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Foreword

Paul Deheuvels is well known for his work in mathematical statistics and proba-
bility, especially in the area of limit theorems. Some of the topics on which he has
made significant and lasting contributions are extreme and record value theory,
renewal theory, copulas, strong approximations, Erdős-Rényi laws, empirical and
quantile processes, nonparametric function estimation and Karhunen-Loève
expansions. Through his consulting work Paul Deheuvels has also made substantial
contributions to applied statistics.

Paul Deheuvels has had a major impact on statistics in France. Most importantly,
in 1980 he founded the statistics research laboratory at the Université Pierre et
Marie Curie in Paris (the LSTA, Laboratoire de Statistique Théorique et App-
liquée), and served as its director until 2013. He has guided a large number of
doctoral students. Many of them are now placed in prominent positions in academia
and industry. Among other honours, Paul Deheuvels was elected Fellow of the
Institute of Mathematical Statistics in 1985, and Membre de l’Académie des Sci-
ences (France) in 2000 (Correspondent, 1996–2000). As the only statistician in the
Académie, he has been a tireless supporter and promoter of statistics in France.

An overview of Paul Deheuvels’ research and role as a force in statistics is given in
Adrian Raftery’s contribution to this Festschrift. A list of his publications is given at
the end of the volume.
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Preface

During June 20–21, 2013 a committee of former students of Paul Deheuvels
organized a conference onMathematical Statistics and Limit Theorems in honour of
his 65th birthday at the Jussieu Campus of the Université Pierre et Marie Curie—
Paris VI. The committee consisted of

Salim Bouzebda (Université de Technologie de Compiègne, France)
Michel Broniatowski (Université Pierre et Marie Curie—Paris VI, France)
Sarah Ouadah (Université Pierre et Marie Curie—Paris VI, France)
Zhan Shi (Université Pierre et Marie Curie—Paris VI, France)

This volume is a collection of papers contributed by a selection of the invited
speakers. Their topics are largely motivated by the research interests of Paul De-
heuvels. The editorial board is grateful for the care that the contributors made in
preparing their submissions, and acknowledges with thanks the efforts of the many
referees who helped them in their editorial task.

Marc Hallin (ECARES, Université Libre de Bruxelles, Belgium)
David M. Mason (Department of Applied Economics and Statistics, University

of Delaware, USA)
Dietmar Pfeifer (Institut für Mathematik, Carl von Ossietzky Universität

Oldenburg, Germany)
Josef G. Steinebach (Mathematisches Institut, Universität zu Köln, Germany)

March 2015
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Paul Deheuvels: Mentor, Advocate
for Statistics, and Applied
Statistician

Adrian E. Raftery

Abstract Paul Deheuvels is best known internationally as a theoretical statistician,
but he has made many other contributions. Here I give a brief overview of his work
as a mentor of many doctoral students, as an advocate for the discipline of statistics,
particularly in the context of his work as the only statistician member of the French
Académie des Sciences, and as an applied statistician.

1 Introduction

Paul Deheuvels is best known internationally as theoretical statistician and proba-
bilist, and this volume focuses, appropriately, on these areas and his many distin-
guished contributions to them. However, he has been much more: a mentor to many
doctoral students, an advocate for the statistical profession, particularly through his
work at the Académie des Sciences, and an applied statistician. I will briefly describe
some of his contributions in these areas.

2 Mentor

Paul Deheuvels was my doctoral advisor; I was one of his first doctoral students. I
think his first doctoral student was Pierre Hominal, who graduated in 1979, and then
Michel Broniatowski and I graduated in 1980. Since then, Deheuvels has supervised
a very large number of doctoral students, close to 100, and, remarkably, 26 of those
today hold academic positions, in France, Portugal, Algeria, Morocco, Senegal, and
the United States.

I moved to Paris fromDublin in 1977 for graduate study. I spent my first year there
(1977–1978) at the Laboratoire de Probabilités, Université Pierre et Marie Curie,
where I got an education of extraordinary quality in the theory of stochastic processes.

A.E. Raftery (B)

University of Washington, Seattle, WA, USA
e-mail: raftery@u.washington.edu

© Springer International Publishing Switzerland 2015
M. Hallin et al. (eds.), Mathematical Statistics and Limit Theorems,
DOI 10.1007/978-3-319-12442-1_1
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2 A.E. Raftery

However, I quickly realized that I wasmore interested in statistics andwonderedwhat
to do.At that point, ImetMichel Broniatowski, who urgedme to talk to the young and
dynamic Professor Deheuvels, who was then revitalizing Statistics at the university.
I did so, and Paul welcomed me warmly and enthusiastically to study with him.

He was an excellent mentor, giving both freedom and support. He had many
dissertation topics to suggest, but I ended up choosing to work on non-Gaussian time
series models, which was only tangentially related to what he did. He supported my
choice, and was always available to discuss progress. Often it was for five minutes
in the corridor, but that was enough to set me straight if needed. I prospered under
his guidance (Raftery 1980, 1981, 1982).

As one example of his intellectual support of students, he spent a great deal of
time reading, critiquing, and suggesting changes to what became my first published
article, “A string problem” (Raftery 1979), even though it was far from his main
research interests. He rebuffed my suggestion that he become a coauthor, gruffly
saying that he had done nothing to deserve it.

He has always supported his students personally as well as academically. In the
1970s in Paris, foreign graduate students sometimes had difficulties with the admin-
istration, both inside and outside the university. When he heard of some egregious
administrative obstacle thrown up in the path of a foreign student, he would often
go personally to the office involved and bang on the table, insisting that things be
made right. Hewould take the time needed to solve the problem, andwould generally
prevail.

He continued to support his students after they graduated. Inmy case, he remained
ready to give professional or personal advice and to write recommendation letters for
decades, even though my own research interests diverged markedly from his after a
few years. In another case, a student returned to her country after graduation to find
herself in an untenable personal situation, and when Deheuvels learned about the
situation he moved heaven and earth, using all his contacts to find her an academic
position elsewhere at short notice.

3 Advocate for Statistics

Paul Deheuvels is best known for his work on probability and theoretical statistics
across a stunning range of topics, starting with extreme value theory (Deheuvels
1973), and including renewal theory (Deheuvels et al. 1986), function estimation
(Deheuvels andMason 1992), and continuing work on empirical process limit theory
(Deheuvels and Ouadah 2013). This has given him an international reputation, and
has led to major recognition in France also. He is the only statistician who is a
member of the French Académie des Sciences, and he was the first recipient of
the Prix Pierre-Simon de Laplace from the Société Française de Statistique in 2007,
togetherwith PascalMassart. This is themost prestigious prize in Statistics in France,
and so far has been awarded to only four people: Deheuvels, Massart, Christian
Gouriéroux, and Anestis Antoniadis.
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In 1980, he created the present research laboratory of statistics at the Université
Pierre et Marie Curie in Paris (the LSTA, Laboratoire de Statistique Théorique et
Appliquée), and served as its Director until 2013. This has been extremely successful,
now bringing together 18 faculty.

Perhaps surprisingly given his largely theoretical research, he has used his position
of eminence within French science to explain, promote, and advocate for statistics
as a whole in French society, including its more applied aspects.

In 1982, he published a short book in French called “Probability, Chance and
Certainty,” destined for the educated general public (Deheuvels 1982), now in its
fourth edition (Deheuvels 2008). This is a true intellectual tour de force. In 124 small
andmiraculously accessible pages, he takes the reader from basic ideas of probability
using games of chance, to Paul Lévy’s stable distributions, and traces the history
of Brownian motion from Lucretius in the first century A.D. to Einstein’s rigorous
development.He summarizes the controversy between objective and subjective views
of probability, and leads up to the Glivenko–Cantelli theorem.

The penultimate chapter is called “TheArc SineLaw, or the Fundamental Injustice
of Nature.” He describes the arc sine law mathematically, and then summarizes it
by saying: “in a game with two players who have equal chances, it is likely that one
of them will ‘win all the time’.” This exemplifies the combination of mathematical
rigor and engaging explanation that makes the book a model of mathematical writing
for a literate public. This little work has had a huge impact, having sold over 20,000
copies. It has contributed to help France think probabilistically.

His inaugural discourse to the Académie des Sciences, “The Scientific Adventure
of Statistics” (Deheuvels 2001), is a manifesto for the discipline that was widely dif-
fused inFrance. It deserves also to bewidely knownbeyond its borders for its eloquent
evocation of the fruitful interplay between theory and practice that characterizes our
discipline. In this era of “Big Data,” his definition of statistics is worth noting:

Statistics, you may tell me, is the science of data. But this is far from true, since such a
vision confounds “data,” which include all the results of observations, not always numerical,
with “statistics,” whose object is to construct the methodology that allows us to extract the
information of interest. Statistics is to data what the lemon-squeezer is to the fruit. It works
to collect all the juice without losing a single drop.

He describes the intellectual feast set before him when he first entered the discipline:

For a while, looking at the range of statistical problems that needed solution, I was like a
character in a Jorge Luis Borges novel, wandering in the infinity of an immense library.

He then talks about his work with the Compagnie Française des Pétroles on
predicting extremewave heights. I know of no better short description of the essential
dialectic between application, methodology and theory in statistics:

I remember taking chaotic helicopter flights towards platforms in the middle of powerful
seas (. . .) These statistical problems allowed me to live through a variety of adventures in
the real world of industry. I was disappointed to realize that classical mathematical tools
were often totally inadequate to meet the needs of the problems. New tools were needed,
and these in turn generated a whole set of theoretical problems. All this made me return with
renewed enthusiasm to the conceptual beauty of statistical theory.
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4 Applied Statistician

Deheuvels served as a consultant to the Compagnie Française des Pétroles (CFP, later
Total) for 20 years, from1974 to 1994.One of his early projectswas the calculation of
the height of the 100-year wave, for deciding how high an oil-drilling platform should
be built. He did extreme value calculations which gave a value of 19m. Initially, the
engineers did not believe that such a high wave could realistically occur, but they
nevertheless ended up building the platform to a height of 20m, building in a margin
over Deheuvels’s calculations.

Twenty years later, on January 1, 1995 the Draupner or New Year wave occurred,
with a measured height at the platform of 18.5m (Haver 2004). See Fig. 1 for a close-
up of the wave height profile. If the company had not followed Deheuvels’s recom-
mendation and built it higher than 19m, the platform would have been destroyed, at
a cost of about $400 million.

With the CFP he also worked on planning the circulation of tankers in the Kharg
Island terminal in the Persian Gulf, and on designing statistical control of catalytic
cracking reactors, implemented in the OPTOR computer code. Other projects with
the CFP included analyzing the risks associated with the fluctuations of financial
markets (Deheuvels 1981, 1998), and analyzing slug flow processes (Deheuvels
et al. 1993; Deheuvels and Bernicot 1995).

Since 1994, he has beenworking as a consultant with the pharmaceutical company
Sanofi on problems such as estimating the differences between survival distributions
under different treatments in the presence of nonproportional hazard rates. He has
also developed new methods for chromatographic problems (Deheuvels et al. 2000).

A considerable amount of hiswork has beenmotivated by actuarial questions. This
includes his most cited paper (Csörgö et al. 1985), where he introduced a new estima-
tor of the tail index of a distribution, generalizing, and improving on Hill’s estimator.
This work has also included results in risk theory (Deheuvels and Steinebach 1990).

Fig. 1 Draupner wave on January 1, 1995, asmeasured at Draupner platform. Source: Haver (2004)
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In his role as the only statistician member of the French Académie des Sciences,
Deheuvels has spoken publicly about matters of public interest. For example, shortly
after the publication of Séralini et al. (2012), which argued that genetically modi-
fied corn is harmful to rats, the Académie des Sciences convened a small committee
that rapidly issued a statement criticizing the study, including its statistical under-
pinnings. Deheuvels legimitately complained that he had not been consulted, as the
only statistician member, and he subsequently presented an alternative point of view
(Deheuvels 2012, 2014). A different statistical perspective was provided by Lavielle
(2013). The Séralini et al. (2012) article was subsequently retracted by the journal
without the consent of its authors, a retraction that has itself been controversial.
Deheuvels’s position was supported by 140 French scientists in an open letter to Le
Monde (Andalo et al. 2012).

5 Conclusion

In addition to his huge contribution to statistical theory, Paul Deheuvels has been
an active mentor, advocate for the discipline of statistics, and applied statistician,
developing new methods for a range of applied engineering and scientific problems.

On a more personal note, he has also done much to promote friendship among
his fellow scientists around the world, many of whom have been invited to dinner by
himself and his wife Joële at his home in Bourg-la-Reine outside Paris.

We wish him well in his continued activity, as his career moves into a new stage.

Acknowledgments This work was supported by a Science Foundation Ireland E.T.S. Walton
visitor award, grant reference 11/W.1/I2079. I am grateful to David Mason and Paul Deheuvels for
helpful comments.
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Lacunary Series and Stable Distributions

István Berkes and Robert Tichy

Abstract By well-known results of probability theory, any sequence of random
variables with bounded second moments has a subsequence satisfying the central
limit theorem and the law of the iterated logarithm in a randomized form. In this paper
we give criteria for a sequence (Xn) of random variables to have a subsequence (Xnk )

whose weighted partial sums, suitably normalized, converge weakly to a symmetric
stable distribution with parameter 0 < α < 2.

1 Introduction

It is known that sufficiently thin subsequences of general r.v. sequences behave
like i.i.d. sequences. For example, Chatterji (1974a, b) and Gaposhkin (1966, 1972)
proved that if a sequence (Xn) of r.v.’s satisfies supn EX2

n < ∞, then one can find a
subsequence (Xnk ) and r.v.’s X and Y ≥ 0 such that

1√
N

∑

k≤N

(Xnk − X)
d−→ N (0, Y ) (1)

and

lim sup
N→∞

1√
2N log log N

∑

k≤N

(Xnk − X) = Y 1/2 a.s., (2)
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where N (0, Y ) denotes the distribution of the r.v. Y 1/2ζ where ζ is an N (0, 1) r.v.
independent of Y . Komlós (1967) proved that under supn E |Xn| < ∞ there exists a
subsequence (Xnk ) and an integrable r.v. X such that

lim
N→∞

1

N

N∑

k=1

Xnk = X a.s.

and Chatterji (1970) showed that under supn E |Xn|p < ∞, 0 < p < 2 the
conclusion of the previous theorem should be changed to

lim
N→∞

1

N 1/p

N∑

k=1

(Xnk − X) = 0 a.s.

for some X with E |X |p < ∞. Note the randomization in all these examples: the role
of the mean and variance of the subsequence (Xnk ) is played by random variables
X , Y . On the basis of these and several other examples, Chatterji (1972) formulated
the following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all sequences
of i.i.d. randomvariables belonging to an integrability class L definedby thefiniteness
of a norm‖ ·‖L . Then if (Xn) is an arbitrary (dependent) sequence of randomvariables
satisfying supn‖Xn‖L < +∞ then there exists a subsequence (Xnk ) satisfying T in
a mixed form.

In a profound paper, Aldous (1977) proved the validity of this principle for all
limit theorems concerning the almost sure or distributional behavior of a sequence of
functionals fk(X1, X2, . . .) of a sequence (Xn) of r.v.’s. Most “usual” limit theorems
belong to this class; for precise formulations, discussion and examples we refer to
Aldous (1977). On the other hand, the theory does not cover functionals fk contain-
ing parameters (as in weighted limit theorems) or allows limit theorems to involve
other type of uniformities. Such uniformities play an important role in analysis. For
example, if from a sequence (Xn) of r.v.’s with finite pth moments (p ≥ 1) one can
select a subsequence (Xnk ) such that

K −1

(
N∑

i=1

a2
i

)1/2

≤ ∥∥
N∑

i=1

ai Xni

∥∥
p ≤ K

(
N∑

i=1

a2
i

)1/2

for some constant 0 < K < ∞, for every N ≥ 1 and every (a1, . . . , aN ) ∈ R
N , then

the subspace of L p spanned by (Xn) contains a subspace isomorphic toHilbert space.
Such embedding arguments go back to the classical paper of Kadec and Pelczynski
(1962) and play an important role in Banach space theory, see e.g. Dacunha-Castelle
and Krivine (1975), Aldous (1981). In the theory of orthogonal series and in Banach
space theory we frequently need subsequences ( fnk ) of a sequence ( fn) such that



Lacunary Series and Stable Distributions 9

∑∞
k=1 ak fnk converges a.e. or in norm, after any permutation of its terms, for a class of

coefficient sequences (ak). Here we need uniformity both over a class of coefficient
sequences (ak) and over all permutations of the terms of the series. A number of
uniform limit theorems for subsequences have been proved by ad hoc arguments.
Révész (1965) showed that for any sequence (Xn) of r.v.’s satisfying supn E X2

n < ∞
one can find a subsequence (Xnk ) and a r.v. X such that

∑∞
k=1 ak(Xnk − X) converges

a.s. provided
∑∞

k=1 a2
k < ∞. Under supn ‖Xn‖∞ < +∞, Gaposhkin (1966) showed

that there exists a subsequence (Xnk ) and r.v.’s X and Y ≥ 0 such that for any real
sequence (ak) satisfying the uniform asymptotic negligibility condition

max
1≤k≤N

|ak | = o(AN ), AN =
(

N∑

k=1

a2
k

)1/2

(3)

we have
1

AN

∑

k≤N

ak(Xnk − X)
d−→ N (0, Y ) (4)

and for any real sequence (ak) satisfying the Kolmogorov condition

max
1≤k≤N

|ak | = o(AN /(log log AN )1/2) (5)

we have
1

(2AN log log AN )1/2

∑

k≤N

ak(Xnk − X) = Y 1/2 a.s. (6)

For a fixed coefficient sequence (ak) the above results follow from Aldous’ general
theorems, but the subsequence (Xnk ) provided by the proofs depends on (ak) and
to find a subsequence working for all (ak) simultaneously requires a uniformity
which is, in general, not easy to establish and it can fail in important situations. (See
Guerre and Raynaud (1986) for a natural problem where uniformity is not valid.)
Aldous (1977) used an equicontinuity argument to prove a permutation-invariant
version of the theorem of Révész above, implying that every orthonormal system
( fn) contains a subsequence ( fnk ) which, using the standard terminology, is an
unconditional convergence system. This had been a long-standing open problem in
the theory of orthogonal series (see Uljanov 1964, p. 48) and was first proved by
Komlós (1974). In Berkes (1989) we used the method of Aldous to prove extensions
of the Kadec-Pelczynski theorem, as well as to get selection theorems for almost
symmetric sequences. The purpose of the present paper is to use a similar technique
to prove a uniform limit theorem of probabilistic importance, namely the analogue
of Gaposhkin’s uniform CLT (3)–(4) in the case when the limit distribution of the
normed sums is a symmetric stable law with parameter 0 < α < 2. To formulate our
result, we need some definitions. Using the terminology of Berkes and Rosenthal
(1985), call the sequence (Xn) of r.v.’s determining if it has a limit distribution
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relative to any set A in the probability space with P(A) > 0, i.e., for any A ⊂ Ω

with P(A) > 0 there exists a distribution function FA such that

lim
n→∞ P(Xn < t | A) = FA(t)

for all continuity points t of FA. By an extension of the Helly–Bray theorem (see
Berkes and Rosenthal 1985), every tight sequence of r.v.’s contains a determining
subsequence. Hence in studying the asymptotic behavior of thin subsequences of
general tight sequences we can assume without loss of generality that our original
sequence (Xn) is determining. By Berkes and Rosenthal (1985, Proposition 2.1), for
any continuity point t of the limit distribution function FΩ , the sequence I {Xn ≤ t}
converges weakly in L∞ to some r.v. Gt ; clearly Gs ≤ Gt a.s. for any s ≤ t . (A
sequence (ξn) of bounded r.v.’s is said to converge to a bounded r.v. ξ weakly in
L∞ if E(ξnη) −→ E(ξη) for any integrable r.v. η. To avoid confusion, we will call
ordinary weak convergence of probability measures distributional convergence and

denote it by
d−→. Using a standard procedure (see, e.g., Révész 1967, Lemma 6.1.4),

by choosing a dense countable set D of continuity points of FΩ , one can construct
versions of Gt , t ∈ D such that, for every fixed ω ∈ Ω , the function Gt (ω), t ∈ D
extends to a distribution function. Letting μ denote the corresponding measure, μ

is called the limit random measure of (Xn); it was introduced by Aldous (1977);
for properties and applications see Aldous (1981), Berkes (1989), Berkes and Péter
(1986), Berkes and Rosenthal (1985). Clearly, μ can be considered as a measurable
map from the underlying probability space (Ω,F , P) to the spaceM of probability
measures on R equipped with the Prohorov metric π . It is easily seen that for any A
with P(A) > 0 and any continuity point t of FA we have

FA(t) = E A(μ(−∞, t)), (7)

where E A denotes conditional expectation given A. Note thatμ depends on the actual
r.v.’s Xn , but the distribution ofμ in (M , π) depends solely on the distribution of the
sequence (Xn). The situation concerning the unweightedCLT for lacunary sequences
can now be summarized by the following theorem:

Theorem 1 Let (Xn) be a determining sequence of r.v.’s with limit random mea-
sure μ. Then there exists a subsequence (Xnk ) satisfying, together with all of its
subsequences, the CLT (1) with suitable r.v.’s X and Y ≥ 0 if and only if

∫ ∞

−∞
x2dμ(x) < ∞ a.s. (8)

The sufficiency part of the theorem is contained in the general subsequence theo-
rems in Aldous (1977); the necessity was proved in Berkes and Tichy (2015). Note
that the condition for the CLT for lacunary subsequences of (Xn) is given in terms of
the limit randommeasure of (Xn) and this condition is the exact analogue of the con-
dition in the i.i.d. case, only the common distribution of the i.i.d. variables is replaced
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by the limit randommeasure. Note also that the existence of secondmoments of (Xn)

(or the existence of any moments) is not necessary for the conclusion of Theorem 1.
In this paper we investigate the analogous question in case of a nonnormal stable

limit distribution, i.e., the question underwhat conditions a sequence (Xn) of r.v.’s has
a subsequence (Xnk ) whose weighted partial sums, suitably normalized, converge
weakly to an α-stable distribution, 0 < α < 2. Let, for c > 0 and 0 < α < 2,
Gα,c denote the distribution function with characteristic function exp(−c|t |α) and
let S = S(α, c) denote the class of symmetric distributions on R with characteristic
function ϕ satisfying

ϕ(t) = 1 − c|t |α + o(|t |α) as t → 0. (9)

Our main result is

Theorem 2 Let 0 < α < 2, c > 0 and let (Xn) be a determining sequence of r.v.’s
with limit random measure μ. Assume that μ ∈ S(α, c) with probability 1. Then
there exists a subsequence (Xnk ) such that for any real sequence (ak) satisfying

max
1≤k≤N

|ak | = o(AN ), AN =
(

N∑

k=1

|ak |α
)1/α

(10)

we have

A−1
N

N∑

k=1

ak Xnk

d−→ Gα,c.

Condition (9) holds provided the corresponding (symmetric) distribution function
F satisfies

1 − F(x) = c1x−α + β(x)x−α, x > 0

where c1 > 0 is a suitable constant, β(x) is nonincreasing for x ≥ x0 and
limx→∞ β(x) = 0. (See Berkes and Dehling 1989, Lemma 3.2.) Apart from the
monotonicity condition, this is equivalent to the fact that F is in the domain of nor-
mal attraction of a symmetric stable distribution. (See, e.g., Feller 1971, p. 581.) It is
natural to ask if the conclusion of Theorem 2 remains valid (with a suitable centering
factor) assuming only that μ ∈ S a.s. where S denotes the domain of normal attrac-
tion of a fixed stable distribution. From the theory in Aldous (1977) it follows that
the answer is affirmative in the unweighted case ak = 1, but in the uniform weighted
case the question remains open. Symmetry plays no essential role in the proof of
Theorem 2; it is used only in Lemma 2 and at the cost of minor changes in the proof,
(9) can be replaced by a condition covering nonsymmetric distributions as well. But
since we do not know the optimal condition, we restricted our investigations to the
case (9) where the technical details are the simplest and the idea of the proof becomes
more transparent.
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Given a sequence (X∗
n) of r.v.’s and a random measure μ defined on a probability

space (Ω,F , P) such that X∗
n are conditionally i.i.d. given μ with conditional dis-

tribution μ, the limit random measure of (X∗
n) is easily seen to be μ. Thus in the

case μ ∈ S(α, c) a.s., (X∗
n) provides a simple example for a sequence satisfying the

conditions of Theorem 2. (Since (X∗
n) is exchangeable, in this case the conclusion of

Theorem 2 holds for the whole sequence (X∗
n) without passing to any subsequence.)

Theorem 2 shows that any deterministic sequence (Xn)with a limit randommeasure
μ satisfying μ ∈ S(α, c) a.s. has a subsequence (Xnk ) whose weighted partial sums
behave, in a uniform sense, similarly to those of (X∗

n).

2 Proof of Theorem 2

As the first step of the proof, we select a sequence n1 < n2 < . . . of integers such
that, after a suitable discretization of (Xn), we have

P(Xnk ∈ J |Xn1 , . . . , Xnk−1)(ω) −→ μ(ω, J ) a.s. (11)

for a large class of intervals J . This step follows exactly Aldous (1977), see Propo-
sition 11 there for details. Let (Yn) be a sequence of r.v.’s on (Ω,F , P) such that,
given X and μ, the r.v.’s Y1, Y2, . . . are conditionally i.i.d. with distribution μ, i.e.,

P(Y1 ∈ B1, . . . , Yk ∈ Bk |X, μ) =
k∏

i=1

P(Yi ∈ Bi |X, μ) a.s. (12)

P(Y j ∈ B|X, μ) = μ(B) a.s. (13)

for any j, k andBorel sets B, B1, . . . , Bk on the real line. Such a sequence (Yn) always
exists after redefining (Xn) andμ on a suitable, larger probability space; for example,
one can define the triple ((Xn), μ, (Yn)) on the product space R∞ × M × R

∞ as
done in Aldous (1977, p. 72). This redefinition will not change the distribution of the
sequence (Xn) and thus by Berkes and Rosenthal (1985, Proposition 2.1) it remains
determining. Since the random measure μ depends on the variables Xn themselves
and not only on the distribution of (Xn), this redefinition will change μ, but not
the joint distribution of (Xn) and μ on which our results depend. Using (11) and a
martingale argument, in Aldous (1977, Lemma 12), it is shown that

Lemma 1 For every σ(X)-measurable r.v. Z and any j ≥ 1 we have

(Xnk , Z)
d−→ (Y j , Z) as k → ∞.

We now construct a further subsequence of (Xnk ) satisfying the conclusion
of Theorem 2. By reindexing our variables, we can assume that Lemma 1 holds
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with nk = k. For our construction we need some auxiliary considerations. For
a (nonrandom) measure μ ∈ S(α, c), the corresponding characteristic function ϕ

satisfies
ϕ(t) = 1 − c|t |α + β(t)|t |α, t ∈ R (14)

where β is a bounded continuous function on R with β(0) = 0. Given μ1, μ2 ∈
S(α, c) with characteristic functions ϕ1, ϕ2 and corresponding functions β1, β2 in
(14), define

ρ(μ1, μ2) = sup
0≤|t |≤1

|β1(t) − β2(t)| +
∞∑

k=0

1

2k
sup

2k≤|t |≤2k+1
|β1(t) − β2(t)|. (15)

Clearly, ρ satisfies the triangle inequality and if ρ(μ1, μ2) = 0, then β1(t) = β2(t)
and consequently ϕ1(t) = ϕ2(t) for all t ∈ R and thus μ1 = μ2. Hence, ρ is
a metric on S(α, c). If μ,μ1, μ2, . . . ∈ S(α, c) with corresponding characteristic
functions ϕ, ϕ1, ϕ2, . . . and functions β, β1, β2, . . ., then ρ(μn, μ) → 0 implies
that βn(t) → β(t) and consequently ϕn(t) → ϕ(t) uniformly on compact inter-

vals and thus μn
d→ μ. Conversely, if μn

d→ μ, then ϕn(t) → ϕ(t) uniformly
on compact intervals and thus βn(t) → β(t) uniformly on compact intervals not
containing 0. Note that limt→0 βn(t) = 0 for any fixed n by the definition of
S(α, c); if this relation holds uniformly in n, then βn(t) → β(t) will hold uniformly
also on all compact intervals containing 0 and upon observing that (14) implies
|β(t)| ≤ |t |−α|ϕ(t)−1|+ c ≤ c +2 for |t | ≥ 1 and thus the total contribution of the
terms of the sum in (15) for k ≥ M is≤ 4(c +2)2−M , it follows that ρ(μn, μ) → 0.
Thus if for a class H ⊂ S(α, c)we have limt→0 β(t) = 0 uniformly for all functions
β corresponding to measures in H , then in H convergence of elements in Prohorov
metric and in the metric ρ are equivalent.

Let now ϕ(t) = ϕ(t, ω) denote the characteristic function of the random measure
μ = μ(ω). By the assumption μ ∈ S(α, c) a.s. of Theorem 2, we have

ϕ(t, ω) = 1 − c|t |α + β(t, ω)|t |α, t ∈ R, ω ∈ Ω (16)

where limt→0 β(t, ω) = 0 a.s. Let ξn(ω) = sup|t |≤1/n |β(t, ω)|, then we have
limn→∞ ξn(ω) = 0 a.s. and thus by Egorov’s theorem (see Egorov 1911) for
any ε > 0 there exists a measurable set A ⊂ Ω with P(A) ≥ 1 − ε such that
limn→∞ ξn(ω) = 0 and consequently limt→0 β(t, ω) = 0 uniformly on A. Consid-
ering A as a newprobability space,wewill show that there exists a subsequence (Xnk )

(depending on A) satisfying the conclusion of Theorem 2 together with all its subse-
quences. By a diagonal argument we can get then a subsequence (Xnk ) satisfying the
conclusion of Theorem 2 on the original Ω . Thus without loss of generality we can
assume in the sequel that the function β(t, ω) in (16) satisfies limt→0 β(t, ω) = 0
uniformly inω ∈ Ω and thus by the remarks in the previous paragraph, in the support
of the random measure μ the Prohorov metric and the metric ρ generate the same
convergence.
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Lemma 2 Let μ1, μ2 ∈ S(α, c) satisfy (9), let Z1, . . . , Zn and Z∗
1 , . . . , Z∗

n be
i.i.d. sequences with respective distributions μ1, μ2. Let (a1, . . . , an) ∈ R

n,
An = (∑n

k=1 |ak |α
)1/α

, δn = max1≤k≤n |ak |/An. Then for |t |δn ≤ 1 we have

∣∣∣∣∣E exp

(
itA−1

n

n∑

k=1

ak Zk

)
− E exp

(
itA−1

n

n∑

k=1

ak Z∗
k

)∣∣∣∣∣ ≤ |t |αρ(μ1, μ2) (17)

where ρ is defined by (15).

Proof Letting ϕ1, ϕ2 denote the characteristic function of the Zk’s resp. Z∗
k ’s and

using (14), (10) and the inequality

∣∣∣∣∣

n∏

k=1

xk −
n∏

k=1

yk

∣∣∣∣∣ ≤
n∑

k=1

|xk − yk |,

valid for |xk | ≤ 1, |yk | ≤ 1 we get that for |t |δn ≤ 1 the left-hand side of (17) equals

∣∣∣∣∣

n∏

k=1

ϕ1(tak/An) −
n∏

k=1

ϕ2(tak/An)

∣∣∣∣∣ ≤
n∑

k=1

|ϕ1(tak/An) − ϕ2(tak/An)|

≤
n∑

k=1

|β1(tak/An) − β2(tak/An)||tak/An |α ≤ sup
|x |≤|t |δn

|β1(x) − β2(x)|
n∑

k=1

|tak/An |α

= |t |α sup
|x |≤|t |δn

|β1(x) − β2(x)| ≤ |t |αρ(μ1, μ2).

Remark The proof of Lemma 2 shows that for any t ∈ R the left-hand side of (17)
cannot exceed |t |α sup|x |≤|t |δn

|β1(x)−β2(x)|, a fact that will be useful in the sequel.
Given probability measures νn, ν on the Borel sets of a separable metric space

(S, d) we say, as usual, that νn
d−→ ν if

∫

S
f (x)dνn(x) −→

∫

S
f (x)dν(x) as n → ∞ (18)

for every bounded, real-valued continuous function f on S. (18) is clearly equiva-
lent to

E f (Zn) −→ E f (Z) (19)

where Zn, Z are r.v.’s valued in (S, d) (i.e., measurable maps from some probability
space to (S, d)) with distribution νn, ν.

Lemma 3 (see Ranga Rao 1962). Let (S, d) be a separable metric space and let

ν, ν1, ν2, . . . be probability measures on the Borel sets of (S, d) such that νn
d−→ ν.

Let G be a class of real-valued functions on (S, d) such that
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(a) G is locally equicontinuous, i.e., for every ε > 0 and x ∈ S there is a δ =
δ(ε, x) > 0 such that y ∈ S, d(x, y) ≤ δ imply | f (x) − f (y)| ≤ ε for every f ∈ G .

(b) There exists a continuous function g ≥ 0 on S such that | f (x)| ≤ g(x) for all
f ∈ G and x ∈ S and

∫

S
g(x)dνn(x) −→

∫

S
g(x)dν(x) (< ∞) as n → ∞. (20)

Then ∫

S
f (x)dνn(x) −→

∫

S
f (x)dν(x) as n → ∞ (21)

uniformly in f ∈ G .

Assume now that (Xn) satisfies the assumptions of Theorem 2, fix t ∈ R and for
any n ≥ 1, (a1, . . . , an) ∈ R

n let

ψ(a1, . . . , an) = E exp

(
itA−1

n

n∑

k=1

akYk

)
, (22)

where An = (
∑n

k=1 |ak |α)1/α and (Yk) is the sequence of r.v.’s defined before
Lemma 1. We show that for any ε > 0 there exists a sequence n1 < n2 < · · ·
of integers such that

(1 − ε)ψ(a1, . . . , ak) ≤ E exp

(
itA−1

k

k∑

i=1

ai Xni

)
≤ (1 + ε)ψ(a1, . . . , ak) (23)

for all k ≥ 1 and all (ak) satisfying (10); moreover, (23) remains valid for every
further subsequence of (Xnk ) as well. To construct n1 we set

Q(a, n, �) = exp
(

itA−1
� (a1Xn + a2Y2 + · · · + a�Y�)

)
R(a, �) = exp

(
itA−1

� (a1Y1 + a2Y2 + · · · + a�Y�)
)

for every n ≥ 1, � ≥ 2 and a = (a1, . . . , a�) ∈ R�. We show that

E

{
Q(a, n, �)

ψ(a)

}
−→ E

{
R(a, �)

ψ(a)

}
as n → ∞ uniformly in a, �. (24)

(The right side of (24) equals 1.) To this end we recall that, given X and μ, the
r.v.’s Y1, Y2, . . . are conditionally i.i.d. with common conditional distribution μ and
thus, given X, μ and Y1, the r.v.’s Y2, Y3, . . . are conditionally i.i.d. with distribution
μ. Thus

E
(

Q(a, n, �)|X, μ
) = ga,�(Xn, μ) (25)
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and
E

(
R(a, �)|X, μ, Y1

) = ga,�(Y1, μ), (26)

where

ga,�(u, ν) = E exp

(
itA−1

�

(
a1u +

�∑

i=2

aiξ
(ν)
i

))
(u ∈ R

1 , ν ∈ S)

and (ξ
(ν)
n ) is an i.i.d. sequence with distribution ν. Integrating (25) and (26), we get

E
(

Q(a, n, �)
) = Ega,�(Xn, μ) (27)

E
(

R(a, �)
) = Ega,�(Y1, μ) (28)

and thus (24) is equivalent to

E
ga,�(Xn, μ)

ψ(a)
−→ E

ga,�(Y1, μ)

ψ(a)
as n → ∞, uniformly in a, �. (29)

We shall derive (29) from Lemmas 1–3. Recall that ρ is a metric on S = S(α, c);
the remarks at the beginning of this section show that on the support of μ the metric
ρ and the Prohorov metric π induce the same convergence and thus the same Borel
σ -field; thus the limit random measure μ, which is a random variable taking values
in (S, π), can be also regarded as a random variable taking values in (S, ρ). Also,

μ is clearly σ(X) measurable and thus (Xn, μ)
d−→ (Y1, μ) by Lemma 1. (Recall

that by reindexing, Lemma 1 can be assumed to hold for nk = k.) Hence, (29) will
follow from Lemma 3 (note the equivalence of (18) and (19)) if we show that the
class of functions {

ga,�(t, ν)

ψ(a)

}
(30)

defined on the product metric space (R× S , λ×ρ) (λ denotes the ordinary distance
onR) satisfies conditions (a), (b) of Lemma 3. To see the validity of (a) let us note that
by (12), (13), Yn are conditionally i.i.d. with respect toμwith conditional distribution
μ, moreover, we assumed without loss of generality that the characteristic function
ϕ(t, ω) of μ(ω) satisfies (16) with limt→0 β(t, ω) = 0 uniformly in ω and thus
applying Lemma 2 with ϕ1(t) = ϕ(t, ω) and ϕ2(t) = exp(−c|t |α) and using (10)
and the remark after the proof of Lemma 2 it follows that there exists an integer n0 and
a positive constant c0 such that ψ(a) ≥ c0 for n ≥ n0 and all (ak). Thus the validity
of (a) follows from Lemma 2; the validity of (b) is immediate from |ga,�(u, ν)| ≤ 1.
We thus proved relation (29) and thus also (24), whence it follows (note again that
the right side of (24) equals 1) that

ψ(a)−1E exp
(

itA−1
� (a1Xn + a2Y2 + · · · + a�Y�)

)
−→ 1 (31)
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as n → ∞, uniformly in �, a. Hence given ε > 0, we can choose n1 so large that

|E exp
(

itA−1
� (a1Xn + a2Y2 + · · · + a�Y�)

)
− E exp(itA−1

� (a1Y1 + a2Y2 + · · · + a�Y�))| ≤ ε

2
ψ(a1, . . . , a�) (32)

for every �, a and n ≥ n1. This completes the first induction step.
Assume now that n1, . . . , nk−1 have already been chosen. Exactly in the same

way as we proved (31), it follows that for � > k

ψ(a)−1E exp
(

itA−1
� (a1Xn1 + · · · + ak−1Xnk−1 + ak Xn + ak+1Yk+1 + · · · + a�Y�)

)
−→ ψ(a)−1E exp

(
itA−1

� (a1Xn1 + · · · + ak−1Xnk−1 + akYk + · · · + a�Y�)
)

as n → ∞

uniformly in a and �. Hence we can choose nk > nk−1 so large that

E exp
(

itA−1
� (a1Xn1 + · · · + ak−1Xnk−1 + ak Xn + ak+1Yk+1 + · · · + a�Y�)

)
− E exp

(
itA−1

� (a1Xn1 + · · · + ak−1Xnk−1 + akYk + · · · + a�Y�)
)

(33)≤ ε

2k
ψ(a1, . . . , a�)

for every (a1, . . . , a�) ∈ R�, � > k and n ≥ nk . This completes the kth induction
step; the so constructed sequence (nk) obviously satisfies

E exp
(

itA−1
� (a1Xn1 + · · · + a� Xn�

)
)

− E exp
(

itA−1
� (a1Y1 + · · · + a�Y�)

)
≤ εψ(a1, . . . , a�)

for every � ≥ 1 and (a1, . . . , a�) ∈ R�, i.e., (23) is valid. Since in the kth induction
step nk was chosen in such a way that the corresponding inequalities (32) (for k = 1)
and (33) (for k > 1) hold not only for n = nk , but for all n ≥ nk as well, relation
(23) remains valid for any further subsequence of (Xnk ).

We can now easily complete the proof of Theorem 2. Letting ψ(a1, . . . , an, t)
denote the function defined by (22), the validity of (23) for (Xnk ) and its further
subsequences and a diagonal argument yield a subsequence (Xnk ) such that for all
rational t and all rational ε > 0 we have

(1 − ε)ψ(a1, . . . , ak, t) ≤ E exp

(
itA−1

k

k∑

i=1

ai Xni

)

≤ (1 + ε)ψ(a1, . . . , ak, t) (34)



18 I. Berkes and R. Tichy

for k ≥ k0(t, ε) and all (an). Recall now that without loss of generality we assumed
that the characteristic functionϕ(t, ω)ofμ(ω) satisfies (16)where limt→0 β(t, ω)=0
uniformly for ω ∈ Ω . Applying Lemma 2 with ϕ1(t) = ϕ(t, ω), ϕ2(t) =
exp(−c|t |α), using the Remark after the proof of the lemma and integrating with
respect to ω we get

|ϕ(a1, . . . , ak, t) − exp(−c|t |α)| ≤ |t |αβ∗(|t |δk) (35)

for all k ≥ 1, t ∈ R and all (ak),whereβ∗(t) is a function satisfying limt→0 β∗(t) = 0
and δk = max1≤ j≤k |a j |/Ak . Since δk → 0 by (10), relations (34) and (35) imply

E exp

(
itA−1

k

k∑

i=1

ai Xni

)
−→ exp(−c|t |α) as k → ∞

for any rational t and any (ak) satisfying (10), and consequently

A−1
k

k∑

i=1

ai Xmi

d−→ Gα,c.

This completes the proof of Theorem 2.

Acknowledgments We would like to thank two anonymous referees for their comments on the
paper leading to a substantial improvement of the presentation.
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High-Dimensional p-Norms

Gérard Biau and David M. Mason

Abstract Let X = (X1, . . . , Xd) be a R
d -valued random vector with i.i.d.

components, and let ‖X‖p = (
∑d

j=1 |X j |p)1/p be its p-norm, for p > 0. The
impact of letting d go to infinity on ‖X‖p has surprising consequences, which may
dramatically affect high-dimensional data processing. This effect is usually referred
to as the distance concentration phenomenon in the computational learning literature.
Despite a growing interest in this important question, previous work has essentially
characterized the problem in terms of numerical experiments and incomplete mathe-
matical statements. In this paper, we solidify some of the argumentswhich previously
appeared in the literature and offer new insights into the phenomenon.

1 Introduction

In what follows, for x = (x1, . . . , xd) a vector in Rd and 0 < p < ∞, we set

‖x‖p =
⎛
⎝ d∑

j=1

|x j |p

⎞
⎠

1/p

. (1)

Recall that for p ≥ 1, ‖.‖p is a norm on R
d (the L p-norm) but for 0 < p < 1,

the triangle inequality does not hold and ‖.‖p is sometimes called a prenorm. In
the sequel, we take the liberty to call p-norm a norm or prenorm of the form (1),
with p > 0.
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Now, letX = (X1, . . . , Xd) be aRd -valued randomvectorwith i.i.d. components.
The study of the probabilistic properties of ‖X‖p as the dimension d tends to infinity
has recently witnessed an important research effort in the computational learning
community (see, e.g., François et al. 2007, for a review). This activity is easily
explained by the central role played by the quantity ‖X‖p in the analysis of nearest
neighbor search algorithms, which are currently widely used in data management
and database mining. Indeed, finding the closest matching object in an L p-sense is
of significant importance for numerous applications, including pattern recognition,
multimedia content retrieving (images, videos, etc.), data mining, fraud detection,
anddna sequence analysis, just to name a few.Most of these real applications involve
very high-dimensional data (for example, pictures taken by a standard camera consist
of several million pixels) and the curse of dimensionality (when d → ∞) tends to
be a major obstacle in the development of nearest neighbor-based techniques.

The effect on ‖X‖p of letting d go large is usually referred to as the distance
concentration phenomenon in the computational learning literature. It is in fact
a quite vague term that encompasses several interpretations. For example, it has
been observed by several authors (e.g., François et al. 2007) that, under appropriate
moment assumptions, the so-called relative standard deviation

√
Var‖X‖p/E‖X‖p

tends to zero as d tends to infinity. Consequently, by Chebyshev’s inequality (this
will be rigorously established in Sect. 2), for all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣ ≥ ε

}
→ 0, as d → ∞.

This simple result reveals that the relative error made as considering E‖X‖p instead
of the random value ‖X‖p becomes asymptotically negligible. Therefore, high-
dimensional vectors X appear to be distributed on a sphere of radius E‖X‖p.

The distance concentration phenomenon is also often expressed by considering
an i.i.d. X sample X1, . . . , Xn and observing that, under certain conditions, the rel-
ative contrast

max1≤i≤n ‖Xi‖p − min1≤i≤n ‖Xi‖p

min1≤i≤n ‖Xi‖p

vanishes in probability as d tends to infinity, whereas the contrast

max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

behaves in expectation as d1/p−1/2 (Beyer et al. 1999; Hinneburg et al. 2000;
Aggarwal et al. 2001; Kabán 2012). Thus the ratio between the largest and small-
est p-distances from the sample to the origin becomes negligible as the dimension
increases, and all points seem to be located at approximately the same distance. This
phenomenon may dramatically affect high-dimensional data processing, analysis,
retrieval, and indexing, insofar as these procedures rely on some notion of p-norm.
Accordingly, serious questions are raised as to the validity of many nearest neighbor
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search heuristics in high dimension, a problem that can be further exacerbated by
techniques that find approximate neighbors in order to improve algorithmic perfor-
mance (Beyer et al. 1999).

Even if people have now a better understanding of the distance concentration
phenomenon and its practical implications, it is however our belief that there is
still a serious need to solidify its mathematical background. Indeed, previous work
has essentially characterized the problem in terms of numerical experiments and
(often) incomplete probabilistic statements, with missing assumptions and (some-
times) defective proofs. Thus, our objective in the present paper is to solidify some of
the statements which previously appeared in the computational learning literature.
We start in Sect. 2 by offering a thorough analysis of the behavior of the p-norm
‖X‖p (as a function of p and the properties of the distribution of X) as d → ∞.
Section3 is devoted to the investigation of some new asymptotic properties of the
contrast max1≤i≤n ‖Xi‖p −min1≤i≤n ‖Xi‖p, both as d → ∞ and n → ∞. For the
sake of clarity, most technical proofs are gathered in Sect. 4. The basic tools that we
shall use are the law of large numbers, the central limit theorem, moment bounds for
sums of i.i.d. random variables, and a coupling inequality of Yurinskiı̆ (1977).

2 Asymptotic Behavior of p-Norms

2.1 Consistency

Throughout this paper, the notation
P→ and

D→ stand for convergence in probability
and in distribution, respectively. The notation un = o(vn) and un = O(vn) mean,
respectively, that un/vn → 0 and un ≤ Cvn for some constant C , as n → ∞. The
symbols oP(vn) and OP(vn) denote, respectively, a sequence of random variables

{Yn}n≥1 such that Yn/vn
P→ 0 and Yn/vn is bounded in probability, as n → ∞.

We start this sectionwith a general proposition that plays a key role in the analysis.

Proposition 1 Let {Ud}d≥1 be a sequence of random variables such that Ud
P→ a,

and let ϕ be a real-valued measurable function which is continuous at a. Assume that

(i) ϕ is bounded on [−M, M] for some M > |a|;
(ii) E|ϕ(Ud)| < ∞ for all d ≥ 1.

Then, as d → ∞,
Eϕ(Ud) → ϕ(a)

if and only if
E (ϕ (Ud) 1 {|Ud | > M}) → 0. (2)
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Proof The proof is easy. Condition (i) and continuity of ϕ at a allow us to apply the
bounded convergence theorem to get

E (ϕ(Ud)1 {|Ud | ≤ M}) → ϕ(a).

Since
Eϕ(Ud) = E (ϕ(Ud)1 {|Ud | ≤ M}) + E (ϕ(Ud)1 {|Ud | > M}) ,

the rest of the proof is obvious. �

We shall now specialize the result of Proposition1 to the case when

Ud = d−1
d∑

j=1

Y j := Y d ,

where {Y j } j≥1 is a sequence of i.i.d. Y random variables with finite mean μ. In this
case, by the strong law of large numbers, Ud → μ almost surely. The following
lemma gives two sufficient conditions for (2) to hold when Ud = Y d .

Lemma 1 let ϕ be a real-valued measurable function. Assume that one of the fol-
lowing two conditions is satisfied:

Condition 1 The function |ϕ| is convex on R and E|ϕ(Y )| < ∞.

Condition 2 For some s > 1,

lim sup
d→∞

E
∣∣ϕ(Y d)

∣∣s
< ∞.

Then (2) is satisfied for the sequence {Y d}d≥1 with a = μ and M > |μ|.
Proof Suppose that Condition 1 is satisfied. Then note that by the convexity
assumption

E
(∣∣ϕ(Y d)

∣∣ 1
{|Y d | > M

}) ≤ d−1
d∑

j=1

E
(∣∣ϕ(Y j )

∣∣ 1
{|Y d | > M

})
= E

(|ϕ(Y )| 1
{|Y d | > M

})
.

Since M > |μ|, we conclude that with probability one, |ϕ(Y )|1{|Y d | > M} → 0.
Also |ϕ(Y )|1{|Y d | > M} ≤ |ϕ(Y )|. Therefore, by the dominated convergence the-
orem, (2) holds.

Next, notice by Hölder’s inequality with 1/r = 1 − 1/s that

E
(∣∣ϕ(Y d)

∣∣ 1
{|Y d | > M

}) ≤
(
E

∣∣ϕ(Y d)
∣∣s

)1/s (
P

{|Y d | > M
})1/r

.

Since P{|Y d | > M} → 0, (2) immediately follows from Condition 2. �
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Let us now return to the distance concentration problem,which has been discussed
in the introduction. Recall that we denote byX = (X1, . . . , Xd) aRd -valued random
vector with i.i.d. X components. Whenever for p > 0 E|X |p < ∞, we set μp =
E|X |p. Also when Var|X |p < ∞, we shall write σ 2

p = Var|X |p. Proposition1 and
Lemma1 yield the following corollary:

Corollary 1 Fix p > 0 and r > 0.

(i) Whenever r/p < 1 and E|X |p < ∞,

E‖X‖r
p

dr/p
→ μ

r/p
p , as d → ∞,

whereas if E|X |p = ∞, then

lim
d→∞

E‖X‖r
p

dr/p
= ∞.

(ii) Whenever r/p ≥ 1 and E|X |r < ∞,

E‖X‖r
p

dr/p
→ μ

r/p
p , as d → ∞,

whereas if E|X |r = ∞, then, for all d ≥ 1,

E‖X‖r
p

dr/p
= ∞.

Proof We shall apply Proposition1 and Lemma1 to Y = |X |p, Y j = |X j |p, j ≥ 1,
and ϕ(u) = |u|r/p.

Proof of (i)
For the first part of (i), notice that with s = p/r > 1

E

∣∣∣∣∣ϕ
(∑d

j=1 |X j |p

d

)∣∣∣∣∣

s

=
∑d

j=1 E|X j |p

d
= E|X |p < ∞.

This shows that sufficient Condition 2 of Lemma1 holds, which by Proposition1
gives the result.

For the second part of (i) observe that for any K > 0

E

(∑d
j=1 |X j |p

d

)r/p

≥ E

(∑d
j=1 |X j |p1

{|X j | ≤ K
}

d

)r/p

.

Observing that the right-hand side of the inequality converges to (E|X |p1{|X | ≤
K })r/p as d → ∞, we get for any K > 0
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lim inf
d→∞ E

(∑d
j=1 |X j |p

d

)r/p

≥ E
(|X |p1 {|X | ≤ K })r/p

.

Since K can be chosen arbitrarily large and we assume that E|X |p = ∞, we see that
the conclusion holds.

Proof of (i i)
For the first part of (i i), note that in this case r/p ≥ 1, so ϕ is convex. Moreover,
note that

E

∣∣∣∣∣ϕ
(∑d

j=1 |X j |p

d

)∣∣∣∣∣ = E

(∑d
j=1 |X j |p

d

)r/p

≤ d−1
E|X |r

(by Jensen’s inequality)

< ∞.

Thus sufficient Condition 1 of Lemma1 holds, which by Proposition1 leads to
the result.

For the second part of (i i), observe that if E|X |r = ∞, then, for all d ≥ 1,

E

(∑d
j=1 |X j |p

d

)r/p

≥ d−r/p
E|X |r = ∞. �

Applying Corollary1 with p > 0 and r = 2 yields the following important result:

Proposition 2 Fix p > 0 and assume that 0 < E|X |m < ∞ for m = max(2, p).
Then, as d → ∞,

E‖X‖p

d1/p
→ μ

1/p
p

and
E‖X‖2p

d2/p
→ μ

2/p
p ,

which implies √
Var‖X‖p

E‖X‖p
→ 0, as d → ∞.

This result, when correctly stated, corresponds to Theorem 5 of François et al.
(2007). It expresses the fact that the relative standard deviation converges toward
zero when the dimension grows. It is known in the computational learning literature
as the p-norm concentration in high-dimensional spaces. It is noteworthy that, by
Chebyshev’s inequality, for all ε > 0,
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P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣ ≥ ε

}
= P

{ ∣∣ ‖X‖p − E‖X‖p
∣∣ ≥ εE‖X‖p

}

≤ Var‖X‖p

ε2E2‖X‖p
→ 0, as d → ∞. (3)

That is, ‖X‖p/E‖X‖p
P→ 1 or, in other words, the sequence {‖X‖p}d≥1 is rel-

atively stable (Boucheron et al. 2013). This property guarantees that the random
fluctuations of ‖X‖p around its expectation are of negligible size when compared to
the expectation, and therefore most information about the size of ‖X‖p is given by
E‖X‖p as d becomes large.

2.2 Rates of Convergence

The asymptotic concentration statement of Corollary1 can be made more precise by
means of rates of convergence, at the price of strongermoment assumptions. To reach
this objective, we first need a general result to control the behavior of a function of
an i.i.d. empirical mean around its true value. Thus, assume that {Y j } j≥1 are i.i.d. Y
with mean μ and variance σ 2. As before, we define

Y d = d−1
d∑

j=1

Y j .

Let ϕ be a real-valued function with derivatives ϕ′ and ϕ′′. Khan (2004) provides
sufficient conditions for

Eϕ(Y d) = ϕ(μ) + ϕ′′(μ)σ 2

2d
+ o(d−2)

to hold. The following lemma, whose assumptions are less restrictive, can be used in
place of Khan’s result (2004). For the sake of clarity, its proof is postponed to Sect. 4.

Lemma 2 Let {Y j } j≥1 be a sequence of i.i.d. Y random variables with mean μ and
variance σ 2, and ϕ be a real-valued function with continuous derivatives ϕ′ and ϕ′′
in a neighborhood of μ. Assume that for some r > 1,

E|Y |r+1 < ∞ (4)

and, with 1/s = 1 − 1/r ,

lim sup
d→∞

E
∣∣ϕ(Y d)

∣∣s
< ∞. (5)
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Then, as d → ∞,

Eϕ(Y d) = ϕ(μ) + ϕ′′(μ)σ 2

2d
+ o(d−1).

The consequences of Lemma2 in terms of p-norm concentration are summarized
in the following proposition:

Proposition 3 Fix p > 0 and assume that 0 < E|X |m < ∞ for m = max(4, 3p).
Then, as d → ∞,

E‖X‖p = d1/pμ
1/p
p + O(d1/p−1)

and

Var‖X‖p = μ
2/p−2
p σ 2

p

d1−2/p p2
+ o(d−1+2/p),

which implies √
d Var‖X‖p

E‖X‖p
→ σp

pμp
, as d → ∞.

Proposition3 is statedwithout assumptions as Theorem 6 in François et al. (2007),
where it is provided with an ambiguous proof. This result shows that for a fixed large
d, the relative standard deviation evolves with p as the ratio σp/(pμp). For instance,
when the distribution of X is uniform,

μp = 1

p + 1
and σp = p

p + 1

√
1

2p + 1
.

In this case, we conclude that

√
d Var‖X‖p

E‖X‖p
→

√
1

2p + 1
.

Thus, in the uniform setting, the limiting relative standard deviation is a strictly
decreasing function of p. This observation is often interpreted by saying that p-norms
are more concentrated for larger values of p. There are, however, distributions for
which this is not the case. A counterexample is given by a balanced mixture of two-
standard Gaussian random variables with mean 1 and −1, respectively (see François
et al. 2007, p. 881). In that case, it can be seen that the asymptotic relative standard
deviation with p ≤ 1 is smaller than for values of p ∈ [8, 30], making fractional
norms more concentrated.



High-Dimensional p-Norms 29

Proof (Proposition3) Fix p > 0 and introduce the functions on R

ϕ1(u) = |u|1/p and ϕ2(u) = |u|2/p.

Assume that E|X |max(4,p) < ∞. Applying Corollary1 we get that, as d → ∞,

E

(∑d
j=1 |X j |p

d

)2/p

→ μ
2/p
p

and

E

(∑d
j=1 |X j |p

d

)4/p

→ μ
4/p
p .

This says that with s = 2, for i = 1, 2,

lim sup
d→∞

E

∣∣∣∣∣ϕi

(∑d
j=1 |X j |p

d

)∣∣∣∣∣

s

< ∞.

Now, let Y = |X |p and set r = 2. If we also assume that E|Y |r+1 = E|Y |3 =
E|X |3p < ∞, we get by applying Lemma2 to ϕ1 and ϕ2 that for i = 1, 2

Eϕi (Y d) = ϕi (μp) + ϕ′′
i (μp)σ

2
p

2d
+ o(d−1).

Thus, whenever E|X |m < ∞, where m = max(4, 3p),

E|Y d |1/p = μ
1/p
p + 1

p

(
1 − p

p

)
μ
1/p−2
p σ 2

p

2d
+ o(d−1)

and

E|Y d |2/p = μ
2/p
p + 1

p

(
2 − p

p

)
μ
2/p−2
p σ 2

p

d
+ o

(
d−1

)
.

Therefore, we see that

Var|Y d |1/p = E|Y d |2/p − E
2|Y d |1/p

= μ
2/p−2
p σ 2

p

dp2
+ o

(
d−1

)
.

The identity Y d = d−1 ∑d
j=1 |X j |p yields the desired results. �
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We conclude the section with a corollary, which specifies inequality (3).

Corollary 2 Fix p > 0.

(i) If 0 < E|X |m < ∞ for m = max(4, 3p), then, for all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣ ≥ ε

}
≤ σ 2

p

ε2dp2μ2
p

+ o(d−1).

(ii) If for some positive constant C, 0 < |X | ≤ C almost surely, then, for p ≥ 1 and
all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣ ≥ ε

}
≤ 2 exp

(
−ε2

(
d2/p−1μ

2/p
p

2C2 + o(d2/p−1)

))
.

Proof Statement (i) is an immediate consequence of Proposition3 and Chebyshev’s
inequality. Now, assume that p ≥ 1, and let A = [−C, C]. For x = (x1, . . . , xd) ∈
R

d , let g : Ad → R be defined by

g(x) = ‖x‖p =
⎛
⎝ d∑

j=1

|x j |p

⎞
⎠

1/p

.

Clearly, for each 1 ≤ j ≤ d,

sup
(x1,...,xd )∈Ad

x ′
j ∈A

∣∣∣g(x1, . . . , xd) − g(x1, . . . , x j−1, x ′
j , x j+1, . . . , xd)

∣∣∣

= sup
x∈Ad ,x ′

j ∈A

∣∣‖x‖p − ‖x′‖p
∣∣ ,

where x′ is identical to x, except on the j th coordinate where it takes the value x ′
j . It

follows, by Minkowski inequality (which is valid here since p ≥ 1), that

sup
(x1,...,xd )∈Ad

x ′
j ∈A

∣∣∣g(x1, . . . , xd) − g(x1, . . . , x j−1, x ′
j , x j+1, . . . , xd)

∣∣∣

≤ sup
x∈Ad

x ′
j ∈A

‖x − x′‖p

= sup
(x,x ′)∈A2

|x − x ′| ≤ 2C.
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Consequently, using the bounded difference inequality (McDiarmid 1989), we obtain

P

{∣∣∣∣
‖X‖p

E‖X‖p
− 1

∣∣∣∣ ≥ ε

}
= P

{ ∣∣ ‖X‖p − E‖X‖p
∣∣ ≥ εE‖X‖p

}

≤ 2 exp

(
−2(εE‖X‖p)

2

4dC2

)

= 2 exp

(
−ε2

(
d2/p−1μ

2/p
p

2C2 + o(d2/p−1)

))
,

where, in the last inequality, we used Proposition3. This concludes the proof. �

3 Minima and Maxima

Another important question arising in high-dimensional nearest neighbor search
analysis concerns the relative asymptotic behavior of the minimum and maximum
p-distances to the origin within a random sample. To be precise, letX1, . . . , Xn be an
i.i.d.X sample, whereX = (X1, . . . , Xd) is as usual aRd -valued randomvectorwith
i.i.d. X components. We will be primarily interested in this section in the asymptotic
properties of the difference (the contrast) max1≤i≤n ‖Xi‖p − min1≤i≤d ‖Xi‖p.

Assume, to start with, that n is fixed and only d is allowed to grow. Then an
immediate application of the law of large numbers shows that, whenever μp =
E|X |p < ∞, almost surely as d → ∞,

d−1/p
(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
P→ 0.

Moreover, if 0 < μp < ∞, then

max1≤i≤n ‖Xi‖p

min1≤i≤n ‖Xi‖p

P→ 1.

The above ratio is sometimes called the relative contrast in the computational learn-
ing literature. Thus, as d becomes large, all observations seem to be distributed at
approximately the same p-distance from the origin. The concept of nearest neigh-
bor (measured by p-norms) in high dimension is therefore less clear than in small
dimension, with resulting computational difficulties and algorithmic inefficiencies.

These consistency results can be specified by means of asymptotic distributions.
Recall that if Z1, . . . , Zn are i.i.d standard normal random variables, the sample
range is defined to be

Mn = max
1≤i≤n

Zi − min
1≤i≤n

Zi .
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The asymptotic distribution of Mn is well known (see, e.g., David 1981). Namely,
for any x one has

lim
n→∞P

{√
2 log n

(
Mn − 2

√
2 log n + log log n + log 4π

2
√
2 log n

)
≤ x

}

=
∫ ∞

−∞
exp

(
−t − e−t − e−(x−t)

)
dt.

For future reference, we shall sketch the proof of this fact here. It is well known
that with

an = √
2 log n and bn = √

2 log n − 1

2

(log log n + log 4π)√
2 log n

(6)

we have (
an( max

1≤i≤n
Zi − bn), an( min

1≤i≤n
Zi + bn)

)
→ (E,−E ′), (7)

where E and E ′ are independent, E = E ′ and P{E ≤ x} = exp(− exp(−x)),
−∞ < x < ∞. (The asymptotic independence of the maximum and minimum part
can be inferred from Theorem 4.2.8 of Reiss 1989, and the asymptotic distribution
part from Example 2 on p. 71 of Resnick 1987.) From (7) we get

an( max
1≤i≤n

Zi − min
1≤i≤n

Zi ) − 2anbn
D→ E + E ′.

Clearly,

P{E + E ′ ≤ x} =
∫ ∞

−∞
exp

(
−e−(x−t)

)
exp(−e−t )e−tdt

=
∫ ∞

−∞
exp

(
−t − e−t − e−(x−t)

)
dt.

Our first result treats the case when n is fixed and d → ∞.

Proposition 4 Fix p > 0, and assume that 0 < E|X |p < ∞ and 0 < σp < ∞.
Then, for fixed n, as d → ∞,

d1/2−1/p
(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
D→ σpμ

1/p−1
p

p
Mn .

To our knowledge, this is the first statement of this type in the analysis of high-
dimensional nearest neighbor problems. In fact, most of the existing results merely
bound the asymptotic expectation of the (normalized) difference and ratio between
the max and the min, but with bounds which are unfortunately not of the same order
in n as soon as n ≥ 3 (see, e.g.,Theorem 3 in Hinneburg et al. 2000).
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Oneof the consequences of Proposition4 is that, for fixedn, the difference between
the farthest and nearest neighbors does not necessarily go to zero in probability as d
tends to infinity. Indeed, we see that the size of

max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

grows as d1/p−1/2. For example, this difference increases with dimensionality as√
d for the L1 (Manhattan) metric and remains stable in distribution for the L2

(Euclidean) metric. It tends to infinity in probability for p < 2 and to zero for p > 2.
This observation is in line with the conclusions of Hinneburg et al. (2000), who argue
that nearest neighbor search in a high-dimensional space tends to be meaningless
for norms with larger exponents, since the maximum observed distance tends toward
the minimum one. It should be noted, however, that the variance of the limiting
distribution depends on the value of p.

Remark 1 Let Z1, . . . , Zn be i.i.d standard normal random variables, and let

Rn = max1≤i≤n Zi

min1≤i≤n Zi
.

Assuming μp > 0 and 0 < σp < ∞, one can prove, using the same technique, that

max1≤i≤n ‖Xi‖p − d1/pμp

min1≤i≤n ‖Xi‖p − d1/pμp

D→ Rn .

Proof (Proposition4) Denote by Zn a centered Gaussian random vector in Rn , with
identity covariance matrix. By the central limit theorem, as d → ∞,

√
d

[(
‖X1‖p

p

d
, . . . ,

‖Xn‖p
p

d

)
− (μp, . . . , μp)

]
D→ σpZn .

Applying the delta method with the mapping f (x1, . . . , xn) = (x1/p
1 , . . . , x1/p

n )

(which is differentiable at (μp, . . . , μp) since μp > 0), we obtain

√
d

[(‖X1‖p

d1/p
, . . . ,

‖Xn‖p

d1/p

)
− (μ

1/p
p , . . . , μ

1/p
p )

]
D→ σpμ

1/p−1
p

p
Zn .

Thus, by continuity of the maximum and minimum functions,

d1/2−1/p
(
max
1≤i≤n

‖Xi‖p − min
1≤i≤n

‖Xi‖p

)
D→ σpμ

1/p−1
p

p
Mn . �
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In the previous analysis, n (the sample size) was fixed whereas d (the dimension)
was allowed to grow to infinity. A natural question that arises concerns the impact of
letting n be a function of d such that n tends to infinity as d → ∞ (Mallows 1972).
Proposition5 below offers a first answer.

Proposition 5 Fix p ≥ 1, and assume that 0 < E|X |3p < ∞ and σp > 0. For any
sequence of positive integers {n(d)}d≥1 converging to infinity and satisfying

n(d) = o

(
d1/5

log6/5 d

)
, as d → ∞, (8)

we have

pan(d)d1/2−1/p

μ
1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p − min

1≤i≤n(d)
‖Xi‖p

)
−2an(d)bn(d)

D→ E + E ′,

where an and bn are as in (6), and E and E ′ are as in (7).

Proof In the following, we let δ(d) = 1/ log d. For future use note that

δ2(d) log n(d) → 0 and
n5(d)

dδ6(d)
→ 0, as d → ∞. (9)

In the proof, we shall often suppress the dependence of n and δ on d. For 1 ≤ i ≤ n,
we set

Xi = (X1,i , . . . , Xd,i ) and ‖Xi‖p
p =

d∑

j=1

|X j,i |p.

We see that for n ≥ 1,(
‖X1‖p

p − dμp√
dσp

, . . . ,
‖Xn‖p

p − dμp√
dσp

)

=
(∑d

j=1 |X j,1|p − dμp√
dσp

, . . . ,

∑d
j=1 |X j,n|p − dμp√

dσp

)

:= (Y1, . . . , Yn) = Yn ∈ R
n .

As above, let Zn = (Z1, . . . , Zn) be a centered Gaussian random vector in Rn , with
identity covariance matrix. Write, for 1 ≤ j ≤ d,

ξ j =
(

|X j,1|p − μp√
dσp

, . . . ,
|X j,n|p − μp√

dσp

)
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and note that
∑d

j=1 ξ j = Yn . Set β = ∑d
j=1 E‖ξ j‖32. Then, by Jensen’s inequality,

E‖ξ j‖32 = E

(∑n
i=1

(|X j,i |p − μp
)2

dσ 2
p

)3/2

≤
(

n

dσ 2
p

)3/2

E
∣∣ |X |p − μp

∣∣3 .

