) Use the linearity of expectation along with part (a), to show that E[(ZY � ρZX)
2] ¼ 1 � ρ2.

[Hint: If Z is a standardized rv, what are its mean and variance, and how can you use those to

determine E(Z2)?]

(c) Use part (b) to show that –1 � ρ � 1.

(d) Use part (b) to show that ρ ¼ 1 implies that Y ¼ aX + b where a > 0, and ρ ¼ –1 implies

that Y ¼ aX + b where a < 0.

4.3 Properties of Linear Combinations

A linear combination of random variables refers to anything of the form a1X1 + � � � + anXn + b,
where the Xis are random variables and the ais and b are numerical constants. (Some sources do not

include the constant b in the definition.) For example, suppose your investment portfolio with a

particular financial institution includes 100 shares of stock #1, 200 shares of stock #2, and 500 shares

of stock #3. Let X1, X2, and X3 denote the share prices of these three stocks at the end of the current

fiscal year. Suppose also that the financial institution will levy a management fee of $150. Then the

value of your investments with this institution at the end of the year is 100X1 + 200X2 + 500X3 � 150,

which is a particular linear combination. Important special cases include the total X1 + � � � + Xn (take
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a1 ¼ � � � ¼ an ¼ 1, b ¼ 0), the difference of two rvsX1 � X2 (n ¼ 2, a1 ¼ 1, a2 ¼ –1), and anything

of the form aX + b (take n ¼ 1 or, equivalently, set a2 ¼ . . . ¼ an ¼ 0). Another very important

linear combination is the sample mean (X1 + � � � + Xn)/n, conventionally denoted �X; just take a1 ¼
� � � ¼ an ¼ 1/n and b ¼ 0.

Notice that we are not requiring the Xis to be independent or to have the same probability

distribution. All the Xis could have different distributions and therefore different mean values and

standard deviations. In this section, we investigate the general properties of linear combinations.

Section 4.5 will explore some special properties of the total and the sample mean under additional

assumptions.

We first consider the expected value and variance of a linear combination.

THEOREM

Let the rvs X1, X2, . . ., Xn have mean values μ1, . . ., μn and standard deviations σ1, . . ., σn,
respectively.

1. Whether or not the Xis are independent,

E a1X1 þ � � � þ anXn þ bð Þ ¼ a1E
�
X1

�þ � � � þ anE
�
Xn

�þ b

¼ a1μ1 þ � � � þ anμn þ b
ð4:4Þ

and

Var a1X1 þ � � � þ anXn þ bð Þ ¼
Xn
i¼1

Xn
j¼1

aiajCov
�
Xi,Xj

�

¼
Xn
i¼1

a2i σ
2
i þ 2

XX
aiajCov Xi;Xj

� �
i<j

ð4:5Þ

2. If X1, . . ., Xn are independent,

Var a1X1 þ � � � þ anXn þ bð Þ ¼ a21Var
�
X1

�þ � � � þ a2nVar
�
Xn

�
¼ a21σ

2
1 þ � � � þ a2nσ

2
n

ð4:6Þ

and

SD a1X1 þ � � � þ anXn þ bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21σ

2
1 þ � � � þ a2nσ

2
n

q

A paraphrase of Eq. (4.4) is that the expected value of a linear combination is the same linear

combination of the expected values—for example, E(2X1 + 5X2) ¼ 2μ1 + 5μ2. Equation (4.6) in

Statement 2 is a special case of Eq. (4.5) in Statement 1: when the Xis are independent, Cov(Xi,

Xj) ¼ 0 for i 6¼ j (this simplification actually occurs when the Xis are uncorrelated, a weaker

condition than independence).

Proofs for the Case n ¼ 2 To establish Eq. (4.4), we could invoke linearity of expectation from

Sect. 4.2, but we present an independent proof here. Suppose that X1 and X2 are continuous with joint

pdf f(x1, x2). Then
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E a1X1 þ a2X2 þ bð Þ ¼
ð1
�1

ð1
�1

a1x1 þ a2x2 þ bð Þf x1; x2ð Þdx1dx2

¼ a1

ð1
�1

ð1
�1

x1 f x1; x2ð Þdx2dx1 þ a2

ð1
�1

ð1
�1

x2 f x1; x2ð Þdx1dx2

þ b

ð1
�1

ð1
�1

f x1; x2ð Þdx1dx2

¼ a1

ð1
�1

x1

ð1
�1

f x1; x2ð Þdx2
� �

dx1

þ a2

ð1
�1

x2

ð1
�1

f x1; x2ð Þdx1
� �

dx2 þ b 1ð Þ

¼ a1

ð1
�1

x1 f X1
x1ð Þdx1 þ a2

ð1
�1

x2 f X2
x2ð Þdx2 þ b

¼ a1E X1ð Þ þ a2E
�
X2

�þ b

Summation replaces integration in the discrete case. The argument for Eq. (4.5) does not require

specifying whether either variable is discrete or continuous. Recalling that Var(Y) ¼ E[(Y � μY)
2],

Var a1X1 þ a2X2 þ bð Þ ¼ E
	
a1X1 þ a2X2 þ b� a1μ1 þ a2μ2 þ bð Þð Þ2


¼ E
	
a1X1 � a1μ1 þ a2X2 � a2μ2ð Þ2


¼ E
	
a21 X1 � μ1ð Þ2 þ a22

�
X2 � μ2

�
2 þ 2a1a2

�
X1 � μ1

��
X2 � μ2

�

¼ a21E

	
X1 � μ1ð Þ2
þ a22E

	�
X2 � μ2

�
2

þ 2a1a2E

	�
X1 � μ1

��
X2 � μ2

�

where the last equality comes from linearity of expectation. We recognize the terms in this last

expression as variances and covariance, all together a1
2Var(X1) + a2

2 Var(X2) + 2a1a2Cov(X1, X2),

as required. ■

Example 4.18 A gas station sells three grades of gasoline: regular, plus, and premium. These are

priced at $3.50, $3.65, and $3.80 per gallon, respectively. Let X1, X2, and X3 denote the amounts

of these grades purchased (gallons) on a particular day. Suppose the Xis are independent with

μ1 ¼ 1000, μ2 ¼ 500, μ3 ¼ 300, σ1 ¼ 100, σ2 ¼ 80, and σ3 ¼ 50. The revenue from sales is

Y ¼ 3.5X1 + 3.65X2 + 3.8X3, and

E Yð Þ ¼ 3:5μ1 þ 3:65μ2 þ 3:8μ3 ¼ $6465

Var Yð Þ ¼ 3:52σ21 þ 3:652σ22 þ 3:82σ23 ¼ 243, 864

SD Yð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243, 864

p ¼ $493:83 ■

Example 4.19 Recall that a hypergeometric rv X is the number of successes in a random sample of

size n selected without replacement from a population of size N consisting ofM successes and N � M
failures. It is tricky to obtain the mean value and variance of X directly from the pmf, and the

hypergeometric moment generating function is very complicated. We now show how the foregoing

proposition on linear combinations can be used to accomplish this task.

To this end, let X1 ¼ 1 if the first individual or object selected is a success and X1 ¼ 0 if it is a

failure; define X2, X3, . . . , Xn analogously for the second selection, third selection, and so on. Each Xi

is a Bernoulli rv, and each has the same marginal distribution: p(1) ¼ M/N and p(0) ¼ 1 � M/N (this

is obvious for X1, which is based on the very first draw from the population, and can be verified for the
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other draws as well). Thus E(Xi) ¼ 0(1 � M/N) + 1(M/N) ¼ M/N. The total number of successes in

the sample is X ¼ X1 + . . . + Xn (a 1 is added in for each success and a 0 for each failure), so

E Xð Þ ¼ E X1ð Þ þ . . .þ E Xnð Þ ¼ M=N þM=N þ . . .þM=N ¼ n M=Nð Þ ¼ np

where p denotes the success probability on any particular draw (trial). That is, just as in the case of a

binomial rv, the expected value of a hypergeometric rv is the success probability on any trial

multiplied by the number of trials. Notice that we were able to apply Statement 1 of the foregoing

theorem, even though the Xis are not independent.

However, the variance of X here is not the same as the binomial variance, precisely because the

successive draws are not independent. Consider the joint distribution of X1 and X2:

p 1; 1ð Þ ¼ M

N

M � 1

N � 1

� �
, p 0; 0ð Þ ¼ N �M

N

� �
N �M � 1

N � 1

� �
,

p 1; 0ð Þ ¼ p 0; 1ð Þ ¼ M

N

N �M

N � 1

� �

This is also the joint pmf of any pair Xi, Xj. A slightly tedious calculation then results in

Cov Xi;Xj

� � ¼ � p 1� pð Þ
N � 1

i 6¼ jð Þ

Applying the variance formula from statement 1 of the theorem eventually yields

Var Xð Þ ¼ Var X1 þ . . .þ Xnð Þ ¼ nVar X1ð Þ þ n n� 1ð ÞCov X1;X2ð Þ ¼ np 1� pð Þ N � n

N � 1

� �

This is quite close to the binomial variance provided that n is much smaller than N so that the last

term in parentheses is close to 1. ■

The following corollary expresses the n ¼ 2 case of the main theorem for ease of use, including

the important special cases of the sum and the difference of two random variables.

Corollary

For any two rvs X1 and X2, and any constants a1, a2, b,

E a1X1 þ a2X2 þ bð Þ ¼ a1E X1ð Þ þ a2E X2ð Þ þ b

and

Var a1X1 þ a2X2 þ bð Þ ¼ a21Var X1ð Þ þ a22Var X2ð Þ þ 2a1a2Cov X1;X2ð Þ
In particular, E(X1 + X2) ¼ E(X1) + E(X2) and, if X1 and X2 are independent, Var(X1 + X2)

¼ Var(X1) + Var(X2).
1 Also, E(X1 � X2) ¼ E(X1) � E(X2) and, if X1 and X2 are independent,

Var X1 � X2ð Þ ¼ Var X1ð Þ þ Var X2ð Þ:

1 This property of independent rvs can also be written as SD(X1)
2 + SD(X2)

2 ¼ [SD(X1 + X2)]
2. In part because the

formula has the format a2 + b2 ¼ c2, statisticians sometimes call this property the Pythagorean Theorem.
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The expected value of a difference is the difference of the two expected values, but the variance of

a difference between two independent variables is the sum, not the difference, of the two variances.

There is just as much variability in X1 � X2 as in X1 + X2: writing X1 � X2 ¼ X1 + (–1)X2, the term

(–1)X2 has the same amount of variability as X2 itself.

Example 4.20 An automobile manufacturer equips a particular model with either a six-cylinder

engine or a four-cylinder engine. Let X1 and X2 be fuel efficiencies for independently and randomly

selected six-cylinder and four-cylinder cars, respectively. With μ1 ¼ 22, μ2 ¼ 26, σ1 ¼ 1.2, and

σ2 ¼ 1.5,

E X1 � X2ð Þ ¼ μ1 � μ2 ¼ 22� 26 ¼ �4 mpg

Var X1 � X2ð Þ ¼ σ21 þ σ22 ¼ 1:22 þ 1:52 ¼ 3:69

SD X1 � X2ð Þ ¼ ffiffiffiffiffiffiffiffiffi
3:69

p ¼ 1:92 mpg

If we relabel so that X1 refers to the four-cylinder car, then E(X1 � X2) ¼ 26 � 22 ¼ 4 mpg, but

the standard deviation of the difference is still 1.92 mpg. ■

4.3.1 The PDF of a Sum

Generally speaking, knowing the mean and standard deviation of a random variable W is not enough

to specify its probability distribution and thus be able to compute probabilities such as P(W > 10) or

P(W � –2). In the case of independent rvs, a general method exists for determining the pdf of the sum

X1 + � � � + Xn from their marginal pdfs. We present first the result for two random variables.

THEOREM

Suppose X and Y are independent, continuous rvs with marginal pdfs fX(x) and fY(y), respec-

tively. Then the pdf of the rv W ¼ X + Y is given by

f W wð Þ ¼
ð1
�1

f X xð Þf Y w� xð Þdx

[In mathematics, this integral operation is known as the convolution of fX(x) and fY(y) and is

sometimes denoted fW ¼ fX « fY.] The limits of integration are determined by which x values
make both fX(x) > 0 and fY(w � x) > 0.

Proof Since X and Y are independent, their joint pdf is given by fX(x) � fY(y). The cdf of W is then

FW wð Þ ¼ P W � wð Þ ¼ P X þ Y � wð Þ
To calculate P(X + Y � w), we must integrate over the set of numbers {(x, y): x + y � w}, which

is the shaded region indicated in Fig. 4.6.

The resulting limits of integration are –1 < x < 1 and –1 < y � w � x, and so
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FW wð Þ ¼ P
�
X þ Y � w

�
¼
ð1
�1

ðw�x

�1
f X xð Þf Y yð Þdydx ¼

ð1
�1

f X xð Þ
ðw�x

�1
f Y yð Þdydx

¼
ð1
�1

f X xð ÞFY w� xð Þdx

The pdf ofW is the derivative of this expression with respect to w; taking the derivative underneath

the integral sign yields the desired result. ■

By a similar argument, the pdf of W ¼ X + Y can be determined even when X and Y are not

independent. Assuming X and Y have joint pdf f(x, y),

f W wð Þ ¼
ð1
�1

f x,w� xð Þdx

Example 4.21 In a standby system, a component is used until it wears out and is then immediately

replaced by another, not necessarily identical, component. (The second component is said to be “in

standby mode,” i.e., waiting to be used.) The overall lifetime of a standby system is just the sum of the

lifetimes of its individual components. Let X and Y denote the lifetimes of the two components of a

standby system, and suppose X and Y are independent exponentially distributed random variables

with expected lifetimes 3 weeks and 4 weeks, respectively. Let W ¼ X + Y, the lifetime of the

standby system.

Using the first theorem of this section, the expected lifetime of the standby system is E(W ) ¼
E(X) + E(Y ) ¼ 3 + 4 ¼ 7 weeks. Since X and Y are exponential, the variance of each one is the

square of its mean (9 and 16, respectively); since they are also independent,

Var Wð Þ ¼ Var Xð Þ þ Var Yð Þ ¼ 32 þ 42 ¼ 25

It follows that SD(W ) ¼ 5 weeks. Since μW 6¼ σW, W cannot itself be exponentially distributed,

but we can use the previous theorem to find its pdf.

The marginal pdfs of X and Y are fX(x) ¼ (1/3)e–x/3 for x > 0 and fY(y) ¼ (1/4)e–y/4 for y > 0.

Substituting y ¼ w � x, the inequalities x > 0 and w � x > 0 imply 0 < x < w, which are the

limits of integration of the convolution integral:

f W wð Þ ¼
ð1
�1

f X xð Þf Y w� xð Þdx ¼
ð w
0

1=3ð Þe�x=3 1=4ð Þe� w�xð Þ=4dx

¼ 1

12
e�w=4

ð w
0

e�x=12dx

¼ e�w=4 1� e�w=12
� �

, w > 0

y

x

x + y = w

Fig. 4.6 Region of integration for P(X + Y � w)

4.3 Properties of Linear Combinations 269



The pdf of W appears in Fig. 4.7. As a check, the mean and variance of W can be verified directly

from its pdf.

The probability the standby system lasts more than its expected lifetime of 7 weeks is given by

P W > 7ð Þ ¼
ð1
7

f W wð Þdw ¼
ð1
7

e�w=4 1� e�w=12
� �

dw ¼ :4042 ■

As a generalization of the previous proposition, the pdf of the sum W ¼ X1 + � � � + Xn of

n independent, continuous rvs can be determined by successive convolution: fW ¼ f1 « � � � « fn. In

most situations, it isn’t practical to evaluate such a complicated object. Thankfully, as we’ll see next,

such tedious computations can sometimes be avoided with the use of moment generating functions.

4.3.2 Moment Generating Functions for Linear Combinations

A corollary in Sect. 4.2 stated that the expected value of a product of functions of independent random

variables is the product of the individual expected values. We now use this to formulate the moment

generating function of a linear combination of independent random variables.

PROPOSITION

Let X1, X2, . . ., Xn be independent random variables with moment generating functionsMX1
tð Þ,

MX2
tð Þ, . . . ,MXn

tð Þ, respectively. Then the moment generating function of the linear combina-

tion Y ¼ a1X1 + a2X2 + � � � + anXn + b is

MY tð Þ ¼ ebtMX1
a1tð Þ �MX2

a2tð Þ � � � � �MXn
antð Þ

In the special case that a1 ¼ a2 ¼ � � � ¼ an ¼ 1 and b ¼ 0, so Y ¼ X1 + � � � + Xn,

MY tð Þ ¼ MX1
tð Þ �MX2

tð Þ � � � � �MXn
tð Þ

That is, the mgf of a sum of independent rvs is the product of the individual mgfs.

0.10

0.08

0.06

0.04

0.02

0
0 10 20

w

fW(w)

30

Fig. 4.7 The pdf

of W ¼ X + Y for

Example 4.21
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Proof First, we write the moment generating function of Y as the expected value of a product.

MY tð Þ ¼ E
	
etY

 ¼ E

	
et a1X1þa2X2þ���þanXnþbð Þ


¼ E eta1X1þta2X2þ���þtanXnþtb
	 
 ¼ ebtE

	
ea1tX1 � ea2tX2 � � � � � eantXn



The last expression inside brackets is the product of functions of X1, X2, . . ., Xn. Since the Xis are

independent, the expected value can be distributed across this product:

ebtE ea1tX1 � ea2tX2 � � � � � eantXn½ � ¼ ebtE
	
ea1tX1


 � E	ea2tX2

 � � � � � E	eantXn



¼ ebtMX1

ða1tÞ �MX2
ða2tÞ � � � � �MXn

ðantÞ ■

Now suppose we wish to determine the pdf of some linear combination of independent rvs.

Provided we have their mgfs, the previous proposition makes it easy to determine the mgf of the

linear combination. Then, if we can recognize this mgf as belonging to some known distributional

family (binomial, exponential, etc.), the uniqueness property of mgfs guarantees that our linear

combination has that particular distribution. The next several propositions illustrate this technique.

PROPOSITION

If X1, X2, . . ., Xn are independent, normally distributed rvs (with possibly different means and/or

sds), then any linear combination of the Xis also has a normal distribution. In particular, the sum

of independent normally distributed rvs itself has a normal distribution, and the difference

X1 � X2 between two independent, normally distributed variables is itself normally distributed.

Proof Let Y ¼ a1X1 + a2X2 + � � � + anXn + b, where Xi is normally distributed with mean μi and

standard deviation σi, and the Xis are independent. From Sect. 3.3, MXi
tð Þ ¼ eμi tþσ2i t

2=2: Therefore,

MY tð Þ ¼ ebtMX1

�
a1t
� �MX2

�
a2t
� � � � � �MXn

�
ant
�

¼ ebteμ1a1tþσ2
1
a2
1
t2=2eμ2a2tþσ2

2
a2
2
t2=2 � � � � � eμnantþσ2na

2
nt

2=2

¼ e μ1a1þμ2a2þ���þμnanþbð Þtþ σ2
1
a2
1
þσ2

2
a2
2
þ���þσ2na

2
nð Þt2=2

¼ eμtþσ2t2=2

where μ ¼ a1μ1 + a2μ2 + � � � + anμn + b and σ2 ¼ a1
2σ1

2 + a2
2σ2

2 + � � � + an
2σn

2. We recognize this

function as the mgf of a normal random variable, and it follows by the uniqueness property of

mgfs that Y is normally distributed . Notice that the mean and variance are in agreement with the first

proposition of this section. ■

Example 4.22 (Example 4.18 continued) The total revenue from the sale of the three grades of

gasoline on a particular day was Y ¼ 3.5X1 + 3.65X2 + 3.8X3, and we calculated μY ¼ $6465 and

(assuming independence) σY ¼ $493.83. If the Xis are normally distributed, the probability that

revenue exceeds $5000 is

P Y > 5000ð Þ ¼ P Z >
5000� 6465

493:83

� �
¼ P Z > �2:967ð Þ ¼ 1�Φ �2:967ð Þ ¼ :9985 ■

This same method may be applied to Poisson rvs, as the next proposition indicates.
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PROPOSITION

Suppose X1, . . ., Xn are independent Poisson random variables, where Xi has mean μi. Then
Y ¼ X1 + � � � + Xn also has a Poisson distribution, with mean μ1 + � � � + μn.

Proof From Sect. 2.7, the mgf of a Poisson rv with mean μ is eμ et�1ð Þ: Since Y is the sum of the Xis,

and the Xis are independent,

MY tð Þ ¼ MX1
tð Þ� � �MXn

tð Þ ¼ eμ1 et�1ð Þ� � �eμn et�1ð Þ ¼ e μ1þ���þμnð Þ et�1ð Þ

This is the mgf of a Poisson rv with mean μ1 + � � � + μn. Therefore, by the uniqueness property of
mgfs, Y has a Poisson distribution with mean μ1 + � � � + μn. ■

Example 4.23 During the open enrollment period at a large university, the number of freshmen

registering for classes through the online registration system in 1 h follows a Poisson distribution with

mean 80 students; denote this rv by X1. Define X2, X3, and X4 similarly for sophomores, juniors, and

seniors, and suppose the corresponding means are 125, 118, and 140, respectively. Assume these four

counts are independent. The rv Y ¼ X1 + X2 + X3 + X4 represents the total number of undergraduate

students registering in 1 h; by the preceding proposition, Y is also a Poisson rv, but with mean

80 + 125 + 118 + 140 ¼ 463 students and standard deviation
ffiffiffiffiffiffiffiffi
463

p ¼ 21:5 students. The probabil-

ity that more than 500 students enroll during 1 h, exceeding the registration system’s capacity, is then

P(Y > 500) ¼1 � P(Y � 500) ¼ .042 (software was used to perform the calculation). ■
Because of the properties stated in the preceding two propositions, both the normal and Poisson

models are sometimes called additive distributions, meaning that the sum of independent rvs from

that family (normal or Poisson) will also belong to that family. The next proposition shows that not all

of the major probability distributions are additive; its proof is left as an exercise (Exercise 65).

PROPOSITION

Suppose X1, . . ., Xn are independent exponential random variables with common parameter λ.
Then Y ¼ X1 + � � � + Xn has a gamma distribution, with parameters α ¼ n and β ¼ 1/λ (aka the
Erlang distribution).

Notice this proposition requires the Xi to have the same “rate” parameter λ, i.e., the Xis must be

independent and identically distributed. As we saw in Example 4.21, the sum of two independent

exponential rvs with different parameters does not follow an exponential distribution.

4.3.3 Exercises: Section 4.3 (43–65)

43. A shipping company handles containers in three different sizes: (1) 27 ft3 (3 � 3 � 3),

(2) 125 ft3, and (3) 512 ft3. Let Xi (i ¼ 1, 2, 3) denote the number of type i containers shipped
during a given week. With μi ¼ E(Xi) and σi ¼ SD(Xi), suppose the mean values and standard

deviations are as follows:
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μ1 ¼ 200 μ2 ¼ 250 μ3 ¼ 100

σ1 ¼ 10 σ2 ¼ 12 σ3 ¼ 8

(a) Assuming that X1, X2, X3 are independent, calculate the expected value and standard

deviation of the total volume shipped. [Hint: Volume ¼ 27X1 + 125X2 + 512X3.]

(b) Would your calculations necessarily be correct if the Xis were not independent? Explain.

(c) Suppose that the Xis are independent with each one having a normal distribution. What is the

probability that the total volume shipped is more than 100,000 ft3?

44. Let X1, X2, and X3 represent the times necessary to perform three successive repair tasks at a

service facility. Suppose they are independent, normal rvs with expected values μ1, μ2, and μ3 and
variances σ1

2, σ2
2, and σ3

2, respectively.

(a) If μ1 ¼ μ2 ¼ μ3 ¼ 60 and σ1
2 ¼ σ2

2 ¼ σ3
2 ¼ 15, calculate P(X1 + X2 + X3 � 200).

(b) Using the μis and σis given in part (a), what is P(150 � X1 + X2 + X3 � 200)?

(c) Using the μis and σis given in part (a), calculate P 55 � �Xð Þ and P 58 � �X � 62ð Þ: [As noted
at the beginning of this section, �X denotes the sample mean, so here �X ¼ X1 þ X2 þ X3ð Þ=3:]

(d) Using the μis and σis given in part (a), calculate P(–10 � X1 � .5X2 � .5X3 � 5).

(e) If μ1 ¼ 40, μ2 ¼ 50, μ3 ¼ 60, σ1
2 ¼ 10, σ2

2 ¼ 12, and σ3
2 ¼ 14, calculate both

P(X1 + X2 + X3 � 160) and P(X1 + X2 � 2X3).

45. Five automobiles of the same type are to be driven on a 300-mile trip. The first two have

six-cylinder engines, and the other three have four-cylinder engines. Let X1, X2, X3, X4, and X5

be the observed fuel efficiencies (mpg) for the five cars. Suppose these variables are independent

and normally distributed with μ1 ¼ μ2 ¼ 20, μ3 ¼ μ4 ¼ μ5 ¼ 21, and σ2 ¼ 4 for the smaller

engines and 3.5 for the larger engines. Define an rv Y by

Y ¼ X1 þ X2

2
� X3 þ X4 þ X5

3

so that Y is a measure of the difference in efficiency between the six-cylinder and four-cylinder

engines. Compute P(0 � Y) and P(–1 � Y � 1). [Hint: Y ¼ a1X1 + � � � + a5X5, with

a1 ¼ 1
2
, . . . , a5 ¼ �1

3
:]

46. Exercise 28 introduced random variables X and Y, the number of cars and buses, respectively,

carried by a ferry on a single trip. The joint pmf of X and Y is given in the table in Exercise 9. It is

readily verified that X and Y are independent.

(a) Compute the expected value, variance, and standard deviation of the total number of

vehicles on a single trip.

(b) If each car is charged $3 and each bus $10, compute the expected value, variance, and

standard deviation of the revenue resulting from a single trip.

47. A concert has three pieces of music to be played before intermission. The time taken to play each

piece has a normal distribution. Assume that the three times are independent of each other. The

mean times are 15, 30, and 20 min, respectively, and the standard deviations are 1, 2, and 1.5 min,

respectively. What is the probability that this part of the concert takes at most 1 h? Are there

reasons to question the independence assumption? Explain.

48. Refer to Exercise 3.

(a) Calculate the covariance between X1 ¼ the number of customers in the express checkout

and X2 ¼ the number of customers in the superexpress checkout.

(b) Calculate Var(X1 + X2). How does this compare to Var(X1) + Var(X2)?
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49. Suppose your waiting time for a bus in the morning is uniformly distributed on [0, 8], whereas

waiting time in the evening is uniformly distributed on [0, 10] independent of morning waiting

time.

(a) If you take the bus each morning and evening for a week, what is your total expected waiting

time? [Hint: Define rvs X1, . . ., X10 and use a rule of expected value.]

(b) What is the variance of your total waiting time?

(c) What are the expected value and variance of the difference between morning and evening

waiting times on a given day?

(d) What are the expected value and variance of the difference between total morning waiting

time and total evening waiting time for a particular week?

50. An insurance office buys paper by the ream (500 sheets) for use in the copier, fax, and printer.

Each ream lasts an average of 4 days, with standard deviation 1 day. The distribution is normal,

independent of previous reams.

(a) Find the probability that the next ream outlasts the present one by more than 2 days.

(b) How many reams must be purchased if they are to last at least 60 days with probability at

least 80%?

51. If two loads are applied to a cantilever beam as shown in the accompanying drawing, the bending

moment at 0 due to the loads is a1X1 + a2X2.

X1 X2

a1 a2

0

(a) Suppose that X1 and X2 are independent rvs with means 2 and 4 kips, respectively, and

standard deviations .5 and 1.0 kip, respectively. If a1 ¼ 5 ft and a2 ¼ 10 ft, what is the

expected bending moment and what is the standard deviation of the bending moment?

(b) If X1 and X2 are normally distributed, what is the probability that the bending moment will

exceed 75 kip-ft?

(c) Suppose the positions of the two loads are random variables. Denoting them by A1 and A2,

assume that these variables have means of 5 and 10 ft, respectively, that each has a standard

deviation of .5, and that all Ais and Xis are independent of each other. What is the expected

moment now?

(d) For the situation of part (c), what is the variance of the bending moment?

(e) If the situation is as described in part (a) except that Corr(X1, X2) ¼ .5 (so that the two loads

are not independent), what is the variance of the bending moment?

52. One piece of PVC pipe is to be inserted inside another piece. The length of the first piece is

normally distributed with mean value 20 in. and standard deviation .5 in. The length of the second

piece is a normal rv with mean and standard deviation 15 in. and .4 in., respectively. The amount

of overlap is normally distributed with mean value 1 in. and standard deviation .1 in. Assuming

that the lengths and amount of overlap are independent of each other, what is the probability that

the total length after insertion is between 34.5 and 35 in.?

53. Two airplanes are flying in the same direction in adjacent parallel corridors. At time t ¼ 0, the

first airplane is 10 km ahead of the second one. Suppose the speed of the first plane (km/h) is

normally distributed with mean 520 and standard deviation 10 and the second plane’s speed,

independent of the first, is also normally distributed with mean and standard deviation 500 and

10, respectively.
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(a) What is the probability that after 2 h of flying, the second plane has not caught up to the first

plane?

(b) Determine the probability that the planes are separated by at most 10 km after 2 h.

54. Three different roads feed into a particular freeway entrance. Suppose that during a fixed time

period, the number of cars coming from each road onto the freeway is a random variable, with

expected value and standard deviation as given in the table.

Road 1 Road 2 Road 3

Expected value 800 1000 600

Standard deviation 16 25 18

(a) What is the expected total number of cars entering the freeway at this point during the

period? [Hint: Let Xi ¼ the number from road i.]
(b) What is the standard deviation of the total number of entering cars? Have you made any

assumptions about the relationship between the numbers of cars on the different roads?

(c) With Xi denoting the number of cars entering from road i during the period, suppose that

Cov(X1, X2) ¼ 80, Cov(X1, X3) ¼ 90, and Cov(X2, X3) ¼ 100 (so that the three streams of

traffic are not independent). Compute the expected total number of entering cars and the

standard deviation of the total.

55. Suppose we take a random sample of size n from a continuous distribution having median 0 so

that the probability of any one observation being positive is .5. We now disregard the signs of the

observations, rank them from smallest to largest in absolute value, and then let W ¼ the sum of

the ranks of the observations having positive signs. For example, if the observations are –.3, +.7,

+2.1, and –2.5, then the ranks of positive observations are 2 and 3, so W ¼ 5. In statistics

literature, W is called Wilcoxon’s signed-rank statistic. W can be represented as follows:

W ¼ 1 � Y1 þ 2 � Y2 þ 3 � Y3 þ � � � þ n � Yn ¼
Xn
i¼1

i � Yi

where the Yis are independent Bernoulli rvs, each with p ¼ .5 (Yi ¼ 1 corresponds to the

observation with rank i being positive). Compute the following:

(a) E(Yi) and then E(W ) using the equation for W [Hint: The first n positive integers sum to

n(n + 1)/2.]

(b) Var(Yi) and then Var(W ) [Hint: The sum of the squares of the first n positive integers is

n(n + 1)(2n + 1)/6.]

56. In Exercise 51, the weight of the beam itself contributes to the bending moment. Assume that the

beam is of uniform thickness and density so that the resulting load is uniformly distributed on the

beam. If the weight of the beam is random, the resulting load from the weight is also random;

denote this load by W (kip-ft).

(a) If the beam is 12 ft long,W has mean 1.5 and standard deviation .25, and the fixed loads are

as described in part (a) of Exercise 51, what are the expected value and variance of the

bending moment? [Hint: If the load due to the beam were w kip-ft, the contribution to the

bending moment would be w
Ð 12
0
xdx.]

(b) If all three variables (X1, X2, andW ) are normally distributed, what is the probability that the

bending moment will be at most 200 kip-ft?

57. A professor has three errands to take care of in the Administration Building. Let Xi ¼ the time

that it takes for the ith errand (i ¼ 1, 2, 3), and let X4 ¼ the total time in minutes that she spends

walking to and from the building and between each errand. Suppose the Xis are independent,

normally distributed, with the following means and standard deviations: μ1 ¼ 15, σ1 ¼ 4,
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μ2 ¼ 5, σ2 ¼ 1, μ3 ¼ 8, σ3 ¼ 2, μ4 ¼ 12, σ4 ¼ 3. She plans to leave her office at precisely

10:00 a.m. and wishes to post a note on her door that reads, “I will return by t a.m.” What time

t should she write down if she wants the probability of her arriving after t to be .01?

58. In an area having sandy soil, 50 small trees of a certain type were planted, and another 50 trees

were planted in an area having clay soil. Let X ¼ the number of trees planted in sandy soil that

survive 1 year and Y ¼ the number of trees planted in clay soil that survive 1 year. If the

probability that a tree planted in sandy soil will survive 1 year is .7 and the probability of 1-year

survival in clay soil is .6, compute an approximation to P(–5 � X � Y � 5). [Hint:Use a normal

approximation from Sect. 3.3. Do not bother with the continuity correction.]

59. Let X and Y be independent rvs, with X ~ N(0, 1) and Y ~ N(0, 1).
(a) Use convolution to show that X + Y is also normal, and identify its mean and standard

deviation.

(b) Use the additive property of the normal distribution presented in this section to verify your

answer to part (a).

60. Karen throws two darts at a board with radius 10 in.; let X and Y denote the distances of the two

darts from the center of the board. Under the system Karen uses, the score she receives depends

upon W ¼ X + Y, the sum of these two distances. Assume X and Y are independent.

(a) Suppose X and Y are both uniform on the interval [0, 10]. Use convolution to determine the

pdf of W ¼ X + Y. Be very careful with your limits of integration!

(b) Based on the pdf in part (a), calculate P(X + Y � 5).

(c) If Karen’s darts are equally likely to land anywhere on the board, it can be shown that the

pdfs of X and Y are fX(x) ¼ x/50 for 0 � x � 10 and fY(y) ¼ y/50 for 0 � y � 10. Use

convolution to determine the pdf of W ¼ X + Y. Again, be very careful with your limits of

integration.

(d) Based on the pdf in part (c), calculate P(X + Y � 5).

61. Siblings Matt and Liz both enjoy playing roulette. One day, Matt brought $10 to the local casino

and Liz brought $15. They sat at different tables, and each made $1 wagers on red on consecutive

spins (10 spins for Matt, 15 for Liz). Let X ¼ the number of times Matt won and Y ¼ the number

of times Liz won.

(a) What is a reasonable probability model for X? [Hint: Successive spins of a roulette wheel

are independent, and P(land on red) ¼ 18/38.]

(b) What is a reasonable probability model for Y?

(c) What is a reasonable probability model for X + Y, the total number of times Matt and Liz

win that day? Explain. [Hint: Since the siblings sat at different table, their gambling results

are independent.]

(d) Use moment-generating functions, along with your answers to (a) and (b), to show that your

answer to part (c) is correct.

(e) Generalize part (d): If X1, . . ., Xk are independent binomial rvs, with Xi ~ Bin(ni, p), show

that their sum is also binomially distributed.

(f) Does the result of part (e) hold if the probability parameter p is different for each Xi (e.g., if

Matt bets on red but Liz bets on the number 27)?

62. The children attending Milena’s birthday party are enjoying taking swings at a piñata. Let

X ¼ the number of swings it takes Milena to hit the piñata once (since she’s the birthday girl,

she goes first), and let Y ¼ the number of swings it takes her brother Lucas to hit the piñata once

(he goes second). Assume the results of successive swings are independent (the children don’t

improve, since they’re blindfolded), and that each child has a .2 probability of hitting the piñata

on any attempt.
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(a) What is a reasonable probability model for X?

(b) What is a reasonable probability model for Y?
(c) What is a reasonable probability model for X + Y, the total number of swings taken by

Milena and Lucas? Explain. (Assume Milena’s and Lucas’ results are independent.)

(d) Use moment-generating functions, along with your answers to (a) and (b), to show that

X + Y has a negative binomial distribution.

(e) Generalize part (d): If X1, . . ., Xr are independent geometric rvs with common parameter p,
show that their sum has a negative binomial distribution.

(f) Does the result of part (e) hold if the probability parameter p is different for each Xi (e.g., if

Milena has probability .4 on each attempt while Lucas’ success probability is only .1)?

63. Let X1, . . ., Xn be independent rvs, with Xi having a negative binomial distribution with

parameters ri and p (i ¼ 1, . . ., n). Use moment generating functions to show that X1 + � � � + Xn

has a negative binomial distribution, and identify the parameters of this distribution. Explain why

this answer makes sense, based on the negative binomial model. [Note: Each Xi may have a

different parameter ri, but all have the same p parameter.]

64. Let X and Y be independent gamma random variables, both with the same scale parameter β. The
value of the shape parameter is α1 for X and α2 for Y. Use moment generating functions to show

that X + Y is also gamma distributed, with shape parameter α1 + α2 and scale parameter β. Is
X + Y gamma distributed if the scale parameters are different? Explain.

65. Let X and Y be independent exponential random variables with common parameter λ.
(a) Use convolution to show that X + Y has a gamma distribution, and identify the parameters of

that gamma distribution.

(b) Use the previous exercise to establish the same result.

(c) Generalize part (b): If X1, . . ., Xn are independent exponential rvs with common parameter λ,
what is the distribution of their sum?

4.4 Conditional Distributions and Conditional Expectation

The distribution of Y can depend strongly on the value of another variable X. For example, if X is

height and Y is weight, the distribution of weight for men who are 6 ft tall is very different from the

distribution of weight for short men. The conditional distribution of Y given X ¼ x describes for each

possible x value how probability is distributed over the set of y values. We define below the

conditional distribution of Y given X, but the conditional distribution of X given Y can be obtained

by just reversing the roles of X and Y. Both definitions are analogous to that of the conditional

probability, P(A|B), as the ratio P(A \ B)/P(B).

DEFINITION

Let X and Y be two discrete random variables with joint pmf p(x,y) and marginal X pmf pX(x).

Then for any x value such that pX(x) > 0, the conditional probability mass function of Y
given X ¼ x is

pYjX y j xð Þ ¼ p x; yð Þ
pX xð Þ
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An analogous formula holds in the continuous case. Let X and Y be two continuous random

variables with joint pdf f(x,y) and marginal X pdf fX(x). Then for any x value such that fX(x) > 0,

the conditional probability density function of Y given X ¼ x is

f YjX y j xð Þ ¼ f x; yð Þ
f X xð Þ

Example 4.24 For a discrete example, reconsider Example 4.1, where X represents the deductible

amount on an automobile policy and Y represents the deductible amount on a homeowner’s policy.

Here is the joint distribution again.

y

p(x, y) 0 100 200

x
100 .20 .10 .20 .50

250 .05 .15 .30 .50

.25 .25 .50

The distribution of Y depends on X. In particular, let’s find the conditional probability that Y is

200, given that X is 250, first using the definition of conditional probability from Sect. 1.4:

P Y ¼ 200 j X ¼ 250ð Þ ¼ P Y ¼ 200 \ X ¼ 250ð Þ
P X ¼ 250ð Þ ¼ :30

:05þ :15þ :30
¼ :6

With our new definition we obtain the same result:

pYjX 200 j 250ð Þ ¼ p 250; 200ð Þ
pX 250ð Þ ¼ :30

:50
¼ :6

The conditional probabilities for the two other possible values of Y are

pYjX 0 j 250ð Þ ¼ p 250; 0ð Þ
pX 250ð Þ ¼ :05

:50
¼ :1

pYjX 100 j 250ð Þ ¼ p 250; 100ð Þ
pX 250ð Þ ¼ :15

:50
¼ :3

Notice that pY|X(0j250) + pY|X(100j250) + pY|X(200j250) ¼ .1 + .3 + .6 ¼ 1. This is no coinci-

dence: conditional probabilities satisfy the properties of ordinary probabilities (i.e., they are nonneg-

ative and they sum to 1). Essentially, the denominator in the definition of conditional probability is

designed to make the total be 1.

Reversing the roles of X and Y, we find the conditional distribution for X, given that Y ¼ 0:

pXjY 100 j 0ð Þ ¼ p 100; 0ð Þ
pY 0ð Þ ¼ :20

:20þ :05
¼ :8

pXjY 250 j 0ð Þ ¼ p 250; 0ð Þ
pY 0ð Þ ¼ :05

:20þ :05
¼ :2

Again, the conditional probabilities add to 1. ■
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Example 4.25 For a continuous example, recall Example 4.5, where X is the weight of almonds and

Y is the weight of cashews in a can of mixed nuts. The sum of X + Y is at most 1 lb, the total weight of

the can of nuts. The joint pdf of X and Y is

f x; yð Þ ¼ 24xy
0

�
0 � x � 1, 0 � y � 1, xþ y � 1

otherwise

and in Example 4.5 it was shown that

f X xð Þ ¼ 12x 1� xð Þ2 0 � x � 1

0 otherwise

�

Thus, the conditional pdf of Y given that X ¼ x is

f YjX y j xð Þ ¼ f x; yð Þ
f X xð Þ ¼ 24xy

12x 1� xð Þ2 ¼
2y

1� xð Þ2 0 � y � 1� x

This can be used to get conditional probabilities for Y. For example,

P Y � :25 j X ¼ :5ð Þ ¼
ð:25
�1

f YjX y j :5ð Þdy ¼
ð:25
0

2y

1� :5ð Þ2 dy ¼ 4y2
	 
 :25

0
¼ :25

Given that the weight of almonds (X) is .5 lb, the probability is .25 for the weight of cashews (Y) to

be less than .25 lb.

Just as in the discrete case, the conditional distribution assigns a total probability of 1 to the set of

all possible Y values. That is, integrating the conditional density over its set of possible values should

yield 1:

ð1
�1

f YjX y j xð Þdy ¼
ð1�x

0

2y

1� xð Þ2 dy ¼
y2

1� xð Þ2
" #1�x

0

¼ 1

Whenever you calculate a conditional density, we recommend doing this integration as a validity

check. ■

4.4.1 Conditional Distributions and Independence

Recall that in Sect. 4.1 two random variables were defined to be independent if their joint pmf or pdf

factors into the product of the marginal pmfs or pdfs. We can understand this definition better with the

help of conditional distributions. For example, suppose there is independence in the discrete case.

Then

pYjX y j xð Þ ¼ p x; yð Þ
pX xð Þ ¼ pX xð ÞpY yð Þ

pX xð Þ ¼ pY yð Þ

That is, independence implies that the conditional distribution of Y is the same as the unconditional

(i.e., marginal) distribution, and that this is true no matter the value of X. The implication works in the

other direction, too. If pY|X(y|x) ¼ pY(y), then
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p x; yð Þ
pX xð Þ ¼ pY yð Þ

so p(x, y) ¼ pX(x) pY(y), and therefore X and Y are independent.

In Example 4.7 we said that independence necessitates the region of positive density being a

rectangle (possibly infinite in extent). In terms of conditional distributions, this region tells us the

domain of Y for each possible x value. For independence we need to have the domain of Y (the interval

of positive density) be the same for each x, implying a rectangular region.

4.4.2 Conditional Expectation and Variance

Because the conditional distribution is a valid probability distribution, it makes sense to define the

conditional mean and variance.

DEFINITION

Let X and Y be two discrete random variables with conditional probability mass function

pY|X(y|x). Then the conditional expectation (or conditional mean) of Y given X ¼ x is

μYjX¼x ¼ E Y jX ¼ xð Þ ¼
X
y

y � pYjX y jxð Þ

Analogously, for two continuous rvs X and Y with conditional probability density function

fY|X(y|x),

μYjX¼x ¼ E Y jX ¼ xð Þ ¼
ð1
�1

y � f YjX y jxð Þdy

More generally, the conditional mean of any function h(Y ) is given by

E h Yð ÞjX ¼ xð Þ ¼

X
y

h yð Þ � pYjX y jxð Þ discrete caseð Þð1
�1

h yð Þ � f YjX y jxð Þdy continous caseð Þ

8>><
>>:

In particular, the conditional variance of Y given X ¼ x is

σ2Y jX¼x ¼ Var Y jX ¼ xð Þ ¼ E½ðY � μY jX¼xÞ2jX ¼ x�
¼ E

�
Y2 jX ¼ x

�� μ2Y jX¼x

Example 4.26 Having previously found the conditional distribution of Y given X ¼ 250 in

Example 4.24, we now compute the conditional mean and variance.

μYjX¼250 ¼ E Y j X ¼ 250ð Þ ¼ 0 � pY jX 0 j 250ð Þ þ 100 � pY jX 100 j 250ð Þ þ 200 � pY jX 200 j 250ð Þ
¼ 0 :1ð Þ þ 100 :3ð Þ þ 200 :6ð Þ ¼ 150

The average homeowner’s policy deductible, among customers with a $250 auto deductible, is

$150. Given that the possibilities for Y are 0, 100, and 200 and most of the probability is on the latter

two values, it is reasonable that the conditional mean should be between 100 and 200.
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Using the alternative (shortcut) formula for the conditional variance requires first obtaining the

conditional expectation of Y2:

E Y2 j X ¼ 250
� � ¼ 02pY jX 0 j 250ð Þ þ 1002pY jX 100 j 250ð Þ þ 2002pY jX 200 j 250ð Þ

¼ 02 :1ð Þ þ 1002 :3ð Þ þ 2002 :6ð Þ ¼ 27, 000

Thus,

σ2YjX¼250 ¼ Var Y j X ¼ 250ð Þ ¼ E Y2 j X ¼ 250
� �� μ2YjX¼250 ¼ 27, 000� 1502 ¼ 4500

Taking the square root gives σY|X ¼ 250 ¼ $67.08, which is in the right ballpark when we recall

that the possible values of Y are 0, 100, and 200. ■

Example 4.27 (Example 4.25 continued) Suppose a 1-lb can of mixed nuts contains .1 lbs of

almonds (i.e., we know that X ¼ .1). Given this information, the amount of cashews Y in the can is

constrained by 0 � y � 1 � x ¼ .9, and the expected amount of cashews in such a can is

E Y j X ¼ :1ð Þ ¼
ð:9
0

y � f YjX y j :1ð Þdy ¼
ð:9
0

y � 2y

1� :1ð Þ2 dy ¼ :6

The conditional variance of Y given that X ¼ .1 is

Var Y j X ¼ :1ð Þ ¼
ð:9
0

y� :6ð Þ2 � f YjX y j :1ð Þdy ¼
ð:9
0

y� :6ð Þ2 � 2y

1� :1ð Þ2 dy ¼ :045

Using the aforementioned shortcut, this can also be calculated in two steps:

E Y2 j X ¼ :1
� � ¼ ð:9

0

y2 � f YjX y j :1ð Þdy ¼
ð:9
0

y2 � 2y

1� :1ð Þ2 dy ¼ :405

) Var Y j X ¼ :1ð Þ ¼ :405� �:6�2 ¼ :045

More generally, conditional on X ¼ x lbs (where 0 < x < 1), integrals similar to those above can

be used to show that the conditional mean amount of cashews is 2(1 � x)/3, and the corresponding

conditional variance is (1 � x)2/18. This formula implies that the variance gets smaller as the weight

of almonds in a can approaches 1 lb. Does this make sense? When the weight of almonds is 1 lb, the

weight of cashews is guaranteed to be 0, implying that the variance is 0. Indeed, Fig. 4.2 shows that

the set of possible y-values narrows to 0 as x approaches 1. ■

4.4.3 The Laws of Total Expectation and Variance

By the definition of conditional expectation, the rv Y has a conditional mean for every possible value

x of the variable X. In Example 4.26, we determined the mean of Y given that X ¼ 250, but a different

mean would result if we conditioned on X ¼ 100. For the continuous rvs in Example 4.27, every

value x between 0 and 1 yielded a different conditional mean of Y (and, in fact, we even found a

general formula for this conditional expectation). As it turns out, these conditional means can be

related back to the unconditional mean of Y, i.e., μY. Our next example illustrates the connection.
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Example 4.28 Apartments in a certain city have x ¼ 0, 1, 2, or 3 bedrooms (0 for a studio

apartment), and y ¼ 1, 1.5, or 2 bathrooms. The accompanying table gives the proportions of

apartments for the various number of bedroom/number of bathroom combinations.

y

p(x, y) 1 1.5 2

0 .10 .00 .00 .1

1 .20 .08 .02 .3
x

2 .15 .10 .15 .4

3 .05 .05 .10 .2

.50 .23 .27

Let X and Y denote the number of bedrooms and bathrooms, respectively, in a randomly selected

apartment in this city. The marginal distribution of Y comes from the column totals in the joint

probability table, from which it is easily verified that E(Y ) ¼ 1.385 and Var(Y ) ¼ .179275. The

conditional distributions (pmfs) of Y given that X ¼ x for x ¼ 0, 1, 2, and 3 are as follows:

x ¼ 0 : pYjX¼0 1ð Þ ¼ 1 all studio apartments have one bathroomð Þ

x ¼ 1 : pYjX¼1 1ð Þ ¼ :667, pYjX¼1 1:5ð Þ ¼ :267, pYjX¼1 2ð Þ ¼ :067

x ¼ 2 : pYjX¼2 1ð Þ ¼ :375, pYjX¼2 1:5ð Þ ¼ :25, pYjX¼2 2ð Þ ¼ :375

x ¼ 3 : pYjX¼3 1ð Þ ¼ :25, pYjX¼3 1:5ð Þ ¼ :25, pYjX¼3 2ð Þ ¼ :50

From these conditional pmfs, we obtain the expected value of Y given X ¼ x for each of the four

possible x values:

E Y j X ¼ 0ð Þ ¼ 1,E Y j X ¼ 1ð Þ ¼ 1:2,E Y j X ¼ 2ð Þ ¼ 1:5,E Y j X ¼ 3ð Þ ¼ 1:625

So, on the average, studio apartments have 1 bathroom, one-bedroom apartments have 1.2

bathrooms, 2-bedrooms have 1.5 baths, and luxurious 3-bedroom apartments have 1.625 baths.

Now, instead of writing E(Y|X ¼ x) for some specific value x, let’s consider the expected number

of bathrooms for an apartment of randomly selected size, X. This expectation, denoted E(Y|X), is itself

a random variable, since it is a function of the random quantity X. Its smallest possible value is

1, which occurs when X ¼ 0, and that happens with probability .1 (the sum of probabilities in the first

row of the joint probability table). Similarly, the random variable E(Y|X) takes on the value 1.2 with

probability pX(1) ¼ .3. Continuing in this manner, the probability distribution of the rv E(Y|X) is as

follows:

Value of EðYjXÞ 1 1:2 1:5 1:625

Probability of value :1 :3 :4 :2
ð4:7Þ

The expected value of this random variable, denoted E[E(Y|X)], is computed by taking the

weighted average of the four values of E(Y|X ¼ x) against the probabilities specified by pX(x), as
suggested by (4.7):

E E Y j Xð Þ½ � ¼ 1 :1ð Þ þ 1:2 :3ð Þ þ 1:5 :4ð Þ þ 1:625 :2ð Þ ¼ 1:385

But this is exactly E(Y), the expected number of bathrooms. ■
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LAW OF TOTAL EXPECTATION

For any two random variables X and Y,

E E Y jXð Þ½ � ¼ E Yð Þ
(This is sometimes referred to as computing E(Y ) by means of iterated expectation.)

The Law of Total Expectation says that E(Y) is a weighted average of the conditional means

E(Y|X ¼ x), where the weights are given by the pmf or pdf of X. It is analogous to the Law of Total

Probability, which describes how to find P(B) as a weighted average of conditional probabilitiesP(B|Ai).

Proof Here is the proof when both rvs are discrete; in the jointly continuous case, simply replace

summation by integration and pmfs by pdfs.

E
	
E Y j Xð Þ
 ¼ X

x2DX

E Y jX ¼ xð ÞpX xð Þ ¼
X
x2DX

X
y2DY

ypYjX y j xð ÞpX xð Þ

¼
X
x2DX

X
y2DY

y
p x; yð Þ
pX xð Þ pX xð Þ ¼

X
y2DY

y
X
x2DX

p x; yð Þ

¼
X
y2DY

ypY yð Þ ¼ E Yð Þ ■

In Example 4.28, the use of iterated expectation to compute E(Y ) is unnecessarily cumbersome;

working from the marginal pmf of Y is more straightforward. However, there are many situations in

which the distribution of a variable Y is only expressed conditional on the value of another variable X.
For these so-called hierarchical models, the Law of Total Expectation proves very useful.

Example 4.29 A ferry goes from the left bank of a small river to the right bank once an hour. The

ferry can accommodate at most two vehicles. The probability that no vehicles show up is .1, than

exactly one shows up is .7, and that two or more show up is .2 (but only two can be transported). The

fare paid for a vehicle depends upon its weight, and the average fare per vehicle is $25. What is the

expected fare for a single trip made by this ferry?

Let X represent the number of vehicles that show up, and let Y denote the total fare for a single trip.

The conditional mean of Y, given X, is given by E(Y|X) ¼ 25X. So, by the Law of Total Expectation,

E Yð Þ ¼ E
	
E
�
Y j X�
 ¼ E

	
25X


 ¼X2
x¼0

25x � pX xð Þ½ �
¼ 0ð Þ�:1�þ �25��:7�þ �50��:2� ¼ $27:50 ■

The next theorem provides a way to compute the variance of Y by conditioning on the value of X.
There are two contributions to Var(Y ). The first part is the variance of the random variable E(Y|X).

The second part involves the random variable Var(Y|X)—the variance of Y as a function of X—and in

particular the expected value of this random variable.

LAW OF TOTAL VARIANCE

For any two random variables X and Y,

Var Yð Þ ¼ Var E Y jXð Þ½ � þ E Var Y jXð Þ½ �
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Proving the Law of Total Variance requires some more sophisticated algebra; see Exercise 84. For

those familiar with statistical methods, the Law of Total Variance is analogous to the famous

ANOVA identity, wherein the total variability in a response variable Y can be decomposed into the

differences between group means (here, the term Var[E(Y|X)]) and the variation of responses within

groups (represented by E[Var(Y|X)] above).

Example 4.30 Let’s verify the Law of Total Variance for the apartment scenario of Example 4.28.

The pmf of the rv E(Y|X) appears in (4.7), from which its variance is given by

Var E Y j Xð Þ½ � ¼ 1� 1:385ð Þ2 :1ð Þ þ �1:2� 1:385
�
2 :3ð Þ

þ �1:5� 1:385
�
2 :4ð Þ þ �1:625� 1:385

�
2 :2ð Þ

¼ 0:0419

(Recall that 1.385 is the mean of the rv E(Y|X), which, by the Law of Total Expectation, is also

E(Y ).) The second term in the Law of Total Variance involves the variable Var(Y|X), which requires

determining the conditional variance of Y given X ¼ x for x ¼ 0, 1, 2, 3. Using the four conditional

distributions displayed in Example 4.28, these are

Var Y j X ¼ 0ð Þ ¼ 0;Var Y j X ¼ 1ð Þ ¼ :0933

Var Y j X ¼ 2ð Þ ¼ :1875;Var Y j X ¼ 3ð Þ ¼ :171875

The rv Var(Y|X) takes on these four values with probabilities .1, .4, .3, and .2, respectively (again,

these are inherited from the distribution of X). Thus,

E Var Y j Xð Þ½ � ¼ 0 :1ð Þ þ :0933 :3ð Þ þ :1875 :4ð Þ þ :171875 :2ð Þ ¼ :137375

Combining, Var[E(Y|X)] + E[Var(Y|X)] ¼ .0419 + .137375 ¼ .179275

This is exactly Var(Y) computed using the marginal pmf of Y in Example 4.28, and the Law of

Total Variance is verified for this example. ■

The computation of Var(Y ) in Example 4.30 is clearly not efficient; it is much easier, given the

joint pmf of X and Y, to determine the variance of Y from its marginal pmf. As with the Law of Total

Expectation, the real worth of the Law of Total Variance comes from its application to hierarchical

models, where the distribution of one variable (Y, say) is only known conditional on the distribution

of another rv.

Example 4.31 In the manufacture of ceramic tiles used for heat shielding, the proportion of tiles

that meet the required thermal specifications varies from day to day. Let P denote the proportion of

tiles meeting specifications on a randomly selected day, and suppose P can be modeled by the

following pdf:

f pð Þ ¼ 9p8 0 < p < 1

At the end of each day, a random sample of n ¼ 20 tiles is selected and each tile is tested.

Let Y represent the number of tiles among the 20 that meet specifications; conditional on P ¼ p,

Y ~ Bin(20, p). Find the expected number of tiles meeting thermal specifications in a daily sample of

20, and find the corresponding standard deviation.

From the properties of the binomial distribution, we know that E(Y|P ¼ p) ¼ np ¼ 20p, so

E(Y|P) ¼ 20P. Applying the Law of Total Expectation,
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E Yð Þ ¼ E E Y j Pð Þ½ � ¼ E 20P½ � ¼
ð1
0

20p � f pð Þdp ¼
ð1
0

180p9dp ¼ 18

This is reasonable: since E(P) ¼ .9 by integration, the expected proportion of good tiles is 90%,

and thus the expected number of good tiles in a random sample of 20 tiles is 18.

Determining the standard deviation of Y requires the two pieces of the Law of Total Variance.

First, using the rescaling property of variance,

Var E Y j Pð Þ½ � ¼ Var 20Pð Þ ¼ 202Var Pð Þ ¼ 400Var Pð Þ
The variance of the proportion P can be determined directly from the pdf of P via integration. The

result is Var(P) ¼ 9/1100, so Var[E(Y|P)] ¼ 400(9/1100) ¼ 36/11. Second, the binomial variance

formula np(1 � p) implies that the conditional variance of Y given P is Var(Y|P) ¼ 20P(1 � P), so

E Var Y j Pð Þ½ � ¼ E 20P 1� Pð Þ½ � ¼
ð1
0

20p 1� pð Þ � 9p8dp ¼ 18

11

Therefore, by the Law of Total Variance,

Var Yð Þ ¼ Var E Y j Pð Þ½ � þ E Var Y j Pð Þ½ � ¼ 36

11
þ 18

11
¼ 54

11
¼ 4:909,

and the standard deviation of Y is σY ¼ ffiffiffiffiffiffiffiffiffiffiffi
4:909

p ¼ 2:22: This “total” standard deviation accounts for

two effects: day-to-day variation in quality as modeled by P (the first term in the variance expression),

and random variation in the number of observed good tiles as modeled by the binomial distribution

(the second term). ■

Here is an example where the Laws of Total Expectation and Variance are helpful in finding the

mean and variance of a random variable that is neither discrete nor continuous.

Example 4.32 The probability of a claim being filed on an insurance policy is .1, and only one claim

can be filed. If a claim is filed, the amount is exponentially distributed with mean $1,000. Recall from

Sect. 3.4 that the mean and standard deviation of the exponential distribution are the same, so the

variance is the square of this value. We want to find the mean and variance of the amount paid. Let

X be the number of claims (0 or 1) and let Y be the payment. We know that E(Y|X ¼ 0) ¼ 0 and also

E(Y|X ¼ 1) ¼ 1000. Also, Var(Y|X ¼ 0) ¼ 0 and Var(Y|X ¼ 1) ¼ 10002 ¼ 1,000,000. Here is a

table for the both the distribution of E(Y|X ¼ x) and that of Var(Y|X ¼ x):

x P(X ¼ x) E(Y|X ¼ x) Var(Y|X ¼ x)

0 .9 0 0

1 .1 1000 1,000,000

Therefore

E Yð Þ ¼ E E Y j Xð Þ½ � ¼ E Y j X ¼ 0ð ÞP X ¼ 0ð Þ þ E Y j X ¼ 1ð ÞP X ¼ 1ð Þ
¼ 0 :9ð Þ þ 1000 :1ð Þ ¼ 100

The average claim amount across all customers is $100. Next, the variance of the conditional

mean is

Var E Y j Xð Þ½ � ¼ 0� 100ð Þ2 :9ð Þ þ 1000� 100ð Þ2 :1ð Þ ¼ 90,000,

and the expected value of the conditional variance is
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E Var Y j Xð Þ½ � ¼ 0 :9ð Þ þ 1,000,000 :1ð Þ ¼ 100,000

Apply the Law of Total Variance to get Var(Y):

Var Yð Þ ¼ Var E Y j Xð Þ½ � þ E Var Y j Xð Þ½ � ¼ 90,000þ 100,000 ¼ 190,000

Taking the square root gives the standard deviation, σY ¼ $435.89.

Suppose that we want to compute the mean and variance of Y directly. Notice that X is discrete, but

the conditional distribution of Y given X ¼ 1 is continuous. The random variable Y itself is neither

discrete nor continuous, because it has probability .9 of being 0, but the other .1 of its probability is

spread out from 0 to1. Such “mixed” distributions may require a little extra effort to evaluate means

and variances, although it is not especially hard in this case (because the discrete mass is at 0 and

doesn’t contribute to expectations):

E Yð Þ ¼ �:1�ð1
0

y
1

1000
e�y=1000dy ¼ �:1��1000� ¼ 100

E Y2
� � ¼ �:1�ð1

0

y2
1

1000
e�y=1000dy ¼ �:1��2,000,000� ¼ 200,000

Var Yð Þ ¼ E Y2
� �� E Yð Þ½ �2 ¼ 200,000� 10,000 ¼ 190,000

These agree with what we found using the theorems. ■

4.4.4 Exercises: Section 4.4 (66–84)

66. Refer back to Exercise 1 of this chapter.

(a) Given that X ¼ 1, determine the conditional pmf of Y—that is, pYjX(0j1) , pYjX(1j1), and
pYjX(2j1).

(b) Given that two hoses are in use at the self-service island, what is the conditional pmf of the

number of hoses in use on the full-service island?

(c) Use the result of part (b) to calculate the conditional probability P(Y � 1jX ¼ 2).

(d) Given that two hoses are in use at the full-service island, what is the conditional pmf of the

number in use at the self-service island?

67. A system consists of two components. Suppose the joint pdf of the lifetimes of the two

components in a system is given by f(x, y) ¼ c[10 � (x + y)] for x > 0, y > 0, x + y < 10,

where x and y are in months.

(a) If the first component functions for exactly 3 months, what is the probability that the second

functions for more than 2 months?

(b) Suppose the system will continue to work only as long as both components function. Among

20 of these systems that operate independently of each other, what is the probability that at

least half work for more than 3 months?

68. The joint pdf of pressures for right and left front tires is given in Exercise 11.

(a) Determine the conditional pdf of Y given that X ¼ x and the conditional pdf of X given that

Y ¼ y.

(b) If the pressure in the right tire is found to be 22 psi, what is the probability that the left tire

has a pressure of at least 25 psi? Compare this to P(Y � 25).

(c) If the pressure in the right tire is found to be 22 psi, what is the expected pressure in the left

tire, and what is the standard deviation of pressure in this tire?
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69. Suppose that X is uniformly distributed between 0 and 1. Given X ¼ x, Y is uniformly distributed

between 0 and x2.
(a) Determine E(Y|X ¼ x) and then Var(Y|X ¼ x).

(b) Determine f(x,y) using fX(x) and fY|X(y|x).

(c) Determine fY(y).
70. Consider three Ping-Pong balls numbered 1, 2, and 3. Two balls are randomly selected with

replacement. If the sum of the two resulting numbers exceeds 4, two balls are again selected. This

process continues until the sum is at most 4. Let X and Y denote the last two numbers selected.

Possible (X, Y ) pairs are {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

(a) Determine pX,Y(x,y).
(b) Determine pY|X(y|x).

(c) Determine E(Y|X ¼ x).

(d) Determine E(X|Y ¼ y). What special property of p(x, y) allows us to get this from (c)?

(e) Determine Var(Y|X ¼ x).

71. Let X be a random digit (0, 1, 2, . . ., 9 are equally likely) and let Y be a random digit not equal to

X. That is, the nine digits other than X are equally likely for Y.
(a) Determine pX(x), pY|X(y|x), pX,Y(x,y).

(b) Determine a formula for E(Y|X ¼ x).

72. A pizza delivery business has two phones. On each phone the waiting time until the first call is

exponentially distributed with mean 1 min. Each phone is not influenced by the other. Let X be

the shorter of the two waiting times and let Y be the longer. Using techniques from Sect. 4.9, it can

be shown that the joint pdf of X and Y is f(x, y) ¼ 2e–(x+y) for 0 < x < y < 1.

(a) Determine the marginal density of X.

(b) Determine the conditional density of Y given X ¼ x.

(c) Determine the probability that Y is greater than 2, given that X ¼ 1.

(d) Are X and Y independent? Explain.

(e) Determine the conditional mean of Y given X ¼ x.

(f) Determine the conditional variance of Y given X ¼ x.
73. Teresa and Allison each have arrival times uniformly distributed between 12:00 and 1:00. Their

times do not influence each other. If Y is the first of the two times and X is the second, on a scale of

0 to 1, it can be shown that the joint pdf of X and Y is f(x, y) ¼ 2 for 0 < y < x < 1.

(a) Determine the marginal density of X.

(b) Determine the conditional density of Y given X ¼ x.

(c) Determine the conditional probability that Y is between 0 and .3, given that X is .5.

(d) Are X and Y independent? Explain.

(e) Determine the conditional mean of Y given X ¼ x.

(f) Determine the conditional variance of Y given X ¼ x.
74. Refer back to the previous exercise.

(a) Determine the marginal density of Y.

(b) Determine the conditional density of X given Y ¼ y.
(c) Determine the conditional mean of X given Y ¼ y.

(d) Determine the conditional variance of X given Y ¼ y.

75. According to an article in the August 30, 2002 issue of the Chronicle of Higher Education, 30%
of first-year college students are liberals, 20% are conservatives, and 50% characterize them-

selves as middle-of-the-road. Choose two students at random, let X be the number of liberals

among the two, and let Y be the number of conservatives among the two.
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(a) Using the multinomial distribution from Sect. 4.1, give the joint probability mass function p

(x, y) of X and Y and the corresponding joint probability table.

(b) Determine the marginal probability mass functions by summing p(x, y) numerically. How

could these be obtained directly? [Hint: What are the univariate distributions of X and Y?]

(c) Determine the conditional probability mass function of Y given X ¼ x for x ¼ 0, 1, 2. Com-

pare this to the binomial distribution with n ¼ 2 � x and p ¼ .2/(.2 + .5). Why should this

work?

(d) Are X and Y independent? Explain.

(e) Find E(Y|X ¼ x) for x ¼ 0, 1, 2. Do this numerically and then compare with the use of the

formula for the binomial mean, using the binomial distribution given in part (c).

(f) Determine Var(Y|X ¼ x) for x ¼ 0, 1, 2. Do this numerically and then compare with the use

of the formula for the binomial variance, using the binomial distribution given in part (c).

76. A class has 10 mathematics majors, 6 computer science majors, and 4 statistics majors. Two of

these students are randomly selected to make a presentation. Let X be the number of mathematics

majors and let Y be the number of computer science majors chosen.

(a) Determine the joint probability mass function p(x,y). This generalizes the hypergeometric

distribution studied in Sect. 2.6. Give the joint probability table showing all nine values, of

which three should be 0.

(b) Determine the marginal probability mass functions by summing numerically. How could

these be obtained directly? [Hint: What type of rv is X? Y?]

(c) Determine the conditional probability mass function of Y given X ¼ x for x ¼ 0, 1, 2. Com-

pare with the h(y; 2 � x, 6, 10) distribution. Intuitively, why should this work?

(d) Are X and Y independent? Explain.

(e) Determine E(YjX ¼ x), x ¼ 0, 1, 2. Do this numerically and then compare with the use of

the formula for the hypergeometric mean, using the hypergeometric distribution given in

part (c).

(f) Determine Var(YjX ¼ x), x ¼ 0, 1, 2. Do this numerically and then compare with the use of

the formula for the hypergeometric variance, using the hypergeometric distribution given in

part (c).

77. A 1-ft-long stick is broken at a point X (measured from the left end) chosen randomly uniformly

along its length. Then the left part is broken at a point Y chosen randomly uniformly along its

length. In other words, X is uniformly distributed between 0 and 1 and, given X ¼ x, Y is

uniformly distributed between 0 and x.

(a) Determine E(YjX ¼ x) and then Var(YjX ¼ x).
(b) Determine f(x,y) using fX(x) and fY|X(yjx).
(c) Determine fY(y).

(d) Use fY(y) from (c) to get E(Y) and Var(Y ).
(e) Use (a) and the Laws of Total Expectation and Variance to get E(Y ) and Var(Y ).

78. Consider the situation in Example 4.29, and suppose further that the standard deviation for fares

per car is $4.

(a) Find the variance of the rv E(Y|X).

(b) Using Expression (4.6) from the previous section, the conditional variance of Y given X ¼ x

is 42x ¼ 16x. Determine the mean of the rv Var(Y|X).
(c) Use the Law of Total Variance to find σY, the unconditional standard deviation of Y.

79. This week the number X of claims coming into an insurance office has a Poisson distribution with

mean 100. The probability that any particular claim relates to automobile insurance is .6,
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independent of any other claim. If Y is the number of automobile claims, then Y is binomial with

X trials, each with “success” probability .6.

(a) Determine E(Y|X ¼ x) and Var(Y|X ¼ x).

(b) Use part (a) to find E(Y ).

(c) Use part (a) to find Var(Y ).
80. In the previous exercise, show that the distribution of Y is Poisson with mean 60. [You will need

to recognize the Maclaurin series expansion for the exponential function.] Use the knowledge

that Y is Poisson with mean 60 to find E(Y ) and Var(Y ).

81. The heights of American men follow a normal distribution with mean 70 in. and standard

deviation 3 in. Suppose that the weight distribution (lbs) for men that are x inches tall also has

a normal distribution, but with mean 4x � 104 and standard deviation .3x � 17. Let Y denote the

weight of a randomly selected American man. Find the (unconditional) mean and standard

deviation of Y.
82. A statistician is waiting behind one person to check out at a store. The check-out time for the first

person, X, can be modeled by an exponential distribution with some parameter λ > 0. The

statistician observes the first person’s check-out time, x; being a statistician, she surmises that

her check-out time Y will follow an exponential distribution with mean x.

(a) Determine E(Y|X ¼ x) and Var(Y|X ¼ x).

(b) Use the Laws of Total Expectation and Variance to find E(Y ) and Var(Y).
(c) Write out the joint pdf of X and Y. [Hint:You have fX(x) and fY|X(y|x).] Then write an integral

expression for the marginal pdf of Y (from which, at least in theory, one could determine the

mean and variance of Y ). What happens?

83. In the game Plinko on the television game show The Price is Right, contestants have the

opportunity to earn “chips” (flat, circular disks) that can be dropped down a peg board into

slots labeled with cash amounts. Every contestant is given one chip automatically and can earn up

to four more chips by correctly guessing the prices of certain small items. If we let p denote the

probability a contestant correctly guesses the price of a prize, then the number of chips a

contestant earns, X, can be modeled as X ¼ 1 + N, where N ~ Bin(4, p).
(a) Determine E(X) and Var(X).

(b) For each chip, the amount of money won on the Plinko board has the following distribution:

Value $0 $100 $500 $1000 $10,000

Probability .39 .03 .11 .24 .23

Determine the mean and variance of the winnings from a single chip.

(c) Let Y denote the total winnings of a randomly selected contestant. Using results from the

previous section, the conditional mean and variance of Y, given a player gets x chips, are μx
and σ2x, respectively, where μ and σ2 are the mean and variance for a single chip computed

in (b). Find expressions for the (unconditional) mean and standard deviation of Y. [Note:
Your answers will be functions of p.]

(d) Evaluate your answers to part (c) for p ¼ 0, .5, and 1. Do these answers make sense?

Explain.

84. Let X and Y be any two random variables.

(a) Show that E[Var(Y|X)] ¼ E[Y2] � Eμ2YjX. [Hint: Use the variance shortcut formula and

apply the Law of Total Expectation to the first term.]

(b) Show that Var(E[Y|X]) ¼ Eμ2YjX � (E[Y])2. [Hint: Use the variance shortcut formula again;

this time, apply the Law of Total Expectation to the second term.]

(c) Combine the previous two results to establish the Law of Total Variance.
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4.5 Limit Theorems (What Happens as n Gets Large)

Many problems in probability and statistics involve either a sum or an average of random variables. In

this section we consider what happens as n, the number of variables in such sums and averages, gets

large. The most important result of this type is the celebrated Central Limit Theorem, according to

which the approximate distribution is normal when n is sufficiently large.

4.5.1 Random Samples

The random variables from which our sums and averages will be created must satisfy two general

conditions.

DEFINITION

The rvs X1, X2, . . ., Xn are said to be independent and identically distributed (iid) if

1. The Xis are independent rvs.

2. Every Xi has the same probability distribution.

Such a collection of rvs is also called a (simple) random sample of size n.

For example, X1, X2, . . . Xn might be a random sample from a normal distribution with mean

100 and standard deviation 15; then the Xis are independent and each one has the specified normal

distribution. Similarly, for these variables to constitute a random sample from an exponential

distribution, they must be independent and the value of the exponential parameter λ must be the

same for each variable.

The notion of iid rvs is meant to resemble (simple) random sampling from a population: X1 is the

value of some variable for the first individual or object selected, X2 is the value of that same variable

for the second selected individual or object, and so on. If sampling is either with replacement or from

a (potentially) infinite population, Conditions 1 and 2 are satisfied exactly. These conditions will be

approximately satisfied if sampling is without replacement, yet the sample size n is much smaller than

the population size N. In practice, if n/N � .05 (at most 5% of the population is sampled), we proceed

as if the Xis form a random sample.

Throughout this section, we will be primarily interested in the properties of two particular rvs

derived from random samples: the sample total T and the sample mean �X:

T ¼ X1 þ � � � þ Xn ¼
Xn
i¼1

Xi, �X ¼ X1 þ � � � þ Xn

n
¼ T

n
:

Note that both T and �X are linear combinations of the Xis.
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PROPOSITION

Suppose X1, X2, . . ., Xn are iid with common mean μ and common standard deviation σ. T and �X
have the following properties:

1. E(T ) ¼ nμ

2. Var(T ) ¼ nσ2 and SD Tð Þ ¼ ffiffiffi
n

p
σ

3. If the Xis are normally distributed, then T is

also normally distributed.

1. E �Xð Þ ¼ μ

2. Var �Xð Þ ¼ σ2

n
and SD �Xð Þ ¼ σffiffiffi

n
p

3. If the Xis are normally distributed, then �X is

also normally distributed.

Proof Recall from the main theorem of Sect. 4.3 that the expected value of a sum is the sum of

individual expected values; moreover, when the variables in the sum are independent, the variance of

the sum is the sum of the individual variances:

E Tð Þ ¼ E
�
X1 þ � � � þ Xn

� ¼ E
�
X1

�þ � � � þ E
�
Xn

� ¼ μþ � � � þ μ ¼ nμ
Var Tð Þ ¼ Var

�
X1 þ � � � þ Xn

� ¼ Var
�
X1

�þ � � � þ Var
�
Xn

� ¼ σ2 þ � � � þ σ2 ¼ nσ2

SD Tð Þ ¼
ffiffiffiffiffiffiffi
nσ2

p
¼ ffiffiffi

n
p

σ

The corresponding results for �X can be derived by writing �X ¼ 1
n � T and using basic rescaling

properties, such as E(cY) ¼ cE(Y ). Property 3 is a consequence of the more general result from

Sect. 4.3 that any linear combination of independent normal rvs is normal. ■

According to Property 1, the distribution of �X is centered precisely at the mean of the population

from which the sample has been selected. If the sample mean is used to compute an estimate

(educated guess) of the population mean μ, there will be no systematic tendency for the estimate to

be too large or too small.

Property 2 shows that the �X distribution becomes more concentrated about μ as the sample size

n increases, because its standard deviation decreases. In marked contrast, the distribution of

T becomes more spread out as n increases. Averaging moves probability in toward the middle,

whereas totaling spreads probability out over a wider and wider range of values. The expressionσ=
ffiffiffi
n

p
for the standard deviation of �X is called the standard error of the mean, and it indicates the typical

amount by which a value of �X will deviate from the true mean, μ (in contrast, σ itself represents the

typical difference between an individual Xi and μ).
When σ is unknown, as is usually the case when μ is unknown and we are trying to estimate it, we

may substitute the sample standard deviation, s, of our sample into the standard error formula and say

that an observed value of �X will typically differ by about s=
ffiffiffi
n

p
from μ. This is the estimated standard

error formula presented in Sects. 2.8 and 3.8.

Finally, Property 3 says that we know everything there is to know about the �X and T distributions

when the population distribution is normal. In particular, probabilities such as P a � �X � bð Þ and

P(c � T � d) can be obtained simply by standardizing. Figure 4.8 illustrates the �X part of the

proposition.
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Example 4.33 The amount of time that a patient undergoing a particular procedure spends in a

certain outpatient surgery center is a random variable with a mean value of 4.5 h and a standard

deviation of 1.4 h. Let X1, . . ., X25 be the times for a random sample of 25 patients. Then the expected

total time for the 25 patients is E(T ) ¼ nμ ¼ 25(4.5) ¼ 112.5 h, whereas the expected sample mean

amount of time is E �Xð Þ ¼ μ ¼ 4:5 hours: The standard deviations of T and �X are

σT ¼ ffiffiffi
n

p
σ ¼ ffiffiffiffiffi

25
p

1:4ð Þ ¼ 7 hours

σ �X ¼ σffiffiffi
n

p ¼ 1:4ffiffiffiffiffi
25

p ¼ :28 hours

Suppose further that such patient times follow a normal distribution, i.e., Xi ~ N(4.5, 1.4). Then the

total time spent by 25 randomly selected patients in this center is also normal: T ~ N(112.5, 7). The

probability their total time exceeds 5 days (120 h) is

P T > 120ð Þ ¼ 1� P T � 120ð Þ ¼ 1�Φ
120� 112:5

7

� �
¼ 1�Φ 1:07ð Þ ¼ :1423

This same probability can be reframed in terms of �X: for 25 patients, a total time of 120 h equates to

an average time of 120/25 ¼ 4.8 h, and since �X 	 N 4:5; :28ð Þ,

P �X > 4:8ð Þ ¼ 1�Φ
4:8� 4:5

:28

� �
¼ 1�Φ 1:07ð Þ ¼ :1423 ■

Example 4.34 Resistors used in electronics manufacturing are labeled with a “nominal” resistance

as well as a percentage tolerance. For example, a 330-ohm resistor with a 5% tolerance is anticipated

to have an actual resistance between 313.5 Ω and 346.5 Ω. Consider five such resistors, randomly

selected from the population of all resistors with those specifications, and model the resistance of each

by a uniform distribution on [313.5, 346.5]. If these are connected in series, the resistance R of the

system is given by R ¼ X1 + � � � + X5, where the Xi are the iid uniform resistances.

A random variable uniformly distributed on [A, B] has mean (A + B)/2 and standard deviation

B� Að Þ= ffiffiffiffiffi
12

p
: For our uniform model, the mean resistance is E(Xi) ¼ (313.5 + 346.5)/2 ¼ 330 Ω,

the nominal resistance, with a standard deviation of 346:5� 313:5ð Þ= ffiffiffiffiffi
12

p ¼ 9:526 Ω: The system’s

resistance has mean and standard deviation

E Rð Þ ¼ nμ ¼ 5 330ð Þ ¼ 1650Ω, SD Rð Þ ¼ ffiffiffi
n

p
σ ¼

ffiffiffi
5

p
9:526ð Þ ¼ 21:3Ω

But what is the probability distribution of R? Is R also uniformly distributed? Determining the

exact pdf of R is difficult (it requires four convolutions). And the mgf of R, while easy to obtain, is not
recognizable as coming from any particular family of known distributions. Instead, we resort to a

simulation of R, the results of which appear in Fig. 4.9. For 10,000 iterations in R (appropriately), five

X distribution
when n = 10

X distribution
when n = 4

Population
distribution

Fig. 4.8 A normal

population distribution and
�X sampling distributions
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independent uniform variates on [313.5, 346.5] were created and summed; see Sect. 3.8 for

information on simulating a uniform distribution. The histogram in Fig. 4.9 clearly indicates that

R is not uniform; in fact, if anything, R appears (from the simulation, anyway) to be approximately

normal! ■

4.5.2 The Central Limit Theorem

When iid Xis are normally distributed, so are T and �X for every sample size n. The simulation results

from Example 4.34 suggest that even when the population distribution is not normal, summing

(or averaging) produces a distribution more bell-shaped than the one being sampled. Upon reflection,

this is quite intuitive: in order for R to be near 5(346.5) ¼ 1732.5, its theoretical maximum, all five

randomly selected resistors would have to exert resistances at the high end of their common range

(i.e., every Xi would have to be near 346.5). Thus, R-values near 1732.5 are unlikely, and the same

applies to R’s theoretical minimum of 5(313.5) ¼ 1567.5. On the other hand, there are many ways for

R to be near the mean value of 1650: all five resistances in the middle, two low and one middle and

two high, and so on. Thus, R is more likely to be “centrally” located than out at the extremes. (This is

analogous to the well-known fact that rolling a pair of dice is far more likely to result in a sum of

7 than 2 or 12, because there are more ways to obtain 7.)

This general pattern of behavior for sample totals and sample means is formalized by the most

important theorem of probability, the Central Limit Theorem (CLT). A proof of this theorem is

beyond the scope of this book, but interested readers may consult the text by Devore and Berk listed

in the references.
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Fig. 4.9 Simulated distribution of the random variable R in Example 4.34
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CENTRAL LIMIT THEOREM

Let X1, X2, . . ., Xn be a random sample from a distribution with mean μ and standard deviation

σ. Then, in the limit as n ! 1, the standardized versions of T and �X have the standard normal

distribution. That is,

lim
n!1P

T � nμffiffiffi
n

p
σ

� z

� �
¼ P Z � zð Þ ¼ Φ zð Þ

and

lim
n!1P

�X � μ

σ=
ffiffiffi
n

p � z

� �
¼ P Z � zð Þ ¼ Φ zð Þ

where Z is a standard normal rv. It is customary to say that T and �X are asymptotically normal.

Thus when n is sufficiently large, the sample total T has approximately a normal distribution

with mean μT ¼ nμ and standard deviation σT ¼ ffiffiffi
n

p
σ: Equivalently, for large n the sample

mean �X has approximately a normal distribution with mean μ �X ¼ μ and standard deviation

σ �X ¼ σ=
ffiffiffi
n

p
:

Figure 4.10 illustrates the Central Limit Theorem for �X:According to the CLT, when n is large and

we wish to calculate a probability such as P a � �X � bð Þ or P(c � T � d), we need only “pretend”

that �X or T is normal, standardize it, and use software or the standard normal table. The resulting

answer will be approximately correct. The exact answer could be obtained only by first finding the

distribution of T or �X, so the CLT provides a truly impressive shortcut.

A practical difficulty in applying the CLT is in knowing when n is “sufficiently large.” The

problem is that the accuracy of the approximation for a particular n depends on the shape of the

original underlying distribution being sampled. If the underlying distribution is symmetric and there

is not much probability far out in the tails, then the approximation will be good even for a small n,
whereas if it is highly skewed or has “heavy” tails, then a large n will be required. For example, if the

distribution is uniform on an interval, then it is symmetric with no probability in the tails, and the

normal approximation is very good for n as small as 10 (in Example 4.34, even for n ¼ 5, the

distribution of the sample total appeared rather bell-shaped). However, at the other extreme, a

distribution can have such fat tails that its mean fails to exist and the Central Limit Theorem does

not apply, so no n is big enough. A popular, although frequently somewhat conservative, convention

is that the Central Limit Theorem may be safely applied when n > 30. Of course, there are

exceptions, but this rule applies to most distributions of real data.

X distribution for
small to moderate n

Population
distribution

X distribution for
large n (approximately normal)

m

Fig. 4.10 The Central

Limit Theorem for �X
illustrated
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Example 4.35 When a batch of a certain chemical product is prepared, the amount of a particular

impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g. If

50 batches are independently prepared, what is the (approximate) probability that the total amount of

impurity is between 175 and 190 g? According to the convention mentioned above, n ¼ 50 is large

enough for the CLT to be applicable. The total T then has approximately a normal distribution with

mean value μT ¼ 50(4.0) ¼ 200 g and standard deviation σT ¼ ffiffiffiffiffi
50

p
1:5ð Þ ¼ 10:6066 g: So, with

Z denoting a standard normal rv,

P 175 � T � 190ð Þ 
 P
175� 200

10:6066
� Z � 190� 200

10:6066

� �
¼ Φ �:94ð Þ �Φ �2:36ð Þ ¼ :1645

Notice that nothing was said initially about the shape of the underlying impurity distribution. It

could be normally distributed, or uniform, or positively skewed—regardless, the CLT ensures that the

distribution of their total, T, is approximately normal. ■

Example 4.36 Suppose the number of times a randomly selected customer of a large bank uses the

bank’s ATM during a particular period is a random variable with a mean value of 3.2 and a standard

deviation of 2.4. Among 100 randomly selected customers, how likely is it that the sample mean

number of times the bank’s ATM is used exceeds 4? Let Xi denote the number of times the ith

customer in the sample uses the bank’s ATM. Notice that Xi is a discrete rv, but the CLT is not limited

to continuous random variables. Also, although the fact that the standard deviation of this nonnega-

tive variable is quite large relative to the mean value suggests that its distribution is positively

skewed, the large sample size implies that �X does have approximately a normal distribution. Using

μ �X ¼ μ ¼ 3:2 and σ �X ¼ σ=
ffiffiffi
n

p ¼ 2:4=
ffiffiffiffiffiffiffiffi
100

p ¼ :24,

P �X > 4ð Þ 
 P Z >
4� 3:2

:24

� �
¼ 1�Φ 3:33ð Þ ¼ :0004 ■

Example 4.37 Consider the distribution shown in Fig. 4.11 for the amount purchased (rounded to the

nearest dollar) by a randomly selected customer at a particular gas station (a similar distribution for
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Fig. 4.11 Probability distribution of X ¼ amount of gasoline purchased ($) in Example 4.37
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purchases in Britain (in £) appeared in the article “Data Mining for Fun and Profit,” Statistical

Science, 2000: 111 � 131; there were big spikes at the values 10, 15, 20, 25, and 30). The distribution

is obviously quite non-normal.

We asked Matlab to select 1000 different samples, each consisting of n ¼ 15 observations, and

calculate the value of the sample mean for each one. Figure 4.12 is a histogram of the resulting 1000

values; this is the approximate distribution of �X under the specified circumstances. This distribution is

clearly approximately normal even though the sample size is not all that large. As further evidence for

normality, Fig. 4.13 shows a normal probability plot of the 1000 �x values; the linear pattern is very

prominent. It is typically not non-normality in the central part of the population distribution that

causes the CLT to fail, but instead very substantial skewness or heavy tails. ■
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Fig. 4.12 Approximate

sampling distribution of the

sample mean amount

purchased when n ¼ 15
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distribution is as shown in

Fig. 4.11
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The CLT can also be generalized so it applies to non-identically distributed independent random

variables and certain linear combinations. Roughly speaking, if n is large and no individual term is

likely to contribute too much to the overall value, then asymptotic normality prevails (see Exercise

190). It can also be generalized to sums of variables which are not independent provided the extent of

dependence between most pairs of variables is not too strong.

4.5.3 Other Applications of the Central Limit Theorem

The CLT can be used to justify the normal approximation to the binomial distribution discussed in

Sect. 3.3. Recall that a binomial variable X is the number of successes in a binomial experiment

consisting of n independent success/failure trials with p ¼ P(success) for any particular trial. Define

new rvs X1, X2, . . ., Xn by

Xi ¼ 1 if the ith trial results in a success

0 if the ith trial results in a failure

�
i ¼ 1, . . . , nð Þ

Because the trials are independent and P(success) is constant from trial to trial, the Xis are iid

(a random sample from a Bernoulli distribution). When the Xis are summed, a 1 is added for every

success that occurs and a 0 for every failure, so X ¼ X1 + � � � + Xn, their total. The sample mean of

the Xis is �X ¼ X=n, the sample proportion of successes, which in previous discussions we have

denoted P̂ : The Central Limit Theorem then implies that if n is sufficiently large, both X and P̂ are

approximately normal when n is large. We summarize properties of the P̂ distribution in the following

corollary; Statements 1 and 2 were derived in Sect. 2.4.

COROLLARY

Consider an event A in the sample space of some experiment with p ¼ P(A). Let X ¼ the

number of times A occurs when the experiment is repeated n independent times, and define

P̂ ¼ P̂ Að Þ ¼ X

n

Then

1. μP̂ ¼ E P̂
� � ¼ p

2. σP̂ ¼ SD P̂
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

p 1�pð Þ
n

q
3. As n increases, the distribution of P̂ approaches a normal distribution.

In practice, Property 3 is taken to say that P̂ is approximately normal, provided that np � 10

and n(1 � p) � 10.

The necessary sample size for this approximation depends on the value of p: when p is close to .5,
the distribution of each Xi is reasonably symmetric (see Fig. 4.14), whereas the distribution is quite

skewed when p is near 0 or 1. Using the approximation only if both np � 10 and n(1 � p) � 10

ensures that n is large enough to overcome any skewness in the underlying Bernoulli distribution.
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Example 4.38 A computer simulation in the style of Sect. 1.6 is used to determine the probability

that a complex system of components operates properly throughout the warranty period. Unknown to

the investigator, the true probability is P(A) ¼ .18. If 10,000 simulations of the underlying process

are run, what is the chance the estimated probability P̂ Að Þ will lie within .01 of the true probability

P(A)?
Apply the preceding corollary, with n ¼ 10,000 and p ¼ P(A) ¼ .18. The expected value of the

estimator P̂ Að Þ is p ¼ .18, and the standard deviation is σP̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:18 :82ð Þ=10, 000p ¼ :00384: Since

np ¼ 1800 � 10 and n(1 � p) ¼ 8200 � 10, a normal distribution can safely be used to

approximate the distribution of P̂ Að Þ. This sample proportion is within .01 of the true probability,

.18, iff .17 < P̂ Að Þ < :19, so the desired likelihood is approximately

P :17 < P̂ < :19
� � 
 P

:17� :18

:00384
< Z <

:19� :18

:00384

� �
¼ Φ 2:60ð Þ �Φ �2:60ð Þ ¼ :9906 ■

The normal distribution serves as a reasonable approximation to the binomial pmf when n is large
because the binomial distribution is additive, i.e., a binomial rv can be expressed as the sum of other,

iid rvs. Other additive distributions include the Poisson, negative binomial, gamma, and (of course)

normal distributions; some of these were discussed at the end of Sect. 4.3. In particular, CLT justifies

normal approximations to the following distributions:

• Poisson, when μ is large

• Negative binomial, when r is large

• Gamma, when α is large

As a final application of the CLT, first recall from Sect. 3.5 that X has a lognormal distribution if

ln(X) has a normal distribution.

PROPOSITION

Let X1, X2, . . ., Xn be a random sample from a distribution for which only positive values are

possible [P(Xi > 0) ¼ 1]. Then if n is sufficiently large, the product Y ¼ X1 X2 � � � Xn has

approximately a lognormal distribution; that is, ln(Y ) has approximately a normal distribution.

To verify this, note that

ln Yð Þ ¼ ln X1ð Þ þ ln X2ð Þ þ � � � þ ln Xnð Þ
Since ln(Y) is a sum of independent and identically distributed rvs [the ln(Xi)s], it is approximately

normal when n is large, so Y itself has approximately a lognormal distribution. As an example of the

applicability of this result, it has been argued that the damage process in plastic flow and crack

propagation is a multiplicative process, so that variables such as percentage elongation and rupture

strength have approximately lognormal distributions.

0 1 0 1

baFig. 4.14 Two Bernoulli

distributions: (a) p ¼ .4

(reasonably symmetric);

(b) p ¼ .1 (very skewed)
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4.5.4 The Law of Large Numbers

In the simulation sections of Chaps. 1–3, we described how a sample proportion P̂ could estimate a

true probability p, and a sample mean �X served to approximate a theoretical expected value μ.
Moreover, in both cases the precision of the estimation improves as the number of simulation runs, n,

increases. We would like to be able to say that our estimates “converge” to the correct values in some

sense. Such a convergence statement is justified by another important theoretical result, called the

Law of Large Numbers.

To begin, recall the first proposition in this section: If X1, X2, . . ., Xn is a random sample from a

distribution with mean μ and standard deviation σ, thenE �Xð Þ ¼ μ andVar �Xð Þ ¼ σ2=n:As n increases,

the expected value of �X remains at μ but the variance approaches zero; that is, E �X � μð Þ½ �2 ¼ Var �Xð Þ
¼ σ2=n ! 0:We say that �X converges in mean square to μ because the mean of the squared difference

between �X and μ goes to zero. This is one form of the Law of Large Numbers.

Another form of convergence states that as the sample size n increases, �X is increasingly unlikely

to differ by any set amount from μ. More precisely, let ε be a positive number close to 0, such as .01 or

.001, and consider P j �X � μ j� εð Þ, the probability that �X differs from μ by at least ε (at least .01, at
least .001, etc.). We will prove shortly with the help of Chebyshev’s inequality that, no matter how

small the value of ε, this probability will approach zero as n ! 1. Because of this, statisticians say

that �X converges to μ in probability.

The two forms of the Law of Large Numbers are summarized in the following theorem.

LAW OF LARGE NUMBERS

If X1, X2, . . ., Xn is a random sample from a distribution with mean μ and finite variance, then �X
converges to μ

1. In mean square: E �X � μð Þ2
h i

! 0 as n ! 1
2. In probability: P j �X � μ j � εð Þ ! 0 as n ! 1 for any ε > 0

Proof The proof of Statement 1 appears a few paragraphs above. For Statement 2, recall

Chebyshev’s inequality, which states that for any rv Y, P(|Y � μY| � kσY) � 1/k2 for any k � 1

(i.e., the probability that Y is at least k standard deviations away from its mean is at most 1/k2). Let

Y ¼ �X, so μY ¼ E �Xð Þ ¼ μ and σY ¼ SD �Xð Þ ¼ σ=
ffiffiffi
n

p
. Now, for any ε > 0, determine the value of

k such that ε ¼ kσY ¼ kσ=
ffiffiffi
n

p
: Solving for k yields k ¼ ε

ffiffiffi
n

p
=σ, which for sufficiently large n will

exceed 1. Apply Chebyshev’s inequality:

P j Y � μY j � kσYð Þ � 1

k2
) P j �X � μ j � ε

ffiffiffi
n

p
σ

� σffiffiffi
n

p
� �

� 1

ε
ffiffiffi
n

p
=σð Þ2

) P j �X � μ j � εð Þ � σ2

ε2n
! 0 as n ! 1

That is, P j �X � μ j � εð Þ ! 0 as n ! 1 for any ε > 0. ■

Convergence of �X to μ in probability actually holds even if the variance σ2 does not exist (a heavy-
tailed distribution) as long as μ is finite. But then Chebyshev’s inequality cannot be used, and the

proof is much more complicated.
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An analogous result holds for proportions. If the Xi are iid Bernoulli(p) rvs, then similar to the

discussion earlier in this section we may write �X as P̂ , and μ ¼ E(Xi) ¼ p. It follows that the sample

proportion P̂ converges to the “true” proportion p

1. In mean square: E P̂ � p
� �2h i

! 0 as n ! 1, and

2. In probability: P j P̂ � p j� ε
� �! 0 as n ! 1 for any ε > 0.

In statistical language, the Law of Large Numbers states that �X is a consistent estimator of μ, and P̂
is a consistent estimator of p. This consistency property also applies to other estimators. For

example, it can be shown that the sample variance S2 ¼P Xi � �Xð Þ2= n� 1ð Þ converges in probabil-
ity to the population variance σ2.

4.5.5 Exercises: Section 4.5 (85–102)

85. The inside diameter of a randomly selected piston ring is a random variable with mean value

12 cm and standard deviation .04 cm.

(a) If �X is the sample mean diameter for a random sample of n ¼ 16 rings, where is the sampling

distribution of �X centered, and what is the standard deviation of the �X distribution?

(b) Answer the questions posed in part (a) for a sample size of n ¼ 64 rings.

(c) For which of the two random samples, the one of part (a) or the one of part (b), is �X more

likely to be within .01 cm of 12 cm? Explain your reasoning.

86. Refer to the previous exercise. Suppose the distribution of diameter is normal.

(a) Calculate P 11:99 � �X � 12:01ð Þ when n ¼ 16.

(b) How likely is it that the sample mean diameter exceeds 12.01 when n ¼ 25?

87. Suppose that the fracture angle under pure compression of a randomly selected specimen of fiber

reinforced polymer-matrix composite material is normally distributed with mean value 53 and

standard deviation 1 (suggested in the article “Stochastic Failure Modelling of Unidirectional

Composite Ply Failure,” Reliability Engr. and System Safety, 2012: 1–9; this type of material is

used extensively in the aerospace industry).

(a) If a random sample of 4 specimens is selected, what is the probability that the sample mean

fracture angle is at most 54? Between 53 and 54?

(b) How many such specimens would be required to ensure that the first probability in (a) is at

least .999?

88. The time taken by a randomly selected applicant for a mortgage to fill out a certain form has a

normal distribution with mean value 10 min and standard deviation 2 min. If five individuals fill

out a form on 1 day and six on another, what is the probability that the sample average amount of

time taken on each day is at most 11 min?

89. The lifetime of a type of battery is normally distributed with mean value 10 h and standard

deviation 1 h. There are four batteries in a package. What lifetime value is such that the total

lifetime of all batteries in a package exceeds that value for only 5% of all packages?

90. The National Health Statistics Reports dated Oct. 22, 2008 stated that for a sample size

of 277 18-year-old American males, the sample mean waist circumference was 86.3 cm. A some-

what complicated method was used to estimate various population percentiles, resulting in the

following values:
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5th 10th 25th 50th 75th 90th 95th

69.6 70.9 75.2 81.3 95.4 107.1 116.4

(a) Is it plausible that the waist size distribution is at least approximately normal? Explain your

reasoning. If your answer is no, conjecture the shape of the population distribution.

(b) Suppose that the population mean waist size is 85 cm and that the population standard

deviation is 15 cm. How likely is it that a random sample of 277 individuals will result in a

sample mean waist size of at least 86.3 cm?

(c) Referring back to (b), suppose now that the population mean waist size is 82 cm (closer to

the sample median than the sample mean). Now what is the (approximate) probability that

the sample mean will be at least 86.3? In light of this calculation, do you think that 82 is a

reasonable value for μ?
91. A friend commutes by bus to and from work 6 days per week. Suppose that waiting time is

uniformly distributed between 0 and 10 min, and that waiting times going and returning on

various days are independent of each other. What is the approximate probability that total waiting

time for an entire week is at most 75 min?

92. There are 40 students in an elementary statistics class. On the basis of years of experience, the

instructor knows that the time needed to grade a randomly chosen paper from the first exam is a

random variable with an expected value of 6 min and a standard deviation of 6 min.

(a) If grading times are independent and the instructor begins grading at 6:50 p.m. and grades

continuously, what is the (approximate) probability that he is through grading before the

11:00 p.m. TV news begins?

(b) If the sports report begins at 11:10, what is the probability that he misses part of the report if

he waits until grading is done before turning on the TV?

93. The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6%.

(a) What is the approximate probability that the sample mean tip percentage for a random

sample of 40 bills is between 16 and 19%?

(b) If the sample size had been 15 rather than 40, could the probability requested in part (a) be

calculated from the given information?

94. A small high school holds its graduation ceremony in the gym. Because of seating constraints,

students are limited to a maximum of four tickets to graduation for family and friends. The vice

principal knows that historically 30% of students want four tickets, 25% want three, 25% want

two, 15% want one, and 5% want none.

(a) Let X ¼ the number of tickets requested by a randomly selected graduating student, and

assume the historical distribution applies to this rv. Find the mean and standard deviation

of X.

(b) Let T ¼ the total number of tickets requested by the 150 students graduating this year.

Assuming all 150 students’ requests are independent, determine the mean and standard

deviation of T.

(c) The gym can seat a maximum of 500 guests. Calculate the (approximate) probability that all

students’ requests can be accommodated. [Hint: Express this probability in terms of T. What

distribution does T have?]

95. Let X represent the amount of gasoline (gallons) purchased by a randomly selected customer at a

gas station. Suppose that the mean and standard deviation of X are 11.5 and 4.0, respectively.

(a) In a sample of 50 randomly selected customers, what is the approximate probability that

the sample mean amount purchased is at least 12 gallons?

(b) In a sample of 50 randomly selected customers, what is the approximate probability that

the total amount of gasoline purchased is at least 600 gallons?
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(c) What is the approximate value of the 95th percentile for the total amount purchased by

50 randomly selected customers?

96. For males the expected pulse rate is 70 per second and the standard deviation is 10 per second.

For women the expected pulse rate is 77 per second and the standard deviation is 12 per second.

Let �X ¼ the sample average pulse rate for a random sample of 40 men and let �Y ¼ the sample

average pulse rate for a random sample of 36 women.

(a) What is the approximate distribution of �X? Of �Y?

(b) What is the approximate distribution of �X � �Y? Justify your answer.

(c) Calculate (approximately) the probability P �2 � �X � �Y � 1ð Þ.
(d) Calculate (approximately) P �X � �Y � �15ð Þ. If you actually observed �X � �Y � �15,

would you doubt that μ1 � μ2 ¼ –7? Explain.

97. The first assignment in a statistical computing class involves running a short program. If past

experience indicates that 40% of all students will make no programming errors, use an

appropriate normal approximation to compute the probability that in a class of 50 students

(a) At least 25 will make no errors.

(b) Between 15 and 25 (inclusive) will make no errors.

98. The number of parking tickets issued in a certain city on any given weekday has a Poisson

distribution with parameter μ ¼ 50. What is the approximate probability that

(a) Between 35 and 70 tickets are given out on a particular day?

(b) The total number of tickets given out during a 5-day week is between 225 and 275? [For

parts (a) and (b), use an appropriate CLT approximation.]

(c) Use software to obtain the exact probabilities in (a) and (b), and compare to the

approximations.

99. Suppose the distribution of the time X (in hours) spent by students at a certain university on a

particular project is gamma with parameters α ¼ 50 and β ¼ 2. Use CLT to compute the

(approximate) probability that a randomly selected student spends at most 125 h on the project.

100. The Central Limit Theorem says that �X is approximately normal if the sample size is large. More

specifically, the theorem states that the standardized �X has a limiting standard normal distribu-

tion. That is, �X � μð Þ= σ=
ffiffiffi
n

pð Þ has a distribution approaching the standard normal. Can you

reconcile this with the Law of Large Numbers?

101. It can be shown that if Yn converges in probability to a constant τ, then h(Yn) converges to h(τ)
for any function h that is continuous at τ. Use this to obtain a consistent estimator for the rate

parameter λ of an exponential distribution. [Hint: How does μ for an exponential distribution

relate to the exponential parameter λ?]
102. Let X1, . . ., Xn be a random sample from the uniform distribution on [0, θ]. Let Yn be the

maximum of these observations: Yn ¼ max(X1, . . ., Xn). Show that Yn converges in probability

to θ, that is, that P(|Yn � θ| � ε) ! 0 as n approaches1. [Hint: We shall show in Sect. 4.9 that

the pdf of Yn is f(y) ¼ nyn–1/θn for 0 � y � θ.]

4.6 Transformations of Jointly Distributed Random Variables

In the previous chapter we discussed the problem of starting with a single random variable X, forming

some function of X, such as Y ¼ X2 or Y ¼ eX, and investigating the distribution of this new random

variable Y. We now generalize this scenario by starting with more than a single random variable.

Consider as an example a system having a component that can be replaced just once before the system
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itself expires. Let X1 denote the lifetime of the original component and X2 the lifetime of the

replacement component. Then any of the following functions of X1 and X2 may be of interest to an

investigator:

1. The total lifetime, X1 + X2.

2. The ratio of lifetimes X1/X2 (for example, if the value of this ratio is 2, the original component

lasted twice as long as its replacement).

3. The ratio X1/(X1 + X2), which represents the proportion of system lifetime during which the

original component operated.

4.6.1 The Joint Distribution of Two New Random Variables

Given two random variables X1 and X2, consider forming two new random variables Y1 ¼ u1(X1, X2)

and Y2 ¼ u2(X1, X2). Our focus is on finding the joint distribution of these two new variables. Since

most applications assume that the Xis are continuous, we restrict ourselves to that case. Some notation

is needed before a general result can be given. Let

f(x1, x2) ¼ the joint pdf of the two original variables

g(y1, y2) ¼ the joint pdf of the two new variables

The u1( � ) and u2( � ) functions express the new variables in terms of the original ones. The general

result presumes that these functions can be inverted to solve for the original variables in terms of the

new ones:

X1 ¼ v1 Y1; Y2ð Þ, X2 ¼ v2 Y1; Y2ð Þ
For example, if

y1 ¼ x1 þ x2 and y2 ¼
x1

x1 þ x2

then multiplying y2 by y1 gives an expression for x1, and then we can substitute this into the

expression for y1 and solve for x2:

x1 ¼ y1y2 ¼ v1 y1; y2ð Þ x2 ¼ y1 1� y2ð Þ ¼ v2 y1; y2ð Þ
In a final burst of notation, let

S ¼ x1; x2ð Þ : f x1; x2ð Þ > 0f g T ¼ y1; y2ð Þ : g y1; y2ð Þ > 0f g
That is, S is the region of positive density for the original variables and T is the region of positive

density for the new variables; T is the “image” of S under the transformation.

TRANSFORMATION THEOREM (bivariate case)

Suppose that the partial derivative of each vi(y1, y2) with respect to both y1 and y2 exists and is

continuous for every (y1, y2) 2 T. Form the 2 � 2 matrix
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M ¼
∂v1 y1; y2ð Þ

∂y1

∂v1 y1; y2ð Þ
∂y2

∂v2 y1; y2ð Þ
∂y1

∂v2 y1; y2ð Þ
∂y2

0
BBB@

1
CCCA

The determinant of this matrix, called the Jacobian, is

det Mð Þ ¼ ∂v1
∂y1

� ∂v2
∂y2

� ∂v1
∂y2

� ∂v2
∂y1

The joint pdf for the new variables then results from taking the joint pdf f(x1, x2) for the

original variables, replacing x1 and x2 by their expressions in terms of y1 and y2, and finally

multiplying this by the absolute value of the Jacobian:

g y1; y2ð Þ ¼ f v1 y1; y2ð Þ, v2 y1; y2ð Þð Þ � j det Mð Þ j y1; y2ð Þ 2 T

The theorem can be rewritten slightly by using the notation

det Mð Þ ¼ ∂ x1; x2ð Þ
∂ y1; y2ð Þ
����

����
Then we have

g y1; y2ð Þ ¼ f x1; x2ð Þ ∂ x1; x2ð Þ
∂ y1; y2ð Þ
����

����:
which is the natural extension of the univariate transformation theorem f Y yð Þ ¼ f X xð Þ � dx=dyj j
discussed in Chap. 3.

Example 4.39 Continuing with the component lifetime situation, suppose that X1 and X2 are

independent, each having an exponential distribution with parameter λ. Let’s determine the joint

pdf of

Y1 ¼ u1 X1;X2ð Þ ¼ X1 þ X2 and Y2 ¼ u2 X1;X2ð Þ ¼ X1

X1 þ X2

:

We have already inverted this transformation:

x1 ¼ v1 y1; y2ð Þ ¼ y1y2 x2 ¼ v2 y1; y2ð Þ ¼ y1 1� y2ð Þ
The image of the transformation, i.e., the set of (y1, y2) pairs with positive density, is y1 > 0 and

0 < y2 < 1. The four relevant partial derivatives are

∂v1
∂y1

¼ y2
∂v1
∂y2

¼ y1
∂v2
∂y1

¼ 1� y2
∂v2
∂y2

¼ �y1

from which the Jacobian is det(M) ¼ y1y2 � y1(1 � y2) ¼ �y1.

Since the joint pdf of X1 and X2 is

f x1; x2ð Þ ¼ λe�λx1 � λe�λx2 ¼ λ2e�λ x1þx2ð Þ x1 > 0, x2 > 0

we have, by the Transformation Theorem,
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g y1; y2ð Þ ¼ λ2e�λ y1y2þy1 1�y2ð Þð Þ � �y1j j ¼ λ2y1e
�λy1 ¼ λ2y1e

�λy1 � 1 y1 > 0, 0 < y2 < 1

In the last step, we’ve factored the joint pdf into two parts: the first part is a gamma pdf with

parameters α ¼ 2 and β ¼ 1/λ, and the second part is a uniform pdf on (0, 1). Since the pdf factors

and the region of positive density is rectangular, we have demonstrated that

1. The distribution of system lifetime X1 + X2 is gamma (with α ¼ 2, β ¼ 1/λ);
2. The distribution of the proportion of system lifetime during which the original component

functions is uniform on (0, 1); and

3. Y1 ¼ X1 + X2 and Y2 ¼ X1/(X1 + X2) are independent of each other. ■

In the foregoing example, because the joint pdf factored into one pdf involving y1 alone and

another pdf involving y2 alone, the individual (i.e., marginal) pdfs of the two new variables were

obtained from the joint pdf without any further effort. Often this will not be the case—that is, Y1 and

Y2 will not be independent. Then to obtain the marginal pdf of Y1, the joint pdf must be integrated over

all values of the second variable. In fact, in many applications an investigator wishes to obtain the

distribution of a single function u1(X1, X2) of the original variables. To accomplish this, a second

function Y2 ¼ u2(X1, X2) is selected, the joint pdf is obtained, and then y2 integrated out. There are of
course many ways to select the second function. The choice should be made so that the transformation

can be easily inverted and the integration in the last step is straightforward.

Example 4.40 Consider a rectangular coordinate system with a horizontal x1 axis and a vertical x2
axis as shown in Fig. 4.15a. First a point (X1, X2) is randomly selected, where the joint pdf of X1, X2 is

f x1; x2ð Þ ¼ x1 þ x2 0 < x1 < 1, 0 < x2 < 1

0 otherwise

�

Then a rectangle with vertices (0, 0), (X1, 0), (0, X2), and (X1, X2) is formed as shown in Fig. 4.15a.

What is the distribution of X1X2, the area of this rectangle? To answer this question, let

Y1 ¼ X1X2 Y2 ¼ X2

so

y1 ¼ u1 x1; x2ð Þ ¼ x1x2 y2 ¼ u2 x1; x2ð Þ ¼ x2

10

x2 y2

1

0 x1 y1

10

1

0

A possible
rectangle

ba

(X1, X2)

Fig. 4.15 Regions of

positive density for

Example 4.40
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Then

x1 ¼ v1 y1; y2ð Þ ¼ y1
y2

x2 ¼ v2 y1; y2ð Þ ¼ y2

Notice that because x2 (¼ y2) is between 0 and 1 and y1 is the product of the two xis, it must be the

case that 0 < y1 < y2. The region of positive density for the new variables is then

T ¼ y1; y2ð Þ : 0 < y1 < y2, 0 < y2 < 1f g
which is the triangular region shown in Fig. 4.15b.

Since ∂v2/∂y1 ¼ 0, the product of the two off-diagonal elements in the matrixMwill be 0, so only

the two diagonal elements contribute to the Jacobian:

M ¼
1

y2
�y1
y22

0 1

0
@

1
A, jdet Mð Þ j ¼ 1

y2

The joint pdf of the two new variables is now

g y1; y2ð Þ ¼ f
y1
y2
; y2

� �
� det Mð Þj j

¼
y1
y2

þ y2

� �
� 1
y2

0 < y1 < y2 < 1

0 otherwise

8><
>:

To obtain the marginal pdf of Y1 alone, we must now fix y1 at some arbitrary value between 0 and

1, and integrate out y2. Figure 4.15b shows that for any value of y1, the values of y2 range from y1 to 1:

g1 y1ð Þ ¼
ð1
y1

y1
y2

þ y2

� �
� 1
y2

dy2 ¼ 2 1� y1ð Þ 0 < y1 < 1

This marginal pdf can now be integrated to obtain any desired probability involving the area. For

example, integrating from 0 to .5 gives P(area < .5) ¼ .75. ■

4.6.2 The Joint Distribution of More Than Two New Variables

Consider now starting with three random variables X1, X2, and X3, and forming three new variables

Y1, Y2, and Y3. Suppose again that the transformation can be inverted to express the original variables

in terms of the new ones:

x1 ¼ v1 y1; y2; y3ð Þ, x2 ¼ v2 y1; y2; y3ð Þ, x3 ¼ v3 y1; y2; y3ð Þ
Then the foregoing theorem can be extended to this new situation. The Jacobian matrix has

dimension 3 � 3, with the entry in the ith row and jth column being ∂vi/∂yj. The joint pdf of the

new variables results from replacing each xi in the original pdf f(�) by its expression in terms of the yjs

and multiplying by the absolute value of the Jacobian.

Example 4.41 Consider n ¼ 3 identical components with independent lifetimes X1, X2, X3, each

having an exponential distribution with parameter λ. If the first component is used until it fails,
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replaced by the second one which remains in service until it fails, and finally the third component is

used until failure, then the total lifetime of these components is Y3 ¼ X1 + X2 + X3. (This design

structure, where one component is replaced by the next in succession, is called a standby system.) To

find the distribution of total lifetime, let’s first define two other new variables: Y1 ¼ X1 and Y2 ¼
X1 + X2 (so that Y1 < Y2 < Y3). After finding the joint pdf of all three variables, we integrate out the
first two variables to obtain the desired information. Solving for the old variables in terms of the new

gives

x1 ¼ y1 x2 ¼ y2 � y1 x3 ¼ y3 � y2

It is obvious by inspection of these expressions that the three diagonal elements of the Jacobian

matrix are all 1s and that the elements above the diagonal are all 0s, so the determinant is 1, the

product of the diagonal elements. Since

f x1; x2; x3ð Þ ¼ λ3e�λ x1þx2þx3ð Þ x1 > 0, x2 > 0, x3 > 0

by substitution,

g y1; y2; y3ð Þ ¼ λ3e�λy3 0 < y1 < y2 < y3

Integrating this joint pdf first with respect to y1 between 0 and y2 and then with respect to y2
between 0 and y3 (try it!) gives

g3 y3ð Þ ¼ λ3

2
y23e

�λy3 y3 > 0

which is the gamma pdf with α ¼ 3 and β ¼ 1/λ. This result and Example 3.39 are both special cases

of a proposition from Sect. 4.3, stating that the sum of n iid exponential rvs has a gamma distribution

with α ¼ n. ■

4.6.3 Exercises: Section 4.6 (103–110)

103. Let X1 and X2 be independent, standard normal rvs.

(a) Define Y1 ¼ X1 + X2 and Y2 ¼ X1 � X2. Determine the joint pdf of Y1 and Y2.

(b) Determine the marginal pdf of Y1. [Note:We know the sum of two independent normal rvs

is normal, so you can check your answer against the appropriate normal pdf.]

(c) Are Y1 and Y2 independent?

104. Consider two components whose lifetimes X1 and X2 are independent and exponentially

distributed with parameters λ1 and λ2, respectively. Obtain the joint pdf of total lifetime

X1 + X2 and the proportion of total lifetime X1/(X1 + X2) during which the first component

operates.

105. Let X1 denote the time (hr) it takes to perform a first task and X2 denote the time it takes to

perform a second one. The second task always takes at least as long to perform as the first task.

The joint pdf of these variables is

f x1; x2ð Þ ¼ 2 x1 þ x2ð Þ 0 � x1 � x2 � 1

0 otherwise

�

(a) Obtain the pdf of the total completion time for the two tasks.

(b) Obtain the pdf of the difference X2 � X1 between the longer completion time and the

shorter time.
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106. An exam consists of a problem section and a short-answer section. Let X1 denote the amount of

time (h) that a student spends on the problem section and X2 represent the amount of time the

same student spends on the short-answer section. Suppose the joint pdf of these two times is

f x1; x2ð Þ ¼ cx1x2
x1
3
< x2 <

x1
2
, 0 < x1 < 1

0 otherwise

(

(a) What is the value of c?
(b) If the student spends exactly .25 h on the short-answer section, what is the probability that

at most .60 h was spent on the problem section? [Hint: First obtain the relevant conditional
distribution.]

(c) What is the probability that the amount of time spent on the problem part of the exam

exceeds the amount of time spent on the short-answer part by at least .5 h?

(d) Obtain the joint distribution of Y1 ¼ X2/X1, the ratio of the two times, and Y2 ¼ X2. Then

obtain the marginal distribution of the ratio.

107. Consider randomly selecting a point (X1, X2, X3) in the unit cube {(x1, x2, x3): 0 < x1 < 1,

0 < x2 < 1, 0 < x3 < 1} according to the joint pdf

f x1; x2; x3ð Þ ¼ 8x1x2x3 0 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1

0 otherwise

�

(so the three variables are independent). Then form a rectangular solid whose vertices are (0, 0,

0), (X1, 0, 0), (0, X2, 0), (X1, X2, 0), (0, 0, X3), (X1, 0, X3), (0, X2, X3), and (X1, X2, X3). The

volume of this cube is Y3 ¼ X1X2X3. Obtain the pdf of this volume. [Hint: Let Y1 ¼ X1 and

Y2 ¼ X1X2.]

108. Let X1 and X2 be independent, each having a standard normal distribution. The pair (X1, X2)

corresponds to a point in a two-dimensional coordinate system. Consider now changing to polar

coordinates via the transformation,

Y1 ¼ X2
1 þ X2

2

Y2 ¼

arctan
X2

X1

� �
X1 > 0,X2 � 0

arctan
X2

X1

� �
þ 2π X1 > 0,X2 < 0

arctan
X2

X1

� �
þ π X1 < 0

0 X1 ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

from which X1 ¼
ffiffiffiffiffi
Y1

p
cos Y2ð Þ, X2 ¼

ffiffiffiffiffi
Y1

p
sin Y2ð Þ: Obtain the joint pdf of the new variables

and then the marginal distribution of each one. [Note: It would be nice if we could simply let

Y2 ¼ arctan(X2/X1), but in order to insure invertibility of the arctan function, it is defined to take

on values only between �π/2 and π/2. Our specification of Y2 allows it to assume any value

between 0 and 2π.]
109. The result of the previous exercise suggests how observed values of two independent standard

normal variables can be generated by first generating their polar coordinates with an exponential

rv with λ ¼ 1
2
and an independent Unif(0, 2π) rv: Let U1 and U2 be independent Unif(0, 1) rvs,

and then let
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Y1 ¼ �2 ln U1ð Þ Y2 ¼ 2πU2,

Z1 ¼
ffiffiffiffiffi
Y1

p
cos Y2ð Þ Z2 ¼

ffiffiffiffiffi
Y1

p
sin Y2ð Þ

Show that the Zis are independent standard normal. [Note: This is called the Box-Muller

transformation after the two individuals who discovered it. Now that statistical software

packages will generate almost instantaneously observations from a normal distribution with

any mean and variance, it is thankfully no longer necessary for people like you and us to carry

out the transformations just described—let the software do it!]

110. Let X1 and X2 be independent random variables, each having a standard normal distribution.

Show that the pdf of the ratio Y ¼ X1/X2 is given by f(y) ¼ 1/[π(1 + y2)] for � 1 < y < 1.

(This is called the standard Cauchy distribution; its density curve is bell-shaped, but the tails are
so heavy that μ does not exist.)

4.7 The Bivariate Normal Distribution

Perhaps the most useful joint distribution is the bivariate normal. Although the formula may seem

rather complicated, it is based on a simple quadratic expression in the standardized variables (subtract

the mean and then divide by the standard deviation). The bivariate normal density is

f x; yð Þ ¼ 1

2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � 1

2 1� ρ2ð Þ
x� μ1
σ1

� �2

� 2ρ
x� μ1
σ1

� �
y� μ2
σ2

� �
þ y� μ2

σ2

� �2
" # !

The notation used here for the five parameters reflects the roles they play. Some tedious integration

shows that μ1 and σ1 are the mean and standard deviation, respectively, of X, μ2 and σ2 are the mean

and standard deviation, respectively, of Y, and ρ is the correlation coefficient between the two

variables. The integration required to do bivariate normal probability calculations is quite difficult.

Computer code is available for calculating P(X � x, Y � y) approximately using numerical integra-

tion, and some software packages, including Matlab and R, incorporate this feature (see the end of

this section).

The density surface in three dimensions looks like a mountain with elliptical cross-sections, as

shown in Fig. 4.16a. The vertical cross-sections are all proportional to normal densities. If we set

f(x, y) ¼ c to investigate the contours (curves along which the density is constant), this amounts to

x

y

a

b

x

y

f(x, y)

Fig. 4.16 (a) A graph of the bivariate normal pdf; (b) contours of the bivariate normal pdf
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equating the exponent of the joint pdf to a constant. The contours are then concentric ellipses centered

at (x, y) ¼ (μ1 , μ2), as shown in Fig. 4.16b.

If ρ ¼ 0, then f(x,y) ¼ fX(x) fY(y), where X 	 N(μ1, σ1) and Y 	 N(μ2, σ2). That is, X and Y have

independent normal distributions. In this case the elliptical contours reduce to circles. Recall that in

Sect. 4.2 we emphasized that independence of X and Y implies ρ ¼ 0 but, in general, ρ ¼ 0 does not

imply independence. However, we have just seen that when X and Y are bivariate normal, ρ ¼ 0 does

imply independence. Therefore, in the bivariate normal case ρ ¼ 0 if and only if the two rvs are

independent.

Regardless of whether or not ρ ¼ 0, the marginal distribution fX(x) is just a normal pdf with mean

μ1 and standard deviation σ1:

f X xð Þ ¼ 1

σ1
ffiffiffiffiffi
2π

p e� x�μ1ð Þ2= 2σ2
1ð Þ

The integration to show this [integrating f(x,y) on y from –1 to1] is rather messy. Likewise, the

marginal distribution of Y is N(μ2, σ2). These two marginal pdfs are, in fact, just special cases of a

much stronger result.

PROPOSITION

If X and Y have a bivariate normal distribution, then any linear combination of X and Y is also

normal. That is, for any constants a, b, c, the random variable aX + bY + c has a normal

distribution.

This proposition can be proved using the transformation techniques of Sect. 4.6 along with some

extremely tedious algebra. Setting a ¼ 1 and b ¼ c ¼ 0, we have that X is normally distributed;

a ¼ 0, b ¼ 1, c ¼ 0 yields the same result for Y. To find the mean and standard deviation of a general

linear combination, one can use the rules for linear combinations established in Sect. 4.3.

Example 4.42 Many students applying for college take the SAT, which until 2016 consisted of three

components: Critical Reading, Mathematics, and Writing. While some colleges use all three

components to determine admission, many only look at the first two (reading and math). Let X and

Y denote the Critical Reading and Mathematics scores, respectively, for a randomly selected student.

According to the College Board website, the population of students taking the exam in Fall 2012 had

the following results:

μ1 ¼ 496, σ1 ¼ 114, μ2 ¼ 514, σ2 ¼ 117

Suppose that X and Y have approximately (because both X and Y are discrete) a bivariate normal

distribution with correlation coefficient ρ ¼ .25. Let’s determine the probability that a student’s total

score across these two components exceeds 1250, the minimum admission score for a particular

university.

Our goal is to calculate P(X + Y > 1250). Using the bivariate normal pdf, the desired probability

is a daunting double integral:

1

2π 114ð Þ 117ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :252

p
ð1
�1

ð1
1250�y

e� x�496ð Þ=114½ �2�2 :25ð Þ x�496ð Þ y�514ð Þ= 114ð Þ 117ð Þþ y�514ð Þ=117½ �2f g= 2 1�:252ð Þ½ �dxdy
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This is not a practical way to solve this problem! Instead, recognize X + Y as a linear combination

of X and Y; by the preceding proposition, X + Y has a normal distribution. The mean and variance of

X + Y are calculated using the formulas from Sect. 4.3:

E X þ Yð Þ ¼ E
�
X
�þ E

�
Y
� ¼ μ1 þ μ2 ¼ 496þ 514 ¼ 1010

Var X þ Yð Þ ¼ Var
�
X
�þ Var

�
Y
�þ 2Cov

�
X,Y

�
¼ σ21 þ σ22 þ 2ρσ1σ2 ¼ 1142 þ 1172 þ 2 :25ð Þ�114��117� ¼ 33, 354

Therefore,

P X þ Y > 1250ð Þ ¼ 1�Φ
1250� 1010ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

33, 354
p

� �
¼ 1�Φ 1:31ð Þ ¼ :0951:

Suppose instead we wish to determine P(X < Y), the probability a student scores better on math

than on reading. If we rewrite this probability as P(X � Y < 0), then we may apply the preceding

proposition to the linear combination X � Y. With E(X � Y ) ¼ –18 and Var(X � Y ) ¼ 20,016,

P X < Yð Þ ¼ P X � Y < 0ð Þ ¼ Φ
0� �18ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20, 016
p

� �
¼ Φ 0:13ð Þ ¼ :5517: ■

4.7.1 Conditional Distributions of X and Y

As in Sect. 4.4, the conditional density of Y given X ¼ x results from dividing the marginal density of

X into f(x,y). The algebra is again a mess, but the result is fairly simple.

PROPOSITION

Let X and Y have a bivariate normal distribution. Then the conditional distribution of Y, given

X ¼ x, is normal with mean and variance

μY jX¼x ¼ E Y j X ¼ xð Þ ¼ μ2 þ ρσ2
x� μ1
σ1

σ2YjX¼x ¼ Var Y j X ¼ xð Þ ¼ σ22 1� ρ2
� �

Notice that the conditional mean of Y is a linear function of x, and the conditional variance of

Y doesn’t depend on x at all. When ρ ¼ 0, the conditional mean is the mean of Y, μ2, and the

conditional variance is just the variance of Y, σ2
2 . In other words, if ρ ¼ 0, then the conditional

distribution of Y is the same as the unconditional distribution of Y. When ρ is close to 1 or –1 the

conditional variance will be much smaller than Var(Y ), which says that knowledge of X will be very

helpful in predicting Y. If ρ is near 0 then X and Y are nearly independent and knowledge of X is not

very useful in predicting Y.

Example 4.43 Let X and Y be the heights of a randomly selected mother and her daughter,

respectively. A similar situation was one of the first applications of the bivariate normal distribution,

by Francis Galton in 1886, and the data were found to fit the distribution very well. Suppose a

bivariate normal distribution with mean μ1 ¼ 64 in. and standard deviation σ1 ¼ 3 in. for X and mean

μ2 ¼ 65 in. and standard deviation σ2 ¼ 3 in. for Y. Here μ2 > μ1, which is in accord with the

increase in height from one generation to the next. Assume ρ ¼ .4. Then
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μYjX¼x ¼ μ2 þ ρσ2
x� μ1
σ1

¼ 65þ :4 3ð Þ x� 64

3
¼ 65þ :4 x� 64ð Þ ¼ :4xþ 39:4

σ2YjX¼x ¼ Var Y j X ¼ xð Þ ¼ σ22 1� ρ2
� � ¼ 9 1� :42

� � ¼ 7:56 and σYjX¼x ¼ 2:75

Notice that the conditional variance is 16% less than the variance of Y. Squaring the correlation

gives the percentage by which the conditional variance is reduced relative to the variance of Y. ■

4.7.2 Regression to the Mean

The formula for the conditional mean can be reexpressed as

μYjX¼x � μ2
σ2

¼ ρ � x� μ1
σ1

In words, when the formula is expressed in terms of standardized quantities, the standardized

conditional mean is just ρ times the standardized x. In particular, for the height scenario

μYjX¼x � 65

3
¼ :4 � x� 64

3

If the mother is 5 in. above the mean of 64 in. for mothers, then the daughter’s conditional expected

height is just 2 in. above the mean for daughters. In this example, with equal standard deviations for

Y and X, the daughter’s conditional expected height is always closer to its mean than the mother’s

height is to its mean. One can think of the conditional expectation as falling back toward the mean,

and that is why Galton called this regression to the mean.

Regression to the mean occurs in many contexts. For example, let X be a baseball player’s average

for the first half of the season and let Y be the average for the second half. Most of the players with a

high X (above .300) will not have such a high Y. The same kind of reasoning applies to the

“sophomore jinx,” which says that if a player has a very good first season, then the player is unlikely

to do as well in the second season.

4.7.3 The Multivariate Normal Distribution

The multivariate normal distribution extends the bivariate normal distribution to situations involving

models for n random variables X1, X2, . . ., Xn with n > 2. The joint density function is quite

complicated; the only way to express it compactly is to make use of matrix algebra notation, and

probability calculations based on this distribution are extremely complex. Here are some of the most

important properties of the distribution:

• The distribution of any linear combination of X1, X2, . . ., Xn is normal

• The marginal distribution of any Xi is normal

• The joint distribution of any pair Xi, Xj is bivariate normal

• The conditional distribution of any Xi given values of the other n � 1 variables is normal

Many procedures for the analysis of multivariate data (observations simultaneously on three or

more variables) are based on assuming that the data were selected from a multivariate normal

distribution. We recommend Methods of Multivariate Analysis, 3rd ed., by Rencher for more

information on multivariate analysis and the multivariate normal distribution.
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4.7.4 Bivariate Normal Calculations with Software

Matlab will compute probabilities under the bivariate normal pdf using the mvncdf command

(“mvn” abbreviates multivariate normal). This function is illustrated in the next example.

Example 4.44 Consider the SAT reading/math scenario of Example 4.42. What is the probability

that a randomly selected student scored at most 650 on both components, i.e., what is P(X � 650 \
Y � 650)?

The desired probability cannot be expressed in terms of a linear combination of X and Y, and so the
technique of the earlier example does not apply. Figure 4.17 shows the required Matlab code. The first

two inputs are the desired cdf values (x, y) ¼ (650, 650) and the means (μ1, μ2) ¼ (496, 514),

respectively. The third input is called the covariance matrix of X and Y, defined by

C X; Yð Þ ¼ Var Xð Þ Cov X; Yð Þ
Cov X; Yð Þ Var Yð Þ
� �

¼ σ21 ρσ1σ2
ρσ1σ2 σ22

� �

Matlab returns an answer of .8097, so for X and Y having a bivariate normal distribution with the

parameters specified in Example 4.42, P(X � 650 \ Y � 650) ¼ .8097. About 81% of students

scored 650 or below on both the Critical Reading and Mathematics components, according to this

model. ■
The pmvnorm function in R will perform the same calculation with the same inputs (the

covariance matrix is labeled sigma). Users must install the mvtnorm package to access this

function.

4.7.5 Exercises: Section 4.7 (111–120)

111. Example 4.42 introduced a bivariate normal model for X ¼ SAT Critical Reading score and

Y ¼ SAT Mathematics score. Let W ¼ SAT Writing score (the third component of the SAT),

which has mean 488 and standard deviation 114. Suppose X and W have a bivariate normal

distribution with ρX,W ¼ Corr(X, W) ¼ .5.

(a) An English department plans to use X + W, a student’s total score on the non-math

sections of the SAT, to help determine admission. Determine the distribution of X + W.

(b) Calculate P(X + W > 1200).

(c) Suppose the English department wishes to admit only those students who score in the top

10% on this Critical Reading + Writing criterion. What combined score separates the top

10% of students from the rest?

112. In the context of the previous exercise, let T ¼ X + Y + W, a student’s grand total score on the

three components of the SAT.

(a) Find the expected value of T.

(b) Assume Corr(Y, W) ¼ .2. Find the variance of T. [Hint: Use Expression (4.5) from

Sect. 4.3.]

mu=[496, 514];
C=[114^2, .25*114*117; .25*114*117, 117^2];
mvncdf([650, 650],mu,C)

Fig. 4.17 Matlab code for

Example 4.44
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(c) Suppose X, Y, W have a multivariate normal distribution, in which case T is also normally

distributed. Determine P(T > 2000).

(d) What is the 99th percentile of SAT grand total scores, according to this model?

113. Let X ¼ height (inches) and Y ¼ weight (lbs) for an American male. Suppose X and Y have a

bivariate normal distribution, the mean and sd of heights are 70 in and 3 in. the mean and sd of

weights are 170 lbs and 20 lbs, and the correlation coefficient is ρ ¼ .9.

(a) Determine the distribution of Y given X ¼ 68, i.e., the weight distribution for 5’8’’

American males.

(b) Determine the distribution of Y given X ¼ 70, i.e., the weight distribution for 5’10’’

American males. In what ways is this distribution similar to that of part (a), and how are

they different?

(c) Calculate P(Y < 180jX ¼ 72), the probability that a 6-ft-tall American male weighs less

than 180 lb.

114. In electrical engineering, the unwanted “noise” in voltage or current signals is often modeled by

a Gaussian (i.e., normal) distribution. Suppose that the noise in a particular voltage signal has a

constant mean of 0.9 V, and that two noise instances sampled τ seconds apart have a bivariate
normal distribution with covariance equal to 0.04e–jτj/10. Let X and Y denote the noise at times

3 s and 8 s, respectively.

(a) Determine Cov(X, Y).
(b) Determine σX and σY. [Hint: Var(X) ¼ Cov(X, X).]

(c) Determine Corr(X, Y).

(d) Find the probability we observe greater voltage noise at time 3 s than at time 8 s.

(e) Find the probability that the voltage noise at time 3 s is more than 1 V above the voltage

noise at time 8 s.

115. For a Calculus I class, the final exam score Y and the average X of the four earlier tests have a

bivariate normal distribution with mean μ1 ¼ 73, standard deviation σ1 ¼ 12, mean μ2 ¼ 70,

standard deviation σ2 ¼ 15. The correlation is ρ ¼ .71. Determine

(a) μYjX¼x

(b) σ2YjX¼x

(c) σYjX¼x

(d) P(Y > 90jX ¼ 80), i.e., the probability that the final exam score exceeds 90 given that the

average of the four earlier tests is 80

116. Refer to the previous exercise. Suppose a student’s Calculus I grade is determined by 4X + Y,

the total score across five tests.

(a) Find the mean and standard deviation of 4X + Y.

(b) Determine P(4X + Y < 320).

(c) Suppose the instructor sets the curve in such a way that the top 15% of students, based on

total score across the five tests, will receive As. What point total is required to get an A in

Calculus I?

117. Let X and Y, reaction times (sec) to two different stimuli, have a bivariate normal distribution

with mean μ1 ¼ 20 and standard deviation σ1 ¼ 2 for X and mean μ2 ¼ 30 and standard

deviation σ2 ¼ 5 for Y. Assume ρ ¼ .8. Determine

(a) μYjX¼x

(b) σ2YjX¼x

(c) σYjX¼x

(d) P(Y > 46 j X ¼ 25)
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118. Refer to the previous exercise.

(a) One researcher is interested in X + Y, the total reaction time to the two stimuli. Determine

the mean and standard deviation of X + Y.

(b) If X and Y were independent, what would be the standard deviation of X + Y? Explain why

it makes sense that the sd in part (a) is much larger than this.

(c) Another researcher is interested in Y � X, the difference in the reaction times to the two

stimuli. Determine the mean and standard deviation of Y � X.
(d) If X and Y were independent, what would be the standard deviation of Y � X? Explain why

it makes sense that the sd in part (c) is much smaller than this.

119. Let X and Y be the times for a randomly selected individual to complete two different tasks, and

assume that (X, Y ) has a bivariate normal distribution with μ1 ¼ 100, σ1 ¼ 50, μ2 ¼ 25,

σ2 ¼ 5, ρ ¼ .4. From statistical software we obtain P(X < 100, Y < 25) ¼ .3333, P(X < 50,

Y < 20) ¼ .0625, P(X < 50, Y < 25) ¼ .1274, and P(X < 100, Y < 20) ¼ .1274.

(a) Determine P(50 < X < 100, 20 < Y < 25).

(b) Leave the other parameters the same but change the correlation to ρ ¼ 0 (independence).

Now recompute the probability in part (a). Intuitively, why should the original be larger?

120. One of the propositions of this section gives an expression for E(YjX ¼ x).

(a) By reversing the roles of X and Y give a similar formula for E(XjY ¼ y).

(b) Both E(YjX ¼ x) and E(XjY ¼ y) are linear functions. Show that the product of the two

slopes is ρ2.

4.8 Reliability

Reliability theory is the branch of statistics and operations research devoted to studying how long

systems will function properly. A “system” can refer to a single device, such as a DVR, or a network

of devices or objects connected together (e.g., electronic components or stages in an assembly line).

For any given system, the primary variable of interest is T ¼ the system’s lifetime, i.e., the duration

of time until the system fails (either permanently or until repairs/upgrades are made). Since

T measures time, we always have T � 0. Most often, T is modeled as a continuous rv on (0, 1),

though occasionally lifetimes are modeled as discrete or, at least, having positive probability of

equaling zero (such as a light bulb that never turns on). The probability distribution of T is often

described in terms of its reliability function.

4.8.1 The Reliability Function

DEFINITION

Let T denote the lifetime (i.e., the time to failure) of some system. The reliability function of

T (or of the system), denoted by R(t), is defined for t � 0 by

R(t) ¼ P(T > t) ¼ 1 � F(t),

where F(t) is the cdf of T. That is, R(t) is the probability that the system lasts more that t time

units. The reliability function is sometimes also called the survival function of T.
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Properties of F(t) and the relation R(t) ¼ 1 � F(t) imply that

1. If T is a continuous rv on [0, 1), then R(0) ¼ 1.

2. R(t) is a non-increasing function of t.
3. R(t) ! 0 as t ! 1.

Example 4.45 The exponential distribution serves as one of the most common lifetime models

in engineering practice. Suppose the lifetime T, in hours, of a certain drill bit is exponential

with parameter λ ¼ .01 (equivalently, mean 100). From Sect. 3.4, we know that T has cdf

F(t) ¼ 1 � e–.01t, so the reliability function of T is

R tð Þ ¼ 1� F tð Þ ¼ e�:01t t � 0

This function satisfies properties 1–3 above. A graph of R(t) appears in Fig. 4.18a.

Now suppose instead that 5% of these drill bits shatter upon initial use, so that P(T ¼ 0) ¼ .05,

while the remaining 95% of such drill bits follow the aforementioned exponential distribution. Since

T cannot be negative, R(0) ¼ P(T > 0) ¼ 1 � P(T ¼ 0) ¼ .95. For t > 0, the reliability function of

T is determined as follows:

R tð Þ ¼ P
�
T > t

�
¼ P bit doesn’t shatterð ÞP�T > t j bit doesn’t shatter�
¼ :95ð Þ�e�:01t

� ¼ :95e�:01t

The expression e–.01t comes from the previous reliability function calculation. Since this expres-

sion for R(t) equals .95 at t ¼ 0, we have for all t � 0 that R(t) ¼ .95e–.01t (see Fig. 4.18b). This, too,
is a non-increasing function of t with R(t) ! 0 as t ! 1, but property 1 does not hold because T is

not a continuous rv (it has a “mass” of .05 at t ¼ 0).

Example 4.46 The Weibull family of distributions offers a broader class of models than does the

exponential family. Recall from Sect. 3.5 that the cdf of a Weibull rv is F(x) ¼ 1 � exp(–(x/β)α),
where α is the shape parameter and β is the scale parameter (both > 0). If a system’s time to failure

follows a Weibull distribution, then the reliability function is

1

0 100 200
t

0.95

0 100 200
t

R(t) R(t)
a b

Fig. 4.18 Reliability functions: (a) a continuous lifetime distribution; (b) lifetime with positive probability of failure

at t ¼ 0 ■
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R tð Þ ¼ 1� F tð Þ ¼ exp � t=βð Þαð Þ
Several examples of Weibull reliability functions are illustrated in Fig. 4.19. The α ¼ 1 case

corresponds to an exponential distribution with λ ¼ 1/β. Interestingly, models with larger values of α
have higher reliability for small values of t (to be precise, t < β) but lower reliability for larger t than
do Weibull models with small α parameter values.

■

4.8.2 Series and Parallel Designs

Now consider assessing the reliability of systems configured in series and/or parallel designs.

Figure 4.20 illustrates the two basic designs: a series systemworks if and only if all of its components

work, while a parallel system continues to function as long as at least one of its components is still

functioning. Let T1, . . ., Tn denote the n component lifetimes and let Ri(t) ¼ P(Ti > t) be the

reliability function of the ith component. A standard assumption in reliability theory is that the

n components operate independently, i.e., that the Tis are independent rvs.

Let T denote the lifetime of the series system depicted in Fig. 4.20a. Under the assumption of

component independence, the system reliability function is

R tð Þ ¼ P
�
T > t

� ¼ P
�
the system’s lifetime exceeds t

�
¼ P all n component lifetimes exceed tð Þ series system

¼ P T1 > t \ . . . \ Tn > tð Þ
¼ P T1 > tð Þ � . . . � P�Tn > t

�
by independence

¼ R1 tð Þ � . . . � Rn

�
t
�

That is, for a series design, the system reliability function equals the product of the component

reliability functions. On the other hand, the reliability function for the parallel system in Fig. 4.20b is

given by

R(t)

t

1

a = .5

a = 3

a = 2

a = 1

Fig. 4.19 Reliability

functions for Weibull

lifetime distributions
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R tð Þ ¼ P
�
the system’s lifetime exceeds t

�
¼ P at least one component lifetime exceeds tð Þ parallel system

¼ 1� P all component lifetimes are � tð Þ
¼ 1� P T1 � t \ . . . \ Tn � tð Þ
¼ 1� P T1 � tð Þ � . . . � P�Tn � t

�
by independence

¼ 1� 	1� R1 tð Þ
 � . . . � 	1� Rn

�
t
�


These two results are summarized in the following proposition.

PROPOSITION

Suppose a system consists of n independent components with reliability functions R1(t),. . .,

Rn(t).

1. If the n components are connected in series, the system reliability function is

R tð Þ ¼
Yn
i¼1

Ri tð Þ

2. If the n components are connected in parallel, the system reliability function is

R tð Þ ¼ 1�
Yn
i¼1

1� Ri tð Þ½ �

Example 4.47 Consider three independently operating devices, each of whose lifetime (in hours) is

exponentially distributed with mean 100. From the previous example, R1(t) ¼ R2(t) ¼ R3(t) ¼ e–.01t.
If these three devices are connected in series, the reliability function of the resulting system is

R tð Þ ¼
Y3
i¼1

Ri tð Þ ¼ e�:01t
� �

e�:01t
� �

e�:01t
� � ¼ e�:03t

In contrast, a parallel system using these three devices as its components has reliability function

R tð Þ ¼ 1�
Y3
i¼1

1� Ri tð Þ½ � ¼ 1� 1� e�:01t
� �3

a

b

Fig. 4.20 Basic system

designs: (a) series
connection; (b) parallel

connection
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These two reliability functions are graphed on the same set of axes in Fig. 4.21. Both functions

obey properties 1–3 from p. 383, but for any t > 0 the parallel system reliability exceeds that of the

series system, as it logically should. For example, the probability the series system’s lifetime exceeds

100 h (the expected lifetime of a single component) is R(100) ¼ e–.03(100) ¼ e–3 ¼ .0498, while the

corresponding reliability for the parallel system is R(100) ¼ 1 � (1 � e�.01(100))3 ¼ 1 �
(1 � e� 1)3 ¼ .7474.

Example 4.48 Consider the system depicted below, which consists of a combination of series and

parallel elements. Using previous notation and assuming component lifetimes are independent, let’s

determine the reliability function of this system. More than one method may be applied here; we will

rely on the Addition Rule:

3

21

R tð Þ ¼ P
�	
T1 > t \ T2 > t


 [ T3 > t
�

¼ P T1 > t \ T2 > tð Þ þ P
�
T3 > t

�� P
�
T1 > t \ T2 > t \ T3 > t

�
Addition Rule

¼ P T1 > tð ÞP�T2 > t
�þ P

�
T3 > t

�� P
�
T1 > t

�
P
�
T2 > t

�
P
�
T3 > t

�
independence

¼ R1 tð ÞR2

�
t
�þ R3

�
t
�� R1

�
t
�
R2

�
t
�
R3

�
t
�

It can be shown that this reliability function satisfies properties 1–3 (the first and last are quite

easy). If all three components have common reliability function Ri(t) ¼ e–.01t as in Example 4.47,

the system reliability function becomes R(t) ¼ e–.02t + e–.01t � e–.03t, which lies in between the two

reliability functions of Example 4.47 for all t > 0. ■

1

0.6

R(t)

0.8

0.4

0.2

0
0 200100

t
300 400

Fig. 4.21 Reliability functions for the series (solid) and parallel (dashed) systems of Example 4.47 ■
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4.8.3 Mean Time to Failure

If T denotes a system’s lifetime, i.e., its time until failure, then themean time to failure (mttf) of the

system is simply E(T ). The following proposition relates mean time to failure to the reliability

function.

PROPOSITION

Suppose a system has reliability function R(t) for t � 0. Then the system’s mean time to failure

is given by

μT ¼
ð1
0

1� F tð Þ½ �dt ¼
ð1
0

R tð Þdt ð4:8Þ

Expression (4.8) was established for all non-negative random variables in Exercises 38 and 150 of

Chap. 3.

As a simple demonstration of this proposition, consider a single exponential lifetime with mean

100 h. We have already seen that R(t) ¼ e–.01t for this particular lifetime model; integrating the

reliability function yieldsð1
0

R tð Þdt ¼
ð1
0

e�:01tdt ¼ e�:01t

�:01

����
1

0

¼ 0� 1

�:01
¼ 100

which is indeed the mean lifetime (aka mean time to failure) in this situation. The advantage of using

Eq. (4.8) instead of the definition of E(T ) from Chap. 3 is that the former is usually an easier integral

to calculate than the latter. Here, for example, direct computation of the mean time to failure would be

E Tð Þ ¼
ð1
0

t � f tð Þdt ¼
ð1
0

:01te�:01tdt,

which requires integration by parts (while the preceding computation did not).

Example 4.49 Consider again the series and parallel systems of Example 4.47. Using Eq. (4.8), the

mttf of the series system is

μT ¼
ð1
0

R tð Þdt ¼
ð1
0

e�:03tdt ¼ 1

:03

 33:33hours

More generally, if n independent components are connected in series, and each one has an

exponentially distributed lifetime with common mean μ, then the system’s mean time to failure is

μ/n.
In contrast, mttf for the parallel system is given byð1

0

R tð Þdt ¼
ð1
0

1� 1� e�:01t
	 
3� �

dt ¼
ð1
0

�
3e�:01t � 3e�:02t þ e�:03t

�
dt

¼ 3

:01
� 3

:02
þ 1

:03
¼ 550

3

 183:33hours

There is no simple formula for the mttf of a parallel system, even when the components have

identical exponential distributions. ■
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4.8.4 Hazard Functions

The reliability function of a system specifies the likelihood that the system will last beyond a

prescribed time, t. An alternative characterization of reliability, called the hazard function, conveys

information about the likelihood of imminent failure at any time t.

DEFINITION

Let T denote the lifetime of a system. If the rv T has pdf f(t) and cdf F(t), the hazard function is

defined by

h tð Þ ¼ f tð Þ
1� F tð Þ

If T has reliability function R(t), the hazard function may also be written as h tð Þ ¼ f tð ÞR tð Þ:

Since the pdf f(t) is not a probability, neither is the hazard function h(t). To get a sense of what the

hazard function represents, consider the following question: Given that the system has survived past

time t, what is the probability the system will fail within the next Δt time units (an imminent failure)?

Such a probability may be computed as follows:

P T � tþ Δt j T > tð Þ ¼ P T � tþ Δt \ T > tð Þ
P T > tð Þ ¼

ðtþΔt

t

f tð Þdt
R tð Þ 
 f tð Þ � Δt

R tð Þ ¼ h tð Þ � Δt

Rearranging, we have h(t) 
 P(T � t + ΔtjT > t)/Δt; more precisely, h(t) is the limit of the right-

hand side as Δt ! 0. This suggests that the hazard function h(t) is a density function, like f(t), except

that h(t) relates to the conditional probability that the system is about to fail.

Example 4.50 Once again, consider an exponentially distributed lifetime, T, but with arbitrary

parameter λ. The pdf and reliability function of T are λe–λt and e–λt, respectively, so the hazard

function of T is

h tð Þ ¼ f tð Þ
R tð Þ ¼

λe�λt

e�λt
¼ λ

In other words, a system whose time to failure follows an exponential distribution will have a

constant hazard function. (The converse is true, too; we’ll see how to recover f(t) from h(t) shortly.)

This relates to the memoryless property of the exponential distribution: given the system has

functioned for t hours thus far, the chance of surviving any additional amount of time is independent

of t. As mentioned in Sect. 3.4, this suggests the system does not “wear out” as time progresses (which

may be realistic for some devices in the short term, but not in the long term). ■

Example 4.51 Suppose instead that we model a system’s lifetime with a Weibull distribution. From

the formulas presented in Sect. 3.5,

h tð Þ ¼ f tð Þ
1� F tð Þ ¼

α=βαð Þtα�1e� t=βð Þα

1� 1� e� t=βð Þα	 
 ¼ α

βα
t
α�1

For α ¼ 1, this is identical to the exponential distribution hazard function (with β ¼ 1/λ). For
α > 1, h(t) is an increasing function of t, meaning that we are more likely to observe an imminent
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failure as time progresses (this is equivalent to the system wearing out). For 0 < α < 1, h(t)

decreases with t, which would suggest that failures become less likely as t increases! This can

actually be realistic for small values of t: for many devices, manufacturing flaws cause a handful to

fail very early, and those that survive this initial “burn in” period are actually more likely to survive a

while longer (since they presumably don’t have severe faults). ■

Figure 4.22 shows a prototype hazard function, popularly called a “bathtub” shape. The function

can be divided into three time intervals: (1) a “burn in” period of early failures due to manufacturing

errors; (2) a “stable” period where failures are due primarily to chance; and (3) a “burn out” period

with an increasing failure rate due to devices wearing out. In practice, most hazard functions exhibit

one or more of these behaviors.

There is a one-to-one correspondence between the pdf of a system lifetime, f(t), and its hazard

function, h(t). The definition of the hazard function shows how one may derive h(t) from f(t); the

following proposition reverses the process.

PROPOSITION

Suppose a system has a continuous lifetime distribution on [0, 1) with hazard function h(t).
Then its lifetime (aka time to failure) has reliability function R(t) given by

R tð Þ ¼ e
�
Ð t
0
h uð Þdu

and pdf f(t) given by

f tð Þ ¼ �R
0
tð Þ ¼ h tð Þe�

Ð t
0
h uð Þdu

Proof Since R(t) ¼ 1 � F(t), R0(t) ¼ –f(t), and the hazard function may be written as h(t) ¼
�R0(t)/R(t). Now integrate both sides:ð t

0

h uð Þdu ¼ �
ð t
0

R
0
uð Þ

R uð Þdu ¼ � ln R uð Þ½ �j t0 ¼ � ln R tð Þ½ � þ ln R 0ð Þ½ �

Since the system lifetime is assumed to be continuous on [0,1), R(0) ¼ 1 and ln[R(0)] ¼ 0. This

leaves the equation

burn
in

burn
out

t

h(t)

stable

Fig. 4.22 A prototype

hazard function
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� ln R tð Þ½ � ¼
ð t
0

h uð Þdu,

and the formula for R(t) follows by solving for R(t). The formula for f(t) follows from the previous

observation that R0(t) ¼ –f(t), so f(t) ¼ –R0(t), and then applying the chain rule:

f tð Þ ¼ �R
0
tð Þ ¼ �d

dt
e
�
Ð t

0
h uð Þdu

� �
¼ �e

�
Ð t

0
h uð Þdu � d

dt
�
ð t
0

h uð Þdu
� �

¼ e
�
Ð t
0
h uð Þdu � h tð Þ

The last step utilizes the Fundamental Theorem of Calculus. ■
The formulas for R(t) and f(t) in the preceding proposition can be easily modified for the case

where T ¼ 0 with some positive probability, and so R(0) < 1 (see Exercise 132).

Example 4.52 A certain type of high-quality transistors has hazard function h(t) ¼ 1 + t6 for t � 0,

where t is measured in thousands of hours. This function is illustrated in Fig. 4.23a; notice there is no

“burn in” period, but we see a fairly stable interval followed by burnout. The corresponding pdf for

transistor lifetimes is

f tð Þ ¼ h tð Þe�
Ð t

0
h uð Þdu ¼ 1þ t6

� �
e
�
Ð t
0

1þu6ð Þdu ¼ 1þ t6
� �

e� tþt7=7ð Þ

This pdf appears in Fig. 4.23b.

4.8.5 Exercises: Section 4.8 (121–132)

121. The lifetime, in thousands of hours, of the motor in a certain brand of kitchen blender has a

Weibull distribution with α ¼ 2 and β ¼ 1.

(a) Determine the reliability function of such a motor and then graph it.

(b) What is the probability a motor of this type will last more than 1,500 h?

(c) Determine the hazard function of such a motor and then graph it.

(d) Find the mean time to failure of such a motor. Compare your answer to the expected value

of a Weibull distribution given in Sect. 3.5. [Hint: Let u ¼ x2, and apply the gamma

integral formula (3.5) to the resulting integral.]

122. High-speed Internet customers are often frustrated by modem crashes. Suppose the time to

“failure” for one particular brand of cable modem, measured in hundreds of hours, follows a

gamma distribution with α ¼ β ¼ 2.

0 1 2 3 0
0

0.2

0.4

0.6

0.8

1

1 2 3
t

h (t) f (t)

t

a bFig. 4.23 (a) Hazard
function and (b) pdf for
Example 4.52
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(a) Determine and graph the reliability function for this brand of cable modem.

(b) What is the probability such a modem does not need to be refreshed for more than 300 h?

(c) Find the mean time to “failure” for such a modem. Verify that your answer matches the

formula for the mean of a gamma rv given in Sect. 3.4.

(d) Determine and graph the hazard function for this type of modem.

123. Empirical evidence suggests that the electric ignition on a certain brand of gas stove has the

following lifetime distribution, measured in thousands of days:

f tð Þ ¼ :375t2 0 � t � 2

0 otherwise

�

(Notice that the model indicates that all such ignitions expire within 2,000 days, a little less than

6 years.)

(a) Determine and graph the reliability function for this model, for all t � 0.

(b) Determine and graph the hazard function for 0 � t � 2.

(c) What happens to the hazard function for t > 2?

124. The manufacture of a certain children’s toy involves an assembly line with five stations. The

lifetimes of the equipment at these stations are independent and all exponentially distributed;

the mean time to failure at the first three stations (in hundreds of hours) is 1.5, while the mttf at

the last two stations is 2.4.

(a) Determine the reliability function for each of the five individual stations.

(b) Determine the reliability function for the assembly line. [Hint: An assembly line is an

example of what type of design?]

(c) Find the mean time to failure for the assembly line.

(d) Determine the hazard function for the assembly line.

125. A local bar owns four of the blenders described in Exercise 121, each having a Weibull(2, 1)

lifetime distribution. During peak hours, these blenders are in continuous use, but the bartenders

can keep making blended drinks (margaritas, etc.) provided that at least one of the four blenders

is still functional. Define the “system” to be the four blenders under continuous use as described

above, and define the lifetime of the system to be the length of time that at least one of the

blenders is still functional. (Assume none of the blenders is replaced until all four have worn

out.)

(a) What sort of system design do we have in this example?

(b) Find the reliability function of the system.

(c) Find the hazard function of the system.

(d) Find the mean time to failure of the system. [See the hint from Exercise 121(d).]

126. Consider the six-component system displayed below. Let R1(t), . . ., R6(t) denote the reliability

functions of the components. Assume the six components operate independently.

4 5 6

1 2 3

(a) Find the system reliability function.

(b) Assuming all six components have exponentially distributed lifetimes with mean 100 h,

find the mean time to failure for the system.

324 4 Joint Probability Distributions and Their Applications

http://dx.doi.org/10.1007/978-3-319-52401-6_3#Sec21


127. Consider the six-component system displayed below. Let R1(t), . . ., R6(t) denote the component

reliability functions. Assume the six components operate independently.

1 3 5

2 4 6

(a) Find the system reliability function.

(b) Assuming all six components have exponentially distributed lifetimes with mean 100 h,

find the mean time to failure for the system.

128. A certain machine has the following hazard function:

h tð Þ ¼ :002 0 < t � 200

:001 t > 200

�

This corresponds to a situation where a device with an exponentially distributed lifetime is

replaced after 200 h of operation by another, better device also having an exponential lifetime

distribution.

(a) Determine and graph the reliability function.

(b) Determine the probability density function of the machine’s lifetime.

(c) Find the mean time to failure.

129. Suppose the hazard function of a device is given by

h tð Þ ¼ α 1� t

β

� �
0 � t � β

0 otherwise

8<
:

for some α, β > 0. This model asserts that if a device lasts β hours, it will last forever (while

seemingly unreasonable, this model can be used to study just “initial wearout”).

(a) Find the reliability function.

(b) Find the pdf of device lifetime.

130. Suppose n independent devices are connected in series and that the ith device has an exponential

lifetime distribution with parameter λi.
(a) Find the reliability function of the series system.

(b) Show that the system lifetime also has an exponential distribution, and identify its

parameter in terms of λ1, . . ., λn.
(c) If the mean lifetimes of the individual devices are μ1, . . ., μn, find an expression for the

mean lifetime of the series system.

(d) If the same devices were connected in parallel, would the resulting system’s lifetime also

be exponentially distributed? How can you tell?

131. Show that a device whose hazard function is constant must have an exponential lifetime

distribution.

132. Reconsider the drill bits described in Example 4.45, of which 5% shatter instantly (and

so have lifetime T ¼ 0). It was established that the reliability function for this scenario is

R(t) ¼ .95e–.01t, t � 0.

(a) A generalized version of expected value that applies to distributions with both discrete and

continuous elements can be used to show that the mean lifetime of these drill bits is

(.05)(0) + (.95)(100) ¼ 95 h. Verify that Eq. (4.8) applied to R(t) gives the same answer.
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[This suggests that our proposition about mttf can be used even when the lifetime

distribution assigns positive probability to 0.]

(b) For t > 0, the expression h(t) ¼ –R0(t)/R(t) is still valid. Find the hazard function for

t > 0.

(c) Find a formula for R(t) in terms of h(t) that applies in situations where R(0) < 1. Verify

that you recover R(t) ¼ .95e–.01t when your formula is applied to h(t) from part (b). [Hint:

Look at the earlier proposition in this section. What one change needs to occur to

accommodate R(0) < 1?]

4.9 Order Statistics

Many situations arise in practice that involve ordering sample observations from smallest to largest

and then manipulating these ordered values in various ways. For example, once the bidding has closed

in a hidden-bid auction (one in which bids are submitted independently of one another), the largest

bid in the resulting sample is the amount paid for the item being auctioned, and the difference

between the largest and second largest bids can be regarded as the amount that the successful bidder

has overpaid.

Suppose that X1, X2, . . ., Xn is a random sample from a continuous distribution. Because of

continuity, for any i, j with i 6¼ j, P(Xi ¼ Xj) ¼ 0. This implies that with probability 1, the

n sample observations will all be different (of course, in practice all measuring instruments have

accuracy limitations, so tied values may in fact result).

DEFINITION

The order statistics from a random sample are the random variables Y1, . . .Yn given by

Y1 ¼ the smallest among X1,X2, . . . ,Xn i:e:, the sample minimumð Þ
Y2 ¼ the second smallest among X1,X2, . . . ,Xn

⋮
Yn ¼ the largest among X1,X2, . . . ,Xn the sample maximumð Þ

Thus, with probability 1, Y1 < Y2 < . . .< Yn � 1 < Yn.

The sample median (i.e., the middle value in the ordered list) is then Y(n + 1)/2 when n is odd, while

the sample range is Yn � Y1.

4.9.1 The Distributions of Yn and Y1

The key idea in obtaining the distribution of the sample maximum Yn is the observation that Yn is at

most y if and only if every one of the Xis is at most y. Similarly, the distribution of Y1 is based on the

fact that it will exceed y if and only if all Xis exceed y.

Example 4.53 Consider 5 identical components connected in parallel as shown in Fig. 4.20b. Let Xi

denote the lifetime, in hours, of the ith component (i ¼ 1, 2, 3, 4, 5). Suppose that the Xis are

independent and that each has an exponential distribution with λ ¼ .01, so the expected lifetime of

326 4 Joint Probability Distributions and Their Applications



any particular component is 1/λ ¼ 100 h. Because of the parallel configuration, the system will

continue to function as long as at least one component is still working, and will fail as soon as the last

component functioning ceases to do so. That is, the system lifetime is Y5, the largest order statistic in a

sample of size 5 from the specified exponential distribution. Now Y5 will be at most y if and only if

every one of the five Xis is at most y. With G5(y) denoting the cdf of Y5,

G5 yð Þ ¼ P Y5 � yð Þ ¼ P X1 � y \ X2 � y \ . . . \ X5 � yð Þ
¼ P X1 � yð Þ � P X2 � yð Þ � � � � � P X5 � yð Þ

For every one of the Xis, P(Xi � y) ¼ F(y) ¼ Ð
0
y.01e�.01xdx ¼ 1 � e�.01y; this is the common

cdf of the Xis evaluated at y. Hence,G5(y) ¼ (1 � e�.01y)� � �(1 � e�.01y) ¼ (1 � e�.01y)5. The pdf of

Y5 can now be obtained by differentiating the cdf with respect to y.
Suppose instead that the five components are connected in series rather than in parallel

(Fig. 4.20a). In this case the system lifetime will be Y1, the smallest of the five order statistics,

since the system will crash as soon as a single one of the individual components fails. Note that

system lifetime will exceed y hours if and only if the lifetime of every component exceeds y hours.

Thus, the cdf of Y1 is

G1 yð Þ ¼ P Y1 � yð Þ ¼ 1� P Y1 > yð Þ ¼ 1� P X1 > y \ X2 > y \ . . . \ X5 > yð Þ
¼ 1� P X1 > yð Þ � P X2 > yð Þ � � � � � P X5 > yð Þ ¼ 1� e�:01y

� �5 ¼ 1� e�:05y

This is the form of an exponential cdf with parameter .05. More generally, if the n components in a

series connection have lifetimes that are independent, each exponentially distributed with the same

parameter λ, then the system lifetime will be exponentially distributed with parameter nλ. We saw a

similar result in Example 4.49. The expected system lifetime will then be 1/(nλ), much smaller than

the expected lifetime of an individual component. ■

An argument parallel to that of the previous example for a general sample size n and an arbitrary

pdf f(x) gives the following general results.

PROPOSITION

Let Y1 and Yn denote the smallest and largest order statistics, respectively, based on a random

sample from a continuous distribution with cdf F(x) and pdf f(x). Then the cdf and pdf of Yn are

Gn yð Þ ¼ F yð Þ½ �n, gn yð Þ ¼ n F yð Þ½ �n�1 � f yð Þ
The cdf and pdf of Y1 are

G1 yð Þ ¼ 1� 1� F yð Þ½ �n, g1 yð Þ ¼ n 1� F yð Þ½ �n�1 � f yð Þ

Example 4.54 Let X denote the contents of a one-gallon container, and suppose that its pdf is

f(x) ¼ 2x for 0 � x � 1 (and 0 otherwise) with corresponding cdf F(x) ¼ x2 on [0, 1]. Consider a

random sample of four such containers. The order statistics Y1 and Y4 represent the contents of the

least-filled container and the most-filled container, respectively. The pdfs of Y1 and Y4 are

g1 yð Þ ¼ 4 1� y2
� �3 � 2y ¼ 8y 1� y2

� �3
0 � y � 1
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g4 yð Þ ¼ 4 y2
� �3 � 2y ¼ 8y7 0 � y � 1

The corresponding density curves appear in Fig. 4.24.

Let’s determine the expected value of Y4 � Y1, the difference between the contents of the most-

filled container and the least-filled container; Y4 � Y1 is just the sample range. Apply linearity of

expectation:

E Y4 � Y1ð Þ ¼ E
�
Y4

�� E
�
Y1

� ¼ ð1
0

y � 8y7dy�
ð1
0

y � 8y 1� y2
� �3

dy

¼ 8

9
� 384

945
¼ :889� :406 ¼ :483

If random samples of four containers were repeatedly selected and the sample range of contents

determined for each one, the long run average value of the range would be .483. ■

4.9.2 The Distribution of the ith Order Statistic

We have already obtained the (marginal) distribution of the largest order statistic Yn and also that of

the smallest order statistic Y1. A generalization of the argument used previously results in the

following proposition; Exercise 140 suggests how this result can be derived.

PROPOSITION

Suppose X1, X2, . . ., Xn is a random sample from a continuous distribution with cdf F(x) and pdf
f(x). The pdf of the ith smallest order statistic Yi is

gi yð Þ ¼ n!

i� 1ð Þ! n� ið Þ! F yð Þ½ �i�1
1� F yð Þ½ �n�if yð Þ ð4:9Þ

An intuitive justification for Expression (4.9) will be given shortly. Notice that it is consistent with

the pdf expressions for g1(y) and gn(y) given previously; just substitute i ¼ 1 and i ¼ n, respectively.
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Fig. 4.24 Density curves for the order statistics (a) Y1 and (b) Y4 in Example 4.54
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Example 4.55 Suppose that component lifetime is exponentially distributed with parameter λ. For a
random sample of n ¼ 5 components, the expected value of the sample median lifetime is

E Y3ð Þ ¼
ð1
0

y � g3 yð Þdy ¼
ð1
0

y � 5!

2! � 2! 1� e�λy
� �2

e�λy
� �2 � λe�λydy

Expanding out the integrand and integrating term by term, the expected value is .783/λ. The
median of the exponential distribution is, from solving F(η) ¼ .5, η ¼ –ln(.5)/λ ¼ .693/λ. Thus if
sample after sample of five components is selected, the long run average value of the sample median

will be somewhat larger than the median value of the individual lifetime distribution. This is because

the exponential distribution has a positive skew. ■

Here is the intuitive derivation of Eq. (4.9). Let Δ be a number quite close to 0, and consider

the three intervals (�1, y], (y, y + Δ], and (y + Δ, 1). For a single X, the probabilities of these

three intervals are

p1 ¼ P(X � y) ¼ F(y) p2 ¼ P(y < X � y + Δ) ¼ Ð
y
y+Δf(x)dx 
 f(y) � Δ

p3 ¼ P(X > y + Δ) ¼ 1 � F(y + Δ)

For a random sample of size n, it is very unlikely that two or more Xs will fall in the middle

interval, since its width is onlyΔ. The probability that the ith order statistic falls in the middle interval

is then approximately the probability that i �1 of the Xs are in the first interval, one is in the middle,

and the remaining n � i are in the third. This is just a trinomial probability:

P y < Yi � yþ Δð Þ 
 n!

i� 1ð Þ!1! n� ið Þ! F yið Þ½ �i�1 � f yð Þ � Δ � 1� F yþ Δð Þ½ �n�i

Dividing both sides by Δ and taking the limit as Δ ! 0 gives exactly (4.9). That is, we may

interpret the pdf gi(y) as loosely specifying that i � 1 of the original observations are below y, one is

“at” y, and the other n � i are above y.

Similar reasoning works to intuitively derive the joint pdf of Yi and Yj (i < j). In this case there are
five relevant intervals: (�1, yi], (yi, yi + Δ1], (yi + Δ1, yj], (yj, yj + Δ2], and (yj + Δ2, 1).

4.9.3 The Joint Distribution of the n Order Statistics

We now develop the joint pdf of Y1, Y2, . . ., Yn. Consider first a random sample X1, X2, X3 of fuel

efficiency measurements (mpg). The joint pdf of this random sample is

f x1; x2; x3ð Þ ¼ f x1ð Þ � f x2ð Þ � f x3ð Þ
The joint pdf of Y1, Y2, Y3 will be positive only for values of y1, y2, y3 satisfying y1 < y2 < y3.

What is this joint pdf at the values y1 ¼ 28.4, y2 ¼ 29.0, y3 ¼ 30.5? There are six different ways to

obtain these ordered values:
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X1 ¼ 28.4, X2 ¼ 29.0, X3 ¼ 30.5

X1 ¼ 28.4, X2 ¼ 30.5, X3 ¼ 29.0

X1 ¼ 29.0, X2 ¼ 28.4, X3 ¼ 30.5

X1 ¼ 29.0, X2 ¼ 30.5, X3 ¼ 28.4

X1 ¼ 30.5, X2 ¼ 28.4, X3 ¼ 29.0

X1 ¼ 30.5, X2 ¼ 29.0, X3 ¼ 28.4

These six possibilities come from the 3! ways to order the three numerical observations once their

values are fixed. Thus

g 28:4; 29:0; 30:5ð Þ ¼ f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þ þ � � � þ f 30:5ð Þ � f 29:0ð Þ � f 28:4ð Þ
¼ 3!f 28:4ð Þ � f 29:0ð Þ � f 30:5ð Þ

Analogous reasoning with a sample of size n yields the following result:

PROPOSITION

Let g(y1, y2, . . ., yn) denote the joint pdf of the order statistics Y1, Y2, . . ., Yn resulting from a

random sample of Xis from a pdf f(x). Then

g y1; y2; . . . ; ynð Þ ¼ n!f y1ð Þ � f �y2� � � � � � f �yn� y1 < y2 < . . . < yn

0 otherwise

(

For example, if we have a random sample of component lifetimes and the lifetime distribution is

exponential with parameter λ, then the joint pdf of the order statistics is

g y1; . . . ; ynð Þ ¼ n!λne�λ y1þ���þynð Þ 0 < y1 < y2 < � � � < yn

Example 4.56 Suppose X1, X2, X3, and X4 are independent random variables, each uniformly

distributed on the interval from 0 to 1. The joint pdf of the four corresponding order statistics Y1,

Y2, Y3, and Y4 is g(y1, y2, y3, y4) ¼ 4!∙1 for 0 < y1 < y2 < y3 < y4 < 1. The probability that every

pair of Xis is separated by more than .2 is the same as the probability that Y2 � Y1 > .2, Y3 � Y2
> .2, and Y4 � Y3 > .2. This latter probability results from integrating the joint pdf of the Yis over the

region .6 < y4 < 1, .4 < y3 < y4 � .2, .2 < y2 < y3 � .2, 0 < y1 < y2 � .2:

P Y2 � Y1 > :2, Y3 � Y2 > :2, Y4 � Y3 > :2ð Þ ¼
ð1
:6

ðy4�:2

:4

ðy3�:2

:2

ðy2�:2

0

4!dy1dy2dy3dy4

The inner integration gives 4!(y2 � .2), and this must then be integrated between .2 and y3 � .2.

Making the change of variable z2 ¼ y2 � .2, the integration of z2 is from 0 to y3 � .4. The result of

this integration is 4!∙(y3 � .4)2/2. Continuing with the third and fourth integration, each time making

an appropriate change of variable so that the lower limit of each integration becomes 0, the result is

P Y2 � Y1 > :2,Y3 � Y2 > :2, Y4 � Y3 > :2ð Þ ¼ :44 ¼ :0256

A more general multiple integration argument for n independent uniform [0, B] rvs shows that the

probability that all values are separated by more than some distance d is
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P all values are separated by more than dð Þ ¼
	
1� n� 1ð Þd=B
n 0 � d � B=

�
n� 1

�
0 d > B= n� 1ð Þ

�

As an application, consider a year that has 365 days, and suppose that the birth time of someone

born in that year is uniformly distributed throughout the 365-day period. Then in a group of

10 independently selected people born in that year, the probability that all of their birth times are

separated by more than 24 h (d¼1 day) is (1 � (10 � 1)(1)/365)10 ¼ .779. Thus the probability that

at least two of the 10 birth times are separated by at most 24 h is .221. As the group size n increases, it
becomes more likely that at least two people have birth times that are within 24 h of each other (but

not necessarily on the same day). For n ¼ 16, this probability is .467, and for n ¼ 17 it is .533. So

with as few as 17 people in the group, it is more likely than not that at least two of the people were

born within 24 h of each other.

Coincidences such as this are not as surprising as one might think. The probability that at least two

people are born on the same calendar day (assuming equally likely birthdays) is much easier to

calculate than what we have shown here; see the Birthday Problem in Example 1.22. ■

4.9.4 Exercises: Section 4.9 (133–142)

133. A friend of ours takes the bus 5 days per week to her job. The five waiting times until she can

board the bus are a random sample from a uniform distribution on the interval from 0 to 10 min.

(a) Determine the pdf and then the expected value of the largest of the five waiting times.

(b) Determine the expected value of the difference between the largest and smallest times.

(c) What is the expected value of the sample median waiting time?

(d) What is the standard deviation of the largest time?

134. Refer back to Example 4.54. Because n ¼ 4, the sample median is the average of the two middle

order statistics, (Y2 + Y3)/2. What is the expected value of the sample median, and how does it

compare to the median of the population distribution?

135. An insurance policy issued to a boat owner has a deductible amount of $1000, so the amount of

damage claimed must exceed this deductible before there will be a payout. Suppose the amount

(thousands of dollars) of a randomly selected claim is a continuous rv with pdf f(x) ¼ 3/x4 for
x > 1. Consider a random sample of three claims.

(a) What is the probability that at least one of the claim amounts exceeds $5000?

(b) What is the expected value of the largest amount claimed?

136. A store is expecting n deliveries between the hours of noon and 1 p.m. Suppose the arrival time

of each delivery truck is uniformly distributed on this 1-h interval and that the times are

independent of each other. What are the expected values of the ordered arrival times?

137. Let X be the amount of time an ATM is in use during a particular 1-h period, and suppose that

X has the cdf F(x) ¼ xθ for 0 < x < 1 (where θ > 1). Give expressions involving the gamma

function for both the mean and variance of the ith smallest amount of time Yi from a random

sample of n such time periods.

138. The logistic pdf f(x) ¼ e�x/(1 + e�x)2 for � 1 < x < 1 is sometimes used to describe the

distribution of measurement errors.

(a) Graph the pdf. Does the appearance of the graph surprise you?

(b) For a random sample of size n, obtain an expression involving the gamma function for the

moment generating function of the ith smallest order statistic Yi. This expression can then

be differentiated to obtain moments of the order statistics. [Hint: Set up the appropriate

integral, and then let u ¼ 1/(1 + e�x).]
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139. Let X represent a measurement error. It is natural to assume that the pdf f(x) is symmetric about

0, so that the density at a value �c is the same as the density at c (an error of a given magnitude

is equally likely to be positive or negative). Consider a random sample of n measurements,

where n ¼ 2k + 1, so that Yk+1 is the sample median. What can be said about E(Yk + 1)? If the

X distribution is symmetric about some other value, so that value is the median of the distribu-

tion, what does this imply about E(Yk + 1)? [Hints: For the first question, symmetry implies that

1 � F(x) ¼ P(X > x) ¼ P(X < �x) ¼ F(�x). For the second question, consider W ¼ X � η;
what is the median of the distribution of W?]

140. The pdf of the second-largest order statistic, Yn–1 can be obtained using reasoning analogous to

how the pdf of Yn was first obtained.
(a) For any number y, Yn–1 � y if and only if at least n � 1 of the original Xs are � y. (Do you

see why?) Use this fact to derive a formula for the cdf of Yn–1 in terms of F, the cdf of the

Xs. [Hint: Separate “at least n � 1” into two cases and apply the binomial distribution

formula.]

(b) Differentiate the cdf in part (a) to obtain the pdf of Yn–1. Simplify and verify it matches the

formula for gn–1(y) provided in this section.

141. Use the intuitive argument sketched in this section to obtain the following general formula for

the joint pdf of two order statistics Yi and Yj with i < j:

g yi; yj
� � ¼

n!

i� 1ð Þ! j� i� 1ð Þ! n� jð Þ!F
yið Þi�1 F yjð Þ � F yið Þ½ �j�i�1

1� F yjð Þ½ �n�j � f �yi�f �yj� for yi < yj

142. Consider a sample of size n ¼ 3 from the standard normal distribution, and obtain the expected

value of the largest order statistic. What does this say about the expected value of the largest

order statistic in a sample of this size from any normal distribution? [Hint: With ϕ(x) denoting
the standard normal pdf, use the fact that (d/dx)ϕ(x) ¼ �xϕ(x) along with integration by parts.]

4.10 Simulation of Joint Probability Distributions and System Reliability

In Chaps. 2 and 3, we saw several methods for simulating “generic” discrete and continuous

distributions (in addition to built-in functions for binomial, Poisson, normal, etc.). Unfortunately,

most of these general methods do not carry over easily to joint distributions or else require significant

re-tooling. In this section, we briefly survey some simulation techniques for general bivariate discrete

and continuous distributions and discuss how to simulate normal distributions in more than one

dimension. We then consider simulations for the lifetimes of interconnected systems, in order to

understand the reliability of such systems.

4.10.1 Simulating Values from a Joint PMF

Simulating two dependent discrete rvs X and Y can be rather tedious and is easier to understand with

a specific example in mind. Suppose we desire to simulate (X, Y) values from the joint pmf in

Example 4.1:
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y

p(x, y) 0 100 200

x
100 .20 .10 .20

250 .05 .15 .30

The exhaustive search approach uses the inverse cdf method of Sect. 2.8 by reformatting the table

as a single row of (x, y) pairs along with cumulative probabilities. Starting in the upper left corner and

going across, create “cumulative” probabilities for the entire table:

(x, y) (100, 0) (100, 100) (100, 200) (250, 0) (250, 100) (250, 250)

cum. prob. .20 .30 .50 .55 .70 1

Be careful not to interpret these increasing decimals as cumulative probabilities in the traditional

sense, e.g., it is not the case that .70 in the preceding table represents P(X � 250 \ Y � 100).

Now the simulation proceeds similarly to those illustrated in Fig. 2.10 for simulating a single

discrete random variable: use if-else statements, specifying the pair of values (x, y) for each range of

standard uniform random numbers. Figure 4.25 provides the needed Matlab and R code.

In both languages, executing the code in Fig. 4.25 results in two vectors x and y that, when

regarded as paired values, form a simulation of the original joint pmf. That is to say, if x and y were

laid in parallel roughly 20% of the paired values would be (100, 0), about 10% would be (100, 100),

and so on.

At the end of Sect. 2.8 we mentioned that both Matlab and R have built-in functions to speed up the

inverse cdf method (randsample and sample, respectively) for a single discrete

rv. Unfortunately, these are not designed to take pairs of values as an input, and so the lengthier

code is required. You might be tempted to use these built-in functions to simulate the (marginal) pmfs

of X and Y separately, but beware: by design, the resulting simulated values of X and Y would be

independent, and the rvs displayed in the original joint pmf are clearly dependent. For example,

(100, 0) ought to appear roughly 20% of the time in a simulation; however, separate simulations of

X and Ywill result in about 50% 100s for X and 25% 0s for Y, independently, meaning the pair (100, 0)

will appear in approximately (.5)(.25) ¼ 12.5% of simulated (X, Y) values.

x=zeros(10000,1); y=x;
for i=1:10000
    u=rand;
    if u<.2
        x(i)=100; y(i)=0;
    elseif u<.3
        x(i)=100; y(i)=100;
    elseif u<.5
        x(i)=100; y(i)=200;
    elseif u<.55
        x(i)=250; y(i)=0;
    elseif u<.7
        x(i)=250; y(i)=100;
    else
        x(i)=250; y(i)=200;
    end
end 

x <- NULL; y <- NULL
for (i in 1:10000){
      u=runif(1)
      if (u<.2){
            x[i]<-100; y[i]<-0}
      else if (u<.3){
            x[i]<-100; y[i]<-1}
      else if (u<.5){
            x[i]<-100; y[i]<-2}
      else if (u<.55){
            x[i]<-250; y[i]<-0}
      else if (u<.7){
            x[i]<-250; y[i]<-100}
      else{
            x[i]<-250; y[i]<-200}
}

a b

Fig. 4.25 The exhaustive search method for simulating two discrete rvs: (a) Matlab; (b) R
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It’s worth noting that the choice to add across rows first was arbitrary. We could just as well have

added down the left-most column (Y ¼ 0) of the original joint pmf table, then the middle column,

then the right column to create “cumulative” probabilities and then rewritten our code accordingly.

4.10.2 Simulating Values from a Joint PDF

As in the discrete case, a pair of independent continuous rvs X and Y can be simulated separately using

any of the methods from Sect. 3.8 (inverse cdf, accept–reject). In the general case, however, the

inverse cdf method breaks down in two or more dimensions, because we cannot “invert” the joint cdf

of X and Y. Hence, we rely primarily on the accept–reject method. The following proposition repeats

the algorithm from Sect. 3.8 but expands it to two dimensions; a simulation scheme for three or more

dependent rvs would be analogous.

ACCEPT–REJECT METHOD (bivariate case)

It is desired to simulate n values from a joint pdf f(x, y). Let g1(x) and g2(y) be two univariate

pdfs such that the ratio f/[g1g2] is bounded from above, i.e., there exists a constant c such that

f(x, y)/[g1(x)g2(y)] � c for all x and y. Proceed as follows:

1. Generate a variate, x*, from the distribution g1; independently, generate a variate, y*, from

the distribution g2. This pair (x*, y*) is our candidate.
2. Generate a standard uniform variate, u.

3. If u � c � g1(x*)g2(y*) � f(x*, y*), then assign (x, y) ¼ (x*, y*), i.e., “accept” the candidate.

Otherwise, reject (x*, y*) and return to step 1.

These steps are repeated until n candidate pairs have been accepted. The resulting accepted

pairs (x1, y1), . . ., (xn, yn) constitute a simulation of a pair of random variables (X, Y) with the

original joint pdf, f(x, y).

As in the one-dimensional case, the accept–reject method hinges on generating some other

distribution on the same set of values as the “target” pdf. What’s special here is that we leverage

our ability to simulate univariate distributions—namely, g1(x) and g2(y)—and create a candidate pair

(x*, y*) from two independent rvs. In particular, the product g1(x*)g2(y*) that appears in the

algorithm is the joint pdf of two independent rvs having marginal distributions g1 and g2, respectively.

Example 4.57 It is desired to simulate values from the following joint pdf, introduced in

Exercise 11:

f x; yð Þ ¼ k x2 þ y2ð Þ 20 � x � 30, 20 � y � 30

0 otherwise

�

(Determining the constant of integration, k, won’t be necessary.) Since both X and Y are bounded

between 20 and 30, a sensible choice for both g1 and g2 is the uniform distribution on [20, 30]. That is,

g1(x) ¼ 1/(30–20) ¼ .1 for 20 � x � 30, and g2(y) ¼ g1(y). The majorization constant c is deter-

mined by requiring

f x; yð Þ
g1 xð Þg2 yð Þ ¼

k x2 þ y2ð Þ
:1ð Þ :1ð Þ � c for 20 � x � 30, 20 � y � 30
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The left-hand expression is obviously maximized at x ¼ y ¼ 30, from which we have c �
k(302 + 302)/(.1)2 ¼ 180,000k. Setting c ¼ 180,000k, the accept–reject scheme for this joint pdf

proceeds as follows:

1. Generate independent x* ~ Unif[20, 30] and y* ~ Unif[20, 30].

2. Generate a standard uniform variate, u.

3. Accept (x*, y*) iff u � c � g1(x*)g2(y*) � f(x*, y*), i.e., u� 180,000k � (.1)(.1) �k((x*)2 + (y*)2).
This is algebraically equivalent to u � ((x*)2 + (y*)2)/1800.

Figure 4.26 provides Matlab and R code for this example. The output of either one is a pair of

vectors, x and y, whose paired values simulate the original joint pdf.

Figure 4.27 shows the joint pdf f(x, y) alongside a “three-dimensional histogram” of 10,000 (x, y)
values simulated in Matlab (the latter was created using the hist3 command). Observe that both

show a slight rise as the x- or y-values increase from 20 to 30.

As indicated in Sect. 3.8, it can be shown that the majorization constant c is also the expected

number of candidates required to generate a single accepted value (here, a pair). In the preceding

example, the numerical value of c turns out to be c ¼ 27/19 
 1.421, so we expect our programs to

require about 14,210 iterations of the while loop to create 10,000 simulated valued of (X, Y).

x=zeros(10000,1); y=x;
i=0;
while i<10000
    xstar=unifrnd(20,30);
    ystar=unifrnd(20,30);
    u=rand;
    if u<=(xstar^2+ystar^2)/1800
        i=i+1;
        x(i)=xstar;
        y(i)=ystar;
    end
end

x <- NULL; y <- NULL
i <- 0
while (i <10000){
      xstar <- runif(1,20,30)
      ystar <- runif(1,20,30)
      u <- runif(1)
      if (u<=(xstar^2+ystar^2)/1800){
            i <- i+1
            x[i] <- xstar
            y[i] <- ystar
      }
}

ba

Fig. 4.26 Simulation code for Example 4.57: (a) Matlab; (b) R
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Fig. 4.27 Joint pdf (a) and histogram of simulated values (b) for Example 4.57 ■
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As an alternative to the accept–reject method, a technique based on conditional distributions can

be employed. The basic idea is this: suppose X has pdf f(x) and, conditional on X ¼ x, Y has

conditional distribution f(yjx). Then one can simulate (X, Y) by first simulating from f(x) using the

techniques of Sect. 3.8 and then, given the simulated value of x, simulating a value y from f(yjx).

Example 4.58 Consider the following joint pdf, introduced in Exercise 14:

f x; yð Þ ¼ xe�x 1þyð Þ x � 0 and y � 0

0 otherwise

�

Straightforward integration shows the marginal pdf of X to be fX(x) ¼ e–x, from which the

conditional distribution of Y given X ¼ x is

f y j xð Þ ¼ f x; yð Þ
f X xð Þ ¼ xe�x 1þyð Þ

e�x
¼ xe�xy

Each of these has an algebraically simple cdf, so we will employ the inverse cdf method for each

step. The cdf of X is F(x) ¼ 1 � e–x, whose inverse is given by x ¼ –ln(1 � u). Similarly, the

conditional cdf of Y given X ¼ x is F(yjx) ¼ 1 � e–xy, whose inverse function (with respect to y) is

y ¼ �(1/x)ln(1 � u). The resulting simulation code, in Matlab and R, appears in Fig. 4.28. Notice in

each program that two standard uniform variates, u and v, are required: one to simulate x, and another
to simulate y given x.

Some simplifications can be made to the preceding code. As in many other simulations, the for

loop can be vectorized (summoning all 10,000 simulated values at once). Additionally, you might

recognize the pdfs under consideration: the marginal distribution of X is exponential with λ ¼ 1,

while Y given X ¼ x is exponential with parameter λ ¼ x. Hence, we could exploit Matlab’s or R’s

built-in exponential distribution simulator, rather than finding and inverting the cdfs. ■

This method can also be extended to three or more variables, but finding the required conditional

pdfs from the joint pdf can be difficult. This conditional distributions method is best suited to

so-called hierarchical models, where the distribution of each rv is specified conditional on its

predecessors, e.g., we are provided initially with f(x), f(yjx), f(zjy,x), and so on.

The conditional distributions approach may also be implemented to simulate a joint discrete

distribution; see Exercise 149.

4.10.3 Simulating a Bivariate Normal Distribution

The prevalence of normal distributions makes the ability to simulate both univariate and multivariate

normal rvs especially important. A simple method exists for simulating pairs from an arbitrary

bivariate normal distribution, as indicated in the following proposition.

x=zeros(10000,1); y=x;
for i=1:10000

u=rand;
x(i)=-log(1-u);
v=rand;
y(i)=-(1/x(i))*log(1-v);

end

x <- NULL; y <- NULL
for (i in 1:10000){

u<-runif(1)
x[i]<- -log(1-u)
v<-runif(1)
y[i]<- -(1/x[i])*log(1-v)

}

a bFig. 4.28 Simulation

code for Example 4.58:

(a) Matlab; (b) R
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PROPOSITION

Let Z1 and Z2 be independent standard normal rvs and let

W1 ¼ Z1, W2 ¼ ρ � Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Z2

Then W1 and W2 have a bivariate normal distribution, each having mean 0 and standard

deviation 1, and Corr(W1, W2) ¼ ρ.

This result can be proved using the transformation methods of Sect. 4.6. The means, variances, and

correlation coefficient of W1 and W2 are established in Exercise 161.

Now suppose we wish to simulate from a bivariate normal distribution with an arbitrary set of

parameters μ1, σ1, μ2, σ2, and ρ. Define X and Y by

X ¼ μ1 þ σ1W1 ¼ μ1 þ σ1Z1,

Y ¼ μ2 þ σ2W2 ¼ μ2 þ σ2 ρZ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Z2

� � ð4:10Þ

Since X and Y in Expression (4.10) are just linear functions ofW1 andW2, it follows from Sect. 4.2

that Corr(X, Y) ¼ Corr(W1, W2) ¼ ρ. Moreover, since W1 and W2 have mean zero and standard

deviation 1, these linear transformations give X and Y the desired means and standard deviations. So,

to simulate a bivariate normal distribution, create a pair of independent standard normal variates z1
and z2, and then apply the formulas for X and Y in Eq. (4.10).

Example 4.59 Consider the joint distribution of SAT reading and math scores described in Example

4.42. Using the parameters from that example, Eq. (4.10) becomes

X ¼ 496þ 114Z1, Y ¼ 514þ 117 :25Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :252

p
Z2

� �
Figure 4.29 shows this transformation implemented in Matlab and R; both programs have been

vectorized and produce 10,000 (X, Y) pairs.

Now define a new rv R ¼ Y/X, the ratio of a student’s SAT Math and Critical Reading scores.

Arguably, this measures a student’s math ability relative to her or his reading skills. Determining the

pdf of R is simply not feasible, especially since X and Y are dependent. But the above simulation,

along with the command r¼y/x (in R, or r¼y./x in Matlab) gives us information about its

distribution. A histogram of the simulated values of R appears in Fig. 4.30. For these 10,000 simulated

values, the sample mean and standard deviation are �r ¼ 1:0161 and s ¼ 0.1677. So, we estimate the

true expected ratio E(R) for all students that took the SAT in Fall 2012 is 1.0161, with an estimated

standard error of s=
ffiffiffi
n

p ¼ 0:1677=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10, 000

p ¼ :001677:

z1=normrnd(0,1,[10000 1]);
z2=normrnd(0,1,[10000 1]);
x=496+114*Z1;
y=514+117*(.25*z1+sqrt(1-.25^2)*z2);

z1 <- rnorm(10000)
z2 <- rnorm(10000)
x <- 496+114*z1
y <- 514+117*(.25*z1+sqrt(1-.25^2)*z2)

ba

Fig. 4.29 Code for Example 4.59: (a) Matlab (b) R
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Matlab and R also have built-in programs to simulate multivariate normal distributions that work

for 2 or more dimensions and do not rely on the preceding proposition. In fact, users have created

several such tools in R; we illustrate here the function available in the mvtnorm package. The

mvnrnd function in Matlab and the rmvnorm function in R take three inputs: the desired number of

simulated values (in the bivariate case, simulated pairs), a vector of means, and a covariance matrix

(see the end of Sect. 4.7). Figure 4.31 illustrates these commands for the distribution specified in

Example 4.59.

4.10.4 Simulation Methods for Reliability

One area of application for the simulationmethods presented in this section is to the lifetime distributions

of complex systems. It can sometimes be difficult to derive the exact pdf of the lifetime of a system

comprised of many components (in series and/or parallel), but simulation provides a way out.

Example 4.60 Consider the system described in Example 4.48; this is actually a comparatively

simple configuration. Let T1, T2, and T3 denote the lifetimes of the three components. Since

components 1 and 2 are connected in series, the “1–2 subsystem” functions only as long as the

smaller of T1 and T2, e.g., if T1 ¼ 135 h and T2 ¼ 119 h, then the lifetime of the 1–2 subsystem is

119 h. The lifetime of the 1–2 subsystem, therefore, can be expressed mathematically as min(T1, T2).

mu=[496, 514];
C=[114^2, .25*114*117;

.25*114*117, 117^2];
x=mvnrnd(mu,C,10000)

mu <- c(496,514)
C <- matrix(c(114^2, .25*114*117,
.25*114*117, 117^2),2,2)
x <- rmvnorm(10000,mu,C)

a b

Fig. 4.31 Built-in multivariate normal simulations: (a) Matlab; (b) R
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Fig. 4.30 Histogram of R ¼ Y/X from Example 4.59 ■
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Similarly, the 1–2 subsystem is linked in parallel with component 3, and so the lifetime of the

overall system is the larger of the lifetimes of the two pieces (the 1–2 subsystem and component 3).

For example, if the lifetime of the 1–2 subsystem is 119 h and the lifetime of component 3 is 127 h,

then the overall system lifetime is 127 h. If we let Tsys denote the system lifetime, then we have

Tsys ¼ max 1�2 subsystem lifetime, component 3 lifetimeð Þ
¼ max

�
min T1; T2ð Þ,T3

�
This expression combining max and min functions can be used to simulate the system lifetime,

provided we have models (that we can simulate) for the lifetimes of the three individual components.

Figure 4.32 shows example code for simulating the system lifetime assuming each of the three

components has an exponentially distributed lifetime with mean 100 h. The 10,000 simulation runs

have been vectorized to accelerate the process. Notice that the R code requires using the pmax and

pmin functions, which treat their inputs as parallel vectors and find the “row-wise” maximum or

minimum.

A histogram of 10,000 simulated values of Tsys from R appears in Fig. 4.33; this should look

similar to the pdf of that rv. We can use these same simulated values to estimate the expectation and

standard deviation of Tsys: for our run, the sample mean and standard deviation were 115.37 h and

93.49 h, respectively.
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Fig. 4.33 A histogram of simulated values of Tsys in Example 4.60 ■

a b
T1=exprnd(100,10000,1);
T2=exprnd(100,10000,1);
T3=exprnd(100,10000,1);
Tsys=max(min(T1,T2),T3);

T1 <- rexp(10000,1/100)
T2 <- rexp(10000,1/100)
T3 <- rexp(10000,1/100)
Tsys <- pmax(pmin(T1,T2),T3)

Fig. 4.32 Simulation code for Example 4.60: (a) Matlab; (b) R
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4.10.5 Exercises: Section 4.10 (143–153)

143. Consider the service station scenario presented in Exercise 1 of this chapter.

(a) Write a program to simulate the rvs (X, Y) described in that exercise.

(b) Use your program to estimate P(X � 1 and Y � 1), and compare your estimate to the exact

answer from the joint pmf. Use at least 10,000 simulation runs.

(c) Define a new variable D ¼ jX � Yj, the (absolute) difference in the number of hoses in use

at the two gas pumps. Use your program (with at least 10,000 runs) to simulate D, and

estimate both the mean and standard deviation of D.
144. Refer back to the quiz scenario of Exercise 24.

(a) Write a program to simulate students’ scores (X, Y) on the two parts of the quiz.

(b) Use your program to estimate the probability that a student’s total score is at least 20 points.

How does your estimate compare to the exact answer from the joint pmf?

(c) Define a new rv M ¼ the maximum of the two scores. Use your program to simulate M,

and estimate both the mean and standard deviation of M.

145. Consider the situation presented in Example 4.13: the joint pdf of the amounts X and Y of

almonds and cashews, respectively, in a 1-lb can of nuts is

f x; yð Þ ¼ 24xy 0 � x � 1, 0 � y � 1, xþ y � 1

0 otherwise

�

With the prices specified in that example, the total cost of the contents of one can is

W ¼ 3.5 + 2.5X + 6.5Y.
(a) Write a program implementing the accept–reject method of this section to simulate (X, Y).

(b) On the average, how many iterations will your program require to generate 10,000

“accepted” (X, Y) pairs?
(c) Use your program to simulate the rv W. Create a histogram of the simulated values of W,

and report estimates of the mean and standard deviation of W. How close is your sample

mean to the value E(W ) ¼ $7.10 determined in Example 4.13?

(d) Use your simulation in part (c) to estimate the probability that the cost of the contents of a

can of nuts exceeds $8.

146. Suppose a randomly chosen individual’s verbal score X and quantitative score Y on a nationally

administered aptitude examination, each scaled down to [0, 1], have joint pdf

f x; yð Þ ¼
2

5
2xþ 3yð Þ 0 � x � 1, 0 � y � 1

0 otherwise

(

(a) Write a program implementing the accept–reject method of this section to simulate (X, Y).

(b) The engineering school at a certain university uses a weighted total T ¼ 3X + 7Y as part of

its admission process. Use your program in part (a) to simulate the rv T, and estimate

P(T � 9).

(c) Suppose the engineering school decides to only admit students whose weighted totals are

above the 85th percentile for the national distribution. That is, if η.85 is the 85th percentile

of the distribution of T, a student’s weighted total must exceed η.85 for admission. Use your

simulated values of T from part (b) to estimate η.85. [Hint: η.85 separates the bottom 85% of

the T distribution from the remaining 15%. What value separates the lowest 85% of

simulated T values from the rest?]
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147. Refer back to Exercise 145.

(a) Determine the marginal pdf of X and the conditional pdf of Y given X ¼ x.
(b) Write a program to simulate (X, Y) using the conditional distributions method presented

in this section.

(c) What advantage does this method have over the accept–reject approach used in

Exercise 145?

148. Consider the situation in Example 4.31: the proportion P of tiles meeting thermal specifications

varies according to the pdf f( p) ¼ 9p8, 0 < p < 1; conditional on P ¼ p, the number of

inspected tiles that meet specifications is a rv Y ~ Bin(20, p).

(a) Write a program to simulate Y. Your program will first need to simulate a value of P, and
then generate a variate from the appropriate binomial distribution. [Hint: Use your

software’s built-in binomial simulation tool.]

(b) Simulate (at least) 10,000 values of Y, and report estimates of both E(Y ) and Var(Y ). How
do these compare to the exact answers found in Example 4.31?

(c) Use your simulation to estimate both P(Y ¼ 18) and P(Y � 18).

149. The conditional distributions method described in this section can also be applied to joint

discrete rvs. Refer back to the joint pmf presented in this section, which is originally from

Example 4.1.

(a) Determine the marginal pmf of X. (This should be very easy.)

(b) Determine the conditional pmfs of Y given X ¼ 100 and given X ¼ 250.

(c) Write a program that first simulates X using its marginal pmf, then simulates Y via the

appropriate conditional pmf. [Hint: For each stage, use your program’s built-in discrete

simulator (randsample in Matlab, sample in R).]

(d) Use your program in part (c) to simulate at least 10,000 (X, Y) pairs. Verify that the relative

frequencies of the six possible pairs in your sample are close to the probabilities specified

in the original joint pmf table.

150. Refer back to Exercise 113, which specifies a bivariate normal distribution for the rvs X ¼
height (inches) and Y ¼ weight (lbs) for American males. The parameters of that model were

μ1 ¼ 70, σ1 ¼ 3, μ2 ¼ 170, σ2 ¼ 20, and ρ ¼ .9.

(a) Use your software’s built-in multivariate normal simulation function to generate (at least)

10,000 (X, Y) pairs according to this bivariate normal model.

(b) A person’s body-mass index (BMI) is determined by the formula 703Y/X2. Use the result of

part (a) to create a histogram of BMIs for the population of American males.

(c) BMI scores between 18.5 and 25 are considered healthy. By that criterion, what proportion

of American males are healthy? Report both an estimate of this proportion and its

estimated standard error.

151. The conditional distributions method of this section can be implemented to simulate a

bivariate normal distribution, providing an alternative to built-in multivariate simulation tools

or Expression (4.10). Let X and Y have a bivariate normal distribution with parameters μ1, σ1, μ2,
σ2, and ρ.
(a) What are the marginal distribution of X and the conditional distribution of Y given X ¼ x?

[Hint: Refer back to Sect. 4.7.]

(b) Write a program to simulate (X, Y) values from a bivariate normal distribution by first

simulating X and then YjX ¼ x. The inputs to your program should be the five parameters

and the desired number of simulated values; the outputs should be vectors containing the

simulated values of X and Y.
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(c) Use your program to simulate the height-weight distribution from the previous exercise.

Verify that the sample mean and standard deviation of your simulated Y values are roughly

170 and 20, respectively.

152. Consider the system design illustrated in Exercise 126. Suppose that components 1, 2, and

3 have exponential lifetimes with mean 250 h, while components 4, 5, and 6 have exponential

lifetimes with mean 300 h.

(a) Write a program to simulate the lifetime of the system.

(b) Let μ denote the true mean system lifetime. Provide an estimate of μ, along with its

estimated standard error.

(c) Let p denote the true probability that the system lasts more than 200 h. Provide an estimate

of p, along with its estimated standard error.

153. Consider the system design illustrated in Exercise 127. Suppose the odd-numbered components

have exponential lifetimes with mean 250 h, while the even-numbered components have gamma

lifetime distributions with α ¼ 2 and β ¼ 125. (This second distribution also has mean 250 h.)

(a) Write a program to simulate the lifetime of the system. [You might want to use your

software’s built-in gamma random number generator.]

(b) Let μ denote the true mean system lifetime. Provide an estimate of μ, along with its

estimated standard error.

(c) Let p denote the true probability that the system fails prior to 400 h. Provide an estimate of

p, along with its estimated standard error.

4.11 Supplementary Exercises (154–192)

154. Suppose the amount of rainfall in one region during a particular month has an exponential

distribution with mean value 3 in., the amount of rainfall in a second region during that same

month has an exponential distribution with mean value 2 in., and the two amounts are indepen-

dent of each other. What is the probability that the second region gets more rainfall during this

month than does the first region?

155. Two messages are to be sent. The time (min) necessary to send each message has an exponential

distribution with parameter λ ¼ 1, and the two times are independent of each other. It costs $2

per minute to send the first message and $1 per minute to send the second. Obtain the density

function of the total cost of sending the two messages. [Hint: First obtain the cumulative

distribution function of the total cost, which involves integrating the joint pdf.]

156. A restaurant serves three fixed-price dinners costing $20, $25, and $30. For a randomly selected

couple dining at this restaurant, let X ¼ the cost of the man’s dinner and Y ¼ the cost of the

woman’s dinner. The joint pmf of X and Y is given in the following table:
y

p(x, y) 20 25 30

20 .05 .05 .10

x 25 .05 .10 .35

30 0 .20 .10

(a) Compute the marginal pmfs of X and Y.
(b) What is the probability that the man’s and the woman’s dinner cost at most $25 each?
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(c) Are X and Y independent? Justify your answer.

(d) What is the expected total cost of the dinner for the two people?

(e) Suppose that when a couple opens fortune cookies at the conclusion of the meal, they find

the message “You will receive as a refund the difference between the cost of the more

expensive and the less expensive meal that you have chosen.” How much does the

restaurant expect to refund?

157. A health-food store stocks two different brands of a type of grain. Let X ¼ the amount (lb) of

brand A on hand and Y ¼ the amount of brand B on hand. Suppose the joint pdf of X and Y is

f x; yð Þ ¼ kxy x � 0, y � 0, 20 � xþ y � 30

0 otherwise

�

(a) Draw the region of positive density and determine the value of k.

(b) Are X and Y independent? Answer by first deriving the marginal pdf of each variable.

(c) Compute P(X + Y � 25).

(d) What is the expected total amount of this grain on hand?

(e) Compute Cov(X, Y ) and Corr(X, Y).
(f) What is the variance of the total amount of grain on hand?

158. Let X1, X2, . . ., Xn be random variables denoting n independent bids for an item that is for sale.

Suppose each Xi is uniformly distributed on the interval [100, 200]. If the seller sells to the

highest bidder, how much can he expect to earn on the sale? [Hint: Let Y ¼ max(X1, X2, . . ., Xn).

Use the results of Sect. 4.9 to find E(Y ).]

159. Suppose a randomly chosen individual’s verbal score X and quantitative score Y on a nationally

administered aptitude examination have joint pdf

f x; yð Þ ¼
2

5
2xþ 3yð Þ 0 � x � 1 0 � y � 1

0 otherwise

8<
:

You are asked to provide a prediction t of the individual’s total score X + Y. The error of

prediction is the mean squared error E[(X + Y � t)2]. What value of t minimizes the error of

prediction?

160. Let X1 and X2 be quantitative and verbal scores on one aptitude exam, and let Y1 and Y2 be the
corresponding scores on another exam. If Cov(X1, Y1) ¼ 5, Cov(X1, Y2) ¼ 1, Cov(X2, Y1) ¼ 2,

and Cov(X2, Y2) ¼ 8, what is the covariance between the two total scores X1 + X2 and Y1 + Y2?

161. Let Z1 and Z2 be independent standard normal rvs and let

W1 ¼ Z1 W2 ¼ ρ � Z1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Z2

(a) By definition, W1 has mean 0 and standard deviation 1. Show that the same is true for W2.

(b) Use the properties of covariance to show that Cov(W1, W2) ¼ ρ.
(c) Show that Corr(W1, W2) ¼ ρ.

162. You are driving on a highway at speed X1. Cars entering this highway after you travel at speeds

X2, X3, . . .. Suppose these Xis are independent and identically distributed. Unfortunately there is

no way for a faster car to pass a slower one—it will catch up to the slower one and then travel at

the same speed. For example, if X1 ¼ 52.3, X2 ¼ 37.5, and X3 ¼ 42.8, then no car will catch up

to yours, but the third car will catch up to the second. Let N ¼ the number of cars that ultimately

travel at your speed (in your “cohort”), including your own car. Possible values of N are 1, 2,

3, . . .. Show that the pmf of N is p(n) ¼ 1/[n(n + 1)], and then determine the expected number

of cars in your cohort. [Hint: N ¼ 3 requires that X1 < X2, X1 < X3, X4 < X1.]
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163. Suppose the number of children born to an individual has pmf p(x). A Galton–Watson

branching process unfolds as follows: At time t ¼ 0, the population consists of a single

individual. Just prior to time t ¼ 1, this individual gives birth to X1 individuals according to

the pmf p(x), so there are X1 individuals in the first generation. Just prior to time t ¼ 2, each of

these X1 individuals gives birth independently of the others according to the pmf p(x), resulting
in X2 individuals in the second generation (e.g., if X1 ¼ 3, then X2 ¼ Y1 + Y2 + Y3, where Yi is

the number of progeny of the ith individual in the first generation). This process then continues

to yield a third generation of size X3, and so on.

(a) If X1 ¼ 3, Y1 ¼ 4, Y2 ¼ 0, Y3 ¼ 1, draw a tree diagram with two generations of branches

to represent this situation.

(b) Let A be the event that the process ultimately becomes extinct (one way for A to occur

would be to have X1 ¼ 3 with none of these three second-generation individuals having

any progeny) and let p* ¼ P(A). Argue that p* satisfies the equation

p* ¼
X

p*ð Þx � p xð Þ

[Hint: A ¼ [x ¼ 0
1 (A \ X1 ¼ x), so the Law of Total Probability can be applied. Now

given that X1 ¼ 3, Awill occur if and only if each of the three separate branching processes

starting from the first generation ultimately becomes extinct; what is the probability of this

happening?]

(c) Verify that one solution to the equation in (b) is p* ¼ 1. It can be shown that this equation

has just one other solution, and that the probability of ultimate extinction is in fact the

smaller of the two roots. If p(0) ¼ .3, p(1) ¼ .5, and p(2) ¼ .2, what is p*? Is this

consistent with the value of μ, the expected number of progeny from a single individual?

What happens if p(0) ¼ .2, p(1) ¼ .5, and p(2) ¼ .3?

164. Let f(x) and g(y) be pdfs with corresponding cdfs F(x) and G(y), respectively. With c denoting a
numerical constant satisfying jcj � 1, consider

f x; yð Þ ¼ f xð Þg yð Þ 1þ c 2F xð Þ � 1½ � 2G yð Þ � 1½ �f g
(a) Show that f(x, y) satisfies the conditions necessary to specify a joint pdf for two

continuous rvs.

(b) What is the marginal pdf of the first variable X? Of the second variable Y?

(c) For what values of c are X and Y independent?

(d) If f(x) and g(y) are normal pdfs, is the joint distribution of X and Y bivariate normal?

165. The joint cumulative distribution function of two random variables X and Y, denoted by

F(x, y), is defined by

F x; yð Þ ¼ P X � xð Þ \ Y � yð Þ½ � �1 < x < 1, �1 < y < 1
(a) Suppose that X and Y are both continuous variables. Once the joint cdf is available, explain

how it can be used to determine P((X, Y ) 2 A), where A is the rectangular region {(x, y):
a � x � b, c � y � d}.

(b) Suppose the only possible values of X and Y are 0, 1, 2, . . . and consider the values a ¼ 5,

b ¼ 10, c ¼ 2, and d ¼ 6 for the rectangle specified in (a). Describe how you would use

the joint cdf to calculate the probability that the pair (X, Y) falls in the rectangle. More

generally, how can the rectangular probability be calculated from the joint cdf if a, b, c, and
d are all integers?
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(c) Determine the joint cdf for the scenario of Example 4.1. [Hint: First determine F(x, y) for

x ¼ 100, 250 and y ¼ 0, 100, and 200. Then describe the joint cdf for various other (x, y)
pairs.]

(d) Determine the joint cdf for the scenario of Example 4.3 and use it to calculate the

probability that X and Y are both between .25 and .75. [Hint: For 0 � x � 1 and 0 � y

� 1, F(x, y) ¼ Ð
0
x
Ð

0
y f(u, v)dvdu.]

(e) Determine the joint cdf for the scenario of Example 4.4. [Hint: Proceed as in (d), but be

careful about the order of integration and consider separately (x, y) points that lie inside the
triangular region of positive density and then points that lie outside this region.]

166. A circular sampling region with radius X is chosen by a biologist, where X has an exponential

distribution with mean value 10 ft. Plants of a certain type occur in this region according to a

(spatial) Poisson process with “rate” .5 plant per square foot. Let Y denote the number of plants

in the region.

(a) Find E(Yj X ¼ x) and Var(Yj X ¼ x).
(b) Use part (a) to find E(Y ).

(c) Use part (a) to find Var(Y ).

167. The number of individuals arriving at a post office to mail packages during a certain period is a

Poisson random variable X with mean value 20. Independently of each other, any particular

customer will mail either 1, 2, 3, or 4 packages with probabilities .4, .3, .2, and .1, respectively.

Let Y denote the total number of packages mailed during this time period.

(a) Find E(Yj X ¼ x) and Var(Yj X ¼ x).

(b) Use part (a) to find E(Y ).

(c) Use part (a) to find Var(Y ).
168. Sandstone is mined from two different quarries. Let X ¼ the amount mined (in tons) from the

first quarry in one day and Y ¼ the amount mined (in tons) from the second quarry in one day.

The variables X and Y are independent, with μX ¼ 12, σX ¼ 4, μY ¼ 10, σY ¼ 3.

(a) Find the mean and standard deviation of the variable X + Y, the total amount of sandstone

mined in a day.

(b) Find the mean and standard deviation of the variable X � Y, the difference in the mines’

outputs in a day.

(c) The manager of the first quarry sells sandstone at $25/t, while the manager of the second

quarry sells sandstone at $28/t. Find the mean and standard deviation for the combined

amount of money the quarries generate in a day.

(d) Assuming X and Y are both normally distributed, find the probability the quarries generate

more than $750 revenue in a day.

169. The article “Stochastic Modeling for Pavement Warranty Cost Estimation” (J. of Constr. Engr.

and Mgmt., 2009: 352 –359) proposes the following model for the distribution of Y ¼ time to

pavement failure. Let X1 be the time to failure due to rutting, and X2 be the time to failure due to

transverse cracking; these two rvs are assumed independent. Then Y ¼ min(X1, X2). The

probability of failure due to either one of these distress modes is assumed to be an increasing

function of time t. After making certain distributional assumptions, the following form of the

cdf for each mode is obtained:

Φ
aþ btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ dtþ et2
p
� �

where Φ is the standard normal cdf. Values of the five parameters a, b, c, d, and e are –25.49,

1.15, 4.45, –1.78, and .171 for cracking and –21.27, .0325, .972, –.00028, and .00022 for rutting.

Determine the probability of pavement failure within t ¼ 5 years and also t ¼ 10 years.
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170. Consider a sealed-bid auction in which each of the n bidders has his/her valuation (assessment

of inherent worth) of the item being auctioned. The valuation of any particular bidder is not

known to the other bidders. Suppose these valuations constitute a random sample X1, . . ., Xn

with corresponding order statistics Y1 � Y2 � � � � � Yn. The rent of the winning bidder is the

difference between the winner’s valuation and the price. The article “Mean Sample Spacings,

Sample Size and Variability in an Auction-Theoretic Framework” (Oper. Res. Lett., 2004: 103–

108) argues that the rent is just Yn � Yn–1 (do you see why?).

(a) Suppose that the valuation distribution is uniform on [0, 100]. What is the expected rent

when there are n ¼ 10 bidders?

(b) Referring back to (a), what happens when there are 11 bidders? More generally, what is the

relationship between the expected rent for n bidders and for n + 1 bidders? Is this intuitive?

[Note: The cited article presents a counterexample.]

171. Suppose two identical components are connected in parallel, so the system continues to function

as long as at least one of the components does so. The two lifetimes are independent of each

other, each having an exponential distribution with mean 1000 h. LetW denote system lifetime.

Obtain the moment generating function of W, and use it to calculate the expected lifetime.

172. Let Y0 denote the initial price of a particular security and Yn denote the price at the end of

n additional weeks for n ¼ 1, 2, 3, . . . . Assume that the successive price ratios Y1/Y0, Y2/Y1, Y3/

Y2, . . . are independent of one another and that each ratio has a lognormal distribution with

μ ¼ .4 and σ ¼ .8 (the assumptions of independence and lognormality are common in such

scenarios).

(a) Calculate the probability that the security price will increase over the course of a week.

(b) Calculate the probability that the security price will be higher at the end of the next week,

be lower the week after that, and then be higher again at the end of the following week.

[Hint: What does “higher” say about the ratio Yi+1/Yi?]
(c) Calculate the probability that the security price will have increased by at least 20% over the

course of a five-week period. [Hint: Consider the ratio Y5/Y0, and write this in terms of

successive ratios Yi+1/Yi.]
173. In cost estimation, the total cost of a project is the sum of component task costs. Each of these

costs is a random variable with a probability distribution. It is customary to obtain information

about the total cost distribution by adding together characteristics of the individual component

cost distributions—this is called the “roll-up” procedure. For example, E(X1 + � � � + Xn) ¼
E(X1) + � � � + E(Xn), so the roll-up procedure is valid for mean cost. Suppose that there are two

component tasks and that X1 and X2 are independent, normally distributed random variables. Is

the roll-up procedure valid for the 75th percentile? That is, is the 75th percentile of the

distribution of X1 + X2 the same as the sum of the 75th percentiles of the two individual

distributions? If not, what is the relationship between the percentile of the sum and the sum

of percentiles? For what percentiles is the roll-up procedure valid in this case?

174. Suppose that for a certain individual, calorie intake at breakfast is a random variable with

expected value 500 and standard deviation 50, calorie intake at lunch is random with expected

value 900 and standard deviation 100, and calorie intake at dinner is a random variable with

expected value 2000 and standard deviation 180. Assuming that intakes at different meals are

independent of each other, what is the probability that average calorie intake per day over the

next (365-day) year is at most 3500? [Hint: Let Xi, Yi, and Zi denote the three calorie intakes on

day i. Then total intake is given by ∑(Xi + Yi + Zi).]
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175. The mean weight of luggage checked by a randomly selected tourist-class passenger flying

between two cities on a certain airline is 40 lb, and the standard deviation is 10 lb. The mean and

standard deviation for a business-class passenger are 30 lb and 6 lb, respectively.

(a) If there are 12 business-class passengers and 50 tourist-class passengers on a particular

flight, what are the expected value of total luggage weight and the standard deviation of

total luggage weight?

(b) If individual luggage weights are independent, normally distributed rvs, what is the

probability that total luggage weight is at most 2500 lb?

176. Random sums. If X1, X2, . . . , Xn are independent rvs, each with the same mean value μ and

variance σ2, then we have seen that E(X1 + X2 + � � � + Xn) ¼ nμ and Var(X1 + X2 + � � � + Xn)

¼ nσ2. In some applications, the number of Xis under consideration is not a fixed number n but

instead a rv N. For example, let N be the number of components of a certain type brought into a

repair shop on a particular day and let Xi represent the repair time for the ith component. Then

the total repair time is TN ¼ X1 + X2 + � � � + XN, the sum of a random number of rvs.

(a) Suppose that N is independent of the Xis. Use the Law of Total Expectation to obtain an

expression for E(TN) in terms of μ and E(N).

(b) Use the Law of Total Variance to obtain an expression for Var(TN) in terms of μ, σ2, E(N ),

and Var(N ).

(c) Customers submit orders for stock purchases at a certain online site according to a Poisson

process with a rate of 3 per hour. The amount purchased by any particular customer

(in thousands of dollars) has an exponential distribution with mean 30. What is the

expected total amount ($) purchased during a particular 4-h period, and what is the

standard deviation of this total amount?

177. Suppose the proportion of rural voters in a certain state who favor a particular gubernatorial

candidate is .45 and the proportion of suburban and urban voters favoring the candidate is .60. If

a sample of 200 rural voters and 300 urban and suburban voters is obtained, what is the

approximate probability that at least 250 of these voters favor this candidate?

178. Let μ denote the true pH of a chemical compound. A sequence of n independent sample pH

determinations will be made. Suppose each sample pH is a random variable with expected value

μ and standard deviation .1. How many determinations are required if we wish the probability

that the sample average is within .02 of the true pH to be at least .95? What theorem justifies

your probability calculation?

179. The amount of soft drink that Ann consumes on any given day is independent of consumption on

any other day and is normally distributed with μ ¼ 13 oz and σ ¼ 2. If she currently has two

six-packs of 16-oz bottles, what is the probability that she still has some soft drink left at the end

of 2 weeks (14 days)? Why should we worry about the validity of the independence assumption

here?

180. A large university has 500 single employees who are covered by its dental plan. Suppose the

number of claims filed during the next year by such an employee is a Poisson rv with mean value

2.3. Assuming that the number of claims filed by any such employee is independent of the

number filed by any other employee, what is the approximate probability that the total number

of claims filed is at least 1200?

181. A student has a class that is supposed to end at 9:00 a.m. and another that is supposed to begin at

9:10 a.m. Suppose the actual ending time of the 9 a.m. class is a normally distributed rv X1 with

mean 9:02 and standard deviation 1.5 min and that the starting time of the next class is also a

normally distributed rv X2 with mean 9:10 and standard deviation 1 min. Suppose also that the

time necessary to get from one classroom to the other is a normally distributed rv X3 with mean
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6 min and standard deviation 1 min. What is the probability that the student makes it to the

second class before the lecture starts? (Assume independence of X1, X2, and X3, which is

reasonable if the student pays no attention to the finishing time of the first class.)

182. This exercise provides an alternative approach to establishing the properties of correlation.

(a) Use the general formula for the variance of a linear combination to write an expression

for Var(aX + Y). Then let a ¼ σY/σX, and show that ρ � –1. [Hint: Variance is always �
0, and Cov(X, Y) ¼ σX � σY � ρ.]

(b) By considering Var(aX � Y ), conclude that ρ � 1.

(c) Use the fact that Var(W ) ¼ 0 only if W is a constant to show that ρ ¼ 1 only if

Y ¼ aX + b.
183. A rock specimen from a particular area is randomly selected and weighed two different times.

Let W denote the actual weight and X1 and X2 the two measured weights. Then X1 ¼ W + E1

and X2 ¼ W + E2, where E1 and E2 are the two measurement errors. Suppose that the Eis are

independent of each other and of W and that Var(E1) ¼ Var(E2) ¼ σE
2.

(a) Express ρ, the correlation coefficient between the two measured weights X1 and X2, in

terms of σW
2, the variance of actual weight, and σX

2, the variance of measured weight.

(b) Compute ρ when σW ¼ 1 kg and σE ¼ .01 kg.

184. Let A denote the percentage of one constituent in a randomly selected rock specimen, and

let B denote the percentage of a second constituent in that same specimen. Suppose D and

E are measurement errors in determining the values of A and B so that measured values are

X ¼ A + D and Y ¼ B + E, respectively. Assume that measurement errors are independent of

each other and of actual values.

(a) Show that

Corr X; Yð Þ ¼ Corr A;Bð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Corr X1;X2ð Þ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Corr Y1; Y2ð Þ

p
where X1 and X2 are replicate measurements on the value of A, and Y1 and Y2 are defined

analogously with respect to B. What effect does the presence of measurement error have on

the correlation?

(b) What is the maximum value of Corr(X, Y ) when Corr(X1, X2) ¼ .8100 and Corr(Y1, Y2)

¼ .9025? Is this disturbing?

185. Let X1, . . ., Xn be independent rvs with mean values μ1, . . ., μn and variances σ1
2, . . ., σn

2.

Consider a function h(x1, . . ., xn), and use it to define a new rv Y ¼ h(X1, . . ., Xn). Under rather

general conditions on the h function, if the σis are all small relative to the corresponding μis, it
can be shown that E(Y ) 
 h(μ1, . . ., μn) and

Var Yð Þ 
 ∂h
∂x1

� �2

� σ21 þ � � � þ ∂h
∂xn

� �2

� σ2n

where each partial derivative is evaluated at (x1, . . ., xn) ¼ (μ1, . . ., μn). Suppose three resistors
with resistances X1, X2, X3 are connected in parallel across a battery with voltage X4. Then by

Ohm’s law, the current is

Y ¼ X4

1

X1

þ 1

X2

þ 1

X3

� �

Let μ1 ¼ 10 Ω, σ1 ¼ 1.0 Ω, μ2 ¼ 15 Ω, σ2 ¼ 1.0 Ω, μ3 ¼ 20 Ω, σ3 ¼ 1.5 Ω, μ4 ¼ 120 V,

σ4 ¼ 4.0 V. Calculate the approximate expected value and standard deviation of the current

(suggested by “Random Samplings,” CHEMTECH, 1984: 696–697).
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186. A more accurate approximation to E[h(X1, . . ., Xn)] in the previous exercise is

h μ1; . . . ; μnð Þ þ 1

2
σ21

∂2h

∂x21

� �
þ � � � þ 1

2
σ2n

∂2h

∂x2n

� �

Compute this for Y ¼ h(X1, X2, X3, X4) given in the previous exercise, and compare it to the

leading term h(μ1, . . ., μn).
187. Let Y1 and Yn be the smallest and largest order statistics, respectively, from a random sample of

size n.
(a) Use the result of Exercise 141 to determine the joint pdf of Y1 and Yn. (Your answer will

include the pdf f and cdf F of the original random sample.)

(b) Let W1 ¼ Y1 and W2 ¼ Yn � Y1 (the latter is the sample range). Use the method of

Sect. 4.6 to obtain the joint pdf of W1 and W2, and then derive an expression involving

an integral for the pdf of the sample range.

(c) For the case in which the random sample is from a uniform distribution on [0, 1], carry out

the integration of (b) to obtain an explicit formula for the pdf of the sample range. [Hint:

For the Unif[0, 1] distribution, what are f and F?]

188. Consider independent and identically distributed random variables X1, X2, X3, . . . where each Xi

has a discrete uniform distribution on the integers 0, 1, 2, . . . , 9; that is, P(Xi ¼ k) ¼ 1/10 for

k ¼ 0, 1, 2, . . . , 9. Now form the sum

Un ¼
Xn
i¼1

1

10ð Þi Xi ¼ :1X1 þ :01X2 þ � � � þ :1ð ÞnXn:

Intuitively, this is just the first n digits in the decimal expansion of a random number on the

interval [0, 1]. Show that as n ! 1, P(Un � u) ! P(U � u) where U 	 Unif[0, 1] (this is

called convergence in distribution, the type of convergence involved in the CLT) by showing

that the moment generating function of Un converges to the moment generating function of U.

[The argument for this appears on p. 52 of the article “A Few Counter Examples Useful in

Teaching Central Limit Theorems,” The American Statistician, Feb. 2013.]
189. The following example is based on “Conditional Moments and Independence” (The American

Statistician, 2008: 219). Consider the following joint pdf of two rvs X and Y:

f x; yð Þ ¼ 1

2π
e� ln xð Þ2þ ln yð Þ2½ �=2

xy
1þ sin 2π ln xð Þ sin 2π ln yð Þ½ � for x > 0, y > 0

(a) Show that the marginal distribution of each rv is lognormal. [Hint: When obtaining the

marginal pdf of X, make the change of variable u ¼ ln(y).]
(b) Obtain the conditional pdf of Y given that X ¼ x. Then show that for every positive integer

n, E(YnjX ¼ x) ¼ E(Yn). [Hint: Make the change of variable ln(y) ¼ u + n in the second

integrand.]

(c) Redo (b) with X and Y interchanged.

(d) The results of (b) and (c) suggest intuitively that X and Y are independent rvs. Are they in

fact independent?

190. Let X1, X2, . . . be a sequence of independent, but not necessarily identically distributed random

variables, and let T ¼ X1 + � � � + Xn. Lyapunov’s Theorem states that the distribution of the

standardized variable (T � μT)/σT converges to a N(0, 1) distribution as n ! 1, provided that
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lim
n!1

Xn

i¼1
E j Xi � μi j3
� �
σ3T

¼ 0

where μi ¼ E(Xi). This limit is sometimes referred to as the Lyapunov condition for

convergence.

(a) Assuming E(Xi) ¼ μi and Var(Xi) ¼ σi
2, write expressions for μT and σT.

(b) Show that the Lyapunov condition is automatically met when the Xis are iid. [Hint: Let

τ ¼ E(jXi � μij3), which we assume is finite, and observe that τ is the same for every Xi.

Then simplify the limit.]

(c) Let X1, X2, . . . be independent random variables, with Xi having an exponential distribution

with mean i. Show that X1 + � � � + Xn has an approximately normal distribution as

n increases.

(d) An online trivia game presents progressively harder questions to players; specifically, the

probability of answering the ith question correctly is 1/i. Assume any player’s successive

answers are independent, and let T denote the number of questions a player has right out of

the first n. Show that T has an approximately normal distribution for large n.

191. This exercise and the next complete our investigation of the Coupon Collector’s Problem begun

in the book’s Introduction. A box of a certain brand of cereal marketed for children is equally

likely to contain one of 10 different small toys. Suppose someone purchases boxes of this cereal

one by one, stopping only when all 10 toys have been obtained.

(a) After obtaining a toy in the first box, let Y2 be the subsequent number of boxes purchased

until a toy different from the one in the first box is obtained. Argue that this rv has a

geometric distribution, and determine its expected value.

(b) Let Y3 be the number of additional boxes purchased to get a third type of toy once two types

have been obtained. What kind of a distribution does this rv have, and what is its expected

value?

(c) Analogous to Y2 and Y3, define Y4, . . ., Y10 as the numbers of additional boxes purchased to

get a new type of toy. Express the total number of boxes purchased in terms of the Yis and

determine its expected value.

(d) Determine the standard deviation of the total number of boxes purchased. [Hint: The Yis

are independent.]

192. Return to the scenario described in the previous problem. Suppose an individual purchases

25 boxes of this cereal.

(a) Let X1 ¼ 1 if at least one type 1 toy is included in the 25 boxes and X1 ¼ 0 otherwise

(a Bernoulli rv). Determine E(X1).

(b) Define X2, . . . , X10 analogously to X1 for the other nine types of toys. Express the number

of different toys obtained from the 25 boxes in terms of the Xis and determine its expected

value.

(c) What happens to the expected value in (b) as the number of boxes purchased increases? As

the number of different toys available increases?

(d) Show that, for i 6¼ j,

Cov Xi;Xj

� � ¼ 8

10

� �25

� 9

10

� �50

:

Then determine the variance of the number of different toys obtained from the 25 boxes by

applying Eq. (4.5) to the expression from part (b). [Hint: Refer back to Example 4.19 for

the required method.]
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The Basics of Statistical Inference 5

The overarching objective of statistical inference is to draw conclusions (make inferences) based on

available sample data. In this chapter we generally assume that data have been acquired by observing

the values of a random sample X1, X2, . . ., Xn; recall from Sect. 4.5 that a random sample consists of

rvs that are independent and have the same underlying probability distribution (what we also called

iid). For example, highway fuel efficiency of a certain type of vehicle might have a normal distribu-

tion with mean μ and standard deviation σ. Then each observed fuel efficiency value would come

from this normal distribution, with the various observed values obtained independently of one

another—a normal random sample. Or the number of blemishes on a new type of DVD might have

a Poisson distribution with mean value μ. If n of these disks were to be randomly selected and the

number of blemishes on each one counted, the result would be data from a Poisson random sample. In

either example, the values of the parameters would typically not be known to an investigator. The

sample data would then be used to draw some type of conclusion about these values.

In this chapter we introduce several different inferential procedures. The first, point estimation,

involves using the available data to obtain a single number that can be regarded as an educated guess

for the value of some parameter (“point” refers to the fact that a single number corresponds to a single

point on a number line). Thus we might offer up 31.2 mpg as a sensible estimate of population mean

fuel efficiency, or 0.8 as an estimate of the true mean number of blemishes per DVD. Section 5.1

introduces some general concepts of point estimation and methods for assessing the quality of an

estimate, while Sect. 5.2 discusses a popular method for producing point estimates.

A point estimate by itself, being a single number, does not provide any information as to how close

the estimate might be to the value of the parameter being estimated. This deficiency can be remedied

by calculating an entire set of plausible values for the parameter of interest, called a confidence

interval. For example, it might be reported with a high degree of confidence—more precisely, a

confidence level of 95%—that the true average breaking strength of hockey sticks made from a

certain type of graphite-Kevlar composite is estimated to be between 459.5 and 466.2 N. Later in the

chapter we consider confidence intervals for a population mean and also a population proportion (e.g.,

the proportion of all college students who regularly text during class).

Rather than estimating the value of some parameter, we may wish to decide which of two

contradictory claims about the parameter is correct. Suppose, for example, that 1,000,000 signatures

have been submitted in support of putting a particular initiative on a statewide ballot. State law

requires that more than 500,000 of these signatures be valid. If we let p denote the proportion of valid

signatures among those submitted, then the initiative qualifies if p > .5 and does not qualify if p � .5.
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Because it is extremely tedious and time consuming to check all one million signatures, it is

customary to select a random sample, determine how many of those are valid, and then use the result

as a basis for deciding between the two contradictory hypotheses p > .5 and p � .5. In this chapter

we shall consider methods for “testing” hypotheses (that is, deciding which of two hypotheses is more

plausible) about a population mean and also a population proportion.

Thus far our paradigm for inference has been to regard a parameter such as μ as having a fixed but

unknown value. A different perspective, referred to as the Bayesian method, views any parameter

whose value is unknown as being a random variable with some type of “prior” probability distribu-

tion. Once sample data is available, Bayes’ theorem can be used to obtain the “posterior” distribution

of the parameter conditional on the observed data. Adherents of the Bayesian method of inference

then use this posterior distribution to draw some type of conclusion about the unknown parameter.

The last section of this chapter introduces Bayesian methodology.

5.1 Point Estimation

Recall that a parameter is a numerical characteristic of a probability distribution. Often the

distribution under consideration furnishes a model for how some variable is distributed in a popula-

tion of interest. Examples include the distribution of yield strength values in a population of building-

grade steel bars, or the distribution of time-to-recovery from a dental anesthetic in the conceptual

population of all individuals given the anesthetic (we say “conceptual” here because the population

includes both past and future recipients of the treatment). One parameter in the anesthetic scenario is

the population mean recovery time μ, while in the steel bar population an investigator might focus on

the parameter η.95, the 95th percentile of the distribution (i.e., the yield strength that separates the

strongest 5% of steel bars from the other 95%).

Statistical inference is frequently directed toward drawing some type of conclusions about one or

more parameters. To do so requires that an investigator obtain sample data from the underlying

distribution. If the sample consists of observations on some random variable X, we will denote the

number of sample observations (the sample size) by n, the first observation by x1, the second by x2,

and so on, with the last observation represented by xn. The subscripts on x generally have no

relationship to the magnitudes of the observations. They are often listed in the order in which they

were acquired by an investigator. Conclusions (inferences) about the population distribution can then

be based on the computed values of various sample quantities.

DEFINITION

A statistic is any random variable whose value can be computed from sample data.

Example 5.1 Zinfandel is a popular red wine varietal produced almost exclusively in California. It is

rather controversial among wine connoisseurs because its alcohol content varies rather substantially

from one producer to another. We went to the website klwines.com, randomly selected 10 from

among the 325 available zinfandels, and obtained the following values of alcohol content (%):

x1 ¼ 14:8 x2 ¼ 14:5 x3 ¼ 16:1 x4 ¼ 14:2 x5 ¼ 15:9
x6 ¼ 13:7 x7 ¼ 16:2 x8 ¼ 14:6 x9 ¼ 13:8 x10 ¼ 15:0

Here are examples of some statistics and their values calculated from the foregoing data:
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(a) The sample mean �X, the arithmetic average of the n observations:

�X ¼ X1 þ � � � þ Xn

n
¼
X

Xi

n

We encountered �X previously in Sect. 4.5; this is the most frequently used measure of center for

sample data. The calculated value of the sample mean for the given data is

�x ¼
X

xi

n
¼ 14:8þ 14:5þ . . .þ 15:0

10
¼ 148:8

10
¼ 14:88

Another sample of 10 such wines might yield �x ¼ 15:23, and yet another give �x ¼ 14:70. Prior to

obtaining the data, there is uncertainty in what the value of the sample mean will be; hence we

think of it as a random variable.

(b) The value of the sample mean can be unduly influenced by even a single unusually large or small

observation, e.g., a sample of incomes that includes Bill Gates, or a sample of cities’ populations

that includes Shanghai. An alternative measure of center is the sample median eX : list the

n observations in increasing order from smallest to largest; then if n is an odd number, the

median is the middle value in this ordered list [the (n + 1)/2th value in from either end], and if

n is even, the median is the average of the two middle values. Clearly several extreme values on

either end of the ordered list will have no impact on the median. The ordered observations in our

sample are

13.7 13.8 14.2 14.5 14.6 14.8 15.0 15.9 16.1 16.2

Because n ¼ 10, the calculated value of the sample median is the average of the fifth and sixth

largest values:ex ¼ 14:6þ 14:8ð Þ=2 ¼ 14:70. Again, a second sample might result inex ¼ 15:15,

a third sample inex ¼ 14:95, and so on. Prior to obtaining data, there is uncertainty in what value

of the sample median will result, so the sample median is regarded as a random variable.

(c) The sample mean and sample median are both assessments of where the sample is centered—a

typical or representative value. Another important characteristic of data is the extent to which

the observations spread out about the center. The simplest measure of spread (dispersion,

variability) is the sample rangeW: the difference between the largest and smallest observations.

For our data, w ¼ 16.2 � 13.7 ¼ 2.5. A second sample might yield 14.1 and 15.8 as the

smallest and largest observations, giving w ¼ 1.7. Clearly the value of the sample range varies

from one sample to another, so before data is available it is viewed as a random variable.

(d) In the context of simulation in Chaps. 2 and 3, we previously introduced another measure of

variability, the sample standard deviation S:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

Xi � �Xð Þ2
s

(The sample variance is defined as S2.) For our data, the observed value of the sample standard

deviation is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

10� 1

X10
i¼1

xi � 14:88ð Þ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9
14:8� 14:88ð Þ2 þ � � � þ 15:0� 14:88ð Þ2

h ir
¼ 0:915

As with the previous examples of statistics, this value is particular to our data; a different random

sample of 10 zinfandel wines might provide s ¼ 1.018, another s ¼ 0.882, and so on. Thus,

prior to obtaining data, we regard S as a random variable.
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(e) Finally, consider the random variable

Z ¼
�X � μ

σ=
ffiffiffi
n

p ,

which expresses the distance between the sample mean and its expected value μ in standard

deviations (e.g., if z ¼ 3, then the value of the sample mean is three standard deviations larger

than would be expected). This rv is not a statistic unless the values of μ and σ are known; without
those values, the sample does not provide enough information to calculate z. ■

5.1.1 Estimates and Estimators

When discussing general concepts and methods of inference, it is convenient to have a generic

symbol for the parameter of interest. We will use the Greek letter θ for this purpose. The objective of
point estimation is to select a single number, based on sample data, that represents a sensible value for

θ. Suppose, for example, that the parameter of interest is μ, the true average lifetime of batteries of a

certain type. A random sample of n ¼ 3 batteries might yield observed lifetimes (hours) x1 ¼ 5.0,

x2 ¼ 6.4, x3 ¼ 5.9. The computed value of the sample mean lifetime is �x ¼ 5:77, and it is reasonable

to regard 5.77 h as a plausible value of μ, our “best guess” for the value of μ based on the available

sample information.

DEFINITION

A point estimate of a parameter θ is a single number that can be regarded as a sensible value for

θ. A point estimate is obtained by selecting a suitable statistic and computing its value from the

given sample data. The selected statistic is called the point estimator of θ.

In the battery scenario just described, the point estimator (i.e., the statistic) used to obtain the point

estimate of μ was �X, and the point estimate of μ was 5.77. If the three observed lifetimes had instead

been x1 ¼ 5.6, x2 ¼ 4.5, and x3 ¼ 6.1, using the same estimator �X would have resulted in a different

estimate, �x ¼ 5:6þ 4:5þ 6:1ð Þ=3 ¼ 5:40h.

The symbol θ̂ (“theta hat”) is customarily used to denote the point estimate resulting from a given

sample; we shall also use it to denote the estimator, as using an uppercase Θ̂ is somewhat awkward to

write. Thus μ̂ ¼ �X is read as “the point estimator of μ is the sample mean �X.” The statement “the point

estimate of μ is 5.77 h” can be written concisely as μ̂ ¼ �x ¼ 5:77. Notice that in writing a statement

such as θ̂ ¼ 72:5, there is no indication of how this point estimate was obtained (i.e., what statistic

was used). It is recommended that both the estimator and the resulting estimate be reported.

Example 5.2 The National Health and Nutrition Examination Survey (NHANES) collects demo-

graphic, socioeconomic, dietary, and health-related information on an annual basis. Here is a sample

of 20 observations on HDL-cholesterol level (mg/dl) obtained from the 2009–2010 survey (HDL is

“good” cholesterol, and the higher the value, the lower the risk for heart disease):

35 49 52 54 65 51 51 47 86 36 46 33 39 45 39 63 95 35 30 48

Figure 5.1 shows both a normal probability plot and a brief descriptive summary of the data.

354 5 The Basics of Statistical Inference



(a) Let’s first consider estimating the population mean HDL level μ. The natural estimator is of

course the sample mean �X. The resulting point estimate is

μ̂ ¼ �x ¼
X

xi

n
¼ 35þ 49þ � � � þ 48

20
¼ 49:95 mg=dl

The NHANES data file contained 7846 HDL observations. We could regard our sample of size

20 as coming from the population consisting of these 7846 values. The population mean is then

known to be μ ¼ 52.6 mg/dl, so our estimate of 49.95 is somewhat smaller than the value of the

parameter we are trying to estimate. We extracted a second sample of size 20 from the

population; for this sample, μ̂ ¼ �x ¼ 57:40, a substantial overestimate of μ.
(b) Now let’s consider estimating the population median η, the value that separates the smallest 50%

of all HDL levels in the population from the largest 50%. The natural statistic for estimating this

parameter is the sample median eX described previously. The estimate here is the average of the

10th and 11th values in the ordered list of sample observations:

η̂ ¼ ex ¼ 47þ 48

2
¼ 47:5 mg=dl

This is somewhat smaller than the sample mean because the sample has somewhat of a positive

skew—values on the upper end stretch out more than do values on the lower end, and these pull

the mean rightward compared to the median. If for the moment we regard the NHANES data set

as constituting the population, the population median is 51.0 (again somewhat smaller than the

population mean because of a positive skew). Our estimate of 47.5 is also smaller than what we

are attempting to estimate (51.0). For the second sample alluded to in part (a), the sample median

was 57.0, an overestimate of the population median.

(c) To estimate the HDL population standard deviation σ, it is natural to use the sample standard

deviation S as our point estimator. The resulting point estimate of σ is

σ̂ ¼ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

20� 1
35� 49:95ð Þ2 þ . . .þ 48� 49:95ð Þ2

h ir
¼ 16:81 mg=dl
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Count   Mean  StDev  SE Mean  Minimum     Q1  Median     Q3  Maximum   IQR
   20  49.95  16.81     3.76    30.00  36.75   47.50  53.50    95.00 16.75

Fig. 5.1 Normal probability plot and descriptive summary of the HDL sample
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Roughly speaking, the sample SD describes the size of a typical deviation within the sample

from the sample mean. A second sample from the same population would almost surely give a

somewhat different value of s, and thus a different point estimate of σ.
(d) An HDL level of at least 60 mg/dl is considered desirable, as it corresponds to a significantly

lower risk of heart disease. How can we estimate the proportion p of the population having an

HDL level of at least 60? If we think of a sample observation of at least 60 as being a “success,”

then a natural estimator of p is the sample proportion of successes:

P̂ ¼ # of successes in the sample

n

(We have encountered P̂ several times already, both in the context of simulation and of the

Central Limit Theorem.) Four of the 20 sample observations are at least 60. Thus our point

estimate is p̂ ¼ 4=20 ¼ :20. That is, we estimate that 20% of the individuals in the population

have an HDL level of at least 60. If a second sample is selected, it may be that 7 of the

20 individuals have such a level. Use of the same estimator then gives the point estimate

7/20 ¼ .35. Just as with the other estimators proposed in this example, the value of the estimator

P̂ will in general vary from one sample to another. ■

The foregoing example may have suggested that point estimation is deceptively straightforward:

once the parameter to be estimated is identified, use intuition to specify a suitable estimator (statistic)

and then just calculate. However, there are at least two major problems with this strategy. The first is

that intuition may not be up to the task of identifying an estimator. For example, suppose a materials

engineer is willing to assume (based on subject matter expertise and an appropriate probability plot)

that the data she collected were sampled from a Weibull distribution. This distribution has two

parameters, α and β, which appear in the Weibull pdf in a rather complicated way. Furthermore, the

mean μ and standard deviation σ both involve the gamma function. So the sample mean and sample

SD estimate complicated functions of the two parameters; it is not at all obvious how to sensibly

estimate α and β. In the next section we introduce a constructive method for producing estimators that

will generally be reliable.

The second problem with relying solely on intuition is that, in many situations, there are two or

more estimators for a particular parameter that could sensibly be used. For example, suppose an

investigator is quite convinced (again, by a combination of subject matter expertise and a probability

plot) that available data was generated by a normal distribution. A major objective of the investiga-

tion is to estimate the parameter μ. Since μ is the mean value of the normal population distribution, it

certainly makes sense to use the sample mean �X as its estimator. However, because any normal

density curve is symmetric, μ is also the median of the normal population distribution. It is then

sensible to think of using the sample median eX as an estimator. Two other potential estimators of μ are
the mid-range, the average of the largest and smallest observations, and a trimmed mean, obtained by
eliminating a specified percentage of the values from each end of the ordered list and averaging those

values that remain.

As a second example of competing estimators, consider data resulting from a Poisson random

sample. This distribution has one parameter, μ, which is both the mean and the variance of the Poisson

model. So one sensible estimator of μ is the sample mean, another is the sample variance, and a third

is the average of these two. The choice between competing estimators such as these cannot usually be

based on intuitive reasoning. Instead we need to introduce desirable properties for an estimator and

then try to find one that satisfies the properties.
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5.1.2 Assessing Estimators: Accuracy and Precision

When a particular statistic is selected to estimate an unknown parameter, two criteria often used to

assess the quality of that estimator are its accuracy and its precision. Loosely speaking, an estimator is

accurate if it has no systematic tendency, across repeated values of the estimator calculated from

different samples, to overestimate or underestimate the value of the parameter. An estimator is

precise if those same repeated values are “close together,” so that two statisticians using the same

estimator formula (but two different random samples) are liable to get similar point estimates.

The notions of accuracy and precision are made more rigorous by the following definitions.

DEFINITION

A point estimator θ̂ is said to be an unbiased estimator of θ ifE θ̂
� � ¼ θ for every possible value

of θ. If θ̂ is not unbiased, the difference E θ̂
� �� θ is called the bias of θ̂.

The standard error of θ̂ is its standard deviation, σθ̂ ¼ SD θ̂
� �

. If the standard error itself

involves unknown parameters whose values can be estimated, substitution of these estimates

into σθ̂ yields the estimated standard error of θ̂. The estimated standard error can be denoted

by either σ̂θ̂ or by sθ̂.

The bias of an estimator θ̂ quantifies its accuracy be measuring how far, on the average, θ̂ differs

from θ. The standard error of θ̂ quantifies its precision by measuring the variability of θ̂ across

different possible realizations (i.e., different random samples). It is important to note that both bias

and standard error are properties of an estimator (the random variable), such as �X, and not of any

specific value or estimate, �x.
Figure 5.2 illustrates bias and standard error for three potential estimators of a population

parameter θ. Figure 5.2a shows the distribution of an estimator θ̂1 whose expected value is very

q
q1

q

pdf of q2

q2

q

pdf of q3

q3

ba

c

pdf of q1

Fig. 5.2 Three potential types of estimators: (a) accurate, but not precise; (b) precise, but not accurate; (c) both

accurate and precise
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close to θ but whose distribution is quite dispersed. Hence, θ̂1 has low bias but relatively high standard

error. In contrast, the distribution of θ̂2 displayed in Fig. 5.2b is very concentrated but is “off target”:

the values of θ̂2 across different random samples will systematically over-estimate θ by a large

amount. So, θ̂2 has low standard error but high bias. The “ideal” estimator is illustrated in Fig. 5.2c: θ̂3
has a mean roughly equal to θ, so it has low bias, and it also has a relatively small standard error.

Example 5.3 Consider the scenario of Example 5.1, wherein a sample mean �X from a random sample

of n ¼ 10 observations will be used to estimate the population mean alcohol content μ of all zinfandel
wines. In Sect. 4.5, we showed that the expected value and standard deviation of �X are μ and σ=

ffiffiffi
n

p
,

respectively, where σ is the population standard deviation (i.e., the SD of the alcohol content of all

zinfandel wines). Hence, the bias of �X in estimating μ is

E �Xð Þ � μ ¼ μ� μ ¼ 0

That is, �X is an unbiased estimator of μ. This is true for any random sample and for any sample size,

n. The standard error of �X is simply SD �Xð Þ ¼ σ=
ffiffiffi
n

p ¼ σ=
ffiffiffiffiffi
10

p
; clearly the precision of �X would be

improved (i.e., the standard error reduced) by increasing the sample size n.

Since the value of σ is almost always unknown, we can estimate the standard error of �X by

σ̂ �X ¼ s=
ffiffiffi
n

p
, where s denotes the sample standard deviation, as we did in the context of simulations in

Sects. 2.8 and 3.8. For the random sample of 10 wines presented in Example 5.1, we have a point

estimate μ̂ ¼ �x ¼ 14:88 with an estimated standard error of s=
ffiffiffi
n

p ¼ 0:915=
ffiffiffiffiffi
10

p ¼ 0:29. The latter

indicates that, based on the available data, we believe our estimate of μ is liable to differ by about

�0.29 from the actual value of μ. ■

Example 5.4 Consider once again estimating a population proportion of “successes” p (for example,

the proportion of all engineering graduates who have taken a statistics course, or the proportion of all

vehicle accidents in which cell phone use was not a factor). The natural estimator of p is the sample

proportion of successes P̂ ¼ X=n, where X denotes the number of successes in the sample. Using the

fact that X ~ Bin(n, p), we showed in Sect. 2.4 that the mean and standard error of P̂ are

E P̂
� � ¼ p and SD P̂

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n

r
The first equation tells us that P̂ is an unbiased estimator for p, and that this is true no matter the

sample size. As for the standard error, since p is unknown (else why estimate?), we substitute p̂ ¼ x=n

into σP̂, yielding the estimated standard error σ̂P̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=np

. This was used several times in the

context of simulation in earlier chapters, andwewill see this expression again in Sect. 5.5.When n ¼ 25

and p̂ ¼ :6, this gives σ̂P̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:6ð Þ :4ð Þ=25p ¼ :098. Alternatively, since the largest value of p(1 � p) is

attained when p ¼ .5, an upper bound on the standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:5ð Þ :5ð Þ=np ¼ 1= 2

ffiffiffi
n

pð Þ. ■

Example 5.5 The time a customer spends in service after waiting in a queue is often modeled with an

exponential distribution. Recall that the exponential model has a single parameter, λ, and that the

mean of the exponential distribution is 1/λ. Thus, since λ ¼ 1/μ, a reasonable estimator of λ might be
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λ̂ ¼ 1
�X

where �X is the average of a random sample of wait times X1, . . ., Xn from the aforementioned single-

server queue. How accurate is λ̂ as an estimator of λ? How precise is it?

It can be shown (Exercise 11) that the mean and variance of λ̂ ¼ 1= �X are

E λ̂
� � ¼ nλ

n� 1
and Var λ̂

� � ¼ n2λ2

n� 1ð Þ2 n� 2ð Þ

The bias of λ̂ as an estimator of λ is therefore E λ̂
� �� λ ¼ λ= n� 1ð Þ. We see that λ̂ is not an

unbiased estimator of λ; since λ/(n � 1) > 0, we say that λ̂ is biased high, meaning it will tend to

systematically over-estimate λ. Thankfully, the bias approaches 0 as n increases.

The standard error of λ̂ is the square root of the variance expression above. It can be estimated by

replacing the unknown λ with the calculated value of λ̂, 1=�x, resulting in

σ̂λ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2λ̂2

n� 1ð Þ2 n� 2ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n� 1ð Þ2 n� 2ð Þ�x2

s
■

As mentioned before, in some situations more than one estimator might be proposed for the same

parameter. It is sometimes the case in such scenarios that one estimator is more accurate (lower bias)

while the other is more precise (smaller standard error). Which consideration should prevail?

PRINCIPLE OF UNBIASED ESTIMATION

When choosing among several different estimators of θ, select one that is unbiased.