This gives that for any δ > 0, possibly depending upon n,

B := βnδ−3 ≤ n5/2

√
dσ 3

p

E
∣∣ |X |p − μp

∣∣3 δ−3.

Applying a result of Yurinskiı̆ (1977) as formulated in Sect. 4 of Chap.10 of Pollard
(2001) we get, on a suitable probability space depending on δ > 0 and n ≥ 1, there

exist random vectors Y′
n and Z′

n satisfying Y′
n
D= Yn and Z′

n
D= Zn such that

P

{
‖Y′

n − Z′
n‖2 > 3δ

}
≤ C B

(
1 + |log(B)|

n

)
, (10)

where C is a universal constant. To avoid the use of primes, we shall from now on

drop them from the notation and writeYn
D= Y′

n andZn
D= Z′

n , where it is understood
that the pair (Yn, Zn) satisfies inequality (10) for the given δ > 0.

Using the fact that

∣∣∣∣ max
1≤i≤n

xi − max
1≤i≤n

yi

∣∣∣∣ ≤
√√√√

n∑

i=1

(xi − yi )
2,

we get, for all ε > 0,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi | > ε

}
≤ P

{√
2 log n ‖Yn − Zn‖2 > ε

}
.

Thus, for all d large enough,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi | > ε

}
≤ P

{√
2 log n ‖Yn − Zn‖2 > 3δ

√
2 log n

}

(since δ
√
log n → 0 as d → ∞)

= P

{
‖Yn − Zn‖2 > 3δ

}
.

From (10), we deduce that for all ε > 0 and all d large enough,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi | > ε

}
≤ C B

(
1 + |log(B)|

n

)
.
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But, by our choice of δ(d) and (9),

B

(
1 + |log(B)|

n

)
→ 0,

so that
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi | = oP(1).

Similarly, one proves that

an| min
1≤i≤n

Yi − min
1≤i≤n

Zi | = oP(1).

Thus, by (7), we conclude that

(
an( max

1≤i≤n
Yi − bn), an( min

1≤i≤n
Yi + bn)

)
D→ (E,−E ′). (11)

Next, we have(
an( max

1≤i≤n
Yi − bn), an( min

1≤i≤n
Yi + bn)

)

=
(

an

(
max1≤i≤n ‖Xi‖p

p√
dσp

−
√

dμp

σp
− bn

)
,

an

(
min1≤i≤n ‖Xi‖p

p√
dσp

−
√

dμp

σp
+ bn

))

=
(

an

(
max1≤i≤n ‖Xi‖p

p√
dσp

− βn

)
, an

(
min1≤i≤n ‖Xi‖p

p√
dσp

− β ′
n

))
,

where βn =
√

dμp
σp

+ bn and β ′
n =

√
dμp
σp

− bn . Note that an → ∞ and (11) imply
that both

max1≤i≤n ‖Xi‖p
p√

dσp
− βn

P→ 0 and
min1≤i≤n ‖Xi‖p

p√
dσp

− β ′
n

P→ 0. (12)

Observe also that by a two term Taylor expansion, for a suitable β̃n between βn and
(max1≤i≤n ‖Xi‖p

p)/(
√

dσp),
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pan

β
1/p−1
n

⎛
⎝

(
max1≤i≤n ‖Xi‖p

p√
dσp

)1/p

− β
1/p
n

⎞
⎠

= an

(
max1≤i≤n ‖Xi‖p

p√
dσp

− βn

)

+ an

β
1/p−1
n

1 − p

2p
β̃
1/p−2
n

(
max1≤i≤n ‖Xi‖p

p√
dσp

− βn

)2

.

We obtain by (11) and (12) that

a2
n

(
max1≤i≤n ‖Xi‖p

p√
dσp

− βn

)2
β̃
1/p−2
n

anβ
1/p−1
n

= OP

(
1

anβn

)
= oP(1).

Similarly,

pan(
β ′

n

)1/p−1

⎛
⎝

(
min1≤i≤n ‖Xi‖p

p√
dσp

)1/p

− (
β ′

n

)1/p

⎞
⎠

= an

(
min1≤i≤n ‖Xi‖p

p√
dσp

− β ′
n

)
+ oP(1).

Keeping in mind that βn/β ′
n → 1, we get

pan

β
1/p−1
n

⎛
⎝

(
max1≤i≤n ‖Xi‖p

p√
dσp

)1/p

− β
1/p
n ,

(
min1≤i≤n ‖Xi‖p

p√
dσp

)1/p

− (
β ′

n

)1/p

⎞
⎠

D→ (E,−E ′)

and hence

pan

β
1/p−1
n

(
max1≤i≤n ‖Xi‖p

(
√

dσp)1/p
− min1≤i≤n ‖Xi‖p

(
√

dσp)1/p
− β

1/p
n + (β ′

n)1/p

)
D→ E + E ′.

Next notice that (8) implies that bn/
√

d → 0, as d → ∞. Thus, recalling

βn√
du p/σp

= 1 + bn√
dμp/σp

and
β ′

n√
du p/σp

= 1 − bn√
dμp/σp

,
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we are led to

pan

β
1/p−1
n

(
β
1/p
n − (

β ′
n

)1/p
)

= 2anbn + O(anb2nβ−1
n ) = 2anbn + o(1).

Therefore we get

pan(d)d1/2−1/p

μ
1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p − min

1≤i≤n(d)
‖Xi‖p

)

−2an(d)bn(d)
D→E + E ′. �

4 Proof of Lemma 2

In the sequel, to lighten notation a bit, we set Y = Y d . Choose any ε > 0 and
δ > 0 such that ϕ has continuous derivatives ϕ′ and ϕ′′ on Iδ = [μ − δ, μ + δ] and
|ϕ′′(μ) − ϕ′′(x)| ≤ ε for all x ∈ Iδ. We see that by Taylor’s theorem that for Y ∈ Iδ

ϕ(Y ) = ϕ(μ) + ϕ′(μ)(Y − μ) + 2−1ϕ′′(μ̃)(Y − μ)2, (13)

where μ̃ lies between Y and μ. Clearly,

∣∣∣∣Eϕ(Y ) − ϕ(μ) − σ 2ϕ′′(μ)

2d

∣∣∣∣

=
∣∣∣E

(
ϕ(Y ) −

(
ϕ(μ) + ϕ′(μ)(Y − μ) + 2−1ϕ′′(μ)(Y − μ)2

))∣∣∣

≤
∣∣∣E

({
ϕ(Y ) −

(
ϕ(μ) + ϕ′(μ)(Y − μ) + 2−1ϕ′′(μ)(Y − μ)2

)}
1{Y ∈ Iδ}

)∣∣∣

+ E
(∣∣ϕ(Y )

∣∣ 1{Y /∈ Iδ}
) + E

(∣∣P(Y )
∣∣ 1{Y /∈ Iδ}

)
,

where
P(y) = ϕ(μ) + ϕ′(μ)(y − μ) + 2−1ϕ′′(μ)(y − μ)2.

Now using (13) and |ϕ′′(μ) − ϕ′′(x)| ≤ ε for all x ∈ Iδ , we may write

∣∣∣E
({

ϕ(Y ) −
(
ϕ(μ) + ϕ′(μ)(Y − μ) + 2−1ϕ′′(μ)(Y − μ)2

)}
1{Y ∈ Iδ}

)∣∣∣

≤ ε

2
E(Y − μ)2 = εσ 2

2d
.

Next, we shall bound

E
(∣∣ϕ(Y )

∣∣ 1{Y /∈ Iδ}
) + E

(∣∣P(Y )
∣∣ 1{Y /∈ Iδ}

) := Δ
(1)
d + Δ

(2)
d .
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Recall that we assume that for some r > 1, condition (4) holds. In this case, by
Theorem 28 on p. 286 of Petrov (1975) applied with “r” replaced by “r + 1”, for all
δ > 0,

P
{|Y − μ| ≥ δ

} = o(d−r ). (14)

Then, by using Hölder’s inequality, (5) and (14), we get

Δ
(1)
d ≤

(
E

∣∣ϕ(Y )
∣∣s

)1/s (
P{Y /∈ Iδ}

)1/r = o(d−1).

We shall next bound Δ
(2)
d . Obviously from (14)

|ϕ(μ)|P{Y /∈ Iδ} = o(d−1).

Furthermore, by the Cauchy-Schwarz inequality and (14),

E
∣∣ϕ′(μ)(Y − μ)1{Y /∈ Iδ}

∣∣ ≤ ∣∣ϕ′(μ)
∣∣ σd−1/2o(d−r/2) = o(d−1),

and by Hölder’s inequality with p = (r + 1)/2 and

q−1 = 1 − p−1 = 1 − 2/(r + 1) = (r − 1)/(r + 1),

we have

2−1
∣∣ϕ′′(μ)

∣∣E
(
(Y − μ)21{Y /∈ Iδ}

)
≤ 2−1

∣∣ϕ′′(μ)
∣∣
(
E|Y − μ|r+1

)2/(r+1) (
P{Y /∈ Iδ}

)1/q
.

Applying Rosenthal’s inequality (see Eq.3 in Giné and Mason 2003) we obtain

E|Y − μ|r+1 = E

∣∣∣∣∣d
−1

d∑

i=1

(Yi − μ)

∣∣∣∣∣

r+1

≤
(
15(r + 1)

log(r + 1)

)r+1

max

(
d−(r+1)/2

(
EY 2

)(r+1)/2
, d−r

E|Y |r+1
)

.

Thus (
E|Y − μ|r+1

)2/(r+1) = O(d−1),

which when combined with (14) gives

2−1
∣∣ϕ′′(μ)

∣∣
(
E|Y − μ|r+1

)2/(r+1) (
P{Y /∈ Iδ}

)(r−1)/(r+1) = o(d−1).
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Thus
Δ

(2)
d = o(d−1).

Putting everything together, we conclude that for any ε > 0

lim sup
d→∞

d

∣∣∣∣Eϕ(Y d) − ϕ(μ) − σ 2ϕ′′(μ)

2d

∣∣∣∣ ≤ εσ 2

2
.

Since ε > 0 can be chosen arbitrarily small, this completes the proof.

Acknowledgments The authors thank the referee for pointing out a misstatement in the original
version of the paper.
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Estimating and Detecting Jumps.
Applications to D [0, 1]-Valued
Linear Processes

Denis Bosq

Abstract This paper is devoted to the estimation of the intensity and the density
of jumps for D [0, 1]-valued random variables and the construction of detectors for
constant or random jumps. Limit theorems are obtained in the context of continuous
observations or high-frequency data. Applications to jumps for D [0, 1]-valued mov-
ing average and autoregressive processes are considered. We also study the special
case where there is an infinity of jumps. Thus, our approach is somewhat different
from that which consists of studying jumps in semimartingales.

Keywords Jumps · Functional linear processes · Cadlag · Limit theorems ·
Estimation · Detection

1 Introduction

Prediction of functional autoregressive processes in Banach spaces and Hilbert
spaces has been extensively studied, seeBosq (2000, 2014), Bosq andBlanke (2007),
Ferraty and Romain (2011) and Horváth and Kokoszka (2012) for results and ref-
erences. In general, the context is continuous random functions with application
to electricity consumption, electrocardiograms, variation of temperature, etc. The
associated time interval being a day, a week, one year, etc.

This paper is devoted to the case where some jumps appear in the context of
finance, economy, climatic variations, electricity price modelling, etc.; also note
that big continuous variations may be considered as jumps since, in that situation,
prediction accuracy is poor.

The natural space for studying jumps is D = D [0, 1], i.e. the space of real cadlag
(continuous on the right and with a limit on the left) functions defined on [0, 1]. It is
well known that, if D is equipped with the uniform norm, it becomes a non-separable
space and that this infers measurability problems. Thus it is better to replace it with
the Skorohod metric, cf. Billingsley (1999).
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Now, one observes independent or dependent copies of the D-valued random
variable X and wants to estimate the jump’s intensity and jump’s density, and, if
data are collected in discrete time, to detect the position of jumps. Concerning the
dependent copies wewill consider the moving averagemodel (MAD) and the autore-
gressive model (ARD). Our approach is somewhat different from that which consists
of studying jumps in diffusions or in semimartingales. It explains whywe do not indi-
cate references concerning that topic (note that there are at least 547 titles containing
the words “jump diffusion”, cf. Math. Sci. Net).

In Sect. 2, one supposes that there exists a jump at t0 ∈ ] 0, 1[, where t0 is
constant, and that observations are collected in continuous time. Then, under suit-
able conditions, it is easy to obtain limit theorems for the empirical estimators of
E(X (t0)−X (t0−)) and E |X (t0) − X (t0−)|, namely the strong law of large numbers
(SLLN) and the central limit theorem (CLT).

Section3 is devoted to high-frequency data (HFD). The situation is more intricate
since one has to detect t0 before estimating the jump’s intensity; we construct a
statistical detector of t0. If the sample paths of X satisfy a Hölder condition on [0, t0[
and on [t0, 1] we obtain a consistent detector of t0 with a convergence rate. Insertion
of the detector allows us to obtain the SLLN and CLT.

In Sect. 4 we study the case where the jump’s position T is random. Again we
obtain limit theorems in continuous and discrete time. The asymptotic behaviour of
the kernel density estimator of T from HFD is considered in Sect. 5: a result from
Deheuvels (2000) allows us to obtain sharp rates of convergence.

Section6 deals with the case where X possesses two random jumps S and T . The
associated scheme is observations of the copies X1, . . . , Xn with positions of jumps
S1, T1, . . . , Sn, Tn . The problem is to distinguish between the “S-jump” and “T -
jump”.We present a simple discriminationmethod that leads to consistent estimators
of the jumps intensities as well in continuous time as in discrete time.

In Sect. 7 we apply the above results to the case where (Xn, n ∈ Z) is a D-valued
linear process. First we consider the moving average of order one (MAD(1)):

Xn = Zn − a(Zn−1), n ∈ Z

where (Zn) is a D-strong white noise and a : D −→ D a continuous linear operator.
If (Zn) has only one jump, (Xn) has in general two jumps and one may apply results
in Sect. 6. Another importantmodel is the autoregressive process of order 1 (ARD(1))
defined by:

Xn = ρ(Xn−1) + Zn, n ∈ Z.

If ρ is linear continuous with ρ(D) ⊆ C = C [0, 1], the space of real continuous
functions defined on [0, 1], and if (Zn) has only one jump, then Xn has the same
jump and one may apply results of Sect. 4. In the general situation Xn has an infinity
of jumps and a different method is considered in a special case: it allows us to obtain
consistent estimators of the jumps intensities.
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2 Jump at a Fixed Point with Continuous Data

In order to study jumps we consider the space D = D [0, 1] of cadlag real functions
defined on [0, 1].We denote D (‖.‖) the space D equippedwith its uniform norm but,
since it is not separable (cf. Billingsley (1999, p. 157)), it is better to replace it with
the space D(d) equipped with the Skorohod metric (cf. Billingsley (1999, p. 123)).
Note that uniform convergence implies d-convergence, but the converse is not true
except if the limit is a continuous function (cf. Billingsley (1999, p. 124)). Finally,
note that x �−→ x(t0) − x(t0−), x ∈ D is a continuous linear form on D (‖.‖) and
that it is D-BR measurable, where BR is the σ−algebra of Borel sets over R (cf.
Billingsley (1995, Theorems 1 and 2)). These properties will be used below.

Now let X be a random variable, defined on a probability space (Ω, A , P) and
with values in (D,D)whereD denotes the σ−algebra associated with the Skorohod
metric d (cf. Billingsley (1999, p. 157)). We suppose that E ‖X‖ < ∞ and set

Δ(t0) = X (t0) − X (t0−), (t0 ∈ ]0, 1[),

where X (t0−) = lims→t0− X (s). If X has a jump at t0, then Δ(t0) is an integrable,
non-degenerate random variable.

One observes X1, . . . , Xn that are copies (possibly dependent) of X . Since
X1, . . . , Xn are equidistributed and x �−→ x(t0) − x(t0−), x ∈ D is a measur-
able linear form on D (‖.‖), then the random variables

Δi (t0) = Xi (t0) − Xi (t0−), 1 ≤ i ≤ n

have the same distribution as Δ(t0). Now the empirical unbiased estimator of
EΔ(t0) is

Δn(t0) = 1

n

n∑

i=1

Δi (t0), n ≥ 1,

and the following simple statement gives consistency:

Proposition 1 If the process (Xn, n ∈ Z) satisfies the SLLN on D(d), i.e.:

d

(
0,

1

n

n∑

i=1

Xi − EX

)
−−−→
n→∞ 0, a.s. (1)

then
Δn(t0) → EΔ(t0), a.s., (2)

furthermore
1

n

n∑

i=1

Xi (t0) → EX(t0), a.s. (3)
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and
1

n

n∑

i=1

Xi (t0−) → EX(t0−), a.s. (4)

Proof First, since 0 is a continuous function, it follows that d-convergence and
uniform convergence are equivalent, thus (1) implies

∥∥∥∥∥
1

n

n∑

i=1

Xi − EX

∥∥∥∥∥ → 0, a.s. (5)

Now consider the continuous linear form on D defined by

ϕt0(x) = x(t0) − x(t0−), x ∈ D.

From (5) and D (‖.‖) continuity we get

ϕt0

(
1

n

n∑

i=1

Xi − EX

)
→ 0, a.s.

and, by linearity
1

n

n∑

i=1

Δi (t0) → ϕt0(EX), a.s.

since ϕt0(EX) = Eϕt0(X), (2) follows.
Finally (5) entails (3), and (4) comes from

1

n

n∑

i=1

Xi (t0−) = Δn(t0) + 1

n

n∑

i=1

Xi (t0). 
�

Note that (1) cannot be replaced with d(EX, 1
n

∑n
i=1 Xi ) → 0, a.s. since d is not

translation invariant.
Concerning the strong law of large numbers for independent D-valued random

variables it appears in Daffer and Taylor (1979): they study the case where X is
convex tight and the case where X belongs to the cone of non-decreasing elements
of D. For linear processes in D observed in continuous time, see El Hajj (2011). See
also Schiopu-Kratina and Daffer (1999), Bezandry (2006) and Ranga Rao (1963).

Note that (3) holds even if t0 is not a jump point. Now it is easy to realise that
one may have EΔ(t0) = 0 although there is a non-degenerated jump at t0. For
example take

X (t) = U I[0,t0](t) + V I[t0,1](t), 0 ≤ t ≤ 1 (0 < t0 < 1),
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where U and V are independent with Bernoulli distribution of parameter 1/2. Then
EΔ(t0) = 0 while E |Δ(t0)| = 1

2 . In such a situation one must estimate E |Δ(t0)|;
the following statement gives consistency.

Proposition 2 If one of the following assumptions holds:
B1− (|Δn(t0)|) is m—dependent and integrable.
B2− (|Δn(t0)|) is geometrically strongly mixing and satisfies the Cramer’s

condition:

E

∣∣∣∣|Δn(t0)| − E |Δn(t0)|
∣∣∣∣
k

≤ ck−2k!Var |Δn(t0)| , k ≥ 3, n ≥ 1, (c > 0),

then 1
n

∑n
i=1 |Δi (t0)| → E |Δ(t0)| , a.s.

Proof If B1holds, the proof is straightforward. Under B2 one may adapt the proof in
Bosq (1998, p. 35). Details are omitted. 
�
We now turn to limit in distribution:

Proposition 3 If E ‖X‖2 < ∞ and if (Xn − EXn) is a process which satisfies the
central limit theorem in D (‖.‖), then

1√
n

n∑

i=1

(Δi (t0) − EΔi (t0)) ⇒ Nt0 , (6)

where Nt0 is centred Gaussian. If, in addition, (Xn) is iid, it is clear that Nt0 ∼
N (0, VarΔ(t0)).

Proof Since
1√
n

n∑

i=1

(Xi − EXi ) ⇒ N

where N is a D-valued Gaussian random variable, the mapping theorem (Billingsley
1999, p. 21) and continuity of ϕt0 for D (‖.‖) yields

1√
n

n∑

i=1

ϕt0(Xi − EXi ) ⇒ ϕt0(N ),

hence (6). 
�
Concerning the central limit theorem in D we refer to Hahn (1978) and Bloznelis
and Paulauskas (1993). Bézandry and Fernique (1992) have obtained the CLT in
D (‖.‖). The case of linear processes appears in El Hajj (2011); see also Norzhigitov
and Sharipov (2010). Now, if EΔ(t0) = 0, one may prefer to derive a central limit
theorem for (|Δn(t0)|), see for example Merlevède et al. (1999, Theorem 1.1).
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3 High-Frequency Data

We now study the case where one observes data in discrete time but with high
frequency, namely Xi ( j k−1

n ), kn ≥ 1, 0 ≤ j ≤ kn, 1 ≤ i ≤ n, with kn → ∞ as
n → ∞. This scheme is classical but somewhat artificial, however, it allows us to
obtain informations concerning asymptotics. We suppose that X has a single jump
at t0 ∈ ]0, 1[, with t0 constant and, since data are discrete, we need a regularity
assumption for the sample paths:

Aα—There exists a real random variable M with E M2 < ∞; and α ∈]0, 1] such
that

|X (t) − X (s)| ≤ M |t − s|α , (s, t) ∈ It0

where It0 = [0, t0[2∪[t0, 1]2.
Example 1 (Fractional Brownian motions)

Consider two fractional Brownian motions B1 = (B1(t), 0 ≤ t ≤ t0) and
B2 = (B2(t), t0 ≤ t ≤ 1), possibly dependent, with covariance cβ

2 (|s|2β + |t |2β −
|t − s|2β) where 0 < β < 1. Then, one may verify that Aα holds as soon as
0 < α < β. Note that β = 1

2 corresponds with Wiener processes.

Example 2 (Ornstein–Uhlenbeck process with trend)
Define the model

X (t) = μ(t) +
∫ t

0
e−θ(t−s)dW (s), 0 ≤ t ≤ 1, (7)

where μ(.) is a non-random real function, with a jump at t0 (μ(t0) �= μ(t0−)), such
that μ(0) = μ(1), and continuously differentiable, except at t0. The integral is taken
in Ito’s sense, W is a Wiener process and θ is positive. Then, if α < 1

2 , Aα holds.
The interpretation of (7) is periodic trend plus noise.

Now, in order to study the behaviour of the detector of t0 and the jump’s estimator
we need some preliminaries. First, for every integer n ≥ 1, there exists an integer
j0(n) such that

t
′
0,n := j0(n) − 1

kn
< t0 ≤ j0(n)

kn
:= t0,n . (8)

Second, if X1, . . . , Xn are copies of X , possibly dependent, by enlarging the
probability space one can construct associated copies of M such that

|Xi (t) − Xi (s)| ≤ Mi |t − s|α , (s, t) ∈ It0 , 1 ≤ i ≤ n. (9)

Now we need two lemmas:

Lemma 1 Let Y1,n, . . . , Yn,n be real independent centered random variables such
that, for every n, E(Y 4

i,n) ≤ c, 1 ≤ i ≤ n, where c is a constant not depending on n,
then
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P

(∣∣∣∣∣
1

n

n∑

i=1

Yi,n

∣∣∣∣∣ ≥ η

)
≤ 3c

n2η4
, η > 0, n ≥ 1, (10)

hence
1

n

n∑

i=1

Yi,n → 0, a.s. and in L2. (11)

Proof Similar to the proof of theorem 1 pp. 388–389 in Shiryaev (1996). 
�
In the next lemma Δi,n = Xi (t0,n) − Xi (t ′0,n), 1 ≤ i ≤ n and Δi = Xi (t0) −
Xi (t0−), 1 ≤ i ≤ n. Moreover, an � bn means an = O(bn) and bn = O(an).

Lemma 2 Suppose that Aα holds, then:
1. If E ‖X‖2 < ∞ and if (Xn, n ≥ 1) satisfies the L2-law of large numbers, then

1

n

n∑

i=1

Δi,n → EΔ(t0), (L2). (12)

In addition, if (Δn) is iid and kn � n1/2α, we have

E

(
1

n

n∑

i=1

Δi,n − EΔ(t0)

)2

= O

(
1

n

)
. (13)

2. Suppose that E ‖X‖ < ∞, that (Δn(t0), n ≥ 1) satisfies the SLLN and that the
following assumption holds:

Aq− There exists q ≥ 1, such that E Mq < ∞ and
∑

n

k−αq
n < ∞

then
1

n

n∑

i=1

Δi,n → EΔ(t0), a.s. (14)

If (Δn) is iid, one may remove Aq .

Proof 1. Since

1

n

n∑

i=1

(
Δi,n − Δi (t0)

) = 1

n

n∑

i=1

(
Xi (t0,n) − Xi (t0)

) + 1

n

n∑

i=1

(
Xi (t0−) − Xi

(
t
′
0,n

))
,

Aα and (9) imply

δn :=
∣∣∣∣∣
1

n

n∑

i=1

(
Δi,n − Δi (t0)

)∣∣∣∣∣ ≤ 2

(
1

n

n∑

i=1

Mi

)
k−α

n . (15)
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Now we have ( 1n
∑n

i=1 Mi )
2 ≤ 1

n (
∑n

i=1 M2
i ), thus E( 1n

∑n
i=1 Mi )

2 ≤ EM2, hence

Eδ2n ≤ 4EM2 k−2α
n → 0 (16)

and since (Δn(t0)) satisfies the L2 − LLN , (12) follows. Now Eq. (13) is an easy
consequence of (16).
2. Note that Jensen’s inequality gives

(
1

n

n∑

i=1

Mi

)q

≤ 1

n

n∑

i=1

Mq
i ,

hence E( 1n
∑n

i=1 Mi )
q ≤ EMq and, for η > 0, (15) yields

P(δn ≥ η) ≤ P

(
2

n

n∑

i=1

Mi k−α
n ≥ η

)
≤ 2q

ηqkαq
n

E

(
1

n

n∑

i=1

Mi

)q

≤
(
2

η

)q

EMqk−αq
n ,

thus
∑

n P(δn ≥ η) < ∞, η > 0, it follows that δn → 0 a.s. and since (Δn(t0))
satisfies the SLLN one obtains (14).

Now, if (Δn) is iid (Mn) is also iid, it follows that 1
n

∑n
i=1 Mi → EM a.s., thus

1
n

∑n
i=1 Mi k−α

n → 0 a.s. hence the result from (15). 
�

Since t0,n and t
′
0,n are not observed it is necessary to construct a detector of t0. To

this aim we set

t̂0,n = 1

kn
arg max

1≤ j≤kn
S j,n,

where

S j,n = 1

n

n∑

i=1

[
Xi

(
j

kn

)
− Xi

(
j − 1

kn

)]
, 1 ≤ j ≤ kn,

with an arbitrary choice of j if there is a tie.

Proposition 4 (SLLN) Suppose that E ‖X‖ < ∞ and, E(X (t0) − X (t0−)) > 0.
Then, under Aα and Aq, and if (Δn(t0)) satisfies the SLLN, we have

t̂0,n → t0+, a.s., (17)

t̂0,n − 1

kn
→ t0−, a.s., (18)
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and

1

n

n∑

i=1

(
Xi (t̂0,n) − Xi

(
t̂0,n − 1

kn

))
→ E(X (t0) − X (t0−)), a.s.. (19)

Again, if (Xn) is iid one may remove Aq .

Proof Put Un = max j �= j0(n) S j,n and Vn = S j0(n),n where j0(n) is defined in (8).
Now Aα entails

|Un| ≤ max
j �= j0(n)

1

n

n∑

i=1

∣∣∣∣Xi

(
j

kn

)
− Xi

(
j − 1

kn

)∣∣∣∣ ≤
(
1

n

n∑

i=1

Mi

)
k−α

n → 0, a.s.,

(20)

from Aq and similarly as in the proof of Lemma 2.
On the other hand

∣∣∣∣∣Vn − 1

n

n∑

i=1

Δi (t0)

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

(Xi (t0,n) − Xi (t0))

∣∣∣∣∣

+
∣∣∣∣∣
1

n

n∑

i=1

(
Xi (t0−) − Xi

(
t0,n − 1

kn

))∣∣∣∣∣ ≤
(
2

n

n∑

i=1

Mi

)
k−α

n

and the bound tends to 0 almost surely. Now, since (Δn(t0)) satisfies the SLLN, it
follows that

Vn → E(X (t0) − X (t0−)) > 0 a.s.. (21)

Then, (20) and (21) imply that there exists Ω0 ∈ A with P(Ω0) = 1 such that, for
every ω ∈ Ω0, there exists an integer N (ω) such that n ≥ N (ω) gives

Un <
1

2
E(X (t0) − X (t0−)) < Vn,

therefore
t̂0,n(ω) = t0,n, n ≥ N (ω), ω ∈ Ω0,

and, since t0,n → t0+, and t
′
0,n = t0,n − 1

kn
→ t0−, one obtains (17) and (18).

Finally,

1

n

n∑

i=1

(
Xi

(
t̂0,n(ω)

) − Xi

(
t̂0,n(ω) − 1

kn

))

= 1

n

n∑

i=1

(
Xi (t0,n) − Xi

(
t
′
0,n

))
, n ≥ N (ω),
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ω ∈ Ω0, hence (19) from Lemma 2. 
�
In the case where E(X (t0) − X (t0−)) < 0 one may put

t̃0,n = 1

kn
arg min

1≤ j≤kn
S j,n, (22)

for obtaining similar results.
If E(X (t0)− X (t0−)) = 0 or if one does not know the sign of E(X (t0)− X (t0−))

the study will be performed by using

ť0,n = 1

kn
arg max

1≤ j≤kn

n∑

i=1

∣∣∣∣Xi

(
j

kn

)
− Xi

(
j − 1

kn

)∣∣∣∣

and one can obtain analogous results, the details are omitted. This method holds if
one wants to estimate the jump in Example 1.

We now turn to limit in distribution for the High-Frequency Data case. For con-
venience we set Y (t) = X (t) − EX(t) and Y (t−) = X (t−) − EX(t−); a similar
notation will be used for X1, . . . , Xn . We need some lemmas:

Lemma 3 Under Aα , E ‖X‖2 < ∞ and if X1, . . . , Xn are iid, then

1√
n

n∑

i=1

[
Yi (t0,n), Yi

(
t
′
0,n

)]
⇒ N ∼ N (0, Γt0), (23)

where Γt0 is the covariance matrix of the vector (Y (t0), Y (t0−)).

Proof We have

dn := E

[
1√
n

n∑

i=1

[
Yi (t0,n) − Yi (t0)

]
]2

= E
[
Y (t0,n) − Y (t0)

]2
,

then, by using Aα one obtains

dn ≤ 4EM2
∣∣t0 − t0,n

∣∣2α ≤ 4EM2 k−2α
n → 0.

The same property holds for t ′0,n , hence

1

n
E

∥∥∥∥∥

n∑

i=1

[
Yi (t0,n) − Yi (t0), Yi

(
t
′
0,n

)
− Yi (t0−)

]∥∥∥∥∥

2

R2

→ 0,
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now it is straightforward to show that

1√
n

n∑

i=1

[Yi (t0), Yi (t0−)] ⇒ N ∼ N (0, Γt0),

hence (23). 
�
Lemma 4 If Aα holds with EM4 < ∞, E ‖X‖4 < ∞, X1, . . . , Xn are iid and
E(X (t0) − X (t0−)) > 0, then

P
(
t̂0,n �= t0,n

) = O

(
1

n2

)
. (24)

Proof Recall that Un = max j �= j0(n) S j,n and Vn = S j0(n),n and note that t̂0,n �= t0,n
entails Vn ≤ Un . Then, from (20), t̂0,n �= t0,n implies Vn ≤ M̄nk−α

n where M̄n =
1
n

∑n
i=1 Mi . Now, for all η > 0,

P(Vn ≤ M̄n k−α
n )

=P
(
Vn ≤ M̄n k−α

n , M̄n − EM > η
) + P

(
Vn ≤ M̄n k−α

n , M̄n − EM ≤ η
)

≤P
(∣∣M̄n − EM

∣∣ > η
) + P

(
Vn ≤ (η + E M) k−α

n , M̄n − EM ≤ η
)

and since

EVn = E
(

X (t0,n) − X
(
t ′0,n

)) → E (X (t0) − X (t0−)) > 0,

then, for n large enough (not random), one has (η+EM) k−α
n −EVn < −γ , (γ > 0)

hence

P
(
Vn ≤ (η + EM) k−α

n

) = P
(
Vn − EVn ≤ (η + EM) k−α

n − EVn
)

≤ P (|Vn − EVn| > γ ) ,

finally

P
(
t̂0,n �= t0,n

) ≤ P
(∣∣M̄n − E M

∣∣ > η
) + P (|Vn − EVn| > γ ) ,

using twice the bound (10) one obtains the desired result. 
�
Remark 1 Note that one may slightly improve the detector by setting t̃0n = t̂0n − 1

2kn

for obtaining P
[∣∣̃t0n − t0

∣∣ > 1
2kn

]
= O

(
1

n2

)
.
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We are now in a position to get limit in distribution:

Proposition 5 (CLT) Under assumptions made in Lemma 4, we have

1√
n

n∑

i=1

[
Yi

(
t̂0,n

)
, Yi

(
t̂0,n − 1

kn

)]
⇒ N ∼ N

(
0, Γt0

)
, (25)

Proof From Lemma 3 it suffices to show that

d ′
n = E

∥∥∥∥∥
1√
n

n∑

i=1

[
Yi

(
t̂0,n

)
, Yi

(
t̂0,n − 1

kn

)]
− 1√

n

n∑

i=1

[
Yi (t0,n), Yi

(
t
′
0,n

)]∥∥∥∥∥

2

R2

→ 0.

Now, write

E

(
1√
n

n∑

i=1

[
Yi

(
t̂0,n

) − Yi (t0,n)
]
)2

= E

(
1√
n

n∑

i=1

[
Yi

(
t̂0,n

) − Y (t0,n)
]

It̂0,n �=t0,n

)2

≤
⎛
⎝E

(
1√
n

n∑

i=1

[
Yi

(
t̂0,n

) − Y (t0,n)
]
)4

⎞
⎠

1/2 (
E

(
It̂0,n �=t0,n

)4
)1/2

.

From Aα and the condition E ‖X‖4 < ∞ we infer that

E

(
1√
n

n∑

i=1

[
Yi

(
t̂0,n

) − Yi (t0,n)
]
)2

= O
(

P
(
t̂0,n �= t0,n

)1/2
)

which tends to 0 from Lemma 4.

A similar property holds for E
(

1√
n

∑n
i=1

[
Yi

(
t̂0,n − 1

kn

)
− Yi

(
t ′0,n

)])2
and

(25) follows. 
�
Corollary 1 We have

1√
n

n∑

i=1

[
Yi

(
t̂0,n

) − Y

(
t̂0,n − 1

kn

)]
⇒ N ∼ N (0, Var(X (t0) − X (t0−))).

Proof Clear. 
�
Of course it is again possible to adapt the above results to cases where E(X (t0) −
X (t0−)) < 0, and E(X (t0) − X (t0−)) = 0 with E |X (t0) − X (t0−)| > 0.
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4 Random Jumps

We now suppose that X has one and only one jump at T , where T is a real random
variable such that P (T ∈ ]0, 1[) = 1. In the continuous case, if (Xn, n ≥ 1) are
copies of X , one may associate copies (Tn, n ≥ 1) of T . Then, it is not difficult
to state propositions concerning T since, if (Xn, n ≥ 1) are iid, m-dependent or
strongly mixing, the same properties hold for (Tn, n ≥ 1). Thus, under regularity
conditions we have:

1

n

n∑

i=1

Ti → ET , a.s., (26)

1√
n

n∑

i=1

(Ti − ETi ) ⇒ N ∼ N

(
0,

+∞∑

h=−∞
Cov(T0, Th)

)
, (27)

and similar results for (X (T ) − X (T −)) and |(X (T ) − X (T −)|.
For the discrete case observations, the situation is more intricate. Again we take

data of the form Xi ( jk−1
n ), kn ≥ 1, 0 ≤ j ≤ kn, 1 ≤ i ≤ n, and define a random

integer J (i, n) such that

(J (i, n) − 1) k−1
n < Ti ≤ J (i, n) k−1

n := Tin, 1 ≤ i ≤ n. (28)

Now, for every (i, j), we put

di jn =
∣∣∣Xi

(
jk−1

n

)
− Xi

(
( j − 1)k−1

n

)∣∣∣ ,

and
Din = max

1≤ j≤kn
di jn .

An empirical estimator of EΔ(T ) = E |(X (T ) − X (T −)| is

D̄n = 1

n

n∑

i=1

Din,

and the assumption corresponding to Aα is
A′

α− ∃ M : E M2 < ∞, ∃ α ∈]0, 1] : |X (t) − X (s)| ≤ M |t − s|α ,
(s, t) ∈ IT := [0, T [2∪[T, 1]2.

Example 3 Consider twoWiener processes Wk = (Wk(t), 0 ≤ t ≤ 1), k = 1, 2 and
suppose that T and (W1, W2) are independent. In order to construct X one may put

X (t) = W1(t) I[0,T ](t) + W2(t) I[T,1](t), 0 ≤ t ≤ 1.
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Then, if 0 < α < 1
2 and

M = sup
0≤s �=t≤1

|W1(t) − W1(s)|
|t − s|α + sup

0≤s �=t≤1

|W2(t) − W2(s)|
|t − s|α ,

A′
α is satisfied.

Proposition 6 If E ‖X‖4 < ∞, A′
α holds and (Xn) is an iid sequence, then

D̄n → EΔ(T ), a.s. and in L2.

Proof For 1 ≤ i ≤ n, set Uin = max j �=J (i,n) di jn and Vin = |Xi (Tin) − Xi

(Tin − k−1
n )

∣∣, we have

D̄n = 1

n

n∑

i=1

max(Uin, Vin),

hence

0 ≤ 1

n

n∑

i=1

Vin ≤ D̄n ≤ 1

n

n∑

i=1

Uin + 1

n

n∑

i=1

Vin, (29)

and A′
α yields

0 ≤ 1

n

n∑

i=1

Uin ≤ M̄n k−α
n → 0, a.s. (30)

since M̄n converges almost surely. It follows that D̄n and 1
n

∑n
i=1 Vin have the same

a.s. behaviour. Now, since E ‖X‖4 < ∞, (Vin − EVin) satisfy the conditions in
Lemma 1, therefore

1

n

n∑

i=1

Vin − EV1n → 0 a.s.

and the dominated convergence theorem entails a.s. convergence. The proof is similar
for L2-convergence. 
�
Proposition 7 Under A′

α , (Xn) iid, E ‖X‖2 < ∞ and n1/2k−α
n → 0, it is true that

√
n

(
D̄n − EΔ(T )

) ⇒ N ∼ N (0, Var(Δ(T ))) , (31)

Proof From (29) and (30) and using n1/2k−α
n → 0, it is easy to see that

√
nD̄n and

1√
n

∑n
i=1 Vin have the same asymptotic behaviour in distribution. Now let us set

Vi = |Xi (Ti ) − Xi (Ti−)|. We clearly have

an := 1√
n

n∑

i=1

(Vi − EVi ) ⇒ N ∼ N (0, σ 2).
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We want to compare an with

bn := 1√
n

n∑

i=1

(Vin − EVin).

Noting that

Vi ≤ |Xi (Ti ) − Xi (Tin)| + Vin +
∣∣∣∣Xi (Ti−) − Xi

(
Tin − 1

kn

)∣∣∣∣ ,

A′
α gives Vi ≤ 2Mi k−α

n +Vin, similarly Vin ≤ 2Mi k−α
n +Vi and also |EVin − EVi | ≤

2EMi k−α
n hence n1/2 |EVin − EVi | → 0 and finally

|an − bn| ≤ 2 n1/2k−α
n

[
M̄n + EM

] → 0 a.s.

and (31) follows. 
�

5 Estimating the Density of T

Suppose that T has a continuous and strictly positive density f on [0, 1] and that the
observations X1, . . . , Xn are iid. and in continuous time, then one may define the
density estimator fn(t) by setting

fn(t) = 1

nhn

n∑

i=1

K

(
t − Ti

hn

)
, 0 ≤ t ≤ 1, (32)

where K is a Lipschitzian symmetric density with bounded support. Then, if f is of
class C2 and if hn � ( ln n

n )
1/5, it follows that

‖ fn − f ‖ = O

((
ln n

n

)2/5
)

a.s. (33)

see, for example, Deheuvels (2000).
Now, if Xi ( jk−1

n ), kn ≥ 1, 0 ≤ j ≤ kn, 1 ≤ i ≤ n are observed, the density
estimator takes the form

f̂n(t) = 1

nhn

n∑

i=1

K

(
t − T̂in

hn

)
, t ∈ [0, 1] ,
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where

T̂in = k−1
n arg max

1≤ j≤kn

∣∣∣Xi

(
jk−1

n

)
− Xi

(
( j − 1)k−1

n

)∣∣∣ , 1 ≤ i ≤ n,

and if there is a tie one may choose the greatest j (for example).
Moreover, to f̂n one can associate fn in (32) and the pseudo-estimator

ϕn(t) = 1

nhn

n∑

i=1

K

(
t − Tin

hn

)
, t ∈ [0, 1] ,

where Tin = J (i, n) k−1
n , cf. (28). We now make the following assumption

A′
q − ∃q ≥ 2 : E Mq < ∞, E

(
M

|X (T ) − X (T −)|
)q

< ∞.

Proposition 8 Under A′
α , A′

q , and

‖ fn − f ‖ → 0 a.s. (34)

the conditions
∑

nk−αq
n < ∞ and h2

nkn → ∞ imply

∥∥ f̂n − f
∥∥ → 0 a.s..

Proof We define Uin and Vin similarly as in Proposition 6 and note that

T̂in �= Tin =⇒ Vin ≤ Uin. (35)

As in Proposition 7 we have Vi − Vin ≤ 2Mi k−α
n and 0 ≤ Uin ≤ Mi k−α

n , hence

Uin − Vin ≤ 3Mi k
−α
n − Vi ,

from (35) it follows that

P
(
T̂in �= Tin

) ≤ P(Uin − Vin ≥ 0) ≤ P
(
3Mi k

−α
n − Vi ≥ 0

) ≤ P

(
Mi

Vi
≥ kα

n

3

)
.

Now A′
q implies

P
(
T̂in �= Tin

) ≤ E

(
M

|X (T ) − X (T −)|
)q 3q

kαq
n

,
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thus

P
(∃i ∈ {1, . . . , n} : T̂in �= Tin

) ≤
n∑

i=1

P
(
T̂in �= Tin

) = O
(

nk−αq
n

)
, (36)

since
∑

nk−αq
n < ∞, we have T̂in = Tin, 1 ≤ i ≤ n almost surely for n large enough

and consequently f̂n = ϕn . Now, since K satisfies a Lipschitz condition, there exists
a constant c(K ) such that

| fn(t) − ϕn(t)| ≤ 1

nh2
n

c(K )

n∑

i=1

|Tin − Ti | ≤ c(K )

h2
nkn

. (37)

Next, since ∥∥ f̂n − f
∥∥ ≤ ∥∥ f̂n − ϕn

∥∥ + ‖ϕn − fn‖ + ‖ fn − f ‖ , (38)

the result follows from (34), (37) and (38). 
�
Example 4 If hn � n−γ , (0 < γ < 1), kn � nβ, β > 0, then, the condition
β > max( 2

αq , 2γ ) entails uniform consistency of f̂n .

Corollary 2 If hn � ( ln n
n

)1/5
and β > max ( 2

αq , 4
5 ), then

∥∥ f̂n − f
∥∥ = O

((
ln n

n

)2/5
)

a.s.

Proof It is a consequence of (33), (36) and (37). 
�
We now turn to L2-convergence.

Proposition 9 If A′
α, A′

q hold, (Xn) is iid, and if hn → 0, nhn → ∞, hnkαq
n → ∞,

h2
nkn → ∞, then

E
(

f̂n(t) − f (t)
)2 → 0, 0 < t < 1. (39)

If, in addition, f ∈ C2[0, 1], hn � n−1/5, kn � n4/5, αq ≥ 3
4 , we have

E
(

f̂n(t) − f (t)
)2 = O

(
n−4/5

)
, 0 < t < 1. (40)
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Proof Set cin = K ( t−T̂in
hn

) − K ( t−Tin
hn

), we have

bn = ∣∣E
(

f̂n(t) − ϕn(t)
)∣∣ = 1

nhn

∣∣∣∣∣E
[

n∑

i=1

cin IT̂in �=Tin

]∣∣∣∣∣

≤ 2 ‖K‖
nhn

n∑

i=1

P
(
T̂in �= Tin

)
.

From (36) it follows that bn = O( 1
hnkαq

n
) → 0. On the other hand

vn := Var
(

f̂n(t) − ϕn(t)
) = 1

n2h2
n

n∑

i=1

Var
(

cin IT̂in �=Tin

)

≤ 1

n2h2
n

n∑

i=1

E
(

cin IT̂in �=Tin

)2
.

Thus vn ≤ 1
n2h2n

∑n
i=1 4 ‖K‖2∞ P(T̂in �= Tin) = O( 1

nh2nkαq
n

), and therefore

E
(

f̂n(t) − ϕn(t)
)2 = b2n + vn = O

(
1

h2
nk2αq

n

)
+ O

(
1

nh2
nkαq

n

)
.

Now from (37), one obtains

E(ϕn(t) − fn(t))2 = O

(
1

h4
nk2n

)
.

Finally

hn → 0, nhn → ∞ =⇒ E ( fn(t) − f (t))2 → 0,

h2
nkn → ∞ =⇒ E(ϕn(t) − fn(t))2 → 0,

nhn → ∞, hnkαq
n → ∞ =⇒ E

(
f̂n(t) − ϕn(t)

)2 → 0,

and (39) follows.
Now if f ∈ C2[0, 1], hn � n−1/5, it is well known that E( fn(t) − f (t))2 =

O(n−4/5) (see for example Rosenblatt (1985)) then, it is easy to verify that the choice
kn � n4/5 and the condition αq ≥ 3

4 give (40). 
�
Proposition 10 (limit in distribution)

Under the conditions in Proposition 8 and if hn → 0, nh5
n → ∞,

√
n

h
3/2
n kn

→ 0,
∑

n k−αq
n < ∞ then
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√
nhn

(
f̂n(t) − f (t)

) ⇒ N ∼ N (0, f (t)
∫

K 2). (41)

Proof First
√

nhn(ϕn(t) − fn(t)) ≤ ‖K‖√
n

h
3/2
n kn

→ 0.

Now, we have seen that, if
∑

n k−αq
n < ∞ we have f̂n(t) = ϕn(t) for n large

enough. Then

√
nhn

(
f̂n(t) − f (t)

) = √
nhn

(
f̂n(t) − ϕn(t)

)
+ √

nhn(ϕn(t) − fn(t)) + √
nhn( fn(t) − f (t))

and since
√

nhn( f̂n(t)− fn(t)) → 0 in probability and
√

nhn( fn(t)− f (t)) is asymp-
totically Gaussian (see, for example Rosenblatt (1985)), one obtains the desired
result. 
�
Example 5 Take hn = n−1/5

log n , kn � nβ with β > max( 45 ,
2

αq ) then (41) holds.

Finally, if T1, . . . , Tn are correlated, one may use results in Bosq and Blanke
(2007) for obtaining consistent density estimators with sharp rates.

6 The Case of More than One Jump

If X admits several independent random jumps, one does not know their respective
positions. Thus, it is necessary to modify the method used in Sect. 4. The principle
is to use relations between the coefficients and the roots of a polynomial equation.
For convenience we only study the case of two jumps.

We now suppose that X admits two independent random jumps S and T with
values in ] 0, 1[ such that P(S = T ) = 0 and

EΔ := E |X (T ) − X (T −)| > Eδ := E |X (S) − X (S−)| > 0. (42)

Constructing X : For example, suppose that S and T are equidistributed with
density f over [0, 1] and that (S, T, W1, W2, W3) are globally independent, where
the Wi ’s are Wiener processes on [0, 1] with parameters σ 2

i such that σ 2
3 > σ 2

1 .
Construction of X can be performed as follows; if S ≤ T set

X (t) = W1(t) I0≤t<S + W2(t) IS≤t<T + W3(t)IT ≤t≤1,

and if T < S

X (t) = W3(t) I0≤t<T + W2(t) IT ≤t<S + W1(t)IS≤t≤1.
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It is easy to verify that

EΔ =
∫ 1

0
E |W2(s) − W3(s)| f (s)ds =

√
2

π

√
σ 2
2 + σ 2

3

∫ 1

0

√
s f (s)ds

and that Eδ has a similar expression (replace σ 2
3 by σ 2

1 ), thus (42) is satisfied.
The main point is that, given X , we do not know the respective positions of S and

T . Now, since max(Δ, δ) and min(Δ, δ) are observed, we may set

ξ = max(Δ, δ) + min(Δ, δ) = Δ + δ

η = max(Δ, δ)min(Δ, δ) = Δδ

Now consider the following assumption:
B-Δ and δ are independent and square integrable.

For example if W2 = 0 in the construction of X condition B holds. From B it follows
that

EΔ Eδ = 1

4

(
Eξ2 − Eη2

)
.

The associated discriminant is [E(Δ − δ)]2 = Eη2 − Var(ξ) > 0. Thus

Eδ = Eξ − √
Eη2 − Var(ξ)

2
, (43)

and

EΔ = Eξ + √
Eη2 − Var(ξ)

2
. (44)

Now, if X1, . . . , Xn are observed, the corresponding variables ξ1, η1, . . . , ξn, ηn

are also observed and onemay use (43) and (44) for constructing empirical estimators
δn and Δn of Eδ and EΔ. Note that, if vn denotes the empirical estimator of Eη2 −
Var(ξ), the estimator of the discriminant must be max(0, vn).

Proposition 11 (continuous case)
If X1, . . . , Xn are iid and if B holds, then

δn → Eδ a.s., Δn → EΔ, a.s.

Similar results hold for the other kinds of jumps and if (Xn) is strongly mixing.
The details are omitted.

We now consider the same family of discretized data as above and make the
following assumption:
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A
′′
α—There exists M such that EMq < ∞, (q ≥ 2) and α ∈]0, 1] such that

|X (t) − X (s)| ≤ M |t − s|α ,

where (s, t) ∈ IS,T :=[0,min(S, T )[2∪[min(S, T ),max(S, T )[2∪[max(S, T ), 1]2.
Now there exist integers Jin(S) and Jin(T ) such that

Jin(S) − 1

kn
< Si ≤ Jin(S)

kn
:= Sin, 1 ≤ i ≤ n,

and
Jin(T ) − 1

kn
< Ti ≤ Jin(T )

kn
:= Tin, 1 ≤ i ≤ n,

where Si and Ti are the positions of the jumps associated with Xi .
In order to construct an estimator of the jumps intensity we set

Din = max
1≤ j≤kn

∣∣∣∣Xi

(
j

kn

)
− Xi

(
j − 1

kn

)∣∣∣∣

and we denote J
′
in an integer that maximises Din. Then we put

din = max
1≤ j≤kn , j �=J

′
in

∣∣∣∣Xi

(
j

kn

)
− Xi

(
j − 1

kn

)∣∣∣∣ .

Now, similarly as in the continuous case we set ξin = Din + din and ηin =
|Din − din|. Finally we consider the random variable

U
′
in = max

1≤ j≤kn , j �={Jin(S),Jin(T )}

∣∣∣∣Xi

(
j

kn

)
− Xi

(
j − 1

kn

)∣∣∣∣ , kn ≥ 3.

Lemma 5 If A
′′
α holds, min(Δ, δ) ≥ a > 0, (Xn) is iid, E ‖X‖4 < ∞ and∑

nk−αq
n < ∞, then

1

n

n∑

i=1

ξin → EΔ + Eδ, a.s. (45)

and
1

n

n∑

i=1

ηin → EΔEδ, a.s. (46)
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Proof A
′′
α yields 0 ≤ U

′
in ≤ Mi k−α

n and similarly as above we deduce that

P
(
∃i ∈ {1, . . . , n} : U

′
in >

a

2

)
= O

(
nk−αq

n

)
,

then, for n large enough, U
′
in ≤ a

2 (a.s.), 1 ≤ i ≤ n. Now, since min(Δ, δ) ≥ a, it
follows that, a.s. for n large enough we have

Din = max(Δin, δin), din = min(Δin, δin),

where Δin =
∣∣∣Xi (Tin) − Xi (Tin − 1

kn
)

∣∣∣ and δin =
∣∣∣Xi (Sin) − Xi (Sin − 1

kn
)

∣∣∣. Now it

suffices to apply the law of large numbers to (ξin) and (ηin) via Lemma 1 and the
dominated convergence theorem for obtaining (45) and (46). 
�
Finally we denote by δ̂n and Δ̂n the associated empirical estimators of Eδ and EΔ

(cf. (43) and (44)) and we obtain

Proposition 12 (HFD case)
Under the conditions in Lemma 5 and condition B, we get

δ̂n → Eδ, Δ̂n → EΔ a.s..

Proof Clear. 
�
Note that it is possible to adapt the above method to the case of more than two jumps,
however, the computations are rather intricate.

7 Applications to D-Valued Linear Processes

7.1 Definitions and Examples

A D- strong white noise is a sequence (Zn, n ∈ Z) of iid centred D-valued random
variables such that 0 < E ‖Z0‖2 < ∞. Now, in order to define linear processes in D
we consider the space L = L (D, D) of continuous linear operators with respect
to D(‖.‖). The linear norm is denoted by ‖.‖L .

The D−moving average process of order 1 (MAD(1)) is given by

Xn = μ + Zn − a(Zn−1), n ∈ Z, (47)

where μ ∈ D and a ∈ L .
The D-autoregressive process (ARD) is solution of

Xn = ν + ρ(Xn−1) + Zn, n ∈ Z (48)
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with ν ∈ D and ρ ∈ L . If there exists an integer j0 such that
∥∥ρ j0

∥∥
L < 1, then it

may be shown that (48) has a unique solution given by

Xn = ν +
∞∑

j=0

ρ j (Zn− j ), n ∈ Z, (49)

where convergence takes place with probability one in the uniform norm (cf. El Hajj
(2013)).

Examples of continuous linear operators in D(‖.‖) appear below:
Example 6 Set ρ(x)(t) = ∫ 1

0 r(s, t) x(s)ds, x ∈ D where r is (uniformly) continu-
ous on [0, 1]2, then ρ ∈ L , and ρ(D) ⊂ C .

Example 7 Set a(x)(t) = a0(t) x(t), 0 ≤ t ≤ 1, x ∈ D, where a0 is continuous
and 0 < |a0(t)| ≤ c < 1, 0 ≤ t ≤ 1, and c is constant. Then a ∈ L and x and a(x)

have the same jumps.

7.2 Some Results

For lack of place we only give indications concerning applications. More complete
results will appear elsewhere.

First, since (Zn, n ∈ Z) is iid, the results appearing in the above sections are
valid, providing suitable assumptions. Concerning the MAD (1) process, if μ ∈ C
and a(D) ⊂ C , it follows that Zn and Xn have the same jumps with the same
intensity:

Zn(Tn) − Zn(Tn−) = Xn(Tn) − Xn(Tn−).

Also, ifμ has a jump point at t0, it is possible to consider couples of jumps (t0, Tn)

by using methods similar as in Sect. 6.
Another special case is Example 7: Zn has a single jump at Tn and Tn admits a

density, it follows that Xn admits two independent jumps with respective intensities
E |Zn(Tn) − Zn(Tn−)| and E |a(Tn−1)| |Zn−1(Tn−1) − Zn−1(Tn−1−)| and results
in Sect. 6 can be easily adapted since (Xn) is stationary and 1-dependent.

We turn to the ARD (1) process. Again, if ρ(D) ⊂ C , Zn and Xn have the same
jumps and one may apply results concerning t0, T and (S, T ). Now, if one uses the
operator in Example 7 and if Zn(t0) − Zn(t0−) admits a density and satisfies the
Cramer condition, then Xn(t0)− Xn(t0−) is geometrically strongly mixing, Bradley
(1986), and Proposition 2 applies.
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7.3 The Case of Infinitely Many Jumps

The general case is much more difficult since it depends how ρ j transforms the
jumps. We only consider the special case where ρ is a number belonging to ]−1, 1[.
Then

Xn =
n∑

i=1

ρ j Zn− j , n ∈ Z. (50)

Again we suppose that Zn has a single jump at Tn where Tn has a density.
Then Xn has the jumps (Tn− j j ≥ 0) with intensities (λ |ρ| j , j ≥ 0), where
λ = E |Zn(Tn) − Zn(Tn−)|. First we construct an estimator of ρ. For this purpose
we consider the relation

∫ 1

0
Xn(t)dt = ρ

∫ 1

0
Xn−1(t)dt +

∫ 1

0
Zn(t)dt

For convenience we write it in the form Yn = ρYn−1 + En . Hence an estimator of
ρ, defined as the empirical autocorrelation coefficient based on Y1, . . . , Yn , is given
by:

ρ̂n =
∑n−1

i=1 Yi Yi+1∑n
i=1 Y 2

i

.

Now consider the series

Ri =
∞∑

j=0

∣∣Xi (Ti− j ) − Xi (Ti− j−)
∣∣ .

We have E Ri = λ
1−|ρ| . It follows that Ri is almost surely finite. If R1, . . . , Rn are

observable (even if, in practice, the jumps are negligible if j is large enough), then
putting

R̄n = R1 + · · · + Rn

n

one obtains an estimator of λ
1−|ρ| , thus, an empirical estimator of λ is given by

λ̂n = (
1 − ∣∣ρ̂n

∣∣) R̄n .

Proposition 13 Suppose that (Zn, n ∈ Z) is a D-white noise such that we have
c := E ‖Zn − E Zn‖4 < ∞, then λ̂n

∣∣ρ̂n
∣∣ j → λ |ρ| j j ≥ 0 a.s..

Proof For convenience we suppose that ρ is strictly positive. Since ρ̂n → ρ a.s. (cf.
Brockwell and Davis (1991)), it suffices to show that R̄n → E R1 a.s.. Set
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S̄ jn = ρ j 1

n

n∑

i=1

(Wi j − EWi j ),

where Wi j = ∣∣Zi (Ti− j ) − Zi (Ti− j−)
∣∣, then we have

R̄n − ER1 =
∞∑

j=0

S̄ jn .

Now choose ρ′ ∈]ρ, 1[, we obtain

P
(∣∣R̄n − ER1

∣∣ > η
) ≤ P

(
∃ j ≥ 0 : ∣∣S̄ jn

∣∣ > η
ρ′ j

1 − ρ′

)
η > 0.

Therefore

P
(∣∣R̄n − E R1

∣∣ > η
) ≤

∞∑

j=0

P

(∣∣S̄ jn
∣∣ > η

ρ′ j

1 − ρ′

)

and Lemma 1 entails

P
(∣∣R̄n − E R1

∣∣ > η
) ≤ 1

n2

(
1 − ρ′)4 3c

η4

∞∑

j=0

(
ρ

ρ′

)4 j

and the Borel-Cantelli lemma gives the result. 
�
Some simulations illustrating the theoretical results appear in the thesis by El Hajj
(2013).
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A Sharp Abelian Theorem for the Laplace
Transform

Maëva Biret, Michel Broniatowski and Zansheng Cao

Abstract This paper states asymptotic equivalents for the moments of the Esscher
transform of a distribution onRwith smooth density in the upper tail. As a by-product
it provides a tail approximation for its moment generating function, and shows that
the Esscher transforms have a Gaussian behavior for large values of the parameter.

1 Introduction

Let X denote a real-valued random variable with supportR and distribution PX with
density p.

The moment generating function of X

Φ(t) := E[exp(t X)] (1)

is supposed to be finite in a nonvoid neighborhoodN of 0. This hypothesis is usually
referred to as a Cramér type condition.

The tilted density of X (or Esscher transform of its distribution) with parameter t
inN is defined on R by

πt (x) := exp(t x)

Φ(t)
p(x).
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For t ∈ N , the functions

t → m(t) := d

dt
logΦ(t), (2)

t → s2(t) := d2

dt2
logΦ(t), (3)

t → μ j (t) := d j

dt j
logΦ(t), j ∈ (2,∞). (4)

are, respectively, the expectation and the centered moments of a random variable
with density πt .

When Φ is steep, meaning that

lim
t→t+

m(t) = ∞ (5)

and
lim

t→t−
m(t) = −∞

where t+ := ess supN and t− := ess infN then m parametrizes R (this is steep-
ness, see Barndorff-Nielsen (1978)). We will only require (5) to hold.

This paper presents sharp approximations for the moments of the tilted density
πt under conditions pertaining to the shape of p in its upper tail, when t tends to the
upper bound of N .

Such expansions are relevant in the context of extreme value theory as well as
in approximations of very large deviation probabilities for the empirical mean of
independent and identically distributed summands. We refer to Feigin and Yashchin
(1983) in the first case, where convergence in type to theGumbel extreme distribution
follows from the self-neglecting property of the function s2, and to Broniatowski and
Mason (1994) in relation with extreme deviation probabilities. The fact that up to a
normalization, and under the natural regularity conditions assumed in this paper, the
tilted distribution with density πt (x) converges to a standard Gaussian law as t tends
to the essential supremum of the setN is also of some interest.

2 Notation and Hypotheses

Thereafter we will use indifferently the notation f (t) ∼
t→∞ g(t) and f (t) =

t→∞
g(t)(1 + o(1)) to specify that f and g are asymptotically equivalent functions.

The density p is assumed to be of the form

p(x) = exp(−(g(x) − q(x))), x ∈ R+. (6)

For the sake of this paper, only the form of p for positive x matters.
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The function g is positive, convex, four times differentiable and satisfies

g(x)

x
−→
x→∞ ∞. (7)

Define
h(x) := g′(x). (8)

In the present context, due to (7) and the assumed conditions on q to be stated
hereunder, t+ = +∞.

Not all positive convex g’s satisfying (7) are adapted to our purpose. We follow
the line of Juszczak and Nagaev (2004) to describe the assumed regularity conditions
of h. See also Balkema et al. (1993) for somehow similar conditions.

We firstly assume that the function h, which is a positive function defined on R+,
is either regularly or rapidly varying in a neighborhood of infinity; the function h is
monotone and, by (7), h(x) → ∞ when x → ∞.

The following notation is adopted:

RV (α) designates the class of regularly varying functions of index α defined on
R+,
ψ(t) := h←(t) designates the inverse of h. Hence ψ is monotone for large t and
ψ(t) → ∞ when t → ∞,
σ 2(x) := 1/h′(x),
x̂ := x̂(t) = ψ(t),
σ̂ := σ(x̂) = σ(ψ(t)).

The two cases considered for h, the regularly varying case and the rapidly varying
case, are described below. The first one is adapted to regularly varying functions g,
whose smoothness is described through the following condition pertaining to h.

Case 1 (The Regularly varying case) It will be assumed that h belongs to the subclass
of RV (β), β > 0, with

h(x) = xβ l(x),

where

l(x) = c exp
∫ x

1

ε(u)

u
du (9)

for some positive c. We assume that x �→ ε(x) is twice differentiable and satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε(x) =
x→∞ o(1),

x |ε′(x)| =
x→∞ O(1),

x2|ε(2)(x)| =
x→∞ O(1).

(10)
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It will also be assumed that
|h(2)(x)| ∈ RV (θ) (11)

where θ is a real number such that θ ≤ β − 2.

Remark 1 Under (9), when β 
= 1 then, under (11), θ = β − 2. Whereas, when
β = 1 then θ ≤ β − 2. A sufficient condition for the last assumption (11) is that
ε′(t) ∈ RV (γ ), for some γ < −1. Also in this case when β = 1, then θ = β+γ −1.

Example 1 (Weibull density) Let p be aWeibull density with shape parameter k > 1
and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp(−(xk − (k − 1) log x)).

Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk

)
.

Set l(x) = k − (k − 1)/xk, x ≥ 1, which verifies

l ′(x) = k(k − 1)

xk+1 = l(x)ε(x)

x

with

ε(x) = k(k − 1)

kxk − (k − 1)
.

Since the function ε(x) satisfies the three conditions in (10), then h(x) ∈ RV (k −1).

Case 2 (The Rapidly varying case) Here we have h←(t) = ψ(t) ∈ RV (0) and

ψ(t) = c exp
∫ t

1

ε(u)

u
du (12)

for some positive c, and t �→ ε(t) is twice differentiable with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε(t) =
t→∞ o(1),

tε′(t)
ε(t) −→

t→∞ 0,

t2ε(2)(t)
ε(t) −→

t→∞ 0.

(13)

Note that these assumptions imply that ε(t) ∈ RV (0).
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Example 2 (A rapidly varying density) Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex−1 and q(x) = 0 for all nonnegative x . We show that h(x)

is a rapidly varying function. It holds ψ(t) = log t + 1. Since ψ ′(t) = 1/t , let
ε(t) = 1/(log t + 1) such that ψ ′(t) = ψ(t)ε(t)/t . Moreover, the three conditions
of (13) are satisfied. Thus ψ(t) ∈ RV (0) and h(x) is a rapidly varying function.

Denote byR the class of functions with either regular variation defined as in Case
1 or with rapid variation defined as in Case 2.

We now state hypotheses pertaining to the bounded function q in (6). We assume
that

|q(x)| ∈ RV (η), for some η < θ − 3β
2 − 3

2 if h ∈ RV (β) (14)

and
|q(ψ(t))| ∈ RV (η), for some η < − 1

2 if h is rapidly varying. (15)

3 An Abelian-Type Theorem

We have

Theorem 1 Let p(x) be defined as in (6) and h(x) belong to R. Denote by m(t),
s2(t) and μ j (t) for j = 3, 4, . . . the functions defined in (2), (3) and (4). Then it
holds

m(t) =
t→∞ ψ(t)(1 + o(1)),

s2(t) =
t→∞ ψ ′(t)(1 + o(1)),

μ3(t) =
t→∞ ψ(2)(t)(1 + o(1)),

μ j (t) =
t→∞

{
M j s j (t)(1 + o(1)), for even j > 3
(M j+3−3 j M j−1)μ3(t)s j−3(t)

6 (1 + o(1)), for odd j > 3
,

where Mi , i > 0, denotes the i th order moment of standard normal distribution.

Using (6), the moment generating function Φ(t) defined in (1) takes on the form

Φ(t) =
∫ ∞

0
etx p(x)dx = c

∫ ∞

0
exp(K (x, t) + q(x))dx, t ∈ (0,∞)

where
K (x, t) = t x − g(x). (16)
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If h ∈ R, then for fixed t , x �→ K (x, t) is a concave function and takes its
maximum value at x̂ = h←(t).

As a direct by-product of Theorem 1 we obtain the following Abel-type result.

Theorem 2 Under the same hypotheses as in Theorem 1, we have

Φ(t) = √
2πσ̂eK (x̂,t)(1 + o(1)).

Remark 2 It is easily verified that this result is in accordance with Theorem 4.12.11
of Bingham et al. (1987), Theorem 3 of Borovkov (2008), and Theorem 4.2 of
Juszczak and Nagaev (2004). Some classical consequence of Kasahara’s Tauberian
theorem can be paralleled with Theorem 2. Following Theorem 4.2.10 in Bingham
et al. (1987), with f defined as g above, it follows that − log

∫ ∞
x p(v)dv ∼ g(x) as

x → ∞ under Case 1, a stronger assumption than required in Theorem 4.2.10 of
Bingham et al. (1987). Theorem 4.12.7 in Bingham et al. (1987) hence applies and
provides an asymptotic equivalent for logΦ(t) as t → ∞; Theorem 2 improves on
this result, at the cost of the additional regularity assumptions of Case 1. Furthermore,
these results complement those inBroniatowski andFuchs (1995) Sect. 3.2, inCase 2.