According to this principle, the sample mean �X would be selected as an estimator of a population

mean μ over any biased estimator (see Example 5.3), and a sample proportion P̂ is preferred over any

biased estimator of a true proportion p (Example 5.4). In contrast, the estimator λ̂ of Example 5.5 is

not unbiased; if we can find some other estimator of λ which is unbiased, we would choose this latter

estimator over λ̂.
If two or more estimators of a parameter are unbiased, then naturally one selects the estimator

among them with the smallest standard error. For example, we previously proposed several different

estimators for the mean μ of a normal distribution. When the sampled distribution is continuous and

symmetric, all four of the proposed estimators—the sample mean �X, the sample median eX, the
midrange, and a trimmed mean—are unbiased estimators of μ (provided μ is finite). Using some

sophisticated mathematics, it can be shown that when drawing from a normal distribution, �X has the

smallest standard error not only among these four estimators but in fact among all unbiased

estimators of μ. For this reason, �X is referred to as the minimum variance unbiased estimator

(MVUE) of μ when sampling from a normally distributed population.

An alternative approach to the Principle of Unbiased Estimation is to combine the considerations

of accuracy (bias) and precision (standard error) into a single measure, which can be achieved through

the mean squared error; see Exercise 22. Under this method, the estimator with the smallest mean

squared error is selected, even if it is biased and other estimators are not.
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5.1.3 Exercises: Section 5.1 (1–23)

1. A study of children’s intelligence and behavior included the following IQ data for 33 first-graders

that participated in the study.

82 96 99 102 103 103 106 107 108 108 108

108 109 110 110 111 113 113 113 113 115 115

118 118 119 121 122 122 127 132 136 140 146

(a) Calculate a point estimate of the mean IQ for the conceptual population of all first graders in

this school, and state which estimator you used.

(b) Calculate a point estimate of the IQ value that separates the lowest 50% of all such students

from the highest 50%, and state which estimator you used.

(c) Calculate and interpret a point estimate of the population standard deviation σ. Which

estimator did you use?

(d) Calculate a point estimate of the proportion of all such students whose IQ exceeds 100.

[Hint: Think of an observation as a “success” if it exceeds 100.]

(e) Calculate a point estimate of the population coefficient of variation, 100σ/μ, and state what

estimator you used.

2. A sample of 20 students who had recently taken elementary statistics yielded the following

information on brand of calculator owned (T ¼ Texas Instruments, H ¼ Hewlett-Packard, C ¼
Casio, S ¼ Sharp):

T T H T C T T S C H

S S T H C T T T H T

(a) Estimate the true proportion of all such students who own a Texas Instruments calculator.

(b) Of the 10 students who owned a TI calculator, 4 had graphing calculators. Estimate the

proportion of students who do not own a TI graphing calculator.

3. Consider the following sample of observations on coating thickness for low-viscosity paint

(“Achieving a Target Value for a Manufacturing Process: A Case Study,” J. Qual. Technol.,
1992: 22–26):

.83 .88 .88 1.04 1.09 1.12 1.29 1.31

1.48 1.49 1.59 1.62 1.65 1.71 1.76 1.83

Assume that the distribution of coating thickness is normal (a normal probability plot strongly

supports this assumption).

(a) Calculate a point estimate of the mean value of coating thickness, and state which estimator

you used.

(b) Calculate a point estimate of the median of the coating thickness distribution, and state

which estimator you used.

(c) Calculate a point estimate of the value that separates the largest 10% of all values in the

thickness distribution from the remaining 90%, and state which estimator you used. [Hint:

Express what you are trying to estimate in terms of μ and σ.]
(d) Estimate P(X < 1.5), i.e., the proportion of all thickness values less than 1.5. [Hint: If you

knew the values of μ and σ, you could calculate this probability. These values are not

available, but they can be estimated.]

(e) What is the estimated standard error of the estimator that you used in (b)?

4. The data set mentioned in Exercise 1 also includes these third-grade IQ observations for males:
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117 103 121 112 120 132 113 117 132

149 125 131 136 107 108 113 136 114

and females:

114 102 113 131 124 117 120 90

114 109 102 114 127 127 103

Prior to obtaining data, denote the male values by X1, . . ., Xm and the female values by Y1, . . ., Yn.
Suppose that the Xis constitute a random sample from a distribution with mean μ1 and standard

deviation σ1 and that the Yis form a random sample (independent of the Xis) from another

distribution with mean μ2 and standard deviation σ2.
(a) Show that �X � �Y is an unbiased estimator of μ1 � μ2. Then calculate the estimate for the

given data.

(b) Use rules of variance from Chap. 4 to obtain an expression for the standard error of the

estimator in (a), and then compute the estimated standard error.

(c) Calculate a point estimate of the ratio σ1/σ2 of the two standard deviations.

(d) Suppose one male third-grader and one female third-grader are randomly selected. Calculate

a point estimate of the variance of the difference X � Y between their IQs.

5. As an example of a situation in which several different statistics could reasonably be used to

calculate a point estimate, consider a population of N invoices. Associated with each invoice is its

“book value,” the recorded amount of that invoice. Let τ denote the total book value, a known

amount. Some of these book values are erroneous. An audit will be carried out by randomly

selecting n invoices and determining the audited (correct) value for each one. Suppose that the

sample gives the following results (in dollars).

Invoice

1 2 3 4 5

Book value 300 720 526 200 127

Audited value 300 520 526 200 157

Error 0 200 0 0 �30

Let �X ¼ the sample mean book value, �Y ¼ the sample mean audited value, and �D ¼ the sample

mean error. Propose three different statistics for estimating the total audited (i.e., correct) value

θ—one involving just N and �X, another involving N, τ, and �D, and the last involving τ and �X=�Y.
Then calculate the resulting estimates when N ¼ 5000 and τ ¼ 1,761,300 (The article “Statisti-

cal Models and Analysis in Auditing,” Statistical Science, 1989: 2–33 discusses properties of

these estimators.)

6. Consider the accompanying observations on stream flow (thousands of acre-feet) recorded at a

station in Colorado for the period April 1–August 31 over a 31-year span (from an article in the

1974 volume of Water Resources Res.).

127.96 210.07 203.24 108.91 178.21

285.37 100.85 89.59 185.36 126.94

200.19 66.24 247.11 299.87 109.64

125.86 114.79 109.11 330.33 85.54

117.64 302.74 280.55 145.11 95.36

204.91 311.13 150.58 262.09 477.08

94.33

An appropriate probability plot supports the use of the lognormal distribution (see Sect. 3.5) as a

reasonable model for stream flow.
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(a) Estimate the parameters of the distribution. [Hint: Remember that X has a lognormal

distribution with parameters μ and σ if ln(X) is normally distributed with mean μ and

standard deviation σ.]
(b) Use the estimates of part (a) to calculate an estimate of the expected value of stream flow.

[Hint: What is the expression for E(X)?]
7. (a) A random sample of 10 houses in a particular area, each of which is heated with natural gas,

is selected and the amount of gas (therms) used during the month of January is determined

for each house. The resulting observations are 103, 156, 118, 89, 125, 147, 122, 109, 138,

99. Let μ denote the average gas usage during January by all houses in this area. Compute a

point estimate of μ.
(b) Suppose there are 10,000 houses in this area that use natural gas for heating. Let τ denote the

total amount of gas used by all of these houses during January. Estimate τ using the data of

(a). What estimator did you use in computing your estimate?

(c) Use the data in (a) to estimate p, the proportion of all houses that used at least 100 therms.

(d) Give a point estimate of the population median usage based on the sample of (a). What

estimator did you use?

8. In a random sample of 80 components of a certain type, 12 are found to be defective.

(a) Give a point estimate of the proportion of all such components that are not defective.

(b) A system is to be constructed by randomly selecting two of these components and

connecting them in series, as shown here.

The series connection implies that the system will function if and only if neither component

is defective (i.e., both components work properly). Estimate the proportion of all such

systems that work properly. [Hint: If p denotes the probability that a component works

properly, how can P(system works) be expressed in terms of p?]

(c) Let p̂ be the sample proportion of successes. Is p̂ 2 an unbiased estimator for p2? [Hint: For

any rv Y, E(Y2) ¼ Var(Y ) + [E(Y )]2.]
9. Each of 150 newly manufactured items is examined and the number of scratches per item is

recorded (the items are supposed to be free of scratches), yielding the following data:

Number of scratches per item 0 1 2 3 4 5 6 7

Observed frequency 18 37 42 30 13 7 2 1

Let X ¼ the number of scratches on a randomly chosen item, and assume that X has a Poisson

distribution with parameter μ.
(a) Find an unbiased estimator of μ and compute the estimate for the data.

(b) What is the standard error of your estimator? Compute the estimated standard error.

[Hint: σX
2 ¼ μ for X Poisson.]

10. Let X1, . . ., Xn be a random sample from a distribution with mean μ and variance σ2.

(a) Show that
P

Xi � �Xð Þ2 ¼ P
X2
i

� �� n�X2.

(b) Show that E
P

X2
i

� �¼ n(μ2 + σ2). [Hint: Use linearity of expectation, along with the relation

E(Y2) ¼ Var(Y ) + [E(Y )]2.]

(c) Show that E
�
n�X2
� ¼ nμ2 þ σ2. [Hint: Apply the relation given in the previous hint, but this

time to Y ¼ �X.]

(d) Combine parts (a)–(c) to show that S2 is an unbiased estimator of σ2.
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(e) Does it follow that the sample standard deviation, S, of a random sample is an unbiased

estimator of σ? Why or why not?

11. Example 5.5 considered the estimator λ̂ ¼ 1= �X for the unknown parameter λ of an exponential

distribution, based on a random sample X1, X2, . . ., Xn from that distribution.

(a) Show using a moment generating function argument that �X has a gamma distribution, with

parameters α ¼ n and β ¼ 1/(nλ).

(b) Find the expected value of λ̂. [Hint: The goal is to find E(1/Y ), where Y ~ gamma(n, 1/(nλ)).
Use the gamma pdf to determine this expected value.]

(c) Find the variance of λ̂. [Hint: Now find E(1/Y2). Then apply the variance shortcut formula.]

12. Using a long rod that has length μ, you are going to lay out a square plot in which the length of

each side is μ. Thus the area of the plot will be μ2. However, you do not know the value of μ, so
you decide to make n independent measurements X1, X2, . . . Xn of the length. Assume that each Xi

has mean μ (unbiased measurements) and variance σ2.
(a) Show that �X2 is not an unbiased estimator for μ2. [Hint: Apply the hint from Exercises 8 and

10 with Y ¼ �X.]

(b) For what value of k is the estimator �X2 � kS2 unbiased for μ2? [Hint: ComputeE �X2 � kS2
� �

,

using the result of Exercise 10(d).]

13. Of n1 randomly selected male smokers, X1 smoked filter cigarettes, whereas of n2 randomly

selected female smokers, X2 smoked filter cigarettes. Let p1 and p2 denote the probabilities that a

randomly selected male and female, respectively, smoke filter cigarettes.

(a) Show that (X1/n1) � (X2/n2) is an unbiased estimator for p1 � p2. [Hint: What type of rvs

are X1 and X2?]

(b) What is the standard error of the estimator in (a)?

(c) How would you use the observed values x1 and x2 to estimate the standard error of your

estimator?

(d) If n1 ¼ n2 ¼ 200, x1 ¼ 127, and x2 ¼ 176, use the estimator of (a) to obtain an estimate of

p1 � p2.

(e) Use the result of (c) and the data of (d) to estimate the standard error of the estimator.

14. Suppose a certain type of fertilizer has an expected yield per acre of μ1 with variance σ
2, whereas

the expected yield for a second type of fertilizer is μ2 with the same variance σ2. Let S1
2 and S2

2

denote the sample variances of yields based on sample sizes n1 and n2, respectively, of the two

fertilizers. Use the result of Exercise 10(d) to show that the pooled (combined) estimator

σ̂2 ¼ n1 � 1ð ÞS21 þ n2 � 1ð ÞS22
n1 þ n2 � 2

is an unbiased estimator of σ2.
15. Consider a random sample X1, . . ., Xn from the pdf

f x; θð Þ ¼ :5 1þ θxð Þ � 1 � x � 1

where �1 � θ � 1 (this distribution arises in particle physics). Show that θ̂ ¼ 3 �X is an unbiased

estimator of θ. [Hint: First determine μ ¼ E Xð Þ ¼ E �Xð Þ.]
16. A sample of n captured jet fighters results in serial numbers x1, x2, x3, . . ., xn. The CIA knows that

the aircraft were numbered consecutively at the factory starting with α and ending with β, so that
the total number of planes manufactured is β � α + 1 (e.g., if α ¼ 17 and β ¼ 29, then

29 � 17 + 1 ¼ 13 planes having serial numbers 17, 18, 19, . . ., 28, 29 were manufactured).
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However, the CIA does not know the values of α or β. A CIA statistician suggests using the

estimator max(Xi) � min(Xi) + 1 to estimate the total number of planes manufactured.

(a) If n ¼ 5, x1 ¼ 237, x2 ¼ 375, x3 ¼ 202, x4 ¼ 525, and x5 ¼ 418, what is the

corresponding estimate?

(b) Under what conditions on the sample will the value of the estimate be exactly equal to the

true total number of planes? Will the estimate ever be larger than the true total? Do you think

the estimator is unbiased for estimating β � α + 1? Explain in one or two sentences.

(A similar method was used to estimate German tank production in World War II.)

17. Let X1, X2, . . ., Xn represent a random sample from a Rayleigh distribution with pdf

f x; θð Þ ¼ x

θ
e�x2= 2θð Þ x > 0

(a) It can be shown that E(X2) ¼ 2θ. Use this fact to construct an unbiased estimator of θ based

on
P

X2
i (and use rules of expected value to show that it is unbiased).

(b) Estimate θ from the following measurements of blood plasma beta concentration

(in pmol/L) for n ¼ 10 men.

16.88 10.23 4.59 6.66 13.68

14.23 19.87 9.40 6.51 10.95

18. Suppose the true average growth μ of one type of plant during a 1-year period is identical to that

of a second type, but the variance of growth for the first type is σ2, whereas for the second type

the variance is 4σ2. Let X1, . . ., Xm be m independent growth observations on the first type

[so E(Xi) ¼ μ, Var(Xi) ¼ σ2], and let Y1, . . ., Yn be n independent growth observations on

the second type [E(Yi) ¼ μ, Var(Yi) ¼ 4σ2].
Let c be a numerical constant and consider the estimator μ̂ ¼ c �X þ 1� cð Þ�Y. For

any c between 0 and 1, this is a weighted average of the two sample means, e.g., :7�X þ :3�Y.
(a) Show that for any c the estimator is unbiased.

(b) For fixed m and n, what value c minimizes the standard error of μ̂? [Hint: The estimator is a

linear combination of the two sample means and these means are independent. Once you

have an expression for the variance, differentiate with respect to c.]

19. In Chap. 2, we defined a negative binomial rv as the number of trials required to achieve the rth

success in a sequence of independent and identical success/failure trials. The probability mass

function (pmf) of X is

nb x; r; pð Þ ¼
x� 1

r � 1

� �
pr 1� pð Þx�r x ¼ r, r þ 1, r þ 2, . . .

0 otherwise

8<:
(a) Suppose that r � 2. Show that

P̂ ¼ r � 1ð Þ= X � 1ð Þ

is an unbiased estimator for p. [Hint: Write out E P̂
� �

as a sum, then make the substitutions

y ¼ x � 1 and s ¼ r � 1.]

(b) A reporter wishing to interview five individuals who support a certain candidate begins

asking people whether (S) or not (F) they support the candidate. If the sequence of responses

is SFFSFFFSSS, estimate p ¼ the true proportion who support the candidate.
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20. Suppose that X, the reaction time to a stimulus, has a uniform distribution on the interval from

0 to an unknown upper limit θ. An investigator wants to estimate θ on the basis of a random

sample X1, X2, . . ., Xn of reaction times. Consider two possible estimators:

θ̂1 ¼ max X1; . . . ;Xnð Þ θ̂2 ¼ 2�X

(a) The following observed reaction times, in seconds, are for a sample of n ¼ 5 subjects:

x1 ¼ 4.2, x2 ¼ 1.7, x3 ¼ 2.4, x4 ¼ 3.9, x5 ¼ 1.3. Calculate a point estimate of θ based on θ̂1
and a point estimate of θ based on θ̂2.

(b) The techniques of Sect. 4.9 imply that the pdf of θ̂1 is f(y) ¼ nyn�1/θn for 0 � y � θ (we’re

using y as the argument instead of θ̂1 so that the notation is less confusing). Use this to obtain

the mean and variance of θ̂1.

(c) Is θ̂1 an unbiased estimator of θ? Explain why this is reasonable. [Hint: If the population

maximum is θ, what must be true of the sample maximum?]

(d) The mean and variance of a uniform distribution on [0, θ] are θ/2 and θ2/12, respectively.

Use these and the properties of �X to find the mean and variance of θ̂2.
(e) If a statistician elected to apply the Principle of Unbiased Estimation, which estimator

would she select? Why?

(f) Find a constant k such that θ̂3 ¼ k � θ̂1 is unbiased for θ, and compare the standard error of θ̂3
to the standard error of θ̂2.

21. An investigator wishes to estimate the proportion of students at a certain university who have

violated the honor code. Having obtained a random sample of n students, she realizes that asking

each, “Have you violated the honor code?” will probably result in some untruthful responses.

Consider the following scheme, called a randomized response technique. The investigator

makes up a deck of 100 cards, of which 50 are of Type I and 50 are of Type II.

Type I: Have you violated the honor code (yes or no)?

Type II: Is the last digit of your telephone number a 0, 1, or 2 (yes or no)?

Each student in the random sample is asked to mix the deck, draw a card, and answer the

resulting question truthfully. Because of the irrelevant question on Type II cards, a yes response

no longer stigmatizes the respondent, so we assume that responses are truthful. Let p denote the

proportion of honor-code violators (i.e., the probability of a randomly selected student being a

violator), and let λ ¼ P(yes response). Then λ and p are related by λ ¼ .5p + (.5)(.3).

(a) Let Y denote the number of yes responses, so Y ~ Bin(n, λ). Thus Y/n is an unbiased

estimator of λ. Derive an estimator for p based on Y. If n ¼ 80 and y ¼ 20, what is your

estimate? [Hint: Solve λ ¼ .5p + .15 for p and then substitute Y/n for λ.]
(b) Use the fact that E(Y/n) ¼ λ to show that your estimator is unbiased for p.
(c) If there were 70 Type I and 30 Type II cards, what would be your estimator for p?

22. The mean squared error of an estimator θ̂ is defined by

MSE θ̂
� � ¼ E θ̂ � θ

� �2h i
(a) Show that MSE θ̂

� � ¼ E θ̂
� �� θ

� �2 þ Var θ̂
� �

by expanding out the quadratic expression

“inside” the expected value operation in the definition of MSE and then using linearity of

expectation.

(b) If θ̂ is an unbiased estimator of the parameter θ, how does MSE(θ̂) simplify?

(c) Refer back to Example 5.5. Determine the mean squared error of the estimator λ̂ using the

mean and variance expressions provided in that example.
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(d) Consider an alternative estimator, λ̂a, defined by

λ̂a ¼ n� 1X
Xi

¼ n� 1

n
� 1�X ¼ n� 1

n
λ̂

Obtain the mean, variance, and MSE of λ̂a. [Hint: Use rescaling properties.]

(e) Which of the two estimators, λ̂ or λ̂a, is preferable? Explain your reasoning.

23. Return to the problem of estimating a population proportion p, and consider the following

adjusted estimator:

P̂a ¼ X þ ffiffiffiffiffiffiffiffi
n=4

p
nþ ffiffiffi

n
p

The justification for this estimator comes from the Bayesian approach to point estimation to be

introduced in Sect. 5.6.

(a) Determine the mean, variance, and mean squared error of this estimator. What do you find

interesting about this MSE?

(b) Compare the MSE of this estimator to the MSE of the usual estimator P̂ (the sample

proportion).

5.2 Maximum Likelihood Estimation

The point estimators introduced in Sect. 5.1 were obtained via intuition and/or educated guesswork.

We now introduce a “constructive” method for obtaining point estimators: the method of maximum

likelihood. By constructive we mean that the general definition of a maximum likelihood estimator

suggests explicitly how to obtain the estimator in any specific problem.

The method of maximum likelihood was first introduced by R. A. Fisher, a geneticist and

statistician, in the 1920s. Most statisticians recommend this method, at least when the sample size

is large, since the resulting estimators have certain desirable efficiency properties (see the proposition

on large-sample behavior toward the end of this section).

Example 5.6 The best protection against hacking into an online account is to use a password that has

at least eight characters containing upper and lower case letters, a numeral, and a special character.

Suppose that ten individuals who have a certain type of email account are selected, and it is found that

the first, third, and tenth individuals have such strong protection, whereas the others do not (the

January 2012 issue of Consumer Reports reported that only 25% of individuals surveyed used a strong

password). Let p ¼ P(strong protection), i.e., p is the proportion of all account holders having strong

protection. Define Bernoulli random variables X1, X2, . . ., X10 by

Xi ¼ 1 if the ith person has strong protection

0 if not

	
i ¼ 1, 2, . . . 10

Then for the obtained sample, X1 ¼ X3 ¼ X10 ¼ 1 and the other seven Xis are all zero. The

probability mass function of any particular Xi is p
xi 1� pð Þ1�xi , which becomes p if xi ¼ 1 and 1 � p

when xi ¼ 0. Finally, the strengths of various passwords are presumably independent of one another,
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so that the Xis are independent and their joint probability mass function is the product of the

individual pmfs. Thus the joint pmf evaluated at the observed Xis is

p � 1� pð Þ � p � 1� pð Þ � 1� pð Þ � � � p ¼ p3 1� pð Þ7 ð5:1Þ
Suppose that p ¼ .25. Then the probability of observing the sample that we actually obtained is

(.25)3(.75)7 ¼ .002086. If instead p ¼ .50, then this probability is (.50)3(.50)7 ¼ .000977. So, we are

more likely to observe this sample if p ¼ .25 than if p ¼ .50. For what value of p is the obtained

sample most likely to have occurred? That is, what value of p maximizes the joint pmf in Eq. (5.1)?

Figure 5.3 shows a graph of Eq. (5.1) as a function of p; i.e., a graph of the likelihood of our particular

sample as a function of the unknown population parameter. It appears that the graph reaches its peak

above p ¼ .3, which is the proportion of strong passwords in the sample. The second figure shows a

graph of the natural logarithm of Eq. (5.1); since ln[g(u)] is a strictly increasing function of g(u),
finding u to maximize the function g(u) is the same as finding u to maximize ln[g(u)].

We can verify our visual impression by using calculus to find the value of p that maximizes

Eq. (5.1). Working with the natural log of the joint pmf is often easier than working with the joint pmf

itself, since the joint pmf is typically a product so its logarithm will be a sum. Here

ln p3 1� pð Þ7
h i

¼ 3 ln pð Þ þ 7 ln 1� pð Þ

Thus

d

dp
ln p3 1� pð Þ7
h i

¼ d

dp
3 ln pð Þ þ 7 ln 1� pð Þ½ � ¼ 3

p
þ 7

1� p
�1ð Þ ¼ 3

p
� 7

1� p

The (�1) comes from the chain rule in calculus. Equating this derivative to 0 and solving for

p gives 3(1 � p) ¼ 7p, from which 3 ¼ 10p and so p ¼ 3/10 ¼ .30 as conjectured. That is, our point

estimate is p̂ ¼ :30: It is called the maximum likelihood estimate because it is the parameter value that

maximizes the likelihood (joint pmf) of the observed sample. In general, the second derivative should

be examined to make sure a maximum has been obtained, but here this is obvious from the figure.

Suppose that rather than being told the condition of every password, we had only been informed

that three of the ten were strong. Then we would have the observed value of a binomial random

variable X ¼ the number of strong passwords. The pmf of X is
10
x

� �
px 1� pð Þ10�x

. For x ¼ 3, this
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becomes
10

3

� �
p3 1� pð Þ7. The binomial coefficient

10

3

� �
is irrelevant to the maximization, so the

value of p that maximizes the likelihood of observing X ¼ 3 is again p̂ ¼ :30: ■

DEFINITION

Let X1, . . ., Xn have a joint distribution (i.e., a joint pmf or pdf) that depends on a parameter θ
whose value is unknown. This joint distribution, regarded as a function of θ, is called the

likelihood function and denoted by L(θ). The maximum likelihood estimate (mle) θ̂ is the

value of θ that maximizes the likelihood function.

Echoing the terminology from the previous section, we call θ̂ a maximum likelihood estimate if it’s

expressed in terms of our observed sample data and a maximum likelihood estimator if θ̂ is regarded
as a function of the random variables X1, . . ., Xn.

In Example 5.6, the joint pmf of X1, . . ., X10 became p3(1 � p)7 once the observed values of the Xis

were substituted. So, the likelihood function would be written L( p) ¼ p3(1 � p)7. If we take the

perspective that our data consists of a single binomial observation, then L pð Þ ¼ 10

3

� �
p3 1� pð Þ7. In

either case, the value of p that maximizes L( p) is p̂ ¼ :3.

The likelihood function tells us how likely the observed sample is as a function of the possible

parameter values. Maximizing the likelihood gives the parameter value for which the observed

sample is most likely to have been generated, that is, the parameter value that “agrees most closely”

with the observed data. Maximizing the likelihood is equivalent to maximizing the logarithm of the

likelihood, and the latter is typically computationally more straightforward.

Example 5.7 Suppose X1, . . ., Xn is a random sample from an exponential distribution with

parameter λ. Because of independence, the likelihood function is a product of the individual pdfs:

f x1; . . . ; xn; λð Þ ¼ λe�λx1
� � � � � � � λe�λxn

� � ¼ λne�λΣxi ¼ L λð Þ

The log of the likelihood function is

ln L λð Þ½ � ¼ n ln λð Þ � λ
X

xi

Equating (d/dλ)ln[L(λ)] to zero results in n/λ � P
xi ¼ 0, or λ ¼ n=

P
xi ¼ 1=�x. Thus the mle is

λ̂ ¼ 1= �X. As we saw in Example 5.5, λ̂ is unfortunately not an unbiased estimator, since

E 1= �Xð Þ 6¼ 1=E �Xð Þ. ■

Example 5.8 In Chap. 2, we indicated that the Poisson distribution could be used for modeling the

number of events of some sort that occur in a two-dimensional region (e.g., the occurrence of

tornadoes during a particular time period). Assume that when the region R being sampled has area

a(R), the number X of events occurring in R has a Poisson distribution with mean λ � a(R), where λ is
the expected number of events per unit area, and that nonoverlapping regions yield independent

Xs. (This is called a spatial Poisson process.)

Suppose an ecologist selects n nonoverlapping regions R1, . . . , Rn and counts the number of plants

of a certain species found in each region. The joint pmf (likelihood) is then
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p x1; . . . ; xn; λð Þ ¼ λ � a R1ð Þ½ �x1e�λ�a R1ð Þ

x1!
� � � � � λ � a Rnð Þ½ �xne�λ�a Rnð Þ

xn!

¼ a R1ð Þ½ �x1 � � � � � a Rnð Þ½ �xn � λΣxi � e�λΣa Rið Þ

x1! � � � � � xn! ¼ L λð Þ

The log-likelihood is

ln L λð Þ½ � ¼
X

xi ln a Rið Þ½ � þ ln λð Þ �
X

xi � λ
X

a Rið Þ �
X

ln xi!ð Þ

Taking the derivative with respect to λ and equating it to zero yields

0þ
X

xi

λ
�
X

a Rið Þ � 0 ¼ 0 ) λ ¼
X

xiX
a Rið Þ

The mle is then λ̂ ¼PXi=
P

a Rið Þ. This is intuitively reasonable because λ is the true density

(plants per unit area), whereas λ̂ is the sample density: ∑ Xi is the number of plants counted, and

∑ a(Ri) is just the total area sampled. Because E(Xi) ¼ λ � a(Ri), the estimator is unbiased.

Sometimes an alternative sampling procedure is used. Instead of fixing regions to be sampled, the

ecologist will select n points in the entire region of interest and let yi ¼ the distance from the ith point

to the nearest plant. The cdf of Y ¼ distance to the nearest plant is

FY yð Þ ¼ P
�
Y � y

� ¼ 1� P
�
Y > y

� ¼ 1� P
no plants in a

circle of radius y

� �
¼ 1� e�λπy2 λπy2ð Þ0

0!
¼ 1� e�λπy2

Taking the derivative of FY(y) with respect to y yields

f Y y; λð Þ ¼ 2πλye�λπy2 y � 0

0 otherwise

	
If we now form the likelihood L(λ) ¼ fY(y1; λ)�� � ��fY(yn; λ), differentiate ln[L(λ)], and so on, the

resulting mle is

λ̂ ¼ n

π
X

Y2
i

¼ number of plants observed

total area sampled

which is also a sample plant density. It can be shown that in a sparse environment (small λ), the
distance method is in a certain sense better, whereas in a dense environment, the first sampling

method is better. ■

The definition of maximum likelihood estimates can be extended in the natural way to distribu-

tional families that include two or more parameters. The mles of parameters θ1, . . ., θm are those

values θ̂1, . . . , θ̂m that maximize the likelihood function L(θ1, . . ., θm).

Example 5.9 Let X1, . . ., Xn be a random sample from a normal distribution, which includes the two

parameters μ and σ. The likelihood function is
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f x1; . . . ; xn; μ; σð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e� x1�μð Þ2= 2σ2ð Þ � � � � � 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e� xn�μð Þ2= 2σ2ð Þ

¼ 2πσ2ð Þ�n=2
e�
P

xi�μð Þ2= 2σ2ð Þ ¼ L μ; σð Þ
so

ln L μ; σð Þ½ � ¼ �n

2
ln 2πð Þ � n ln σ � 1

2σ2

X
xi � μð Þ2

To find the maximizing values of μ and σ, we must take the partial derivatives of ln(L ) with
respect to both μ and σ, equate them to zero, and solve the resulting two equations:

∂
∂μ

ln
�
L μ; σð Þ� ¼ � 2

2σ2

X�
xi � μ

��� 1
� ¼ 1

σ2

X�
xi � μ

� ¼ 0

∂
∂σ

ln
�
L μ; σð Þ� ¼ �n

σ
þ 1

σ3

X�
xi � μ

�
2 ¼ 0

The first equation implies that ∑(xi � μ) ¼ 0, from which ∑xi � nμ ¼ 0 and finally μ ¼P
xi=n ¼ �x. The mle of μ is the sample mean, independent of what the mle of σ turns out to

be. Solving the second equation for σ yields σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi � μð Þ2=n
q

; we must then substitute the

solution from the first equation into this expression in order to get the simultaneous solution to the two

partial derivative equations. Thus the maximum likelihood estimators of the two parameters are

μ̂ ¼ �X σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xi � �Xð Þ2
n

s

Notice that the mle of σ is not the sample standard deviation, S, since the denominator in the latter

is n � 1 and not n. ■

Example 5.10 Let X1, . . ., Xn be a random sample from a Weibull pdf

f x; α; βð Þ ¼
α

βα
� xα�1 � e� x=βð Þα x � 0

0 otherwise

(

Writing the likelihood as L and log-likelihood as ln(L), then setting both partial derivatives

(∂/∂α)[ln(L)] ¼ 0 and (∂/∂β)[ln(L )] ¼ 0 yields the equations

α ¼
X

xαi � ln xið Þ� �X
xαi

�
X

ln xið Þ
n

" #�1

β ¼
X

xαi
n

 !1=α

These two equations cannot be solved explicitly to give general formulas for the mles α̂ and β̂.
Instead, for each sample x1, . . ., xn, the equations must be solved using an iterative numerical

procedure.

The iterative mle computations can be done using statistical software. In Matlab, the command

wblfit(x)will return α̂ and β̂ assuming the data is stored in the vector x. The R command fitdistr

(x,"weibull") performs the same estimation (the MASS package must be installed first). As an

example, consider the following survival time data alluded to in Example 3.28:
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152 115 109 94 88 137 152 77 160 165

125 40 128 123 136 101 62 153 83 69

A Weibull probability plot supports the plausibility of assuming that survival time has a Weibull

distribution. The maximum likelihood estimates of the Weibull parameters are α̂ ¼ 3:799 and

β̂ ¼ 125:88. Figure 5.4 shows the Weibull log likelihood as a function of both α and β. The surface
near the top has a rounded shape, allowing the maximum to be found easily, but for some distributions

the surface can be much more irregular, and the maximum may be hard to find.

Sometimes calculus cannot be used to obtain mles.

Example 5.11 Suppose the waiting time for a bus is uniformly distributed on [0, θ] and the results x1,
. . ., xn of a random sample from this distribution have been observed. Since f(x; θ) ¼ 1/θ for

0 � x � θ and 0 otherwise,

L θð Þ ¼ f x1; . . . ; xn; θð Þ ¼
1

θn
0 � x1 � θ, . . . , 0 � xn � θ

0 otherwise

8<:
As long as θ � max(xi), the likelihood is 1/θn, which is positive, but as soon as θ < max(xi), the

likelihood drops to 0. This is illustrated in Fig. 5.5. Calculus will not work because the maximum of

the likelihood occurs at a point of discontinuity, but the figure shows that θ̂ ¼ max xið Þ. Thus if the
waiting times are 2.3, 3.7, 1.5, .4, and 3.2, then the mle is θ̂ ¼ 3:7. Note that the mle is biased (see

Exercise 20(b)).
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Fig. 5.4 Weibull log likelihood for Example 5.10 ■

max(xi)
q

L(q)

Fig. 5.5 The likelihood function for Example 5.11 ■
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5.2.1 Some Properties of MLEs

In Example 5.9, we obtained the mle of σ when the underlying distribution is normal. The mle of σ2,
as well as many other mles, can be easily derived using the following proposition.

PROPOSITION (MLE INVARIANCE PRINCIPLE)

Let θ̂1, θ̂2, . . . , θ̂m be the mles of the parameters θ1, θ2, . . ., θm. Then the mle of any function

h(θ1, θ2, . . ., θm) of these parameters is the function h θ̂1; θ̂2; . . . ; θ̂m
� �

, of the mles.

Proof For an intuitive idea of the proof, consider the special case m ¼ 1, with θ1 ¼ θ, and assume

that h(�) is a one-to-one function. On the graph of the likelihood as a function of the parameter θ, the

highest point occurs where θ ¼ θ̂. Now consider the graph of the likelihood as a function of h(θ). In
the new graph the same heights occur, but the height that was previously plotted at θ ¼ a is now

plotted at h(θ) ¼ h(a), and the highest point is now plotted at h θð Þ ¼ h θ̂
� �

: Thus, the maximum

remains the same, but it now occurs at h θ̂
� �

. ■

Example 5.12 (Example 5.9 continued) In the case of a random sample from a normal pdf, the mles

of μ and σ are μ̂ ¼ �X and σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xi � �Xð Þ2=n
q

. To obtain the mle of the function h(μ, σ) ¼ σ2,

substitute the mles into the function:

bσ2 ¼ σ̂2 ¼ 1

n

X
Xi � �Xð Þ2

The mle of σ2 is not the unbiased estimator (the sample variance S2; see Exercise 10), although

they are close unless n is quite small. Similarly, the mle of the population coefficient of variation,

defined by h(μ,σ) ¼ 100μ/σ, is 100μ̂=σ̂. ■

Example 5.13 (Example 5.10 continued) The mean value of an rv X that has a Weibull distribution is

μ ¼ β � Γ 1þ 1=αð Þ

The mle of μ is therefore μ̂ ¼ β̂ � Γ 1þ 1=α̂ð Þ, where α̂ and β̂ are the mles of α and β. In particular, �X
is not the mle of μ, although it is an unbiased estimator. At least for large n, μ̂ is a better estimator than
�X. ■

The method of maximum likelihood estimation has considerable intuitive appeal. The following

proposition provides additional rationale for the use of mles.

PROPOSITION

Under very general conditions on the joint distribution of the sample, when the sample size is

large, the maximum likelihood estimator of any particular θ

• Is highly likely to be close to θ (consistency);

• Is either unbiased or at least approximately unbiased E θ̂
� � � θ

� �
; and

• Has variance that is either as small or nearly as small as can be achieved by any unbiased

estimator.
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Because of this result and the fact that calculus-based techniques can usually be used to derive the

mles (although often numerical methods, such as Newton–Raphson, are necessary), maximum

likelihood estimation is the most widely used estimation technique among statisticians. Obtaining

an mle, however, does require that the underlying distribution be specified. For example, the mle of

the mean value of a Weibull distribution is different from the mle of the mean value of a Gamma

distribution.

Suppose X1, X2, . . ., Xn is a random sample from a pdf f(x; θ) that is symmetric about θ, but the
investigator is unsure of the form of the f function. It is then desirable to use an estimator that is

robust, that is, one that performs well for a wide variety of underlying pdfs. One such estimator, called

an M-estimator, is based on a generalization of maximum likelihood estimation. Instead of

maximizing the log-likelihood ∑ ln[f(x; θ)] for a specified f, one maximizes ∑ ψ(xi; θ), where the

“objective function” ψ is selected to yield an estimator with good robustness properties. The book by

David Hoaglin et al. (see the references) contains a good exposition on this subject.

5.2.2 Exercises: Section 5.2 (24–36)

24. Let X represent the error in making a measurement of a physical characteristic or property (e.g.,

the boiling point of a particular liquid). It is often reasonable to assume that E(X) ¼ 0 and that

X has a normal distribution. Thus the pdf of any particular measurement error is

f xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πθ

p e�x2=2θ

where θ denotes the population variance. Now suppose that n independent measurements are

made, resulting in measurement errors X1 ¼ x1, X2 ¼ x2, . . ., Xn ¼ xn.

(a) Determine the likelihood function of θ.
(b) Find and simplify the log-likelihood function.

(c) Differentiate (b) to determine the mle of θ.
(d) The precision of a normal distribution is defined to be τ ¼ 1/θ. Find the mle of τ.

25. A random sample of n bike helmets manufactured by a company is selected. Let X ¼ the

number among the n that are flawed, and let p ¼ P(flawed). Assume that only X is observed,

rather than the sequence of Ss and Fs.
(a) Derive the maximum likelihood estimator of p. If n ¼ 20 and x ¼ 3, what is the estimate?

(b) Is the estimator of (a) unbiased?

(c) If n ¼ 20 and x ¼ 3, what is the mle of the probability (1 � p)5 that none of the next five
helmets examined is flawed?

26. Let X denote the proportion of allotted time that a randomly selected student spends working on

a certain aptitude test. Suppose the pdf of X is

f x; θð Þ ¼ θ þ 1ð Þxθ 0 � x � 1

0 otherwise

(

where �1 < θ. A random sample of ten students yields data x1 ¼ .92, x2 ¼ .79, x3 ¼ .90,

x4 ¼ .65, x5 ¼ .86, x6 ¼ .47, x7 ¼ .73, x8 ¼ .97, x9 ¼ .94, x10 ¼ .77.

Obtain the maximum likelihood estimator of θ, and then compute the estimate for the

given data.
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27. Two different computer systems are monitored for a total of n weeks. Let Xi denote the number

of breakdowns of the first system during the ith week, and suppose the Xis are independent and

drawn from a Poisson distribution with parameter μ1. Similarly, let Yi denote the number of

breakdowns of the second system during the ith week, and assume independence with each Yi
Poisson with parameter μ2. Derive the mles of μ1, μ2, and μ1 � μ2. [Hint: Using independence,

write the joint pmf (likelihood) of the Xis and Yis together.]

28. Six Pepperidge Farm bagels were weighed, yielding the following data (grams):

117.6 109.5 111.6 109.2 119.1 110.8

(a) Assuming that the six bagels are a random sample and that weights are normally

distributed, estimate the true average weight and standard deviation of the weight using

maximum likelihood.

(b) Again assuming a normal distribution, estimate the weight below which 95% of all bagels

will have their weights. [Hint:What is the 95th percentile in terms of μ and σ? Now use the

invariance principle.]

(c) Suppose we choose another bagel and weigh it. Let X ¼ weight of the bagel. Use the given

data to obtain the mle of P(X � 113.4). [Hint: P(X � 113.4) ¼ Φ[(113.4 � μ)/σ].]
29. Refer to Exercise 25. Instead of selecting n ¼ 20 helmets to examine, suppose we examine

helmets in succession until we have found r ¼ 3 flawed ones. If the 20th helmet is the third

flawed one, what is the mle of p? Is this the same as the estimate in Exercise 25? Why or why

not?

30. Let X1, . . ., Xn be a random sample from a gamma distribution with parameters α and β.
(a) Derive the equations whose solution yields the maximum likelihood estimators of α and β.

Do you think they can be solved explicitly?

(b) Show that the mle of μ ¼ αβ is μ̂ ¼ �X.

31. Let X1, X2, . . ., Xn represent a random sample from the Rayleigh distribution with density

function given in Exercise 17.

(a) Determine the maximum likelihood estimator of θ and then calculate the estimate for the

vibratory stress data given in that exercise. Is this estimator the same as the unbiased

estimator suggested in Exercise 17?

(b) Determine the mle of the median of the vibratory stress distribution. [Hint: First express

the median η in terms of θ.]
32. Consider a random sample X1, X2, . . ., Xn from the shifted exponential pdf

f x; λ; θð Þ ¼ λe�λ x�θð Þ x � θ

0 otherwise

(

Taking θ ¼ 0 gives the pdf of the exponential distribution considered previously (with positive

density to the right of zero). An example of the shifted exponential distribution appeared in

Example 3.5, in which the variable of interest was time headway in traffic flow and θ ¼ .5 was

the minimum possible time headway.

(a) Obtain the maximum likelihood estimators of θ and λ.
(b) If n ¼ 10 time headway observations are made, resulting in the values 3.11, .64, 2.55, 2.20,

5.44, 3.42, 10.39, 8.93, 17.82, and 1.30, calculate the estimates of θ and λ.
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33. The article “A Model of Pedestrians’ Waiting Times for Street Crossings at Signalized

Intersections” (Transportation Research, 2013: 17–28) suggested that under some circumstances

the distribution of waiting time X could be modeled with the following pdf:

f x; θ; τð Þ ¼
θ

τ
1� x=τð Þθ�1

0 � x < τ

0 otherwise

8<: where θ > 0

(a) Suppose we observe a random sample of waiting times X1, . . ., Xn, and assume that the value

of the parameter τ is known. Find the mle of θ.
(b) Suppose instead that θ is known but τ is unknown. Determine an equation whose solution is

the mle of τ.
34. Twenty identical components are simultaneously tested. The lifetime distribution of each

is exponential with parameter λ. The experimenter then leaves the test facility unmonitored.

On his return 24 h later, the experimenter immediately terminates the test after noticing that

y ¼ 15 of the 20 components are still in operation (so 5 have failed). Derive the mle of λ. [Hint:
Let Y ¼ the number that survive 24 h. Then Y ~ Bin(n, p). What is the mle of p? Now notice that

p ¼ P(Xi � 24), where Xi is exponentially distributed. This relates λ to p, so the former can be

estimated once the latter has been.]

35. Consider randomly selecting n segments of pipe and determining the corrosion loss (mm) in the

wall thickness for each one. Denote these corrosion losses by Y1, . . ., Yn. The article “A

Probabilistic Model for A Gas Explosion Due to Leakages in the Grey Cast Iron Gas Mains”

(Reliability Engr. and System Safety 2013:270–279) proposes a linear corrosion model Yi ¼ tiRi,

where ti is the age of the pipe and Ri, the corrosion rate, is exponentially distributed with

parameter λ. Obtain the maximum likelihood estimator of λ (the resulting mle appears in the

cited article). [Hint: First determine the pdf of Yi.]

36. A method that is often used to estimate the size of a wildlife population involves performing a

capture/recapture experiment. In this experiment, an initial sample of M animals is captured,

each of these animals is tagged, and the animals are then returned to the population. After

allowing enough time for the tagged individuals to mix into the population, another sample of

size n is captured. With X ¼ the number of tagged animals in the second sample, the objective is

to use the observed x to estimate the population size N.

(a) What is the probability distribution of X?

(b) Set L(N ) equal to the distribution specified in (a); this is the likelihood function. Since N can

only assume integer values, using calculus to maximize L(N ) would present difficulties.

Instead, determine the mle of N be considering the ratio L(N )/L(N � 1). [Hint: the mle can

be found by determining when this ratio is greater than 1 or less than 1 (do you see why?).]

(c) If 200 fish are taken from a lake and tagged, then subsequently 100 fish are recaptured and

among the 100 there are 11 tagged fish, what is the mle of the size of the fish population in

this lake? Does your answer make intuitive sense?

5.3 Confidence Intervals for a Population Mean

A point estimate, because it is a single number, by itself provides no information about the precision

and reliability of estimation. Consider, for example, using the statistic �X to calculate a point estimate

for the true average breaking strength of paper towels of a certain brand, and suppose that a particular
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random sample yields �x ¼ 9322:7g. Because of sampling variability, it is virtually never the case that

�x ¼ μ, and the point estimate alone says nothing about how close it might be to μ. An alternative to

reporting a single sensible value for the parameter being estimated is to calculate and report an entire

interval of plausible values—an interval estimate or confidence interval (CI).

A confidence interval is always calculated by first selecting a confidence level, which is a measure

of the degree of reliability of the interval. A confidence interval with a 95% confidence level for the

true average breaking strength might have a lower limit of 9162.5 g and an upper limit of 9482.9 g.

Then at the “95% confidence level,” any value of μ between 9162.5 and 9482.9 is plausible. A

confidence level of 95% implies that 95% of all samples would give an interval that includes μ, or
whatever other parameter is being estimated, and only 5% of all samples would yield an erroneous

interval. The most frequently used confidence levels are 95, 99, and 90%. The higher the confidence

level, the more strongly we believe that the value of the parameter being estimated lies within the

interval.

Information about the precision of an interval estimate is conveyed by the width of the interval. If

the confidence level is high and the resulting interval is quite narrow, our knowledge of the value of

the parameter is reasonably precise. A very wide confidence interval, however, gives the message that

there is a great deal of uncertainty concerning the value of what we are estimating. Figure 5.6 shows

95% confidence intervals for true average breaking strengths of two different brands of paper towels.

One of these intervals suggests precise knowledge about μ, whereas the other suggests a very wide

range of plausible values.

5.3.1 A Confidence Interval for a Normal Population Mean

For much of this section we will assume that the available data results from a random sample X1, X2,

. . ., Xn selected from a normal population distribution. The plausibility of assuming a normal

population distribution can of course be checked by examining a normal probability plot of the

data. Particularly when the sample size is small, the confidence interval to be developed here should

not be used if the plot shows a substantial departure from a linear pattern. We’ll comment later on

what might be done in the presence of non-normality.

Recall from the previous chapter that as a consequence of our normality assumption, the sample

mean �X also is normally distributed, with mean value μ (the mean of the population from which the

sample was selected) and standard deviationσ=
ffiffiffi
n

p
. We now standardize �X to obtain a random variable

having a standard normal distribution:

Z ¼
�X � μ

σ=
ffiffiffi
n

p

Unfortunately this standardized variable cannot serve as a basis for deriving a confidence interval

for μ unless the value of the population standard deviation σ happens to be known. So instead let’s

consider the standardized variable obtained by replacing σ in Z by the sample standard deviation S.

Define a new random variable T by

Brand 1:

Brand 2:

Strength

Strength

( )

( )

Fig. 5.6 Confidence intervals indicating precise (brand 1) and imprecise (brand 2) information about μ
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T ¼
�X � μ

S=
ffiffiffi
n

p

It is important to contrast the behavior of Z in repeated sampling with that of T. The only

variability in Z from one sample to another is because �X in the numerator varies in value. However,

there are two sources of sample-to-sample variability in T: both �X in the numerator and S in the

denominator. Because of this extra variation in T, it stands to reason that the distribution of T should

be more spread out than that of Z. That is, the density curve for T should be more spread out than the

standard normal curve.

At this point we need to introduce a new (to the reader) family of probability distributions that

describes how T varies from one sample to another. This is the family of t distributions. The formula

for the density function that specifies a t distribution is quite complicated (see the reference by Devore

and Berk, where the formula and a derivation appear). Fortunately for our purpose we need only be

acquainted with some general properties.

PROPERTIES OF T DISTRIBUTIONS

1. Any particular t distribution is obtained by specifying the value of a single parameter ν,
called the number of degrees of freedom (df) of the distribution. Any positive integer is a

possible value of ν, so there is a t distribution with 1 df, another with 2 df, and so on.

2. Each tν density curve is bell shaped and centered at 0, just like the standard normal (z) curve.

3. Each tν density curve is more spread out than the z curve.

4. As ν increases, the spread of the tν curve decreases (so the t1 curve is the most spread out, the

t2 curve is next most spread out, and so on).

5. As ν ! 1, the sequence of tν curves approaches the z curve (for this reason, the z curve is

often called the t curve with df ¼ 1).

Figure 5.7 shows several different t density curves and the z curve to illustrate how the curves

compare and change as df increases.

Appendix Table A.5 displays what are called t critical values; these are numbers on the horizontal

axis that capture certain central areas under t curves. For example, looking down the left column to

ν ¼ 24 and then over to the column headed 95%, we learn that 95% of the area under the t curve with

24 df lies between �2.064 and 2.064. Notice that in any particular column of the table, the numbers

.2

.1

0

.4

.3

.5

−5 −3 −1 1 3 5
t

5 df

1 df

z
20 df

f (t)Fig. 5.7 Comparison

of several t curves
and the z curve
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decrease as we move down; this is because the spread of t curves decreases as df increases. And the

numbers in any row increase from right to left because a larger central area is being captured. Also

note that toward the bottom of the table df skips from 30 to 40 to 60 to 120 to1. Once past 30 df, the

t curves do not change all that much, so it is not worth continuing to tabulate in increments of 1 df. For

an intermediate number of df, linear interpolation can be used to get a reasonable approximation, or

appropriate software will produce an exact value. Lastly, the t distribution with an infinite number of

df is actually the standard normal distribution. Thus the bottom row of the table contains standard

normal critical values; for example, 95% of the area under the z curve lies between �1.96 and 1.96.

With information about t distributions in hand, we are now ready for the key theoretical result on

which our confidence interval will be based. This result was originally discovered in 1908 by William

Sealy Gosset, a statistician at the Guinness Brewery in Dublin, Ireland.

GOSSET’S THEOREM

Let X1, . . ., Xn be a random sample from a normal population distribution having mean μ, with
corresponding sample mean �X and sample standard deviation S. Then the random variable

T ¼
�X � μ

S=
ffiffiffi
n

p

has a t distribution with n � 1 degrees of freedom.

An intuitive justification for degrees of freedom here is that although there are n deviations

X1 � �X,X2 � �X, . . . ,Xn � �X from the sample mean, it is easily verified that
P

Xi � �Xð Þ ¼ 0: This

implies that any particular one of the deviations can be obtained from the other n � 1 deviations. For

example, in the case n ¼ 5, if the first four deviations are �2, 5, 1, and �8, then the last one must be

4 to produce a sum of zero. The number of df here is the number of “freely varying” deviations that

are inputs to the sample standard deviation.

Consider for the moment a sample size of n ¼ 25, for which the standardized variable T is based

on 24 df. Then 95% of the area under this t curve lies between �2.064 and 2.064. The foregoing

theorem then allows us to make the following probability statement:

P �2:064 <
�X � μ

S=
ffiffiffiffiffi
25

p < 2:064

 !
¼ :95

Let’s now manipulate the inequalities inside the parentheses to isolate μ in the middle. This

requires three steps: (1) multiply all three terms by S=
ffiffiffi
n

p
, (2) subtract �X from all three terms, and

(3) multiply through by �1 to eliminate the negative sign in front of μ. The last step will reverse the

direction of each inequality, resulting in

�X þ 2:064Sffiffiffiffiffi
25

p > μ > �X � 2:064Sffiffiffiffiffi
25

p

These new inequalities are completely equivalent to those in the original probability statement, so

P �X � 2:064Sffiffiffiffiffi
25

p < μ < �X þ 2:064Sffiffiffiffiffi
25

p
� �

¼ :95
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To interpret this latter probability, think of obtaining sample after sample of size 25 from a normal

population distribution, calculating the sample mean and sample standard deviation for each one, and

then forming the lower limit �x� 2:064s=
ffiffiffiffiffi
25

p
and the upper limit �xþ 2:064s=

ffiffiffiffiffi
25

p
. Both the center of

the interval (�x) and its width will vary from sample to sample. In the long run, 95% of such samples

will result in the value of μ being captured in between the lower limit and the upper limit—the long-

run capture percentage for the sequence of intervals is 95%. Any particular one of these intervals is

called a confidence interval for μ with confidence level 95%.

Generalizing the foregoing derivation for an arbitrary sample size leads to the following confi-

dence interval formula.

ONE-SAMPLE T CONFIDENCE INTERVAL

Let �x and s be the sample mean and sample standard deviation of a random sample of size

n selected from a normal population distribution. Then a confidence interval (interval of

plausible values) for the population mean μ has endpoints

�x� t* � sffiffiffi
n

p

where t* is the appropriate t critical value with n � 1 df from Table A.5.

Example 5.14 Have you ever dreamed of owning a Porsche? Even though academic salaries leave

little room for luxuries, the authors thought maybe the purchase of a used Boxster, the least expensive

Porsche model, might be feasible. So on December 30, 2012 we went to www.cars.com to peruse

prices. The news was discouraging, so we instead selected a random sample of 16 such vehicles and

obtained the following odometer readings (miles):

1445 25,822 26,892 29,860 35,285 47,874 49,544 64,763

72,698 75,732 84,457 91,577 93,000 109,538 113,399 137,652

Figure 5.8 shows a normal probability plot of the data; this version includes a superimposed line

which makes it easier to judge whether the pattern in the plot is reasonably linear. Very clearly that is

the case. It is therefore quite plausible that the distribution of odometer readings is (at least approxi-

mately) normal, which validates the use of the one-sample t confidence interval to estimate the

population mean odometer reading, μ.
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The sample mean and sample standard deviation are 66,221.1 and 37,683.1672, respectively, and

the (estimated) standard error of the mean is s=
ffiffiffi
n

p ¼ 9420:7918. Table A.5 shows that the t critical

value for a confidence level of 95% when df ¼ 16 � 1 ¼ 15 is t* ¼ 2.131. The confidence interval

is then

�x� t* � sffiffiffi
n

p ¼ 66, 221:1� 2:131ð Þ 9420:7918ð Þ ¼ 66, 221:1� 20, 075:7

¼ 46, 145:4, 86, 296:8ð Þ
That is, we can say with a confidence level of 95% that 46,145.4 < μ < 86,296.8.

Note that it is not correct at this point to write P(46,145.4 < μ < 86,296.8) ¼ .95, because

nothing inside the parentheses is random. The interval we have calculated may or may not include

the actual value of μ. If we were to obtain sample after sample of size 16 from this population

distribution and for each one use the given formula with t* ¼ 2.131, in the long run 95% of the

calculated CIs would include μ whereas 5% would not. Without knowing the value of μ, we can’t

know whether the particular interval we have calculated is one of the “good” 95% or the “bad” 5%.■

5.3.2 A Large-Sample Confidence Interval for m

When the sample size n is sufficiently large, the Central Limit Theorem says that �X has approximately

a normal distribution even when the population distribution is not normal. Furthermore, it can be

shown in this case that the standardized variable �X � μð Þ= S=
ffiffiffi
n

pð Þ has approximately a standard

normal distribution; using S in place of σ in the denominator does not appreciably increase the

variability of Z when n is large. This in turn implies that for large n, a legitimate confidence interval

for a population mean μ is

�x� z* � sffiffiffi
n

p ð5:2Þ

where the z critical values for the most frequently employed confidence levels appear in the bottom

row of Appendix Table A.5 (or can be extracted from the z table). For example, the z critical value for

95% confidence, the most common level used in practice, is z* ¼ 1.96.

Example 5.15 Magnetic resonance imaging is a commonly used noninvasive technique for assessing

the extent of cartilage damage. However, there is concern that the MRI sizing of articular cartilage

defects may not be accurate. The article “Preoperative MRI Underestimates Articular Cartilage

Defect Size Compared with Findings at Arthroscopic Knee Surgery” (Amer. J. of Sports Med.,

2013: 590–595) reported on a study involving a sample of 92 cartilage defects. For each one, the

size of the lesion area was determined by an MRI analysis and also during arthroscopic surgery. Each

MRI value was then subtracted from the corresponding arthroscopic value to obtain a difference

value; this is commonly referred to as “paired difference” data. The sample mean difference was

calculated to be 1.04 cm2, with a sample standard deviation of 1.67. Let’s now calculate a confidence

interval using a confidence level of (at least approximately) 95% for μD, the mean difference for the

population of all such defects (as did the authors of the cited article). Using the z* ¼ 1.96 and

Expression (5.2), the CI is

380 5 The Basics of Statistical Inference



1:04� 1:96 � 1:67ffiffiffiffiffi
92

p ¼ 1:04� :34 ¼ :70, 1:38ð Þ

At the 95% confidence level, we conclude that .70 < μD < 1.38. Perhaps the most important

aspect of this interval is that 0 is not included; only certain positive values of μD are plausible. It is this

fact that led the investigators to conclude that MRIs tend to underestimate defect size. ■

Many statisticians do not use Expression (5.2) unless their sample size is extremely large, electing

instead to use the one-sample t interval for virtually all cases. In Example 5.15, for instance,

z* ¼ 1.96 would be replaced by the more conservative t critical value at 91 df, which happens to

be 1.986. This would make very little practical change to the resulting interval. In the simulation

sections of Chaps. 2–4, where the “sample” size was typically 10,000 or more, there would be no

controversy in using �x� 1:96s=
ffiffiffi
n

p
as a 95% CI for the unknown mean μ of the rv being simulated.

When the sample size is small and the population distribution is substantially non-normal, neither

the one sample t interval nor Expression (5.2) should be used. In this case there are other techniques

for obtaining a valid CI. One relatively recent, computationally intensive such method is called a

bootstrap confidence interval. This entails obtaining a large number of samples of size n by

resampling with replacement from the sample that was actually obtained—e.g., if the sample size

is 20, a bootstrap might be based on 1000 samples of size 20, each obtained with replacement from the

original sample. Details can be found in the book by Devore and Berk listed in the references.

5.3.3 Software for Confidence Interval Calculation

It should be no surprise that modern software can compute confidence intervals automatically once

we have supplied the software with our data. In R, the t.test function takes in a vector of data and

returns, among other things, a one-sample t 95% confidence interval for the population mean μ. The
optional argument conf.level can be used to select any other confidence level (the default is

conf.level¼.95). The analogous function in Matlab is ttest, although the inputs and outputs

are managed differently. Both are illustrated in Fig. 5.9.

Notice that both R and Matlab give a CI of (46,147, 86,303) for the true mean odometer reading.

This is roughly what we computed in Example 5.14, and the disparity is primarily due to rounding in

the critical value t*. The other information provided by R relates to hypothesis testing, which we will

discuss in Sect. 5.4.

>> x=[1445,25882,26892,29860,35285,
47874,49544,64763,72698,75732,84457,
91577,93000,109538,113399,137652];
>> [~,~,CI]=ttest(x)

CI =
   46147        86303

> x<-c(1445,25882,26892,29860,35285,
47874,49544,64763,72698,75732,
84457,91577,93000,109538,113399,137652)
> t.test(x)

        One Sample t-test
data:  x 
t = 7.0305, df = 15, 
p-value = 4.068e-06
alternative hypothesis: true mean is 
not equal to 0 
95 percent confidence interval:
 46147.22 86302.53

a b

Fig. 5.9 One-sample t intervals for μ using the data in Example 5.14: (a) Matlab; (b) R
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To simply find the t critical value for a particular df, the inverse cdf commands can be

implemented, but with one proviso: for the central area of a t curve to equal some confidence level

C, the cumulative probability from �1 to the critical value must be

Cþ 1� C

2
¼ 1þ C

2

e.g., for 95% confidence, C ¼ .95, and the cumulative probability is (1 + .95)/2 ¼ .975. In Matlab,

the command icdf(’t’,.975,15) returns 2.1314, the t critical value at 15 df that we used in

Example 5.14. In R, qt(.975,15) gives this same value.

To construct the interval in Expression (5.2) for a population mean μ, use the command ztest in

Matlab; the z-based CI for μ is not implemented in the R base package.

5.3.4 Exercises: Section 5.3 (37–50)

37. Determine the t critical value for a one-sample t confidence interval in each of the following

situations.

(a) Confidence level ¼ 95%, df ¼ 10

(b) Confidence level ¼ 95%, df ¼ 15

(c) Confidence level ¼ 99%, df ¼ 15

(d) Confidence level ¼ 99%, n ¼ 5

(e) Confidence level ¼ 98%, df ¼ 24

(f) Confidence level ¼ 99%, n ¼ 38

38. According to the article “Fatigue Testing of Condoms” (Polymer Testing, 2009: 567–571), “tests

currently used for condoms are surrogates for the challenges they face in use,” including a test for

holes, an inflation test, a package seal test, and tests of dimensions and lubricant quality (all

fertile territory for the use of statistical methodology!). The investigators developed a new test

that adds cyclic strain to a level well below breakage and determines the number of cycles to

break. A sample of 20 condoms of one particular type resulted in a sample mean number of 1584

and a sample standard deviation of 607. Calculate and interpret a confidence interval at the 99%

confidence level for the true average number of cycles to break. [Note: The article presented the

results of hypothesis tests based on the t distribution; the validity of these depends on assuming

normal population distributions.]

39. Here is a sample of ACT scores (average of the Math, English, Social Science, and Natural

Science scores) for students taking college freshman calculus:

24.00 28.00 27.75 27.00 24.25 23.50 26.25

24.00 25.00 30.00 23.25 26.25 21.50 26.00

28.00 24.50 22.50 28.25 21.25 19.75

(a) Using an appropriate graph, see if it is plausible that the observations were selected from a

normal distribution.

(b) Calculate a 95% confidence interval for the population mean.

(c) The university ACT average for entering freshmen that year was about 21. Are the calculus

students better than average, as measured by the ACT?

40. Even as traditional markets for sweetgum lumber have declined, large section solid timbers

traditionally used for construction bridges and mats have become increasingly scarce. The article

“Development of Novel Industrial Laminated Planks from Sweetgum Lumber” (J. of Bridge

Engr., 2008: 64–66) described the manufacturing and testing of composite beams designed to

382 5 The Basics of Statistical Inference



add value to low-grade sweetgum lumber. Here is data on the modulus of rupture (psi; the article

contained summary data expressed in MPa):

6807.99 7637.06 6663.28 6165.03 6991.41 6992.23

6981.46 7569.75 7437.88 6872.39 7663.18 6032.28

6906.04 6617.17 6984.12 7093.71 7659.50 7378.61

7295.54 6702.76 7440.17 8053.26 8284.75 7347.95

7422.69 7886.87 6316.67 7713.65 7503.33 7674.99

(a) Verify the plausibility of assuming a normal population distribution.

(b) Estimate the true average modulus of rupture in a way that conveys information about

precision and reliability.

41. A sample of 26 offshore oil workers took part in a simulated escape exercise, resulting in the

accompanying data on time (seconds) to complete the escape (“Oxygen Consumption and

Ventilation During Escape from an Offshore Platform,” Ergonomics, 1997: 281–292):

389 356 359 363 375 424 325 394 402

373 373 370 364 366 364 325 339 393

392 369 374 359 356 403 334 397

(a) Calculate a 99% confidence interval for the population mean escape time.

(b) Would a 90% CI based on the same data be wider or narrower? Explain.

42. A study of the ability of individuals to walk in a straight line (“Can We Really Walk Straight?”

Amer. J. Phys. Anthropol., 1992: 19–27) reported the accompanying data on cadence (strides per

second) for a sample of n ¼ 20 randomly selected healthy men.

.95 .85 .92 .95 .93 .86 1.00 .92 .85 .81

.78 .93 .93 1.05 .93 1.06 1.06 .96 .81 .96

A normal probability plot gives substantial support to the assumption that the population

distribution of cadence is approximately normal. Calculate and interpret a 95% confidence

interval for population mean cadence.

43. The article “Measuring and Understanding the Aging of Kraft Insulating Paper in Power

Transformers” (IEEE Electrical Insul. Mag., 1996: 28–34) contained the following observations
on degree of polymerization for paper specimens for which viscosity times concentration fell in a

certain middle range:

418 421 421 422 425 427 431

434 437 439 446 447 448 453

454 463 465

(a) Is it plausible that the given sample observations were selected from a normal distribution?

(b) Calculate a 95% confidence interval for true average degree of polymerization (as did the

authors of the article). Does the interval suggest that 440 is a plausible value for true average

degree of polymerization? What about 450?

44. Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The

success of the procedure depends on various biomechanical properties of the human nasal

periosteum and fascia. The article “Biomechanics in Augmentation Rhinoplasty” (J. of Med.

Engr. and Tech., 2005: 14–17) reported that for a sample of 15 (newly deceased) adults, the mean

failure strain (%) was 25.0, and the standard deviation was 3.5. Assuming a normal distribution

for failure strain, estimate true average strain in a way that conveys information about precision

and reliability.
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45. A more extensive tabulation of t critical values than what appears in this book shows that for the

t distribution with 20 df, the areas to the right of the values .687, .860, and 1.064 are .25, .20, and
.15, respectively. What is the confidence level for each of the following three confidence

intervals for the mean μ of a normal population distribution? Which of the three intervals

would you recommend be used, and why?

(a) �x� :687s=
ffiffiffiffiffi
21

p
, �xþ 1:725s=

ffiffiffiffiffi
21

p� �
(b) �x� :860s=

ffiffiffiffiffi
21

p
, �xþ 1:325s=

ffiffiffiffiffi
21

p� �
(c) �x� 1:064s=

ffiffiffiffiffi
21

p
, �xþ 1:064s=

ffiffiffiffiffi
21

p� �
46. In many applications, it suffices to have a reliable lower bound for the mean μ, because

underestimating μ would be far more serious that overestimating it. This gives rise to the idea

of a lower confidence bound for μ: a quantity L so that we can say with 95% confidence (for

example) that L < μ.
(a) Let t* be a value such that

P
�X � μ

S=
ffiffiffi
n

p < t*

� �
¼ :95

Manipulate the inequality inside the parentheses to isolate μ, and thus conclude that L ¼
�x� t* s=

ffiffiffi
n

pð Þ is a 95% lower confidence bound for μ.
(b) Notice that the expression given in (a) specifies that the area from �1 to t* under the

appropriate t curve is .95; equivalently, the upper tail area designated by t* is .05. What is

the appropriate t critical value for a 95% lower confidence bound with df ¼ 10? df ¼ 15?

[Hint: Do not use the header row in the t table as a reference; those confidence levels refer to

central areas, or equivalently two-sided confidence intervals.]

(c) A sample of 14 joint specimens of a particular type gave a sample mean proportional limit

stress of 8.48 MPa and a sample standard deviation of .79 MPa (“Characterization of

Bearing Strength Factors in Pegged Timber Connections,” J. Struct. Engr., 1997: 326–
332). Assuming the data are drawn from a normally distributed population, calculate and

interpret a 95% lower confidence bound for the true average proportional limit stress of all

such joints.

47. An upper confidence bound, U, for μ is obtained by replacing the � sign with a + sign in the

expression for L from the previous exercise: U ¼ �xþ t* s=
ffiffiffi
n

pð Þ. As in the previous exercise, the

t critical value is determined by a one-tail area, not a central area.

Consider the following sample of fat content (in percentage) of n ¼ 10 randomly selected hot

dogs (“Sensory and Mechanical Assessment of the Quality of Frankfurters,” J. Texture Stud.,

1990: 395-409):

25.2 21.3 22.8 17.0 29.8 21.0 25.5 16.0 20.9 19.5

Assuming that these were selected from a normal population distribution, calculate and interpret

a 99% upper confidence bound for the population mean fat content.

48. When the sample size n is very large, lower and upper confidence bounds for μ can be obtained by
replacing t* with z* in the expressions from the previous two exercises. For example, a large-

sample lower confidence bound for μ is given by L ¼ �x� z*s=
ffiffiffi
n

p
, where z* satisfies the relation

P(Z < z*) ¼ c when Z ~ N(0, 1) and 100c% is the prescribed confidence level (e.g., c ¼ .95).

(a) Show that the z critical value for a one-sided (i.e., upper or lower) confidence bound for μ,
with confidence level 100c%, is given by z* ¼ Φ�1(c).

(b) Find the one-sided z critical values for 90, 95, and 99% confidence.
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(c) A certain random variable is simulated 10,000 times. The sample mean and standard

deviation of the resulting 10,000 values are 41.63 and 8.05, respectively. Calculate and

interpret a 95% lower confidence bound for the true expected value of this rv.

49. Often an investigator wishes to predict a single value of a variable to be observed at some future

time, rather than to estimate the mean value of that variable. Suppose we will observe the values

of a random sample X1, . . ., Xn from a normal population with mean μ and standard deviation σ,
and from these we wish to predict the value of a future independent observation Xn+1.

(a) Show that

Z ¼
�X � Xnþ1

σ
ffiffiffiffiffiffiffiffiffiffi
1þ 1

n

q
has a standard normal distribution, where �X is the sample mean of X1, . . ., Xn. [Hint: Since

the population is normal, the linear combination �X � Xnþ1 is normal. Show that �X � Xnþ1 has

mean 0 and variance σ2(1 + 1/n), then standardize.]

(b) If we replace σ with the sample standard deviation S in the expression for Z from (a), it can

be shown that the resulting quantity has a t distribution with n � 1 df. Use this fact and a

derivation similar to the one presented in this section to show that a prediction interval (PI)

for a single future observation Xn+1 is given by

�x� t* � s
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
(c) Use the previous expression, along with the data in Exercise 47, to provide a 95% prediction

interval for the fat content of a randomly selected hot dog you will consume at some

future time.

50. Independent observations X1, . . ., Xn ~ N(μ1, σ1) and Y1, . . ., Ym ~ N(μ2, σ2) will be taken. For

example the heights of n men and m women might be recorded, where the height distribution of

each gender is normally distributed but with unknown parameters. Of interest is the difference

between the two unknown population means, μ1 � μ2.
(a) The logical estimator of μ1 � μ2 is �X � �Y, the difference of the sample averages of the two

samples. By determining the mean and variance of �X � �Y, show that

Z ¼
�X � �Yð Þ � μ1 � μ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ21
n
þ σ22

m

r
has a standard normal distribution.

(b) Let z* be the z critical value such that P(�z* < Z < z*) ¼ c, where Z is the expression

above and 100c% is the prescribed confidence level. Rewrite the inequalities to provide a

confidence interval for the difference of population means μ1 � μ2.
(c) If n and m are large (say,� 40), replacing σ1 and σ2 with S1 and S2 (the two sample standard

deviations) under the square root in (a) adds little extra variability; the resulting

standardized variable still has approximately a standard normal distribution. Make this

substitution to obtain a large-sample z confidence interval for μ1 � μ2 that can be

implemented in practice.

(d) The article “Gender Differences in Individuals with Comorbid Alcohol Dependence and

Post-Traumatic Stress Disorder” (Amer. J. Addiction, 2003: 412–423) reported the

accompanying data in total score in the Obsessive-Compulsive Drinking Scale.

5.3 Confidence Intervals for a Population Mean 385



Gender Sample size Sample mean Sample SD

Male 44 19.93 7.74

Female 40 16.26 7.58

Calculate and interpret a 95% confidence interval for the difference in the true mean scores

for males and females.

5.4 Testing Hypotheses About a Population Mean

We have seen that a parameter can be estimated from sample data, either by a single number (a point

estimate) or an entire interval of plausible values (a confidence interval). Frequently, however, the

objective of an investigation is not to estimate a parameter but to decide which of two contradictory

claims about the parameter is correct. Methods for accomplishing this comprise the part of statistical

inference called hypothesis testing.

5.4.1 Hypotheses and Test Procedures

A statistical hypothesis, or just hypothesis, is a claim or assertion either about the value of a single

parameter (population characteristic or characteristic of a probability distribution), about the values

of several parameters, or about the form of an entire probability distribution. Examples include

• The claim that μ ¼ $350, where μ is the true average one-term textbook expenditure for students at

a university

• The assertion that p < .50, where p is the proportion of children who have a food allergy of some

sort

• The claim that μ1 � μ2 > 3, where μ1 is the true average fuel efficiency (mpg) of all current model

year Honda Accords equipped with a 4-cylinder engine and μ2 is the analogous characteristic for
Accords equipped with a 6-cylinder engine.

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration.

One hypothesis might be the claim μ ¼ $350 and the other μ 6¼ $350, or the two contradictory

statements might be p � .50 and p < .50. The objective is to decide, based on sample information,

which of the two hypotheses is correct. There is a familiar analogy to this in a criminal trial. One

claim is the assertion that the accused individual is innocent. In the US judicial system, this is

the claim that is initially believed to be true. Only in the face of strong evidence to the contrary should

the jury reject this claim in favor of the alternative assertion that the accused is guilty. In this sense,

the claim of innocence is the favored or protected hypothesis, and the burden of proof is placed on

those who believe in the alternative claim.

Similarly, in testing statistical hypotheses, the problem will be formulated so that one of the claims

is initially assumed to be true. This initial claim will not be rejected in favor of the alternative claim

unless sample evidence contradicts it and provides strong support for the alternative assertion.
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DEFINITION

The null hypothesis, denoted by H0, is the claim that is initially assumed to be true (the “prior

belief” claim). The alternative hypothesis, denoted by Ha, is the assertion that is contradictory

to H0.

The null hypothesis will be rejected in favor of the alternative hypothesis only if sample

evidence suggests that H0 is false. If the sample does not strongly contradict H0, we will

continue to believe in the plausibility of the null hypothesis. The two possible conclusions from

a hypothesis-testing analysis are then reject H0 or fail to reject H0.

A test of hypotheses is a method for using sample data to decide whether the null hypothesis

should be rejected. Thus we might test H0: μ ¼ 350 against the alternative Ha: μ 6¼ 350. Only if

sample data strongly suggests that μ is something other than 350 should the null hypothesis be

rejected. In the absence of such evidence, H0 should not be rejected since it is still judged to be

plausible.

Sometimes an investigator does not want to accept a particular assertion unless and until data can

provide strong support for the assertion; in that situation, this assertion will be the investigator’s

alternative hypothesisHa. As an example, suppose a company is considering putting a new additive in

the dried fruit that it produces. The true average shelf life with the current additive is known to be

200 days. With μ denoting the true average shelf life with the new additive, the company would not

want to make a change unless evidence strongly suggested that μ exceeds 200. An appropriate

problem formulation would involve testing H0: μ ¼ 200 against Ha: μ > 200. The conclusion that

a change is justified is identified with Ha, and it would take conclusive evidence to justify rejecting H0

and switching to the new additive.

Scientific research often involves trying to decide whether a current theory should be replaced by a

more plausible and satisfactory explanation of the phenomenon under investigation. A conservative

approach is to identify the current theory withH0 and the researcher’s alternative explanation withHa.

Rejection of the current theory will then occur only when evidence is much more consistent with the

new theory. In many situations, Ha is referred to as the “research hypothesis,” since it is the claim that

the researcher would really like to validate. The word null means “of no value, effect, or conse-

quence,” which suggests that H0 should be identified with the hypothesis of no change (from current

opinion), no difference, no improvement, and so on. Suppose, for example, that 10% of all computer

circuit boards produced by a manufacturer during a recent period were defective. An engineer has

suggested a change in the production process in the belief that it will result in a reduced defective rate.

Let p denote the true proportion of defective boards resulting from the changed process. Then the

research hypothesis, on which the burden of proof is placed, is the assertion that p < .10. Thus the

alternative hypothesis is Ha: p < .10.

In our treatment of hypothesis testing, H0 will generally be stated as an equality claim. When the

parameter of interest is a population mean μ, the null hypothesis will have the form H0: μ ¼ μ0, where
μ0 is a specified number called the null value (value claimed for μ by the null hypothesis). For

example, let μ represent the true average breaking strength of nylon string of a certain type. If a

particular application requires that μ exceed 100 N and the string will not be used unless there is

compelling evidence that this is the case, the natural alternative hypothesis is Ha: μ > 100. It would

then make sense to select as the null hypothesis the assertion that μ � 100. However, we will instead

simplify the null hypothesis to H0: μ ¼ 100. The rationale for using this simplified null hypothesis is
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that any reasonable decision procedure for deciding between H0: μ ¼ 100 and Ha: μ > 100 will also

be reasonable for deciding between the claim that μ � 100 and Ha, and should lead to exactly the

same conclusion for any particular sample. The use of a simplified H0 is preferred because it has

certain technical benefits, which will be apparent shortly.

The alternative to the null hypothesis H0: μ ¼ μ0 will look like one of the following three

assertions:

1. Ha: μ > μ0 (in which case the implicit null hypothesis is μ � μ0)
2. Ha: μ < μ0 (so the implicit null hypothesis states that μ � μ0)
3. Ha: μ 6¼ μ0

5.4.2 Test Procedures for Hypotheses About a Population Mean m

The decision as to whether H0 should be rejected is based on the analysis of data x1, x2, . . ., xn
resulting from a random sample of the population. A sensible strategy at this point would be to

calculate the sample mean �x and reject the null hypothesis if its value is too far from μ0 in the

appropriate direction. For example, in the scenario involving breaking strength of nylon string, a

value of �x considerably larger than 100 would suggest that H0 is false and should be rejected. But an �x

value less than 100 would not incline us to reject H0 in favor of Ha, since a sample mean less than

100 would certainly not convince us that the population mean μ is more than 100.

Rather than base a decision on �x itself, let’s standardize �x assuming that the null hypothesis is true:

t ¼ �x� μ0
s=

ffiffiffi
n

p

If we knew the value of the population standard deviation σ, we’d use it rather than the sample

standard deviation s, but in practice this is almost never the case. Continuing with the nylon string

scenario, t ¼ �x� 100ð Þ= s=
ffiffiffi
n

pð Þ. For n ¼ 25 and sample data �x ¼ 108:5, s ¼ 12.14, we calculate

t ¼ 8.5/2.428 ¼ 3.50. The interpretation is that the value of the sample mean, 108.5, is 3.5 estimated

standard errors from what we’d expect it to be if the null hypothesis were true. In general, t is the
distance between the sample mean and what we’d expect it to be if H0 were true, expressed in

standard deviations.

Now let’s see if we can identify which values of t are at least as contradictory to H0 as the value

calculated from the available sample data. Again focusing on the nylon string situation, because the

alternative hypothesis states that the population mean exceeds 100, any value of �x greater than 108.5

argues even more strongly against H0 than does the 108.5 resulting from our sample. And any �x
greater than 108.5 corresponds to a value of t that exceeds 3.50. So values of t that are at least 3.50 are

at least as contradictory to H0 as 3.50 itself.

As another example, now suppose that μ represents the mean IQ for a large population of children,

and consider the rival hypotheses H0: μ ¼ 100 and Ha: μ 6¼ 100. Because 100 is the generally

accepted value of mean IQ in the USA, the alternative hypothesis here states that the average for

the designated population of children is different from this accepted value. Suppose a sample of

225 children gives a sample mean IQ of 98.6 and a sample standard deviation of 16.15, from which

t ¼ 98:6� 100ð Þ= 16:15=
ffiffiffiffiffiffiffiffi
225

p� � ¼ �1:30. The average IQ in the sample is 1.3 estimated standard
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errors smaller than what would be expected were the null hypothesis true. To decide which values

of t are at least as contradictory to H0 as �1.30, first consider which values of �x are at least

as contradictory to H0 as 98.6. Not only is any value 98.6 or smaller in this category, but also

any value that is at least 101.4—that is, any value at least as far from 100 in either direction

(because 6¼ appears in the alternative hypothesis). Thus any value of t that is either ��1.30 or

�1.30 is at least as contradictory to H0 as our calculated t ¼ �1.30.

5.4.3 P-Values and the One-Sample t Test

Before data have been obtained, the sample mean and sample standard deviation are random

variables, which we have previously denoted by �X and S, respectively. Substituting these for �x and

s in the formula for t gives what is called the test statistic

T ¼
�X � μ0
S=

ffiffiffi
n

p ,

which is also a random variable (that is, its value is subject to uncertainty prior to obtaining the

sample data).

If the population distribution is normal, Gosset’s Theorem from Sect. 5.3 implies that when the

null hypothesis is true, T has a t distribution with n � 1 degrees of freedom. In the case of the nylon

string scenario, T ¼ �X � 100ð Þ= S=
ffiffiffi
n

pð Þ would have a tn�1 distribution when H0: μ ¼ 100 is true

(assuming that the population strength distribution is normal). For the previously given sample

information, the calculated value of the test statistic was 3.50. Now consider the probability,

calculated assuming that the null hypothesis is true, of obtaining a test statistic value at least as

contradictory to the null hypothesis as the value 3.50 resulting from our sample data:

PH0
T � 3:50ð Þ ¼ P a t24 random variable is at least 3:50ð Þ

¼ the area under the t24 curve to the right of 3:50
¼ :001 from softwareð Þ

That is, if the null hypothesis is true, there is only a .1% chance of obtaining a sample at least as

contradictory to the null hypothesis as our sample. So our sample is among the .1% of all samples

most contradictory to H0.

Recall that t ¼ �1.30 in the IQ scenario. Again assuming a normal population distribution, the

probability of getting a value of T at least as contradictory to H0 when H0 is true is

PH0
T � �1:30 or T � 1:30ð Þ ¼ P a t224 rv is � �1:30 or � 1:30ð Þ

¼ area under the t224 curve to the left of � 1:30ð Þ þ
area under the t224 curve to the right of 1:30ð Þ

¼ 2 area under the t224 curve to the right of 1:30ð Þ
� 2 area under the z curve to the right of 1:30ð Þ
¼ :1936

So when the null hypothesis is true, almost 20% of all samples would result in a test statistic value

that is at least as contradictory to H0 as the one resulting from our sample. This implies that our

sample is not very contradictory to H0.
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DEFINITION

The P-value is the probability, calculated assuming that the null hypothesis is true, of obtaining

a value of the test statistic at least as contradictory to H0 as the value calculated from the

available sample. The smaller the P-value, the more the data contradicts the null hypothesis, so

H0 should be rejected in favor of Ha if the P-value is sufficiently small.

More specifically, select a number α reasonably close to 0; then reject the null hypothesis if

P-value � α and do not reject the null hypothesis if P-value > α. The selected α is called the

significance level of the test.

The most frequently employed values of the significance level are α ¼ .05, .01, and .001. We shall

say more about the choice of α shortly.

ONE-SAMPLE T TEST

Consider testing the null hypothesisH0: μ ¼ μ0 based on a random sample X1, X2, . . ., Xn from a

normal population distribution (the plausibility of the normality assumption should be checked

by examining a normal probability plot). The test statistic is

T ¼
�X � μ0
S=

ffiffiffi
n

p

The calculated value of this test statistic is t ¼ �x� μ0ð Þ= s=
ffiffiffi
n

pð Þ. The determination of the

P-value depends on the choice of Ha as follows:

Alternative Hypothesis P-value

Ha: μ > μ0 Area under the tn�1 curve to the right of t

Ha: μ < μ0 Area under the tn�1 curve to the left of t

H0: μ 6¼ μ0 2�(Area under the tn�1 curve to the right of |t|)

The test procedure when the alternative hypothesis is Ha: μ > μ0 is referred to as an upper-tailed

test, because the P-value is the area captured in the upper tail of the relevant t curve (i.e., to the right

of t). Analogously, the test procedure for the second case is called a lower-tailed test, and the

procedure in the third case is a two-tailed test. Figure 5.10 illustrates the determination of the

P-value in the three different cases.

Appendix Table A.6 provides information about tail areas under various t curves. The calculated
value of t (to the accuracy of the tenths digit) appears along the left margin, and there is a different

column for each number of df. For example, the entry at the intersection of the t ¼ 2.4 row and the

15 df column is .015, the area under the 15 df t curve to the right of 2.4. By symmetry, this is also the

area under the 15 df t curve to the left of�2.4. Various software packages will allow for more decimal

accuracy in t and the corresponding areas.

Example 5.16 Correct alignment of the tibial and femoral components is an important factor in

determining favorable long-term results of total knee arthroplasty (TKA). It is generally accepted that

the tibial component should be placed perpendicular to the anatomical axis of the tibia. The article

“Simple Method for Confirming Tibial Osteotomy During Total Knee Arthroplasty” (Sports
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Medicine, Arthroscopy, Rehabilitation, Therapy, and Technology, 2012, 4:44) reported that for a

sample of 35 TKAs, the sample mean varus angle of the tibial osteotomy was 89.45	 and the sample

standard deviation was 1.62	. The authors of the cited article carried out a one-sample t test to see

whether the true average angle differed from 90	 (presumably after examining a normal probability

plot of the data). The relevant hypotheses are H0: μ ¼ 90 versus Ha: μ 6¼ 90.

The calculated value of the test statistic is

t ¼ 89:46� 90ð Þ= 1:62=
ffiffiffiffiffi
35

p
 �
¼ �1:97

The inequality inHa implies that the test is two-tailed, so the P-value is twice the area under the t34
curve to the right of 1.97. The entry in the 2.0 row and 35 df column of Table A.6 is .027, so the P-
value is approximately 2(.027) ¼ .054 (the article reports .055; notice that we have had to round both

the test statistic and the df in order to use the t table).

Thus with a significance level of .05, the null hypothesis cannot be rejected because P-value
¼ .054 > .05 ¼ α. This is what allowed the investigators to conclude that “there was no significant

difference from the target angle of 90	.” ■

Recall from the previous section on confidence intervals that when the sample size n is large, the

standardized variable �X � μð Þ= S=
ffiffiffi
n

pð Þ has approximately a standard normal distribution even if the

population distribution is not normal. The implication here is that we can relabel our test statistic as

Z ¼ �X � μ0ð Þ= S=
ffiffiffi
n

pð Þ. Then the prescription in the one-sample t box for obtaining the P-value is

1. Upper-tailed test
Ha contains the inequality >

t curve for relevant df

t curve for relevant df

t curve for relevant df

P-value = area in upper tail

P-value = area in lower tail

P-value = sum of area in two tails

Calculated t

0

0

0

Calculated t

Calculated t, −t

2. Lower-tailed test
Ha contains the inequality <

3. Two-tailed test
Ha contains the inequality ≠

Fig. 5.10 P-values for t tests
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modified by replacing tn�1 and t by z. That is, the P-value for these large-sample tests is an

appropriate z curve area.

Example 5.17 The recommended daily intake of calcium for adults ages 18–30 is 1000 mg/day. The

article “Dietary and Total Calcium Intakes Are Associated with Lower Percentage Total Body and

Truncal Fat in Young, Healthy Adults” (J. of the Amer. College of Nutr., 2011: 484–490) reported the
following summary data for a sample of 76 healthy Caucasian males from southwestern Ontario,

Canada: n ¼ 76, �x ¼ 1093, s ¼ 477. Let’s carry out a test at significance level .01 to see whether the

population mean daily intake exceeds the recommended value. The relevant hypotheses are H0:

μ ¼ 1000 versus Ha: μ > 1000.

The calculated value of the test statistic is

z ¼ 1093� 1000ð Þ= 477=
ffiffiffiffiffi
76

p
 �
¼ 1:70

The resulting P-value is the area under the standard normal curve to the right of 1.70 (the

inequality in Ha implies that the test is upper-tailed). From Table A.3, this area is 1 � Φ(1.70) ¼
1 � .9554 ¼ .0446. Because this P-value is larger than .01, H0 cannot be rejected. There is not

compelling evidence to conclude at significance level .01 that the population mean daily intake

exceeds the recommended value (even though the sample mean does so). Note that the opposite

conclusion would result from using a significance level of .05. But the smaller α that we used requires

more persuasive evidence from the data before rejecting H0. ■

5.4.4 Errors in Hypothesis Testing and the Power of a Test

When a jury is called upon to render a verdict in a criminal trial, there are two possible erroneous

conclusions to be considered: convicting an innocent person, or letting a guilty person go free.

Similarly, in statistical hypothesis testing there are two potential errors whose consequences must be

considered when reaching a conclusion.

DEFINITION

A Type I error involves rejecting the null hypothesis H0 when it is true.

A Type II error involves not rejecting H0 when it is false.

Since in the US judicial system the null hypothesis (a priori belief) is that the accused is innocent, a

Type I error is analogous to convicting an innocent person. It would be nice if test procedures could

be developed that offered 100% protection against committing both a Type I error and a Type II error.

This is an impossible goal, however, because a conclusion is based on sample data rather than a

census of the entire population. There is always some chance that the sample will be unrepresentative

of the population and lead to an incorrect conclusion. The best we can hope for is a test procedure for

which it is unlikely that either a Type I or a Type II error will be committed.

Let’s reconsider the calcium intake scenario of the previous example. We employed a significance

level of α ¼ .01, and so we could reject H0 only if P-value � .01. The P-value in the case of this

upper-tailed large-sample test is the area under the standard normal curve to the right of the calculated

z. Table A.3 shows that the z-value 2.33 captures an upper-tail area of .01 (look inside the table for a

cumulative area of .9900). The P-value (captured upper-tail area) will therefore be at most .01 if and

only if z is at least 2.33; see Fig. 5.11.
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Thus the probability of committing a Type I error—rejecting H0 when it is true—is the probability

that the value of the test statistic Z will be at least 2.33 when H0 is true. Now the key fact: because we

created Z by subtracting the null value μ0 when standardizing, Z has a standard normal distribution

when H0 is true. So

P Type I errorð Þ ¼ P rejecting H0 when H0 is trueð Þ
¼ P Z � 2:33 when Z is a standard normal rvð Þ ¼ :01 ¼ α

This is true not only for the z test of Example 5.17 but also for the t tests described earlier and, in

fact, for any test procedure.

PROPOSITION

The significance level α that is employed when H0 is rejected iff P-value � α is also the

probability that the test results in a Type I error.

Thus a test with significance level .01 is one for which there is a 1% chance of committing a Type I

error, whereas using a significance level of .05 results in a test with a Type I error probability of .05.

The smaller the significance level, the less likely it is that the null hypothesis will be rejected when it

is true. A smaller significance level makes it harder for the null hypothesis to be rejected and therefore

less likely that a Type I error will be committed.

It is natural to ask at this point why a significance level of .05 should ever be employed when a

significance level of .01 can be used. More generally, why use a test with a larger significance level—

larger probability of a Type I error—when a smaller level is available? The answer lies in something

that we have not yet explicitly considered: the likelihood of committing a Type II error. Let’s denote

the probability of a Type II error by β. That is,

β ¼ P
�
not rejecting H0 when Ha is true

�
This notation is actually somewhat misleading: whereas for any particular test there is a single

value of α (a consequence of having H0 be a statement of equality), there are in fact many different

values of β. The alternative hypothesis in the calcium intake situation was Ha: μ > 1000. So this

would be true if μ were 1010 or 1050 or 1100 or in fact any value exceeding 1000. Nevertheless, for

any particular way of H0 being false and Ha true, it can be shown that α and β are inversely related:

changing the test procedure by decreasing α in order to make the chance of a Type I error smaller has

the inevitable consequence of making a Type II error more likely. Conversely, using a larger

significance level will make it less likely that the null hypothesis will fail to be rejected when, in

fact, it is false.

z2.33

P-value < .01

z 2.33

P-value > .01

a b

Fig. 5.11 P-values for an upper-tailed large-sample test: (a) P-value <.01 if z > 2.33; (b) P-value >.01 if z < 2.33
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Let μ0 denote some particular value of μ for which Ha is true. For example, for the hypotheses H0:

μ ¼ 90 versus Ha: μ 6¼ 90 from Example 5.16, we might be interested in determining β when the true
angle is 91	. Then μ0 ¼ 91 and we wish β(91). The value of β depends on several factors:

• How far the alternative value of interest μ0 is from μ0 [β(μ0) decreases as μ0 moves further away

from μ0]
• The sample size n [β(μ0) decreases as n, and therefore df, increases]

• The value of the population standard deviation σ [the larger the value of σ, the more difficult it is

for H0 to be rejected, and so the larger is β(μ0)]
• The significance level α [making α smaller increases β(μ0)]

Calculating β for the one-sample t test by hand is quite difficult. This is because when μ ¼ μ0

rather than the null value μ0, the density function that describes the distribution of the test statistic T is

exceedingly complicated. Fortunately statistical software comes to our rescue. Rather than work

directly with β, the most commonly used software packages involve a quantity called power.

DEFINITION

Suppose the null and alternative hypotheses are assertions about the value of some parameter θ,
with the null hypothesis having the form H0: θ ¼ θ0 and the alternative hypothesis obtained by
replacing¼ inH0 by one of the three inequalities>,< or 6¼. Let θ0 denote some particular value

of θ for which Ha is true. Then the power at the value θ0 for a test of these hypotheses is the

probability of rejecting H0 when θ ¼ θ0, which is 1 � β(θ0). The power of the test when

θ ¼ θ0 is also the probability that H0 is rejected, which in this case is the significance level α.

Thus we want the power to be close to 0 when the null hypothesis is true and close to 1 when the

null hypothesis is false. A “powerful” test is one that has high power for alternative values of the

parameter, and thus good ability to detect departures from the null hypothesis.

Example 5.18 The true average voltage drop from collector to emitter of insulated gate bipolar

transistors of a certain type is supposed to be at most 2.5 V. An investigator selects a sample of

n ¼ 10 such transistors and uses the resulting voltages as a basis for testing H0: μ ¼ 2.5 versus Ha:

μ > 2.5 using a t test with significance level α ¼ .05. If the standard deviation of the voltage

distribution is σ ¼ .1 V, how likely is it that H0 will not be rejected when in fact μ ¼ 2.55 or when

μ ¼ 2.6? And what happens to the power and β if the sample size is increased to 20?

The sampsizepwr function in Matlab provides the following information:

μ0 n Power

2.55 10 .4273

2.55 20 .6951

2.6 10 .8975

2.6 20 .9961

So in the case μ0 ¼ 2.55, β is roughly .57 when the sample size is 10 and roughly .30 when the

sample size is 20. Clearly these Type II error probabilities are rather large. If it is important to detect

such a departure from H0, the test does not have good power to do so. Software can also be used to

determine what value of the sample size n is necessary to produce a sufficiently large power and

correspondingly small β. For example, when μ0 ¼ 2.55, a sample size of n ¼ 36 is required to

produce a power of .90. ■
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As Example 5.18 illustrates, the power of a test can be disappointingly small for an alternative

value of the parameter that represents an important departure from the null hypothesis. Too often

investigators are content to specify a comfortingly small value of α without paying attention to power

and β. This can easily result in a test which has poor ability to detect when H0 is false. Given the

availability and capabilities of statistical software packages, such a sin is unpardonable!

5.4.5 Software for Hypothesis Test Calculation

The t.test and ttest functions in R and Matlab, respectively, mentioned at the end of Sect. 5.3

can be used to automatically perform the one-sample t test described in this section (in fact, that is the
primary purpose of these functions).

Example 5.19 The accompanying data on cube compressive strength (MPa) of concrete specimens

appeared in the article “Experimental Study of Recycled Rubber-Filled High-Strength Concrete”

(Magazine of Concrete Res., 2009: 549–556):

112.3 97.0 92.7 86.0 102.0

99.2 95.8 103.5 89.0 86.7

Suppose the concrete will be used for a particular application unless there is strong evidence that

the true average strength is less than 100 MPa. Should the concrete be used? Test at the .05

significance level.

Let μ denote the true average cube compressive strength of this concrete. We wish to test the

hypotheses H0: μ ¼ 100 versus Ha: μ < 100. A probability plot indicates the data are consistent with

a normally distributed population. Figure 5.12 shows the hypothesis test implemented in R and

Matlab.

Both R and Matlab give a one-sided P-value of .1018 at 9 df. Since .1018 > .05, at the .05

significance level we fail to reject H0. There is insufficient evidence to conclude the true mean

strength of this concrete is less than 100 MPa. As a consequence, the concrete should be used.

In Fig. 5.12a, R gives the computed value of the test statistic, t = �1.3708, as well as the sample

mean, �x ¼ 96:42 MPa, and a (one-sided) CI for μ of (�1, 101.2073). (See Exercises 46–47 from the

previous section for information on such bounds.) In Matlab, the significance level of .05 is a required

ba
> x<-c(112.3,97.0,92.7,86.0,
102.0,99.2,95.8,103.5
,89.0,86.7)
> 
t.test(x,mu=100,alternative="less"
)

One Sample t-test

data:  x 
t = -1.3708, df = 9, p-value = 
0.1018
alternative hypothesis: true mean 
is less than 100 
95 percent confidence interval:

-Inf 101.2073
sample estimates:
mean of x 

96.42

>> x=[112.3,97.0,92.7,86.0,
102.0,99.2,95.8,103.5,
89.0,86.7];
>> 
[H,P]=ttest(x,100,.05,'left'
)
H =

0
P =

0.1018

Fig. 5.12 Performing the hypothesis test of Example 5.19: (a) R; (b) Matlab
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input; the ’left’ argument instructs Matlab to perform a lower-tailed test. As seen in Fig. 5.12b,

Matlab then returns two items: the P-value, and also a bit denoted H indicated whether to reject H0.

(The H = 0 output tells the user not to reject H0 at the specified α level.) ■

Calculations of power, as well as sample size required to achieve a prescribed power level, are

available through the samplesizepwr function in Matlab and the pwr package in R. The former is

part of the Matlab Statistics Toolbox; the latter is not part of the R base package and must be

downloaded and installed.

5.4.6 Exercises: Section 5.4 (51–76)

51. For each of the following assertions, state whether it is a legitimate statistical hypothesis

and why:

(a) H: σ > 100

(b) H: P̂ ¼ :45

(c) H: S � .20

(d) H: σ1/σ2 < 1

(e) H: �X � �Y ¼ 5

(f) H: λ � .01, where λ is the parameter of an exponential distribution used to model

component lifetime

52. For the following pairs of assertions, indicate which do not comply with our rules for setting up

hypotheses and why (the subscripts 1 and 2 differentiate between quantities for two different

populations or samples):

(a) H0: μ ¼ 100, Ha: μ > 100

(b) H0: σ ¼ 20, Ha: σ � 20

(c) H0: p 6¼ .25, Ha: p ¼ .25

(d) H0: μ1 � μ2 ¼ 25, Ha: μ1 � μ2 > 100

(e) H0: S1
2 ¼ S2

2, Ha: S1
2 6¼ S2

2

(f) H0: μ ¼ 120, Ha: μ ¼ 150

(g) H0: σ1/σ2 ¼ 1, Ha: σ1/σ2 6¼ 1

(h) H0: p1 � p2 ¼ �.1, Ha: p1 � p2 < �.1

53. To determine whether the girder welds in a new performing arts center meet specifications, a

random sample of welds is selected, and tests are conducted on each weld in the sample. Weld

strength is measured as the force required to break the weld. Suppose the specifications state that

mean strength of welds should exceed 100 lb/in2; the inspection team decides to test H0:

μ ¼ 100 versus Ha: μ > 100. Explain why it might be preferable to use this Ha rather than

μ < 100.

54. Let μ denote the true average radioactivity level (picocuries per liter). The value 5 pCi/L is

considered the dividing line between safe and unsafe water. Would you recommend testing H0:

μ ¼ 5 versus Ha: μ > 5 or H0: μ ¼ 5 versus Ha: μ < 5? Explain your reasoning. [Hint: Think

about the consequences of a Type I and Type II error for each possibility.]

55. For which of the given P-values would the null hypothesis be rejected when performing a level

.05 test?

(a) .001

(b) .021

(c) .078
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(d) .047

(e) .148

56. Pairs of P-values and significance levels, α, are given. For each pair, state whether the observed
P-value would lead to rejection of H0 at the given significance level.

(a) P-value ¼ .084, α ¼ .05

(b) P-value ¼ .084, α ¼ .10

(c) P-value ¼ .003, α ¼ .01

(d) P-value ¼ .039, α ¼ .01

57. Give as much information as you can about the P-value of a t test in each of the following

situations:

(a) Upper-tailed test, df ¼ 8, t ¼ 2.0

(b) Lower-tailed test, df ¼ 11, t ¼ �2.4

(c) Two-tailed test, df ¼ 15, t ¼ �1.6

(d) Upper-tailed test, df ¼ 19, t ¼ �.4

(e) Upper-tailed test, df ¼ 5, t ¼ 5.0

(f) Two-tailed test, df ¼ 40, t ¼ �4.8

58. The paint used to make lines on roads must reflect enough light to be clearly visible at night. Let

μ denote the true average reflectometer reading for a new type of paint under consideration. A

test of H0: μ ¼ 20 versus Ha: μ > 20 will be based on a random sample of size n from a normal

population distribution. What conclusion is appropriate in each of the following situations?

(a) n ¼ 15, test statistic value ¼ 3.2, α ¼ .05

(b) n ¼ 9, test statistic value ¼ 1.8, α ¼ .01

(c) n ¼ 24, test statistic value ¼ �.2

59. Let μ denote the mean reaction time to a certain stimulus. For a large-sample z test of H0: μ ¼ 5

versus Ha: μ > 5, find the P-value associated with each of the given values of the z test statistic.
(a) 1.42

(b) .90

(c) 1.96

(d) 2.48

(e) �.11

60. Newly purchased tires of a certain type are supposed to be filled to a pressure of 35 lb/in2. Let μ
denote the true average pressure. Find the P-value associated with each given z statistic value for

testing H0: μ ¼ 35 versus the alternative Ha: μ 6¼ 35.

(a) 2.10

(b) �1.75

(c) �.55

(d) 1.41

(e) �5.3

61. A pen has been designed so that true average writing lifetime under controlled conditions

(involving the use of a writing machine) is at least 10 h. A random sample of 18 pens is selected,

the writing lifetime of each is determined, and a normal probability plot of the resulting data

supports the use of a one-sample t test.

(a) What hypotheses should be tested if the investigators believe a priori that the design

specification has been satisfied?

(b) What conclusion is appropriate if the hypotheses of part (a) are tested, t ¼ �2.3, and

α ¼ .05?
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(c) What conclusion is appropriate if the hypotheses of part (a) are tested, t ¼ �1.8, and

α ¼ .01?

(d) What should be concluded if the hypotheses of part (a) are tested and t ¼ �3.6?

62. Lightbulbs of a certain type are advertised as having an average lifetime of 750 h. The price of

these bulbs is very favorable, so a potential customer has decided to go ahead with a purchase

arrangement unless it can be conclusively demonstrated that the true average lifetime is smaller

than what is advertised. A random sample of 50 bulbs was selected and the lifetime of each bulb

determined. These 50 light bulbs had a sample mean lifetime of 738.44 h with a sample standard

deviation of 38.20 h. What conclusion would be appropriate for a significance level of .05?

63. Automatic identification of the boundaries of significant structures within a medical image is an

area of ongoing research. The paper “Automatic Segmentation of Medical Images Using Image

Registration: Diagnostic and Simulation Applications” (J. of Medical Engr. and Tech., 2005: 53–

63) discussed a new technique for such identification. A measure of the accuracy of the automatic

region is the average linear displacement (ALD). The paper gave the following ALD

observations for a sample of 49 kidneys (units of pixel dimensions).

1.38 0.44 1.09 0.75 0.66 1.28 0.51

0.39 0.70 0.46 0.54 0.83 0.58 0.64

1.30 0.57 0.43 0.62 1.00 1.05 0.82

1.10 0.65 0.99 0.56 0.56 0.64 0.45

0.82 1.06 0.41 0.58 0.66 0.54 0.83

0.59 0.51 1.04 0.85 0.45 0.52 0.58

1.11 0.34 1.25 0.38 1.44 1.28 0.51

(a) Is it plausible that ALD is at least approximately normally distributed? Must normality be

assumed prior to testing hypotheses about true average ALD? Explain.

(b) The authors commented that in most cases the ALD is better than or of the order of 1.0. Does

the data in fact provide strong evidence for concluding that true average ALD under these

circumstances is less than 1.0? Carry out an appropriate test of hypotheses.

64. A dynamic cone penetrometer (DCP) is used for measuring material resistance to penetration

(mm/blow) as a cone is driven into pavement or subgrade. Suppose that for a particular applica-

tion it is required that the true average DCP value for a certain type of pavement be less than 30.

The pavement will not be used unless there is conclusive evidence that the specification has been

met. Test the appropriate hypotheses using the following data (“Probabilistic Model for the

Analysis of Dynamic Cone Penetrometer Test Values in Pavement Structure Evaluation,” J. of
Testing and Evaluation, 1999: 7–14):

14.1 14.5 15.5 16.0 16.0 16.7 16.9 17.1 17.5 17.8

17.8 18.1 18.2 18.3 18.3 19.0 19.2 19.4 20.0 20.0

20.8 20.8 21.0 21.5 23.5 27.5 27.5 28.0 28.3 30.0

30.0 31.6 31.7 31.7 32.5 33.5 33.9 35.0 35.0 35.0

36.7 40.0 40.0 41.3 41.7 47.5 50.0 51.0 51.8 54.4

55.0 57.0

65. The article “Uncertainty Estimation in Railway Track Life-Cycle Cost” (J. of Rail and Rapid

Transit, 2009) presented the following data on time to repair (min) a rail break in the high rail on

a curved track of a certain railway line.

159 120 480 149 270 547 340 43 228 202 240 218
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A normal probability plot of the data shows a reasonably linear pattern, so it is plausible that the

population distribution of repair time is at least approximately normal. The sample mean and

standard deviation are 249.7 and 145.1, respectively. Is there compelling evidence for concluding

that true average repair time exceeds 200 min? Carry out a test of hypotheses using a significance

level of .05.

66. Have you ever been frustrated because you could not get a container of some sort to release the

last bit of its contents? The article “Shake, Rattle, and Squeeze: How Much Is Left in That

Container?” (Consumer Reports, May 2009: 8) reported on an investigation of this issue for

various consumer products. Suppose five 6.0 oz tubes of toothpaste of a particular brand are

randomly selected and squeezed until no more toothpaste will come out. Then each tube is cut

open and the amount remaining is weighed, resulting in the following data (consistent with what

the cited article reported): .53, .65, .46, .50, .37. Does it appear that the true average amount left is

less than 10% of the advertised net contents?

(a) Check the validity of any assumptions necessary for testing the appropriate hypotheses.

(b) Carry out a test of the appropriate hypotheses using a significance level of .05. Would your

conclusion change if a significance level of .01 had been used?

(c) Describe in context Type I and II errors, and say which error might have been made in

reaching a conclusion.

67. A random sample of soil specimens was obtained, and the amount of organic matter (%) in the

soil was determined for each specimen, resulting in the accompanying data (from “Engineering

Properties of Soil,” Soil Science, 1998: 93–102).

1.10 5.09 0.97 1.59 4.60 0.32 0.55 1.45

0.14 4.47 1.20 3.50 5.02 4.67 5.22 2.69

3.98 3.17 3.03 2.21 0.69 4.47 3.31 1.17

0.76 1.17 1.57 2.62 1.66 2.05

The values of the sample mean and standard deviation are 2.481 and 1.616, respectively. Does

this data suggest that the true average percentage of organic matter in such soil is something other

than 3%? Carry out a test of the appropriate hypotheses at significance level .10. Would your

conclusion be different if α ¼ .05 had been used? [Note: A normal probability plot of the data

shows an acceptable pattern in light of the reasonably large sample size.]

68. Glycerol is a major by-product of ethanol fermentation in wine production and contributes to the

sweetness, body, and fullness of wines. The article “A Rapid and Simple Method for Simulta-

neous Determination of Glycerol, Fructose, and Glucose in Wine” (American J. of Enology and
Viticulture, 2007: 279–283) includes the following observations on glycerol concentration

(mg/ml) for samples of standard-quality (uncertified) white wines: 2.67, 4.62, 4.14, 3.81, 3.83.

Suppose the desired concentration value is 4. Does the sample data suggest that true average

concentration is something other than the desired value? Carry out a test of appropriate

hypotheses using the one-sample t test with a significance level of .05.

69. Exercise 41 gave n ¼ 26 observations on escape time (seconds) for oil workers in a simulated

exercise, from which the sample mean and sample standard deviation are 370.69 and 24.36,

respectively. Suppose the investigators had believed a priori that true average escape time would

be at most 6 min. Does the data contradict this prior belief? Assuming normality, test the

appropriate hypotheses using a significance level of .05.

70. Minor surgery on horses under field conditions requires a reliable short-term anesthetic produc-

ing good muscle relaxation, minimal cardiovascular and respiratory changes, and a quick, smooth

recovery with minimal aftereffects so that horses can be left unattended. The article “A Field

Trial of Ketamine Anesthesia in the Horse” (Equine Vet. J., 1984: 176–179) reports that for a
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sample of n ¼ 73 horses to which ketamine was administered under certain conditions, the

sample average lateral recumbency (lying-down) time was 18.86 min and the standard deviation

was 8.6 min. Does this data suggest that true average lateral recumbency time under these

conditions is less than 20 min? Test the appropriate hypotheses at level of significance .10.

71. The recommended daily dietary allowance for zinc among males older than age 50 years is

15 mg/day. The article “Nutrient Intakes and Dietary Patterns of Older Americans: A National

Study” (J. Gerontol., 1992: M145–150) reports the following summary data on intake for a

sample of males age 65–74 years: n ¼ 115, �x ¼ 11:3, and s ¼ 6.43. Does this data indicate that

average daily zinc intake in the population of all males age 65–74 falls below the recommended

allowance?

72. The industry standard for the amount of alcohol poured into many types of drinks (e.g., gin for a

gin and tonic, whiskey on the rocks) is 1.5 oz. Each individual in a sample of 8 bartenders with at

least 5 years of experience was asked to pour rum for a rum and coke into a short, wide (tumbler)

glass, resulting in the following data:

2.00 1.78 2.16 1.91 1.70 1.67 1.83 1.48

(Summary quantities agree with those given in the article “Bottoms Up! The Influence of

Elongation on Pouring and Consumption Volume,” J. Consumer Res., 2003: 455–463.)
(a) Carry out a test of hypotheses to decide whether there is strong evidence for concluding that

the true average amount poured differs from the industry standard.

(b) Does the validity of the test you carried out in (a) depend on any assumptions about the

population distribution? If so, check the plausibility of such assumptions.

73. Before agreeing to purchase a large order of polyethylene sheaths for a particular type of high-

pressure oil-filled submarine power cable, a company wants to see conclusive evidence that the

true standard deviation of sheath thickness is less than .05 mm.What hypotheses should be tested,

and why? In this context, what are the Type I and Type II errors?

74. Many older homes have electrical systems that use fuses rather than circuit breakers. A manu-

facturer of 40-amp fuses wants to make sure that the mean amperage at which its fuses burn out is

in fact 40. If the mean amperage is lower than 40, customers will complain because the fuses

require replacement too often. If the mean amperage is higher than 40, the manufacturer might be

liable for damage to an electrical system due to fuse malfunction. To verify the amperage of the

fuses, a sample of fuses is to be selected and inspected. If a hypothesis test were to be performed

on the resulting data, what null and alternative hypotheses would be of interest to the manufac-

turer? Describe Type I and Type II errors in the context of this problem situation.

75. Water samples are taken from water used for cooling as it is being discharged from a power plant

into a river. It has been determined that as long as the mean temperature of the discharged water is

at most 150 	F, there will be no negative effects on the river’s ecosystem. To investigate whether

the plant is in compliance with regulations that prohibit a mean discharge-water temperature

above 150	, 50 water samples will be taken at randomly selected times, and the temperature of

each sample recorded. The resulting data will be used to test the hypotheses H0: μ ¼ 150	 versus
Ha: μ > 150	. In the context of this situation, describe Type I and Type II errors. Which type of

error would you consider more serious? Explain.

76. A regular type of laminate is currently being used by a manufacturer of circuit boards. A special

laminate has been developed to reduce warpage. The regular laminate will be used on one sample

of specimens and the special laminate on another sample, and the amount of warpage will then be

determined for each specimen. The manufacturer will then switch to the special laminate only if it

can be demonstrated that the true average amount of warpage for that laminate is less than for the

regular laminate. State the relevant hypotheses, and describe the Type I and Type II errors in the

context of this situation.
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5.5 Inferences for a Population Proportion

The previous two sections illustrated the methods of confidence intervals and hypothesis testing for

an unknown mean, μ. In this section, we will apply those same ideas to drawing inferences about an

unknown probability or population proportion.

Let p denote the proportion of “successes” in a population, where success identifies an individual

or object that has a specified property. Equivalently, p is the probability that a randomly selected

individual or object is a success. A random sample of n individuals is to be selected, and X denotes the

number of successes in the sample. The natural estimator of p is P̂ ¼ X=n, the sample fraction of

successes. As derived in Sect. 2.4 and discussed earlier in this chapter, E P̂
� � ¼ p (unbiasedness) and

SD P̂
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ=np
; moreover, provided np � 10 and n(1 � p) � 10, P̂ has approximately a

normal distribution.

5.5.1 Confidence Intervals for p

Since P̂ is approximately normal, standardizing P̂ by subtracting p and dividing by σP̂ implies that, for

example,

P �1:96 <
P̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ=np < 1:96

 !
� :95

A confidence interval for p results from replacing each < by ¼ and solving the resulting quadratic

equation for p. After some tedious algebra, this gives the two roots

p ¼
P̂þ 1:962=2n
� �� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ 1� P̂
� �

=nþ 1:962=4n2
q

1þ 1:962=n

These form the endpoints of an approximate 95% CI for p. The more general formula is given in

the following proposition.

ONE-PROPORTION Z INTERVAL

Let p̂ be the fraction of successes in a random sample of size n. Then a confidence interval for

the true/population proportion p has endpoints

ep � z*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=nþ z*ð Þ2=4n2

q
1þ z*ð Þ2=n ð5:3Þ

where z* is the standard normal critical value for the specified confidence level (e.g., z* ¼ 1.96

for 95% confidence) and ep is the adjusted sample proportion of successes defined byep ¼ �p̂þ z*ð Þ2=2n�=�1þ z*ð Þ2=n�.
This is often referred to as the score confidence interval for p.

If the sample size n is very large, then all the terms in Expression (5.3) of order 1/n are negligible

compared to the others. Keeping only the dominant terms, Eq. (5.3) is approximated by
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p̂� z* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

n

r
ð5:4Þ

This approximate CI (Eq. 5.4) has the form p̂� z* � σ̂P̂, similar to the large-sample CI for μ
presented in Sect. 5.3, and is the one that for decades has appeared in introductory statistics textbooks.

It clearly has a much simpler and more appealing form than Eq. (5.3), so why bother with the score

interval at all?

Suppose we use z* ¼ 1.96 in the traditional formula (5.4). Then our nominal confidence level (the
one we think we’re buying by using that z critical value) is approximately 95%. So before a sample is

selected, the probability that the random interval includes the actual value of p (i.e., the coverage

probability) should be about .95. But it turns out that the actual coverage probability for this interval

can differ considerably from the nominal probability .95, particularly when p is not close to .5. This is,

generally speaking, a deficiency of the traditional interval—the actual confidence level can be quite

different from the nominal level even for reasonably large sample sizes. Recent research has shown

that the score interval (Eq. 5.3) rectifies this behavior—for virtually all sample sizes and values of p,

its actual confidence level will be quite close to the nominal level specified by the choice of z*. This is

due largely to the fact that the interval (in particular, the midpoint ep ) is shifted a bit toward .5

compared to the traditional interval. This is especially important when p is close to 0 or 1.

In addition, the score interval can be used with nearly all sample sizes and parameter values. It is

thus not necessary to check the conditions np̂ � 10 and n 1� p̂ð Þ � 10 which would be required were

the traditional interval employed. So rather than asking when n is large enough for Eq. (5.4) to yield a

good approximation to Eq. (5.3), our recommendation is that the score CI should always be used

unless the sample size is extremely large (such as in simulations, where n ¼ 10,000 or more is

typical). The slight additional tediousness of the computation is outweighed by the desirable

properties of the interval.

Example 5.20 A Gallup poll published June 28, 2013 reported that 41% of US adults surveyed felt

that the most important factor in choosing which college or university to attend should be the

percentage of graduates who are able to get a good job. (This was the most popular response; cost

of tuition was a close second.) The survey was based on a random sample of n ¼ 1012 adults; we will

assume the number who gave the above response is x ¼ 415, so that p̂ ¼ 415=1012 ¼ :4101,

matching the survey. Let p denote the proportion of all US adults that feel this same way, for

which p̂ is our point estimate. A confidence interval for p with a confidence level of approximately

95% is

:4101þ 1:962=2 1012ð Þ
1þ 1:962=1012

� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:4101ð Þ :5899ð Þ=1012þ 1:962= 4 � 10122� �q

1þ 1:962=1012

¼ :4103� :0302 ¼ :3801; :4405ð Þ
Hence, we are 95% confident that between 38 and 44% of all US adults feel that the percentage of

graduates that get good jobs is the most important factor when choosing a college or university. The

traditional interval is

:4101� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:410ð Þ :590ð Þ

1012

r
¼ :4101� :0303 ¼ :3798; :4404ð Þ

These two intervals are practically identical because n ¼ 1012 is so large. ■
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Example 5.21 The article “Repeatability and Reproducibility for Pass/Fail Data” (J. Testing Eval.,

1997: 151–153) reported that in n ¼ 48 trials in a particular laboratory, 16 resulted in ignition of a

particular type of substrate by a lighted cigarette. Let p denote the long-run proportion of all such

trials that would result in ignition. A point estimate for p is p̂ ¼ 16=48 ¼ :333. A 95% confidence

interval for p is

:333þ 1:962=96

1þ 1:962=48
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:333ð Þ :667ð Þ=48þ 1:962= 4 � 482� �q

1þ 1:962=48
¼ :346� :129 ¼ :217; :475ð Þ

So, the researchers can be 95% confident that between 21.7 and 47.5% of all trials under the same

conditions will result in ignition. This interval isn’t very precise—its width is nearly 26 percentage

points—as a consequence of the relatively small sample size. If the researchers wanted a narrower

interval, they would need to use a larger n (which, of course, requires more time and money).

The traditional CI formula (5.4) gives

:333� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:333ð Þ :667ð Þ=48

p
¼ :333� :133 ¼ :200; :466ð Þ

These two intervals are somewhat different because n ¼ 48 is not very large. ■

5.5.2 Hypothesis Testing for p

Analogous to hypothesis testing for a population mean μ, tests for p concern deciding which of

two competing hypotheses about the value of p is correct. The null hypothesis will always be written

in the form

H0: p ¼ p0

where p0 is the null value for the parameter p (i.e., the value claimed for p by the null hypothesis). The

alternative hypothesis has one of three forms, depending on context:

Ha: p > p0 Ha: p < p0 Ha: p 6¼ p0

Inferences about p are again based on the value of a sample proportion, P̂. When H0 is true,

E P̂
� � ¼ p0 and SD P̂

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np

. Moreover, when n is large and H0 is true, the test statistic

Z ¼ P̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np

has approximately a standard normal distribution. The P-value of the hypothesis test is then

determined in an analogous manner to those of the one-sample t test in Sect. 5.4, except that

calculation is made using the z table rather than a t distribution.

ONE-PROPORTION Z TEST

Consider testing the null hypothesis H0: p ¼ p0 based on a random sample of size n. Let P̂
denote the proportion of “successes” in the sample. The test statistic is

Z ¼ P̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np
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Provided np0 � 10 and n(1 � p0) � 10, Z has approximately a standard normal distribution

when H0 is true. Let z denote the calculated value of the test statistic. The calculation of the

P-value depends on the choice of Ha as follows:

Alternative Hypothesis P-value

Ha: p > p0 1 � Φ(z)

Ha: p < p0 Φ(z)

Ha: p 6¼ p0 2[1 � Φ(|z|)]

Illustrations of these P-values are essentially identical to those in Fig. 5.10.

Example 5.22 Obesity is an increasing problem in America among all age groups. The Centers for

Disease Control and Prevention (CDCP) reported in 2012 that 35.7% of US adults are obese (a body

mass index exceeding 30; this index is a measure of weight relative to height). Physicians at a large

hospital in Los Angeles measured the body mass index of 122 randomly selected patients and found

that 38 of them should be classified as obese. Do the hospital’s data suggest that the true proportion of

adults served by this hospital who are obese is less than the national figure of 35.7%? Let’s carry out a

test of hypotheses using α ¼ .05.

The parameter of interest is p ¼ the proportion of all adults served by this hospital who are obese.

The competing hypotheses are

H0: p ¼ .357 (the hospital’s obesity rate matches the national rate)

Ha: p < .357 (the hospital’s obesity rate is less than the national rate)

Since np0 ¼ 122(.357) ¼ 43.6 � 10 and n(1 � p0) ¼ 122(1 � .357) ¼ 78.4 � 10, the

one-proportion z test may be applied. With p̂ ¼ 38=122 ¼ :311, the calculated value of the test

statistic is

z ¼ p̂� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np ¼ :311� :357ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:357 1� :357ð Þ=122p ¼ �1:05

So, the observed sample proportion is about one standard deviation below what we would expect if

the null hypothesis is true. The P-value of the test is the probability of obtaining a test statistic value at
least that low:

P-value ¼ P Z � �1:05ð Þ ¼ Φ �1:05ð Þ ¼ :1469

Since the P-value of .1469 is greater than the significance level .05, we fail to reject H0. On the

basis of the observed data, we cannot conclude that the obesity rate of the population served by this

hospital is less than the national rate of 35.7%. ■

As was the case for inferences on μ, it is desirable to calculate the power of a hypothesis test

concerning a population proportion p. The power of our one-sample z test depends on how far the true

value of p is from the null value p0, the sample size, and the selected significance level. The details of

such power calculations, which many software packages can perform automatically, are developed in

Exercises 96 and 97 of this section.

Inferences about p when n is small can be based directly on the binomial distribution. There are

also procedures available for making inferences about a difference p1 � p2 between two population
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proportions (e.g., the proportion of all female versus male students that make the honor roll at your

school). Please consult the reference by Devore and Berk for more information.

5.5.3 Software for Inferences about p

The prop.test function in R will calculate the traditional CI (Eq. 5.4) for a population proportion

and perform a one-proportion z test upon request. Figure 5.13 shows output corresponding to

Examples 5.21 and 5.22. The 95% CI in Fig. 5.13a for p is roughly (.208, .485); the difference

between this interval and the traditional interval provided in Example 5.21 is due to rounding and an

adjustment made automatically in R called Yates’ continuity correction. The inputs to prop.test

in Fig. 5.13b include not only the raw data x and n, but also the null value of p and the direction of the
test. The resulting P-value, .1698, is close to the value of .1469 obtained in Example 5.22. Again, the

disparity comes from a combination of rounding and the continuity correction. Unfortunately, to the

authors’ knowledge, there are no one-proportion z intervals or z tests built into Matlab.

5.5.4 Exercises: Section 5.5 (77–97)

77. In a sample of 1000 randomly selected consumers who had opportunities to send in a rebate claim

form after purchasing a product, 250 of these people said they never did so (“Rebates: Get What

You Deserve,” Consumer Reports, May 2009: 7). Reasons cited for their behavior included too

many steps in the process, amount too small, missed deadline, fear of being placed on a mailing

list, lost receipt, and doubts about receiving the money. Calculate and interpret a 95% confidence

level for the true proportion of such consumers who never apply for a rebate.

> prop.test(16,48)

        1-sample proportions test with continuity correction

data:  16 out of 48, null probability 0.5 
X-squared = 4.6875, df = 1, p-value = 0.03038
alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval:
 0.2080794 0.4851357 
sample estimates:
        p 
0.3333333 

> prop.test(38,122,p=.357,"less")

        1-sample proportions test with continuity correction

data:  38 out of 122, null probability 0.357 
X-squared = 0.9121, df = 1, p-value = 0.1698
alternative hypothesis: true p is less than 0.357 
95 percent confidence interval:
 0.0000000 0.3881457 
sample estimates:
        p 
0.3114754

a

b

Fig. 5.13 Inferences on p in R: (a) Example 5.21; (b) Example 5.22
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78. AWireless News article (July 6, 2008) found that 62% of people surveyed would use a Bluetooth

device while driving in order to comply with the law. The survey was based upon a random

sample of 600 cell phone users. Construct a 95% confidence interval for the proportion of all cell

phone users who will use Bluetooth technology while driving.

79. The article “Limited Yield Estimation for Visual Defect Sources” (IEEE Trans. Semicon. Manuf.,
1997: 17–23) reported that, in a study of a particular wafer inspection process, 356 dies were

examined by an inspection probe and 201 of these passed the probe. Assuming a stable process,

calculate a 99% confidence interval for the proportion of all dies that pass the probe.

80. The technology underlying hip replacements has changed as these operations have become more

popular (over 250,000 in the USA in 2008). Starting in 2003, highly durable ceramic hips were

marketed. Unfortunately, for too many patients the increased durability has been counterbalanced

by an increased incidence of squeaking. The May 11, 2008, issue of the New York Times reported

that in one study of 143 individuals who received ceramic hips between 2003 and 2005, 10 of the

hips developed squeaking. Calculate and interpret 95% confidence interval for the true proportion

of such hips that develop squeaking.

81. The Pew Forum on Religion and Public Life reported on December 9, 2009, that in a survey of

2003 American adults, 25% said they believed in astrology. Calculate and interpret a confidence

interval at the 99% confidence level for the proportion of all adult Americans who believe in

astrology.

82. Reconsider the score CI (Eq. 5.3) for p, and focus on a confidence level of 95%. Show that the

endpoints agree quite well with those of the traditional interval (Eq. 5.4) once two successes and

two failures have been appended to the sample, i.e., Eq. (5.4) based on (x + 2) S’s in (n + 4)

trials. [Hint: 1.96 � 2.]

83. It is often important in planning studies to know in advance what sample size is required to

estimate an unknown proportion to within a certain margin of error.

(a) Suppose we wish to achieve a bound B on the margin of error of a CI for p. By equating the

margin of error in the “very large n” CI Eq. (5.4) to B and solving for n, show that the

required sample size is

n ¼ z*ð Þ2p̂ 1� p̂ð Þ
B2

(b) A state legislator wishes to survey residents of her district to see what proportion of the

electorate is aware of her position on using state funds to pay for abortions. If the legislator

has strong reason to believe that at least 2/3 of the electorate know of her position, how large

a sample size would you recommend in order to estimate the true proportion to within �
5 percentage points? Assume 95% confidence.

(c) What sample size is necessary if the 95% CI for p is to have width of at most .10 irrespective

of p̂? [Hint: What value of p̂ makes the expression for n as large as possible?]

84. Write a function in Matlab or R to implement (Eq. 5.3). Your function should have three inputs:

the number of successes x, the sample size n, and the desired confidence level. The output of the

function should be the endpoints of the CI.

85. Natural cork in wine bottles is subject to deterioration, and as a result wine in such bottles may

experience contamination. The article “Effects of Bottle Closure Type on Consumer Perceptions

of Wine Quality” (Amer. J. of Enology and Viticulture, 2007: 182–191) reported that, in a tasting
of commercial chardonnays, 16 of 91 bottles were considered spoiled to some extent by cork-

associated characteristics. Does this data provide strong evidence for concluding that more than
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15% of all such bottles are contaminated in this way? Carry out a test of hypotheses using a

significance level of .10.

86. It is known that roughly 2/3 of all human beings have a dominant right foot or eye. Is there also

right-sided dominance in kissing behavior? The article “Human Behavior: Adult Persistence of

Head-Turning Asymmetry” (Nature, 2003: 771) reported that in a random sample of 124 kissing

couples, both people in 80 of the couples tended to lean more to the right than to the left. Does the

result of the experiment suggest that the 2/3 figure is implausible for kissing behavior? State and

test the appropriate hypotheses.

87. The article referenced in Exercise 85 also reported that in a sample of 106 wine consumers,

22 (20.8%) thought that screw tops were an acceptable substitute for natural corks. Suppose a

particular winery decided to use screw tops for one of its wines unless there was strong evidence

to suggest that fewer than 25% of wine consumers found this acceptable.

(a) Using a significance level of .10, what would you recommend to the winery?

(b) For the hypotheses tested in (a), describe in context what the Type I and II errors would be,

and say which type of error might have been committed.

88. With domestic sources of building supplies running low several years ago, roughly 60,000 homes

were built with imported Chinese drywall. According to the article “Report Links Chinese

Drywall to Home Problems” (New York Times, November 24, 2009), federal investigators

identified a strong association between chemicals in the drywall and electrical problems, and

there is also strong evidence of respiratory difficulties due to the emission of hydrogen sulfide

gas. An extensive examination of 51 homes found that 41 had such problems. Suppose these

51 were randomly sampled from the population of all homes having Chinese drywall. Does the

data provide strong evidence for concluding that more than 50% of all homes with Chinese

drywall have electrical/environmental problems? Carry out a test of hypotheses using α ¼ .01.

89. A common characterization of obese individuals is that their body mass index is at least

30 [BMI ¼ weight/(height)2 when height is in meters and weight is in kilograms]. The article

“The Impact of Obesity on Illness Absence and Productivity in an Industrial Population of

Petrochemical Workers” (Annals of Epidemiology, 2008: 8–14) reported that in a sample of

female workers, 262 had BMIs of less than 25, 159 had BMIs that were at least 25 but less than

30, and 120 had BMIs exceeding 30. Is there compelling evidence for concluding that more than

20% of the individuals in the sampled population are obese?

(a) State and test appropriate hypotheses using a significance level of .05.

(b) Explain in the context of this scenario what constitutes Type I and II errors.

90. The article “Analysis of Reserve and Regular Bottlings: Why Pay for a Difference Only the

Critics Claim to Notice?” (Chance, Summer 2005, pp. 9–15) reported on an experiment to

investigate whether wine tasters could distinguish between more expensive reserve wines and

their regular counterparts. Wine was presented to tasters in four containers labeled A, B, C,

and D, with two of these containing the reserve wine and the other two the regular wine. Each

taster randomly selected three of the containers, tasted the selected wines, and indicated which of

the three he/she believed was different from the other two. Of the n ¼ 855 tasting trials,

346 resulted in correct distinctions (either the one reserve that differed from the two regular

wines or the one regular wine that differed from the two reserves). Does this provide compelling

evidence for concluding that tasters of this type have some ability to distinguish between reserve

and regular wines? State and test the relevant hypotheses. Are you particularly impressed with the

ability of tasters to distinguish between the two types of wine?

91. The article “Heavy Drinking and Polydrug Use Among College Students” (J. of Drug Issues,
2008: 445–466) stated that 51 of the 462 college students in a sample had a lifetime abstinence
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from alcohol. Does this provide strong evidence for concluding that more than 10% of the

population sampled had completely abstained from alcohol use? Test the appropriate hypotheses.

[Note: The article used more advanced statistical methods to study the use of various drugs

among students characterized as light, moderate, and heavy drinkers.]

92. Scientists have recently become concerned about the safety of Teflon cookware and various food

containers because perfluorooctanoic acid (PFOA) is used in the manufacturing process. An

article in the July 27, 2005, New York Times reported that of 600 children tested, 96% had PFOA

in their blood. According to the FDA, 90% of all Americans have PFOA in their blood. Does the

data on PFOA incidence among children suggest that the percentage of all children who have

PFOA in their blood exceeds the FDA percentage for all Americans? Carry out an appropriate

test of hypotheses at the α ¼ .05 level.

93. A manufacturer of nickel–hydrogen batteries randomly selects 100 nickel plates for test cells,

cycles them a specified number of times, and determines that 14 of the plates have blistered. Does

this provide compelling evidence for concluding that more than 10% of all plates blister under

such circumstances? State and test the appropriate hypotheses using a significance level of .05. In

reaching your conclusion, what type of error might you have committed?

94. A random sample of 150 recent donations at a blood bank reveals that 82 were type A blood.

Does this suggest that the actual percentage of type A donations differs from 40%, the percentage

of the population having type A blood? Carry out a test of the appropriate hypotheses using a

significance level of .01. Would your conclusion have been different if a significance level of .05

had been used?

95. The article “Statistical Evidence of Discrimination” (J. Amer. Statist. Assoc., 1982: 773–783)
discusses the court case Swain v. Alabama (1965), in which it was alleged that there was

discrimination against blacks in grand jury selection. Census data suggested that 25% of those

eligible for grand jury service were black, yet a random sample of 1050 people called to appear

for possible duty yielded only 177 blacks. Using a level .01 test, does this data argue strongly for

a conclusion of discrimination?

96. Consider testing hypotheses H0: p ¼ p0 versus Ha: p < p0. Suppose that, in fact, the true value of
the parameter p is p0, where p0 < p0 (so Ha is true).

(a) Show that the expected value and variance of the test statistic Z in the one-proportion

z test are

E Zð Þ ¼ p0 � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=np Var Zð Þ ¼ p0 1� p0ð Þ=n

p0 1� p0ð Þ=n

(b) It can be shown that P-value � α iff Z � �zα, where �zα denotes the α quantile of the

standard normal distribution (i.e., Φ(�zα) ¼ α). Show that the power of the lower-tailed

one-sample z test when p ¼ p0 is given by

Φ
p0 � p0 � zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0
1� p0ð Þ=np !

(c) A package-delivery service advertises that at least 90% of all packages brought to its office

by 9 a.m. for delivery in the same city are delivered by noon that day. Let p denote the true

proportion of such packages that are delivered as advertised and consider the null

hypotheses H0: p ¼ .9 versus the alternative Ha: p < .9. If only 80% of the packages are

delivered as advertised, how likely is it that a level .01 test based on n ¼ 225 packages will

detect such a departure from H0?
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97. Because of variability in the manufacturing process, the actual yielding point of a sample of mild

steel subjected to increasing stress will usually differ from the theoretical yielding point. Let

p denote the true proportion of samples that yield before their theoretical yielding point. If on the

basis of a sample it can be concluded that more than 20% of all specimens yield before the

theoretical point, the production process will have to be modified.

(a) If 15 of 60 specimens yield before the theoretical point, what is the P-value when the

appropriate test is used, and what would you advise the company to do?

(b) If the true percentage of “early yields” is actually 50% (so that the theoretical point is the

median of the yield distribution) and a level .01 test is used, what is the probability that the

company concludes a modification of the process is necessary? [Hint: Refer back to the

previous exercise. Modify the expression in part (b) to accommodate an upper-tailed test.]

5.6 Bayesian Inference

Throughout this chapter, we have regarded parameters such as μ, σ, p, and λ as having an unknown

but single, fixed value. This is often referred to as the classical or frequentist approach to statistical

inference. However, there is a different paradigm, called subjective or Bayesian inference, in which

an unknown parameter is assigned a distribution of possible values, analogous to a probability

distribution. This distribution reflects all available information—past experience, intuition, common

sense—about the parameter prior to observing the data. For this reason, it is called the prior

distribution of the parameter.

DEFINITION

A prior distribution for a parameter θ, denoted π(θ), is a probability distribution on the set of

possible values for θ. In particular, if the possible values of the parameter θ form an interval I,
then π(θ) is a pdf that must satisfy Z

I

π θð Þdθ ¼ 1

Similarly, if θ is potentially any value in a discrete set D, then π(θ) is a pmf that must satisfyX
θ2D

π θð Þ ¼ 1

Example 5.23 Consider the parameter μ ¼ the mean GPA of all students at your university. Since

GPAs are always between 0.0 and 4.0, μmust also lie in this interval. But common sense tells you that

μ is unlikely to be below 2.0, or very few people would graduate, and it would be likewise surprising

to find μ much above 3.5. This “prior belief” can be expressed mathematically as a prior distribution

for μ on the interval I ¼ [0, 4]. If our best guess a priori is that μ � 2.5, then our prior distribution

π(μ) should be centered around 2.5. The variability of the prior distribution we select should reflect

how sure we feel about our initial information.

If we feel very sure that μ is near 2.5, then we should select a prior distribution for μ that has less

variation around that value. On the other hand, if we are less certain, this can be reflected by a prior

distribution with much greater variability. Figure 5.14 illustrates these two cases.
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5.6.1 The Posterior Distribution of a Parameter

The key to Bayesian inference is having a mathematically rigorous way to incorporate the actual

sample data. Suppose we observe values x1, . . ., xn from a distribution depending on the unknown

parameter θ for which we have selected some prior distribution. Then a Bayesian statistician wants to

“update” her or his belief about the distribution of θ, taking into account both prior belief and the

observed xis. This is achieved using a form of Bayes’ Theorem for random variables.

DEFINITION

Suppose X1, . . ., Xn have joint pdf f(x1, . . ., xn; θ) and the unknown parameter θ has been

assigned a continuous prior distribution π(θ). Then the posterior distribution of θ, given the

observations X1 ¼ x1, . . ., Xn ¼ xn, is

π θ
��x1, . . . , xn� � ¼ π θð Þf x1; . . . ; xn; θð ÞZ 1

�1
π θð Þf x1; . . . ; xn; θð Þdθ

ð5:5Þ

The integral in the denominator of Eq. (5.5) insures that the posterior distribution is a valid

probability density for θ.
If X1, . . ., Xn are discrete, the joint pdf is replaced by their joint pmf and integration by

summation.

Notice that constructing the posterior distribution of a parameter requires a specific probability

model f(x1, . . ., xn; θ) for the observed data. In Example 5.23, it would not be enough to simply

observe the GPAs of a random sample of n students; one must specify the underlying distribution,

with mean μ, from which those GPAs are drawn.

Example 5.24 Emissions of subatomic particles from a radiation source are often modeled as a

Poisson process. As we shall see in Chap. 7, this implies that the time between successive emissions
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Fig. 5.14 Two prior distributions for a parameter: a more diffuse prior (less certainty) and a more concentrated prior

(more certainty) ■

410 5 The Basics of Statistical Inference

http://dx.doi.org/10.1007/978-3-319-52401-6_7


follows an exponential distribution. In practice, the parameter λ of this distribution is typically

unknown. If researchers believe a priori that the average time between emissions is about half a

second, so λ � 2, a prior distribution with a mean around 2 might be selected for λ. One example is

the following gamma distribution, which has mean (and variance) of 2:

π λð Þ ¼ λe�λ, λ > 0

Notice the gamma distribution lies on the interval (0, 1), which is also the set of possible values

for the unknown parameter λ.
The times X1, . . ., X5 between five particle emissions will be recorded; it is these variables that

have an exponential distribution with the unknown parameter λ (equivalently, mean 1/λ). Because the
Xis are also independent, their joint pdf is

f x1; . . . ; x5; λð Þ ¼ f x1; λð Þ� � �f x5; λð Þ ¼ λe�λx1 � � �λe�λxn ¼ λ5e�λΣxi

Applying Eq. (5.5) with these two components, the posterior distribution of λ given the observed

data is

π λ
��x1, . . . , x5� � ¼ π λð Þf x1; . . . ; x5; λð ÞZ 1

�1
π λð Þf x1; . . . ; x5; λð Þdλ

¼ λe�λ � λ5e�λΣxiZ 1

0

λe�λ � λ5e�λΣxidλ
¼ λ6e�λ 1þΣxið ÞZ 1

0

λ6e�λ 1þΣxið Þdλ

Suppose the five observed inter-emission times are x1 ¼ 0.66, x2 ¼ 0.48, x3 ¼ 0.44, x4 ¼ 0.71,

x5 ¼ 0.56. The sum of these five times is ∑xi ¼ 2.85, and so the posterior distribution simplifies to

π λ
��0:66, . . . , 0:56� � ¼ λ6e�3:85λZ 1

0

λ6e�3:85λdλ
¼ 3:857

6!
λ6e�3:85λ

The integral in the denominator was evaluated using the gamma integral formula (3.5) from

Chap. 3; as noted previously, the purpose of this integral is to guarantee that the posterior distribution

of λ is a valid probability density. As a function of λ, we recognize this as a gamma distribution with

parameters α ¼ 7 and β ¼ 1/3.85. The prior and posterior density curves of λ appear in Fig. 5.15.
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Fig. 5.15 Prior and posterior distribution of λ for Example 5.24 ■
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Example 5.25 A 2010 National Science Foundation study found that 488 out of 939 surveyed adults

incorrectly believe that antibiotics kill viruses (they only kill bacteria). Let θ denote the proportion of
all US adults that hold this mistaken view. Imagine that an NSF researcher, in advance of

administering the survey, believed (hoped?) the value of θ was roughly 1 in 3, but he was very

uncertain about this belief. Since any proportion must lie between 0 and 1, the beta family of

distributions from Sect. 3.5 provides a natural source of priors for θ. One such beta distribution,

with an expected value of 1/3, is the Beta(2, 4) model whose pdf is

π θð Þ ¼ 20θ 1� θð Þ3 0 < θ < 1

The data mentioned at the beginning of the example can be considered either a random sample of

size 939 from the Bernoulli distribution or, equivalently, a single observation from the binomial

distribution with n ¼ 939. Let X ¼ the number of US adults in a random sample of 939 that believe

antibiotics kill viruses. Then X ~ Bin(939, θ), and the pmf of X is p(x; θ) ¼ 939

x

� �
θx 1� θð Þ939�x

.

Substituting the observed value x ¼ 488, Eq. (5.5) gives the posterior distribution of θ as

π θ
��X ¼ 488

� � ¼ π θð Þp 488; θð ÞZ
π θð Þp 488; θð Þdθ

¼
20θ 1� θð Þ3 � 939

488

� �
θ488 1� θð Þ451Z 1

0

20θ 1� θð Þ3 � 939

488

� �
θ488 1� θð Þ451dθ

¼ θ489 1� θð Þ454Z 1

0

θ489 1� θð Þ454dθ
¼ c � θ489 1� θð Þ454 0 < θ < 1

Recall that the constant c, which equals the reciprocal of the integral in the denominator, serves to

insure that the posterior distribution π(θ|X ¼ 488) integrates to 1. Rather than evaluate the integral,

we can simply recognize the expression θ489(1 � θ)454 as a standard beta distribution, specifically

with parameters α ¼ 490 and β ¼ 455, that’s just missing the constant of integration in front.

It follows that the posterior distribution of θ given X ¼ 488 must be Beta(490, 455); if we require

c, it can be copied directly from the beta pdf. (This trick comes in handy quite often in Bayesian

statistics: if we can recognize a posterior distribution as being the “kernel” of a particular probability

distribution, then it must necessarily be that distribution.)

The prior and posterior density curves for θ are displayed in Fig. 5.16. While the prior distribution

is centered around 1/3 and exhibits a great deal of uncertainty (variability), the posterior distribution

of θ is centered much closer to the sample proportion of incorrect answers, 488/939 � .52, with

considerably less uncertainty.

0 0.25 0.50 0.75 0 0.2 0.4
qq

π(q) π(q |x)

0.6 0.8 11

a b

Fig. 5.16 Density curves for the parameter θ in Example 5.25: (a) prior Beta(2, 4); (b) posterior Beta(490, 455) ■

412 5 The Basics of Statistical Inference

http://dx.doi.org/10.1007/978-3-319-52401-6_3#Sec27


5.6.2 Inferences from the Posterior Distribution

Inferences about an unknown parameter can be obtained from its posterior distribution. The most

common Bayesian point estimate for a parameter θ is the mean of its posterior distribution:

θ̂ ¼ E θ
��x1, . . . , xn� �

An interval [a, b] having posterior probability .95 gives a 95% credibility interval, the Bayesian

analogue of a 95% confidence interval (but the interpretation is different). Typically one selects the

middle 95% of the posterior distribution, i.e., the endpoints of a 95% credibility interval are ordinarily

the .025 and .975 quantiles of the posterior distribution.

Example 5.26 (Example 5.24 continued) Given the observed values of X1, . . ., X5, we previously

found that the mean emission rate λ has a Gamma(7, 1/3.85) posterior distribution. Thus, the mean of

the posterior distribution of λ is

λ̂ ¼ E λ
��0:66, . . . , 0:56� � ¼ αβ ¼ 7 1=3:85ð Þ ¼ 1:82

This isn’t too different from the researchers’ prior belief that λ � 2. A 95% credibility interval for

λ requires determining the .025 and .975 quantiles of the Gamma(7, 1/3.85) model; using statistical

software, η.025 ¼ 0.7310 and η.975 ¼ 3.3921. Under the Bayesian interpretation, having observed the

five aforementioned inter-emission times, there is a 95% posterior probability that λ is between

0.7310 and 3.3921 emissions per second. ■

Example 5.27 (Example 5.25 continued) The posterior distribution of the parameter θ ¼ the

proportion of all US adults that incorrectly believe antibiotics kill viruses was a Beta(490, 455)

distribution. A point estimate of θ is the mean of this distribution:

θ̂ ¼ E θ
��X ¼ 488

� � ¼ α

αþ β
¼ 490

490þ 455
¼ 490

945
¼ :5185

Notice this is quite close to the traditional estimate x/n ¼ 488/939 ¼ .5197; in general, when n is

large the mean of the posterior distribution of a parameter will be quite similar to its more traditional,

frequentist estimate.

The .025 and .975 quantiles of this beta distribution are η.025 ¼ .4866 and η.975 ¼ .5503. So, after

observing the results of the NSF survey, there is a 95% posterior probability that θ is between .4866

and .5503. ■

5.6.3 Further Comments on Bayesian Inference

In most cases, the role of the observed values in shaping the posterior distribution of a parameter θ
increases as the sample size n increases. More precisely, it can be shown that under very general

conditions, as n ! 1 the mean of the posterior distribution will converge to the true value of θ while
the variance of the posterior distribution of θ converges to zero:

E θ
��X1, . . . ,Xn

� �! θ Var θ
��X1, . . . ,Xn

� �! 0

The second property manifests itself in our two previous examples: the variability of the posterior

distribution of λ based on n ¼ 5 observations was still rather substantial, while the posterior

distribution of θ based on a sample of size n ¼ 939 was quite concentrated.
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Since traditional estimators such as P̂ and �X converge to the true values of corresponding

parameters (e.g., p or μ) by the Law of Large Numbers, it follows that Bayesian and frequentist

estimates will typically be quite close when n is large. This is true both for the point estimates and the

interval estimates. But when n is small—a common occurrence in Bayesian methodology—parame-

ter estimates can differ drastically between the two methods. This is especially true if the researcher’s

prior belief is very far from what’s actually true (e.g., believing a proportion is around 1/3 when it’s

really more than .5).

It should be emphasized that even if the confidence interval is nearly the same as the credibility

interval for a parameter, they have different interpretations. To interpret the Bayesian credibility

interval, we say that there is a 95% probability that the parameter θ is in the interval. However, for the
frequentist confidence interval such a probability statement does not make sense: as we discussed in

Sect. 5.3, neither the parameter θ nor the endpoints of the interval are considered random under the

classical, frequentist view.

In the examples of this section, prior distributions were chosen partially by matching the mean of a

distribution to someone’s a priori “best guess” about the value of the parameter. We also mentioned at

the beginning of the section that the variability of the prior distribution often reflects the strength of

that belief. In practice, there is a third consideration for choosing a prior distribution: the ability to

apply Eq. (5.5) in a simple fashion. Ideally, we would like to choose a prior distribution from a family

(gamma, beta, etc.) such that the posterior distribution is from that same family. When this happens

we say that the prior distribution is conjugate to the data distribution.

In Example 5.24, the prior π(λ) is the Gamma(2, 1) pdf; we determined, using Eq. (5.5), that the

posterior distribution was Gamma(7, 1/3.85). It can be shown in general (Exercise 104) that any

gamma distribution is conjugate to an exponential data distribution. Similarly, the prior and posterior

distributions of θ in Example 5.25 were Beta(2, 4) and Beta(490, 455), respectively. Exercise

105 shows that any beta distribution is conjugate to a binomial (or Bernoulli) data distribution. If

data are normally distributed with known σ, then a normal prior for μ results in a normal posterior.

The case of unknown σ is more complicated; see Section 14.4 of the reference by Devore & Berk.

5.6.4 Exercises: Section 5.6 (98–106)

98. Nationwide, IQs have a normal distribution with mean 100 and standard deviation 15. Let X1, . . .,

Xn represent the IQs of a random sample of first graders, which we assume also come from a

normal distribution having σ ¼ 15 but possibly a different mean μ. Assign a N(110, 7.5) prior

distribution to μ.
(a) Find the posterior distribution of μ.
(b) Here are the actual IQ scores of a random sample of n ¼ 18 first graders:

113 108 140 113 115 146 136 107 108

119 132 127 118 108 103 103 122 111

Calculate a point estimate of μ using the posterior distribution.

(c) Calculate and interpret 95% credibility interval for μ.
(d) Calculate a one-sample z 95% confidence interval for μ using the 18 observations with

σ ¼ 15, and compare with the credibility interval of (b).

99. The number of customers arriving during a 1-h period at an ice cream shop is modeled by a

Poisson distribution with unknown parameter μ. Based on past experience, the owner believes

that the average number of customers in 1 h is about 15.
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(a) Assign a prior to μ from the gamma family of distributions, such that the mean of the prior is

15 and the standard deviation is 5 (reflecting moderate uncertainty).

(b) The number of customers in ten randomly selected 1-h intervals is recorded:

16 9 11 13 17 17 8 15 14 16

Find the posterior distribution of μ.
(c) Find and interpret a 95% credibility interval for μ.

100. In a study of 70 restaurant bills, 40 of the 70 were paid using cash. Let p denote the population

proportion paying cash.

(a) Assuming a beta prior distribution for p with α ¼ 2 and β ¼ 2, obtain the posterior

distribution of p.
(b) Repeat (a) on with α and β positive and close to 0.

(c) Calculate a 95% credibility interval for p using (b). Is your interval compatible with

p ¼ .5?

(d) Calculate a 95% confidence interval for p using Eq. (5.3), and compare with the result of

(c).

(e) Compare the interpretations of the credibility interval and the confidence interval.

(f) Based on the prior in (b), test the hypothesis p � .5 using the posterior distribution to find

P(p � .5).

101. For the data of Example 5.25 assume a Beta(2, 4) prior distribution and assume that the

939 observations are a random sample from the Bernoulli distribution. Use Eq. (5.5) to derive

the posterior distribution, and compare your answer with the result of Example 5.25.

102. Laplace’s rule of succession says that if there have been n Bernoulli trials and they have all been
successes, then the probability of a success on the next trial is (n + 1)/(n + 2). For the

derivation, Laplace used a Beta(1, 1) prior for the parameter p.

(a) Show that, if a Beta(1, 1) prior is assigned to p and there are n successes in n trials, then the
posterior mean of p is (n + 1)/(n + 2).

(b) Explain (a) in terms of total successes and failures; that is, explain the result in terms of two

prior trials plus n later trials.

(c) Laplace applied his rule of succession to compute the probability that the sun will rise

tomorrow using 5000 years, or n ¼ 1,826,214 days of history in which the sun rose every

day. Is Laplace’s method equivalent to including two prior days when the sun rose once

and failed to rise once? Criticize the answer in terms of total successes and failures.

103. Suppose you have a random sample X1, X2, . . ., Xn from the Poisson distribution with mean μ. If
the prior distribution for μ has a gamma distribution with parameters α and β, show that the

posterior distribution is also gamma distributed. What are its parameters?

104. Suppose you have a random sample X1, X2, . . ., Xn from the exponential distribution with

parameter λ. If the prior distribution for λ has a gamma distribution with parameters α and β,
show that the posterior distribution is also gamma distributed. What are its parameters?

105. Suppose X ~ Bin(n, p), where the probability parameter p is unknown. If the prior distribution

for p has a beta distribution with parameters α and β, show that the posterior distribution is also

beta distributed. What are its parameters?

106. Consider a random sample X1, X2, . . ., Xn from the normal distribution with mean 0 and variance

σ2 ¼ 1/τ. (The parameter τ ¼ 1/σ2 is called the precision of the normal distribution.) Assume a

gamma-distributed prior for τ and show that the posterior distribution of τ is also gamma. What

are its parameters?
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5.7 Supplementary Exercises (107–138)

107. At time t ¼ 0, there is one individual alive in a certain population. A pure birth process then

unfolds as follows. The time until the first birth is exponentially distributed with parameter λ.
After the first birth, there are two individuals alive. The time until the first gives birth again is

exponential with parameter λ, and similarly for the second individual. Therefore, the time until

the next birth is the minimum of two exponential (λ) variables, which is exponential with

parameter 2λ. Similarly, once the second birth has occurred, there are three individuals alive, so

the time until the next birth is an exponential rv with parameter 3λ, and so on (the memoryless

property of the exponential distribution is being used here). Suppose the process is observed

until the sixth birth has occurred and the successive birth times are 25.2, 41.7, 51.2, 55.5, 59.5,

61.8 (from which you should calculate the times between successive births). Derive the mle of λ.
[Hint: The likelihood is a product of exponential terms.]

108. When the sample standard deviation S is based on a random sample from a normal population

distribution, it can be shown that

E Sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= n� 1ð Þ

p
Γ n=2ð Þσ=Γ n� 1ð Þ=2½ �

Use this to obtain an unbiased estimator for σ of the form cS. What is c when n ¼ 20?

109. Each of n specimens is to be weighed twice on the same scale. Let Xi and Yi denote the two

observed weights for the ith specimen. Suppose Xi and Yi are independent of each other, each

normally distributed with mean value μi (the true weight of specimen i) and variance σ2.

(a) Show that the mle of σ2 is σ̂2 ¼P Xi � Yið Þ2= 4nð Þ [Hint: If �z ¼ z1 þ z2ð Þ=2, thenP�
zi � �z

�
2 ¼ z1 � z2ð Þ2=2.]

(b) Is the mle σ̂2 an unbiased estimator of σ2? Find an unbiased estimator of σ2. [Hint: For any
rv Z, E(Z2) ¼ Var(Z ) + [E(Z )]2. Apply this to Z ¼ Xi � Yi.]

110. The Principle of Unbiased Estimation has been criticized on the grounds that in some situations

the only unbiased estimator is patently ridiculous. Here is one such example. Suppose that the

number of major defects X on a randomly selected vehicle has a Poisson distribution with

parameter μ. You are going to purchase two such vehicles and wish to estimate θ ¼ P (X1 ¼ 0,

X2 ¼ 0) ¼ e�2μ, the probability that neither of these vehicles has any major defects. Your

estimate is based on observing the value of X for a single vehicle. Denote this estimator by

θ̂ ¼ g Xð Þ. Write the equation implied by the condition of unbiasedness, E[g(X)] ¼ e�2μ, cancel

e�μ from both sides, then expand what remains on the right-hand side in an infinite series, and

compare the two sides to determine g(X). If X ¼ 200, what is the estimate? Does this seem

reasonable? What is the estimate if X ¼ 199? Is this reasonable?

111. Let X, the payoff from playing a certain game, have pmf

p x; θð Þ ¼ θ x ¼ �1

1� θð Þ2θx x ¼ 0, 1, 2, . . .

	
(a) Verify that p(x; θ) is a legitimate pmf, and determine the expected payoff. [Hint: Look back

at the properties of a geometric random variable discussed in Chap. 2.]

(b) Let X1, . . ., Xn be the payoffs from n independent games of this type. Determine the mle of

θ. [Hint: Let Y denote the number of observations among the n that equal �1, and write the

likelihood as a single expression in terms of ∑xi and y.]

112. The reaction time (RT) to a stimulus is the interval of time commencing with stimulus

presentation and ending with the first discernible movement of a certain type. The article
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“Relationship of Reaction Time and Movement Time in a Gross Motor Skill” (Percept. Motor

Skills, 1973: 453–454) reports that the sample average RT for 16 experienced swimmers to a

pistol start was .214 s and the sample standard deviation was .036 s. Making any necessary

assumptions, derive a 90% CI for true average RT for all experienced swimmers.

113. For each of 18 preserved cores from oil-wet carbonate reservoirs, the amount of residual gas

saturation after a solvent injection was measured at water flood-out. Observations, in percentage

of pore volume, were

23.5 31.5 34.0 46.7 45.6 32.5

41.4 37.2 42.5 46.9 51.5 36.4

44.5 35.7 33.5 39.3 22.0 51.2

(See “Relative Permeability Studies of Gas-Water Flow Following Solvent Injection in Carbon-

ate Rocks,” Soc. Petrol. Eng. J., 1976: 23–30.)

(a) Is it plausible that the sample was selected from a normal population distribution?

(b) Calculate a 98% CI for the true average amount of residual gas saturation.

114. Aphid infestation of fruit trees can be controlled either by spraying with pesticide or by

inundation with ladybugs. In a particular area, four different groves of fruit trees are selected

for experimentation. The first three groves are sprayed with pesticides 1, 2, and 3, respectively,

and the fourth is treated with ladybugs, with the following results on yield:

Treatment ni (number of trees) �xi (bushels/tree) si
1 100 10.5 1.5

2 90 10.0 1.3

3 100 10.1 1.8

4 120 10.7 1.6

Let μi ¼ the true average yield (bushels/tree) after receiving the ith treatment. Then

θ ¼ 1

3
μ1 þ μ2 þ μ3ð Þ � μ4

measures the difference in true average yields between treatment with pesticides and treatment

with ladybugs. When n1, n2, n3, and n4 are all large, the estimator θ̂ obtained by replacing each μi
by �Xi is approximately normal. Use this to derive a large-sample 100(1 � α)% CI for θ, and
compute the 95% interval for the given data.

115. It is important that face masks used by firefighters be able to withstand high temperatures

because firefighters commonly work in temperatures of 200–500 	F. In a test of one type of

mask, 11 of 55 masks had lenses pop out at 250	. Construct a 90% CI for the true proportion of

masks of this type whose lenses would pop out at 250	.
116. A journal article reports that a sample of size 5 was used as a basis for calculating a 95% CI for

the true average natural frequency (Hz) of delaminated beams of a certain type. The resulting

interval was (229.764, 233.504). You decide that a confidence level of 99% is more appropriate

than the 95% level used. What are the limits of the 99% interval? [Hint: Use the center of the

interval and its width to determine �x and s.]
117. Chronic exposure to asbestos fiber is a well-known health hazard. The article “The Acute

Effects of Chrysotile Asbestos Exposure on Lung Function” (Envir. Res., 1978: 360–372)
reports results of a study based on a sample of construction workers who had been exposed to

asbestos over a prolonged period. Among the data given in the article were the following

(ordered) values of pulmonary compliance (cm3/cm H2O) for each of 16 subjects 8 months after
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the exposure period (pulmonary compliance is a measure of lung elasticity, or how effectively

the lungs are able to inhale and exhale):

167.9 180.8 184.8 189.8 194.8 200.2

201.9 206.9 207.2 208.4 226.3 227.7

228.5 232.4 239.8 258.6

(a) Is it plausible that the population distribution is normal?

(b) Compute a 95% CI for the true average pulmonary compliance after such exposure.

118. A triathlon consisting of swimming, cycling, and running is one of the more strenuous amateur

sporting events. The article “Cardiovascular and Thermal Response of Triathlon Performance”

(Medicine and Science in Sports and Exercise, 1988: 385–389) reports on a research study

involving nine male triathletes. Maximum heart rate (beats/min) was recorded during perfor-

mance of each of the three events. For swimming, the sample mean and sample standard

deviation were 188.0 and 7.2, respectively. Assuming that the heart-rate distribution is (approx-

imately) normal, construct a 98% CI for true mean heart rate of triathletes while swimming.

119. An April 2009 survey of 2253 American adults conducted by the Pew Research Center’s

Internet & American Life Project revealed that 1262 of the respondents had at some point

used wireless means for online access.

(a) Calculate and interpret a 95% CI for the proportion of all American adults who at the time

of the survey had used wireless means for online access.

(b) What sample size is required if the desired width of the 95% CI is to be at most .04,

irrespective of the sample results? [Hint: See Exercise 83.]
120. High concentration of the toxic element arsenic is all too common in groundwater. The article

“Evaluation of Treatment Systems for the Removal of Arsenic from Groundwater” (Practice

Periodical of Hazardous, Toxic, and Radioactive Waste Mgmt., 2005: 152–157) reported that

for a sample of n ¼ 5 water specimens selected for treatment by coagulation, the sample mean

arsenic concentration was 24.3 mg/L, and the sample standard deviation was 4.1. The authors of

the cited article used t-based methods to analyze their data, so hopefully had reason to believe

that the distribution of arsenic concentration was normal.

(a) Calculate and interpret a 95% CI for true average arsenic concentration in all such water

specimens.

(b) Predict the arsenic concentration for a single water specimen in a way that conveys

information about precision and reliability. (See Exercise 49.)

121. Let θ1 and θ2 denote the mean weights for animals of two different species. An investigator

wishes to estimate the ratio θ1/θ2. Unfortunately the species are extremely rare, so the estimate

will be based on finding a single animal of each species. Let Xi denote the weight of the species

i animal (i ¼ 1, 2), assumed to be normally distributed with mean θi and standard deviation 1.

(a) What is the distribution of the variable θ2X1 � θ1X2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ θ22

q
? Show that this variable

depends on θ1 and θ2 only through θ1/θ2 (divide numerator and denominator by θ2).
(b) Since the variable in (a) is normally distributed, we have

P �1:96 < θ2X1 � θ1X2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ θ22

q
< 1:96

� �
¼ :95

Now replace < by ¼ and solve for θ1/θ2. Then show that a confidence interval results if

x1
2 + x2

2 � 1.962, whereas if this inequality is not satisfied, the resulting confidence set is

the complement of an interval.
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122. Let X1, X2, . . ., Xn be a random sample from a uniform distribution on the interval [0, θ].
Then if Y ¼ max(Xi), the techniques of Sect. 4.9 show that Y has density function

f yð Þ ¼
n

θn
yn�1 0 � y � θ

0 otherwise

(

(a) Use f(y) to verify that

P θ � α=2ð Þ1=n � Y � θ � 1� α=2ð Þ1=n
h i

¼ 1� α

and use this to derive a 100(1 � α)% CI for θ.
(b) Verify that P(θ � α1/n � Y � θ) ¼ 1 � α, and derive a 100(1 � α)% CI for θ based on

this probability statement.

(c) Which of the two intervals derived in (a) and (b) is shorter? If your waiting time for a

morning bus is uniformly distributed and observed waiting times are x1 ¼ 4.2, x2 ¼ 3.5,

x3 ¼ 1.7, x4 ¼ 1.2, and x5 ¼ 2.4, obtain a 95% CI for θ by using the shorter of the two

intervals.

123. Consider 95% CIs for two different parameters θ1 and θ2, and let Ai (i ¼ 1, 2) denote the event

that the value of θi is included in the random interval that results in the CI. Thus P(Ai) ¼ .95.

(a) Suppose that the data on which the CI for θ1 is based is independent of the data used to

obtain the CI for θ2 (e.g., we might have θ1 ¼ μ, the population mean height for American

females, and θ2 ¼ p, the proportion of all Kodak digital cameras that don’t need warranty

service). What can be said about the simultaneous (i.e., joint) confidence level for the two

intervals? That is, how confident can we be that the first interval contains the value of θ1
and that the second contains the value of θ2? [Hint: Consider P(A1 \ A2).]

(b) Now suppose the data for the first CI is not independent of that for the second one. What

now can be said about the simultaneous confidence level for both intervals? [Hint:
Consider P(A1

0 [ A2

0
), the probability that at least one interval fails to include the value

of what it is estimating. Now use the fact that P(A1

0 [ A2

0
) � P(A1

0
) + P(A2

0
) [why?] to show

that the probability that both random intervals include what they are estimating is at

least .90. The generalization of the bound on P(A1

0 [ A2

0
) to the probability of a k-fold

union is one version of the Bonferroni inequality.]
(c) What can be said about the simultaneous confidence level in (b) if the confidence level for

each interval separately is 100(1 � α)%? What can be said about the simultaneous

confidence level if a 100(1 � α)% CI is computed separately for each of k parameters

θ1, . . ., θk?
124. Let X1, . . . , Xn be a random sample from a continuous probability distribution having median η

(so that P(Xi � η) ¼ P(Xi � η) ¼ .5). Let Y1 and Yn be the smallest and largest order statistic

for the sample (i.e., Y1 ¼ min(Xi) and Yn ¼ max(Xi)).

(a) Show that

P Y1 � η � Ynð Þ ¼ 1� 1

2

� �n�1

so that (Y1, Yn) is a 100(1 � α)% confidence interval for η with α ¼ (1/2)n�1. [Hint: Use

the same arguments employed in Sect. 4.9 to derive the cdfs of Y1 and Yn.]
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(b) For each of six normal male infants, the amount of the amino acid alanine (mg/100 mL)

was determined while the infants were on an isoleucine-free diet, resulting in the following

data:

2.84 3.54 2.80 1.44 2.94 2.70

Compute a 97% CI for the true median amount of alanine for infants on such a diet (“The

Essential Amino Acid Requirements of Infants,” Amer. J. of Nutrition, 1964: 322–330).
(c) Let Y2 and Yn�1 denote the second-smallest and second-largest of the Xis, respectively.

What is the confidence level of the interval (Y2, Yn�1) for η?
125. One method for straightening wire before coiling it to make a spring is called “roller straight-

ening.” The article “The Effect of Roller and Spinner Wire Straightening on Coiling Perfor-

mance and Wire Properties” (Springs, 1987: 27–28) reports on the tensile properties of wire.

Suppose a sample of 16 wires is selected and each is tested to determine tensile strength

(N/mm2). The resulting sample mean and standard deviation are 2160 and 30, respectively.

(a) The mean tensile strength for springs made using spinner straightening is 2150 N/mm2.

What hypotheses should be tested to determine whether the mean tensile strength for the

roller method exceeds 2150?

(b) Assuming that the tensile strength distribution is approximately normal, what test statistic

would you use to test the hypotheses in part (a)?

(c) What is the value of the test statistic for this data?

(d) What is the P-value for the value of the test statistic computed in part (c)?

(e) For a level .05 test, what conclusion would you reach?

126. A new method for measuring phosphorus levels in soil is described in the article “A Rapid

Method to Determine Total Phosphorus in Soils” (Soil Sci. Amer. J., 1988: 1301–1304).

Suppose a sample of 11 soil specimens, each with a true phosphorus content of 548 mg/kg, is

analyzed using the new method. The resulting sample mean and standard deviation for phos-

phorus level are 587 and 10, respectively.

(a) Is there evidence that the mean phosphorus level reported by the new method differs

significantly from the true value of 548 mg/kg? Use α ¼ .05.

(b) What assumptions must you make for the test in part (a) to be appropriate?

127. The article “Orchard Floor Management Utilizing Soil-Applied Coal Dust for Frost Protection”

(Agric. Forest Meteorol., 1988: 71–82) reports the following values for soil heat flux of eight

plots covered with coal dust.

34.7 35.4 34.7 37.7 32.5 28.0 18.4 24.9

The mean soil heat flux for plots covered only with grass is 29.0. Assuming that the heat-flux

distribution is approximately normal, does the data suggest that the coal dust is effective in

increasing the mean heat flux over that for grass? Test the appropriate hypotheses using

α ¼ .05.

128. The article “Caffeine Knowledge, Attitudes, and Consumption in Adult Women” (J. Nutrit. Ed.,
1992: 179–184) reports the following summary data on daily caffeine consumption for a sample

of adult women: n ¼ 47, �x ¼ 215mg, s ¼ 235 mg, and range ¼ 5–1176.

(a) Does it appear plausible that the population distribution of daily caffeine consumption is

normal? Is it necessary to assume a normal population distribution to test hypotheses about

the value of the population mean consumption? Explain your reasoning.

(b) Suppose it had previously been believed that mean consumption was at most 200 mg. Does

the given data contradict this prior belief? Test the appropriate hypotheses at significance

level .10.
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129. The accompanying observations on residual flame time (seconds) for strips of treated children’s

nightwear were given in the article “An Introduction to Some Precision and Accuracy of

Measurement Problems” (J. Test. Eval., 1982: 132–140). Suppose a true average flame time

of at most 9.75 had been mandated. Does the data suggest that this condition has not been met?

Carry out an appropriate test after first investigating the plausibility of assumptions that underlie

your method of inference.

9.85 9.93 9.75 9.77 9.67 9.87 9.67

9.94 9.85 9.75 9.83 9.92 9.74 9.99

9.88 9.95 9.95 9.93 9.92 9.89

130. The incidence of a certain type of chromosome defect in the US adult male population is

believed to be 1 in 75. A random sample of 800 individuals in US penal institutions reveals

16 who have such defects. Can it be concluded that the incidence rate of this defect among

prisoners differs from the presumed rate for the entire adult male population?

(a) State and test the relevant hypotheses using α ¼ .05.

(b) What type of error might you have made in reaching a conclusion?

131. In an investigation of the toxin produced by a certain poisonous snake, a researcher prepared

26 different vials, each containing 1 g of the toxin, and then determined the amount of antitoxin

needed to neutralize the toxin. The sample average amount of antitoxin necessary was found to

be 1.89 mg, and the sample standard deviation was .42. Previous research had indicated that the

true average neutralizing amount was 1.75 mg/g of toxin. Does the new data contradict the value

suggested by prior research? Test the relevant hypotheses. Does the validity of your analysis

depend on any assumptions about the population distribution of neutralizing amount? Explain.

132. The sample average unrestrained compressive strength for 45 specimens of a particular type of

brick was computed to be 3107 psi, and the sample standard deviation was 188. The distribution

of unrestrained compressive strength may be somewhat skewed. Does the data strongly indicate

that the true average unrestrained compressive strength is less than the design value of 3200?

Test using α ¼ .001.

133. To test the ability of auto mechanics to identify simple engine problems, an automobile with a

single such problem was taken in turn to 72 different car repair facilities. Only 42 of the

72 mechanics who worked on the car correctly identified the problem. Does this strongly

indicate that the true proportion of mechanics who could identify this problem is less than

.75? Test the appropriate hypotheses.

134. The December 30, 2009, the New York Times reported that in a survey of 948 American adults

who said they were at least somewhat interested in college football, 597 said the Bowl

Championship System should be replaced by a playoff similar to that used in college basketball

(in fact, a playoff system replaced the BCS starting with the 2014 season). Does this provide

compelling evidence for concluding that a majority of all such individuals favored replacing the

BCS with a playoff at that time? Test the appropriate hypotheses.

135. An article in the November 11, 2005, issue of the San Luis Obispo Tribune reported that

researchers making random purchases at California Wal-Mart stores found scanners coming up

with the wrong price 8.3% of the time. Suppose this was based on 200 purchases. The National

Institute for Standards and Technology says that in the long run at most two out of every

100 items should have incorrectly scanned prices. Carry out an appropriate hypothesis test to

decide whether the NIST benchmark is not satisfied. [Caution: Are the conditions for a

one-proportion z test met? If not, what distribution can be used instead?]

136. Annual holdings turnover for a mutual fund is the percentage of a fund’s assets that are sold

during a particular year. Generally speaking, a fund with a low value of turnover is more stable
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and risk averse, whereas a high value of turnover indicates a substantial amount of buying and

selling in an attempt to take advantage of short-term market fluctuations. Here are values of

turnover for a sample of 20 large-cap blended funds extracted from Morningstar.com:

1.03 1.23 1.10 1.64 1.30 1.27 1.25 0.78 1.05 0.64

0.94 2.86 1.05 0.75 0.09 0.79 1.61 1.26 0.93 0.84

(a) Would you use the one-sample t test to decide whether there is compelling evidence for

concluding that the population mean turnover is less than 100%? Explain.

(b) A normal probability plot of the 20 ln(turnover) values shows a very pronounced linear

pattern, suggesting it is reasonable to assume that the turnover distribution is lognormal.

Recall that X has a lognormal distribution if ln(X) is normally distributed with mean value

μ and standard deviation σ. Because μ is also the median of the ln(X) distribution, eμ is the
median of the X distribution. Use this information to decide whether there is compelling

evidence for concluding that the median of the turnover population distribution is less than

100%.

137. When X1, X2, . . ., Xn are independent Poisson variables, each with parameter μ, and n is large,

the sample mean �X has approximately a normal distribution with E �Xð Þ ¼ μ and Var �Xð Þ ¼ μ=n.
This implies that

Z ¼
�X � μffiffiffiffiffiffiffiffi
μ=n

p
has approximately a standard normal distribution. For testing H0: μ ¼ μ0, we can replace μ by

μ0 in the equation for Z to obtain a test statistic. This statistic is actually preferred to the large-

sample statistic with denominator S=
ffiffiffi
n

p
(when the Xis are Poisson) because it is tailored

explicitly to the Poisson assumption. If the number of requests for consulting received by a

certain statistician during a 5-day work week has a Poisson distribution and the total number of

consulting requests during a 36-week period is 160, does this suggest that the true average

number of weekly requests exceeds 4.0? Test using α ¼ .02.

138. When the population distribution is normal and n is large, the sample standard deviation S has

approximately a normal distribution with E(S) � σ and Var(S) � σ2/(2n). We already know

that in this case, for any n, �X is normal with E �Xð Þ ¼ μ and Var �Xð Þ ¼ σ2=n.
(a) Assuming that the underlying distribution is normal, what is an approximately unbiased

estimator of the 99th percentile θ ¼ μ + 2.33σ?
(b) When the Xis are normal, it can be shown that �X and S are independent rvs (one measures

location whereas the other measures spread). Use this to compute Var θ̂
� �

and σθ̂ for the

estimator θ̂ of part (a). What is the estimated standard error σ̂θ̂?
(c) Write a test statistic formula for testing H0: θ ¼ θ0 that has approximately a standard

normal distribution when H0 is true. If soil pH is normally distributed in a certain region

and 64 soil samples yield �x ¼ 6:33, s ¼ .16, does this provide strong evidence for

concluding that at most 99% of all possible samples would have a pH of less than 6.75?

Test using α ¼ .01.

422 5 The Basics of Statistical Inference



Markov Chains 6

This chapter explores the properties of a broadly applicable probability model called aMarkov chain,

named after Russian mathematician A. A. Markov (1856–1922). Markov observed that many real-

world phenomena can be modeled as a sequence of “transitions” from one “state” to another, with

each transition having some associated uncertainty. For example, a taxi driver might “transition”

between several towns (or zones within a large city); each time he drops off a passenger, he can’t be

certain where his next fare will want to go. Similarly, a gambler might think of her winnings as

transitioning from one “state”—really, a dollar amount—to another; with each round of the game she

plays, she cannot be certain whether that dollar amount will go up or down (though, obviously, she

hopes it goes up!). The same could be said for modeling the daily closing prices of a stock: each new

day, there is uncertainty about whether that stock will “transition” to a higher or lower value, and this

uncertainty could be modeled using the tools of probability.

In all of these examples, aside from the probability model for how transitions occur, one extra

piece of information is critical: the current “state” (where the taxi driver is, how much money the

gambler has). After all, if the gambler is making $5 wagers, how much money she might have after

the next game depends on how much she has now—if she currently holds $45 in chips, then at the end

of the upcoming round she can only have $40 or $50 on an even bet. The model structure proposed by

Markov applies to situations where only knowledge of the current state, and the nature of transitions,

is necessary—we don’t care how our gambler arrived at $45 in chips, only that that’s how much she

currently possesses.

Section 6.1 introduces basic notation for Markov chains and provides a rigorous definition of the

property alluded to in the previous paragraph. In Sects. 6.2 and 6.3 we explain how the use of matrix

notation can facilitate Markov chain computations. Section 6.4 focuses on a special class of Markov

chains, so-called regular chains, which have a rather exceptional property embodied in the Steady-

State Theorem. Section 6.5 considers a different class of Markov chains, those with one or more

“inescapable” states, such as a gambler going broke. Finally, Sect. 6.6 discusses the simulation of

Markov chains using software.

6.1 Terminology and Basic Properties

Markov chains provide a model for sequential information that allows future outcomes to depend on

previous ones, albeit in a very specific way (the definingMarkov property). Researchers in numerous

# Springer International Publishing AG 2017

M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology,
Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6_6

423



fields employ Markov chains to model the phenomena they study. Recent examples include

predicting changes in electricity demand; modeling the motion of sperm whales off the Galapagos

Islands; Chinese citizens changing their cell phone service; keeping track of inpatient bed usage at

hospitals; monitoring patterns in Web browser histories to deploy better-targeted advertising; the

evolution of drought conditions over time; and the dynamics of capital assets.

This first section introduces the basic vocabulary and notation of Markov chains. We begin with

the following classic (if slightly artificial) example, which will serve as a thread throughout the

chapter.

Example 6.1 A city has three different taxi zones, numbered 1, 2, and 3. A taxi driver operates his

cab in all three zones. The probability that his next passenger has a destination in a particular one of

these zones depends on where the passenger is picked up. Specifically, whenever the taxi driver is in

zone 1, the probability his next passenger is going to zone 1 is .3, to zone 2 is .2, and to zone 3 is .5.

Starting in zone 2, the probability his next passenger is going to zone 1 is .1, to zone 2 is .8, and to

zone 3 is .1. Finally, whenever he is in zone 3, the probability his next passenger is going to zone 1 is

.4, to zone 2 is .4, and to zone 3 is .2. These probabilities are encapsulated in the state diagram in

Fig. 6.1.

In every such state diagram, the sum of the probabilities on branches exiting any state must equal 1.

For example, in Fig. 6.1 the probabilities exiting state 2 (i.e., zone 2) are .1, .8, and .1. We include in

this calculation the probability .8 indicated by a “loop” in the state diagram, which simply means that

the taxi driver has .8 probability of staying in zone 2 once he has dropped off a fare in zone 2.

Define X0 to be the zone in which the taxi driver starts and Xn (n � 1) to be the zone where he

drops off his nth fare. Since X0, X1, X2, . . . “occur” in sequence, they are often referred to as a chain.

More precisely, this particular sequence is a finite-state, discrete-time, time-homogeneous Markov

chain. Each of these terms will be explained shortly. ■

In Example 6.1, each of the Xn for n � 0 assumes the value 1, 2, or 3 according to the destination

zone. The zones collectively constitute the states of our chain, and so the state space is {zone 1, zone

2, zone 3}, although we will often drop the state names and just use the integers {1, 2, 3}. States can

be identified with physical locations, levels (such as high/medium/low), dollar amounts, or just about

anything else. We’ll sometimes refer to the Xn as random variables, even though they are not

necessarily numerical (which goes against the definition from Chap. 2). The random variable X0 is

called the initial state of the chain. A discrete-space chain is one for which the number of possible

states is finite or countably infinite. If there are finitely many possible states, we have a finite-state

chain.

.3

.2

.4

.4.5

.1

.2

.1

21

3

.8Fig. 6.1 State diagram for

Example 6.1
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Since time was indexed by the discrete listing n ¼ 0, 1, 2, . . ., the sequence of zones the taxi driver
visited in Example 6.1 is called a discrete-time chain. Section 7.7 gives an overview of continuous-

time chains, often indexed as {Xt: t 2 [0, 1)}, which are useful for modeling behavior continuously

in time rather than just at discrete time points (e.g., tracking over time the number of people looking at

a particular Web site). The taxi driver chain is also time-homogeneous, in that the specified

probabilities do not change over time. One could imagine a different, more complicated model

where the probabilities specified in Example 6.1 apply during morning hours but not in the evening,

so that the probability of taking a fare from zone 1 to zone 3 is .5 for n ¼ 1 (beginning of the work

day) but is .1, say, for n ¼ 20 (end of his shift). See Exercises 78 and 79 for examples of nonhomo-

geneous Markov chains.

Example 6.2 This is a simple version of the famous Gambler’s Ruin problem, which we previously

considered in Exercise 145 of Chap. 1. Allan and Beth play a succession of independent games for $1

each. Suppose Allan starts with $2 and Beth with $1, and the chance of Allan winning $1 is p on each

game. Ties are not allowed, so the chance of Beth winning $1 on any particular game is 1 � p. They
compete until one of the two players goes broke (has $0).

For n ¼ 0, 1, 2, . . ., define Xn ¼ the amount of money Allan has after n games. The initial state has

been specified as X0 ¼ $2; Allan’s successive holdings X0, X1, X2, . . . form our chain. The state space

for Xn is {$0, $1, $2, $3} or just {0, 1, 2, 3}, so we again have a finite-state chain. The state space and

the specified probabilities are illustrated by the state diagram in Fig. 6.2. Notice we have included two

“loops” with probability 1 at $0 and $3—these reflect the constraint that the game stops once Allan

reaches one of these dollar amounts. That is, once Allan is “at” $3, he will stay at $3, and the same goes

for $0. Also, it will always be understood that if no arrow points from state i to state j in such a diagram,

then the probability of moving from state i immediately into state j (i.e., in one time step) is zero.

Example 6.3 A random walk. Imagine a marker initially placed at 0 on the number line. A fair coin is

flipped repeatedly; each head moves the marker one integer to the right, while each tail moves it one

integer to the left. Let X0 ¼ 0, the initial state, and Xn ¼ the marker’s position after n coin flips for

n � 1. Each member of the chain can only take on a finite set of values: X1 is either +1 or �1, X2 is

one of �2, 0, or 2, and so on. However, the collection of all possible states across all time indices

comprises the entire set of integers: {. . ., �3, �2, �1, 0, 1, 2, 3, . . .}. Thus, this so-called “random

walk” is an infinite-state (though still discrete-state) chain; it is partially illustrated in Fig. 6.3.

$0 $1
1−p 1−p

p p 11

$2 $3

Fig. 6.2 State diagram for Example 6.2 ■

−2
.5

.5 .5

.5

.5

.5

.5

.5
−1 0 1 2

Fig. 6.3 State diagram for Example 6.3 ■
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6.1.1 The Markov Property

All of the preceding examples have an important feature known as the Markov property. Loosely

speaking, it says that in order to know where the chain will go next (say, Xn+1), it suffices to know

where the chain is now (the value of Xn). In particular, once the current state is specified, the path that

brought the chain to that state is irrelevant. Consider, for example, the random walk of Example 6.3: if

for any particular n we have Xn ¼ 4, then we know Xn+1 ¼ 3 or 5 with probability .5 each. It does not

matter whether the chain arrived at 4 quickly (0 ! 1 ! 2 ! 3 ! 4) or by a more circuitous route;

the probability distribution of the next state in the chain is the same. This notion is formalized in the

following definition.

DEFINITION

Let X0, X1, X2, . . . be a sequence of random variables (a chain) on some discrete state space. The

sequence is said to have the Markov property if, for any time index n and any set of (not

necessarily distinct) states s0, s1, . . ., sn, sn+1,

P Xnþ1 ¼ snþ1

��X0 ¼ s0,X1 ¼ s1, . . . ,Xn ¼ sn
� � ¼ P Xnþ1 ¼ snþ1

��Xn ¼ sn
� � ð6:1Þ

Such a sequence {Xn: n ¼ 0, 1, 2, . . .} is called a Markov chain.

The conditional probabilities specified in Eq. (6.1) are called the one-step transition probabilities

of the chain, or sometimes just transition probabilities. These are precisely the probabilities specified

in Examples 6.1–6.3. It’s critical to recognize that these are conditional probabilities: they specify the

likelihood of the next member of the chain Xn+1 being in any particular state, given the current state of
the chain Xn.

Example 6.4 (Example 6.1 continued) The sequence of successive zones visited by our taxi driver is

characterized by nine one-step transition probabilities. For example, it is stated that the driver

“transitions” from zone 1 to zone 3 with probability .5, which means that for any time index n,

P Xnþ1 ¼ 3
��Xn ¼ 1

� � ¼ :5

This probability does not depend on the value of n, because the chain is time-homogeneous.

Instead of writing P(Xn + 1 ¼ 3jXn ¼ 1) ¼ .5, we will sometimes abbreviate with P(1 ! 3) ¼ .5 to

emphasize the idea of transitioning from one state to another. Thus, the complete set of one-step

transition probabilities for the taxi driver is

P 1 ! 1ð Þ ¼ :3 P 1 ! 2ð Þ ¼ :2 P 1 ! 3ð Þ ¼ :5

P 2 ! 1ð Þ ¼ :1 P 2 ! 2ð Þ ¼ :8 P 2 ! 3ð Þ ¼ :1

P 3 ! 1ð Þ ¼ :4 P 3 ! 2ð Þ ¼ :4 P 3 ! 3ð Þ ¼ :2 ■

Example 6.5 (Example 6.2 continued) The changing fortunes of Allan are governed by six

(non-zero) transition probabilities:
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P 1 ! 0ð Þ ¼ 1� p P 1 ! 2ð Þ ¼ p P 2 ! 1ð Þ ¼ 1� p P 2 ! 3ð Þ ¼ p

P 0 ! 0ð Þ ¼ 1 P 3 ! 3ð Þ ¼ 1

The last two probabilities above correspond to termination of the sequence of games. From a

mathematical (if not practical) perspective, they communicate the idea that the chain marches on even

when gameplay has ended (e.g., 2 ! 3 ! 3 ! 3 . . .). That is, the conditional probability

P(3 ! 3) ¼ P(Xn+1 ¼ 3|Xn ¼ 3) ¼ 1 indicates that if Allan has all $3 at stake after n games, he

will retain his $3 while some imaginary future gameplay continues (the (n + 1)st game, the (n + 2)nd

game, etc.). This convention eliminates the need to “stop” the Markov chain at some particular time

point n. We’ll elaborate much more on this in Sect. 6.5.

In addition, there are ten one-step transition probabilities that equal zero; for example, according to

the rules of Gambler’s Ruin, P(1 ! 3) ¼ 0, and P(3 ! x) ¼ 0 for x 2 {0, 1, 2}. In general, a finite-

state Markov chain with s states is specified by s2 one-step transition probabilities, although it is quite
common for many (if not most) of these to be zero. ■

Example 6.6 Markov chains are often used to model changing weather conditions; research litera-

ture in both meteorology and climate science is rife with Markov chain applications. The article “To

Ski or Not to Ski: Estimating Transition Matrices to Predict Tomorrow’s Snowfall Using Real Data”

(J. of Statistics Educ., vol. 18, no. 3, 2010) provides data for several US cities on the daily transitions

between “snow days,” defined by a snow depth of at least 50 mm, and “green days” (snow depth <

50 mm). Let Xn represent the snow status, either S for snow or G for green, on the nth recorded day.

For New York City, the following one-step transition probabilities are provided:

P G ! Gð Þ ¼ :964 P G ! Sð Þ ¼ :036 P S ! Gð Þ ¼ :224 P S ! Sð Þ ¼ :776

If today is a “green day” in New York, then there is a 96.4% chance that tomorrow’s snow depth

will also be below 50 mm, based on the available weather data (which, incidentally, stretches back to

the year 1912 for New York). On the other hand, as the author notes, “the presence of a significant

snow depth (accumulation) on the current day in Central Park (New York) has an approximately 1 in

5 chance of melting before the next day.” ■

Not all sequences of random variables possess the Markov property. In econometrics (statistical

methodology applied to economic scenarios), for example, most models for the closing price Xn+1 of a

stock on the (n + 1)st day of trading incorporate not only the previous day’s closing price Xn but also

information from many previous days (the data Xn�1, Xn�2, and so on). The likelihood that Xn+1 will

be $5 higher than Xnmay depend on the stock’s behavior over all of last week, not just where it closed

on day n.

That said, in some instances a model that includes more than a one-time-step dependence can be

modified by reconfiguring the state space in such a way that it satisfies the Markov property. This

expansion of states is illustrated in the next example.

Example 6.7 The weather model presented in Example 6.6 satisfies the Markov property; in

particular, it assumes that one can model tomorrow’s weather based on today’s conditions without

incorporating any previous information. A more realistic model might assume that tomorrow’s snow

depth depends on today’s and yesterday’s weather. Suppose, for example, that tomorrow will be a

snow day with probability .8 if both yesterday and today were snow days; with probability .6 if today
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was a snow day but yesterday was a green day; with probability .3 if it was green today and snowy

yesterday; and with probability .1 if both previous days were green.

Once again let Xn ¼ the “state” of the weather on day n: G for green day, S for snow day. Then the

sequence X0, X1, X2, . . .. of weather states does not satisfy the Markov property, because the

conditional distribution of Xn+1 given all previous weather information depends on both Xn and

Xn�1 (the previous two days’ weather conditions). So, let’s make the following modification: define

Yn to be the ordered pair

Yn ¼ (day n weather, day n + 1 weather) ¼ (Xn, Xn+1)

So, for example, if snow depth was � 50 mm on day 4 but < 50 mm on day 5, then Y4 ¼ (S, G).

The weather on day 6 depends on these previous 2 days, but they are now both contained in a single

“variable,” Y4. In other words, Y5 can be modeled entirely by knowing Y4: Y5’s first entry, X5, matches

the second entry of Y4, and the probability distribution of the second entry of Y5 (i.e., X6) is

determined by the rules given at the beginning of this example.

With this modification, the sequence Y0, Y1, Y2, . . . forms a Markov chain. The state space of this

chain is not {S, G}, but rather {(G, G), (G, S), (S, G), (S, S)}. The earlier weather rules can be

expressed as one-step transition probabilities for this chain:

P S; Sð Þ ! S; Sð Þð Þ ¼ :8 P S;Gð Þ ! G; Sð Þð Þ ¼ :3

P G; Sð Þ ! S; Sð Þð Þ ¼ :6 P G;Gð Þ ! G; Sð Þð Þ ¼ :1

Four other transition probabilities can be found by considering the complements of the given

transition events. The final eight transition probabilities (with four states, there are 42 ¼ 16 total

one-step transition probabilities) are all 0, e.g., P((S,G) ! (S, S)) ¼ 0, because if Yn ¼ (S,G) then it

was “green” on day n + 1 (Xn+1 ¼ G), meaning the first entry of Yn+1 must also be G. ■

The remainder of this chapter will focus almost exclusively on finite-state, discrete-time, time-

homogeneous chains; these are the most commonly encountered models in practice. The case of

infinite-state chains, including the random walk of Example 6.3, is considered in several more

advanced texts; see, for example, the book Introduction to Probability Models by Ross listed in the

references.

6.1.2 Exercises: Section 6.1 (1–10)

1. The article “Markov Chain Models of Negotiators’ Communication” (Encyclopedia of Peace
Psychology 2012: 608-612) describes the following set-up for the back and forth dialogue

between two negotiators. If at any stage a negotiator engages in a cooperative strategy,

the other negotiator will respond with a cooperative strategy with probability .6. Otherwise, the

response is described as a competitive strategy. Similarly, there is probability .7 that a competi-

tive strategy offered at any stage of the negotiations will be met by another competitive strategy.

Let Xn ¼ the strategy employed at the nth stage of the negotiation. Identify the state space for the
chain, specify its one-step transition probabilities, and draw the corresponding state diagram.

2. Imaginem balls being exchanged between two adjacent chambers (left and right) according to the

following rules. At each time step, one of the m balls is randomly selected and moved to

the opposite chamber, i.e., if the selected ball is currently in the right chamber, it will be

moved to the left one, and vice versa. Let Xn ¼ the number of balls in the left chamber after
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the nth exchange. (This is called an Ehrenfest chain, a model often used to describe the

movement of gas molecules.)

(a) Identify the state space of this chain.

(b) Suppose m ¼ 3. Specify the one-step transition probabilities for this chain. [Hint: It might

be helpful to draw the two chambers and the possible positions of the three balls.]

(c) Draw the state diagram corresponding to (b).

(d) Generalize the probabilities in (b) to the case of m balls.

3. A certain machine used in a manufacturing process can be in one of three states: fully operational

(“full”), partially operational (“part”), or broken. If the machine is fully operational today, there’s

a .7 probability it will be fully operational again tomorrow, a .2 chance it will be partially

operational tomorrow, and otherwise tomorrow it will be broken. If the machine is partially

operational today, there is a .6 probability it will continue to be partially operational tomorrow

and otherwise it will be broken (because the machine is never repaired in its partially operational

state). Finally, if the machine is broken today, there is a .8 probability it will be repaired to fully

operational status tomorrow; otherwise, it remains broken. Let Xn ¼ the state of the machine on

day n.
(a) Identify the state space of this chain.

(b) Determine the complete set of one-step transition probabilities, and draw the corresponding

state diagram.

4. Michelle will flip a coin until she gets heads four times in a row. Define X0 ¼ 0 and, for n � 1,

Xn ¼ the number of heads in the current streak of heads after the nth flip.

(a) If the first seven flips result in the sequence HTHHHTH, determine the values of X1, X2, . . .,
X7. [Hint: Each time Michelle flips tails, the streak is reset to 0.]

(b) Is this an example of a Markov chain? Explain why or why not.

(c) Identify the state space of the chain. Treat reaching four heads in a row in the same manner

that the $3 state was treated in the Gambler’s Ruin scenario of Example 6.2.

(d) Assume P(H ) ¼ p for this particular coin. Determine the one-step transition probabilities of

this chain, and draw the corresponding state diagram.

5. A single cell has probability p of dividing into two cells and probability 1 � p of dying without

dividing. Once two new cells have been created, each has the same probability p of splitting in

two, independent of the other. In this fashion, cells continue to divide, either indefinitely or until

all cells are dead (extinction of the cell line). Let Xn ¼ the number of cells in the nth generation,

with X0 ¼ 1 to reflect the initial, single cell.

(a) What are the possible numerical values of X1, and what are their probabilities?

(b) What are the possible numerical values of X2?

(c) Determine the one-step transition probabilities for this chain. That is, given there are x cells

in the nth generation (Xn ¼ x), determine the conditional probability distribution of Xn+1.

[Note: This is an example of a branching process, commonly known as aGalton-Watson process.

See Exercise 163 at the end of Chap. 4 for information on determining the probability of eventual

extinction.]

6. Imagine a set of stacked files, such as papers on your desk. Occasionally, you will need to retrieve

one of these files, which you will find by “sequential search”: looking at the first paper in the

stack, then the second, and so on until you find the document you require. A sensible sequential
search algorithm is to place the most recently retrieved file at the top of the stack, the idea being

that files accessed more often will “rise to the top” and thus require less searching in the long run.

For simplicity’s sake, imagine such a scenario with just three files, labeled A, B, C.
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(a) Let Xn represent the sequence of the entire stack after the nth search. For example, if the files

are initially stacked A on top of B on top of C, then X0 ¼ ABC. Determine the state space for

this chain.

(b) If X0 ¼ ABC, list all possible states for X1. [Hint: One of the three files will be selected and

rise to the front of the stack. Is every arrangement listed in (a) possible, starting from ABC?]
(c) Suppose that, at any given time, there is probability pA that file A must be retrieved, pB that

file B must be retrieved, and similarly for pC (¼ 1 � pA � pB). Determine all of the

non-zero one-step transition probabilities.

7. Social scientists have used Markov chains to study “social mobility,” the movement of people

between social classes, for more than a century. In a typical such model, states are defined as

social classes, e.g., lower class, middle class, and upper class. The time index n refers to a familial

generation, so if Xn represents a man’s social class, then Xn�1 is his father’s social class, Xn�2 his

grandfather’s, and so on.

(a) In this context, what would it mean for Xn to be a Markov chain? In particular, would that

imply that a grandfather’s social class has no bearing on his grandson’s? Explain.

(b) What would it mean for this chain to be time-homogeneous? Does that seem realistic?

Explain why or why not.

8. The article “Markov Chain Models for Delinquency: Transition Matrix Estimation and

Forecasting” (Appl. Stochastic Models Bus. Ind., 2011: 267-279) classifies loan status into four

categories: current (payments are up-to-date), delinquent (payments are behind but still being

made), loss (payments have stopped permanently), and paid (the loan has been paid off). Let

Xn ¼ the status of a particular loan in its nth month, and assume (as the authors do) that Xn is a

Markov chain.

(a) Suppose that, for one particular loan type, P(delinquent ! current) ¼ .1 and P(current !
delinquent) ¼ .3. Interpret these probabilities.

(b) According to the definitions of the “loss” and “paid” states, what are P(loss ! loss) and

P(paid ! paid)? [Hint: Refer back to Example 6.2.]

(c) Draw the state diagram for this Markov chain.

(d) What would it mean for this Markov chain to be time-homogeneous? Does that seem

realistic? Explain.

9. The article cited in Exercise 1 also suggests a more complex negotiation model, wherein the

strategy employed at the nth stage (cooperative or competitive) is predicted not only by the

immediately preceding action but also the one before it. So, negotiator A’s next strategy is

determined not only by negotiator B’s most recent move, but also by A’s choice just before that.

Again, let Xn ¼ the negotiating strategy used at the nth stage.

(a) Is Xn a Markov chain? Explain.

(b) How could you modify this example to create a Markov chain? What additional information

would you need to completely specify this chain? [Hint: See Example 6.7.]

10. Let X0, X1, X2, . . . be a sequence of independent discrete rvs taking values in some common state

space.

(a) Show that Xn satisfies the Markov property. (That is, all sequences of independent rvs on a

common state space are trivially discrete-space Markov chains.)

(b) What additional condition(s), if any, must be satisfied for Xn to be a time-homogeneous

Markov chain?

430 6 Markov Chains



6.2 The Transition Matrix and the Chapman–Kolmogorov Equations

Section 6.1 introduced the notion of a Markov chain and its characteristic one-step transition

probabilities. In this section, we will develop a systematic way to determine the probability that a

chain moves from one state to another in two steps (or three or four . . .) by considering all the

intermediate paths the chain may have taken. Such calculations are facilitated by aggregating the

transition probabilities into a matrix.

6.2.1 The Transition Matrix

The one-step transition probabilities for the taxi driver example were displayed in Example 6.4 as a

3 � 3 array. It would be more efficient to simply specify the probabilities themselves in that same

format, with the understanding that the probability in the ith row and jth column indicates the

transition probability P(i ! j), the chance the taxi driver takes his next fare to zone j given that he

picks up the fare in zone i. Such a representation will be critical to understanding how various

multistep transition probabilities are calculated.

DEFINITION

Let X0, X1, X2, . . . be a finite-state, time-homogeneous Markov chain, and index the states of the

chain by the positive integers 1, 2, . . ., s. The (one-step) transition matrix of the Markov chain

is the s � s matrix P whose (i, j)th entry is given by

pij ¼ P i ! jð Þ ¼ P Xnþ1 ¼ j
��Xn ¼ i

� �
for i ¼ 1, . . ., s and j ¼ 1, . . ., s.

Example 6.8 (Example 6.4 continued) The one-step transition matrix for our taxi driver example is

P ¼
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35
which is identical in format to the display in Example 6.4. The entries are interpreted as the preceding

definition suggests, e.g., the upper left entry (first row, first column) of the matrix is

p11 ¼ P 1 ! 1ð Þ ¼ P Xnþ1 ¼ 1
��Xn ¼ 1

� � ¼ :3,

i.e., the conditional probability that his next fare is dropped off somewhere in zone 1 given that the

taxi is currently in zone 1. ■

Example 6.9 (Example 6.5 continued) For the Gambler’s Ruin scenario with a total available

fortune of $3, rather than label the four possible states as 1, 2, 3, 4, it’s more natural to use state

labels 0, 1, 2, and 3 corresponding to Allan’s fortune at any particular time. The transition

probabilities specified previously may be written as the following 4 � 4 matrix:
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P ¼
0

1

2

3

1 0 0 0

1� p 0 p 0

0 1� p 0 p
0 0 0 1

2664
3775

The labels along the left-hand side of the matrix indicate the ordering of the states for the purpose

of creating this matrix; they are not, strictly speaking, a part of P. For example, P(Xn+1 ¼ 1jXn ¼ 2) ¼
P(Allan loses the next game) ¼ 1 � p, while P(Xn+1 ¼ 3jXn ¼ 0) ¼ 0. ■

Example 6.10 (Example 6.6 continued) The snow depth model has only two states, S (snowy day)

and G (“green” day). The one-step transition probabilities given for New York City can be

summarized by the following 2 � 2 matrix:

P ¼ G
S

:964 :036
:224 :776

� �
■

Notice that the entries of every row in all of the preceding transition matrices sums to 1. This will

always be the case: given that the chain is currently in some state i, it has to go somewhere in its next

step (even if that entails remaining in state i). That is, for any state i and any time index n, we must

have

Xs

j¼1

pij ¼
Xs

j¼1

P i ! jð Þ ¼
Xs

j¼1

P Xnþ1 ¼ j
��Xn ¼ i

� � ¼ 1

6.2.2 Computation of Multistep Transition Probabilities

We now turn to the determination of multistep transition probabilities. Given that a Markov chain is

currently in state i, what is the probability it will be in state j two steps later (i.e., after two

transitions)? Three steps later? We begin with the following definition.

DEFINITION

Let X0, X1, X2, . . . be a time-homogeneous Markov chain. For any positive integer k, the k-step

transition probabilities are defined by

P kð Þ i ! jð Þ ¼ P Xnþk ¼ j
��Xn ¼ i

� � ð6:2Þ

where i and j range across the states of the chain (typically 1, . . ., s). For k ¼ 1, we will typically

revert to the previous notation: P(1)(i ! j) ¼ P(i ! j).

The superscript (k) in Expression (6.2) does not indicate taking the kth power; it is simply notation

representing “in k steps.” The next example illustrates how these k-step transition probabilities can be
calculated, and how they can be represented compactly in terms of powers of the one-step transition

matrix.

Example 6.11 (Example 6.8 continued) Suppose our taxi driver just dropped off a fare in zone 3, so

that that is his current state. What is the probability that his second fare, counting from now, takes him

432 6 Markov Chains



to zone 1? That is, we wish to determine P(Xn+2 ¼ 1jXn ¼ 3) ¼ P(2)(3 ! 1). The calculation

method is suggested by Fig. 6.4. Consider all the possible destinations of the (n + 1)st fare, i.e., all

the intermediate steps the taxi driver could take from zone 3 to zone 1, and then employ the Law of

Total Probability (applied here to conditional probabilities).

The partitioning events in the Law of Total Probability are the possible states at time n + 1:

P 2ð Þ 3 ! 1ð Þ ¼ P
�
Xnþ2 ¼ 1

��Xn ¼ 3
�

¼ P Xnþ1 ¼ 1
��Xn ¼ 3

� �
P
�
Xnþ2 ¼ 1

��Xn ¼ 3,Xnþ1 ¼ 1
�

þ P Xnþ1 ¼ 2
��Xn ¼ 3

� �
P
�
Xnþ2 ¼ 1

��Xn ¼ 3,Xnþ1 ¼ 2
�

þ P Xnþ1 ¼ 3
��Xn ¼ 3

� �
P
�
Xnþ2 ¼ 1

��Xn ¼ 3,Xnþ1 ¼ 3
�

By the Markov property, P(Xn+2 ¼ 1jXn ¼ 3, Xn+1 ¼ 1) ¼ P(Xn+2 ¼ 1jXn+1 ¼ 1), and the other

two probabilities involving conditioning on Xn and Xn+1 simplify analogously. Thus,

P 2ð Þ 3 ! 1ð Þ ¼ P
�
Xnþ1 ¼ 1

��Xn ¼ 3
�
P
�
Xnþ2 ¼ 1

��Xnþ1 ¼ 1
�

þ P
�
Xnþ1 ¼ 2

��Xn ¼ 3
�
P
�
Xnþ2 ¼ 1

��Xnþ1 ¼ 2
�

þ P Xnþ1 ¼ 3
��Xn ¼ 3

� �
P
�
Xnþ2 ¼ 1

��Xnþ1 ¼ 3
�

¼ P 3 ! 1ð ÞP�1 ! 1
�þ P

�
3 ! 2

�
P
�
2 ! 1

�þ P
�
3 ! 3

�
P
�
3 ! 1

�
¼ :4ð Þ�:3�þ �

:4
��
:1
�þ �

:2
��
:4
� ¼ :24

For later reference, the last expression could be written in terms of the elements of the transition

matrix P; specifically, it’s p31p11 + p32p21 + p33p31.

Similarly, the conditional probability that his second fare wants to be dropped off in zone 2 is

computed by

P 2ð Þ 3 ! 2ð Þ ¼ P
�
3 ! 1

�
P
�
1 ! 2

�þ P
�
3 ! 2

�
P
�
2 ! 2

�þ P
�
3 ! 3

�
P
�
3 ! 2

�
¼

X3
j¼1

P 3 ! jð ÞP j ! 2ð Þ ¼
X3
j¼1

p3jpj2

¼ :4ð Þ�:2�þ �
:4
��
:8
�þ �

:2
��
:4
� ¼ :48

Finally, the probability the taxi driver finds himself back in zone 3 after two fares is

1

12

.4

.4

.4.2

.3

.1

3

3

time n time n+1 time n+2Fig. 6.4 Transitioning

from state 3 to state 1 in

two time steps
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P 2ð Þ 3 ! 3ð Þ ¼
X3
j¼1

p3jpj3 ¼ :4ð Þ :5ð Þ þ :4ð Þ :1ð Þ þ :2ð Þ :2ð Þ ¼ :28

This makes sense, since the taxi driver must arrive in one of the three zones at time n + 2, and

1 � (.24 + .48) ¼ .28. ■

The sums of products of matrix entries that appear repeatedly in the preceding example should

look familiar: they are the same manner of computation that arises when one matrix is multiplied by

another (or, here, a matrix is multiplied by itself). Indeed, consider what happens if we multiply the

one-step transition matrix P from Example 6.8 by itself:

P2 ¼ PP ¼
:3 :2 :5

:1 :8 :1

:4 :4 :2

264
375 :3 :2 :5

:1 :8 :1

:4 :4 :2

264
375 ¼

:31 :42 :27

:15 :70 :15

:24 :48 :28

264
375

The entries in the bottom row—.24, .48, .28—are precisely the two-step transition probabilities

computed in Example 6.11. Specifically, the (3, 1) entry of P2 is P(2)(3 ! 1) ¼ .24, the (3, 2) entry of

P2 is P(2)(3 ! 2) ¼ .48, and the (3, 3) entry of P2 is P(2)(3 ! 3) ¼ .28. It should come as no surprise

that the other six entries of P2 follow the same pattern: the (i, j) entry of P2 is equal to P(2)(i ! j).

Hence, we can obtain all nine two-step transition probabilities with a single matrix computation

(which, of course, can be facilitated by Matlab or other matrix-capable software).

The foregoing result can be generalized to an arbitrary fixed number of steps: to find the three-step

transition probabilities, for example, one only needs to compute the matrix P3. It is not necessary to

consider explicitly the many different paths by which the Markov chain could transition from state i to
state j in three steps and add up all the corresponding probabilities (this is, secretly, what the threefold

matrix multiplication does). The most general result is often referred to as the set of Chapman–

Kolmogorov Equations.

CHAPMAN–KOLMOGOROV EQUATIONS

If a Markov chain has one-step transition matrix P, then the k-step transition probabilities are

the entries of the matrix Pk. Specifically,

P kð Þ i ! jð Þ ¼ the i; jð Þ entry of Pk

Example 6.12 (Example 6.11 continued) Back to our intrepid taxi driver: if he just dropped off a fare

in zone 2, what is the probability that he will be in zone 1 two fares later? That is, we wish to

determine the two-step transition probability P(Xn+2 ¼ 1jXn ¼ 2) ¼ P(2)(2 ! 1). According to the

Chapman–Kolmogorov Equations, this is simply the (2, 1) entry of the foregoing matrix P2:

P 2ð Þ 2 ! 1ð Þ ¼ :15

Now consider a longer-term question: If the taxi driver starts the day in zone 3 and transports ten

fares before lunch, what is the probability he ends up “back home” (i.e., in zone 3) for lunch? The goal

is to find P(X10 ¼ 3jX0 ¼ 3) ¼ P(10)(3 ! 3), which could involve summing up a terrifying number

of intermediate travel options (19,683 of them, to be precise!). But the Chapman–Kolmogorov

Equations, coupled with computer software, makes light work of the problem. With the aid of

Matlab, the tenth power of P is found to be

434 6 Markov Chains



P10 ¼
:2004 :5993 :2004

:1998 :6004 :1998

:2002 :5996 :2002

264
375

The desired probability is just the (3, 3) entry of this 10-step transition matrix: P(10)(3 ! 3)

¼ .2002. ■

Example 6.13 The report “Research and Application by Markov Chain Operators in the Mobile

Phone Market” (Second International Conference on Artificial Intelligence, Management Science and

Electronic Commerce (AIMSEC), 2011) details an analysis of customer loyalty and movement

between China’s three major cell phone service providers: (1) China Telecom, (2) China Unicom,

and (3) China Mobile. A “transition” in this setting refers to an opportunity for a customer to renew

his or her contract with a current provider or else switch to one of the other two companies. The report

includes the following one-step transition matrix, with the companies numbered as above:

P ¼
:84 :06 :10

:08 :82 :10

:10 :04 :86

264
375

The entries along the main diagonal indicate customer loyalty, e.g., 84% of China Telecom

customers stick with that company when their contract expires.

Suppose a customer is currently with China Unicom. What is the probability she will be with the

same service provider three contracts from now? In other words, what is P(3)(2 ! 2)? According to

the Chapman–Kolmogorov Equations, we need the (2, 2) entry of P3. That matrix is computed to be

P3 ¼
:6310 :1352 :2338

:1920 :5742 :2338

:2267 :1006 :6727

264
375

from which we may extract P(3)(2 ! 2) ¼ .5742.

It’s important to distinguish this probability from the answer to a more restrictive question: what’s

the chance she stays with China Unicom for all of her next three cell phone contracts? This

probability can be represented as P(Xn + 1 ¼ 2 \ Xn + 2 ¼ 2 \ Xn + 3 ¼ 2jXn ¼ 2) or, less formally,

as P(2 ! 2 ! 2 ! 2). Applying the Markov property gives [P(2 ! 2)]3 ¼ p22
3 ¼ (.82)3¼.5514.

This probability is slightly lower than P(3)(2 ! 2) ¼ .5742, since the latter accounts for the possi-

bility that the customer switches companies at some intermediate stage(s) but ends up back with

China Unicom three contracts later. ■

Example 6.14 (Example 6.9 continued) Suppose in our earlier Gambler’s Ruin example that

p ¼ .55; that is, Allan has a 55% chance of winning any particular $1 game. The one- and

two-step transition matrices are as follows:
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P ¼

0

1

2

3

1 0 0 0

:45 0 :55 0

0 :45 0 :55

0 0 0 1

266664
377775 P2 ¼

0

1

2

3

1 0 0 0

:45 :2475 0 :3025

:2025 0 :2475 :55

0 0 0 1

266664
377775

As before, Allan starts with $2. Looking at the $2 row (i.e., the third row) of P2, there is a .2025

probability he has gone broke after two games. This is easy to compute by hand: since he could only

lose $2 in two games by losing twice, the chance is (.45)2 ¼ .2025. The chance that he is back to

where he started after two games (i.e., X2 ¼ $2) is the ($2, $2) entry of P2: .2475. This also could

have occurred in just one way: $2 ! $1 ! $2, for which the two-step transition probability is (.45)

(.55) ¼ .2475. Notice that the ($2, $1) entry of P2 is 0, i.e., P(2)($2 ! $1) ¼ 0. Since exactly $1

exchanges hands at the end of each game, it’s impossible for Allan to transition from $2 to $1 in

exactly two steps. Finally, observe that the ($2, $3) entry of both matrices is .55, so P($2 ! $3) ¼
P(2)($2 ! $3) ¼ .55. That’s because the game ends when Allan has all $3 at stake, which he could

achieve in one step with probability p ¼ .55. Having done so, he will “stay at $3” in the imaginary

second game/step, i.e., from a mathematical perspective, the observed sequence of the Markov chain

steps X0, X1, and X2 is $2 ! $3 ! $3, with the second transition occurring with probability 1.

A natural concern from Allan’s perspective is the likelihood that he will eventually win. One way

to estimate that probability is to look at the chance Allan has arrived at the $3 “state” after some large

number of steps. (This works because once he has $3, he will always remain at $3.) Matlab can easily

calculate high powers of small matrices; we requested P75:

P75 ¼

1 0 0 0

:5980 0 :0000 :4020

:2691 :0000 0 :7309

0 0 0 1

266664
377775

The two entries that read .0000 indicate that the probability is not strictly 0, but rather is 0 to four

decimal places. From this matrix, we have that

P Allan eventually has $3
�� X0 ¼ $2

� � � P Allan has $3 after 75 steps
�� X0 ¼ $2

� �
¼ P 75ð Þ $2 ! $3ð Þ ¼ :7309

Had Allan started with just $1, he would have a roughly .4020 chance of eventually winning all the

money.

In Sect. 6.5, we will present an exact method for determining the probability that Allan eventually

wins (or loses) his competition with Beth. ■

6.2.3 Exercises: Section 6.2 (11–22)

11. The authors of the article “The Fate of Priority Areas for Conservation in Protected Areas: A

Fine-Scale Markov Chain Approach” (Envir. Mgmnt., 2011: 263–278) postulated the following
model for landscape changes in the forest regions of Italy. Each “pixel” on a map is classified as

forested (F) or non-forested (NF). For any specific pixel, Xn represents its status n years after

2000 (so X1 corresponds to 2001, X2 to 2002, and so on). Their analysis showed that a pixel has a
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90% chance of being forested next year if it is forested this year and an 11% chance of being

forested next year if it non-forested this year; moreover, data in the twenty-first century are

consistent with the assumptions of a Markov chain.

(a) Construct the one-step transition matrix for this chain, with states 1 ¼ F and 2 ¼ NF.

(b) If a map pixel was forested in the year 2000, what is the probability it was still forested in

2002? 2013?

(c) If a map pixel was non-forested in the year 2000, what is the probability it was still

non-forested in 2002? 2013?

(d) The article’s authors use this model to project forested status for several Italian regions in

the years 2050 and 2100. Comment on the assumptions required for these projections to be

valid.

12. A large automobile insurance company classifies its customers into four risk categories (1 being

the lowest risk, aka best/safest drivers, 4 being the worst/highest risk; premiums are assigned

accordingly). Each year, upon renewal of a customer’s insurance policy, the risk category may

change depending on the number of accidents in the previous year. Actuarial data suggest the

following: category 1 customers stay in category 1 with probability .9 and move to categories

2, 3, 4 with probabilities .07, .02, and .01, respectively. Category 2 customers shift to category

1 (based on having no accidents last year) with probability .8 and rise to risk categories 3 and

4 with probabilities .15 and .05, respectively. Similarly, category 3 customers transition to 2 and

4 with probabilities .7 and .3, while category 4 customers stay in that risk category with

probability .4 and move to category 3 otherwise.

(a) Let Xn denote a customer’s risk category for his/her nth year with the insurance company.

Construct the one-step transition matrix for this Markov chain.

(b) If a customer starts in category 1, what is the probability she falls into risk category 2 five

years later?

(c) If a customer is currently in risk category 4, determine the probability he will be a category

1 driver in k years, for k ¼ 1, 2, 3, 4, 5, 6.

(d) What is the probability that a driver currently in category 1 remains in that category for

each of the next 5 years?

13. The article cited in Example 6.6 also gives the following one-step transition matrix, with the

same definitions of states, for Willow City, ND:

P ¼ G
S

:933 :067
:012 :988

� �
(a) Contrast Willow City with New York City: where is snow more likely to stay on the ground

for an extended time period? Explain.

(b) If today is a snowy day in Willow City, what is the probability it will also be a snowy day

there 2 days from now? three days from now?

(c) If today is a snowy day in Willow City, what is the probability it will continue to be snowy

for the next 4 days in a row?

14. I (author Carlton) have a six-room house whose configuration is depicted in the accompanying

diagram. When my sister and her family visit, I often play hide-and-seek with my young

nephew, Lucas. Consider the following situation: Lucas counts to ten in Room 1, while I run

and hide in Room 6. Lucas’ “strategy,” as much as he has one, is such that standing in any room

of the house, he is equally likely to next visit any of the adjacent rooms, regardless of where he
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has searched previously. (The exception, of course, is if he enters Room 6, in which case he

discovers me and the round of hide-and-seek is over.)

1 2 3

6

5

4

(a) Let Xn ¼ the nth room Lucas visits (with X0 ¼ 1, his starting point). Construct the

one-step transition matrix for the corresponding Markov chain.

(b) What is the probability that his third room-to-room transition will take him into Room 2?

(c) What is the fewest number of time steps (i.e., room transitions) required for Lucas to find

me?

(d) What is the probability that, after 12 time steps, he still hasn’t found me?

15. Refer back to Exercise 1 in the previous section. Consider two negotiators, A and B, who

employ strategies according to the Markov chain model described.

(a) Construct the one-step transition matrix for the Markov chain Xn ¼ strategy employed at

the nth stage of a negotiation, assuming the states are (1) cooperative and (2) competitive.

(b) If negotiator A employs a cooperative strategy at some stage, what is the probability she

uses a competitive strategy the next time? [Don’t forget that A’s turns are two time steps

apart, since B counter-negotiates in between.]

(c) Now introduce a third state, (3) end of the negotiation. Assume that a Markov chain model

with the following one-step transition matrix applies:

P ¼
:6 :2 :2

:3 :4 :3

0 0 1

264
375

Given that the initial strategy presented is cooperative, what is the probability the

negotiations end within three time steps?

(d) Refer back to (c). Given that the initial strategy presented is competitive, what is the

probability the negotiations end within three time steps?

16. Sarah, a statistician at a large Midwestern polling agency, owns four umbrellas. Initially, two of

them are at her home and two are at her office. Each morning, she takes an umbrella with her to

work (assuming she has any at home) if and only if it’s currently raining, which happens on 20%

of mornings. Each evening, she takes an umbrella from work to home (again, assuming any are

available) if and only if it’s raining when she leaves work, which happens on 30% of all

evenings. Assume weather conditions, including morning and evening on the same day, are

independent (in the Midwest, that’s not unrealistic). Let Xn ¼ the number of umbrellas Sarah

has at home at the end of her nth work day (i.e., once she’s back at home).

(a) Identify the state space for this chain.

(b) Assume Sarah has two umbrellas at home tonight. By considering all possible weather

conditions tomorrow morning and tomorrow evening, determine the one-step transition

probabilities for the number of umbrellas she’ll have at home tomorrow night.

438 6 Markov Chains



(c) Repeat the logic of (b) to determine the complete one-step transition matrix for this chain.

Be careful when considering the two extreme cases!

17. Refer back to the previous exercise.

(a) Given that Sarah has two umbrellas at home (and two at work) as of Sunday night, what is

the probability she’ll have exactly two umbrellas at home the following Friday night?

What is the probability she’ll have at least two umbrellas at home the following Friday

night?

(b) Given that Sarah has two umbrellas at home Sunday night, what are the chances she won’t

have an umbrella to take with her to work the following Thursday morning when a surprise

thunderstorm moves through the area?

(c) Assume again that Sarah has two umbrellas at home at the start of the week. Determine the

expected number of umbrellas she has at home at the end of Monday and at the end of

Tuesday. [Hint: Xn is a discrete rv; if X0 ¼ 2, then the probability distribution of Xn appears

in the corresponding row of Pn.]

18. A box always contains three marbles, each of which is green or yellow. At regular intervals, one

marble is selected at random from the box and removed, while another is put in its place

according to the following rules: a green marble is replaced by a yellow marble with probability

.3 (and otherwise by another green marble), while a yellow marble is equally likely to be

replaced by either color. Let Xn ¼ the number of green marbles in the box after the nth swap.

(a) What are the possible values of Xn?

(b) Construct the one-step transition matrix for this Markov chain.

(c) If all three marbles currently in the box are green, what is the probability the same will be

true three swaps from now?

(d) If all three marbles currently in the box are green, what is the probability that the fourth

marble selected from the boxwill be green? [Hint: Use part (c). Be careful not to confuse the
color of the marble selected on the fourth swap with the color of the one that replaces it!]

19. A Markov chain model for customer visits to an auto repair shop is described in the article

“Customer Lifetime Value Prediction by a Markov Chain Based Data Mining Model: Applica-

tion to an Auto Repair and Maintenance Company in Taiwan” (Scientia Iranica, 2012:

849-855). Customers make between 0 and 4 visits to the repair shop each year; for any customer

that made exactly i visits last year, the number of visits s/he will make next year follows a

Poisson distribution with parameter μi. (The event “4 visits” is really “4 or more visits,” so the

probability of 4 visits next year is calculated as 1 � ∑ x ¼ 0
3 p(x; μi) from the appropriate

Poisson pmf.) Parameter values cited in the article, which were estimated from real data, appear

in the accompanying table.

i 0 1 2 3 4

μi 1.938696 1.513721 1.909567 2.437809 3.445738

(a) Construct the one-step transition matrix for the chain Xn ¼ number of repair shop visits by

a randomly selected customer in the nth observed year.

(b) If a customer made two visits last year, what is the probability that s/he makes two visits

next year and two visits the year after that?

(c) If a customer made no visits last year, what is the probability s/he makes a total of exactly

two visits in the next 2 years?

20. The four vans in a university’s vanpool are maintained at night by a single mechanic, who can

service one van per night (assuming any of them need repairs). Suppose that there is a 10%

chance that a van working today will need service by tonight, independent of the status of the
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other vans. We wish to model Xn ¼ the number of vans unavailable for service at the beginning

of the nth day.

(a) Suppose all four vans were operational as of this morning. Find the probability that exactly

j of them will be unusable tomorrow morning for j ¼ 0, 1, 2, 3. [Hint: The number of

unusable vans for tomorrow will be 1 less than the number that break down today, unless

that’s 0, because the mechanic can fix only one van per night. What is the probability

distribution of Y ¼ the number of vans that break down today, assuming all 4 worked this

morning?]

(b) Suppose three vans were operational as of this morning, and one was broken. Find the

probabilities P(1 ! j) for this chain. [Hint: Assume the broken van will be fixed tonight.

Then the number of unavailable vans tomorrow morning is the number that break down

today, out of the three currently functioning.]

(c) Use reasoning similar to that of (a) and (b) to determine the complete one-step transition

matrix for this Markov chain.

21. Refer back to the previous exercise.

(a) If all four vans were operational as of Monday morning, what is the probability exactly three

vans will be usable Wednesday morning? Thursday morning? Friday morning?

(b) A backlog occurs whenever Xn � 1, indicating that some vans will be temporarily out of

commission because the mechanic could not get to them the previous night. Assuming there

was no backlog as of Monday morning, what is the probability a backlog exists Tuesday

morning? Answer the same question for Wednesday, Thursday, and Friday mornings.

(c) How do the probabilities in (b) change if there was a backlog of 1 van as of Monday

morning?

22. Consider a Markov chain with state space {1, 2, . . ., s}. Show that, for any positive integersm and

n and any states i and j,

P
mþnð Þ
ij ¼

Xs

k¼1

P
mð Þ
ik P

nð Þ
kj

This is an alternative version of the Chapman–Kolmogorov Equations. [Hint: Write the left-hand

side as P(Xm+n ¼ jjX0 ¼ i), and consider all the possible states after m transitions.]

6.3 Specifying an Initial Distribution

Thus far, every probability we have considered in this chapter (i.e., all the one-, two-, and higher-step

transition probabilities) has been conditional. For example the entries of any one-step transition

matrix indicate P(Xn+1 ¼ jjXn ¼ i). In this section, we briefly explore unconditional probabilities,

which result from specifying a distribution for the rv X0, the initial state of the chain. We will consider

two cases: modeling the initial state X0 as a random variable, and treating X0 as having a fixed/known

value.

Example 6.15 (Example 6.11 continued) The never-ending saga of the taxi driver continues!

Imagine this poor fellow sleeps in his taxi, so from his perspective each new day starts in a “random”

zone. Specifically, suppose for now that he has a 20% chance of waking up in zone 1, a 50% chance of
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waking up in zone 2, and a 30% chance of waking up in zone 3. That is, we have assigned the

following initial distribution to the Markov chain:

i 1 2 3

P(X0 ¼ i) .2 .5 .3
(6.3)

Notice that, unlike the conditional probabilities that comprise the transition matrix of the Markov

chain, this initial distribution (6.3) specifies the unconditional (aka marginal) distribution for the rv

X0. In what follows, we will sometimes refer to the bottom row of (6.3) as the “initial probability

vector” of X0.

Now consider the rv X1, the destination of the taxi driver’s first fare. The probability his first fare

wants to go somewhere in zone 3 can be determined via the Law of Total Probability:

P X1 ¼ 3ð Þ ¼ P
�
X0 ¼ 1

�
P
�
X1 ¼ 3

��X0 ¼ 1
�þ P

�
X0 ¼ 2

�
P
�
X1 ¼ 3

��X0 ¼ 2
�

þ P
�
X0 ¼ 3

�
P
�
X1 ¼ 3

��X0 ¼ 3
�

¼
X3
i¼1

P X0 ¼ ið ÞP i ! 3ð Þ½ � ¼
X3
i¼1

P X0 ¼ ið Þpi3½ �

¼ :2ð Þ�:5�þ �
:5
��
:1
�þ �

:3
��
:2
� ¼ :21

As indicated in the intermediate step, this unconditional probability can be computed by taking the

product of the initial probability vector [.2 .5 .3], regarded as a 1 � 3 matrix, with the third column of

the one-step transition matrix P. Similarly, the (unconditional) probability that his first fare wants to

be dropped off in zone 2 is

P X1 ¼ 2ð Þ ¼
X3
i¼1

P X0 ¼ ið ÞP i ! 2ð Þ½ � ¼
X3
i¼1

P X0 ¼ ið Þpi2½ �

¼ :2ð Þ :2ð Þ þ :5ð Þ :8ð Þ þ :3ð Þ :4ð Þ ¼ :56

The foregoing computation is the product of the initial probability vector with the second column

of P. Finally, the probability that the first fare is taken to zone 1 equals .23, which can be computed

either as a similar product or by observing that 1 � (.21 + .56) ¼ .23. All together, the unconditional

pmf of the rv X1 is

i 1 2 3

P(X1 ¼ i) .23 .56 .21

Clearly, the most efficient way to determine the distribution of X1 is to compute all three products

simultaneously through matrix multiplication. If we multiply the transition matrix P on the left by a

1 � 3 row vector containing the initial probabilities for X0, we obtain

:2 :5 :3½ �P ¼ :2 :5 :3½ �
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35 ¼ :23 :56 :21½ �
■
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The method illustrated in the preceding example can be generalized to find the unconditional

distribution of the state Xn in the chain after any number of transitions n, starting with a specified

initial distribution for X0.

THEOREM

Let X0, X1, . . ., Xn, . . . be a Markov chain with state space {1, . . ., s} and one-step transition

matrix P. Let v0 ¼ [v01 . . . v0s] be a 1 � s vector specifying the initial distribution of the chain,

i.e., v0k ¼ P(X0 ¼ k) for k ¼ 1, . . ., s. If v1 denotes the vector of marginal (i.e., unconditional)

probabilities associated with X1, then

v1 ¼ v0P

More generally, if vn denotes the 1 � s vector of marginal probabilities for Xn, then

vn ¼ v0P
n

Proof The formula v1 ¼ v0P can be established using the same computational approach displayed in

Example 6.15. Now consider v2, the vector of unconditional probabilities for X2. By the same

reasoning as in Example 6.15, we have

v2 ¼ v1P

The substitution v1 ¼ v0P then yields v2 ¼ (v0P)P ¼ v0P
2. Continuing by induction, we have for

general n that vn ¼ vn�1P ¼ (v0P
n�1)P ¼ v0P

n, as claimed. ■

With the aid of software such as Matlab, the unconditional distributions of future states of the

Markov chain can be computed very quickly once the initial distribution is specified. For example, as

a continuation of Example 6.15, the probability vector for X2, the destination of the driver’s second

fare, is given by

v2 ¼ v1P ¼ :23 :56 :21½ �
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35 ¼ :209 :578 :213½ �

or, equivalently,

v2 ¼ v0P
2 ¼ :2 :5 :3½ �

:3 :2 :5
:1 :8 :1
:4 :4 :2

24 352

¼ :209 :578 :213½ �

That is, assuming that the initial distribution specified in Example 6.15 is correct, the taxi driver

has a 20.9% chance of taking his second fare to zone 1, a 57.8% chance of taking him/her to zone

2, and a 21.3% chance of being in zone 3 after two fares.

Example 6.16 As you probably learned in high school biology, Austro-Hungarian scientist Gregor

Mendel studied the inheritance of characteristics within plant species, particularly peas. Suppose one

particular pea plant can either be green or yellow, which is determined by a single gene with green

(G) dominant over yellow (g). That is, the genetic material determining a plant’s color (its “geno-

type”) can be one of three pairings—GG, Gg, or gg—depending on which types were passed on by
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the parent plants. To say that green is “dominant” over yellow means that the plant’s visible color—

its “phenotype”—will be green unless that gene is completely absent from the plant (so plants with

GG or Gg genotype appear green, while only gg plants are yellow).

Consider cross-breeding with a yellow plant, whose genotype is therefore known to be gg.

Mendel’s laws of genetic recombination can be expressed by the following transition matrix, where

Xn is the genotype of an nth-generation plant resulting from cross-breeding with a gg plant:

P ¼
GG
Gg
gg

0 1 0

0 :5 :5
0 0 1

24 35
For example, crossing GG � gg yields Gg with probability 1, while Gg � gg results in Gg or gg

with probability .5 each.

Suppose our initial population of plants (to be cross-bred with the pure yellow specimens) has the

following genotype distribution: 70% GG, 20% Gg and 10% gg. The initial probability vector

associated with this “0th generation” is v0 ¼ [.7 .2 .1]. The probabilities associated with the first

generation of cross-bred plants is v1 ¼ v0P ¼ [0 .8 .2], meaning that 80% of first-generation plants

are expected be Gg and the remaining 20% gg. Notice that GG plants cannot exist past the first

generation, since cross-breeding with gg plants makes such a recombination impossible.

Similarly, the second-generation probabilities are given by v2 ¼ v1P ¼ v0P
2 ¼ [0 .4 .6], so that

within two generations gg plants should be the majority (60% gg compared to 40% Gg). As cross-

breeding with pure gg plants continues, that genotype will increase in relative proportion (80% in

generation 3, 90% in generation 4), until eventually the dominant G allele dies out. ■

6.3.1 A Fixed Initial State

The case is which the initial state X0 is fixed or known rather than random can be handled by forming

a “degenerate” initial probability distribution.

Example 6.17 (Example 6.15 continued) Suppose that our taxi driver lives in zone 3 and always

goes home at night, which means that he starts each new day in zone 3. Starting with certainty in zone

3 means that P(X0 ¼ 3) ¼ 1, while P(X0 ¼ 1) ¼ P(X0 ¼ 2) ¼ 0. Written as a pmf, the distribution

of X0 is

i 1 2 3

P(X0 ¼ i) 0 0 1

Equivalently, the probability vector for X0 is v0 ¼ [0 0 1]. From the original description of the

Markov chain (Example 6.1), the initial state being zone 3 implies that X1 ¼ 1 with probability .4,

X1 ¼ 2 with probability .4, and X1 ¼ 3 with probability .2. This same result can be obtained by

applying the theorem of this section:

v1 ¼ v0P ¼ 0 0 1½ �
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35 ¼ :4 :4 :2½ �

Notice that left-multiplying P by the vector [0 0 1] simply extracts the third row of P. Similarly, the

pmf of X5, the destination of the fifth passenger, is given by

6.3 Specifying an Initial Distribution 443



v5 ¼ v0P
5 ¼ 0 0 1½ �

:3 :2 :5

:1 :8 :1

:4 :4 :2

264
375
5

¼ 0 0 1½ �
:2115 :5767 :2118

:1938 :6125 :1938

:2073 :5858 :2070

264
375

¼ :2073 :5858 :2070½ �
The matrix P5 was computed by Matlab. The row vector v5 is simply the third row of P5, because

the chain begins in zone 3 with probability 1. So, starting the day at home in zone 3, the taxi

driver finds himself in zone 1, 2, or 3 after five fares with probabilities .2073, .5858, and .2070,

respectively. ■

Example 6.18 (Example 6.14 continued) As before, we can use a high power of the one-step

transition matrix, say P
75, to approximate the long-term behavior of our Gambler’s Ruin Markov

chain. Suppose as before that p ¼ .55 and Allan’s initial stake is $2. We can express the latter as

v0 ¼ [0 0 1 0]; recall that the states, in order, are $0, $1, $2, $3. Then the probability distribution of

X75 is

v75 ¼ v0P
75 ¼ [0 0 1 0]P75 ¼ the third (i.e., $2) row of P75 ¼ [.2691 .0000 0 .7309]

If Allan begins the competition with $2 (and Beth with $1), there is a 73.09% chance he will end up

with all the money within 75 games, and a 26.91% chance he will end up broke after 75 games. As

discussed previously, the competition will almost certainly end long before a 75th game, but for

purposes of forecasting long-run behavior we imagine that when either player goes broke, game-play

continues but no further money is exchanged.

Suppose instead that Allan’s initial stake is just $1, while Beth starts with $2. Then Allan’s initial

“distribution” is specified by v0 ¼ [0 1 0 0], meaning P(X0 ¼ $1) ¼ 1 while P(X0 ¼ $0, $2, $3) ¼ 0.

After 75 plays, we now have

v75 ¼ v0P
75 ¼ [0 1 0 0]P75 ¼ the second (i.e., $1) row of P75 ¼ [.5980 0 .0000 .4020]

Starting with $1, Allan has a 40.2% chance of winning the competition (i.e., ending up with $3)

and a 59.8% chance of being “ruined.” ■

6.3.2 Exercises: Section 6.3 (23–30)

23. Refer back to Exercise 1 of this chapter. Suppose that Negotiator A goes first and that 75% of the

time she begins negotiations with a cooperative strategy. (Consider this to be time index 0.)

(a) Determine the (unconditional) probability that Negotiator B’s first strategy will also be

cooperative.

(b) Determine the (unconditional) probability that Negotiator B’s second strategy will be

cooperative. [Hint: Which time index corresponds to his second move?]

24. Refer back to the Ehrenfest chain model described in Exercise 2 with m ¼ 3 balls. The possible

states of the chain Xn ¼ number of balls in the left chamber after the nth exchange are {0, 1, 2, 3}.

(a) Suppose that all four possible initial states are equally likely. Determine the probability

distributions of X1 and X2.

(b) Suppose instead that each of the three balls is initially equally likely to be placed in the left

or right chamber. In this situation, what is the initial distribution of the chain?

444 6 Markov Chains



(c) Using the initial distribution specified in (b), determine the unconditional distributions of X1

and X2. What do you notice?

25. Information bits (0s and 1s) in a binary communication system travel through a long series of

relays. At each relay, a “bit-switching” error might occur. Suppose that at each relay, there is a

4% chance of a 0 bit being switched to a 1 bit and a 5% chance of a 1 becoming a 0. Let X0 ¼ a

bit’s initial parity (0 or 1), and let Xn ¼ the bit’s parity after traversing the nth relay.

(a) Construct the one-step transition matrix for this chain. [Hint: There are only two states,

0 and 1.]

(b) Suppose the input stream to this relay system consists of 80% 0s and 20% 1s. Determine the

proportions of 0s and 1s exiting the first relay.

(c) Under the same conditions as (b), determine the proportions of 0s and 1s exiting the fifth

relay.

26. Refer to the genetic recombination scenario of Example 6.16. Suppose that plants will now be

cross-bred with known hybrids (i.e., those with genotypeGg). Mendel’s laws imply the following

transition matrix for such breeding:

P ¼
GG
Gg
gg

:5 :5 0

:25 :5 :25
0 :5 :5

24 35
Again assume the initial population genotype distribution of plants to be cross-bred with these

hybrids is 70% GG, 20% Gg, and 10% gg.

(a) Determine the genotype distribution of the first generation of plants resulting from this

cross-breeding experiment.

(b) Determine the genotype distributions of the second, third, and fourth generations.

27. Refer to the weather scenario described in Example 6.6 and Example 6.10. Suppose today’s

weather forecast for New York City gives a 20% chance of experiencing a snowy day.

(a) Let X0 denote today’s weather condition. Express the information provided as an initial

probability vector for X0.

(b) Determine the (unconditional) likelihoods of a snowy day and a green day tomorrow, using

the one-step transition probabilities specified in Example 6.6.

(c) Based on today’s forecast and the transition probabilities, what is the chance New York City

will experience a “green day” 1 week (7 days) from now?

28. The article “Option Valuation Under a Multivariate Markov Chain Model” (Third International

Joint Conference on Computational Science and Optimization, 2010) includes information on the

dynamic movement of certain assets between three states: (1) up, (2) middle, and (3) down. For a

particular class of assets, the following one-step transition probabilities were estimated from

available data:

P ¼
:4069 :3536 :2395
:3995 :5588 :0417
:5642 :0470 :3888

24 35
Suppose that the initial valuation of this asset class found that 31.4% of such assets were in the

“up” dynamic state, 40.5% were “middle,” and the remainder were “down.”

(a) What is the initial probability vector for this chain?

(b) Determine the unconditional probability distribution of X1, the asset dynamic state one time

step after the initial valuation.

(c) Determine the unconditional probability distribution of X2, the asset dynamic state two time

steps after the initial valuation.

6.3 Specifying an Initial Distribution 445



29. Refer back to Exercise 23, and now suppose that Negotiator A always opens talks with a

competitive strategy.

(a) What is the probability vector for X0, Negotiator A’s initial strategy?

(b) Without performing any matrix computation, determine the distribution of X1, Negotiator

B’s first strategy choice.

(c) What is the probability Negotiator A’s second strategy is cooperative? competitive?

30. Transitions between sleep stages are described in the article “Multinomial Logistic Estimation of

Markov-Chain Models for Modeling Sleep Architecture in Primary Insomnia Patients”

(J. Pharmacokinet. Pharmacodyn., 2010:137–155). The following one-step transition

probabilities for the five stages awake (AW), stage 1 sleep (ST1), stage 2 sleep (ST2), slow-

wave sleep (SWS), and rapid-eye movement sleep (REM) were obtained from a graph in the

article:

P ¼

AW

ST1

ST2

SWS

REM

:90 :09 :01 :00 :00
:21 :40 :34 :02 :03
:02 :02 :84 :09 :03
:02 :02 :22 :72 :02
:04 :04 :05 :00 :87

266664
377775

The time index of the Markov chain corresponds to half-hour intervals (i.e., n ¼ 1 is 30 min after

the beginning of the study, n ¼ 2 is 60 min in, etc.). Initially, all patients in the study were awake.

(a) Let v0 denote the probability vector for X0, the initial state of a patient in the sleep study.

Determine v0.

(b) Without performing any matrix computations, determine the distribution of patients’ sleep

states 30 min (one time interval) into the study.

(c) Determine the distribution of patients’ sleep states 4 h into the study. [Hint: What time index

corresponds to the 4-h mark?]

6.4 Regular Markov Chains and the Steady-State Theorem

In previous sections, we have alluded to the long-term behavior of certain Markov chains. In some

cases, such as Gambler’s Ruin, we anticipate that the chain will eventually reach, and remain in, one

of several “absorbing” states (we’ll discuss these in Sect. 6.5). Our taxi driver, in contrast, should

continually move around, but perhaps something can be said about how much time he will spend in

each of the three zones over the course of many, many fares. It turns out that the taxi driver example

belongs to a special class of Markov chains, called regular chains, for which the long-run behavior

“stabilizes” in some sense and can be determined analytically.

6.4.1 Regular Chains

DEFINITION

A finite-state Markov chain with one-step transition matrix P is said to be a regular chain if

there exists a positive integer n such that all of the entries of the matrix Pn are positive.

In other words, for a regular Markov chain there is some positive integer n such that every

state can be reached from every state (including itself) in exactly n steps.
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It’s straightforward to show that if all the entries of Pn are positive, then so are all of the entries

of Pn+1, Pn+2, and so on (Exercise 37). Our taxi driver example is a regular chain, since all nine entries

of P itself are positive. The next example shows that a regular chain may have some one-step

transition probabilities equal to zero.

Example 6.19 Internet users’ browser histories can be modeled as Markov chains, where the “states”

are different Web sites (or classes of Web sites) and transitions occur when users move from oneWeb

site to another. The article “Evaluating Variable-Length Markov Chain Models for Analysis of User

Web Navigation Sessions” (IEEE Trans. Knowl. Data Engr. 2007: 441-452) discusses increasingly
complex models of this type. Suppose for simplicity that Web sites are grouped into five categories:

(1) social media, (2) e-mail, (3) news and sports, (4) online retailers, and (5) other (use your

imagination). Consider a Markov chain model for users’ transitions between these five categories

whose state diagram is depicted in Fig. 6.5.

Notice that, according to this model, not every state can access all five states in one step, because

many one-step transition probabilities are zero. The one-step transition matrix P of this Markov chain

is as follows:

P ¼

0 :3 0 :7 0

:2 :1 :6 0 :1
0 0 :2 :4 :4
:7 0 :1 :2 0

0 0 :5 :5 0

266664
377775

Eleven of the twenty-five entries in P are zero. However, consider several higher powers of this

matrix:

P2 ¼

:55 :03 :25 :14 :03
:02 :07 :23 :43 :25
:28 0 :28 :36 :08
:14 :21 :04 :57 :04
:35 0 :15 :30 :20

266664
377775, P3 ¼

:104 :168 :097 :528 :103
:315 :013 :256 :317 :099
:252 :084 :132 :420 :112
:441 :063 :211 :248 :037
:210 :105 :160 :465 :060

266664
377775

Since every entry of P3 is positive, by definition we have a regular Markov chain. Every state can

reach every state (including itself) in exactly three moves. ■
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Fig. 6.5 State diagram for

Example 6.19
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In contrast, Gambler’s Ruin is not a regular Markov chain. It is not possible for Allan to go from $2

to $1 in an even number of moves, so the ($2, $1) entry of Pn is zero whenever n is even. Similarly,

Allan cannot go from $2 back to $2 in an odd number of steps, so the ($2, $2) entry of Pn equals zero

for every odd exponent n. Thus, there exists no positive integer n for which all sixteen entries of Pn are

positive. (In fact, six other entries of Pn must always be 0: P(n)(0 ! j) ¼ 0 for states j 6¼ 0 and

P(n)(3 ! j) ¼ 0 for j 6¼ 3, since both $0 and $3 are “absorbing” states.) Another non-regular Markov

chain, one that does not have any absorbing states, is given in the following example.

Example 6.20 Unlike our taxi driver, bus drivers follow a well-defined route. Consider a bus route

from campus (state 1), to the nearby student housing complex (state 2), to downtown (state 3), and

then back to campus. The associated Markov chain cycles endlessly: 1 ! 2 ! 3 ! 1 ! 2 ! 3

! 1 . . .. Figure 6.6 shows the corresponding state diagram.

The one-step transition matrix for this chain is

P ¼
0 1 0

0 0 1

1 0 0

24 35
Direct computation shows that

P2 ¼
0 0 1

1 0 0

0 1 0

24 35 and P3 ¼
1 0 0

0 1 0

0 0 1

24 35 ¼ I,

where I denotes the 3 � 3 identity matrix. Hence, P4 ¼ P3P ¼ IP ¼ P; P5 ¼ P3P2 ¼ IP2 ¼ P2;

P6 ¼ P3P3 ¼ II ¼ I; and so on. That is, the n-step transition matrix Pn equals one of P, P2, or I for

every positive integer n, and all three of these contain some zero entries. Therefore, this is not a

regular Markov chain. ■

6.4.2 The Steady-State Theorem

What’s so special about regular chains? The transition matrices of regular Markov chains exhibit a

rather interesting property. Consider a very high power of the transition matrix for our taxi driver,

computed with the aid of Matlab:

1
1

11

2

3

Fig. 6.6 State diagram for

Example 6.20
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P ¼
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35 ) P100 ¼
:2000 :6000 :2000
:2000 :6000 :2000
:2000 :6000 :2000

24 35
Notice that every row of P100 is identical: roughly, each one is [.2 .6 .2]. What’s more, raising P to

even higher powers yields the same matrix to several decimal places. That is, P101, P102, and so on are

all roughly equal to P100. Something similar occurs for the regular Markov chain of Example 6.19:

P ¼

0 :3 0 :7 0

:2 :1 :6 0 :1
0 0 :2 :4 :4
:7 0 :1 :2 0

0 0 :5 :5 0

266664
377775 ) P100 ¼

:2844 :0948 :1659 :3791 :0758
:2844 :0948 :1659 :3791 :0758
:2844 :0948 :1659 :3791 :0758
:2844 :0948 :1659 :3791 :0758
:2844 :0948 :1659 :3791 :0758

266664
377775

Again, every row of P100 is the same, and replacing 100 by an even higher power gives the same

result (i.e., to several decimal places P100 ¼ P101 ¼ P102 ¼ . . .). These are two examples of the

central result in the theory of Markov chains, the so-called Steady-State Theorem.

STEADY-STATE THEOREM

Let P be the one-step transition matrix of a finite-state, regularMarkov chain. Then the matrix

limit

Π ¼ lim
n!1Pn ð6:4Þ

exists. Moreover, the rows of the limiting matrix Π are identical, with all positive entries.

The proof of the Steady-State Theorem is beyond the scope of this book; interested readers may

consult the text by Karlin and Taylor listed in the references.

If we let π ¼ [π1 � � � πs] denote each of the identical rows of the limiting matrixΠ in Eq. (6.4), π is

called the steady-state distribution of the Markov chain. Thus, for the taxi driver example, the

steady-state distribution is π ¼ [.2 .6 .2], while the steady-state distribution for the Web browsing

Markov chain in Example 6.19 is π ¼ [.2844 .0948 .1659 .3791 .0758].

A Markov chain does not have to be regular for the limit of Pn to exist as n ! 1. For example,

computing progressively larger powers of the one-step transition matrix for the Gambler’s Ruin

scenario of Example 6.14 shows that, for large n,

Pn � P75 ¼
1 0 0 0

:5980 0 :0000 :4020
:2691 :0000 0 :7309
0 0 0 1

2664
3775

That is, the limit of Pn exists and is, at least to four decimal places, equal to the matrix displayed

above. However, unlike in the case of a regular Markov chain, the rows of this limiting matrix are not

identical and the matrix includes several zeros. We will consider in more detail Markov chains of this

type in the next section.

The transition matrix of a “periodic” Markov chain, such as the one in Example 6.20, does not

have a limit. This is not surprising, since periodic functions in general do not have long-run limits but

rather cycle through their possible values.
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6.4.3 Interpreting the Steady-State Distribution

The steady-state distribution π of a regular Markov chain can be interpreted in several ways. We

present four different interpretations here; verifications of the second and fourth statements can be

found in the Karlin and Taylor text.

1. If the “current” state of the Markov chain is observed after a large number of transitions, there is an

approximate probability πj of the chain being in state j. That is, for large n, P(Xn ¼ j) � πj.
Moreover, this holds regardless of the initial distribution of the chain (i.e., the unconditional

distribution of the initial state X0).

The first sentence is essentially the definition of π stemming from the Steady-State Theorem.

2. The long-run proportion of time the Markov chain visits the jth state is πj.
To be more precise, for any state j let Nj(n) denote the number of times the chain visits state j in

its first n transitions; that is,

Nj nð Þ ¼ # 1 � k � n : Xk ¼ jf g
Then it can be shown that Nj(n)/n, the proportion of time the Markov chain spends in state

j among the first n transitions, converges in probability to πj.
3. If we assign π to be the initial distribution of X0, then the distribution of Xn is also π for any

subsequent number of transitions n. For this reason, π is customarily referred to as the stationary

distribution of the Markov chain.

To prove Statement 3, first let Π denote the matrix in Eq. (6.4), each of whose rows is π. Now
write Pn+1 ¼ PnP and take the limit of both sides as n ! 1:

Pnþ1 ¼ PnP ) lim
n!1Pnþ1 ¼ lim

n!1 PnP½ � ¼ lim
n!1Pn
h i

P ) Π ¼ ΠP

Each side of the last equation is an s � s matrix; equating the top rows of these two matrices,

we have π ¼ πP. (You could just as well equate any other row, since all the rows of Π are the

same.)

Now, assign the steady-state distribution to X0: v0 ¼ π. Then the (unconditional) distribution of
X1, using the results of Sect. 6.3, is v1 ¼ πP, which we have established equals π. Continuing by

induction, we have for any n that the unconditional distribution of Xn is vn ¼ vn�1P ¼ πP ¼ π,
completing the proof.

4. The expected number of transitions required to return to the jth state, beginning in the jth state, is

equal to 1/πj. This is called the mean recurrence time for state j.

Compare this result to the mean of a geometric rv from Chap. 2: the expected number of trials

(replications) required to first observe an event whose probability is p equals 1/p. The difference is

that the geometric model assumes the trials are independent, while a Markov chain model assumes

that successive states of the chain are dependent (as specified by the Markov property). But if we

think of “return to the jth state” as our event of interest, then Statement 1 implies that (at least for

large n) the probability of this event is roughly πj, and so it seems reasonable that the average

number of tries/steps it will take to achieve this event will be 1/πj.

Example 6.21 The steady-state distribution for the taxi driver example is given by the 1 � 3 vector

π ¼ [.2 .6 .2]. For now, this relies on the computation of P100 above; shortly, we will present a

derivation of this vector that does not require raising P to a high power. From the preceding

descriptions, we conclude all of the following:
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1. Regardless of where the taxi driver starts his day, for large n there is about a 20% chance his nth

fare will be dropped off in zone 1, a 60% chance that that fare will go to zone 2, and a 20% chance

for zone 3.

2. In the long run, the taxi driver drops off about 20% of his fares in zone 1, about 60% in zone 2, and

about 20% in zone 3.

3. Suppose the taxi driver sleeps in his cab, thus waking up each day in a “random” zone, and we

assign to X0 (his point of origin tomorrow, say) the initial distribution v0 ¼ π ¼ [.2 .6 .2]. The

unconditional distribution of X1, the destination of tomorrow’s first fare, is

v1 ¼ v0P ¼ :2 :6 :2½ �
:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35
By direct computation, the first entry of v1 is (.2)(.3) + (.6)(.1) + (.2)(.4) ¼ .2; the second entry is

(.2)(.2) + (.6)(.8) + (.2)(.4) ¼ .6; and the last is .2. That is, v1 ¼ [.2 .6 .2] ¼ π, and so X1 has the

same distribution as X0. The same will hold for X2, X3, and so on.