We also derive the following consequence of Theorem 1.

Theorem 3 Under the present hypotheses, denote Xt a random variable with den-
sity πt (x). Then as t → ∞, the family of random variables

Xt − m(t)

s(t)

converges in distribution to a standard normal distribution.

Remark 3 This result holds under various hypotheses, as developed, for example,
in Balkema et al. (1993) or Feigin and Yashchin (1983). Under log-concavity of p
it also holds locally; namely the family of densities πt converges pointwise to the
standard gaussian density; this yields asymptotic results for the extreme deviations of
the empirical mean of i.i.d. summands with light tails (see Broniatowski and Mason
(1994)), and also provides sufficient conditions for PX to belong to the domain of
attraction of the Gumbel distribution for the maximum through criterions pertaining
to the Mill’s ratio (see Feigin and Yashchin (1983)).

Remark 4 That g is four times derivable can be relaxed; in Case 1 with β > 2 or
in Case 2, g a three times derivable function, together with the two first lines in
(10) and (13), provides Theorems 1, 2, and 3. Also it may be seen that the order of
differentiability of g in Case 1 with 0 < β ≤ 2 is related to the order of the moment
of the tilted distribution for which an asymptotic equivalent is obtained. This will be
developed in the forthcoming paper.

The proofs of the above results rely on Lemma 5–9. Lemma 5 is instrumental for
Lemma 9.
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Appendix: Proofs

The following lemma provides a simple argument for the local uniform convergence
of regularly varying functions.

Lemma 1 Consider l(t) ∈ RV (α), α ∈ R. For any function f such that f (t) =
t→∞

o(t), it holds
sup

|x |≤ f (t)
|l(t + x)| ∼

t→∞ |l(t)|. (17)

If f (t) = at with 0 < a < 1, then it holds

sup
|x |≤at

|l(t + x)| ∼
t→∞ (1 + a)α|l(t)|. (18)

Proof By Theorem 1.5.2 of Bingham et al. (1987), if l(t) ∈ RV (α), then for all I

sup
λ∈I

∣∣∣∣
l(λt)

l(t)
− λα

∣∣∣∣ −→
t→∞ 0,

with I = [A, B] (0 < A ≤ B < ∞) if α = 0, I = (0, B] (0 < B < ∞) if α > 0
and I = [A,∞) (0 < A < ∞) if α < 0.

Putting λ = 1 + x/t with f (t) =
t→∞ o(t), we obtain

sup
|x |≤ f (t)

∣∣∣∣
l(t + x)

l(t)

∣∣∣∣ −
(
1 + f (t)

t

)α

−→
t→∞ 0,

which implies (17).
When f (t) = at with 0 < a < 1, we get

sup
|x |≤at

∣∣∣∣
l(t + x)

l(t)

∣∣∣∣ − (1 + a)α −→
t→∞ 0,

which implies (18). �

Nowwe quote some simple expansions pertaining to the function h under the two
cases considered in the above Sect. 2.
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Lemma 2 We have under Case 1,

h′(x) = h(x)

x
[β + ε(x)],

h(2)(x) = h(x)

x2
[β(β − 1) + aε(x) + ε2(x) + xε′(x)],

h(3)(x) = h(x)

x3
[β(β − 1)(β − 2) + bε(x) + cε2(x) + ε3(x)

+ xε′(x)(d + eε(x)) + x2ε(2)(x)].

where a, b, c, d, e are some real constants.

Corollary 1 We have under Case 1, h′(x) ∼
x→∞ βh(x)/x and |h(i)(x)| ≤ Ci h(x)/xi,

i = 1, 2, 3, for some constants Ci and for large x.

Corollary 2 We have under Case 1, x̂(t) = ψ(t) ∈ RV (1/β) (see Theorem (1.5.15)
of Bingham et al. (1987)) and σ̂ 2(t) = ψ ′(t) ∼ β−1ψ(t)/t ∈ RV (1/β − 1).

It also holds

Lemma 3 We have under Case 2,

ψ(2)(t) ∼
t→∞ −ψ(t)ε(t)

t2
and ψ(3)(t) ∼

t→∞ 2
ψ(t)ε(t)

t3
.

Lemma 4 We have under Case 2,

h′(ψ(t)) = 1

ψ ′(t)
= t

ψ(t)ε(t)
,

h(2)(ψ(t)) = − ψ(2)(t)

(ψ ′(t))3
∼

t→∞
t

ψ2(t)ε2(t)
,

h(3)(ψ(t)) = 3(ψ(2)(t))2 − ψ(3)(t)ψ ′(t)
(ψ ′(t))5

∼
t→∞

t

ψ3(t)ε3(t)
.

Corollary 3 We have under Case 2, x̂(t) = ψ(t) ∈ RV (0) and σ̂ 2(t) = ψ ′(t) =
ψ(t)ε(t)/t ∈ RV (−1). Moreover, we have h(i)(ψ(t)) ∈ RV (1), i = 1, 2, 3.

Before beginning the proofs of our results we quote that the regularity conditions
(9) and (12) pertaining to the function h allow for the above simple expansions.
Substituting the constant c in (9) and (12) by functions x → c(x) which converge
smoothly to some positive constant c adds noticeable complexity.

We now come to the proofs of five lemmas which provide the asymptotics leading
to Theorems 1 and 2.

Lemma 5 It holds
log σ̂

∫ t
1 ψ(u)du

−→
t→∞ 0.
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Proof By Corollaries 2 and 3, we have that ψ(t) ∈ RV (1/β) in Case 1 and ψ(t) ∈
RV (0) in Case 2. Using Theorem 1 of Feller (1971), Sect. 8.9 or Proposition 1.5.8
of Bingham et al. (1987), we obtain

∫ t

1
ψ(u)du ∼

t→∞

{
tψ(t)/(1 + 1/β) ∈ RV (1 + 1/β) if h ∈ RV (β)

tψ(t) ∈ RV (1) if h is rapidly varying
.

(19)

Also by Corollaries 2 and 3, we have that σ̂ 2 ∈ RV (1/β − 1) in Case 1 and σ̂ 2 ∈
RV (−1) in Case 2. Thus t �→ log σ̂ ∈ RV (0) by composition and

log σ̂
∫ t
1 ψ(u)du

∼
t→∞

⎧
⎨

⎩

β+1
β

× log σ̂
tψ(t) ∈ RV

(
−1 − 1

β

)
if h ∈ RV (β)

log σ̂
tψ(t) ∈ RV (−1) if h is rapidly varying

,

which proves the claim. �

The next steps of the proof make use of the function

L(t) := (log t)3 .

Lemma 6 We have

sup
|x |≤σ̂ L(t)

∣∣∣∣∣
h(3)(x̂ + x)

h(2)(x̂)

∣∣∣∣∣ σ̂ L4(t) −→
t→∞ 0.

Proof Case 1. By Corollary 1 and by (11) we have

|h(3)(x)| ≤ C
|h(2)(x)|

x
,

for some constant C and x large. Since, by Corollary 2, x̂ ∈ RV (1/β) and σ̂ 2 ∈
RV (1/β − 1), we have

|x |
x̂

≤ σ̂ L(t)

x̂
∈ RV

(
−1

2
− 1

2β

)

and |x |/x̂ −→
t→∞ 0 uniformly in {x : |x | ≤ σ̂ L(t)}. For large t and all x such that

|x | ≤ σ̂ L(t), we have

|h(3)(x̂ + x)| ≤ C
|h(2)(x̂ + x)|

x̂ + x
≤ C sup

|x |≤σ̂ L(t)

|h(2)(x̂ + x)|
x̂ + x
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whence

sup
|x |≤σ̂ L(t)

|h(3)(x̂ + x)| ≤ C sup
|x |≤σ̂ L(t)

|h(2)(x̂ + x)|
x̂ + x

where

sup
|x |≤σ̂ L(t)

|h(2)(x̂ + x)|
x̂ + x

∼
t→∞

|h(2)(x̂)|
x̂

,

using (17) for the regularly varying function |h(2)(x̂)| ∈ RV (θ/β), with f (t) =
σ̂ L(t) =

t→∞ o(x̂). Thus for t large enough and for all δ > 0

sup
|x |≤σ̂ L4(t)

∣∣∣∣∣
h(3)(x̂ + x)

h(2)(x̂)

∣∣∣∣∣ σ̂ L4(t) ≤ C
σ̂ L4(t)

x̂
(1 + δ) ∈ RV

(
1

2β
− 1

2
− 1

β

)
,

which proves Lemma 6 in Case 1.

Case 2. By Lemma 4, we have that h(3)(ψ(t)) ∈ RV (1). Using (18), we have for
0 < a < 1 and t large enough

sup
|v|≤at

|h(3)(ψ(t + v))| ∼
t→∞ (1 + a)h(3)(ψ(t)).

In the present case x̂ ∈ RV (0) and σ̂ 2 ∈ RV (−1). Setting ψ(t + v) = x̂ + x =
ψ(t) + x , we have x = ψ(t + v) − ψ(t) and A := ψ(t − at) − ψ(t) ≤ x ≤
ψ(t + at) − ψ(t) =: B, since t �→ ψ(t) is an increasing function. It follows that

sup
|v|≤at

h(3)(ψ(t + v)) = sup
A≤x≤B

h(3)(x̂ + x).

Now note that (cf. p. 127 in Bingham et al. (1987))

B = ψ(t + at) − ψ(t) =
∫ t+at

t
ψ ′(z)dz

=
∫ t+at

t

ψ(z)ε(z)

z
dz ∼

t→∞ ψ(t)ε(t) log(1 + a),

since ψ(t)ε(t) ∈ RV (0). Moreover, we have

σ̂ L(t)

ψ(t)ε(t)
∈ RV (−1) and

σ̂ L(t)

ψ(t)ε(t)
−→
t→∞ 0.

It follows that σ̂ L(t) =
t→∞ o(B) and in a similar way, we have σ̂ L(t) =

t→∞ o(A).

Using Lemma 4 and since σ̂ L4(t) ∈ RV (−1/2), it follows that for t large enough
and for all δ > 0
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sup
|x |≤σ̂ L(t)

|h(3)(ψ(t + v))|
|h(2)(ψ(t))| σ̂ L4(t) ≤ sup

A≤x≤B

|h(3)(ψ(t + v))|
|h(2)(ψ(t))| σ̂ L4(t)

≤ (1 + a)
σ̂ L4(t)

ψ(t)ε(t)
(1 + δ) ∈ RV

(
−1

2

)
,

which concludes the proof of Lemma 6 in Case 2. �

Lemma 7 We have

|h(2)(x̂)|σ̂ 4 −→
t→∞ 0,

|h(2)(x̂)|σ̂ 3L(t) −→
t→∞ 0.

Proof Case 1. By Corollaries 1 and 2, we have

|h(2)(x̂)|σ̂ 4 ≤ C2

β2t
∈ RV (−1)

and

|h(2)(x̂)|σ̂ 3L(t) ≤ C2

β3/2

L(t)√
tψ(t)

∈ RV

(
− 1

2β
− 1

2

)
,

proving the claim.

Case 2. We have by Lemma 4 and Corollary 3

h(2)(x̂)σ̂ 4 ∼
t→∞

1

t
∈ RV (−1)

and

h(2)(x̂)σ̂ 3L(t) ∼
t→∞

L(t)√
tψ(t)ε(t)

∈ RV

(
−1

2

)
,

which concludes the proof of Lemma 7. �

We now define some functions to be used in the sequel. A Taylor–Lagrange
expansion of K (x, t) in a neighborhood of x̂ yields

K (x, t) = K (x̂, t) − 1

2
h′(x̂)(x − x̂)2 − 1

6
h(2)(x̂)(x − x̂)3 + ε(x, t), (20)

where, for some θ ∈ (0, 1),

ε(x, t) = − 1

24
h(3)(x̂ + θ(x − x̂))(x − x̂)4. (21)
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Lemma 8 We have

sup
y∈[−L(t),L(t)]

|ξ(σ̂ y + x̂, t)|
h(2)(x̂)σ̂ 3

−→
t→∞ 0,

where ξ(x, t) = ε(x, t) + q(x) and ε(x, t) is defined in (21).

Proof For y ∈ [−L(t), L(t)], by 21, it holds

∣∣∣∣
ε(σ̂ y + x̂, t)

h(2)(x̂)σ̂ 3

∣∣∣∣ ≤
∣∣∣∣∣
h(3)(x̂ + θσ̂ y)(σ̂ y)4

h(2)(x̂)σ̂ 3

∣∣∣∣∣ ≤
∣∣∣∣∣
h(3)(x̂ + θσ̂ y)σ̂ L4(t)

h(2)(x̂)

∣∣∣∣∣ ,

with θ ∈ (0, 1). Let x = θσ̂ y. It then holds |x | ≤ σ̂ L(t). Therefore by Lemma 6

sup
y∈[−L(t),L(t)]

∣∣∣∣
ε(σ̂ y + x̂, t)|

h(2)(x̂)σ̂ 3

∣∣∣∣ ≤ sup
|x |≤σ̂ L(t)

∣∣∣∣∣
h(3)(x̂ + x)

h(2)(x̂)
σ̂ L4(t)

∣∣∣∣∣ −→
t→∞ 0.

It remains to prove that

sup
y∈[−L(t),L(t)]

∣∣∣∣
q(σ̂ y + x̂)

h(2)(x̂)σ̂ 3

∣∣∣∣ −→
t→∞ 0. (22)

Case 1. By (11) and by composition, |h(2)(x̂)| ∈ RV (θ/β). Using Corollary 1 we
obtain

|h(2)(x̂)σ̂ 3| ∼
t→∞

|h(2)(x̂)|ψ3/2(t)

β3/2t3/2
∈ RV

(
θ

β
+ 3

2β
− 3

2

)
.

Since, by (14), |q(x̂)| ∈ RV (η/β), for η < θ − 3β/2+ 3/2 and putting x = σ̂ y,
we obtain

sup
y∈[−L(t),L(t)]

∣∣∣∣
q(σ̂ y + x̂)

h(2)(x̂)σ̂ 3

∣∣∣∣ = sup
|x |≤σ̂ L(t)

∣∣∣∣
q(x̂ + x)

h(2)(x̂)σ̂ 3

∣∣∣∣

∼
t→∞

|q(x̂)|
|h(2)(x̂)σ̂ 3| ∈ RV

(
η − θ

β
− 3

2β
+ 3

2

)
,

which proves (22).

Case 2. By Lemma 4 and Corollary 3, we have

|h(2)(x̂)σ̂ 3| ∼
t→∞

1√
tψ(t)ε(t)

∈ RV

(
−1

2

)
.
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As in Lemma 6, since by (15), q(ψ(t)) ∈ RV (η), then we obtain, with η < −1/2

sup
y∈[−L(t),L(t)]

∣∣∣∣
q(σ̂ y + x̂)

h(2)(x̂)σ̂ 3

∣∣∣∣ = sup
|x |≤σ̂ L(t)

∣∣∣∣
q(x̂ + x)

h(2)(x̂)σ̂ 3

∣∣∣∣

≤ sup
|v|≤at

∣∣∣∣
q(ψ(t + v))

h(2)(x̂)σ̂ 3

∣∣∣∣

≤ (1 + a)ηq(ψ(t))
√

tψ(t)ε(t)(1 + δ) ∈ RV

(
η + 1

2

)
,

for all δ > 0, with a < 1, t large enough and η + 1/2 < 0. This proves (22). �

Lemma 9 For α ∈ N, denote

Ψ (t, α) :=
∫ ∞

0
(x − x̂)αetx p(x)dx .

Then
Ψ (t, α) =

t→∞ σ̂ α+1eK (x̂,t)T1(t, α)(1 + o(1)),

where

T1(t, α) =
∫ L1/3(t)√

2

− L1/3(t)√
2

yα exp

(
− y2

2

)
dy−h(2)(x̂)σ̂ 3

6

∫ L1/3(t)√
2

− L1/3(t)√
2

y3+α exp

(
− y2

2

)
dy.

(23)

Proof We define the interval It as follows

It :=
(

− L
1
3 (t)σ̂√
2

,
L

1
3 (t)σ̂√
2

)
.

For large enough τ , when t → ∞ we can partition R+ into

R+ = {x : 0 < x < τ } ∪ {x : x ∈ x̂ + It } ∪ {x : x ≥ τ, x 
∈ x̂ + It },

where for x > τ , q(x) < log 2. Thus we have

p(x) < 2e−g(x). (24)

For fixed τ , {x : 0 < x < τ } ∩ {x : x ∈ x̂ + It } = ∅. Therefore τ < x̂ − L
1
3 (t)σ̂√
2

≤ x̂

for t large enough. Hence it holds

Ψ (t, α) =: Ψ1(t, α) + Ψ2(t, α) + Ψ3(t, α), (25)
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where

Ψ1(t, α) =
∫ τ

0
(x − x̂)αetx p(x)dx,

Ψ2(t, α) =
∫

x∈x̂+It

(x − x̂)αetx p(x)dx,

Ψ3(t, α) =
∫

x 
∈x̂+It ,x≥τ

(x − x̂)αetx p(x)dx .

We estimate Ψ1(t, α), Ψ2(t, α) and Ψ3(t, α) in Step 1, Step 2 and Step 3.

Step 1: Since q is bounded, we consider

log d = sup
x∈(0,τ )

q(x)

and for t large enough, we have

|Ψ1(t, α)| ≤
∫ τ

0

∣∣x − x̂
∣∣α etx p(x)dx ≤ d

∫ τ

0
x̂αetx dx,

since when 0 < x < τ < x̂ then
∣∣x − x̂

∣∣ = x̂ − x < x̂ for t large enough and g is
positive.
Since, for t large enough, we have

∫ τ

0
x̂αetx dx = x̂α etτ

t
− x̂α

t
≤ x̂α etτ

t
,

we obtain

|Ψ1(t, α)| ≤ dx̂α etτ

t
. (26)

We now show that for h ∈ R, it holds

x̂α etτ

t
=

t→∞ o(|σ̂ α+1|eK (x̂,t)|h(2)(x̂)σ̂ 3|), (27)

with K (x, t) defined as in (16). This is equivalent to

x̂αetτ

t |σ̂ α+4h(2)(x̂)| =
t→∞ o(eK (x̂,t)),
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which is implied by

− (α + 4) log |σ̂ | − log t + α log x̂ + τ t − log |h(2)(x̂)| =
t→∞ o(K (x̂, t)), (28)

if K (x̂, t) −→
t→∞ ∞.

Setting u = h(v) in
∫ t
1 ψ(u)du, we have

∫ t

1
ψ(u)du = tψ(t) − ψ(1) − g(ψ(t)) + g(ψ(1)).

Since K (x̂, t) = tψ(t) − g(ψ(t)), we obtain

K (x̂, t) =
∫ t

1
ψ(u)du + ψ(1) − g(ψ(1)) ∼

t→∞

∫ t

1
ψ(u)du. (29)

Let us denote (19) by
K (x̂, t) ∼

t→∞ atψ(t), (30)

with

a =
{

β
β+1 if h ∈ RV (β)

1 if h is rapidly varying
.

We have to show that each term in (28) is o(K (x̂, t)).

1. By Lemma 5, log σ̂ =
t→∞ o(

∫ t
1 ψ(u)du). Hence log σ̂ =

t→∞ o(K (x̂, t)).

2. By Corollaries 2 and 3, we have

t

K (x̂, t)
∼

t→∞
1

aψ(t)
−→
t→∞ 0.

Thus t =
t→∞ o(K (x̂, t)).

3. Since x̂ = ψ(t) −→
t→∞ ∞, it holds

∣∣∣∣
log x̂

K (x̂, t)

∣∣∣∣ ≤ C
ψ(t)

K (x̂, t)
,

for some positive constant C and t large enough. Moreover by (30), we have

ψ(t)

K (x̂, t)
∼

t→∞
1

at
−→
t→∞ 0.

Hence log x̂ =
t→∞ o(K (x̂, t)).

4. Using (30), log |h(2)(x̂)| ∈ RV (0) and log |h(2)(x̂)| =
t→∞ o(K (x̂, t)).
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5. Since log t =
t→∞ o(t) and t =

t→∞ o(K (x̂, t)), we obtain log t =
t→∞ o(K (x̂, t)).

Since (28) holds and K (x̂, t) −→
t→∞ ∞ by (29) and (30), we then get (27).

Eqs. (26) and (27) yield together

|Ψ1(t, α)| =
t→∞ o(|σ̂ α+1|eK (x̂,t)|h(2)(x̂)σ̂ 3|). (31)

When α is even,

T1(t, α) =
∫ t1/3√

2

− t1/3√
2

yα exp

(
− y2

2

)
dy ∼

t→∞
√
2π Mα, (32)

where Mα is the moment of order α of a standard normal distribution. Thus by
Lemma 7 we have

h(2)(x̂)σ̂ 3

T1(t, α)
−→
t→∞ 0. (33)

When α is odd,

T1(t, α) = −h(2)(x̂)σ̂ 3

6

∫ l
1
3√
2

− l
1
3√
2

y3+α exp

(
− y2

2

)
dy ∼

t→∞ −h(2)(x̂)σ̂ 3

6

√
2π Mα+3,

(34)

where Mα+3 is the moment of order α + 3 of a standard normal distribution. Thus
we have

h(2)(x̂)σ̂ 3

T1(t, α)
∼

t→∞ − 6√
2π Mα+3

. (35)

Combined with (31), (33) and (35) imply for α ∈ N

|Ψ1(t, α)| =
t→∞ o(σ̂ α+1eK (x̂,t)T1(t, α)). (36)

Step 2: By (6) and (20)

Ψ2(t, α) =
∫

x∈x̂+It

(x − x̂)αeK (x,t)+q(x)dx

=
∫

x∈x̂+It

(x − x̂)αeK (x̂,t)− 1
2 h′(x̂)(x−x̂)2− 1

6 h(2)(x̂)(x−x̂)3+ξ(x,t)dx,
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where ξ(x, t) = ε(x, t) + q(x). Making the substitution y = (x − x̂)/σ̂ , it holds

Ψ2(t, α) = σ̂ α+1eK (x̂,t)
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

yα exp

(
− y2

2
− σ̂ 3y3

6
h(2)(x̂) + ξ(σ̂ y + x̂, t)

)
dy,

(37)

since h′(x̂) = 1/σ̂ 2.

On
{

y : y ∈
(
−L

1
3 (t)/

√
2, L

1
3 (t)/

√
2
)}

, by Lemma 7, we have

∣∣∣h(2)(x̂)σ̂ 3y3
∣∣∣ ≤

∣∣∣h(2)(x̂)σ̂ 3L(t)
∣∣∣ /2

3
2 −→

t→∞ 0.

Perform the first-order Taylor expansion

exp

(
−h(2)(x̂)σ̂ 3

6
y3 + ξ(σ̂ y + x̂, t)

)
=

t→∞ 1 − h(2)(x̂)σ̂ 3

6
y3 + ξ(σ̂ y + x̂, t) + o1(t, y),

where

o1(t, y) = o

(
−h(2)(x̂)σ̂ 3

6
y3 + ξ(σ̂ y + x̂, t)

)
. (38)

We obtain

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

yα exp

(
− y2

2
− σ̂ 3y3

6
h(2)(x̂) + ξ(σ̂ y + x̂, t)

)
dy =: T1(t, α) + T2(t, α),

where T1(t, α) is defined in (23) and

T2(t, α) :=
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

(
ξ(σ̂ y + x̂, t) + o1(t, y)

)
yαe− y2

2 dy. (39)

Using (38) we have for t large enough

|T2(t, α)| ≤ sup

y∈[− L
1
3 (t)√
2

,
L
1
3 (t)√
2

]

∣∣ξ(σ̂ y + x̂, t)
∣∣
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

|y|α e− y2

2 dy

+
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

(∣∣∣∣∣o
(

h(2)(x̂)σ̂ 3

6
y3

)∣∣∣∣∣ + ∣∣o(ξ(σ̂ y + x̂, t))
∣∣
)

|y|αe− y2

2 dy,
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where sup
y∈[−L

1
3 (t)/

√
2,L

1
3 (t)/

√
2]

∣∣ξ(σ̂ y + x̂, t)
∣∣ ≤ supy∈[−L(t),L(t)]

∣∣ξ(σ̂ y + x̂, t)
∣∣

since L
1
3 (t)/

√
2 ≤ L(t) holds for t large enough. Thus

|T2(t, α)| ≤ 2 sup
y∈[−L(t),L(t)]

∣∣ξ(σ̂ y + x̂, t)
∣∣
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

|y|α e− y2

2 dy

+
∣∣∣∣∣o

(
h(2)(x̂)σ̂ 3

6

)∣∣∣∣∣

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

|y|3+α e− y2

2 dy

=
t→∞

∣∣∣∣∣o
(

h(2)(x̂)σ̂ 3

6

)∣∣∣∣∣

⎛
⎜⎝∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

|y|α e− y2

2 dy +
∫ L

1
3 (t)√
2

− L
1
3 (t)√
2

|y|3+α e− y2

2 dy

⎞
⎟⎠ ,

where the last equality holds from Lemma 8. Since the integrals in the last equality
are both bounded, it holds

T2(t, α) =
t→∞ o(h(2)(x̂)σ̂ 3). (40)

When α is even, using (32) and Lemma 7

∣∣∣∣
T2(t, α)

T1(t, α)

∣∣∣∣ ≤ |h(2)(x̂)σ̂ 3|√
2π Mα

−→
t→∞ 0. (41)

When α is odd, using (34), we get

T2(t, α)

T1(t, α)
=

t→∞ − 6√
2π Mα+3

o(1) −→
t→∞ 0. (42)

Now with α ∈ N, by (41) and (42)

T2(t, α) =
t→∞ o(T1(t, α)),

which, combined with (37), yields

Ψ2(t, α) = cσ̂ α+1eK (x̂,t)T1(t, α)(1 + o(1)). (43)

Step 3: The Three Chords Lemma implies, for x �→ K (x, t) concave and
(x, y, z) ∈ R

3+ such that x < y < z

K (y, t) − K (z, t)

y − z
≤ K (x, t) − K (z, t)

x − z
≤ K (x, t) − K (y, t)

x − y
. (44)
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Since x �→ K (x, t) is concave and attains its maximum in x̂ , we consider two
cases: x < x̂ and x ≥ x̂ . After some calculus using (44) in each case, we get

K (x, t) − K (x̂, t) ≤
K (x̂ + sgn(x − x̂)

L1/3(t)σ̂√
2

) − K (x̂, t)

sgn(x − x̂)
L1/3(t)σ̂√

2

(x − x̂), (45)

where

sgn(x − x̂) =
{
1 if x ≥ x̂
−1 if x < x̂

.

Using Lemma 7, a third-order Taylor expansion in the numerator of (45) gives

K (x̂ + sgn(x − x̂)
L1/3(t)σ̂√

2
) − K (x̂, t) ≤ −1

4
h′(x̂)L2/3(t)σ̂ 2 = −1

4
L2/3(t),

which yields

K (x, t) − K (x̂, t) ≤ −
√
2

4

L1/3(t)

σ̂
|x − x̂ |.

Using (24), we obtain for large enough fixed τ

|Ψ3(t, α)| ≤ 2
∫

x 
∈x̂+It ,x>τ

|x − x̂ |αeK (x,t)dx

≤ 2eK (x̂,t)
∫

|x−x̂ |> L1/3(t)σ̂√
2

,x>τ

|x − x̂ |α exp
(

−
√
2

4

L1/3(t)

σ̂
|x − x̂ |

)
dx

= 2eK (x̂,t)σ̂ α+1

[∫ +∞
L1/3(t)√

2

yαe−
√
2
4 L1/3(t)ydy

+
∫ − L1/3(t)√

2

τ−x̂
σ̂

(−y)αe
√
2
4 L1/3(t)ydy

⎤

⎦

:= 2eK (x̂,t)σ̂ α+1(Iα + Jα).
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It is easy but a bit tedious to show by recursion that

Iα =
∫ +∞

L1/3(t)√
2

yα exp

(
−

√
2

4
L1/3(t)y

)
dy

= exp

(
−1

4
L2/3(t)

) α∑

i=0

2
4i+3−α

2 L
α−(2i+1)

3 (t)
α!

(α − i)!

∼
t→∞ 2

3−α
2 exp

(
−1

4
L2/3(t)

)
L

α−1
3 (t)

and

Jα =
∫ − L1/3(t)√

2

τ−x̂
σ̂

(−y)α exp

(√
2

4
L1/3(t)y

)
dy

= Iα − exp

(√
2

4
L1/3(t)

τ − x̂

σ̂

)
α∑

i=0

(
x̂ − τ

σ̂

)α−i

L− i+1
3 (t)2

3i+3
2

α!
(α − i)!

= Iα + M(t),

with x̂/σ̂ ∈ RV ((1 + 1/β)/2) when h ∈ RV (β) and x̂/σ̂ ∈ RV (1/2) when h is
rapidly varying. Moreover, τ − x̂ < 0, thus M(t) −→

t→∞ 0 and we have for some

positive constant Q1

|Ψ3(t, α)| ≤ Q1eK (x̂,t)σ̂ α+1 exp

(
−1

4
L2/3(t)

)
L

α−1
3 (t).

With (43), we obtain for some positive constant Q2

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q2 exp(− 1
4 L2/3(t))L

α−1
3 (t)

|T1(t, α)| .

In Step 1, we saw that T1(t, α) ∼
t→∞

√
2π Mα , for α even and T1(t, α) ∼

t→∞
− h(2)(x̂)σ̂ 3

6

√
2π Mα+3, for α odd. Hence for α even and t large enough

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q3
exp(− 1

4 L2/3(t))L
α−1
3 (t)√

2π Mα

−→
t→∞ 0, (46)
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and for α odd and t large enough

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q4
exp(− 1

4 L2/3(t))L
α−1
3 (t)

|h(2)(x̂)σ̂ 3|
6

√
2π Mα+3

,

for positive constants Q3 and Q4.
As in Lemma 7, we have

|h(2)(x̂)σ̂ 3| ∈ RV

(
θ

β
+ 3

2β
− 3

2

)
if h ∈ RV (β)

and

|h(2)(x̂)σ̂ 3| ∈ RV

(
−1

2

)
if h is rapidly varying.

Let us denote
|h(2)(x̂)σ̂ 3| = tρ L1(t),

for some slowly varying function L1 and ρ < 0 defined as

ρ =
{

θ
β

+ 3
2β − 3

2 if h ∈ RV (β)

− 1
2 if h is rapidly varying

.

We have for some positive constant C

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ C exp

(
−1

4
L2/3(t) − ρ log t − log L1(t)

)
L

α−1
3 (t) −→

t→∞ 0,

since −(log t)2/4 − ρ log t − log L1(t) ∼
t→∞ −(log t)2/4 −→

t→∞ −∞.

Hence we obtain
Ψ3(t, α) =

t→∞ o(Ψ2(t, α)). (47)

The proof is completed by combining (25), (36), (43), and (47). �

Proof (Proof of Theorem1) By Lemma 9, if α = 0, it holds

T1(t, 0) −→
t→∞

√
2π,

since L(t) −→
t→∞ ∞. Approximate the moment generating function of X

Φ(t) = Ψ (t, 0) =
t→∞ σ̂eK (x̂,t)T1(t, 0)(1 + o(1)) =

t→∞
√
2πσ̂eK (x̂,t)(1 + o(1)).

(48)
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If α = 1, it holds

T1(t, 1) =
t→∞ −h(2)(x̂)σ̂ 3

6
M4

√
2π(1 + o(1)),

where M4 = 3 denotes the fourth-order moment of the standard normal distribution.
Consequently, we obtain

Ψ (t, 1) =
t→∞ −√

2πσ̂ 2eK (x̂,t) h(2)(x̂)σ̂ 3

2
(1+o(1)) =

t→∞−Φ(t)
h(2)(x̂)σ̂ 4

2
(1+o(1)),

(49)

which, together with the definition of Ψ (t, α), yields

∫ ∞

0
xetx p(x)dx = Ψ (t, 1) + x̂Φ(t) =

t→∞

(
x̂ − h(2)(x̂)σ̂ 4

2
(1 + o(1))

)
Φ(t).

Hence we get

m(t) =
∫ ∞
0 xetx p(x)dx

Φ(t)
= x̂ − h(2)(x̂)σ̂ 4

2
(1 + o(1)). (50)

By Lemma 7, we obtain
m(t) ∼

t→∞ x̂ = ψ(t). (51)

If α = 2, it follows:

T1(t, 2) =
t→∞

√
2π(1 + o(1)).

Thus we have
Ψ (t, 2) =

t→∞ σ̂ 2Φ(t)(1 + o(1)). (52)

Using (49), (50) and (52), it follows:

∫ ∞

0
(x − m(t))2etx p(x)dx =

∫ ∞

0
(x − x̂ + x̂ − m(t))2etx p(x)dx

= Ψ (t, 2) + 2(x̂ − m(t))Ψ (t, 1) + (x̂ − m(t))2Φ(t)

=
t→∞ σ̂ 2Φ(t)(1 + o(1)) − σ̂ 2Φ(t)

(h(2)(x̂)σ̂ 3)2

4
(1 + o(1)) =

t→∞ σ̂ 2Φ(t)(1 + o(1)),

where the last equality holds since |h(2)(x̂)σ̂ 3| −→
t→∞ 0 by Lemma 7.
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Hence we obtain

s2(t) =
∫ ∞
0 (x − m(t))2etx p(x)dx

Φ(t)
∼

t→∞ σ̂ 2 = ψ ′(t). (53)

If α = 3, it holds

T1(t, 3) = −h(2)(x̂)σ̂ 3

6

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

y6e− y2

2 dy.

Thus we have

Ψ (t, 3) = −√
2πσ̂ 4eK (x̂,t) h(2)(x̂)σ̂ 3

6

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

1√
2π

y6e− y2

2 dy (54)

=
t→∞ −M6

h(2)(x̂)σ̂ 6

6
Φ(t)(1 + o(1)),

where M6 = 15 denotes the sixth-order moment of standard normal distribution.
Using (49), (50), (52) and (54), we have

∫ ∞

0
(x − m(t))3etx p(x)dx =

∫ ∞

0
(x − x̂ + x̂ − m(t))3etx p(x)dx

= Ψ (t, 3) + 3(x̂ − m(t))Ψ (t, 2) + 3(x̂ − m(t))2Ψ (t, 1) + (x̂ − m(t))3Φ(t)

=
t→∞ −h(2)(x̂)σ̂ 6Φ(t)(1 + o(1)) − h(2)(x̂)σ̂ 6Φ(t)

(h(2)(x̂)σ̂ 3)2

4
(1 + o(1))

=
t→∞ −h(2)(x̂)σ̂ 6Φ(t)(1 + o(1)),

where the last equality holds since |h(2)(x̂)σ̂ 3| −→
t→∞ 0 by Lemma 7. Hence we get

μ3(t) =
∫ ∞
0 (x − m(t))3etx p(x)dx

Φ(t)
∼

t→∞ −h(2)(x̂)σ̂ 6

= ψ(2)(t)

(ψ ′(t))3
(ψ ′(t))3 = ψ(2)(t). (55)

We now consider α = j > 3 for even j . Using (50) and Lemma 9, we have
∫ ∞

0
(x − m(t)) j etx p(x)dx =

∫ ∞

0
(x − x̂ + x̂ − m(t)) j etx p(x)dx (56)

=
j∑

i=0

(
j

i

)(
h(2)(x̂)σ̂ 4

2

)i

σ̂ j−i+1eK (x̂,t)T1(t, j − i)(1 + o(1)),
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with

T1(t, j − i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

y j−i e− y2

2 dy for even i

− h(2)(x̂)σ̂ 3

6

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

y3+ j−i e− y2

2 dy for odd i

=
t→∞

{√
2π M j−i (1 + o(1)) if i is even

−√
2π h(2)(x̂)σ̂ 3

6 M3+ j−i if i is odd
.

Using (48), we obtain

∫ ∞

0
(x − m(t)) j etx p(x)dx

=
t→∞

j∑

i=0

(
j

i

)(
h(2)(x̂)σ̂ 4

2

)i

Φ(t)×
[
σ̂ j−i M j−i (1 + o(1))Ieven i − h(2)(x̂)σ̂ 4

2
σ j−i−1 M3+ j−i

3
(1 + o(1))Iodd i

]

=
t→∞

j/2∑

k=0

(
j

2k

)(
h(2)(x̂)σ̂ 4

2

)2k

Φ(t)σ̂ j−2k M j−2k(1 + o(1))

−
j/2−1∑

k=0

(
j

2k + 1

)(
h(2)(x̂)σ̂ 4

2

)2(k+1)

Φ(t)σ̂ j−2k−2 M3+ j−2k−1

3
(1 + o(1))

∼
t→∞ σ̂ jΦ(t)×⎛
⎝M j +

j/2∑

k=1

(
j

2k

)
(h(2)(x̂)σ̂ 3)2k M j−2k

22k

−
j/2−1∑

k=0

(
j

2k + 1

)
(h(2)(x̂)σ̂ 3)2(k+1) M3+ j−2k−1

3 × 22(k+1)

⎞
⎠

=
t→∞ M j σ̂

jΦ(t)(1 + o(1)),
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since |h(2)(x̂)σ̂ 3| −→
t→∞ 0 by Lemma 7. Hence we get for even j

μ j (t) =
∫ ∞
0 (x − m(t)) j etx p(x)dx

Φ(t)
∼

t→∞ M j σ̂
j ∼

t→∞ M j s
j (t), (57)

by (53).

To conclude, we consider α = j > 3 for odd j . (56) holds true with

T1(t, j − i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

y j−i e− y2

2 dy for odd i

− h(2)(x̂)σ̂ 3

6

∫ L
1
3 (t)√
2

− L
1
3 (t)√
2

y3+ j−i e− y2

2 dy for even i

=
t→∞

{√
2π M j−i (1 + o(1)) if i is odd

−√
2π h(2)(x̂)σ̂ 3

6 M3+ j−i if i is even
.

Thus, with the same tools as above, some calculus and making use of (57),

∫ ∞

0
(x − m(t)) j etx p(x)dx =

t→∞
M j+3 − 3 j M j−1

6
× (−h(2)(x̂)σ̂ j+3)Φ(t).

Hence we get for odd j

μ j (t) =
∫ ∞
0 (x − m(t)) j etx p(x)dx

Φ(t)
∼

t→∞
M j+3 − 3 j M j−1

6
× (−h(2)(x̂)σ̂ j+3)

(58)

∼
t→∞

M j+3 − 3 j M j−1

6
μ3(t)s

j−3(t),

by (53) and (55).

The proof is complete by considering (51), (53), (55), (57) and (58). �

Proof (Proof of Theorem 2) It is proved incidentally in (48). �

Proof (Proof of Theorem 3) Consider the moment generating function of the random
variable

Yt := Xt − m(t)

s(t)
.



92 M. Biret et al.

It holds for any λ

log E exp λYt = −λ
m(t)

s(t)
+ log

Φ
(

t + λ
s(t)

)
Φ(t)

= λ2

2

s2
(

t + θ λ
s(t)

)
s2(t)

= λ2

2

ψ ′
(

t + θ
λ(1+o(1))√

ψ ′(t)

)
ψ ′(t) (1 + o(1))

as t → ∞, for some θ ∈ (0, 1) depending on t , where we used Theorem 1. Now
making use of Corollaries 2 and 3 it follows that

lim
t→∞ log E exp λYt = λ2

2
,

which proves the claim. �
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On Bahadur–Kiefer Type Processes for Sums
and Renewals in Dependent Cases

Endre Csáki and Miklós Csörgő

Abstract We study the asymptotic behavior of Bahadur–Kiefer processes that are
generated by summing partial sums of (weakly or strongly dependent) random vari-
ables and their renewals. Known results for i.i.d. case will be extended to dependent
cases.
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process · Fractional Brownian motion · Strong approximations
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1 Introduction

In this work we intend to deal with Bahadur–Kiefer type processes that are based on
partial sums and their renewals of weakly, as well as strongly, dependent sequences
of random variables. In order to initiate our approach, let {Y0, Y1, Y2, . . .} be random
variables which have the same marginal distribution and, to begin with, satisfy the
following assumptions:

(i) EY0 = μ > 0;
(ii) E(Y 2
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In terms of the generic sequence {Y j , j = 0, 1, 2, . . .}, with t ≥ 0, we define

S(t) :=
[t]∑

i=1

Yi , (1.1)

N (t) := inf{s ≥ 1 : S(s) > t}, (1.2)

Q(t) := S(t) + μN (μt) − 2μt, (1.3)

whose respective appropriately normalized versions will be used in studying partial
sums, their renewals, Bahadur–Kiefer type processes when the random variables in
the sequence Yi , i = 0, 1, . . . are weakly or strongly dependent.

The research area of what is known as Bahadur–Kiefer processes was initiated
by Bahadur (1966) (cf. also Kiefer 1967) who established an almost sure represen-
tation of i.i.d. random variables-based sample quantiles in terms of their empiricals.
Kiefer (1970) substantiated this work via studying the deviations between the sample
quantile and its empirical processes. These three seminal papers have since been fol-
lowedbymany related further investigations (cf., e.g., Csörgő andRévész 1978, 1981,
Chap. 5; Shorack 1982; Csörgő 1983; Deheuvels andMason 1990, 1992; Deheuvels
1992a, b; Csörgő and Horváth 1993, Chaps. 3–6; Csörgő and Szyszkovicz 1998, and
references in these works).

It follows from the results of Kiefer (1970), and also from Vervaat (1972a, b)
as spelled out in Csáki et al. (2007), that the original i.i.d. based Bahadur–Kiefer
process cannot convergeweakly to any nondegenerate random element of the D[0, 1]
function space. On the other hand, Csörgő et al. (2007) showed the opposite conclu-
sion to hold true for long-range dependence-based Bahadur–Kiefer processes. For
an illustration and discussion of this conclusion, we refer to the Introduction and
Corollary 1.2 of Csáki et al. (2013). For further results along these lines, we refer to
Csörgő and Kulik (2008a, b).

The study of the almost sure asymptotic behavior of Bahadur–Kiefer type
processes for sums and their renewals in the i.i.d. case was initiated by Horváth
(1984), Deheuvels and Mason (1990), and augmented by further references and
results as in Csörgő and Horváth (1993, Chap. 2).

Vervaat (1972a, b) initiated the study of limit theorems in general for processes
with a positive drift and their inverses. For results on the asymptotic behavior of
integrals of Bahadur–Kiefer type processes for sums and their renewals, the so-
called Vervaat processes, we refer to Csáki et al. (2007) in the i.i.d. case, Csáki
et al. (2010) in the weakly dependent case, and Csáki et al. (2013) in the strongly
dependent case.

Back to the topics of this paper on Bahadur–Kiefer type processes for sums and
their renewals, the forthcoming Sect. 2 is concerned with the weakly dependent case,
and Sect. 3 concludes results in terms of long-range dependent sequences of random
variables. Both of these sections contain the relevant proofs as well.
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2 Weakly Dependent Case

In this section we deal with weakly dependent random variables-based Bahadur–
Kiefer type processes. First, we summarize the main results in the case when Yi are
i.i.d. random variables with finite fourth moment.

Theorem A Assume that {Yi , i = 0, 1, . . .} are i.i.d. random variables with EY0 =
μ > 0, E(Y0 − μ)2 = σ 2 > 0, and EY 4

0 < ∞. Then we have

Q(T ) = σ

(
W (T ) − W

(
T − σ

μ
W (T )

))
+ oa.s.(T

1/4), as T → ∞, (2.1)

lim sup
T →∞

sup0≤t≤T |Q(t/μ)|
(T log log T )1/4(log T )1/2

= 21/4σ 3/2

μ3/4 , a.s., (2.2)

lim
T →∞

sup0≤t≤T |Q(t/μ)|
(log T )1/2(sup0≤t≤T |μN (t) − t |)1/2 = σ

μ1/2 , a.s., (2.3)

lim
T →∞P(T −1/4|Q(T/μ)| ≤ y) = 2

∫ ∞

−∞
Φ(yμ3/4σ−3/2|x |−1/2)ϕ(x) dx − 1,

(2.4)

where Φ is the standard normal distribution function and ϕ is its density.

We note that (2.1) and (2.4) are due to Csörgő and Horváth (1993), (2.2) is due
to Horváth (1984) and (2.3) is due to Deheuvels and Mason (1990). All these results
can be found in Csörgő and Horváth (1993).

For the case of i.i.d. random variables when the fourth moment does not exist, we
refer to Deheuvels and Steinebach (1992).

In this section, we assume that S(t) can be approximated by a standard Wiener
process as follows.

Assumption A On the same probability space there exist a sequence {Yi , i =
0, 1, 2, . . .} of random variables, with the same marginal distribution, satisfying
assumptions (i) and (ii), and a standard Wiener process W (t), t ≥ 0, such that

sup
0≤t≤T

|S(t) − μt − σ W (t)| = Oa.s.(T
β) (2.5)

almost surely, as T → ∞, with σ > 0, where S(t) is defined by (1.1) and β < 1/4.

In the case of 1/4 ≤ β < 1/2, there is a huge literature on strong approximation
of the form (2.5) for weakly dependent random variables {Yi }. The case β < 1/4 is
treated inBerkes et al. (2014),whereKomlós et al. (1975) type strong approximations
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as in (2.5) are proved under fairly general assumptions of dependence. For exact
statements of, and conditions for, strong approximations that yield (2.5) to hold true
for the partial sums as in Assumption A, we refer to Berkes et al. (2014).

Theorem 2.1 Under Assumption A all the results (2.1)–(2.4) in Theorem A remain
true.

Proof In fact, we only have to prove (2.1), for the other results follow from the
latter. It follows from Csörgő and Horváth (1993), Theorem1.3 on p. 37, that under
Assumption A we have

lim sup
T →∞

sup0≤t≤T

∣∣∣ t
μ

− N (t) − σ
μ

W (t/μ)

∣∣∣
(T log log T )1/4(log T )1/2

= 21/4σ 3/2μ−7/4 a.s.

and also

sup
0≤t≤T

|μt − μS(N (μt))| = Oa.s.(T
β)

as T → ∞. Hence, as T → ∞, we arrive at

Q(T )= S(T )+μN (μT )−2μT = S(T )−μT −(S(N (μT ))− μN (μT ))+Oa.s.(T
β)

= σ(W (t) − W (N (μT ))) + Oa.s.(T
β) =

σ

(
W (T ) − W

(
T − σ

μ
W (T )

))
+ oa.s.(T

1/4),

i.e., having (2.1) as desired. �

3 Strongly Dependent Case

In this section, we deal with long-range (strongly) dependent sequences, based on
moving averages as defined by

η j =
∞∑

k=0

ψkξ j−k, j = 0, 1, 2, . . . , (3.1)

where {ξk,−∞ < k < ∞} is a doubly infinite sequence of independent standard
normal random variables, and the sequence of weights {ψk, k = 0, 1, 2, . . .} is
square summable. Then E(η0) = 0, E(η20) = ∑∞

k=0 ψ2
k =: σ 2 and, on putting

η̃ j = η j/σ , {η̃ j , j = 0, 1, 2, . . .} is a stationary Gaussian sequence with E(η̃0) = 0

http://dx.doi.org/10.1007/978-3-319-12442-1_1


On Bahadur–Kiefer Type Processes for Sums and Renewals in Dependent Cases 97

and E(η̃20) = 1. If ψk ∼ k−(1+α)/2
(k) with a slowly varying function, 
(k), at
infinity, then E(η jη j+n) ∼ bαn−α
2(n), where the constant bα is defined by

bα =
∫ ∞

0
x−(1+α)/2(1 + x)−(1+α)/2 dx .

Now let G(·) be a real-valued Borel measurable function, and define the subordinated
sequence Y j = G(η̃ j ), j = 0, 1, 2, . . .. We assume throughout that J1 :=
E(G(η̃0)η̃0) �= 0. We say in this case that the Hermite rank of the function G(·)
is equal to 1 (cf. Introduction of Csáki et al. 2013).

For 1/2 < H < 1 let {WH (t), t ≥ 0} be a fractional Brownian motion (fbm),
i.e., a mean-zero Gaussian process with covariance

EWH (s)WH (t) = 1

2
(s2H + t2H − |s − t |2H ). (3.2)

Based on a strong approximation result of Wang et al. (2003), what follows next,
was proved in Sect. 2 of Csáki et al. (2013).

Theorem B Let η j be defined by (3.1) with ψk ∼ k−(1+α)/2, 0 < α < 1, and put
η̃ j = η j/σ with σ 2 := E(η20) = ∑∞

k=0 ψ2
k . Let G(·) be a function whose Hermite

rank is 1, and put Y j = G(η̃ j ), j = 0, 1, 2, . . .. Furthermore, let {S(t), t ≥ 0} be
as in (1.1) and assume condition (ii). Then, on an appropriate probability space for
the sequence {Y j = G(η̃ j ), j = 0, 1, . . .}, one can construct a fractional Brownian
motion W1−α/2(·) such that, as T → ∞, we have

sup
0≤t≤T

∣∣∣∣S(t) − μt − J1κα

σ
W1−α/2(t)

∣∣∣∣ = oa.s.(T
γ /2+δ), (3.3)

where μ = E(Y0),

κ2
α = 2

∫ ∞
0 x−(α+1)/2(1 + x)−(α+1)/2 dx

(1 − α)(2 − α)
, (3.4)

γ = 2 − 2α for α < 1/2, γ = 1 for α ≥ 1/2 and δ > 0 is arbitrary.

Moreover, if we also assume condition (i), then, as T → ∞,

sup
0≤t≤T

∣∣∣∣μN (μt) − μt + J1κα

σ
W1−α/2(t)

∣∣∣∣ = oa.s.(T
γ /2+δ + T (1−α/2)2+δ), (3.5)

with γ as right above, and arbitrary δ > 0.

Now, for use in the sequel, we state iterated logarithm results for fractional
Brownian motion and its increments, which follows from Ortega’s extension in
Ortega (1984) of Csörgő and Révész (1979), Csörgő and Révész (1981, Sect. 1.2).
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Theorem C For T > 0 let aT be a nondecreasing function of T such that
0 < aT ≤ T and aT /T is nonincreasing. Then

lim sup
T →∞

sup0≤t≤T −aT
sup0≤s≤aT

|W1−α/2(t + s) − W1−α/2(t)|
a1−α/2

T (2(log T/aT + log log T ))1/2
= 1 a.s. (3.6)

If limT →∞(log(T/aT ))/(log log T ) = ∞, then we have lim instead of lim sup
in (3.6).

First, we give an invariance principle for Q(T ) defined by (1.3) if γ /2 <

(1 − α/2)2, which corresponds to the i.i.d. case when the fourth moment exists.
Equivalently, we assume that

0 < α < 2 − √
2. (3.7)

Note that in (3.8) below, the random time argument of W1−α/2 is strictly positive
for large enough T with probability 1. So, without loss of generality, we may define
W1−α/2(T − u) = 0 if u > T .

Theorem 3.1 Under the conditions of TheoremB, including (i) and (ii), assuming
(3.7), as T → ∞, we have

Q(T ) = J1κα

σ
(W1−α/2(T ) − W1−α/2(N (μT )) + oa.s.(T

γ /2+δ)

= J1κα

σ

(
W1−α/2(T ) − W1−α/2

(
T − J1κα

σμ
W1−α/2(T )

))
+ oa.s.(T

γ /2+δ).

(3.8)

Proof Put c = J1κα/σ . Then

Q(T ) = S(T ) − μT + μN (μT ) − μT

= cW1−α/2(T ) + oa.s.(T
γ /2+δ) + μ(N (μT ) − T ).

But
μ(T − N (μT )) = S(N (μT )) − μN (μT ) + μT − S(N (μT ))

= cW1−α/2(N (μT )) + oa.s.((N (μT ))γ /2+δ) + μT − S(N (μT )),

and using (3.5) and TheoremC, we have

cW1−α/2(N (μT )) = cW1−α/2

(
T − c

μ
W1−α/2(T ) + oa.s.(T

γ /2+δ + T (1−α/2)2+δ)

)

= cW1−α/2

(
T − c

μ
W1−α/2(T )

)
+ oa.s.(T

(γ /2+δ)(1−α/2) + T (1−α/2)3).

http://dx.doi.org/10.1007/978-3-319-12442-1_1
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On the other hand (cf. Csáki et al. 2013), N (μT ) = Oa.s.(T ) and

μT − S(N (μT )) = oa.s.(T
γ /2+δ).

Since (1−α/2)3 ≤ γ /2 < (1−α/2)2, this dominates all the other remainder terms
in the proof. Thus the proof of Theorem3.1 is now complete. �

The proof of Theorem3.1 also yields the following result.

Proposition 1 As T → ∞,

μT − μN (μT )) = J1κα

σ
W1−α/2

(
T − J1κα

σμ
W1−α/2(T )

)
+ oa.s.(T

γ /2+δ).

Now we are to give a limsup result for Q(·). For this we need a Strassen-type
functional law of the iterated logarithm for fbm, due to Goodman and Kuelbs (1991).

Theorem D Let

K = {TH g(t), 0 ≤ t ≤ 1,
∫ 1

−∞
g2(u) du ≤ 1},

where

TH g(t) = 1

kH

∫ t

0
(t−u)H−1/2g(u) du+ 1

kH

∫ 0

−∞
(t−u)H−1/2−(−u)H−1/2)g(u) du,

and

k2H =
∫ 0

−∞
((1 − s)H−1/2 − (−s)H−1/2)2 ds +

∫ 1

0
(1 − s)2H−1 ds.

Then, almost surely, K is the set of limit points of the net of stochastic processes

WH (nt)

(2n2H log log n)1/2
, 0 ≤ t ≤ 1, (3.9)

as n → ∞.

Theorem 3.2 Under the conditions of Theorem3.1, we have

lim sup
T →∞

|Q(T )|
T (1−α/2)2(log log T )1/2−α/4(log T )1/2

= 21−α/4(J1κα)2−α/2

σ 2−α/2μ1−α/2 a.s.

(3.10)

Proof It follows from TheoremC that

|W1−α/2(T )| ≤ (1 + δ)T 1−α/2(2 log log T )1/2

http://dx.doi.org/10.1007/978-3-319-12442-1_3
http://dx.doi.org/10.1007/978-3-319-12442-1_3
http://dx.doi.org/10.1007/978-3-319-12442-1_3
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with probability 1 for any δ > 0 if T is large enough. Hence, applying TheoremC
with aT = (1 + δ)c/μT 1−α/2(2 log log T )1/2, c = J1κα/σ , we obtain

c sup
|s|≤aT

|W1−α/2(T ) − W1−α/2(T − s)| ≤ c(1 + δ)a1−α/2
T (2 log T )1/2,

almost surely for large enough T. Since δ > 0 is arbitrary, we obtain the upper bound
in (3.10).

To obtain the lower bound, we follow the proof in the i.i.d. case, given in Csörgő
and Horváth (1993). On choosing

g(s) =
{ 1

kH
((1 − s)H−1/2 − (−s)H−1/2), s ≤ 0,

1
kH

(1 − s)H−1/2, 0 < s ≤ 1,

in TheoremD, we have

f (t) = 1

kH

∫ 0

−∞
((t − s)H−1/2 − (−s)H−1/2)g(s) ds + 1

kH

∫ t

0
(t − s)H−1/2g(s) ds.

It can be seen that
∫ 1
−∞ g2(s) ds = 1, and { f (t), 0 ≤ t ≤ 1} is a continuous

increasing function with f (0) = 0, f (1) = 1, and hence by Theorem D it is in K.
For 0 < δ < 1, on considering the function

gδ(s) =
{

g(s), 0 ≤ s ≤ 1 − δ,

0, 1 − δ ≤ s ≤ 1,

we define

fδ(t) =
{

f (t), 0 ≤ t ≤ 1 − δ,

f (1 − δ), 1 − δ ≤ t ≤ 1.

Then it can be seen that the latter function is in K, and hence it is a limit function
of the net of stochastic processes as in (3.9). It follows that there is a sequence Tk of
random variables such that, in our context,

lim
k→∞ sup

0≤t≤1

∣∣∣∣∣
W1−α/2(Tkt)

T 1−α/2
k (2 log log Tk)1/2

− fδ(t)

∣∣∣∣∣ = 0.

Using TheoremC with aT = f (1 − δ)c/μT 1−α/2(2 log log T )1/2, we get

lim
T →∞

supT (1−δ)≤t≤T c|W1−α/2(t + aT ) − W (t)|
ca1−α/2

T (2 log T )1/2
= 1 a.s.

Since δ is arbitrary, and limδ→0 fδ(t) = f (t), the lower bound follows as in
Csörgő and Horváth (1993, p. 28). This completes the proof of Theorem3.2. �

http://dx.doi.org/10.1007/978-3-319-12442-1_3
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Next we give the limiting distribution of Q(T ).

Theorem 3.3 Under the conditions of Theorem3.1, we have

lim
T →∞P

(
Q(T )T −(1−α/2)2 ≤ y

)
=

∫ ∞

−∞
ϕ(x)Φ

(
yσ 2−α/2μ1−α/2

|x |1−α/2(J1κα)2−α/2

)
dx .

(3.11)

Proof According to Theorem3.1 we have to determine the limiting distribution of

c

(
W1−α/2(T ) − W1−α/2

(
T − c

μ
W1−α/2(T )

))
,

where c = J1κα/σ . Via the scaling property of fbm, i.e.,

W̃ (v) := T −1+α/2W1−α/2(T v), v ≥ 0,

is also an fbm with parameter 1 − α/2. So we have to determine the limiting distri-
bution of

c
(

W̃ (1) − W̃ (1 − c1T −α/2W̃ (1))
)

,

as T → ∞, where c1 = J1κα/(σμ).
For u > 0, the joint distribution of W̃ (1), W̃ (u) is bivariate normal with density

1

2πσ1σ2
√
1 − r2

exp

(
− 1

2(1 − r2)

(
x2

σ 2
1

− 2r
xy

σ1σ2
+ y2

σ 2
2

))
,

where σ 2
1 = E(W 2

1−α/2(1)) = 1, σ 2
2 = E(W 2

1−α/2(u)) = u2−α and

r = 1 + u2−α − |1 − u|2−α

2σ1σ2
.

Now consider the conditional density

P(W̃ (u) ∈ dz|W̃ (1) = x) = 1

σ2
√
1 − r2

ϕ

(
z − rσ2x

σ2
√
1 − r2

)
dz,

where u = 1 − c1xT −α/2.
So the density function of W̃ (1) − W̃ (u) is equal to

P(W̃ (1) − W̃ (u) ∈ dY ) =
∫ T α/2/c1

−∞
1

σ2
√
1 − r2

ϕ(x)ϕ

(
x − Y − rσ2x

σ2
√
1 − r2

)
dx dY

http://dx.doi.org/10.1007/978-3-319-12442-1_3
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and hence its distribution function is

P(W̃ (1)−W̃ (u) ≤ Z) =
∫ T α/2/c1

−∞
ϕ(x)Φ

(
Z − x + rσ2x

σ2
√
1 − r2

)
dx, −∞ < Z < ∞.

It can be seen that, as T → ∞,

σ2

√
1 − r2 ∼ |c1x |1−α/2

T α/2−α2/4
,

x − xrσ2

σ2
√
1 − r2

= O(T −α/2+α2/4).

Hence, as T → ∞,

P(W̃ (1) − W̃ (u) ≤ Z) ∼
∫ T α/2/c1

−∞
ϕ(x)Φ

(
Z T α/2−α2/4

|c1x |1−α/2

)
dx .

Putting Z = yT α2/4−α/2/c, and taking the limit T → ∞, we finally
obtain (3.11). �

Acknowledgments We wish to thank two referees for their careful reading of, and constructive
remarks on, our manuscript. Research supported by an NSERCCanada Discovery Grant at Carleton
University,Ottawa andby theHungarianNational Foundation for ScientificResearch,No.K108615.

References

Bahadur, R. R. (1966). A note on quantiles in large samples. Annals of Mathematical Statistics, 37,
577–580.

Berkes, I., Liu, W. D., & Wu, W. B. (2014). Komlós-Major-Tusnády approximation under depen-
dence. Annals of Probability, 42, 794–817.
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Reduced-Bias Estimator of the Conditional
Tail Expectation of Heavy-Tailed
Distributions

El Hadji Deme, Stéphane Girard and Armelle Guillou

Abstract Several risk measures have been proposed in the literature. In this paper,
we focus on the estimation of the Conditional Tail Expectation (CTE). Its asymptotic
normality has been first established in the literature under the classical assumption
that the second moment of the loss variable is finite, this condition being very restric-
tive in practical applications. Such a result has been extended by Necir et al., (Journal
of Probability and Statistics 596839:17 2010) in the case of infinite second moment.
In this framework, we propose a reduced-bias estimator of the CTE. We illustrate
the efficiency of our approach on a small simulation study and a real data analysis.

1 Introduction

Different risk measures have been proposed in the literature and used to determine
the amount of an asset to be kept in reserve in the financial framework. We refer to
Goovaerts et al. (1984) for various examples and properties. One of the most popular
examples in hydrology or climatology is undoubtedly the return period. A frequency
analysis in hydrology focuses on the estimation of quantities (e.g., flows or annual
rainfall) corresponding to a certain return period. It is closely related to the notion of
a quantile. For a positive real-valued random variable X , the quantile of order 1− 1

T
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expresses the magnitude of the event which is exceeded with a probability equal to
1
T . T is then called the return period. In an actuarial context, the Value at Risk (VaR)
is defined as the p−quantile

Q(p) = inf{x ≥ 0 : F(x) ≥ p}, for p ∈ [0, 1],

with F the distribution function of the random variable X . A second important risk
measure, based on the quantile notion, is the Conditional Tail Expectation (CTE)
defined by

CT Eα[X ] = E(X |X > Q(α)), for α ∈ (0, 1).

The CTE satisfies all the desirable properties of a coherent risk measure (see Artzner
et al. 1999) and it provides a more conservative measure of risk than the VaR for
the same level of degree of confidence (see Landsman and Valdez 2003). For all
these reasons, the CTE (sometimes referred to as expected shortfall) is preferable in
many applications. It thus continues to receive an increased attention in the actuarial
literature (see for instance Chaps. 2 and 7 in McNeil et al. 2005).

In the sequel we assume that F is continuous, which allows us to rewrite the
CT Eα[X ] as

Cα[X ] = 1

1 − α

∫ 1

α

Q(s)ds.

Clearly, the CTE is unknown since it depends on F . Hence, it is desirable to define
estimators for this quantity and to study their asymptotic properties. To this aim,
suppose that we have at our disposal a sample (X1, . . . , Xn) of independent and
identically distributed random variables from F and denote by X1,n ≤ · · · ≤ Xn,n

the order statistics. The asymptotic behavior of Cαn [X ] has been studied recently in
Pan et al. (2013) and Zhu and Li (2012) when αn → 1 as n → ∞. On the contrary,
in this paper we consider α fixed. A natural estimator of Cα[X ] can then be obtained
by

Ĉn,α[X ] = 1

1 − α

∫ 1

α

Qn(s)ds, (1)

where Qn(s) is the empirical quantile function, which is equal to the i th order
statistic Xi,n , for all s ∈ ((i − 1)/n, i/n], and for all i = 1, . . . , n. The asymptotic
behavior of the estimator Ĉn,α[X ] has been studied by Brazauskas et al. (2008),
when E[X2] < ∞. Unfortunately, this condition is quite restrictive. For instance, in
the case of Pareto-type distributions, defined as 1 − F(x) = x−1/γ �F (x) where �F

is a slowly varying function at infinity satisfying �F (λx)/�F (x) → 1 as x → ∞,
for all λ > 0, this condition of second moment implies that γ ∈ (0, 1/2). When
γ ∈ (1/2, 1), we have E[X2] = ∞ but nevertheless the CTE is well defined and
finite since E[X ] < ∞. Note that, in the case γ = 1/2, the finiteness of the second
moment depends on the slowly varying function.
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This framework will be the subject of this paper where we assume that

1 − F(x) = x−1/γ �F (x) (2)

where γ > 0 is the extreme value index. We focus on the case where γ ∈ (1/2, 1)
and thusE[X2] = ∞, this range of values being excluded in the results of Brazauskas
et al. (2008). The estimation of γ has been extensively studied in the literature and
the most famous estimator is the Hill (1975) estimator defined as:

γ̂ H
n,k = 1

k

k∑

j=1

j
(
log Xn− j+1,n − log Xn− j,n

)

for an intermediate sequence k = k(n), i.e., a sequence such that k → ∞ and
k/n → 0 as n → ∞. More generally, Csörgő et al. (1985) extended the Hill
estimator into a kernel class of estimators

γ̂ K
n,k = 1

k

k∑

j=1

K

(
j

k + 1

)
Z j,k,

where K is a kernel integrating to one and Z j,k = j
(
log Xn− j+1,n − log Xn− j,n

)
.

Note that the Hill estimator corresponds to the particular case where K (u) =
K (u) := I{0<u<1}. Notice that Cα[X ] can be rewritten as

Cα[X ] = 1

1 − α

∫ 1−k/n

α

Q(s)ds + 1

1 − α

∫ k/n

0
Q(1 − s)ds.

=: C
(1)

α [X ] + C
(2)

α [X ].

In this spirit, Necir et al. (2010) introduced the following estimator of the CTE, which
takes into account different asymptotic properties of moderate and high quantiles in
the case of Pareto-type distributions:

C̃n,α[X ] =: C̃
(1)
n,α[X ] + C̃

(2)
n,α[X ]

= 1

1 − α

n−k∑

j=1

((
j

n
− α

)
+

−
(

j − 1

n
− α

)
+

)
X j,n

+ k/n

(1 − α)(1 − γ̂ H
n,k)

Xn−k,n (3)

where (s−α)+ denotes the positive part of (s−α). The estimator C̃
(1)
n,α[X ] is obtained

similarly to (1) using the well-known properties of the empirical quantile function
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Fig. 1 Median of C̃n,0.05[X ] as a function of k based on 500 samples of size 500 from a Burr
distribution defined as F(x) = (1+ x−3ρ/2)1/ρ . From the left to the right: ρ = −1.5, ρ = −1, and
ρ = −0.75. The horizontal line represents the true value of the CT E0.05[X ]

Qn whereas C̃
(2)
n,α[X ] is obtained using a Weissman estimator of Q: Q̂(1 − s) :=

Xn−k,n (k/n)
γ̂ H

n,k s−γ̂ H
n,k , s → 0 (see Weissman 1978).

This estimatormay suffer from a high bias in finite sample situations, as illustrated
on Fig. 1 on aBurr distributionwith extreme value index γ = 2/3. Besides, it appears
that the bias heavily depends on the intermediate sequence, making the choice of k
difficult in practice.

The goal of this paper is twofold. First, we state an asymptotic normality result
for C̃n,α[X ] exhibiting the bias term (Sect. 2) and thus generalizing the one of Necir
et al. (2010). Second, the precise knowledge of the first order of the bias allows us
to propose a reduced-bias approach. The efficiency of our method is illustrated on a
small simulation study and a real dataset in Sect. 3. All the proofs are postponed to
Sect. 4.

2 Main Results

As usual in the extreme value framework, to prove asymptotic normality results, we
need a second-order condition on the function U(x) := Q(1− 1/x), x > 1, such as
the following:

Condition (RU). There exist a function A(x) → 0 as x → ∞ of constant sign for
large values of x and a second-order parameter ρ < 0 such that, for every x > 0,

lim
t→∞

logU(t x) − logU(t) − γ log x

A(t)
= xρ − 1

ρ
.

Note that condition (RU) implies that |A| is regularly varying with index ρ (see,
e.g., Geluk and de Haan 1987). It is satisfied for most of the classical distribution
functions such as the Pareto, Burr, and Fréchet ones.