4. If the driver starts from his home in zone 3, then on the average the number of fares he handles

until he is brought back to zone 3 is given by 1/π3 ¼ 1/(.2) ¼ 5. That is, the mean recurrence time

for state 3 (zone 3) is five transitions. ■

6.4.4 Efficient Computation of Steady-State Probabilities

The preceding examples of regular Markov chains and the resulting steady-state distributions may

suggest that one determines π by computing a high power of the transition matrix P, preferably with

software, and then extracting any row of the resulting matrix (all of which will be the same, according

to the Steady-State Theorem). Fortunately there is a more direct technique for determining π. The
method was hinted at in the proof of Statement 3 above: the steady-state distribution π satisfies the

matrix equation πP ¼ π. In fact, something stronger is true.

THEOREM

Let P be the one-step transition matrix of a regular Markov chain on the state space {1, . . ., s}.

The steady-state distribution of the Markov chain is the unique solution π ¼ [π1 � � � πs] to the

system of equations formed by

πP ¼ π and π1 þ � � � þ πs ¼ 1 ð6:5Þ

Proof Statement 3 above and the fact that π is a probability vector (because it’s the limit of

probability vectors) ensures that π itself satisfies Eq. (6.5). We must show that any other vector

satisfying both equations in Eq. (6.5) is, in fact, π. To that end, letw be any 1 � s vector satisfying the

two conditions wP ¼ w and ∑ wi ¼ 1. Similar to earlier derivations, we have wP2 ¼ (wP)P ¼ wP

¼ w and, by induction, wPn ¼ w for any positive integer n. Taking the limit of both sides as n ! 1,

the Steady-State Theorem implies that wΠ ¼ w.
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Now expand wΠ:

wΠ ¼ w1� � �ws½ �
π1 � � � πs
⋮ ⋮ ⋮

π1 � � � πs

264
375 ¼ ��

w1π1 þ � � � þ wsπ1
� � � � �

w1πs þ � � � þ wsπs
��

¼ �
Σwið Þπ1 � � � �

Σwi

�
πs
� ¼ �

Σwi

��
π1� � �πs

� ¼ �
Σwi

�
π

Since ∑ wi ¼ 1 by assumption, we have wΠ ¼ π. It was established above that wΠ ¼ w, and so

we conclude that w ¼ π, as originally claimed. ■

Example 6.22 Consider again the Markov chain model for snowy days (S) and non-snowy or

“green” days (G) in New York City, begun in Example 6.6. The one-step transition matrix was

given by

P ¼ G

S

:964 :036

:224 :776

� �
Since all the entries of P are positive, this is a regular Markov chain. The preceding theorem can be

used to determine the steady-state probabilities π ¼ [π1 π2]. The equations in Eq. (6.5), written out

long-hand, are

:964π1 þ :224π2 ¼ π1
:036π1 þ :776π2 ¼ π2

π1 þ π2 ¼ 1

Substituting π2 ¼ 1 � π1 into the first equation gives .964π1 + .224(1 � π1) ¼ π1; solving for π1
produces π1 ¼ .224/.260 ¼ .8615 and then π2 ¼ 1 � .8615 ¼ .1385. For the season to which this

model applies, in the long run New York City has at least 50 mm of snow on 86.15% of days and less

than 50 mm on the other 13.85% of days.

It’s important to note that the top two equations alone, i.e., those provided by the relationship

πP ¼ π, do not uniquely determine the value of the vector π. The first equation is equivalent to

.224π2 ¼ .036π1 (subtract .964π1 from both sides), but so is the second equation (subtract .776π2 from
both sides). The final equation, requiring the entries of π to sum to 1, is necessary to obtain a unique

solution. ■

Expression (6.5) may be reexpressed as a single matrix equation. Taking a transpose,

πP ¼ π ) PTπT ¼ πT ¼ IπT ) PT � I
� �

πT ¼ 0,

where 0 is an s � 1 vector of zeros. The requirement π1 + � � � + πs ¼ 1 can be rendered in matrix

form as [1� � �1]πT ¼ [1], and so the system of Eq. (6.5) can be expressed with the augmented matrix

T

1 1 1
0

0
−P I

ð6:6Þ

Example 6.23 (Example 6.21 continued) To analytically determine the steady-state distribution of

our taxi driver example, first construct the matrix PT � I:

452 6 Markov Chains



PT � I ¼
:3 :1 :4
:2 :8 :4
:5 :1 :2

24 35�
1 0 0

0 1 0

0 0 1

24 35 ¼
�:7 :1 :4
:2 �:2 :4
:5 :1 �:8

24 35
Second, form the augmented matrix indicated in Expression (6.6), and then finally use Gauss-

Jordan elimination to find its reduced row echelon form (e.g., with the rref command in Matlab):

1 1 1 1 1 0 0 .2
.1 .4 0 0 1 0 .6

.2 .4 0 0 0 1 .2

.5 .1 0 0 0 0 0

.7-
.2-

.8-

RREF

From the right-hand matrix, we infer that π1 ¼ .2, π2 ¼ .6, and π3 ¼ .2. This matches our earlier

deduction from the matrix P100. ■

Example 6.24 For the Internet browser scenario of Example 6.19, the steady-state distribution can

be determined as follows:

RREF
T

1 1 1 1 1 1 1 0 0 0 0 .2840
1 1 1 1 .2 0 .7 0 0 0 1 0 0 0 .0948

0 .3 .9 0 0 0 0 0 0 1 0 0 .1659
0 .6 .1 .5 0 0 0 0 1 0 .3791

0 .7 0 .4 .5 0 0 0 0 0 1 .0758
0 .1 .4 0 0 0 0 0 0 0 0

-
-

=
.8-

.8-
1-

-P I

That is, π1 ¼ .2840, π2 ¼ .0948, and so on; these match the results suggested earlier by considering

P100. In the long run, about 28.40% percent ofWeb pages visited by Internet users under consideration

are social media sites, 9.48% are for checking e-mail, 16.59% are news and sportsWeb sites, etc. Also,

when a user finishes checking her or his e-mail online, the average number of Web sites visited until

s/he checks e-mail again is 1/π2 ¼ 1/.0948 ¼ 10.55 (including the second login to e-mail). ■

6.4.5 Irreducible and Periodic Chains

The existence of a stationary distribution is not unique to regular Markov chains.

DEFINITION

Let i and j be two (not necessarily distinct) states of a Markov chain. State j is accessible from

state i (or, equivalently, i can access j) if P(n)(i ! j) > 0 for some integer n � 0.1 A Markov

chain is irreducible if every state is accessible from every other state.

1 For n ¼ 0, the symbol P(0)(i ! j) is interpreted as the probability of going from i to j in zero steps, and so necessarily
P(0)(i ! i) ¼ 1 for all i and P(0)(i ! j) ¼ 0 for i 6¼ j. In particular, this means every state i is, by definition, accessible
from itself.
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It should be clear that every regular chain is irreducible (do you see why?). However, the reverse is

not true: an irreducible Markov chain need not be a regular chain. Consider the cyclic chain of

Example 6.20: the bus can access any of the three locations it visits (campus, housing, downtown)

from any other location, so the chain is irreducible. However, as discussed earlier in this section, the

chain is definitely not regular. The Ehrenfest chain model developed in Exercise 2 is another example

of an irreducible but not regular chain; see Exercise 43 at the end of this section.

It can be shown that any finite-state, irreducible Markov chain has a stationary distribution. That

is, if P is the transition matrix of an irreducible chain, there exists a row vector π such that πP ¼ π;
moreover, there is a unique such vector satisfying the additional constraint∑ πi ¼ 1. For example, the

cyclic bus route chain of Example 6.20 has stationary distribution π ¼ [1/3 1/3 1/3], as seen by the

computation

πP ¼ 1=3 1=3 1=3½ �
0 1 0

0 0 1

1 0 0

24 35 ¼ 1=3 1=3 1=3½ � ¼ π

So, if the bus is equally likely to be at any of its three locations right now, it is also equally likely to

be at any of those three places after the next transition (the “stationary” interpretation of π). This is
true even though the chain is not regular, so the Steady-State Theorem does not apply.

If an s-state Markov chain is irreducible but not regular, then every state can access every other

state but there exists no integer n for which all s2 probabilities P(n)(i ! j) are positive. The only way

this can occur is if the chain exhibits some sort of “periodic” behavior, e.g., when one group of states

can access some states only in an even number of steps and others only in an odd number of steps.

Formally, the period of a state i is defined as the greatest common divisor of all positive integers

n such that P(n)(i ! i) > 0; if that gcd equals 1, then state i is called aperiodic. All three states in the
cyclic chain above have period 3, because for every state the period is gcd(3, 6, 9, . . .) ¼ 3. It can be

shown that every state in an irreducible chain has the same period; the chain is called aperiodic if that

common period is 1 and is called periodic otherwise.

As noted previously, for any regular Markov chain there exists an integer n such that all the entries

of Pn, Pn+1, Pn+2, and so on are positive. Since the gcd of the set {n, n + 1, n + 2, . . .} is 1, it

immediately follows that every regular Markov chain is aperiodic. The following theorem

characterizes regularity for finite-state chains.

THEOREM

A finite-state Markov chain is regular if, and only if, it is both irreducible and aperiodic.

The “only if” direction of the theorem is established in the earlier paragraphs of this sub-section.

The converse statement, that all irreducible and aperiodic finite-state chains are regular, can be

proved using a result called the Frobenius coin-exchange theorem (we will not present the

proof here).

6.4.6 Exercises: Section 6.4 (31–43)

31. Refer back to Mendel’s plant breeding experiments in Example 6.16 and Exercise 26.
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(a) Do the genotypes formed by successive cross-breeding with pure recessive plants gg, as in

Example 6.16, form a regular Markov chain?

(b) Do the genotypes formed by successive cross-breeding with hybrid plans Gg, as in

Exercise 26, form a regular Markov chain?

32. Refer back to Exercise 2. Assume m ¼ 3 balls are being exchanged between the two chambers.

Is the Markov chain Xn ¼ number of balls in the left chamber a regular chain?

33. Refer back to Example 6.13 regarding cell phone contracts in China.

(a) Determine the steady-state probabilities of this chain.

(b) In the long run, what proportion of Chinese cell phone users will have contracts with China

Mobile?

(c) A certain cell phone customer currently has a contract with China Telecom. On the

average, how many contract changes will s/he make before signing with China Telecom

again?

34. The article “Markov Chain Model for Performance Analysis of Transmitter Power Control in

Wireless MAC Protocol” (Twenty-first International Conference on Advanced Networking and

Applications, 2007) describes a Markov chain model for the state of a communication channel

using a particular “slotted non-persistent” (SNP) protocol. The channel’s possible states are

(1) idle, (2) successful transmission, and (3) collision. For particular values of the authors’

proposed four-parameter model, the following transition matrix results:

P ¼
:50 :40 :10
:02 :98 0

:12 0 :88

24 35
(a) Verify that P is the transition matrix of a regular Markov chain.

(b) Determine the steady-state probabilities for this channel.

(c) What proportion of time is this channel idle, in the long run?

(d) What is the average number of time steps between successive collisions?

35. Refer back to Exercise 3.

(a) Construct the one-step transition matrix P of this chain.

(b) Show that Xn ¼ the machine’s state (full, part, broken) on the nth day is a regular Markov

chain.

(c) Determine the steady-state probabilities for this chain.

(d) On what proportion of days is the machine fully operational?

(e) What is the average number of days between breakdowns?

36. Refer back to Exercise 6, and assume three files A, B, C are to be repeatedly requested. Suppose

that 60% of requests are for file A, 10% for file B, and 30% for C. Let Xn ¼ the stacked order of

the files (e.g., ABC) after the nth request.

(a) Construct the transition matrix P for this chain. (The one-step transition probabilities were

established in Exercise 6(c).)

(b) Determine the steady-state probability for the stack ABC.

(c) Show that, in general, the steady-state probability for ABC is given by

πABC ¼ pA � pB
pB þ pC

where pA ¼ P(file A is requested) and pB and pC are defined similarly. (The other five steady-

state probabilities can be deduced by changing the subscripts appropriately.)
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37. Let P be the one-step transition matrix of a Markov chain. Show that if all the entries of Pn are

positive for some positive integer n, then so are all the entries of Pn+1, Pn+2, and so on. [Hint:
Write Pn+1 ¼ P � Pn and consider how the (i, j)th entry of Pn+1 is obtained.]

38. Refer back to Exercise 19.

(a) Consider a new customer. By definition, s/he made no visits to the repair shop last year.

What is his/her expected number of visits this year?

(b) Now suppose a car owner has been a customer of this repair shop for many years. What is

the expected number of shop visits s/he will make next year?

39. Consider a Markov chain with just two states, 0 and 1, with one-step transition probabilities

α ¼ P(0 ! 1) and β ¼ P(1 ! 0).

(a) Assuming 0 < α < 1 and 0 < β < 1. Determine the steady-state probabilities of states

0 and 1 in terms of α and β.
(b) What happens if α and/or β equals 0 or 1?

40. Occupational prestige describes how particular jobs are regarded by society and is often used by

sociologists to study class. The article “Social Mobility in the United States as a Markov

Process” (J. for Economic Educators, v. 8 no. 1 (2008): 15-37) investigates the occupational

prestige of fathers and sons. Data provided in the article can be used to derive the following

transition matrix for occupational prestige classified as low (L), medium (M), or high (H):

P ¼
L

M

H

:5288 :2096 :2616
:3688 :2530 :3782
:2312 :1738 :5950

24 35
(a) Which occupational prestige “state” is the most likely to self-replicate (i.e., father and son

are in the same category)? Which is the least likely?

(b) Determine the steady-state distribution of this Markov chain.

(c) Interpret the distribution in (b), assuming the model specified by the matrix is valid across

many generations.

[Note: The authors actually used 11 categories of occupational prestige; we have collapsed these

into three categories for simplicity.]

41. The two ends of a wireless communication system can each be inactive (0) or active (1).

Suppose the two nodes act independently, each as a Markov chain with the transition

probabilities specified in Exercise 39. Let Xn ¼ the “combined” state of the two relays at the

nth time step. The state space for this chain is {00, 01, 10, 11}, e.g., state 01 corresponds to an

inactive transmitter with an active receiver. (Performance analysis of such systems is described

in “Energy-Efficient Markov Chain-Based Duty Cycling Schemes for Greener Wireless Sensor

Networks,” ACM J. on Emerging Tech. in Computing Systems (2012):1-32.)
(a) Determine the transition matrix for this chain. [Hint: Use independence to uncouple the

two states, e.g., P(00 ! 10) ¼ P(0 ! 1) � P(0 ! 0).]

(b) Determine the steady state distribution of this chain.

(c) As the authors note, “a connection is feasible only when both wireless nodes are active.”

What proportion of time is a connection feasible under this model?

42. A particular gene has three expressions: AA, Aa, and aa. When two individuals mate, one half of

each parent’s gene is contributed to the offspring (and each half is equally likely to be donated).

For example, an AAmother can only donate A while an Aa father is equally likely to donate A or

a, resulting in a child that is either AA or Aa. Suppose that the population proportions of AA, Aa,
and aa individuals are p, q, and r, respectively (so p + q + r ¼ 1). Consider the offspring of a

456 6 Markov Chains



randomly selected individual; specifically, let Xn ¼ the gene expression of the oldest child in his

or her nth generation of descendants (whom we assume will have at least one offspring).

(a) Assume the nth-generation individual’s mate is selected at random from the genetic

population described above. Show the following: P(Xn+1 ¼ AAjXn ¼ AA) ¼ p + q/2,

P(Xn+1 ¼ AajXn ¼ AA) ¼ q/2 + r, and P(Xn+1 ¼ aajXn ¼ AA) ¼ 0. [Hint: Apply the

Law of Total Probability.]

(b) Using the same method as in (a), determine the other one-step transition probabilities and

construct the transition matrix P of this chain.

(c) Verify that Xn is a regular Markov chain.

(d) Suppose there exists some α 2 [0, 1] such that p ¼ α2, q ¼ 2α(1 � α), and r ¼ (1 � α)2.
(In this context, α ¼ P(A allele).) Show that π ¼ [p q r] is the stationary distribution of

this chain. (This fact is called the Hardy-Weinberg law; it establishes that the rules of

genetic recombination result in a long-run stable distribution of genotypes.)

43. Refer back to the Ehrenfest chain model of Exercises 2 and 24. Once again assume that m ¼ 3

balls are being exchanged between the two chambers.

(a) Explain why this is an irreducible chain, but not a regular chain.

(b) Explain why each state has period equal to 2.

(c) Show that the vector [1/8 3/8 3/8 1/8] is a stationary distribution for this chain. (Thus, even

though the chain is not regular and the transition matrix P does not have a limit, there still

exists a stationary distribution due to irreducibility.)

6.5 Markov Chains with Absorbing States

The Gambler’s Ruin scenario, begun in Example 6.2, has the feature that the chain “terminates” when

it reaches either of two states ($0 or $3 in our version of the competition). As we’ve noted previously,

it’s mathematically advantageous to imagine that the Markov chain actually continues in these cases,

just never leaving the state 0 or 3; one such sample path is

2 ! 1 ! 2 ! 1 ! 0 ! 0 ! 0 ! 0 ! . . .

In this section, we first investigate states from which a Markov chain can never exit and the time it

takes to arrive in one of those states.

DEFINITION

A state j of a Markov chain is called an absorbing state if

P j ! jð Þ ¼ 1:

Equivalently, j is an absorbing state if the ( j, j)th entry of the one-step transition matrix of

the chain is 1.

The states 0 and 3 are both absorbing states in our Gambler’s Ruin example. In contrast, the taxi

driver example has no absorbing states. The next example shows that some care must be taken in

identifying absorbing states.
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Example 6.25 Anyone who has applied for a bank loan knows that the process of eventual approval

(or rejection) involves many steps and, occasionally, a lot of complex negotiation. Figure 6.7

illustrates the possible route of a set of loan documents from (1) document initiation to (6) final

approval or rejection. The intermediate steps (2)–(5) represent various exchanges between

underwriters, loan officers, and the like. In this particular chain, two such individuals (at states

3 and 5) have the authority to make a final decision, though the agent at state 3 may elect to return the

documents for further discussion.

The one-step transition matrix of this chain is

P ¼

0 :5 0 :5 0 0

0 0 :5 :5 0 0

0 :5 0 0 0 :5
0 0 :5 0 :5 0

0 0 0 0 0 1

0 0 0 0 0 1

26666664

37777775

Although the number 1 appears twice in P, only state 6 is an absorbing state of this chain. Indeed,

p66 ¼ P(6 ! 6) ¼ 1; however, state 5 is not an absorbing state because p55 ¼ P(5 ! 5) ¼ 0.

Rather, the fifth row of P indicates that if the chain ever enters state 5, it will necessarily pass in

the next transition into state 6 (where, as it happens, it will be “absorbed”). ■

To be clear, a Markov chain may have no absorbing states (the taxi driver), a single absorbing state

(Example 6.25), or multiple absorbing states (Gambler’s Ruin).

6.5.1 Time to Absorption

When a Markov chain has one or more absorbing states, it is natural to ask how long it will take to

reach an absorbing state. Of course, the answer depends on where (i.e., in which state) the Markov

chain begins. For any non-absorbing state i, define a random variable Ti by

Ti ¼ number of transitions until the Markov chain reaches an absorbing state, starting in state i

This rv Ti is called the time to absorption from state i; the possible values of Ti are 1, 2, 3, 4, . . ..
As we shall now illustrate, the distribution of Ti can be approximated from the k-step transition

matrices Pk for k ¼ 1, 2, 3, . . .. For simplicity’s sake, consider first a Markov chain with a single

absorbing state, which we will call a. Then the (i, a)th entry of P is the probability of transitioning

directly from state i into the absorbing state a, which is therefore also the probability that Ti equals 1:

.5

.5 .5

.5
.5

.5

.5

.5
2

4

1

1

1

5

6

3
Fig. 6.7 State diagram for

Example 6.25
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P i ! að Þ ¼ P Ti ¼ 1ð Þ
Since Ti is always a positive integer, this also equals P(Ti � 1), a fact which will prove important

shortly. Now consider the (i, a)th entry of P2, which represents P(2)(i ! a). There are two ways the

Markov chain could transition from i to a in two steps:

i ! any non-absorbing state ! a Ti ¼ 2ð Þ, or

i ! a ! a Ti ¼ 1ð Þ
Therefore, the two-step probability P(2)(i ! a) does not represent the chance Ti equals 2, but

rather the chance that Ti is at most 2. That is,

P 2ð Þ i ! að Þ ¼ P Ti � 2ð Þ:
Following the same pattern, the k-step transition probability P(k)(i ! a) is equal to P(Ti � k) for

any positive integer k.

If the Markov chain has two absorbing states a1 and a2, say, then the chance of being absorbed

from state i in one step is simply the sum P(i ! a1) + P(i ! a2), since those two events are mutually

exclusive (you can only arrive in one state). Similarly, the probability P(Ti � 2) is determined by

adding P(2)(i ! a1) + P(2)(i ! a2), and so on. The general result is stated in the following theorem.

THEOREM

Consider a finite-state Markov chain, and let A denote the (non-empty) set of absorbing states.

For any state i =2 A, define Ti ¼ the number of transitions, starting in state i, until the chain

arrives in some absorbing state. Then the cdf of Ti is given by

FTi
kð Þ ¼ P Ti � kð Þ ¼

X
a2A

P kð Þ i ! að Þ k ¼ 1, 2, 3, . . .

In the special case of a single absorbing state, a, this simplifies to

FTi
kð Þ ¼ P Ti � kð Þ ¼ P kð Þ i ! að Þ

The probability distribution of Ti (i.e., the pmf of the rv Ti) can then be determined from the cdf.

Example 6.26 (Example 6.25 continued) Let’s consider the rv T1, the absorption time from state

1 (i.e., the number of steps from loan document initiation to the bank’s final decision). From the

one-step transition matrix P, we know that

FT1
1ð Þ ¼ P T1 � 1ð Þ ¼ P T1 ¼ 1ð Þ ¼ P 1 ! 6ð Þ ¼ p16 ¼ 0:

The (1,6) entry of P2 is also zero, so FT1
2ð Þ ¼ P T1 � 2ð Þ ¼ P 2ð Þ 1 ! 6ð Þ ¼ 0. Software was used

to obtain the matrices P3, . . ., P12, resulting in the following values for the (1,6) entry.

k 1 2 3 4 5 6 7 8 9 10 11 12

FT1
kð Þ 0 0 .5 .6875 .75 .8594 .8984 .9336 .9570 .9707 .9810 .9873
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The accompanying table is, of course, an incomplete description of the cdf of T1, since this process

could theoretically be continued indefinitely. Next, because the rv T1 is integer-valued, its pmf is

easily determined from the cdf:

P T1 ¼ 2ð Þ ¼ P T1 � 2ð Þ � P T1 � 1ð Þ ¼ FT1
2ð Þ � FT1

1ð Þ ¼ 0� 0 ¼ 0

P T1 ¼ 3ð Þ ¼ P T1 � 3ð Þ � P T1 � 2ð Þ ¼ FT1
3ð Þ � FT1

2ð Þ ¼ :5� 0 ¼ :5

P T1 ¼ 4ð Þ ¼ P T1 � 4ð Þ � P T1 � 3ð Þ ¼ FT1
4ð Þ � FT1

3ð Þ ¼ :6875� :5 ¼ :1875

The first 12 probabilities in the pmf of T1 are as follows (their sum is .9873):

k 1 2 3 4 5 6 7 8 9 10 11 12

pT1
kð Þ 0 0 .5 .1875 .0625 .1094 .0390 .0352 .0234 .0137 .0103 .0063

This incomplete pmf is graphed in Fig. 6.8. Notice that T1 must be at least 3, which is consistent

with the state diagram in Fig. 6.7: it takes at least three steps to get from state 1 to state 6 (one of

1 ! 2 ! 3 ! 6, 1 ! 4 ! 3 ! 6, or 1 ! 4 ! 5 ! 6).

A call to the bank determines that the documents are in the hands of the underwriter indicated by

state 4. So, let’s now consider the rv T4 ¼ time to absorption (completion of the process) starting

from state 4. Based on the state diagram, it seems reasonable to anticipate that it will typically take

less time to reach state 6 starting from state 4 than it did when the chain began in state 1. Reading off

the (4, 6) entries of P, P2, . . ., P12 yields the cdf values in the accompanying table; subtraction as

before then gives the corresponding pmf values.

k 1 2 3 4 5 6 7 8 9 10 11 12

FT4
kð Þ 0 .75 .75 .8125 .9063 .9219 .9531 .9688 .9785 .9863 .9907 .9939

pT4
kð Þ 0 .75 0 .0625 .0938 .0156 .0312 .0157 .0097 .0078 .0044 .0032

Notice that, starting in state 4, the chain is quite likely to be absorbed into state 6 in exactly two

steps (either 4 ! 5 ! 6 or 4 ! 3 ! 6, with probabilities .5 and .25, respectively), and that it is

impossible to move from 4 to 6 in exactly three steps. ■

121110987654321
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Fig. 6.8 The (incomplete)

pmf of T1 from Example

6.26
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Example 6.27 In the Gambler’s Ruin scenario with p ¼ .55, how many games will Allan and Beth

play against each other before one player goes broke? Recall that the transition matrix P is set from

Allan’s perspective, and that he begins with $2. Thus, the rv of interest is T2, the number of transitions

(aka games), starting from Allan having $2, until the competition ends because Allan either has $0 or

$3. The one- and two-step transition matrices of this chain appear in Example 6.14. Hence

P T2 � 1ð Þ ¼ P 2 ! 0ð Þ þ P 2 ! 3ð Þ ¼ 0þ :55 ¼ :55

P T2 � 2ð Þ ¼ P 2ð Þ 2 ! 0ð Þ þ P 2ð Þ 2 ! 3ð Þ ¼ :2025þ :55 ¼ :7525

In general, the cumulative probability P(T2 � k) can be determined by adding the (2,0) and (2,3)

entries of the k-step transition matrix Pk. These values were determined with the aid of software for

k ¼ 1 through 10 and are summarized in the accompanying table.

k 1 2 3 4 5 6 7 8 9 10

FT2
kð Þ .55 .7525 .8886 .9387 .9724 .9848 .9932 .9962 .9983 .9991

pT2
kð Þ .55 .2025 .1361 .0501 .0337 .0124 .0084 .0030 .0021 .0008

It’s important to notice that T2 indicates the number of steps required to enter some absorbing state
(here, either $0 or $3), not the number of steps to enter a particular such state. ■

6.5.2 Mean Time to Absorption

With Ti ¼ time to absorption starting from state i, the expected value of Ti is called themean time to

absorption (mtta) from state i:

μi ¼ E(Ti) ¼ expected number of transitions until the Markov chain reaches an absorbing state,

starting in state i

For each of the preceding examples, the incomplete pmf can be used to approximate the mtta from

state i. Consider the Markov chain in Example 6.26:

μ1 ¼ E T1ð Þ ¼
X1
k¼1

k � pT1
kð Þ �

X12
k¼1

k � pT1
kð Þ

¼ 1 0ð Þ þ 2
�
0
�þ 3

�
:5
�þ 4

�
:1875

�þ � � � þ 11
�
:0103

�þ 12
�
:0063

�
¼ 4:31

To a hopefully reasonable approximation, on average the chain requires 4.31 transitions, starting in

state 1, to be absorbed into state 6. Similarly, the mean time to absorption from state 4 is

approximately

μ4 ¼
X1
k¼1

k � pT4
kð Þ �

X12
k¼1

k � pT4
kð Þ

¼ 1 0ð Þ þ 2 :75ð Þ þ � � � þ 11 :0044ð Þ þ 12 :0032ð Þ ¼ 2:91

For the Gambler’s Ruin competition with p ¼ .55 and Allan’s initial stake at $2, the pmf displayed

in Example 6.27 gives
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μ2 � 1 :55ð Þ þ 2 :2025ð Þ þ � � � þ 10 :0008ð Þ ¼ 1:92

That is, if Allan starts with $2 and p ¼ .55, the expected length of the Gambler’s Ruin competition

is approximated to be 1.92 games.

In all such approximations, two things should be clear. First, the estimated means are smaller than

the correct values, since the sums used are truncated versions of the correct summations and every

term is nonnegative. So, in the Gambler’s Ruin scenario, μ2 > 1.92. Second, the more terms we

include in the truncated sum, the closer the approximation will be to the correct mean time to

absorption from that state. Of course, additional terms require overcoming the practical hurdle of

computing successively higher powers of the matrix P. With software, one could in practice use this

method to get a very good approximation to the mtta.

Exercise 56 presents a different approximation method that always yields a better approximation

to the mean time to absorption; moreover, it relies directly on the cdf values and thus does not require

computing differences to form the pmf. But this is still an approximation; what we would really like is

an explicit method for determining the exact mean time to absorption from various states in the chain.

The following theorem provides such a result.

MTTA THEOREM

Suppose a finite-state Markov chain with one-step transition matrix P has r non-absorbing

states (and at least one absorbing state). Suppose further that there exists a path from every

non-absorbing state into some absorbing state.

Let Q be the r � r sub-matrix of P corresponding to the non-absorbing states of the chain.

Then the mean times to absorption from these states are given by the matrix formula

μ ¼ I�Qð Þ�1
1,

where μi ¼ mtta from the ith state in the Q sub-matrix, μ ¼ [μ1 . . . μr]
T, I is the r � r identity

matrix, and 1 ¼ [1. . .1]T.

This theorem not only provides the exact mean times to absorption (as opposed to the earlier

approximations) but also computes all of them simultaneously. A proof of the MTTA Theorem will

be presented shortly, but first we illustrate its use with our two ongoing examples.

Example 6.28 For the bank loan Markov chain in Example 6.25, state 6 is the only absorbing

state, so there are r ¼ 5 non-absorbing states. The sub-matrix corresponding to these non-absorbing

states is

Q ¼

1

2

3

4

5

0 :5 0 :5 0

0 0 :5 :5 0

0 :5 0 0 0

0 0 :5 0 :5
0 0 0 0 0

266664
377775

This can be obtained by “crossing out” the row and column of P corresponding to absorbing state 6.

Let μi ¼ E(Ti) be the mean time to absorption from state i for i ¼ 1, 2, 3, 4, 5. Then, according to the

MTTA Theorem,
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μ ¼ I�Qð Þ�1
1

¼

1 �:5 0 �:5 0

0 1 �:5 �:5 0

0 �:5 1 0 0

0 0 �:5 1 �:5

0 0 0 0 1

266666664

377777775

�1
1

1

1

1

1

266666664

377777775

¼

1 1 1 1 :5

0 1:6 1:2 :8 :4

0 :8 1:6 :4 :2

0 :4 :8 1:2 :6

0 0 0 0 1

266666664

377777775

1

1

1

1

1

266666664

377777775 ¼

4:5

4:0

3:0

3:0

1:0

266666664

377777775
The inverse of I � Q was determined using software.

So, for example, the mean time to absorption from state 1 is μ1 ¼ 4.5 transitions, slightly larger

than our earlier approximation of 4.31. On the average, it takes 4.5 steps to arrive at a loan decision

starting from the time the loan documents are initiated. Similarly, the earlier estimate μ4 � 2.91 was a

little off from the correct answer of μ4 ¼ 3. The last entry of the vector μ is obvious from the design

of the chain: since state 5 transitions immediately into state 6 with certainty, T5 is identically equal to

1, and so its mean is 1. ■

Example 6.29 Consider once again our Gambler’s Ruin scenario, this time with an arbitrary

probability p that Allan triumphs over Beth in any one game. The only two non-absorbing states

are $1 and $2, so the required sub-matrix Q consists of the “center four” entries of the original 4 � 4

transition matrix:

P ¼
0

1

2

3

1 0 0 0

1� p 0 p 0

0 1� p 0 p
0 0 0 1

2664
3775 ) Q ¼ 1

2

0 p
1� p 0

� �

There is a simple inverse formula for a 2 � 2 matrix:

a b
c d

� ��1

¼ 1

ad � bc

d �b
�c a

� �
ð6:7Þ

Applying Eq. (6.7) and the MTTA Theorem,

μ ¼ I�Qð Þ�1
1

¼ 1 �p

�1þ p 1

" #�1
1

1

" #
¼ 1

1ð Þ 1ð Þ � �pð Þ �1þ pð Þ
1 p

1� p 1

" #
1

1

" #

¼ 1

1� pþ p2
1þ p

2� p

" #

6.5 Markov Chains with Absorbing States 463



Hence

μ1 ¼
1þ p

1� pþ p2
μ2 ¼

2� p

1� pþ p2

Since we have always started Allan with $2, let’s explore μ2 further. If p ¼ 1, so Allan cannot lose,

then μ2 ¼ (2 � 1)/(1 � 1 + 12) ¼ 1. This is logical, since Allan would automatically transition from

$2 to $3 in 1 step/game and the competition would be over. Similarly, substituting p ¼ 0 into this

expression gives μ2 ¼ 2, reflecting the fact that if Allan cannot win games then the chain must

necessarily proceed along the path 2 ! 1 ! 0, a total of two transitions. For p ¼ .55, the numerical

case illustrated earlier, we have

μ2 ¼
2� :55

1� :55þ :552
¼ 1:45

:7525
¼ 580

301
¼ 1:92691

which is quite close to our previous approximation of 1.92.

For what value of p is the competition expected to take the longest? Using calculus, one can find

the maximum of μ2 with respect to p, which turns out to occur at p ¼ 2� ffiffiffi
3

p � :268. If Allan begins

with $2 and has a .268 probability of winning each game, the expected duration of the competition is

maximized, specifically with μ2 ¼ 1þ 2=
ffiffiffi
3

p � 2:155 games. ■

Proof of the MTTA Theorem For notational ease, let 1, 2, . . ., r be the non-absorbing states of the

chain. Also, let A denote the set of absorbing states (which, if the Markov chain has s total states,

could be enumerated as r + 1, . . ., s). Starting in any non-absorbing state i, consider the first transition
of the chain. If the chain transitions into any member of A, then it has been “absorbed” in one step and

so Ti ¼ 1. On the other hand, if the chain transitions into any non-absorbing state j (including back

into i itself), then the expected number of steps to absorption is 1 + E(Tj), where the 1 accounts for the
step just taken and Tj represents the time to absorption starting from the new state j. Apply the Law of

Total Expectation:

E Tið Þ ¼ 1 � P i ! Að Þ þ
Xr

j¼1

1þ E Tj

� �� � P�i ! j
� �

¼ P i ! Að Þ þ
Xr

j¼1

P i ! jð Þ þ
Xr

j¼1

E Tj

� � � P i ! jð Þ

Since the state space of the Markov chain is A [ {1, 2, . . ., r}, the first two terms in the expression

above must sum to 1. Thus, we have μi ¼ 1 + Σj ¼ 1
r μjP(i ! j) for i ¼ 1, 2, . . . r. Stacking these

equations and rewriting slightly, we have

μ1 ¼ P 1 ! 1ð Þμ1 þ � � � þ P
�
1 ! r

�
μr þ 1

μ2 ¼ P 2 ! 1ð Þμ1 þ � � � þ P
�
2 ! r

�
μr þ 1

⋮ ⋮

μr ¼ P r ! 1ð Þμ1 þ � � � þ P
�
r ! r

�
μr þ 1

This stack can be written more compactly as μ ¼ Qμ + 1. Solving for μ yields the desired

result. ■
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The MTTA Theorem requires that every non-absorbing state can reach (at least) one absorbing

state. That is, the set of absorbing states must be accessible from every non-absorbing state. What

would happen if this were not the case?

Example 6.30 In the Markov chain depicted in Fig. 6.9, 4 is an absorbing state, but it is only

accessible from state 3. It is clear that the chain will eventually be absorbed into state 4 if X0 ¼ 3 and

will never be absorbed into state 4 if X0 ¼ 1 or 2. So, where does the MTTA Theorem break down?

The one-step transition matrix P for this chain, the resulting sub-matrix Q for the non-absorbing

states, and the matrix I � Q required for calculating mean times to absorption are

P ¼
1

2

3

4

:5 :5 0 0

:4 :6 0 0

0 0 :7 :3
0 0 0 1

2664
3775 Q ¼

1

2

3

:5 :5 0

:4 :6 0

0 0 :7

24 35 I�Q ¼
:5 �:5 0

�:4 :4 0

0 0 :3

24 35
The matrix I � Q is not invertible; this can be seen by noting that the first and second rows are

multiples of each other, or by computing the determinant and discovering that det(I � Q) ¼ 0.

Because (I � Q)�1 does not exist, the formula from the MTTA Theorem cannot be applied.

Recall that the cdf of T1 can be determined from the appropriate entries of the k-step transition

matrices; specifically, since the only absorbing state of this chain is state 4,

FT1
kð Þ ¼ P T1 � kð Þ ¼ P kð Þ 1 ! 4ð Þ ¼ the 1; 4ð Þ entry of Pk

The (1, 4) entry of the matrix P above is 0, so P(T1 � 1) ¼ 0. But since state 4 is not accessible

from state 1, the (1, 4) entry of every transition matrix Pk is 0. Thus, P(T1 � k) ¼ 0 for all positive

integers k and pT1
kð Þ ¼ 0� 0 ¼ 0 for all k. Since the probabilities associated with T1 sum to zero and

not 1, T1 is not actually a valid rv (and so, in particular, has no mean). ■

In general, when the set of absorbing states is not accessible from every non-absorbing state, the

matrix I � Q will be singular (i.e., not invertible). If a subset of the non-absorbing states can access

the absorbing states (that’s true for state 3 in Example 6.30), we can apply the MTTA Theorem if we

define Q to be the sub-matrix of P corresponding to those states that can access the absorbing states.

6.5.3 Mean First Passage Times

We now briefly turn our attention back to regular Markov chains. In Sect. 6.4, we saw that one

interpretation of the probability πi from the Steady-State Theorem is that 1/πi represents the expected
number of transitions necessary for the chain to return to state i given that it starts there—the mean

recurrence time for state i. With a clever use of the MTTA Theorem, we can also determine the

expected number of transitions required for the chain to transition from a state i to a different state j—

the mean first passage time from i to j.

1
.5 .5

.4

.3.6

.7

2 143
Fig. 6.9 State diagram for

Example 6.30
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Example 6.31 (Example 6.23 continued) For the ubiquitous taxi driver example, it was found that

the steady-state probability for zone 3 is π3 ¼ .2 and, thus, the expected number of fares until the

driver returns to zone 3 is 1/π3 ¼ 1/.2 ¼ 5.

But suppose the taxi driver just dropped off a fare in zone 1 (or zone 2). He wonders how long it

will take him to get back home to zone 3 for lunch. More precisely, he wishes to know the expected

number of fares required to reach zone 3, starting from some other state (i.e., different than zone 3).

The trick to answering the taxi driver’s question—i.e., to determine the mean first passage time for

zone 3 when beginning in zone 1 or zone 2—is to pretend that zone 3 is an absorbing state, and then

invoke the MTTA Theorem. Modify the original one-step transition matrix P of the Markov chain so

that zone 3 is absorbing state, and label the new matrix eP:
P ¼

:3 :2 :5
:1 :8 :1
:4 :4 :2

24 35 ) eP ¼
:3 :2 :5
:1 :8 :1
0 0 1

24 35
Now proceed as before: the sub-matrix for the non-absorbing states, which in eP are zone 1 and zone

2, is

Q ¼ :3 :2
:1 :8

� �
,

from which

μ ¼ I�Qð Þ�1
1 ¼ :7 �:2

�:1 :2

� ��1
1

1

� �
¼ � � � ¼ 3:33

6:67

� �
Thus, starting in zone 1, the average number of trips required for the taxi driver to get home to zone

3 is 3.33, while it takes twice that long on the average if he’s starting from zone 2. ■

6.5.4 Probabilities of Eventual Absorption

As discussed in Example 6.29 in the context of Gambler’s Ruin, when a Markov chain has multiple

absorbing states one can only speak of the mean time to absorption into the set of absorbing states, not

any particular absorbing state (e.g., not time to $0 separate from time to $3). We can, however,

ask about the probability of eventual absorption into state $0, as opposed to eventual absorption into

state $3.

DEFINITION

Let a be an absorbing state of a Markov chain and let i be a non-absorbing state. The

probability of eventual absorption into a from state i, denoted π(i ! a), is defined by

π i ! að Þ ¼ lim
n!1P nð Þ i ! að Þ

That is, π(i ! a) is defined to be the limit of the (i, a) entry of Pn as n ! 1. This is consistent with

our previous efforts to determine the probability of eventual absorption by examining P75 or P100.

But rather than approximate these probabilities by taking a high power ofP, we now present an explicit

method for determining them.
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Before illustrating the method for determining π(i ! a), a few observations are in order. First, if

state a is not accessible from state i, then P(n)(i ! a) ¼ 0 for all n and the limit is also zero, i.e.,

π(i ! a) ¼ 0 when i cannot access a. This occurred in Example 6.30, with state 4 not being

accessible from states 1 or 2.

Second, if the Markov chain has a single absorbing state a, then π(i ! a) ¼ 1 for every state i that

can access a. That is, a chain with an accessible absorbing state will always eventually be absorbed.

This would be the case, for instance, in Example 6.25: it is a sure thing that the chain will eventually

arrive at (and stay in) state 6, irrespective of where the chain begins. So, the interesting cases of

determining π(i ! a) are for Markov chains with multiple absorbing states, such as Gambler’s Ruin.

Third, suppose we extended the preceding definition to non-absorbing states. That is, what can be

said about

lim
n!1P nð Þ i ! jð Þ

when j is not an absorbing state? If the Markov chain has any absorbing states (and assuming at least

one of these is accessible from i), then the chain will eventually get absorbed and so P(n)(i ! j) ! 0.

If we have a regular Markov chain—which, in particular, means there are no absorbing states—then

the Steady State Theorem tells us P(n)(i ! j) ! πj, a steady-state probability that is independent of i.
For other cases, such as the cyclic chain of Example 6.20, the limit of P(n)(i ! j) may not exist at all.

On to the calculation: as in the proof of the MTTA Theorem, rearrange the states so that the

non-absorbing states of the Markov chain are 1, 2, . . ., r and the absorbing states are r + 1, . . ., s. Then

the one-step transition matrix P can be partitioned as follows:

1

r

s

=
1r +

Q R

P

O I

ð6:8Þ

Expression (6.8) is sometimes called the canonical form of a Markov chain. In Eq. (6.8), Q is the

r � r sub-matrix for the non-absorbing states, as before. The matrix O in the lower left of Eq. (6.8)

consists entirely of zeros, since that quadrant of P indicates the probabilities of transitioning from an

absorbing state (r + 1, . . ., s) to a non-absorbing state (1, . . ., r). Similarly, I is the (s � r) � (s � r)

identity matrix, since its diagonal entries correspond to P(a ! a) for the absorbing states and its

off-diagonal entries to impossible events (transitions from one absorbing state to another). The

“remainder” matrix R indicates the transition probabilities from the non-absorbing states into the

absorbing states and can have (fairly) arbitrary entries.

The probabilities of eventual absorption into every absorbing state from every non-absorbing state

are provided by the following theorem.
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THEOREM

Consider a Markov chain with non-absorbing states 1, . . ., r and absorbing states r + 1, . . ., s.

Define sub-matricesQ and R of the one-step transition matrix P as in Eq. (6.8). Suppose further

than every absorbing state is accessible from every non-absorbing state. Then the probabilities

of eventual absorption are given by

Π ¼ I�Qð Þ�1
R,

where I is the r � r identity matrix and Π is an r � (s � r) matrix whose entries are the

probabilities π(i ! a) for i ¼ 1, . . ., r and a ¼ r + 1, . . . s.

Some guidance for the proof of this theorem can be found in Exercise 57.

Example 6.32 (Example 6.29 continued) To apply the previous theorem to our Gambler’s Ruin

example, we need to reorder the states, so that non-absorbing states $1 and $2 come first while

absorbing states $0 and $3 come last. The canonical form of P, along with the relevant sub-matrices

Q and R, are

0 1 0
2 1 0 0

0 0 1 0
0 0 0 1

1

0
3

p p
p p

−
−

=P , 
0

1 0
p

p
=

−
Q , 

1 0
0
p

p
−

=R

Applying the previous theorem, along with the inverse formula (6.7) for a 2 � 2 matrix,

Π ¼ I�Qð Þ�1
R ¼ 1 �p

�1þ p 1

" #�1
1� p 0

0 p

" #

¼ 1

1� pþ p2

1 p

1� p 1

" #
1� p 0

0 p

" #
¼

1� p

1� pþ p2
p2

1� pþ p2

1� 2pþ p2

1� pþ p2
p

1� pþ p2

26664
37775

Reading off the entries of the matrix Π, we have

π $1 ! $0ð Þ ¼ 1� p

1� pþ p2
π
�
$1 ! $3

� ¼ p2

1� pþ p2

π $2 ! $0ð Þ ¼ 1� 2pþ p2

1� pþ p2
π
�
$2 ! $3

� ¼ p

1� pþ p2

In particular, if Allan starts with $2, the probability he will eventually win the competition is

π($2 ! $3) ¼ p/(1 � p + p2). As a check, this probability equals zero when p ¼ 0 (Allan never

wins games) and equals one when p ¼ 1 (Allan always wins games). If p ¼ .55, as in several of the

previous examples in this chapter,

π $2 ! $3ð Þ ¼ :55

1� :55þ :552
¼ :55

:7525
¼ 220

301
� :7309
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Notice that this is, to four decimal places, the probability we approximated by computing P75 with

software and thereby obtaining P(75)($2 ! $3). ■

The matrices R and Π in Example 6.32 are square, but this is not necessarily the case in other

scenarios. In general, Q is an r � r matrix (hence, square), but the dimensions of both R and Π are

r � (s � r).

6.5.5 Exercises: Section 6.5 (44–58)

44. Explain why a Markov chain with one or more absorbing states cannot be a regular chain.

45. A local community college offers a three-semester athletics training (AT) program. Suppose

that at the end of each semester, 75% of students successfully move on to the next semester

(or to graduation from the third semester) and 25% are required to repeat the most recent

semester.

(a) Construct a transition matrix to represent this scenario. The four states are (1) first

semester, (2) second semester, (3) third semester, (4) graduate.

(b) What is the probability a student graduates the program within three semesters? Four

semesters? Five semesters?

(c) What is the average number of semesters required to graduate from this AT program?

(d) According to this model, what is the probability of eventual graduation? Does that seem

realistic?

46. Refer back to the previous exercise. Now suppose that at the end of each semester, 75% of

students successfully move on to the next semester (or to graduation from the third semester),

15% flunk out of the program, and 10% repeat the most recent semester.

(a) Construct a transition matrix to represent this updated situation by adding a fifth state,

(5) flunk out. [Hint: Two of the five states are absorbing.]

(b) What is the probability a student exits the program, either by graduating or flunking out,

within three semesters? Four semesters? Five semesters?

(c) What is the average number of semesters students spend in this program before exiting

(again, either by graduating or flunking out)?

(d) What proportion of students that enter the program eventually graduate? What proportion

eventually flunk out?

(e) Given that a student has passed the first two semesters (and, so, is currently in her third-

semester courses), what is the probability she will eventually graduate?

47. The article “Utilization of Two Web-Based Continuing Education Courses Evaluated by

Markov Chain Model” (J. Am. Med. Inform. Assoc. 2012: 489-494) compared students’ flow

between pages of an online course for two different Web layouts in two different health

professions classes. In the first week of the classes, students could visit (1) the homepage,

(2) the syllabus, (3) the introduction, and (4) chapter 1 of the course content. Each student was

tracked until s/he either reached chapter 1 or exited without reading chapter 1 (call the latter

state 5). For one version of the Web content in one class, the following transition matrix was

estimated:
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P ¼

0 1 0 0 0

:21 0 :33 :05 :41
:09 :15 0 :67 :09
0 0 0 1 0

0 0 0 0 1

266664
377775

When students log into the course, they are always forced to begin on the homepage.

(a) Identify the absorbing state(s) of this chain.

(b) Let T1 ¼ the number of transitions students take, starting from the homepage, until the

either arrive at chapter 1 or exit early. Determine P(T1 � k) for k ¼ 1, 2, . . ., 10.
(c) Use (b) to approximate the pmf of T1, and then approximate the mean time to absorption

starting from the class homepage.

(d) Determine the (true) mean time to absorption starting from the homepage.

(e) What proportion of students eventually got to chapter 1 in the first week? What proportion

exited the course without visiting chapter 1?

48. Refer back to the previous exercise. After some content redesign, the same Web-based health

professions course was run a second time. The first-week transition probabilities for the revised

course were as follows:

P ¼

0 1 0 0 0

:15 0 :43 :06 :36
:09 :16 0 :66 :09
0 0 0 1 0

0 0 0 0 1

266664
377775

(a) How did the redesign affect the average amount of time students spent in the course

(at least as measured by the number of Web page visits within a session)?

(b) Did the redesign improve the chances that students would get to the chapter 1 content

before exiting the system?

49. In Exercise 4, we introduced a game in which Michelle will flip a coin until she gets heads four

times in a row. Define X0 ¼ 0 and, for n � 1, Xn ¼ the number of heads in the current streak of

heads after the nth flip.

(a) Construct the one-step transition matrix P for this chain, on the state space {0, 1, 2, 3, 4}.

What is special about state 4?

(b) Let T0 denote the total number of coin flips required by Michelle to achieve four heads in a

row. Construct the cdf of T0, P(T0 � k), for k ¼ 1, 2, . . ., 15. [Hint: The cdf values for

k ¼ 1, 2, 3 should be obvious.]

(c) Michelle will win a prize if she can get four heads in a row within 10 coin flips. What is the

probability she wins the prize?

(d) Use (b) to construct an incomplete pmf of T0. Then use this incomplete pmf to approximate

both the mean and standard deviation of T0.

(e) What is the (exact) expected number of coin flips required for Michelle to get four heads in

a row?

50. Refer back to Exercise 8. The article referenced in that exercise provides the following

transition matrix for the states (1) current, (2) delinquent, (3) loss, and (4) paid, for a certain

class of loans:
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P ¼
:95 :04 0 :01
:15 :75 :07 :03
0 0 1 0

0 0 0 1

2664
3775

(a) Identify the absorbing state(s).

(b) Determine the mean time to absorption for a loan customer who is current on payments,

and for a customer who is delinquent.

(c) If a loan customer is current on payments, what is the probability s/he will eventually pay

off the loan? What is the probability the loan company will suffer a loss on this account?

(d) Answer (c) for customers who are delinquent on their loans.

51. Refer back to Exercise 15(c). Calculate and interpret the mean times to absorption for this chain.

For which opening strategy, cooperative or competitive, is the negotiation process longer on the

average?

52. Refer back to Exercise 14. Assuming Lucas begins searching for his uncle in room 1 and his

uncle is hiding in room 6, what is the expected number of rooms Lucas will visit in order to

“win” this round of hide-and-seek?

53. Modify the Gambler’s Ruin example of this section to a $4 total stake. That is, Allan may start

with x0 ¼ $1, $2, or $3, and Beth has $(4 � x0) initially. As usual, let p denote the probability

Allan wins any single game.

(a) Construct the one-step transition matrix.

(b) Determine the mean times to absorption for each of Allan’s possible starting values, as

functions of p.

(c) Determine the probability Allan eventually wins, starting with $1 or $2 or $3, as functions

of p.

54. Refer back to the Ehrenfest chain model introduced in Exercise 2. Suppose there arem ¼ 3 balls

being exchanged between the two chambers. If the left chamber is currently empty, what is the

expected number of exchanges until it is full (i.e., all 3 balls are on the left side)?

55. Refer back to Exercise 40. If a man has a low-prestige occupation, what is the expected number

of generations required for him to have an offspring with a high-prestige occupation?

56. Exercise 48 of Chap. 2 established the following formula for the mean of a rv X whose possible

values are positive integers:

E Xð Þ ¼ 1þ
X1
x¼1

1� F xð Þ½ �,

where F(x) is the cdf of X. Hence, if the values F(1), F(2), . . ., F(x*) are known for some integer

x*, the mean of X can be approximated by 1 + ∑x ¼ 1
x* [1 � F(x)].

(a) Refer back to Example 6.26. Use the given cdf values and the above expression with

x* ¼ 12 to approximate E(T1), the mean time to absorption starting in state 1. How does

this compare to the pmf-based approximation in the example? How does it compare to the

exact answer, 4.5?

(b) Repeat part (a), starting in state 4 of the bank loan Markov chain.

(c) Will this method always under-approximate the true mean of the rv, or can you tell?

Explain.

[Note: It can be shown that this “cdf method” of approximating the mean will always produce a

higher value than the truncated sum of x � p(x).]
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57. This exercise outlines a proof of the formula Π ¼ (I � Q)�1R for the probabilities of eventual

absorption. You will want to refer back to Eq. (6.8), as well as the proof of the MTTA Theorem.

(a) Starting in a non-absorbing state i, the chain will eventually be absorbed into absorbing

state a if either (1) the chain transitions immediately into a, or (2) the chain transitions into

any non-absorbing state and then eventually is absorbed into state a. Use this to explain

why

π i ! að Þ ¼ P i ! að Þ þ
X
j2A

0
P i ! jð Þπ j ! að Þ,

where A0 denotes the set of non-absorbing states of the chain.

(b) The equation in (a) holds for all i 2 A0 and all a 2 A. Show that this collection of equations

can be rewritten in matrix form as Π ¼ R + QΠ, and then solve for Π. (You may assume

the matrix I � Q is invertible.)

58. The matrix (I � Q)�1 arises in several contexts in this section. This exercise provides an

interpretation of its entries. Consider a Markov chain with at least one absorbing state, and

assume that every non-absorbing state can access at least one absorbing state. As before, A and

A0 will denote the sets of absorbing and non-absorbing states, respectively.

(a) Consider any two non-absorbing states i and j. Let μij denote the expected number of visits

to state j, starting in state i, before the chain is absorbed. (When j ¼ i, the initial state is

counted as one visit.) Mimicking the proof of the MTTA Theorem, show that

μii ¼
X
a2A

1 � P i ! að Þ þ
X
k2A

0
1þ μkið Þ � P i ! kð Þ

¼ 1þ
X
k2A

0
μki � P i ! kð Þ

(b) Using similar reasoning, show that for i 6¼ j,

μij ¼
X
k2A

0
μkjP i ! kð Þ

(c) Let M be the square matrix whose (i, j)th entry is μij. Combine (a) and (b) to establish the

equation M ¼ I + QM, and solve for M.

6.6 Simulation of Markov chains

A typical Markov chain simulation requires two elements: the one-step transition matrix, P, and an

indication of the initial state X0 (either as a fixed state value or as a rv with a probability distribution).

The actual simulation of a single realization of the chain X0, X1, X2, . . . then amounts to repeated

selections from the transitional probability distributions specified by elements of P. Simulation of

Markov chains allow us to confirm theoretical results and, more importantly, determine properties of

Markov chains that are not covered by the theorems of this chapter or other theoretical results.

The main step in any Markov chain simulation is to simulate a value for the next step, Xn+1, based

on the transition probabilities coming out of the current step Xn. Let’s start with the initial state X0.

Suppose for one particular run of the simulation, X0 has been assigned the state i, either because that’s

the fixed initial state or because a single draw from some initial distribution v0 yielded i. Conditional
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on X0 ¼ i, the distribution of X1 is determined by the transition probabilities P(i ! j) for j ¼ 1, 2, 3, . . .,
which appear in the ith row of P. Thus, one needs to extract the ith row of P and use it as the basis for a

single discrete simulation. If the result of this simulation is X1 ¼ j, then the jth row of P can be

accessed to simulate X2, and so on.

Example 6.33 Let’s simulate a typical day in the life of our taxi driver. Although a real taxi driver

does not have the same number of fares each day, for purposes of this first simulation we’ll assume

that he takes exactly 25 fares in 1 day.

Suppose first that the driver begins each day in a random zone X0, as in Example 6.15, specifically

with the initial distribution p(1) ¼ .2, p(2) ¼ .5, p(3) ¼ .3. We begin by simulating a single value

from this initial distribution. Once that is determined, our program should then simulate a single value

of X1 using the row of P corresponding to the value of X0, then do the same for X2 based on the

simulated value of X1, and so on. Figure 6.10 shows Matlab and R code for such a simulation.

In Matlab, P(current,:) calls for the row of P specified by the numerical index current;

the code P[current,] performs the same task in R. The output of both of these programs is a

vector, X, containing the sequence of states for the Markov chain (beginning with X0). For example,

one run of the above program in R yielded the following output:

> X

[1] 2 1 3 1 2 2 2 2 1 1 1 1 3 1 3 3 1 3 2 2 2 2 3 3 1 3

The randomly selected initial state was X0 ¼ 2, followed by X1 ¼ 1, X2 ¼ 3, . . ., and finally

X25 ¼ 3. (The symbol [1] at the left is not the initial state; this is just R’s way of denoting the

beginning of X.) If we weren’t interested in the initial state of the chain, the code could easily be

modified not to store X0, in which case the indices of the output vector would match the time indices

of the Markov chain (i.e., the subscripts on X1, X2, . . ., X25).

To make X0 a fixed initial state instead of a true random variable, one need simply replace the two

lines of code specifying the initial probability vector and the first random selection. In the Matlab

code, the third and fourth lines could be replaced by the statement X¼3; to fix the taxi driver’s initial

state as zone 3. A similar comment applies to the R code. And, again, one could choose whether or not

to store the initial state as part of the output vector. ■

It is important not to confuse the number of transitions of the chain with the number of runs of the

simulation. In Example 6.33, both programs simulate the chain through 25 transitions, but only a

P=[.3 .2 .5; .1 .8 .1; .4 .4 .2];

states=[1 2 3];
v0=[.2 .5 .3];
X=randsample(states,1,true,v0);
current=X;
for i=1:25

nextstate=
randsample(states,1,true,P(current,:));

X=[X nextstate];
current=nextstate;

end

P <- matrix(c(.3,.2,.5,.1,.8,.1,
.4,.4,.2),nrow=3,ncol=3,byrow=TRUE)
states <- c(1,2,3)
v0 <- c(.2,.5,.3)
X <- sample(states,1,TRUE,v0)
current <- X
for (i in 1:25){

nextstate <-
sample(states,1,TRUE,P[current,])

X <- c(X,nextstate)
current <- nextstate

}

a b

Fig. 6.10 Code for Example 6.33: (a) Matlab; (b) R
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single run. If it’s our desire to keep track of the chain’s behavior across many different runs,

analogous to the simulations described at the ends of Chaps. 1–4, then we must add an additional

layer of code, typically in the form of a surrounding “for” or “while” loop.

Example 6.34 As an illustration of the Steady-State Theorem, consider the model for Web users’

browser histories discussed in Example 6.19 (refer back to that example to see the one-step transition

matrix). Let’s simulate the distribution of X75, the Web site category of a user’s 75th visited page. For

variety’s sake, suppose users are equally likely to start surfing the Web in any one of the five Web site

categories; recall that the initial distribution of a regular chain will not affect its long-run behavior.

The programs displayed in Fig. 6.11 perform 10,000 runs of simulating this Markov chain up through

X75. Purely to save space, the code to create P has been suppressed in Fig. 6.11, but it is very similar to

what appears in Fig. 6.10.

In the fourth line of code, we have employed a shortcut version of the randsample and sample

functions in Matlab and R, respectively, to randomly and uniformly select a single random integer

from 1 to 5 (this is the initial state). Both programs store the state of the Markov chain after

75 transitions in the vector named X75 for each of 10,000 runs. (Notice that the intermediate states

X1, . . ., X74 are not permanently stored.)

The 10,000 simulated values of X75 from one execution of the Matlab program are summarized in

the accompanying table, along with the steady-state probabilities for this chain determined in

Sect. 6.4.

j 1 2 3 4 5

# of times 2822 1004 1599 3816 759

P̂ X75 ¼ jð Þ .2822 .1004 .1599 .3816 .0759

πj .2840 .0948 .1659 .3791 .0758

The estimated and theoretical steady-state probabilities are quite similar. Remember that these two

rows of probabilities should differ slightly for two reasons: first, this is only a simulation of 10,000

values of the rv X75, so there is natural simulation error; second, the steady-state probabilities indicate

the behavior of Xn as n ! 1, and we don’t expect the rv X75 to have exactly this distribution

(although it should be close).

Section 6.6 introduced the notions of time to absorption and mean time to absorption for Markov

chains with one or more absorbing states. We can also use simulation to explore properties of time-to-

absorption variables and first-passage times.

P=not shown;
X75=zeros(10000,1);
for i=1:10000

current=randsample(5,1);
for j=1:75

nextstate=
randsample(1:5,1,true,P(current,:));

current=nextstate;
end
X75(i)=current;

end

P <- not shown
X75 <- NULL
for (i in 1:10000){

current <- sample(5,1)
for (j in 1:75){

nextstate <-
sample(1:5,1,TRUE,P[current,])

current <- nextstate
}
X75[i] <- current

}

a b

Fig. 6.11 Code for Example 6.34: (a) Matlab; (b) R ■
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Example 6.35 Consider again the bank loan application process described in Example 6.25, with

lone absorbing state 6 (ultimate acceptance or rejection of the application), and the random variable

T1 ¼ time to absorption from state 1 (document initiation). To simulate the distribution of T1, one

begins the chain in state 1 and continues to simulate its transitions until it arrives in state 6. The

simulation program now must keep track of how many transitions occur, rather than just where the

chain ends up. Figure 6.12 shows Matlab and R code for this purpose; again, to save space, the code

for entering the matrix P is not included.

The simulated distribution of T1 from one execution of the R code in Fig. 6.12b appears in

Fig. 6.13. These particular 10,000 simulated values had a sample mean of 4.508 and a sample

standard deviation of 2.276. Notice the sample mean is quite close to the theoretical expectation,

E(T1) ¼ 4.5, determined in Sect. 6.5.

Clearly, the sample mean of the simulated T1 values is a better estimate of E(T1) than the approach

utilizing the truncated pmf presented in the previous section. Of course, neither is strictly necessary

since the mean of T1 can be found explicitly using the MTTA Theorem. The new information

provided by the simulation is a measure of the variability of T1: we estimate the standard deviation

of T1 to be 2.276, whereas no simple matrix formula exists for its theoretical standard deviation. ■

The preceding examples employed simulations primarily to confirm theoretical results established

in earlier sections. (Or, perhaps better put, our earlier theoretical results validate the simulations!) The

final two examples of this section indicate situations where we must rely on simulation methods to

approximate values of desired quantities.

P=not shown;
T1=zeros(10000,1);
for i=1:10000

current=1;
steps=0;
while current~=6

steps=steps+1;
nextstate=

randsample(1:6,1,true,P(current,:));
current=nextstate;

end
T1(i)=steps;

end

P <- not shown
T1 <- NULL
for (i in 1:10000){

current <- 1
steps <- 0
while (current!=6){

steps <- steps+1
nextstate <-

sample(1:6,1,TRUE,P[current,])
current <- nextstate

}
T1[i] <- steps

}

a b

Fig. 6.12 Code for Example 6.35: (a) Matlab; (b) R
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Example 6.36 Refer back to Example 6.13, which described Chinese cell phone users’ transitions

between three major carriers. Suppose users may renew or change contracts annually, and that annual

plans for the three carriers cost the following (in $US): 550 for China Telecom, 600 for China

Unicom, and 525 for China Mobile. Assume that, because of governmental regulations, these prices

will remain the same for the next 10 years. If last year the market shares of the three carriers were .4,

.2, and .4, respectively and all contracts are about to come up for renewal, what is the average amount

a Chinese cell phone customer will pay over the next decade?

We will employ a Markov chain simulation to model the behavior of customers’ carrier choices for

10 consecutive years. Critically, we must keep track of how much money a customer spends each

year—that is, our three states now have associated quantitative values. (This is a common instance

where simulation proves useful.) Let Y ¼ the total cost of ten 1-year calling plans for a Chinese cell

phone customer. Figure 6.14 shows code for simulating Y using the techniques of this section.

An initial state x0 is first determined using the specified initial probability distribution (here,

v0 ¼ [.4 .2 .4]). Then, ten steps of the Markov chain are simulated; each of these states is temporarily

held in nextstate. The vector AnnualCost stores the cost of a 1-year calling plan by calling the

appropriate element of the Prices vector. Once a 10-year chain has been simulated, those annual

costs are summed and stored as a simulated value of Y.
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A histogram of the 10,000 simulated Y values appears in Fig. 6.15. Notice that the distribution of

Y has three spikes, at $5250, $5500, and $6000. These correspond to customers who keep the same

carrier all 10 years; the large probabilities along the main diagonal of the transition matrix indicate

reasonably strong customer loyalty. For this particular run, the simulated values of Y had a sample

mean and standard deviation of $5503.40 and $199.32, respectively, from which we can be 95%

confident, using the methods of Sect. 5.3, that μY is between $5499.49 and $5507.31.

Example 6.37 Our taxi driver now makes one last appearance (hopefully to applause). He starts each

morning at home in zone 3. Methods from Sects. 6.4 and 6.5 allow us to determine the expected

number of fares required for him to return home, or to reach one of the other two zones. But how long

does it take him, in the typical day, to visit all three zones? Let

Tall ¼ number of transitions required to visit every state at least once (not counting the initial state, X0)

P=[.84 .06 .1;.08 .82 .1;.1 .04 .86];

Prices=[550 600 525];
Y=zeros(10000,1);
for i=1:10000

v0=[.4 .2 .4];
AnnualCost=zeros(10,1);
x0=randsample(1:3,1,true,v0);
current=x0;
for n=1:10

nextstate=
randsample(1:3,1,true,P(current,:));

AnnualCost(n)=
Prices(nextstate);

current=nextstate;
end
Y(i)=sum(AnnualCost);

end

P <- matrix(c(.84,.06,.1,.08,.82,.1, 
.1,.04,.86),nrow=3,ncol=3,byrow=TRUE)
Prices <- c(550,600,525)
Y <- NULL
for (i in 1:10000){

v0 <- c(.4,.2,.4)
AnnualCost <- NULL
x0 <- sample(1:3,1,TRUE,v0)
current <- x0
for (n in 1:10){

nextstate <-
sample(1:3,1,TRUE,P[current,])

AnnualCost[n] <-
Prices[nextstate];

current <- nextstate
}
Y[i]=sum(AnnualCost)

}

a b

Fig. 6.14 Code for Example 6.36: (a) Matlab; (b) R

5200 5300 5400 5500 5600 5700 5800 5900 6000 6100
y0

200

400

600

800

1000

1200

Frequency

Fig. 6.15 Histogram of values of Y in Example 6.36 ■
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To simulate Tall, our program must keep track of which states have been visited thus far. Once all

states/zones have been visited, the numerical value of Tall for that simulation run can be recorded.

Figure 6.16 shows appropriate code.

In both programs, a vector called visits keeps a record of which states the chain visits within

that particular run. When chain j is visited ( j ¼ 1, 2, 3), the jth entry of visits switches from 0 to

1. Once all three entries of visits equal 1, as detected by its sum, the while loop terminates and the

temporary count of transitions (Talltemp) is stored in Tall. The result of the program is 10,000

simulated values of the rv Tall, stored in the vector Tall.

Figure 6.17 displays a histogram of the 10,000 values resulting from running the Matlab program

in Fig. 6.16a. The sample mean and standard deviation of these 10,000 values were �x ¼ 8:1674 and

s ¼ 5.8423. Hence, we estimate the average number of fares required for the taxi driver to visit all

three zones to be 8.1674, with an estimated standard error of s=
ffiffiffi
n

p ¼ 5:8423=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10, 000

p ¼ 0:058423.

Using the techniques of Chap. 5, we can say with 95% confidence that μall, the true mean of Tall, lies in

the interval

P =[.3 .2 .5;.1 .8 .1;.4,.4,.2];

Tall=zeros(10000,1);
for i=1:10000

current=3;
visits=[0 0 0];
Talltemp=0;
while (sum(visits)<3)

nextstate=randsample(1:3,1,
true,P(current,:));

visits(nextstate)=1;
current=nextstate;
Talltemp=Talltemp+1;

end
Tall(i)=Talltemp;

end

P <- matrix(c(.3,.2,.5,.1,.8,.1, 
.4,.4,.2),nrow=3,ncol=3,byrow=TRUE)
Tall <- NULL
for (i in 1:10000){

current <- 3
visits <- c(0,0,0)
Talltemp <- 0
while (sum(visits)<3){

nextstate <-
sample(1:3,1,TRUE,P[current,])

visits[nextstate] <- 1
current <- nextstate
Talltemp <- Talltemp+1

}
Tall[i] <- Talltemp

}

a b

Fig. 6.16 Code for Example 6.37: (a) Matlab; (b) R
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�x	 1:96
sffiffiffi
n

p ¼ 8:1674	 1:96 0:058423ð Þ ¼ 8:053; 8:282ð Þ

Among the 10,000 simulated values of Tall, 4204 were at most 5 (so, 3 or 4 or 5). Hence, the

estimated probability that the taxi driver visits all three zones within his first five fares is

p̂ ¼ P̂ Tall � 5ð Þ ¼ 4204

10, 000
¼ :4204

The estimated standard error of this estimate is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ=np ¼ :0049. Hence we are

95% confident that the true probability P(Tall � 5) lies in .4204 	 1.96(.0049) ¼ (.4108, .4300). ■

6.6.1 Exercises: Section 6.6 (59–66)

59. Refer back to Exercise 3. Suppose this machine produces 150 units on days when it is fully

operational, 75 units per day when partially operational, and 0 units when broken. Consider a

month with 20 work days, and assume the machine ended the previous month fully operational.

(a) Write a simulation of the rv Y ¼ the number of units produced by this machine in

20 work days.

(b) Create a histogram of simulated values of Y for at least 10,000 simulation runs.

(c) Construct a 95% confidence interval for the mean number of units produced by this machine

across 20 work days.

(d) Construct a 95% confidence interval for the probability that the machine produces at least

2000 units in such a month.

60. Four friends A, B, C, and D are notorious for sharing rumors amongst themselves. Being very

gossipy but not particularly bright, each friend is equally likely to share a rumor with any of the

other three friends, even if that friend has already heard it. (For example, if friend B most recently

heard the rumor, each of friends A, C, and D is equally likely to hear it next, regardless of how B

came to hear the rumor!) Let Xn ¼ the nth person in this foursome to hear a particular rumor.

(a) Construct the one-step transition matrix for this Markov chain.

(b) Friend A has just overheard a particularly nasty rumor about a classmate and is eager to

share it with the other three friends. Let T equal the number of times the rumor is repeated

within the foursome until all of them have heard the rumor. Write a program to simulate T,
and use your program to estimate E(T ).

61. A state lottery official has proposed the following system for a new game. In the first week of a

new year, a $10 million prize is available. If nobody gets the winning lottery numbers correct and

wins the prize that week, the value doubles to $20 million for the second week; otherwise, the

prize for the second week is also $10 million. Each week, the prize value doubles if nobody wins

it and returns to $10 million otherwise. Suppose that there is a 40% chance that someone in the

state wins the lottery prize each week, irrespective of the current value of the prize. Let Xn ¼ the

value of the lottery prize in the nth week of the year.

(a) Determine the one-step transition probabilities for this chain. [Hint: Given the value of Xn,

Xn+1 can only be one of two possible dollar amounts.]

(b) Let M be the maximum value the lottery prize achieves over the course of a 52-week year.

Simulate at least 10,000 values of the rv M, and report the sample mean and SD of these

simulated values. [Hint: Given the large state space of this Markov chain, don’t attempt to

construct the transition matrix. Instead, code the probabilities in (a) directly.]
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(c) Let Y be the total amount paid out by the lottery in a 52-week year. Simulate at least 10,000

values of the rv Y, and report a 95% confidence interval for E(Y ).
(d) Repeat (c), but now assume the probability of a winner is .7 each week rather than .4. Should

the lottery commission make it easier or harder for someone to win each week? Explain.

62. Write a Markov chain simulation program with the following specifications. The inputs should be

the transition matrix P, an initial state x0, and the number of steps n. The output should be a single

realization of X1, X2, . . ., Xn, as either a row vector or a column vector.

63. Refer back to Exercise 12. Suppose that the typical annual premium for a category 1 (safest)

customer is $500; for category 2, $600; for category 3, $1000; and for category 4 (riskiest driver),

$1500.

(a) Use a Markov chain simulation to estimate the distribution of the rv Y1 ¼ total premium

paid by a customer over 10 years with the insurance company, assuming s/he starts in

category 1. Create a histogram of values for Y1, and construct a 95% confidence interval for

E(Y1).

(b) Repeat (a) assuming instead that the customer starts as a category 3 driver.

64. Write a simulation program for Gambler’s Ruin. The inputs should be a ¼ Allan’s initial stake,

b ¼ Beth’s initial stake (so a + b is the total stake), p ¼ the probability Allan defeats Beth in any

single game, and N ¼ the number of tournaments to be simulated. The program should output

two N-by-1 vectors: one recording the number of games played for each of the N runs, and one

indicating who won each time. Use your program to determine (a) the average tournament length

and (b) the probability Allan eventually wins for the settings a ¼ b ¼ $5 and p ¼ .4. Give 95%

confidence intervals for both answers.

65. Example 6.3 describes a (one-dimensional) random walk. This is sometimes called a simple

random walk.

(a) Write a program to simulate the first 100 steps of a random walk starting at X0 ¼ 0. [Hint: If
Xn ¼ s, then Xn+1 ¼ s 	 1 with probability 1/2 each.]

(b) Run your program in (a) 10,000 times, and use the results to estimate the probability that a

random walk returns to its origin at any time within the first 100 steps.

(c) Let R0 ¼ the number of returns to the origin in the first 100 steps of the random walk, not

counting its initial state. Use your simulation to (1) create a histogram of simulated values of

R0 and (2) construct a 95% confidence interval for E(R0).

66. A two-dimensional random walk is a model for movement along the integer lattice in the xy-

plane, i.e., points (x, y) where x and y are both integers. The “walk” begins at X0 ¼ (0, 0). At each

time step, a move is made one unit left or right (probability 1/2 each) and, independently, one unit

up or down (also equally likely). If Xn ¼ the (x, y)-coordinates of the chain after n steps, then Xn

is a Markov chain.

(a) Write a program to simulate the first 100 steps of a two-dimensional random walk. [Hint:
The x- and y-coordinates of a two-dimensional random walk are each simple random walks.

Since they are independent, the x- and y-movements can be simulated separately.]

(b) Use your program in (a) to estimate the probability that a two-dimensional random walk

returns to its origin within the first 100 steps. Use at least 10,000 runs.

(c) Use your program in (a) to estimate E(R0), where R0 ¼ the number of times the walk returns

to (0, 0) in the first 100 steps.
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6.7 Supplementary Exercises (67–82)

67. A hamster is placed into the six-chambered circular habitat shown in the accompanying figure.

Sitting in any chamber, the hamster is equally likely to next visit either of the two adjacent

chambers. Let Xn ¼ the nth chamber visited by the hamster.

1 2

3

45

6

(a) Construct the one-step transition matrix for this Markov chain.

(b) Is this a regular Markov chain?

(c) Intuitively, what should the stationary probabilities of this chain be? Verify these are indeed

its stationary probabilities.

(d) Given that the hamster is currently in chamber 3, what is the expected number of transitions

it will make until it returns to chamber 3?

(e) Given that the hamster is currently in chamber 3, what is the expected number of transitions

it will make until it arrives in chamber 6?

68. Teenager Mike wants to borrow the car. He can ask either parent for permission to take the car. If

he asks his mom, there is a 20% chance she will say “yes,” a 30% chance she will say “no,” and a

50% chance she will say, “ask your father.” Similarly, the chances of hearing “yes”/“no”/“ask

your mother” from his dad are .1, .2, and .7, respectively. Imagine Mike’s efforts can be modeled

as a Markov chain with states (1) talk to Mom, (2) talk to Dad, (3) get the car (“yes”), (4) strike

out (“no”). Assume that once either parent has said “yes” or “no,” Mike’s begging is done.

(a) Construct the one-step transition matrix for this Markov chain.

(b) Identify the absorbing state(s) of the chain.

(c) Determine the mean times to absorption.

(d) Determine the probability that Mike will eventually get the car if (1) he asks Mom first and

(2) he asks Dad first. Whom should he ask first?

69. Refer back to Exercise 14. Suppose Lucas starts in room 1 and proceeds as described in that

exercise; however, his mean-spirited uncle has snuck out of the house entirely, leaving Lucas to

search interminably. So, in particular, if Lucas enters room 6 of the house, his next visit will

necessarily be to room 5. (This really happened one summer!)

(a) Determine the transition matrix for this chain.

(b) Verify that this Markov chain is regular.

(c) Determine the steady-state probabilities of this chain.

(d) What proportion of time in the long run does Lucas spend in room 2?

(e) What is the average number of room transitions between Lucas’ visits to room 1?

70. Refer back to Exercises 20 and 21.

(a) Suppose all four vans were operational as of Monday morning. What is the expected

backlog—that is, the expected number of vans needing repair—as of Friday evening?

(b) Suppose instead that two of the four vans were down for repairs Monday morning. Now

what is the expected backlog as of Friday evening?
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71. Five Mercedes E550 vehicles are shipped to a local dealership. The dealer sells one E550 in any

week with probability .3 and otherwise sells none in that week. When all E550s in stock have

been sold, the dealer requests a new shipment of five such cars, and it takes 1 week for that

delivery to occur. Let Xn ¼ the number of Mercedes E550s at this dealership n weeks after the

initial delivery of five cars.

(a) Construct the transition matrix for this chain. [Hint: The states are 0, 1, 2, 3, 4, 5.]

(b) Determine the steady-state probabilities for this chain.

(c) On the average, how many weeks separate successive orders of five E550s?

72. Refer back to the previous exercise. Let m ¼ the number of Mercedes E550s delivered to the

dealership at one time (both initially and subsequently), and let p ¼ the probability an E550 is

sold in any particular week (m ¼ 5 and p ¼ .3 in the previous exercise). Determine the steady-

state probabilities for this chain and then the average number of weeks between vehicle orders.

73. Sports teams can have long streaks of winning (or losing) seasons, but occasionally a team’s

fortunes change quickly. Suppose that each team in the population of all college football teams

can be classified as (1) weak, (2) medium, or (3) strong, and that the following one-step transition

probabilities apply to the Markov chain Xn ¼ a team’s strength n seasons from now:

P ¼
:8 :2 0

:2 :6 :2
:1 :2 :7

24 35
(a) If a college football team is weak this season, what is the minimum number of seasons

required for it to become strong?

(b) If a team is strong this season, what is the probability it will also be strong four seasons from

now?

(c) What is the average number of seasons that must pass for a weak team to become a strong

team?

(d) What is the average number of seasons that must pass for a strong team to become a weak

team?

74. Jay and Carol enjoy playing tennis against each other. Suppose we begin watching them when

they are at deuce. This means the next person to win a point earns advantage. If that same person

scores the next point, then s/he wins the game; otherwise, the game returns to deuce.

(a) Construct a transition matrix to describe the status of the game after n points have been

scored (starting at deuce). [Hint: There are five states: (1) Jay wins, (2) advantage Jay,

(3) deuce, (4) advantage Carol, (5) Carol wins.]

(b) Suppose Carol is somewhat better than Jay and has a 60% chance of winning any particular

point. Determine (1) the probability Carol eventually wins and (2) the expected number of

points to be played, starting at deuce. [Hint: This should bear surprising similarity to a game

played earlier in the chapter by Allan and Beth!]

75. The authors of the article “Pavement Performance Modeling Using Markov Chain” (Proc.

ISEUSAM, 2012: 619–627) developed a system for classifying pavement segments into five

categories: (1) Very good, (2) Good, (3) Fair, (4) Bad, and (5) Very bad. Analysis of pavement

samples led to the construction of the following transition matrix for the Markov chain Xn ¼
pavement condition n years from now:
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:958 :042 0 0 0

0 :625 :375 0 0

0 0 :797 :203 0

0 0 0 :766 :234
0 0 0 0 1

266664
377775

Notice that a pavement segment either maintains its condition or goes down by one category each

year.

(a) The evaluation of one particular stretch of road led to the following initial probability vector

(what the authors call a “condition matrix”): [.3307 .2677 .2205 .1260 .0551]. Use the

Markov chain model to determine the condition matrix of this same road section 1, 2, and

3 years from now.

(b) “Very bad” road segments require repairs before they are again usable; the authors’ model

applies to unrepaired road. What is the average time (number of years) that a very good road

can be used before it degrades into very bad condition? Make the same determination for

good, fair, and bad roads.

(c) Suppose one road segment is randomly selected from the area to which the condition matrix

in (a) applies. What is the expected amount of time until this road segment becomes very

bad? [Hint: Use the results of part (b).]
76. A constructive memory agent (CMA) is an autonomous software unit that uses its interactions not

only to change its data (“memory”) but also its fundamental indexing systems for that data

(“structure”). The article “Understanding Behaviors of a Constructive Memory Agent: A Markov

Chain Analysis” (Knowledge-Based Systems, 2009: 610–621) describes a study of one such CMA

as it moved between nine different stages of learning. (Stage 1 is sensation and perception; later

stages add on other behaviors such as hypothesizing, neural network activation, and validation.

Consult the article for details.) The accompanying state diagram mirrors the one given in the

article for the authors’ first experiment.
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(a) Construct the transition matrix for this chain.

(b) What are the absorbing states of the chain?

(c) All CMA processes begin in stage 1. What is the mean time to absorption for such a process?

Here, “time” refers to the number of transitions from one learning stage to another. [Note: In

this particular experiment, absorbing states correspond to any instance of so-called “induc-

tive” learning.]

(d) Starting in stage 1, what is the probability a CMA will end the experiment in state

8 (constructive learning plus inductive learning)?

77. The authors of the article “Stationarity of the Transition Probabilities in the Markov Chain

Formulation of Owner Payments on Projects” (ANZIAM J., v. 53, 2012: C69-C89) studied

payment delays in road construction in Australia. States for any payment were defined as follows:

k weeks late for k ¼ 0, 1, 2, 3; paid (pd), an absorbing state; and “to be resolved” (tbr), meaning

the payment was at least 1 month late, which the authors treated as another absorbing state. For

one particular project, the following Q and R matrices were given for the canonical form of the

one-step transition matrix:

Q ¼
0

1

2

3

0 1 0 0

0 0 :959 0

0 0 0 :897
0 0 0 0

2664
3775 R ¼

pd tbr
0

1

2

3

0 0

:041 0

:013 0

:804 :196

2664
3775

(a) Construct the complete 6 � 6 transition matrix P for this Markov chain.

(b) Draw the state diagram of this Markov chain.

(c) Determine the mean time to absorption for payment that is about to come due (i.e., one that

is presently 0 weeks late).

(d) What is the probability a payment is eventually made, as opposed to being classified as “to

be resolved”?

(e) Consider the two probabilities P(0 ! 1) and P(3 ! pd). What is odd about each of these

values? (The authors of the article offer no explanation for the irregularity of these two

particular probabilities.)

78. In a nonhomogeneous Markov chain, the conditional distribution of Xn+1 depends on both the

previous state Xn and the current time index n. As an example, consider the following method for

randomly assigning subjects one at a time to either of two treatment groups, A or B. If n patients
have been assigned a group so far, and a of them have been assigned to treatment A, the

probability the next patient is assigned to treatment group A is

P nþ 1ð Þst patient assigned to A
��a out of first n in A

� � ¼ n� aþ 1

nþ 2

Hence, the first patient is assigned to A with probability (0 � 0 + 1)/(0 + 2) ¼ 1/2; if the first

patient was assigned to A, then the second patient is also assigned to A with probability

(1 � 1 + 1)/(1 + 2) ¼ 1/3. This assignment protocol ensures that each next patient is more

likely to be assigned to the smaller group. Let Xn ¼ the number of patients in treatment group

A after n total patients have been assigned (X0 ¼ 0). To simplify matters, assume there are only

4 patients in total to be randomly assigned.

(a) Let P1 denote the transition matrix from n ¼ 0 to n ¼ 1. Assume the state space of the chain

is {0, 1, 2, 3, 4}. Construct P1. [Hint: Since X0 ¼ 0, only the first row of P1 is really relevant.
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To make this a valid transition matrix, treat the “impossible” states 1, 2, 3, and 4 as

absorbing states.]

(b) Construct P2, the transition matrix from n ¼ 1 to n ¼ 2. Use the same hint as above for

states 2, 3, and 4, which are impossible at time n ¼ 1.

(c) Following the pattern of (a) and (b), construct the matrices P3 and P4.

(d) For a nonhomogeneous chain, the multistep transition probabilities can be calculated by

multiplying the aforementioned matrices from left to right, e.g., the 4-step transition matrix

for this chain is P1P2P3P4. Calculate this matrix, and then use its first row to determine the

likelihoods of 0, 1, 2, 3, and 4 patients being randomly assigned to treatment group A using

this method.

[Note: Random assignment strategies of this type were originally investigated in the article

“Forcing a Sequential Experiment to be Balanced,” Biometrika (1971): 403-417.]

79. A communication channel consists of five relays through which all messages must pass. Suppose

that bit switching errors of either kind (0 to 1, or 1 to 0) occur with probability .02 at the first

relay. The corresponding probabilities for the other four relays are .03, .02, .01, and .01,

respectively. If we define Xn ¼ the parity of a bit after traversing the nth relay, then X0, X1,

. . ., X5 forms a nonhomogeneous Markov chain.

(a) Determine the one-step transition matrices P1, P2, P3, P4, and P5.

(b) What is the probability that a 0 bit entering the communication relay system also exits as a

0 bit? [Hint: Refer back to the previous exercise for information on nonhomogeneous

Markov chains.]

80. Consider the two-state Markov chain described in Exercise 39, whose one-step transition matrix

is given by

0

1

1� α α
β 1� β

� �
for some 0 < α, β < 1. Use mathematical induction to show that the k-step transition

probabilities are given by

P kð Þ 0 ! 0ð Þ ¼ δk þ �
1� π

��
1� δk

�
P kð Þ 0 ! 1ð Þ ¼ π

�
1� δk

�
P kð Þ 1 ! 0ð Þ ¼ �

1� π
��
1� δk

�
P kð Þ 1 ! 1ð Þ ¼ δk þ π

�
1� δk

�
where π ¼ α=ðαþ βÞ and δ ¼ 1 � α � β. [Note: Applications of these multistep probabilities

are discussed in “Epigenetic Inheritance and the Missing Heritability Problem,” Genetics, July
2009: 845-850.]

81. A 2012 report (“A Markov Chain Model of Land Use Change in the Twin Cities, 1958-2005,”

available online) provided a detailed analysis from maps of Minneapolis-St. Paul, MN over the

past half-century. The Twin Cities area was divided into 610,988 “cells,” and each cell was

classified into one of ten categories: (1) airports, (2) commercial, (3) highway, (4) industrial,

(5) parks, (6) public, (7) railroads, (8) residential, (9) vacant, (10) water. The report’s authors

found that Xn ¼ classification of a randomly selected cell was well modeled by a time-

homogeneous Markov chain when a time increment of about 8 years is employed. The

accompanying matrix shows the one-step transition probabilities from 1997 (n) to 2005

(n + 1); rows and columns are in the same order as the sequence of states described above.

6.7 Supplementary Exercises (67–82) 485



:7388 :0010 :0068 :0010 :0325 :0131 :0000 :0055 :1984 :0029
:0001 :8186 :0201 :0560 :0045 :0227 :0002 :0413 :0350 :0015
:0004 :0107 :9544 :0054 :0058 :0031 :0002 :0094 :0105 :0001
:0004 :0710 :0099 :8371 :0082 :0086 :0011 :0106 :0517 :0014
:0022 :0036 :0031 :0025 :9128 :0062 :0002 :0116 :0364 :0214
:0001 :0193 :0100 :0384 :0569 :7364 :0004 :0223 :1091 :0071
:0000 :0065 :0142 :0201 :0110 :0032 :9139 :0168 :0130 :0013
:0000 :0024 :0024 :0009 :0041 :0023 :0002 :9634 :0230 :0013
:0004 :0141 :0099 :0156 :0513 :0057 :0002 :0988 :7920 :0120
:0001 :0010 :0003 :0014 :0136 :0001 :0000 :0055 :0096 :9684

2666666666666664

3777777777777775
(a) In 2005, the distribution of cell categories (out of the 610,988 total cells) was as follows:

[4047 20,296 16,635 24,503 74,251 18,820 1505 195,934 200,837 54,160]

The order of the counts matches the category order above, e.g., 4047 cells were part of

airports and 54,160 cells were located on water. Use the transition probabilities to predict

the land use distribution of the Twin Cities region in 2013.

(b) Determine the predicted land use distribution for the years 2021 and 2029 (remember, each

time step of the Markov chain is 8 years). Then determine the percent change from 1995 to

2029 in each of the ten categories (similar computations were made in the cited report).

(c) Though it’s unlikely that land use evolution will remain the same forever, imagine that the

one-step probabilities can be applied in perpetuity. What is the projected long-run land use

distribution in Minneapolis-St. Paul?

82. In the article “Reaching a Consensus” (J. Amer. Stat. Assoc., 1974: 118-121), Morris DeGroot

considers the following situation: s statisticians must reach an agreement about an unknown

population distribution, F. (The same method, he argues, could be applied to opinions about the

numerical value of a parameter, as well as many nonstatistical scenarios.) Let F10, . . ., Fs0

represent their initial opinions. Each statistician then revises his belief about F as follows: the ith
individual assigns a “weight” pij to the opinion of the jth statistician ( j ¼ 1, . . . s), where pij � 0

and pi1 + � � � + pis ¼ 1. He then updates his own belief about F to

Fi1 ¼ pi1F10 þ � � � þ pisFs0

This updating is performed simultaneously by all s statisticians (so, i ¼ 1, 2, . . ., s).
(a) Let F0 ¼ (F10, . . ., Fs0)

T, and let P be the s � s matrix with entries pij. Show that the vector

of updated opinions F1 ¼ (F11, . . ., Fs1)
T is given by F1 ¼ PF0.

(b) DeGroot assumes that updates to the statisticians’ beliefs continue iteratively, but that the

weights do not change over time (so, P remains the same). Let Fn denote the vector of

opinions after n updates. Show that Fn ¼ PnF0.

(c) The group is said to reach a consensus if the limit of Fn exists as n ! 1 and each entry of

that limit vector is the same (so all individuals’ opinions converge toward the same belief).

What would be a sufficient condition on the weights in P for the group to reach a consensus?

(d) DeGroot specifically considers four possible weight matrices:
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PA ¼
1

2

1

2

1

4

3

4

2664
3775 PB ¼

1

2

1

2
0

1

4

3

4
0

1

3

1

3

1

3

26666664

37777775 PC ¼ 1 0

0 1

" #
PD ¼

1

2

1

2
0 0

1

2

1

2
0 0

0 0
1

2

1

2

0 0
1

2

1

2

266666666664

377777777775
Discuss what each one indicates about the statisticians’ views on each other, and determine for

which matrices the group ultimately reaches a consensus. If a consensus is reached, write out the

consensus “answer” as a linear combination of F10, . . ., Fs0.

6.7 Supplementary Exercises (67–82) 487



Random Processes 7

In Chap. 1, we introduced the concept of a random event: a collection of one or more outcomes

resulting from a random experiment (e.g., a randomly selected device works for 1000 h, or a

randomly selected person has brown hair). In Chaps. 2–4, we studied random variables: numerical

values resulting from random experiments (the number of flaws on a randomly selected wafer, the

number of wins in 5 games of chance, the mass of a randomly selected object). In this chapter, we

look at random processes, also called stochastic processes (“stochastic” is a synonym for “random”):

time-dependent functions resulting from random phenomena.

For example, consider modeling the number of people logged into a particular server over the

course of the day. Since the exact times at which individuals log in are generally unpredictable, we

might reasonably apply a model which treats logins as “random.” In particular, at any specific, fixed

point in time—say, noon—we can model the number of people logged in by an appropriate (discrete)

random variable. The new concept in Chap. 7 is to model the evolution of that random count over time.

This gives us two dimensions of interest: the random variable itself (here, the count of logins) and time.

Among the most common applications of random processes in engineering is that of random noise,

a term for the disparity between what a received signal should “ideally” look like and what actually

arrives at the receiver. Our ability to accurately model this distortion or noise will enable us to filter

out some (hopefully large) proportion of that noise, thereby recovering a cleaner signal.

In Sect. 7.1, we look at classifications of random processes according to whether the variable

dimension and/or the time dimension are modeled as discrete or continuous. In Sect. 7.2, we connect

previous ideas ofmean, standard deviation, and so on to this newworld of randomprocesses. Section 7.3

introduces the concept of a stationary random process and the special class of wide-sense stationary
processes; these will be the backbone of signal processing in Chap. 8 (available online). Sections 7.4–

7.7 consider several specific classes of random processes: discrete-time, Poisson, Gaussian, and

continuous-time Markov.

7.1 Types of Random Processes

In Chap. 2, we defined a random variable as a rule that associates a number with each outcome in the

sample space of some experiment. For example, we may associate with each outcome of the

experiment of rolling two dice an integer X between 2 and 12 indicating the sum of the two

up-facing sides. Any single realization of this experiment results in a specific number, a sample

value of X. We define random processes analogously.
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DEFINITION

For a given sample space S of some experiment, a random process is any rule that associates a

time-dependent function with each outcome in S. Any such function that may result is a sample

function of the random process. The collection of all possible sample functions is called the

ensemble of the random process.

Figure 7.1 illustrates this definition. Analogous to our notation for random variables, we will

denote a (continuous-time) random process by X(t), while the lower-case x(t) indicates a particular

sample function.

Example 7.1 Some communication systems use phase-shift keying to transmit information.

A quaternary phase-shift keying (QPSK) system can transmit four distinct symbols (often used to

encode two bits at a time: 00, 01, 10, 11). The four symbols are distinguished by varying the phase at

which they are transmitted; specifically, for k ¼ 1, 2, 3, 4, the kth symbol is transmitted for T seconds

with the wave

xk tð Þ ¼ cos 2π f0 tþ π=4þ kπ=2ð Þ, 0 � t � T ð7:1Þ
for some predetermined frequency f0. If we consider the transmission of a single randomly selected

symbol, we may let X(t) denote the corresponding transmitted wave. Each function xk(t) in Expression

(7.1) is a sample function; the set of these four functions comprises the ensemble of X(t) and is

displayed in Fig. 7.2 for 0 � t � 4.

t

Fig. 7.1 A random

process

−1

0

1

t

x (t)

Fig. 7.2 Ensemble of the QPSK process in Example 7.1 ■
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Example 7.2 Imagine the fluctuation in the value of Apple Inc. stock (symbol: AAPL) during the

next 8-h trading day, measuring time from the opening bell on Wall Street. Since that fluctuation

cannot be predicted precisely, we may reasonably model the stock’s value by an appropriate random

process X(t); the ensemble of X(t) would be subject to the constraint X(0) ¼ yesterday’s closing

value. Two examples of possible sample functions appear in Fig. 7.3, where we have assumed a

previous day’s closing value of $580. The ensemble of X(t) consists of all possible paths that the price

of Apple stock could hypothetically take tomorrow, starting at $580 per share. Economists and

statisticians use a variety of time series models to forecast the behaviors of such random processes.

Example 7.3 Consider modeling the number of people N(t) logged in to a specific server at time

t (perhaps measured from midnight). Since logins and logouts are unpredictable, we might reasonably

apply a random process model to N(t). Figure 7.4 shows one possible sample function; notice that,

since our variable is integer-valued, the function “jumps” rather than varying continuously. In this

context, the ensemble of N(t) consists of all nonnegative integer-valued functions n(t) that might

hypothetically arise from successive logins and logouts.

0 1 2 3 4 5 6 7 8
540

550

560

570

580

590

600

610

620

x(t)

t

Fig. 7.3 Two sample functions for a stock price’s fluctuation ■
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Example 7.4 A dust particle lands on the surface of the water in a glass. For simplicity’s sake,

consider observing the motion of the particle only in the vertical direction (relative to our orientation)

as time progresses. If we define the particle’s initial position as 0, then we have a random process

Y(t) ¼ the vertical position of the particle t seconds after landing on the water.

Figure 7.5a shows one possible sample function for this particle motion, while Fig. 7.5b shows

100 different sample functions and thus approximates the ensemble of Y(t). Notice that, as t increases,

the particle has greater potential to be farther away from its origin, the line y ¼ 0, since the particle

has had more time to move. However, the particle will naturally “wiggle,” and so a typical sample

function will return to its origin multiple times, rather than “flying off” away from 0.

This is an example of Brownian motion, a model physicists regularly use for the seemingly random

motion of electrons and various microscopic particles. Brownian motion, in turn, is an example of a

Gaussian process; we will study Gaussian processes (in particular, Brownian motion) in Sect. 7.6.
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Fig. 7.4 A sample function for the random process of Example 7.3 ■
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Fig. 7.5 Brownian motion: (a) a single sample function, (b) 100 sample functions ■
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7.1.1 Classification of Processes

As mentioned in the introduction to this chapter, we can classify random processes according to

whether the variable and time dimensions are modeled as discrete or continuous. We call X(t) a
discrete-space process if its set of possible values at any time t is finite or countably infinite.

Otherwise, X(t) is a continuous-space process.

Example 7.1 and Example 7.2 illustrate continuous-space processes, since the variables

(height of the sinusoid, value of the stock) may take on a continuum of values. In contrast, we have

a discrete-space process in Example 7.3, since the only possible values of N(t) are the countable set
{0, 1, 2, . . .}. These classifications are consistent with our usage of the terms discrete and continuous

in Chaps. 2 and 3.

The difference between discrete- and continuous-space processes is less important than

distinguishing how we model time. All of our above examples are continuous-time processes,

because time is measured on a continuous scale, typically [0, 1) or [0, T] for some fixed T. In

contrast, imagine recording the value of Apple stock at the end of each day (or the number of people

logged into a server at the end of each hour). Treating the variable as random, we would have a

sequence X1, X2, X3, . . ., where X denotes the value of the variable and the index n corresponds to the

nth instance of measuring the process. The listing X1, X2, . . ., or more simply Xn, is a discrete-time
random process, also called a random sequence. We already saw a special type of random

sequence, Markov chains, in Chap. 6; we will consider general discrete-time processes more carefully

in Sect. 7.4. Throughout the rest of this chapter as well as Chap. 8 (available online), the term

“random process” will always refer to a continuous-time process unless indicated otherwise.

7.1.2 Random Processes Regarded as Random Variables

In most of the figures in this section, you will notice we have displayed time, t, on the horizontal axis,

while the “random” behavior is illustrated in the vertical direction. You may find it helpful to think of

these as the “time direction” and “random direction,” respectively. To model a random process, we

must truly understand its behavior in the “random direction.” Toward that understanding, consider

Fig. 7.5b, which shows the ensemble of a Brownian motion process. Fix a time point—say, t ¼ 1.

Looking in the vertical direction, we have a collection of “heights” corresponding to the numerical

values of the many sample functions y(t) displayed in the figure evaluated at t ¼ 1. These many

values of y(1) form a probability distribution in the vertical direction: they show possible values of Y
(1), and the underlying random experiment that generated these sample functions determines the

relative likelihoods of those values. It is in that sense that the vertical axis of our graphs is the

“random direction.”

More simply (and perhaps more usefully) put, we make the following observation: At any fixed

time point t0, the ensemble of a random process X(t) forms a probability distribution; that is, X(t0) is a

random variable.

Example 7.5 An intended signal may have the form v0 + acos(ω0t + θ0), but amplitude variation

may occur (due to natural current or voltage variation). We can define a random process by

X tð Þ ¼ v0 þ A cos ω0tþ θ0ð Þ
where A is a random variable whose distribution describes the amplitude variation. Figure 7.6

illustrates part of the ensemble of X(t) when the model for amplitude variation is a uniform
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distribution on [�1, 1], for the specifications v0 ¼ 0, ω0 ¼ 2π, and θ0 ¼ 0. That is, X(t) ¼ Acos(2πt)
with A ~ Unif[�1, 1].

At time t ¼ 0 (the far left edge of the graph), we may write X(0) ¼ Acos(2π0) ¼ Acos(0) ¼ A.

Since A ~ Unif[�1, 1] and X(0) ¼ A, clearly X(0) ~ Unif[�1, 1]. That matches what our eyes see in

the graph at t ¼ 0: the values in the vertical direction seem “evenly” distributed on [�1, 1]. This same

distribution can be seen at t ¼ 0.5, 1, 1.5, 2, . . ..

In contrast, X(1/3) ¼ Acos(2π/3) ¼ �.5A ~ Unif[�.5,.5]. This, too, is visible in the graph: at

t ¼ 1/3 � .33, the vertical expanse of the graph is not from �1 to 1 but rather from �.5 to .5.

Finally, at t ¼ 1.75 we have X(1.75) ¼ Acos(7π/2) ¼ A(0) � 0, i.e., X(1.75) equals 0 with prob-

ability 1 (i.e., for every member of the ensemble). We see in the graph that all functions of the form

x(t) ¼ acos(2πt) indeed equal 0 at t ¼ 1.75 (as well as at t ¼ 0.25, 0.75, and 1.25). ■

Example 7.6 (Example 7.4 continued) A Brownian motion process Y(t) is partially characterized by
the fact that, at any time t, Y(t) has a Gaussian (i.e., normal) distribution with mean 0 and variance αt,
for some constant α. In Fig. 7.5, we used the parameter α ¼ 1 to generate the graph. Thus, in Fig. 7.5b

the probability distribution displayed in the vertical direction at time t ¼ 1 is Gaussian with a mean

of 0 and a variance of (1)(1) ¼ 1, i.e., a standard normal distribution. In contrast, looking at

time t ¼ 9, Y(9) is also Gaussian with mean zero, but with standard deviation equal toffiffiffiffi
αt

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð Þ 9ð Þp ¼ 3, i.e., Y(9) ~ N(0, 3). The increase in the variability of the ensemble as t increases

is apparent in Fig. 7.5b. The Gaussian nature of the model is reflected by the fact that we see a greater

concentration of values nearer the y ¼ 0 line and a sparser set of values far from that midline. ■

In the previous two examples, we have focused on the probability distribution of X(t) at a single

fixed time point, t. In fact, a random process is characterized by its simultaneous behavior at all time

points. To be precise, a random process X(t) is characterized only if we know the joint distribution of

X(t1), . . ., X(tr) for all sets of time points t1 < . . . < tr and r ¼ 1, 2, 3, 4, . . .. The “joint behavior” of a

random process, particularly at two points in time, will be explored in depth in the next section.

7.1.3 Exercises: Section 7.1 (1–10)

1. Classify each of the following processes as discrete-time or continuous-time, and discrete-space

or continuous-space.

-1

0
1 2

1

a b

-1

0

1

x(t) x(t)

t
1 2

t

Fig. 7.6 The ensemble of X(t) ¼ Acos(2πt): (a) three sample functions; (b) hundreds of sample functions
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(a) The temperature in downtown Chicago throughout a day

(b) The number of customers in line at a certain store throughout the day

(c) The high temperature in downtown Chicago for each day in a year

(d) The total number of customers served each day at a certain store

2. Classify each of the following processes as discrete-time or continuous-time, and discrete-space

or continuous-space.

(a) The baud rate of a modem, recorded every 60 s

(b) The number of people logged into Facebook throughout the day

(c) The operational state, denoted 1 or 0, of a certain machine recorded at the end of each hour

(d) The noise (in dB) in an audio signal measured throughout transmission

3. For each of the processes in Exercise 1, sketch two possible sample functions.

4. For each of the processes in Exercise 2, sketch two possible sample functions.

5. Consider the server login scenario of Example 7.3. Assuming N(0) ¼ 0, sketch sample functions

for N(t) in each of the following cases:

(a) The login rate exceeds the logout rate.

(b) The logout rate exceeds the login rate.

(c) The login and logout rates are equal.

6. Correlated bit noise. Let Xn be a sequence of random bits (0s and 1s) constructed as follows:

X0 ¼ 0 or 1 with probability .5 each. For integers n � 1, Xn ¼ Xn�1 with probability .9 and

Xn ¼ 1 � Xn�1 with probability .1.

(a) Write out and sketch two examples of possible sample functions of Xn for n ¼ 0, . . ., 10.

(b) Which sample function is more likely to be observed: 01100101010, or 00011110000?

Explain.

(c) Find the distribution of Xn at time n ¼ 1.

7. Binary phase-shift keying (BPSK) is a simplified version of the QPSK system described in

Example 7.1. One version of the system transmits the bit b, 0 or 1, with the waveform

xb tð Þ ¼ cos 2πf0tþ πþ bπð Þ 0 � t � T

for suitable choices of frequency f0 and time duration T. For purposes of this example, assume

f0 ¼ 1 and T ¼ 1.

(a) Sketch the ensemble of this process.

(b) Can the two bits be distinguished at time t ¼ 0.25 s? Why or why not?

(c) Suppose random bit noise with p(0) ¼ .8 and p(1) ¼ .2 is transmitted via BPSK, and call

the resulting random process X(t). Find the probability distributions of X(0) and of X(.5).

8. Consider a random process X(t) defined by X(t) ¼ Acos(πt) + Bsin(πt), where A and B are iid

N(5, 2) rvs.
(a) Graph a sample function of X(t).

(b) Find the probability distributions of X(1/4) and of X(1/2).

(c) Find the joint pdf of X(1/4) and X(1/2). [Hint: Refer back to Sect. 4.7.]

9. A gambler plays roulette conservatively: she bets on black every time, which gives her probabil-

ity 18/38 of winning on each spin. Define a random sequence Xn ¼ the number of wins she has

after the nth spin for n ¼ 1, 2, 3, . . ..
(a) Is Xn a discrete-space or continuous-space sequence?

(b) Sketch two possible sample functions (sequences) for n ¼ 1, . . ., 10.

(c) What is the probability distribution of Xn for fixed n?
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10. Refer to Example 7.2. Suppose Apple stock has value $580 at time t ¼ 0, that the stock’s value

increases an average of 25 cents per day, and that the variation around that increasing trend can be

described by a Brownian motion process with parameter α ¼ 20 (see Example 7.6).

(a) Write an expression for X(t), starting at time t ¼ 0, in terms of t and the process Y(t) from

Example 7.6.

(b) Sketch two sample functions of X(t).

(c) Find the probability distribution of Apple’s stock at the end of 1 week of trading (t ¼ 5) and

at the end of 2 weeks’ trading (t ¼ 10).

7.2 Properties of the Ensemble: Mean and Autocorrelation Functions

In the previous section, we introduced the notion of a random process X(t). We emphasized that, for a

fixed time value t, X(t) is a random variable possessing some probability distribution. Moreover, if we

look at two fixed time points t and s, the two random variables X(t) and X(s) are usually not

independent, and we can attempt to describe their joint probability distribution. In this section, we

explore these ideas further.

7.2.1 Mean and Variance Functions

At any particular time t, the random variable X(t) has a probability distribution and thus has both a

mean value and variance. Since X(t) for fixed t is a random variable, we should be able to calculate its

mean using the techniques of Chaps. 2 and 3. Such a mean value exists for every time t, and the mean

might not be the same at every time t, i.e., the mean of X(t) may vary with t. Thus, considering all

values of t gives a mean function. Similar comments apply to the variance and standard deviation of t.

DEFINITION

The mean function of a random process X(t) is given by

μX tð Þ ¼ E X tð Þ½ �,
where E[X(t)] is the expected value of the random variable X(t) for the fixed time point t.

Similarly, we define the variance function of X(t) by

σ2X tð Þ ¼ Var X tð Þð Þ ¼ E X tð Þ � μX tð Þð Þ2
h i

¼ E X2 tð Þ� �� μX tð Þ½ �2

and the standard deviation function of X(t) by σX tð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var X tð Þð Þp

.

Notice that the mean, variance, and standard deviation functions are nonrandom functions of the

time variable t, just as the mean, variance, and standard deviation of a random variable are numbers

and not random quantities. It’s vital to keep in mind that the mean function of a random process is

taking an average with respect to the ensemble (i.e., in the “random direction”) and not with respect

to time.
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Example 7.7 Reconsider Example 7.5 from Sect. 7.1, where the random process X(t) was defined by

the equation X(t) ¼ v0 + Acos(ω0t + θ0). To find the mean and variance functions of X(t), we apply
the properties of expected value and variance established in earlier chapters. Remembering that time

t is fixed, the entire term cos(ω0t + θ0) may be treated as a constant, from which we obtain

μX tð Þ ¼ E X tð Þ½ � ¼ E v0 þ A cos ω0tþ θ0ð Þ½ � ¼ v0 þ E Að Þ � cos ω0tþ θ0ð Þ

σ2X tð Þ ¼ Var X tð Þð Þ ¼ Var v0 þ A cos ω0tþ θ0ð Þð Þ ¼ Var Að Þ � cos2 ω0tþ θ0ð Þ
Remember that we must square a multiplicative constant for variance.

In the case where A ~ Unif[�1, 1] illustrated in Fig. 7.6, we have E(A) ¼ (�1 + 1)/2 ¼ 0. Thus

the mean function of X(t) is μX(t) ¼ v0 + 0cos(ω0t + θ0) ¼ v0. We can see this in Fig. 7.6: at any

fixed time point t, the average of the values in the vertical (“random”) direction is clearly zero, the

value of v0 for that graph. If we imagine vertically averaging these functions, we would arrive at the

constant function f(t) ¼ 0, as claimed.

In this same case, the variance of A is given by Var(A) ¼ (1 � (�1))2/12 ¼ 1/3, whence

σ2X tð Þ ¼ 1

3
cos2 ω0tþ θ0ð Þ

Thus, the variability of X(t) in the vertical direction increases and decreases in a periodic manner

as we vary t. This, too, can be seen in Fig. 7.6: the vertical spread varies with t, and this variability is

the largest at t ¼ 0, 0.5, 1, and so on, when the cosine function is maximal. The standard deviation

function of X(t) is

σX tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
cos2 ω0tþ θ0ð Þ

r
¼ 1ffiffiffi

3
p cos ω0tþ θ0ð Þj j

The absolute value ensures that our standard deviation is always nonnegative. ■

Example 7.8 In the previous example, we modeled amplitude variation with a uniform distribution.

However, this is not a realistic model for most observed amplitude variation. Engineers frequently

model amplitude variation A from a signal with a Rayleigh distribution. One example of a Rayleigh

pdf is given by

f A að Þ ¼ ae�a2=2 a > 0

0 otherwise

�
ð7:2Þ

The graph of Eq. (7.2) appears in Fig. 7.7a, illustrating that a small amplitude is more likely than a

large one. Notice that this model only provides positive values for the amplitude. Figure 7.7b shows

the ensemble of X(t) ¼ Acos(2πt) when A has the pdf specified in Eq. (7.2).

7.2 Properties of the Ensemble: Mean and Autocorrelation Functions 497



It’s clear from the graph that the mean function is not zero; rather, it appears to be itself a sinusoid.

(See if you can estimate the amplitude of the mean function by looking at t ¼ 0 on the graph.)

Borrowing from Example 7.7, it’s still true that X(t) has mean and variance functions given by

μX(t) ¼ v0 + E(A)cos(ω0t + θ0) and σX
2(t) ¼ Var(A)cos2(ω0t + θ0), respectively. Using calculus, it

can be shown the pdf in Eq. (7.2) has expected value
ffiffiffiffiffiffiffiffi
π=2

p � 1:253; hence, the mean function of the

random process displayed in Fig. 7.7b is μX(t) � 1.253cos(t), which is indeed a sinusoid. ■

Example 7.9 Signal plus noise. A deterministic (i.e., nonrandom) signal s(t) incurs noise during

transmission, in which case the received message may have the form Y(t) ¼ s(t) + N(t). The term N(t)
is called the “noise component” of the received signal, and a variety of models can be used to describe

such noise. Figure 7.8 below illustrates (part of) the ensemble of

Y tð Þ ¼ 3 cos 2πtþ π=2ð Þ þ N tð Þ,
where N(t) is Gaussian noise with mean 0 and standard deviation 1 (that is, at each fixed time point t,

N(t) is standard normal).

Let’s first determine the probability distribution of Y(t) at both t ¼ 0.25 and t ¼ 2. With s(t) ¼
3cos(2πt + π/2), Y(0.25) ¼ s(0.25) + N(0.25) ¼ �3 + N(0.25). Since N(0.25) has a Gaussian distri-

bution with mean 0 and variance 1, it follows that Y(0.25) is also Gaussian, but with a mean of�3 and

standard deviation 1. Similarly, Y(2) ¼ s(2) + N(2) ¼ 0 + N(2) ¼ N(2), so Y(2) is standard normal.

We can visualize both of these distributions by looking vertically in Fig. 7.8.
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Fig. 7.7 (a) a Rayleigh pdf; (b) the resulting ensemble of X(t) ¼ Acos(2πt)
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To find the mean and variance functions of Y(t), note that s(t) is to be treated as a constant with

respect to the ensemble. We find that

μY tð Þ ¼ E Y tð Þ½ � ¼ E s tð Þ þ N tð Þ½ � ¼ s tð Þ þ E N tð Þ½ � ¼ s tð Þ þ 0 ¼ s tð Þ
That is, the mean function of this random process is just the original signal, s(t); this is the sinusoid

that “carves down the middle” of Fig. 7.8. Finally, since s(t) is an additive constant in the expression
for Y(t), σY

2(t) ¼ Var(Y(t)) ¼ Var(s(t) + N(t)) ¼Var(N(t)) ¼ 1. The amount of variability around the

signal is the same at every point t in the process.

Notice that the distribution of the noise component, N(t), is N(0, 1) at every point t. But be careful:
saying a process has the same distribution at every point t is very different from saying N(t) is a

constant! ■

Example 7.10 Signal plus noise, round two. Let’s modify the previous example by specifying that

the spread of the noise component N(t) varies with time; specifically, suppose that N(t) is Gaussian

with mean 0 and variance t. The ensemble of the resulting random process Y(t) appears in Fig. 7.9.

The mean function of Y(t) is still s(t); however, following the derivation in Example 7.9, we find

Var(Y(t)) ¼ Var(N(t)) ¼ t, so σY tð Þ ¼ ffiffi
t

p
.

7.2.2 Autocovariance and Autocorrelation Functions

The mean and variance describe the distribution of a single random variable. In the context of a

random process, the mean and variance functions contain information about the behavior of the

ensemble at each single point in time. But it should be clear that for two different times t and s, the

random variables X(t) and X(s) will typically be related. A complete statistical analysis of a random

process should include an exploration of that relationship. To that end, we now extend the notion of

covariance from Chap. 4 to a random process.
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Fig. 7.9 The ensemble for Example 7.10 ■
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DEFINITION

The autocovariance function of a random process X(t) is defined by

CXX t; sð Þ ¼ Cov X tð Þ,X sð Þð Þ ¼ E X tð Þ � μX tð Þð Þ X sð Þ � μX sð Þð Þ½ �
Notice that the autocovariance function is a nonrandom function of two time points, t and s.

We can interpret the autocovariance function of X(t) much as Cov(X, Y) was interpreted back in

Chap. 4. When CXX(t, s) > 0, above-average values of X(t) tend to be associated with above-average

values of X(s). That is, when X(t) is above its mean function at time t, it also tends to be above its mean

function at time s (and vice versa). If CXX(t, s) < 0, then above-average values of the random process

at time t are associated with below-average values at time s (and vice versa).

Properties of the autocovariance function follow directly from the properties previously derived

for covariance. We provide a partial listing here.

PROPOSITION

Let CXX(t, s) denote the autocovariance function of a random process X(t).
1. CXX t; sð Þ ¼ CXX s; tð Þ
2. CXX t; sð Þ ¼ E X tð ÞX sð Þ½ � � μX tð ÞμX sð Þ
3. σ2X tð Þ ¼ Var X tð Þð Þ ¼ Cov X tð Þ,X tð Þð Þ ¼ CXX t; tð Þ ¼ E X2 tð Þ� �� μ2X tð Þ

In the engineering literature, E[X(t)X(s)] in property 2 is called the autocorrelation function of

X(t) and is denoted RXX(t, s). Although it will be vital to our study of signal processing in Chap. 8

(available online), don’t confuse this with the correlation coefficient from Chap. 4; in particular, the

sign of RXX(t, s) does not indicate the direction of the association between X(t) and X(s), and the

magnitude of RXX(t, s) is not bounded by 1.

Example 7.11 Let’s find the autocovariance function of the random process X(t) ¼ Acos(2πt) from
Examples 7.5 and 7.7. We will illustrate two methods here. Since we already have the mean function

of X(t), we can calculate the autocorrelation function and then apply property 2 from the preceding

proposition:

RXX t; sð Þ ¼ E
�
XðtÞXðsÞ� ¼ E

�
Acosð2πtÞAcosð2πsÞ� ¼ E

�
A2cosð2πtÞcosð2πsÞ�

¼ E A2
� �

cosð2πtÞcosð2πsÞ )
CXX t; sð Þ ¼ E

�
XðtÞXðsÞ�� μXðtÞμXðsÞ

¼ E A2
� �

cosð2πtÞcosð2πsÞ � EðAÞcosð2πtÞ � EðAÞcosð2πsÞ
¼ �E A2

� �� E Að Þð Þ2�cosð2πtÞcosð2πsÞ
¼ Var Að Þcosð2πtÞcosð2πsÞ

Alternatively, we can manipulate the covariance expression directly by applying its distributive

properties from Chap. 4:
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CXX t; sð Þ ¼ CovðXðtÞ,XðsÞÞ ¼ CovðAcosð2πtÞ,Acosð2πsÞÞ
¼ Cov A;Að Þcosð2πtÞcosð2πsÞ
¼ Var Að Þcosð2πtÞcosð2πsÞ

As a check, substituting s ¼ t gives CXX(t, t) ¼ Var(A)cos2(2πt), which matches the expression for

σX
2(t) we found in Example 7.7 (with ω0 ¼ 2π and θ0 ¼ 0). ■

Example 7.12 Let’s now consider a sinusoid with phase variation, rather than amplitude variation.

Define a random process X(t) by

X tð Þ ¼ A0 cos ω0tþ Θð Þ ð7:3Þ
where the phase shift Θ is a rv, uniformly distributed on the interval (�π, π]. The amplitude A0 and

fundamental frequency ω0 6¼ 0 are constants. Figure 7.10 shows several sample functions for this

random process with A0 ¼ 1 and ω0 ¼ 2π.

Until now, we have managed to compute means and variances without any calculus; however,

because the random process X(t) defined by Eq. (7.3) is a nonlinear function (cosine) of a random

variable, we must rely on calculus here. Specifically, we apply the Law of the Unconscious Statisti-

cian, presented in Chap. 3:

μX tð Þ ¼ E
�
X tð Þ� ¼ E

�
A0 cosðω0tþ ΘÞ�

¼
ð1
�1

A0 cos ω0tþ θð ÞfΘ θð Þdθ ¼
ð π
�π

A0 cos ω0tþ θð Þ 1

π� �πð Þdθ

¼ A0

2π

ð π
�π

cos ω0tþ θð Þdθ ¼ A0

2π
0ð Þ ¼ 0

The last integral equals zero because, as a function of θ, it represents the integration of a cosine

through one period. A mean function identically equal to zero coincides with what we see in Fig. 7.10.

Since the mean function is zero, the autocovariance and autocorrelation functions will be identical.

Calculation of these functions requires a trig identity:
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x (t)

t

Fig. 7.10 Sample

functions for the phase-

variation process in

Example 7.12
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CXX t; sð Þ ¼ E
�
X tð ÞXðsÞ�� ð0Þð0Þ ¼ E

�
XðtÞXðsÞ�

¼ E
�
A0 cos ω0tþ Θð Þ � A0cos ω0sþ Θð Þ�

¼ A2
0E
�
cosðω0tþ ΘÞcosðω0sþ ΘÞ�

¼ A2
0E

1

2
cos ω0tþ Θþ ω0sþ Θð Þ þ cos ω0tþ Θ� ω0sþ Θ½ �ð Þf g

� 	

¼ A2
0

2
E
�
cos ω0tþ ω0sþ 2Θð Þ þ cosðω0t� ω0sÞ

�
¼ A2

0

2
E
h
cos ω0tþ ω0sþ 2Θð Þ

i
þ A2

0

2
cosðω0t� ω0sÞ

¼ A2
0

2
� 0þ A2

0

2
cos ω0t� ω0sð Þ ¼ A2

0

2
cosðω0t� ω0sÞ

The last expected value equals zero because it corresponds to a integral of a cosine through two

periods. Finally, the variance function is given by

σ2X tð Þ ¼ CXX t; tð Þ ¼ A2
0

2
cos ω0t� ω0tð Þ ¼ A2

0

2
cos 0ð Þ ¼ A2

0

2

Notice that the variance function of X(t) is a constant (same spread for all t), which agrees with

Fig. 7.10. ■

7.2.3 The Joint Distribution of Two Random Processes

Some applications involve the consideration of two random processes X(t) and Y(t). We may then be

concerned not only with their individual distributions but also their joint behavior. This is especially
true when Y(t) is the result of some action taken on X(t), such as passing the random signal X(t)

through an appropriate filter. To quantify their relationship, we define the cross-covariance function

of X(t) with Y(t) by CXY(t, s) ¼ Cov(X(t),Y(s)) and the cross-correlation function of X(t) with Y(t)
by RXY(t, s) ¼ E[X(t)Y(s)]. These two functions are, not surprisingly, connected by the formula

CXY(t, s) ¼ RXY(t, s) � μX(t)μY(s).

DEFINITION

Two random processesX(t) and Y(t) are independent if, for all fixed t and s, the random variables

X(t) and Y(s) are independent rvs as defined in Chap. 4. X(t) and Y(t) are uncorrelated if, for all

t and s, CXY(t, s) ¼ 0. Finally, X(t) and Y(t) are orthogonal if RXY(t, s) ¼ 0 for all t and s.

Notice in these definitions that properties must hold for all times t and s. For example, the

independence of X(t) and Y(t) requires that the random variables X(2) and Y(10) be independent, as
must X(2) and Y(2) be, and so on. A similar comment applies to being uncorrelated or orthogonal.

As in Chap. 4, independence is a stronger condition than zero correlation:

X tð Þ andY tð Þ independent ) X tð Þ andY tð Þ uncorrelated,
but the converse is false. If X(t) and Y(t) are uncorrelated, it follows from the definition of covariance

that E[X(t)Y(s)] ¼ E[X(t)]E[Y(s)] for all t and s. Thus, being uncorrelated does not imply being

orthogonal (nor vice versa); however, if either random process has mean identically equal to zero,

then the properties of being uncorrelated and orthogonal are equivalent.
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7.2.4 Exercises: Section 7.2 (11–24)

11. Consider the QPSK system described in Example 7.1 as a model for random noise. Suppose the

four possible symbols to be transmitted are equally likely to occur, i.e., we have a random process

X tð Þ ¼ cos 2πf0tþ π=4þ Kπ=2ð Þ
where K is 0, 1, 2, or 3 with probability .25 each.

(a) Find the mean function of X(t). Simplify as much as possible.

(b) Find the variance function of X(t). Are your answers consistent with Fig. 7.2?

12. Show that CXX(t, s) ¼ E[X(t)X(s)] � μX(t)μX(s).
13. Consider the random process X(t) ¼ v0 + Acos(ω0t + θ0) from Example 7.7. Find the

autocovariance function and autocorrelation function of X(t).

14. Let X(t) ¼ At + B, where A and B are independent random variables with A ~ Unif[0, 6] and

B ~ Unif[�10, 10].

(a) Describe the ensemble of X(t).

(b) Determine the mean function of X(t).

(c) Determine the autocovariance function of X(t).
(d) Determine the autocorrelation function of X(t).

(e) Determine the variance function of X(t).

15. Let N(t) be a Gaussian noise process as in Example 7.9, with mean 0 for all t and autocovariance
function CNN(t, s) ¼ e�|s�t|.

(a) Verify that N(t) has variance 1 for all t.

(b) If N(t) > 0, would you predict that N(s) > 0 or N(s) < 0? Explain.

(c) Determine the correlation coefficient ρ of N(10) and N(12).

(d) Determine the probability distribution of N(12) � N(10).

16. Let N(t) be the Gaussian noise process of Example 7.10, with mean function 0 and variance

function t.

(a) Calculate P(N(1) > .5) and P(N(4) > .5).

(b) Could the autocovariance function of N(t) be e�|s�t|? Why or why not?

(c) Suppose the autocovariance function of N(t) is min(t, s), i.e., CNN(t, s) ¼ t for t � s and s for

t > s. Find the correlation coefficient between N(t) and N(s). [Hint: consider the two cases

t � s and t > s.]
(d) Determine the probability distribution of N(s) � N(t).

17. Consider the phase-variation random process (7.3) with A0 ¼ 1 and ω0 ¼ 2π.
(a) Use the results of Example 7.12 to show that, for fixed t, X(t) does not have a uniform

distribution. [Hint: What is the interval of possible values for X(t)? If X(t) were uniform,

what would its variance be?]

(b) Use the transformation method of Sect. 3.7 to show that the rv Y ¼ X(0) has an arcsine
distribution:

f Y yð Þ ¼ 1

π
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p � 1 < y < 1

[Note: It can be shown that X(t) has this same distribution for all t.]

18. Let A(t) be a random process, and define an “amplitude modulated” version of A(t) by X(t) ¼
A(t)cos(ω0t + Θ), where Θ ~ Unif(�π, π] and is independent of A(t), and ω0 is a constant.

(a) Determine the mean function of X(t).

(b) Determine the autocorrelation function of X(t).
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(c) Determine the cross-correlation of A(t) and X(t).

[Hint: Use the results of Example 7.12.]

19. Consider a “signal plus noise” process where both components are random: X(t) ¼ S(t) + N(t).

Assume S(t) and N(t) are uncorrelated random processes. Determine each of the following

functions in terms of the mean, autocorrelation, etc. of S(t) and N(t).
(a) The mean function of X(t).

(b) The autocorrelation function of X(t).
(c) The autocovariance function of X(t).

(d) The variance function of X(t).

20. Consider the random process X(t) ¼ S(t) + N(t) from the previous exercise. Find the cross-

correlation between the signal component S(t) and the overall process X(t).

21. Consider two random processes X(t) and Y(t).

(a) Show that if X(t) and Y(t) are uncorrelated random processes, then E[X(t)Y(s)] ¼ μX(t)μY(s).
(b) Show that if X(t) and Y(t) are uncorrelated random processes and X(t) has mean function

equal to zero, then X(t) and Y(t) are orthogonal.

22. Let A(t) and B(t) be iid processes, i.e., A(t) and B(t) are independent processes with the

same mean function μ(t), autocovariance function C(t, s), etc. Define a pair of new random

processes by

X tð Þ ¼ AðtÞ þ BðtÞ
Y tð Þ ¼ AðtÞ � BðtÞ

(a) Find the mean functions of X(t) and Y(t).
(b) Find the autocovariance functions of X(t) and Y(t).

(c) Find the cross-covariance function CXY(t, s).
23. Let Θ be a uniformly distributed rv on (�π, π]. Define a pair of random processes X(t) ¼

cos(ω0t + Θ) and Y(t) ¼ sin(ω0t + Θ).
(a) Find the cross-correlation and cross-covariance of X(t) and Y(t).
(b) Are X(t) and Y(t) orthogonal random processes? Uncorrelated random processes? Indepen-

dent random processes?

24. Let RXY(t, s) be the cross-correlation function of X(t) with Y(t), and define the cross-correlation of
Y(t) with X(t) by RYX(t, s). Show that RYX(t, s) ¼ RXY(s, t). Show that a similar relationship holds

for cross-covariance.

7.3 Stationary and Wide-Sense Stationary Processes

When modeling certain random processes, particularly those representing noise, it facilitates the

analysis if the statistical properties of the process remain the same across time. This turns out to be

true for some, though certainly not all, models. We will make this notion more precise shortly, but

first let’s revisit three of the examples from the previous section. The relevant graphs are presented in

Fig. 7.11 below. Figure 7.11a shows the ensemble of the phase-variation random process from

Example 7.12. Notice that the probability distribution of X(t)—remember, that’s the distribution in

the vertical direction—appears to be the same at each time point t. Figure 7.11b shows just the noise

component, N(t), from Example 7.9. Again, we see roughly the same ensemble behavior at every time
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t, suggesting the process’ statistical properties do not change over time. In contrast, consider the noise

component N(t) from Example 7.10, displayed here in Fig. 7.11c. While the mean of N(t) is constant,

its variance clearly increases with t; this model does not possess the property of interest.

We now formalize the notion of stable behavior over time.

DEFINITION

A random process X(t) is (strict-sense) stationary if all of its statistical properties are invariant
with respect to time. More precisely, X(t) is stationary if, for any time points t1, . . ., tr and any

value τ, the joint distribution of X(t1), . . ., X(tr) is the same as the joint distribution of X(t1 + τ),
. . . , X(tr + τ).

This definition requires that the statistical behavior of X(t) remain the same if we “translate” the

random process τ time units. In particular, it requires that X(t1) and X(t1 + τ) have the same

distribution for all t1 and τ; it follows that X(t) must have the same mean, standard deviation, etc.

at all times t. This corresponds to what we see in Fig. 7.11a, b, but not c. Notice, however, that the

definition requires more: since the joint distribution of X(t1) and X(t2) must be translation-invariant, it

follows that the autocovariance function of X(t) must be translation-invariant as well. We certainly

cannot determine this from a visual inspection of the ensemble.
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Fig. 7.11 Three ensembles: (a) the phase-variation process from Example 7.12; (b) the noise component from

Example 7.9; (c) the noise component from Example 7.10
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In fact, it is rarely practical to determine whether a particular random process model is strict-sense

stationary, since it requires an unlimited number of comparisons (joint distributions of r variables at

all time-points and for all possible r). Fortunately, a weaker version of stationarity suffices for the

purposes of many analyses.

DEFINITION

A random process X(t) is wide-sense stationary (WSS) if the following two conditions hold:

1. The mean function of X(t), μX(t), is a constant.
2. The autocovariance function of X(t), CXX(t, s), depends only on s � t.

We interpret condition 2 as follows: the degree of association between X(t) and X(s), as measured

by covariance, depends on how far apart the two times s and t are, but not where those times are

located on an absolute scale. So, for example, the covariance between X(3) and X(10) is the same as

the covariance between X(23) and X(30) when condition 2 is satisfied (since, in both cases,

s � t ¼ 7).

Condition 2 of this definition can be stated more cleanly if we re-parameterize the second time

variable. Let’s write s ¼ t + τ, so that τ represents the difference between the two times s and t. Then

wide-sense stationarity requires that the autocovariance function CXX(t, t + τ) depend only on τ (and
not on t). In fact, with this notation, we can define a wide-sense stationary process to be one such that
both μX(t) and CXX(t, t + τ) are independent of t.

Before looking at some examples, we note that the defining conditions can be restated in terms of

the autocorrelation function, RXX: a random process X(t) is WSS iff (1) μX(t) is a constant and

(2) RXX(t, t + τ) depends only on τ.

Example 7.13 Is the amplitude-variation random process, X(t) ¼ Acos(2πt), wide-sense stationary?

The graphs in Figs. 7.6 and 7.7 clearly indicate not. Indeed, inExample 7.11we found the autocovariance

of this randomprocess to beCXX(t, s) ¼Var(A)cos(2πt)cos(2πs),which depends separately on t and s, not
just their difference. Therefore, the amplitude-variation random process is not WSS. ■

Example 7.14 Is the phase-variation random process X(t) ¼ A0cos(ω0t + Θ) from Example 7.12

wide-sense stationary? Using the results of Example 7.12, we can check the two required conditions:

1. μX(t) ¼ 0, a constant. Thus the first condition is satisfied.

2. CXX t; sð Þ ¼ A2
0

2
cos ω0t� ω0sð Þ, so

CXX t, tþ τð Þ ¼ A2
0

2
cos ω0t� ω0 tþ τð Þð Þ ¼ A2

0

2
cos �ω0τð Þ ¼ A2

0

2
cos ω0τð Þ:

Since CXX(t, t + τ) depends only on τ and not on t, the second condition is met. Therefore, X(t) is
indeed wide-sense stationary. ■

Example 7.15 Let A and B be iid mean-zero random variables, and define a random process by

X tð Þ ¼ Acos ω0tð Þ þ Bsin ω0tð Þ ð7:4Þ
for some frequency ω0. Is X(t) wide-sense stationary? The mean function is
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μX tð Þ ¼ E Acos ω0tð Þ þ Bsin ω0tð Þ½ � ¼ E A½ �cos ω0tð Þ þ E B½ �sin ω0tð Þ
¼ 0cos ω0tð Þ þ 0sin ω0tð Þ ¼ 0

Since the mean of X(t) is a constant, the first condition is met. Next, let’s consider the

autocovariance function. Using the distributive properties of covariance,

CXX t; sð Þ ¼ CovðAcosðω0tÞ þ Bsinðω0tÞ,Acosðω0sÞ þ Bsinðω0sÞÞ
¼ CovðAcos ω0tð Þ,Acosðω0sÞÞ þ CovðAcosðω0tÞ,Bsinðω0sÞÞ
þ CovðBsin ω0tð Þ,Acosðω0sÞÞ þ CovðBsinðω0tÞ,Bsinðω0sÞÞ

¼ Cov A;Að Þcosðω0tÞcosðω0sÞ þ CovðA,BÞcosðω0tÞsinðω0sÞ
þ Cov B;Að Þsinðω0tÞcosðω0sÞ þ CovðB,BÞsinðω0tÞsinðω0sÞ

Since A and B are independent, Cov(A, B) ¼ Cov(B, A) ¼ 0; since they’re identically distributed,

Cov(A, A) ¼ Cov(B, B) ¼ σ2, the common variance of A and B. Using a trig identity, we arrive at

CXX t; sð Þ ¼ σ2cos ω0tð Þcos ω0sð Þ þ σ2 sin ω0tð Þsin ω0sð Þ ¼ σ2cos ω0t� ω0sð Þ ¼ σ2cos ω0 t� s½ �ð Þ
Since this depends only on the difference in the two times t and s, the second condition is met.

(In fact, we may simplify the last expression further, to σ2cos(ω0[t � (t + τ)]) ¼ σ2cos(�ω0τ) ¼
σ2cos(ω0τ).) Therefore, yes, X(t) in Expression (7.4) is wide-sense stationary. ■

Example 7.16 (Example 7.15 continued) In the previous example, we proved that any random

process of the form (7.4) is WSS, provided A and B are iid with mean zero.

As a curious example, suppose A and B are independent and each is equally likely to be +1 or �1;

this particular distribution has mean 0 and variance 1. Since A and B are iid with mean 0, the random

process X(t) in Eq. (7.4) is WSS, with mean 0, autocovariance function CXX(t, t + τ) ¼ σ2cos(ω0τ)
¼ cos(ω0τ), and thus variance σX

2(t) ¼ CXX(t, t) ¼ 1. However, since A and B each can only take on

the two values 	1, the entire ensemble of X(t) consists of just four functions:

X tð Þ ¼ 	cos ω0tð Þ 	 sin ω0tð Þ
This ensemble appears in Fig. 7.12; its appearance does not match earlier pictures of WSS

processes. But it is nonetheless true that the mean of the vertical coordinates at any time-point t is
0, the variance is 1, and the covariance between any two time points τ units apart is cos(ω0τ).
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In part, the lesson here is that we cannot rely on a visualization of a random process to determine

whether it’s wide-sense stationary—despite appearances, this really is a WSS process. That said, it’s

clear that the probability distribution of X(t) is not the same for all t, e.g., the possible values of the

process are {�1, 0, 1} at some t-coordinates and �1=
ffiffiffi
2

p
, 1=

ffiffiffi
2

p
 �
at others. So, while this random

process is wide-sense stationary, it is certainly not strict-sense stationary. ■

In Chap. 8 (available online), we will study relationships between the behavior of the input X(t)

to a filter and the resulting output Y(t); we will often require that X(t) be WSS. Two random processes

X(t) and Y(t) are called jointly wide-sense stationary if (1) X(t) is WSS, (2) Y(t) is WSS, and (3) the

cross-covariance function CXY(t, t + τ) does not depend on t. (Equivalently, X(t) and Y(t) are jointly

WSS if they are both WSS processes and RXY(t, t + τ) is independent of t.)

7.3.1 Properties of Wide-Sense Stationary Processes

By definition, a WSS random process has a constant mean (function). In fact, such a process also has

constant variance, because σX
2(t) ¼ CXX(t, t) wide-sense stationarity requires that this covariance not

depend on t. With that and our previous discussions in mind, we adopt the following notational

conventions for WSS processes.

NOTATION

Suppose X(t) is a wide-sense stationary process. Then we denote its statistical functions as

follows:

μX ¼ E
�
X tð Þ�

σ2X ¼ VarðX tð ÞÞ
CXX τð Þ ¼ CovðXðtÞ,Xðtþ τÞÞ ¼ RXXðτÞ � μ2X
RXX τð Þ ¼ E

�
XðtÞXðtþ τÞ� ¼ CXXðτÞ þ μ2X

Next we present some important properties of these functions.

PROPOSITION

Let X(t) be a wide-sense stationary process with autocovariance function CXX(τ) and autocor-

relation function RXX(τ).

Properties of CXX(τ):

1. CXX 0ð Þ ¼ E X2 tð Þ� �� μ2X ¼ σ2X ¼ Var X tð Þð Þ:
2. CXX(�τ) ¼ CXX(τ); that is, the autocovariance function is symmetric in τ.
3. jCXX(τ)j � CXX(0) for every τ; that is, the autocovariance function achieves its largest value

at τ ¼ 0.

4. If X(t) is periodic, so is CXX(τ), and with the same period.

5. If X(t) is ergodic1 and has no periodic component, then CXX(τ) ! 0 as |τ| ! 1.

1 Loosely speaking, a random process is ergodic if its time and ensemble properties “match.” We will define ergodicity

more carefully later in this section; for now, you may assume the processes referenced in this section are ergodic unless

noted otherwise.
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Properties of RXX(τ):
1. RXX(0) ¼ E[X2(t)], called the mean square value of X(t).

2. RXX(�τ) ¼ RXX(τ); that is, the autocorrelation function is symmetric in τ.
3. jRXX(τ)j � RXX(0) for every τ; that is, the autocorrelation function achieves its largest value

at τ ¼ 0.

4. If X(t) is periodic, so is RXX(τ), and with the same period.

5. If X(t) is ergodic and has no periodic component, then RXX(τ) ! μX
2 as jτj ! 1.

Proof We begin with the properties of CXX(τ). Property 1 follows from the covariance shortcut

formula. To prove Property 2, recall from Chap. 4 that covariance is symmetric in its arguments:

CXX τð Þ ¼ Cov X tð Þ,X tþ τð Þð Þ ¼ Cov X tþ τð Þ,X tð Þð Þ
Because X(t) is WSS, the right-most expression depends only on the difference in the two times;

specifically, Cov(X(t + τ), X(t)) ¼ CXX(t � [t + τ]) ¼ CXX(�τ). This establishes the result.
Property 3 is left as an exercise (see Exercise 38). We note that Property 3 makes intuitive sense:

since covariance measures the association between two variables, and τ represents the time distance

between these two variables, covariance should be largest when that time difference is as small as

possible. That is, the behaviors of X(t) and X(t + τ) should be more closely related when τ is small

than when τ is large.
Properties 1–3 for the autocorrelation function follow automatically, since RXX(τ) and CXX(τ) only

differ by the constant μX
2.

Toward proving property 4, suppose X(t) is periodic with period d, so X(t) ¼ X(t + d ) for all t.

Then, for any τ,

RXX τ þ dð Þ ¼ E
�
XðtÞXðtþ τ þ dÞ�

¼ E
�
X tð ÞXðtþ τÞ� because Xðtþ τ þ dÞ ¼ Xðtþ τÞ

¼ RXX τð Þ
which shows that RXX(τ) is also periodic with period d. The analogous property holds for

autocovariance, because subtracting μX
2 to get CXX from RXX does not affect periodicity.

A formal proof of Property 5 is beyond the scope of this book; however, the paragraph above

regarding Property 3 should give some intuition for why covariance should vanish as |τ| ! 1. Some

further information about “ergodicity” appears at the end of this section. ■

It’s important to note that while every autocovariance and autocorrelation function for WSS

processes satisfy the properties listed in this proposition, these properties do not completely charac-

terize such functions. That is to say, there exist functions that satisfy properties 1–5 but are not valid

autocovariance/autocorrelation functions. We’ll explore this further in Chap. 8 (available online),

when we connect autocorrelation and autocovariance functions to the power spectrum of a random

signal. (For a preview, see Exercise 40.)

Example 7.17 Suppose X(t) is a wide-sense stationary random process with autocorrelation function

RXX τð Þ ¼ 100þ 16

1þ τ2
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Let’s determine as much as we can about the other statistical properties of X(t). First, the mean

square value of X(t) is RXX(0) ¼ 100 + 16 ¼ 116 (Property 1). Next, X(t) clearly has no periodic

component; otherwise, RXX(τ) would also (Property 4). Thus we may apply Property 5:

μ2X ¼ lim
jτj!1

RXX τð Þ ¼ lim
jτj!1

100þ 16

1þ τ2

� 	
¼ 100þ 0 ¼ 100

from which μX either equals +10 or �10; notice that we cannot determine which is correct from

RXX(τ). We can, however, determine the autocovariance function:

CXX τð Þ ¼ RXX τð Þ � μ2X ¼ 100þ 16

1þ τ2
� 100 ¼ 16

1þ τ2

Notice this autocovariance function goes to 0 as |τ| ! 1, as guaranteed by Property 5. Finally, the

variance of this random process is given by σX
2 ¼ CXX(0) ¼ 16, and the standard deviation is

σX ¼ 4. ■

Example 7.18 Partitioning a random process. Suppose X1(t) and X2(t) are independent, zero-mean,

WSS random processes with autocorrelation functions R11(τ) ¼ 2000tri(10,000τ) and R22(τ) ¼
650cos(40,000πτ), respectively.2

Define a new random process by X(t) ¼ X1(t) + X2(t) + 40. The mean function of X(t) is

μX tð Þ ¼ E X tð Þ½ � ¼ E X1 tð Þ þ X2 tð Þ þ 40½ � ¼ E X1 tð Þ½ � þ E X2 tð Þ½ � þ 40 ¼ 0þ 0þ 40 ¼ 40

Determining the autocorrelation function requires some significant algebraic work:

RXX t; sð Þ ¼ E
�
XðtÞXðsÞ� ¼ E

�ðX1ðtÞ þ X2ðtÞ þ 40ÞðX1ðsÞ þ X2ðsÞ þ 40Þ�
¼ E

�
X1 tð ÞX1ðsÞ

�þ E
�
X1ðtÞX2ðsÞ

�þ E
�
40X1ðtÞ

�þ E
�
X2ðtÞX1ðsÞ

�
þ E

�
X2 tð ÞX2ðsÞ

�þ E
�
40X2ðtÞ

�þ E
�
40X1ðsÞ

�þ E
�
40X2ðsÞ

�þ E
�
1600

�
ð7:5Þ

Four of the terms in Expression (7.5) may be simplified by removing the constant 40, e.g.,

E[40X1(t)] ¼ 40E[X1(t)] ¼ 40(0) ¼ 0, since X1(t) is a mean-zero process. The other three similar

terms are also 0. Using the independence assumption, we can rewrite the second term in Eq. (7.5) as

E[X1(t)X2(s)] ¼ E[X1(t)]E[X2(s)] ¼ (0)(0) ¼ 0. The last term in the middle line of Eq. (7.5) is 0 for

the same reason. In fact, only three terms do not vanish:

RXX t; sð Þ ¼ E
�
X1ðtÞX1ðsÞ

�þ E
�
X2ðtÞX2ðsÞ

�þ E
�
1600

�
¼ R11 t; sð Þ þ R22ðt, sÞ þ 1600

¼ R11 τð Þ þ R22ðτÞ þ 1600 because X1ðtÞ and X2ðtÞ are WSS

¼ 2000tri 10,000τð Þ þ 650cos ð40,000πτÞ þ 1600 ðτ ¼ s� tÞ
That is, the autocorrelation function of X(t) equals the sum of the autocorrelations of X1(t) and

X2(t), plus the square of the constant term (402 ¼ 1600). Since the mean of X(t) is a constant, 40, and
the autocorrelation function of X(t) depends only on τ, the random process X(t) is indeed wide-sense

stationary.

2 Readers not familiar with the triangular or “tri” function should consult Appendix B.
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Finally, we can easily find the autocovariance function (which, sinceX(t) isWSS, only depends on τ):

CXX τð Þ ¼ RXX τð Þ � μ2X ¼ RXX τð Þ � 402 ¼ 2000tri 10,000τð Þ þ 650cos 40,000πτð Þ
Notice that, since X1(t) and X2(t) have mean zero, the two terms in CXX(τ) are, in fact, their

respective autocovariance functions.

Let’s examine this example further. The random process X(t) consists of three components: X1(t),

which is not periodic (since R11(τ) isn’t); X2(t), which is periodic; and a constant. It’s often the case

that we can partition a random process in this manner:

X tð Þ ¼ aperiodic componentsf g þ periodic componentsf g þ constantf g
Any or all of these three elements may be present, and the first two components may themselves be

sums of other parts, e.g., the sum of several sinusoids with different periods may comprise the

“periodic components” piece. In engineering language, the constant term is called the dc offset: if

X(t) represents a current waveform, the constant term is the direct current in X(t), while the other two

components comprise the alternating current (ac) of X(t).
Now look at RXX(τ), which also consists of three parts: an aperiodic part (also called the dissipative

component, since this is the term that goes to 0 as |τ| ! 1), a periodic part, and the square of the dc

offset. In general, the autocorrelation function of a WSS process can be decomposed into

RXX τð Þ ¼ dissipative componentsf g þ periodic componentsf g þ constantf g ð7:6Þ
The constant term in Eq. (7.6) is called the dc power offset, since it reflects the power that results

if the dc offset were to pass through a 1-Ω resistance (viz., P ¼ I2R ¼ 402(1) ¼ 1600). Finally, the

autocovariance function of X(t) includes only the first two parts of Eq. (7.6), dissipative and periodic

components, and not the dc power offset. In a sense,CXX(τ) tells us something about the ac power in our

random current waveform. We will explore these ideas much further in Chap. 8 (available online). ■

7.3.2 Ergodic Processes

As we’ll see in this chapter and the next, it is desirable to understand the statistical properties of a

random process—mean, variance, and so on. But because these are properties of the ensemble, a

problem arises: in practice, we generally only observe a single realization of the process, and so we

must somehow reconstruct the ensemble properties from this one signal. Thankfully, many stationary

random processes have the feature that their time and ensemble properties match (e.g., the time

average of a single realization equals the ensemble mean). A process with this feature is called

ergodic.
To give some intuition for this concept, imagine you have a large collection of identical dice. If

you did not know how dice behave, you would have two options: roll all of the dice once, or roll one

die many times. These should give us roughly the same information, but the first method illustrates

ensemble properties (many realizations at one point in time) while the second gives time properties

(one sampled die observed again and again over time). This process is ergodic. The benefit of

ergodicity here is that we can learn about the behavior of all dice by purchasing (and repeatedly

rolling) just a single die.

To make the property of ergodicity more precise, we need to introduce the time-dimension

analogues of mean, autocorrelation, etc. For a fixed value T > 0, the average of a function x(t)
over the interval [�T, T] is defined in calculus by
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x tð Þh iT ¼ 1

2T

ð T
�T

x tð Þdt

By allowing T to approach infinity, we may define the time average of a function x(t) by

x tð Þh i ¼ lim
T!1

x tð Þh iT ¼ lim
T!1

1

2T

ð T
�T

x tð Þdt

If the function x(t) is periodic, the time average defined above is equal to the average of x(t) across one

period.

The time average of a random process X(t) is defined by replacing x(t) in the above expression with
X(t). The result is a quantity that clearly does not depend on time (since we have integrated dt) but

which may vary across different members of the ensemble (i.e., the time average hX(t)i is still a

random quantity).

DEFINITION

A random process X(t) ismean ergodic if its time average and ensemble average are the same,

i.e., if

X tð Þh i ¼ E X tð Þ½ �
in the mean square sense.3

Since the time average of X(t) does not depend on t, a necessary condition for mean ergodicity is

for E[X(t)] to be a constant. Generally speaking, a random process must be stationary in order to be

ergodic, but this is not always sufficient.

Example 7.19 Let X(t) ¼ A0cos(ω0t + Θ), where Θ ~ Unif(�π, π] and ω0 6¼ 0. We found in

Example 7.12 that E[X(t)] ¼ 0. Now consider the time average:

X tð Þh iT ¼ A0cos ω0tþ Θð Þh iT
¼ 1

2T

ð T
�T

A0cos ω0tþ Θð Þdt ¼ A0

2ω0T
sin ω0T þ Θð Þ � sin �ω0T þ Θð Þ½ �

Since the term in brackets is bounded no matter the value of Θ, the factor of T in the denominator

implies that hX(t)iT ! 0 as T ! 1, whence hX(t)i ¼ 0. Therefore, by definition, X(t) is mean

ergodic. ■

Example 7.20 Consider a random dc signal, X(t) ¼ X. That is, any particular sample function of the

random process is some constant x, but that constant varies from realization to realization. This is

trivially a stationary process; in particular, E[X(t)] ¼ E[X] ¼ μX, a constant. However, the time

average of X on [�T, T] is just X, so hX(t)i ¼ X, which is not a constant but rather a random variable.

Therefore, hX(t)i 6¼ E[X(t)], and X(t) is not mean ergodic. (To be precise, the time and ensemble

averages would be equal in the mean-square sense if we had E[(X � μX)
2] ¼ 0, i.e., if X had zero

variance.)

3 A rv Y equals a constant c in themean square sense if E[(Y � c)2] ¼ 0. This is equivalent to requiring that E(Y ) ¼ c
and Var(Y ) ¼ 0. In the definition above, Y ¼ hX(t)i is the rv and c ¼ E[X(t)] is the constant.
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This matches with intuition: if the level of the dc signal X varies across different realizations of the

process, then a single realization, X(t) ¼ x, cannot tell us anything about the statistical behavior of the
signal. ■

The preceding example indicates the most common situation wherein a random process is

stationary but not ergodic: some element of the process is random but not time-varying. See Example

7.21 below, as well as Exercise 36, for other such examples.

Similar to the definition of time average, we may define the time autocorrelation of a random

process by

X tð ÞX tþ τð Þh i ¼ lim
T!1

X tð ÞX tþ τð Þh iT ¼ lim
T!1

1

2T

ð T
�T

X tð ÞX tþ τð Þdt

X(t) is said to be autocorrelation ergodic if hX(t)X(t + τ)i ¼ E[X(t)X(t + τ)] in the mean square

sense. Since the time autocorrelation does not depend on t, a random process can only be autocorre-

lation ergodic if its autocorrelation function RXX(t, t + τ) is also free of t (the second condition for

wide-sense stationarity).

Example 7.21 (Example 7.19 continued) It follows from Examples 7.12 and 7.14 that the random

process X(t) ¼ A0cos(ω0t + Θ) has autocorrelation function RXX(τ) ¼ (A0
2/2)cos(ω0τ). Applying an

appropriate trig identity, we can also find its time autocorrelation:

X tð ÞX tþ τð Þh iT ¼ 1

2T

ð T
�T

A0cos ω0tð Þ � A0cos ω0 tþ τð Þð Þdt

¼ A2
0

2T

ð T
�T

1

2
cos ω0τð Þ þ cos ω0 2tþ τð Þð Þ½ �dt

¼ A2
0

2T
� 1
2
cos ω0τð Þ�T � ð�TÞ�þ A2

0

4T

ð T
�T

cos ω0 2tþ τð Þð Þdt

¼ A2
0

2
cos ω0τð Þ þ A2

0

8ω0T

�
cosðω0ð2T þ τÞÞ � cosðω0ð�2T þ τÞÞ�

Taking the limit as T ! 1, the second term above goes to zero, and we have hX(t)X(t + τ)i ¼
(A0

2 /2)cos(ω0τ), the same as the autocorrelation function of X(t). Hence, X(t) is autocorrelation

ergodic.

However, suppose we replace the constant amplitude A0 with a random amplitude A, i.e., a random
variable not varying with time. Then calculations similar to those in Example 7.12 and above show

that

RXX τð Þ ¼ E A2
� �
2

cos ω0τð Þ while X tð ÞX tþ τð Þh i ¼ A2

2
cos ω0τð Þ

These are not equal—that is, now X(t) is not autocorrelation ergodic—unless it happens that

E[A2] ¼ A2 in the mean square sense, which is true iff Var(A) ¼ 0. ■
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7.3.3 Exercises: Section 7.3 (25–40)

25. Define a random process X(t) ¼ V + A0cos(ω0t + Θ), where V and Θ are independent random

variables; Θ ~ Unif(�π, π]; and V has mean μV and variance σV
2. (That is, X(t) models a signal

with both phase and dc variation.)

(a) Find the mean function of X(t).

(b) Find the autocorrelation function of X(t).
(c) Is X(t) wide-sense stationary?

26. Define a random process X(t) ¼ Acos(ω0t + Θ), where A and Θ are independent random

variables; Θ ~ Unif(�π, π]; and A has mean μA and variance σA
2 . (That is, X(t) models a signal

with both phase and amplitude variation.)

(a) Find the mean function of X(t).
(b) Find the autocorrelation function of X(t).

(c) Is X(t) wide-sense stationary?

27. Determine whether each of the following functions could potentially be the autocovariance

function of a WSS random process.

(a) cos(τ)
(b) sin(τ)
(c) 1=ð1þ τ2Þ
(d) e�|τ|

28. Determine whether each of the following functions could potentially be the autocovariance

function of a WSS random process.

(a) e�|τ+1|

(b) τ2

(c) tri(τ), defined by tri(τ) ¼ 1 � |τ| for |τ| � 1 and 0 otherwise

(d) sinc(τ), defined by sinc(0) ¼ 1 and sinc(τ) ¼ sin(πτ)/(πτ) for τ 6¼ 0

29. Let A and B be iid rvs, and define a random process by X(t) ¼ A cos(ω0t) + B sin(ω0t). Is X(t)
necessarily WSS? Why or why not?

30. Define X(t) ¼ At + B, where A and B are independent, A ~ Unif[�3, 3], and B ~ Unif[�10, 10].

(a) Find the mean function of X(t).
(b) On the basis of (a), can you determine whether X(t) is WSS? If so, what is your

determination?

(c) Find the variance function of X(t).
(d) On the basis of (c), can you determine whether X(t) is WSS? If so, what is your

determination?

31. Let A(t) and B(t) be jointly wide-sense stationary random processes, and define a new process by

X(t) ¼ A(t) + B(t). Find the mean and autocovariance functions of X(t). Is X(t) WSS?

32. Let A(t) and B(t) be jointly wide-sense stationary random processes, and define a pair of new

processes by

X tð Þ ¼ AðtÞ þ BðtÞ
Y tð Þ ¼ AðtÞ � BðtÞ

Are X(t) and Y(t) jointly wide-sense stationary?

33. A WSS process Y(t) has mean �7 and autocovariance function CYY(τ) ¼ 50cos(100πτ) +
8cos(600πτ).
(a) Does Y(t) have any periodic components? How can you tell?

(b) Find Cov(Y(0), Y(0.01)).
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(c) Find the autocorrelation function of Y(t).

(d) Find the mean square value of Y(t).
(e) Find the variance of Y(t).

34. A wide-sense stationary process X(t) has autocorrelation function RXX(τ) ¼ 60 + 125e�|τ|/100.

(a) Does X(t) have any periodic components? How can you tell?

(b) Find the mean square value of X(t).

(c) Find the mean of X(t), if possible.
(d) Find the autocovariance function of X(t).

(e) Find Cov(X(10), X(15)).

(f) Find the standard deviation of X(t).
35. Consider the random process X(t) ¼ A cos(ω0t) + B sin(ω0t), where A and B are iid random

variables with mean zero. In Example 7.15, we showed that X(t) is wide-sense stationary. Is X(t)

mean ergodic?

36. Let X(t) ¼ A � Y(t), where A is a random variable and Y(t) is an ergodic, WSS random process

independent of A.

(a) Find the mean and autocorrelation of X(t) in terms of the properties of A and Y(t). Is X(t)
WSS?

(b) Show that the autocovariance function of X(t) is given by CXX(τ) ¼ E(A2)CYY(τ) + σA
2 μY

2.

(c) Find the time average of X(t). Is X(t) mean ergodic?

(d) Assume Y(t) has no periodic component, so its autocovariance function goes to 0 as

|τ| ! 1. Does the same hold true for the autocovariance function of X(t)? Why is this

not a violation of property 5 of WSS processes?

37. Recall from Chap. 4 that the correlation coefficient of two random variables X and Y is given by

ρ(X, Y) ¼ Cov(X, Y)/σXσY. For a WSS random process X(t), find the correlation coefficient of X(t)

and X(t + τ) in terms of the autocovariance function CXX(τ).
38. Let X(t) be a WSS random process.

(a) Prove that the autocovariance function CXX(τ) satisfies jCXX(τ)j � CXX(0). [Hint: Use the

previous exercise.]

(b) Prove that the autocovariance function RXX(τ) satisfies jRXX(τ)j � RXX(0).

39. Let X(t) and Y(t) be jointly wide-sense stationary. Show that RXY(τ) ¼ RYX(�τ) and

CXY(τ) ¼ CYX(�τ).
40. Let X(t) be a WSS random process.

(a) Show that for any constants a1, . . ., an and any time points t1, . . ., tn,

Var a1X t1ð Þ þ � � � þ anX tnð Þð Þ ¼
Xn
j¼1

Xn
k¼1

ajakCXX tj � tk
� �

(b) Explain why a valid autocovariance function must be positive semi-definite, i.e., CXX(τ)

must satisfy
Xn
j¼1

Xn
k¼1

ajakCXX tj � tk
� � � 0 for all constants a1, . . . , an and times t1, . . . , tn.

(c) Now consider the “rectangular function” defined by

rect τð Þ ¼ 1
��τ�� � 1=2

0 otherwise

(

Show that rect(τ) satisfies the properties of an autocovariance function expressed in the main

proposition of this section.
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(d) By considering n ¼ 3, a1 ¼ a3 ¼ 1, a2 ¼ �1, t1 ¼ �.3, t2 ¼ 0, t3 ¼ .3, show that rect(τ)
is not positive semi-definite and, hence, cannot be the autocovariance function of any WSS

random process.

[Note: It can be shown that positive semi-definiteness completely characterizes the collection of all

valid autocovariance functions. That is, any valid autocovariance function is automatically positive

semi-definite, as shown in part (b), and for any positive semi-definite function C there exists a WSS

random process whose autocovariance function is C(τ).]

7.4 Discrete-Time Random Processes

Much of what we have discussed in the previous two sections applies equally to discrete-time random

processes (aka random sequences). After reviewing definitions and properties for the discrete-time

case, we introduce a few specific examples of important discrete-time models.

Recall from Sect. 7.1 that a random sequence is simply a list of random variables X1, X2, and so on;

we write Xn for the general term. (We may also define a sequence indexed by the entire set of integers:

. . ., X�2, X�1, X0, X1, X2, . . ..) The subscript takes the place of the time index t from earlier. The

sequence can also be written as X[1], X[2], . . . or X[n] to mirror the continuous-time notation; the

square brackets will remind us that we’re working on a discrete-time scale.

Example 7.22 Let’s return to the value of Apple Inc. stock, but now consider only recording the

closing price at the end of each trading day (starting, say, January 2 of next year). If we define Xn to be

the closing price of Apple stock on the nth recorded day, then we can model X1, X2, . . . as a random
sequence. Figure 7.13 shows one possible sample function of this random sequence, assuming the

closing price just prior to our day 1 was $580. In effect, we have converted a continuous-time process

(analog) into a discrete-time process (digital) by sampling the process from Example 7.2 at

designated times.

0 5 10 15 20 25 30 35 40 45 50
570

580

590

600

610

620

630

640

t

x(t)

Fig. 7.13 A sample function of the random sequence of Example 7.22 ■
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For any random sequence, we can define several statistical functions for times n ¼ 1, 2, 3, . . . as
follows:

• Mean function: μX[n] ¼ E[Xn]

• Variance function: σX
2[n] ¼ Var(Xn)

• Standard deviation function: σX n½ � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xnð Þp

• Autocovariance function: CXX[n, m] ¼ Cov(Xn, Xm)

• Autocorrelation function RXX[n, m] ¼ E[XnXm]

The relationships between these functions established in the continuous-time case still hold, e.g.,

σX
2[n] ¼ CXX[n, n], and CXX[n, m] ¼ RXX[n, m] � μX[n]μX[m].
A random sequence is (strict-sense) stationary if the joint distribution of X[n1],. . .,X[nr] equals

the joint distribution of X[n1 + k], . . ., X[nr + k] for any indices n1,. . .,nr and any integer k. A random

sequence iswide-sense stationary if (1) μX[n] is a constant, μX, and (2) CXX[n, m] depends only on the

difference m � n; if we call this difference k, we may then denote the autocovariance function as

CXX[k]. As was true for continuous-time processes, we may make an equivalent definition regarding

the mean and autocorrelation functions.

Example 7.23 Any Markov chain from Chap. 6 is an example of a random sequence, provided the

states for the chain are truly quantitative (e.g., counts or dollar amounts and not indicators for

locations). Figure 7.14 shows two sample functions for the Gambler’s Ruin chain used repeatedly

in Chap. 6, assuming Allan’s initial stake is $3, Beth’s is $2, and p ¼ .5; the connecting line segments

are just to help distinguish the two iterations. For each nonnegative index n, Xn equals the amount of

money held by Allan after n games have been played.

The mean function μX[n] is the mean value of Allan’s fortune after n games have been played. For

example, with an initial stake of $3 (X0 ¼ 3), X1 equals $2 or $4 with probability .5 each, so

μX[1] ¼ $2(.5) + $4(.5) ¼ $3. By considering the outcomes of the first two games, we find X2 to

be $1, $3, or $5 with probabilities .25, .5, and .25, respectively; this gives μX[2] ¼ $3 as well. In fact,

it turns out that μX[n] ¼ $3 for all n under the specified conditions, even though the probability

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

xn

n

Fig. 7.14 Two sample

functions of a Gambler’s

Ruin random sequence
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distribution of Xn changes with n. (In particular, the distribution of Xn converges to p(0) ¼ .4 and

p(5) ¼ .6, i.e., Allan’s long run chance of winning all $5 at stake is 60%.)

Similarly, we can compute the variance function of Xn; using the distributions described in

the previous paragraph, it’s straightforward to calculate that σX
2[0] ¼ 0, σX

2[1] ¼ 1, σX
2[2] ¼ 2, and

σX
2[n] ! 6 as n ! 1. That the variance function is not constant is sufficient to show that the

Gambler’s Ruin Markov chain is not a WSS random sequence. ■

7.4.1 Special Discrete Sequences

Perhaps the simplest type of random sequence is the Bernoulli random sequence: let X1, X2, . . . be

iid, with each Xn following a Bernoulli(p) distribution. A sample function of a Bernoulli random

sequence with p ¼ .6 appears in Fig. 7.15. By grace of the variables being iid, a Bernoulli random

sequence is trivially (strict-sense) stationary; in particular, we have

μX n½ � ¼ E Xn½ � ¼ p, σ2X n½ � ¼ Var Xnð Þ ¼ p 1� pð Þ, and

CXX n;m½ � ¼ Cov Xn;Xmð Þ ¼ p 1� pð Þ m ¼ n
0 m 6¼ n

�

A more general iid sequence will also be strict-sense stationary, but the formulas for the mean and

variance will, of course, depend on the underlying common distribution of the Xn.

From an iid sequence, we can construct a much more interesting random sequence as follows:

define S1 ¼ X1, S2 ¼ X1 + X2, and so on, so that Sn ¼ Sn–1 + Xn ¼
Pn

i¼1 Xi for all n � 2. The

resulting sequence of partial sums S1, S2, S3, . . . is called a random walk. For example, from

Chap. 2 we know the sum of iid Bernoulli rvs is binomial; hence, if Xn represents a Bernoulli random

sequence, then the corresponding random walk Sn has a Bin(n, p) distribution for each n.

We can use the properties of iid sums to derive some general properties of random walks.

0 2 4 6 8 10 12 14 16 18 20

0

1

xn

n

Fig. 7.15 A sample

function of a Bernoulli

random sequence

518 7 Random Processes

http://dx.doi.org/10.1007/978-3-319-52401-6_2


PROPOSITION

Let X1, X2, . . . be an iid sequence with common mean μX and common variance σX
2. Let Sn be the

associated random walk, i.e., Sn ¼ X1 + � � � + Xn for every n. Then

1. μS[n] ¼ E[Sn] ¼ nμX
2. σ2S n½ � ¼ Var Snð Þ ¼ nσ2X
3. CSS n;m½ � ¼ min n;mð Þσ2X

Proof The proofs of properties 1 and 2 were given in advance of the Central Limit Theorem

discussion in Sect. 4.5. To prove property 3, assume m > n and proceed as follows:

CSS n;m½ � ¼ CovðSn, SmÞ ¼ CovðX1 þ � � � þ Xn,X1 þ � � � þ XmÞ
¼ Cov X1 þ � � � þ Xn,X1 þ � � � þ Xn þ Xnþ1 þ � � � þ Xmð Þ
¼ Cov X1 þ � � � þ Xn,X1 þ � � � þ Xnð Þ þ CovðX1 þ � � � þ Xn,Xnþ1 þ � � � þ XmÞ
¼ Cov Sn; Snð Þ þ CovðX1 þ � � � þ Xn,Xnþ1 þ � � � þ XmÞ

In the third line, we have used the distributive property of covariance. The first term, Cov(Sn, Sn), is

simply Var(Sn) (the covariance of Sn with itself). In the second term, the Xis (i ¼ 1 to n) in the first

argument are independent of the Xjs ( j ¼ n + 1 to m) in the second argument; therefore, that

covariance equals zero. Thus, we have CSS[n, m] ¼ Var(Sn) ¼ nσX
2.

This holds for m > n; if m < n, the same argument yields CSS[n, m] ¼ mσX
2. Therefore, for

general n and m we may write CSS[n, m] ¼ min(n, m)σX
2. ■

Example 7.24 Let X1, X2, . . . be iid, with each Xi being +1 or �1 with equal probability. The

resulting random walk Sn is called the simple symmetric random walk in one dimension. Since each
“step” Xi has mean 0 and variance 1, it follows that μS[n] ¼ n(0) ¼ 0 and σS

2[n] ¼ n(1) ¼ n. Several

sample functions of Sn are shown in Fig. 7.16; the connecting line segments are just to help

distinguish different iterations. Notice in Fig. 7.16b that the variability in Sn increases with n, but

not linearly; this corresponds to the fact that SD Snð Þ ¼ ffiffiffi
n

p
. We also see, especially for larger n, that

values of the ensemble of Sn are more concentrated near 0 and sparser at the edges. This is a

consequence of the Central Limit Theorem: since the Xis are iid, their sum Sn becomes increasingly

normal as n increases. (In fact, this is true for any random walk.)

−1

0

1

a b

−1

0

1

xn xn

n n

Fig. 7.16 Simple symmetric random walks: (a) the first 30 steps for three sample functions; (b) the first 200 steps for

100 sample functions ■
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7.4.2 Exercises: Section 7.4 (41–52)

41. Let Tn denote the high temperature (
F) in Sacramento, CA on the nth day of the year. Consider

the following model:

Tn ¼ 75þ 25sin
2π
365

n� 150ð Þ
 �

þ 4εn,

where the εns are a sequence of iid N(0, 1) rvs.
(a) Determine the probability that the high temperature on February 28 exceeds 60 
F.
(b) Find E[Tn].

(c) Find CTT[n, m].
(d) Is Tn a WSS random sequence? Should it be?

42. The output of a certain amplifier, sampled every second, has the form

X n½ � ¼ A0 sin ω0nð Þ þ Z n½ �,
where the noise component Z[n] is a sequence of iid N(0, σ) rvs for some σ > 0.

(a) Find the mean function of X[n].

(b) Find the autocovariance function of X[n].
(c) Is X[n] wide-sense stationary?

43. A gambler plays roulette, betting $5 on black every time (so, she has probability 18/38 of winning

on any particular spin). The gambler receives $5 for each win and gives up $5 for each loss.

(a) Define a random sequence Sn ¼ the number of games this gambler has won after n spins.

Find the mean, variance, autocovariance, and autocorrelation function of Sn.

(b) Define a random sequence Yn ¼ the amount of money this gambler has won after n spins.

Find the mean, variance, autocovariance, and autocorrelation function of Yn.

(c) What is the probability the gambler is “ahead” after 10 spins (i.e., Y10 > 0)?

44. Gravel is being loaded onto rail cars by a dump truck for long-distance transport. Let Xn equal the

amount of gravel (in tons) emptied onto the rail car by the nth dump truck run, and assume the Xn

are iid Unif[15, 17].

(a) Define Sn ¼ X1 + � � � + Xn. Interpret Sn in this context.

(b) Find the mean, variance, autocorrelation, and autocovariance functions of Sn.

(c) Use the Central Limit Theorem to approximate both the distribution of S6 and P(S6 � 100),

the chance the dump truck will be able to fill a 100-ton rail car in 6 runs.

45. Let X(t) be a WSS random process. For some fixed Ts > 0 define X[n] ¼ X(nTs), so that X[n] is a

“sampled” version of X(t). Show that the random sequence X[n] is also WSS.

46. A subsample of a random sequence X[n] is obtained by observing every kth element of

the sequence, for some integer k > 1. The resulting random sequence, Y[n], is given by

Y[n] ¼ X[kn].

(a) Find the mean and autocorrelation functions of Y[n] in terms of those of X[n].
(b) If X[n] is WSS, is the subsample Y[n] also WSS?

47. Let Xn be a WSS random sequence, and define a simple moving average sequence Yn by

Yn ¼ Xn þ Xn�1

2

(a) Find the mean function of Yn.

(b) Find the autocovariance function of Yn.

520 7 Random Processes



(c) Is Yn wide-sense stationary?

(d) Find the variance function of Yn.
48. Let Xn be a sequence of iid random variables, and consider a new random sequence Yn given by

Yn ¼ 1

2
Xn þ 1

4
Xn�1 þ 1

8
Xn�2

Is Yn WSS?

49. Let the random sequence . . ., X�2, X�1, X0, X1, X2, . . . be iid, with mean μ and variance σ2. Define
a first-order autoregressive sequence Yn by

Yn ¼ αYn�1 þ Xn,

where |α| < 1.

(a) Show that, for N > 0, Yn ¼ αNYn � N +
PN�1

i¼0 α
iXn � i.

(b) Let N ! 1 in (a) to conclude that Yn ¼
P1

i¼0α
iXn � i.

(c) Find the mean function of Yn.
(d) Find the autocovariance function of Yn.

(e) Is Yn wide-sense stationary?
(f) Find the correlation coefficient ρ(Yn, Yn+k).

50. Correlated bit noise. Let Xn be a sequence of random bits (0s and 1s) constructed as follows:

X0 ¼ 0 or 1 with probability .5 each. For integers n � 1, Xn ¼ Xn�1 with probability .9 and

Xn ¼ 1 � Xn�1 with probability .1. (In the language of Chap. 6, this is a Markov chain with a

symmetric transition matrix.)

(a) Find the pmf of X1, and argue that this is also the pmf of Xn for all n � 1.

(b) Is Xn a WSS sequence?

(c) Find the mean and variance functions of Xn.

(d) It can be shown, using techniques from Chap. 6, that for k � 0

P Xnþk ¼ 1
��Xn ¼ 1

� � ¼ 1þ :8k

2

Use this to find RXX[k] and CXX[k].

51. Let X[n] be a random sequence whose time index n ranges across all integers . . ., �2, �1, 0, 1,

2, . . .. Similar to the continuous-time case, the time average of X[n] over {�N, . . ., 0, . . ., N} is

defined by

X n½ �h iN ¼ 1

2N þ 1

XN
n¼�N

X n½ �,

which is just the arithmetic mean of X[�N], . . ., X[N]. The (overall) time average of X[n] is then
defined as a limit: hX[n]i ¼ limN ! 1hX[n]iN. Assume X[n] is a WSS random sequence with

mean μX and autocovariance function CXX[k].

(a) Show that, for all integers N � 0, E[hX[n]iN] ¼ μX.

(b) Show that Var X n½ �h iN
� � ¼ 1

2N þ 1

X2N
k¼�2N

CXX k½ � 1� kj j
2N þ 1

 �
. [Hint: Use the relationship

Var(Y ) ¼ Cov(Y, Y) and the distributive property of covariance to create a double sum (with

indices m and n, say). Then make the change of variable k ¼ m � n and rearrange the terms

to create a single sum.]
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52. Refer back to the previous exercise. A WSS random sequence X[n] is called mean ergodic if its

time average hX[n]iN converges to μX as N ! 1, in the sense that

lim
n!1E X n½ �h iN � μX

� �2h i
¼ 0

(a) Use the previous exercise to show that X[n] is mean ergodic if
1

2N þ 1

X2N
k¼�2N

CXX k½ � ! 0 as

N ! 1.

(b) Let X[n] be WSS with autocovariance function CXX[k] ¼ α � ρ|k| for some α > 0 and

|ρ| < 1. Show that X[n] is mean ergodic.

7.5 Poisson Processes

In Sect. 2.5 we indicated that, under rather general conditions, the Poisson distribution furnishes a

probability model for the number of events of some sort (logins to a server, arrivals of radioactive

pulses, flaws on the surface of a wafer, etc.) that occur in some fixed interval of time or region of

space. We now present a more formal development of conditions that lead to the Poisson distribution

in such contexts, and then explore properties of this event process.

DEFINITION

Consider the experiment of observing randomly occurring events of some type continuously

over time. Define X(0) ¼ 0, and define X(t) for t > 0 to be the number of events that occur in

the time interval (0, t]. X(t) is called a Poisson (counting) process if it satisfies the following

two conditions:

1. The numbers of events occurring in nonoverlapping time intervals are independent.

2. There exists a parameter λ > 0, called the rate of the process, such that the number of events

occurring in any interval of length τ has a Poisson distribution with mean λτ.

Later in this section, we present an alternative definition of a Poisson counting process which does

not explicitly assume that the event count follows a Poisson distribution.

Condition 1 states that a Poisson counting process X(t) has independent increments: if (s1, t1] and

(s2, t2] are two time intervals with t1 � s2, so that the intervals do not overlap, then the number of

events that occur in the first interval is independent of the number of events that occur in the second

interval. That is, the “increment” X(t1) � X(s1) is independent of X(t2) � X(s2).

Condition 2 states that for any t > 0 and τ > 0, the number of events in the interval (t, t + τ] has a
Poisson distribution with mean λτ. Since this count is represented by X(t + τ) � X(t), we may write

X(t + τ) � X(t) ~ Poisson(λτ). Since the distribution of this “increment” depends only on τ and not t,
we say that a Poisson counting process has stationary increments. By substituting t ¼ 0 and

τ ¼ t into this expression, we have that X(t) ~ Poisson(λt), so that at each time t the process itself

has a Poisson distribution. It follows that

μX tð Þ ¼ λt and σ2X tð Þ ¼ λt since mean and variance are equal for Poissonð Þ
A graph of a sample function of X(t) appears in Fig. 7.17. It is clear both from Fig. 7.17 and the

formulas above that a Poisson counting process is not stationary.
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Let us now derive the autocovariance function of X(t). We will rely on a clever trick; namely, for

t < s we will split the interval (0, s] into the smaller intervals (0, t] and (t, s]. A similar “trick” was

used for a random walk in the previous section. Begin as follows:

CXX t; sð Þ ¼ Cov X tð Þ,X sð Þð Þ ¼ Cov X tð Þ,X tð Þ þ X sð Þ � X tð Þ½ �ð Þ
¼ Cov X tð Þ,X tð Þð Þ þ Cov X tð Þ,X sð Þ � X tð Þð Þ

In the second argument of the covariance function, we have separated X(s), the count of the

number of events in (0, s], into two pieces: X(t), the number of events in (0, t], and X(s) � X(t), which

represents the number of events in the interval (t, s]. Now, we simplify: the first term, Cov(X(t), X(t)),

is simply Var(X(t)); the second term, thanks to Condition 1, represents the covariance of two

independent counts (since the intervals (0, t] and (t, s] don’t overlap). Thus, the second term is

zero, and we have CXX(t, s) ¼ Var(X(t)) + 0 ¼ λt for t < s.

If s < t, we can use the same argument to find the covariance equals λs; therefore, the general

expression for the autocovariance function of X(t) is

CXX t; sð Þ ¼ λ �min t; sð Þ
Example 7.25 Queries to a certain data warehouse occur randomly throughout the day. On average,

0.8 queries arrive per second during regular business hours. Assume a Poisson process model is

applicable here.

First, consider the number of queries in the first five seconds, X(5). The rv X(5) is Poisson

with mean λt ¼ 0.8(5) ¼ 4. Thus, for example, the chance of exactly three queries in the first five

seconds is

P X 5ð Þ ¼ 3ð Þ ¼ e�443

3!
¼ :195

Next, let’s find the probability of exactly 1 query in the first second and exactly 2 queries in the

four seconds thereafter, which requires the independent increments property: the number of queries in

the first second and the number of queries in the four seconds thereafter are independent. More

formally, X(1) and X(5) � X(1) are independent Poisson random variables with means 0.8(1) ¼ 0.8

and 0.8(4) ¼ 3.2, respectively. Hence,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

t

x(t)Fig. 7.17 A sample

function of a Poisson

(counting) process
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P X 1ð Þ ¼ 1 \ X 5ð Þ � X 1ð Þ ¼ 2ð Þ ¼ P X 1ð Þ ¼ 1ð Þ � P X 5ð Þ � X 1ð Þ ¼ 2ð Þ

¼ e�0:80:81

1!
� e

�3:23:22

2!
¼ :075

Finally, consider the random variables X(10) and X(30). These two rvs are not independent: the

time intervals (0, 10] and (0, 30] overlap. In fact, it should be obvious that X(30) depends upon X(10),
since X(30) counts the number of queries in the first 10 s, X(10), plus the number of additional queries

in the 20 s thereafter. Intuition suggests that the two random variables are positively correlated, and

we verify this now.

The mean of X(10) is 0.8(10) ¼ 8; since X(10) is Poisson, its standard deviation is then
ffiffiffi
8

p
.

Similarly, E[X(30)] ¼ 0.8(30) ¼ 24 andSD X 30ð Þð Þ ¼ ffiffiffiffiffi
24

p
. We can find the covariance of X(10) and

X(30) through the autocovariance function above:

Cov X 10ð Þ,X 30ð Þð Þ ¼ CXX 10; 30ð Þ ¼ λ �min 10; 30ð Þ ¼ 0:8 10ð Þ ¼ 8

Finally, the correlation coefficient of X(10) and X(30) is

Corr X 10ð Þ,X 30ð Þð Þ ¼ Cov X 10ð Þ,X 30ð Þð Þ
SD X 10ð Þð ÞSD X 30ð Þð Þ ¼

8ffiffiffi
8

p ffiffiffiffiffi
24

p ¼ 1ffiffiffi
3

p � :577

We’re not surprised to find a moderate, positive relationship between these two variables. As you

might guess, the correlation coefficient will be largest when the two time intervals (here, (0, 10] and

(0, 30]) overlap the most; if the time intervals of two increments only overlap to a very small degree,

the resulting correlation coefficient will likewise be small (but still positive). ■

7.5.1 Relation to Exponential and Gamma Distributions

Because the events in a Poisson process occur “at random,” there is a second type of random variable

we may wish to model: the time between events. Consider Fig. 7.18, which illustrates a Poisson

process: the symbols along the time axis indicate the occurrences of events. Along the time axis, we

have indicated several random variables: T1 ¼ the time until the first event occurs, measured from

t ¼ 0; T2 ¼ the time between the first and second events; T3 ¼ the time between the second and third

events; and so on. These random variables T1, T2, . . . are called the interarrival times of the process.
Unlike the Poisson count of events, which is discrete, each of these random time lengths is a

continuous random variable. Thanks to the following theorem, their probability distribution is known.

t

T1 T2 T3 T4 T5 …

…

X X X X X

Fig. 7.18 Interarrival times in a Poisson process
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THEOREM

Suppose events occur in accordance with the conditions of a Poisson counting process. Define

T1 ¼ the time until the first event occurs and, for n � 2, Tn ¼ the time between the occurrence

of the (n � 1)th and nth events. Also, define Yn ¼ the time until the nth event occurs, starting at
t ¼ 0. Then

1. T1, T2, . . . are independent exponential random variables with parameter λ (mean 1/λ) and
2. Yn is a gamma random variable with parameters α ¼ n and β ¼ 1/λ (aka the Erlang

distribution).

Proof Since the time intervals spanned by T1, T2, etc. do not overlap, the Tn are independent by

condition 1 of a Poisson process (independent increments). To find the distribution of T1, start with its

cdf: for t > 0,

FT1
tð Þ ¼ PðT1 � tÞ ¼ 1� PðT1 > tÞ
¼ 1� Pðno events occur in the time interval 0, t

�� �
¼ 1� PðX tð Þ ¼ 0Þ where XðtÞ � PoissonðλtÞ

¼ 1� e�λt λtð Þ0
0!

¼ 1� e�λt )

f T1
tð Þ ¼ d

dt
FT1

ðtÞ ¼ d

dt

�
1� e�λt

� ¼ λe�λt

This is the exponential(λ) pdf, as claimed. The distribution of T2 is also exponential(λ) because,
thanks to Condition 1 of the definition, we may “restart the clock” when the first event occurs and

derive the pdf of T2 in the exact same manner as above. Propagating this idea forward, we have that

Tn ~ exponential(λ) for all n.
As for Yn, notice we may write Yn ¼ T1 + � � � + Tn, which implies Yn is the sum of n iid

exponential(λ) rvs. Exercise 65 in Sect. 4.3 showed, using moment-generating functions, that the

sum of n iid exponential(λ) rvs has a gamma(n, 1/λ) distribution. ■

Exercise 72 offers a direct proof of Statement 2 of the preceding theorem, without relying on

moment-generating functions or Statement 1.

Example 7.26 Consider again the database queries described in Example 7.25. Rather than investi-

gate the number of queries in preset time intervals, let’s look at the random arrival times themselves.

The average time between successive queries can actually be deduced without the preceding theorem:

if queries arrive at 0.8 queries/second on average, then the mean time between queries is clearly just

the reciprocal: 1/0.8 ¼ 1.25 s. If we let T ¼ the time between queries, we now know that

T � exponential(0.8), whence E(T ) ¼ 1/λ ¼ 1/0.8 ¼ 1.25 s, and SD(T) ¼ 1/λ ¼ 1.25 s as well

(remember that an exponential random variable has identical mean and standard deviation).

Next, let Y50 ¼ time to the 50th query, starting at the beginning of regular business hours. The

preceding theorem tells us Y50 ~ gamma(50, 1/0.8), so E(Y50) ¼ 50(1/0.8) ¼ 62.5. We expect the

50th query to arrive 62.5 s into regular business hours. The arrival time of the 50th query has a

standard deviation of SD Y50ð Þ ¼
ffiffiffiffiffiffiffiffi
αβ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 1=0:8ð Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

78:125
p ¼ 8:84s.
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If 50 or more queries arrive within the first minute, system users will experience a significant

backlog in subsequent minutes because of processing time. What is the probability this happens?

A backlog occurs iff Y50 � 1 min ¼ 60 s. The probability of this event, evaluated using software, is

P Y50 � 60ð Þ ¼
ð60
0

1

50� 1ð Þ! 1=0:8ð Þ50 x
50�1e�0:8x dx ¼ � � � ¼ :4054

Alternatively, return to the original Poisson process: a backlog occurs iff X(60), the number of

queries in the first 60 s, is 50 or more. Since X(60) has a Poisson distribution with mean 60(0.8) ¼ 48,

P X 60ð Þ � 50ð Þ ¼ 1� P X 60ð Þ � 49ð Þ ¼ 1�
X49
x¼0

e�4848x

x!
¼ 1� :5946 ¼ :4054 ■

We have described a Poisson process as modeling the count of events that occur “at random”

across time. This notion can actually be made more precise: in a Poisson process, given that an event

has occurred by time t0, it is equally likely to have occurred anywhere in the interval (0, t0]. To see

this, suppose we know that exactly one event has occurred by time t0, so X(t0) ¼ 1. Conditional on

that knowledge, let’s find the distribution of the random variable T1 ¼ arrival time of this event.

Begin with the (conditional) cdf: for t � t0,

PðT1 � t
�� X t0ð Þ ¼ 1Þ ¼ P T1 � t \ X t0ð Þ ¼ 1ð Þ

P X t0ð Þ ¼ 1ð Þ

¼ Pð1 event occurred in ð0, t� and none in t, t0
�� �

P X t0ð Þ ¼ 1ð Þ

¼ P X tð Þ ¼ 1 \ X t0ð Þ � X tð Þ ¼ 0ð Þ
P X t0ð Þ ¼ 1ð Þ

¼
e�λt λtð Þ1

1!

e�λ t0�tð Þ λ t0 � tð Þð Þ0
0!

e�λt0 λt0ð Þ1
1!

¼ � � � ¼ t

t0

Differentiating with respect to t, we find the conditional distribution of T, given X(t0) ¼ 1, is 1/t0,

the uniform pdf on (0, t0].
Generalizing this argument, conditional on X(t0) ¼ n (i.e., on exactly n events occurring in (0, t0])

each of the n event occurrence times is uniformly distributed on (0, t0]. Moreover, the n times are

independent of one another. In light of this uniform distribution property, it is fair to say that for a

Poisson process, events really do occur “at random.”

7.5.2 Combining and Decomposing Poisson Processes

In Sect. 4.3, we showed that the Poisson distribution is additive, i.e., the sum of two independent

Poisson rvs is again Poisson distributed. This result immediately generalizes to Poisson counting

processes.
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PROPOSITION

Let X1(t) and X2(t) be independent Poisson processes with rate parameters λ1 and λ2, respec-
tively. Define a new random process by X(t) ¼ X1(t) + X2(t). Then X(t) is also a Poisson

process, with rate parameter λ1 + λ2. (This theorem can be extended to the sum of

k independent Poisson processes for k > 2 as well.)

Example 7.27 Two roads feed into the northbound lanes on the Anderson Street Bridge. During rush

hour, the number of vehicles arriving from the first road can be modeled by a Poisson process with a

rate parameter of 10 per minute, while arrivals from the second road form an independent Poisson

process with rate 8 cars per minute. If we let X(t) denote the total number of cars entering the

northbound lanes, then X(t) is also a Poisson process, with rate parameter 10 + 8 ¼ 18 vehicles per

minute. Hence, the probability that a total of more than 100 vehicles will arrive via the two feeder

roads in the first 5 min of rush hour is given by

P X 5ð Þ > 100ð Þ ¼ 1� P X 5ð Þ � 100ð Þ ¼ 1�
X100
x¼0

e�18 5ð Þ 18 5ð Þ½ �x
x!

¼ 1� :865 ¼ :135

This calculation is much simpler than considering all the possible ways the two individual Poisson

processes could total more than 100 (e.g., 55 vehicles on the first road and 48 on the second road, and

so on). ■
The foregoing proposition and example show that we can combine separate Poisson processes into

a single Poisson process. Interestingly, we can also do the reverse: if we can categorize the events of a

Poisson process (e.g., arrivals of people separated into women’s arrivals and men’s arrivals), then we

can decompose the overall process into two “smaller” processes. We make this more precise in the

next proposition.

PROPOSITION

Suppose events occur according to the conditions of a Poisson process, and that each event can

be classified as either Type 1 or Type 2. Suppose that each event is Type 1 with probability p,

independent of the types of all other events and independent of the number of events that have

occurred. Define two random processes: X1(t) ¼ number of Type 1 events up to time t, and

X2(t) ¼ number of Type 2 events up to time t. Then

1. X1(t) is a Poisson process with rate parameter pλ;
2. X2(t) is a Poisson process with rate parameter (1 � p)λ; and
3. X1(t) and X2(t) are independent.

Proof We will derive the joint distribution of X1(t) and X2(t), i.e., P(X1(t) ¼ x and X2(t) ¼ y), for
arbitrary nonnegative integers x and y. The event {X1(t) ¼ x and X2(t) ¼ y} is equivalent to the event

X tð Þ ¼ xþ y and exactly x of these xþ y events are Type 1f g ¼ A \ B

where X(t) denotes the overall Poisson process. The second part of this event follows a binomial

model: we have a fixed number of trials (x + y), each with two basic outcomes (Type 1 or Type 2),

plus independent trials and constant probability by assumption. Combining that with the known

Poisson distribution of X(t) and the Multiplication Rule PðA \ BÞ ¼ PðAÞPðB��AÞ gives
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P(X(t) ¼ x + y and exactly x of these x + y events are Type 1)

¼ e�λt λtð Þxþy

xþ yð Þ! � xþ y

x

 !
px 1� pð Þy ¼ e�λt λtð Þxþypx 1� pð Þy

x!y!

¼ e� pþ 1�pð Þ½ �λt λtð Þxþypx 1� pð Þy
x!y!

¼ e�pλt pλtð Þx
x!

e� 1�pð Þλt 1� pð Þλtð Þy
y!

We recognize these two functions as the pmfs of a Poisson(pλt) distribution and a Poisson

((1 � p)λt) distribution, respectively. Moreover, since the joint pmf of X1(t) and X2(t) separates

into the product of individual pmfs, X1(t) and X2(t) are independent. ■

Example 7.28 At a certain large hospital, patients enter the emergency room at a mean rate of 15 per

hour. Suppose 20% of patients arrive in critical condition, i.e., they require immediate treatment.

Assume patient arrivals meet the conditions of a Poisson process.

Let’s first find the probability that more than 50 patients arrive in the next 4 h. Let X(t) denote the
Poisson process of patient arrivals (regardless of condition). Then X(4) has a Poisson distribution with

mean μ ¼ λt ¼ 15(4) ¼ 60, so

P X 4ð Þ > 50ð Þ ¼ 1� P X 4ð Þ � 50ð Þ ¼ 1�
X50
x¼0

e�6060x

x!
¼ 1� :108 ¼ :892

Next, we find the probability that more than 10 critical patients arrive in the next 4 h. Let X1(t)

denote the number of critical (“Type 1”) patients that arrive within t hours. By the previous

proposition, X1(t) is a Poisson process with rate parameter pλ ¼ .20(15) ¼ 3, so X1(4) is Poisson

with mean 3(4) ¼ 12. Thus,

P X1 4ð Þ > 10ð Þ ¼ 1� P X1 4ð Þ � 10ð Þ ¼ 1�
X10
x¼0

e�1212x

x!
¼ 1� :347 ¼ :653

Finally, to find the probability that more than 10 critical patients and more than 40 noncritical

patients arrive in the next 4 h, let X2(t) denote the number of noncritical (“Type 2”) patients that arrive

within t hours. Then X2(t) is also a Poisson process, but with rate parameter (1 � .20)(15) ¼ 12.

Thus X2(4) ~ Poisson(48); moreover, X2(4) is independent of X1(4). Therefore,

P X1 4ð Þ > 10 \ X2 4ð Þ > 40ð Þ ¼ P X1 4ð Þ > 10ð Þ � P X2 4ð Þ > 40ð Þ ¼ :653ð Þ :862ð Þ ¼ :563

The calculation of P(X2(4) > 40) is similar to those displayed above. ■

7.5.3 Alternative Definition of a Poisson Process

The definition of a Poisson process at the beginning of this section almost seems a tautology, since we

said X(t) is a Poisson process if it has a Poisson distribution. The following theorem provides an

alternative way to define a Poisson counting process.
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THEOREM

Consider the experiment of observing randomly occurring events of some type along continu-

ous time. Define X(0) ¼ 0, and define X(t) for t > 0 to be the number of events that occur in the

time interval (0, t]. Suppose X(t) has the following properties:

1. X(t) has independent and stationary increments.

2. There exists λ > 0 such that in any time interval of length h, the probability that exactly one

event occurs is λh + o(h).4

3. The probability of more than one event occurring in an interval of length h is o(h).

Then X(t) is a Poisson counting process with rate parameter λ.

Proof Because of the stationarity assumption, it suffices to consider a time interval beginning at

time 0. Let Pk(t) denote the probability that exactly k events occur in the interval [0, t]. First consider

P0(t + h), the probability that no events occur during the first t + h units of time. In order for this to

happen, no events must occur in [0, t] and also no events must occur during the next h units of time.

Since these two time intervals are nonoverlapping, the number of events that occur in the first interval

is independent of the number that occur in the second interval. Thus

P0 tþ hð Þ ¼ P0 tð Þ � Pðno events in an interval of lengthhÞ
¼ P0 tð Þ � �1� Pðexactly one eventÞ � Pðat least two eventsÞ�
¼ P0 tð Þ � �1� ðλhþ oðhÞÞ � oðhÞ�
¼ P0 tð Þ � 1� λh� o hð½ Þ � oðhÞ� ¼ P0 tð Þ � 1� λhþ o hð Þ½ �

Rearranging this expression gives

P0 tþ hð Þ � P0 tð Þ
h

¼ �λP0 tð Þ þ o hð Þ
h

Now taking the limit as h ! 0 gives the derivative of P0(t):

P
0
0 tð Þ ¼ �λP0 tð Þ

This differential equation has the unique solution P0(t) ¼ ce�λt, where the constant c is determined

by the initial condition P0(0) ¼ 1. This implies that c ¼ 1 and thus that P0(t) ¼ e�λt, which sure

enough is the probability of no events when the distribution is Poisson with parameter λt.
Now consider Pk(t) for general k. In order to have k events occur in the interval [0, t + h], it must

be the case that either (1) k events occur in [0, t] and none in the next h time units, or (2) k � 1 events

occur in [0, t] and one occurs in the next h time units, or (3) For l � 2, k � l occur in [0, t] and l occur

in the next h time units. By condition 3 in the theorem, the probability of the event in (3) is o(h).

Writing Pk(t + h) as a sum of probabilities corresponding to cases (1), (2), and (3), rearranging,

dividing by h, and taking the limit as h ! 0 gives the following system of differential equations:

Pk
0 tð Þ ¼ �λPk tð Þ þ λPk�1 tð Þ k ¼ 1, 2, 3, . . .

4 Readers not familiar with o(h) notation should consult Appendix B.
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Letting Qk(t) ¼ Pk(t)e
λt, the above differential equation becomes Qk

0(t) ¼ λQk�1(t). This system

can be solved recursively starting with Q0(t) ¼ 1 (because P0(t) ¼ e�λt) to give Qk(t) ¼ λktk/k!,
whence

Pk tð Þ ¼ λtð Þke�λt

k!
k ¼ 0, 1, 2, . . . ■

In this chapter, we are discussing temporal stochastic processes—that is, random processes that are

functions of time. For some of these processes, in particular the Poisson counting process, there exist

spatial analogues. A spatial Poisson process models the occurrence of “random” events in space,

rather than in time (e.g., the location of flaws on an integrated circuit, or of trees in a forest). Analogous

to the preceding theorem, suppose these random events meet the following conditions: (1) the numbers

of events in nonoverlapping regions of space are independent; (2) the probability of exactly one event

in a region of area h is λh + o(h) for some λ > 0; and (3) the probability of more than one event is a

region of area h is o(h). Then a similar proof to the one above shows that the random variable

X(R) ¼ number of events in region R has a Poisson distribution with mean λ � (area of R).

7.5.4 Nonhomogeneous Poisson Processes

The Poisson process considered thus far is characterized by a constant rate λ at which events occur per
unit time. A generalization of this is to suppose that the probability of exactly one event occurring in

the interval (t, t + h] is λ(t) � h + o(h) for some function λ(t). That is, we replace λ in condition 2 of the
preceding theorem with a nonnegative function λ(t). It can then be shown that the number of events

occurring during an interval (t1, t2] has a Poisson distribution with mean

E X t2ð Þ � X t1ð Þ½ � ¼
ðt2
t1

λ tð Þdt ð7:7Þ

The occurrence of events over time in this situation is called a nonhomogeneous Poisson process,

and λ(t) is called the intensity function of the process. Notice that the special case λ(t) ¼ λ
(a constant) returns us to the usual, “homogeneous” case; in particular, from Eq. (7.7) we immediately

have μX(t) ¼ λt.

Example 7.29 The article “Inference Based on Retrospective Ascertainment” (J. Amer. Statist.

Assoc., 1989: 360-372) considers the intensity function

λ tð Þ ¼ eaþbt

as appropriate for events involving transmission of HIV (the AIDS virus) via blood transfusions.

Suppose that a ¼ 2 and b ¼ 0.6 (close to values suggested in the paper), with time in years. What is

the expected number of events in the first 4 years? In the time interval (2, 6]? What is the probability

that at most 20 events occur in first 18 months?

To determine the expectation in any interval, we apply Eq. (7.7). The expected number of events in

the interval (0, 4] is

E X 4ð Þ � X 0ð Þ½ � ¼
ð4
0

e2þ0:6t dt ¼ 123:44,

while the expected number of events in (2, 6] equals
Ð 6
2
e2+0.6t dt ¼ 409.82. Notice that the expected

numbers of events for these two time intervals are quite different, even though each interval has
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length 4 years; this illustrates that a nonhomogeneous Poisson process does not have stationary

increments.

Finally, the number of events in the first 18 months (1.5 years), X(1.5), has a Poisson distribution

with parameter

μ ¼ E X 1:5ð Þ½ � ¼ E X 1:5ð Þ � X 0ð Þ½ � ¼
ð1:5
0

e2þ0:6t dt ¼ 17:975

Therefore, P(X(1.5) � 20) ¼ P20
x¼0 e�17.97517.975x/x! ¼ .733. ■

7.5.5 The Poisson Telegraphic Process

We end this section with a brief discussion of the Poisson telegraphic process (or Poisson tele-

graph), a popular model in engineering for noise in a binary channel. Suppose we have events

occurring according to the conditions of a Poisson process. Define a new random process, N(t), as

follows: N(0) ¼ �1 with probability .5 and +1 with probability .5; when a random event occurs, N(t)

switches parity (i.e., from �1 to +1 or vice versa). A sample function appears in Fig. 7.19; the x’s

through the middle indicate the time occurrences of the random events (notice these are precisely

where the process switches parity).

The statistical properties of the Poisson telegraph are catalogued in the following proposition.

PROPOSITION

Let N(t) be a Poisson telegraphic process with rate parameter λ.
1. For all t � 0, N(t) is +1 or �1 with probability .5 each. (Thus, a Poisson telegraph has the

same distribution at all time-points.)

2. μN(t) ¼ 0 and σN(t) ¼ 1 for all t � 0.

3. N(t) is WSS, and RNN(τ) ¼ CNN(τ) ¼ e�2λ|τ|.

The proofs of these statements are left as exercises (see Exercises 69–70 at the end of this section).

−1

0

1

t

x(t)Fig. 7.19 One sample

function of a Poisson

telegraph

7.5 Poisson Processes 531



Wemore commonly think of the symbols 0 and 1 in binary communication, rather than�1 and +1.

The Poisson telegraph described above can be easily modified: let N∗(t) ¼ .5[N(t) + 1], so that N∗(t)

takes on the values 0 and 1. We call N∗(t) a Poisson 0-1 telegraph. In Exercise 71 of this chapter, you
are asked to derive the properties of the Poisson 0-1 telegraph.

7.5.6 Exercises: Section 7.5 (53–72)

53. The number of requests for assistance received by a towing service is a Poisson process with rate

λ ¼ 4 per hour.

(a) Compute the probability that exactly ten requests are received during a particular 2-h period.

(b) If the operators of the towing service take a 30-min break for lunch, what is the probability

that they do not miss any calls for assistance?

(c) How many calls would you expect during their break?

54. During the daily lunch rush, arrivals at the drive-thru at a nearby fast food restaurant follow a

Poisson process with a rate of 0.8 customers per minute.

(a) What is the expected number of customers in 1 h, and what is the corresponding standard

deviation?

(b) The drive-thru’s workers can’t handle more than 10 customers in any 5-min span. Deter-

mine the probability that too many customers arrive for the workers to handle between

12:15 p.m. and 12:20 p.m.

(c) A customer has just arrived. What is the probability another customer will arrive within the

next 30 s?

(d) The 100th lunch customer, starting at 12:00 p.m., gets a free meal. What is the expected

arrival time of that lucky customer, and what is the standard deviation of that time?

55. Packets arrive at a certain node on the university’s intranet at 10 packets per minute, on average.

Assume packet arrivals meet the assumptions of a Poisson process.

(a) Calculate the probability that exactly 15 packets arrive in the next 2 min.

(b) Find an expression for the probability that more than 75 packets arrive in the next 5 min.

(c) Calculate the probability that the next packet will arrive in less than 15 s.

(d) What is the average time between successive packet arrivals?

(e) Calculate the probability that the fifth packet arrives in less than 45 s.

56. The article “Reliability-Based Service-Life Assessment of Aging Concrete Structures” (J. Struct.

Engrg., 1993: 1600–1621) suggests that a Poisson process can be used to represent the occur-

rence of structural loads over time. Suppose the mean time between occurrences of loads is

.5 year.

(a) How many loads can be expected to occur during a 2-year period?

(b) What is the probability that more than five loads occur during a 2-year period?

(c) How long must a time period be so that the probability of no loads occurring during that

period is at most .1?

57. Travelers arrive at an airport shuttle station according to a Poisson process with rate λ. The shuttle
vehicle will depart only once k travelers have arrived. Assuming that there are no travelers

waiting at time 0, what is the expected duration of time until the next shuttle vehicle departs?

58. The parking lot for a local ballpark has two entrances (east and west). In the hour before a game,

cars entering the lot from east and west form two independent Poisson processes with rates 10 per

minute and 15 per minute, respectively.

(a) What is the expected number of cars entering the parking lot in any 10-min span, and what is

the corresponding standard deviation?
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(b) In any particular minute, what is the probability exactly 12 cars enter from each side?

(c) What is the probability that exactly 24 cars enter the lot in any particular minute?

(d) Write an expression for the probability that, in any particular minute, the same number of

cars enter through the east side and the west side.

59. Orders are submitted to a certain online business according to a Poisson process with rate 3 orders

per hour.

(a) Given that 4 orders are submitted during the time interval [0, 2], what is the probability that

10 orders are submitted in the interval [0, 5]?

(b) More generally, consider two fixed times s < t and two nonnegative integers m < n. Given

that m orders are submitted by time s, what is the probability that n orders are submitted by

time t?

60. Automobiles arrive at a vehicle equipment inspection station according to a Poisson process with

rate λ ¼ 10 per hour. Suppose that with probability .5 an arriving vehicle will have no equipment

violations.

(a) What is the probability that exactly ten vehicles arrive during the hour and all ten have no

violations?

(b) For any fixed y � 10, what is the probability that exactly y vehicles arrive during the hour,

of which ten have no violations?

(c) What is the probability that ten “no-violation” cars arrive during the next hour? [Hint: Sum
the probabilities in (b) from y ¼ 10 to 1.]

61. A certain component is subject to electrical surges over time. Suppose that these surges occur

according to a Poisson process with rate λ. Suppose also that with probability p, any particular

surge will disable the component. What is the probability that the component survives (is not

disabled) throughout the period [0, t]? [Hint: Make appropriate independence assumptions.]

62. Suppose events occur according to a Poisson process with rate λ.
(a) Given that n events have occurred in the interval [0, n], what is probability that x of these

events occurred in [0, 1]? [Hint: Let X(t) be the Poisson process, and write the conditional

probability of interest in terms of X(t). Then apply the definition of conditional probability.]
(b) Given that n events have occurred in the interval [0, n], what is the limiting conditional

distribution of the number of events in [0, 1] as n ! 1?

63. There is one hospital at the northern end of a particular county and another hospital at the

southern end of the county. Suppose that arrivals to each hospital’s emergency room occur

according to a Poisson process with the same rate λ and that the two arrival processes are

independent of one another. Starting at time t ¼ 0, let Y be the elapsed time until at least one

arrival has occurred at each of the two emergency rooms. Determine the probability distribution

of Y.

64. Suppose that flaws occur along a cable according to a Poisson process with parameter λ. A
segment of this cable of length Y is removed, where Y has an exponential distribution with

parameter θ. Determine the distribution of the number of flaws that occur in this random-length

segment. [Hint: Let X be the number of flaws on this segment. Condition on Y ¼ y to obtain

P(X ¼ xjY ¼ y). Then “uncondition” using the Law of Total Probability (multiply by the pdf of

Y and integrate). The gamma integral (3.5) will prove useful.]

65. Starting at time t ¼ 0, certain events occur at random with inter-arrival times T1, T2, and so on as
in Fig. 7.18. Define X(t) ¼ the number of arrivals in (0, t]; if we assume the Tn are iid (but not

necessarily exponentially distributed), then X(t) is called a renewal process.

(a) Show that a renewal process whose inter-arrival times are iid exponential rvs is a Poisson

process. That is, show that if the Tn are iid exponential(λ) rvs then X(t) has a Poisson(λt)
distribution.
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(b) The elementary renewal theorem states that, for any renewal process,

lim
t!1

E X tð Þ½ �
t

¼ 1

E Tn½ �
Show that this is trivially true for a Poisson process.

[Note: A stronger version of the renewal theorem actually shows X(t)/t converges in

probability to the constant 1/E[Tn].]
66. Let X(t) count the number of events of a certain type in the time interval (0, t], and suppose X(t)

can be modeled by a nonhomogeneous Poisson process with intensity function λ(t).
(a) Does X(t) have stationary increments? Why or why not?

(b) Find the mean and variance functions of X(t).

(c) What is the probability that no events occur in the time interval (0, t]?

67. A certain repair facility is open for 8 hours on a particular day. Customers arrive according to a

nonhomogeneous Poisson process with intensity function λ(t) ¼ t for 0 � t < 1, ¼ 1 for 1 � t

< 7, and ¼ 8 � t for 7 � t � 8.

(a) What is the probability that no customers arrive in both the first and last hours and that

4 customers arrive in the middle 6 hours?

(b) What is the probability that the same number of customers arrive in the first hour, middle

6 hours, and last hour?

68. During the first round of enrollment, students begin registering for classes at the top of each hour.

There’s a mad rush at the beginning of the hour, and then logins taper off. Let X(t) ¼ the number

of logins tminutes into the hour, and suppose X(t) can be modeled by a nonhomogeneous Poisson

process with intensity function λ(t) ¼ 500/(t + 1)2 for 0 < t < 60.

(a) What is the expected number of students that will log into the registration system in the first

5 min of the hour? In the last 5 min of the hour?

(b) What is the probability that no students log in during the last 5 min of an hour?

(c) The registration system will crash if more than 450 students log in during any 5-min period.

What is the probability that this occurs in the first 5 min of an hour? (You will need to use

software or a Central Limit Theorem approximation to determine this probability.)

69. Consider a Poisson telegraphic process N(t) with rate parameter λ.
(a) Let p ¼ P(an even number of events occur in (0, t]). Explain why, for t > 0,

P N tð Þ ¼ þ1
��N 0ð Þ ¼ þ1

� � ¼ p and P N tð Þ ¼ þ1
��N 0ð Þ ¼ �1

� � ¼ 1� p:

(b) Use (a) and the Law of Total Probability to show that P(N(t) ¼ +1) ¼ .5 for all t � 0.

(Since the only other possible value of N(t) is �1, this establishes property 1 of the last

proposition of this section.)

(c) Establish property 2 of the Poisson telegraph, i.e., that μN(t) ¼ 0 and σN(t) ¼ 1 for all t � 0.

70. (a) Consider a Poisson process with parameter λ. Show that the probability that an even number

of events (0, 2, 4, . . .) occurs in any interval (t, t + τ] is equal to (1 + e�2λτ)/2.

(b) Let N(t) be a Poisson telegraphic process with parameter λ. By considering the possible

values of the product N(t)N(t + τ), show that the autocorrelation function of N(t) is e�2λ|τ|.

[Hint: Use (a).]
71. A Poisson 0-1 telegraph N∗(t) is constructed as follows: N∗(0) equals 0 or 1 with probability .5

each, and then N∗(t) switches parity upon the occurrence of an event in a Poisson process. Find

the pmf, mean, variance, autocovariance function, and autocorrelation function of N∗(t). [Hint:
Use the relationship N∗(t) ¼ .5[N(t) + 1], where N(t) is an ordinary Poisson telegraph.]
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72. This exercise outlines a proof that the time to the nth event of a Poisson process has an Erlang

distribution.

(a) Let Yn denote the time to the nth event in a Poisson process. Explain why, for any time

y > 0, P(Yn > y) ¼ P(fewer than n events occur in the time interval (0, y]).

(b) Suppose the Poisson process has rate parameter λ. Use (a) to write an expression for the cdf
of Yn. [Hint: the right-hand side of (a) can be written as a finite sum using the definition of a

Poisson process.]

(c) Differentiate your answer to part (b) to obtain the pdf of Yn, and verify that it is an Erlang pdf

with parameters n and λ (aka the gamma distribution with α ¼ n and β ¼ 1/λ).

7.6 Gaussian Processes

We introduced the normal or Gaussian distribution in Chap. 3 and then extended it to a multivariate

distribution in Chap. 4. Here, we consider the extension of the normal distribution to random

processes. Engineers commonly use such models for noise in audio signals and the (seemingly)

random motion of small particles. We’ll explore both of these applications shortly.

DEFINITION

A random process X(t) is a Gaussian process if for all time points, t1, . . ., tn the random

variables X(t1),. . ., X(tn) have a multivariate normal distribution (as defined in Sect. 4.7). In

particular, the distribution of X(t) at any time point t is normal.

As discussed in Sect. 4.7, we can also characterize a joint Gaussian distribution by requiring that

all linear combinations of the random variables be Gaussian. Applying that characterization here, we

have an alternate definition of a Gaussian process: X(t) is a Gaussian process iff all linear

combinations of X(t1), . . ., X(tn) have a normal distribution for n ¼ 1, 2, 3, . . ., and all time-points

t1, . . ., tn.

In Sect. 7.3, we distinguished strict-sense stationary processes from wide-sense stationary pro-

cesses. We noted that a strict-sense stationary process is automatically WSS, but not vice versa.

However, suppose that a Gaussian process X(t) is WSS: this implies the mean and covariance

structure of X(t) are time-invariant. But we know from Sect. 4.7 that mean and covariance completely

characterize a joint Gaussian distribution; all other statistical properties can be derived from these

two. Thus, if a Gaussian process is WSS, all of its statistical properties must be time-invariant.

PROPOSITION

Suppose X(t) is a Gaussian process. Then X(t) is wide-sense stationary if, and only if, X(t) is

strict-sense stationary.

Example 7.30 The noise X(t) (measured in decibels) in an audio signal is modeled as a wide-sense

stationary Gaussian process, with mean zero and autocovariance function

CXX τð Þ ¼ 0:04e� τj j=10

Let’s first investigate the distributions of X(3) and X(8), the noise three and eight seconds into the

audio signal, respectively. Since X(t) is a Gaussian process, by definition X(3) is a Gaussian random
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variable; we merely have to specify its mean and standard deviation. We are given that X(t) is a mean-

zero process, so in particular E[X(3)] ¼ 0. We can extract the variance of X(3) from the

autocovariance using a property of WSS processes:

Var X 3ð Þð Þ ¼ σ2X ¼ CXX 0ð Þ ¼ 0:04e�j0j=10 ¼ 0:04

Therefore, X(3) ~ N(0, 0.2). Moreover, since X(t) is stationary, this is also the distribution of X(8).
Next, notice that X(8) � X(3) is a linear combination of X(3) and X(8); therefore, since X(t) is

a Gaussian process, the random variable X(8) � X(3) is also Gaussian. Its mean is simply E[X(8) �
X(3)] ¼ 0 � 0 ¼ 0. Computing the variance takes a bit more effort:

VarðX 8ð Þ � Xð3ÞÞ ¼ VarðXð8ÞÞ þ ð�1Þ2VarðXð3ÞÞ þ 2ð1Þð�1ÞCovðXð8Þ,Xð3ÞÞ
¼ VarðX 8ð ÞÞ þ VarðXð3ÞÞ � 2CovðXð8Þ,Xð3ÞÞ
¼ CXX 0ð Þ þ CXXð0Þ � 2CXXð�5Þ since τ ¼ 3� 8 ¼ �5

¼ 0:04þ 0:04� 2 � 0:04e�j�5j=10

¼ 0:08 1� e�1=2
� � ¼ :0315

Therefore, X 8ð Þ � X 3ð Þ � N 0;
ffiffiffiffiffiffiffiffiffiffiffi
:0315

p� �
. Finally, we can use this distribution to find the proba-

bility the noise at t ¼ 8 is more than 0.3 dB above the noise at t ¼ 3:

PðX 8ð Þ > 0:3þ Xð3ÞÞ ¼ PðXð8Þ � Xð3Þ > 0:3Þ ¼ 1� PðXð8Þ � Xð3Þ � 0:3Þ

¼ 1�Φ
0:3� 0ffiffiffiffiffiffiffiffiffiffiffi
:0315

p
 �

¼ 1�Φ 1:69ð Þ ¼ :0455
■

7.6.1 Brownian Motion

In Example 7.4, we introduced the idea of Brownian motion, a model for the seemingly random

behavior of a dust particle on a liquid surface. Physicists also use the Brownian motion model to

describe a variety of physical processes, including the motion of some celestial bodies in response to

gravitational forces. A precise mathematical construction of Brownian motion is beyond the scope of

this book; however, we characterize Brownian motion in the following definition.

DEFINITION

A (one-dimensional) Brownian motion process (also called aWiener process) with parameter

α > 0, denoted B(t), is a Gaussian process with the following properties:

1. μB(t) � 0; that is, Brownian motion is a mean-zero process.

2. σB
2(t) ¼ αt, so σB tð Þ ¼ ffiffiffiffi

αt
p

.

3. B(t) has stationary and independent increments.

If α ¼ 1, B(t) is called standard Brownian motion.5

5 Albert Einstein showed in 1905 from physical considerations that the conditional pdf of B(t0 + t) given B(t0) ¼ xmust

satisfy the partial differential equation∂f=∂t ¼ 1
2
α � ∂2f=∂x2, where the “diffusion constant” α involves a gas constant,

temperature, a coefficient of friction, and Avogadro’s number. He also showed that the unique solution to this PDE is

the normal pdf.
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It follows from the stationary increments property thatB tþ τð Þ � B tð Þ � N 0;
ffiffiffiffiffi
ατ

pð Þ for any τ > 0.

Figure 7.20 shows several sample functions of Brownian motion. It is important to note that while

B(t) has stationary increments, it is not itself a stationary process (the variance of Brownian motion

depends on t).

Because Brownian motion is not a stationary process, we expect the autocovariance function will

depend on “absolute” time (t and s) rather than “relative” time τ. The autocovariance and autocorre-

lation functions of Brownian motion are

CBB t; sð Þ ¼ RBB t; sð Þ ¼ α �min t; sð Þ
The derivation is similar to that of the Poisson process autocovariance function in the previous

section.

Brownian motion actually shares several features with the Poisson process of the previous section:

both have initial value 0 (with probability 1), stationary and independent increments, and variance

proportional to time. In fact, it can be shown (see Exercise 85 at the end of this section) that any

random process having a constant initial value along with stationary and independent increments

must necessarily have a variance function that’s linear in t.

Since Brownian motion is a one-dimensional random process, clearly it can only describe particle

motion in a single direction. The random motion of particles on a surface or through space can be

described by 2- or 3-dimensional Brownian motion processes, for which it’s assumed the motion

along each dimensional axis is an independent, one-dimensional Brownian motion process.

Example 7.31 Consider the movement of a particle along a single axis, governed by Brownian

motion with parameter α ¼ 4. Let’s begin by identifying the probability distribution of the particle’s

displacement from time t ¼ 1 s to time t ¼ 4 s. If we write B(t) for the process, then we wish to know
the distribution of B(4) � B(1). Applying the comment below the definition of Brownian motion with

τ ¼ 4 � 1 ¼ 3, we have B 4ð Þ � B 1ð Þ � N 0;
ffiffiffiffiffi
12

p� �
. (An alternative derivation uses a similar

approach to Example 7.30 and the autocovariance function mentioned above.)

The particle’s displacement from time t ¼ 2 s to time t ¼ 5 s has this same distribution, since both

increments span a time length of τ ¼ 3 and, by Property 3 of the definition, B(t) has stationary

increments. However, the increments B(5) � B(2) and B(4) � B(1) are not independent: while

Property 3 states that Brownian motion has independent increments, the two time intervals (2, 5]

and (1, 4] overlap.

0

x(t)

t

Fig. 7.20 Brownian

motion
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Finally, what is the probability that the particle is displaced more than 10 units in the time interval

(1, 4]? Since the question does not indicate whether the displacement is positive or negative (relative

to the axis), we’re really interested in determining P(jB(4) � B(1)j > 10). Because the distribution of

B(4) � B(1) is symmetric about 0, we may proceed as follows:

Pð��B 4ð Þ � Bð1Þ�� > 10Þ ¼ 2PðBð4Þ � Bð1Þ > 10Þ by symmetry

¼ 2
�
1� PðB 4ð Þ � Bð1Þ � 10Þ�

¼ 2 1�Φ
10� 0ffiffiffiffiffi

12
p

 �� 	
¼ 2
�
1�Φ 2:89ð Þ� ¼ :0038

■

7.6.2 Brownian Motion as a Limit

The Brownian motion process described above can actually be constructed as the limit of a discrete-

time random process—specifically, the simple symmetric random walk Sn of Example 7.24. We will

shrink both the time increment and the size of a jump in this random walk as follows: for some h > 0

and Δx > 0, suppose at times h, 2h, 3h, etc. the walk moves +Δx or �Δx with probability .5 each.

Then, with [ ] denoting the greatest-integer function, the random process B(t) defined by

B tð Þ ¼ Δxð ÞX1 þ � � � þ Δxð ÞX t=h½ � ¼ Δxð ÞS t=h½ �

indicates the location of the random walk at time t. The coefficient Δx changes the motion increment

from 	1 to 	 Δx; the time index n ¼ [t/h] equals the number of moves (equivalently, the number of

h-second time intervals) in the interval [0, t].

From the properties of the random walk,

μB tð Þ ¼ E Δxð ÞS t=h½ �
� � ¼ Δxð ÞE S t=h½ �

� �
¼ Δxð Þ � 0 ¼ 0

and
σ2B tð Þ ¼ Var Δxð ÞS t=h½ �

� � ¼ Δxð Þ2Var S t=h½ �
� �

¼ Δxð Þ2 � t=h½ �
Moreover, the Central Limit Theorem tells us that, for large values of [t/h], the distribution of B(t)

is approximately normal.

Up to now, the choices of h and Δx have been arbitrary. But suppose we choose Δx ¼ ffiffiffiffiffiffi
αh

p
for

some α > 0. Then, if we shrink h to 0 (effectively moving from discrete time to continuous time), B(t)
will be normally distributed with mean 0 and variance

lim
h!0

αh t=h½ � ¼ αt

The properties of independent and stationary increments clearly follow as consequences of the iid

steps in the random walk. Thus, B(t) becomes a Brownian motion process as h ! 0.

7.6.3 Further Properties of Brownian Motion

Consider some fixed value x0 > 0 and a fixed time t0. The maximum value of B(t) during the time

interval 0 � t � t0 is a random variable M. What is the probability that M exceeds the threshold x0?

Figure 7.21 shows two sample paths, one for which the level x0 is exceeded prior to t0 and one for

which this does not occur.
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Let’s focus on a path b(t) that does reach x0 during the specified time interval. Corresponding to

this path, we now create a new path by reflecting about the line y ¼ x0 the part of b(t) that lies to the

right of the first time it reaches x0. Denote the first time at which the original path reaches x0 by T.

Then for t � T the new path—call it b*(t)—is identical to the original path. But for any time t > T,
it’s easy to show that the reflected path is given by b*(t) ¼ 2x0 � b(t). The original path and its

reflected path are illustrated in Fig. 7.22.

Notice that the maximum level for each of these paths exceeds x0, and exactly one of these two

paths has level exceeding x0 at time t0. That is, for every sample path that exceeds level x0 at time t0,
there are two sample paths whose maxima on [0, t0] exceed x0, the original path and the reflected path.

Put another way, for each pair of sample paths whose level exceeds x0 some time before t0, one being

the reflection of the other about x0 subsequent to its first “hitting time,” there is exactly one sample

path satisfying B(t0) > x0.

Now given that B(T) ¼ x0, consider the pdf of the level B(t) at some time subsequent to T. Because

Brownian motion has independent increments, the process “begins anew” at time T, except that its
Gaussian behavior starts at x0 rather than at 0. The symmetry of the normal distribution implies that

the pdf at a level above x0 at the future time is the same as the pdf at a level that is below x0 by the

same amount. That is, the original path and the reflected path are equally likely. Melding this equally

likely property with the result of the previous paragraph, establishing a one to one correspondence

between pairs of reflected paths crossing x0 and paths whose level exceeds x0 at time t0, gives the

following result.

t0

x0

x(t)
M

M

t

Fig. 7.21 A sample path for which M ¼ max
0�t�t0

B tð Þ > x0 and a path for which M < x0

x0

b*(t)

b(t)

t0T
t

Fig. 7.22 A sample path crossing x0 before time t0 and its paired reflected path
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PROPOSITION

Let B(t) be Brownian motion and, for t0 > 0, let M ¼ max
0�t�t0

B tð Þ. Then

P M > x0ð Þ ¼ 2P B t0ð Þ > x0ð Þ ¼ 2 1�Φ
x0ffiffiffiffiffiffi
αt0

p
 �� 	

ð7:8Þ

The second equality in the proposition comes from the fact that B t0ð Þ � N 0;
ffiffiffiffiffiffi
αt0

pð Þ. Replacing x0
with m on both sides of Eq. (7.8) and differentiating with respect to m, we can determine the pdf of

this rv:

f M mð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
2παt0

p e�m2= 2αt0ð Þ m > 0

The foregoing proposition also allows us to obtain the distribution of the random variable T ¼ the

first time at which the process hits level x0. To see this, note that a sample path will first hit level x0 by

time t0 iff the maximum level of the path during the time interval [0, t0] is at least x0. In symbols,

T � t0 iffM � x0. Since the probability of the latter event is what appears in the last proposition box,

we immediately have the following result.

PROPOSITION

Let T be the first time that a Brownian motion process reaches level x0. Then

FT tð Þ ¼ P T � tð Þ ¼ 2 1�Φ
x0ffiffiffiffi
αt

p
 �� 	

,

from which it follows that

f T tð Þ ¼ x0ffiffiffiffiffiffiffiffi
2πα

p t�3=2e�x2
0
=2αt t > 0

Figure 7.23 shows the probability distribution of the “hitting time” T. Exercise 84 asks you to show

this is a valid probability distribution and to derive the pdf from the cdf.

fT(t)

t

Fig. 7.23 pdf of the

hitting time, T, for
Brownian motion

540 7 Random Processes



7.6.4 Variations on Brownian Motion

Let B(t) denote a standard Brownian motion process (i.e., with α ¼ 1), and let μ and σ > 0 be

constants. Brownian motion with drift is the process X(t) ¼ μt + σB(t). X(t) also has stationary an

independent increments; an increment X(t + τ) � X(t) is normally distributed with mean μτ and

variance σ2τ. Brownian motion with drift has many interesting applications and properties. For

example, suppose the drift parameter μ is negative. Then over time X(t) will tend toward ever

lower values. It can be shown that M, the maximum level attained over all time t � 0, has an

exponential distribution with parameter 2|μ|/σ2.
Standard Brownian motion and Brownian motion with drift both allow for positive and negative

values of the process. Thus they are not typically acceptable models for the behavior of the price of

some asset over time. A stochastic process Z(t) is called geometric Brownian motion with drift
parameter α if X(t) ¼ ln[Z(t)] is a Brownian motion process with drift having mean parameter

μ ¼ α � σ2/2 and standard deviation parameter σ. Since Z(t) ¼ exp(X(t)), a geometric Brownian

motion process will be nonnegative. Any particular sample path will show random fluctuations about

a long-term exponential decay or growth curve.

Geometric Brownian motion is a popular model for the pricing of assets. Let X(t) be the price of an

asset at time t. The ratio X(t)/X(0) is the proportion by which the price has increased or decreased

between time 0 and time t. In the same way that we obtained Brownian motion as a limit of a simple

symmetric random walk, geometric Brownian motion can be obtained as a limit in which the price at

each time point either increases by a multiplicative factor u or goes down by another particular

multiplicative factor d. The limit is taken as the number of price changes during (0, t] gets arbitrarily

large, while the factors u and d get closer and closer to 1 and the two probabilities associated with

u and d approach .5. Geometric Brownian motion is the basis for the famous Black-Scholes option

pricing formula that is used extensively in quantitative finance. This formula specifies a fair price for

a contract allowing an investor to purchase an asset at some future time point for a particular price

(e.g., a contract permitting an investor to purchase 100 shares of Facebook stock at a price of $20 per

share 3 months from now).

7.6.5 Exercises: Section 7.6 (73–85)

73. Let X(t) be a wide-sense stationary Gaussian process with mean μX ¼ 13 and autocovariance

function CXX(τ) ¼ 9cos(τ/5).
(a) Calculate P(X(10) < 5).

(b) Calculate P(X(10) < X(8) + 2).

74. Let Y(t) be a WSS Gaussian process with mean μY ¼ �5 and autocorrelation function RYY(τ)
¼ (25τ2 + 34)/(1 + τ2). Determine each of the following:

(a) Var(Y(t))

(b) P(Y(2) > 5)

(c) P(jY(2)j > 5)

(d) P(Y(6) � Y(2) > 5)

75. The voltage noise N(t) in a certain analog signal is modeled by a Gaussian process with mean 0 V

and autocorrelation function RNN(t, s) ¼ 1 � jt � sj/10 for jt � sj � 10 (and zero otherwise).

(a) Is N(t) stationary? How can you tell?

(b) Determine P(jN(t)j > 1).

(c) Determine P(jN(t + 5) � N(t)j > 1).
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(d) Determine P(jN(t + 15) � N(t)j > 1).

[Hint for (b)–(d): Does your answer depend on t?]
76. The text Gaussian Processes for Machine Learning (2nd ed., 2006) discusses applications of the

“regression-style” model Y(t) ¼ β0 + β1t + X(t) + ε, where β0 and β1 are constants, the “error

term” ε is a N(0, σ) rv, and X(t) is a Gaussian random process with mean 0 and covariance

function

CXX t; sð Þ ¼ κ2e�λ t�sð Þ2

for suitable choices of the parameters κ > 0 and λ > 0. X(t) and ε are assumed to be independent.

(a) Is X(t) wide-sense stationary?

(b) Is Y(t) a Gaussian process?

(c) Determine the mean, variance, and autocovariance functions of Y(t). Is Y(t) WSS?

(d) What effect does the parameter κ have on Y(t)? That is, how would the behavior of Y(t) be

different for large κ versus small κ?
(e) What effect does the parameter λ have on Y(t)?

77. Consider the following model for the temperature X(t), in 
F, measured t hours after midnight on

August 1, in Bakersfield, CA:

X tð Þ ¼ 80þ 20cos
π
12

t� 15ð Þ
� �

þ B tð Þ,

where B(t) is a Brownian motion process with parameter α ¼ .2.

(a) Determine the mean and variance functions of X(t). Interpret these functions in the context

of the example.

(b) According to this model, what is the probability that the temperature at 3 pm on August

1 will exceed 102 
F?
(c) Repeat part (b) for 3 p.m. on August 5.

(d) What is the probability that the temperatures at 3 p.m. on August 1 and August 5 will be

within 1 
F of each other?

78. Brownian motion is sometimes used in finance to model short-term asset price fluctuation.

Suppose the price (in dollars) of a barrel of crude oil varies according to a Brownian motion

process; specifically, suppose the change in a barrel’s price t days from now is modeled by

Brownian motion B(t) with α ¼ .15.

(a) Find the probability that the price of a barrel of crude oil has changed by more than $1, in

either direction, after 5 days.

(b) Repeat (a) for a time interval of 10 days.

(c) Given that the price has increased by $1 in seven days, what is the probability the price will

be another dollar higher after an additional seven days?

79. Refer to the weather model in Exercise 77. Suppose a meteorologist uses the mean function of

X(t) as her weather forecast over the next week.

(a) Over the next five days, what is the probability that the actual temperature in Bakersfield

will exceed the meteorologist’s prediction by more than 5 
F? [Hint: What part of X(t)

represents her prediction error?]

(b) What is the probability that the actual temperature will exceed her prediction by 5 
F for the

first time by midnight on August 3 (i.e., two days after t ¼ 0)?

80. Refer to Exercise 78, and suppose the initial price of crude oil is $110 per barrel.

(a) Over the next 30 days, what is the probability the maximum price of a barrel of crude oil will

exceed $115?

542 7 Random Processes



(b) Determine the probability that the price of crude oil will hit $120 for the first time within the

next 60 days.

81. The motion of a particle in two dimensions (e.g., a dust particle on a liquid surface) can be

modeled by using Brownian motion in each direction, horizontal and vertical. That is, if (X(t),

Y(t)) denotes the position of a particle at time t, starting at (0, 0), we assume X(t) and Y(t) are
independent Brownian motion processes with common parameter α. This is sometimes called

two-dimensional Brownian motion.
(a) Suppose a certain particle moves in accordance with two-dimensional Brownian motion

with parameter α ¼ 5. Find the probability the particle is more than 3 units away from (0, 0)

in each dimension at time t ¼ 2.

(b) For the particle in (a), find the probability the particle is more than 3 units away from (0, 0)

radially (i.e., by Euclidean distance) at time t ¼ 2. [Hint: It can be shown that the sum of

squares of two independent N(0, σ) rvs has an exponential distribution with parameter

λ ¼ 1/(2σ2).]
(c) Three-dimensional Brownian motion, a model for particulate movement in space, assumes

that each location coordinate (X(t), Y(t), Z(t)) is an independent Brownian motion process

with common parameter α. Suppose a certain particle’s motion follows three-dimensional

Brownian motion with parameter α ¼ 0.2. Find the probability that (1) the particle is more

than 1 unit away from (0, 0, 0) in each dimension at time t ¼ 4, and (2) the particle is more

than 1 unit away from (0, 0, 0) radially at time t ¼ 4. [Hint: The sum of squares of three

independent N(0, σ) rvs has a gamma distribution with α ¼ 3/2 and β ¼ 2σ2.]
82. Some forms of thermal voltage noise can be modeled by an Ornstein-Uhlenbeck process X(t),

which is the solution to the “stochastic differential equation” X0(t) + κX(t) ¼ σB0(t), where B(t) is
standard Brownian motion and κ, σ > 0 are constants. With the initial condition X(0) ¼ 0, It can

be shown that X(t) is a Gaussian process with mean 0 and autocovariance function

CXX t; sð Þ ¼ σ2

2κ
e�κjs�tj � e�κ sþtð Þ
h i

(a) Is the Ornstein-Uhlenbeck process wide-sense stationary? Why or why not?

(b) Find the variance of X(t). What happens to the variance of X(t) as t ! 1?

(c) Let s ¼ t + τ. What happens to CXX(t, t + τ) as t ! 1?

(d) For s > t, determine the conditional distribution of X(s) given X(t).
83. A Gaussian white noise process is a Gaussian process N(t) with mean μN(t) ¼ 0 and autocorre-

lation function RNN τð Þ ¼ ðN0=2ÞδðτÞ, where N0 > 0 is a constant and δ(τ) is the Dirac delta

function (see Appendix B).

(a) Is Gaussian white noise a stationary process?

(b) Define a new random process, X(t), as the integrated version of N(t):

X tð Þ ¼
ð t
0

N sð Þds

Find the mean and autocorrelation functions of X(t). Is X(t) stationary?

84. Consider the “hitting-time” distribution FT tð Þ ¼ 2 1�Φ x0=
ffiffiffiffi
αt

p� �� �
, t > 0, for Brownian

motion presented in the last proposition of this section.

(a) Show that FT(t) is a valid cdf for a nonnegative rv by proving that (1) FT(t) ! 0 as t ! 0+,

(2) FT(t) ! 1 as t ! 1, and (3) FT(t) is an increasing function of t.
(b) Find the median of this hitting-time distribution.
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(c) Derive the pdf of T from the cdf.

(d) Does the mean of this hitting-time distribution exist?

85. Let X(t) be a random process with stationary and independent increments and X(0) a constant.

(a) Take the variance of both sides of the expression

X tþ τð Þ � X 0ð Þ ¼ X tþ τð Þ � X tð Þ½ � þ X tð Þ � X 0ð Þ½ �
and use the properties of X(t) to show that Var(X(t + τ)) ¼ Var(X(t)) + Var(X(τ)).
(b) The only solution to the functional relation g(t + τ) ¼ g(t) + g(τ) is a linear function:

g(t) ¼ at for some constant a. Apply this fact to part (a) to conclude that any random

process with a constant initial value and stationary and independent increments must have

linear variance. (This includes both Brownian motion as well as the Poisson counting

process of the previous section.)

7.7 Continuous-Time Markov Chains

Recall from Chap. 6 that a discrete-time Markov chain is a sequence of random variables X0, X1, X2,

. . . satisfying theMarkov property on some state space (typically a set of integers). In this section, we

consider a continuous-time random process that transitions between a discrete set of states (again,

typically a set of integers) according to rules dictated by the Markov property. To be consistent with

the notation of Chap. 6, we will denote the random process as Xt, with time as a subscript, but we

could just as well use the X(t) notation from earlier sections of this chapter. For example, Xt might be

the number of customers in a service facility, where t = 0 is the time at which the facility opened; we

then monitor the number of customers for all t � 0 rather than just at times 0, 1, 2, and so on.

As before, the Markov property says that once we know the state of the process at some time t,

the probability distribution of future states does not depend on the state of the process at any time

prior to t.

DEFINITION

A continuous-time, discrete-space random process Xt (t � 0) is a continuous-time Markov
chain if for any time t and any h > 0,

P Xtþh ¼ jjXt ¼ i;Xs ¼ is for 0 � s < tð Þ ¼ P Xtþh ¼ jjXt ¼ ið Þ

Wewill assume throughout this section that our Markov processes are time homogeneous; i.e., for
any time increment h> 0, the probability P(Xt+h = j| Xt = i) depends on h but not on t, so that we may

write

Pij hð Þ ¼ P Xtþh ¼ jjXt ¼ ið Þ
Thus Pij(h) is the conditional probability that the state of the process h time units into the future

will be j, given that the process is presently in state i.

Example 7.32 A physician checks in on her patients in three hospital rooms and also spends time at

the nurses’ station. Identify these “states” as 0 = nurses’ station and 1, 2, 3 = the three patient rooms.

Let Xt denote the physician’s location t hours into her shift. Figure 7.24 shows an example of her
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transitions between these four states across continuous time. In this figure, she begins her shift at the

nurses’ station (X0 = 0), spends some time there, and then moves periodically from room to room.

So far, this only describes a discrete-space random process. For Xt to be accurately modeled as a

Markov process, it must be the case that the probability of her being at any particular location

hminutes from now can be completely determined by her present location. Later in this section, we’ll

see several ways to characterize a continuous-time Markov chain and how to apply those character-

izations to this example. ■

Example 7.33 Our old friend the Poisson counting process with rate parameter λ is an especially

simple case of a continuous-time Markov chain. Given the complete history of the process from 0 to t,
the value of Xt+h is completely determined by the count of events at time t and the number of

additional events in (t, t + h]. Specifically, for non-negative integers i and j with i � j,

Pij hð Þ ¼ P Xtþh ¼ jjXt ¼ ið Þ
¼ P

�
exactly j� i events in t; tþ h

�� �
¼ e�λh λhð Þj�i

j� ið Þ!
Notice that the Poisson process is “time homogeneous”—that is, the above probability depends

only on h and not on t—because of the stationary increments property. ■

Paralleling the discrete-time case, here we also have the Chapman-Kolmogorov equations; these

describe how Pij(t + h) = P(Xt+h = j| X0 = i) is obtained by conditioning on the state of the process

after t time units have elapsed. By considering all possible states for the process at time t and applying

the law of total probability,

Pij tþ hð Þ ¼ P Xtþh ¼ jjX0 ¼ ið Þ
¼PkP Xtþh ¼ j \ Xt ¼ kjX0 ¼ ið Þ
¼PkP Xtþh ¼ jjXt ¼ k;X0 ¼ ið Þ � P Xt ¼ kjX0 ¼ ið Þ
¼PkP Xtþh ¼ jjXt ¼ kð Þ � P Xt ¼ kjX0 ¼ ið Þ
¼PkPik tð Þ � Pkj hð Þ

The second-to-last equality is by virtue of the Markov property: conditional on state being in state

k at time t, the state at any previous time is irrelevant to the chance of being in state j at the future time.

The final step relies on time-homogeneity.

1

0

2

3

Xt

t

Fig. 7.24 One realization

of the Markov process Xt in

Example 7.32
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Based on the Markov chain discussion in Chap. 6, you might imagine that our primary aim would

be to completely specify Pij(h) and then use the Chapman-Kolmogorov equations (perhaps in matrix

form) to study the evolution of the chain. We’ll explore this approach at the very end of this section.

However, an explicit expression for the transition probabilities is not always easy to come by, and so a

more common characterization involves the transition rates between states and the times spent in each

state.

7.7.1 Infinitesimal Parameters and Instantaneous Transition Rates

Just as a discrete-time Markov chain is characterized by its one-step transition probabilities, we can

completely describe a continuous-time Markov process if we can determine the likelihood that,

residing currently in state i, the process will be in state j a short time later. Since our time scale is now

continuous, we can’t really talk about “one time step”; rather, we think in terms of very short time

segments, which leads to the calculus ideas of instantaneous rates of change and first derivatives.

It is reasonable to assume that each transition probability Pij(h) is a continuous function of h, so

that such probabilities change smoothly as h does. Since by definition Pii(0) = P(Xt = i| Xt = i) = 1

and Pij(0) = 0 for i 6¼ j, continuity implies that as h approaches 0, Pii(h) approaches 1 and Pij(h)

approaches 0 when i 6¼ j. Rather amazingly, it turns out that the continuity assumption and the

Markov property imply that all Pij are differentiable, and in particular are differentiable at 0. The

following notation will be used for such derivatives:

�qi ¼ P
0
ii 0ð Þ ¼ lim

h!0

Pii hð Þ � Pii 0ð Þ
h

¼ lim
h!0

Pii hð Þ � 1

h

(it is convenient to denote this derivative by �qi because the numerator Pii(h) � 1 is negative and so

the limit itself will be negative; qi is then positive); and, for i 6¼ j,

qij ¼ P
0
ij 0ð Þ ¼ lim

h!0

Pij hð Þ � Pij 0ð Þ
h

¼ lim
h!0

Pij hð Þ
h

Recall from calculus that the first derivative of a function is the slope of the line tangent to the

function, and that this allows us to create a “first-order” (i.e., linear) approximation to the function if

we stay on a small scale. In our development of the Poisson process Sect. 7.5, we employed o(h)

notation to represent a quantity that for small h is negligible compared to h (see also Appendix B).

Using this notation in combination with the preceding derivative expressions, we have that for all

t and for h close to 0,

P Xtþh ¼ ijXt ¼ ið Þ ¼ Pii hð Þ ¼ Pii 0ð Þ þ P
0
ii 0ð Þhþ o hð Þ ¼ 1� qihþ o hð Þ

P Xtþh ¼ jjXt ¼ ið Þ ¼ Pij hð Þ ¼ Pij 0ð Þ þ P
0
ij 0ð Þhþ o hð Þ ¼ 0þ qijhþ o hð Þ ¼ qijhþ o hð Þ i 6¼ j

A continuous-time Markov process is characterized by these various transition probability

derivatives at time 0, which are collectively called the infinitesimal parameters of the process.

We know from calculus that a derivative also represents a rate of change. Hence, we can interpret the

qijs in this fashion: qij represents the rate at which a Markov process transitions from state i to state j
over some very short time interval. Hence, the qijs are called the instantaneous transition rates of

the Markov process.

The parameters q0, q1, . . . are not transition rates, since they are associated with time intervals in

which the process stays in the same state. (In contrast to the case of discrete-time Markov chains from
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Chap. 6, here we do not speak of “transitions” from a state into itself.) Rather, an interpretation of the

qis will be provided by the main theorem of this section.

For any state i, the infinitesimal parameters qi and qij are related to each other by the following

proposition.

PROPOSITION

With qi and qij as just defined,

qi ¼
X
j6¼i

qij ð7:9Þ

Proof Because a process that’s in state i at time t must be somewhere at time t + h, ∑jPij(h) = 1 for

any i. Take the derivative of both sides and evaluate at 0:6

1¼
X
j

Pij hð Þ ¼ Pii hð Þ þ
X
j 6¼i

Pij hð Þ )

0¼ P
0
ii hð Þ þ

X
j 6¼i

P
0
ij hð Þ )

0¼ P
0
ii 0ð Þ þ

X
j 6¼i

P
0
ij 0ð Þ ¼ �qi þ

X
j 6¼i

qij )

qi ¼
X
j 6¼i

qij ■

Example 7.34 Consider again a Poisson process with rate parameter λ. If the process is currently in

state i (meaning i events have occurred so far), the only possible transition is to state i + 1 when the

next event occurs. So,

Pii hð Þ ¼ P no events in an interval of length hð Þ ¼ e�λh λhð Þ0
0!

¼ e�λh,

whence P
0
ii hð Þ ¼ �λe�λh and qi ¼ �P

0
ii 0ð Þ ¼ λ. Similarly, Pi,i+1(h) = 1 � P(no events in inter-

val) = 1� e�λh, which implies qi, iþ1 ¼ P
0
i, iþ1 0ð Þ ¼ λ, and qij = 0 for j 6¼ i + 1. Notice that these values

indeed satisfy Eq. (7.9).

In light of the fact that λ represents the rate at which events occur (i.e., the count increases by 1),

our interpretation of qi,i+1 as an instantaneous transition rate seems quite reasonable. ■

Example 7.35 (Example 7.32 continued) Suppose the physician walks from the nurses’ station to

Room 3 an average of twice per hour; this is the rate at which she transitions from state 0 to state 3.

But the foregoing discussion also indicated that the derivative qij represents the rate of change from

state i to state j. Therefore, we have that q03 = 2 (two such transitions per hour). A complete

description of the doctor’s movements requires specifying all of the other instantaneous transition

rates as well; let’s say those are

6When the state space is infinite, it can sometimes happen that qi ¼ 1. This will not occur for the situations considered

in this section.
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The remaining four infinitesimal parameters of this Markov process model can be determined

using Eq. (7.9). For example,

q0 ¼
X
j6¼0

q0j ¼ q01 þ q02 þ q03 ¼ 4þ :5þ 2 ¼ 6:5

Similarly, q1 = 8, q2 = 7.5, and q3 = 4. ■

7.7.2 Sojourn Times and Transitions

An important feature of a continuous-time Markov chain is the collection of sojourn times—the

successive time durations spent in visits to various states. In Fig. 7.24, five sojourn times are visible:

the doctor starts out at the nurses’ station (state 0), then spends some time in patient Room 1, then

back at her station, over into Room 3, and finally into Room 2. What are the distributions of these

continuous random variables?

Think back once more to the Poisson process. From the results of Sect. 7.5, the distribution of time

that a Poisson process spends in state i before moving to state i + 1—that is, the sojourn time between

the occurrence of the ith event and the (i + 1)st event—is exponential with parameter λ. Our next
theorem says that sojourn times for any continuous-time Markov process are also exponentially

distributed and specifies, in terms of the infinitesimal parameters, the probabilities of moving to

various other states once a transition occurs.

THEOREM

1. A sojourn time for state i of a continuous-time Markov chain has an exponential distribution,

with parameter λ ¼ qi.
2. Once a sojourn in state i has ended, the process next moves to a particular state j 6¼ i with

probability qij/qi.

Proof Let’s first consider the distribution of T = sojourn time in state i, and in particular the

probability that this sojourn time is at least t + h, where h is very small. In order for this event to

occur, the process must remain in state i continuously throughout the time period of length t and then

continue in this state for an additional h units of time. That is, with F(x) denoting the cdf of T and

G(x) = 1 � F(x),

q01 ¼ 4 q02 ¼ .5 q03 ¼ 2

q10 ¼ 3 q12 ¼ 4 q13 ¼ 1

q20 ¼ 3 q21 ¼ .5 q23 ¼ 4

q30 ¼ 3 q31 ¼ 0 q32 ¼ 1
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G tþ hð Þ ¼ 1� F tþ hð Þ ¼ P T � tþ hð Þ ¼ P Xu ¼ i for 0 � u � t and for t � u � tþ hð Þ
¼ P Xu ¼ i for t � u � tþ hjXu ¼ i for 0 � u � tð Þ � P Xu ¼ i for 0 � u � tð Þ
¼ P Xu ¼ i for t � u � tþ hjXt ¼ ið Þ � P Xu ¼ i for 0 � u � tð Þ by the Markov property

¼ P Xu ¼ i for t � u � tþ hjXt ¼ ið Þ � P T � tð Þ
¼ P Xu ¼ i for t � u � tþ hjXt ¼ ið Þ � G tð Þ

Now, the probability P(Xu = i for t � u � t + h| Xt = i) is not quite Pii(h), because the latter

includes both the chance of remaining in state i throughout [t, t + h] and also of making multiple

transitions that bring the process back to state i by the end of this time interval. But because h is small,

the probability of two or more transitions is negligible compared to the likelihood of either making a

single transition (to some other state j) or remaining in state i. That is, these two probabilities differ by
a term that is o(h). Therefore we have

G tþ hð Þ ¼ Pii hð Þ þ o hð Þ½ � � G tð Þ ¼ 1� qih½ � � G tð Þ þ o hð Þ )
G tþ hð Þ � G tð Þ

h
¼ �qiG tð Þ þ o hð Þ

h

Taking the limit as h ! 0 results in the differential equation G
0
(t) = – qiG(t) whose solution is

G tð Þ ¼ e�qit. Therefore, the cdf of T is F tð Þ ¼ 1� e�qit, an exponential cdf with parameter qi. This

proves the first part of the theorem.

For the second part of the theorem, we consider the probability that the process is in state j after a

short interval of time, given that it is in state i at the beginning of that interval and is not in state i at the

end of the interval:

P Xtþh ¼ jjXt ¼ i;Xtþh 6¼ ið Þ ¼ P Xtþh ¼ j;Xt ¼ i;Xtþh 6¼ ið Þ
P Xt ¼ i;Xtþh 6¼ ið Þ

¼ P Xt ¼ i;Xtþh ¼ jð Þ
P Xt ¼ i;Xtþh 6¼ ið Þ because Xtþh ¼ j;Xtþh 6¼ if g ¼ Xtþh ¼ jf g

¼ P Xtþh ¼ jjXt ¼ ið ÞP Xt ¼ ið Þ
P Xtþh 6¼ ijXt ¼ ið ÞP Xt ¼ ið Þ

¼ P Xtþh ¼ jjXt ¼ ið Þ
P Xtþh 6¼ ijXt ¼ ið Þ ¼

Pij hð Þ
1� Pii hð Þ

If we now divide both numerator and denominator by h and take the limit as h approaches 0, the

result is P(next in j | currently in i) = qij/qi as asserted. ■

The foregoing theorem gives us a much easier way to think about Markov processes. The process

stays in its current state for an exponentially distributed amount of time; the rate parameter, which

determines the expected time, may be different for different states (the different qis). At the end of that
time, the process transitions from state i to a different state according to the transition probabilities

pij ¼
qij
qi
, i 6¼ j

Equation (7.9) guarantees that for any state i, the transition probabilities pij sum to 1. In this way,

a Markov process is completely described by specifying two sets of parameters: the sojourn time

means 1/q0, 1/q1, etc., and the end-of-sojourn transition probabilities pij. (This set is completely

equivalent to the infinitesimal parameters; in particular, we can recover the instantaneous transition

rates by qij = pij � qi.)
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Example 7.36 (Example 7.35 continued) According to the preceding theorem, the time durations

spent by the physician at the nurses’ station are exponentially distributed with parameter λ = q0 = 6.5.

Hence, the average length of time she spends there is 1/λ = 1/6.5 h� 9.23 min. Similarly, the average

sojourn time in Room 3 is 1/q3 = 1/4 h = 15 min. When the doctor leaves the nurses’ station, the

chances of next visiting Rooms 1, 2, and 3 are, respectively,

p01 ¼
q01
q0

¼ 4

6:5
¼ 8

13
, p02 ¼

q02
q0

¼ :5

6:5
¼ 1

13
, p03 ¼

q03
q0

¼ 2

6:5
¼ 4

13

Similarly, when the doctor leaves Room 1, there is a 3/8 chance she’ll return to the nurses’ station,

a 4/8 probability of moving on to Room 2, and a 1/8 chance of checking the patients in Room 3.

Notice that we could also obtain these probabilities by rescaling the appropriate row of the array in

Example 7.35 so that the entries sum to 1. In general, the transition probabilities when exiting a

sojourn spent in state i are proportional to the instantaneous transition rates out of state i. ■

Example 7.37 Consider a machine that goes back and forth between working condition (state 0) and

needing repair (state 1). Suppose that the duration of working condition time is exponential with

parameter α and the duration of repair time is exponential with parameter β. From the preceding

theorem, q0 = α and q1 = β. Equation (7.9) then implies that q01 = α and q10 = β, from which we infer

that

P01 hð Þ ¼ αhþ o hð Þ and P10 hð Þ ¼ βhþ o hð Þ
That is, for very small values of h, the chance of transitioning from working condition to needing

repair in the next h time units is roughly αh, while P(working at time t + h | needing repair at

time t) � βh for h small.