We begin by giving in Theorem 1 an expansion of C̃n,α[X ] in terms of functionals
of a sequence of Brownian bridges Bn , which leads to its asymptotic normality
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stated in Corollary 1. As it exhibits some bias, we propose a reduced-bias estimator
whose expansion is formulated in Theorem 2 and its asymptotic normality is given
in Corollary 2.

2.1 Asymptotic Results for the CTE Estimator

Theorem 1 Assume that F satisfies (RU) with γ ∈ (1/2, 1). Then for any sequence
of integer k = k(n) satisfying k → ∞, k/n → 0, and

√
k A(n/k) = O(1) as

n → ∞, we have

n(1 − α)√
kU(n/k)

(
C̃n,α[X ] − Cα[X ]) D= √

k A
(n

k

)
AB(γ, ρ) + Wn,1 + Wn,2

+Wn,3 + oP(1)

where
AB(γ, ρ) := γρ

(1 − ρ)(γ + ρ − 1)(1 − γ )2

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wn,1 := −
∫ 1−k/n
0 Bn(s)d Q(s)√

k/nQ(1 − k/n)

Wn,2 := − γ

1 − γ

√
n

k
Bn(1 − k/n)

Wn,3 := γ

(1 − γ )2

√
n

k

∫ 1

0
s−1

Bn(1 − sk/n)d(sK (s))

with Bn a sequence of Brownian bridges.

Now, by computing the asymptotic variances of the different processes appearing in
Theorem 1, we deduce the following corollary:

Corollary 1 Under the assumptions of Theorem 1, if
√

k A(n/k) → λ ∈ R, we
have

n(1 − α)√
kU(n/k)

(
C̃n,α[X ] − Cα[X ]) D−→ N (λAB(γ, ρ),A V (γ ))

where AB(γ, ρ) is as above and

A V (γ ) = γ 4

(2γ − 1)(1 − γ )4
.
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Since ρ < 0 and γ ∈ (1/2, 1), we can easily check thatAB(γ, ρ) is always positive
and thus the sign of the function A(.) determines the sign of the bias of C̃n,α[X ].
Note that the asymptotic varianceA V (γ ) does not depend on α and that this result
generalizes Theorem 3.1 in Necir et al. (2010) in case λ �= 0. The goal of the next
section is to propose a reduced-bias estimator of Cα[X ].

2.2 Reduced-Bias Method with the Least Squared Approach

From Theorem 1, it is clear that the estimator C̃n,α[X ] exhibits a bias due to the
use in its construction of the Weissman’s estimator which is known to have such a
problem. To overcome this issue, we propose to use the exponential regressionmodel
introduced in Feuerverger and Hall (1999) and Beirlant et al. (1999) to construct a
reduced-bias estimator.

More precisely, using (RU), Feuerverger andHall (1999) andBeirlant et al. (1999,
2002) proposed the following exponential regression model for the log-spacings of
order statistics:

Z j,k ∼
(

γ + A(n/k)

(
j

k + 1

)−ρ
)

+ ε j,k, 1 ≤ j ≤ k, (4)

where ε j,k are zero-centered error terms. If we ignore the term A(n/k) in (4), we
retrieve the Hill-type estimator γ̂ H

n,k by taking the mean of the left-hand side of (4).
By using a least-squares approach, (4) can be further exploited to propose a reduced-
bias estimator of γ in which ρ is substituted by a consistent estimator ρ̂ = ρ̂n,k (see
for instance Beirlant et al. (2002), Deme et al. (2013a), Fraga Alves (2003)) or by a
canonical choice, such as ρ = −1 (see, e.g., Feuerverger and Hall (1999) or Beirlant
et al. (1999)). The least squares estimators of γ and A(n/k) are then given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ̂ LS
n,k (̂ρ) = 1

k

k∑

j=1

Z j,k − ÂLS
n,k (̂ρ)

1 − ρ̂
,

ÂLS
n,k (̂ρ) = (1 − 2ρ̂)(1 − ρ̂)2

ρ̂2

1

k

k∑

j=1

((
j

k + 1

)−ρ̂

− 1

1 − ρ̂

)
Z j,k .

The main asymptotic properties of γ̂ LS
n,k (̂ρ) and ÂLS

n,k (̂ρ) as functionals of a sequence
of Brownian bridges Bn have been established in Deme et al. (2013b, Lemma 5).
Note that γ̂ LS

n,k (ρ̂) can be viewed as a kernel estimator

γ̂ LS
n,k (̂ρ) = 1

k

k∑

j=1

Kρ̂

(
j

k + 1

)
Z j,k,
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where for 0 < u ≤ 1:

Kρ(u) = 1 − ρ

ρ
K (u) +

(
1 − 1 − ρ

ρ

)
K ρ(u)

with K ρ(u) = ((1 − ρ)/ρ)(u−ρ − 1)I{0<u<1}, see Sect. 3 of Beirlant et al. (2002).
Now, using the second-order refinements of assumption (RU), we can construct the
following asymptotically unbiased estimator of the quantile:

Q̂LS,̂ρ(1 − s) = (ns/k)
−γ̂ LS

n,k (̂ρ) Xn−k,n

(
1 − ρ̂−1 ÂLS

n,k (̂ρ)
(
1 − (ns/k)−ρ̂

))
,

see, e.g., Matthys et al. (2004). Thus, in the spirit of (3), we arrive at the following
asymptotically unbiased estimator of Cα[X ]

C̃
LS,̂ρ
n,α [X ] := 1

1 − α

n−k∑

j=1

((
j

n
− α

)
+

−
(

j − 1

n
− α

)
+

)
X j,n

+ k/n

(1 − α)(1 − γ̂ LS
n,k (̂ρ))

(
1 − ÂLS

n,k (̂ρ)

γ̂ LS
n,k (̂ρ) + ρ̂ − 1

)
Xn−k,n .

Our next goal is to establish, under suitable assumptions, the asymptotic normality
of C̃

LS,̂ρ
n,α [X ]. This is done in the following theorem.

Theorem 2 Under the assumptions of Theorem 1, if ρ̂ is a consistent estimator of
ρ, then we have

n(1 − α)√
kU(n/k)

(
C̃

LS,̂ρ
n,α [X ] − Cα[X ]

)
D= Wn,1 + Wn,2 + Wn,4 + Wn,5 + oP(1)

where Wn,1, Wn,2, and Wn,3 are defined in Theorem 1, and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wn,4 := ργ 2

(γ + ρ − 1)(1 − γ )2

√
n

k

∫ 1

0
s−1

Bn(1 − sk/n)d(sKρ(s))

Wn,5 := − (1 − γ )(1 − ρ)

γ + ρ − 1
Wn,3.

Now, by computing the asymptotic variances of the different processes appearing in
Theorem 2, we deduce the following corollary.

Corollary 2 Under the assumptions of Theorem 1, if ρ̂ is a consistent estimator of
ρ, then we have

n(1 − α)√
kU(n/k)

(
C̃

LS,̂ρ
n,α [X ] − Cα[X ]

)
D−→ N

(
0, Ã V (γ, ρ)

)
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with

Ã V (γ, ρ) = γ 4(γ − ρ)2

(2γ − 1)(1 − γ )4(γ + ρ − 1)2
.

As expected, the asymptotic bias of our new estimator of the CTE is equal to zero
whereas its asymptotic variance Ã V (γ, ρ) is larger than the one of the original
estimators A V (γ ) exhibited in Corollary 1.
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Fig. 2 Median of C̃n,α[X ] (dotted line) and C̃
LS,−1
n,α [X ] (full line) as a function of k based on 500

samples of size 500 for α = 0.05 (top), α = 0.10 (middle), and α = 0.20 (bottom) from a Burr

distribution defined as F(x) = (1 + x− 3ρ
2 )1/ρ . From the left to the right: ρ = −1.5, ρ = −1, and

ρ = −0.75. The horizontal line represents the true value of the CT Eα[X ]
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3 Finite Sample Behavior

3.1 A Small Simulation Study

In this section, the biased estimator C̃n,α[X ] and the reduced-bias one C̃
LS,−1
n,α [X ]

are compared on a small simulation study. To this aim, 500 samples of size 500 are
simulated fromaBurr distribution defined as: F(x) = (1+x−3ρ/2)1/ρ which satisfied
condition (RU) with A(t) = 2tρ/3. The associated extreme value index is γ = 2/3
and ρ is the second-order parameter. Three values for α ∈ {0.05, 0.10, 0.20} are used
and different values of ρ ∈ {−0.75,−1,−1.5} are considered to assess its impact.
The median and median squared error (MSE) of these estimators are estimated over
500 replications. The results are displayed in Figs. 2 and 3. It appears on Fig. 2 that
the closer ρ is to 0, the more important is the bias of C̃n,α[X ] whatever the value
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Fig. 3 MSE of C̃n,α[X ] (dotted line) and C̃
LS,−1
n,α [X ] (full line) as a function of k based on 500

samples of size 500 for α = 0.05 (top), α = 0.10 (middle), and α = 0.20 (bottom) from a Burr

distribution defined as F(x) = (1 + x− 3ρ
2 )1/ρ . From the left to the right: ρ = −1.5, ρ = −1, and

ρ = −0.75
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Fig. 4 Time plot for the Norwegian fire insurance data (a); histogram of the claim size for the year
1976 (b); quantile–quantile plot (c); hill estimator as a function of k for the year 1976 (d); biased
estimator C̃n,α[X ] (dotted line) and reduced-bias one C̃

LS,−1
n,α [X ] (full line) as a function of k for

α = 0.05 (e), α = 0.10 (f), and α = 0.20 (g)

of α is. The effect of the bias correction on the MSE is illustrated on Fig. 3. We can
observe that the MSE of the reduced-bias estimator C̃

LS,−1
n,α [X ] is almost constant

with respect to k, especially when the bias of C̃n,α[X ] is strong, i.e. when ρ is
close to 0.
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3.2 Real Data Analysis

Our real dataset concerns a Norwegian fire insurance portfolio from 1972 until 1992.
Together with the year of occurrence, the data contain the value (×1 000Krone) of the
claims. A priority of 500 units was in force. These data were of some concern in that
the number of claims had risen systematically with a maximum in 1988 as illustrated
in Fig. 4a. We concentrate here on the year 1976 where the average claim size per
year reached a peak as was the case in 1988. The sample size is n = 207. Figure4b
shows the histogram corresponding to this year 1976. The assumption of a Pareto-
type tail (2) can be visually checked thanks to a quantile–quantile plot (Fig. 4c). It
appears that the logarithm of the claim sizes (vertical axis) is approximately a linear
function of the standard exponential quantiles (horizontal axis). From Fig. 4d we can
observe the difficulty to find a stable part in the plot of the Hill estimator γ̂ H

n,k as a
function of k, due to the bias of this estimator. We can apply our methodology to
this real dataset as the extreme value index (or at least its estimator) is in the interval
(1/2, 1) whatever the value of k is. Figure4e–g shows the biased estimator C̃n,α[X ]
(dashed line) and the reduced-bias one C̃

LS,−1
n,α [X ] (full line) for three different values

of α: 0.05, 0.10, and 0.20. The reduced-bias estimator C̃
LS,−1
n,α [X ] is almost constant

for a large range of values of k which makes the choice of k easier in practice.

4 Proofs

Let Y1, . . . , Yn be independent and identically distributed random variables from
the unit Pareto distribution G, defined as G(y) = 1 − y−1, y ≥ 1. For each n ≥
1, let Y1,n ≤ · · · ≤ Yn,n be the order statistics pertaining to Y1, . . . , Yn . Clearly,

X j,n
D= U(Y j,n), j = 1, . . . , n. We shall assume that we are on the probability space

(Ω, A, P) of Theorem 2.1 of Csörgő et al. (1986) carrying a sequence of independent
and identically distributed uniform (0, 1) random variables ξ1, ξ2, . . . and a sequence
of Brownian bridges Bn(s), 0 ≤ s ≤ 1, n = 1, 2 . . . such that for all 0 ≤ ν < 1/2
and λ > 0

sup
λ/n≤t≤1−λ/n

|βn(t) − Bn(t)|
(t (1 − t))1/2−ν

= OP(n−ν),

where βn is the uniform quantile process

βn(t) = √
n (t − Vn(t))

with Vn denoting the empirical uniform quantile function defined to be Vn(t) =
ξ j,n,

j−1
n < t ≤ j

n , j = 1, . . . , n and Vn(0) = 0.

The following lemma gives an asymptotic expansion for the second random term
appearing in (3).
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Lemma 1 Under the assumptions of Theorem 1, we have

n(1 − α)√
kU(n/k)

(
C̃

(2)
n,α[X ] − C

(2)
α [X ]

)
D= √

k A
(n

k

)
AB(γ, ρ) + Wn,2

+ Wn,3 + oP(1).

Proof of Lemma 1. Note that C̃
(2)
n,α[X ] can be rewritten as follows

(1 − α)C̃(2)
n,α[X ] D= k/n

1 − γ̂ H
n,k

U
(
Yn−k,n

)
.

As a consequence, the following expansion holds:

n(1 − α)√
kU(n/k)

(
C̃

(2)
n,α[X ] − C

(2)
α [X ]

)
=

4∑

j=1

Tn, j ,

where

Tn,1 :=
√

k

1 − γ̂ H
n,k

[
U

(
Yn−k,n

)
U(n/k)

−
(

k

n
Yn−k,n

)γ
]

,

Tn,2 :=
√

k

1 − γ̂ H
n,k

[(
k

n
Yn−k,n

)γ

− 1

]
,

Tn,3 := 1

(1 − γ̂ H
n,k)(1 − γ )

√
k

(
γ̂ H

n,k − γ
)

,

Tn,4 := n√
kU(n/k)

[
k/n

1 − γ
U(n/k) − (1 − α)C(2)

α [X ]
]

.

We study each term separately.
Term Tn,1. According to de Haan and Ferreira (2006, Theorem 2.3.9), for any δ > 0,
we have

U
(
Yn−k,n

)
U(n/k)

−
(

k

n
Yn−k,n

)γ

= A0

(n

k

){(
k

n
Yn−k,n

)γ
( k

n Yn−k,n
)ρ − 1

ρ
+ oP(1)

(
k

n
Yn−k,n

)γ+ρ±δ
}

,

where A0(t) ∼ A(t) as t → ∞.
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Thus, since kYn−k,n/n = 1 + oP(1) and γ̂ H
n,k

P→ γ , it readily follows that

Tn,1 = oP(1). (5)

Term Tn,2. The equality Yn−k,n
D= (1 − ξn−k,n)−1 yields

√
k

[(
k

n
Yn−k,n

)γ

− 1

]
D= √

k

((n

k
(1 − ξn−k,n)

)−γ − 1

)

= −γ
√

k
(n

k
(1 − ξn−k,n) − 1

)
×(1 + oP(1)) by a Taylor expansion

= −γ

√
n

k
βn

(
1 − k

n

)
(1 + oP(1))

= −γ

√
n

k

(
Bn

(
1 − k

n

)
+ OP(n−ν)

(
k

n

)1/2−ν
)

×(1 + oP(1)),

for 0 ≤ ν < 1/2, by the Csörgő et al. (1986) result cited above. Thus, using again

that γ̂ H
n,k

P→ γ , it follows that

Tn,2
D= − γ

1 − γ

√
n

k
Bn

(
1 − k

n

)
(1 + oP(1)) = Wn,2 + oP(1). (6)

Term Tn,3. According to Theorem 1 in Deme et al. (2013b) and by the consistency
in probability of γ̂ H

n,k , we have

Tn,3
D= 1

(1 − γ )2

{√
k A (n/k)

1 − ρ
+ γ

√
n

k

∫ 1

0
s−1

Bn

(
1 − s

k

n

)
d

(
sK (s)

)} + oP(1)

= 1

(1 − ρ)(1 − γ )2

√
k A (n/k) + Wn,3 + oP(1). (7)

Term Tn,4. A change of variables and an integration by parts yield

Tn,4 = √
k

{
1

1 − γ
−

∫ ∞

1
x−2 U(nx/k)

U(n/k)
dx

}

= −√
k

∫ ∞

1
x−2

(
U(nx/k)

U(n/k)
− xγ

)
dx .
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Thus, Theorem 2.3.9 in de Haan and Ferreira (2006) entails that, for γ ∈ (1/2, 1),

Tn,4 = −√
k A0

(n

k

) ∫ ∞

1
xγ−2 xρ − 1

ρ
dx (1 + o(1))

= √
k A

(n

k

) 1

(1 − γ )(γ + ρ − 1)
(1 + o(1)). (8)

Combining (5)–(8), Lemma 1 follows. �

Proof of Theorem 1. Combining Lemma 1 with statement (4.3) in Necir et al. (2010),
we get

n(1 − α)√
kU(n/k)

(
C̃n,α[X ] − Cα[X ]) D= √

k A
(n

k

)
AB(γ, ρ) + Wn,1

+ Wn,2 + Wn,3 + oP(1).

Theorem 1 is thus established. �

Proof of Corollary 1. From Theorem 1, we only have to compute the asymptotic
variance of the limiting process. The computations are tedious but quite direct. We
only give below the main arguments, i.e.,

EW
2
n,1 =

∫ 1−k/n
0 (1 − t)

(∫ t
0 sd Q(s)

)
d Q(t)

k/n Q2(1 − k/n)

+
∫ 1−k/n
0 t

(∫ 1−k/n
t (1 − s)d Q(s)

)
d Q(t)

k/n Q2(1 − k/n)

=
∫ 1

k/n u
(∫ 1

u d Q(1 − v)
)

d Q(1 − u)

k/n Q2(1 − k/n)

−
∫ 1

k/n u
(∫ 1

u vd Q(1 − v)
)

d Q(1 − u)

k/n Q2(1 − k/n)

+
∫ 1

k/n

(∫ u
k/n vd Q(1 − v)

)
d Q(1 − u)

k/n Q2(1 − k/n)

−
∫ 1

k/n u
(∫ u

k/n vd Q(1 − v)
)

d Q(1 − u)

k/n Q2(1 − k/n)

=: Q1,n + Q2,n + Q3,n + Q4,n .

Recall now that Q(1 − s) = s−γ �(s) with � a slowly varying function at 0. By
integration by parts and using Lemma6 in Deme et al. (2013b), it follows that
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Q1,n = 1

2

⎡

⎣1 +
∫ 1

k/n Q2(1 − u)du

k/nQ2(1 − k/n)

⎤

⎦ −→ γ

2γ − 1
.

Now remark that d
(∫ 1

u vd Q(1 − v)
)

= −ud Q(1 − u) which implies that

Q2,n = −1

2

k

n

⎡

⎣
∫ 1

k/n vd Q(1 − v)

k/n Q(1 − k/n)

⎤

⎦
2

= o(1) (9)

this last result is coming from the fact that, according to Proposition1.3.6 in Bingham
et al. (1987): for all ε > 0, x−ε�(x) −→ ∞ as x → 0. Thus, choosing 0 < ε < γ − 1

2
entails

0 ≤ s

(∫ 1
s td(Q(1 − t))

s Q(1 − s)

)2

= s

(
1 +

∫ 1
s t−γ �(t)dt

s1−γ �(s)

)2

≤ s
(
1 + Csγ−1−ε

)2 = O
(

s1+2[γ−1−ε]) = o(1)

where C is a suitable constant. Consequently, Q2,n −→ 0. The two others terms,
Q3,n and Q4,n , can be treated similarly, leading to

Q3,n = Q1,n −→ γ

2γ − 1
Q4,n = Q2,n −→ 0.

Finally,

EW
2
n,1 −→ 2γ

2γ − 1
,

and direct computations now lead to

EW
2
n,2 −→ γ 2

(1 − γ )2

EW
2
n,3 −→ γ 2

(1 − γ )4
by Corollary1 in Deme et al. (2013b)

E(Wn,1Wn,2) −→ γ

1 − γ
by (9)

E(Wn,1Wn,3) = 0

E(Wn,2Wn,3) = 0.

Combining all these results, Corollary1 follows. �
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Proof of Theorem 2. We use the following decomposition

n(1 − α)√
kU(n/k)

(
C̃

LS,̂ρ
n,α [X ] − Cα[X ]

)
=

7∑

i=1

Sn,i

where

Sn,1 = n(1 − α)√
kU(n/k)

(
C̃

(1)
n,α[X ] − C

(1)
α [X ]

)

Sn,2 = 1

1 − γ̂ LS
n,k (̂ρ)

(
1 − ÂLS

n,k (̂ρ)

γ̂ LS
n,k (̂ρ) + ρ̂ − 1

)√
k

[
U

(
Yn−k,n

)
U(n/k)

−
(

k

n
Yn−k,n

)γ
]

Sn,3 = 1

1 − γ̂ LS
n,k (̂ρ)

(
1 − ÂLS

n,k (̂ρ)

γ̂ LS
n,k (̂ρ) + ρ̂ − 1

)√
k

[(
k

n
Yn−k,n

)γ

− 1

]

Sn,4 = 1

(1 − γ̂ LS
n,k (̂ρ))(1 − γ )

√
k

(
γ̂ LS

n,k (̂ρ) − γ
)

Sn,5 = √
k A(n/k)

⎡

⎣ 1

(1 − γ )(γ + ρ − 1)
− 1(

1 − γ̂ LS
n,k (̂ρ)

) (
γ̂ LS

n,k (̂ρ) + ρ̂ − 1
)

⎤

⎦

Sn,6 = − 1(
1 − γ̂ LS

n,k (̂ρ)
)(

γ̂ LS
n,k (̂ρ) + ρ̂ − 1

)√
k

(
ÂLS

n,k (̂ρ) − A(n/k)
)

Sn,7 = n√
kU(n/k)

[
k/n

1 − γ

(
1 − A(n/k)

γ + ρ − 1

)
U(n/k) − (1 − α)C(2)

α [X ]
]

.

Now, we are going to study separately the terms Sn,1, . . . , Sn,7.
Term Sn,1. Statement (4.3) in Necir et al. (2010) leads to

Sn,1 = Wn,1 + oP(1). (10)

Term Sn,2. Note that

Sn,2 = 1 − γ̂ H
n,k

1 − γ̂ LS
n,k (̂ρ)

(
1 − ÂLS

n,k (̂ρ)

γ̂ LS
n,k (̂ρ) + ρ̂ − 1

)
Tn,1

where Tn,1 is defined in the proof of Lemma 1. Thus, combining Lemma 5 in Deme
et al. (2013b) with the consistency of ρ̂ and (5), we obtain that

Sn,2 = oP(1). (11)
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Term Sn,3. Similarly, we observe that Sn,3 = Tn,2(1 + oP(1)) where Tn,2 is defined
in the proof of Lemma 1. Thus, according to (6), we have

Sn,3
D= Wn,2 + oP(1). (12)

Term Sn,4. Combining Lemma 5 in Deme et al. (2013b) with the consistency of
γ̂ LS

n,k (̂ρ), we infer that

Sn,4
D= γ + ρ − 1

ργ
Wn,4 + oP(1). (13)

Term Sn,5. Under the assumption that
√

k A(n/k) = O(1) and by the consistency of
ρ̂ and γ̂ LS

n,k (̂ρ) we have

Sn,5 = oP(1). (14)

Term Sn,6. Using Lemma 5 in Deme et al. (2013b), we get

Sn,6
D= − γ (1 − ρ)

(1 − γ )(γ + ρ − 1)

√
n

k

∫ 1

0
s−1

Bn

(
1 − sk

n

)
× d(s(K (s) − Kρ(s))) + oP(1)

= − (1 − ρ)(1 − γ )

γ + ρ − 1

(
Wn,3 − γ + ρ − 1

ργ
Wn,4

)
+ oP(1)

= Wn,5 + (1 − ρ)(1 − γ )

γρ
Wn,4 + oP(1). (15)

Term Sn,7. Remark that

Sn,7 = −
√

k A(n/k)

(1 − γ )(γ + ρ − 1)
+ Tn,4,

where Tn,4 is defined in the proof of Lemma 1. Thus using (8) and the assumption
that

√
k A(n/k) = O(1), we deduce that

Sn,7 = oP(1). (16)

Combining (10)–(16), Theorem 2 follows. �
Proof of Corollary 2. From Theorem 2, we only have to compute the asymptotic
variance of the limiting process. As in Corollary 1, the computations are quite direct
and the desired asymptotic variance can be obtained by noticing that
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EW
2
n,5 −→ γ 2(1 − ρ)2

(1 − γ )2(γ + ρ − 1)2

E(Wn,1Wn,4) = 0

E(Wn,1Wn,5) = 0

EW
2
n,4 = γ 4(1 − ρ)2

(1 − γ )4(γ + ρ − 1)2

E(Wn,2Wn,5) = 0

E(Wn,2Wn,4) = 0

E(Wn,4Wn,5) = − ργ 3(1 − ρ)

(1 − γ )3(γ + ρ − 1)2
.

�
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On Sequential Empirical Distribution
Functions for Random Variables
with Mean Zero

Erich Haeusler and Stefan Horni

Abstract The classical sequential empirical distribution function incorporates all
subsamples of a sample of independent and identically distributed random variables
and is therefore well suited to construct tests for detecting a distributional change
occurring somewhere in the sample. If the independent and identically distributed
variables are replaced by the residuals of appropriate time series models tests for
a distributional change in the unobservable errors (or innovations) of these models
are obtained; see Bai (Annals of Statistics, 22:2051–2061, 1994) for the discussion
of ARMA models. These errors are often assumed to have mean zero, an informa-
tion which is not taken into account by the classical sequential empirical distribu-
tion function. Based upon ideas from empirical likelihood, see Owen (London/Boca
Raton: Chapman & Hall/CRC, 2001), we consider a modified sequential empirical
distribution function for random variables with mean zero which does exploit this
information.

1 Introduction

The classical sequential empirical distribution function incorporates all subsamples
ε1, . . . , εk for k = 1, . . . , n of a sample ε1, . . . , εn of size n of independent and
identically distributed (iid) random variables and is therefore well suited to construct
tests for detecting a distributional change occurring somewhere in the whole sample
ε1, . . . , εn . If the iid variables are replaced by the residuals of appropriate time series
models tests for a distributional change in the unobservable errors (or innovations)
of these models are obtained; see Bai (1994) for the discussion of ARMA models.
These errors are often assumed to have mean zero, an information which is not taken
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into account by the classical sequential empirical distribution function. Based upon
ideas from empirical likelihood, see Owen (2001), we consider a modified sequential
empirical distribution function for random variables with mean zero which does
exploit this information. It will be shown that for autoregressive processes of order
one this modified sequential empirical distribution function leads to changepoint
tests of higher power than the classical sequential empirical distribution function.
The approach applies to more general time series models like ARMA models and
ARCH(1)models with similar results, but wewill restrict ourselves here to theAR(1)
case to avoid the technicalities involved in the discussion of more complex models.

2 Independent and Identically Distributed
Random Variables

For sample size n ∈ N let ε1, . . . , εn be iid random variables with common contin-
uous distribution function F (which is independent of n). The sequential empirical
distribution function pertaining to the sample ε1, . . . , εn is defined by

Fseq
n (s, x) = 1

[ns]

[ns]∑

i=1

1{εi ≤x}, s ∈ [1/n, 1] , x ∈ [−∞,∞] ,

with Fseq
n (s, x) = 0 for s ∈ [0, 1/n), where [x] is the integer part of x ∈ R. By

Bickel and Wichura (1971),

(√
ns

(
Fseq

n (s, x) − F (x)
))

(s,x)∈[0,1]×[−∞,∞]
L→ K as n → ∞ (1)

for a centered Gaussian process K = (K (s, x))(s,x)∈[0,1]×[−∞,∞] with continuous
paths and the covariance function cov (K (s, x) , K (s̃, x̃)) = (s ∧ s̃) (F (x ∧ x̃)−
F (x) F (x̃)). Here and elsewhere throughout the paper, convergence in distribu-
tion may be considered as weak convergence of stochastic processes with paths in
the Skorohod space D ([0, 1] × [−∞,∞]) in the sense of Neuhaus (1971) (iden-
tify the time intervals [−∞,∞] and [0, 1] by a smooth, strictly increasing one-to-
one transformation) or as weak convergence of stochastic processes in the space
B ([0, 1] × [−∞,∞]) of bounded measurable functions on [0, 1] × [−∞,∞] in
the sense of Hoffmann–Jørgensen; see, e.g., van der Vaart and Wellner (1996).

Sequential empirical distribution functions are an appropriate tool to construct
tests in the following changepoint problem: Assume that there exists some τ ∈ (0, 1)
such that ε1, . . . , ε[nτ ] are iid F1 for somedistribution function F1 and ε[nτ ]+1, . . . , εn

are iid F2 for some distribution function F2. Furthermore, assume that F1, F2, and
τ are all unknown. Then the case F1 = F2 corresponds to the case that ε1, . . . , εn

are iid for some unknown distribution function F (= F1 = F2), whereas the case
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F1 �= F2 corresponds to a sudden change occuring in the distribution of the εi ’s at the
(unknown) changepoint [nτ ] (or [nτ ]+ 1). For testing the hypothesis H0 : F1 = F2
against the alternative H1 : F1 �= F2 we can use Fseq

n and its counterpart

Gseq
n (s, x) = 1

n − [ns]

n∑

i=[ns]+1

1{εi ≤x}, s ∈ [0, 1) , x ∈ [−∞,∞] ,

with Gseq
n (1, x) = 0, which is the sequential empirical distribution function of

ε1, . . . , εn with reversed order of time. The Kolmogorov–Smirnov-type statistic
D ∞

n = sup(s,x)∈[0,1]×[−∞,∞] |Dn (s, x)| based on the stochastic process

Dn (s, x) = [ns] (n − [ns])

n2

(
Fseq

n (s, x) − Gseq
n (s, x)

)
, s ∈ [0, 1] , x ∈ [−∞,∞] ,

is clearly suitable to distinguish between H0 and H1: Under H0 : F1 = F2(= F) we
have Fseq

n (s, ·) ≈ F ≈ Gseq
n (s, ·) for all s and all large n by the Glivenko–Cantelli

theorem so that D ∞
n will be small with high probability. Therefore, it is reasonable to

reject H0 for large values of D ∞
n . Under H0 : F1 = F2 (= F) the functional central

limit theorem corresponding to (1) is

√
nDn

L→ Y as n → ∞ (2)

for a centered Gaussian process Y = (Y (s, x))(s,x)∈[0,1]×[−∞,∞] with continuous
paths and covariance function cov (Y (s, x) , Y (s̃, x̃)) = (s ∧ s̃ − ss̃) (F (x ∧ x̃) −
F (x) F (x̃)). The continuous mapping theorem implies

√
nD ∞

n
L→ sup

(s,x)∈[0,1]×[−∞,∞]
|Y (s, x)| as n → ∞ .

Note that the process Y may be written as Y (s, x) = B (s, F (x)) for a centered
Gaussian process B = (B (s, t))(s,t)∈[0,1]2 with continuous paths and covariance
function cov

(
B (s, t) , B

(
s̃, t̃

)) = (s ∧ s̃ − ss̃)
(
t ∧ t̃ − t t̃

)
. Consequently, for con-

tinuous F we get

sup
(s,x)∈[0,1]×[−∞,∞]

|Y (s, x)| L= sup
(s,x)∈[0,1]×[−∞,∞]

|B (s, F (x))| = sup
(s,t)∈[0,1]2

|B (s, t)| .

This makes an asymptotic test for H0 against H1 based on D ∞
n asymptotically distri-

bution free under H0 for continuous F . Obviously, the asymptotic null distributions
of other test statistics for testing H0 against H1 can be derived from (2) as well, but
we will restrict our considerations here upon D ∞

n .
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3 Autoregressive Processes of Order One

Now we consider a stable autoregressive process (Xi )i≥0 of order one, i.e., the Xi

satisfy the recursive equation

Xi = ρXi−1 + εi for all i ∈ N ,

some real autoregression parameter ρ with |ρ| < 1 and a sequence εi , i ∈ N, of iid
square integrable errors with E (εi ) = 0. The distribution function F of the εi ’s is
always assumed to be continuous. The starting value X0 is also square integrable with
E (X0) = 0 and is independent of the sequence (εi )i∈N. If interpreted as a statistical
model, the random variables X0, X1, . . . , Xn are observable at sample size n ∈ N,
whereas the autoregression parameter ρ is unknown and the errors ε1, . . . , εn are
unobservable. The statement that ε1, . . . , ε[nτ ] are iid F1 and ε[nτ ]+1, . . . , εn are iid
F2 for some τ ∈ (0, 1) and possibly different distribution functions F1 and F2 now
reflects a possible change in the error distributions of the sample X0, X1, . . . , Xn .
Because ε1, . . . , εn are not observable, tests for H0 : F1 = F2 against H1 : F1 �= F2
cannot be based on Dn and D ∞

n from Sect. 2. Instead, for each sample size n ∈ N

we will use the residuals ε̂ni = Xi − ρ̂n Xi−1, i = 1, . . . , n, for some estimator ρ̂n

of ρ based upon the sample X0, X1, . . . , Xn . The only property of ρ̂n that will be
required and therefore always assumed to hold in the sequel is

√
n-consistency under

H0 : F1 = F2, i.e., boundedness in probability of the sequence
√

n (ρ̂n − ρ), n ∈ N,
if ρ is the true value of the autoregression parameter. This is satisfied, for example,
for the usual least squares estimator, which was therefore used in our simulation
study to obtain the results that will be presented in Sect. 5. The versions of Fseq

n ,
Gseq

n , Dn , and D ∞
n as functions of the residuals are now defined by

F̂ seq
n (s, x) = 1

[ns]

[ns]∑

i=1

1{̂εni ≤x}, s ∈ [1/n, 1] , x ∈ [−∞,∞] ,

with F̂ seq
n (s, x) = 0 for s ∈ [0, 1/n),

Ĝseq
n (s, x) = 1

n − [ns]

n∑

i=[ns]+1

1{̂εni ≤x}, s ∈ [0, 1) , x ∈ [−∞,∞] ,

with Ĝseq
n (1, x) = 0,

D̂n (s, x) = [ns] (n − [ns])

n2

(
F̂ seq

n (s, x) − Ĝseq
n (s, x)

)
, s ∈ [0, 1] , x ∈ [−∞,∞] ,

and D̂ ∞
n = sup(s,x)∈[0,1]×[−∞,∞]

∣∣D̂n (s, x)
∣∣. For a stationary AR(1)-process

(Xi )i≥0 it follows from the results for ARMA models in Sect. 2 of Bai (1994) that
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under the hypothesis H0 : F1 = F2(= F)

sup
(s,x)∈[0,1]×[−∞,∞]

∣∣D̂n (s, x) − Dn (s, x)
∣∣ = oP

(
1/

√
n
)

as n → ∞ , (3)

provided that F has a uniformly continuous strictly positive density. Consequently,
under these assumptions we have

√
nD̂ ∞

n
L→ sup

(s,t)∈[0,1]2
|B (s, t)| as n → ∞ ,

so that the same asymptotic test for H0 against H1 as in case of independent random
variables works. Note that this test does not make use of the fact that the errors εi

have mean zero. In the next section, we will study a modified sequential empirical
distribution function which takes this information into account.

4 Random Variables with Mean Zero

Consider for the time being a sequence εi , i ∈ N, of iid random variables with com-
mon continuous distribution function F . It is well known that the classical empirical
distribution function

Fn (x) = 1

n

n∑

i=1

1{εi ≤x} , x ∈ [−∞,∞] ,

is the nonparametric maximum likelihood estimator for F based on the sample
ε1, . . . , εn of sample size n ∈ N. The mean εn = 1

n

∑n
i=1 εi of Fn is always a.s.

different from zero, even if F has mean zero.
If F has mean zero, it can be estimated from a sample ε1, . . . , εn by its nonpara-

metric maximum likelihood estimator Fn,0 in the set of all distribution functions with
mean zero. The estimator Fn,0 is the maximizer of the empirical likelihood

L
(

F̃
) =

n∏

i=1

F̃ (εi ) − F̃ (εi − 0)

of all distribution functions F̃ under the contraint
∫ ∞
−∞ x d F̃ (dx) = 0. Here

F̃ (x − 0) denotes the left-hand limit of F̃ at x ∈ R. The maximizer can be obtained
by the method of Lagrange multipliers and is given as follows (for computational
details of the maximization procedure see (Owen 1990, 2001; Qin and Lawless
1994): If

min
1≤i≤n

εi < 0 < max
1≤i≤n

εi , (4)
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then there exists a unique tn = tn (ε1, . . . , εn) with

(
1

n
− 1

)
1

max1≤i≤n εi
< tn <

(
1

n
− 1

)
1

min1≤i≤n εi

(which is the Lagrange multiplier in the maximization problem) and

n∑

i=1

εi

1 + tnεi
= 0 , (5)

and Fn,0 is defined by

Fn,0 (x) =
n∑

i=1

1

n

1

1 + tnεi
1{εi ≤x}, x ∈ [−∞,∞] .

Note that (5) is tantamount to
∫ ∞
−∞ x d Fn,0 (dx) = 0 so that Fn,0 is a distribution

function with mean zero. If condition (4) is violated, then all the data ε1, . . . , εn are
either positive or negative, and it is obviously impossible to construct a reasonable
estimator of F with mean zero. However, from E (ε1) = 0 and E

(
ε21

)
> 0 it easily

follows that

P

(
min
1≤i≤n

εi < 0 < max
1≤i≤n

εi

)
→ 1 as n → ∞ , (6)

which means that with probability converging to one the estimator Fn,0 is well
defined. For square integrable εi a functional central limit theorem for Fn,0 is proven
in Zhang (1997) which in conjunction with Example 2 in Sect. 5.3 of Bickel et al.
(1993) shows that Fn,0 is asymptotically efficient for estimating distribution functions
with mean zero.

In view of the definition of Fn,0 a sequential version Fseq
n,0 of Fn,0 can be

defined as follows: For every n ∈ N with n ≥ 2 and k = 2, . . . , n on the event{
min1≤i≤k εi < 0 < max1≤i≤k εi

}
let tnk be the unique number with

(
1

k
− 1

)
1

max1≤i≤k εi
< tnk <

(
1

k
− 1

)
1

min1≤i≤k εi
(7)

and
k∑

i=1

εi

1 + tnkεi
= 0 . (8)
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Then for s ∈ [0, 1], x ∈ [−∞,∞] we set

Fseq
n,0 (s, x) =

⎧
⎪⎪⎨

⎪⎪⎩

[ns]∑

i=1

1

[ns]

1

1 + tn[ns]εi
1{εi ≤x} , if min

1≤i≤[ns]
εi < 0 < max

1≤i≤[ns]
εi

Fseq
n (s, x) , otherwise .

For a ∈ (0, 1) and n ∈ N set An,a = {
min1≤i≤[na ] εi < 0 < max1≤i≤[na ] εi

}
and

note that on An,a , Fseq
n,0 (s, x) is defined by the first case in the definition so that

Fseq
n,0 (s, ·) is a distribution function with mean zero for all s ∈ [

na−1, 1
]
. Moreover,

from (6), for any a ∈ (0, 1), we have P
(

An,a
) → 1 as n → ∞. Thus with

probability tending to one as n → ∞ the empirical distribution functions appearing
in the sequential empirical distribution function Fseq

n,0 have mean zero.
For our first result about Fseq

n,0 we introduce the function

U (x) = E
(
ε11{ε1≤x}

)
, x ∈ [−∞,∞] , (9)

and the partial sum processes

Sn (s) = 1

[ns]

[ns]∑

i=1

εi , s ∈ [1/n, 1] ,

with Sn (s) = 0 for s ∈ [0, 1/n) and n ∈ N. We also set σ 2 = E
(
ε21

)
and require a

slightly stronger moment condition than square integrability of the εi , namely

E
(
ε21 log log (3 + |ε1|)

)
< ∞ . (10)

Proposition 1 Under (10) we have, as n → ∞ ,

sup
(s,x)∈[0,1]×[−∞,∞]

[ns]

∣∣∣∣F
seq
n,0 (s, x) −

(
Fseq

n (s, x) − 1

σ 2 Sn (s) U (x)

)∣∣∣∣ = oP
(√

n
)
.

From Proposition 1 we can derive the following functional central limit theorem for
Fseq

n,0 which corresponds to (1):

Theorem 1 Under (10) we have

(√
ns

(
Fseq

n,0 (s, x) − F (x)

))
(s,x)∈[0,1]×[−∞,∞]

L→ Z as n → ∞
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for a centered Gaussian process Z = (Z (s, x))(s,x)∈[0,1]×[−∞,∞] with continuous
paths and covariance function

cov (Z (s, x) , Z (s̃, x̃)) = (s ∧ s̃)

(
F (x ∧ x̃) − F (x) F (x̃) − 1

σ 2 U (x) U (x̃)

)
.

To define the version of Dn for testing H0 : F1 = F2 against H1 : F1 �= F2 if
all distribution functions have mean zero we first have to define the corresponding
version of Gseq

n : For every n ∈ N with n ≥ 2 and k = 0, . . . , n − 2 on the event{
mink+1≤i≤n εi < 0 < maxk+1≤i≤n εi

}
let unk denote the unique number with

(
1

n − k
− 1

)
1

maxk+1≤i≤n εi
< unk <

(
1

n − k
− 1

)
1

mink+1≤i≤n εi

and
n∑

i=k+1

εi

1 + unkεi
= 0 .

Then for s ∈ [0, 1], x ∈ [−∞,∞] we set

Gseq
n,0 (s, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

i=[ns]+1

1

n − [ns]

1

1 + un[ns]εi
1{εi ≤x} , if min

[ns]+1≤i≤n
εi < 0 < max

[ns]+1≤i≤n
εi

Gseq
n (s, x) , otherwise .

For a ∈ (0, 1) and n ∈ N set Bn,a = {
minn−[na ]≤i≤n εi < 0 < maxn−[na ]≤i≤n εi

}

and note that on Bn,a , Gseq
n,0 (s, x) is defined by the first case in the definition so

that Gseq
n,0 (s, ·) is a distribution function with mean zero for all s ∈ [

0, 1 − na−1
]
.

Moreover, for any a ∈ (0, 1)we have P
(

Bn,a
) → 1 as n → ∞. Thus, as above, with

probability tending to one as n → ∞ the empirical distribution functions appearing
in Gseq

n,0 have mean zero. Now we can define the stochastic processes

Dn,0 (s, x) = [ns] (n − [ns])

n2

(
Fseq

n,0 (s, x) − Gseq
n,0 (s, x)

)
, s ∈ [0, 1] , x ∈ [−∞, ∞] .

We also need the partial sum processes Tn (s) = 1
n−[ns]

∑n
i=[ns]+1 εi , s ∈ [0, 1) ,

with Tn (1) = 0 and the stochastic processes

Wn (s, x) = Dn (s, x) − 1

σ 2

[ns] (n − [ns])

n2 (Sn (s) − Tn (s)) U (x)

for s ∈ [0, 1], x ∈ [−∞,∞] and n ∈ N. Our main result about Dn,0 is
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Proposition 2 Under (10) and H0 : F1 = F2 we have

sup
(s,x)∈[0,1]×[−∞,∞]

∣∣Dn,0 (s, x) − Wn (s, x)
∣∣ = oP

(
1/

√
n
)

as n → ∞ .

Proposition 2 implies

Theorem 2 Under (10) and H0 : F1 = F2 we have
√

nDn,0
L→ W as n →

∞, where W = (W (s, x))(s,x)∈[0,1]×[−∞,∞] is a centered Gaussian process with
continuous paths and covariance function

cov (W (s, x), W (s̃, x̃)) = (s ∧ s̃ − ss̃)

(
F (x ∧ x̃) − F (x) F (x̃) − 1

σ 2 U (x) U (x̃)

)
.

Nowwe continue our study of theAR(1)-process fromSect. 3. Replacing the εi in the
definitions of Fseq

n,0 and Gseq
n,0 everywhere by the residuals ε̂ni , we obtain the residual

sequential empirical distribution functions F̂ seq
n,0 and Ĝseq

n,0 . For the events Ân,a ={
min1≤i≤[na ] ε̂ni < 0 < max1≤i≤[na ] ε̂ni

}
and B̂n,a = {

minn−[na ]≤i≤n ε̂ni <

0 < maxn−[na ]≤i≤n ε̂ni
}
, defined for n ∈ N and a ∈ (0, 1), it can be shown that

P
(

Ân,a
) → 1 and P

(
B̂n,a

) → 1 as n → ∞, for all a ∈ (0, 1). Consequently,

as in the case of the εi , with probability tending to one as n → ∞ the empirical

distribution functions appearing in F̂ seq
n,0 and Ĝseq

n,0 have mean zero. Replacing Fseq
n,0

and Gseq
n,0 by F̂ seq

n,0 and Ĝseq
n,0 in the definition of the process Dn,0, we obtain its version

D̂n,0 for the residuals. Our main result in this paper is

Theorem 3 Let the AR(1)-process (Xi )i≥0 be stationary, let (10) be satisfied and
let the distribution function F have a uniformly continuous strictly positive density.
Then under H0 : F1 = F2(= F), where W is the same process as in Theorem2, we

have
√

nD̂n,0
L→ W as n → ∞ .

5 Bootstrap and Simulations

Theorem 3 and the continuous mapping theorem imply, as n → ∞ ,

√
nD̂ ∞

n,0 = sup
(s,x)∈[0,1]×[−∞,∞]

√
n

∣∣D̂n,0 (s, x)
∣∣ L→ sup

(s,x)∈[0,1]×[−∞,∞]
|W (s, x)|

(11)

under H0 : F1 = F2(= F). Unlike in the case of the process Y of (2), the distribution
of the limiting random variable in (11) heavily depends on F , as is apparent from the
covariance function ofW given inTheorem2.Therefore, it is not possible to construct
tests from (11) that are asymptotically distribution free under the null hypotheses
H0 : F1 = F2. A remedy is the bootstrap. For this, given a sample X0, X1, . . . , Xn
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from theAR(1)-process, let ε∗
n1, . . . , ε

∗
nn be bootstrap random variables which are iid

under the conditional probability P∗
n = P (·|̂εn1, . . . , ε̂nn)with common distribution

function F̂ seq
n,0 (1, ·). Replacing the εi in Dn,0 by the bootstrap variables ε∗

ni , we obtain
a bootstrap version D̂∗

n,0 of Dn,0 which is consistent according to the following
theorem.

Theorem 4 Let the AR(1)-process (Xi )i≥0 be stationary, let F have a uniformly
continuous strictly positive density, and assume E

(
ε21 log (2 + |ε1|)2

)
< ∞. Then

under H0 : F1 = F2(= F), where W is the same process as in Theorem2,

√
nD̂∗

n,0
L→ W under P∗

n in probability as n → ∞ .

Thus the bootstrap is consistent and yields bootstrap critical values for tests of H0
against H1 based on D̂ ∞

n,0 in the usual way: For D̂∗∞
n,0 = sup(s,x)∈[0,1]×[−∞,∞]∣∣∣D̂∗

n,0 (s, x)

∣∣∣ and

k∗
n,α = inf

{
x ∈ [−∞,∞] : P∗

n

(√
nD̂∗∞

n,0 ≤ x
) ≥ 1 − α

}
,

defined for n ∈ N and α ∈ (0, 1), we have P
(√

nD̂ ∞
n,0 ≥ k∗

n,α

)
→ α as n → ∞ so

that the test which rejects H0 : F1 = F2 if and only if
√

nD̂ ∞
n,0 ≥ k∗

n,α holds is a test
of asymptotic level α ∈ (0, 1).

In Table1 we report some simulated rejection probabilities under H0 of the boot-
strap test using D̂ ∞

n,0 for some finite sample sizes n, levels α and autoregression
parameters ρ if both F1 and F2 are the standard normal distribution function. The
nominal asymptotic level is kept quite well already for small sample sizes in this
case. In Tables2, 3 and 4 we compare the power of this bootstrap test and the power
of the test based on D̂ ∞

n if the critical values from Table1 in Picard (1985) are used.
In Table4, t4/

√
2 is the t-distribution with 4 degrees of freedom, rescaled to variance

one. The test based on D̂ ∞
n,0 has always larger and sometimes considerably larger

power than the test based on D̂ ∞
n which does not exploit the fact that the errors in

the AR(1)-model have mean zero. Consequently, using the sequential empirical dis-
tribution functions F̂ seq

n,0 and Ĝseq
n,0 , which do exploit mean zero of the errors, instead

of F̂ seq
n and Ĝseq

n seems to be preferable in the testing problem under consideration.

Table 1 Simulated levels for D̂ ∞
n,0 under H0 : F1 = F2 = N (0, 1)

ρ = 0.3 ρ = 0.5

n\α 0.1 0.05 0.01 n\α 0.1 0.05 0.01

10 0.076 0.022 0.002 10 0.076 0.032 0.003

30 0.102 0.043 0.008 30 0.084 0.035 0.003

50 0.105 0.054 0.010 50 0.099 0.042 0.006

100 0.109 0.057 0.008 100 0.124 0.067 0.015
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Table 2 Simulated power under H1 for τ = 0.5, F1 = N (0, 1), F2 = N (0, 4) with ρ = 0.5

D̂ ∞
n D̂ ∞

n,0

n\α 0.1 0.05 0.01 n\α 0.1 0.05 0.01

10 0.014 0.005 0.000 10 0.082 0.039 0.003

30 0.122 0.040 0.007 30 0.185 0.091 0.023

50 0.226 0.143 0.037 50 0.407 0.266 0.080

100 0.524 0.337 0.127 100 0.804 0.670 0.397

Table 3 Simulated power under H1 for τ = 0.1, F1 = N (0, 1), F2 = N (0, 4) with ρ = 0.5

D̂ ∞
n D̂ ∞

n,0

n\α 0.1 0.05 0.01 n\α 0.1 0.05 0.01

10 0.012 0.002 0.000 10 0.067 0.026 0.005

30 0.050 0.011 0.000 30 0.107 0.043 0.005

50 0.089 0.043 0.013 50 0.124 0.068 0.014

100 0.126 0.061 0.019 100 0.184 0.091 0.025

Table 4 Simulated power under H1 for τ = 0.5, F1 = N (0, 1), F2 = t4/
√
2 with ρ = 0.5

D̂ ∞
n D̂ ∞

n,0

n\α 0.1 0.05 0.01 n\α 0.1 0.05 0.01

10 0.009 0.006 0.000 10 0.074 0.026 0.006

30 0.090 0.030 0.002 30 0.106 0.046 0.006

50 0.092 0.043 0.005 50 0.140 0.061 0.012

100 0.155 0.078 0.020 100 0.200 0.117 0.026

6 Proofs

Let εi , i ∈ N, be an iid sequence of random variables with continuous distribution
function F , 0 < σ 2 = E

(
ε21

)
< ∞ and E (ε1) = 0. We will prepare for the proof

of Proposition 1 by a sequence of lemmas.
Note that

∑k
i=1 ε2i > 0 a.s., for all k ∈ N by continuity of F so that the random

variables ξ
(1)
n,a and ξ

(2)
n,a appearing in the following lemma are a.s. well defined.

Lemma 1 For all a ∈ (0, 1) we have, as n → ∞ ,

ξ (1)
n,a = max

[na ]≤k≤n
k

∣∣∣
∑k

i=1 εi

∣∣∣
∑k

i=1 ε2i

= OP
(√

n
)

(12)

and

ξ (2)
n,a = max

[na ]≤k≤n

√
k

log log k

∣∣∣
∑k

i=1 εi

∣∣∣
∑k

i=1 ε2i

= OP (1) . (13)



136 E. Haeusler and S. Horni

Proof For the proof of (12) note that for any random variables ξn and ξ , as n → ∞ ,

ξn → ξ a.s. if and only if sup
k≥n

|ξk − ξ | → 0 in probability . (14)

Consequently, the strong law of large numbers implies

max
[na ]≤k≤n

∣∣∣∣∣
1

k

k∑

i=1

ε2i − σ 2

∣∣∣∣∣ = oP (1) as n → ∞ . (15)

By Kolmogorov’s maximal inequality,

max
[na ]≤k≤n

∣∣∣∣∣

k∑

i=1

εi

∣∣∣∣∣ = OP
(√

n
)

as n → ∞ . (16)

Now (12) follows from (15), (16) and the inequality, valid for all K ∈ (0,∞) and
all large n,

P

⎛
⎝ max

[na ]≤k≤n
k

∣∣∣
∑k

i=1 εi

∣∣∣
∑k

i=1 ε2i

≥ K
√

n

⎞
⎠

≤ P

(
max

[na ]≤k≤n

∣∣∣∣∣

k∑

i=1

εi

∣∣∣∣∣ ≥ 1

2
Kσ 2√n

)
+ P

(
max

[na ]≤k≤n

∣∣∣∣∣
1

k

k∑

i=1

ε2i − σ 2

∣∣∣∣∣ ≥ 1

2
σ 2

)
.

Writing
√

k

log log k

∣∣∣
∑k

i=1 εi

∣∣∣
∑k

i=1 ε2i

=
∣∣∣
∑k

i=1 εi

∣∣∣
√

k log log k

1
1
k

∑k
i=1 ε2i

,

we see that (13) follows immediately from the law of the iterated logarithm and the
strong law of large numbers. �
From now on we will always assume that the moment condition (10) is satisfied.

Lemma 2 For all a ∈ (0, 1) we have

ξ (3)
n,a = max

[na ]≤k≤n

√
log log k

k
max
1≤i≤k

|εi | = oP (1) as n → ∞ . (17)

Proof A standard application of the first Borel–Cantelli lemma shows that (10)
implies

√
(log log n) /n max1≤i≤n |εi | → 0 a.s. as n → ∞, and (17) follows from

(14). �
For all a ∈ (0, 1) and n ∈ N the random variables tnk , k = [

na
]
, . . . , n, are well

defined on An,a by (7) and (8). Observe that (7) implies 1 + tnkεi > 0 on An,a for
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k = [
na

]
, . . . , n and i = 1, . . . , k. This fact will be of importance several times in

the sequel.

Lemma 3 For all a ∈ (0, 1) and n ∈ N on An,a we have

max
[na ]≤k≤n

k |tnk | ≤
(
1 + max

[na ]≤k≤n
|tnk | max

1≤i≤k
|εi |

)
ξ (1)

n,a (18)

and (
max

[na ]≤k≤n

√
k

log log k
|tnk |

)(
1 − ξ (2)

n,a ξ (3)
n,a

)
≤ ξ (2)

n,a . (19)

Proof On An,a we have by (8), for k = [
na

]
, . . . , n,

0 =
k∑

i=1

εi

1 + tnkεi
=

k∑

i=1

εi − tnk

k∑

i=1

ε2i

1 + tnkεi

so that

∣∣∣∣∣

k∑

i=1

εi

∣∣∣∣∣ = |tnk |
k∑

i=1

ε2i

1 + tnkεi
≥ |tnk |

1 + max[na ]≤m≤n |tnm |max1≤i≤m |εi |
k∑

i=1

ε2i ,

whence

|tnk | ≤
(
1 + max

[na ]≤m≤n
|tnm | max

1≤i≤m
|εi |

) ∣∣∣
∑k

i=1 εi

∣∣∣
∑k

i=1 ε2i

.

Multiplying this inequality by k and taking the maximum over k = [
na

]
, . . . , n

gives (18), and multiplying by
√

k
log log k yields

√
k

log log k
|tnk | ≤

(
1 + max

[na ]≤m≤n

√
m

log logm
|tnm |

√
log logm

m
max
1≤i≤m

|εi |
)

ξ (2)
n,a

≤
(
1 +

(
max

[na ]≤m≤n

√
m

log logm
|tnm |

)
ξ (3)

n,a

)
ξ (2)

n,a,

which after taking the maximum over k again and rearranging terms leads to
(19). �

Recall that the random variables tnk , k = [
na

]
, . . . , n, are well defined on An,a .

Because of P
(

An,a
) → 1 an n → ∞, in all subsequent statements concerning con-

vergence in probability or in distribution, the definition of tnk on the event Ω\An,a

of the underlying probability space (Ω,F , P) plays no role. Therefore, in the fol-
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lowing proofs we can always argue entirely on An,a and ignore the complement of
An,a completely.

Corollary 1 For all a ∈ (0, 1) we have

max
[na ]≤k≤n

√
k

log log k
|tnk | = OP (1) as n → ∞ . (20)

Proof From (13) and (17) we obtain

1 − ξ (2)
n,aξ (3)

n,a = 1 + oP (1) as n → ∞ , (21)

and (20) follows from (19), (13) and (21). �

Lemma 4 For all a ∈ (0, 1) we have, as n → ∞ ,

η(1)
n,a = max

[na ]≤k≤n
|tnk | max

1≤i≤k
|εi | = oP (1) (22)

η(2)
n,a = max

[na ]≤k≤n
k |tnk | = OP

(√
n
)

(23)

η(3)
n,a = max

[na ]≤k≤n
max
1≤i≤k

1

1 + tnkεi
= OP (1) (24)

η(4)
n,a = max

[na ]≤k≤n
sup

x∈[−∞,∞]

∣∣∣∣∣
1

k

k∑

i=1

εi1{εi ≤x} − U (x)

∣∣∣∣∣ = oP (1) (25)

η(5)
n,a = max

[na ]≤k≤n

∣∣∣∣∣
1

σ 2

k∑

i=1

εi − ktnk

∣∣∣∣∣ = oP
(√

n
)
. (26)

Proof Assertion (22) follows from

η(1)
n,a ≤

(
max

[na ]≤k≤n

√
k

log log k
|tnk |

) (
max

[na ]≤k≤n

√
log log k

k
max
1≤i≤k

|εi |
)

in conjunction with (20) and (17). Assertion (23) is immediate from (18), (22) and
(12), and (24) is immediate from (22). As to (25), Lemma 2.2 of Zhang (1997)
implies

sup
x∈[−∞,∞]

∣∣∣∣∣
1

n

n∑

i=1

εi1{εi ≤x} − U (x)

∣∣∣∣∣ → 0 a.s. as n → ∞ ,
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which gives (25) in view of (14). It remains to verify (26). Using 1
1+x = 1− x + x2

1+x
on An,a we obtain from (8), for k = [

na
]
, . . . , n,

0 =
k∑

i=1

εi

1 + tnkεi
=

k∑

i=1

εi − tnk

k∑

i=1

ε2i + t2nk

k∑

i=1

ε3i

1 + tnkεi

which implies

1

σ 2

k∑

i=1

εi − ktnk = 1

σ 2 tnk

k∑

i=1

(
ε2i − σ 2

)
− 1

σ 2 t2nk

k∑

i=1

ε3i

1 + tnkεi
.

Now, as n → ∞ ,

max
[na ]≤k≤n

∣∣∣∣∣tnk

k∑

i=1

(
ε2i − σ 2

)∣∣∣∣∣ ≤ η(2)
n,a max

[na ]≤k≤n

1

k

∣∣∣∣∣

k∑

i=1

(
ε2i − σ 2

)∣∣∣∣∣ = oP
(√

n
)

by (23) and (15), and

max
[na ]≤k≤n

t2nk

∣∣∣∣∣

k∑

i=1

ε3i

1 + tnkεi

∣∣∣∣∣ ≤ η(1)
n,a η(2)

n,a η(3)
n,a max

[na ]≤k≤n

1

k

k∑

i=1

ε2i = oP
(√

n
)

by (22), (23), and (24) and the strong law of large numbers. �

Now we are prepared to give the
Proof of Propositon 1. For all a ∈ (0, 1) on An,a and for all s ∈ [

na−1, 1
]
and

x ∈ [−∞,∞] we have, using 1
1+x − 1 = x2

1+x − x ,

ζn (s, x) = [ns]

∣∣∣∣F
seq
n,0 (s, x) −

(
Fseq

n (s, x) − 1

σ 2 Sn (s) U (x)

)∣∣∣∣

=
∣∣∣∣∣

[ns]∑

i=1

(
1

1 + tn[ns]εi
− 1

)
1{εi ≤x} + 1

σ 2

[ns]∑

i=1

εiU (x)

∣∣∣∣∣

=
∣∣∣∣∣t
2
n[ns]

[ns]∑

i=1

ε2i

1 + tn[ns]εi
1{εi ≤x} − tn[ns]

[ns]∑

i=1

εi1{εi ≤x}

+
(

1

σ 2

[ns]∑

i=1

εi − [ns] tn[ns]

)
U (x) + [ns] tn[ns]U (x)

∣∣∣∣∣

≤ η(1)
n,a η(2)

n,a η(3)
n,a max

1≤k≤n

1

k

k∑

i=1

|εi | + η(2)
n,a η(4)

n,a + η(5)
n,a E (|ε1|) ,
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because for the function U from (9) clearly |U (x)| ≤ E (|ε1|) for all x ∈ [−∞,∞].
Hence by Lemma 4 and the strong law of large numbers

sup
(s,x)∈[na−1,1]×[−∞,∞]

ζn (s, x) = oP
(√

n
)

as n → ∞ .

For all s ∈ [
0, na−1

]
and x ∈ [−∞,∞] we have

ζn (s, x) ≤ [ns] + 1

σ 2

∣∣∣∣∣

[ns]∑

i=1

εi

∣∣∣∣∣ |U (x)| ≤ na + 1

σ 2 E (|ε1|) max
1≤k≤[na ]

∣∣∣∣∣

k∑

i=1

εi

∣∣∣∣∣ .

Since max1≤k≤[na ]

∣∣∣
∑k

i=1 εi

∣∣∣ = OP
(
na/2

)
as n → ∞ by Kolmogorov’s maximal

inequality, the right-hand side of the last inequality is oP
(√

n
)
as n → ∞ for all

a ∈ (
0, 1

2

)
, which concludes the proof. �

Based on Proposition1 we can give the
Proof of Theorem 1. As a consequence of Proposition 1 the two sequences

√
ns

(
Fseq

n,0 (s, x) − F (x)

)
, s ∈ [0, 1] , x ∈ [−∞,∞] ,

and

Zn (s, x) = [ns]√
n

(
Fseq

n (s, x) − F (x) − 1

σ 2 Sn (s) U (x)

)
, s ∈ [0, 1] , x ∈ [−∞,∞] ,

of stochastic processes have the same asymptotic distribution. Therefore, we can
show convergence in distribution of the sequence Zn , n ∈ N, toward Z .

The classical methodology for proving convergence in distribution of stochastic
processes is to prove convergence of the finite dimensional distributions (fidis) and
uniform tightness. Now, because Zn (s, x) is a sum of independent random variables
with mean zero, a routine application of the multivariate central limit theorem shows
that the fidis of Zn converge in distribution to the fidis of Z . In case of limit processes
with continuous paths a suitable condition for uniform tightness of a sequence Vn =
(Vn (s, x))(s,x)∈[0,1]×[−∞,∞] of processes is

lim
δ↓0 lim sup

n→∞
P (ω (Vn, δ) ≥ ε) = 0 for all ε > 0 , (27)

where the modulus of continuity ω ( f, δ) for a function f : [0, 1]× [−∞,∞] → R

and any δ > 0 is defined by

ω ( f, δ) = sup
(s, x) , (s̃, x̃) ∈ [0, 1] × [−∞,∞]

|s − s̃| < δ, m (x, x̃) < δ

| f (s, x) − f (s̃, x̃)| .
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Here m is a metric on [−∞,∞] which is defined by m (x, x̃) = |h (x) − h (x̃)| for
some smooth one-to-one function h : [−∞,∞] → [0, 1] with h (−∞) = 0 and
h (∞) = 1 so that the time interval [−∞,∞] is identified with the time interval
[0, 1]. For (27) as a criterion for uniform tightness within the theory of convergence
in distribution in Skorohod spaces of functions with multidimensional arguments
the reader is referred to Theorem2 in Wichura (1969) (see also the discussion after
Theorem1 in Neuhaus 1971), whereas Sects. 1.3 and 1.5 in van der Vaart andWellner
(1996) cover the theory of convergence in distribution in the sense of Hoffmann–
Jørgensen. Because of ω ( f + g, δ) ≤ ω ( f, δ) + ω (g, δ) for all functions f and g
and δ > 0, it is trivial that (27) is satisfied for the sum of two processes whenever
it is satisfied for the summands individually. Therefore, to verify that (27) holds for
Zn it is sufficient to verify it for the processes

[ns]√
n

(
Fseq

n (s, x) − F (x)
)
, s ∈ [0, 1] , x ∈ [−∞,∞] , (28)

and
[ns]√

n

1

σ 2 Sn (s) U (x) , s ∈ [0, 1] , x ∈ [−∞,∞] , (29)

individually. But uniform tightness for the processes in (28) holds because of (1),
and uniform tightness of the processes in (29) follows from uniform tightness of
the partial sum processes Sn (in their one-dimensional time parameter s ∈ [0, 1])
and uniform continuity of the function U : [−∞,∞] → R (in its one-dimensional
argument x). Consequently, the sequence Zn , n ∈ N, is uniformly tight, and the proof
of Theorem 1 is complete. �
Proof of Proposition 2. For every n ∈ N the random vectors (ε1, ε2, . . . , εn) and
(εn, . . . , ε2, ε1)have the samedistributionwhich implies that the stochastic processes

[ns]

(
Fseq

n,0 (s, x) −
(

Fseq
n (s, x) − 1

σ 2 Sn (s) U (x)

))
, s ∈ [0, 1] × [−∞,∞] ,

and

(n − [ns])

(
Gseq

n,0 (s, x) −
(

Gseq
n (s, x) − 1

σ 2 Tn (s) U (x)

))
, s ∈ [0, 1]×[−∞,∞] ,

have the same distribution as well. Consequently, by Proposition 1,

sup
(s,x)∈[0,1]×[−∞,∞]

(n − [ns])

∣∣∣∣G
seq
n,0 (s, x) −

(
Gseq

n (s, x) − 1

σ 2 Tn (s) U (x)

)∣∣∣∣ = oP
(√

n
)
,
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and because for all s ∈ [0, 1] and x ∈ [−∞,∞] we have

∣∣Dn,0 (s, x) − Wn (s, x)
∣∣ ≤ [ns]

n

(
Fseq

n,0 (s, x) −
(

Fseq
n (s, x) − 1

σ 2 Sn (s) U (x)

))

+ (n − [ns])

n

(
Gseq

n,0 (s, x) −
(

Gseq
n (s, x) − 1

σ 2 Tn (s) U (x)

))
,

the proposition follows. �
Based on Proposition 2 we can give the

Proof of Theorem 2. As a consequence of Proposition 2 the two sequences of proc-
esses

√
nDn,0, n ∈ N, and

√
nWn , n ∈ N, have the same asymptotic distribution so

that we can show that the sequence
√

nWn , n ∈ N, converges in distribution to W .
As in the proof of Theorem 1, we need to verify convergence of the fidis and uniform
tightness. But because

√
nWn (s, x) is a sum of independent random variables with

mean zero, fidi convergence is obtained by a routine application of the multivariate
central limit theorem. Uniform tightness of

√
nWn , n ∈ N, follows from the fact that

the sequences
√

nDn , n ∈ N, and

√
n
[ns] (n − [ns])

n2 (Sn (s) − Tn (s)) U (x) , s ∈ [0, 1] , x ∈ [−∞,∞] , n ∈ N ,

are uniformly tight individually (recall (2) and the facts that Sn and Tn are partial
sum processes and that U is uniformly continuous). This concludes the proof of
Theorem2. �

Now we turn to the study of the AR(1)-model under the assumptions of
Theorem3. The key to the proof of Theorem 3 is a detailed study of the closeness
of the residuals ε̂ni and the errors εi . The basic result is

Lemma 5 max
1≤i≤n

|̂εni − εi | = oP (1) as n → ∞ .