Notice also that once a sojourn in the working state (i = 0) has ended, the process moves to the

repair state (j = 1) with probability p01 = q01/q0 = α/α = 1. This makes sense, since a machine leaving

the working condition has nowhere else to go except into repair. The same is true if the roles of i and j
are reversed. ■

Example 7.38 A commercial printer has four machines of a certain type. Because there are only

three employees trained to operate this kind of machine, at most three of the four can be in operation

at any given time. Once a machine starts to operate, the time until it fails is exponentially distributed

with parameter α (so the mean time until failure is 1/α). There are unfortunately only two employees

who can repair these machines, each of whom works on just one machine at a time. So if three

machines need repair at any given time, only two of these will be undergoing repair, and if all four

machines need repair, two will be waiting to start the repair process. Time necessary to repair a

machine is exponentially distributed with parameter β (thus mean time to repair is 1/β).
Let Xt be the number of functional machines at time t. Possible values of Xt (i.e., the states of the

process) are 0, 1, 2, 3, and 4. If the system is currently in state 1, 2, 3, or 4, one possible state transition

results from one of the working machines suddenly breaking down. Alternatively, if the system is

currently in state 0, 1, 2, or 3, the next transition might result from one of the non-functional machines

finishing the repair process. These possible transitions are depicted in the state diagram in Fig. 7.25.

0 1 2 3 4
Fig. 7.25 State diagram

for Example 7.36
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The eight non-zero instantaneous transition probabilities must be determined. Two of them follow

the derivation from the Poisson process in Example 7.34:

q10 ¼ instantaneous failure rate for one machine ¼ α
corresponding to the one working machine going downð Þ

q34 ¼ instantaneous repair rate for one machine ¼ β
in state 3; only one machine is currently being repairedð Þ

Next, consider the transition from 2 working machines to just 1. For a time interval of length h,

P21 hð Þ ¼ P Xtþh ¼ 1jXt ¼ 2ð Þ ¼ P
�
1st working machine breaks down [
2nd working machine breaks down

�
¼ P 1stbreaksð Þ þ P 2ndbreaks

� �� P both breakð Þ
¼ 1� e�αh
� �þ 1� e�αh

� �� 1� e�αh
� �2

The term (1 – e–αh) comes from the fact that for an exponentially distributed rv T,
P(T � t + h | T � t) = 1 – e–αh. Differentiating and substituting h = 0 gives

q21 ¼ P
0
21 0ð Þ ¼ � � � ¼ 2α

When exactly two machines are working, the instantaneous failure rate is twice that of a single

machine (because, in effect, twice as many things can go wrong).

By similar reasoning, q32 = 3α. But also q43 = 3α—although four machines are functional, only

three are actually in operation, so it’s impossible for all four to break.

Finally, a nearly identical calculation gives q01 = 2β (none of the machines are working, but only

two are undergoing repair), and likewise q12 = q23 = 2β.
From Eq. (7.9), the parameters of the exponential sojourn distributions are

q0 ¼ 2β q1 ¼ αþ 2β q2 ¼ 2αþ 2β q3 ¼ 3αþ β q4 ¼ 3α

So, for example, the length of a time interval in which exactly three machines are operating has an

exponential distribution with λ = 3α + β, and the expected duration of such an interval is1/(3α + β).
That interval ends when either the one broken machine is repaired (Xt transitions from 3 to 4) or one

of the three working machines breaks (and the chain goes from 3 to 2). The probabilities of those two

transitions are

p34 ¼
q34
q3

¼ β

3αþ β
and p32 ¼

q32
q3

¼ 3α

3αþ β

The mean repair time 1/β will be small when repair times are very fast, in which case β itself is

large and p34 might be the higher probability. Otherwise, p32 is apt to be larger, since any of three

machines could break down in the time the one non-functional machine is being repaired. ■

A continuous-time Markov chain for which the only possible transitions from state i are either to

state i � 1 or state i + 1 is called a birth and death process. The Poisson process is an example of a

pure birth process—no deaths are allowed. In Example 7.38, a birth occurs when a machine finishes

repair, and a death occurs when a machine breaks down. Thus, starting from state 0 only a birth is

possible, starting from state 4 only a death is possible, and either a birth or a death is possible when

starting from state 1, 2, or 3.
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7.7.3 Long-Run Behavior of Continuous-Time Markov Chains

Consider first a continuous-time Markov chain for which the state space is finite and consists of the

states 0, 1, 2, 3, . . ., N. Then we already know that

lim
h!0

Pii hð Þ � 1

h
¼ �qi, lim

h!0

Pij hð Þ
h

¼ qij for i 6¼ j

Let’s now create a matrix of these parameters—the exponential sojourn parameters and the

instantaneous transition rates—in which the diagonal elements are the �qis and the off-diagonal

elements are the qijs. Here is the matrix in the case N = 4:

Q ¼

�q0 q01 q02 q03 q04
q10 �q1 q12 q13 q14
q20 q21 �q2 q23 q24
q30 q31 q32 �q3 q34
q40 q41 q42 q43 �q4

2
66664

3
77775

Equation (7.9) implies that the sum of every row in this matrix of parameters is zero (since each qi
is the sum of the other qijs in its row). This matrixQ is sometimes called the generator matrix of the

Markov process.

Next, define a transition matrix P(t) whose (i, j)th entry is the transition probability Pij(t) =
P(Xt = j| X0 = i). Analogous to the discrete case, the Chapman-Kolmogorov equations can be

rendered in terms of the transition matrix: P(t + h) = P(t)P(h).We now consider the derivative of

the transition matrix at time t:

P
0
tð Þ ¼ lim

h!0

P tþ hð Þ � P tð Þ
h

¼ lim
h!0

P tð ÞP hð Þ � P tð Þ
h

¼ P tð Þ lim
h!0

P hð Þ � I

h

� �

From the earlier derivatives, the limit of the matrix inside braces is precisely the generator matrix

Q. Thus we obtain the following system of so-called “forward” differential equations in the transition

probabilities:

P
0
tð Þ ¼ P tð ÞQ ð7:10Þ

where P0(t) is the matrix of derivatives of the transition probabilities.

As in the discrete case, if the chain is irreducible, i.e. all states communicate with one another, then

Pij(t) > 0 for every pair of states and limt!1Pij(t) exists and equals a value πj independent of the
initial state. Thus as t!1, P0(t) approaches a matrix consisting entirely of 0s (because the

probabilities themselves are approaching constants independent of t) and P(t) itself approaches a

matrix each of whose rows is π = [π0, π1, . . ., πN]. Applying these statements to (7.10) and taking the

top row (or any row) of each side, the vector of stationary probabilities must then satisfy 0 = πQ, as

well as ∑ πj = 1. Slight rearrangement of the equations gives

π0q0 ¼ π1q10 þ π2q20 þ � � � þ πNqN0
π1q1 ¼ π0q01 þ π2q21 þ � � � þ πNqN1

� � �
πNqN ¼ π0q0N þ π1q1N þ � � � þ πN�1 qN�1,N

π0 þ π1 þ π2 þ � � � þ πN ¼ 1

Consider the first of these equations. The left hand side gives the long-run rate at which the process

leaves state 0, and the right hand side is the sum of rates at which the process goes from some other
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state to state 0. So, the equation says that the long-run rate out of that state equals the long-run rate

into the state. The other equations have analogous interpretations.

Example 7.39 (Example 7.38 continued) The generator matrix for the printing machines scenario is

Q ¼

�2β 2β 0 0 0

0 � αþ 2βð Þ 2β 0 0

0 2α � 2αþ 2βð Þ 2β 0

0 0 3α � 3αþ βð Þ β
0 0 0 3α �3α

2
66664

3
77775

The stationary distribution of the chain satisfies 0 = πQ. Expanding these matrices, the resulting

system of equations is

�2βπ0 þ απ1 ¼ 0, 2βπ0 � αþ 2βð Þπ1 þ 2απ2 ¼ 0, 2βπ1 � 2αþ 2βð Þπ2 þ 3απ3 ¼ 0

2βπ2 � 3αþ βð Þπ3 þ 3απ4 ¼ 0, βπ3 � 3απ4 ¼ 0

The first equation immediately gives π1 = (2β/α)π0. Then substituting this expression for π1 into
the second equation and doing a bit of algebra results in π2 = (2β2/α2)π0. Now substitute this

expression into the third equation, solve for π3 in terms of π0, and obtain an expression for π4 in

terms of π0. The stationary probabilities are then

π0, π1 ¼ 2β

α
π0, π2 ¼ 2β2

α2
π0, π3 ¼ 4β3

3α3
π0, π4 ¼ 4β4

9α4
π0

Finally, the fact that the sum of all five πs equals 1 gives an expression for π0:

π0 ¼ 1

1þ 2β

α
þ 2β2

α2
þ 4β3

3α3
þ 4β4

9α4

Consider two different specific cases: (i) α = 1, β = 2, (ii) α = 2, β = 1. In the first case, machines get

repaired more quickly than they fail, and in the second case the opposite is true. Here are the

stationary probabilities:

(i) π0 = .0325, π1 = .1300, π2 = .2600, π3 = .3466, π4 = .2310

(ii) π0 = .3711, π1 = .3711, π2 = .1856, π3 = .0619, π4 = .0103

In the first case, the mean number of machines in operating condition is ∑iπi = 2.614, and in the

second case it is only .969. ■

Under quite general conditions, the forward system of differential equations (7.10) is valid for a

birth and death process even when the state space is infinite (i.e., when there is no upper bound on the

population size). Furthermore, the stationary distribution exists and has a rather simple form. Let

θ0 ¼ 1, θ1 ¼ q01
q10

, θ2 ¼ q01q12
q10q21

, θ3 ¼ q01q12q23
q10q21q32

, . . . ð7:11Þ

Then π1 = θ1π0 , π2 = θ2π0 , π3 = θ3π0 , . . . , and π0 = 1/ ∑ θi provided that the sum in the

denominator is finite.

7.7 Continuous-Time Markov Chains 553



Example 7.40 Customers arrive at a service facility according to a Poisson process with rate

parameter λ (so the times between successive arrivals are independent and exponentially distributed,

each with parameter λ). The facility has only one server, and the service time for any particular

customer is exponentially distributed with parameter μ. This is often referred to as anM/M/1 queue,

where M stands for Markovian. Let Xt represent the number of customers in the system at time t.
The mean time between successive arrivals is 1/λ, and the mean time for a service to be completed

is 1/μ. Intuitively if 1/μ > 1/λ (i.e. if μ < λ), then customers will begin to pile up in the system and

there won’t be a limiting distribution because the number of customers in the system will grow

arbitrarily large over time. We therefore restrict consideration to the case λ < μ (the case in which

λ = μ is a bit tricky).

The infinitesimal birth parameters are qi,i+1 = λ for i = 0, 1, 2, . . . , since a birth occurs when a new

customer enters the facility, and the infinitesimal death parameters are qi+1,i = μ for i = 1, 2, 3, . . . ,

since a death occurs when a customer finishes service. Substituting into (7.11),

θk ¼ λk

μk
k ¼ 0, 1, 2, 3, . . . , π0 ¼ 1X1

k¼0

λ

μ

 �k ¼ 1� λ

μ

πk ¼ π0θk ¼ 1� λ

μ

 �
λ

μ

 �k
k ¼ 0, 1, 2, 3, . . .

This is similar to a geometric distribution with p = 1�λ/μ, except that the terms start at k = 0 rather

than k = 1. Nevertheless, we can quickly determine that the mean number of customers in the system

is ∑kπk = (λ/μ)/(1 � λ/μ) = λ/(μ � λ). ■

7.7.4 Explicit Form of the Transition Matrix

In Example 7.33, the definition of a Poisson process allowed us to write explicit expressions for the

transition probabilities explicitly: substituting t for h in that example, we have for all non-negative

integers i and j that

Pij tð Þ ¼
e�λt λtð Þj�i

j� ið Þ! i � j

0 i > j

8<
:

Exercises 90–92 provide examples where Pij(t) can be determined from a system of differential

equations based on the problem description. But since Markov processes are often specified in terms

of their infinitesimal parameters, it’s desirable to have a method for determining the functions Pij(t)—

or, equivalently, the matrix P(t) of those functions—solely from the qis and qijs. We indicate such a

method below.

The forward system of differential equations was obtained by decomposing the time interval from

0 to t + h into the interval from 0 to t and the interval from t to t + h. A“backward” system of equations

results from considering the two intervals [0, h] and (h, t + h] and again using the Chapman-

Kolmogorov equations: P(t + h) = P(h)P(t). The derivative of the transition matrix at time t is then

lim
h!0

P tþ hð Þ � P tð Þ
h

¼ lim
h!0

P hð ÞP tð Þ � P tð Þ
h

¼ lim
h!0

P hð Þ � I

h

� �
P tð Þ
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The matrix limit is again Q, giving the following system of equations:

P
0
tð Þ ¼ QP tð Þ ð7:12Þ

Contrast the “backward” equation (7.12) with the “forward” equation (7.10): the two matrices on

the right-hand side are simply reversed. Of course, in general matrices do not commute, so one

equation does not follow from the other; that bothQP(t) and P(t)Q equal P0(t) is a consequence of the
Markov property.

Now recall from elementary differential equations that the solution to the equation f 0(t) = cf(t) is

f(t) = ect, and also that the infinite series expansion for ekt is 1þP1
k¼1 c

ktk=k!. By analogy, the

solution to our system of backward equations (7.12) is

P tð Þ ¼ eQt ¼ Iþ
X1
k¼1

Qktk

k!

Example 7.41 (Example 7.37 continued) Let’s return to the scenario involving a single machine

which is either working or undergoing repair, where time until failure has an exponential distribution

with parameter α and repair time is exponentially distributed with parameter β. The matrix of

infinitesimal parameters is

Q ¼ �α α
β �β

� 	

It is easily verified that Qk = [�(α + β)]k–1Q, from which

P tð Þ ¼ I� 1

αþ β

X1
k¼1

� αþ βð Þ½ �ktk
k!

Q

¼ I� 1

αþ β
e� αþβð Þt � 1
h i

Q

¼
1� α

αþ β
1� e� αþβð Þt
� � α

αþ β
1� e� αþβð Þt
� �

β

αþ β
1� e� αþβð Þt
� �

1� β

αþ β
1� e� αþβð Þt
� �

2
664

3
775

We now have a completely explicit formula for the transition probabilities of the Markov process

for any time duration t. Notice that the sum of each row in the transition matrix is 1, as required.

This explicit form of P(t) also allows us to investigate the chain’s long-run behavior. Specifically,

as t!1,

P tð Þ ! Iþ 1

αþ β
Q ¼ β= αþ βð Þ α= αþ βð Þ

β= αþ βð Þ α= αþ βð Þ
� 	

Thus the stationary distribution is given by π0 = β/(α + β) and π1 = α/(α + β), which could also

have been obtained by solving πQ = 0, π0 + π1 = 1. ■
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7.7.5 Exercises: Section 7.7 (86–97)

86. The authors of the article “A Multi-State Markov Model for a Short-Term Reliability Analysis of

a Power Generating Unit” (Reliab. Eng. and Sys. Safety, 2012: 1–6) modeled the transitions of a

particular coal-fired generating unit through four states, characterized by the unit’s capacity:

0 ¼ complete failure, (0 MW of power), 1 ¼ 247 MW, 2 ¼ 482 MW, and 3 ¼ 575 MW (full

power). Observation of the unit over an extended period of time yielded the following instanta-

neous transition rates:

q01 ¼ .0800 q02 ¼ .0133 q03 ¼ 0

q10 ¼ .0294 q12 ¼ .3235 q13 ¼ .0294

q20 ¼ 0 q21 ¼ .0288 q23 ¼ .3558

q30 ¼ .0002 q31 ¼ .0001 q32 ¼ .0007

(a) Determine the complete generator matrix Q of this Markov process.

(b) Determine the stationary probabilities of this process.

(c) What is the long-run expected output of this particular unit, in megawatts?

87. Potential customers arrive at a service facility according to a Poisson process with rate λ.
However, an arrival will enter the facility only if there is no one already being served, and

otherwise will disappear (there is no waiting room!). Once a customer enters the facility, service

is carried out in two stages. The time to complete the first stage of service is exponentially

distributed with parameter λ1. A customer completing the first stage of service immediately

enters the second stage, where the distribution of time to complete service is exponential with

parameter λ2.
(a) Define appropriate states, and then identify the qis and qijs.

(b) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 3, λ2 ¼ 2.

(c) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 2, λ2 ¼ 3.

(d) Determine the stationary probabilities when λ ¼ 4, λ1 ¼ 2, λ2 ¼ 1.

88. Return to the scenario of the previous exercise, and now suppose that the facility has a waiting

area that will accommodate one customer. A customer in the waiting area cannot begin the first

stage of service until the previous customer has completed both stages.

(a) Define appropriate states, and then identify the qis and qijs. [Hint: The chain now has five

possible states.]

(b) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 3, λ2 ¼ 2.

(c) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 2, λ2 ¼ 3.

(d) Determine the stationary probabilities when λ ¼ 4, λ1 ¼ 2, λ2 ¼ 1.

89. Reconsider the scenario of Exercise 87. Now suppose that a customer who finishes stage 2 service

leaves the facility with probability .8, but with probability .2 returns to stage 1 for rework because

of deficient service and then proceeds again to stage 2.

(a) Define appropriate states, and then identify the qis and qijs.

(b) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 3, λ2 ¼ 2.

(c) Determine the stationary probabilities when λ ¼ 1, λ1 ¼ 2, λ2 ¼ 3.

(d) Determine the stationary probabilities when λ ¼ 4, λ1 ¼ 2, λ2 ¼ 1.

(e) What is the expected total time that a customer remains in the facility once he/she has

entered?
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90. The Yule Process is a special case of a birth and death process in which only births occur; each

member of the population at time t has probability βh + o(h) of giving birth to an additional

member during a short time interval of length h independently of what happens to any other

member of the population at that time (so there is no interaction among population members). Let

Xt denote the population size at time t.
(a) Show that if the population size is currently n, then the probability of a birth in the next

interval of length h is nβh + o(h), and that the probability of no births in the next interval of
length h is 1 � nβh + o(h).

(b) Relate Pij(t + h) to the transition probabilities at time t, and take an appropriate limit to

establish a differential equation for Pij(t). [Hint: If Xt+h ¼ j and h is small, there are only two

possible values for Xt. Your answer should relate Pij

0
(t), Pij(t), and Pi,j�1(t).]

(c) Assuming that there is one individual alive at time 0, show that a solution to the differential

equation in (b) is P1n(t) ¼ e�βt(1 � e�βt)n�1. (In fact, this is the only solution satisfying the

initial condition.)

(d) Determine the expected population size at the t, assuming X0 ¼ 1. [Hint: What type of

probability distribution is P1n(t)?]
91. Another special case of a birth and death process involves a population consisting of

N individuals. At time t ¼ 0 exactly one of these individuals is infected with a particular disease,

and the other N � 1 are candidates for acquiring the disease (susceptibles). Once infected,

an individual remains so forever. In any short interval of time h, the probability that any

particular infected individual will transmit the disease to any particular non-diseased individual

is βh + o(h). Let Xt represent the number of infected individuals at time t. Specify the birth

parameters for this process. [Hint: Use the differential equation from the last exercise.]

92. At time t ¼ 0 there are N individuals in a population. Let Xt represent the number of individuals

alive at time t. A linear pure death process is one in which the probability that any particular

individual alive at time t dies in a short interval of length h is βh + o(h); no births can occur,

deaths occur independently, and there is no immigration into the population.

(a) Obtain a differential equation for the transition probabilities of this process, and then show

that the solution is PNn tð Þ ¼ N
n

 �
e�nβt 1� e�βt

� �N�n
.

(b) What is the expected population size at time t? [Hint: According to (a), what type of

probability distribution is PNn(t)?]

93. A radioactive substance emits particles over time according to a Poisson process with parameter λ.
Each emitted particle has an exponentially distributed lifetime with parameter β, and the lifetime

of any particular particle is independent of that of any other particle. Let Xt be the number of

particles that exist at time t. Assuming that X0 ¼ 0, specify the parameters of this birth and death

process.

94. Consider a machine shop that has three machines of a particular type. The time until any one of

these machines fails is exponentially distributed with mean lifetime 10 h, and machines fail

independently of one another. The shop has a single individual capable of repairing these

machines. Once a machine fails, it will immediately begin service provided that the other two

machines are still working; otherwise it will wait in a repair queue until the repair person has

finished work on any other machines that need service. Time to repair is exponentially distributed

with expected repair time 2 h. Obtain the stationary probabilities and determine the expected

number of machines operating under stationary conditions.

95. A system consists of two independent components connected in parallel, so the system will

function as long as at least one of the components functions. Component A has an exponentially

7.7 Continuous-Time Markov Chains 557



distributed lifetime with parameter α0. Once it fails, it immediately goes into repair, and its repair

time is exponentially distributed with parameter α1. Similarly, component B has an exponentially

distributed lifetime with parameter β0 and an exponentially distributed repair time with parameter

β1. Determine the stationary probabilities for the corresponding continuous time Markov chain,

and then the probability that the system is operating.

96. The article “Optimal Preventive Maintenance Rate for Best Availability with Hypo-Exponential

Failure Distribution” (IEEE Trans. on Reliability, 2013: 351-361) describes the followingmodel for

maintenance of a particular machine. The machine naturally has three states: 0 ¼ “up” (i.e., fully

operational), 1 ¼ first stage degraded, and 2 ¼ second stage degraded.Amachine in state 2 requires

corrective maintenance, which restores the machine to the “up” state. But the machine’s operators

can voluntarily put a machine currently in states 0 or 1 into one other state, 3 ¼ preventive

maintenance. The cited article gives the following instantaneous transition rates:

q01 ¼ λ1 q02 ¼ 0 q03 ¼ δ
q10 ¼ 0 q12 ¼ λ2 q13 ¼ δ
q20 ¼ μ q21 ¼ 0 q23 ¼ 0

q30 ¼ m q31 ¼ 0 q32 ¼ 0

The parameter δ � 0 is called the trigger rate for preventive maintenance and is controlled by

the machine’s operator.

(a) Draw a state diagram for this Markov process.

(b) Interpret the parameters λ1, λ2, μ, and m.

(c) Determine the stationary distribution of this chain.

The machine can be operated in both states 0 and 1, and so the availability of the

machine, A(δ), is defined to be the sum of the stationary probabilities for those two states.

(d) Show that

A δð Þ ¼ 1þ δ

m
þ λ1λ2
μ λ1 þ λ2 þ δð Þ

� 	�1

(e) Determine the value of δ that maximizes the long-run proportion of time the machine is

available for use. [Hint:You’ll have to consider two separate cases, depending on whether a

certain quadratic equation has any positive solutions.]

97. A discrete-time Markov chain, i.e., the type investigated in Chap. 6, can be obtained from a

continuous-time chain by sampling it every h time units. That is, for n ¼ 0, 1, 2, . . . we define

Yn ¼ Xnh,

where Xt is a Markov process. For example, the doctor’s movements in Example 7.33 could be

observed every 6 min (h ¼ 1/10 h), and a discrete-time Markov chain could be defined by

Yn ¼ Xn/10 ¼ the nurses’ location at the nth observed time.

(a) Let P be the one-step transition matrix for Yn, so the (i, j)th entry of P is pij ¼
P(Yn+1 ¼ jjYn ¼ i). Show that pij � qijh for i 6¼ j and pii � (1 � qi)h, where the qijs and
qis are the infinitesimal parameters of Xt and the approximations are on the order o(h).

(b) Suppose Yn is a regular chain, and that the one-step transition probabilities in part (a) are

exact (rather than just o(h)-approximate). Show that the stationary distribution of Yn is

identical to that of its continuous-time version Xt. [Hint: Use part (a) to show that the

equations πP ¼ π from Chap. 6 and πQ ¼ 0 from this section are one and the same.]
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7.8 Supplementary Exercises (98–114)

98. Let X(t) be a WSS random process.

(a) Show that

Var X tþ τð Þ � X tð Þ½ � ¼ E X tþ τð Þ � X tð Þð Þ2
h i

¼ 2 RXX 0ð Þ � RXX τð Þ½ �
¼ 2 CXX 0ð Þ � CXX τð Þ½ �:

(b) Show that if CXX(d ) ¼ CXX(0) for any d 6¼ 0, then X(t) is mean square periodic, that is,

E[(X(t + d) � X(t))2] ¼ 0.

(c) Show that if CXX(d) ¼ CXX(0) for any d 6¼ 0, then CXX(τ) is periodic. (A similar property

holds for RXX.) [Hint: Consider the covariance of X(0) and X(τ + d) � X(τ), and use the

fact that jCov(U, V)j � SD(U ) � SD(V ) for any two rvs U and V.]

99. Consider the following model for binary voltage noise: let V1, V2, . . . be independent rvs with
P(Vn ¼ +1) ¼ P(Vn ¼ �1) ¼ .5. Then define X(t) ¼ Vn for n � 1 � t < n, i.e., V1 is trans-

mitted for 0 � t < 1, V2 is transmitted for 1 � t < 2, and so on.

(a) Find the mean function of X(t).
(b) Find the autocovariance function of X(t). [Hint: Consider separate cases depending on

whether or not t and s lie in the same unit interval, e.g., [1, 2).]

100. Modify the previous exercise as follows: let T0 ~ Unif[0, 1] be independent of the Vns. Then the

random process X(t) equals V1 for T0 � t < T0 + 1, V2 is transmitted for T0 + 1 � t < T0 + 2,

and so on.

(a) Find the mean function of X(t).
(b) Find the autocorrelation function of X(t). [Hint: First find the conditional distribution of

X(t) and X(s) given T0 ¼ t0.]

101. Define a collection of random processes by Xk(t) ¼ Akcos(ωkt) + Bksin(ωkt) for k ¼ 1, 2, . . ., n,
where the coefficients A1, . . ., An, B1, . . ., Bn are iid Unif[�1, 1] rvs, and the frequencies ω1, . . .,

ωn are constants. Let Y(t) ¼ X1(t) +
. . . + Xn(t).

(a) Find the mean and autocovariance functions of Xk(t) for k ¼ 1, 2, . . ., n.

(b) Find the mean and autocovariance functions of Y(t). Is Y(t) WSS?

102. Let Θ1, . . ., Θn be iid Unif(�π, π] rvs and define a random process X(t) by

X tð Þ ¼
Xn
k¼1

ak sin ωktþ Θkð Þ

Is X(t) wide-sense stationary?
103. Let X(t) ¼ cos(Ωt + Θ), where Ω and Θ are independent rvs, Θ ~ Unif(�π, π], and Ω equals ωk

with probability pk for k ¼ 1, 2, . . ., n (i.e., Ω is a discrete rv).

(a) Find the mean function of X(t).
(b) Find the autocovariance function of X(t).

(c) Is X(t) WSS?

104. Let X(t) be a WSS random process, and let Y(t) ¼ X(t � d), a d-second delayed version of X(t).
(a) Find the mean and autocorrelation functions of Y(t) in terms of those of X(t).

(b) Is Y(t) WSS?

(c) Find the cross-correlation RXY(t, t + τ). Are X(t) and Y(t) jointly WSS?

105. A rotor within a certain manufacturing machine must be replaced every 125 h of use, on

average. Let Xn denote the lifetime of the nth rotor (n ¼ 1, 2, 3, . . .), and suppose the Xns are
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iid exponential rvs with mean 125 h. (In this context, the “time” index n actually counts rotors,

not hours or some other time unit.)

(a) Define Sn ¼ X1 + � � � + Xn. Interpret Sn in this context.

(b) Find the mean, variance, autocorrelation, and autocovariance functions of Sn.

(c) Use the Central Limit Theorem to determine the approximate distribution of S50 and to

approximate P(S50 � 6240), the chance that 50 rotors will be sufficient to operate the

machine for 3 years (40 h per week, 52 weeks a year).

106. Let X(t) be a WSS random process with mean μX and autocovariance function CXX(τ).
(a) Show that E[hX(t)iT] ¼ μX for all T. [Note: Since this is the ensemble average of X(t), it

follows that X(t) is mean ergodic iff Var(hX(t)iT) ! 0 as T ! 1.]

(b) It is straightforward to show that

Var X tð ÞT
� �� � ¼ 1

4T2

ð T
�T

ð T
�T

CXX s� tð Þdtds

Make the substitution τ ¼ s � t to prove

Var X tð Þh iT
� � ¼ 1

2T

ð2T
�2T

CXX τð Þ 1� τj j
2T

 �
dτ,

so that X(t) is mean ergodic iff this integral converges to 0 as T ! 1. [This can be a useful

test for ergodicity when a model is specified in terms of its covariance function and no

explicit form of X(t) is available.]

(c) Show that X(t) is mean ergodic if
1

2T

ð2T
�2T

CXX τð Þdτ ! 0 as T ! 1.

107. Let Xn be a WSS random sequence, and define Yn ¼ Xn � Xn�1. Is Yn also WSS?

108. Let Xn be iid, with mean 0 and variance σ2. Define a kth-order moving average sequence Yn by

Yn ¼ α1Xn þ � � � þ αkXn�kþ1

where the nonnegative constants αi are such that α1 + � � � + αk ¼ 1.

(a) Find the mean function of Yn.

(b) Find the variance function of Yn.

(c) Find the autocovariance function of Yn.
(d) Is Yn wide-sense stationary?

(e) Find the correlation coefficient ρ(Yn, Yn+k).
109. Suppose that noise impulses occur on a telephone line at random, with a mean rate λ per second.

Assume the occurrence of noise impulses meet the conditions of a Poisson process.

(a) Find the probability that no noise impulses occur during the transmission of a t-second

message.

(b) Suppose that the message is encoded so that errors caused by a single noise impulse can be

corrected. What is the probability that a t-second message is either error-free or

correctable?

(c) Suppose the error correction protocols can reset themselves so long as successive noise

impulses are more than ε seconds apart. What is the probability the next noise impulse will

be corrected?

110. A bus has just departed from a certain New York City bus stop. Passengers for the next bus

arrive according to a Poisson process with rate 3 per minute. Suppose the arrival time Y of the

next bus has a uniform distribution on the interval [0, 5].
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(a) Given that Y ¼ y, what is the expected number of passengers at the stop for this next bus?

(b) Use the result of (a) along with the Law of Total Expectation to determine the expected

number of passengers at this stop when the next bus arrives.

(c) Given that Y ¼ y, determine the (conditional) variance of the number of passengers at the

stop for this next bus. Then use the Law of Total Variance to determine the standard

deviation of the number of passengers at this stop for the next bus.

111. Starting at time t ¼ 0, commuters arrive at a subway station according to a Poisson process with

rate λ per minute. The subway fare is $2. Suppose this fare is “exponentially discounted” back to

time 0; that is, if a commuter arrives at time t, the resulting discounted fare is 2e�αt, where α is

the “discount rate.”

(a) If five commuters arrive in the first t0 minutes, what is the expected value of the total

discounted fare collected from these five individuals? [Hint: Recall that for a Poisson

process, conditional on any particular number of events occurring in some time interval,

each event occurrence time is uniformly distributed over that interval.]

(b) What is the expected value of the total discounted fare collected from customers who arrive

in the first t0 minutes? [Hint: Conditioning on the number of commuters who arrive, use an

expected value argument like that employed in (a), and then apply the Law of Total

Probability.]

112. Individuals enter a museum exhibit according to a Poisson process with rate λ. The amount of

time any particular individual spends in this exhibit is a random variable having an exponential

distribution with parameter θ, and these exhibit-viewing times are independent of one another.

Let Y(t) denote the number of individuals who have entered the exhibit prior to time t and are

still viewing the exhibit, and let Z(t) denote the number of individuals who have entered the

exhibit and departed by time t.

(a) Obtain an expression for P(Y(t) ¼ 6 and Z(t) ¼ 4).

(b) Generalize the argument leading to the expression of (a) to obtain the joint pmf of the two

random variables Y(t) and Z(t).

113. According to the article “Reliability Evaluation of Hard Disk Drive Failures Based on Counting

Processes” (Reliability Engr. and System Safety, 2013: 110–118), particles accumulating on a

disk drive come from two sources, one external and the other internal. The article proposed a

model in which the internal source contains a number of loose particles M having a Poisson

distribution with mean value μ; when a loose particle releases, it immediately enters the drive,

and the release times are iid with cumulative distribution function G(t). Let X(t) denote the

number of loose particles not yet released at a particular time t. Show that X(t) has a Poisson

distribution with parameter μ[1 � G(t)]. [Hint: Let Y(t) denote the number of particles

accumulated on the drive from the internal source by time t, so that X(t) + Y(t) ¼ M. Obtain

an expression for P(X(t) ¼ x, Y(t) ¼ y), and then sum over y.]
114. Suppose the strength of a system is a nonnegative rv Y with pdf g(y). The system experiences

shocks over time according to a Poisson process with rate λ. Let Xi denote the magnitude of the

ith shock, and suppose the Xis are iid with cdf F(x). If when the ith shock occurs, Xi > Y, then
the system immediately fails; otherwise it continues to operate as though nothing happened. Let

S(t) denote the number of shocks in [0, t], and let T denote the system lifetime.

(a) Determine the probability P(T > tjY ¼ y and S(t) ¼ n). [Hint: Your answer should

involve y, n, and the cdf F.]

(b) Apply the Law of Total Probability along with (a), to determine P(T > tjY ¼ y).
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(c) Obtain an integral expression for the probability that the system lifetime exceeds t. [Hint:

Write P(T > t) as a double integral involving the joint pdf of T and Y. Then simplify to a

single integral using (b).]

(Based on the article “On Some Comparisons of Lifetimes for Reliability Analysis,” Reliability

Engr. and Safety Analysis, 2013: 300–304.)
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Introduction to Signal Processing 8

The previous chapter introduced the concept of a random process and explored in depth the temporal

(i.e., time-related) properties of such processes. Many of the specific random processes introduced in

Chap. 7 are used in modern engineering to model noise or other unpredictable phenomena in signal

communications. In this chapter, we investigate the frequency-related properties of random pro-

cesses, with a particular emphasis on power and filtering.

Section 8.1 introduces the power spectral density, which describes how the power in a random

signal is distributed across all possible frequencies. This first section also discusses so-called white

noise processes, which are best described in terms of a frequency distribution. In Sect. 8.2, we look at

filters; or, more precisely, linear, time-invariant (LTI) systems. We explore some techniques for

filtering random signals, including the use of so-called “ideal” filters. Finally, Sect. 8.3 reexamines

these topics in the context of discrete-time signals.

We assume throughout this chapter that readers have some familiarity with (nonrandom) signals

and frequency representations. In particular, knowledge of Fourier transforms and LTI systems will

be critical to understanding our exposition. Appendix B includes a brief summary of the properties of

Fourier transforms; Sect. 8.2 includes a short discussion of LTI systems.

8.1 Power Spectral Density

In Chap. 7, we considered numerous models for random processes X(t) as well as several ways to

quantify the statistical properties of such processes (the mean, variance, autocovariance, and auto-

correlation functions). All of these statistical functions describe the behavior of X(t) in the time

domain. Now we turn our attention to properties of a random process that can be described in the

frequency domain.
At the outset, some basic notation and conventions must be established. First, the letter j will

denote
ffiffiffiffiffiffiffi�1

p
in order to be consistent with engineering practice (some readers may be more familiar

with the symbol i). Second, we will denote frequency by f, whose units are Hertz (1/s). For those more

familiar with radian frequency ω, the two are of course related by ω ¼ 2πf. Third, throughout this
chapter X(t) will represent a random current waveform through a 1-Ω impedance. This is a standard

convention in signal processing; it has the advantage that we can talk about current and voltage

interchangeably (since V ¼ IR). Finally, we will assume that all random processes are wide-sense
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stationary (WSS) unless otherwise noted, because this is a key assumption for the main theorem of

this section.

Our ultimate goal is to describe how the power in a random process is distributed across the

frequency spectrum. From basic electrical engineering, we know P ¼ I2R, where P ¼ power, I ¼
current ¼ X(t), and R ¼ resistance ¼ 1Ω. Hence, we may think of I2R ¼ X2(t) as the “instantaneous

power” in the random process at time t.

DEFINITION

Let X(t) be a WSS random process. The (ensemble) average power (also called the expected

power) of X(t), denoted by PX, is

PX ¼ E X2 tð Þ� �
The average power of X(t) is related to its autocorrelation function by

PX ¼ RXX 0ð Þ

Notice we may write PX rather than PX(t), i.e., the ensemble average power of X(t) does not vary

with time. This is due to the assumption of wide-sense stationarity. To see why PX equals RXX(0),

recall that for WSS processes we have RXX(τ) ¼ E[X(t)X(t + τ)], which does not depend on t. Setting
τ ¼ 0 immediately gives RXX(0) ¼ E[X2(t)] ¼ PX.

Example 8.1 In Chap. 7, we introduced the random process X(t) ¼ A0cos(ω0t + Θ), where the phase
shift Θ is uniformly distributed on the interval (�π, π]. We showed that X(t) is WSS, with mean

μX ¼ 0 and autocovariance function CXX(τ) ¼ (A0
2/2)cos(ω0τ), from which RXX(τ) ¼ (A0

2 /2)cos(ω0τ)
as well. Thus, the ensemble average power of the phase variation process is

PX ¼ RXX 0ð Þ ¼ A2
0

2
cos ω0 � 0ð Þ ¼ A2

0

2

This formula for the average power of a sinusoid is well known to electrical engineers. ■

Now we turn to describing how the expected power PX in a random process is distributed across

the frequency domain. For example, is this power concentrated at just a few frequencies, or across a

very large frequency band? Typically in engineering, we move from the time domain t to the

frequency domain f by taking the Fourier transform of our time-dependent function. Because of

some technical issues related to the existence of certain integrals that arise in connection with random

processes, we must proceed carefully here. To begin, define a truncated version of a random process

X(t) by

XT tð Þ ¼ X tð Þ ��t�� � T
0 otherwise

�

This function is square-integrable with respect to t, and so its Fourier transform exists. Define

FT fð Þ ¼ F XT tð Þf g ¼
ð1
�1

XT tð Þe�j2πftdt ¼
ð T

�T

X tð Þe�j2πftdt
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Parseval’s Theorem then connects the integrals of XT(t) and FT( f ):
Ð1
�1 jFT( f )j2df ¼

Ð1
�1jXT(t)j2 dt

¼ Ð T
�TX

2(t)dt, where the absolute value bars denote the magnitude of a possibly complex number.

(Since X2(t) is real-valued and nonnegative, those bars may be dropped.) Divide both sides by 2T:ð1
�1

��FT fð Þ��2
2T

df ¼
ð T

�T

X2 tð Þ
2T

dt ¼ 1

2T

ð T

�T

X2 tð Þdt ð8:1Þ

Since the right-most expression in Eq. (8.1) gives the average power in X(t) across the interval

[�T, T], so does the far left term, and it follows that the integrand jFT( f )j2/2T describes how that

average power is distributed in the frequency domain. In fact, jFT( f )j2 has units of energy, and so the
units on jFT( f )j2/2T are energy/time ¼ power. We still need to remove the truncation of the original

X(t), and it is desirable to take the ensemble average of this power representation.

DEFINITION

The power spectral density (psd), or power spectrum, of a random process X(t) is defined by

SXX fð Þ ¼ lim
T!1

E

��FT fð Þ��2
2T

� �

As may be evident by the preceding development, applying this definition is typically extremely

difficult in practice. Thankfully, for wide-sense stationary processes, there is a simpler method for

calculating the power spectral density SXX( f ). The formula, presented in the following theorem, is

hinted at by the fact that the average power itself can be found through the autocorrelation function,

PX ¼ RXX(0), as noted before. It was first discovered by Albert Einstein but is more commonly

attributed to Norbert Wiener and Aleksandr Khinchin.

WIENER–KHINCHIN THEOREM

If X(t) is a wide-sense stationary random process, then

SXX fð Þ ¼ F RXX τð Þf g

A proof of this theorem appears at the end of this section.

Example 8.2 Let X(t) ¼ 220cos(2000πt + Θ), an example of the phase variation process from Exam-

ple 8.1 (with A0 ¼ 220 and ω0 ¼ 2000π). The expected power of this signal is A0
2/2 ¼ 24,200 ¼

24.2 kW. It’s clear from the formula for X(t) that it broadcasts this 24.2 kW signal at a single frequency

of 2000π radians, or 1 kHz. Thus, we anticipate that all the power in X(t) is concentrated at 1 kHz.

To verify this, use the autocorrelation function from Example 8.1 and apply the Wiener–Khinchin

Theorem:

SXX fð Þ ¼ F RXX τð Þf g ¼ F
A2
0

2
cos ω0τð Þ

� 	
¼ F 24,200 cos 2000πτð Þf g

Use the linear property of Fourier transforms, and then apply the known transform of the cosine

function:
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SXX fð Þ ¼ 24,200F cos 2000πτð Þf g
¼ 24,200 � 1

2

�
δ f � 1000ð Þ þ δ



f þ 1000

��
¼ 12,100

�
δ f � 1000ð Þ þ δ



f þ 1000

��
where δ() denotes an impulse function (see Appendix B for more information). Figure 8.1 shows this

power spectral density, which consists of two impulses located at �1000 Hz, each with intensity

12,100. Of course, in practice, the frequency �1000 Hz is really the same as +1000 Hz, and so the

power spectrum of this random process in the positive frequency domain is located solely at 1000 Hz;

the impulse at this lone frequency carries intensity 12,100 + 12,100 ¼ 24,200, the ensemble average

power of the signal.

Because the Fourier transform results in part of the power spectral density being represented at

negative frequencies, the psd is sometimes called a two-sided power spectrum. Next we will explore

this property and others more thoroughly.

8.1.1 Properties of the Power Spectral Density

The following proposition describes several basic properties of SXX( f ) and indicates how the psd is

related to average power.

PROPOSITION

Let SXX( f ) be the power spectral density of a WSS random process X(t).

1. SXX( f ) is real-valued and nonnegative.

2. SXX( f ) is an even function, i.e., SXX(�f ) ¼ SXX( f ). (This is the “two-sided” nature of the

psd.)

3.

ð1
�1

SXX fð Þdf ¼ PX, the ensemble average power in X(t).

Proof Property 1 follows from the definition of the psd: even though the Fourier transform FT( f )

may be complex-valued, jFT( f )j2/2T must be real and nonnegative. Since SXX( f ) is the limit of the

expected value of jFT( f )j2/2T, it must also be real and nonnegative.

To prove property 2, we invoke the Wiener–Khinchin Theorem. Since RXX(τ) is even, we can

simplify its Fourier transform:

f

SXX( f )

−1000 1000

(12,100)(12,100)

Fig. 8.1 The power spectral density of Example 8.2 ■
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SXX fð Þ ¼ F RXX τð Þf g ¼
ð1
�1

RXX τð Þe�j2πf τdτ ¼
ð1
�1

RXX τð Þ cos 2πf τð Þdτ ð8:2Þ

The sine component of the complex exponential drops out because RXX(τ) is even. From Eq. (8.2)

it is clear that SXX( f ) is both real-valued and an even function of f, since cosine is even.

Property 3 also follows from the Wiener–Khinchin Theorem: writing the autocorrelation function

as the inverse Fourier transform of the pdf, we have

RXX τð Þ ¼ F �1
�
SXX



f
� ¼

ð1
�1

SXX fð Þeþj2πf τ df )

PX ¼ RXX 0ð Þ ¼
ð1
�1

SXX fð Þeþj2πf 0ð Þdf ¼
ð1
�1

SXX fð Þdf ■

The foregoing proposition gives some insight into the interpretation of the power spectral density.

As stated previously, SXX( f ) describes how the ensemble average power in X(t) is distributed across

the frequency domain. Since power must be real and nonnegative, so must the power spectrum.

Property 3 shows why SXX( f ) is called a “density”: if we integrate this function across its entire

domain, we recover the total (expected) power in the signal, PX, much in the same way that

integrating a pdf from �1 to 1 returns the total probability of 1. Property 3 also indicates the

appropriate units for the psd: since the integral is performed with respect to f (Hertz) and the result is
power (watts), the correct units for the power spectral density are watts per Hertz (W/Hz).

Property 2 makes precise the two-sided nature of a psd. The power spectrum SXX( f ) will always be

symmetric about f ¼ 0; this is a by-product of how Fourier transforms are computed and the fact that

autocorrelation functions are always symmetric in τ. But we must make sense of it in terms of “true”

(i.e., nonnegative) frequencies. Look back at Example 8.2: that particular phase variation random

process had a power spectral density consisting of two impulses, each of intensity 12,100 W/Hz, at

�1 kHz. We can interpret the impulse at �1000 by mentally “folding” the power spectrum along

the vertical axis, left to right, so that the two impulses line up at +1 kHz with a total intensity of

24,200 W/Hz. Integrating that impulse df recovers the ensemble average power of 24.2 kW.

Our next example illustrates a more general psd, including components other than impulses.

Example 8.3 Partitioning a power spectrum Suppose X1(t) and X2(t) are independent, zero-mean,

WSS random processes with autocorrelation functions

R11 τð Þ ¼ 2000tri 10, 000τð Þ; R22 τð Þ ¼ 650cos 40, 000πτð Þ
Define a new random process by X(t) ¼ X1(t) + X2(t) + 40. We encountered this random process

in Example 7.18, from which we know that X(t) is WSS with a mean of μX ¼ 40 and an autocorrela-

tion function of

RXX τð Þ ¼ R11 τð Þ þ R22 τð Þ þ 402

¼ 2000tri 10, 000τð Þ þ 650cos 40, 000πτð Þ þ 1600

First, let’s find the ensemble average power in X(t):

PX ¼ RXX 0ð Þ ¼ 2000þ 650þ 1600 ¼ 4250W

Recall from Example 7.18 that X(t) consists of three pieces: the aperiodic component X1(t), the

periodic component X2(t), and the dc offset of 40. These deliver a total of 4.25 kW of power: 2000 W

from X1(t), 650 W from X2(t), and 1600 W from the dc power offset (recall that we always assume

R ¼ 1 Ω, so P ¼ I2R ¼ 402(1) ¼ 1600 for that term).
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Next, let’s see how this 4250W of power is distributed in the frequency domain by determining the

power spectral density of X(t). Apply the Wiener–Khinchin Theorem:

SXX fð Þ ¼ F
�
RXX



τ
� ¼ F

�
2000tri



10,000τ

�þ 650 cos


40,000πτ

�þ 1600


¼ 2000F
�
tri 10,000τð Þþ 650F

�
cos



40,000πτ

�þ F
�
1600


To evaluate each of these three Fourier transforms, we use the table of Fourier pairs in Appendix

B. The last two are straightforward, while the transform of tri(10,000τ) requires the rescaling property
with a ¼ 10,000. Since the Fourier transform pair of tri(t) is sinc2( f ), the ultimate result is

SXX fð Þ ¼ 2000 � 1

10;000j j sinc
2 f

10,000

� �

þ 650 � 1
2

�
δ


f � 20,000

�þ δ


f þ 20,000

��þ 1600δ


f
�

¼ 0:2sinc2
f

10,000

� �
þ 325

�
δ f � 20,000ð Þ þ δ



f þ 20,000

��þ 1600δ


f
�

A graph of this power spectrum appears in Fig. 8.2. Notice the graph is symmetric about the

vertical axis f ¼ 0, as guaranteed by property 2 of the previous proposition. The psd consists of three

elements, corresponding to the three components of the original signal. The power spectrum of the

aperiodic component appears as a continuous function (a true “density”) that vanishes as |f| ! 1.

This is sometimes referred to as the dissipative component of the psd. The periodic component of the

signal has psd equal to a pair of impulses (sometimes called split impulses) at its fundamental

frequency—here, 40,000π radians, or 20 kHz. Finally, the direct current corresponds to a “frequency”
of f ¼ 0; thus, the dc power offset of 1600 W is represented by 1600δ( f ), an impulse at f ¼ 0.

(1600) (325)(325)

0.05

−40000 −30000 −20000 20000 30000 40000−10000 100000
f

SXX ( f )

0.10

0.15

0.20

Fig. 8.2 Power spectral density of Example 8.3 ■
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As illustrated in the foregoing example, a power spectral density generally consists of at most three

pieces, {dissipative components} + {periodic components} + {dc power offset}, and the last two will

be comprised of impulses.

8.1.2 Power in a Frequency Band

Suppose we wish to determine how much of the power in a random signal lies within a particular

frequency band; this is, as it turns out, a primary purpose of the psd. For frequencies f1 and f2 with

0 < f1 < f2, let PX[f1, f2] denote the expected power in X(t) in the band [ f1, f2]. Then, to account for

the two sides of the power spectrum, we calculate as follows:

PX f 1; f 2½ � ¼
ð f 2

f 1

SXX fð Þdf þ
ð�f 1

�f 2

SXX fð Þdf ¼ 2

ð f 2

f 1

SXX fð Þdf ð8:3Þ

The last two expressions in Eq. (8.3) are equal because SXX( f ) is an even function. Figure 8.3a

shows a generic power spectrum. Figure 8.3b shows the calculation of power in a band, accounting

for the two sides of the psd; it’s clear that we could simply double the right-hand area and get the same

result.

Extra care must be taken to find the power in X(t) below some frequency f2, i.e., between 0 and f2
including the possible dc power offset at f ¼ 0. When we “fold” the negative frequencies over to the

positive side, any power represented by an impulse at f ¼ 0 is not duplicated. Therefore, we cannot

simply double the entire integral of SXX( f ) from 0 to f2; we must count the dc power offset a single

time, and then integrate the rest of the psd. Written mathematically,

PX 0; f 2½ � ¼
ð�f 2

f 2

SXX fð Þdf ¼ dc power offsetð Þ þ 2

ð f 2

0þ
SXX fð Þdf ð8:4Þ

The lower limit 0+ in Eq. (8.4) indicates that the integral term does not include an impulse at zero,

should one exist.

Example 8.4 For the random process X(t) in Example 8.3, let’s first find the ensemble average power

in the band from 10 to 30 kHz. With f1 ¼ 10,000 and f2 ¼ 30,000, we proceed as follows:

SXX( f )

f
−f2 f2−f1

f
f1

SXX( f )

PX[ f1, f2]

a b

Fig. 8.3 (a) A generic power spectral density; (b) the ensemble average power in a specified frequency band
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PX 10; 000; 30; 000½ � ¼ 2

ð30;000
10;000

SXX fð Þdf

¼ 2

ð30;000
10;000

0:2sinc2
f

10, 000

� �
þ 325 δ f � 20, 000ð Þ þ δ f þ 20, 000ð Þ½ � þ 1600δ fð Þ

� �
df

¼ 2

ð30;000
10;000

0:2sinc2
f

10, 000

� �
df þ 2

ð30;000
10;000

325δ f � 20, 000ð Þdf

þ 2

ð30;000
10;000

325δ f þ 20, 000ð Þdf þ 2

ð30;000
10;000

1600δ fð Þdf

To evaluate the integrals of the three impulses, we use the sifting property (see Appendix B); since

the specified frequencies of the last two impulses lie outside the band [10,000, 30,000], those two

integrals are zero. The calculation continues

PX 10; 000; 30; 000½ � ¼ 2

ð30;000
10;000

0:2sinc2
f

10, 000

� �
df þ 2



325

�þ 2


0
�þ 2



0
�

¼ 0:4

ð30;000
10;000

sin 2 πf=10; 000ð Þ
πf=10; 000ð Þ2 df þ 650 ¼ 127:17þ 650 ¼ 777:17W

This last integration of the sinc2 function requires software (or an advanced calculator). Next, let’s

find the average power in X(t) concentrated below 10 kHz. We must remember to include the impulse

representing the dc power offset at f ¼ 0, but only once. Also, we can ignore the impulses at

�20 kHz, since they lie outside our desired range. Applying Eq. (8.4),

PX 0; 10; 000½ � ¼
ð10;000
�10;000

SXX fð Þdf ¼ 1600þ 2

ð10;000
0þ

SXX fð Þdf

¼ 1600þ 2

ð10;000
0

0:2 sin c2
f

10; 000

� �
df

¼ 1600þ 1805:65 ¼ 3405:65W

Again, a numerical integration tool is required. ■

8.1.3 White Noise Processes

As mentioned previously, engineers frequently use random process models in an attempt to describe

the noise acquired by an intended signal during transmission. One of the simplest models, called

white noise, can most easily be described by its frequency representation (as opposed to the time-

domain models of Chap. 7).

DEFINITION

A random process N(t) is (pure) white noise if there exists a constant N0 > 0, called the

intensity parameter, such that the psd of N(t) is

SNN fð Þ ¼ N0

2
�1 < f < 1

As a special case, N(t) is calledGaussian white noise if N(t) is a Gaussian process as defined

in Sect. 7.6 and its psd is as above.
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The power spectral density of pure white noise appears in Fig. 8.4a. A white noise model assumes

that all frequencies appear at equal power intensity throughout the entire spectrum. In that sense, it is

analogous to white light (all frequencies at equal intensity), which gives white noise its name.

White noise processes can also be partially described in the time domain through the autocorrela-

tion function:

RNN τð Þ ¼ F �1 SXX fð Þf g ¼ F �1 N0

2

� 	
¼ N0

2
δ τð Þ

Figure 8.4b shows this autocorrelation function. From property 5 of the main proposition in Sect.

7.3, it follows that the mean of a white noise process is μN ¼ 0. (That’s also evident from the psd

itself, since it lacks an impulse at f ¼ 0 that would correspond to a dc power offset.) Thus, the

autocovariance function of pure white noise is also CNN(τ) ¼ RNN(τ) ¼ (N0/2)δ(τ).
This has a rather curious consequence: since δ(τ) ¼ 0 for τ 6¼ 0,CNN(τ) ¼ (N0/2)δ(τ) implies that the

random variablesN(t) and N(t + τ) are uncorrelated except when τ ¼ 0. IfN(t) is Gaussian white noise,
then N(t) and N(t + τ) are independent for τ 6¼ 0 (since uncorrelated implies independent for normal

rvs), even if the two times are very close together. That is, a purewhite noise process has the property that

its location at any given time is completely uncorrelated with, say, its location the nanosecond before!

Although the pure white noise model is commonly used in engineering practice, no such process

can exist in physical reality. In order for the description in the preceding paragraph to be true, the

process would have to “move” infinitely quickly, thus requiring infinite power. This can be seen

directly from the definition:

PX ¼
ð1
�1

SXX fð Þdf ¼
ð1
�1

N0

2
df ¼ 1

That is, the area under the curve in Fig. 8.4a is infinite. So, why use a model for a process that

cannot exist? As we’ll see in Sect. 8.2, when a white noise process is passed through certain filters, the

resulting output will have finite power. Thus, if we are interested in analyzing the filtered version of

our communication noise, using the very simple model of pure white noise for the input is not

unreasonable.

Though pure white noise cannot exist, various types of band-limited white noise are physically

realizable. Two types of band-limited white noise, called lowpass white noise and bandpass white
noise, are depicted in Fig. 8.5.1 Notice that the area under both of these power spectral densities is

finite, and thus the corresponding random processes both have finite power.

SNN ( f ) RNN (t)

(N0 /2)N0 /2

f
0

t

a b

Fig. 8.4 Pure white noise: (a) power spectral density; (b) autocorrelation function

1 Readers already familiar with filters will recognize the terms “lowpass” and “bandpass.” We will see these terms again

in the next section.
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8.1.4 Power Spectral Density for Two Processes

For two jointly WSS random processes X(t) and Y(t), the cross-power spectral density of X(t) with Y

(t) is defined by

SXY fð Þ ¼ F RXY τð Þf g,
where RXY(τ) is the cross-correlation function defined in Sect. 7.2. A similar definition can be made

for SYX( f ). Since RXY(τ) is generally not an even function of τ, the cross-power spectral density need

not be real-valued. When X(t) and Y(t) are orthogonal random processes, RXY(τ) ¼ 0 by definition and

so SXY( f ) ¼ 0. The cross-power spectral density gives information about the distribution of the

power generated by combining X(t) and Y(t), above and beyond their individual power spectra, when

X(t) and Y(t) are not orthogonal. See Exercise 16.

Proof of the Wiener–Khinchin Theorem The definition of SXX( f ) involves the squared magnitude

of a complex function; from the theory of complex numbers, we know that jzj2 ¼ z � z*, where *

denotes the complex conjugate. The proof then proceeds as follows:

SXX fð Þ ¼ lim
T!1

E

��FT fð Þ��2
2T

� �
¼ lim

T!1
1

2T
E
�
FT



f
�
F*
T



f
��

¼ lim
T!1

1

2T
E

ð T

�T

X sð Þe�j2πfs ds

ð T

�T

X tð Þe�j2πft dt

� �*
" #

¼ lim
T!1

1

2T
E

ð T

�T

X tð Þe�j2πfs ds

ð T

�T

X tð Þej2πft dt
� �

¼ lim
T!1

1

2T
E

ð T

�T

ð T

�T

X sð ÞX tð Þe�j2πf s�tð Þ dtds
� �

Next, pass the expected value into the integrand (which is permissible because the integral

converges), and use the fact that wide-sense stationarity implies E[X(s)X(t)] ¼ RXX(s � t):ð T

�T

ð T

�T

E X sð ÞX tð Þe�j2πf s�tð Þ
h i

dtds¼
ð T

�T

ð T

�T

E X sð ÞX tð Þ½ �e�j2πf s�tð Þ dtds

¼
ð T

�T

ð T

�T

RXX s� tð Þe�j2πf s�tð Þ dtds

Now make the change of variables τ ¼ s � t (i.e., s ¼ t + τ), under which the region of integra-

tion becomes the parallelogram pictured in Fig. 8.6.

SNN ( f )SNN ( f )

B B

B−B

a b

f f
−f0 f0

N0 /2 N0 /2

Fig. 8.5 Examples of band-limited white noise: (a) lowpass; (b) bandpass
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Integrating in the order dt dτ yields the sum of two integrals:

SXX fð Þ ¼ lim
T!1

1

2T

ð0
�2T

ðτþT

�T

RXX τð Þe�j2πf τdtdτ þ
ð2T
0

ð T

τ�T

RXX τð Þe�j2πf τdtdτ

� �

¼ lim
T!1

1

2T

ð0
�2T

RXX τð Þe�j2πf τ 2T þ τð Þdτ þ
ð2T
0

RXX τð Þe�j2πf τ 2T � τð Þdτ
� �

¼ lim
T!1

1

2T

ð2T
�2T

RXX τð Þe�j2πf τ 2T � τj jð Þdτ

¼ lim
T!1

ð2T
�2T

RXX τð Þe�j2πf τ 1� τj j
2T

� �
dτ

¼ lim
T!1

ð1
�1

RXX τð Þe�j2πf τqT τð Þdτ

where qT(τ) ¼ 1 � |τ|/2T for |τ| � 2T and 0 otherwise. Since qT(τ) ! 1 as T ! 1 for all τ, we
conclude that

SXX fð Þ ¼
ð1
�1

RXX τð Þe�j2πf τdτ ¼ F RXX τð Þf g,

as claimed. ■

8.1.5 Exercises: Section 8.1 (1–21)

1. The function rect(τ) satisfies all the properties of an autocorrelation function for a WSS process

that were specified in the main proposition of Sect. 7.3: rect(τ) is even, has its maximum value at

0, vanishes as τ ! 1. However, rect(τ) cannot be the autocorrelation of a WSS random process.

Why not? [Hint: Consider the resulting psd.] This demonstrates that the properties listed in that

proposition do not fully characterize the types of functions that can be autocorrelations.

2. Let A(t) be a WSS random process with autocorrelation function RAA(τ) and power spectral

density SAA( f ). Define an “amplitude modulated” version of A(t) by

X tð Þ ¼ A tð Þcos 2πf 0tþ Θð Þ,
where Θ ~ Unif(�π, π] and is independent of A(t).

t

(0, T)

(0, −T)

(2T , T )

(−2T , T )

t

Fig. 8.6 Region of

integration for the proof of

the Wiener–Khinchin

Theorem
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(a) Find the mean and autocorrelation functions of X(t).

(b) Find the power spectral density of X(t).
(c) Find an expression for the expected power in X(t).

3. Suppose X(t) is a wide-sense stationary process with the following autocorrelation function:

RXX τð Þ ¼ 250þ 1000exp �4� 106τ2

 �

(a) Find and graph the power spectral density of X(t).
(b) Find the ensemble average power in X(t) between 500 Hz and 1 kHz.

(c) Find the ensemble average power in X(t) below 200 Hz.

4. Let A(t) be a WSS waveform with autocorrelation function RAA(τ) ¼ 2400sinc(2000τ). Define a
new random process X(t) by

X tð Þ ¼ 20þ A tð Þcos 5000πtþ Θð Þ
where Θ is uniform on (�π, π] and independent of A(t).
(a) Find the mean function of X(t).

(b) Find the autocorrelation function of X(t). Is X(t) WSS?

(c) Find the expected power in X(t).
(d) Find and sketch the power spectral density of X(t).

(e) Find the expected power in X(t) in the frequency band from 2 to 3 kHz.

5. Suppose X(t) is a wide-sense stationary random process with power spectral density SXX( f ) ¼
0.2 exp(�π2f 2/1012).
(a) Sketch the psd, and find the expected power in X(t).

(b) Find the expected power in X(t) above 10 kHz.

(c) Find the autocorrelation function of X(t) and verify your answer to (a).

6. Let X(t) be a WSS random process with mean μX ¼ 32.6 and autocovariance function

CXX(τ) ¼ 12,160sinc2(40,000τ).
(a) Find and sketch the power spectral density of X(t).

(b) Find the expected power in X(t) below 20 kHz.

(c) Find the expected power in X(t) between 10 and 30 kHz.

(d) Find the total expected power in X(t).

7. Let N(t) be lowpass white noise, i.e., N(t) is WSS with power spectral density given by

SNN( f ) ¼ N0/2 for j f j � B and 0 otherwise (see Fig. 8.5a).

(a) Find the expected power in N(t).

(b) Find the autocorrelation function of N(t).

8. Let N(t) be bandpass white noise, i.e., N(t) is WSS with power spectral density given by

SNN( f ) ¼ N0/2 for f0 � B/2 � j f j � f0 + B/2 and 0 otherwise (see Fig. 8.5b).

(a) Find the expected power in N(t).

(b) Find the autocorrelation function of N(t).
9. Let N(t) be a Poisson telegraphic process with parameter λ as defined in Sect. 7.5, and consider

Y(t) ¼ A0N(t) for some constant A0 > 0.

(a) Find the autocorrelation function of Y(t).
(b) Find and sketch the power spectral density of Y(t).

(c) Find the expected power in Y(t).

(d) What proportion of the expected power in Y(t) lies below the frequency λ Hz?
10. Let X(t) have power spectral density SXX( f ) ¼ N0 � j f j/A for j f j � B (and zero otherwise),

where B < N0A.

(a) Find the expected power in X(t).
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(b) Find the autocorrelation function of X(t).

[Hint: It may be helpful to sketch SXX( f ) first.]
11. Suppose a random process X(t) has autocorrelation function RXX(τ) ¼ 100e�jτj + 50e�jτ�1j +

50e�jτ+1j.
(a) Find the expected power in X(t).
(b) Find and sketch the power spectral density of X(t).

(c) Find the expected power in X(t) below 1 Hz.

12. Let X(t) be a WSS random process, and define a d-second delay of X(t) by Y(t) ¼ X(t � d ). Find

the mean, autocorrelation, and power spectrum of Y(t) in terms of those of X(t).

13. Let X(t) be a WSS random process, and define a d-second “moving window” process by

W(t) ¼ X(t) – X(t � d ). Find the mean, autocorrelation, and power spectrum of W(t) in terms

of those of X(t).

14. Let X(t) and Y(t) be jointly WSS random processes. Show that SXY( f ) ¼ SY
*
X( f ).

15. Let X(t) and Y(t) be orthogonal and WSS random processes, and define Z(t) ¼ X(t) + Y(t).

(a) Are X(t) and Y(t) jointly WSS? Why or why not?

(b) Is Z(t) WSS?

(c) Find the psd of Z(t).

16. Let X(t) and Y(t) be non-orthogonal, jointly WSS random processes, and define Z(t) ¼ X(t) + Y(t).

(a) Find the autocorrelation function of Z(t). Is Z(t) WSS?

(b) Find the power spectral density of Z(t), and explain why this expression is real-valued.

17. Let X(t) and Y(t) be independent WSS random processes, and define Z(t) ¼ X(t)Y(t).

(a) Show that Z(t) is also WSS.

(b) Find the psd of Z(t).

18. Pink noise, also called 1/f noise, is characterized by the power spectrum SNN( f ) ¼ 1/j f j for f 6¼ 0.

(a) Explain why such a process is not physically realizable.

(b) Consider a band-limited pink noise process with psd SNN( f ) ¼ 1/j f j for f0 � j f j � f1. Find

the expected power of such a random process.

(c) A “generalized pink noise” process has the psd SNN( f ) ¼ N0/(2j f j1+β) for j f j > f0 and 0

otherwise, where 0 < β < 1. Find the expected power of such a random process.

19. Highpass white noise is characterized by the power spectrum SNN( f ) ¼ N0/2 for j f j > B and

0 otherwise. Is highpass white noise a physically realizable process? Why or why not?

20. The ac power spectral density (ac-psd) of a WSS random process is defined as the Fourier

transform of its autocovariance function:

S ac
XX fð Þ ¼ F CXX τð Þf g

(a) By using the relationship between CXX(τ) and RXX(τ), develop an equation relating the psd of
a random process to its ac-psd.

(b) Find the ac-psd for the random process of Example 8.3.

(c) Explain why the term “ac power spectral density” is appropriate.

21. Exercise 36 of Chap. 7 presented a random process of the form X(t) ¼ A � Y(t), where A is a

random variable and Y(t) is an ergodic, WSS random process independent of A. It was shown that

X(t) is WSS but not ergodic.

(a) Find the psd of X(t).
(b) Find the ac-psd of X(t). (See the previous exercise.)

(c) Does the ac-psd of X(t) include an impulse at zero? What does this say about our interpreta-

tion of “dc power offset” for non-ergodic processes?
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8.2 Random Processes and LTI Systems

For any communication system to be effective, one must be able to successfully distinguish the

intended signal from the noise it encounters during transmission. If we understand enough about the

statistical properties of that noise, then in theory a filter can be constructed to minimize noise effects,

thereby making the signal easier to “hear.” This section gives a very brief overview of filters2 and then

investigates aspects of applying a filter to a random, continuous-time signal.

In communication theory, a system refers to anything that operates on a signal. We will denote a

generic system by the letter L. If we let x(t) and y(t) denote the input and output of this system,

respectively, then we may write

y tð Þ ¼ L x tð Þ½ �
where L[] denotes the application of the system to a signal. One particular class of systems is of the

greatest interest, since they form the backbone of filtering.

DEFINITION

A linear, time-invariant (LTI) system L satisfies the following two properties:

1. (Linearity) For all functions x1(t) and x2(t) and all constants a1 and a2,

L a1x1 tð Þ þ a2x2 tð Þ½ � ¼ a1L x1 tð Þ½ � þ a2L x2 tð Þ½ �
2. (Time invariance) For all d > 0, if y(t) ¼ L[x(t)], then y(t � d) ¼ L[x(t � d )].

Part 2 of this definition says that it does not matter on an absolute time scale when we apply the

LTI system to x(t); the response will be the same, other than the time delay. As it turns out, an LTI

system can be completely characterized by its effect on an impulse, essentially because a signal can

generally be decomposed into a weighted sum of impulses, and then we may apply linearity. With

this in mind, an LTI system is described in the time domain by its impulse response (function),

denoted h(t):

h tð Þ ¼ L δ tð Þ½ �
It can be shown (see Chap. 6 of the reference by Ambardar) that if L is an LTI system with impulse

response h(t), then the input and output signals of L are related by a convolution operation:

y tð Þ ¼ x tð ÞHh tð Þ ¼
ð1
�1

x sð Þh t� sð Þds ¼
ð1
�1

x t� sð Þh sð Þds ð8:5Þ

The same relationship holds for random signals, i.e., if X(t) is the random input to an LTI system

and Y(t) the output, then Y(t) ¼ X(t) H h(t).

The appearance of a convolution operator suggests it would be desirable to apply a transform to

Eq. (8.5). The Fourier transform of the impulse response, denoted H( f ), is called the transfer

function of the LTI system:

2 Readers interested in a thorough treatment of filters and other systems should consult the reference by Ambardar.
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H fð Þ ¼ F h tð Þf g
For deterministic signals, we may then write Y( f ) ¼ X( f )H( f ), where X( f ) and Y( f ) denote the

Fourier transforms of x(t) and y(t), respectively. However, Fourier transforms of random signals do

not exist (due to convergence issues), so the transfer function H( f ) cannot be defined as the ratio of

the output and input in the frequency domain as one commonly does in other engineering situations.

Still, the transfer function will prove critical in determining how the power in a random signal X(t) is

“transferred” by an LTI system, as we will see shortly.

8.2.1 Statistical Properties of the LTI System Output

The following proposition summarizes the relationships between the statistical properties of the

random input signal X(t) of an LTI system and the corresponding output signal Y(t). Here X(t) is again
assumed to be wide-sense stationary.

PROPOSITION

Let L be an LTI system with impulse response h(t) and transfer function H( f ). Suppose X(t) is a

wide-sense stationary process and let Y(t) ¼ L[X(t)], the output of the LTI system applied to

X(t). Then X(t) and Y(t) are jointly WSS, with the following properties.

Time domain Frequency domain

1. μY ¼ μX �
ð1
�1

h sð Þds 1. μY ¼ μX � H(0)
2. RYY(τ) ¼ RXX(τ) H h(τ) H h(�τ) 2. SYY( f ) ¼ SXX( f ) � jH( f )j2

3. PY ¼ RYY(0) 3. PY ¼
ð1
�1

SYY fð Þdf
4. RXY(τ) ¼ RXX(τ) H h(τ) 4. SXY( f ) ¼ SXX( f ) � H( f )

The quantity jH( f )j2 in property 2 is called the power transfer function of the LTI system.

Proof Using the convolution relationship between X(t) and Y(t),

Y tð Þ ¼ X tð ÞHh tð Þ ¼
ð1
�1

X t� sð Þh sð Þds ) E Y tð Þ½ � ¼ E

ð1
�1

X t� sð Þh sð Þds
� �

¼
ð1
�1

E X t� sð Þ½ �h sð Þds

Since X(t) is WSS, the expression E[X(t � s)] is just a constant, μX, from which E[Y(t)] ¼
μX

Ð1
�1h(s)ds, as desired. Since this expression does not depend on t, we deduce that the mean of

Y(t) is constant (and we may denote it μY). This establishes property 1 in the time domain. For the

parallel result in the frequency domain, simply note that since H fð Þ ¼ F h tð Þf g, it follows from
the definition of the Fourier transform that

Ð1
�1h(s)ds ¼ H(0).

A similar (but vastly more tedious) derivation yields property 2 in the time domain (see Exercise

31). The right-hand side establishes that the autocorrelation of Y(t) depends only on τ and not t, and

therefore Y(t) is indeed WSS. Hence, the Wiener–Khinchin Theorem applies to Y(t), and taking the

Fourier transform of both sides gives
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F
�
RYY τð Þ¼ F

�
RXX



τ
�
Hh



τ
�
Hh


�τ
� )

SYY fð Þ ¼ F
�
RXX



τ
�

F
�
h


τ
�

F
�
h

�τ

�
¼ SXX fð ÞH


f
�
H∗



f
�
,

where H*( f ) denotes the complex conjugate of H( f ). Now, recall that for any complex number z,

z � z* ¼ jz j2. We immediately have H( f )H*( f ) ¼ jH( f )j2, completing property 2 in the frequency

domain.

Both the time and frequency versions of property 3 follow immediately from Sect. 8.1 and the fact

that Y(t) is WSS. The proofs of property 4 in the time and frequency domain are parallel to those of

property 2. ■

The frequency domain properties of the previous theorem are the most illuminating. Property

1 says the dc offset of X(t), μX, is “transferred” to the dc offset of Y(t) by evaluating the transfer

function H( f ) at 0. This makes sense, since the dc offset corresponds to the frequency f ¼ 0. Notice

in particular that if μX ¼ 0, necessarily μY ¼ 0; an LTI system cannot introduce a dc offset if none

exists in the input signal.

Property 2 states that the power spectrum of the output of an LTI system is obtained from the input

psd through multiplication by the quantity jH( f )j2, hence the name “power transfer function.” Similar

to the preceding discussion about dc offset, observe that if X(t) carries no power at some particular

frequency f (so that SXX( f ) ¼ 0), then SYY( f ) will be zero there as well. An LTI system cannot

introduce power to any frequency that did not appear in the input signal.

Example 8.5 One of the simplest filters is an RC circuit, an LTI system whose impulse response is

given by

h tð Þ ¼ 1

RC
e�t=RCu tð Þ

where u(t) is the unit step function, equal to 1 for t � 0 and zero otherwise. (The product RC of the

resistance and the capacitance is called the time constant of the circuit, since its units are seconds. The

unit step function makes h(t) equal 0 for t < 0; engineers call this a causal filter.) Suppose we have
such a circuit with time constant RC and that we model the input to our system as a pure white noise

process with power spectral density SXX( f ) ¼ N0/2 W/Hz. Let’s investigate the properties of the

output, Y(t).
First, since white noise has mean zero, it follows that μY ¼ 0 as well (property 1). Now we need the

transfer function of the system:

H fð Þ ¼ F h tð Þf g ¼ 1

RC
F e�t=RCu tð Þ

n o
¼ 1

RC

0!

1=RCþ j2πfð Þ0þ1
¼ 1

1þ j2πfRC

Next, we find the psd of Y(t) using property 2:

SYY fð Þ ¼ SXX fð Þ� j H fð Þ j 2 ¼ N0

2

1

1þ j2π fRC

����
����
2

¼ N0

2
� 12

12 þ 2π fRCð Þ2 ¼
N0=2

1þ 2πfRCð Þ2

Figure 8.7 displays this power spectral density. Finally, the ensemble average power of Y(t) is

given by
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PY ¼
ð1
�1

SYY fð Þdf ¼
ð1
�1

N0=2

1þ 2πfRCð Þ2 df ¼
N0

2

ð1
�1

df

1þ 2πfRCð Þ2 ¼
N0

4RC

where the integral is evaluated by the substitution x ¼ 2πfRC and the fact that the antiderivative of

1/(1 + x2) is arctan(x).
We find that, even though the input signal had (theoretically) infinite power, the output Y(t) has

finite power, directly proportional to the intensity of the input and inversely proportional to the time

constant of the circuit. (As an exercise, see if you can verify that the units on the final expression for

power are indeed watts.) ■

Example 8.6 An LTI system has an impulse response of h(t) ¼ t2e�tu(t). The input to this system is

the random process

X tð Þ ¼ V þ 500 cos 2� 106πtþ Θ

 �

,

where V and Θ are independent random variables, Θ is uniformly distributed on (�π, π], and V has

mean 60 and variance 12. It was shown in Exercise 25 of Chap. 7 that X(t) is WSS, with mean

μX ¼ μV ¼ 60 and autocorrelation function RXX(τ) ¼ 3612 + 125,000cos(2 � 106πτ). (Depending
on whether we choose to interpret X(t) as a voltage or current waveform, the units on the mean are

either volts or amperes.) Applying the Wiener–Khinchin Theorem, the psd of X(t) is

SXX fð Þ ¼ F
�
RXX



τ
�

¼ F
�
3612þ 125,000 cos 2� 106πτ


 �
¼ 3612δ



f
�þ 62,500δ



f � 106

�þ 62,500δ


f þ 106

�
Since X(t) consists of a (random) dc offset and a periodic component, the power spectrum of X(t) is

comprised entirely of impulses. Now let Y(t) denote the output of the LTI system. To deduce the

properties of Y(t) requires the transfer function, H( f ), of the LTI system. Using the table of Fourier

transforms in Appendix B,

H fð Þ ¼ F h tð Þf g ¼ F t2e�tu tð Þ�  ¼ 2!

1þ j2πfð Þ2þ1
¼ 2

1þ j2πfð Þ3

SYY( f )

f

N0 /2

Fig. 8.7 Power spectral

density of Y(t)
in Example 8.5
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According to property 1 of the earlier proposition, the mean of the output signal Y(t) is given by

μY ¼ μX � H 0ð Þ ¼ 60 � 2

1þ j2π � 0ð Þ3 ¼ 120

To find the psd of Y(t), we must first calculate the power transfer function of the LTI system:

��H fð Þ��2 ¼
����� 2

1þ j2πfð Þ3
�����
2

¼
��2��2��1þ j2πf

��2
 �3 ¼ 4

1þ 2πfð Þ2

 �3

Since the input power spectrum consists of impulses, so does the output power spectrum; the

coefficients on the impulses are found by evaluating the power transfer function at the appropriate

frequencies:

SYY fð Þ ¼ SXX


f
���H


f
���2

¼ 3612δ fð Þ��H

f
���2 þ 62, 500δ



f � 106

���H

f
���2 þ 62, 500δ



f þ 106

���H

f
���2

¼ 3612δ fð Þ��H

0
���2 þ 62, 500δ



f � 106

���H

106

���2 þ 62, 500δ


f þ 106

���H
� 106
���2

¼ 3612δ fð Þ � 4

1þ 02

 �3 þ 62, 500δ



f � 106

� � 4

1þ 2� 106π


 �2�3
þ 62, 500δ f þ 106


 � � 4

1þ �2� 106π


 �2�3
¼ 14, 448δ fð Þ þ 4� 10�36δ



f � 106

�þ 4� 10�36δ


f þ 106

�
The effect of the LTI system is to “ramp up” the dc power and to effectively eliminate the power at

1 MHz. In particular, the expected power in the output signal Y(t) is

PY ¼
ð1
�1

SYY fð Þdf ¼ 14, 448þ 2 4� 10�36

 � 	 14:448kW,

with essentially all of the power coming from the dc component. ■

8.2.2 Ideal Filters

The goal of a filter is, of course, to eliminate (“filter out”) whatever noise has accumulated during the

transmission of a signal. At the same time, we do not want our filter to affect the intended signal, lest

information be lost. Ideally, we would know at what frequencies the noise in our transmission exists,

and then a filter would be designed that completely eliminates those frequencies while preserving all

others. (If the frequency band of the noise overlaps that of the signal, one can modulate the signal so
that the two frequency bands are disjoint.)
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DEFINITION

An LTI system is an ideal filter if there exists some set of frequencies, Fpass, such that the

system’s power transfer function is given by

��H fð Þ��2 ¼ 1 for f 2Fpass

0 otherwise

�

If we let X(t) denote the input to the system (which may consist of both signal and noise) and Y(t)

the output, then for an ideal filter we have

SYY fð Þ ¼ SXX fð Þ��H fð Þ��2 ¼ SXX fð Þ for f 2Fpass

0 otherwise

�

In other words, the power spectrum of X(t) within the band Fpass is unchanged by the filter, while

everything in X(t) lying outside that band is completely eliminated. Thus, the obvious goal is to select

Fpass to include all frequencies in the signal and exclude all frequencies in the accumulated noise.

Figure 8.8 displays |H( f )| for four different types of ideal filters. To be consistent with the

two-sided nature of power spectral densities, we present the graphs for �1 < f < 1, even though

plots starting at f ¼ 0 are more common in engineering practice. Figure 8.8a shows a lowpass filter,

which preserves the signal up to some threshold B. Under our notation, Fpass ¼ [0, B] for an ideal

lowpass filter. The ideal highpass filter of Fig. 8.8b does essentially the opposite, preserving

frequencies above B. Figure 8.8c, d illustrate a bandpass filter and a bandstop filter (also called a

notch filter), respectively.

The previous section briefly mentioned band-limited white noise processes, wherein we also used

the terms “lowpass” and “bandpass.” These models inherit their names from the aforementioned

filters, e.g., if pure white noise passes through an ideal bandpass filter, the result is called bandpass

white noise.

|H( f )|

B-B

a

f

1

|H( f )|b

f
-B B

1

|H( f )|d

f
-f0 f0

1

|H( f )|c

f
−f0 f0

1

Fig. 8.8 Ideal filters: (a) lowpass; (b) highpass; (c) bandpass; (d) bandstop
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Example 8.7 A WSS random signal X(t) with autocorrelation function given by RXX(τ) ¼ 250 +

1500exp(�1.6 � 109τ2) is passed through an ideal lowpass filter with B ¼ 10 kHz (i.e., 104 Hz).

Before considering the effect of the filter, let’s investigate the properties of the input signal X(t). The

ensemble average power of the input is PX ¼ RXX(0) ¼ 250 + 1500 ¼ 1750 W; moreover, we

recognize that 250 W represents the dc power offset while the other 1500 W comes from an aperiodic

component. Applying the Wiener–Khinchin Theorem, the input power spectral density is given by

SXX fð Þ ¼ F RXX τð Þf g ¼ F 250þ 1500exp 1:6� 109τ2

 �� 

¼ 250δ fð Þ þ 1500F exp �1:6� 109τ2

 �� 

The second Fourier transform requires the rescaling property; however, we must be careful in

identifying the rescaling constant. If we rewrite 1.6 � 109τ2 as (4 � 104τ)2, we see that the appro-

priate rescaling constant is actually a ¼ 4 � 104. Continuing,

SXX fð Þ ¼ 250δ


f
�þ 1500F

�
exp


�

4� 104τ

�
2
�

¼ 250δ fð Þ þ 1500 � 1

4� 104
ffiffiffi
π

p
exp


�π2


f=4� 104

�
2
�

¼ 250δ fð Þ þ 3
ffiffiffi
π

p
80

exp

�π2f 2=1:6� 109

�
This psd appears in Fig. 8.9a. Now let’s apply the filter, and as usual let Y(t) denote the output.

Then, based on the preceding discussion, the psd of Y(t) is given by

SYY fð Þ ¼ SXX fð Þ f 2Fpass

0 otherwise

�
¼ 250δ fð Þ þ 3

ffiffiffi
π

p
80

e�π2f 2=1:6�109
�� f �� � 104Hz

0 otherwise

(

Figure 8.9b shows the output power spectrum, which is identical to SXX( f ) in the preserved band

[0, 104] and zero everywhere else.

The ensemble average power of the output signal Y(t) is calculated by taking the integral of SYY( f ),
which in this case requires numerical integration by a calculator or computer:

f f

SXX  ( f ) SYY  ( f )

(250)

-30000 -20000 -10000-30000 -20000 -10000 10000 20000 30000 10000 20000 300000 0

(250)

a b

Fig. 8.9 Power spectral densities for Example 8.7: (a) input signal; (b) output signal
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PY ¼
ð1
�1

SYY fð Þdf ¼
ð104
�104

250δ fð Þ þ 3
ffiffiffi
π

p
80

e�π2f 2=1:6�109
� �

df

¼ 250þ 2

ð104
0

3
ffiffiffi
π

p
80

e�π2f 2=1:6�109df 	 250þ 1100 ¼ 1350W ■

In the preceding example, the output power from the ideal filter was less than the input power

(1350 W < 1750 W). It should be clear that this will always be the case: it is impossible to achieve a

power gain with an ideal filter of any type. At best, if the entire input lies within the preserved band

Fpass, then the input and output power will be equal.

Of course, in practice one cannot actually construct an “ideal” filter—there is no engineering

system that will perfectly cut off a signal at a prescribed frequency. But many simple systems can

approximate our ideal. For instance, consider Example 8.5: the power transfer function of that RC

filter is identical to Fig. 8.7 (except that the height at f ¼ 0 is 1 rather than N0/2). This bears some

weak resemblance to the picture for an ideal lowpass filter in Fig. 8.8a. In fact, a more general class of

LTI systems called Butterworth filters can achieve an even more “squared off” appearance; the nth-

order Butterworth filter has a power transfer function of the form

��H fð Þ��2 ¼ α

1þ β2πfð Þ2n ,

where the constants α and β can be derived from the underlying circuit. The RC filter of Example 8.5 is a

“first-order” (i.e., n ¼ 1) Butterworth filter. The books by Peebles and Ambardar listed in the references

provide more information. Examples of these power transfer functions are displayed in Fig. 8.10.

8.2.3 Signal Plus Noise

For a variety of physical reasons, it is common in engineering practice to assume that communication

noise is additive, i.e., if our intended signal X(t) experiences noise N(t) during transmission, then the

received transmission (prior to any filtering) has the form X(t) + N(t). We assume throughout this

subsection that X(t) and N(t) are independent, WSS random processes and that E[N(t)] ¼ 0 (i.e., the

noise component does not contain a dc offset, a standard engineering assumption).3

|H( f )|2 |H( f )|2 |H( f )|2

f f f
n = 1 n = 2 n = 4

Fig. 8.10 Power transfer functions for Butterworth filters (approximations to ideal filters)

3 Please note: The case of a deterministic signal x(t) must be handled somewhat differently. Consult the reference by

Ambardar for details.
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The mean of the input process is given by E[X(t) + N(t)] ¼ E[X(t)] + E[N(t)] ¼ μX + 0 ¼ μX, the
dc offset of the input signal. Computing the autocorrelation of the input process relies on the assumed

independence:

Rin τð Þ ¼ E
�

X


t
�þ N



t
�� � 
X
tþ τ

�þ N


tþ τ

���
¼ E

�
X tð ÞX
tþ τ

��þ E
�
X


t
�
N


tþ τ

��þ E
�
N


t
�
X


tþ τ

��þ E
�
N


t
�
N


tþ τ

��
¼ RXX τð Þ þ E

�
X


t
��
E
�
N


tþ τ

��þ E
�
N


t
��
E
�
X


tþ τ

��þ RNN



τ
�

¼ RXX τð Þ þ E
�
X


t
��
0þ 0E

�
X


tþ τ

��þ RNN



τ
�

since μN ¼ 0

¼ RXX τð Þ þ RNN τð Þ
Then, by the Wiener–Khinchin Theorem, the input power spectrum is

Sin fð Þ ¼ F RXX τð Þ þ RNN τð Þf g ¼ SXX fð Þ þ SNN fð Þ
Now we imagine passing the random process X(t) + N(t) through some LTI system L (presumably

a filter intended to reduce the noise). The foregoing assumptions make the analysis of the output

process quite straightforward. To start, the linearity property allows us to regard the system output as

the sum of two parts:

L X tð Þ þ N tð Þ½ � ¼ L X tð Þ½ � þ L N tð Þ½ �
That is, we may identify L[X(t)] and L[N(t)] as the output signal and output noise, respectively.

These two output processes are also independent and WSS. Letting H( f ) denote the transfer function

of the LTI system, the mean of the output signal and output noise are, respectively,

μL X½ � ¼ E L X tð Þ½ �ð Þ ¼ μXH 0ð Þ, μL N½ � ¼ E L N tð Þ½ �ð Þ ¼ μNH 0ð Þ ¼ 0

The mean of the overall output process is, by linearity, μXH(0) + 0 ¼ μXH(0). Similarly, the

power spectral density of the output process is

Sout fð Þ ¼ Sin fð Þ��H fð Þ��2 ¼ SXX fð Þ��H fð Þ��2 þ SNN fð Þ��H fð Þ��2;
the two halves of this expression are the psds of the output signal and output noise.

One measure of the quality of the filter (the LTI system) involves comparing the power signal-to-

noise ratio of the input and output:

SNRin ¼ PX

PN
versus SNRout ¼

PL X½ �
PL N½ �

A good filter should achieve a higher SNRout than SNRin by reducing the amount of noise without

losing any of the intended signal.

Example 8.8 Suppose a random signal X(t) incurs additive noise N(t) in transmission. Assume the

signal and noise components are independent and wide-sense stationary, X(t) has autocorrelation

function RXX(τ) ¼ 2400 + 45,000sinc2(1800τ), and N(t) has autocorrelation function given by

RNN(τ) ¼ 1500e�10,000|τ|. To filter out the noise, we pass the input X(t) + N(t) through an ideal

lowpass filter with band limit 1800 Hz.

Our input power signal-to-noise ratio is

SNRin ¼ PX

PN
¼ RXX 0ð Þ

RNN 0ð Þ ¼
2400þ 45, 000

1500
¼ 31:6
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The power spectral density of X(t) is

SXX fð Þ ¼ F
�
RXX



τ
� ¼ F

�
2400þ 45, 000sinc2



1800τ

�
¼ 2400δ fð Þ þ 


45, 000
� 1

1800
tri

f

1800

� �
¼ 2400δ



f
�þ 25tri

f

1800

� �

This psd is displayed in Fig. 8.11a. Notice that the entire power spectrum of the input signal lies

within the band [0 Hz, 1800 Hz], which is precisely the preserved band of the filter. Therefore, the

filter will have no effect on the input signal; in particular, the input and output signal components will

have the same power spectral density and the same ensemble average power (47.4 kW).

On the other hand, part of the input noise will be removed by the filter. Begin by finding the psd of

the input noise:

SNN fð Þ ¼ F RNN τð Þf g ¼ F 1500e�10,000jτj
n o

¼ 1500 � 2 10; 000ð Þ
10; 000ð Þ2 þ 2πfð Þ2 ¼

3� 107

108 þ 2πfð Þ2

Figure 8.11b shows the psd of the input noise, while in Fig. 8.11c we see the psd of the output noise

L[N(t)] resulting from passing N(t) through the ideal filter.

The average power in the output noise is

PL N½ � ¼ 2

ð1800
0

3� 107

108 þ 2πfð Þ2 df ¼ � � � ¼ 808:6W,

slightly more than half the original (i.e., input) noise power. As a result, the output power signal-to-

noise ratio equals

SNRout ¼
PL X½ �
PL N½ �

¼ 47; 400

808:6
¼ 58:6

−1800

−1800

1800

(2400)

1800

f

f f

b

a

c

SXX( f )Fig. 8.11 Power spectra

for Example 8.8: (a) input

signal; (b) input noise; (c)

output noise
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Because the signal and noise power spectra were so similar, it was not possible to filter out very

much noise. Assuming our model for the input noise is correct, one solution would be to modulate the

signal before transmission to a center frequency in the “tail” of the SNN( f ) distribution and then

employ a bandpass filter around that center frequency (see Exercise 30). ■

8.2.4 Exercises: Section 8.2 (22–38)

22. Let Y(t) be the output process from Example 8.5. Find the autocorrelation function of Y(t).
23. A WSS current waveform X(t) with power spectral density SXX( f ) ¼ 0.02 W/Hz for j f j �

60 kHz is the input to a filter with impulse response h(t) ¼ 40e�40tu(t). Let Y(t) denote the

output current waveform.

(a) Find the autocorrelation function of the input process X(t). [Hint: Draw SXX( f ) first.]

(b) Calculate the ensemble average power in the input process X(t).

(c) Find the transfer function of this filter.

(d) Find and graph the power spectral density of the output process Y(t).

(e) Determine the ensemble average power in the output process Y(t).

24. A Poisson telegraphic process N(t) with parameter λ ¼ 2 (see Sect. 7.5) is the input to an LTI

system with impulse response h(t) ¼ 2e�tu(t).

(a) Find the power spectral density of N(t).

(b) Find the transfer function of the LTI system.

(c) Find the power spectral density of the output process Y(t) ¼ L[N(t)].

25. A white noise process X(t) with power spectral density SXX( f ) ¼ N0/2 is the input to an LTI

system with impulse response h(t) ¼ 1 for 0 � t < 1 (and 0 otherwise). Let Y(t) denote the

output.

(a) Find the mean of Y(t).
(b) Find the transfer function of the LTI system.

(c) Find the power spectral density of Y(t).

(d) Find the expected power of Y(t).
26. The random process X(t) ¼ A0cos(ω0t + Θ), where Θ ~ Unif(�π, π], is the input to an LTI

system with impulse response h(t) ¼ Be�Btu(t). Let Y(t) denote the output.

(a) Determine the transfer function and power transfer function of this system.

(b) Find the power spectral density of Y(t).

(c) Determine the expected power in Y(t). How does that compare to X(t)?

27. A WSS random process X(t) with autocorrelation function RXX(τ) ¼ 100 + 25e�|τ| is passed

through an LTI system having impulse response h(t) ¼ te�4tu(t). Let Y(t) denote the output.

(a) Find the power spectral density of X(t).

(b) What is the expected power of X(t)?
(c) Determine the transfer function and power transfer function of this system.

(d) Find and sketch the power spectral density of Y(t).

(e) What is the expected power of Y(t)?
28. A white noise process X(t) with power spectral density SXX( f ) ¼ N0/2 is the input to an LTI

system with impulse response h(t) ¼ e�Btsin(ω0t)u(t). Let Y(t) denote the output.

(a) Determine the transfer function of the LTI system.

(b) Find and sketch the power spectral density of Y(t).

29. Suppose X(t) is a white noise process with power spectral density SXX( f ) ¼ N0/2. A filter with

transfer function H( f ) ¼ e�α|f| is applied to this process; let Y(t) denote the output.
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(a) Find the power spectral density of Y(t).

(b) Find the autocorrelation function of Y(t).
(c) Find the expected power of Y(t).

30. Let X(t) be a WSS random process with autocorrelation function RXX(τ) ¼ 45,000sinc2(1800τ);
this is the signal from Example 8.8 without the dc offset. Suppose X(t) encounters the noise N(t)
described in Example 8.8. Since both X(t) and N(t) are concentrated at low frequencies, it is

desirable tomodulate X(t) and then use an appropriate filter. Consider the following modulation,

performed prior to transmission: Xmod(t) ¼ X(t)cos(4000πt + Θ), where Θ ~ Unif(�π, π]. The
received signal will be Xmod(t) + N(t), to which an ideal bandpass filter on the spectrum of

Xmod(t) will be applied.
(a) Find the autocorrelation function of Xmod(t).

(b) Find the power spectral density of Xmod(t).

(c) Based on (b), what would be the optimal frequency band to “pass” through a filter?

(d) Use the results of Example 8.8 to determine the expected power in L[N(t)], the filtered

noise process.

(e) Compare the input and output power signal-to-noise ratios. How do these compare to the

SNRs in Example 8.8?

31. Let X(t) be the WSS input to an LTI system with impulse response h(t), and let Y(t) denote the

output.

(a) Show that the cross-correlation function RXY(τ) equals RXX(τ)Hh(τ) as stated in the main

proposition of this section. [Hint: In the definition of RXY(τ), write Y(t + τ) as a convolution
integral. Rearrange, and then make an appropriate substitution to show that the integrand is

equal to RXX(τ � s) � h(s).]
(b) Show that the autocorrelation function of Y(t) is given by

RYY τð Þ ¼ RXY τð ÞHh �τð Þ ¼ RXX τð ÞHh τð ÞHh �τð Þ
[Hint: Write Y(t) ¼ X(t)Hh(t) in the definition of RYY(τ). Rearrange, and then make an

appropriate substitution to show that the integrand is equal to RXY(τ � s) � h(�s). Then

invoke (a).]

32. A T-second moving-average filter has impulse response h(t) ¼ 1/T for 0 � t � T (and zero

otherwise).

(a) Find the transfer function of this filter.

(b) Find the power transfer function of this filter.

(c) Suppose X(t) is a white noise process with power spectral density SXX( f ) ¼ N0/2. If X(t) is

passed through this moving-average filter and Y(t) is the resulting output, find the power

spectral density, expected power, and autocorrelation function of Y(t).

33. Suppose we pass band-limited white noise X(t) with arbitrary parameters N0 and B through a

differentiator:

Y tð Þ ¼ L X tð Þ½ � ¼ d

dt
X tð Þ

The transfer function of the differentiator is known to be H( f ) ¼ j2πf.
(a) Find the power spectral density of Y(t).

(b) Find the autocorrelation function of Y(t).
(c) What is the ensemble average power of the output?
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34. A short-term integrator is defined by the input-output relationship

Y tð Þ ¼ L X tð Þ½ � ¼ 1

T

ð t

t�T

X sð Þ ds

(a) Find the impulse response of this system.

(b) Find the power spectrum of Y(t) in terms of the power spectrum of X(t). [Hint: Write the

answer to (a) in terms of the rectangular function first.]

35. Let X(t) be WSS, and let Y(t) be the output resulting from the application to X(t) of an LTI system

with impulse response h(t) and transfer function H( f ). Define a new random process as the

difference between input and output: D(t) ¼ X(t) � Y(t).

(a) Find an expression for the autocorrelation function of D(t) in terms of RXX and h.

(b) Determine the power spectral density ofD(t), and verify that your answer is real, symmetric,

and nonnegative.

36. An amplitude-modulated waveform can be modeled by A(t)cos(100πt + Θ) + N(t), where A(t) is

WSS and has autocorrelation function RAA(τ) ¼ 80sinc2(10τ); Θ ~ Unif(�π, π] and is indepen-

dent of A(t); and N(t) is band-limited white noise, independent of A(t) and Θ, with SNN( f ) ¼ 0.05

W/Hz for jfj < 100 Hz. To filter out the noise, we pass the waveform through an ideal bandpass

filter with transfer function H( f ) ¼ 1 for 40 < jfj < 60.

Let X(t) ¼ A(t)cos(100πt + Θ), the signal part of the input.
(a) Find the autocorrelation of X(t).

(b) Find the ensemble average power in X(t).
(c) Find and graph the power spectral density of X(t).

(d) Find the ensemble average power in the signal part of the output.

(e) Find the ensemble average power in N(t).
(f) Find the ensemble average power in the noise part of the output.

(g) Find the power signal-to-noise ratio of the input and the power signal-to-noise ratio of the

output. Discuss what you find.

37. A random signal X(t) incurs additive noise N(t) in transmission. The signal and noise components

are independent and wide-sense stationary, X(t) has autocorrelation function RXX(τ) ¼ 250,000 +

120,000cos(70,000πτ) + 800,000sinc(100,000τ), and N(t) has power spectral density SNN( f ) ¼
2.5�10�2 W/Hz for |f| � 100 kHz. To filter out the noise, we pass the input X(t) + N(t) through

an ideal lowpass filter with transfer function H( f ) ¼ 1 for |f| � 60 kHz.

(a) Find the ensemble average power in X(t).
(b) Find and sketch the power spectral density of X(t).

(c) Find the power spectral density of L[X(t)].
(d) Find the ensemble average power in L[X(t)].

(e) Find the ensemble average power in N(t).

(f) Find the ensemble average power in L[N(t)]. (Think about what the power spectral density

of L[N(t)] will look like.)

(g) Find the power signal-to-noise ratio of the input and the power signal-to-noise ratio of the

output. Discuss what you find.

38. Let X(t) be a pure white noise process with psd N0/2. Consider an LTI system with impulse

response h(t), and let Y(t) denote the output resulting from passing X(t) through this LTI system.

(a) Show that RXY τð Þ ¼ N0

2
h τð Þ.

(b) Show that PY ¼ N0

2
Eh, where Eh is the energy in the impulse response function, defined by

Eh ¼
Ð1
�1 h2 tð Þdt.
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8.3 Discrete-Time Signal Processing

Recall from Sect. 7.4 that a random sequence (i.e., a discrete-time random process) Xn is said to be

wide-sense stationary if (1) its mean, μX[n], is a constant μX and (2) its autocorrelation function,

RXX[n, n + k], depends only on the integer-valued time difference k (in which case we may denote the

autocorrelation RXX[k]). Analogous to the Wiener–Khinchin Theorem, the power spectral density of a

WSS random sequence is given by the discrete-time Fourier transform of its autocorrelation

function:

SXX Fð Þ ¼
X1
k¼�1

RXX k½ �e�j2πFk ð8:6Þ

We use parentheses around the argument F in Eq. (8.6) because SXX(F) is a function on a

continuum, even though the random sequence is on a discrete index set (the integers). Similar to

the continuous case, it can be shown that SXX(F) is a real-valued, nonnegative, symmetric function of

F. (The choice of capital F will be explained toward the end of this section.)

Power spectral densities for random sequences differ from their continuous-time counterparts in

one key respect: the psd of a WSS random sequence is always a periodic function, with period 1. To

see this, recall that ej2πk ¼ 1 for any integer k, and write

SXX Fþ 1ð Þ ¼
Xþ1

k¼�1
RXX k½ �e�j2π Fþ1ð Þk ¼

Xþ1

k¼�1
RXX k½ �e�j2πFke�j2πk ¼

Xþ1

k¼�1
RXX k½ �e�j2πFk ¼ SXX Fð Þ

As a consequence, we may recover the autocorrelation function of a WSS random sequence from

its power spectrum by taking the inverse Fourier transform of SXX(F) over an interval of length 1:

RXX k½ � ¼
ð1=2
�1=2

SXX Fð Þej2πFkdF ð8:7Þ

This affects how we calculate the power in a random sequence from its power spectral density.

Analogous to the continuous-time case, we define the (ensemble) average power of a WSS random

sequence Xn by

PX ¼ E X2
n


 � ¼ RXX 0½ � ¼
ð1=2
�1=2

SXX Fð Þej2πF 0ð ÞdF ¼
ð1=2
�1=2

SXX Fð ÞdF

That is, the expected power in a random sequence is determined by integrating its psd over one
period, not the entire frequency spectrum.

Example 8.9 Consider the Bernoulli sequence of Sect. 7.4: the Xn are iid Bernoulli rvs, a stationary

sequence with μX ¼ p, CXX[0] ¼ Var(Xn) ¼ p(1 � p), and CXX[k] ¼ 0 for k 6¼ 0. From these, the

autocorrelation function is

RXX k½ � ¼ CXX k½ � þ μ2X ¼ p k ¼ 0

p2 k 6¼ 0

�

In particular, PX ¼ RXX[0] ¼ p. To determine the power spectral density, apply Eq. (8.6):
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SXX Fð Þ ¼
Xþ1

k¼�1
RXX k½ �e�j2πFk ¼ RXX

�
0
�
e�j2πF 0ð Þ þ

X
k 6¼0

RXX k½ �e�j2πFk

¼ pþ p2
X
k 6¼0

e�j2πFk ¼ pþ p2
Xþ1

k¼�1
e�j2πFk � p2e�j2πF 0ð Þ

¼ p 1� pð Þ þ p2
Xþ1

k¼�1
e�j2πFk

Engineers will recognize this last summation as an impulse train (sometimes called a sampling

function or Dirac comb), from which we have

SXX Fð Þ ¼ p 1� pð Þ þ p2
Xþ1

n¼�1
δ F� nð Þ

A graph of this periodic function appears in Fig. 8.12; notice it is indeed a nonnegative, symmetric,

periodic function with period 1. Since it’s sufficient to define the psd of a WSS random sequence on

the interval (�1/2, 1/2), we could drop all but one of the impulses and write SXX(F) ¼ p(1 � p) +
p2δ(F) for �1/2 < F < 1/2.

For a more general iid sequence with E[Xn] ¼ μX and Var(Xn) ¼ σX
2, a similar derivation shows

that SXX(F) ¼ σX
2 + μX

2 ∑n¼�1
+1 δ(F � n), or σX

2 + μX
2δ(F) for�1/2 < F < 1/2. In particular, if Xn is a

mean-zero iid sequence, the psd of Xn is just the constant σX
2.

Example 8.10 Suppose Xn is a WSS random sequence with power spectral density SXX(F) ¼ tri(2F)

for �1/2 < F < 1/2. Let’s determine the autocorrelation function of Xn.

The psd may be rewritten as SXX(F) ¼ 1 � 2|F| for �1/2 < F < 1/2, which is shown in

Fig. 8.13a. Apply Eq. (8.7):

RXX k½ � ¼
ð1=2
�1=2

SXX Fð Þej2πFkdF ¼
ð1=2
�1=2

1� 2 Fj jð Þej2πFkdF

¼
ð1=2
�1=2

1� 2 Fj jð Þ cos 2πFkð ÞdF since 1� 2 Fj j is evenð Þ

¼ 2

ð1=2
0

1� 2Fð Þ cos 2πFkð ÞdF since the intergrand is evenð Þ

For k ¼ 0, this is a simple polynomial integral resulting in RXX[0] ¼ 1/2, which equals the area

under SXX(F), as required. For k 6¼ 0, integration by parts yields

−3 −2 −1 0 1 2 3

SXX(F )

F

Fig. 8.12 Power spectral density of a Bernoulli sequence (Example 8.9) ■
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RXX k½ � ¼ 1� cos πkð Þ
π2k2

¼ 2= π2k2

 �

k odd
0 k even

�

The graph of this autocorrelation function appears in Fig. 8.13b.

8.3.1 Random Sequences and LTI Systems

A discrete-time LTI system L has similar properties to those described in the previous section for

continuous time. If we let δ[n] denote the Kronecker delta function—i.e., δ[0] ¼ 1 and δ[n] ¼ 0 for

n 6¼ 0—then a discrete-time LTI system is characterized by an impulse response4 function h[n]

defined by h[n] ¼ L[δ[n]]. If we let Xn denote the input to the LTI system and Yn the output, so that

Yn ¼ L[Xn], then Yn may be computed through discrete-time convolution:

Yn ¼ XnHh n½ � ¼
X1
k¼�1

Xkh n� k½ � ¼
X1
k¼�1

Xn�kh k½ �

Discrete-time LTI systems can be characterized in the frequency domain by a transfer function

H(F), defined as the discrete-time Fourier transform of the impulse response:

H Fð Þ ¼
X1
n¼�1

h n½ �e�j2πFn

This transfer function, like the power spectral density, is periodic in F with period 1. The

properties of the output sequence Yn are similar to those for Y(t) in the continuous-time case.

−6 −4 −2 0 2 4 6

0.25

1 0.5

ba

F k

SXX (F ) RXX[k]

− 5.05.0

Fig. 8.13 Graphs for Example 8.10: (a) Power spectral density; (b) autocorrelation function ■

4 In this context, the Kronecker delta function is also commonly called the unit sample response, since it is strictly

speaking not an impulse (its value is well defined at zero). It does, however, share the two key properties of a traditional

Dirac delta function (i.e., an impulse): it equals zero for all non-zero inputs, and the sum across its entire domain equals

1.
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PROPOSITION

Let L be an LTI system with impulse response h[n] and transfer function H(F). Suppose Xn is a

wide-sense stationary sequence and let Yn ¼ L[Xn], the output of the LTI system applied to Xn.

Then Yn is also WSS, with the following properties.

Time domain Frequency domain

1. μY ¼ μX
X1
n¼�1

h n½ � 1. μY ¼ μX � H(0)

2. RYY[k] ¼ RXX[k]Hh[k]Hh[�k] 2. SYY(F) ¼ SXX(F) � |H(F)|2

3. PY ¼ RYY[0] 3. PY ¼
ð1=2
�1=2

SYY Fð ÞdF

Example 8.11 A moving average operator can be used to “smooth out” a noisy sequence. The

simplest moving average takes the mean of two successive terms: Yn ¼ (Xn�1 + Xn)/2. This formula

is equivalent to passing the sequence Xn through an LTI system with an impulse response given by

h[0] ¼ h[1] ¼ 1/2 and h[n] ¼ 0 otherwise. The transfer function of this LTI system is

H Fð Þ ¼
X1
n¼�1

h n½ �e�j2πFn ¼ 1

2
e�j2πF 0ð Þ þ 1

2
e�j2πF 1ð Þ ¼ 1þ e�j2πF

2
,

from which the power transfer function is

H Fð Þj j2 ¼ 1þ e�j2πF

2

����
����
2

¼ 1þ cos 2πFð Þ � j sin 2πFð Þ
2

����
����
2

¼ 1þ cos 2πFð Þð Þ2 þ sin2 2πFð Þ
22

¼ 1þ cos 2πFð Þ
2

Notice that the function (1 + cos(2πF))/2 is periodic with period 1, as required.

Suppose Xn is a WSS random sequence with power spectral density SXX(F) ¼ N0 for |F| < 1/2, as

depicted in Fig. 8.14a. Then the moving average Yn has psd equal to

−0.5 0.50 −0.5 0.50

SXX (F ) SYY (F )

N0 N0

F F

a b

Fig. 8.14 Power spectral density of the moving average in Example 8.11
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SYY Fð Þ ¼ SXX Fð Þ � ��H Fð Þ��2 ¼ N0 � 1þ cos 2πFð Þ
2

The graph of this power spectral density appears in Fig. 8.14b. The ensemble average power in Yn
can be determined by integrating this function from �1/2 to 1/2:

PY ¼
ð1=2
�1=2

SYY Fð ÞdF ¼ N0

2

ð1=2
�1=2

1þ cos 2πFð Þ½ �dF ¼ N0

2
1ð Þ ¼ N0

2 ■

8.3.2 Random Sequences and Sampling

Modern electronic systems often work with digitized signals: analog signals that have been “sampled”

at regular intervals to create a digital (i.e., discrete-time) signal. Suppose we have a continuous-time

(analog) signal X(t), which we sample every Ts seconds; Ts is called the sampling interval. That is,

we only observe X(t) at times 0, �Ts, �2Ts, and so on. Then we can regard our observed (digital)

signal as a random sequence X[n] defined by

X n½ � ¼ X nTsð Þ for n ¼ . . . , �2, �1, 0, 1, 2, . . .

This is illustrated for a sample function in Fig. 8.15.

The following proposition ensures that the sampled version of a WSS random process is also

WSS—and, hence, that the spectral density theory presented in this chapter applies.

PROPOSITION

Let X(t) be a WSS random process, and for some fixed Ts > 0 define X[n] ¼ X(nTs). Then the

random sequence X[n] is a WSS random sequence.

The proof was requested in Exercise 45 of Chap. 7.

x(t)

t0

Fig. 8.15 An analog

signal x(t) and its sampled

version x[n] (indicated by

asterisks)
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If the sampling interval is selected judiciously, then we may (in some sense) recover the original

signal from the digitized version. This relies on a key result from communication theory called the

Nyquist sampling theorem for deterministic signals: If a signal x(t) has no frequencies above B Hz,

then x(t) is completely determined by its sample values x[n] ¼ x(nTs) so long as

f s ¼
1

Ts
� 2B

The quantity fs is called the sampling rate. The Nyquist sampling theorem says that a band-limited

signal (with band limit B) can be completely recovered from its digital version, provided the sampling

rate is at least 2B. For example, a signal with band limit B ¼ 1 kHz ¼ 1000 Hz must be sampled at

least 2,000 times per second; equivalently, the sampling interval Ts can be at most 1/(2B) ¼ .0005 s.

The minimum sampling rate, 2B, is sometimes called the Nyquist rate of that signal.

When Ts � 1/(2B), as required by the Nyquist sampling theorem, the original deterministic signal

x(t) may be reconstructed by the interpolation formula

x tð Þ ¼
X1
n¼�1

x n½ �sinc t� nTs

Ts

� �
ð8:8Þ

The heart of the Nyquist sampling theorem is the statement that the two sides of Eq. (8.8) are equal.

For a band-limited random process X(t) with corresponding digital sequence X[n] ¼ X(nTs), we
may define a Nyquist interpolation of X(t) by

XNyq tð Þ ¼
X1

n¼�1
X n½ �sinc t� nTs

Ts

� �

It can be shown that XNyq(t) equals the original X(t) in the “mean square sense,” i.e., that

E XNyq tð Þ � X tð Þ
 �2h i
¼ 0

(This is slightly weaker than saying XNyq(t) ¼ X(t); in particular, there may exist a negligible set of

sample functions for which the two differ.)

There is a direct connection between the Nyquist sampling rate and the argument F of the discrete-

time Fourier transform. Suppose a random process X(t) has band limit B, i.e., the set of frequencies
f represented in the spectrum of X(t) satisfies �B � f � B. Provided we use a sampling rate, fs, at

least as great as the Nyquist rate 2B, we have:

�B � f � B, f s � 2B ) � 1

2
� f

f s
� 1

2

If we define F ¼ f/fs, we have a unitless variable whose set of possible values exactly corresponds

to that of F in the discrete-time Fourier transform. Said differently, F in the discrete-time Fourier

transform represents a normalized frequency; we can recover the spectrum of X(t) across its original
frequency band by writing f ¼ F � fs. (In some textbooks, you will see the argument of the discrete-

time Fourier transform denoted Ω, to indicate radian measure. The variables F and Ω are, of course,

related by Ω ¼ 2πF.)
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8.3.3 Exercises: Section 8.3 (39–50)

39. Let X[n] be a WSS random sequence. Show that the power spectral density of X[n] may be

rewritten as

SXX Fð Þ ¼ RXX 0½ � þ 2
X1
k¼1

RXX k½ � cos 2πkFð Þ

40. Let X(t) be a WSS random process, and let X[n] ¼ X(nTs), the sampled version of X(t). Find the

power spectral density of X[n] in terms of the psd of X(t).

41. Suppose X[n] is a WSS random sequence with autocorrelation function RXX[k] ¼ α|k| for some

constant |α| < 1. Find the power spectral density of X[n]. Sketch this psd for α ¼ �.5, 0, and .5.

42. Consider the correlated bit noise sequence described in Exercise 50 of Chap. 7: X0 is 0 or 1 with

probability .5 each and, for n � 1, Xn ¼ Xn�1 with probability .9 and 1 � Xn�1 with probability

.1. It was shown in that exercise that Xn is a WSS random sequence with mean μX ¼ .5 and

autocorrelation function

RXX k½ � ¼ 1þ :8 kj j

4

(This particular random sequence can be “time reversed” so that Xn is defined for negative

indices as well.) Find the power spectral density of this correlated bit noise sequence.

43. A Poisson telegraphic process N(t) with parameter λ ¼ 1 (see Sect. 7.5) is sampled every 5 s,

resulting in the random sequence X[n] ¼ N(5n). Find the power spectral density of X[n].

44. Discrete-time white noise is a WSS, mean-zero process such that Xn and Xm are uncorrelated for

all n 6¼ m.
(a) Show that the autocorrelation function of discrete-time white noise is RXX[k] ¼ σ2δ[k] for

some constant σ > 0, where δ[k] is the Kronecker delta function.
(b) Find the power spectral density of discrete-time white noise. Is it what you’d expect?

45. Suppose Xn is a WSS random sequence with the following autocorrelation function:

RXX k½ � ¼
1 k ¼ 0

1

2k2
k odd

0 otherwise

8>><
>>:

Determine the power spectral density of Xn. [Hint: Use Example 8.10.]

46. Let Xn be the WSS input to a discrete-time LTI system with impulse response h[n], and let Yn be
the output. Define the cross-correlation of Xn and Yn by RXY[n, n + k] ¼ E[XnYn+k].

(a) Show that RXY does not depend on n, and that RXY ¼ RXX H h, where H denotes discrete-

time convolution. (This is the discrete-time version of a result from the previous section.)

(b) The cross-power spectral density SXY(F) of two jointly WSS random sequences Xn and Yn is

defined as the discrete-time Fourier transform of RXY[k]. In the present context, show that

SXY(F) ¼ SXX(F)H(F), where H denotes the transfer function of the LTI system.

47. The WSS random sequence Xn has power spectral density SXX(F) ¼ 2P for |F| � 1/4 and 0 for

1/4 < |F| < 1/2.

(a) Verify that the ensemble average power in Xn is P.

(b) Find the autocorrelation function of Xn.
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48. Let Xn have power spectral density SXX(F), and suppose Xn is passed through a discrete-time LTI

system with impulse response h[n] ¼ αn for n ¼ 0, 1, 2, . . . for some constant |α| < 1 (and

h[n] ¼ 0 otherwise). Let Yn denote the output sequence.

(a) Find the mean of Yn in terms of the mean of Xn.

(b) Find the power spectral density of Yn in terms of the psd of Xn.

49. The system in Example 8.11 can be extended to an M-term simple moving average filter, with

impulse response

h n½ � ¼ 1=M n ¼ 0, 1, . . . ,M � 1

0 otherwise

�

Let Xn be the WSS input to such a filter, and let Yn be the output.
(a) Write an expression for Yn in terms of the Xn.

(b) Determine the transfer function of this filter.

(c) Assuming Xn is a discrete-time white noise process (see Exercise 44), determine the

autocorrelation function of Yn.

50. A more general moving average process has the form

Y n½ � ¼ θ0X n½ � þ θ1X n� 1½ � þ � � � þ θMX n�M½ �
for some integerM and constants θ0, . . ., θM. Let the input sequence X[n] be iid, with mean 0 and

variance σ2.
(a) Find the impulse response h[n] of the LTI system that produces Y[n] from X[n].
(b) Find the transfer function of this system.

(c) Find the mean of Y[n].

(d) Find the variance of Y[n].
(e) Find the autocovariance function of Y[n].
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Appendix A: Statistical Tables

A.1 Binomial cdf

Table A.1 Cumulative binomial probabilities B x; n; pð Þ ¼ Px
y¼0

b y; n; pð Þ

(a) n = 5

p

0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

0 .774 .590 .328 .237 .168 .078 .031 .010 .002 .001 .000 .000 .000

1 .977 .919 .737 .633 .528 .337 .188 .087 .031 .016 .007 .000 .000

x 2 .999 .991 .942 .896 .837 .683 .500 .317 .163 .104 .058 .009 .001

3 1.000 1.000 .993 .984 .969 .913 .812 .663 .472 .367 .263 .081 .023

4 1.000 1.000 1.000 .999 .998 .990 .969 .922 .832 .763 .672 .410 .226

(b) n = 10

p

0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

0 .599 .349 .107 .056 .028 .006 .001 .000 .000 .000 .000 .000 .000

1 .914 .736 .376 .244 .149 .046 .011 .002 .000 .000 .000 .000 .000

2 .988 .930 .678 .526 .383 .167 .055 .012 .002 .000 .000 .000 .000

3 .999 .987 .879 .776 .650 .382 .172 .055 .011 .004 .001 .000 .000

4 1.000 .998 .967 .922 .850 .633 .377 .166 .047 .020 .006 .000 .000

x 5 1.000 1.000 .994 .980 .953 .834 .623 .367 .150 .078 .033 .002 .000

6 1.000 1.000 .999 .996 .989 .945 .828 .618 .350 .224 .121 .013 .001

7 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .474 .322 .070 .012

8 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .756 .624 .264 .086

9 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .944 .893 .651 .401

(continued)
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Table A.1 (continued)

(c) n = 15

p

0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

0 .463 .206 .035 .013 .005 .000 .000 .000 .000 .000 .000 .000 .000

1 .829 .549 .167 .080 .035 .005 .000 .000 .000 .000 .000 .000 .000

2 .964 .816 .398 .236 .127 .027 .004 .000 .000 .000 .000 .000 .000

3 .995 .944 .648 .461 .297 .091 .018 .002 .000 .000 .000 .000 .000

4 .999 .987 .836 .686 .515 .217 .059 .009 .001 .000 .000 .000 .000

5 1.000 .998 .939 .852 .722 .402 .151 .034 .004 .001 .000 .000 .000

6 1.000 1.000 .982 .943 .869 .610 .304 .095 .015 .004 .001 .000 .000

x 7 1.000 1.000 .996 .983 .950 .787 .500 .213 .050 .017 .004 .000 .000

8 1.000 1.000 .999 .996 .985 .905 .696 .390 .131 .057 .018 .000 .000

9 1.000 1.000 1.000 .999 .996 .966 .849 .597 .278 .148 .061 .002 .000

10 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .314 .164 .013 .001

11 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .539 .352 .056 .005

12 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .764 .602 .184 .036

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .920 .833 .451 .171

14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .987 .965 .794 .537

(d) n = 20

p

0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

0 .358 .122 .012 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000

1 .736 .392 .069 .024 .008 .001 .000 .000 .000 .000 .000 .000 .000

2 .925 .677 .206 .091 .035 .004 .000 .000 .000 .000 .000 .000 .000

3 .984 .867 .411 .225 .107 .016 .001 .000 .000 .000 .000 .000 .000

4 .997 .957 .630 .415 .238 .051 .006 .000 .000 .000 .000 .000 .000

5 1.000 .989 .804 .617 .416 .126 .021 .002 .000 .000 .000 .000 .000

6 1.000 .998 .913 .786 .608 .250 .058 .006 .000 .000 .000 .000 .000

7 1.000 1.000 .968 .898 .772 .416 .132 .021 .001 .000 .000 .000 .000

8 1.000 1.000 .990 .959 .887 .596 .252 .057 .005 .001 .000 .000 .000

x 9 1.000 1.000 .997 .986 .952 .755 .412 .128 .017 .004 .001 .000 .000

10 1.000 1.000 .999 .996 .983 .872 .588 .245 .048 .014 .003 .000 .000

11 1.000 1.000 1.000 .999 .995 .943 .748 .404 .113 .041 .010 .000 .000

12 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .102 .032 .000 .000

13 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .214 .087 .002 .000

14 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .383 .196 .011 .000

15 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .585 .370 .043 .003

16 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .775 .589 .133 .016

17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .909 .794 .323 .075

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .976 .931 .608 .264

19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .997 .988 .878 .642

(continued)
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Table A.1 (continued)

(e) n = 25

p

0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

0 .277 .072 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

1 .642 .271 .027 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000

2 .873 .537 .098 .032 .009 .000 .000 .000 .000 .000 .000 .000 .000

3 .966 .764 .234 .096 .033 .002 .000 .000 .000 .000 .000 .000 .000

4 .993 .902 .421 .214 .090 .009 .000 .000 .000 .000 .000 .000 .000

5 .999 .967 .617 .378 .193 .029 .002 .000 .000 .000 .000 .000 .000

6 1.000 .991 .780 .561 .341 .074 .007 .000 .000 .000 .000 .000 .000

7 1.000 .998 .891 .727 .512 .154 .022 .001 .000 .000 .000 .000 .000

8 1.000 1.000 .953 .851 .677 .274 .054 .004 .000 .000 .000 .000 .000

9 1.000 1.000 .983 .929 .811 .425 .115 .013 .000 .000 .000 .000 .000

10 1.000 1.000 .994 .970 .902 .586 .212 .034 .002 .000 .000 .000 .000

11 1.000 1.000 .998 .980 .956 .732 .345 .078 .006 .001 .000 .000 .000

x 12 1.000 1.000 1.000 .997 .983 .846 .500 .154 .017 .003 .000 .000 .000

13 1.000 1.000 1.000 .999 .994 .922 .655 .268 .044 .020 .002 .000 .000

14 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .030 .006 .000 .000

15 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .071 .017 .000 .000

16 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .149 .047 .000 .000

17 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .273 .109 .002 .000

18 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .439 .220 .009 .000

19 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .622 .383 .033 .001

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .786 .579 .098 .007

21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .904 .766 .236 .034

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .968 .902 .463 .127

23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .993 .973 .729 .358

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .996 .928 .723
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A.2 Poisson cdf

Table A.2 Cumulative Poisson probabilities P x;mð Þ ¼ Px
y¼0

e�mmy

y!