Proof For all n ∈ N and i = 1, . . . , n by definition of the residuals

ε̂ni − εi = Xi − ρ̂n Xi−1 − (Xi − ρXi−1) = (ρ − ρ̂n) Xi−1 (30)

so that max1≤i≤n |̂εni − εi | ≤ |ρ̂n − ρ|max1≤i≤n |Xi−1|. Now |ρ̂n − ρ| =
OP

(
1/

√
n
)
by our basic assumption about ρ̂n and max1≤i≤n |Xi−1| = oP

(√
n
)

as n → ∞ by stationarity of (Xi )i≥0 and E
(

X2
1

)
< ∞, which yields the

assertion. �

Lemma 5 implies that D̂n,0 is well defined with probability converging to one as
n → ∞ :

Corollary 2 For all a ∈ (0, 1) we have P
(

Ân,a
) → 1 and P

(
B̂n,a

) → 1 as
n → ∞ .
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Proof Because of E (ε1) = 0 and E
(
ε21

)
> 0 there exists a δ > 0with P (ε1 ≤ δ) <

1 and P (ε1 ≥ −δ) < 1. For all a ∈ (0, 1) and all large n ∈ N we have

P
(
Ω \ Ân,a

) = P

({
0 ≤ min

1≤i≤[na ]
ε̂ni

}
∪

{
max

1≤i≤[na ]
ε̂ni ≤ 0

})

≤ P

(
min

1≤i≤[na ]
εi ≥ −δ

)
+ P

(
max

1≤i≤[na ]
εi ≤ δ

)
+ P

(
max

1≤i≤[na ]
|̂εni − εi | ≥ δ

)

= P (ε1 ≥ −δ)[n
a] + P (ε1 ≤ δ)[n

a] + P

(
max

1≤i≤[na ]
|̂εni − εi | ≥ δ

)
.

The right-hand side of this inequality converges to zero as n → ∞ because of[
na

] → ∞ and Lemma5, whence P
(

Ân,a
) → 1. The proof of P

(
B̂n,a

) → 1 is
similar. �

Proof of Theorem3. As the proof of Theorem 2 shows Theorem 3 follows from

sup
(s,x)∈[0,1]×[−∞,∞]

∣∣D̂n,0 (s, x) − Wn (s, x)
∣∣ = oP

(
1/

√
n
)

as n → ∞ . (31)

By the triangle inequality, (31) follows from (3) and, as n → ∞ ,

sup
(s,x)∈[0,1]×[−∞,∞]

∣∣∣D̂n,0 (s, x) −
(

D̂n (s, x) − 1

σ 2

[ns] (n − [ns])

n2

× (Sn (s) − Tn (s)) U (x)
)∣∣∣ = oP

(
1/

√
n
)

which in turn follows from

sup
(s,x)∈[0,1]×[−∞,∞]

[ns]

∣∣∣∣F̂
seq
n,0 (s, x) −

(
F̂ seq

n (s, x) − 1

σ 2 Sn (s) U (x)

)∣∣∣∣ = oP
(√

n
)

(32)
and

sup
(s,x)∈[0,1]×[−∞,∞]

(n − [ns])

∣∣∣∣Ĝ
seq
n,0 (s, x) −

(
Ĝseq

n (s, x) − 1

σ 2 Tn (s) U (x)

)∣∣∣∣ = oP
(√

n
)
.

Note that the application of (3) from Bai (1994) requires the assumption that F has
a uniformly continuous strictly positive density in our Theorem 3. Clearly, (32) is a
version of Proposition1 with the independent εi in Fseq

n,0 and Fseq
n replaced by the

residuals (but not in Sn). The second statement is the counterpart for Ĝseq
n,0 and Ĝseq

n .
We will present here the main steps in the approach to (32). The approach to the
other statement is similar.

Recall that the random variables t̂nk are defined by (7) and (8) with tnk replaced by
t̂nk and εi by ε̂ni . Therefore, by copying the proof of Proposition1, for all a ∈ (0, 1)
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on Ân,a and for all s ∈ [
na−1, 1

]
and x ∈ [−∞,∞] we get

ζ̂n (s, x) = [ns]

∣∣∣∣F̂
seq
n,0 (s, x) −

(
F̂ seq

n (s, x) − 1

σ 2 Sn (s) U (x)

)∣∣∣∣

=
∣∣∣∣∣

[ns]∑

i=1

(
1

1 + t̂n[ns ]̂εni
− 1

)
1{̂εni ≤x} + 1

σ 2

[ns]∑

i=1

εiU (x)

∣∣∣∣∣

=
∣∣∣∣∣t̂

2
n[ns]

[ns]∑

i=1

ε̂ 2
ni

1 + t̂n[ns ]̂εni
1{̂εni ≤x} − t̂n[ns]

[ns]∑

i=1

ε̂ni1{̂εni ≤x}

+
(

1

σ 2

[ns]∑

i=1

εi − [ns] t̂n[ns]

)
U (x) + [ns] t̂n[ns]U (x)

∣∣∣∣∣

≤ η̂(1)
n,a η̂(2)

n,a η̂(3)
n,a max

1≤k≤n

1

k

k∑

i=1

|̂εni | + η̂(2)
n,a η̂(4)

n,a + η̂(5)
n,a E (|ε1|)

with

η̂(1)
n,a = max

[na ]≤k≤n

∣∣̂tnk
∣∣ max
1≤i≤k

|̂εni | , η̂(2)
n,a = max

[na ]≤k≤n
k

∣∣̂tnk
∣∣ ,

η̂(3)
n,a = max

[na ]≤k≤n
max
1≤i≤k

1

1 + t̂nk ε̂ni
, η̂(4)

n,a = max
[na ]≤k≤n

sup
x∈[−∞,∞]

∣∣∣∣∣
1

k

k∑

i=1

ε̂ni1{̂εni ≤x} − U (x)

∣∣∣∣∣ ,

η̂(5)
n,a = max

[na ]≤k≤n

∣∣∣∣∣
1

σ 2

k∑

i=1

εi − k̂tnk

∣∣∣∣∣ .

To complete the proof of Theorem 3 it remains to show that for j = 1, . . . , 5 the
random variables η̂

( j)
n,a are exactly of the same order for n → ∞ as their counterparts

η
( j)
n,a in Lemma4, and max1≤k≤n

1
k

∑k
i=1 |̂εni | = OP (1). The latter is implied by

max
1≤k≤n

1

k

k∑

i=1

|̂εni | ≤ max
1≤i≤n

|̂εni − εi | + max
1≤k≤n

1

k

k∑

i=1

|εi | ,

Lemma5 and the strong law of large numbers. For the proof of the required properties
of the η̂

( j)
n,a note that Lemma3 follows entirely from the fact that the tnk are defined

by (7) and (8). Consequently, because the t̂nk are defined by (7) and (8) with tnk

replaced by t̂nk and εi by ε̂ni , by the proof of Lemma3 we have the versions

max
[na ]≤k≤n

k
∣∣̂tnk

∣∣ ≤
(
1 + max

[na ]≤k≤n

∣∣̂tnk
∣∣ max
1≤i≤k

|̂εni |
)

ξ̂ (1)
n,a
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and (
max

[na ]≤k≤n

√
k

log log k

∣∣̂tnk
∣∣
)(

1 − ξ̂ (2)
n,a ξ̂ (3)

n,a

)
≤ ξ̂ (2)

n,a

of (18) and (19) with

ξ̂ (1)
n,a = max

[na ]≤k≤n
k

∣∣∣
∑k

i=1 ε̂ni

∣∣∣
∑k

i=1 ε̂2ni

, ξ̂ (2)
n,a = max

[na ]≤k≤n

√
k

log log k

∣∣∣
∑k

i=1 ε̂ni

∣∣∣
∑k

i=1 ε̂2ni

and

ξ̂ (3)
n,a = max

[na ]≤k≤n

√
log log k

k
max
1≤i≤k

|̂εni | .

Therefore, we can copy the proofs of (22)–(24) to obtain η̂
(1)
n,a = oP (1), η̂

(2)
n,a =

OP
(√

n
)
and η̂

(3)
n,a = OP (1) as n → ∞ provided that we can show ξ̂

(1)
n,a =

OP
(√

n
)
, ξ̂ (2)

n,a = OP (1) and ξ̂
(3)
n,a = oP (1).

We will provide here the details of the argument that establishes ξ̂
(1)
n,a = OP

(√
n
)

as n → ∞. For all a ∈ (0, 1) and n ∈ N we have

max
[na ]≤k≤n

∣∣∣∣∣

k∑

i=1

ε̂ni

∣∣∣∣∣ ≤ n max
[na ]≤k≤n

1

k

∣∣∣∣∣

k∑

i=1

(̂εni − εi )

∣∣∣∣∣ + max
[na ]≤k≤n

∣∣∣∣∣

k∑

i=1

εi

∣∣∣∣∣ .

The second summand on the right-hand side is OP
(√

n
)
as n → ∞ by (16). By

(30) the first summand equals n |ρ̂n − ρ|max[na ]≤k≤n
1
k

∣∣∣
∑k

i=1 Xi−1

∣∣∣ = OP
(√

n
)

as n → ∞ by our basic assumption on ρ̂n and the ergodic theorem applied to

the stationary sequence Xi , i ≥ 0. Hence max[na ]≤k≤n

∣∣∣
∑k

i=1 ε̂ni

∣∣∣ = OP
(√

n
)
as

n → ∞. Moreover,

max
[na ]≤k≤n

1

k

k∑

i=1

∣∣̂ε2ni − ε2i

∣∣ = max
[na ]≤k≤n

1

k

k∑

i=1

|̂εni − εi | |̂εni + εi |

≤
(
max
1≤i≤n

|̂εni − εi |
) (

max
[na ]≤k≤n

1

k

k∑

i=1

|̂εni − εi | + 2 max
[na ]≤k≤n

1

k

k∑

i=1

|εi |
)

= oP (1)

as n → ∞ by Lemma5 and the strong law of large numbers. This result combined
with (15) yields max[na ]≤k≤n

1
k

∑k
i=1

∣∣̂ε2ni − σ 2
∣∣ = oP (1) as n → ∞. Thus we have

proved the versions of (15) and (16) for the residuals ε̂ni that are needed to copy the
argument that leads to (12) in theproof ofLemma1.This establishes ξ̂ (1)

n,a = OP
(√

n
)

as n → ∞, as desired.
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The proofs of ξ̂
(2)
n,a = OP (1), ξ̂ (3)

n,a = oP (1), η̂(4)
n,a = oP (1) and η̂

(5)
n,a = oP

(√
n
)

as n → ∞ all require similar deductions of the asymptotic properties of the resid-
uals ε̂ni from the corresponding properties of the errors εi and will not be detailed
here. �
For the Proof of Theorem4 note that the process D̂∗

n,0 is based on the bootstrap
variables ε∗

n1, . . . , ε
∗
nn which are iid for every n ∈ N under the conditional probability

P∗
n . Therefore D̂∗

n,0 is a bootstrap version of the process Dn,0 considered in Theorem
2 (and not of the process appearing in Theorem 3), and the proof of Theorem 4 is a
repetition of the proof of Theorem 2 for the ε∗

ni and P∗
n instead of the εi and P . The

slightly stronger moment condition than (10) is a consequence of the fact that the
bootstrap variables ε∗

ni form a triangular array so that the bootstrap version of (13)
cannot be derived from the law of the iterated logarithm but has to be established
through an application of the Hájek–Rényi-inequality, which leads to a log k in this
bootstrap version instead of the log log k in (13). This log k has to be compensated by
a log k instead of log log k in the bootstrap version of Lemma2, for which we need
the stronger moment condition. Technical details can be found in Horni (2014). �
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On Quadratic Expansions of Log-Likelihoods
and a General Asymptotic Linearity Result

Marc Hallin, Ramon van den Akker and Bas J.M. Werker

Abstract Irrespective of the statistical model under study, the derivation of limits,
in the Le Cam sense, of sequences of local experiments (see, e.g., Jeganathan, Econo-
metric Theory 11:818–887, 1995 and Strasser, Mathematical Theory of Statistics:
Statistical experiments and asymptotic decision theory, Walter de Gruyter, Berlin,
1985) often follows along very similar lines, essentially involving differentiability
in quadratic mean of square roots of (conditional) densities. This chapter estab-
lishes two abstracts but quite generally applicable results providing sufficient, and
nearly necessary, conditions for (i) the existence of a quadratic expansion and (ii) the
asymptotic linearity of local log-likelihood ratios. Asymptotic linearity is needed,
for instance, when unspecified model parameters are to be replaced, in some statistic
of interest, with some preliminary estimators. Such results have been established, for
locally asymptotically normal (LAN) models involving independent and identically
distributed observations, by, e.g., Bickel et al. (Efficient and adaptive Estimation for
semiparametric Models, Johns Hopkins University Press, Baltimore, 1993), van der
Vaart (Statistical Estimation in Large Parameter Spaces, CWI, Amsterdam, 1988;
Asymptotic Statistics, CambridgeUniversity Press,Cambridge, 2000). Similar results
are provided here for models exhibiting serial dependencies which, so far, have been
treated on a case-by-case basis (see Hallin and Paindaveine, Journal of Statistical
Planning and Inference 136:1–32, 2005 and Hallin and Puri, Journal of Multivariate
Analysis 50:175–237, 1994 for typical examples) and, in general, under stronger
regularity assumptions. Unlike their i.i.d. counterparts, our results are established
under LAQ conditions, hence extend beyond the context of LAN experiments, so
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that nonstationary unit-root time series and cointegration models, for instance, also
can be handled (see Hallin et al., Optimal pseudo-Gaussian and rank-based tests of
the cointegrating rank in semiparametric error-correction models, 2013).

1 Introduction

Asymptotic methods always have been amajor tool in statistical inference, whenever
exact optimality results are unavailable. The main justification for such fundamen-
tal daily practice procedures as maximum likelihood estimation or likelihood ratio
testing is of intrinsically asymptotic nature. Despite this, a solid and mathematically
rigorous treatment of asymptotics in statistics was not possible until the develop-
ment of the asymptotic theory of statistical experiments attached, essentially, with
the name of Lucien Le Cam. Even a short presentation of that theory is impossible
in the limits of this contribution, and the interested reader is referred to Le Cam
and Yang (1990), Ibragimov and Has’minskii (1991), Janssen et al. (1985), Le Cam
(1960, 1986), Strasser (1985), Torgersen (1991), Shiryaev and Spokoiny (2000) or
van der Vaart (2000) for background reading.

An essential ingredient in the asymptotic theory of statistical experiments is the
characterization, in distribution, of the asymptotic behavior of the so-called local
log-likelihood processes.

The most familiar case, from that point of view, is that of Locally Asymptotically
Normal (LAN) experiments, the local likelihood processes of which are asymp-
totically the same, in distribution, as those of finite-dimensional Gaussian shift
(Gaussian location) experiments. This includes, basically, all experiments/models
where traditional maximal likelihood methods are valid and asymptotically effi-
cient: smooth parametric models for independent, identically or nonidentically dis-
tributed observations, but also linear time-series models (Swensen 1985; Kreiss
1987, 1990; Hallin and Puri 1994; Drost et al. 1997; Taniguchi and Kakizawa
2000; Garel and Hallin 1995), possibly with long memory (Hallin and Serroukh
1998; Hallin et al. 1999), and some nonlinear ones (Linton 1993; Drost et al.
1997; Lee and Taniguchi 2005). Results for locally stationary processes have been
obtained by Hirukawa and Taniguchi (2006). Continuous-time models such as dif-
fusions also have been intensively studied from the LAN perspective, see Kutoy-
ants (1984, 1994, 2004) and the references therein. Finally, LAN also appears in
unit-root autoregressive processes with trend (Hallin et al. 2011) and, as explained
in the sequel, in the context of cointegration models (Hallin et al. 2013). Opti-
mality problems in the LAN context are well understood, and, thanks to the sim-
plicity of Gaussian shift experiments, admit simple solutions: see, for instance,
Hájek (1970, 1972), Jeganathan (1981, 1983), van der Vaart (1991), or Sect. 11.9
of Le Cam (1986).

While the LAN case yields the most familiar type of limiting experiments, more
general cases, such as Locally Asymptotically Mixed Normal (LAMN) or Locally
Asymptotically Brownian Functional (LABF) ones (see Jeganathan 1995) also are
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quite common, essentially for dependent observations, even in very classical settings.
Examples of LAMNexperiments are found in supercriticalGalton–Watson processes
(Davies 1985), explosive and unit-root autoregressive processes (Jeganathan 1995),
null-recurrent diffusions (Kutoyants 2004), or cointegration models (Phillips 1991;
Boswijk 2000; Hallin et al. 2013). Optimality properties are well studied in that
context (see, for instance, Jeganathan 1982, 1983; Basawa and Brockwell 1984;
Janssen 1991; Bhattacharya and Basu 2006).

The situation is less bright for LABF experiments, the optimality features of
which remain largely unknown; see, however, Greenwood and Wefelmeyer (1993),
Gushchin (1996), Jansson (2008), Lin and Lototsky (2013), as well as Kutoyants
(2004). Again, LABF appears in the context of dependent data, either in continu-
ous time (continuous-time Gaussian autoregressions: Lin and Lototsky 2013) or in
discrete time (cointegration models: Hallin et al. 2013).

The need for establishing LAN, LAMN, or LABF in a variety of situations has
stimulated the production of several sets of sufficient conditions, addressing more or
less general situations. Here again, a complete review of those results is impossible,
and we only quote some of them, focusing on the discrete-time time series context. In
the i.i.d. context, the quadratic-mean differentiability of the root of the density plays
the main role: see, e.g., pp. 101–104 of Ibragimov and Has’minskii (1991), Chapter
II.2 of Le Cam and Yang (1990), or Pollard (1997). In the dependent data case, a
pioneering role was played by Roussas (1965, 1979) for Markov processes. Building
on these results, Akritas and Johnson (1982), then Kreiss (1987, 1990) derived con-
ditions for AR(p) and AR(∞) processes. Adopting a different approach, Swensen
(1985) obtained sufficient conditions for the case of AR processes with a linear
trend; his approach was extended to the ARMA, then the multivariate VARMA case
by Hallin and Puri (1994) and Garel and Hallin (1995), respectively. In a nonlinear
context, Linton (1993) under rather stringent conditions discusses ARCH models,
while Jeganathan (1995), and Drost et al. (1997) consider more general partially
nonlinear time series models; Koul and Schick (1996, 1997) and Akharif and Hallin
(2003) study the case of random coefficient autoregressive models Hallin and Pain-
daveine (2004) thta of elliptical VARMA models.

Now, all of those results either aim at establishing LAN, LAMN, or LABF. None
of them can be used in models exhibiting those structures simultaneously. This is the
case, for instance, of cointegration models, which at the same time are LAN, LAMN,
and LABF, with, moreover, distinct contiguity rates, depending on the direction of
local alternatives—see Hallin et al. (2013) for a complete picture. A common feature
of LAN, LAMN, and LABF is the availability of a particular quadratic expansion
of local log-likelihoods (see Sect. 3, and Eq. (6) in Proposition 1). Experiments for
which such an expansion is valid are calledLocally Asymptotically Quadratic (LAQ),
a term coined by Jeganathan (1995). Establishing LAQ thus appears as an important
and natural first step in the analysis of such complex experiments.

We do not know of any sufficient conditions for LAQ alone, and existing condi-
tions for LAN, LAMN, or LABF unfortunately never clearly split into (i) sufficient
conditions for LAQ, and (ii) whatever is needed on top of LAQ for log-likelihoods
to exhibit the required asymptotic distributions associated either with LAN, LAMN,
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or LABF. Quite on the contrary, those two issues (i) and (ii), as a rule, are inti-
mately intertwined, so that the case of complex experiments such as those appearing
in cointegration models are not covered in the literature. The first objective of this
contribution is to provide a sufficient set of conditions for LAQ alone, that can handle
amultiplicity of contiguity rates, and therefore is tailor-made for those complex cases.

In Proposition 1, we give such a set of conditions for the validity of the quadratic
expansion (characterizing LAQ). Specifying a particular experiment is not necessary
at this point, and the proposition is stated in terms of the likelihood ratios associ-
ated with two general sequences of probability distributions; as a consequence, no
parameter space, and no contiguity rates, are involved. LAQ will hold for a given
experiment if those sufficient conditions are satisfied at all points of the parameter
space, for some adequate collection of contiguity rates (defining the so-called local
alternatives).

To the best of our knowledge, no such condition exists in the literature so far,
which makes comparisons meaningless or somewhat unfair. Note, however, that our
Assumptions (a)–(d) are in linewith thosemade by Jansson (2008)when establishing
LABF for unit-root processes (see his Lemma 2), as well as with Conditions A–E
of Theorem 2.1 in Drost et al. (1997) that ensures LAN under very general settings.
The sufficient condition in that latter paper being itself either less restrictive or more
general than other conditions available in the literature, it can be considered that our
Proposition 1, which we successfully applied (Hallin et al. 2013) to cointegration
models, also compares favorablywith the best possible (but so far not available) ones.

Establishing LAQ or, depending on the problem at hand, LAN, LAMN, or LABF,
hardly can be seen as an end in itself. Rather, such structures constitute tools in the
derivation of locally asymptotically optimal inference procedures—the most com-
mon of which are efficient estimation and testing. Efficient estimation (based on Le
Cam’s one-step procedure) and optimal testing (involving, except for the very special
case of testing a fully specified parameter, the estimation of nuisances) both require
the validity of another asymptotic expansion—namely, the asymptotic linearity of
the central sequence involved in estimation, or the asymptotic linearity of the test
statistic in which nuisances are to be estimated.

Most asymptotic linearity results in the literature are obtained on a case-by-case
basis (see Hallin and Paindaveine 2005; Hallin and Puri 1994 for typical exam-
ples). They all are established under either LAN, LAMN, or LABF. And, while
sophisticated regularity assumptions are generally invoked for quadratic expansions
of log-likelihoods, the assumptions used for asymptotic linearity are usually, and
quite unnecessarily so, more basic. An important exception is the elegant condition
considered by van der Vaart (1988) in his Proposition A.10; that result, however, is
limited to the LAN case with independent observations.

The second part of this contribution (Proposition 2) is devoted to a similar set
of assumptions, to be used in parallel with the assumptions of Proposition 1, in a
time-series context, and under much less -restrictive LAQ conditions (so that the
result a fortiori applies under LAN, LAMN, or LABF, or any combination thereof).
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2 Main Notation and Some Preliminary Results

For each T ∈ N, let (ΩT ,FT ) be a measurable space on which two probability
measures, P̃T and PT , are defined. Let FT 0 ⊂ · · · ⊂ FTT ⊂ FT be a sequence of
increasing σ -fields. Still for T ∈ N, define the restrictions P̃T := P̃T |FTT and PT :=
PT |FTT of P̃T andPT , respectively, toFTT . Using obvious notation, similarly define,
for t = 0, . . . , T , the restrictions P̃Tt := P̃T |FTt and PTt := PT |FTt . The Lebesgue
decomposition of P̃Tt on PTt (with respect toFTt) takes the form

P̃Tt(A) =
∫

A
LTtdPTt + P̃Tt(A ∩ NTt) A ∈ FTt,

where NTt ∈ FTt is such that PTt(NTt) = 0 and LTt is theRadon–Nikodymderivative
of that part of P̃Tt which is absolutely continuous with respect to PTt .

The likelihood ratio statistic LRT for P̃T with respect to PT is, by definition,
LTT . Put LRT 0 := LT 0, and define the conditional likelihood ratio contribution of
observation t as

LRTt := LTt/LT, t−1, t = 1, . . . , T,

with the convention 0/0 = 1. Then, the likelihood ratio statistic LRT factorizes into

LRT =
T∏

t=0

LRTt, PT -a.s.

This factorization follows from the fact that, under PT , {LTt : 0 ≤ t ≤ T } is a super-
martingale with respect to the filtration {FTt : 0 ≤ t ≤ T } (which is easy to check)
by repeated application of the following Lemma with X = LTt , Y = LT, t−1, and
F = FT, t−1, t = 1, . . . , T .

Lemma 1 Let X be a nonnegative integrable random variable, and Y a F -
measurable random variable satisfying Y ≥ E [X |F ]. Then, X1{Y=0} = 0 a.s.

Proof The claim readily follows from the fact that

0 ≤ EX1{Y=0} = EE [X |F ]1{Y=0} ≤ EY1{Y=0} = 0. �

We conclude this section with two lemmas that are needed in the sequel. The first
one is a consequence of Theorem 2.23 and Corollary 3.1 in Hall and Heyde (1980).
We refer to Lemma 2.2 in Drost et al. (1997) for additional details.

Lemma 2 If, for all T ∈ N, the square integrable process {XTt : 1 ≤ t ≤ T } is

adapted to the filtration (FTt)0≤t≤T and satisfies
∑T

t=1 E
[
X2

Tt | FT, t−1
] = oP(1)

as T → ∞, then,
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T∑

t=1

X2
Tt = oP(1) and

T∑

t=1

(
XTt − E

[
XTt | FT, t−1

]) = oP(1)

as T → ∞.

This second lemma follows by an application of a result due to Dvoretzky (see
the proof of Theorem 2.23 in Hall and Heyde 1980).

Lemma 3 If, for all T ∈ N, the process {XTt : 1 ≤ t ≤ T } is adapted to the filtra-
tion (FTt)0≤t≤T and satisfies, for all δ > 0,

T∑

t=1

E
[

X2
Tt1{|XTt |>δ} | FT, t−1

]
= oP(1)

as T → ∞, then maxt=1,...,T |XTt | = oP(1) as T → ∞.

3 Quadratic Expansions of Log-Likelihood Ratios

The following proposition provides a general sufficient condition for the existence of
a quadratic expansion of local log-likelihood ratios. All limits, oP, and OP quantities
are to be understood as T → ∞ and, unless explicitly stated otherwise, under PT .

Proposition 1 Suppose that, for some k ∈ N, there exist, for each T ∈ N, FTt-
measurable mappings STt : ΩT → R

k and RTt : ΩT → R, t = 1, . . . , T , such that
the conditional likelihood ratio contribution LRTt can be written as

LRTt =
(
1 + 1

2

(
h′

T STt + RTt
))2

, (1)

where

(a) hT is a bounded (deterministic) sequence in R
k;

(b) for each T ∈ N, {STt : 1 ≤ t ≤ T } is a PT -square integrable martingale differ-
ence array with respect to the filtration {FTt : 0 ≤ t ≤ T }, satisfying the con-
ditional Lindeberg condition and with tight squared conditional moments, i.e.,
such that

EPT

[
STt | FT, t−1

] = 0, t = 1, . . . , T, (2)
T∑

t=1

EPT

[(
h′

T STt
)2

1{|h′
T STt|>δ} | FT, t−1

]
= oP(1) for all δ > 0, (3)
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and

JT :=
T∑

t=1

EPT

[
STt S

′
Tt | FT, t−1

] = OP(1);

(c) the remainder terms RTt and the null-sets NTt from the Lebesgue decomposition
of P̃T on PT are sufficiently small, i.e.,

T∑

t=1

EPT

[
R2

Tt | FT, t−1

]
= oP(1) (4)

and
T∑

t=1

(
1 − EPT

[
LRTt | FT, t−1

]) = oP(1); (5)

(d) logLRT 0 = oP(1).

Then the log-likelihood ratio admits the quadratic expansion

log LRT = h′
T

T∑

t=1

STt − 1

2
h′

T JT hT + oP(1). (6)

Proof Let r : 2x 
→ r (2x) := 2
(
log(1 + x) − x + x2/2

)
, and rewrite the log-

likelihood ratio statistic as

logLRT =
T∑

t=0

log LRTt = oP(1) +
T∑

t=1

h′
T STt − 1

2
h′

T JT hT

+ 1

4

(
h′

T JT hT −
T∑

t=1

(
h′

T STt
)2) +

T∑

t=1

(
RTt − EPT

[
RTt | FT, t−1

])

− 1

4

T∑

t=1

R2
Tt − 1

2

T∑

t=1

h′
T STt RTt +

(
T∑

t=1

EPT

[
RTt | FT, t−1

]

+ 1

4
h′

T JT hT

)
+

T∑

t=1

r
(
h′

T STt + RTt
)
, (7)

where we used Condition (d) to neglect the first term logLRT 0. To establish (6), we
show that the six remainder terms on the right-hand side of (7) all converge to zero
in PT -probability.
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By Theorem 2.23 in Hall and Heyde (1980), Condition (a), and (1)–(2), we have

T∑

t=1

(
h′

T STt
)2 − h′

T JT hT = oP(1), (8)

which shows that the first remainder term is indeed oP(1).
Since (LTt)0≤t≤T is a PT -supermartingale, we have EPT LRTt ≤ 1. Since STt is

also PT -square integrable, it follows from (1) that RTt is PT -square integrable. From
Lemma 2 and (4), we now immediately obtain

T∑

t=1

(
RTt − EPT

[
RTt | FT, t−1

]) = oP(1) and
T∑

t=1

R2
Tt = oP(1), (9)

i.e., the second and third remainder terms also are negligible.
Next we show that the remainder term (1/2)

∑n
t=1 h′

T STt RTt vanishes asymptoti-
cally. First note that Condition (a), (1) and (8) jointly imply

∑T
t=1(h

′
T STt)

2 = OP(1).
Combined with (9), an application of the Cauchy–Schwarz inequality thus yields the
convergence of the fourth remainder term.

To prove the negligibility of the fifth remainder term in (7), observe that (1), (2),
and (4), combined with the Cauchy–Schwarz inequality again, entail

T∑

t=1

(
EPT

[
LRTt | FT, t−1

] − 1
)

=
T∑

t=1

EPT

[
h′

T STt | FT, t−1
] +

T∑

t=1

EPT

[
RTt | FT, t−1

]

+ 1

4

T∑

t=1

EPT

[(
h′

T STt
)2 | FT, t−1

]
+ 1

4

T∑

t=1

EPT

[
R2

Tt | FT, t−1

]

+ 1

2

T∑

t=1

EPT

[(
h′

T STt
)

RTt | FT, t−1
]

=
T∑

t=1

EPT

[
RTt | FT, t−1

] + 1

4
h′

T JT hT + oP(1).

Now, the second part of (4) implies

T∑

t=1

EPT

[
RTt | FT, t−1

] + 1

4
h′

T JT hT = oP(1). (10)

Thus, the fifth remainder term in (7) also is negligible.
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Turning to the sixth and last remainder term, let us first show that

max
t=1,...,T

∣∣h′
T STt + RTt

∣∣ = oP(1) and
T∑

t=1

∣∣h′
T STt + RTt

∣∣3 = oP(1). (11)

As (3) and (4) yield, for δ > 0,

T∑

t=1

EPT

[
(h′

T STt + RTt)
21{|h′

T STt+RTt|>δ} | FT, t−1

]

≤ 4
T∑

t=1

EPT

[
(h′

T STt)
21{|h′

T STt|>δ/2} | FT, t−1

]
+ 4

T∑

t=1

EPT

[
R2

Tt | FT, t−1

]

= oP(1),

the first part of (11) follows as an application of Lemma 3. The second part is obtained
from the latter by taking out the maximum (which tends to zero) and by observing
that the remaining quadratic term is bounded in probability. In view of the first part
of (11), indeed, it is sufficient to study the behavior of the final remainder term on
the event

{∣∣h′
T STt + RTt

∣∣ ≤ 1
}
. On this set, this remainder term is bounded: using

the fact that
∣∣∣∣log (1 + x) − x + 1

2
x2

∣∣∣∣ ≤ 2

3
x3 for |x | ≤ 1

2
,

indeed, we obtain

∣∣∣∣∣

T∑

t=1

r
(
h′

T STt + RTt
)∣∣∣∣∣ ≤ 4

3

T∑

t=1

(
h′

T STt + RTt
)3

.

Convergence to zero is now obtained from the second part of (11). This completes
the proof of the proposition. �

4 Asymptotic Linearity: General Result

This section provides a sufficient condition for the asymptotic linearity of a fairly
general class of statistics, extending and generalizing Proposition A.10 in van der
Vaart (1988) to the case of serially dependent observations under possibly non-LAN
limit experiments.

All limits are taken as T → ∞ and, unless otherwise specified, under PT .
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Proposition 2 Let, for each T ∈ N, {Z̃Tt : 1 ≤ t ≤ T } and {ZTt : 1 ≤ t ≤ T } be
a P̃T and a PT -square integrable martingale difference array, respectively. Suppose
that Conditions (a)–(d) in Proposition 1 hold, as well as the following Conditions
(e)–(h):

(e) (
∑T

t=1 STt, JT ) converges in distribution to a limit (Δ, J ) satisfying

E exp

(
a′Δ − 1

2
a′ Ja

)
= 1 for all a ∈ R

k;

(f)
T∑

t=1

EPT

[(
Z̃Tt

√
LRTt − ZTt

)2 | FT, t−1

]
= oP(1);

(g)
T∑

t=1

EP̃T

[
Z̃2

Tt | FT, t−1

]
= OP(1) under P̃T , and

T∑

t=1

EPT

[
Z2

Tt | FT, t−1

]
= OP(1) under PT ;

(h) the conditional Lindeberg condition holds for {Z̃Tt : 1 ≤ t ≤ T } under P̃T ,

namely, for all δ > 0,
T∑

t=1

EP̃T

[
Z̃2

Tt1
{∣∣∣Z̃Tt

∣∣∣>δ
} | FT, t−1

]
= oP(1) under P̃T .

Then, letting

ĨT :=
T∑

t=1

ι̃Tt :=
T∑

t=1

EPT

[
(h′

T STt)ZTt | FT, t−1
]
, (12)

we have, under PT ,

T∑

t=1

Z̃Tt =
T∑

t=1

ZTt − ĨT + oP(1). (13)

Proof The proof decomposes into four parts. In Part 1, we show that (13) holds if

T∑

t=1

Z̃Tt

(
1 − √

LRTt

)
+ 1

2
ĨT = oP(1). (14)

In Part 2, we show that (14) holds provided that

T∑

t=1

Z̃Tt(h
′
T STt) − ĨT = oP(1). (15)
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In Part 3, we introduce a new sequence of probability measures (P′
T ) and show

that it is contiguous to (PT ). In Part 4, we establish that (15) holds under the new
sequence (P′

T ). In view of contiguity, thus, it also holds under (PT ), which concludes
the proof.

Note that Lemma 1, Condition (e), and Le Cam’s first lemma imply that (P̃T ) and
(PT ) are contiguous. It follows that oP’s and OP’s under (P̃T ) and (PT ) coincide;
therefore, in the sequel,we safely canwriteoP and OP withoutworryingwhether (P̃T )

or (PT ) is the underlying sequence of probability measures.

Part 1. Recalling the definition (12) of ĨT , we have

T∑

t=1

{
Z̃Tt − ZTt + ι̃Tt

}
=

T∑

t=1

Z̃Tt

(
1 − √

LRTt

)
+ 1

2
ĨT

+
T∑

t=1

{
Z̃Tt

√
LRTt − ZTt − EPT

[
Z̃Tt

√
LRTt | FT, t−1

]}

+
T∑

t=1

{
EPT

[
Z̃Tt

√
LRTt | FT, t−1

]
+ 1

2
ι̃Tt

}
;

hence, (14) implies (13) in case

T∑

t=1

{
Z̃Tt

√
LRTt − ZTt − EPT

[
Z̃Tt

√
LRTt | FT, t−1

]}
= oP(1) (16)

and

T∑

t=1

{
EPT

[
Z̃Tt

√
LRTt | FT, t−1

]
+ 1

2
ι̃Tt

}
= oP(1). (17)

As (16) is implied by Condition (f) and Lemma 2 (recall EPT [ZTt | FT, t−1] = 0),
we only need to show that (17) holds in order to complete Part 1. We have

T∑

t=1

EPT

[
Z̃Tt

√
LRTt | FT, t−1

]

=
T∑

t=1

EPT

[
ZTt(1 − √

LRTt) | FT, t−1

]

+
T∑

t=1

EPT

[
(Z̃Tt

√
LRTt − ZTt)(1 − √

LRTt) | FT, t−1

]
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+
T∑

t=1

EPT

[
Z̃TtLRTt | FT, t−1

]

= −1

2
ĨT − 1

2
r (1)

T + r (2)
T + r (3)

T ,

with

r (1)
T =

T∑

t=1

EPT

[
ZTt RTt | FT, t−1

]
,

r (2)
T =

T∑

t=1

EPT

[
(Z̃Tt

√
LRTt − ZTt)(1 − √

LRTt) | FT, t−1

]
, and

r (3)
T =

T∑

t=1

EPT

[
Z̃TtLRTt | FT, t−1

]
.

Starting with r (1)
T , note that

|r (1)
T |2 ≤

(
T∑

t=1

√
EPT

[
Z2

Tt | FT, t−1
]√

EPT

[
R2

Tt | FT, t−1
]
)2

≤
T∑

t=1

EPT

[
Z2

Tt | FT, t−1

] T∑

t=1

EPT

[
R2

Tt | FT, t−1

]
,

so that (4) and Condition (g) imply r (1)
T = oP(1). In the same way, (1), (4), and

Condition (f) yield r (2)
T = oP(1). As for r (3)

T , since EP̃T

[
Z̃Tt |FT, t−1

]
= 0, we

obtain, using (4) and Condition (g) again,

|r (3)
T |2 =

∣∣∣∣∣

T∑

t=1

EP̃T

[
Z̃Tt1NTt |FT, t−1

]∣∣∣∣∣

2

≤
T∑

t=1

EP̃T

[
Z̃2

Tt |FT, t−1

] T∑

t=1

(1 − EPT

[
LRTt | FT, t−1

]
) = oP(1).
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Part 2. From Cauchy–Schwarz, we have

∣∣∣∣∣

T∑

t=1

Z̃Tt(1 − √
LRTt) + 1

2

T∑

t=1

Z̃Tt(h
′
T STt)

∣∣∣∣∣

= 1

2

∣∣∣∣∣

T∑

t=1

Z̃Tt RTt

∣∣∣∣∣ ≤ 1

2

√√√√
T∑

t=1

Z̃2
Tt

√√√√
T∑

t=1

R2
Tt .

Now, by (9),
∑T

t=1 R2
Tt = oP(1) and, by Conditions (g) and (h), and an application

of Hall and Heyde (1980, Theorem 2.23),
∑T

t=1 Z̃2
Tt = OP(1). Hence, (14) follows

from (15).

Part 3. For all T ∈ N, define the new sequence (P′
Tt)

T
t=1 of probability measures

onFTt , where P′
Tt is absolutely continuous with respect to PTt , with density

dP′
Tt

dPTt
:=

t∏

s=1

√
LRT s cT s

with, for s = 1, . . . , T , c−1
T s := EPT

[√
LRT s | FT,s−1

]
. Note that the probability

that all c−1
T s are strictly positive tends to one, since (4) implies

lim
T →∞PT

[
∃s ∈ {1, . . . , T } : c−1

T s = 0
]

≤ lim
T →∞PT

[
T∑

t=1

(1 − EPT [LRTt |FT, t−1]) ≥ 1

]
= 0.

In the sequel, we thus safely can ignore the event {∃s ∈ {1, . . . , T } : c−1
T s = 0}.

Defining P′
T := P′

TT , note that P
′
Tt is the restriction of P

′
T toFT,t . Because of (2), we

have c−1
T s = 1+ 1

2EPT

[
RTt | FT, t−1

]
.This yields, using an expansion of log(1+x),

(4), and (10),

T∑

t=1

log c−1
Tt = −1

8
h′

T JT hT + oP(1).

Moreover, an application of Lemma 3 and (4) yields maxt=1,...,T |c−1
Tt − 1| = oP(1),

and thus also
max

t=1,...,T
|cTt − 1| = oP(1). (18)
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Inserting (6) and recalling that log LRT 0 = oP(1), we obtain, under PT ,

log
dP′

T

dPT
= 1

2

T∑

t=1

logLRTt −
T∑

t=1

log c−1
Tt + oP(1)

= 1

2

T∑

t=1

h′
T STt − 1

8
h′

T ĨT hT + oP(1).

Condition (e) and Le Cam’s first lemma entail that the sequences (P′
T ) and (PT ) are

mutually contiguous. This completes Part 3 of the proof.

Part 4. Let us show that, under the measures (P′
T ),

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt) | FT, t−1

]
= ĨT + oP(1) (19)

and

T∑

t=1

Z̃Tt(h
′
T STt) =

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt) | FT, t−1

]
+ oP(1). (20)

Since oP(1)’s under (P′
T ) are oP(1)’s under the contiguous (PT ) too, a combination

of these two results yields (15) and concludes the proof.
Starting with (19), we have

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt) | FT, t−1

]
=

T∑

t=1

cTtEPT

[
Z̃Tt

√
LRTt(h

′
T STt) | FT, t−1

]

= ĨT +
T∑

t=1

(cTt − 1)EPT

[
ZTt(h

′
T STt) | FT, t−1

]

+
T∑

t=1

cTtEPT

[
(Z̃Tt

√
LRTt − ZTt)(h

′
T STt) | FT, t−1

]
.

Condition (f) and (18) imply (19) since
∑T

t=1 EPT

[
(h′

T STt)
2 | FT, t−1

] = OP(1)

(see (1)) and
∑T

t=1 EPT

[
Z2

Tt | FT, t−1
] = OP(1) (see Condition (g)).

Turning to (20), first note that
∑T

t=1(h
′
T STt)

2 = OP(1) and
∑T

t=1 Z̃2
Tt = OP(1)

by an application of Hall and Heyde (1980, Theorem 2.23) and (3), (1), Condition (g)
and Condition (h), respectively. Hence,
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T∑

t=1

|Z̃Tt ||h′
T STt | = OP(1) and

T∑

t=1

EP′
T
[|Z̃Tt ||h′

T STt | | FT, t−1] = OP(1).

Let ε, δ > 0. In view of the previous remarks, we can find B and T1 such that,
for T ≥ T1,

P′
T (A (T )

δ ) ≤ δ/6

with

A (T )
δ :=

{
T∑

t=1

∣∣∣(h′
T STt)Z̃Tt − EP′

T

[
(h′

T STt)Z̃Tt | FT, t−1

]∣∣∣ > B

}
.

Setting η := min{1,√δε(108(B + 2))−1/2} and

Aη,T t :=
{
|ZTt | ≤ η

} ⋂{
|h′

T STt | ≤ η
}
,

decompose

T∑

t=1

Z̃Tt(h
′
T STt) −

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt) | FT, t−1

]
= p(1)

T − p(2)
T + p(3)

T ,

with

p(1)
T :=

T∑

t=1

Z̃Tt(h
′
T STt)1A c

η,T t
,

p(2)
T :=

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt)1A c

η,T t
| FT, t−1

]
, and

p(3)
T :=

T∑

t=1

Z̃Tt(h
′
T STt)1Aη,T t −

T∑

t=1

EP′
T

[
Z̃Tt(h

′
T STt)1Aη,T t | FT, t−1

]
.

Let us show that there exists T 	 such that, for all T ≥ T 	, P′
T

(
|p(i)

T | > ε/3
)

≤ δ/3,

which, as ε > 0 and δ > 0 can be taken arbitrarily small, yields (20). Applying
Theorem 2.23 in Hall and Heyde (1980), (1), (3), Condition (g), and Condition (h),
we obtain

T∑

t=1

Z̃2
Tt1{|Z̃Tt | > η} +

T∑

t=1

(h′
T STt)

21{|h′
T STt | > η} = oP(1).
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This yields, using (1) and Condition (g) again,

|p(1)
T | ≤

√√√√
T∑

t=1

(h′
T STt)21{|h′

T STt |>η}

√√√√
T∑

t=1

Z̃2
Tt

+
√√√√

T∑

t=1

(h′
T STt)2

√√√√
T∑

t=1

Z̃2
Tt1{|Z̃Tt |>η} = oP(1).

From (3), (1), Condition (g) and Condition (h), we also obtain

|p(2)
T | ≤

√√√√
T∑

t=1

c2TtEP̃T

[
Z̃2

Tt1{|Z̃Tt |>η} | FT, t−1

]
√√√√

T∑

t=1

EPT

[
(h′

T STt)2 | FT, t−1
]

+
√√√√

T∑

t=1

c2TtEP̃T

[
Z̃2

Tt | FT, t−1

]
√√√√

T∑

t=1

EPT

[
(h′

T STt)21{|h′
T STt |>η} | FT, t−1

]

= oP(1).

Hence, there exists T2 such that, for all T ≥ T2, P′
T

(
|p( j)

T | > ε/3
)

≤ δ/3 for

j = 1, 2. Next, define the P′
T -martingales

{
ATt :=

t∑

s=1

{
Z̃Tt(h

′
T STt)1Aη,T t

− EP′
T
[Z̃Tt(h

′
T STt)1Aη,T t

| FT,s−1]
}

: 1 ≤ t ≤ T
}
,

the stopping times

S (T ) := inf

{
t ∈ N|

t∑

s=1

|ΔAT s | > B

}
,

and the processes {
MTt := AT,t∧S (T ) : 1 ≤ t ≤ T

}
,

namely, the stopped versions of the martingales {ATt : 1 ≤ t ≤ T }—which thus also
are martingales. Note that |ΔATt | ≤ 2η2. We obtain

EP′
T

M2
TT =

T∑

t=1

EP′
T
(MTt − MT, t−1)

2 ≤ EP′
T

[S (T )∑

t=1

(ΔATt)
2
]

≤ 2η2EP′
T

[S (T )∑

t=1

|ΔATt |
]

≤ 2η2(B + 2η2).
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So, for T ≥ T1, we have

P′
T

(
|p(3)

T | > ε/3
)

= P′
T (|ATT | > ε/3) ≤ P′

T (MTT �= ATT ) + P′
T (|MTT | > ε/3)

≤ P′
T (S (T ) ≤ T ) + P′

T (|MTT | > ε/3)

≤ P′
T (A (T )

δ ) + P′
T (|MTT | > ε/3) ≤ δ

6
+ 18η2(B + 2)

ε2
≤ δ

3
.

Letting T 	 := max{T1, T2} completes the proof. �
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Asymptotic Normality of Binned Kernel
Density Estimators for Non-stationary
Dependent Random Variables

Michel Harel, Jean-François Lenain and Joseph Ngatchou-Wandji

Abstract We establish the asymptotic normality of binned kernel density estimators
for a sequence of dependent and nonstationary random variables converging to a
sequence of stationary random variables. We compute the asymptotic variance of a
suitably normalized binned kernel density estimator and study its absolute third-order
moment. Then, we show that its characteristic function tends to that of a zero-mean
Gaussian randomvariable (rv).We illustrate our resultswith a simulation experiment.

1 Introduction

Let {X1, . . . , Xn} be a sequence of rvs from a univariate distribution with density f .
The Rosenblatt (1971) kernel density estimator (KDE) f̂ of f is defined by

f̂ (x) = 1

nh

n∑

i=1

K

(
x − Xi

h

)
, (1)

where h = h(n) is the smoothing parameter and K is the kernel, usually a density
function. Themost popular K are, the triangular, theGaussian, and the Epanechnikov
kernels (see, e.g., Lenain et al. (2011)), while optimal values of h have the general
form Cn−1/5, for some generic constant C .
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For reducing the computational time of KDE, binned kernel estimators are some-
times used. They are also used in the situation where the data suffer some kind of
binning or rounding on a grid. These estimators, which can be regarded as approxi-
mations of KDE, or as direct estimators of f have the general form

f̂ B(x) = 1

nh

∑

j∈ZZ
K

(
x − a j

h

) n∑

i=1

T

(
Xi − a j

δ

)
, (2)

where {a j } j∈ZZ = {a0+ jδ} j∈ZZ are given grid pointswith an arbitrary origin a0 ∈ IR,
T is a kernel with window width δ, and h and K are as above.

Denote by �x� the integer closest to x (if x is a half integer, we assume for
definiteness that �x� = x − 1/2), and by [x] the largest integer less than or equal to
x . For δ > 0, define the real-valued function a by a(y) = δ �(y − a0)/δ� + a0, for
rounding y ∈ IR to its nearest value, or a(y) = δ [(y − a0)/δ] + a0, for rounding y
down.

In many practical situations, only the rounded a(Xi ) values of the Xi ’s are avail-
able. Consequently, some information is lost and the differences Xi −a(Xi )’s can be
considered as missing variables. Following a previous result of Hall (1983), Hall and
Wand (1996) show the convergence of {Zi = (Xi − a(Xi ))/δ}i∈IN to a rv uniformly
distributed over [0, 1]. This result is extended by Lenain et al. (2011) to a class of
nonstationary rvs. In such situations where only the a(Xi )’s are at hand, estimating
the stationary distribution of {Xi }i∈IN by a KDE is tantamount to using a binned
kernel estimator for some T . The estimator f̂ B associated with some particular
kernels T has been investigated in the literature. As example, one can cite the ones
associated with the rounding kernels T (y) = I (y ∈ [0, 1]) or T (y) = I (y ∈
[−1/2, 1/2)) given by

f̂ B(x) = 1

nh

n∑

i=1

K

(
x − Xi

h
+ δ

h
Zi

)
, (3)

where for all i ∈ IN, Zi = (Xi − a(Xi ))/δ ∈ [0, 1) or Zi ∈ [−1/2, 1/2). These
estimators, sometimes called kernel density estimator with binned data, have been
investigated by Scott and Sheather (1985) for independent and identically distributed
(iid) rvs and for stationary rvs. Scott and Sheather (1985) obtained the leading terms
in the asymptotic expansion of the bias and also that of the mean square error (MSE)
as a function of both the window widths h and δ.

The estimators (3) are more easier to compute than the following one obtained
with the triangular kernel T (y) = (1 − |y|)I (y ∈ [−1, 1]) advised by Jones and
Lotwick (1984):

f̂ B(x) = 1

nh

n∑

i=1

[
(1 − Zi ) K

(
x − Xi

h
+ δ

h
Zi

)
+ Zi K

(
x − Xi

h
+ δ

h
(Zi − 1)

)]
,

(4)
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where for all i ∈ IN, Zi ∈ [0, 1). The estimator (4), also called discretized kernel
density estimator, has been investigated by Jones (1989), for both iid and stationary
rvs. Similarly, Jones (1989) obtained the leading terms in the asymptotic expansion
of the integratedmean square error (IMSE) as a function of both the windowwidths h
and δ. Under some assumptions on the derivatives of f and K , his work improves the
results of Scott and Sheather (1985) in the asymptotic expansion, as the informations
obtained are more precise on the orders of magnitude of the errors. However, neither
Scott and Sheather (1985) nor Jones (1989) established the asymptotic normality of
their estimators.

Let {Xi }i∈IN be an alpha-mixing process locally nonstationary in the sense that
there exist two indices i0, i1 ∈ IN such that the sequence {Xt }i0≤i≤i1 is possibly
nonstationary and the sequences {Xi }i<i0 and {Xi }i>i1 behave like stationary series
with the same stationary density function f ∗. Simple examples of such a series are
those that can be decomposed into a stationary series plus a trend, say, ϑ(i), that
vanishes as i grows. For such nonstationary series, several consistency results of f̂ B

to f ∗ are established in Lenain et al. (2011). In this paper, we aim to establish a CLT
for f̂ B . It is well known that it can allow for the construction of confidence bands
for f ∗. In Sect. 2, we discuss some motivating examples. We give the notation and
list the sequence of assumptions considered in Sect. 3, where we state and prove our
central limit theorem for the two simple classes of f̂ B given by (3) and (4). In Sect. 4,
we state the CLT for the more general f̂ B defined in (2). In Sect. 5, we present the
results of a simulation experiment. The last section is devoted to the proofs of our
theoretical results.

2 Examples, Notation and Assumptions

In this section, we discuss some motivating examples to our work and explain the
reason of our study of binned kernel estimators. We also precise the notation and we
list the assumptions needed for the proofs of our result.

2.1 Motivating Examples

Assume we are interested in a stationary and weakly dependent latent time series{
X∗

i

}
i∈IN (which is not observed). At the place, one observes a time series {Xi }i∈IN,

nonstationary in the sense given in the introduction. The link between the two series
can be on the form:

Xi = ϑ(i) + X∗
i , (5)

where the trend ϑ(i) vanishes as i grows.
In this example, the series

{
X∗

i

}
i∈ZZ can be a usual stationary time series as

ARMA, bilinear, TAR, ARCH, GARCH or any other stationary time series. The
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weak dependence and the stationarity properties of most of them are widely studied
in the literature. Another example can be taken from the so-called state-spacemodels:

{
Xi = ξ X∗

i + εi

X∗
i = ζ X∗

i−1 + ηi ,
(6)

where ξ and ζ are constants, {ηi }i∈IN is a white noise with finite variance σ 2
η and

{εi }i∈IN is a sequence of rvs with mean ϑ(i) and/or variance (ζ(i)+1)σ 2
ε depending

on i , and both decreasing to 0 and σ 2
ε (> 0), respectively, leading to the usual state-

space models encountered in the literature. Some other examples can be found in
the time-varying coefficients models also largely studied in the literature. Figure1
displays the graphs of four nonstationary time series X1, X2, . . . , X1000. The first
three graphs are those of series sampled from (5) for trends 0.99i , (−0.99)i and
−0.99i , respectively. The fourth graph is that of a series generated from (6) for zero-
mean Gaussian errors ε1, ε2, . . . , ε1000 with standard deviation 0.08, and zero-mean
Gaussian η1, η2, . . . , η1000 with standard deviations 0.08 + 0.98i . For all of them,
the sequence X∗

1, X∗
2, . . . , X∗

1000 is simulated from an ARmodel with autoregressive
coefficient 0.5 and a zero-mean Gaussian white noise with standard deviation 0.08.

Some domains where the above models can be used are, among others, epidemi-
ology, finance, meteorology, agriculture, and social science. A concrete example in
epidemiology is what happens during an epidemic : the number of sufferers is high at
the beginning and generally decreases toward the end of the epidemic until it becomes
stationary. A concrete example in finance is the situation where in a financial market,
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Fig. 1 Time series plots of X1, X2, . . . , X1000 sampled from (5) (the first three graphs) or (6) (the
fourth graph)
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the price of a stock option is low at the opening and starts increasing at a certain
time until its becomes stationary. Such phenomena, which can be also encountered in
many other domains, can be modeled by (5) and/or (6). It is clear that any statistical
inference on the stationary distribution of the latent series

{
X∗

i

}
i∈IN will be based on

the observed series {Xi }i∈IN which has the same asymptotic behavior.

2.2 The Binned Kernel Estimator Based
on Non-stationary Data

The Rosenblatt and the binned kernel estimators are widely studied in the literature
for iid data, and for stationary data. Simonoff (1996) gives a digest of this huge
work. Tran (1990) obtains a central limit theorem (CLT) for the Rosenblatt KDE f̂
for strong mixing random fields. A recent concrete example where KDE is used can
be found in Geange et al. (2011) where the Niche Overlap is estimated for iid data.
Nevertheless, it is well known that many sequences of rvs encountered in practice
are neither independent nor stationary. This is why we wish to study these estimators
in a dependent and nonstationary data context. To the best of our knowledge, the
only studies in this direction are Harel and Puri (see 1996; 1999), where a CLT is
established for f̂ under absolutely regular assumption of the data, and Lenain et al.
(2011) where the bias and theMSE of f̂ B and its particular forms given by (3) and (4)
are investigated under strongmixing conditions of the nonstationary data considered.
To complete these studies, we focus here on the CLT for f̂ B based on dependent and
nonstationary data. Such a result can lead to the construction of a confidence band
for f ∗.

2.3 Assumptions and Notation

After the motivating examples given in the previous subsection, we give the notation
we use and list and discuss our assumptions.

(H1):

• Let {Xi }i∈IN , be a sequence of nonstationary rvs, such that each Xi has a cumu-
lative distribution function Fi with density function fi . Denote by Fi, j the cumu-
lative distribution function of (Xi , X j ), and by fi, j its density function. Denote
the cumulative distribution function of (Xi , Zi ) by Gi and gi its density function.
Denote the cumulative distribution function of (Xi , X j , Zi , Z j ) by Gi, j and gi, j

its density function.
• Let

{
X∗

i

}
i∈IN be a sequence of strictly stationary rvs with stationary cumulative

distribution function F∗ and density f ∗. Denote by F∗
i− j the cumulative distribu-

tion of (X∗
i , X∗

j ) and by f ∗
i− j its density function.
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• Assume that all the above cumulative distribution and density functions are con-
tinuous, with f ∗ and fi− j absolutely continuous and differentiable. Assume that
these functions satisfy

sup
i∈IN

sup
x∈IR

fi (x) < ∞, sup
i∈IN

sup
x,y∈IR

fi, j (x, y) < ∞, sup
x∈IR

f ∗′(x) < ∞,

∫ ∣∣ f ∗′(x)
∣∣ dx < ∞, sup

i, j∈IN
z=x,y

sup
x,y∈IR

{∣∣∣∣∣
∂ f ∗

j−i (x, y)

∂z

∣∣∣∣∣ ,
∫ ∣∣∣∣∣

∂ f ∗
j−i (x, y)

∂z

∣∣∣∣∣ dxdy

}
< ∞,

∀ j > i,
∥∥∥Fi, j − F∗

j−i

∥∥∥
V

= O (η (i)) → 0 and
∥∥Fi − F∗∥∥

V = O (η (i)) → 0 as i → ∞,

where g′ denotes the derivative of a function g and ||G||V stands for the total variation
norm of a function G.

Remark 1 Consider {Xi }i∈IN and
{

X∗
i

}
i∈IN linked by (5) for a decreasing function

ϑ , and assume that
{

X∗
i

}
i∈IN is a zero-mean Gaussian process with variance σ 2.

Then f ∗ is a univariate Gaussian density with parameters 0 and σ 2, and f ∗
j−i is

a bivariate Gaussian density with parameters (0, 0)′ and covariance matrix Ωi, j =(
σ 2 ρ j−i

ρ j−i σ 2

)
, where for j > i , ρ j−i = Cov(X∗

i , X∗
j ). It is an easy matter that

fi, j is a Gaussian density with mean (ϑ(i), ϑ( j))′ and covariance matrix Ωi, j . For
this example, all the points of assumption (H1) hold. Using the version of the total
variation norm with densities and using first-order Taylor expansions of f ∗ and f ∗

j−i
with respect to appropriate variables (the parameters), it can be checked easily that
O (η (i)) = O (ϑ (i)).

(H2):

• The function K is nonnegative, bounded, symmetric, absolutely continuous and
piecewise differentiable such that:

∫
K (x)dx = 1,

∫
x2K (x)dx < ∞,

∫
x K ′(x)dx < ∞, sup

x∈IR
∣∣K ′(x)

∣∣ < ∞,

∫ ∣∣K ′(x)
∣∣ dx < ∞.

• The bandwidths h = h(n) and δ = δ(n) are positive real numbers such that h → 0,
δ → 0 and δ/h → 0, nh → ∞ as n → ∞.

• The nonstationarity rate η satisfies
∑∞

i=1 η (i) < ∞.

Remark 2 Recalling that for a function � ∈ L p, ||� ||p = (
∫

� p(x)dx)1/p, in

view of (H2) and
∫ ∣∣K ′(t)

∣∣p dt ≤ supx∈IR
(∣∣K ′(x)

∣∣p−1
) ∫ ∣∣K ′(t)

∣∣ dt), both ‖K‖p

and
∥∥K ′∥∥

p are finite for any p ≥ 1.
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Remark 3 The condition
∑∞

i=1 η (i) < ∞ is satisfied in particular for η (i) =
O

(
τ i

)
, τ ∈ (0, 1) and for η (i) = O

(
i−τ

)
, τ > 1.

(H3):

• The sequence {Xi }i∈IN is strongly mixing with mixing coefficient α(n) such that
α(n) → 0 as n → ∞.

• There exist v > 0, c ∈ 2IN such that for c > 3,
∑n

i=1(i + 1)c−2 [α(i)]1/λ < ∞
with λ = (v + c)/v and for h = h(n), there exists a nondecreasing sequence
m = m(n) such that hm → 0 and h(n)−1/λ∑n

i=m α (i)1/λ → 0 as n → ∞.

Remark 4 Assumption (H3) is satisfied in the following situations :

• α (i) = O(ρi ) with ρ ∈ (0, 1) and h log (n) → 0 as n → ∞.
• α (i) = O(i−ρ)with ρ > 1+γ /ε > 2, 0 < ε < γ < 1 and hnε → 0, nγ h → ∞,

n(ρ−γ /ε)/3 h → ∞ as n → ∞.

3 The Central Limit Theorem

In this section, we establish a CLT for f̂ B(x). We first recall some recent results on
the bias and the MSE of the binned kernel estimators we are studying, and we study
the asymptotic behavior of their variance and their absolute third-order moment.

3.1 Some Existing Results

Denote by f̂ ∗ the Rosenblatt estimator of f ∗. For the estimator f̂ B(x) given by (3)
and written for Zi ∈ �, where � = [0, 1) for rounding down, or � = [−1/2, 1/2)
for rounding to the nearest values, Lenain et al. (2011) prove that under (H1) and
(H2), the bias of f̂ B is asymptotically equal to that of theRosenblatt estimator up to an
O (1/nh)+O

(
δ2/h2 + δ

∫
�

udu + δ2/h
)
term. For the functions f ∗ and K having

third-order derivativeswith that of K in L1, they give amore explicit expression of the
bias. They do the same for f̂ B(x) defined in (4). Next, under additional assumptions
on themixing coefficient, Lenain et al. (2011) show that f̂B(x) on its forms (3) and (4)
converges in the MSE to f ∗(x). Finally, by doing similar work for the more general
form of f̂ B(x) given by (2), they mainly show that the bias is asymptotically equal to
that of the Rosenblatt estimator up to a term of order O (δ) + O (δ/h) + O (1/nh).

Many authors have established central limit theorems for the Rosenblatt estimator
f̂ (x) defined in (1) and have investigated the IMSE

∫ [ f̂ (x) − f (x)]2dx for iid rvs
or for stationary-dependent rvs. Harel and Puri (1996) generalized these results for
nonstationary and dependent rvs. For this, they established the convergence of the
characteristic function of

√
nh[ f̂ (x) − f (x)] to that of a zero-mean Gaussian rv, by
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splitting the sequence of the involved rvs into two sequences such that one is negli-
gible and the other is asymptotically independent. They proved also the convergence
of the variance of

√
nh f̂ (x) to some real value, and study the absolute third-order

moment. These techniques are generalized in this paper to get the asymptotic nor-
mality of the binned kernel density.

Harel and Puri (1996) gave applications to Markov processes (aperiodic, geomet-
rically ergodic and Harris recurrent or aperiodic and Doeblin recurrent) and ARMA
processes forwhich the initialmeasure is not necessarily the invariantmeasure. Later,
Harel and Puri (1999) proved the weak invariance of the conditional nearest neighbor
regression function estimators (Rosenblatt version) called the conditional empirical
process for nonstationary absolutely regular rvs.

3.2 Preliminaries to the Central Limit Theorem

For establishing our central limit theorem, we first show that the variance of√
nh f̂B(x) tends to some real value σ 2(x). Next, we study its absolute third-order

moment. These results are then used for establishing the convergence of the char-
acteristic function of

√
nh[ f̂ B(x) − E f̂B(x)] to that of a zero-mean Gaussian rv

with variance σ 2(x), by making use of a suitable blocking of the sequence of the rvs
involved. This blocking could have been avoided by using the techniques of Bardet
et al. (2008). But it seems not easy to apply them in this nonstationary context.

Lemma 1 Assume that (H1)–(H3) hold. Then, as n tends to ∞, V ar
(√

nh f̂B(x)
)

tends to σ 2(x) = f ∗(x)
∫

K 2(t)dt.

Proof See Sect. 6.

For some function ε defined on � with values in (0, 1) and for all i ∈ IN, define the
rvs Ai = K [(x − Xi )/h] + (δ/h)Zi K ′ [(x − Xi )/h + (δ/h)Ziε (Zi )] and Hi =
Ai − E Ai . Let � be a positive integer. Consider any subsequence H�i , i = 1 . . . , �

of (Hi )i∈IN. We have the following lemma:

Lemma 2 Assume that (H1)–(H3) hold. Then,

E

(∣∣∣∣∣
�∑

i=1

H�i

∣∣∣∣∣

)3

≤ C �3/2h.

Proof See Sect. 6.

For all i ∈ IN, lettingGi = K [(x − Xi ) /h + δZi/h] and Wi = Gi − EGi , decom-
pose (nh)−1/2∑n

i=1 Wi into two sequences U j and Vj , j = 1, . . . , q such that
q = n/(� + m), with � = ⌊

n1−β
⌋
, β ∈ (0, 1) and m = o(�). Using the sequence of

increasing numbers
{
a1, b1, . . . , aq , bq , aq+1

}
, one can write
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Sn =
q∑

j=1

(
U j + Vj

) = 1√
nh

q∑

j=1

⎛
⎝b j −1∑

i=a j

Wi +
a j+1−1∑

i=b j

Wi

⎞
⎠

with a j+1 − b j = m and bk − ak = � for all k, j ∈ {1, 2, . . . , q}.
The following lemma states that (Vj ) is a sequence of negligible rvs and that (U j )

is a sequence of asymptotically independent rvs.

Lemma 3 Assume that (H1)−(H3) hold. Then for larger values of n, one has

∣∣∣∣∣∣
E
{
exp

[
i t

√
nh

(
f̂ B(x) − E f̂B(x)

)]}−
q∏

j=1

E
[
exp

(
i t U j

)]∣∣∣∣∣∣ ≤ C q α (m) , (7)

where C is a generic constant and i stands for the complex number such that i2 = −1.

Proof See Sect. 6.

3.3 Convergence in Distribution

In this subsection, we state our main result.

Theorem 1 Assume that (H1)–(H3) hold, and that there exist β ∈ (0, 1) and m =
o

(
n1−β

)
such that α (m) = o

(
n−β

)
. Then, for all β0 ∈ (0, β) and h = Cn−β0 ,√

nh
[

f̂ B(x) − E f̂B(x)
]

converges in distribution to a zero-mean Gaussian rv with
variance σ 2(x) = f ∗(x)

∫
K 2(t)dt.

Proof As can be seen in Sect. 6, the proof uses the techniques of Takahata and
Yoshihara (1987), and Lemmas 1 and 2.

4 The General Binned Kernel Estimator

In this section, (H1)−(H2) still hold. Since the assumptions on cumulative distrib-
ution and density functions of (Xi , Zi ) and (Xi , X j , Zi , Z j ) are no more in force,
(H3) is replaced by
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(H3)′:

• The sequence {Xi }i∈IN is strongly mixing with mixing coefficients α(n) → 0 as
n → ∞.

• There exist v > 0, c ∈ 2IN such that for c > 3,
∑n

i=1(i + 1)c−2 [α(i)]1/λ < ∞
with λ = (v + c)/v, and for h = h(n), there exists a nondecreasing sequence
m = m(n) such that hm → 0 and hδ−1/λ−1 ∑n

i=m α (i)1/λ → 0 as n → ∞.

The proof of a central limit theorem for the more general binned kernel estimator
given by (2) can be handled in the same way as in the previous case. The remaining
thing to do is the computation of the asymptotic variance of

√
nh f̂B(x). This is

given by

Proposition 1 Assume that (H1)–(H2) and (H3)′ hold. Then V ar
(√

nh f̂B(x)
)

tends to

σ 2(x) =
{
‖K‖22

[
‖T ‖22 + 2

∫

�

T (t) T (t − 1) dt

]}
f ∗ (x) (8)

as n → ∞, where T is the kernel function defined in (2).

Proof See Sect. 6.

Theorem 2 Assume that (H1)−(H2) and (H3)′ hold, and that there exist β ∈ (0, 1)
and m = o

(
n1−β

)
such that α (m) = o

(
n−β

)
.Then for all β0 ∈ (0, β) and h =

Cn−β0 ,
√

nh
[

f̂ B(x) − E f̂B(x)
]

converges in distribution to a zero-mean Gaussian
rv with variance σ 2(x) whose expression is given by (8).

Proof The proof can be handled along the same lines as those of Theorem 1.