μ

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .905 .819 .741 .670 .607 .549 .497 .449 .407 .368

l .995 .982 .963 .938 .910 .878 .844 .809 .772 .736

2 1.000 .999 .996 .992 .986 .977 .966 .953 .937 .920

x 3 1.000 1.000 .999 .998 .997 .994 .991 .987 .981

4 1.000 1.000 1.000 .999 .999 .998 .996

5 1.000 1.000 1.000 .999

6 1.000

μ

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0

0 .135 .050 .018 .007 .002 .001 .000 .000 .000 .000 .000

1 .406 .199 .092 .040 .017 .007 .003 .001 .000 .000 .000

2 .677 .423 .238 .125 .062 .030 .014 .006 .003 .000 .000

3 .857 .647 .433 .265 .151 .082 .042 .021 .010 .000 .000

4 .947 .815 .629 .440 .285 .173 .100 .055 .029 .001 .000

5 .983 .916 .785 .616 .446 .301 .191 .116 .067 .003 .000

6 .995 .966 .889 .762 .606 .450 .313 .207 .130 .008 .000

7 .999 .988 .949 .867 .744 .599 .453 .324 .220 .018 .001

8 1.000 .996 .979 .932 .847 .729 .593 .456 .333 .037 .002

9 .999 .992 .968 .916 .830 .717 .587 .458 .070 .005

10 1.000 .997 .986 .957 .901 .816 .706 .583 .118 .011

11 .999 .995 .980 .947 .888 .803 .697 .185 .021

12 1.000 .998 .991 .973 .936 .876 .792 .268 .039

13 .999 .996 .987 .966 .926 .864 .363 .066

14 1.000 .999 .994 .983 .959 .917 .466 .105

15 .999 .998 .992 .978 .951 .568 .157

x 16 1.000 .999 .996 .989 .973 .664 .221

17 1.000 .998 .995 .986 .749 .297

18 .999 .998 .993 .819 .381

19 1.000 .999 .997 .875 .470

20 1.000 .998 .917 .559

21 .999 .947 .644

22 1.000 .967 .721

23 .981 .787

24 .989 .843

25 .994 .888

26 .997 .922

27 .998 .948

28 .999 .966

29 1.000 .978

30 .987
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A.3 Standard Normal cdf

Table A.3 Standard normal curve areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

–3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002

–3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003

–3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005

–3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

–3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

–2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014

–2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

–2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

–2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

–2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

–2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

–2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

–2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

–2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

–2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

–1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

–1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

–1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

–1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

–1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

–1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681

–1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

–1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

–1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

–1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

–0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

–0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

–0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

–0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

–0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

–0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

–0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3482

–0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

–0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

–0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

(continued)
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Table A.3 (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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A.4 Incomplete Gamma Function

Table A.4 The incomplete gamma function G x; að Þ ¼
ð x

0

1

G að Þ y
a�1e�ydy

α

1 2 3 4 5 6 7 8 9 10

1 .632 .264 .080 .019 .004 .001 .000 .000 .000 .000

2 .865 .594 .323 .143 .053 .017 .005 .001 .000 .000

3 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001

4 .982 .908 .762 .567 .371 .215 .111 .051 .021 .008

5 .993 .960 .875 .735 .560 .384 .238 .133 .068 .032

6 .998 .983 .938 .849 .715 .554 .394 .256 .153 .084

7 .999 .993 .970 .918 .827 .699 .550 .401 .271 .170

8 1.000 .997 .986 .958 .900 .809 .687 .547 .407 .283

x 9 .999 .994 .979 .945 .884 .793 .676 .544 .413

10 1.000 .997 .990 .971 .933 .870 .780 .667 .542

11 .999 .995 .985 .962 .921 .857 .768 .659

12 1.000 .998 .992 .980 .954 .911 .845 .758

13 .999 .996 .989 .974 .946 .900 .834

14 1.000 .998 .994 .986 .968 .938 .891

15 .999 .997 .992 .982 .963 .930
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A.5 Critical Values for t Distributions

Table A.5 Critical values for t distributions

Central area

0

t density curve

−t critical value t critical value

Central area

ν 80% 90% 95% 98% 99% 99.8% 99.9%

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62

2 1.886 2.920 4.303 6.965 9.925 22.326 31.598

3 1.638 2.353 3.182 4.541 5.841 10.213 12.924

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 1.319 1.714 2.069 2.500 2.807 3.485 3.767

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

32 1.309 1.694 2.037 2.449 2.738 3.365 3.622

34 1.307 1.691 2.032 2.441 2.728 3.348 3.601

36 1.306 1.688 2.028 2.434 2.719 3.333 3.582

38 1.304 1.686 2.024 2.429 2.712 3.319 3.566

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551

50 1.299 1.676 2.009 2.403 2.678 3.262 3.496

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373

1 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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A.6 Tail Areas of t Distributions

Table A.6 t curve tail areas

Area to the

right of t
t curve

0
t

Degrees of Freedom (ν)
t 1 2 3 4 5 6 7 8 9 10 11 12

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

0.1 .468 .465 .463 .463 .462. .462 .462 .461 .461 .461 .461 .461

0.2 .437 .430 .427 .426 .425 .424 .424 .423 .423 .423 .423 .422

0.3 .407 .396 .392 .390 .388 .387 .386 .386 .386 .385 .385 .385

0.4 .379 .364 .358 .355 .353 .352 .351 .350 .349 .349 .348 .348

0.5 .352 .333 .326 .322 .319 .317 .316 .315 .315 .314 .313 .313

0.6 .328 .305 .295 .290 .287 .285 .284 .283 .282 .281 .280 .280

0.7 .306 .278 .267 .261 .258 .255 .253 .252 .251 .250 .249 .249

0.8 .285 .254 .241 .234 .230 .227 .225 .223 .222 .221 .220 .220

0.9 .267 .232 .217 .210 .205 .201 .199 .197 .196 .195 .194 .193

1.0 .250 .211 .196 .187 .182 .178 .175 .173 .172 .170 .169 .169

1.1 .235 .193 .176 .167 .162 .157 .154 .152 .150 .149 .147 .146

1.2 .221 .177 .158 .148 .142 .138 .135 .132 .130 .129 .128 .127

1.3 .209 .162 .142 .132 .125 .121 .117 .115 .113 .111 .110 .109

1.4 .197 .148 .128 .117 .110 .106 .102 .100 .098 .096 .095 .093

1.5 .187 .136 .115 .104 .097 .092 .089 .086 .084 .082 .081 .080

1.6 .178 .125 .104 .092 .085 .080 .077 .074 .072 .070 .069 .068

1.7 .169 .116 .094 .082 .075 .070 .065 .064 .062 .060 .059 .057

1.8 .161 .107 .085 .073 .066 .061 .057 .055 .053 .051 .050 .049

1.9 .154 .099 .077 .065 .058 .053 .050 .047 .045 .043 .042 .041

2.0 .148 .092 .070 .058 .051 .046 .043 .040 .038 .037 .035 .034

2.1 .141 .085 .063 .052 .045 .040 .037 .034 .033 .031 .030 .029

2.2 .136 .079 .058 .046 .040 .035 .032 .029 .028 .026 .025 .024

2.3 .131 .074 .052 .041 .035 .031 .027 .025 .023 .022 .021 .020

2.4 .126 .069 .048 .037 .031 .027 .024 .022 .020 .019 .018 .017

2.5 .121 .065 .044 .033 .027 .023 .020 .018 .017 .016 .015 .014

2.6 .117 .061 .040 .030 .024 .020 .018 .016 .014 .013 .012 .012

2.7 .113 .057 .037 .027 .021 .018 .015 .014 .012 .011 .010 .010

2.8 .109 .054 .034 .024 .019 .016 .013 .012 .010 .009 .009 .008

2.9 .106 .051 .031 .022 .017 .014 .011 .010 .009 .008 .007 .007

3.0 .102 .048 .029 .020 .015 .012 .010 .009 .007 .007 .006 .006

3.1 .099 .045 .027 .018 .013 .011 .009 .007 .006 .006 .005 .005

3.2 .096 .043 .025 .016 .012 .009 .008 .006 .005 .005 .004 .004

3.3 .094 .040 .023 .015 .011 .008 .007 .005 .005 .004 .004 .003

3.4 .091 .038 .021 .014 .010 .007 .006 .005 .004 .003 .003 .003

3.5 .089 .036 .020 .012 .009 .006 .005 .004 .003 .003 .002 .002

3.6 .086 .035 .018 .011 .008 .006 .004 .004 .003 .002 .002 .002

3.7 .084 .033 .017 .010 .007 .005 .004 .003 .002 .002 .002 .002

3.8 .082 .031 .016 .010 .006 .004 .003 .003 .002 .002 .001 .001

3.9 .080 .030 .015 .009 .006 .004 .003 .002 .002 .001 .001 .001

4.0 .078 .029 .014 .008 .005 .004 .003 .002 .002 .001 .001 .001
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Degrees of Freedom (ν)
t 13 14 15 16 17 18 19 20 21 22 23 24

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

0.1 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461

0.2 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422

0.3 .384 .384 .384 .384 .384 .384 .384 .384 .384 .383 .383 .383

0.4 .348 .347 .347 .347 .347 .347 .347 .347 .347 .347 .346 .346

0.5 .313 .312 .312 .312 .312 .312 .311 .311 .311 .311 .311 .311

0.6 .279 .279 .279 .278 .278 .278 .278 .278 .278 .277 .277 .277

0.7 .248 .247 .247 .247 .247 .246 .246 .246 .246 .246 .245 .245

0.8 .219 .218 .218 .218 .217 .217 .217 .217 .216 .216 .216 .216

0.9 .192 .191 .191 .191 .190 .190 .190 .189 .189 .189 .189 .189

1.0 .168 .167 .167 .166 .166 .165 .165 .165 .164 .164 .164 .164

1.1 .146 .144 .144 .144 .143 .143 .143 .142 .142 .142 .141 .141

1.2 .126 .124 .124 .124 .123 .123 .122 .122 .122 .121 .121 .121

1.3 .108 .107 .107 .106 .105 .105 .105 .104 .104 .104 .103 .103

1.4 .092 .091 .091 .090 .090 .089 .089 .089 .088 .088 .087 .087

1.5 .079 .077 .077 .077 .076 .075 .075 .075 .074 .074 .074 .073

1.6 .067 .065 .065 .065 .064 .064 .063 .063 .062 .062 .062 .061

1.7 .056 .055 .055 .054 .054 .053 .053 .052 .052 .052 .051 .051

1.8 .048 .046 .046 .045 .045 .044 .044 .043 .043 .043 .042 .042

1.9 .040 .038 .038 .038 .037 .037 .036 .036 .036 .035 .035 .035

2.0 .033 .032 .032 .031 .031 .030 .030 .030 .029 .029 .029 .028

2.1 .028 .027 .027 .026 .025 .025 .025 .024 .024 .024 .023 .023

2.2 .023 .022 .022 .021 .021 .021 .020 .020 .020 .019 .019 .019

2.3 .019 .018 .018 .018 .017 .017 .016 .016 .016 .016 .015 .015

2.4 .016 .015 .015 .014 .014 .014 .013 .013 .013 .013 .012 .012

2.5 .013 .012 .012 .012 .011 .011 .011 .011 .010 .010 .010 .010

2.6 .011 .010 .010 .010 .009 .009 .009 .009 .008 .008 .008 .008

2.7 .009 .008 .008 .008 .008 .007 .007 .007 .007 .007 .006 .006

2.8 .008 .007 .007 .006 .006 .006 .006 .006 .005 .005 .005 .005

2.9 .006 .005 .005 .005 .005 .005 .005 .004 .004 .004 .004 .004

3.0 .005 .004 .004 .004 .004 .004 .004 .004 .003 .003 .003 .003

3.1 .004 .004 .004 .003 .003 .003 .003 .003 .003 .003 .003 .002

3.2 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002

3.3 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001

3.4 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001

3.5 .002 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001

3.6 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

3.7 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001

3.8 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000

3.9 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000

4.0 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000
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t 25 26 27 28 29 30 35 40 60 120 1(¼ z)

0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500

0.1 .461 .461 .461 .461 .461 .461 .460 .460 .460 .460 .460

0.2 .422 .422 .421 .421 .421 .421 .421 .421 .421 .421 .421

0.3 .383 .383 .383 .383 .383 .383 .383 .383 .383 .382 .382

0.4 .346 .346 .346 .346 .346 .346 .346 .346 .345 .345 .345

0.5 .311 .311 .311 .310 .310 .310 .310 .310 .309 .309 .309

0.6 .277 .277 .277 .277 .277 .277 .276 .276 .275 .275 .274

0.7 .245 .245 .245 .245 .245 .245 .244 .244 .243 .243 .242

0.8 .216 .215 .215 .215 .215 .215 .215 .214 .213 .213 .212

0.9 .188 .188 .188 .188 .188 .188 .187 .187 .186 .185 .184

1.0 .163 .163 .163 .163 .163 .163 .162 .162 .161 .160 .159

1.1 .141 .141 .141 .140 .140 .140 .139 .139 .138 .137 .136

1.2 .121 .120 .120 .120 .120 .120 .119 .119 .117 .116 .115

1.3 .103 .103 .102 .102 .102 .102 .101 .101 .099 .098 .097

1.4 .087 .087 .086 .086 .086 .086 .085 .085 .083 .082 .081

1.5 .073 .073 .073 .072 .072 .072 .071 .071 .069 .068 .067

1.6 .061 .061 .061 .060 .060 .060 .059 .059 .057 .056 .055

1.7 .051 .051 .050 .050 .050 .050 .049 .048 .047 .046 .045

1.8 .042 .042 .042 .041 .041 .041 .040 .040 .038 .037 .036

1.9 .035 .034 .034 .034 .034 .034 .033 .032 .031 .030 .029

2.0 .028 .028 .028 .028 .027 .027 .027 .026 .025 .024 .023

2.1 .023 .023 .023 .022 .022 .022 .022 .021 .020 .019 .018

2.2 .019 .018 .018 .018 .018 .018 .017 .017 .016 .015 .014

2.3 .015 .015 .015 .015 .014 .014 .014 .013 .012 .012 .011

2.4 .012 .012 .012 .012 .012 .011 .011 .011 .010 .009 .008

2.5 .010 .010 .009 .009 .009 .009 .009 .008 .008 .007 .006

2.6 .008 .008 .007 .007 .007 .007 .007 .007 .006 .005 .005

2.7 .006 .006 .006 .006 .006 .006 .005 .005 .004 .004 .003

2.8 .005 .005 .005 .005 .005 .004 .004 .004 .003 .003 .003

2.9 .004 .004 .004 .004 .004 .003 .003 .003 .003 .002 .002

3.0 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .001

3.1 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001

3.2 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001

3.3 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000

3.4 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000

3.5 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000

3.6 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000

3.7 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

3.8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

3.9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

4.0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
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Appendix B: Background Mathematics

B.1 Trigonometric Identities

cos aþ bð Þ ¼ cos að Þ cos bð Þ � sin að Þ sin bð Þ
cos a� bð Þ ¼ cos að Þ cos bð Þ þ sin að Þ sin bð Þ
sin aþ bð Þ ¼ sin að Þ cos bð Þ þ cos að Þ sin bð Þ
sin a� bð Þ ¼ sin að Þ cos bð Þ � cos að Þ sin bð Þ
cos að Þ cos bð Þ ¼ ½ cos aþ bð Þ þ cos a� bð Þ½ �
sin að Þ sin bð Þ ¼ ½ cos a� bð Þ � cos aþ bð Þ½ �

B.2 Special Engineering Functions

u xð Þ ¼ 1 x � 0

0 x < 0

�

0
x

1

rect xð Þ ¼ 1
��x�� � 0:5

0
��x�� > 0:5

�

−1 −0.5 0 0.5 1
x

1

(continued)
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tri xð Þ ¼ 1� ��x�� ��x�� � 1

0
��x�� > 1

�
1

−1 0 1
x

sinc xð Þ ¼
sin πxð Þ
πx

x 6¼ 0

1 x ¼ 0

8<:

−3 0 1

1

2 3
x

−1−2

B.3 o(h) Notation

The symbol o(h) denotes any function of h which has the property that

lim
h!0

o hð Þ
h

¼ 0

Informally, this property says that the value of the function approaches 0 even faster than

h approaches 0.

For example, consider the function f(h) ¼ h3. Then f(h)/h ¼ h2, which does indeed approach 0 as

h ! 0. On the other hand, f hð Þ ¼ ffiffiffi
h

p
does not have the o(h) property, since f hð Þ=h ¼ 1=

ffiffiffi
h

p
, which

approaches 1 as h ! 0+. Likewise, sin(h) does not have the o(h) property: from calculus, sin(h)/

h ! 1 as h ! 0.

Note that the sum or difference of two functions that have this property also has this property:

o(h) � o(h) ¼ o(h). The two o(h) functions need not be the same as long as they both have the

property. Similarly, the product of two such functions also has this property: o(h) � o(h) ¼ o(h).

B.4 The Delta Function

The Dirac delta function, δ(x), also called an impulse or impulse function, is such that δ(x) ¼ 0 for

x 6¼ 0 and ð1
�1

δ xð Þdx ¼ 1

More generally, an impulse at location x0 with intensity a is a � δ(x � x0). An impulse is often

graphed as an arrow, with the intensity listed in parentheses, as in the accompanying figure. The

height of the arrow is meaningless; in fact, the “height” of an impulse is +1.
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x0
x

(a)

Properties of the delta function:

Basic integral:
ð1
�1

δ xð Þdx ¼ 1, so

ð1
�1

aδ x� x0ð Þdx ¼ a

Antiderivative:
ð x

�1
δ tð Þdt ¼ u xð Þ

Rescaling: δ cxð Þ ¼ δ xð Þ
cj j for c 6¼ 0

Sifting:
ð1
�1

g xð Þδ x� x0ð Þdx ¼ g x0ð Þ
Convolution: g(x) ★ δ(x � x0) ¼ g(x � x0)

B.5 Fourier Transforms

The Fourier transform of a function g(t), denoted F g tð Þf g or G( f ), is defined by

G fð Þ ¼ F g tð Þf g ¼
ð1
�1

g tð Þe�j2πftdt

where j ¼ ffiffiffiffiffiffiffi�1
p

. The Fourier transform of g(t) exists provided that the integral of g(t) is absolutely

convergent; i.e.,

ð1
�1

��g tð Þ��dt < 1.

The inverse Fourier transform of a function G( f ), denoted F �1 G fð Þf g or g(t), is defined by

g tð Þ ¼ F �1 G fð Þf g ¼
ð1
�1

G fð Þeþj2πftdf

Properties of Fourier transforms:

Linearity: F a1g1 tð Þ þ a2g2 tð Þf g ¼ a1G1 fð Þ þ a2G2 fð Þ
Rescaling:

F g atð Þf g ¼ 1

aj jG
f

a

� �
Duality: F g tð Þf g ¼ G fð Þ ) F G tð Þf g ¼ g �fð Þ
Time shift: F g t� t0ð Þf g ¼ G fð Þe�j2πf t0

Frequency shift: F g tð Þej2πf 0 t� � ¼ G f � f 0ð Þ
Time convolution: F g1 tð Þ★g2 tð Þf g ¼ G1 fð ÞG2 fð Þ
Frequency convolution: F g1 tð Þg2 tð Þf g ¼ G1 fð Þ★G2 fð Þ
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Fourier transform pairs:

g(t) G( f )

1 δ( f )
u(t) 1

2
δ fð Þ þ 1

j2πf
cos(2πf0t) 1

2
δ f � f 0ð Þ þ δ f þ f 0ð Þ½ �

sin(2πf0t) 1

2j
δ f � f 0ð Þ � δ f þ f 0ð Þ½ �

tke�atu(t), a > 0, k ¼ 0, 1, 2, . . . k!

aþ j2πfð Þkþ1

e�a|t|, a > 0 2a

a2 þ 2πfð Þ2
e�t2 ffiffiffi

π
p

e�π2f 2

rect(t) sinc( f )

tri(t) sinc2( f )

B.6 Discrete-Time Fourier Transforms

The discrete-time Fourier transform (DTFT) of a function g[n] is defined by

G Fð Þ ¼
X1
n¼�1

g n½ �e�j2πFn

The DTFT of g[n] exists provided that g[n] is absolutely summable; i.e.,
X1
n¼�1

g n½ �j j < 1.

The inverse DTFT of a function G(F) is defined by

g n½ � ¼
ð1=2
�1=2

G Fð Þeþj2πFndF

Properties of DTFTs: (an arrow indicates application of the DTFT)

Periodicity: G(F + m) ¼ G(F) for all integers m; i.e., G(F) has period 1

Linearity: a1g1[n] + a2g2[n] ! a1G1(F) + a2G2(F)

Time shift: g n� n0½ � ! G Fð Þe�j2πFn0

Frequency shift: g n½ �ej2πF0n ! G F� F0ð Þ
Time convolution: g1[n] ★ g2[n] ! G1(F)G2(F)

Frequency convolution:
g1 n½ �g2 n½ � !

ð1=2
�1=2

G1 ϕð ÞG2 F� ϕð Þdϕ (periodic convolution of G1 and G2)
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DTFT pairs:

g[n] G(F)

1 δ(F)
δ[n] 1

u[n] 1

2
δ Fð Þ þ 1

1� e�j2πF

cos(2πF0n) 1

2
δ F� F0ð Þ þ δ Fþ F0ð Þ½ �

sin(2πF0n) 1

2j
δ F� F0ð Þ � δ Fþ F0ð Þ½ �

α|n|, |α| < 1 1� α2

1þ α2 � 2α cos 2πFð Þ
αnu[n], |α| < 1 1

1� αe�j2πF
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Appendix C: Important Probability
Distributions

C.1 Discrete Distributions

For discrete distributions, the specified pmf and cdf are valid on the range of the random variable. The

cdf and mgf are only provided when simple expressions exist for those functions.

Binomial (n, p) X ~ Bin(n, p)

range: {0, 1, . . ., n}

parameters: n, n ¼ 0, 1, 2, . . . (number of trials)

p, 0 < p < 1 (success probability)

pmf:
b x; n; pð Þ ¼ n

x

� �
px 1� pð Þn�x

cdf: B(x; n, p) (see Table A.1)

mean: np

variance: np(1 � p)

mgf: (1 � p + pet)n

Note: The n ¼ 1 case is called a Bernoulli distribution.

Geometric (p)

range: {1, 2, 3, . . .}

parameter: p, 0 < p < 1 (success probability)

pmf: p(1 � p)x�1

cdf: 1 � (1 � p)x

mean: 1

p

variance: 1� p

p2

mgf: pet

1� 1� pð Þet

Note: Other sources defined a geometric rv to be the number of failures preceding the first success

in independent and identical trials. See Sect. 2.6 for details.
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Hypergeometric
(n, M, N)

X ~ Hyp(n, M, N)

range: {max(0, n � N + M), . . ., min(n, M )}

parameters: n, n ¼ 0, 1, . . ., N (number of trials)

M, M ¼ 0, 1, . . ., N (population number of

successes)

N, N ¼ 1, 2, 3, . . . (population size)

pmf: h x; n;M;Nð Þ ¼
M
x

� �
N �M
n� x

� �
N
n

� �
cdf: H(x; n, M, N)

mean:
n �M

N
variance:

n �M
N

� 1�M

N

� �
� N � n

N � 1

Note: With the understanding that
	
a
b



¼ 0 for a < b, the range of the hypergeometric distribu-

tion can be simplified to {0, . . ., n}.

Negative Binomial (r, p) X ~ NB(r, p)

range: {r, r + 1, r + 2, . . .}

parameters: r, r ¼ 1, 2, . . . (desired number of successes)

p, 0 < p < 1 (success probability)

pmf:
nb x; n; pð Þ ¼ x� 1

r � 1

� �
pr 1� pð Þx�r

mean: r

p

variance: r 1� pð Þ
p2

mgf: pet

1� 1� pð Þet
� �r

Notes: The r ¼ 1 case corresponds to the geometric distribution.

Other sources defined a negative binomial rv to be the number of failures preceding the rth success

in independent and identical trials. See Sect. 2.6 for details.

Poisson (μ)

range: {0, 1, 2, . . .}

parameter: μ, μ > 0 (expected number of events)

pmf:
p x; μð Þ ¼ e�μμx

x!
cdf: P(x; μ) (see Table A.2)

mean: μ

variance: μ

mgf: eμ et�1ð Þ
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C.2 Continuous Distributions

For continuous distributions, the specified pdf and cdf are valid on the range of the random variable.

The cdf and mgf are only provided when simple expressions exist for those functions.

Beta (α, β, A, B)

range: [A, B]

parameters: α, α > 0 (first shape parameter)

β, β > 0 (second shape parameter)

A, �1 < A < B (lower bound)

B, A < B < 1 (upper bound)

pdf: 1

B� A
� Γ αþ βð Þ
Γ αð Þ � Γ βð Þ

x� A

B� A

� �α�1 B� x

B� A

� �β�1

mean: Aþ B� Að Þ � α

αþ β

variance: B� Að Þ2αβ
αþ βð Þ2 αþ β þ 1ð Þ

Notes: The A ¼ 0, B ¼ 1 case is called the standard beta distribution.

The α ¼ 1, β ¼ 1 case in the uniform distribution.

Exponential (λ)

range: (0, 1)

parameter: λ, λ > 0 (rate parameter)

pdf: λe�λx

cdf: 1 � e�λx

mean: 1

λ
variance: 1

λ2

mgf: λ

λ� t
t < λ

Note: A second parameter γ, called a threshold parameter, can be introduced to shift the density

curve away from x ¼ 0. In that case, X � γ has an exponential distribution.

Gamma (α, β)

range: (0, 1)

parameters: α, α > 0 (shape parameter)

β, β > 0 (scale parameter)

pdf: 1

Γ αð Þβα x
α�1e�x=β

cdf:
G

x

β
; α

� �
(see Table A.4)

mean: αβ

variance: αβ2

mgf: 1

1� βt

� �α

t < 1/β

Notes: The α ¼ 1, β ¼ 1/λ case corresponds to the exponential distribution.

The β ¼ 1 case is called the standard gamma distribution.

The α ¼ n (an integer), β ¼ 1/λ case is called the Erlang distribution.

A third parameter γ, called a threshold parameter, can be introduced to shift the density curve

away from x ¼ 0. In that case, X � γ has the two-parameter gamma distribution described above.
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Lognormal (μ, σ)

range: (0, 1)

parameters: μ, �1 < μ < 1 (first shape parameter)

σ, σ > 0 (second shape parameter)

pdf: 1ffiffiffiffiffi
2π

p
σx

e� ln xð Þ�μ½ �2= 2σ2ð Þ

cdf:
Φ

ln xð Þ � μ

σ

� �
mean: eμþσ2=2

variance: e2μþσ2 � eσ
2 � 1

	 

Note: A third parameter γ, called a threshold parameter, can be introduced to shift the density

curve away from x ¼ 0. In that case, X � γ has the two-parameter lognormal distribution described

above.

Normal (μ, σ) [or Gaussian (μ, σ)] X ~ N(μ, σ)

range: (�1, 1)

parameters: μ, �1 < μ < 1 (mean)

σ, σ > 0 (standard deviation)

pdf:
1

σ
ffiffiffiffiffi
2π

p e� x�μð Þ2= 2σ2ð Þ

cdf: Φ
x� μ

σ

	 

(see Table A.3)

mean: μ

variance: σ2

mgf: eμtþσ2t2=2

Note: The μ ¼ 0, σ ¼ 1 case is called the standard normal or z distribution.

Uniform (A, B) X ~ Unif[A, B]

range: [A, B]

parameters: A, �1 < A < B (lower bound)

B, A < B < 1 (upper bound)

pdf: 1

B� A
cdf: x� A

B� A
mean: Aþ B

2
variance: B� Að Þ2

12
mgf: eBt � eAt

B� Að Þt t 6¼ 0

Note: The A ¼ 0, B ¼ 1 case is called the standard uniform distribution.

Weibull (α, β)

range: (0, 1)

parameters: α, α > 0 (shape parameter)

β, β > 0 (scale parameter)

pdf: α

βα
xα�1e� x=βð Þα

cdf: 1� e� x=βð Þα

(continued)
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mean:
β � Γ

�
1þ 1

α

�
variance:

β2 Γ 1þ 2

α

� �
� Γ 1þ 1

α

� �� �2( )
Note: A third parameter γ, called a threshold parameter, can be introduced to shift the density

curve away from x ¼ 0. In that case, X � γ has the two-parameter Weibull distribution described

above.

C.3 Matlab and R Commands

Table C.1 indicates the template for Matlab and R commands related to the “named” probability

distributions. In Table C.1,

x ¼ input to the pmf, pdf, or cdf

p ¼ left-tail probability (e.g., p ¼ .5 for the median, or .9 for the 90th percentile)

N ¼ simulation size; i.e., the length of the vector of random numbers

pars ¼ the set of parameters, in the order prescribed

name ¼ a text string specifying the particular distribution

Table C.2 catalogs the names and parameters for a variety of distributions.

Table C.1 Matlab and R syntax for probability distribution commands

Matlab R

pmf/pdf namepdf(x,pars) dname(x,pars)

cdf namecdf(x,pars) pname(x,pars)

Quantile nameinv(p,pars) qname(p,pars)

Random #s namernd(pars,N,1) rname(N,pars)

Table C.2 Names and parameter sets for major distributions in Matlab and R

Matlab R

Distribution name pars name pars

Binomial bino n, p binom n, p

Geometrica geo p geom p

Hypergeometric hyge N, M, n hyper M, N � M, n

Negative binomiala nbin r, p nbinom r, p

Poisson poiss μ pois μ

Betab beta α, β beta α, β

Exponential exp 1/λ exp λ

Gamma gam α, β gamma α, 1/β

Lognormal logn μ, σ lnorm μ, σ

Normal norm μ, σ norm μ, σ

Uniform unif A, B unif A, B

Weibull wbl β, α weibull α, β
aThe geometric and negative binomial commands in Matlab and R assume that the random variable counts only failures,

and not the total number of trials. See Sect. 2.6 or the software documentation for details.
bThe beta distribution commands in Matlab and R assume a standard beta distribution; i.e., with A ¼ 0 and B ¼ 1.
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Answers to Odd-Numbered Exercises

Chapter 1

1. (a) A \ B0 (b) A [ B (c) (A \ B0) [ (B \ A0)
3. (a) S ¼ {1324, 1342, 1423, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}

(b) A ¼ {1324, 1342, 1423, 1432}

(c) B ¼ {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}

(d) A [ B ¼ {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}

A \ B ¼ Ø

A0 ¼ {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}

5. (a) A ¼ {SSF, SFS, FSS}
(b) B ¼ {SSS, SSF, SFS, SSS}
(c) C ¼ {SSS, SSF, SFS}
(d) C0 ¼ {SFF, FSS, FSF, FFS, FFF}
A [ C ¼ {SSS, SSF, SFS, FSS}
A \ C ¼ {SSF, SFS}
B [ C ¼ {SSS, SSF, SFS, FSS}
B \ C ¼ {SSS, SSF, SFS}

7. (a) {111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233, 311, 312, 313,

321, 322, 323, 331, 332, 333}

(b) {111, 222, 333}

(c) {123, 132, 213, 231, 312, 321}

(d) {111, 113, 131, 133, 311, 313, 331, 333}

9. (a) S ¼ {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA,
BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA,
ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, ABAAABB, AABBBAA,
AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, AAABBAB, AAABABB, AAAABBB}
(b) {AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB}

13. (a) .07 (b) .30 (c) .57

15. (a) They are awarded at least one of the first two projects, .36

(b) They are awarded neither of the first two projects, .64

(c) They are awarded at least one of the projects, .53

(d) They are awarded none of the projects, .47

(e) They are awarded only the third project, .17

(f) Either they fail to get the first two or they are awarded the third, .75

17. (a) .572 (b) .879

(continued)
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19. (a) SAS and SPSS are not the only packages

(b) .7 (c) .8 (d) .2

21. (a) .8841 (b) .0435

23. (a) .10 (b) .18, .19 (c) .41 (d) .59 (e) .31 (f) .69

25. (a) 1/15 (b) 6/15 (c) 14/15 (d) 8/15

27. (a) .85 (b) .15 (c) .22 (d) .35

29. (a) 1/9 (b) 8/9 (c) 2/9

31. (a) 10,000 (b) .9876 (c) .03 (d) .0337

33. (a) 336 (b) 593,775 (c) 83,160 (d) .140 (e) .002

35. (a) 240 (b) 12 (c) 108 (d) 132 (e) .55, .413

37. (a) .0775 (b) .0082

39. (a) 8008 (b) 3300 (c) 5236 (d) .4121, .6538

41. .2

43. (a) .2967 (b) .0747 (c) .2637 (d) .042

45. (a) 369,600 (b) .00006494

47. (a) 1/15 (b) 1/3 (c) 2/3

51. P(A|B) > P(B|A)

53. (a) .50 (b) .0833 (c) .3571 (d) .8333

55. (a) .05 (b) .12 (c) .56, .44 (d) .49, .25 (e) .533 (f) .444, .556

57. .04

59. (a) .50 (b) .0455 (c) .682 (d) .0189

65. (a) 3/4 (b) 2/3

67. (a) .067 (b) .509

71. (a) .765 (b) .235

73. .087, .652, .261

75. .00329

77. .4657 for airline #1, .2877 for airline #2, .2466 for airline #3

81. A2 and A3 are independent

83. .1936, .3816

85. .1052

87. .99999969, .226

89. .9981

91. (a) Yes (b) No

93. (a) .343 (b) .657 (c) .189 (d) .216 (e) .3525

95. (a) P(A) ¼ P(B) ¼ .02, P(A \ B) ¼ .039984, A and B are not independent

(b) .04, very little difference

(c) P(A \ B) ¼ .0222, not close; P(A \ B) is close to P(A)P(B) when the sample size is very small relative to

the population size

97. (a) Route #1 (b) .216

99. (a) 1 � (1 � 1/N )n

(b) n ¼ 3: .4212, 1/2; n ¼ 6: .6651, 1; n ¼ 10: .8385, 10/6; the answers are not close

(c) .1052, 1/9 ¼ .1111; much closer

101. (a) Exact answer ¼ .46 (b) se � .005

103. .8186 (answers will vary)

105. � .39, � .88 (answers will vary)

107. � .91 (answers will vary)

109. � .02 (answers will vary)

111. (b) � .37 (answers will vary) (c) � 176,000,000 (answers will vary; exact ¼ 176,214,841)

113. (a) � .20 (b) � .56 (answers will vary)

115. (a) � .5177 (b) � .4914 (answers will vary)

(continued)
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117. � .2 (answers will vary)

119. (b) π � 4 � P̂ Að Þ (numerical answers will vary)

121. (a) 1140 (b) 969 (c) 1020 (d) .85

123. (a) .0762 (b) .143

125. (a) .512 (b) .608 (c) .7835

127. .1074

129. (a) 1014 (b) 7.3719 	 10�9

131. (a) .974 (b) .9754

133. .926

135. (a) .018 (b) .601

137. .156

139. (a) .0625 (b) .15625 (c) .34375 (d) .014

141. (a) .12, .88 (b) .18, .38

143. 1/4 ¼ P(A1 \ A2 \ A3) 6¼ P(A1) � P(A2) � P(A3) ¼ 1/8

145. (a) a0 ¼ 0, a5 ¼ 1 (b) a2 ¼ (1/2)a1 + (1/2)a3 (c) ai ¼ i/5 for i ¼ 0, 1, 2, 3, 4, 5

149. (a) .6923 (b) .52

Chapter 2

1. x ¼ 0 for FFF; x ¼ 1 for SFF, FSF, and FFS; x ¼ 2 for SSF, SFS, and FSS; x ¼ 3 for SSS

3. Z ¼ average of the two numbers, with possible values 2/2, 3/2, . . ., 12/2; W ¼ absolute value of the

difference, with possible values 0, 1, 2, 3, 4, 5

5. No. In Example 2.4, let Y ¼ 1 if at most three batteries are examined and let Y ¼ 0 otherwise. Then Y has

only two values

7. (a) {0, 1, 2. . ., 12}; discrete (c) {1, 2, 3, . . .}; discrete (e) {0, c, 2c, . . ., 10000c} where c is the royalty per

book; discrete (g) {x: m � x � M} where m and M are the minimum and maximum possible tension;

continuous

9. (a) {2, 4, 6, 8, . . .}, that is, {2(1), 2(2), 2(3), 2(4), . . .}, an infinite sequence; discrete

11. (a) .10 (c) .45, .25

13. (a) .70 (b) .45 (c) .55 (d) .71 (e) .65 (f) .45

15. (a) (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) (b) p(0) ¼ .3, p(1) ¼ .6, p(2) ¼ .1

(c) F(x) ¼ 0 for x < 0, ¼ .3 for 0 � x < 1, ¼ .9 for 1 � x < 2, and ¼ 1 for x � 2

17. (a) .81 (b) .162 (c) it is A; AUUUA, UAUUA, UUAUA, UUUAA; .00324

19. p(0) ¼ .09, p(1) ¼ .40, p(2) ¼ .32, p(3) ¼ .19

21. (b) p(x) ¼ .301, .176, .125, .097, .079, .067, .058, .051, .046 for x ¼ 1, 2, . . ., 9
(c) F(x) ¼ 0 for x < 1, ¼ .301 for 1 � x < 2, ¼ .477 for 2 � x < 3, . . ., ¼ .954 for 8 � x < 9, and ¼ 1

for x � 9

(d) .602, .301

23. (a) .20 (b) .33 (c) .78 (d) .53

25. (a) p( y) ¼ (1 � p)y � p for y ¼ 0, 1, 2, 3, . . .

27. (a) 1234, 1243, 1324, . . ., 4321
(b) p(0) ¼ 9/24, p(1) ¼ 8/24, p(2) ¼ 6/24, p(3) ¼ 0, p(4) ¼ 1/24

29. (a) 6.45 GB (b) 15.6475 (c) 3.96 GB (d) 15.6475

31. 4.49, 2.12, .68

33. (a) p (b) p(1 � p) (c) p

35. E[h3(X)] ¼ $4.93, E[h4(X)] ¼ $5.33, so 4 copies is better

37. E(X) ¼ (n + 1)/2, E(X2) ¼ (n + 1)(2n + 1)/6, Var(X) ¼ (n2 � 1)/12

39. (b) .61 (c) .47 (d) $2598 (e) $4064

(continued)
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41. (a) μ ¼ �$2/38 for both methods (c) single number: σ ¼ $5.76; square: σ ¼ $2.76

45. E(X � c) ¼ E(X) � c, E(X � μ) ¼ 0

47. (a) .25, .11, .06, .04, .01 (b) μ ¼ 2.64, σ ¼ 1.54; for k ¼ 2, the probability is .04, and the bound of .25 is

much too conservative; for k ¼ 3, 4, 5, 10, the probability is 0, and the bounds are again conservative

(c) μ ¼ $0, σ ¼ $d, 0 (d) 1/9, same as the Chebyshev bound (e) there are many, e.g., p(1) ¼ p(�1) ¼ .02

and p(0) ¼ .96

49. (a) Yes, n ¼ 10, p ¼ 1/6 (b) Yes, n ¼ 40, p ¼ 1/4 (c) No (d) No (e) No (f) Yes, assuming the population is

very large; n ¼ 15, p ¼ P(a randomly selected apple weighs > 150 g)

51. (a) .515 (b) .218 (c) .011 (d) .480 (e) .965 (f) .000 (g) .595

53. (a) .354 (b) .115 (c) .918

55. (a) 5 (b) 1.94 (c) .017

57. (a) .403 (b) .787 (c) .774

59. .1478

61. .407, independence

63. (a) .010368 (c) the probability decreases, to .001970 (d) 1500, 259.2

65. (a) .017 (b) .811, .425 (c) .006, .902, .586

67. When p ¼ .9, the probability is .99 for A and .9963 for B. If p ¼ .5, the probabilities are .75 and .6875,

respectively

69. (a) 20, 16 (b) 70, 21

71. (a) p ¼ 0 or 1 (b) p ¼ .5

73. P(|X � μ| � 2σ) ¼ .042 when p ¼ .5 and ¼ .065 when p ¼ .75, compared to the upper bound of .25.

Using k ¼ 3 in place of k ¼ 2, these probabilities are .002 and .004, respectively, whereas the upper bound

is .11

75. (a) .932 (b) .065 (c) .068 (d) .492 (e) .251

77. (a) .011 (b) .441 (c) .554, .459 (d) .945

79. Poisson(5) (a) .492 (b) .133

81. .271, .857

83. (a) 2.9565, .948 (b) .726

85. (a) .122, .809, .283 (b) 12, 3.464 (c) .530, .011

87. (a) .221 (b) 6,800,000 (c) p(x; 20.106)

89. (a) 1/(1 � e�θ) (b) θ ¼ 2; .981 (c) 1.26

91. (a) .114 (b) .879 (c) .121 (d) Use the binomial distribution with n ¼ 15, p ¼ .10

93. (a) h(x; 15, 10, 20) for x ¼ 5, . . ., 10 (b) .0325 (c) .697

95. (a) h(x; 10, 10, 20) (b) .033 (c) h(x; n, n, 2n)

97. (a) .2817 (b) .7513 (c) .4912, .9123

99. (a) nb(x; 2, .5) (b) .188 (c) .688 (d) 2, 4

101. nb(x; 6, .5), 6

103. nb(x; 5, 6/36), 30, 12.2

105. (a) 160, 21.9 (b) .6756

107. (a) .01e9t+.05e10t+.16e11t+.78e12t (b) E(X) ¼ 11.71, SD(X) ¼ 0.605

109. MX(t) ¼ et/(2 � et), E(X) ¼ 2, SD Xð Þ ¼ ffiffiffi
2

p

111. Skewness ¼ �2.20 (Ex. 107), +0.54 (Ex. 108), +2.12 (Ex. 109), 0 (Ex. 110)

113. E(X) ¼ 0, Var(X) ¼ 2

115. p( y) ¼ (.25)y�1(.75) for y ¼ 1, 2, 3, . . .

117. MY tð Þ ¼ et
2=2, E(Y ) ¼ 0, Var(Y ) ¼ 1

121. E(X) ¼ 5, Var(X) ¼ 4

123. Mn � X(t) ¼ ( p + (1 � p)et)n

125. MY(t) ¼ pr[1 � (1 � p)et]� r, E(Y ) ¼ r(1 � p)/p; Var(Y ) ¼ r(1 � p)/p2

129. mean � 0.5968, sd � 0.8548 (answers will vary)
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131. � .9090 (answers will vary)

133. (a) μ � 13.5888, σ � 2.9381 (b) � .1562 (answers will vary)

135. mean � 3.4152, variance � 5.97 (answers will vary)

137. (b) 142 tickets

139. (a) � .2291 (b) � $8696 (c) � $7811 (d) � .2342, � $7,767, � $7,571 (answers will vary)

141. (b) probability � .9196, confidence interval ¼ (.9143, .9249) (answers will vary)

143. (b) 3.114, .405, .636

145. (a) b(x; 15, .75) (b) .686 (c) .313 (d) 11.25, 2.81 (e) .310

147. (a) .013 (b) 19 (c) .266 (d) Poisson with μ ¼ 500

149. (a) p(x; 2.5) (b) .067 (c) .109

151. 1.813, 3.05

153. p(2) ¼ p2, p(3) ¼ (1 � p)p2, p(4) ¼ (1 � p)p2, p(x) ¼ [1 � p(2) � . . . � p(x � 3)](1 � p)p2 for x ¼ 5,

6, 7, . . .; .99950841

155. (a) .0029 (b) .0767, .9702

157. (a) .135 (b) .00144 (c)
P1

x¼0 [p(x; 2)]
5

159. 3.590

161. (a) No (b) .0273

163. (b) .5 μ1 + .5 μ2 (c) .25(μ1 � μ2)
2 + .5(μ1 + μ2) (d) .6 and .4 replace .5 and .5, respectively

165. μ ¼ .5

167. 500p + 750, 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þp

169. (a) 2.50 (b) 3.1

Chapter 3

1. (b) .4625; the same (c) .5, .278125

3. (b) .5 (c) .6875 (d) .6328

5. (a) k ¼ 3/8 (b) .125 (c) .296875 (d) .578125

7. (a) f(x) ¼ 1/4.05 for .20 � x � 4.25 (b) .3086 (c) .4938 (d) 1/4.05

9. (a) .562 (b) .438, .438 (c) .071

11. (a) .25 (b) .1875 (c) .4375 (d) 1.414 h (e) f(x) ¼ x/2 for 0 � x < 2

13. (a) k ¼ 3 (b) F(x) ¼ 1 � 1/x3 for x � 1 and ¼ 0 otherwise (c) .125, .088

15. (a) F(x) ¼ x3/8 for 0 � x � 2, ¼ 0 for x < 0, ¼ 1 for x > 2 (b) .015625 (c) .0137, .0137 (d) 1.817 min

17. (a) .597 (b) .369 (c) f(x) ¼ [ln(4) � ln(x)]/4 for 0 < x < 4

19. (a) 1.333 h (b) .471 h (c) $2

21. (a) .8182 ft3 (b) .3137

23. (a) A + (B � A)p (b) (A + B)/2 (c) (Bn+1 � An+1)/[(n + 1)(B � A)]

25. 314.79 m2

27. 248 
F, 3.6 
F
29. 1/4 min, 1/4 min

31. (c) μR � v/20, σR � v/800 (d) ~100π (e) ~80π2

33. g(x) ¼ 10x � 5, MY(t) ¼ (e5t � e�5t)/10t, Y ~ Unif[�5, 5]

35. (a) MX(t) ¼ .15e.5t/(.15 � t), μ ¼ 7.167, variance ¼ 44.444 (b) .15/(.15 � t), μ ¼ 6.67,

variance ¼ 44.444 (c) MY(t) ¼ .15/(.15 � t)

39. (a) .4850 (b) .3413 (c) .4938 (d) .9876 (e) .9147 (f) .9599 (g) .9104 (h) .0791 (i) .0668 (j) .9876

41. (a) 1.34 (b) �1.34 (c) .675 (d) �.675 (e) �1.555

43. (a) .9664 (b) .2451 (c) .8664

45. (a) .4584 (b) 135.8 kph (c) .9265 (d) .3173 (e) .6844

47. (a) .9236 (b) .0021 (c) .1336
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49. .6826 < .9987 ) the second machine

51. (a) .2514, ~0 (b) ~39.985 ksi

53. σ ¼ .0510

55. (a) .8664 (b) .0124 (c) .2718

57. (a) .7938 (b) 5.88 (c) 7.938 (d) .2651

59. (a) Φ(1.72) � Φ(.55) (b) Φ(.55) � [1 � Φ(1.72)]

61. (a) .7286 (b) .8643, .8159

63. (a) .9932 (b) .9875 (c) .8064

65. (a) .0392 (b) ~1

69. (a) .1587 (b) .0013 (c) .999937 (d) .00000029

71. (a) 1 (b) 1 (c) .982 (d) .129

73. (a) .1481 (b) .0183

75. (a) 120 (b) 3=4ð Þ ffiffiffi
π

p
(c) .371 (d) .735 (e) 0

77. (a) .424 (b) .567; median < 24 (c) 60 weeks (d) 66 weeks

79. ηp ¼ �ln(1 � p)/λ, η ¼ .693/λ

81. (a) .5488 (b) .3119 (c) 7.667 s (d) 6.667 s

85. (a) .8257, .8257, .0636 (b) .6637 (c) 172.727 h

89. (a) .9295 (b) .2974 (c) 98.184 ksi

91. (a) μ ¼ 9.164, σ ¼ .38525 (b) .8790 (c) .4247 (d) no

93. η ¼ eμ ¼ 9547 kg/day/km

95. (a) 3.96, 1.99 months (b) .0375 (c) .7016 (d) 7.77 months (e) 13.75 months (f) 4.522

97. α ¼ β

99. (b) Γ(α + β)Γ(m + β)/[Γ(α + m + β)Γ(β)], β/(α + β)

101. Yes, since the pattern in the plot is quite linear

103. Yes

105. Yes

107. Plot ln(x) versus z percentile. The pattern is somewhat straight, so a lognormal distribution is plausible

109. It is plausible that strength is normally distributed, because the pattern is reasonably linear

111. There is substantial curvature in the plot. λ is a scale parameter (as is σ for the normal family)

113. fY( y) ¼ 2/y3 for y > 1

115. f Y yð Þ ¼ ye�y2=2 for y > 0

117. fY( y) ¼ 1/16 for 0 < y < 16

119. fY( y) ¼ 1/[π(1 + y2)] for �1 < y < 1
121. Y ¼ g(X) ¼ X2/16

123. f Y yð Þ ¼ 1= 2
ffiffiffi
y

p �
for 0 < y � 1

125.

f Y yð Þ ¼
1= 4

ffiffiffi
y

p� �
0 < y � 1

1= 8
ffiffiffi
y

p� �
1 < y � 9

0 otherwise

8><>:
129. (a) F xð Þ ¼ x2=4,F�1 uð Þ ¼ 2

ffiffiffi
u

p
(c) μ ¼ 1.333, σ ¼ 0.4714, �x and s will vary

131. The inverse cdf is F�1 uð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48u

p � 1
 �

=3

133. (a) The inverse cdf is F�1(u) ¼ τ � [1 � (1 � u)1/θ] (b) E(X) ¼ 16, �x will vary

135. (a) c ¼ 1.5 (c) 15,000 (d) μ ¼ 3/8, �x will vary (e) P̂ M < :1ð Þ ¼ :8760 (answers will vary)

137. (a) x ¼ G�1(u) ¼ �ln(1 � u) (b)
ffiffiffiffiffiffiffiffiffiffi
2e=π

p � 1:3155 (c) ~13,155

141. (a) .4 (b) .6 (c) F(x) ¼ x/25 for 0 � x � 25, ¼ 0 for x < 0, ¼ 1 for x > 25 (d) 12.5, 7.22

143. (b) F(x) ¼ 1 � 16/(x + 4)2 for x > 0, ¼ 0 for x � 0 (c) .247 (d) 4 years (e) 16.67

145. (a) .6568 (b) 41.56 V (c) .3197

147. (a) .0003 (exact: .00086) (b) .0888 (exact: .0963)
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149. (a) 68.03 dB, 122.09 dB (b) .3204 (c) .7642, because the lognormal distribution is not symmetric

151. (a) F(x) ¼ 1.5(1 � 1/x) for 1 � x � 3,¼ 0 for x < 1,¼ 1 for x > 3 (b) .9, .4 (c) 1.648 s (d) .553 s (e) .267 s

153. (a) 1.075, 1.075 (b) .0614, .333 (c) 2.476 mm

155. (b) $95,600, .3300

157. (b) F(x) ¼ .5e2x for x < 0, ¼ 1 � .5e�2x for x � 0 (c) .5, .665, .256, .670

159. (a) k ¼ (α � 1)5α�1, α > 1 (b) F(x) ¼ 1 � (5/x)α�1 for x � 5 (c) 5(α � 1)/(α � 2), α > 2

161. (b) .4602, .3636 (c) .5950 (d) 140.178 MPa

163. (a) Weibull, with α ¼ 2 and β ¼ ffiffiffi
2

p
σ (b) .542

165. .5062

171. (a) 710, 84.423, .684 (b) .376

Chapter 4

1. (a) .20 (b) .42 (c) .70 (d) pX(x) ¼ .16, .34, .50 for x ¼ 0, 1, 2; pY( y) ¼ .24, .38, .38 for y ¼ 0, 1, 2; .50 (e) no

3. (a) .15 (b) .40 (c) .22 (d) .17, .46 (e) p1(x1) ¼ .19, .30, .25, .14, .12 for x1 ¼ 0, 1, 2, 3, 4 (f) p2(x2) ¼ .19, .30,

.28, .23 for x2 ¼ 0, 1, 2, 3 (g) no

5. (a) .0305 (b) .1829 (c) .1073

7. (a) .054 (b) .00018

9. (a) .030 (b) .120 (c) .300 (d) .380 (e) no

11. (a) k ¼ 3/380,000 (b) .3024 (c) .3593 (d) fX(x) ¼ 10kx2 + .05 for 20 � x � 30 (e) no

13. (a) p x; yð Þ ¼ e�μ1�μ2 μ x
1
μ y
2

x!y! (b) e�μ1�μ2 1þ μ1 þ μ2½ � (c) e�μ1�μ2

m! μ1 þ μ2ð Þm
15. (a) f(x, y) ¼ e�x�y for x, y � 0 (b) .400 (c) .594 (d) .330

17. (a) F( y) ¼ (1 � e�λy) + (1 � e�λy)2 � (1 � e�λy)3 for y > 0, f( y) ¼ 4λe�2λy �3λe�3λy for y > 0 (b) 2/3λ

19. (a) .25 (b) 1/π (c) 2/π (d) f X xð Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
r2�x2

p
πr2 for �r � x � r, fY( y) ¼ fX( y), no

21. 1/3

23. (a) .11 (b) pX(x) ¼ .78, .12, .07, .03 for x ¼ 0, 1, 2, 3; pY( y) ¼ .77, .14, .09 for y ¼ 0, 1, 2 (c) no (d) 0.35,

0.32 (e) 95.72

25. .15

27. L2

29. .25 h, or 15 min

31. �2/3

33. (a) �3.20 (b) �.207

35. (a) .238 (b) .51

37. (a) Var(h(X, Y )) ¼ Ð Ð
[h(x, y)]2 � f(x, y)dA � [

Ð Ð
h(x, y) � f(x, y)dA]2 (b) 13.34

43. (a) 87,850, 4370.37 (b) mean yes, variance no (c) .0027

45. .2877, .3686

47. .0314

49. (a) 45 min (b) 68.33 (c) �1 min, 13.67 (d) �5 min, 68.33

51. (a) 50, 10.308 (b) .0075 (c) 50 (d) 111.5625 (e) 131.25

53. (a) .9616 (b) .0623

55. (a) E(Yi) ¼ 1/2, E(W ) ¼ n(n + 1)/4 (b) Var(Yi) ¼ 1/4, Var(W ) ¼ n(n + 1)(2n + 1)/24

57. 10:52.76 a.m.

59. (a) mean ¼ 0, sd ¼ ffiffiffi
2

p

61. (a) X ~ Bin(10, 18/38) (b) Y ~ Bin(15, 18/38) (c) X + Y ~ Bin(25, 18/38) (f) no

65. (a) α ¼ 2, β ¼ 1/λ (c) gamma, α ¼ n, β ¼ 1/λ

67. (a) .5102 (b) .000000117
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69. (a) x2/2, x4/12 (b) f(x, y) ¼ 1/x2 for 0 < y < x2 < 1 (c) f Y yð Þ ¼ 1=
ffiffiffi
y

p �1 for 0 < y < 1

71. (a) pX(x) ¼ 1/10 for x ¼ 0, 1, . . ., 9; p(y|x) ¼ 1/9 for y ¼ 0, . . ., 9 and y 6¼ x; p(x, y) ¼ 1/90 for x, y ¼ 0,

1, . . ., 9 and y 6¼ x (b) 5 � x/9

73. (a) fX(x) ¼ 2x, 0 < x < 1 (b) f(y|x) ¼ 1/x, 0 < y < x (c) .6 (d) no (e) x/2 (f) x2/12

75. (a) p x; yð Þ ¼ 2!
x!y! 2�x�yð Þ! :3ð Þx :2ð Þy :5ð Þ2�x�y

(b) X ~ Bin(2, .3), Y ~ Bin(2, .2) (c) YjX ¼ x ~ Bin(2 � x, .2/.7)

(d) no (e) (4 � 2x)/7 (f) 10(2 � x)/49

77. (a) x/2, x2/12 (b) f(x, y) ¼ 1/x for 0 < y < x < 1 (c) fY( y) ¼ �ln( y) for 0 < y < 1

79. (a) .6x, .24x (b) 60 (c) 60

81. 176 lbs, 12.68 lbs

83. (a) 1 + 4p, 4p(1 � p) (b) $2598, 16,158,196 (c) 2598(1 + 4p),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16518196þ 93071200p� 26998416p2

p
(d) $2598 and $4064 for p ¼ 0; $7794 and $7504 for p ¼ .5; $12,990 and $9088 for p ¼ 1

85. (a) 12 cm, .01 cm (b) 12 cm, .005 cm (c) the larger sample

87. (a) .9772, .4772 (b) 10

89. 43.29 h

91. .9332

93. (a) .8357 (b) no

95. (a) .1894 (b) .1894 (c) 621.5 gallons

97. (a) .0968 (b) .8882

99. .9616

101. 1= �X

103. (a) f y1; y2ð Þ ¼ 1
4π e

� y2
1
þy2

2ð Þ=4 (b) f Y1
y1ð Þ ¼ 1ffiffiffiffi

4π
p e�y2

1
=4 (c) yes

105. (a) y2 for 0 � y � 1 and y(2 � y) for 1 < y � 2 (b) 2(1 � w) for 0 � w � 1

107. 4y3[ln(y3)]
2 for 0 < y3 < 1

111. (a) N(984, 197.45) (b) .1379 (c) 1237

113. (a) N(158, 8.72) (b) N(170, 8.72) (c) .4090

115. (a) .8875x + 5.2125 (b) 111.5775 (c) 10.563 (d) .0951

117. (a) 2x � 10 (b) 9 (c) 3 (d) .0228

119. (a) .1410 (b) .1165

121. (a) R tð Þ ¼ e�t2 (b) .1054 (c) 2t (d) 0.886 thousand hours

123. (a) R(t) ¼ 1 � .125t3 for 0 � t � 2, ¼ 0 for t > 2 (b) 3t2/(8 � t3) (c) undefined

125.
(a) parallel (b) R tð Þ ¼ 1� 1� e�t2

	 
4

(c) h tð Þ ¼ 8te�t2 1�e�t2
� �3

1� 1�e�t2ð Þ4
127. (a) [1 � (1 � R1(t))(1 � R2(t))][1 � (1 � R3(t))(1 � R4(t))][1 � (1 � R5(t))(1 � R6(t))] (b) 70 h

129. (a) R tð Þ ¼ e�α t�t2= 2β½ �ð Þ for t � β, ¼ e� αβ/2 for t > β (b) f tð Þ ¼ α 1� t
β

	 

e�α t�t2= 2β½ �ð Þ

133. (a) 5y4/105 for 0 < y < 10, 8.33 min (b) 6.67 min (c) 5 min (d) 1.409 min

135. (a) .0238 (b) $2,025

137. n!Γ iþ 1=θð Þ
i� 1ð Þ!Γ nþ 1=θ þ 1ð Þ,

n!Γ iþ 2=θð Þ
i� 1ð Þ!Γ nþ 2=θ þ 1ð Þ �

n!Γ iþ 1=θð Þ
i� 1ð Þ!Γ nþ 1=θ þ 1ð Þ

� �2
139. E(Yk+1) ¼ η

143. (b) P̂ X � 1, Y � 1ð Þ ¼ :4154 (answers will vary), exact ¼ .42 (c) mean � 0.4866, sd � 0.6438 (answers

will vary)

145. (b) 60,000 (c) 7.0873, 1.0180 (answers will vary) (d) .2080 (answers will vary)

147. (a) fX(x) ¼ 12x(1 � x2) for 0 � x � 1, f(y|x) ¼ 2y/(1 � x)2 for 0 � y � 1 � x (c) we expect 16/9
candidates per accepted value, rather than 6

149. (a) pX(100) ¼ .5 and pX(250) ¼ .5 (b) p(y|100) ¼ .4, .2, .4 for y ¼ 0, 100, 200; p(y|250) ¼ .1, .3, .6 for

y ¼ 0, 100, 200

151. (a) N(μ1, σ1), N(μ2 + ρσ2/σ1[(x � μ1)], σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
)

153. (b) μ̂ ¼ 196:6193 h, standard error ¼ 1.045 h (answers will vary) (c) .9554, .0021 (answers will vary)
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155. fT(t) ¼ e� t/2 � e� t for t > 0

157. (a) k ¼ 3/81,250 (b) fX(x) ¼ k(250x � 10x2) for 0 � x � 20, ¼ k(450x � 30x2 + .5x3) for 20 � x � 30;

fY( y) ¼ fX( y); not independent (c) .355 (d) 25.969 lb (e) �32.19, �.894 (f) 7.66

159. t ¼ E(X + Y) ¼ 1.167

163. (c) p ¼ 1, because μ < 1; p ¼ 2/3 < 1, because μ > 1

165. (a) F(b, d) � F(a, d) � F(b, c) + F(a, c)
(b) F(10,6) � F(4,6) � F(10,1) + F(4,1); F(b, d) � F(a � 1, d) � F(b, c � 1) + F(a � 1, c � 1)

(c) At each (x*, y*), F(x*, y*) is the sum of the probabilities at points (x, y) such that x � x* and y � y*.
The table of F(x, y) values is

x
100 250

200 :50 1

y 100 :30 :50
0 :20 :25

(d) F x; yð Þ ¼ :6x2yþ :4xy3, 0 � x � 1; 0 � y � 1; F x; yð Þ ¼ 0, x � 0;
F x; yð Þ ¼ 0, y � 0;
F x; yð Þ ¼ :6x2 þ :4x, 0 � x � 1, y > 1;
F x; yð Þ ¼ :6yþ :4y3, x > 1, 0 � y � 1;
F x; yð Þ ¼ 1, x > 1, y > 1

P :25 � x � :75, :25 � y � :75ð Þ ¼ :23125

(e) F x; yð Þ ¼ 6x2y2, xþ y � 1, 0 � x � 1; 0 � y � 1, x � 0, y � 0

F x; yð Þ ¼ 3x4 � 8x3 þ 6x2 þ 3y4 � 8y3 þ 6y2 � 1, xþ y > 1, x � 1, y � 1

F x; yð Þ ¼ 0, x � 0; F x; yð Þ ¼ 0, y � 0;
F x; yð Þ ¼ 3x4 � 8x3 þ 6x2, 0 � x � 1, y > 1

F x; yð Þ ¼ 3y4 � 8y3 þ 6y2, 0 � y � 1, x > 1

F x; yð Þ ¼ 1, x > 1, y > 1

167. (a) 2x, x (b) 40 (c) 100

169. Undefined, � 0

171. 2

1� 1000tð Þ 2� 1000tð Þ, 1500 h

173. Not valid for 75th percentile, but valid for 50th percentile;

sum of percentiles ¼ (μ1 + zσ1) + (μ2 + zσ2) ¼ μ1 + μ2 + z(σ1 + σ2),

percentile of sums ¼ μ1 þ μ2ð Þ þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
175. (a) 2360, 73.7 (b) .9713

177. .9686

179. .9099

181. .8340

183.
(a)

σ2W
σ2W þ σ2E

(b) .9999

185. 26, 1.64

187. (a) g(y1, yn) ¼ n(n � 1)[F(yn) � F(y1)]
n � 2f(y1)f(yn) for y1 < yn

(b) f(w1, w2) ¼ n(n � 1)[F(w1 + w2) � F(w1)]
n � 2f(w1)f(w1 + w2),

f W2
w2ð Þ ¼ n n� 1ð Þ

ð1
�1

F w1 þ w2ð Þ � F w1ð Þ½ �n�2f w1ð Þf w1 þ w2ð Þdw1

(c) n(n � 1)w2
n � 2(1 � w2) for 0 � w2 � 1

191. (a) 10/9 (b) 10/8 (c) 1 + Y2 + . . . + Y10, 29.29 boxes (d) 11.2 boxes

Chapter 5

1. (a) �x ¼ 113:73 (b) ex ¼ 113 (c) s ¼ 12.74 (d) .9091 (e) s=�x ¼ 11:2

3. (a) �x ¼ 1:3481 (b) �x ¼ 1:3481 (c) �xþ 1:28s ¼ 1:7814 (d) .6736
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5. θ̂ 1 ¼ N �X ¼ 1, 703, 000, θ̂ 2 ¼ τ � N �D ¼ 1, 591, 300, θ̂ 3 ¼ τ � �X
�Y
¼ 1, 601, 438:281

7. (a) 120.6 (b) 1,206,000 (c) .80 (d) 120

9. (a) �X; �x ¼ 2:11 (b)
ffiffiffi
μ

p
=

ffiffiffi
n

p
, .119

11. (b) nλ/(n � 1) (c) n2λ2/(n � 1)2(n � 2)

13. (b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1q1=n1 þ p2q2=n2

p
(c) with p̂ 1 ¼ x1=n1 and p̂ 2 ¼ x2=n2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1q̂ 1=n1 þ p̂ 2q̂ 2=n2

p
(d) �.245 (e) .041

17. (a) ∑ Xi
2/2n (b) 74.505

19. (b) .444

21. (a) p̂ ¼ 2Y=n� :3; .2 (c) (10/7)Y/n � 9/70

23. (a)
ffiffi
n

p
pþ1=2ffiffi
n

p þ1
,

p 1�pð Þffiffi
n

p þ1ð Þ2,
1

4
ffiffi
n

p þ1ð Þ2; the MSE does not depend on p (b) when p is near .5, the MSE from part (a) is

smaller; when p is near 0 or 1, the usual estimator has lower MSE

25. (a) p̂ ¼ x=n ¼ :15 (b) yes (c) .4437

27. �x, �y, �x� �y

29. p̂ ¼ r=x ¼ :15, yes

31.
(a) θ̂ ¼

X
X2
i =2n ¼ 74:505, yes (b) η̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln :5ð Þθ̂

q
¼ 10:163

33.
(a) θ̂ ¼ n

�Σ ln 1�xi=τð Þ (b) θ � 1ð Þ
Xn
i¼1

xi
τ � xi

¼ n, subject to τ > max(xi)

35. λ̂ ¼ nXn

i¼1
Yi=tið Þ

37. (a) 2.228 (b) 2.131 (c) 2.947 (d) 4.604 (e) 2.492 (f) ~2.715

39. (a) A normal probability plot of these 20 values is quite linear. (b) (23.79, 26.31) (c) yes

41. (a) (357.38, 384.01) (b) narrower

43. (a) Based on a normal probability plot, it is reasonable to assume the sample observations came from a

normal distribution. (b) (430.51, 446.08); 440 is plausible, 450 is not

45. Interval (c)

47. 26.14

49. (c) (12.10, 31.70)

51. (a) yes (b) no (c) no (d) yes (e) no (f) yes

53. Using Ha: μ < 100 results in the welds being believed in conformance unless proved otherwise, so the

burden of proof is on the nonconformance claim

55. (a) reject H0 (b) reject H0 (c) don’t reject H0 (d) reject H0 (e) don’t reject H0

57. (a) .040 (b) .018 (c) .130 (d) .653 (e) <.005 (f) ~.000

59. (a) .0778 (b) .1841 (c) .0250 (d) .0066 (e) .5438

61. (a) H0: μ ¼ 10 versus Ha: μ < 10 (b) reject H0 (c) don’t reject H0 (d) reject H0

63. (a) no; no, because n ¼ 49 (b) H0: μ ¼ 1.0 versus Ha: μ < 1.0, z ¼ �5.79, reject H0, yes

65. H0: μ ¼ 200 versus Ha: μ > 200, t ¼ 1.19 at ll df, P-value ¼ .128, do not reject H0

67. H0: μ ¼ 3 versus Ha: μ 6¼ 3, t ¼ �1.759, P-value ¼ .082, reject H0 at α ¼ .10 but not at α ¼ .05

69. H0: μ ¼ 360 versus Ha: μ > 360, t ¼ 2.24 at 25 df, P-value ¼ .018, reject H0, yes

71. H0: μ ¼ 15 versus Ha: μ < 15, z ¼ �6.17, P-value � 0, reject H0, yes

73. H0: σ ¼ .05 versus Ha: σ < .05. Type I error: Conclude that the standard deviation is <.05 mm when it is

really equal to .05 mm. Type II error: Conclude that the standard deviation is .05 mm when it is really <.05

75. Type I: saying that the plant is not in compliance when in fact it is. Type II: conclude that the plant is in

compliance when in fact it isn’t

77. (.224, .278)

79. (.496, .631)

81. (.225, .275)

83. (b) 342 (c) 385

85. H0: p ¼ .15 versus Ha: p > .15, z ¼ 0.69, P-value ¼ .2451, fail to reject H0

(continued)
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87. (a) H0: p ¼ .25 versus Ha: p < .25, z ¼ �1.01, P-value ¼ .1562, fail to reject H0: the winery should switch
to screw tops (b) Type I: conclude that less than 25% of all customers find screw tops acceptable, when the

true percentage is 25%. Type II: fail to recognize that less than 25% of all customers find screw tops

acceptable when that’s actually true. Type II

89. (a)H0: p ¼ .2 versusHa: p > .2, z ¼ 1.27, P-value ¼ .1020, fail to rejectH0 (b) Type I: conclude that more

than 20% of the population of female workers is obese, when the true percentage is 20%. Type II: fail to

recognize that more than 20% of the population of female workers is obese when that’s actually true

91. H0: p ¼ .1, Ha: p > .1, z ¼ 0.74, P-value � .23, fail to reject H0

93. H0: p ¼ .1 versus Ha: p > .1, z ¼ 1.33, P-value ¼ .0918, fail to reject H0; Type II

95. H0: p ¼ .25 versus Ha: p < .25, z ¼ �6.09, P-value � 0, reject H0

97. (a) H0: p ¼ .2 versus Ha: p > .2, z ¼ 0.97, P-value ¼ .166, fail to reject H0, so no modification appears

necessary (b) .9974

99. (a) Gamma(9, 5/3) (b) Gamma(145, 5/53) (c) (11.54, 15.99)

101. B(490, 455), the same posterior distribution found in the example

103. Gamma(α + Σ xi, 1/(n + 1/β))

105. Beta(α + x, β + n � x)

107. n/∑kxk ¼ .0436

109. No: E σ̂ 2ð Þ ¼ σ2=2

111. (a) expected payoff ¼ 0 (b) θ̂ ¼ Σxiþ2y
Σxiþ2n

113. (a) The pattern of points in a normal probability plot (not shown) is reasonably linear, so, yes, normality is

plausible. (b) (33.53, 43.79)

115. (.1295, .2986)

117. (a) A normal probability plot lends support to the assumption that pulmonary compliance is normally

distributed. (b) (196.88, 222.62)

119. (a) (.539, .581) (b) 2401

121.
(a) N(0, 1) (b)

x1x2�1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1
þx2

2
� 1:96ð Þ2

p
x2
2
� 1:96ð Þ2 provided x1

2 + x2
2 � (1.96)2

123. (a) 90.25% (b) at least 90% (c) at least 100(1 � kα)%

125. (a) H0: μ ¼ 2150 versus Ha: μ > 2150 (b) t ¼ �x� 2150ð Þ= s=
ffiffiffi
n

pð Þ (c) 1.33 (d) .107 (e) fail to reject H0

127. H0: μ ¼ 29.0 versus Ha: μ > 29.0, t ¼ .7742, P-value ¼ .232, fail to reject H0

129. H0: μ ¼ 9.75 versus Ha: μ > 9.75, t ¼ 4.75, P-value � 0. The condition is not met.

131. H0: μ ¼ 1.75 versus Ha: μ 6¼ 1.75, t ¼ 1.70, P-value ¼ .102, do not reject H0; the data does not contradict

prior research

133. H0: p ¼ .75 versus Ha: p < .75, z ¼ �3.28, P-value ¼ .0005, reject H0

135. (a) H0: p � .02 versus Ha: p > .02; with X ~ Bin(200, .02), P-value ¼ P(X � 17) ¼ 7.5 	 10�7; reject H0

here and conclude that the NIST benchmark is not satisfied (b) .2133

137. H0: μ ¼ 4 versus Ha: μ > 4, z ¼ 1.33, P-value ¼ .0918 > .02, fail to reject H0

Chapter 6

1. {cooperative, competitive}; with 1 ¼ cooperative and 2 ¼ competitive, p11 ¼ .6, p12 ¼ .4, p22 ¼ .7,

p21 ¼ .3

3. (a) {full, part, broken} (b) with 1 ¼ fill, 2 ¼ part, 3 ¼ broken, p11 ¼ .7, p12 ¼ .2, p13 ¼ .1, p21 ¼ 0,

p22 ¼ .6, p23 ¼ .4, p31 ¼ .8, p32 ¼ 0, p33 ¼ .2

5. (a) X1 ¼ 2 with prob. p and ¼ 0 with prob. 1 � p (b) 0, 2, 4

(c) P Xnþ1 ¼ 2y
��Xn ¼ x

� � ¼ x
y

� �
py 1� pð Þx�y

for y ¼ 0, 1, . . ., x
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7. (a) A son’s social status, given his father’s social status, has the same probability distribution as his social

status conditional on all family history; no

(b) The probabilities of social status changes (e.g., poor to middle class) are the same in every generation; no

9. (a) no (b) define a state space by pairs; probabilities from each pair into the next state

11.
(a)

:90 :10
:11 :89

� �
(b) .8210, .5460 (c) .8031, .5006

13. (a) Willow City: P(S ! S) ¼ .988 > .776 (b) .9776, .9685 (c) .9529

15.
(a)

:6 :4
:3 :7

� �
(b) .52 (c) .524 (d) .606

17. (a) .2740, .7747 (b) .0380 (c) 2.1, 2.2

19.

(a)

:1439 :2790 :2704 :1747 :1320
:2201 :3332 :2522 :1272 :0674
:1481 :2829 :2701 :1719 :1269
:0874 :2129 :2596 :2109 :2292
:0319 :1099 :1893 :2174 :4516

266664
377775 (b) .0730 (c) .1719

21. (a) .0608, .0646, .0658 (b) .0523, .0664, .0709, .0725 (c) they increase to .2710, .1320, .0926, .0798

23. (a) .525 (b) .4372

25.
(a)

:96 :04
:05 :95

� �
(b) .778 0’s, .222 1’s (c) .7081 0’s, .2919 1’s

27. (a) π ¼ [.80 .20] (b) P(X1 ¼ G) ¼ .816, P(X1 ¼ S) ¼ .184 (c) .8541

29. (a) π ¼ [0 1] (b) P(cooperative) ¼ .3, P(competitive) ¼ .7 (c) .39, .61

31. (a) no (b) yes

33. (a) (.3681, .2153, .4167) (b) .4167 (c) 2.72

35.

(a)

:7 :2 :1

0 :6 :4

:8 0 :2

264
375 (b) P2 has all nonzero entries (c) (8/15, 4/15, 1/5)

(d) 8/15 (e) 5

39. (a) π0 ¼ β/(α + β), π1 ¼ α/(α + β) (b) α ¼ β ¼ 0 ) the chain is constant; α ¼ β ¼ 1 ) the chain

alternates perfectly; α ¼ 0, β ¼ 1 ) the chain is always 0; α ¼ 1, β ¼ 0 ) the chain is always 1; α ¼ 0,

0 < β < 1 ) the chain eventually gets stuck at 0; 0 < α < 1, β ¼ 0 ) the chain eventually gets stuck at 1;

0 < α < 1 and β ¼ 1 or α ¼ 1 and 0 < β < 1 ) the chain is regular, and the answers to (a) still hold

41.

(a)

00

01

10

11

1� αð Þ2 α 1� αð Þ α 1� αð Þ α2

β 1� αð Þ 1� αð Þ�1� β
�

αβ α 1� βð Þ
β 1� αð Þ αβ 1� αð Þ�1� β

�
α 1� βð Þ

β2 β 1� βð Þ β 1� βð Þ 1� βð Þ2

266664
377775

(b)
β2

αþ βð Þ2 ,
αβ

αþ βð Þ2 ,
αβ

αþ βð Þ2 ,
α2

αþ βð Þ2 (c)
α2

αþ βð Þ2
45.

(a)

:25 :75 0 0

0 :25 :75 0

0 0 :25 :75

0 0 0 1

266664
377775 (b) .4219, .7383, .8965 (c) 4 (d) 1; no

47. (a) states 4 and 5

(b)
k 1 2 3 4 5 6 7 8 9 10

P(T1 £ k) 0 .46 .7108 .8302 .9089 .9474 .9713 .9837 .9910 .9949

(c)
k 1 2 3 4 5 6 7 8 9 10

P(T1 = k) 0 .46 .2508 .1194 .0787 .0385 .0239 .0124 .0073 .0039

μ � 3.1457

(d) 3.2084 (e) .3814, .6186

(continued)
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49.

(a)

:5 :5 0 0 0

:5 0 :5 0 0

:5 0 0 :5 0

:5 0 0 0 :5
0 0 0 0 1

266664
377775, 4 is an absorbing state

(b) P(T0 � k) ¼ 0 for k ¼ 1, 2, 3; the probabilities for k ¼ 4, . . ., 15 are .0625, .0938, .1250, .1563, .1875,

.2168, .2451, .2725, .2988, .3242, .3487, .3723

(c) .2451

(d) P(T0 ¼ k) ¼ 0 for k ¼ 1, 2, 3; the probabilities for k ¼ 4, . . ., 15 are .0625, .03125, .03125, .03125,

.03125, .0293, .0283, .0273, .0264, .0254, .0245, .0236; μ � 3.2531,

σ � 3.9897 (e) 30

51. μcoop ¼ 4.44, μcomp ¼ 3.89; cooperative

53.

(a)

0

1

2

3

4

1 0 0 0 0

1� p 0 p 0 0

0 1� p 0 p 0

0 0 1� p 0 p
0 0 0 0 1

266664
377775

(b) for x0 ¼ $1, $2, $3:
2p2 þ 1

2p2 � 2pþ 1
,

2

2p2 � 2pþ 1
,
2p2 � 4pþ 3

2p2 � 2pþ 1

(c) for x0 ¼ $1, $2, $3:
p3

2p2 � 2pþ 1
,

p2

2p2 � 2pþ 1
,
p3 � p2 þ p

2p2 � 2pþ 1

55. 3.4825 generations

59. (c) (2069,0, 2079.8) (d) (.5993, .6185) (answers will vary)

61. (a) P(Xn+1 ¼ 10 | Xn ¼ x) ¼ .4, P(Xn+1 ¼ 2x | Xn ¼ x) ¼ .6 (b) mean � $47.2 billion, sd � $2.07 trillion

(c) ($6.53 billion, $87.7 billion) (d) ($618.32 million, $627.90 million); easier

63. (a) ($5586.60, $5632.3) (b) ($6695.50, $6773.80) (answers will vary)

65. (b) .9224 (answers will vary) (c) (6.89, 7.11) (answers will vary)

67.

(a)

0 :5 0 0 0 :5
:5 0 :5 0 0 0

0 :5 0 :5 0 0

0 0 :5 0 :5 0

0 0 0 :5 0 :5
:5 0 0 0 :5 0

26666664

37777775 (b) no (c) π¼ 1
6

1
6

1
6

1
6

1
6

1
6

 �
(d) 6 (e) 9

69.

(a)

0 1 0 0 0 0
1

3
0

1

3

1

3
0 0

0
1

3
0

1

3

1

3
0

0
1

2

1

2
0 0 0

0 0
1

2
0 0

1

2

0 0 0 0 1 0

2666666666664

3777777777775
(b) all entries of P6 are positive

(c) 1/12, 1/4, 1/4, 1/6, 1/6, 1/12 (d) 1/4 (e) 12

71.

(a)

0

1

2

3

4

5

0 0 0 0 0 1

:3 :7 0 0 0 0

0 :3 :7 0 0 0

0 0 :3 :7 0 0

0 0 0 :3 :7 0

0 0 0 0 :3 :7

26666664

37777775 (b) .0566, .1887, .1887, .1887, .1887, .1887

(c) 17.67 weeks (including the one week of shipping)

73. (a) 2 seasons (b) .3613 (c) 15 seasons (d) 6.25 seasons

75. (a) p1 ¼ [0.3168 0.1812 0.2761 0.1413 0.0846];

p2 ¼ [0.3035 0.1266 0.2880 0.1643 0.1176];

p3 ¼ [0.2908 0.0918 0.2770 0.1843 0.1561]

(b) 35.7 years, 11.9 years, 9.2 years, 4.3 years

(c) 16.6 years

(continued)
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77.

(a)

0

1

2

3

pd

tbr

0 1 0 0 0 0

0 0 :959 0 :041 0

0 0 0 :987 :013 0

0 0 0 0 :804 :196
0 0 0 0 1 0

0 0 0 0 0 1

26666664

37777775 (c) 3.9055 weeks (d) .8145

(e) payments are always at least 1 week late; most payments are made at the end of 3 weeks

79.
(a) P1 ¼ P3 ¼ :98 :02

:02 :98

� �
, P2 ¼ :97 :03

:03 :97

� �
, P4 ¼ P5 ¼ :99 :01

:01 :99

� �
(b) .916

81. (a) [3259 22,533 19,469 26,066 81,227 16,701 1511 211,486 171,820 56,916]

(b) [2683 24,119 21,980 27,015 86,100 15,117 1518 223,783 149,277 59,395];

[2261 25,213 24,221 27,526 89,397 13,926 1524 233,533 131,752 61,636];

�44%, +24%, +46%, +12%, +20%, �26%, +1.3%, +19%, +34%, +13.4%

(c) [920 23,202 51,593 21,697 78,402 8988 1445 266,505 65,073 93,160]

Chapter 7

1. (a) Continuous-time, continuous-space (b) continuous-time, discrete-space (c) discrete-time, continuous-

space (d) discrete-time, discrete-space

7. (b) No: at time t ¼ .25, x0(.25) ¼ �cos(π/2) ¼ 0 and x1(.25) ¼ cos(π/2) ¼ 0

(c) X(0) ¼ �1 with probability .8 and +1 with probability .2; X(.5) ¼ +1 with probability .8 and �1 with

probability .2

9. (a) discrete-space (c) Xn ~ Bin(n, 18/38)

11. (a) 0 (b) 1/2

13. CXX(t, s) ¼ Var(A)cos(ω0t + θ0)cos(ω0s + θ0), RXX(t, s) ¼ v0
2 + v0E[A][cos(ω0t + θ0) + cos

(ω0s + θ0)] + E[A2]cos(ω0t + θ0)cos(ω0s + θ0)

15. (b) N(s) > 0, because covariance > 0 (c) ρ ¼ e�2 (d) Gaussian, mean 0, variance 1.73

19. (a) μS(t) + μN(t) (b) RSS(t, s) + μS(t)μN(s) + μN(t)μS(s) + RNN(t, s)

(c) CSS(t, s) + CNN(t, s) (d) σ2S tð Þ þ σ2N tð Þ
23. (a) (1/2)sin(ω0(s � t)) (b) not orthogonal, not uncorrelated, not independent

25. (a) μV (b) E[V2] + (A0
2/2)cos(ω0τ) (c) yes

27. (a) yes (b) no (c) yes (d) yes

29. no

31. μA + μB, CAA(τ) + CAB(τ) + CBA(τ) + CBB(τ), yes

33. (a) yes, because its autocovariance has periodic components (b) �42 (c) 50cos(100πτ) + 8cos(600πτ) + 49

(d) 107 (e) 58

35. yes: both the time average and ensemble average are 0

37. CXX(τ)/CXX(0)

41. (a) .0062 (b) 75þ 25 sin 2π
365

59� 150ð Þ� �
(c) 16δ[n � m] (d) no, and it shouldn’t be

43. (a) 18n/38, 360n/1444, 360 min(m, n)/1444, (360 min(m, n) + 324mn)/1444
(b) �10n/38, 36,000n/1444, 36,000 min(m, n)/1444, (36,000 min(n, m) + 100mn)/1444
(c) .3141

47. (a) μX (b) 1
4
2CXX m� n½ � þ CXX m� nþ 1½ � þ CXX m� n� 1½ �ð Þ (c) yes

(d) (CXX[0] + CXX[1])/2

49. (c) μ
1�α (d)

αm�nσ2

1�α2 (e) yes (f) αk

53. (a) .0993 (b) .1353 (c) 2

55. (a) .0516 (b) 1 � ∑ x ¼ 0
75e� 5050x/x ! (c) .9179 (d) 6 s (e) .8679

57. k/λ

59. (a) .0911 (b)
e3 t�sð Þ 3 t�sð Þ½ �n�m

n�mð Þ!
61. e� pλt

63. fY( y) ¼ 2λe� λy(1 � e� λy) for y > 0

67. (a) .0492 (b) .00255

(continued)

634 Answers to Odd-Numbered Exercises



71. pmf: N(t) ¼ 0 or 1 with probability 1/2 each for all t; mean ¼ .5, variance ¼ .25, CNN(τ) ¼ .25e�2λ|τ|,

RNN(τ) ¼ .25 + .25e�2λ|τ|

73. (a) .0038 (b) .9535

75. (a) yes (b) .3174 (c) .3174 (d) .4778

77. (a) E X tð Þ½ � ¼ 80þ 20 cos π
12

t� 15ð Þ� �
, Var(X(t)) ¼ .2t (b) .1251 (c) .3372 (d) .1818

79. (a) .3078 (b) .1074

81. (a) .1171 (b) .6376 (c) .0181, .7410

83. (a) yes (b) E[X(t)] ¼ 0, RXX(t, s) ¼ (N0/2)min(t, s), no

87. (a) 0 ¼ empty, 1 ¼ a person in stage 1, and 2 ¼ a person in stage 2; q0 ¼ λ, q1 ¼ λ1, q2 ¼ λ2;
q02 ¼ q21 ¼ q10 ¼ 0; q01 ¼ λ, q12 ¼ λ1, q20 ¼ λ2 (b) π ¼ (6/11, 2/11, 3/11)

(c) π ¼ (6/11, 3/11, 2/11) (d) π ¼ (1/7, 2/7, 4/7)

89. (a) q0 ¼ λ, q1 ¼ λ1, q2 ¼ λ2; q02 ¼ q10 ¼ 0; q01 ¼ λ, q12 ¼ λ1, q20 ¼ .8λ2, q21 ¼ .2λ2
(b) π ¼ (24/49, 10/49, 15/49) (c) π ¼ (24/49, 15/49, 10/49) (d) π ¼ (2/17, 5/17, 10/17)

(e) 1.25(1/λ1 + 1/λ2)

91. qi ¼ iβ, qi,i+1 ¼ iβ for i ¼ 1, . . ., N � 1

93. qi,i+1 ¼ λ for i � 0, qi,i�1 ¼ iβ for i � 1, qi ¼ λ + iβ for i � 1

95. π00 ¼ α1β1
Σ

, π01 ¼ α1β0
Σ

, π10 ¼ α0β1
Σ

, π11 ¼ α0β0
Σ

, where Σ ¼ α1β1 + α1β0 + α0β1 + α0β0;

1� π11 ¼ 1� α0β0
α1β1 þ α1β0 þ α0β1 þ α0β0

99. (a) 0 (b) CXX(t, s) ¼ 1 if floor(t) ¼ floor(s), ¼ 0 otherwise

101.
(a) 0, (1/3)cos(ωkτ) (b) 0, 13

Xn
k¼1

cos ωkτð Þ, yes

103.
(a) 0 (b) 1

2

Xn
k¼1

cos ωkτð Þ � pk (c) yes

105. (a) Sn denotes the total lifetime of the machine through its use of the first n rotors.

(b) μS[n] ¼ 125n; σ2S [n] ¼ 15, 625n; CSS[n, m] ¼ 15,625 min(n, m); RSS[n, m] ¼ 15,625[min(n, m) + nm]
(c) .5040

107. Yes

109. (a) e� λt (b) e� λt(1 + λt) (c) e� λε

111.
(a)

10 1� e�αt0ð Þ
αt0

(b)
2λ

α
1� e�αt0ð Þ

Chapter 8

1. F {RXX(τ)} ¼ sinc( f ), which is not � 0 for all f

3. (a) 250δ fð Þ þ
ffiffi
π

p
2
exp � π2 f 2

4	106

	 

(b) 240.37 W (c) 593.17 W

5. (a) 112,838 W (b) 108,839 W (c) RXX τð Þ ¼ 200, 000ffiffi
π

p exp �1012τ2
� �

7. (a) N0B (b) N0Bsinc(2Bτ)

9. (a) A0
2e� 2λ|τ| (b)

2λA2
0

λ2þ 2πfð Þ2 (c) A0
2 (d)

2A2
0

π arctan 2πð Þ
11. (a) 100(1 + e�1) � 136.8 W (b) 200

1þ 2πfð Þ2 1þ cos 2πfð Þ½ � (c) 126.34 W

13. μW(t) ¼ 0, RWW(τ) ¼ 2RXX(τ) � RXX(τ � d ) � RXX(τ + d ), SWW( f ) ¼ 2SXX( f )[1 � cos(2πfd)]
15. (a) Yes (b) Yes (c) SZZ( f ) ¼ SXX( f ) + SYY( f )

17. (b) SZZ( f ) ¼ SXX( f ) ★ SYY( f )

19. No, because PN ¼ 1
21. (a) SXX( f ) ¼ E[A2]SYY( f ) (b) S

cc
XX( f ) ¼ E[A2]SYY( f ) � (E[A]μY)

2δ( f ) (c) Yes; our “engineering
interpretation” of the elements of a psd are not valid for non-ergodic processes

23. (a) 2400sin(120,000τ) (b) 2400 W (c) 40/(40 + j2πf ) (d) 32/(1600 + (2πf )2) for |f| � 60 kHz (e) 0.399997W

(continued)
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25. (a) 0 (b) (1 � e�j2πf)/( j2πf ) (c) (N0/2)sinc
2( f ) (d) N0/2

27. (a) 100δ fð Þ þ 50

1þ 2πfð Þ2 (b) 125 W (c) 1

4þj2πfð Þ2 ,
1

16þ 2πfð Þ2ð Þ2
(d) 100δ fð Þ þ 50

1þ 2πfð Þ2
h i

� 1

16þ 2πfð Þ2ð Þ2 (e) 0.461 W

29. (a) (N0/2)e
�2α|f| (b) 2N0α

4α2þ4π2τ2 (c) N0/2α

33. (a) 2N0π2f2rect( f/2B) (b) N0

πτ3 2π2B2τ2 sin 2πBτð Þ þ 2πBτ cos 2πBτð Þ � sin 2πBτð Þ �
(c) 4N0π2B3/3

35. (a) RXX(τ) � RXX(τ) ★ h(τ) � RXX(τ) ★ h(�τ) + RXX(τ) ★ h(τ) ★ h(�τ)
(b) SXX( f )|1 � H( f )|2

37. (a) 1.17 MW (b) 250, 000δ fð Þ þ 60, 000 δ f � 35, 000ð Þ þ δ f þ 35, 000ð Þ½ � þ 8rect f
100, 000

	 

(c) same as part

(b) (d) 1.17 MW (e) 5000 W (f) 3000 W (g) SNRin ¼ 234, SNRout ¼ 390

41. 1� α2

1þ α2 � 2α cos 2πFð Þ
43. 1� e�20λ

1þ e�20λ � 2e�10λ cos 2πFð Þ
45.

1� π2

8
þ π2

4
tri 2Fð Þ

47. (b) Psinc(k/2)

49.
(a) Yn ¼ (Xn � M + 1 + . . . + Xn)/M (b)

1� e�j2πFM

M 1� e�j2πFð Þ (c) σ
2
M � ��k��
M2

for |k| ¼ 0, 1, . . ., M �1 and zero

otherwise
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discrete-time Fourier transform, 612

random sequences

and LTI systems, 591–593

and sampling, 593–594

E
Engineering functions, 609–610

Error(s)

estimated standard, 357

in hypothesis testing, 392–395

simulation of random events, 55

standard, 101

of mean, 69, 291

point estimation, 357

Type I, 393–395

Type II, 393–395

Estimated standard error, 357

Estimators, 354–356

Event(s)

complement, 4

compound, 3

definition, 3

De Morgan’s laws, 4

dependent, 43

disjoint, 5

independent, 43

intersection, 4

mutually exclusive, 5

probability of, 7

relations from set theory, 4–5

relative frequency, 10

simple, 3

simulation, 50

estimated/standard error, 55

precision, 55–56

RNG, 51–55

union, 4

venn diagrams, 6

Expected value, 83–85, 162–166, 255–256

of function, 86–87

linearity of, 87

properties, 256–257

Experiment

definition, 1

sample space of, 2–3

Exponential distribution, 187–190

and gamma distribution, 524–527

F
Fermat, Pierre de, xvii

Finite population correction factor, 117

Fisher, R.A., 366

Fourier transform, 611–612

discrete-time, 589, 612–613

G
Galton, Francis, 311

Gamma distribution, 190–192

calculations with software, 193

exponential and, 524–526

incomplete, 191

MGF, 193

standard, 191

Gates, Bill, 352

Gaussian/normal distribution, 172

binomial distribution, approximating, 183

calculations with software, 182

and discrete populations, 179–180

non-standardized, 175–178

normal MGF, 178–180

standard, 173–175

Gaussian processes, 535–536

Gaussian white noise, 570

Geometric distributions, 75

640 Index



negative, 117––120

Geometric random variable, 119

Gosset, William Sealy, 378

Gosset’s theorem, 378

H
Highpass filter, 581

Hoaglin, David, 373

Hypergeometric distribution, 114–117

Hypothesis testing

about population mean, 386

alternative, 387

errors in, 392–395

null, 387

population proportion, 403–405

power of test, 392–395

P-values and one-sample t test, 387–391
significance level,

software for, 395–396

statistical, 386

test procedures, 386–388

about population mean μ, 388–389
test statistic, 389

Type I error, 392–395

Type II error, 392–395

I
Ideal filters, 580–583

Impulse function, 610

Inclusion-exclusion principle, 13

Incomplete gamma function, 603

Independence, 43–44

events, 44–47

mutually, 46

Interval estimate, 376

Inverse CDF method, 221–224

Inverse DTFT, 612

Inverse Fourier transform, 611

J
Jointly wide-sense stationary, 508

Joint probability density function, 241–245

Joint probability distributions, 239

bivariate normal distribution, 309–311

conditional distributions, 311–312

multivariate normal distribution, 312

regression to mean, 312

with software, 313

conditional distributions, 277–279

and independence, 279–280

conditional expectation, 277–279

and variance, 280–281

correlation, 255–256, 259–262

vs. causation, 262
coefficient, 260

covariance, 255–259

dependent, 245

expected values, 255–256

properties, 256–257

independent random variables, 245–246

joint PDF, 241–245

joint PMF, 240–241

joint probability table, 240

Law of Large Numbers, 299–300

Laws of Total Expectation and Variance, 281–286

limit theorems (see Limit theorems)

linear combinations, properties, 264–277

convolution, 268

moment generating functions, 270–272

PDF of sum, 268–270

theorem, 265

marginal probability density functions, 243

marginal probability mass functions, 241

multinomial distribution, 247

multinomial experiment, 247

order statistics, 326

distributions of Yn and Y1, 326–328
ith order statistic distribution, 328–329

joint distribution of n order statistics, 329–331

of random variables, 246–249

reliability (see Reliability)
simulations methods (see Simulations methods)

transformations of variables, 302–307

Joint probability mass function, 240–241

K
Kahneman, Daniel, xxiii

Karlin, Samuel, 449, 450

L
Law of Large Numbers, 299–300

Law of Total Probability, 34–35

Laws of Total Expectation, 281–286

Laws of Variance, 281–286

Likelihood function, 368

Limit theorems

CLT, 293–297

applications of, 297–298

independent and identically distributed, 290

random samples, 290–293

standard error of mean, 291

Linear combinations, properties, 264–277

convolution, 268

moment generating functions, 270–272

PDF of sum, 268–270

theorem, 265

Linear, time-invariant (LTI) system, 576–577

butterworth filters, 583

ideal filters, 580–583

impulse response, 576

power signal-to-noise ratio, 584

random sequences and, 591–593

signal plus noise, 583–586

statistical properties of, 577–580

transfer function, 576

Lognormal distributions, 199–201

Lowpass filter, 581, 582

LTI system See Linear, time-invariant (LTI) system

Index 641



M
Marginal probability density functions, 243

Marginal probability mass functions, 241

Markov, Andrey A., 423

Markov chains, 423

with absorbing states, 457–458

canonical form, 467

Chapman–Kolmogorov Equations, 431–436

conditional probabilities, 426

continuous-time, 425

discrete-space, 424

discrete-time, 425

eventual absorption probabilities, 466–469

finite-state, 424

initial distribution, specifying, 440–443

initial state, 424

irreducible chains, 453–454

mean first passage times, 465–466

mean time to absorption, 461–465

one-step transition probabilities, 426

periodic chains, 453–454

process of, 544

birth and death process, 551

continuous-time, 544–546

explicit form of transition matrix, 554–555

generator matrix, 552

infinitesimal parameters, 548

instantaneous transition rates, 547

long-run behavior, 552–554

sojourn times, transition and, 548–551

time homogeneous, 544

transition probabilities, 546

property, 423–428

regular, 446–448

simulation, 472–480

states, 424

state space, 424

steady-state distribution and, 450–451

Steady-State Theorem, 448–449

time-homogeneous, 425

time to absorption, 458–461

transition

matrix, 431–432

probabilities, 426, 432–436

Matlab

probability plots in, 213

and R commands, xviii, 619

simulation implemented in, 134–135

Maximum likelihood estimation (MLE), 366–373

Mean

and autocorrelation functions, 496–504

first passage times, 465–466

recurrence time, 450

and variance functions, 496–499

Mean square

sense, 512

value, 509

Mean time to absorption (MTTA), 461–465

Mean value See Expected value

Memoryless property, 189

Mendel, Gregor, 442

Minimum variance unbiased estimator (MVUE), 359

Moment generating functions (MGF), 125–126, 166–168

of common distributions, 128–129

gamma distributions, 193

normal, 178–179

obtaining moments from, 127–128

Moments, 123–125

from MGF, 127–128

skewness coefficient, 124

MTTA See Mean time to absorption (MTTA)

Multinomial distribution, 247

Multinomial experiment, 247

Multiplication rule, 32–34

Multivariate normal distribution, 312

N
Negative binomial distributions

alternative definition, 120

and geometric distributions, 117–120

Notch filter See Bandstop filter

Nyquist rate, 594

Nyquist sampling theorem, 594

O
Olofsson, Peter, xxv

o(h) notation, 610
Order statistics, 326

distributions of Yn and Y1, 326–328
ith order statistic distribution, 328–329

joint distribution of the n order statistics, 329–331

P
Pascal, Blaise, xvii

PDF See Probability density function (PDF)

Peebles, Peyton, 583

Periodic chains, 453–454

Permutations, 20–22

PMF See Probability mass function (PMF)

Point estimation, 352

accuracy and precision, 357–359

estimated standard error, 357

estimates and estimators, 354–356

parameter, 352

sample mean, 353

sample median, 353

sample range, 353

sample standard deviation, 353

sample variance, 353

standard error, 357

statistic, 352

unbiased estimator, 357

Poisson cumulative distribution function, 600

Poisson distribution, 107

with binomial distributions, 108

as limit, 107–110

mean and variance, 110

poisson process, 110–111

with software, 111

Poisson process, 110–111, 522–524

642 Index



alternative definition, 528–530

combining and decomposing, 526–528

exponential and gamma distributions, 524–526

independent increments, 522

intensity function, 530

non-homogeneous, 530–531

rate, 522

spatial, 530

stationary increments, 522

telegraphic process, 531–532

Population proportion

confidence intervals, 401–403

hypothesis testing, 403–405

score confidence interval, 401

software for inferences, 405

Power spectral density (PSD), 563

average/expected power, 564

cross-power spectral density, 572

in frequency band, 569–570

partitioning, 567–569

properties, 566–569

for two processes, 572–573

white noise processes, 570–572

Wiener–Khinchin Theorem, 565

Precision, 135–137

Principle of Unbiased Estimation, 359

Probability

Addition Rule, 12–13

application, xviii

to business, xix

to engineering and operations research, xx–xxii

to finance, xxii–xxiii

to life sciences, xix–xx

axioms, 7–9

Complement Rule, 11–12

conditional, 29–30

Bayes’ theorem, 35–37

definition, 30–32

Law of Total Probability, 34–35

multiplication rule, 32–34

counting methods

combinations, 22–25

fundamental principle, 18–19

k-tuple, 19
permutations, 20–22

tree diagrams, 19–20

coupon collector problem, xviii

definition, 1

De Morgan’s laws, 4

determining systematically, 13

development of, xvii

events, 3, 7

of eventual absorption, 466–469

in everyday life, xxiii–xxvii

experiment, 1

game theory, xvii

inclusion–exclusion principle, 13

independence, 43–44

events, 44–47

mutually, 46

interpretations, 7–11

outcomes, 14

properties, 7–9, 11–13

relations from set theory, 4–5

sample spaces, 1–2

simulation of random events, 51

estimated/standard error, 55

precision, 55–56

RNG, 51–55

software in, xviii

transition, 432–436

vectorization, 54

Probability density function (PDF)

continuous distribution, percentiles of, 156–157

for continuous variables, 148–152

and cumulative distribution functions, 147–148

joint, 241–245, 334–336

marginal PDF, 243

median of, 156

obtaining f(x) from F(x), 155–156
symmetric, 157

uniform distribution, 150

using F(x) to compute probabilities, 154–155

Probability distributions

continuous distributions, 617–619

cumulative, 75–78

discrete distributions, 615–616

for discrete random variables, 71–74

family of, 74

geometric distribution, 75

Matlab and R commands, 619

parameter of, 74–75

Probability histogram, 74

Probability mass function (PMF), 72, 240–241

joint, 332–334

marginal PMF, 241

view of, 78–79

Probability plots, 205–209

beyond normality, 211–212

departures from normality, 209–211

location and scale parameters, 211

in Matlab and R, 213

normal, 208

sample percentiles, 205–206

shape parameter, 211

PSD See Power spectral density (PSD)

P-values, 389–392

R
Random noise, 489

Random number generator (RNG), 51–55

Random process, 489

autocovariance/autocorrelation functions, 499–502

classification, 493

continuous-space process, 493

continuous-time processes, 493

discrete sequences, 518–519

discrete-space process, 493

discrete-time, 493, 516–519

ensemble, 490

Index 643



Random process (cont.)
independent, 502

joint distribution of, 502

mean and variance functions, 496–499

orthogonal, 502

poisson process (see Poisson process)

random sequence, 493

regarded as random variables, 493–494

sample function, 490

stationary processes, 504–508

types, 489–492

uncorrelated, 502

WSS (see Wide-sense stationary (WSS) processes)

Random variable (RV), 67

Bernoulli, 68

binomial distribution, 97–99

continuous, 70

definition, 68

discrete, 70

transformations of, 216–220

types, 69–70

Random walk, 518

R commands

Matlab and, xviii, 619

probability plots in, 213

simulation implemented in, 134–135

Regular Markov chains, 446–448

Reliability, 315

function, 315–317

hazard functions, 321–323

mean time to failure, 320

series and parallel designs, 317–319

simulations methods for, 338–339

RNG See Random number generator (RNG)

Ross, Sheldon, 227, 428

RV See Random variable (RV)

S
Sample mean

definition, 136

point estimation, 353

Sample median, 205, 326, 353

Sample space, 1–2

Sample standard deviation, 166, 353

Sample variance, 353

Sampling

interval, 593

random sequences and, 593–594

rate, 594

Score confidence interval, 401

SD See Standard deviation (SD)

Set theory, 4–5

Signal processing

discrete-time (see Discrete-time signal processing)

LTI systems, random processes and, 576–577

ideal filters, 580–583

signal plus noise, 583–586

statistical properties of, 577–580

power spectral density, 563–566

power in frequency band, 569–570

for processes, 572–573

properties, 566–569

white noise processes, 570–572

Simulation

bivariate normal distribution, 336–338

of discrete random variables, 131–134

implemented in R and Matlab, 134–135

of joint probability distributions/system reliability,

332–339

mean, standard deviation, and precision, 135–137

for reliability, 338–339

standard error of mean, 136

values from joint PDF, 334–336

values from joint PMF, 332–334

Standard deviation (SD), 135–137, 164

Chebyshev’s inequality, 89–90

definition, 88

function, 496

Standard error, 102

of mean, 136, 291

point estimation, 357

Standard normal CDF, 601–602

Standard normal random variable, 173–175

Stationary processes, 504–508

definition, 505

ergodic processes, 511–513

Statistical inference

Bayesian inference (see Bayesian inference)

Bayesian method, 352

CI (see Confidence interval (CI))
hypothesis testing (see Hypothesis testing)
maximum likelihood estimation, 366–373

point estimation (see Point estimation)

population proportion, inferences for

confidence intervals, 401–403

hypothesis testing, 403–405

score confidence interval, 401

software for inferences, 405

Steady-state distribution, 449–451

Steady-state probabilities, 451–453

Steady-State Theorem, 448–449

Step function, 76

Stochastic processes See Random process

T
Taylor, Howard M., 449, 450

t distribution
critical values for, 604
family, 377

properties, 377

tail areas of, 605–607

Thorp, Edward O., xvii, xxii

Transformations of random variable, 216–220

Transition matrix, 431–432

Transition probability

multi-step, 432–436

one-step, 426

Tree diagrams, 19–20

644 Index



Trigonometric identities, 609

t test, one-sample, 389–392

Tversky, Amos, xxiii

U
Uncorrelated random processes, 502

Uniform distribution, 150

V
Variance

Chebyshev’s inequality, 89–90

conditional expectation and, 280–281

definition, 88

functions, 496–499

Laws of Total Expectation and, 281–286

mean-square value, 90

properties, 90–91

shortcut formula, 90–91

Venn diagram, 5

Volcker, Paul, xxiii

W
Weibull, Waloddi, 196

Weibull distributions, 196–199

White noise processes, 570–572

Wide-sense stationary (WSS) processes, 504–508

autocorrelation ergodic, 513

dc power offset, 511

definition, 506

ergodic processes, 511–513

mean ergodic, 512

mean square

sense, 512

value, 508

properties, 508–511

time autocorrelation, 513

time average, 512–513

Wiener–Khinchin Theorem, 565, 572–573

Wiener process See Brownian motion process

Winkler, Robert, 11

Wood, Fred, 211

WSS processes See Wide-sense stationary (WSS)

processes

Z
z interval, one-proportion, 401
z test, one-proportion, 403

Index 645


	Preface
	Purpose
	Content
	Mathematical Level
	Recommended Coverage
	Acknowledgments
	A Final Thought

	Contents
	Introduction: Why Study Probability?
	Software Use in Probability
	Modern Application of Classic Probability Problems
	Applications to Business
	Applications to the Life Sciences
	Applications to Engineering and Operations Research
	Applications to Finance
	Probability in Everyday Life

	1: Probability
	1.1 Sample Spaces and Events
	1.1.1 The Sample Space of an Experiment
	1.1 DEFINITION
	1.1.2 Events
	1.1 DEFINITION
	1.1.3 Some Relations from Set Theory
	1.1 DE MORGAN´S LAWS
	1.1 DEFINITION
	1.1.4 Exercises: Section 1.1 (1-12)

	1.2 Axioms, Interpretations, and Properties of Probability
	1.2 AXIOM 1
	1.2 PROPOSITION
	1.2.1 Interpreting Probability
	1.2.2 More Probability Properties
	1.2 PROPOSITION
	1.2 ADDITION RULE
	1.2.3 Determining Probabilities Systematically
	1.2.4 Equally Likely Outcomes
	1.2.5 Exercises: Section 1.2 (13-30)

	1.3 Counting Methods
	1.3.1 The Fundamental Counting Principle
	1.3 PROPOSITION
	1.3 FUNDAMENTAL COUNTING PRINCIPLE
	1.3.2 Tree Diagrams
	1.3.3 Permutations
	1.3 DEFINITION
	1.3.4 Combinations
	1.3 DEFINITION
	1.3.5 Exercises: Section 1.3 (31-49)

	1.4 Conditional Probability
	1.4.1 The Definition of Conditional Probability
	1.4 DEFINITION
	1.4.2 The Multiplication Rule for P(AB)
	1.4 MULTIPLICATION RULE
	1.4.3 The Law of Total Probability and Bayes´ Theorem
	1.4 LAW OF TOTAL PROBABILITY
	1.4 BAYES´ THEOREM
	1.4.4 Exercises: Section 1.4 (50-78)

	1.5 Independence
	1.5 DEFINITION
	1.5.1 P(AB) When Events Are Independent
	1.5 PROPOSITION
	1.5.2 Independence of More than Two Events
	1.5 DEFINITION
	1.5.3 Exercises: Section 1.5 (79-100)

	1.6 Simulation of Random Events
	1.6.1 The Backbone of Simulation: Random Number Generators
	1.6.2 Precision of Simulation
	1.6.3 Exercises: Section 1.6 (101-120)

	1.7 Supplementary Exercises (121-150)

	2: Discrete Random Variables and Probability Distributions
	2.1 Random Variables
	2.1 DEFINITION
	2.1.1 Two Types of Random Variables
	2.1 DEFINITION
	2.1.2 Exercises: Section 2.1 (1-10)

	2.2 Probability Distributions for Discrete Random Variables
	2.2 DEFINITION
	2.2.1 A Parameter of a Probability Distribution
	2.2 DEFINITION
	2.2.2 The Cumulative Distribution Function
	2.2 DEFINITION
	2.2 PROPOSITION
	2.2.3 Another View of Probability Mass Functions
	2.2.4 Exercises: Section 2.2 (11-28)

	2.3 Expected Value and Standard Deviation
	2.3.1 The Expected Value of X
	2.3 DEFINITION
	2.3.2 The Expected Value of a Function
	2.3 PROPOSITION
	2.3 LINEARITY OF EXPECTATION
	2.3.3 The Variance and Standard Deviation of X
	2.3 DEFINITION
	2.3 CHEBYSHEV´S INEQUALITY
	2.3.4 Properties of Variance
	2.3 PROPOSITION
	2.3 PROPOSITION
	2.3.5 Exercises: Section 2.3 (29-48)

	2.4 The Binomial Distribution
	2.4 DEFINITION
	2.4.1 The Binomial Random Variable and Distribution
	2.4 DEFINITION
	2.4 NOTATION
	2.4.2 Computing Binomial Probabilities
	2.4 NOTATION
	2.4.3 The Mean and Variance of a Binomial Random Variable
	2.4 PROPOSITION
	2.4.4 Binomial Calculations with Software
	2.4.5 Exercises: Section 2.4 (49-74)

	2.5 The Poisson Distribution
	2.5 DEFINITION
	2.5.1 The Poisson Distribution as a Limit
	2.5 PROPOSITION
	2.5.2 The Mean and Variance of a Poisson Random Variable
	2.5 PROPOSITION
	2.5.3 The Poisson Process
	2.5.4 Poisson Calculations with Software
	2.5.5 Exercises: Section 2.5 (75-89)

	2.6 Other Discrete Distributions
	2.6.1 The Hypergeometric Distribution
	2.6 PROPOSITION
	2.6 PROPOSITION
	2.6.2 The Negative Binomial and Geometric Distributions
	2.6 PROPOSITION
	2.6 PROPOSITION
	2.6.3 Alternative Definition of the Negative Binomial Distribution
	2.6.4 Exercises: Section 2.6 (90-106)

	2.7 Moments and Moment Generating Functions
	2.7 DEFINITION
	2.7.1 The Moment Generating Function
	2.7 DEFINITION
	2.7 MGF UNIQUENESS THEOREM
	2.7.2 Obtaining Moments from the MGF
	2.7 THEOREM
	2.7 PROPOSITION
	2.7.3 MGFs of Common Distributions
	2.7.4 Exercises: Section 2.7 (107-128)

	2.8 Simulation of Discrete Random Variables
	2.8 Inverse cdf Method for Simulating Discrete Random Variables
	2.8.1 Simulations Implemented in R and Matlab
	2.8.2 Simulation Mean, Standard Deviation, and Precision
	2.8 DEFINITION
	2.8.3 Exercises: Section 2.8 (129-141)

	2.9 Supplementary Exercises (142-170)

	3: Continuous Random Variables and Probability Distributions
	3.1 Probability Density Functions and Cumulative Distribution Functions
	3.1.1 Probability Distributions for Continuous Variables
	3.1 DEFINITION
	3.1 DEFINITION
	3.1.2 The Cumulative Distribution Function
	3.1 DEFINITION
	3.1.3 Using F(x) to Compute Probabilities
	3.1 PROPOSITION
	3.1.4 Obtaining f(x) from F(x)
	3.1 PROPOSITION
	3.1.5 Percentiles of a Continuous Distribution
	3.1 DEFINITION
	3.1.6 Exercises: Section 3.1 (1-18)

	3.2 Expected Values and Moment Generating Functions
	3.2.1 Expected Values
	3.2 DEFINITION
	3.2 PROPOSITION
	3.2 DEFINITION
	3.2 PROPOSITION
	3.2.2 Moment Generating Functions
	3.2 DEFINITION
	3.2.3 Exercises: Section 3.2 (19-38)

	3.3 The Normal (Gaussian) Distribution
	3.3 DEFINITION
	3.3.1 The Standard Normal Distribution
	3.3 DEFINITION
	3.3.2 Non-standardized Normal Distributions
	3.3 PROPOSITION
	3.3.3 The Normal MGF
	3.3 PROPOSITION
	3.3 PROPOSITION
	3.3.4 The Normal Distribution and Discrete Populations
	3.3.5 Approximating the Binomial Distribution
	3.3 PROPOSITION
	3.3.6 Normal Distribution Calculations with Software
	3.3.7 Exercises: Section 3.3 (39-70)

	3.4 The Exponential and Gamma Distributions
	3.4.1 The Exponential Distribution
	3.4 PROPOSITION
	3.4.2 The Gamma Distribution
	3.4 DEFINITION
	3.4 PROPOSITION
	3.4.3 The Gamma MGF
	3.4 Proposition
	3.4.4 Gamma and Exponential Calculations with Software
	3.4.5 Exercises: Section 3.4 (71-83)

	3.5 Other Continuous Distributions
	3.5.1 The Weibull Distribution
	3.5 DEFINITION
	3.5.2 The Lognormal Distribution
	3.5 DEFINITION
	3.5.3 The Beta Distribution
	3.5 DEFINITION
	3.5.4 Exercises: Section 3.5 (84-100)

	3.6 Probability Plots
	3.6.1 Sample Percentiles
	3.6 DEFINITION
	3.6.2 A Probability Plot
	3.6 DEFINITION
	3.6.3 Departures from Normality
	3.6.4 Beyond Normality
	3.6.5 Probability Plots in Matlab and R
	3.6.6 Exercises: Section 3.6 (101-111)

	3.7 Transformations of a Random Variable
	3.7 TRANSFORMATION THEOREM
	3.7.1 Exercises: Section 3.7 (112-128)

	3.8 Simulation of Continuous Random Variables
	3.8.1 The Inverse CDF Method
	3.8 THEOREM
	3.8 INVERSE CDF METHOD
	3.8.2 The Accept-Reject Method
	3.8 ACCEPT-REJECT METHOD
	3.8.3 Built-In Simulation Packages for Matlab and R
	3.8.4 Precision of Simulation Results
	3.8.5 Exercises: Section 3.8 (129-139)

	3.9 Supplementary Exercises (140-172)

	4: Joint Probability Distributions and Their Applications
	4.1 Jointly Distributed Random Variables
	4.1.1 The Joint Probability Mass Function for Two Discrete Random Variables
	4.1 DEFINITION
	4.1 DEFINITION
	4.1.2 The Joint Probability Density Function for Two Continuous Random Variables
	4.1 DEFINITION
	4.1 DEFINITION
	4.1.3 Independent Random Variables
	4.1 DEFINITION
	4.1.4 More Than Two Random Variables
	4.1 DEFINITION
	4.1.5 Exercises: Section 4.1 (1-22)

	4.2 Expected Values, Covariance, and Correlation
	4.2 PROPOSITION
	4.2.1 Properties of Expected Value
	4.2 LINEARITY OF EXPECTATION
	4.2.2 Covariance
	4.2 DEFINITION
	4.2 PROPOSITION
	4.2.3 Correlation
	4.2 PROPOSITION
	4.2 PROPOSITION
	4.2.4 Correlation Versus Causation
	4.2.5 Exercises: Section 4.2 (23-42)

	4.3 Properties of Linear Combinations
	4.3 THEOREM
	4.3 Corollary
	4.3.1 The PDF of a Sum
	4.3 THEOREM
	4.3.2 Moment Generating Functions for Linear Combinations
	4.3 PROPOSITION
	4.3 PROPOSITION
	4.3 PROPOSITION
	4.3.3 Exercises: Section 4.3 (43-65)

	4.4 Conditional Distributions and Conditional Expectation
	4.4 DEFINITION
	4.4.1 Conditional Distributions and Independence
	4.4.2 Conditional Expectation and Variance
	4.4 DEFINITION
	4.4.3 The Laws of Total Expectation and Variance
	4.4 LAW OF TOTAL VARIANCE
	4.4.4 Exercises: Section 4.4 (66-84)

	4.5 Limit Theorems (What Happens as n Gets Large)
	4.5.1 Random Samples
	4.5 DEFINITION
	4.5 PROPOSITION
	4.5.2 The Central Limit Theorem
	4.5 CENTRAL LIMIT THEOREM
	4.5.3 Other Applications of the Central Limit Theorem
	4.5 COROLLARY
	4.5 PROPOSITION
	4.5.4 The Law of Large Numbers
	4.5 LAW OF LARGE NUMBERS
	4.5.5 Exercises: Section 4.5 (85-102)

	4.6 Transformations of Jointly Distributed Random Variables
	4.6.1 The Joint Distribution of Two New Random Variables
	4.6 TRANSFORMATION THEOREM (bivariate case)
	4.6.2 The Joint Distribution of More Than Two New Variables
	4.6.3 Exercises: Section 4.6 (103-110)

	4.7 The Bivariate Normal Distribution
	4.7 PROPOSITION
	4.7.1 Conditional Distributions of X and Y
	4.7 PROPOSITION
	4.7.2 Regression to the Mean
	4.7.3 The Multivariate Normal Distribution
	4.7.4 Bivariate Normal Calculations with Software
	4.7.5 Exercises: Section 4.7 (111-120)

	4.8 Reliability
	4.8.1 The Reliability Function
	4.8 DEFINITION
	4.8.2 Series and Parallel Designs
	4.8 PROPOSITION
	4.8.3 Mean Time to Failure
	4.8 PROPOSITION
	4.8.4 Hazard Functions
	4.8 DEFINITION
	4.8 PROPOSITION
	4.8.5 Exercises: Section 4.8 (121-132)

	4.9 Order Statistics
	4.9 DEFINITION
	4.9.1 The Distributions of Yn and Y1
	4.9 PROPOSITION
	4.9.2 The Distribution of the ith Order Statistic
	4.9 PROPOSITION
	4.9.3 The Joint Distribution of the n Order Statistics
	4.9 PROPOSITION
	4.9.4 Exercises: Section 4.9 (133-142)

	4.10 Simulation of Joint Probability Distributions and System Reliability
	4.10.1 Simulating Values from a Joint PMF
	4.10.2 Simulating Values from a Joint PDF
	4.10 ACCEPT-REJECT METHOD (bivariate case)
	4.10.3 Simulating a Bivariate Normal Distribution
	4.10 PROPOSITION
	4.10.4 Simulation Methods for Reliability
	4.10.5 Exercises: Section 4.10 (143-153)

	4.11 Supplementary Exercises (154-192)

	5: The Basics of Statistical Inference
	5.1 Point Estimation
	5.1 DEFINITION
	5.1.1 Estimates and Estimators
	5.1 DEFINITION
	5.1.2 Assessing Estimators: Accuracy and Precision
	5.1 DEFINITION
	5.1 PRINCIPLE OF UNBIASED ESTIMATION
	5.1.3 Exercises: Section 5.1 (1-23)

	5.2 Maximum Likelihood Estimation
	5.2 DEFINITION
	5.2.1 Some Properties of MLEs
	5.2 PROPOSITION
	5.2.2 Exercises: Section 5.2 (24-36)

	5.3 Confidence Intervals for a Population Mean
	5.3.1 A Confidence Interval for a Normal Population Mean
	5.3 PROPERTIES OF T DISTRIBUTIONS
	5.3 GOSSET´S THEOREM
	5.3 ONE-SAMPLE T CONFIDENCE INTERVAL
	5.3.2 A Large-Sample Confidence Interval for mu
	5.3.3 Software for Confidence Interval Calculation
	5.3.4 Exercises: Section 5.3 (37-50)

	5.4 Testing Hypotheses About a Population Mean
	5.4.1 Hypotheses and Test Procedures
	5.4 DEFINITION
	5.4.2 Test Procedures for Hypotheses About a Population Mean mu
	5.4.3 P-Values and the One-Sample t Test
	5.4 ONE-SAMPLE T TEST
	5.4.4 Errors in Hypothesis Testing and the Power of a Test
	5.4 DEFINITION
	5.4 PROPOSITION
	5.4 DEFINITION
	5.4.5 Software for Hypothesis Test Calculation
	5.4.6 Exercises: Section 5.4 (51-76)

	5.5 Inferences for a Population Proportion
	5.5.1 Confidence Intervals for p
	5.5 ONE-PROPORTION Z INTERVAL
	5.5.2 Hypothesis Testing for p
	5.5 ONE-PROPORTION Z TEST
	5.5.3 Software for Inferences about p
	5.5.4 Exercises: Section 5.5 (77-97)

	5.6 Bayesian Inference
	5.6 DEFINITION
	5.6.1 The Posterior Distribution of a Parameter
	5.6 DEFINITION
	5.6.2 Inferences from the Posterior Distribution
	5.6.3 Further Comments on Bayesian Inference
	5.6.4 Exercises: Section 5.6 (98-106)

	5.7 Supplementary Exercises (107-138)

	6: Markov Chains
	6.1 Terminology and Basic Properties
	6.1.1 The Markov Property
	6.1 DEFINITION
	6.1.2 Exercises: Section 6.1 (1-10)

	6.2 The Transition Matrix and the Chapman-Kolmogorov Equations
	6.2.1 The Transition Matrix
	6.2 DEFINITION
	6.2.2 Computation of Multistep Transition Probabilities
	6.2 DEFINITION
	6.2 CHAPMAN-KOLMOGOROV EQUATIONS
	6.2.3 Exercises: Section 6.2 (11-22)

	6.3 Specifying an Initial Distribution
	6.3 THEOREM
	6.3.1 A Fixed Initial State
	6.3.2 Exercises: Section 6.3 (23-30)

	6.4 Regular Markov Chains and the Steady-State Theorem
	6.4.1 Regular Chains
	6.4 DEFINITION
	6.4.2 The Steady-State Theorem
	6.4 STEADY-STATE THEOREM
	6.4.3 Interpreting the Steady-State Distribution
	6.4.4 Efficient Computation of Steady-State Probabilities
	6.4 THEOREM
	6.4.5 Irreducible and Periodic Chains
	6.4 DEFINITION
	6.4 THEOREM
	6.4.6 Exercises: Section 6.4 (31-43)

	6.5 Markov Chains with Absorbing States
	6.5 DEFINITION
	6.5.1 Time to Absorption
	6.5 THEOREM
	6.5.2 Mean Time to Absorption
	6.5 MTTA THEOREM
	6.5.3 Mean First Passage Times
	6.5.4 Probabilities of Eventual Absorption
	6.5 DEFINITION
	6.5 THEOREM
	6.5.5 Exercises: Section 6.5 (44-58)

	6.6 Simulation of Markov chains
	6.6.1 Exercises: Section 6.6 (59-66)

	6.7 Supplementary Exercises (67-82)

	7: Random Processes
	7.1 Types of Random Processes
	7.1 DEFINITION
	7.1.1 Classification of Processes
	7.1.2 Random Processes Regarded as Random Variables
	7.1.3 Exercises: Section 7.1 (1-10)

	7.2 Properties of the Ensemble: Mean and Autocorrelation Functions
	7.2.1 Mean and Variance Functions
	7.2 DEFINITION
	7.2.2 Autocovariance and Autocorrelation Functions
	7.2 PROPOSITION
	7.2.3 The Joint Distribution of Two Random Processes
	7.2 DEFINITION
	7.2.4 Exercises: Section 7.2 (11-24)

	7.3 Stationary and Wide-Sense Stationary Processes
	7.3 DEFINITION
	7.3 DEFINITION
	7.3.1 Properties of Wide-Sense Stationary Processes
	7.3 PROPOSITION
	7.3.2 Ergodic Processes
	7.3 DEFINITION
	7.3.3 Exercises: Section 7.3 (25-40)

	7.4 Discrete-Time Random Processes
	7.4.1 Special Discrete Sequences
	7.4 PROPOSITION
	7.4.2 Exercises: Section 7.4 (41-52)

	7.5 Poisson Processes
	7.5 DEFINITION
	7.5.1 Relation to Exponential and Gamma Distributions
	7.5 THEOREM
	7.5.2 Combining and Decomposing Poisson Processes
	7.5 PROPOSITION
	7.5.3 Alternative Definition of a Poisson Process
	7.5 THEOREM
	7.5.4 Nonhomogeneous Poisson Processes
	7.5.5 The Poisson Telegraphic Process
	7.5 PROPOSITION
	7.5.6 Exercises: Section 7.5 (53-72)

	7.6 Gaussian Processes
	7.6 PROPOSITION
	7.6.1 Brownian Motion
	7.6 DEFINITION
	7.6.2 Brownian Motion as a Limit
	7.6.3 Further Properties of Brownian Motion
	7.6 PROPOSITION
	7.6.4 Variations on Brownian Motion
	7.6.5 Exercises: Section 7.6 (73-85)

	7.7 Continuous-Time Markov Chains
	7.7 DEFINITION
	7.7.1 Infinitesimal Parameters and Instantaneous Transition Rates
	7.7 PROPOSITION
	7.7.2 Sojourn Times and Transitions
	7.7 THEOREM
	7.7.3 Long-Run Behavior of Continuous-Time Markov Chains
	7.7.4 Explicit Form of the Transition Matrix
	7.7.5 Exercises: Section 7.7 (86-97)

	7.8 Supplementary Exercises (98-114)

	8: Introduction to Signal Processing
	8.1 Power Spectral Density
	8.1 DEFINITION
	8.1 WIENER-KHINCHIN THEOREM
	8.1.1 Properties of the Power Spectral Density
	8.1 PROPOSITION
	8.1.2 Power in a Frequency Band
	8.1.3 White Noise Processes
	8.1 DEFINITION
	8.1.4 Power Spectral Density for Two Processes
	8.1.5 Exercises: Section 8.1 (1-21)

	8.2 Random Processes and LTI Systems
	8.2 DEFINITION
	8.2.1 Statistical Properties of the LTI System Output
	8.2 PROPOSITION
	8.2.2 Ideal Filters
	8.2 DEFINITION
	8.2.3 Signal Plus Noise
	8.2.4 Exercises: Section 8.2 (22-38)

	8.3 Discrete-Time Signal Processing
	8.3.1 Random Sequences and LTI Systems
	8.3 PROPOSITION
	8.3.2 Random Sequences and Sampling
	8.3 PROPOSITION
	8.3.3 Exercises: Section 8.3 (39-50)


	Appendix A: Statistical Tables
	A.1 Binomial cdf
	A.2 Poisson cdf
	A.3 Standard Normal cdf
	A.4 Incomplete Gamma Function
	A.5 Critical Values for t Distributions
	A.6 Tail Areas of t Distributions

	Appendix B: Background Mathematics
	B.1 Trigonometric Identities
	B.2 Special Engineering Functions
	B.3 o(h) Notation
	B.4 The Delta Function
	B.5 Fourier Transforms
	B.6 Discrete-Time Fourier Transforms

	Appendix C: Important Probability Distributions
	C.1 Discrete Distributions
	C.2 Continuous Distributions
	C.3 Matlab and R Commands

	Answers to Odd-Numbered Exercises
	References
	Index