5 Simulations

In this section, we use the software R to do a simulation experiment for illustrating
our results.We limit ourselves to (1) and (3), based onmodels (5) and (6) with a0 = 0
in the expression of a(y). For both estimators, we consider a Gaussian kernel with
either h = n−1/2 or h = n−1/3 and δ = 0.5h, where n is the sample size.

Figure2 displays the graphs of f ∗, f̂ , and f̂ B as well as those of two functions
LB and UB delimiting a 5% confidence band of f ∗. The computation of all these
functions is based on nonstationary time series X1, X2, . . . , Xn of lengths n =
300, 500, 800, and 1000, sampled from (5). The trend used was ϑ(i) = 0.8i and the
corresponding stationary time series X∗

1, X∗
2, . . . , X∗

n was from an AR model with
autoregressive coefficient 0.5 and a zero-mean Gaussian white noise with standard
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Fig. 2 Stationary density f ∗ (solid line), KDE f̂ (short-dashed line), binned kernel estimator f̂ B
(dotted line), confidence band delimited by the functions LB (long-dashed line) and UB (dashed-
dotted line), based on (5)

deviation 0.08. For this model, the density of the stationary distribution f ∗ is a
zero-mean Gaussian density with standard deviation 0.08 × 0.75−1/2 ≈ 0.0924.

It can be seen from the graphs that KDE and binned estimators have the same
behavior, and both are generally consistent to the stationary density which, generally
lieswithin its confidence band.One can also see that this consistency ismore accurate
as n grows.

Figure3 also displays the same graphs based on nonstationary time series
X1, X2, . . . , Xn generated from (6) for zero-mean Gaussian errors ε1, ε2, . . . , εn

with standard deviation 0.08, and zero-mean Gaussian errors ηi with standard devia-
tions 0.08+ 0.98i , i = 1, . . . , n. The corresponding X∗

1, X∗
2, . . . , X∗

n was generated
from an AR model with autoregressive coefficient 0.3 and a zero-mean Gaussian
white noise with standard deviation 0.8. For this model, the density of the sta-
tionary distribution f ∗ is a zero-mean Gaussian density with standard deviation
[(0.242)/0.75 + 0.082]1/2 ≈ 0.29.

As in the preceding case, one can see from the graphs that KDE and binned
estimators are consistent to f ∗ and are more accurate as n grows. Here also, f ∗
generally lies in its confidence band.

The trials with an Epanechnikov kernel gave similar results. We tried many other
models, in particular (5) for trends ϑ(i) = 0.9i , 0.95i and 0.99i . From the results
that we do not present, we noted that both estimators still had the same behavior, but
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Fig. 3 Stationary density f ∗ (solid line), KDE f̂ (short-dashed line), binned kernel estimator f̂ B
(dotted line), confidence band delimited by the functions LB (long-dashed line) and UB (dashed-
dotted line), based on (6)

they were less consistent to the stationary density for ϑ(i) = 0.99i and n < 800.
This is likely due to the fact that the trend converges more slowly to 0, and by this,
induces a large proportion of nonstationary observations in the data.

6 Proof of the Results

Proof of Lemma 1: One shows that for m = o (n),

V ar
(√

nh f̂B(x)
)

= ‖K‖22 f ∗(x) − h f ∗(x)2 + O
(

h2
)

+O

(
δ2

h2 + δ

∫

�

udu + δ2

h

)
+ O

(
1

nh

)
+ O

(
h m + h−1/λ

n∑

i=m

α (i)1/λ
)

.

For f̂ B(x) defined in (3) with Zi ∈ �(= [0, 1) or [−1/2, 1/2)), by a Taylor
expansion, there exists a function ε defined on �, with values in (0, 1) such that

f̂ B(x) = 1

nh

n∑

i=1

{
K

(
x − Xi

h

)
+ δ

h
Zi K ′

[
x − Xi

h
+ δ

h
Ziε (Zi )

]}
, Zi ∈ �

= 1

nh

n∑

i=1

Ai .
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Also, for all i ∈ IN, denoting by A∗
i = K

[
(x − X∗

i )/h)
]
and by Hi and H∗

i the
centered rvs Ai − E Ai , and A∗

i − E(A∗
i ), respectively, it is easy to see that by a

classical decomposition, one has

V ar
(√

nh f̂B(x)
)

= 1

nh

n∑

i=1

(
E

(
H2

i

)
− E

(
H∗2

i

))
+ 1

nh

n∑

i=1

E
(

H∗2
i

)

+ 2

nh

n−1∑

i=1

n∑

j=i+1

E
(

Hi Hj
)
.

Writing the right-hand side of the above equality as (VAR − VAR∗) + VAR∗ + COV,
we first evaluate VAR − VAR∗. One can write

VAR − VAR∗ = 1

nh

n∑

i=1

([
E

(
A2

i

)
− E

(
A∗2

i

)]
− (E Ai )

2 + (
E A∗

i

)2)
.

Now it is easy to see that

E A∗
i ≤ h sup

x
f ∗ (x)

∫
K (t) dt = O(h) , E Ai − E A∗

i = O

(
η (i) + δ2

h

)
and

(E Ai )
2 − (

E A∗
i

)2 = (
E Ai − E A∗

i

)2 + 2E A∗
i

(
E Ai − E A∗

i

)
.

This entails the following equalities:

1

nh

n∑

i=1

[
(E Ai )

2 − (
E A∗

i

)2] = O

(
1

nh
+ δ4

h3 + δ2
)

1

nh

n∑

i=1

[
E

(
A2

i

)
− E

(
A∗2

i

)]

= 1

nh

n∑

i=1

[∫

�

∫
K

(
x − yi

h

)2

gi (yi , ui )dyi dui −
∫

K

(
x − yi

h

)2

f ∗(yi )dyi

]

+ δ

nh2

n∑

i=1

∫

�

∫ {
ui K

(
x − yi

h

)
K ′
[

x − yi

h
+ δ

h
uiε (ui )

]

+ δ

h
u2

i K ′
[

x − yi

h
+ δ

h
uiε (ui )

]2 }
gi (yi , ui )dyi dui .
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Writing the right-hand side of the above equality as E1 + E2, by the convergence
with respect to the total variation norm, one can write:

|E1| ≤ 1

nh
sup

y

∣∣∣∣K
(

x − y

h

)∣∣∣∣
2 n∑

i=1

∫ ∣∣ fi (yi ) − f ∗(yi )
∣∣ dyi = 1

nh
C

n∑

i=1

O(η(i)).

Letting E∗ be the stationary counterpart of E , and observing that E2 = (E2 −
E∗
2 )+ E∗

2 , by a slight extension of Lemma 3 of Hall (1983) to nonstationary rvs, one
has

∣∣E2 − E∗
2

∣∣ ≤ δ

nh2 supy,u

∣∣∣∣K
(

x − y

h

)
uK ′

[
x − y

h
+ δ

h
uε (u)

]
+ O

(
δ

h

)∣∣∣∣
×

n∑

i=1

∫

�

∫ ∣∣gi (yi , ui ) − f ∗(yi )
∣∣ dyi dui

= δ

nh2 C
n∑

i=1

[O(η(i)) + O(δ)] .

It results from above that

|E1| = O (1/(nh)) and
∣∣E2 − E∗

2

∣∣ = O
(
δ/(nh2)

)
+ O

(
δ2/h2

)
.

By a Taylor expansion, there exists a function ε̃(t) ∈ (0, 1), t ∈ IR such that

E∗
2 = − δ

h
f ∗ (x)

∫

�

u

{∫
K (t) K ′

[
t − δ

h
uε (u)

]
dt

}
du

+ δ2

h2 f ∗ (x)

∫

�

u2

{∫
K ′
[

t − δ

h
uε (u)

]2
dt

}
du

−δ

∫

�

u
∫

t K (t) K ′
[

t − δ

h
uε (u)

]
f ∗′ (x + ht ε̃ (t)) dtdu

−δ2

h
f ∗ (x)

∫

�

u2
∫

K ′
[

t − δ

h
uε (u)

]2
f ∗′ (x + ht ε̃ (t)) dtdu.

With our assumptions, it is easy to see that

E∗
2 = O

(
δ2

h2 + δ + δ

h
+ δ2

h

)
.
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Finally,

VAR − VAR∗ = O

(
1

nh

)
+ O

(
δ2

h2 + δ + δ

h
+ δ2

h

)
,

which shows that VAR − VAR∗ is asymptotically negligible.
For the study of VAR∗, simple computations give

VAR∗ = ‖K‖22 f ∗(x) − h f ∗(x)2 + O(h2).

We now turn to the study of COV. This term can be splitted into two terms :

COV = 2

nh

(∑∑
1< j−i≤m

+
∑∑

j−i>m

)
E

(
Hi Hj

) = CV1 + CV2.

It remains to show that CV1 and CV2 → 0 as n → ∞. Since E Ai = O (h), one can
write

CV1 = 2

nh

∑∑
1< j−i≤m

E
(

Ai A j
) + O (hm) .

Moreover, using the mean value theorem (MVT) one has

E
(

Ai A j
) = h2

∫

�

∫

�

∫∫
K (ti − δ

h
ui )K (t j − δ

h
u j ) gi, j (x + hti , x + ht j , ui , u j ) dti dt j dui du j

≤ h2 max
i, j

sup
s,t

fi, j (x + hs, x + ht)max
i, j

∫∫
K

(
ti − δ

h
ci

)
K

(
t j − δ

h
c j

)
dti dt j .

It is clear from this that E
(

Ai A j
) = O

(
h2

)
and CV1 = O (hm) .

For evaluating CV2, in view of (H3), one can use the covariance inequality of
Doukhan and Portal (1983) to obtain, for p such that 1/λ = 1 − 2/p,

|CV2| ≤ C

nh

∑∑
j−i>m

α ( j − i)1/λ
∣∣∣∣
∫

�

∫ ∣∣∣∣K
(

x − yi

h
+ δ

h
ui

)∣∣∣∣
p

gi (yi , ui )dyi dui

∣∣∣∣
1/p

×
∣∣∣∣
∫

�

∫ ∣∣∣∣K
(

x − y j

h
+ δ

h
u j

)∣∣∣∣
p

g j (y j , u j )dy j du j

∣∣∣∣
1/p

≤ C

nh

n∑

i=m

(n − i) α (i)1/λ h2/p

×
(
max

k

∣∣∣∣
∫

�

∫ ∣∣∣∣K (tk − δ

h
uk)

∣∣∣∣
p

gk(x + htk , uk) dtkduk

∣∣∣∣
1/p

)2

.
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Again, by the MVT, one has

|CV2| ≤ C n−1h−1/λ
n∑

i=m

(n − i) α (i)1/λ

×
{
max

k

∣∣∣∣
∫ ∣∣∣∣K (tk − δ

h
ck)

∣∣∣∣
p [∫

�

gk(x + htk, uk) duk

]
dtk

∣∣∣∣
1/p
}2

≤ C h−1/λ
n∑

i=m

α (i)1/λ
[
‖K‖p

p + O

(
δ

h

)]2/p

max
k

sup
y

fk(y)2/p

= O

(
h−1/λ

n∑

i=m

α (i)1/λ
)

.

Thus, CV2 and CV1 tend to zero, as n → ∞. Consequently, the variance of√
nh

(
f̂ B(x)

)
tends to σ 2(x) = ‖K‖22 f ∗(x) as n → ∞. �

Proof of Lemma 2: For θ > 0, μ > 0 and 0 < � ≤ n, � ∈ IN, define

L(μ, θ, �) =
�∑

i=1

(
E
∣∣H�i

∣∣μ+θ
) μ

μ+θ
and D(μ, θ, �) = max{L (μ, θ, �) , [L(2, θ, �)]

μ
2 }.

From Theorem 2 of Doukhan (1983), p. 26, one can write

E

⎛
⎝
∣∣∣∣∣

�∑

i=1

H�i

∣∣∣∣∣

3⎞⎠ ≤ C D(3, 1, �),

where C is some positive generic constant. We have now to evaluate D(3, 1, �).
Using the identity |a + b|k ≤ 2k(|a|k + |b|k), one has

�∑

i=1

(
E
∣∣H�i

∣∣4
)3/4 ≤ C

�∑

i=1

[ ∫
K 4

(
x − yi

h

)
fi (yi )dyi

+(δ/h)4
∫

�

∫
u4

i K
′4 [(x − yi )/h + (δ/h)uiε(ui )] gi (yi , ui )dyi dui + O(h4)

]3/4
.

Making use of the change of variable ti = (x − yi )/h, by assumption (H2), one has

�∑

i=1

(
E
∣∣H�i

∣∣4
)3/4 ≤ C�

[
hC + h(δ/h)4 + O(h4)

]3/4
,
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which implies that

L(3, 1, �) ≤ C�h3/4.

Similarly, one can show that

�∑

i=1

(
E |Hi |3

)2/3 ≤ C�h2/3 and [L(2, 1, �)]3/2 ≤ C�3/2h.

Finally, we get

E

⎛
⎝
∣∣∣∣∣

�∑

i=1

H�i

∣∣∣∣∣

3⎞⎠ ≤ C max{�h
3
4 , �3/2h} ≤ C�3/2h.

�
Proof of Lemma 3: Let i be the complex number such that i2 = −1. It is easy to
show that

∣∣∣∣∣∣
E
[
exp(i t Sn)

]− E

⎡

⎣exp

⎛
⎝i t

q∑

j=1

U j

⎞
⎠
⎤

⎦

∣∣∣∣∣∣
≤ |t |

√√√√√E

⎛
⎝ q∑

j=1

Vj

⎞
⎠

2

.

Now, for evaluating the term in the right-hand side of the above inequality, write

E

⎛
⎝ q∑

j=1

Vj

⎞
⎠

2

= VAR + C̃V1 + C̃V2.

Since q = n/ (� + m) is asymptotically equal to n�−1, one has asymptotically

VAR = n−1 q m

[
‖K‖22 f ∗(x) + O

(
δ

h

)
+ O (h)

]
= O

(
�−1 m

)
,

which tends to zero as m is smaller than �, while the terms C̃V 1 and C̃V2 can be
shown to be asymptotically nil, as CV1 and CV2 in the proof of Lemma 1. Thus, for
larger values of n,

∣∣∣∣∣∣
E
[
exp (i t Sn)

]− E

⎡

⎣exp

⎛
⎝i t

q∑

j=1

U j

⎞
⎠
⎤

⎦

∣∣∣∣∣∣
= O

(√
�−1 m

)
,

which tends to zero as n tends to infinity. Now, using the version of the moment
inequality of Nahapetian (1987) given in Tran (1990), one has
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∣∣∣∣∣∣
E

⎡

⎣exp

⎛
⎝i t

q∑

j=1

U j

⎞
⎠
⎤

⎦−
q∏

j=1

E
[
exp

(
i t U j

)]∣∣∣∣∣∣ ≤ C q α (m) ,

which yields (7). �

Proof of Theorem 1: Let (U j ) and (Vj ) be the sequences constructed in the previous

subsection. Denote by ϕ(t) = E
{
exp

[
i t
∑q

j=1

(
U j + Vj

)]}
the characteristic

function of
√

nh
[

f̂ B(x) − E f̂B(x)
]
. One wishes to show that

lim
n→∞ ϕ(t) = exp

[
−1

2
t2σ 2(x)

]
.

To this end, we use the same techniques as Takahata and Yoshihara (1987) also used
by Harel and Puri (1996). Denote by Hj,k = Ha j +k−1. By a second-order Taylor
expansion, one has, for all � ≤ n,

E
[
exp

(
i t U j

)] = E

[
exp

(
i t (nh)−1/2

�∑

k=1

Hj,k

)]

= E

⎡

⎣1 − 1

2
t2 (nh)−1

(
�∑

k=1

Hj,k

)2

+ O

⎛
⎝∣∣t3∣∣ (nh)−3/2

∣∣∣∣∣

�∑

k=1

Hj,k

∣∣∣∣∣

3⎞⎠
⎤

⎦

= 1 − 1

2
t2 E

(
(nh)−1/2

�∑

k=1

Hj,k

)2

+ O

⎛
⎝∣∣t3∣∣ E

∣∣∣∣∣(nh)−1/2
�∑

k=1

Hj,k

∣∣∣∣∣

3⎞⎠ .

Using the result obtained for the variance in Lemma 1, one has

E

⎧
⎨

⎩

[
(nh)−1/2

�∑

k=1

Hj,k

]2⎫⎬

⎭ ∼
n→∞

�

n
σ 2(x).

It follows from Lemma 2 that

E

⎛
⎝
∣∣∣∣∣(nh)−1/2

�∑

k=1

Hj,k

∣∣∣∣∣

3⎞⎠ ≤ C(nh)−3/2�3/2h = C
�

n

(
�

nh

)1/2

.

Recalling that �/nh = Cnβ0−β with 0 < β0 < β < 1, one has

E

⎛
⎝
∣∣∣∣∣(nh)−1/2

�∑

k=1

Hj,k

∣∣∣∣∣

3⎞⎠ = o

(
�

n

)
.
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From the above results, one then obtains

q∏

j=1

E
[
exp

(
i t U j

)] =
q∏

j=1

E

{
exp

[
i t (nh)−1/2

�∑

k=1

Hj,k

]}

∼
n→∞

[
1 − 1

2
t2

�

n
σ 2(x) + o

(
�

n

)]q

.

Now, since m is negligible compared to �, one has q = n/(� + m) ∼ nβ and
�/n ∼ n−β , as n tends to infinity, which gives

q∏

j=1

E
[
exp

(
i t U j

)] ∼
n→∞

[
1 − n−β 1

2
t2σ 2(x) + o

(
n−β

)]nβ

.

From this, (7) yields

ϕ(t) ∼
n→∞ exp

[
−1

2
t2σ 2(x) + o (1)

]
+ O

(
nβ α (m)

)
.

Consequently, ϕ(t) tends to the characteristic function of a zero-mean Gaussian
distribution with variance σ 2(x), as n tends to infinity. This concludes the proof of
Theorem 1. �
Proof of Proposition 1: Let T be the kernel defined in (2). One shows that for
m = o (n):

V ar
(√

nh f̂B(x)
)

=
[
‖K‖22

(
‖T ‖22 + 2

∫

�

T (t) T (t − 1) dt

)]
f ∗ (x) + O (h)

+O

(
δ + δ2

h2

)
+ O

(
1

nh

)
+ O

(
(h + δ) m + (

hδ−1−1/λ + δ−1/λ) n∑

i=m

α (i)1/λ
)

,

where λ is the real number given in (H3)′.
For all i ∈ IN, let Ai = ∑

j∈ZZ K
[
(x − a j )/h

]
T
[
(Xi − a j )/δ

]
. Then, the

function f̂ B(x) can be written as f̂ B(x) = (1/nh)
∑n

i=1 Ai , and the variance of√
nh f̂B(x) can be decomposed into

V ar
(√

nh f̂B(x)
)

= (
VAR − VAR∗) + VAR∗ + COV.

Here VAR∗ stands for the stationary counterpart of VAR. After some algebra, using
the TVN, one has

VAR − VAR∗ = O (1/(nh))
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and, by Lemma 3.3 of Carbon et al. (1997),

VAR∗ =
{
‖K‖22

[
‖T ‖22 + 2

∫

�
T (t) T (t − 1) dt

]}
f ∗ (x) + O(δ) + O(h) + O

(
δ2

h2

)
.

Letm = m (n) = o (n) . In viewof (H3)′, by the covariance inequality ofDoukhan
and Portal (1983) and Lemma 3.3 of Carbon et al. (1997), one has, after some
computations,

|COV| ≤ C

nh
nm

[∫∫
h2K (u) K (v) dudv + O

(
hδ
∥∥K ′∥∥

1

) + O
(
δ2
∥∥K ′∥∥2

1

)]

+ 16
δ2/p

nh

1

δ2

[∫∫
h2K (u) K (v) dudv + O

(
hδ
∥∥K ′∥∥

1

) + O
(
δ2
∥∥K ′∥∥2

1

)]

× max
i

sup
x

fi (x)
[
‖T ‖p

p + O (δ)
]2/p

O

⎛
⎝ n∑

i=m

(n − i) α (i)1/λ

⎞
⎠ ,

which leads to :

COV = O ((h + δ) m) + O

((
hδ−1/λ−1 + δ−1/λ

) n∑

i=m

α (i)1/λ
)

.

�
Remark 5 The final expression of the variance depends essentially on T . In partic-
ular, for rounding kernels T , as ‖T ‖22 = 1 and the other terms are nil, one has

VAR∗ = ‖K‖22 f ∗ (x) + O(δ) + O(h).

For the triangular kernel T and � = [0, 1[, one has ‖T ‖22 = 2/3, and∫
�

T (t) T (t − 1) dt = 1/6. Moreover, if K is at least twice differentiable with
absolutely continuous derivatives such that K ′ ∈ L2, and if it admits a bounded
third-order derivative, one can show that

VAR∗ =
(

‖K‖22 − 1

3

δ2

h2

∥∥K ′∥∥2
2

)
f ∗ (x) + O(h) + O(δ) + O

(
δ3

h3

)
.
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Abstract We consider the rate of piecewise constant approximation to a locally
stationary process X (t), t ∈ [0, 1], having a variable smoothness index α(t). Assum-
ing that α(·) attains its unique minimum at zero and satisfies

α(t) = α0 + btγ + o(tγ ) as t → 0,

we propose a method for construction of observation points (composite dilated
design) such that the integrated mean square error

∫ 1

0
E{(X (t) − Xn(t))2}dt ∼ K

nα0(log n)(α0+1)/γ
as n → ∞,

where a piecewise constant approximation Xn is based on N (n) ∼ n observations
of X . Further, we prove that the suggested approximation rate is optimal, and then
show how to find an optimal constant K .
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1 Introduction

Probabilistic models based on the locally stationary processes with variable
smoothness became recently an object of interest for applications in various areas
(e.g., Internet traffic, financial records, natural landscapes) due to their flexibility for
matching local regularity properties (see, e.g., Dahlhaus 2012; Echelard et al. 2010
and references therein). The most known representative random process of this class
is a multifractional Brownian motion (mBm) independently introduced in Benassi
et al. (1997) and Peltier and Lévy Véhel (1995). We refer to Ayache (2001) for a
survey and to Ayache and Bertrand (2010), Ayache et al. (2000), Falconer and Lévy
Véhel (2009), Surgailis (2006) for studies of particular aspects of mBm.

Amore general class of α(·)-locally stationary Gaussian processes with a variable
smoothness index α(t), t ∈ [0, 1], was elaborated in Debicki and Kisowski (2008).
This class generalizes also the class of locally stationary Gaussian processes with
index α (introduced by Berman 1974). It is worthwhile, however, to notice that
another approach to “local stationarity” is possible whenever the processes with
time varying parameters are considered. This direction leads to interesting models
and applications in Statistics, long memory theory, etc., see Dahlhaus (2012) for
more information. The two approaches are technically different but describe, in
our opinion, the same phenomena. In this paper we stick to α(·)-local stationarity,
as defined in (1) below. Whenever we need to model such processes with a given
accuracy, the approximation (time discretization) accuracy has to be evaluated.

More specifically, consider a random process X (t), t ∈ [0, 1], with finite sec-
ond moment and variable quadratic mean smoothness (see precise definition (1)
below). The process X is observed at N = N (n) points and a piecewise con-
stant approximation Xn is built upon these observations. The approximation per-
formance on the entire interval is measured by the integrated mean square error
(IMSE)

∫ 1
0 E{(X (t) − Xn(t))2}dt . We construct a sequence of sampling designs

(i.e., sets of observation points) taking into account the varying smoothness of X

such that on a class of processes, the IMSE decreases faster when compared to con-
ventional regular sampling designs (see, e.g., Seleznjev 2000) or to quasi-regular
designs, Abramowicz and Seleznjev (2011), used for approximation of locally sta-
tionary random processes and random processes with an isolated singularity point,
respectively.

The approximation results obtained in this paper can be used in various problems
in signal processing, e.g., in optimization of compressing digitized signals, (see, e.g.,
Cohen et al. 2002), in numerical analysis of random functions (see, e.g., Benhenni
and Cambanis 1992; Creutzig et al. 2007; Creutzig and Lifshits 2006), in simulation
studies with controlled accuracy for functionals on realizations of random processes
(see, e.g., Abramowicz and Seleznjev 2008; Eplett 1986). It is known that a piece-
wise constant approximation gives an optimal rate for certain class of continuous
random processes satisfying a Hölder condition (see, e.g., Buslaev and Seleznjev
1999; Seleznjev 2000). In this paper we develop a technique improving this rate
for a certain class of locally stationary processes with variable smoothness. The
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developed technique can be generalized for more advanced approximation methods
(e.g., Hermite splines) and various classes of random processes and fields. Some
related approximation results for continuous and smooth random functions can be
found in Hüsler et al. (2003), Kon and Plaskota (2005), Seleznjev (1996). The
book Ritter (2000) contains a very detailed survey of various random function
approximation problems.

The paper is organized as follows. In Sect. 2 we specify the problem setting. We
recall a notion of a locally stationary process with variable smoothness, introduce
a class of piecewise constant approximation processes, and define integrated mean
square error (IMSE) as a measure of approximation accuracy. Furthermore, we intro-
duce a special method of composite dilated sampling designs that suggests how to
distribute the observation points sufficiently densely located near the point of the
lowest smoothness. The implementation of this design depends on some functional
and numerical parameters, and we set up a certain number of mild assumptions about
these parameters. In Sect. 3, our main results are stated. Namely, for a locally station-
ary processwith known smoothness,we consider the piecewise constant interpolation
related to dilated sampling designs (adjusted to smoothness parameters) and find the
asymptotic behavior of its approximation error. In the second part of that section, the
approximation for conventional regular and some quasi-regular sampling designs are
studied. In Sect. 4, the results and conjectures related to the optimality of our bounds
are discussed. Section5 contains the proofs of the statements from Sect. 3.

2 Variable Smoothness Random Processes
and Approximation Methods: Basic Notation

2.1 Approximation Problem Setting

Let X = X (t), t ∈ [0, 1], be an α(·)-locally stationary random process, i.e.,
E{X (t)2} < ∞ and

lim
s→0

||X (t + s) − X (t)||2
|s|α(t)

= c(t) uniformly in t ∈ [0, 1], (1)

where ||Y || := (EY 2)1/2, α(·), c(·) ∈ C([0, 1]), and 2 ≥ α(t) > 0, c(t) > 0.
We assume that the following conditions hold for the function α(·) describing the

smoothness of X :
(C1) α(·) attains its global minimum α0 := α(0) at the unique point t0 = 0.
(C2) There exist b, γ > 0 such that

α(t) = α0 + btγ + o(tγ ) as t → 0.
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The choice t0 = 0 in (C1) is made only for notational convenience. The results are
essentially the same for any location of the unique minimum of α(·).

Let X be sampled at the distinct design points Tn = (t0(n), . . . , tN (n)) (also
referred to as knots), where 0 = t0(n) < t1(n) < · · · < tN (n) = 1, N = N (n). We
suppress the auxiliary integer argument n for design points t j = t j (n) and for the
number of points N = N (n)when doing so causes no confusion. The corresponding
piecewise constant approximation is defined by

Xn(t) := X (t j−1), t j−1 ≤ t < t j , j = 1, . . . , N .

In this article, we consider the accuracy of the approximation to X by Xn with respect
to the integrated mean square error (IMSE)

e2n = ||X − Xn||22 :=
∫ 1

0
||X (t) − Xn(t)||2dt.

We shall describe below a construction of sampling designs {Tn} providing the fastest
decay of e2n .

2.2 Sampling Design Construction

The construction idea is as follows. In order to achieve a rate-optimal approximation
of X by Xn , we introduce a sequence of dilated sampling designs {Tn}.

Recall first that any probability density f (t), t ∈ [0, 1], generates a sequence
of associated conventional sampling designs, (cf., e.g., Sacks and Ylvisaker 1966;
Benhenni and Cambanis 1992; Seleznjev 2000) defined by

∫ t j

0
f (t)dt = j

n
, j = 0, . . . , n, (2)

i.e., the corresponding sampling points are ( j/n)-percentiles of the distribution hav-
ing density f (·). We call f (·) a sampling density.

Let p(·) be a probability density on R+ := [0,∞); we shall refer to it as the
design density. In our problem, it turns out to be useful to dilate the design density
p(·) by replacing it with a dilated sampling density

pn(t) := dn p(dnt), t ∈ [0, 1], (3)

where dn ↗ ∞ is a dilation coefficient. Note, that formally pn(·) is not a probability
density, but ∫ 1

0
pn(t)dt =

∫ dn

0
p(u)du → 1 as n → ∞.
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The idea of dilation is obvious: we wish to put more knots near the point of the worst
smoothness. The dilation coefficient should be chosen according to the smoothness
behavior at this critical point. In our case, (C2) requires the choice

dn := (log n)1/γ

that will be maintained in the sequel. As in (2), we define the knots by

∫ t j

0
pn(t)dt = j

n
. (4)

Further optimization of the approximation accuracy bound requires one more adjust-
ment: it turns out to be useful to choose the knots t j as in (4) using different densities
in a neighborhood of the critical point and outside of it. We call composite such
sampling design constructions operating differently on two disjoint domains.

Now we pass to the rigorous description of our sampling designs. Let p(u) and
p̃(u), u ∈ [0,∞), be two probability densities. Let the dilated sampling densities
pn(·) be defined as in (3). Similarly, p̃n(t) := dn p̃(dnt).

For 0 < ρ < 1, we define the composite dilated (p, ρ, p̃)-designs Tn by choosing
t j according to (4) for

0 ≤ j ≤ J (p, ρ, n) := n
∫ ρ

0
pn(t)dt = n

∫ ρdn

0
p(u)du ≤ n.

Notice that for these knots, we have 0 ≤ t j ≤ ρ. Furthermore, we fill the interval
[ρ, 1] with analogous knots ti using the probability density p̃(·),

∫ ti

0
p̃n(t)dt = j

n
, (5)

where
J ( p̃, ρ, n) < j ≤ J ( p̃, 1, n),

i = j + J (p, ρ, n) − J ( p̃, ρ, n).

For these knots we clearly have ρ < ti ≤ 1. Note, it follows by definition that

J (p, ρ, n) = n
∫ ρdn

0
p(u)du ∼ n as n → ∞,

and similarly, in the interval [ρ, 1], the number of points does not exceed

n − J ( p̃, ρ, n) = n
∫ ∞

ρdn

p̃(u)du = o(n) as n → ∞,
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that is the total number of sampling points satisfies

N (n) ∼ J (p, ρ, n) ∼ n as n → ∞. (6)

In the sequel, we will use (p, ρ, p̃)-designs satisfying the following additional
assumptions on p(·), ρ, and p̃(·):

(A1) The design density p(·) is bounded, nonincreasing, and

p(u) ≥ q1 exp{−q2uγ }, u ≥ 0, q1 > 0, b
α0

> q2 > 0. (7)

(A2) We assume that p̃ is regularly varying at infinity with some index r ≤ −1.
This means that for all λ > 0,

p̃(λu)

p̃(u)
→ λr as u → ∞. (8)

(A3) Finally, we assume that the parameter ρ is small enough. Namely, applying
q2 < b/α0 and using (C2) we may choose ρ satisfying

q2 sup
0≤t≤ρ

α(t) < inf
0≤t≤ρ

α(t) − α(0)

tγ
(9)

and
q2ρ

γ < 1. (10)

For example, let α(t) = 1 + tγ . Then (C1), (C2) hold, and (A3) corresponds to
ρ < (1/q2 − 1)1/γ , where 0 < q2 < 1.

Regularly varying probability densities satisfy (7) for large u, thus we could
simplify the design construction by letting p = p̃. For example, the choice

p(u) = p̃(u) := (1 + u)−2

agrees with (A1) and (A2).
Moreover, in this case the knots may be easily calculated explicitly, as t j =
j

dn(n− j) . However, this kind of the simplified choice does not provide an optimal
constant K in the main approximation error asymptotics (11) below.
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3 Main Results

3.1 Dilated Approximation Designs

In the following theorem, we give the principal result of the paper and consider
IMSE e2n of approximation to X by Xn for the proposed sequence of composite
dilated sampling designs Tn, n ≥ 1. It follows from (A1) that the following constant
is finite,

K = K (c, α, (p, ρ, p̃)) := c0
α0 + 1

∫ ∞

0
p(u)−α0e−buγ

du < ∞,

where c0 := c(0).

Theorem 1 Let X (t), t ∈ [0, 1], be an α(·)-locally stationary random process such
that assumptions (C1), (C2) hold. Let Xn be the piecewise constant approximations
corresponding to composite dilated (p, ρ, p̃)-designs {Tn} satisfying (A1)–(A3).
Then N (n) ∼ n and

||X − Xn||22 ∼ K

nα0(log n)(α0+1)/γ
∼ K

Nα0(log N )(α0+1)/γ
as n → ∞. (11)

Remark 1 Among the assumptions of Theorem1, the monotonicity of p(·) is worth
of a discussion. Of course, it agrees with the heuristics to put more knots at places
where the smoothness of the process is worse. However, this assumption may be
easily replaced by some mild regularity assumptions on p(·).
Remark 2 The following probability density p∗(·)

p∗(u) = Ce−buγ /(α0+1), C = b1/γ

(α0 + 1)1/γ Γ (1/γ + 1)

minimizes the constant K in Theorem1 and generates the asymptotically optimal
sequence of designs T ∗

n . For the optimal T ∗
n ,

K ∗ := c0
α0 + 1

(∫ ∞

0
e−buγ /(α0+1)du

)α0+1

= c0
α0 + 1

(
(α0 + 1)1/γ Γ (1/γ + 1)

b1/γ

)α0+1

,

see, e.g., Seleznjev (2000). We emphasize that p∗(·) satisfies assumption (7) but it
is not regularly varying. In other words, a simple design based on p̃ = p = p∗ does
not fit in theorem’s assumptions.

Remark 3 The idea of considering composite designs might seem to be overcom-
plicated at first glance. However, in some sense it cannot be avoided. The previous
remark shows that if we want to get the optimal constant K , we must handle the
exponentially decreasing densities. Assume that
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p(u) ≤ q1 exp{−q2uγ }. (12)

If we would simplify the design by defining t j (n) as in (4) for the entire interval, i.e.,
with ρ = 1, then we would have

∫ t j

0
pn(t)dt = j

n
,

hence,

1

n
=

∫ t j+1

t j

pn(t)dt =
∫ t j+1

t j

dn p(dnt)dt ≤ dnq1

∫ t j+1

t j

exp{−q2(dnt)γ }dt

≤ dnq1(t j+1 − t j ) exp{−q2(dnt j )
γ }.

Let a ∈ (0, 1) and t j ∈ [1 − a, 1]. Then for the length of the corresponding
intervals, we have

t j+1 − t j ≥ exp{q2(dnt j )
γ }

ndnq1
≥ exp{q2 log n(1 − a)γ }

ndnq1
.

If q2 > 1 and a is so small that q2(1− a)γ > 1, we readily obtain t j+1 − t j > a for
large n which is impossible. Therefore, for q2 > 1 there are no sampling points t j in
[1− a, 1], i.e., clearly e2n ≥ C > 0 for any n, i.e., IMSE does not tend to zero at all.

The confusion described above may really appear in practice because q2 > 1 is
compatible with the assumption q2 < b/α0 from (7) whenever b > α0.

Theorem1 shows that for the design densities with regularly varying tails, we
may define all knots by (4) without leaving empty intervals as above. However, we
cannot achieve the optimal constant K on this simpler way.

Remark 4 Actually, the choice of knots outside of [0, ρ] is not relevant for the
approximation rate. One can replace the knots from (5) with a uniform grid of knots
ti = in−μ with appropriate μ < 1.

3.2 Regular Sampling Designs

The approximation algorithm investigated inTheorem1 is based upon the assumption
that we know the point where α(·) attains its minimum, as well as the index γ in
(C2). If for the same process neither the critical point nor the index γ are known, a
conventional regular design can be used.

Let X (t), t ∈ [0, 1], be an α(·)-locally stationary random process, i.e., (1) holds.
Consider now sampling designs Tn = {t j (n), j = 0, 1, . . . , n} generated by a
regular positive continuous density p(t), t ∈ [0, 1], (see, e.g., Sacks and Ylvisaker
1966; Seleznjev 2000) through (13), i.e.,
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∫ t j

0
p(t)dt = j

n
, 0 ≤ j ≤ n. (13)

Let the constant

K1 := c0
α0 + 1

Γ (1/γ + 1)

pα0
0 b1/γ

, p0 := p(0).

Theorem 2 Let X (t), t ∈ [0, 1], be an α(·)-locally stationary random process such
that (C1) and (C2) hold. Let Xn be the piecewise constant approximations corre-
sponding to the (regular) sampling designs {Tn} generated by p(·). Then

||X − Xn||22 ∼ K1

nα0(log n)1/γ
as n → ∞.

Remark 5 If the point where α(·) attains its minimum is known but γ is unknown,
we may build the designs without dilating the design density. Instead, one could use
quasi-regular sampling designs generated by a possibly unbounded design density
p(t), t ∈ (0, 1], at the singularity point t0 = 0 (cf., Abramowicz and Seleznjev
2011). For example, if p(·) is a probability density on (0, 1] such that

p(t) ∼ A t−κ as t ↘ 0, 0 < κ < 1,

and t j (n) are chosen through (13), then for an α(·)-locally stationary random process
X satisfying (C1) and (C2), it is possible to show a slightly weaker asymptotics than
that of Theorem 1, namely,

e2n ∼ K2

nα0(log n)(1+κα0)/γ
as n → ∞,

with K2 := c0A−α0Γ (1/γ + 1)/((α0 + 1)b1/γ ).
Of course, all above-mentioned asymptotics differ only by a degree of logarithm

while the polynomial rate is determined by the minimal regularity index α0. But
for some large-scale approximation problems and certain regularity properties (C1),
(C2) of α(t) this gain could be significant.

Remark 6 As an anonymous referee pointed out to us, it would be interesting to
extend the results to the case of more general behavior of the function α(·) at the
critical point by replacing (C2) with

α(t) = α0 + g(t) + o(g(t)) as t → 0,

with a given function g(·) from an appropriate class. For example, it is clear that
the results will be pretty much the same if we allow g to be γ -regularly varying at
zero. Yet we preferred to consider here only the simplest (and arguably the most
important) polynomial case and leave the general case for further research.
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4 Optimality

4.1 Optimality of the Rate for Piecewise Constant
Approximations

We explain here that the approximation rate l−1
n , ln := nα0d(α0+1)

n , achieved in
Theorem1 is optimal in the class of piecewise constant approximations for every
α(·)-locally stationary random process satisfying (C1) and (C2). For a sampling
design Tn , let the mesh size |Tn| := max{(t j − t j−1), j = 1, . . . , n}.
Proposition 1 Let Xn be piecewise constant approximations to an α(·)-locally sta-
tionary random process X satisfying (C1) and (C2) constructed according to designs
{Tn} such that Nn ∼ n and |Tn| → 0 as n → ∞. Then

lim inf
n→∞ ln e2n > 0. (14)

Proof Let rn := d−1
n = (log n)−1/γ and Jn := inf{ j : t j = t j (n) ≥ rn}. Then (19)

entails

e2n ≥
Jn∑

j=1

e2n, j =
Jn∑

j=1

B j−1w
α(t j−1)+1
j (1 + o(1)) = B

Jn∑

j=1

wan+1
j (1 + o(1)),

where an := sup0≤t≤rn
α(t) and w j = t j − t j−1. By using the convexity of the power

function w → wan+1, we obtain

1

Jn

Jn∑

j=1

wan+1
j ≥

⎛
⎝ 1

Jn

Jn∑

j=1

w j

⎞
⎠

an+1

≥
(

rn

Jn

)an+1

,

hence,
Jn∑

j=1

wan+1
j ≥ ran+1

n

J an
n

≥ ran+1
n

N an
n

,

whereas

e2n ≥ B
ran+1

n

N an
n

(1 + o(1)) = B
1

dan+1
n

1

N an
n

(1 + o(1))

= B
1

dα0+1
n nα0

(
1

dnn

)an−α0
(

n

Nn

)an

(1 + o(1))

= B l−1
n

(
1

dnn

)an−α0

(1 + o(1)).

Recall that by (C2), an − α0 = O(rγ
n ) = O((log n)−1) and thus (14) follows. �
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4.2 Optimality of the Rate in a Class of Linear Methods

We explain here that the approximation rate l−1
n achieved in Theorem1 is optimal

not only in the class of piecewise constant approximations but in a much wider class
of linear methods,—at least for some α(·)-locally stationary random processes satis-
fying (C1) and (C2). The corresponding setting is based on the notion of Gaussian
approximation numbers, or �-numbers, that we recall here.

Gaussian approximation numbers of a Gaussian random vector X taking values
in a normed space X are defined by

�n(X;X )2 = inf
x1,...,xn−1
ξ1,...,ξn−1

E

⎧
⎪⎨

⎪⎩

∥∥∥∥∥∥
X −

n−1∑

j=1

ξ j x j

∥∥∥∥∥∥

2

X

⎫
⎪⎬

⎪⎭
, (15)

where infimum is taken over all x j ∈ X and all Gaussian vectors ξ = (ξ1, . . . , ξn−1)

∈ R
n−1, n ≥ 2, see Kühn and Linde (2002), Lifshits (2012). If X is a Hilbert

space, then

�n(X;X )2 =
∞∑

j=n

λ j ,

where λ j is a decreasing sequence of eigenvalues of the covariance operator of X .
Recall that a multifractional Brownian motion (mBm) with a variable smooth-

ness index (or fractality function) α(·) ∈ (0, 2) introduced in Benassi et al. (1997),
Peltier and Lévy Véhel (1995) and studied in Ayache (2001), Ayache and Bertrand
(2010), Ayache et al. (2000) is a Gaussian process defined through its white noise
representation

X (t) =
∫ ∞

−∞
eitu − 1

|u|(α(t)+1)/2
dW (u),

where W (t), t ∈ R, is a standard Brownian motion. Notice that mBm is a typical
example of a locally stationary process whenever α(·) is a continuous function.

In the particular case of the constant fractality α(t) ≡ α, we obtain an ordinary
fractional Brownianmotion Bα , α ∈ (0, 2). For X = Bα considered as an element of
X = L2[0, 1], the behavior of its eigenvalues λ j is well known, cf. Bronski (2003).
Namely,

λ j ∼ cα j−α−1 as j → ∞,

with some cα > 0 continuously depending on α ∈ (0, 2). It follows that

�n(Bα; L2[0, 1])2 ∼ α−1cα n−α as n → ∞.
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Hence, for all n ≥ 1,

�n(Bα; L2[0, 1])2 ≥ Cα n−α, Cα > 0.

Furthermore, since Bα is a self-similar process, we can scale this estimate fromX =
L2[0, 1] toX = L2[0, r ] with arbitrary r > 0. An easy computation shows that

�n(Bα; L2[0, r ])2 = rα+1�n(Bα; L2[0, 1])2 ≥ Cαrα+1n−α.

Let us now consider a multifractional Brownian motion X parameterized by a frac-
tality function α(·) satisfying (C2). For example, let

α(t) := α0 + b tγ , 0 ≤ t ≤ 1, (16)

with α0, b > 0 chosen so small that α0 + b < 2. This choice secures the necessary
condition 0 < α(t) < 2, 0 ≤ t ≤ 1. Then, letting r = rn := d−1

n , we have

�n(X; L2[0, 1])2 ≥ �n(X; L2[0, rn])2 ≥ M�n(Bα(rn); L2[0, rn])2
≥ MCα(rn)r

α(rn)+1
n n−α(rn) = MCα(rn)d

−α(rn)−1
n n−α(rn)

≥ Cl−1
n (dnn)α0−α(rn) = Cl−1

n (dnn)−brγ
n = Cl−1

n (dnn)−b(log n)−1 ≥ C̃ l−1
n ,

for some positive M, Cα(rn), C, C̃ . All bounds here are obvious except for the second
inequality comparing approximation rate of multifractional Brownian motion with
that of a standard fractional Brownian motion. We state this fact as a separate result.

Proposition 2 Let X (t), a ≤ t ≤ b, be a multifractional Brownian motion cor-
responding to a continuous fractality function α : [a, b] → (0, 2). Let Bβ be a
fractional Brownian motion such that infa≤t≤b α(t) ≤ β < 2. Then there exists
M = M(α(·), β) > 0 such that

�n(X; L2[a, b]) ≥ M�n(Bβ, L2[a, b]), n ≥ 1.

The proof of this proposition requires different methods from those used in this
article. We relegate it to another publication.

Our conclusion is that a multifractional Brownian motion with fractality function
(16) provides an example of an α(·)-locally stationary random process satisfying
assumptions (C1) and (C2) such that no linear approximation method provides a
better approximation rate than l−1

n .
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5 Proofs

Proof of Theorem 1 We represent the IMSE e2n = ||X (t)− Xn(t)||22 as the following
sum

e2n =
N∑

j=1

∫ t j

t j−1

||X (t) − Xn(t)||2dt =
N∑

j=1

∫ t j

t j−1

||X (t) − X (t j−1)||2dt =:
N∑

j=1

e2n, j .

(17)
Next, for a large U > 0, let

e2n =
N∑

j=1

e2n, j = S1 + S2 + S3,

where the sums S1, S2, S3 include the terms e2n, j such that [t j−1, t j ] belongs to
[0, U/dn], [U/dn, ρ], and [ρ, 1], respectively. Let J1 and J2 denote the corresponding
boundaries for the index j . Recall that ln = nα0dα0+1

n = nα0(log n)(α0+1)/γ and l−1
n

is the approximation rate announced in the theorem.We show that only S1 is relevant
to the asymptotics of e2n , namely, that ln S3 = o(1) as n → ∞, while

lim sup
n→∞

ln S2 = o(1) as U → ∞. (18)

Let w j := t j − t j−1, u j := dnt j be the normalized knots and denote by v j :=
u j − u j−1 = dnw j the corresponding dilated interval lengths. It follows by the
definition of α(·)-local stationarity (1) that for large n,

e2n, j = c(t j−1)

∫ t j

t j−1

(t − t j−1)
α(t j−1)dt (1 + rn, j )

= B j−1 (t j − t j−1)
α(t j−1)+1 (1 + rn, j )

= B j−1 (v j/dn)α(t j−1)+1 (1 + rn, j ), (19)

where |Tn| = max j w j = o(1) and max j rn, j = o(1) as n → ∞ and

B j := c(t j )

α(t j ) + 1
, j = 1, . . . , N .

First, we evaluate S3. Recall that for j > J2 we have ρdn ≤ u j−1 < u j ≤ dn .
We use now the following property of regularly varying functions (see, e.g.,
Bingham et al. (1987)): convergence in (8) is uniform for all intervals 0 < a ≤
λ ≤ b < ∞. Using this uniformity we obtain, for some C1 > 0,

inf
u j−1≤u≤u j

p̃(u) ≥ inf
ρdn≤u≤dn

p̃(u) ≥ C1 p̃(dn).
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It follows by (5) that

∫ u j

u j−1

p̃(u)du =
∫ t j

t j−1

p̃n(t)dt = 1

n
.

Hence, for some C2 > 0,

v j ≤
(

inf
u j−1≤u≤u j

p̃(u)

)−1 ∫ u j

u j−1

p̃(u)du ≤ 1

n

(
inf

u j−1≤u≤u j
p̃(u)

)−1

≤ 1

C1 n p̃(dn)
≤ C2

d |r |+1
n

n
, j = J2 + 1, . . . , N , (20)

and max j>J2 w j = d |r |
n /n. Recall that by assumption (C1),

α1 := inf
t∈[ρ,1] α(t) > α0.

Therefore, for large n, we get by (19) and (20), C3, C4 > 0,

S3 ≤ n max
j>J2

e2n, j ≤ nC3(v j/dn)α1+1 ≤ C4
d |r |(α1+1)

n

nα1
= o(l−1

n ) as n → ∞. (21)

Now consider the first two zones corresponding to S1, S2. We have by definition

∫ u j

0
p(u)du = j

n
, 0 ≤ j < J.

Since the function pn(t), t ∈ [0, 1], is nonincreasing, the sequence {v j } is nonde-
creasing. In fact,

1

n
=

∫ u j

u j−1

p(u)du ∈ [p(u j )v j , p(u j−1)v j ],

and therefore,
1

np(u j−1)
≤ v j ≤ 1

np(u j )
≤ v j+1 (22)

and it follows by (A1) that max j≤J2 w j = o(1) as n → ∞. For j ≤ J2, the bounds
(19) and (22) yield for n large,
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e2n, j = B j−1(v j/dn)α(t j−1)
v j

dn
(1 + o(1))

≤ B j−1(ndn p(u j ))
−α(t j−1)

v j

dn
(1 + o(1))

≤ B j−1(np(u j ))
−α(t j−1)d−α0−1

n v j (1 + o(1))

= B j−1l−1
n n−(α(t j−1)−α0) p(u j )

−α(t j−1)v j (1 + o(1)). (23)

From now on, we proceed differently in the first and in the second zone.
For the second zone, J1 ≤ j ≤ J2, we do not care about the constant by using

B j ≤ B∗ := max
0≤t≤1

c(t)

α(t) + 1
. (24)

Next, (7) and (9) give

p(u j )
−α(t j−1) ≤ C exp{q2α(t j−1)u

γ

j } ≤ C exp{β1uγ

j }, C > 0, (25)

where β1 := q2 sup0≤t≤ρ α(t). On the other hand, we infer from (9) that

n−(α(t j−1)−α0) = n
− α(t j−1)−α0

t
γ
j−1

tγj−1 ≤ n−β2
u
γ
j−1
log n = exp{−β2 uγ

j−1}, (26)

where β2 := inf0≤t≤ρ(α(t) − α0)/tγ > β1 by (9).

Recall that by (10), we have 1 − q2ργ > 0. Moreover, for U ≤ u j ≤ ρdn , we
derive from (7) and (22)

v j ≤ n−1 p(ρdn)−1 ≤ Cn−1 exp{q2(ρdn)γ } = Cn−(1−q2ργ ), C > 0,

and it follows

uγ

j+1 − uγ

j−1 = uγ

j−1

((
u j+1

u j−1

)γ

− 1

)
= O

(
dγ

n n−(1−q2ργ )
)

= o(1) as n → ∞ (27)

uniformly in J1 ≤ j ≤ J2.

Since {v j } is nondecreasing, (27) implies an integral bound

exp{−β2 uγ

j−1} exp{β1uγ

j }v j

= exp{β2[uγ

j+1 − uγ

j−1]} exp{β1uγ

j − β2uγ

j+1}v j

≤ C inf
u j ≤u≤u j+1

exp{β1uγ − β2uγ }v j+1

≤ C
∫ u j+1

u j

e−(β2−β1)uγ

du, C > 0. (28)
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By plugging (24), (26), and (28) into (23), and summing up the resulting bounds
over J1 < j ≤ J2, we obtain

S2 ≤ B∗l−1
n

∫ ∞

U
e−(β2−β1)uγ

du (1 + o(1)) as n → ∞. (29)

Therefore, (18) is valid.
In the first zone, j ≤ J1, t j ≤ U/dn , the knots are uniformly small. Hence,

B j−1 are uniformly close to B due to the continuity of the functions α(·) and c(·).
Moreover, by (C2) for any ε > 0, we have for all n large enough

α0 + (b − ε)tγj−1 ≤ α(t j−1) ≤ α0 + (b + ε)tγj−1, j ≤ J1. (30)

Hence (23) yields

e2n, j ≤ (B + ε)l−1
n n−(b−ε)tγj−1 p(u j )

−α0 p(u j )
−(α(t j−1)−α0) v j

= (B + ε)l−1
n n−(b−ε)(u j−1/dn)γ p(u j )

−α0 p(u j )
−(α(t j−1)−α0) v j . (31)

Recall that by the definition of dn , we have

n−(b−ε)(u j−1/dn)γ = n−(b−ε)uγ
j−1/ log n = exp{−(b − ε)uγ

j−1}.

Since p(·) is nonincreasing and {v j } is nondecreasing,we also have an integral bound

exp{−(b − ε)uγ

j−1} p(u j )
−α0v j

= exp{(b − ε)[uγ

j+1 − uγ

j−1]} p(u j )
−α0 exp{−(b − ε)uγ

j+1}v j

≤ exp{(b − ε)[uγ

j+1 − uγ

j−1]} inf
u j ≤u≤u j+1

(p(u)−α0e−(b−ε)uγ ) v j

≤ exp{(b − ε)[uγ

j+1 − uγ

j−1]}
∫ u j+1

u j

p(u)−α0e−(b−ε)uγ

du. (32)

Moreover, for u j ≤ U , we derive from (A1) and (22)

v j ≤ n−1 p(U )−1.

By using the convexity and the concavity of the power function for γ ≥ 1 and γ ≤ 1,
respectively, we get

uγ

j+1 − uγ

j−1 ≤ γU γ−1(u j+1 − u j ) = γU γ−1(v j + v j+1)

≤ 2γU γ−1v j+1 = o(1) as n → ∞ (γ ≥ 1);
uγ

j+1 − uγ

j−1 ≤ (u j+1 − u j−1)
γ

= (v j + v j+1)
γ = o(1) as n → ∞ (γ ≤ 1).
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Therefore, the exponential factor in (32) turns out to be negligible.
Finally, for u j ≤ U , the property dn → ∞ yields

p(u j )
−(α(t j−1)−α0) ≤ max{1, p(U )−max0≤t≤U/dn (α(t)−α0)} = 1 + o(1). (33)

By plugging (32) and (33) into (31), and summing up the resulting bounds over
j ≤ J1, we obtain

S1 ≤ (B + 2ε)l−1
n

∫ ∞

0
p(u)−α0e−(b−ε)uγ

du as n → ∞.

Since ε can be chosen arbitrarily small, we arrive at

lim sup
n→∞

ln S1 ≤ B
∫ ∞

0
p(u)−α0e−buγ

du = K . (34)

Combining (21), (29), and (34) gives the desired upper bound.
The lower bound is obtained along the same lines: since S2 and S3 are asymp-

totically negligible, we shall evaluate only S1 starting again from (19). As in (23),
we have

e2n, j = B j−1(v j/dn)α(t j−1)
v j

dn
(1 + o(1))

≥ B j−1(ndn p(u j−1))
−α(t j−1)

v j

dn
(1 + o(1))

= B j−1n−α0n−(α(t j−1)−α0) p(u j−1)
−α(t j−1)d−α0−1

n d
α0−α(t j−1)
n v j (1 + o(1))

= B j−1l−1
n n−(α(t j−1)−α0) p(u j−1)

−α(t j−1)d
α0−α(t j−1)
n v j (1 + o(1)). (35)

Recall that for j ≤ J1 and the constants B j−1 are uniformly close to B. Moreover,
by using (30), we have for large n,

d
α0−α(t j−1)
n ≥ d

−(b+ε)tγj−1
n ≥ d−(b+ε)(U/dn)γ

n = 1 + o(1).

Hence, (35) yields

e2n, j ≥ (B − ε)l−1
n n−(b+ε)tγj−1 p(u j−1)

−α0 p(u j−1)
−(α(t j−1)−α0) v j

= (B − ε)l−1
n n−(b+ε)(u j−1/dn)γ p(u j−1)

−α0 p(u j−1)
−(α(t j−1)−α0) v j , (36)

where as before

n−(b+ε)(u j−1/dn)γ = n−(b+ε)uγ
j−1/ log n = exp{−(b + ε)uγ

j−1}.

Since p(·) is nonincreasing and {v j } is nondecreasing,we also have an integral bound
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exp{−(b + ε)uγ

j−1}p(u j−1)
−α0v j

= exp{(b + ε)[uγ

j−2 − uγ

j−1]}p(u j−1)
−α0 exp{−(b + ε)uγ

j−2}v j

≥ exp{(b + ε)[uγ

j−2 − uγ

j−1]} inf
u j−2≤u≤u j−1

(p(u)−α0e−(b+ε)uγ

) v j−1

≥ exp{(b + ε)[uγ

j+1 − uγ

j−1]}
∫ u j−1

u j−2

p(u)−α0e−(b+ε)uγ

du. (37)

We have already seen that the exponential factor in (37) is negligible.
Finally, for u j ≤ U , the fact that dn → ∞ implies (cf. (33))

p(u j−1)
−(α(t j−1)−α0) ≥ min{1, p(0)−max0≤t≤U/dn (α(t)−α0)} = 1 + o(1). (38)

By plugging (37) and (38) into (36), and summing up the resulting bounds over
j ≤ J1, we obtain

S1 ≥ (B − 2ε)l−1
n

∫ U

0
p(u)−α0e−(b+ε)uγ

du as n → ∞.

Since ε > 0 can be chosen arbitrarily small, we arrive at

lim inf
n→∞ ln S1 ≥ B

∫ U

0
p(u)−α0e−buγ

du.

Finally,

lim inf
n→∞ lne2n ≥ sup

U>0
lim inf
n→∞ ln S1 ≥ B

∫ ∞

0
p(u)−α0e−buγ

du = K . (39)

This is the desired lower bound. �

Proof of Theorem 2 Applying the notation of Theorem1, we have for an interval
approximation error

e2n, j = B j−1 w
α(t j−1)+1
j (1 + rn, j ), w j = t j − t j−1, j = 1, . . . , n,

where max j rn, j = o(1) as n → ∞. Now for a small enough ρ > 0, similarly to
Theorem 1, we get

∫ 1

ρ

en(t)2dt ≤ C/nα1 , C > 0, α1 := inf
t∈[ρ,1] α(t) > α0,

that is only en, j such that [t j−1, t j ] ⊂ [0, ρ] are relevant for the asymptot-
ics, say, en, j , j = 1, . . . , J = J (ρ, n). Let us denote the approximation rate
Ln := nα0(log n)1/γ . Next, for S1 := ∑J

j=1 en, j and for a small enough ρ, we
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have by continuity of the design density p(·) and by the mean value theorem

e2n, j = B j−1 (np(η j ))
−α(t j−1)w j (1 + o(1))

≤ B

p(0)α0
(1 + ε) n−α0

∫ t j−1

t j−2

e−(b−ε)tγ log ndt (1 + o(1))

= L−1
n

B

pα0
0

(1 + ε)

∫ u j−1

u j−2

e−(b−ε)uγ

du (1 + o(1)),

where p0 := p(0). By summing up, we obtain

lim sup
n→∞

Ln S1 ≤ B

pα0
0

(1 + ε)

∫ ∞

0
e−(b−ε)uγ

du = B

pα0
0

(1 + ε)
Γ (1/γ + 1)

(b − ε)1/γ
.

Hence,

lim sup
n→∞

Lne2n = lim sup
n→∞

Ln S1 ≤ B

pα0
0

(1 + ε)
Γ (1/γ + 1)

(b − ε)1/γ
.

Since ε can be chosen arbitrary small, we get

lim sup
n→∞

Lne2n ≤ B

pα0
0

Γ (1/γ + 1)

b1/γ
= K1.

The lower bound follows from similar arguments. This completes the proof. �
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A Cramér–von Mises Test for Gaussian
Processes

Gennady Martynov

Abstract We propose a statistical method for testing the null hypothesis that an
observed random process on the interval [0, 1] is a mean zero Gaussian process with
specified covariance function. Ourmethod is based on a finite number of observations
of the process. To test this null hypothesis, we develop a Cramér–von Mises test
based on an infinite-dimensional analogue of the empirical process. We also provide
a method for computing the critical values of our test statistic. The same theory also
applies to the problem of testing multivariate uniformity over a high-dimensional
hypercube. This investigation is based upon previous joint work by Paul Deheuvels
and the author.

Keywords Goodness-of-fit test ·Cramér–vonMises test ·Gaussianity test ·Hilbert
space

1 Introduction

This work proposes a method for testing the null hypothesis that a random process
x(t), t ∈ [0, 1], is Gaussian with zero mean and specified covariance function
Kx (t, τ ) satisfying the condition

∫

D
Kx (t, t)dt < ∞.

Weshall represent this randomprocess x as a point in aHilbert spacewith axes defined
by the eigenfunctions of the covariance operator Kx . Under the null hypothesis, the
coordinates of the random process x(t), t ∈ [0, 1], are independent mean zero
normal variables with variances equal to the eigenvalues of the covariance operator.
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We also consider the general Gaussian distribution in a Hilbert space H , where
the random element is represented accordingly. In both cases, each coordinate is
transformed to a uniform random variable on [0, 1]. We shall construct an empirical
process on [0, 1]∞ of a special form. This process converges weakly in L2([0, 1]∞)

to a Gaussian process. Our test statistic will be represented as an infinite-dimensional
integral on [0, 1]∞ of this empirical process with respect to some suitable measure.
The main task of this work is to determine the eigenvalues of the covariance function
of this empirical process.

Our test was first proposed in Martynov (1979). The present work uses essen-
tially results for one-dimensional weighted Cramér–von Mises statistics, obtained in
Deheuvels and Martynov (2003). The main results of this work are briefly presented
in Sect. 2. In Sect. 3 we describe the problem of testing the null hypothesis that a
random process x is Gaussian and propose a statistic to test this null hypothesis. In
Sect. 4, the theory is developed for determining the eigenvalues of the covariance
function of the empirical process on which the Cramér–von Mises statistic (intro-
duced in Sect. 3) is based. Methods for calculating the asymptotic critical values of
our test statistic are described briefly in Sect. 4.4. The exact quantiles of the distri-
bution for the proposed statistic are given in Sect. 4.5, quantiles obtained by Monte
Carlo simulation are presented in Sect. 4.6.

2 Weighted Cramér–von Mises Statistics
for Finite-Dimensional Samples

2.1 One-Dimensional Samples

2.1.1 Cramér–von Mises Statistics with General Weight Function

In dimension one, the Cramér–von Mises statistic with a general weight function is
given by

ω̄2
n = n

∫ 1

0
ψ2(t)(Fn(t) − t)2dt, (1)

where Fn(t) is the empirical distribution function based on an i.i.d. sample
X1, X2, . . . , Xn with common cumulative distribution function [cdf] F , which is
assumed to be continuous, and ψ(t) is a weight function. The statistic (1) is designed
to test the null hypothesis

H0 : F is the uniform cdf on [0, 1]

against the alternative
H1 : H0 is not true.



A Cramér–von Mises Test for Gaussian Processes 211

If the condition ∫ 1

0
ψ2(t) t (1 − t)dt < ∞

is fulfilled, then the statistic ω̄2
n converges in distribution to

ω̄2 =
∫ 1

0
ξ2(t)dt, (2)

where ξ(t), t ∈ [0, 1], is the Gaussian process with zero mean and the covariance
function

Kψ(t, τ ) = ψ(t)ψ(τ )(min(t, τ ) − tτ ).

The Gaussian process ξ(t) can be developed into the Karhunen–Loève series

ξ(t) =
∞∑

i=1

ωkϕk(t)√
λk

,

where, throughout this paper, ωk ∼ N (0, 1), k = 1, 2, . . . , are independent normal
random variables with mean zero and variance 1, and λk and ϕk(t), k = 1, 2, . . . ,
are the eigenvalues and eigenfunctions of the Fredholm integral equation

ϕ(t) = λ

∫ 1

0
ψ(t)ψ(τ )(min(t, τ ) − tτ )ϕ(τ )dτ . (3)

2.1.2 Cramér–von Mises Statistics with Power Weight Function

Deheuvels andMartynov (2003) describe the following result. Let {b(t) : 0 ≤ t ≤ 1}
be the Brownian bridge, i.e., the Gaussian process with mean zero and covariance
function K (t, τ ) = min(t, τ ) − tτ . Then, for each β > −1, the Karhunen–Loève
expansion of {tβb(t) : 0 < t ≤ 1} is given by

tβb(t) =
∞∑

k=1

√
λk ωkek(t).

For k = 1, 2, . . . , the eigenvalues and the corresponding eigenfunctions are λk =
(2ν/zν,k)

2 and

ek(t) =
t

1
2ν − 1

2 Jν

(
zν,k t

1
2ν

)
√

ν Jν−1
(
zν,k

) , 0 < t ≤ 1,

respectively, where zν,k , k = 1, 2, . . . , are the zeros of the Bessel functions Jν(z)
for ν = 1/(2(β + 1)).
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2.1.3 Classical Cramér–von Mises Statistic

The original Cramér–von Mises statistic has the weight function ψ(t) := 1 and has
the form

ω̄2
n = n

∫ 1

0
(Fn(t) − t)2dt.

The eigenvalues and eigenfunctions of the covariance function K (t, τ ) are

λi = (πi)2 and ϕi (t) = √
2 sin(πi t), i = 1, 2, . . . ,

respectively. The limit in distribution ω̄2 of ω̄2
n can be written as

ω̄2 =
∫ 1

0
b2(t)dt =

∞∑

k=1

ω2
k

(πk)2
.

2.2 Multivariate Uniformity Test with Weight Function

We shall use the notation s = (s1, . . . , sd)� and t = (t1, . . . , td)� for d-vectors.
LetU = (U1, . . . , Ud)� be a randomvectorwith the uniformdistribution function

on [0, 1]d ,

F(t) = P(U ≤ t) =
d∏

i=1

ti ,

and let
Ui = (Ui1, . . . , Uid), i = 1, . . . , n,

be n independent observations of U . The empirical distribution function of this
sample has the form

Fn(t) = 1

n

n∑

i=1

1{Ui ≤t}.

We can write the multivariate empirical process as

αn(t) = n1/2(Fn(t) − F(t)).

The Cramér–von Mises statistic for testing that F is the uniform cdf on [0, 1]d is
given by

ω̄2
n =

∫

[0,1]d
α2

n(t)dt.
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Deheuvels (2005) studied the weighted variant

ω̄2
n =

∫

[0,1]d
t2Bα2

n(t)dt

of this statistic, where t B = tβ11 · . . . · tβd
d and B = (β1, . . . ,βd).

The weighted process t Bαn(t) converges weakly in the Hilbert space L2([0, 1]d)

to the Gaussian process ξ(t) = t Bb(t), where b(t) is the standard multivariate
Brownian bridge, with covariance function

Kb(s, t) = E(b(s)b(t)) =
d∏

j=1

{s j ∧ t j } −
d∏

i=1

{s j t j }.

The eigenvalues and eigenfunctions corresponding to the kernel Kb(s, t) can be
derived from the eigenvalues and eigenfunctions corresponding to the covariance
function of the weighted multivariate Wiener process w(t), which has covari-
ance function

Kw(s, t) =
d∏

j=1

{sβ j
j t

β j
j }{s j ∧ t j }.

Using results from Deheuvels andMartynov (2003), the Karhunen–Loève expan-
sion for w(t) is given by

w(t) =
∞∑

k1=1

· · ·
∞∑

kd=1

√
λ̃k1... kd Yk1... kd ẽk1... kd (t), (4)

where

λ̃k1... kd =
d∏

j=1

{
2ν j

/
zν j −1,k j

}2

and

ẽk1... kd (t) =
d∏

j=1

t
1

2ν j
− 1

2

j Jν j

(
zν j −1,k j t

1
2ν j
j

)/√
ν j Jν j

(
zν j −1,k j

)
.

Here, 0 < zν,1 < zν,2 < . . . are the zeros of the Bessel function Jν(·) and Yk1... kd :
k1 ≥ 1, . . . , kd ≥ 1, is an infinite array of i.i.d. N (0, 1) random variables.

The multiplicities of λ̃k1... kd in (4) can be very different. If all β j ’s are equal to 0,
then they vary from 1 to ∞. This case is considered in Krivjakova et al. (1977). If
all the β j ’s are distinct, then the multiplicities of λ̃k1... kd can be larger than one, but
this happens very rarely. For example, if d = 2, ν1 = 2 and ν2 = 2,37927259 . . .

(or β1 = −1/2 and β2 = −.637490078 . . .), then λ̃1,15 = λ̃2,8.
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To conclude this section, we note that the method described below is suitable also
for testing uniformity on the finite-dimensional cube.

3 Cramér–von Mises Tests for Gaussian Distributions
in a Hilbert Space

3.1 General Formulation of the Gaussianity Hypothesis

The problem considered in this subsection was first formulated in Martynov (1979
and 1992).

Let (X ,B, ν) be a probability space, where X is a real separable Hilbert space
of elementary events, B is the σ-algebra of Borel sets on X , and ν is a probability
measure over (X ,B). Let X1, X2, . . . , Xn be n independent observations of the
random element X of (X ,B, ν). Letμ be the Gaussianmeasure on (X ,B)withmean
zero and specified covariance operator K X . If X is the Gaussian random element,
then its characteristic function is

Eei(X,t) = e−(K X t,t)/2, t ∈ X . (5)

We shall test the null hypothesis

H0μ : ν = μ

versus the alternative

H1μ : ν is a probability measure different from μ.

Sometimes, it is convenient to apply a linear invertible transformationT to the random
element X and to its observations. Denote the new random element Y = T X . Its
mean is also equal to 0 and we denote its covariance operator by KY .

Let e = (e1, e2, . . .) be the orthonormal basis of the eigenvectors of KY , and
denote by σ2

1,σ
2
2, . . . the corresponding eigenvalues. Let x = (x1, x2, . . .) be the

representation of x in the basis e. The random element X = (X1, X2, . . .) has inde-
pendent components with distributions N (0,σ2

j ), j = 1, 2, . . . . We can transform
coordinate-wise the probability space (X ,B, ν) to the probability space

([0, 1]∞, U∞, Γ )

with the transformations t j = Φ(x j ; 0,σ2
j ), where, for j = 1, 2, . . . , Φ(·;μ,σ2) is

the normal distribution function with mean μ and variance σ2, and t = (t1, t2, . . .) ∈
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[0, 1]∞. The σ-algebra U∞ is the completion of the set

{[0, t1] × [0, t2] × . . . , t = (t1, t2, . . .) ∈ [0, 1]∞}

to the minimal σ-algebra U∞, and Γ is the probability measure corresponding to ν.
We denote the transformed random element X as T = (T1, T2, . . .) ∈ [0, 1]∞.

Here the random variables Tj , j = 1, 2, . . . , are independent and uniformly dis-
tributed on [0, 1] under the null hypothesis. Let Υ be the “uniform” measure on
([0, 1]∞, U∞), which corresponds to the measure μ. We can see that

Υ ([0, t1] × [0, t2] × . . .) = t1t2 . . .

For example,

Υ
{
[0, t] × [0, t1/2] × [0, t1/4] × [0, t1/8] × . . . ,

}
= t2, for 0 < t < 1.

The observations Xi of X are transformed into T i = (T i1, T i2, T i3, . . .), i =
1, 2, . . . , where T i j = Φ(Xi j ; 0,σ2

j ), i = 1, 2, . . . , n, j = 1, 2, . . .. Each T i

belongs to [0, 1]∞. The transformed observations remain independent.
The null hypothesis H0μ and the alternative H1μ can be reformulated as

H0Υ : Γ = Υ and H1Υ : Γ 
= Υ,

respectively.

3.1.1 Example 1. Gaussian Process Testing

We consider here the problem of testing that an observed random process x(t) on the
interval [0, 1] is Gaussian with specified covariance function. Our null hypothesis is

H0x : x(t), t ∈ [0, 1] is Gaussian with Ex(t) = 0

and E(x(t) x(τ )) = Kx (t, τ ), t, τ ∈ [0, 1].

The alternative H1x is the set of all other Gaussian processes z on the interval [0, 1].
On Kz(t, τ ) we only make the assumption that

∫ 1

0
Kz(t, t)dt < ∞, t, τ ∈ [0, 1]. (6)

Our test is performedwith n independent observations x1(t), x2(t), . . . , xn(t) of x(t).
The process x(t) can be transformed into another Gaussian process, of the form

y(t) = ψx (t)x(t), where ψx (t) is a weight function. This is the simplest linear
invertible transformation of the process x(t). Similarly, all the observations of x(t)
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are transformed to new observations yi (t) = ψx (t)xi (t), i = 1, 2, . . . , n, of the
process y(t). The Gaussian process y(t) has zero mean and covariance function
Ky(t, τ ) = ψx (t)ψx (τ )Kx (t, τ ). The null hypothesis H0x is transformed to the
equivalent null hypothesis

H0y : y(t), t ∈ [0, 1], is the Gaussian process

with Ey(t) = 0 and E(y(t) y(τ )) = Ky(t, τ ), t, τ ∈ [0, 1].

The alternative is modified correspondingly.
Realizations of the process y(t) belong with probability 1 to the separable Hilbert

space H = L2([0, 1]). As a basis for H , we choose the orthonormal basis formed
by the eigenfunctions g1(t), g2(t), . . . of the integral equation

g(t) = λ

∫ 1

0
Ky(t, τ )g(τ )dτ . (7)

Denote by λ1,λ2,λ3, . . . the eigenvalues of Eq. (7). Let h = (h1, h2, h3, . . .) denote
the coordinates of y(t) in that basis, namely,

h j =
∫ 1

0
y(t)g j (t)dt, j = 1, 2, . . . (8)

Analogously, the observations yi (t) of the random process y(t) can be represented
in H as

hi = (hi1, hi2, hi3, . . .), i = 1, 2, . . . , n,

where

hi j =
∫ 1

0
yi (t)g j (t)dt, , i = 1, 2, . . . , n, j = 1, 2, . . . (9)

The random variables hi j are independent mean zero normal random variables.

3.1.2 Example 2. Wiener Process Testing

Consider testing the null hypothesis H0 that the observed random process on [0,1]
is Gaussian with mean zero and covariance function

K0(t, τ ) = min(t, τ ).

We transform this process (and all its observations) by dividing x(t) by
√

t . This
transformation is invertible. The resulting process has unit variance and covariance
function

K (t, τ ) = min(t, τ )/
√

tτ .
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The corresponding covariance operator has eigenvalues λk = (z0,k/2)2 and
eigenfunctions

ϕk(t) = J0(z0,k t)/
√

t, k = 1, 2, . . . ,

where J0(w) is the Bessel function of the first kind, and z0,k, k = 1, 2, . . . , are its
zeros.

The test with the weight function 1/
√

t was considered by Scott (1999).

3.2 Definition of the Test Statistic

Our test statistic is analogous to the one-dimensional Cramér–vonMises statistic (1).
However, the commonly used definition of a distribution function is not suitable for
infinite-dimensional spaces. A convenient alternative to the classical definition is the
generalized distribution function

F∗(t) = tr1
1 tr2

2 tr3
3 . . . , t = (t1, t2, . . .) ∈ [0, 1]∞, (10)

where 1 = r1 ≥ r2 ≥ r3 ≥ . . . , and r j → 0. For example, we can take ri =
i−a, a > 1. For this distribution function, the measure Υ can be uniquely recovered
by associating to each t ∈ [0, 1]∞ the set

([0, tr1
1 ] × [0, tr2

2 ] × [0, tr3
3 ] × . . .).

Let T (i) = (T i1, T i2, . . .) be the i th observation of T . The corresponding empir-
ical distribution function is

F∗
n (t) = 1

n

∞∑

i=1

I{T i1≤t
r1
1 , T i2≤t

r2
2 ,...} = 1

n

n∑

i=1

∞∏

j=1

I{T i j ≤t
r j
j }. (11)

The Cramér–vonMises statistics can bewritten analogously to the one- andmulti-
dimensional cases as

Ω2
n = n

∫

[0,1]∞

⎛
⎝F∗

n (t) −
∞∏

j=1

t
r j
j

⎞
⎠

2

Υ (dt) . (12)

In the sequel, it will be convenient to denote Υ (dt) by dt1dt2 . . . The measure Υ

plays here the role of the weight function. Note that any measure that is absolutely
continuous with respect to Υ can be substituted for Υ itself.

The corresponding “empirical process” is

ξ∗
n (t) = √

n

⎛
⎝F∗

n (t) −
∞∏

j=1

t
r j
j

⎞
⎠ , t ∈ [0, 1]∞,



218 G. Martynov

or

ξ∗
n (t) = 1√

n

n∑

i=1

⎛
⎝ ∞∏

j=1

I{T i j <t
r j
j } −

∞∏

j=1

t
r j
j

⎞
⎠ , t ∈ [0, 1]∞. (13)

The covariance function of ξ∗
n (t) is

K ∗(t, τ ) = Eξ∗
n (t)ξ∗

n(τ )

= 1

n
E

n∑

i=1

n∑

k=1

⎛
⎝ ∞∏

j=1

I{T i j <t
r j
j } −

∞∏

j=1

t
r j
j

⎞
⎠

( ∞∏

m=1

I{T km<τ rm
m } −

∞∏

m=1

τ rm
m

)
.

Finally, we obtain

K ∗(t, τ ) =
∞∏

j=1

min(t
r j
j , τ

r j
j ) −

∞∏

j=1

t
r j
j τ

r j
j , t, τ ∈ [0, 1]∞. (14)

This empirical process can be written as the normalized sum of independent identi-
cally distributed random functions in the form

ξ∗
n (t) = 1√

n

n∑

i=1

vi (t), t ∈ [0, 1]∞, (15)

where

vi (t) =
∞∏

j=1

I{T i j <t
r j
j } −

∞∏

j=1

t
r j
j .

Under the condition
∫

[0,1]∞
K ∗(t, t)dt < ∞ (16)

this empirical process converges weakly in L2([0, 1]∞]) to a mean zero Gaussian
process with covariance function K ∗(t, τ ). This follows from the corresponding
theorem on weak convergence in a Hilbert space of normalized sums of independent
identically distributed random functions to a Gaussian process (see for example van
der Vaart and Wellner (1996)). Then, (16) implies that

∫

[0,1]∞
K ∗(t, t)dt =

∞∏

j=1

1

r j + 1
−

∞∏

j=1

1

2r j + 1
< ∞.
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This holds for all positive sequences {r j , j = 1, 2, . . . }. We are interested in the
case when 1 ≥ r j ↓ 0 as j → ∞, and the empirical process is nondegenerate, i.e.,

∫

[0,1]∞
K ∗(t, t)dt > 0. (17)

To fulfill this condition, it is sufficient to find a sequence which satisfies

∞∏

j=1

1

r j + 1
> 0 (18)

(an example of such a sequence is r j = j−a, a > 1, j = 1, 2, . . .). It is not
necessary for the sequence r j to begin to decrease from r1 = 1. We can write

K ∗(t, τ ) = K ∗
0 (t, τ ) − w(t)w(τ ),

where

K ∗
0 (t, τ ) =

∞∏

j=1

K ∗
0 j (t j , τ j ) =

∞∏

j=1

min
(

t
r j
j , τ

r j
j

)
,

w(t) =
∞∏

j=1

w j (t), w j (t) = t
r j
j , t, τ ∈ [0, 1]∞

with
K ∗
0 j (t j , τ j ) = min

(
t
r j
j , τ

r j
j

)
, j = 1, 2 . . .

We will note that the distribution of the statistic Ω2
n converges in distribution to the

quadratic form

Q =
∞∑

k=1

z2i
λ∗

i
,

where zi are independent identically distributed random variables with standard
normal distribution and λ∗

i are the eigenvalues of the linear integral operator with
kernel K ∗(t, τ ).
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4 Limit Distribution of the Test Statistic Under the Null
Hypothesis

4.1 Eigenvalues and Eigenfunctions of K∗
0 j

First, we shall consider the elementary kernel K0(t, τ , r) in the one-dimensional
case with arbitrary 0 < r ≤ 1

K0(t, τ , r) = min(tr , τ r ), 0 ≤ t, τ ≤ 1.

Then K ∗
0 j (t j , τ j ) = K0(t j , τ j , r j ), for j = 1, 2, . . .

The eigenfunctions and eigenvalues of K0(t, τ , r) can be found from theFredholm
integral equation

ϕr (t) = λr

∫ 1

0
min(tr , τ r )ϕr (τ )dτ , t ∈ [0, 1]. (19)

We make the following change of variable ϕr (t) = h(tr ) and substitute ϕr (t) into
Eq. (19). Its eigenfunctions and eigenvalues can be determined from the integral
equation

hr (t
r ) = λr

r

∫ 1

0
min(tr , τ r )hr (τ

r )τ1−r dτ r , t ∈ [0, 1],

or

hr (x) = ρr

∫ 1

0
y

1
r −1 min(x, y)hr (y)dy, x ∈ [0, 1], (20)

where ρr = λr/r . We can represent this equation as

hr (x) = ρr

∫ x

0
y

1
r hr (y)dy + ρr x

∫ 1

x
y

1
r −1hr (y)dy.

Then, by successive differentiation of this equation, we obtain

h′
r (x) = ρr

∫ 1

x
y

1
r −1hr (y)dy (21)

and

h′′
r (x) + ρr x

1
r −1hr (x) = 0. (22)
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The function h must satisfy the conditions

hr (0) = 0 and h′
r (1) = 0. (23)

The first condition follows from (20), the second one from (21).
The next lemma follows from Theorem 1.3 and Lemma 3.5 in Deheuvels and

Martynov (2003).

Lemma 1 The equation

y′′(t) + θt2β y(t) = 0 (24)

with β > −1 and under the conditions y(0) = 0 and y′(1) = 0 has eigenvalues

θk =
( zν−1,k

2ν

)2
, k = 1, 2, . . . , (25)

and non-normalized eigenfunctions

yk(t) = √
t Jν

(
zν−1,k t1/(2ν)

)
, k = 1, 2, . . . ,

where ν = 1/(2(β + 1)), and za,k , k = 1, 2, . . . are the zeros of the Bessel function
Ja(x).

It canbe concludedbycomparingEqs. (22) and (24) thatβ corresponds to (1−r)/(2r).
Hence, ν corresponds to μ = r/(1+ r). Also, θk transforms to ρr,k . Then the eigen-
values of Eq. (19) are

λr,k = ρr,kr = r

(
zμ−1,k

2μ

)2

, k = 1, 2, . . . (26)

In our study, r varies from 1 to zero while μ varies from 1/2 to zero.
On the other hand, the eigenfunctions of Eq. (22) with conditions (23) are

hr,k(t) = √
t Jμ

(
zμ−1,k t1/(2μ)

)
, k = 1, 2, . . . ,

and the non-normalized eigenfunctions of Eq. (19) are, with the change of variable
ϕr (t) = hr (tr ),

ϕ̃r,k(t) = tr/2 Jμ

(
zμ−1,k t (1+r)/2

)
, k = 1, 2, . . . , (27)

or
ϕ̃r,k(t) = tμ/(2(1−μ)) Jμ

(
zμ−1,k t1/(2(1−μ))

)
, k = 1, 2, . . . (28)
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The squared normalizing divisor for ϕ̃r,k(t) is

D2
r,k = (μ − 1)z2μμ−1,kΓ (2 + μ)Γ (1 + 2μ)√

π

× 1F2

(
1

2
+ μ; 2 + μ, 1 + 2μ;−z2μ−1,k

)
.

Here, p Fq(a1, . . . , ap; b1, . . . , bq , z) is the generalizedhypergeometric function (see
Luke (1969)) defined by the series

p Fq(a1, . . . , ap; b1, . . . , bq , z) = 1 +
∞∑

m=1

(a1)m . . . (ap)m

(b1)m . . . (bq)m m! tm, (29)

and (a)m = a(a + 1) · · · (a + m − 1), where (a)0 = 1, is the Pochhammer symbol.
This series converges for all |t | < 1.We shall use the notationϕr,k(t) = ϕ̃r,k(t)/Dr,k

for the normalized eigenfunctions of Eq. (19).

4.2 Eigenvalues and Eigenfunctions of K∗
0 in the

infinite-dimensional case

Further, we obtain the eigenvalues and eigenfunctions of the kernel K ∗
0 (t, τ ), t, τ ∈

[0, 1]∞. In this case, the Fredholm equation becomes

ϕr (t) = λ

∫

[0,1]∞

∞∏

j=1

min(t
r j
j , τ

r j
j )ϕr (τ )dτ , t, τ ∈ [0, 1]∞. (30)

Here, r j , j = 1, 2, . . . , is a prescribed sequence of numbers monotonically decreas-
ing from 1 to 0 and satisfying condition (17). Denote by α j,k = 1/λr j ,k, k =
1, 2, 3, . . . , the characteristic numbers for Eq. (19). Let A j = {α j,1,α j,2,α j,3 . . .}
be the set of characteristic numbers for Eq. (19) corresponding to the value r = r j .

Then the set of the characteristic numbers for Eq. (30) consists of all possible products

αk1,k2,k3,... =
∞∏

j=1

α j,k j , (31)

where (k1, k2, k3, . . .) ∈ N
N, is the set of all sequences of positive natural numbers.

The normalized eigenfunction corresponding to αk1,k2,k3,... is

ϕk1,k2,k3,...(t) =
∞∏

j=1

ϕr j ,k j (t). (32)
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Among all the characteristic numbers αk1,k2,k3,..., groups may appear with equal
values. The cardinalities of such groups are called the multiplicities of the corre-
sponding characteristic numbers. But, if the sequence of integers r1, r2, r3, . . . is
chosen arbitrarily and without “malicious intent”, all multiplicities will be equal
to one. For the sake of simplicity, we consider this case only. We arrange all the
characteristic numbers in descending order, by giving them the serial numbers
α1 > α2 > α3 > . . . .

The following theorem gives us an idea about the behavior of those characteristic
numbers.

Theorem 1 If r → 0, then the limit form of the Fredholm equation (19) has a unique
root, which is equal to one.

Proof The limit form of Eq. (19) is

ϕ(t) = λ

∫ 1

0
ϕ(τ )dτ , t ∈ [0, 1]. (33)

Hence, ϕ(t) is a constant, i.e., Eq. (19) in this case has the only eigenvalue λ = 1.
This assertion follows from Parseval’s equality because here, formally, K (t, t) = 1
and integrates to 1. �

It follows from Theorem 1 that λr j ,1 → 1, but λr j ,k → ∞ (α j,k → 0), k =
2, 3, . . . , as j → ∞.

The behavior of the characteristic numbers when r j tends to zero is shown in

Table1. Here and below, we take ri = i−a(1−i−b).

We can compute the largest characteristic number. It is equal to

α1 =
∞∏

j=1

α j,1 ≈ 0.0642. (34)

It is also obvious that the second largest characteristic number is

α2 = α1α1,2/α1,1 ≈ 0.007137. (35)

The corresponding eigenfunctions are

ϕ1(t) =
∞∏

j=1

ϕr j ,1(t) and ϕ2(t) = ϕ1(t)ϕr1,2(t)/ϕr1,1(t).

Notice that the sequence k1, k2, k3, . . . in (31) may contain only a finite number of
terms different from 1.Denote v j,k = α j,k/α j,1, j ≥ 2.Then themth characteristic
number can be represented as

αm = α1vm,km,1vm,km,2 . . . vm,km,sm
, (36)
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Table 1 The behavior of αr j ,k when ri varies from one to zero

j r j α j,1 α j,2 α j,3 α j,4 α j,5

1 1 0.4053 0.0450 0.0162 0.0083 0.0050 ...

2 0.60197 0.5298 0.0463 0.0160 0.0081 0.0048 ...

3 0.31323 0.6829 0.0400 0.0132 0.0065 0.0039 ...

4 0.17678 0.7917 0.0303 0.0097 0.0047 0.0028 ...

5 0.10816 0.8610 0.0219 0.0068 0.0033 0.0019 ...

10 0.01952 0.9716 0.0050 0.0015 0.0007 0.0004 ...

25 0.00160 0.9976 0.0004 0.0001 0.0001 0.0000 ...

50 0.00023 0.9997 0.0001 0.0000 0.0000 0.0000 ...

99 0.00003 1.0000 0.0000 0.0000 0.0000 0.0000 ...
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

∞ 0 1 0 0 0 0 ...

where vm,km,1vm,km,2 . . . vm,km,sm
is the mth value among the finite products

v j,k1v j,k2 . . . v j,ks j ≥ 2, 1 ≤ k1 < k2 < · · · < ks ≤ ∞, s ≥ 1,

ranked in descending order.
Table2 represents the realization of formula (36) for the considered sequence ri .

Denote its elements as s jk . Column k in the table corresponds to the kth characteristic
number αk of K ∗

0 in descending order by the formula

αk =
∞∏

j=1

α j,s jk .

Table3 shows some real values of the characteristic numbers in accordance with
Table2.

4.3 Eigenvalues of K∗

It follows from Darling (1955), Durbin (1973), and Krivjakova et al. (1977) that the
characteristic numbers α∗

i of K ∗(s, t) are solutions of the equation

∞∑

k=1

C2
k

αk − α
= 1,
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Table 3 Upper left corner of Table2 with α j,s j,k

j k

1 → 5 6 → 10

α1,1 1,2 α1,1 α1,1 1,3 α1,1 α1,1 α1,1 1,4 α1,1

1 α2,1 α2,1 2,2 α2,1 α2,1 α2,1 2,3 α2,1 α2,1 α2,1

↓ α3,1 α3,1 α3,1 α3,2 α3,1 α3,1 α3,1 α3,1 α3,1 3,3

5 α4,1 α4,1 α4,1 α4,1 α4,1 4,2 α4,1 α4,1 α4,1 α4,1

α5,1 α5,1 α5,1 α5,1 α5,1 α5,1 α5,1 5,2 α5,1 α5,1

where

Ck =
∞∏

j=1

C j,k, k = 1, 2, . . .

and

C j,k =
∫ 1

0
w j (t)ϕ j,k(t)dt =

∫ 1

0
tμ j /1−μ j ϕ j,k(t)dt, j = 1, 2, . . .

From this, it can be derived that

C2
r,k =

(
2−μ(μ − 1)Γ (2 + μ)zμ

μ−1,k 0F1

(
; 2 + μ;−1

4
z2μ−1,k

))2 /
D2

r,k,

where 0F1 is the generalized hypergeometric function

0F1(; a; z) =
∞∑

k=0

zk

(a)kk! .

4.4 Limit Distribution

In the previous section, we obtained the eigenvalues λ∗
k = 1/α∗

k for the covariance
function K ∗(s, t). For calculation of the limiting distribution function ofΩ2, we can
use the Smirnov formula, namely, for t > 0,

P
(
Ω2 > t

)
= 1

π

∞∑

k=1

(−1)k+1
∫ λ∗

2k

λ∗
2k−1

e−tu/2du

u

√∣∣∣
∏∞

k=1

{
1 − u

λ∗
k

}∣∣∣
.

The Smirnov formula is designed for distinct eigenvalues. This formula, and the
formula permitting eigenvalues with multiplicities, was considered, for example, in
Deheuvels and Martynov (1996), Martynov (1975, 1992).
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4.5 The Limiting Distribution of Ω2
n

The method described in Sects. 4.2–4.4, is implemented for the sequence

ri = i−2.5(1−i−0.5), i = 1, 2, . . . . Some results of the calculations have been
presented in these sections. We obtained 1000 values α∗

i = 1/λ∗
i . The distribution

of the statistic Ω2
n is approximated by a finite quadratic form

Q100 =
100∑

k=1

z2i
λ∗

i
,

where zi are independent identically distributed random variables with standard
normal distribution. The mathematical expectation of Q100 is

E Q100 =
100∑

k=1

1

λ∗
i

= 0.0742689.

On the other hand, the limiting mathematical expectation of the statistic Ω2
n is equal

to the mathematical expectation of the infinite quadratic form

E Q =
∞∑

k=1

1

λ∗
i

=
∞∏

j=1

1

r j + 1
−

∞∏

j=1

1

2r j + 1
= 0.10390.

The residue of the quadratic form Q100,

∞∑

k=101

z2k
λ∗

i
,

is replaced by its expectation 0.0296327. As a result, we obtain the following percent
points of the statistic Ω2

n :

P{Ω2 ≤ 0.90} ≈ 0.16450, P{Ω2 ≤ 0.95} ≈ 0.20371,

P{Ω2
n ≤ 0.99} ≈ 0.30039, P{Ω2

n ≤ 0.995} ≈ 0.34350,

P{Ω2
n ≤ 0.999} ≈ 0.44563.

4.6 Monte Carlo Results

The distribution of the statistic Ω2
n was calculated also by the Monte Carlo method.

The Cramér–von Mises statistic can be represented as
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Ω2
n = n

∫

[0,1]∞

⎛
⎝1

n

n∑

i=1

∞∏

j=1

I{T i j <t
ri
j } −

∞∏

i=1

tri
i

⎞
⎠

2

dt.

Here we used double-loop calculations by a Monte Carlo method. The value of the
statisticΩ2

n was computed in the inner loop, while its distribution wasmodeled in the
outer loop. The number of summands in the integral was 100, the number of Monte
Carlo iterations to calculate the statisticΩ2

n was 500, and the number of Monte Carlo
iterations for calculating the percentage points was 10,000.

Here are a few estimated quantiles of the limiting distribution of Ω2
n , with

ri = i−a(1−i−b).When a = 2.5 and b = 0.5, the exact expectation is EΩ2 ≈ 0.1039
and the estimated expectation is Êω2 ≈ 0.104 . The corresponding percentage points
are

P{Ω2
n ≤ 0.90} ≈ 0.17 and P{Ω2

n ≤ 0.95} ≈ 0.21.

When a = 3 and b = 0.5, the exact expectation is EΩ2 ≈ 0.1306 and the estimated
expectation is ÊΩ2 ≈ 0.132. The corresponding percentage points are

P{Ω2
n ≤ 0.90} ≈ 0.22 and P{Ω2

n ≤ 0.95} ≈ 0.28.

The simulation results and exact calculations agree with each other within the
expected precision. Simulation results confirm the possibility of calculating the sta-
tistics Ω2

n values by a Monte Carlo method. The results of both sections, however,
should be considered as preliminary.
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New U-empirical Tests of Symmetry
Based on Extremal Order Statistics,
and Their Efficiencies

Ya. Yu. Nikitin and M. Ahsanullah

Abstract Weuse a characterization of symmetry in terms of extremal order statistics
which enables to build several new nonparametric tests of symmetry.We discuss their
limiting distributions and calculate their local exactBahadur efficiency under location
alternative which is mostly high.

1 Introduction

The idea of building statistical tests based on characterizations belongs to Linnik
(1953). Suppose we have a sample X1, . . . , Xn of i.i.d. observations with distribution
function F, and consider testing the hypothesis H : F ∈ F , where F is some
family of distributions, against the alternative A : F /∈ F . Common examples of
F are the families of exponential or normal distributions with unknown parameters
or the class of symmetric distributions with known or unknown center of symmetry.

Assume that the familyF is characterizedby the fact that two statistics g1(X1, . . . ,

Xr ) and g2(X1, . . . , Xs) under F ∈ F have the same distribution. We introduce the
two U -empirical distribution functions
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G1n(t) =
(

n

r

)−1 ∑

1≤i1<···<ir ≤n

1{g1(Xi1 , . . . , Xir ) < t}, t ∈ R1, r ≥ 1,

G2n(t) =
(

n

s

)−1 ∑

1≤i1<···<is≤n

1{g2(Xi1 , . . . , Xis ) < t}, t ∈ R1, s ≥ 1.

According to the Glivenko–Cantelli theorem for U -empirical distribution func-
tions, see Helmers et al. (1988), G1n(t) and G2n(t) converge uniformly and a.s. to
the distribution functions G1(t) = P(g1 < t) and G2(t) = P(g2 < t) as n → ∞.

As under H one has G1(t) ≡ G2(t), it follows that, a.s. under H ,

Dn := sup
t∈R1

| G1n(t) − G2n(t) |−→ 0, n → ∞.

Hence the Kolmogorov-type statistic Dn can be used for testing H against A . We
can also use some U -empirical integral statistics, e.g.,

In =
∫

R
(G1n(t) − G2n(t)) d Fn(t), (1)

where Fn is the usual empirical distribution function, in case they are consistent. The
use of ω2-type statistics of the type

Ω2
n =

∫

R
(G1n(t) − G2n(t))2 d Fn(t)

is likely to be unjustified because of their complexity and the considerable difficulty
of establishing their limit behavior.

The examples of such goodness-of-fit tests together with their asymptotic analy-
sis and related calculation of efficiencies can be found in Baringhaus and Henze
(1992), Henze andMeintanis (2002), Morris and Szynal (2001), Muliere and Nikitin
(2002), Nikitin (1996b), Nikitin (2010), Nikitin and Volkova (2010), and some other
related papers.

Testing of symmetry based on characterizations has been much less explored.
Consider the classical hypothesis

H0 : 1 − F(x) − F(−x) = 0, ∀x ∈ R1, (2)

against the alternative H1 under which the equality (2) is violated at least in one point.
The first step in construction of such testswasmade byBaringhaus andHenze (1992).

Suppose that X and Y are i.i.d. rv’s with continuous distribution function F .
Baringhaus and Henze proved that the distributions of |X | and |max(X, Y )| coin-
cide iff F is symmetric with respect to zero, that is, iff (2) holds. They also proposed
suitable Kolmogorov-type and omega-square type tests of symmetry. Some effi-
ciency calculations were then performed in Nikitin (1996a), see also Nikitin (2010).
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An integral test of symmetry similar to (1) was proposed by Litvinova (2001). Below
we reconsider, inter alia the Litvinova’s test.

In the present paper we are interested in new tests of symmetry with respect to
zero based on the following characterization by Ahsanullah (1992):

Let X1, . . . , Xk , k ≥ 2, be i.i.d. rv’s with absolutely continuous distribution
function F(x). Denote X1,k := min(X1, . . . , Xk) and Xk,k := max(X1, . . . , Xk).

Then |X1,k | and |Xk,k | are identically distributed iff F is symmetric about zero, i.e.
iff (2) holds.

Subsequently, we refer to this result as Ahsanullah’s characterization of order k.
In the sequel, we construct new tests of symmetry using this characterization

and explore their asymptotic properties with emphasis on their local Bahadur effi-
ciency. We shall see that corresponding tests of symmetry for k = 2 and k = 3 are
asymptotically equivalent to the test of Litvinova and to the Kolmogorov-type test
of Baringhaus and Henze. In case of location alternative they are competitive and
exhibit rather high Bahadur and Pitman efficiency in comparison to many other tests
of symmetry. At the same time, higher values of k, k > 3, lead us to different tests,
presumably with lower efficiency values in case of common alternatives.

In the rest of the Introduction we briefly review some results on the asymp-
totic normality of U -statistics and the calculation of Bahadur efficiencies which are
repeatedly used later on and might be helpful for the reader.

Currently, U -statistics play an important role in Statistics and Probability. They
appeared in the middle of the 1940s in problems of unbiased estimation Halmos
(1946). After the seminal paper of Hoeffding (1948), it became clear that many
valuable statistics were just U -statistics (or von Mises functionals, with very similar
asymptotic theory). We refer to the monographs Korolyuk and Borovskikh (1994)
and Lee (1990) for a complete exposition of the theory.

We consider U -statistics of the form

Un =
(

n

m

)−1 ∑

1�i1<···<im�n

Ψ (Xi1 , . . . , Xim ), n � m,

where X1, X2, . . . is a sequence of i.i.d. rv’s with common distribution P , while
the kernel Ψ : Rm → R1 is a measurable symmetric function of m variables. The
numberm is called the degree of the kernel.We assume that the kernelΨ is integrable
on Rm and denote

θ(P) =
∫

. . .

∫

Rm
Ψ (x1, . . . , xm)d P(x1) . . . d P(xm).

In the sequel we need the notation

ψ(x) := EP {Ψ (X1, . . . , Xm)|X1 = x}, Δ2 := EPψ2(X1) − (θ(P))2.
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The function ψ is called the one-dimensional projection of the kernel Ψ and
plays an important role in asymptotic theory. IfΔ2 > 0 (the so-called nondegenerate
case), the limiting distribution of U−statistics is normal as discovered by Hoeffding
(1948). He proved that if EPΨ 2(X1, . . . , Xm) < ∞ and Δ2 > 0, then as n → ∞
one has convergence in distribution

√
n

m2Δ2 (Un − θ(P))
d−→ N (0, 1). (3)

Bahadur efficiency is one of several possible approaches evaluating the asymptotic
relative efficiency (ARE) of two statistical tests. The Bahadur approach, proposed
in Bahadur (1967) and (1971), consists in fixing the power of concurrent tests, then
comparing the exponential rates of decrease of their sizes for increasing number of
observations under some fixed alternative. This exponential rate for a sequence of
statistics {Tn} is usually proportional to some nonrandom function cT (θ) depending
on the alternative parameter θ which is called the exact slope of the sequence {Tn}.
The Bahadur ARE e B

V,T (θ) of two sequences of statistics {Vn} and {Tn} is defined
by means of the formula

e B
V,T (θ) = cV (θ)

/
cT (θ) .

The Bahadur exact slope of the sequence of test statistics {Tn} can be evaluated
as cT (θ) = 2 f (bT (θ)), where bT (θ) is the limit in probability of Tn under the alter-
native, while the continuous function f (t) describes the logarithmic large deviation
asymptotics of this sequence under the null hypothesis, see details in Bahadur (1971)
or Nikitin (1995).

It is important to note that there exists an upper bound for exact slopes Bahadur
(1967) and (1971)

cT (θ) ≤ 2K (θ), (4)

where the Kullback–Leibler information number K (θ) measures the “statistical dis-
tance” between the alternative and the null hypothesis. It is sometimes compared in
the literature with the Cramér–Rao inequality in the estimation theory. Therefore,
the absolute (nonrelative) Bahadur efficiency of the sequence {Tn} can be defined as
eB

T (θ) := cT (θ)/2K (θ).

Computing the exact Bahadur ARE for arbitrary alternatives (depending on θ ) is
often infeasible; but it is possible to calculate the local Bahadur ARE as θ approaches
the null hypothesis. Then one speaks about local efficiency and localBahadur slopes:
see Nikitin (1995).

The indisputable merit of Bahadur efficiency is its ability to handle statistics
with nonnormal asymptotic distributions. This is the primary reason for using it
in the present paper, as the Kolmogorov-type statistics have nonnormal limiting
distribution.
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2 Integral Test of Symmetry for k = 2
and Its Asymptotic Theory

In this section we study the simplest integral test. Consider two V -empirical distri-
bution functions

Gn(t) = n−2∑
1≤i, j≤n1{|min(Xi , X j )| < t}, t ∈ R1,

Hn(t) = n−2∑
1≤i, j≤n1{|max(Xi , X j )| < t}, t ∈ R1,

and let Qn be the empirical distribution function corresponding to the sample
|Xi |, i = 1, . . . , n.

We introduce the integral statistic

Jn =
∫

R1
[Gn(t) − Hn(t)]d Qn(t).

Let us show that this statistic is distribution free under the hypothesis of symmetry.
Denote by F−1 the inverse distribution function of the sample assuming for simplicity
that it is strictly monotone. Then

Jn =
∫ 1

0
[Hn(F−1(u)) − Gn(F−1(u))]d Qn(F−1(u)).

By symmetry of F ,

−F−1(u) = F−1(1 − u), ∀u ∈ [0, 1].

Hence, for any u,

Gn(F−1(u)) = n−2
∑

1≤i, j≤n

1{−F−1(u) < min(Xi , X j ) < F−1(u)}

= n−2
∑

1≤i, j≤n

1{F−1(1 − u) < min(Xi , X j ) < F−1(u)}

= n−2
∑

1≤i, j≤n

1{(1 − u) < min(F(Xi ), F(X j )) < u}

= n−2
∑

1≤i, j≤n

1{1 − u < min(Ui , U j ) < u},

whereU1, . . . , Un are independent standarduniform rv’s, andwe see thatGn(F−1(u))

does not depend on F . Similar arguments can be invoked for Hn(F−1(u)) and
Qn(F−1(u)). Hence Jn is distribution free. Thus we may assume in the sequel that
F is the (symmetric) uniform distribution on [−1, 1]. Now we see that
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Jn = n−3
∑

1≤i, j,k≤n

(
1{|min(Xi , X j )| < |Xk |} − 1{|max(Xi , X j )| < |Xk |}

)

= n−3
∑

1≤i, j,k≤n

Ψ3(Xi , X j , Xk),

where the kernelΨ3 of degree 3 of the last V -statistic is given after symmetrization by

3Ψ3(X, Y, Z) = 1{|min(X, Y )| < |Z |} + 1{|min(X, Z)|
< |Y |} + 1{|min(Y, Z)| < |X |}

− 1{|max(X, Y )| < |Z |} − 1{|max(X, Z)|
< |Y |} − 1{|max(Y, Z)| < |X |}.

AsU - and V -statistics with the same kernel have the same asymptotic distribution
(see Korolyuk and Borovskikh (1994)), we can replace the V -statistic Jn by the
asymptotically equivalent U -statistic I (3)

n of degree 3

I (3)
n =

(
n

3

)−1 ∑

1≤i< j<k≤n

Ψ3(Xi , X j , Xk),

which is simpler to calculate.
In what follows we use a system of notations for statistics I (k)

n and D(k)
n in such a

way that the index k always corresponds to the degree of the associatedU -statistic or
to the degree of the corresponding family of U -statistics in case of supremum-type
tests. At the same time these statistics correspond to Ahsanullah’s characterization
of order k − 1.

Let us calculate the projection of the kernel Ψ3. We should find

ψ3(s) := E[Ψ3(X, Y, Z)|Z = s].
Due to the underlying characterization, we have

E (1{|min(X, Y )| < |s|} − 1{|max(X, Y )| < |s|}) = 0.

It is clear that

E 1{|min(X, s)| < |Y |} = E 1{|min(Y, s)| < |X |} = P{|min(X, s)| < |Y |}.

The simplest way to calculate this probability is to use geometric considerations,
evaluating

1

4
λ{(x, y) : −1 ≤ x, y ≤ 1, |min(x, s)| < |y|} =

{
(s2 − 2s + 3)/4, if s > 0,
(−s2 + 2s + 3)/4, if s ≤ 0.

where λ stands for the Lebesgue measure on R2.
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The values of the expectations

E1{|max(X, s)| < |Y |} = E1{|max(Y, s)| < |X |} = P{|max(X, s)| < |Y |}

are slightly different, and are given by

1

4
λ{(x, y) : −1 ≤ x, y ≤ 1, |max(x, s)| < |y|} =

{
(−s2 − 2s + 3)/4, if s > 0,
(s2 + 2s + 3)/4, if s ≤ 0.

Hence

E1{|min(X, s)| < |Y |} − E1{|max(X, s)| < |Y |} =
{

s2/2, if s > 0,
− s2/2, if s ≤ 0.

Taking in account the same value forE1{|min(Y, s)| < |X |}−E1{|max(Y, s)| <

|X |}, we conclude that the required projection is given by

ψ3(s) =
{

s2/3, if s > 0,
− s2/3, if s ≤ 0.

Consequently, the projection’s variance equals

σ 2
3 := Eψ2

3 (X1) = 1

18

∫ 1

−1
x4 dx = 1

45
> 0,

so that our kernel Ψ3 is nondegenerate. According to Hoeffding’s theorem, see (3),
we have the weak convergence

√
nI (3)

n
d−→ N (0,

1

5
).

Now we can describe the rough large deviation asymptotics under H0. The fol-
lowing result can be derived from more general theorems proved in Nikitin and
Ponikarov (1999):

For a > 0, it holds true under H0 that

lim
n→∞ n−1 ln P(I (3)

n > a) = − f3(a),

where the function f3 is analytic for sufficiently small a > 0, and such that

f3(a) ∼ a2

18σ 2 = 5

2
a2, as a → 0.



238 Y.Y. Nikitin and M. Ahsanullah

Now we apply Bahadur’s theory Bahadur (1971), Nikitin (1995) to evaluate the
local Bahadur efficiency of this test. By the Law of Large Numbers for U - and
V -statistics, see Korolyuk and Borovskikh (1994), we have a.s. convergence under
the parametric alternative Pθ :

I (3)
n −→ b(3)

I (θ) = EθΨ3(X, Y, Z), n → ∞.

In efficiency calculations we shall not go beyond location alternatives, but for
a few remarks on common parametric alternatives. Let Pθ denote the alternative
distribution function F(x, θ) = F(x −θ)with some symmetric distribution function
F. Under these notations we obtain

b(3)
I (θ) = Pθ {|min(Y, Z)| < |X |} − Pθ {|max(Y, Z)| < |X |}

=
∫ ∞

0

(
(1 − F(−x − θ))2 − (1 − F(x − θ))2

)
d(F(x − θ) − F(−x − θ))

−
∫ ∞

0

(
F2(x − θ) − F2(−x − θ)

)
d(F(x − θ) − F(−x − θ))

= 2
∫ ∞

0
(F(x − θ) − F(−x − θ)) (1 − F(x − θ) − F(−x − θ))

× d(F(x − θ) − F(−x − θ)).

Assuming that F is differentiable with the density f , we have for any x and θ → 0

F(x − θ) − F(−x − θ) = 2F(x) − 1 + O(θ2)

and

1 − F(x − θ) − F(−x − θ) = 1 − F(x) − F(−x) + 2θ f (x) + O(θ2)

= 2 f (x)θ + O(θ2).

Consequently, under weak regularity conditions imposed on F, we have

b(3)
I (θ) ∼ 8

∫ ∞

0
(2F(x) − 1) f 2(x)dx · θ, θ → 0.

It follows that the local exact Bahadur slope (Bahadur (1971, Sect. 7) and Nikitin
(1995)) is equivalent as θ → 0 to

c(3)
I (θ) ∼ 320

(∫ ∞

0
(2F(x) − 1) f 2(x)dx

)2

θ2.

Same result can be obtained using general considerations fromNikitin and Peaucelle
(2004).
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This local exact slope is equivalent to that of Litvinova’s test studied in Litvinova
(2001) and (2004). Her test was based on the Baringhaus-Henze characterization,
and the test statistic appeared as a U -statistic with centered kernel

Φ(x, y, z) = 1

2
− 1

3
(1{|max(x, y)| < |z|} + 1{|max(x, z)| < |y|}

+1{|max(y, z)| < |x |}) .

The calculations are similar. While the limiting distributions have distinct variances
and hence large deviation asymptotics are also different, the local exact slope is the
same. Hence both tests are statistically equivalent for large samples, at least from the
point of view of local Bahadur efficiency (and also limiting Pitman efficiency).

According to the inequality (4), in our case of a location parameter, we have under
mild regularity conditions (see Bahadur (1971) and Nikitin (1995), Sect. 4.4),

320

(∫ ∞

0
(2F(x) − 1) f 2(x)dx

)2

≤ I ( f ), (5)

where

I ( f ) =
∫ ∞

−∞

(
f ′(x)

)2
f (x)

dx

is the Fisher information for location. The local Bahadur efficiency is equal to the
ratio of the left- and right-hand sides in (5). Litvinova also found rather high values of
this efficiency for some concrete distributions. For instance, she found an efficiency
as high as 0.977 for the normal distribution and 0.938 for the logistic distribution.
At the same time this efficiency is only 0.488 for the Cauchy distribution.

Similar local efficiencies hold for skew alternatives with densities of the form
2 f (x)F(θx) (see Azzalini (2014)). Litvinova (2004) also explored contamination
and Lehmann alternatives, against which local efficiencies also are rather high.

It follows that our test is also quite efficient with respect to those alternatives.
Which test is better is to ascertain and can be explored either by power simulation or
by the calculation of variances for corresponding P-values in the spirit of Lambert
and Hall (1982).

3 Kolmogorov-Type Test of Symmetry for k = 2

In this section, we consider tests based on supremum-type test statistics of the form

D(2)
n = sup

t
|Gn(t) − Hn(t)|. (6)
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As this statistic is also distribution free under H0, we may assume that the rv’s Xi

are again uniformly distributed on [−1, 1] and that the supremum can be taken over
[−1, 1].

Limiting distributions and critical values for this statistic are unknown, but can be
obtained via simulation. Therefore, we will focus on large deviations. Statistic (6)
is the supremum of a family of U -statistics with kernel of degree 2 depending on t ,
namely

Ξ2(X, Y, t) = 1{|min(X, Y )| < t} − 1{|max(X, Y )| < t}, 0 ≤ t ≤ 1. (7)

In the sequel, we need the projection function of the family of kernels (7) (see
Nikitin (2010))

ξ2(z, t) = E[Ξ2(X, Y, t)|Y = z] = P{|min(z, X)| < t} − P{|max(z, X)| < t}.

This function depends on the relationship between z and t, and after some calcu-
lations we get

ξ2(z; t) =
⎧
⎨

⎩

−t, −1 ≤ z < −t,
0, −t ≤ z ≤ t,
t, t < z ≤ 1.

Therefore, we can calculate the so-called variance function Nikitin (2010) of the
family of kernels (7). We get

ξ2(t) := Eξ22 (Y ; t) = t2(1 − t), 0 ≤ t ≤ 1.

The maximum of this function is attained for t = 2
3 and is equal to 4

27 . We note that
the variance function is nondegenerate in the sense of Nikitin (2010), and hence we
get, due to Nikitin (2010), the large deviation asymptotics

lim
n→∞ n−1 lnP(D(2)

n > a) = −h2(a) ∼ −27

32
a2, as a → 0,

where h2 is some analytic function in the neighborhood of zero.
Hence the exact slope of our statistic D(2)

n is 2h2(b
(2)
D (θ)), where

b(2)
D (θ) = lim

n→∞ D(2)
n

a.s. under the alternative. Under location alternatives, we can use the same calcula-
tions as above, and get, under minimal regularity assumptions,



New U -empirical Tests of Symmetry Based on Extremal Order Statistics … 241

b(2)
D (θ) = sup

t
|Pθ {|min(X, Y )| < t} − Pθ {|max(X, Y )| < t}

= sup
t

|(1 − F(−t − θ))2 − (1 − F(t − θ))2 − F2(t − θ) + F2(−t − θ)|
= 2 sup

t
|(F(t − θ) − F(−t − θ))(1 − F(t − θ) − F(−t − θ))|

∼ 4 sup
t

|(2F(t) − 1)| f (t)θ, θ → 0.

Thus the local exact slope of the sequence D(2)
n satisfies the relation

c(2)
D (θ) ∼ 27 sup

t
(2F(t) − 1)2 f 2(t)θ2, θ → 0.

This local exact slope coincides with that of the Kolmogorov-type tests from
Baringhaus and Henze (1992) as evaluated in Nikitin (1996a). The latter test is
formally different, being based on the difference of the U -empirical distribution
functions Fn and Hn , but turns out to be asymptotically equivalent to our statis-
tic D(2)

n .
In any case, in Nikitin (1996a) the local Bahadur efficiency of both tests is calcu-

lated for location alternatives. It is 0.764 for the normal, 0.750 for the logistic, and
0.376 for the Cauchy distribution. For the Kolmogorov-type tests it is an adoptable
result as such tests usually are less efficient than the integral ones Nikitin (1995).

4 Integral Tests in the General Case

We see that the characterization of symmetry we used for k = 2 leads to tests which
are asymptotically equivalent and equally as efficient as well-known ones. Let us
consider the general case when the tests are built on the characterization by the
fact that

|min(X1, . . . , Xk)| d= |max(X1, . . . , Xk)|, k ≥ 3. (8)

In the sequel, the index k or k + 1 corresponds again to the degree of the kernel
of a U -statistic. As in previous sections we associate with the condition (8) of order
k the U -statistic of degree k + 1

I (k+1)
n =

(
n

k + 1

)−1 ∑

1≤i1<···<ik+1≤n

Ψk+1(Xi1 , . . . , Xik+1),
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where the kernel Ψk+1 of degree k + 1 is given after symmetrization by

(k + 1)Ψk+1(X1, . . . , Xk+1) = 1{|min(X1, . . . , Xk)|
< |Xk+1|} + · · · + 1{|min(X2, . . . , Xk+1)| < |X1|}

− 1{|max(X1, . . . , Xk)| < |Xk+1|}
− · · · − 1{|max(X2, . . . , Xk+1)| < |X1|}.

In Sect. 2 we studied the special case of this kernel for k = 2.
When calculating the projection ψk+1 of this kernel, we are first interested in

P(|min(X1, . . . , Xk−1, s)| < t) − P(|max(X1, . . . , Xk−1, s)| < t).

Reasoning as above, we have for s > 0 and t ∈ [0, 1]

P(|min(X1, . . . , Xk−1, s)| < t) =
{
(1 + t)k−1/2k−1, if s ≤ t,
(1 + t)k−1/2k−1 − (1 − t)k−1/2k−1, if t < s ≤ 1.

Therefore, integrating, we get for s > 0

P(|min(X1, . . . , Xk−1, s)| < |Z |) =
(
2k − 2 + (1 − s)k

)
/k2k−1.

In the same manner for s ≤ 0 we obtain

P(|min(X1, . . . , Xk−1, s)| < |Z |) =
(
2k − (1 − s)k

)
/k2k−1.

Quite analogously we find the probabilities related to the maximum, namely

P(|max(X1, . . . , Xk−1, s)| < |Z |) =
{(

2k − (1 + s)k
)
/k2k−1, s > 0,(

2k − 2 + (1 + s)k
)
/k2k−1, s ≤ 0.

Taking together our calculations, we obtain the projection of our kernel as

ψk+1(s) =
⎧
⎨

⎩

(1+s)k+(1−s)k−2
(k+1)2k−1 , if s > 0;

2−(1+s)k−(1−s)k

(k+1)2k−1 , if s ≤ 0.

Now we can calculate the variance σ 2
k+1 = Eψ2

k+1(X1). It is given, for any
k ≥ 2, by

σ 2
k+1 = 1

22k−2(k + 1)2

∫ 1

0

(
(1 + s)k + (1 − s)k − 2

)2
ds > 0.
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Table 1 Some exact values
of the variance σ 2

k+1

k Variance σ 2
k+1

k = 2 1/45

k = 3 9/320

k = 4 2843/126000

k = 5 2335/145152

k = 6 421691/37669632

In Table1 we give some values of this variance which apparently has no nice
explicit form.

ByHoeffding’s theorem, see (3), the limiting distribution of
√

nI (k+1)
n is N (0, (k+

1)2σ 2
k+1). The large deviation asymptotics under H0, see Sect. 2, is given by

lim
n→∞ n−1 ln P(I (k+1)

n > a) = − fk+1(a),

where the function fk+1, k ≥ 2, is analytic for sufficiently small a > 0, and such that

fk+1(a) ∼ a2

2(k + 1)2σ 2
k+1

, as a → 0.

Thus the local exact slope of the sequence of statistics I (k+1)
n , k ≥ 2, is equiva-

lent to
c(k+1)

I (θ) ∼ (b(k+1)
I (θ))2/(k + 1)2σ 2

k+1, as θ → 0.

We see that

b(k+1)
I (θ) = Pθ {|min(X1, . . . , Xk | < |Z |} − Pθ {|max(X1, . . . , Xk | < |Z |}

=
∫ ∞

0

(
(1 − F(−x − θ))k − (1 − F(x − θ))k

)
×d(F(x − θ) − F(−x − θ))

−
∫ ∞

0

(
Fk(x − θ) − Fk(−x − θ)

)
d(F(x − θ) − F(−x − θ))

∼ 4k
∫ ∞

0

(
Fk−1(x) − Fk−1(−x)

)
f 2(x)dx · θ.

Hence, the local exact slope of the statistic of order k is equal to

c(k+1)
I (θ) ∼ 16k2

(k + 1)2σ 2
k+1

(∫ ∞

0

(
Fk−1(x) − Fk−1(−x)

)
f 2(x)dx

)2

θ2. (9)
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It is somewhat surprising to see that, for k = 3, we get from (9), as θ → 0,

c(4)
I (θ) ∼ c(3)

I (θ) ∼ 320

(∫ ∞

0
(2F(x) − 1) f 2(x)dx

)2

θ2.

But this equivalence is not long. Already for k = 4 we get the variance σ 2
5 =

2843/126000, hence the local exact slope is equivalent as θ → 0 to the expression

c(5)
I (θ) ∼ 1290240

2843

(∫ ∞

0

(
F3(x) − F3(−x))

)
f 2(x)dx

)2

θ2,

which is different from the case k = 2 and k = 3.
For instance, in case of logistic distribution we have as θ → 0

c(5)
I (θ) ∼ 1290240

2843

(∫ ∞

0

(e3x − 1)e2x

(ex + 1)7
dx

)2

θ2 = 1290240

2843
·
(

5

192

)2

θ2 ≈ 0.308 θ2.

As the Fisher information in this case is 1
3 , the efficiency of our test is 0.925. This is

high value comparable with the value 0.938 in case of lower dimensions k = 2 and
k = 3.

In the case of normal law we get

c(5)
I (θ) ∼ 1290240

2843 · 4π2

(∫ ∞

0

(
Φ3(x) − Φ3(−x)

)
exp(−x2) dx

)2

θ2 ≈ 0.975 θ2.

Note that 0.975 is just the value of local efficiency as the Fisher information is equal
to 1. This is also high value. On the contrary, in the Cauchy case we get again much
lower value of local efficiency 0.332.

It is interesting to compare the calculations of efficiencies for other common
symmetric distributions and for other alternatives.

5 Local Efficiency of Kolmogorov-Type Test
in the General Case

Using the condition (8) for any k > 2,we can construct theKolmogorov-type statistic
D(k)

n according to (6). We concentrate here on large deviations and local efficiencies
of such statistics for location alternatives. It is necessary to consider the family of
kernels, depending on t ∈ [0, 1] in a following way:

Ψk(X1, . . . , Xk, t) = P(|min(X1, . . . , Xk)| < t) − P(|max(X1, . . . , Xk)| < t).
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Let us calculate the projection of this family. We have

ξk(z, t) := E (Ψ (X1, . . . , Xk, t)|Xk = z)

= P(|min(X1, . . . , Xk−1, z)| < t) − P(|max(X1, . . . , Xk−1, z)| < t).

Using the calculations performed above, we obtain

ξk(z, t) =
⎧
⎨

⎩

(1 − t)k−1/2k−1 − (1 + t)k−1/2k−1, −1 ≤ z < −t,
0, −t ≤ z ≤ t,
(1 + t)k−1/2k−1 − (1 − t)k−1/2k−1, t < z ≤ 1.

Consequently, the variance function is equal to

ξk(t) = E(ξk(Z , t))2 = 1

2

∫ −t

−1
((1 − t)k−1/2k−1 − (1 + t)k−1/2k−1)2dx

+1

2

∫ 1

t
((1 − t)k−1/2k−1 − (1 + t)k−1/2k−1)2dx

= (1 − t)((1 + t)k−1/2k−1 − (1 − t)k−1/2k−1)2.

For k = 3 we have again, as in the case k = 2, the variance function

ξ3(t) = (1 − t)t2,−1 ≤ t ≤ 1,

with the same maximum 4
27 , so that the large deviation asymptotics, see Nikitin

(2010), is given by the formula

lim
n→∞ n−1 lnP(D(3)

n > a) = −h3(a) = −3

8
a2(1 + o(1)), as a → 0,

where h3 is some analytic function in the vicinity of zero.
It is easy to see that the a.s. limit under the alternative of statistics D(k)

n admits
the representation

b(k)
D (θ) ∼ 2k sup

x
f (x)[Fk−1(x) − Fk−1(−x)] · θ, θ → 0.

It follows that for k = 3 the local exact slope has the form

c(3)
D (θ) ∼ 27

(
sup

x
[ f (x)(2F(x) − 1)]

)2

θ2, θ → 0,

and the test is again equivalent to that of the case k = 2 as in the instance of
integral tests.



246 Y.Y. Nikitin and M. Ahsanullah

But in the case k = 4 the situation changes as the variance function is

ξ4(t) = 1

16
(1 − t)(3t + t3)2, 0 ≤ t ≤ 1.

We find numerically that the maximum of the variance function is equal to 0.1123….
Hence the large deviation result is different and reads

lim
n→∞ n−1 lnP(D(4)

n > a) = −h4(a) = −0.2783 · · · · a2(1 + o(1)), as a → 0.

Therefore, the exact slope admits the representation

c(4)
D (θ) ∼ 35.622 . . . sup

x

[
f (x)

(
F3(x) − F3(−x)

)]2
θ2, θ → 0.

In case of logistic distribution and k = 4 we have in the right-hand side

35.622 . . . sup
x

(
ex (e3x − 1)

(1 + ex )5

)2

≈ 0.232,

that gives for local efficiency lower result 0.696 than in previous cases.
For the normal law we find that

1

2π
sup

x
e−x2

(
Φ3(x) − Φ3(−x)

)2 ≈ 0.0206.

Consequently, the efficiency is approximately 0.733. Similar calculations show that
for the Cauchy law the local efficiency equals 0.313. All these efficiencies are rea-
sonable but moderate.

6 Discussion

Wecan resume the calculations of efficiencies inTable2.One sees that for logistic and
normal distributions the values of efficiencies of integral tests for location alternative
are rather high in comparisonwith other nonparametric tests of symmetry, seeNikitin
(1995, Chap. 4).

At the same time the results for the Cauchy law are mediocre. It would be of
interest to study other alternatives and to compare the efficiency values with the
power simulations for moderate sample size.

The efficiencies of Kolmogorov-type tests are lower but have tolerable values.
One should keep in mind that these tests are always consistent while the integral
tests of structure (1) have mostly one-sided character, and their consistency depends
on the alternative.
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Table 2 Local Bahadur
efficiencies in location case

Statistic/Density Logistic Normal Cauchy

I (3)
n , I (4)

n 0.938 0.977 0.488

I (5)
n 0.925 0.975 0.332

D(2)
n , D(3)

n 0.750 0.764 0.376

D(4)
n 0.696 0.733 0.313

We can also presume the deterioration of efficiency properties for our tests with
the growth of their order and degree of complexity, at least for location alternative.
Hence the simplest test statistics I (3)

n and D(2)
n and their equivalents described above

seem to be most suitable for practical use.

Acknowledgments We are thankful to the referee and the editors for their comments on the paper
leading to a substantial improvement of the presentation.
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Optimal Rank-Based Tests for the Location
Parameter of a Rotationally Symmetric
Distribution on the Hypersphere

Davy Paindaveine and Thomas Verdebout

Abstract Rotationally symmetric distributions on the unit hyperpshere are among
the most commonly met in directional statistics. These distributions involve a finite-
dimensional parameter θθθ and an infinite-dimensional parameter g, that play the role
of “location” and “angular density” parameters, respectively. In this paper, we focus
on hypothesis testing onθθθ , under unspecified g.We consider (i) the problemof testing
that θθθ is equal to some given θθθ0, and (ii) the problem of testing that θθθ belongs to
some given great “circle”. Using the uniform local and asymptotic normality result
from Ley et al. (Statistica Sinica 23:305–333, 2013), we define parametric tests that
achieve Le Cam optimality at a target angular density f . To improve on the poor
robustness of these parametric procedures, we then introduce a class of rank tests
for these problems. Parallel to parametric tests, the proposed rank tests achieve Le
Cam optimality under correctly specified angular densities.We derive the asymptotic
properties of the various tests and investigate their finite-sample behavior in a Monte
Carlo study.

1 Introduction

Spherical or directional data naturally arise in a plethora of earth sciences such as
geology (see, e.g., Fisher 1989), seismology (Storetvedt and Scheidegger 1992),
astrophysics (Briggs 1993), oceanography (Bowers et al. 2000), or meteorology
(Fisher 1987), as well as in studies of animal behavior (Fisher et al. 1987) or even in
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neuroscience (Leong and Carlile 1998). For decades, spherical data were explored
through linear approximations trying to circumvent the “curved” nature of the data.
Then the seminal paper Fisher (1953) showed that linearization hampers a correct
study of several phenomena (such as, e.g., the remanent magnetism found in igneous
or sedimentary rocks) and that it was therefore crucial to take into account the non-
linear, spherical nature of the data. Since then, a huge literature has been dedicated
to a more appropriate study of spherical data; we refer to Mardia (1975), Jupp and
Mardia (1989), Mardia and Jupp (2000) or to the second chapter of Merrifield (2006)
for a detailed overview.

Spherical data are commonly viewed as realizations of a random vector X taking
values in the unit hypersphereS k−1 := {

x ∈ R
k |‖x‖ := √

x′x = 1
}

(k ≥ 2). In the
last decades, numerous (classes of) distributions on S k−1 have been proposed and
investigated. In this paper, we focus on the class of rotationally symmetric distribu-
tions onS k−1, that were introduced in Saw (1978). This class is characterized by the
fact that the probabilitymass at x is amonotone nondecreasing function of the “spher-
ical distance” x′θθθ between x and a given θθθ ∈ S k−1. This implies that the resulting
equiprobability contours are the (k − 2)-hyperspheres x′θθθ = c (c ∈ [−1, 1]), and
that this “north pole” θθθ may be considered as a “spherical mode,” hence may be
interpreted as a location parameter.

Of course, this assumption of rotational symmetry may seem very restrictive. Yet,
the latter is often used to model real phenomena. Indeed, according to Jupp and
Mardia (1989), rotationally symmetric spherical data appear inter alia in situations
where the observation process imposes such symmetrization (e.g., the rotation of the
earth; see Mardia and Edwards 1982). Another instance where rotational symmetry
is appropriate is obtained when the observation scheme does not allow to make a
distinction between the measurements x and Oθθθ x for any rotation matrix Oθθθ such
that Oθθθθθθ = θθθ . In such a case, indeed, only the projection of x onto the modal axis θθθ

can be observed; see Clark (1983).
In the absolutely continuous case (with the dominating measure being the uni-

form distribution onS k−1), rotationally symmetric distributions have a probability
density function (pdf) of the form x �→ cg(x′θθθ), for some nondecreasing func-
tion g : [−1, 1] → R

+. Hence, this model is intrinsically of a semiparametric nature.
While inference about θθθ has been considered in many papers (see, among others,
Chang 2004; Tsai and Sen 2007), semiparametrically efficient inference procedures
in the rotationally symmetric case have not been developed in the literature. The
only exception is the very recent contribution by Ley et al. (2013), where rank-based
estimators of θθθ that achieve semiparametric efficiency at a target angular density are
defined. Theirmethodology, that builds onHallin andWerker (2003), relies on invari-
ance arguments and on the uniform local and asymptotic normality—with respect
to θθθ , at a fixed g—of the model considered.

Ley et al. (2013), however, considers point estimation only, hence does not address
situations where one would like to test the null hypothesis that the location parame-
ter θθθ is equal to a given θθθ0. In this paper, we therefore extend the results from
Ley et al. (2013) to hypothesis testing. This leads to a class of rank tests for the
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aforementioned testing problem, that when based on correctly specified scores, are
semiparametrically optimal. The proposed tests are invariant both with respect to the
group of continuous monotone increasing transformations (of spherical distances)
and with respect to the group of orthogonal transformations fixing the null value θθθ0.
Their main advantage over “studentized” parametric tests is that they are not only
validity-robust but are also efficiency-robust. We also treat a more involved testing
problem, in which one needs to test the hypothesis that θθθ belongs to some given
great “circle”—more precisely, to the intersection of S k−1 with a given vectorial
subspace of Rk .

The outline of the paper is as follows. In Sect. 2, we carefully define the class
of rotationally symmetric distributions considered, introduce the main assumptions
needed, and state the uniform local and asymptotic normality result that will be the
main technical tool for this work. In Sect. 3, we focus on the problem of testing
that θθθ is equal to some given θθθ0, derive optimal parametric tests and study their
asymptotic behaviour. In Sect. 4, we discuss the group invariance structure of this
testing problem, propose a class of (invariant) rank tests, and study their asymptotic
properties. In Sect. 5, we treat the problem of testing that θθθ belongs to a given great
circle. We conduct in Sect. 6 a Monte Carlo study to investigate the finite-sample
behaviour of the proposed tests. Finally, an Appendix collects technical proofs.

2 Rotationally Symmetric Distributions and ULAN

The random vector X, with values in the unit sphere S k−1 of Rk , is said to be
rotationally symmetric about θθθ(∈ S k−1) if and only if, for all orthogonal k × k
matricesO satisfyingOθθθ = θθθ , the randomvectorsOX andX are equal in distribution.
If X is further absolutely continuous (with respect to the usual surface area measure
onS k−1), then the corresponding density is of the form

fθθθ,g : S k−1 → R
+ (1)

x �→ ck,g g(x′θθθ),

where ck,g(>0) is a normalization constant and g : [−1, 1] → R is somenonnegative
function—called an angular function in the sequel. Throughout the paper, we then
(tacitly) adopt the following assumption on the data generating process.

Assumption (A). The observations X1, . . . , Xn are mutually independent and
admit a common density of the form (1), for some θθθ ∈ S k−1 and some angular
function g in the collectionF of functions from [−1, 1] to R+ that are positive and
monotone nondecreasing.

The notation f (instead of g) will be used when considering a fixed angular
density. An angular function that plays a fundamental role in directional statistics
is then

t �→ fexp,κ (t) = exp (κt), (2)
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for some “concentration” parameter κ(>0). Clearly, fexp,κ satisfies the conditions in
Assumption (A). The resulting rotationally symmetric distribution was introduced
in Fisher (1953) and is known as the Fisher-von Mises-Langevin (FvML(κ)) distrib-
ution. Other examples are the so-called “linear” rotationally symmetric distributions
(LIN(a)), that are obtained for angular densities defined by f (t) = t +a, with a > 1.

In the sequel, the joint distribution of X1, . . . , Xn under Assumption (A) will
be denoted as P(n)

θθθ,g . Note that under P(n)
θθθ,g , the random variables X′

1θθθ, . . . , X′
nθθθ are

mutually independent and admit the common density (with respect to the Lebesgue
measure over the real line)

t �→ g̃(t) := ωk ck,g

B
( 1
2 ,

1
2 (k − 1)

) g(t)(1 − t2)(k−3)/2
I[−1,1](t), (3)

where B(·, ·) is the beta function, ωk = 2πk/2/Γ (k/2) is the surface area ofS k−1,
and IA(·) stands for the indicator function of the set A. The corresponding cdf
will be denoted by t �→ G̃(t) = ∫ t

−1 g̃(s)ds. Still under P(n)
θθθ,g , the random vec-

tors S1(θθθ), . . . , Sn(θθθ), where

Si (θθθ) := Xi − (X′
iθθθ)θθθ

‖Xi − (X′
iθθθ)θθθ‖ , i = 1, . . . , n, (4)

are well-definedwith probability one are independent of theX′
iθθθ ’s, and are i.i.d., with

a common distribution that is uniform over the unit (k − 2)-sphere S k−1(θθθ⊥) :=
{x ∈ S k−1 : x′θθθ = 0}. It is easy to check that the common mean vector and
covariance matrix of the Si (θθθ)’s are given by 0 and (Ik − θθθθθθ ′)/(k − 1), respectively.

Fix now an angular density f and consider the parametric family of probabil-
ity measures P(n)

f := {
P(n)

θθθ, f |θθθ ∈ S k−1
}
. For P(n)

f to be uniformly locally and

asymptotically normal (ULAN), the angular density f needs to satisfy some mild

regularity conditions; more precisely, as we will state in Proposition 1 below, ULAN
holds if f belongs to the collectionFULAN of angular densities inF (see Assump-
tion (A) above) that (i) are absolutely continuous (with a.e. derivative f ′, say) and
such that (ii), letting ϕ f := f ′/ f , the quantity

Jk( f ) :=
∫ 1

−1
ϕ2

f (t)(1 − t2) f̃ (t) dt =
∫ 1

0
ϕ2

f (F̃−1(u))(1 − (F̃−1(u))2) du

is finite.
As usual, uniform local and asymptotic normality describes the asymptotic behav-

iour of local likelihood ratios of the form

P(n)

θθθ+n−1/2τττ (n), f

P(n)
θθθ, f

,
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where the sequence (τττ (n)) is bounded. In the present curved setup, (τττ (n)) should be
such that θθθ + n−1/2τττ (n) ∈ S k−1 for all n, which imposes that θθθ ′τττ (n) = O(n−1/2).
For the sake of simplicity, we will assume throughout that τττ (n) = τττ + O(n−1/2),
with θθθ ′τττ = 0.

We then have the following result (see Ley et al. 2013 for the proof).

Proposition 1 Fix f ∈ FULAN. Then the family P(n)
f = {

P(n)
θθθ, f | θθθ ∈ S k−1

}
is

ULAN, with central sequence

ΔΔΔ
(n)
θθθ, f := 1√

n

n∑

i=1

ϕ f (X′
iθθθ)

√
1 − (X′

iθθθ)2 Si (θθθ) (5)

and Fisher information matrix

ΓΓΓ θθθ, f := Jk( f )

k − 1
(Ik − θθθθθθ ′). (6)

More precisely, (i) for any sequence (τττ (n)) as above,

log

( P(n)

θθθ+n−1/2τττ (n), f

P(n)
θθθ, f

)
= (τττ (n))′ΔΔΔ(n)

θθθ, f − 1

2
(τττ (n))′ΓΓΓ θθθ, f (τττ

(n)) + oP(1)

as n → ∞ under P(n)
θθθ, f , and (ii) ΔΔΔ

(n)
θθθ, f , still under P(n)

θθθ, f , is asymptotically normal with

mean zero and covariance matrix ΓΓΓ θθθ, f .

Aswe show in the next section, this ULAN result allows to define Le Cam optimal
tests for H0 : θθθ = θθθ0 under specified angular density f .

3 Optimal Parametric Tests for H0 : θθθ = θθθ0

For some fixed θθθ0 ∈ S k−1 and f ∈ FULAN, consider the problem of testing H0 :
θθθ = θθθ0 versus H1 : θθθ �= θθθ0 inP

(n)
f , that is, consider the testing problem

{
H0 : {

P(n)
θθθ0, f

}

H1 : ⋃
θθθ �=θθθ0

{
P(n)

θθθ, f

}
.

(7)

For this problem, we define the test φ(n)
f that at asymptotic level α, rejects the null

of (7) whenever
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Q(n)
f := (ΔΔΔ

(n)
θθθ0, f )

′ ΓΓΓ −
θθθ0, f ΔΔΔ

(n)
θθθ0, f (8)

= k − 1

nJk( f )

n∑

i, j=1

ϕ f (X′
iθθθ0)ϕ f (X′

jθθθ0)

√
1 − (X′

iθθθ0)
2 (9)

×
√
1 − (X′

jθθθ0)
2 (Si (θθθ0))

′S j (θθθ0) > χ2
k−1,1−α,

where A− denotes the Moore–Penrose inverse of A and χ2
k−1,1−α stands for the

α-upper quantile of a chi-square distributionwith k−1 degrees of freedom.Applying
in the present context the general results in Hallin et al. (2010) about hypothesis
testing in curvedULANfamilies, yields thatφ(n)

f is LeCamoptimal—more precisely,
locally and asymptotically maximin—at asymptotic level α for the problem (7). The
asymptotic properties of this test are stated in the following result.

Theorem 1 Fix θθθ0 ∈ S k−1 and f ∈ FULAN. Then, (i) under P(n)
θθθ0, f , Q(n)

f is asymp-

totically chi-square with k − 1 degrees of freedom; (ii) under P(n)

θθθ0+n−1/2τττ (n), f
, where

the sequence (τττ (n)) in R
k satisfies τττ (n) = τττ + O(n−1/2), with θθθ ′

0τττ = 0, Q(n)
f is

asymptotically non-central chi-square, still with k − 1 degrees of freedom, and non-
centrality parameter

τττ ′ ΓΓΓ θθθ0, f τττ = Jk( f )

k − 1
‖τττ‖2; (10)

(iii) the sequence of tests φ
(n)
f has asymptotic size α under P(n)

θθθ0, f ; (iv) φ
(n)
f is locally

asymptotically maximin, at asymptotic level α, when testing {P(n)
θθθ0, f } against alterna-

tives of the form
⋃

θθθ �=θθθ0
{P(n)

θθθ, f }.
For the particular case of the fixed-κ Fisher-von Mises-Langevin (FvML(κ)) dis-

tribution (obtained for fexp,κ ; see (2)), we obtain

Q(n)
fexp,κ

= κ2(k − 1)

nJk( fexp,κ )

n∑

i, j=1

(Xi − (X′
iθθθ0)θθθ0)

′(X j − (X′
jθθθ0)θθθ0)

= κ2(k − 1)

nJk( fexp,κ )

n∑

i, j=1

X′
i (Ik − θθθ0θθθ

′
0)X j

=: κ2(k − 1)n

Jk( fexp,κ )
X̄′(Ik − θθθ0θθθ

′
0)X̄. (11)

The main drawback of the parametric tests φ
(n)
f is their lack of (validity-)robust-

ness: under angular density g �= f , there is no guarantee that φ
(n)
f asymptotically

meets the nominal level constraint. Indeed Q(n)
f is, in general, not asymptotically
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χ2
k−1 under P

(n)
θθθ0,g

. In practice, however, the underlying angular density may hardly

be assumed to be known, and it is therefore needed to define robustified versions of
φ

(n)
f that will combine (a) Le Cam optimality at f (Theorem 1(iv)) and (b) validity

under a broad collection of angular densities {g}.
A first way to perform such a robustification is to rely on “studentization”. This

simply consists in considering test statistics of the form

Q(n)
f ;Stud := (ΔΔΔ

(n)
θθθ0, f )

′ (Γ̂ΓΓ g
θθθ0, f )

−ΔΔΔ
(n)
θθθ0, f ,

where Γ̂ΓΓ
g
θθθ0, f is an arbitrary consistent estimator of the covariance matrix in the

asymptotic multinormal distribution of ΔΔΔ
(n)
θθθ0, f under P(n)

θθθ0,g
. The resulting tests, that

reject the null H0 : θθθ = θθθ0 (with unspecified angular density) whenever Q(n)
f ;Stud >

χ2
k−1,1−α , are validity-robust—that is, they asymptotically meet the level constraint

under a broad range of angular densities—and remain Le Cam optimal at f .
Of special interest is the FvML studentized test—φ

(n)
fexp;Stud, say—that rejects the

null hypothesis whenever

Q(n)
fexp;Stud = k − 1

nL̂k

n∑

i, j=1

X′
i (Ik − θθθ0θθθ

′
0)X j , (12)

where L̂k := 1 − 1
n

∑n
i=1(X

′
iθθθ0)

2 is a consistent estimator of Lk(g) := 1 −
E(n)

θθθ0,g
[(X′

iθθθ0)
2] (this quantity does not depend onθθθ0, which justifies the notation); this

test was studied in Watson (1983). From studentization, this test is valid under any
rotationally symmetric distribution; moreover, since Q(n)

fexp;Stud = Q(n)
fexp,κ

+ oP(1)

as n → ∞ under P(n)
θθθ0, fexp,κ

for any κ , this test is also optimal in the Le Cam sense

under any FvML distribution.
Studentization, however, typically leads to tests that fail to be efficiency-robust, in

the sense that the resulting type 2 riskmay dramatically increase when the underlying
angular density g much deviates from the target density—or target densities, in the
case of the FvML studentized test φ(n)

fexp;Stud—at which they are optimal. That is why

studentization will not be considered in this paper. Instead, we will take advantage of
the group invariance structure of the testing problem considered, in order to introduce
invariant tests that are both validity- and efficiency-robust. As we will see, invariant
tests in the present context are rank tests.
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4 Optimal Rank Tests for H0 : θθθ = θθθ0

We start by describing the group invariance structure of the testing problem consid-
ered above (Sect. 4.1). Then we introduce (and study the properties of) rank-based
versions of the central sequences from Proposition 1 (Sect. 4.2). This will allow us
to develop the resulting (optimal) rank tests and to derive their asymptotic properties
(Sect. 4.3).

4.1 Group Invariance Structure

Still for some given θθθ0 ∈ S k−1, consider the problem of testing H0 : θθθ = θθθ0
against H1 : θθθ �= θθθ0 under unspecified angular density g, that is, consider the
testing problem {

H0 : ⋃
g∈F

{
P(n)

θθθ0,g

}

H1 : ⋃
θθθ �=θθθ0

⋃
g∈F

{
P(n)

θθθ,g

}
.

(13)

This testing problem is invariant under two groups of transformations, which we now
quickly describe.

(i) To define the first group, we introduce the tangent-normal decomposition

Xi = (X′
iθθθ0)θθθ0 + ‖Xi − (X′

iθθθ0)θθθ0‖ Si (θθθ0), i = 1, . . . , n

of the observations Xi , i = 1, . . . , n. The first group of transformations we consider
is then G = {gh : h ∈ H }, ◦, with

gh : (S k−1)n → (S k−1)n

(X1, . . . , Xn) �→ (h(X′
1θθθ0)θθθ0 + ‖X1 − h(X′

1θθθ0)θθθ0‖ S1(θθθ0), . . . ,

h(X′
nθθθ0)θθθ0 + ‖Xn − h(X′

nθθθ0)θθθ0‖ Sn(θθθ0)),

where H is the collection of mappings h : [−1, 1] �→ [−1, 1] that are continuous,
monotone increasing, and satisfy h(±1) = ±1.

The null hypothesis of (13) is clearly invariant under the group G , ◦. The
invariance principle therefore suggests restricting to tests that are invariant with
respect to this group. As it was shown in Ley et al. (2013), the maximal invari-
ant I(n)(θθθ0) associated with G , ◦ is the sign-and-rank statistic (S1(θθθ0), . . . , Sn(θθθ0),

R1(θθθ0), . . . , Rn(θθθ0)), where Ri (θθθ0) denotes the rank of X′
iθθθ0 among X′

1θθθ0, . . . ,

X′
nθθθ0. Consequently, the class of invariant tests coincides with the collection of

tests that are measurable with respect to I(n)(θθθ0), in short, with the class of (sign-
and-)rank—or, simply, rank—tests.
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It is easy to check that G , ◦ is actually a generating group for the null hypothesis⋃
g∈F {P(n)

θθθ0,g
} in (13). As a direct corollary, rank tests are distribution-free under the

whole null hypothesis. This explains why rank tests will be validity-robust.
(ii) Of course, the null hypothesis in (13) is also invariant under orthogonal trans-

formations fixing the null location value θθθ0. More precisely, it is invariant under the
group Grot = {gO : O ∈ Oθθθ0}, ◦, with

gO : (S k−1)n → (S k−1)n

(X1, . . . , Xn) �→ (OX1, . . . , OXn),

where Oθθθ0 is the collection of all k × k orthogonal matrices O satisfying Oθθθ0 = θθθ0.
Clearly, the vectors of signs and ranks above is not invariant under Grot, ◦, but the
statistic((

S1(θθθ0)
)′S2(θθθ0),

(
S1(θθθ0)

)′S3(θθθ0), . . . ,
(
Sn−1(θθθ0)

)′Sn(θθθ0), R1(θθθ0), . . . , Rn(θθθ0)
)

(14)

is. Tests that are measurable with respect to the statistic in (14) will therefore be
invariant with respect to both groups considered above.

4.2 Rank-Based Central Sequences

To combine validity-robustness/invariancewith LeCamoptimality at a target angular
density f , we introduce rank-based versions of the central sequences that appear in
theULANproperty above (Proposition 1).More precisely, we consider rank statistics
of the form





˜

(n)

θθθ,K
= 1√

n

n∑

i=1

K

(
Ri (θθθ)

n + 1

)
Si (θθθ),

where the score function K : [0, 1] → R is throughout assumed to be continuous
(which implies that it is bounded and square-integrable over [0, 1]).

In order to state the asymptotic properties of the rank-based random vector 



˜

(n)

θθθ,K
,

we introduce the following notation. For any g ∈ F , write



(n)
θθθ,K ,g := 1√

n

n∑

i=1

K
(
G̃(X′

iθθθ)
)
Si (θθθ),
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where G̃ denotes the cdf of X′
iθθθ under P(n)

θθθ,g . For any g ∈ FULAN, define further

ΓΓΓ θθθ,K := Jk(K )

k − 1
(Ik − θθθθθθ ′) and ΓΓΓ θθθ,K ,g := Jk(K , g)

k − 1
(Ik − θθθθθθ ′),

withJk(K ) := ∫ 1
0 K 2(u)du andJk(K , g) := ∫ 1

0 K (u)Kg(u)du, where we wrote

Kg(u) := ϕg(G̃
−1(u))

√
1 − (G̃−1(u))2

for any u ∈ [0, 1]. We then have the following result (see Ley et al. 2013).

Proposition 2 Fix θθθ ∈ S k−1 and let (τττ (n)) be a sequence in R
k that sat-

isfies τττ (n) = τττ + O(n−1/2), with θθθ ′τττ = 0. Then (i) under P(n)
θθθ,g, with g ∈

F , 



˜

(n)

θθθ,K
= 


(n)
θθθ,K ,g + oL2(1) as n → ∞; (ii) under P(n)

θθθ,g, with g ∈ F ,





˜

(n)

θθθ,K
is asymptotically multinormal with mean zero and covariance matrix ΓΓΓ θθθ,K ;

(iii) under P(n)

θθθ+n−1/2τττ (n),g
, with g ∈ FULAN, 




˜
(n)

θθθ,K
is asymptotically multinormal

with mean ΓΓΓ θθθ,K ,gτττ and covariance matrix ΓΓΓ θθθ,K ; (iv) under P(n)
θθθ,g, with g ∈ FULAN,





˜

(n)

θθθ+n−1/2τττ (n),K
= 




˜
(n)

θθθ,K
− ΓΓΓ θθθ,K ,gτττ

(n) + oP(1) as n → ∞.

For any f ∈ FC1

ULAN, where FC1

ULAN denotes the collection of angular densi-
ties in FULAN that are continuously differentiable over [−1, 1], the function u �→
K f (u) := ϕ f (F̃−1(u))

√
1 − (F̃−1(u))2 is a valid score function to be used in

rank-based central sequences. Proposition 2(i) then entails that under P(n)
θθθ, f , 




˜
(n)

ϑϑϑ,K f

is asymptotically equivalent—in L2, hence also in probability—to the parametric
f -central sequence ΔΔΔ

(n)
θθθ, f = ΔΔΔ

(n)
θθθ,K f , f . This provides the key to develop rank tests

that are Le Cam optimal at any given f ∈ FC1

ULAN. As for Proposition 2(ii)–(iii),
they allow to derive the asymptotic properties of the resulting optimal rank tests.

4.3 Rank Tests for H0 : θθθ = θθθ0

Fix a score function K as above. The previous sections thenmake it natural to consider
the rank test—φ

˜
(n)

K
, say—that at asymptotic level α, rejects the null hypothesis

H0 : θθθ = θθθ0 (with unspecified angular density g) whenever
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Q
˜

(n)

K
= (




˜
(n)

θθθ0,K
)′ ΓΓΓ −

θθθ0,K




˜

(n)

θθθ0,K

= k − 1

nJk(K )

n∑

i, j=1

K

(
Ri (θθθ0)

n + 1

)
K

(
R j (θθθ0)

n + 1

)
(Si (θθθ0))

′S j (θθθ0)

> χ2
k−1,1−α.

Clearly, this test is invariant with respect to both groups introduced in Sect. 4.1,
since it is measurable with respect to the statistic in (14). The following result, that
summarizes the asymptotic properties of φ

˜
(n)

K
, easily follows from Proposition 2.

Theorem 2 Let (τττ (n)) be a sequence in R
k that satisfies τττ (n) = τττ + O(n−1/2),

with θθθ ′
0τττ = 0. Then, (i) under

⋃
g∈F {P(n)

θθθ0,g
}, Q

˜
(n)

K
is asymptotically chi-square with

k − 1 degrees of freedom; (ii) under P(n)

θθθ0+n−1/2τττ (n),g
, with g ∈ FULAN, is asymptoti-

cally non-central chi-square, still with k − 1 degrees of freedom, and non-centrality
parameter

τττ ′ ΓΓΓ θθθ,K ,gΓΓΓ
−
θθθ0,K

ΓΓΓ θθθ,K ,gτττ = J 2
k (K , g)

(k − 1)Jk(K )
‖τττ‖2; (15)

(iii) the sequence of tests φ
˜

(n)

K
has asymptotic size α under

⋃
g∈F {P(n)

θθθ0,g
}; (iv) φ

˜
(n)

K f
,

with f ∈ FC1

ULAN, is locally and asymptotically maximin, at asymptotic level α, when

testing
⋃

g∈F {P(n)
θθθ0,g

} against alternatives of the form
⋃

θθθ �=θθθ0
{P(n)

θθθ, f }.

Note that for K = K f and g = f (with f ∈ FC1

ULAN), the non-centrality para-
meter in (15) above rewrites

J 2
k (K f , f )

(k − 1)Jk(K f )
‖τττ‖2 = Jk( f )

k − 1
‖τττ‖2,

hence coincides with the non-centrality parameter in (10). This establishes the opti-
mality statement in Theorem 2(iv).

5 Testing Great Circle Hypotheses

In this section, we turn to another classical testing problem involving rotationally
symmetric distributions, namely to the problemof testing thatθθθ belongs to somegiven
“great circle” of S k−1, where the term great circle here refers to the intersection
of S k−1 with a vectorial subspace of Rk . In other words, letting ΥΥΥ be some given
full-rank k × s (s < k) matrix, we consider the problem of testing H ΥΥΥ

0 : θθθ ∈
S k−1 ∩ M (ΥΥΥ ) against H ΥΥΥ

1 : θθθ /∈ S k−1 ∩ M (ΥΥΥ ), where M (ΥΥΥ ) denotes the
s-dimensional subspace of Rk that is spanned by the columns ofΥΥΥ . More precisely,
the testing problem is
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{
H ΥΥΥ

0 : ⋃
θθθ∈S k−1∩M (ΥΥΥ )

⋃
g

{
P(n)

θθθ,g

}

H ΥΥΥ
1 : ⋃

θθθ /∈S k−1∩M (ΥΥΥ )

⋃
g

{
P(n)

θθθ,g

}
.

(16)

This problem has been studied by Watson (1983), that provided an FvML score test,
and in Fujikoshi and Watamori (1992) and Watamori (1992), that investigated the
properties of the FvML likelihood ratio test.

For any f ∈ FULAN, the construction of f -optimal parametric tests for this
problem proceeds as follows. Fix θθθ ∈ S k−1 ∩ M (ΥΥΥ ) (the unspecification of θθθ

under the null will be taken care of later on) and consider a local perturbation of the
formθθθ+n−1/2τττ (n) whereτττ (n) is such thatτττ (n) = τττ+O(n−1/2), withθθθ ′τττ = 0 (see the
comment just before Proposition 1). It directly follows from Hallin et al. (2010) that
a locally (in the vicinity of θθθ ) and asymptotically most stringent test can be obtained
by considering the most stringent test for the linear constraint τττ (n) ∈ M (Ik −θθθθθθ ′)∩
M (ΥΥΥ ). Letting ΥΥΥ θθθ be such that M (ΥΥΥ θθθ ) = M (Ik − θθθθθθ ′) ∩ M (ΥΥΥ ), the resulting
f -optimal test therefore rejects the null hypothesis H ΥΥΥ

0, f : ⋃
θθθ∈S k−1∩M (ΥΥΥ )

{
P(n)

θθθ, f

}

for large values of

Q(n)
θθθ, f = (ΔΔΔ

(n)
θθθ, f )

′ (ΓΓΓ −
θθθ, f − ΥΥΥ θθθ (ΥΥΥ

′
θθθΓΓΓ θθθ, f ΥΥΥ θθθ )

−ΥΥΥ ′
θθθ

)
ΔΔΔ

(n)
θθθ, f .

Using the identity (Ik −θθθθθθ ′)ΥΥΥ θθθ = ΥΥΥ θθθ (which follows from the fact that Ik −θθθθθθ ′ is the
projection matrix ontoM (Ik −θθθθθθ ′), that by definition, contains every column vector
of ΥΥΥ θθθ ), then the fact that ΥΥΥ θθθ (ΥΥΥ

′
θθθΥΥΥ θθθ )

−ΥΥΥ ′
θθθ (Ik − θθθθθθ ′) = ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′(Ik − θθθθθθ ′),

we obtain

Q(n)
θθθ, f = k − 1

Jk( f )
(ΔΔΔ

(n)
θθθ, f )

′ (Ik − ΥΥΥ θθθ (ΥΥΥ
′
θθθΥΥΥ θθθ )

−ΥΥΥ ′
θθθ

)
ΔΔΔ

(n)
θθθ, f

= k − 1

Jk( f )
(ΔΔΔ

(n)
θθθ, f )

′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−ΥΥΥ ′)ΔΔΔ(n)
θθθ, f . (17)

We will show below that under P(n)
θθθ, f , Q(n)

θθθ, f is asymptotically chi-square with k − s
degrees of freedom, so that the resulting test rejects the null, at asymptotic level α,
whenever Q(n)

θθθ, f exceeds the corresponding upper α-quantile χ2
k−s,1−α .

Since θθθ ∈ M (ΥΥΥ ) implies that ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′θθθ = θθθ (or equivalently, that (Ik −
ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)θθθ = 0), the FvML(κ) version of Q(n)

θθθ, f is given by

Q(n)
θθθ, fexp,κ

= nκ2(k − 1)

Jk( fexp,κ )
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)X̄. (18)

As in Sect. 3, this leads to defining the FvML studentized test—φ
(n)
fexp;Stud, say—that

rejects H ΥΥΥ
0 whenever
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Q(n)
fexp;Stud = n(k − 1)

L̂k(θ̂θθ)
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)X̄ > χ2

k−s,1−α,

where L̂k(θθθ) = 1− 1
n

∑n
i=1(X

′
iθθθ)2 is evaluated at an arbitrary consistent estimator θ̂θθ

of θθθ . When based on θ̂θθ = X̄/|X̄|, this test is actually the Watson (1983) score
test. Consequently, the following result, that states the asymptotic and optimality
properties of φ

(n)
fexp;Stud, clarifies the exact optimality properties of this classical test.

Theorem 3 Fix θθθ ∈ S k−1 ∩M (ΥΥΥ ) and let (τττ (n)) be a sequence in R
k that satisfies

τττ (n) = τττ + O(n−1/2), with θθθ ′τττ = 0. Then, (i) under P(n)
θθθ,g, with g ∈ F , Q(n)

fexp;Stud
is asymptotically chi-square with k − s degrees of freedom; (ii) under P(n)

θθθ+n−1/2τττ (n),g
,

with g ∈ FULAN, Q(n)
fexp;Stud is asymptotically non-central chi-square, still with k − s

degrees of freedom, and non-centrality parameter

k − 1

Lk(g)
τττ ′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)τττ ; (19)

(iii) the sequence of tests φ
(n)
fexp;Stud = I[Q(n)

fexp;Stud > χ2
k−s,1−α] has asymptotic

size α under ∪θθθ∈S k−1∩M (ΥΥΥ ) ∪g∈F {P(n)
θθθ,g}; (iv) φ

(n)
fexp;Stud is locally asymptotically

most stringent, at asymptotic level α, when testing ∪θθθ∈S k−1∩M (ΥΥΥ ) ∪g∈F {P(n)
θθθ,g}

against alternatives of the form ∪θθθ∈S k−1\M (ΥΥΥ ) ∪κ>0 {P(n)
θθθ, fexp,κ

}.
This test is therefore valid under any rotationally symmetric distribution, hence

is validity-robust. It is optimal under any FvML distribution, but is not efficiency-
robust outside the class of FvML distributions. As for the first testing problem we
considered in the previous sections, this motivates building rank-based tests that
combine validity- and efficiency-robustness.

The appropriate rank test statistics are obtained by replacing in (17) the paramet-
ric central sequence ΔΔΔ

(n)
θθθ, f with its rank-based counterpart 




˜
(n)

θθθ, f
= 




˜
(n)

θθθ,K f
. More

generally, we will consider general-score rank statistics of the form

Q
˜

(n)

θθθ,K
= k − 1

Jk(K )

(




˜

(n)

θθθ,K

)′ (Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′) 



˜

(n)

θθθ,K
.

As already mentioned, θθθ is not specified under the null hypothesis. We will there-
fore rather consider the test—φ

˜
(n)

K
, say—that rejects the null at asymptotic level α

whenever Q
˜

(n)

K
:= Q

˜
(n)

θ̂θθ,K
> χ2

k−s,1−α . The estimator θ̂θθ to be used needs to be part

of a sequence of estimators that satisfies the following assumption.

Assumption (B). The sequence of estimators θ̂θθ = θ̂θθ
(n)

is (i) root-n consistent: θ̂θθ−
θθθ = OP(n−1/2) under

⋃
θθθ∈S k−1∩M (ΥΥΥ )

⋃
g∈F P(n)

θθθ;g; (ii) locally and asymptotically
discrete: for all θθθ and for all C > 0, there exists a positive integer M = M(C)
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such that the number of possible values of θ̂θθ
(n)

in balls of the form {θθθ ′ ∈ R
k :√

n‖θθθ ′ −θθθ‖ ≤ C} is bounded by M , uniformly as n → ∞; (iii) constrained: θ̂θθ takes
its values inM (ΥΥΥ )(∩S k−1).

The following result then states the asymptotic properties of the rank tests φ
˜

(n)

K
.

Theorem 4 Let Assumption (B) hold, fix g ∈ FULAN, θθθ ∈ S k−1 ∩ M (ΥΥΥ ), and
let (τττ (n)) be a sequence inRk that satisfies τττ (n) = τττ + O(n−1/2), with θθθ ′τττ = 0. Then,
(i) under P(n)

θθθ,g, Q
˜

(n)

K
is asymptotically chi-square with k − s degrees of freedom;

(ii) under P(n)

θθθ+n−1/2τττ (n),g
, Q

˜
(n)

K
is asymptotically non-central chi-square, still with

k − s degrees of freedom, and non-centrality parameter

J 2
k (K , g)

(k − 1)Jk(K )
τττ ′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)τττ ; (20)

(iii) the sequence of tests φ
˜

(n)

K
= I[ Q

˜
(n)

K
> χ2

k−s,1−α] has asymptotic size α

under ∪θθθ∈S k−1∩M (ΥΥΥ )∪g∈F {P(n)
θθθ,g}; (iv) φ

˜
(n)

K f
, with f ∈ FC1

ULAN, is locally asymptot-

ically most stringent, at asymptotic level α, when testing ∪θθθ∈S k−1∩M (ΥΥΥ ) ∪g∈FULAN

{P(n)
θθθ,g} against alternatives of the form ∪θθθ∈S k−1\M (ΥΥΥ ){P(n)

θθθ, f }.
Theorems 3–4 allow to compute in a straightforward way (as usual, as the ratios

of the non-centrality parameters in the asymptotic non-null distributions of the cor-
responding statistics) the asymptotic relative efficiencies (AREs) of the proposed
rank tests with respect to their FvML-score competitors from Watson (1983). These
AREs are given by

AREg
[

φ
˜

(n)

K
/φ

(n)
fexp;Stud

] = L 2
k (g)J 2

k (K , g)

(k − 1)2Jk(K )
,

and do not depend on θθθ nor on τττ . It is easy to check that these AREs, that coincides
with the ones obtained in Ley et al. (2013) for point estimation, also hold for the
testing problem considered in the previous sections.

6 Simulations

In this final section, we conduct a Monte Carlo study to investigate the finite-sample
behaviour of the rank tests proposed in Sects. 4.3 and 5. Letting

θθθ0 =
⎛
⎝ 1

0
0

⎞
⎠ ∈ R

k = R
3 and ΥΥΥ =

⎛
⎝ 1 0

0 0
0 1

⎞
⎠ ,
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we considered the problems of testing H0 : θθθ = θθθ0 and H0 : θθθ ∈ S k−1 ∩ M (ΥΥΥ ),
respectively. We generated M = 10,000 (mutually independent) random samples of
rotationally symmetric random vectors

εεε
(�)
i , i = 1, . . . , n = 250, � = 1, 2, 3, 4,

with location θθθ0 and with angular densities that are FvML(1), FvML(3), LIN(1.1),
and LIN(2), for � = 1, 2, 3, and 4, respectively; see Sect. 2. Each random vector εεε(�)

i
was then transformed into

X(�)
i;ω := Oω εεε

(�)
i , i = 1, . . . , n, � = 1, 2, 3, 4, ω = 0, 1, 2, 3,

with

Oω =
⎛
⎝ cos(πω/50) − sin(πω/50) 0

sin(πω/50) cos(πω/50) 0
0 0 1

⎞
⎠ .

For both testing problems considered, the value ω = 0 corresponds to the null
hypothesis, whereas ω = 1, 2, 3 correspond to increasingly severe alternatives.

On each replication of the samples (X(�)
1;ω, . . . , X(�)

n;ω), � = 1, 2, 3, 4, ω =
0, 1, 2, 3, we performed the following tests for H0 : θθθ = θθθ0 and for H0 : θθθ ∈
S k−1 ∩ M (ΥΥΥ ), all at asymptotic level α = 5% : (i) the tests φ

(n)
fexp,3

, that is, the

parametric tests φ
(n)
f using a FvML(3) angular target density, (ii) the tests φ

(n)
fexp;Stud

that are based on the FvML studentized statistics Q(n)
fexp;Stud, and (iii) the rank-

based tests φ
˜

(n)

KFvML(1)
, φ

˜
(n)

KFvML(3)
, φ

˜
(n)

KLIN(2)
, and φ

˜
(n)

KLIN(2)
that are Le Cam optimal

at FvML(1), FvML(3), Lin(1.1), and Lin(2) distributions, respectively. The result-
ing rejection frequencies are provided in Tables1 and 2, for H0 : θθθ = θθθ0 and
forH0 : θθθ ∈ S k−1 ∩ M (ΥΥΥ ), respectively.

These empirical results perfectly agreewith the asymptotic theory : the parametric
tests φ

(n)
fexp,3

are the most powerful ones at the FvML(3) distribution, but their null
size deviates quite much from the target size α = 5% away from the FvML(3). The
studentized parametric tests φ

(n)
fexp;Stud, on the contrary, show a null behaviour that is

satisfactory under all distributions considered. They also dominate their rank-based
competitors under FvML densities, which is in line with the fact that they are optimal
in the class of FvML densities. Outside this class, however, the proposed rank tests
are more powerful than the studentized tests, which translates their better efficiency-
robustness. The null behaviour of the proposed rank tests is very satisfactory, and
their optimality under correctly specified angular densities is confirmed.
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Table 1 Rejection frequencies (out of M = 10,000 replications), under the null H0 : θθθ = θθθ0

(ω = 0) and increasingly severe alternatives (ω = 1, 2, 3), of the parametric FvML(3)-test (φ(n)
fexp,3

),

the studentized FvML-test (φ(n)
fexp;Stud), and of the rank tests achieving optimality at FvML(1),

FvML(3), LIN(1.1), and LIN(2) densities ( φ
˜

(n)
KFvML(1)

, φ
˜

(n)
KFvML(3)

, φ
˜

(n)
KLIN(1.1)

, and φ
˜

(n)
KLIN(2)

, respec-
tively)

Underlying
density

Test ω

0 1 2 3

FvML(1) φ
(n)
fexp,3

0.1162 0.1572 0.2673 0.4493

φ
(n)
fexp;Stud 0.0486 0.0733 0.1502 0.2867

φ
˜

(n)
KFvML(1)

0.0494 0.0732 0.1516 0.2891

φ
˜

(n)
KFvML(3)

0.0525 0.0720 0.1467 0.2743

φ
˜

(n)
KLIN(1.1)

0.0504 0.0662 0.1237 0.2248

φ
˜

(n)
KLIN(2)

0.0527 0.0738 0.1505 0.2890

FvML(3) φ
(n)
fexp,3

0.0528 0.2250 0.7104 0.9719

φ
(n)
fexp;Stud 0.0536 0.2239 0.7062 0.9701

φ
˜

(n)
KFvML(1)

0.0530 0.2177 0.6828 0.9615

φ
˜

(n)
KFvML(3)

0.0541 0.2244 0.7056 0.9695

φ
˜

(n)
KLIN(1.1)

0.0509 0.2066 0.6688 0.9598

φ
˜

(n)
KLIN(2)

0.0538 0.2220 0.7025 0.9674

LIN(1.1) φ
(n)
fexp,3

0.1290 0.1661 0.2729 0.4556

φ
(n)
fexp;Stud 0.0498 0.0668 0.1372 0.2749

φ
˜

(n)
KFvML(1)

0.0493 0.0676 0.1396 0.2747

φ
˜

(n)
KFvML(3)

0.0496 0.0723 0.1588 0.3245

φ
˜

(n)
KLIN(1.1)

0.0496 0.0711 0.1608 0.3359

φ
˜

(n)
KLIN(2)

0.0501 0.0698 0.1499 0.3001

LIN(2) φ
(n)
fexp,3

0.1384 0.1496 0.1727 0.2284

φ
(n)
fexp;Stud 0.0526 0.0579 0.0741 0.1074

φ
˜

(n)
KFvML(1)

0.0545 0.0585 0.0769 0.1100

φ
˜

(n)
KFvML(3)

0.0542 0.0600 0.0773 0.1069

φ
˜

(n)
KLIN(1.1)

0.0540 0.0600 0.0737 0.0968

φ
˜

(n)
KLIN(2)

0.0540 0.0610 0.0781 0.1110

The sample size is n = 250 and the nominal level is 5%; see Sect. 6 for further details
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Table 2 Rejection frequencies (out of M = 10,000 replications), under the null H0 : θθθ ∈
S k−1 ∩ M (ΥΥΥ ) (ω = 0) and increasingly severe alternatives (ω = 1, 2, 3), of the parametric
FvML(3)-test (φ(n)

fexp,3
), the studentized FvML-test (φ(n)

fexp;Stud), and of the rank tests achieving opti-
mality at FvML(1), FvML(3), LIN(1.1), and LIN(2) densities ( φ

˜
(n)
KFvML(1)

, φ
˜

(n)
KFvML(3)

, φ
˜

(n)
KLIN(1.1)

,

and φ
˜

(n)
KLIN(2)

, respectively)

Underlying
density

Test ω

0 1 2 3

FvML(1) φ
(n)
fexp,3

0.1027 0.1391 0.2902 0.4998

φ
(n)
fexp;Stud 0.0543 0.0794 0.1922 0.3783

φ
˜

(n)
KFvML(1)

0.0541 0.1943 0.1516 0.3786

φ
˜

(n)
KFvML(3)

0.0537 0.0789 0.1835 0.3568

φ
˜

(n)
KLIN(1.1)

0.0524 0.0712 0.1560 0.2997

φ
˜

(n)
KLIN(2)

0.0532 0.0792 0.1914 0.3695

FvML(3) φ
(n)
fexp,3

0.0464 0.2888 0.7955 0.9889

φ
(n)
fexp;Stud 0.0460 0.2884 0.7937 0.9891

φ
˜

(n)
KFvML(1)

0.0462 0.2725 0.7686 0.9839

φ
˜

(n)
KFvML(3)

0.0467 0.2873 0.7930 0.9897

φ
˜

(n)
KLIN(1.1)

0.0486 0.2632 0.7635 0.9849

φ
˜

(n)
KLIN(2)

0.0454 0.2831 0.7862 0.9883

LIN(1.1) φ
(n)
fexp,3

0.1080 0.1598 0.2922 0.4763

φ
(n)
fexp;Stud 0.0474 0.0798 0.1808 0.3363

φ
˜

(n)
KFvML(1)

0.0490 0.0793 0.1801 0.3345

φ
˜

(n)
KFvML(3)

0.0480 0.0876 0.2114 0.3920

φ
˜

(n)
KLIN(1.1)

0.0476 0.0896 0.2173 0.4075

φ
˜

(n)
KLIN(2)

0.0498 0.0841 0.1968 0.3653

LIN(2) φ
(n)
fexp,3

0.1119 0.1220 0.1659 0.2328

φ
(n)
fexp;Stud 0.0488 0.0558 0.0875 0.1366

φ
˜

(n)
KFvML(1)

0.0502 0.0567 0.0901 0.1391

φ
˜

(n)
KFvML(3)

0.0523 0.0613 0.0895 0.1386

φ
˜

(n)
KLIN(1.1)

0.0521 0.0594 0.0838 0.1224

φ
˜

(n)
KLIN(2)

0.0516 0.0599 0.0915 0.1422

The sample size is n = 250 and the nominal level is 5%; see Sect. 6 for further details
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Appendix

In this Appendix, we prove Theorems 3 and 4.

Proof of Theorem 3. (i) Recalling that θ̂θθ is an arbitrary consistent estimator of θθθ , we
have that under P(n)

θθθ,g ,

L̂k(θ̂θθ) − L̂k(θθθ) = 1

n

n∑

i=1

{
(X′

iθθθ)2 − (X′
i θ̂θθ)2

}

= 1

n

n∑

i=1

{
X′

i (θθθ − θ̂θθ)X′
i (θθθ + θ̂θθ)

} = (θθθ − θ̂θθ)
{1

n

n∑

i=1

Xi X′
i

}
(θθθ + θ̂θθ) = oP(1)

as n → ∞, so that L̂k(θ̂θθ) is a consistent estimator of Lk(g) = 1 − E(n)
θθθ,g[(X′

iθθθ)2].
Consequently, Q(n)

fexp;Stud − Q(n)
θθθ,g is oP(1) as n → ∞ under P(n)

θθθ,g , with

Q(n)
θθθ,g := n(k − 1)

Lk(g)
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)X̄

= n(k − 1)

Lk(g)
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)(Ik − θθθθθθ ′)X̄ = Y′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)Y,

where we used the fact that
(
Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′) (I − θθθθθθ ′) = Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′

and where we let Y := √
n(k − 1)/Lk(g)(Ik − θθθθθθ ′)X̄. Under P(n)

θθθ,g ,

√
n(I − θθθθθθ ′)X̄ = 1√

n

n∑

i=1

{√
1 − (X′

iθθθ)2 Si (θθθ)
}

(21)

is asymptotically normal with mean zero and covariance matrix Lk(g)(Ik − θθθθθθ ′)/
(k − 1), so that Y, under the same, is asymptotically normal with mean zero and
covariance matrix Ik − θθθθθθ ′. By using again the fact that

(
Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′) (I −

θθθθθθ ′) = Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′ and by noting that tr[Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′] = k − s, it is
easy to check that Theorem 9.2.1 in Rao and Mitra (1971) provides the result.

(ii) Le Cam’s third lemma implies that under P(n)

θθθ+n−1/2τττ (n),g
, the random vector

in (21) is asymptotically normal with mean

lim
n→∞Covθθθ,g

[√
n(I − θθθθθθ ′)X̄,ΔΔΔ

(n)
θθθ,g

]
τττ (n) (22)
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and covariance matrix Lk(g)(Ik − θθθθθθ ′)/(k − 1). Using (3) and integrating by parts
yields

Eθθθ,g
[
(1 − (X′

1θθθ)2)ϕg(X′
1θθθ)

] =
∫ 1

−1
(1 − t2)ϕg(t)g̃(t) dt = k − 1,

so that (22) can be rewritten as Eθθθ,g
[
(1− (X′

1θθθ)2)ϕg(X′
1θθθ)

]
Eθθθ,g

[
S1(θθθ)(S1(θθθ))′

]
τττ =

(Ik − θθθθθθ ′)τττ = τττ . Therefore, Y, under P(n)

θθθ+n−1/2τττ (n),g
, is asymptotically normal with

meanμμμ := √
(k − 1)/Lk(g) τττ and covariance matrix Ik −θθθθθθ ′. From contiguity, we

still have that Q(n)
fexp;Stud − Y′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)Y is oP(1) under P

(n)

θθθ+n−1/2τττ (n),g
.

Theorem 9.2.1 in Rao and Mitra (1971) then shows that under this sequence of
probability measures, Q(n)

fexp;Stud is asymptotically χ2
k−s with non-centrality parame-

terμμμ′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)μμμ, which establishes the result.
(iii) This directly follows from the asymptotic null distribution given in (i) and

the classical Helly–Bray theorem.
(iv) Fix κ > 0. Then, it follows from Part (i) of the proof that under P(n)

θθθ, fexp,κ
,

with θθθ ∈ S k−1 ∩ M (ΥΥΥ ), Q(n)
fexp;Stud is asymptotically equivalent in probability to

Q(n)
θθθ; fexp,κ

= n(k − 1)

Lk( fexp,κ )
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)X̄

= nκ2(k − 1)

Jk( fexp,κ )
X̄′(Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)X̄,

which is the FvML(κ)-most stringent statistic we derived in (18). �
In Theorem 3(ii), we assumed that g ∈ FULAN to show, through Le Cam’s

third lemma, that
√

n(I −θθθθθθ ′)X̄, under P(n)

θθθ+n−1/2τττ (n),g
, is asymptotically normal with

mean τττ and covariance matrix Lk(g)(Ik − θθθθθθ ′)/(k − 1). Actually, the result still
holds for g ∈ F , as it can be shown that as n → ∞ under P(n)

θθθ+n−1/2τττ (n),g
,

√
n(I − θθθθθθ ′)X̄ = M(n) + (Ik + θθθθθθ ′)τττ + oP(1) = M(n) + τττ + oP(1),

whereM(n) := √
n(I−(θθθ +n−1/2τττ (n))(θθθ +n−1/2τττ (n))′)X̄, under the same, is clearly

asymptotically normal with mean zero and covariance matrix Lk(g)(Ik − θθθθθθ ′)/
(k − 1).

Proof of Theorem 4. (i)–(ii) First note that sinceθθθ ′τττ (n) = O(n−1/2), Proposition 2(iv)
rewrites





˜

(n)

θθθ+n−1/2τττ (n),K
= 




˜
(n)

θθθ,K
− J (K , g)

k − 1
τττ (n) + oP(1) (23)



268 D. Paindaveine and T. Verdebout

as n → ∞ under P(n)
θθθ,g . Since Assumption (B) holds, Lemma 4.4 in Kreiss (1987)

allows to replace in (23) the deterministic quantity τττ (n) with the random one
√

n(θ̂θθ −
θθθ), which yields





˜

(n)

θ̂θθ,K
= 




˜
(n)

θθθ,K
− J (K , g)

k − 1

√
n(θ̂θθ − θθθ) + oP(1),

as n → ∞, under P(n)
θθθ,g . This, jointly with Assumption (B)(iii) (which implies that

(Ik −ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)θ̂θθ = 0 almost surely), entails that under P(n)
θθθ,g , with θθθ ∈ M (ΥΥΥ ),

(
Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′) 




˜
(n)

θ̂θθ,K
=

(
Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′) 




˜
(n)

θθθ,K
+ oP(1),

as n → ∞. It follows that Q
˜

(n)

K
= Q

˜
(n)

θθθ,K
+ oP(1) as n → ∞ under P(n)

θθθ,g , with θθθ ∈
M (ΥΥΥ ), hence also under sequences of local alternatives. The results in (i)–(ii) then
follow, as in the proof of Theorem 3(i)–(ii), from Theorem 9.2.1 in Rao and Mitra
(1971) and Proposition 2(ii)–(iii) (recall that (Ik −ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)(I − θθθθθθ ′) = Ik −
ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′).

(iii) As in the proof of Theorem 3(iii), this is a direct consequence of Part (i) of
the result and the classical Helly–Bray theorem.

(iv) Then, under P(n)
θθθ, f , with θθθ ∈ S k−1 ∩ M (ΥΥΥ ), Q

˜
(n)

K f
= Q

˜
(n)

θθθ,K f
+ oP(1)

as n → ∞. Now, Proposition 2(i) entails that under the same sequence of hypotheses,
Q
˜

(n)

θθθ,K f
is asymptotically equivalent in probability to

Q(n)
θθθ,K f

= k − 1

Jk(K f )

(
ΔΔΔ

(n)
θθθ,K f

)′ (Ik − ΥΥΥ (ΥΥΥ ′ΥΥΥ )−1ΥΥΥ ′)ΔΔΔ
(n)
θθθ,K f

,

which coincides with the f -most stringent statistic in (17). The result follows. �
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Some Extensions of Singular
Mixture Copulas

Dominic Lauterbach and Dietmar Pfeifer

Abstract In Lauterbach (ZVersWiss, 101(5), 605–619, 2012) and Lauterbach and
Pfeifer (Copulae in mathematical and quantitative finance, Springer, Dordrecht,
2013) the family of Singular Mixture Copulas was introduced. We present and dis-
cuss two extensions of these copulas. Both extensions are based on an approach
introduced by Khoudraji (Contributions à l’étude des copules et à la modélisation
des valeurs extrêmes bivariées. Ph.D. thesis, 1995).We study the dependence proper-
ties of the constructed copulas and show that the resulting copulas possess differing
upper and lower tail dependence coefficients.

1 Introduction

Copulas are an effective and versatile tool for studying and modeling multivariate
dependence. The term copula was first used in a mathematical sense by Sklar (1959),
although the history of copulas can be traced back to Fréchet (1951) and Hoeffding
(1940). In the 1970s, several authors rediscovered copulas under different names,
among them Deheuvels (1978) who refered to them as dependence functions. Since
then copulas have gained popularity in theory as well as in applications, see, e.g.,
Cherubini et al. (2004); Embrechts et al. (2003); Genest and MacKay (1986); Joe
(1997); McNeil et al. (2005); Nelsen (2006); Wolff (1977).

In Durante and Sempi (2010) it was suggested that the “search for families of
copulas having properties desirable for specific applications” should be one of the
directions of future investigation in copula theory. It was also mentioned that these
families of copulas should exhibit “different asymmetries, non-exchangeable cop-
ulas, copulas with different tail behavior, etc.” As a contribution to this field of
research, Lauterbach (2012) and Lauterbach and Pfeifer (2013) introduced a fam-
ily of copulas—Singular Mixture Copulas. These copulas were constructed via a
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convex sum1 of certain singular copulas. It was also shown in Lauterbach (2012)
that these copulas can be used to model the dependence between the flood levels of
gauging stations along the German North Sea coast. In this paper, we want to present
an extension of Singular Mixture Copulas and thus overcome some drawbacks of
the aforementioned construction, such as the restricted support of Singular Mixture
Copulas. To this end, we make use of an approach that was first studied by Khoudraji
(1995) (see also Genest et al. (1998); McNeil et al. (2005)): Let C be an arbitrary
copula, then C can be extended to a parametric family of copulas Cα,β by setting

Cα,β(u, v) = u1−αv1−βC(uα, vβ),

where 0 ≤ α, β ≤ 1. We study the resulting copulas and take a look at their mathe-
matical properties, especially with respect to dependence.

This paper is organized as follows. In Sects. 2 and 3, we summarize the construc-
tion and some important properties of Singular Mixture Copulas. In Sects. 4 and 5,
we present two extensions of SingularMixture Copulas that are based onKhoudraji’s
device mentioned above.

2 Singular Copulas

In Lauterbach (2012); Lauterbach and Pfeifer (2013) we introduced a method of
constructing singular copulas. This construction uses two distribution functions F
and G on [0, 1] which fulfill the equation

αF(x) + (1 − α)G(x) = x (1)

for all x ∈ [0, 1], where α is a constant in (0, 1). The function G is given by

G(x) = x − αF(x)

1 − α
. (2)

Let X be a random variable with a continuous uniform distribution over [0, 1], and
let I be a random variable, independent of X , with a binomial B(1, α)-distribution.
Define the random variable Y via

Y := I · F−1(X) + (1 − I ) · G−1(X). (3)

Then the random variable Y also follows a continuous uniform distribution over
[0, 1]. The distribution function of (X, Y ) is the singular copula given by

CXY (x, y) = αmin(x, F(y)) + (1 − α)min(x, G(y)).

1 See Nelsen (2006), Sect. 3.2.
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The following lemma gives necessary and sufficient conditions for F to guarantee
that G is also a distribution function.

Lemma 2.1 Let F be an absolutely continuous distribution function on [0, 1]. Then
G given by (2) is an absolutely continuous distribution function on [0, 1] if and only
if F ′(x) ≤ 1

α
for all x ∈ [0, 1].

Proof From F(0) = 0 and F(1) = 1, it follows immediately that G(0) = 0 and
G(1) = 1. From Eq. (2), we have

G ′(x) = 1 − αF ′(x)

1 − α
, (4)

so that G ′(x) ≥ 0 ⇔ F ′(x) ≤ 1
α
, which completes the proof. �

The assumption of absolute continuity of F is essential, as the following example
shows.

Example 2.1 Let F be the distribution function of the Cantor distribution. This
function is also known as the Cantor function.2 Then F is an almost everywhere
differentiable distribution function on [0, 1] with F ′(x) = 0 ≤ 1

α
for all x ∈ [0, 1]

and any α ∈ (0, 1). However, F is not absolutely continuous. It holds that F(x) = 1
2

for all x ∈ [ 13 , 2
3 ]. For α = 3

4 , we can conclude that,

G

(
1

3

)
=

1
3 − 3

4 · 1
2

1
4

= 4

3
− 3

2
= −1

6
< 0.

Consequently, the function G is not a distribution function on [0, 1].
We denote the class of functions that fulfill the properties in Lemma 2.1 byFα , i.e.,

Fα := {F : [0, 1] → [0, 1] | F is abs. cont., F(0) = 0, F(1) = 1, 0 ≤ F ′(x) ≤ 1
α
}.

Remark 2.1 The copula CXY is a special case of the construction presented in
Durante (2009) for the choice of f1 = f2 = id[0,1], g1 = F , g2 = G,
A(u, v) = B(u, v) = min(u, v) and H(x, y) = αx + (1 − α)y. In this setting
Eq. (1) corresponds to the assumptions in Theorems 1 and 2 of Durante (2009).

The following statements show some properties of the copula CXY which we will
use later.

Proposition 2.1 If α goes to zero then CXY converges to the Fréchet-Hoeffding
upper bound M2.

Proof For α = 0 the function G is given by G(x) = x and therefore CXY is given
by CXY (x, y) = min(x, G(y)) = min(x, y) = M2(x, y). �

2 See Dovgoshey et al. (2006) for more information about the Cantor function.
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Theorem 2.1 For any α ∈ (0, 1) and any F ∈ Fα the copula CXY is positively
quadrant dependent.

Proof We have to show that CXY (x, y) ≥ xy holds for all (x, y) ∈ [0, 1]2. Due to
the representation of CXY we consider four cases.

Case 1:

CXY (x, y) = αx + (1 − α)x = x ≥ xy.

Case 2:

CXY (x, y) = αF(y) + (1 − α)G(y) = αF(y) + y − αF(y) = y ≥ xy.

Case 3:

CXY (x, y) = αx + (1 − α)G(y) = y + α(x − F(y)).

It is easily seen that y + α(x − F(y)) ≥ xy is equivalent to

αx − xy

α
≥ F(y) − y

α
. (5)

For y ≤ α the left-hand side of (5) is positive and the right-hand side is
negative, since F ′(y) ≤ 1

α
for all y ∈ [0, 1]. For y > α the following holds

αx − xy + y

α
= αx + y(1 − x)

α
>

αx + α(1 − x)

α
= 1 ≥ F(y).

Case 4:
CXY (x, y) = αF(y) + (1 − α)x = x + α(F(y) − x).

It is easily seen that x + α(F(y) − x) ≥ xy is equivalent to

F(y) ≥ x · y − (1 − α)

α
. (6)

For y ≤ 1 − α the right-hand side of (6) is negative, therefore the desired
inequality holds. For y > 1 − α we can conclude from F ′(y) ≤ 1

α
for all

y ∈ [0, 1] that

F(y) ≥ y − (1 − α)

α
≥ x · y − (1 − α)

α
. �
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3 Singular Mixture Copulas

Consider a family {Fω} ⊂ Fα of distribution functions, then—using the construction
above—for a fixed ω we can construct the singular copula Čω given by

Čω(x, y) = αmin(x, Fω(y)) + (1 − α)min(x, Gω(y)).

IfΩ is a real-valued random variable and Fω ∈ Fα for all observations ω ofΩ , then
the convex sum of {Čω} is given by

Ċ(x, y) =
∫

Čω(x, y)PΩ(dω)

= α

∫
min(x, Fω(y))PΩ(dω) + (1 − α)

∫
min(x, Gω(y))PΩ(dω).

These copulas were introduced in Lauterbach (2012), Lauterbach and Pfeifer
(2013) as Singular Mixture Copulas. A special case considered the family of distri-
bution functions Fω given by

Fω(y) = ωy2 + (1 − ω)y (7)

with ω ∈ [−1, 1]. Let 0 < α ≤ 1
2 then Fω is an element of Fα for all ω ∈ [−1, 1].

Let Ω be a random variable with values in [−1, 1] then the Singular Mixture Copula
resulting from the family {Fω}ω∈[−1,1] is given by

Cα(x, y) = P(X ≤ x, Y ≤ y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, (x, y) ∈ A1,

x + α
(
(x − y) (FΩ(β) − 1) + (y2 − y)

∫ 1
β

ωPΩ(dω)
)

, (x, y) ∈ A2,

α
(
(x − y)FΩ(β) + y + (y2 − y)

∫ 1
β

ωPΩ(dω)
)

+(1 − α) (x + (y − x)FΩ(b)) + α(y − y2)
∫ b
−1 ωPΩ(dω), (x, y) ∈ A3,

α(x − y)FΩ(β) + y + α(y − y2)
∫ β

−1 ωPΩ(dω), (x, y) ∈ A4,

y, (x, y) ∈ A5,

(8)

where β = x−y
y2−y

, b = β α−1
α

and

A1 =
{
(x, y) ∈ [0, 1]2 |x < y2

}
,

A2 =
{
(x, y) ∈ [0, 1]2 |y2 ≤ x <

−α

1 − α
(y − y2) + y

}
,



276 D. Lauterbach and D. Pfeifer

A3 =
{
(x, y) ∈ [0, 1]2 | −α

1 − α
(y − y2) + y ≤ x <

α

1 − α
(y − y2) + y

}
,

A4 =
{
(x, y) ∈ [0, 1]2 | α

1 − α
(y − y2) + y ≤ x < 2y − y2

}
,

A5 =
{
(x, y) ∈ [0, 1]2 |2y − y2 ≤ x

}
.

The density of the copula is given by

cα(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (x, y) ∈ A1,

α fΩ(β)
y2−2xy+x
(y2−y)2

, (x, y) ∈ A2,

y2−2xy+x
(y2−y)2

(
α fΩ(β) + (1−α)2

α
fΩ(b)

)
, (x, y) ∈ A3,

α fΩ(β)
y2−2xy+x
(y2−y)2

, (x, y) ∈ A4,

0, (x, y) ∈ A5.

Depending on the choice of the family of distribution functions, the resulting
Singular Mixture Copula can be absolutely continuous, singular, or can possess
an absolutely continuous part and a singular part. An example of an absolutely
continuous Singular Mixture Copula was given above. If Fω = F for all ω, then the
resulting Singular Mixture Copula is singular and it is equal to the singular copula
presented in Sect. 2. As another example, consider a family of distribution functions
given by

F̃ω(x) =
{

1
2 Fω(2x), 0 ≤ x ≤ 1

2 ,

x, 1
2 ≤ x ≤ 1,

where Fω is given by (7). Then obviously F̃ω ∈ Fα for all ω ∈ [−1, 1]. Figure1
shows a scatter plot of simulated points from this copula, which we denote with C̃ ,
with a uniform mixing distribution and α = 1

2 .

Fig. 1 Scatter plot of
simulated points from the
copula C̃
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The copula C̃ clearly has a singular part and an absolutely continuous part. More-
over, it is the ordinal sumof the (absolutely continuous) SingularMixtureCopula pre-
sented above and the Fréchet-Hoeffding upper bound with respect to {[0, 1

2 ], [ 12 , 1]}.
The following propositions show some properties of Singular Mixture Copulas.

Proposition 3.1 If α goes to zero then Ċ converges to M2.

Proof The statement follows immediately from Proposition 2.1 and the construction
of the copula Ċ . �
Proposition 3.2 The Singular Mixture Copula Ċ is positively quadrant dependent.

Proof In order to proof the statement, we have to show that

Ċ(x, y) ≥ xy for all x, y ∈ [0, 1].

By construction of Ċ we have

Ċ(x, y) =
∫

Čω(x, y)PΩ(dω) ≥
∫

xyPΩ(dω) = xy for all x, y ∈ [0, 1],

because all copulas Čω are positively quadrant dependent (see Theorem 2.1). �
Proposition 3.3 The copula Cα has upper and lower tail dependence given by

λU = 1 − αE(|Ω|) = λL .

Proof The proof is straightforward. �

4 First Extension

Figure2 shows that the support of the copula Cα is very restricted. To overcome this
problem of Singular Mixture Copulas, we now want to investigate an extension of
the copula Cα that is based on the construction presented in Khoudraji (1995). Let a1
and a2 be two constants in (0, 1] and let Cα be the Singular Mixture Copula defined
in Sect. 3, then C∗

α given by

C∗
α(u, v) = u1−a1v1−a2Cα(ua1, va2)

is a copula. Of course, for a1 = a2 = 1 it holds that C∗
α = Cα , so we omit this case.

Remark 4.1 The above construction also works for a1 = 0 and a2 = 0, respectively.
However in both cases, the resulting copula is the independence copula. Exemplary
for a1 = 0, we receive

C∗
α(u, v) = uv1−a2Cα(u0, va2) = uv1−a2va2 = uv.
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Fig. 2 Scatter plots of simulated points from a Singular Mixture Copula as in (8) for α = 0.3 and
with generalized beta mixing distribution (with shape parameters p and q)

The tail behavior of the C∗
α copulas differs from that of Singular Mixture Copulas,

as the following theorems show.

Theorem 4.1 For any (a1, a2) ∈ (0, 1]2\{1, 1}, the tail dependence coefficient of
the copula C∗

α (as defined above) equals 0.

Proof By definiton,

λL(C∗
α) = lim

u↘0

C∗
α(u, u)

u
= lim

u↘0
u1−a1−a2Cα(ua1 , ua2).

Due to the piecewise representation ofCα , there are several cases to consider depend-
ing on the choice of a1 and a2. Instead of determining the choices of a1 and a2 that
lead to a specific case, we will simply to calculate the above limit for all cases. This
approach is more convenient, because—as we will see—most of the limits are the
same—so there is no need for a distinction. We will denote the different cases by
A1, . . . , A5, as in the representation of Cα in Sect. 3.
A1:

C∗
α(u, u)

u
= u1−a1−a2 · ua1 = u1−a2 −→ 0 for a2 < 1.
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For a2 = 1 it would hold that ua1 ≥ u2 for all u ∈ [0, 1]. Consequently, case A1
cannot occur when a2 = 1.
A2:

C∗
α(u, u)

u
= u1−a1−a2

(
ua1 + α

(
(ua1 − ua2)

(
FΩ(β) − 1

)

+ (u2a2 − ua2)

∫ 1

β

ωPΩ(dω)

))

= u1−a2 + α

(
(u1−a2 − u1−a1)(FΩ(β) − 1)

+ (u1−a1+a2 − u1−a1)

∫ 1

β

ωPΩ(dω)

)
−→ 0 for a2 < 1.

When a1 = 1, notice thatβ = (u−ua2)/(u2a2−ua2) = (u1−a2−1)/(ua2−1) −→ 1.
For a2 = 1 case A2 cannot occur: The right-hand derivative of ua1 at u = 0 equals
infinity, therefore ua1 > −α

1−α
(u − u2) + u for sufficient small (positive) u.

A3:

C∗
α(u, u)

u
= u1−a1−a2

(
α

(
(ua1 − ua2)FΩ(β) + ua2

+ (u2a2 − ua2)

∫ 1

β

ωPΩ(dω)

)

+ (1 − α)

(
ua1 + (ua2 − ua1)FΩ(b))

+ α(ua2 − u2a2)

∫ b

−1
ωPΩ(dω)

)

= α

(
(u1−a2 − u1−a1)FΩ(β) + u1−a1

+ (u1−a1+a2 − u1−a1)

∫ 1

β

ωPΩ(dω)

)

+ (1 − α)(u1−a2 + (u1−a1 − u1−a2)FΩ(b)

)

+ α(u1−a1 − u1−a1+a2)

∫ b

−1
ωPΩ(dω)

−→ 0 for a1, a2 < 1.

For a1 = 1 or a2 = 1 case A3 cannot occur: For a1 = 1 the right-hand derivative of
−α
1−α

(ua2 −u2a2)+ua2 at u = 0 equals infinity, therefore −α
1−α

(ua2 −u2a2)+ua2 > u
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for sufficient small (positive) u. For a2 = 1 the right-hand derivative of ua1 at u = 0
equals infinity, therefore ua1 > u + α

1−α
(u − u2) for sufficient small (positive) u.

A4:

C∗
α(u, u)

u
= u1−a1−a2

(
α(ua1 − ua2)FΩ(β) + ua2

+ α(ua2 − u2a2)

∫ β

−1
ωPΩ(dω)

)
= α(u1−a2 − u1−a1)FΩ(β) + u1−a1 + α(u1−a1 − u1−a1+a2)

×
∫ β

−1
ωPΩ(dω)

−→ 0 for a1 < 1,

for a2 = 1 notice that β = (ua1 −u)/(u2 −u) = (ua1−1 −1)/(u −1) −→ −∞. For
a1 = 1 case A4 cannot occur: The right-hand derivative of α

1−α
(ua2 − u2a2) + ua2

at u = 0 equals infinity, therefore α
1−α

(ua2 − u2a2) + ua2 > u for sufficient small
(positive) u.
A5:

C∗
α(u, u)

u
= u1−a1−a2 · ua2 = u1−a1 −→ 0 for a1 < 1.

For a1 = 1 case A5 cannot occur: The right-hand derivative of 2ua2 − u2a2 at u = 0
equals infinity, therefore 2ua2 − u2a2 > u for sufficient small (positive) u.

Since all limits exist and are equal to zero, the proof is complete. �

Theorem 4.2 The upper tail dependence coefficient of the copula C∗
α (as defined

above) is given by

λU (C∗
α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a2, (a1, a2) ∈ B1,

a2 + α(a2 − a1)(FΩ (γ ) − 1) − αa2
∫ 1
γ

ωPΩ(dω), (a1, a2) ∈ B2,

a2 + (a1 − a2) (α(1 − FΩ(γ )) + (1 − α)FΩ(δ))

+αa2
(∫ δ

−1 ωPΩ(dω) − ∫ 1
γ

ωPΩ(dω)
)

, (a1, a2) ∈ B3,

a1 + α(a2 − a1)FΩ (γ ) + αa2
∫ γ

−1 ωPΩ(dω), (a1, a2) ∈ B4,

where γ := a1−a2
a2

, δ := γ · α−1
α

and

B1 = {(a1, a2) ∈ (0, 1]2 | a1 > 2a2},
B2 =

{
(a1, a2) ∈ (0, 1]2 | a2

1 − α
< a1 ≤ 2a2

}
,
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B3 =
{
(a1, a2) ∈ (0, 1]2 | a2

1 − 2α

1 − α
< a1 ≤ a2

1 − α

}
,

B4 =
{
(a1, a2) ∈ (0, 1]2 | a2

1 − 2α

1 − α
≥ a1

}
.

Proof The upper tail dependence coefficient of C∗
α is given by

λU (C∗
α) = 2 − lim

u↗1

1 − C∗
α(u, u)

1 − u
= 2 − lim

u↗1

1 − u2−a1−a2Cα(ua1 , ua2)

1 − u
.

Due to the piecewise representation ofCα (see Sect. 3), we have to distinguish several
cases. It is easily seen that ua1 < u2a2 for u ∈ [0, 1) if and only if a1 > 2a2.
Therefore, if (a1, a2) ∈ B1 then Cα(ua1, ua2) = ua1 , and consequently

λU (C∗
α) = 2 − lim

u↗1

1 − u2−a1−a2ua1

1 − u
= a2.

As a next step, we have to determine (a1, a2) such that ua1 < − α
1−α

(ua2 − u2a2) +
ua2 holds for u ∈ (1 − ε, 1) for some ε > 0. Since both ua1 and − α

1−α
(ua2 −

u2a2) + ua2 are equal to 1 for u = 1 this can be done by comparing their derivatives
at u = 1. It is (ua1)′(1) = a1 and (− α

1−α
(ua2 − u2a2) + ua2)′(1) = a2

1−α
, and

consequently ua1 < − α
1−α

(ua2 − u2a2) + ua2 holds for u ∈ (1 − ε, 1) for some
ε > 0 if and only if a2

1−α
< a1. Hence, if (a1, a2) ∈ B2 then Cα(ua1, ua2) = ua1 +

α
(
(ua1 − ua2)(FΩ(β) − 1) + (u2a2 − ua2)

∫ 1
β

ωPΩ(dω)
)
where β is given by

β = ua1 − ua2

u2a2 − ua2
with lim

u↗1

ua1 − ua2

u2a2 − ua2
= a1 − a2

a2
= γ.

Consequently,

λU (C∗
α) = 2 − lim

u↗1

1−u2−a1−a2
(

ua1 +α
(
(ua1 −ua2 )(FΩ(β)−1)+(u2a2 −ua2 )

∫ 1
β ωPΩ(dω)

))
1 − u

= 2 − (2 − a2) + α(a2 − a1) lim
u↗1

(FΩ(β) − 1) − αa2 lim
u↗1

∫ 1

β
ωPΩ(dω)

= a2 + α

(
(a2 − a1)(FΩ(γ ) − 1) − a2

∫ 1

γ
ωPΩ(dω)

)
.

With analogous arguments, we can conclude that ua1 < α
1−α

(ua2 − u2a2) + ua2

holds for u ∈ (1 − ε, 1) for some ε > 0 if and only if a2
1−2α
1−α

< a1. Therefore, if
(a1, a2) ∈ B3 then
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λU (C∗
α) = 2 − (2 − a2) + α(a1 − a2) + α(a2 − a1) lim

u↗1
FΩ(β)

− αa2 lim
u↗1

∫ 1

β

ωPΩ(dω) + (1 − α)(a1 − a2) lim
u↗1

FΩ(b)

+ αa2 lim
u↗1

∫ b

−1
ωPΩ(dω)

= a2 + (a1 − a2) (α(1 − FΩ(γ )) + (1 − α)FΩ(δ))

+ αa2

( ∫ δ

−1
ωPΩ(dω) −

∫ 1

γ

ωPΩ(dω)

)
,

where b = β · α−1
α

with β as above and δ := limu↗1 b = γ · α−1
α

.
By comparing derivatives, we can conclude that 2ua2 − u2a2 ≤ ua1 holds for

u ∈ (1 − ε, 1) for some ε > 0 if and only if a1 ≤ 0 which would violate the
aforementioned assumptions. Hence, if (a1, a2) ∈ B4 then

λU (C∗
α) = 2 − (2 − a1) + α(a2 − a1) lim

u↗1
FΩ(β) + αa2 lim

u↗1

∫ β

−1
ωPΩ(dω)

= a1 + α(a2 − a1)FΩ (γ ) + αa2

∫ γ

−1
ωPΩ(dω). �

Corollary 4.1 If a1 = a2 = a, then the copula C∗
α has upper tail dependence

given by

λU (C∗
α) = a (1 − αE(|Ω|)) = aλU (Cα).

Proof From Theorem 4.2 we can conclude

λU (C∗
α) = a + αa

(∫ 0

−1
ωPΩ(dω) −

∫ 1

0
ωPΩ(dω)

)
= a (1 − αE(|Ω|)) . �

Proposition 4.1 The copula C∗
α is positively quadrant dependent.

Proof By the fact that Cα is positively quadrant dependent, (see Proposition 3.2),

C∗
α(u, v) = u1−a1v1−a2Cα(ua1, va2) ≥ u1−a1v1−a2ua1va2

= uv for all u, v ∈ [0, 1]. �

Figure3 shows that the C∗
α copulas exhibit even more asymmetry than Singular

Mixture Copulas. This is not surprising since the construction used was introduced
by Khoudraji (1995) to construct asymmetric copulas from exchangeable copulas.
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Fig. 3 Scatter plots of simulated points from the copula C∗
α for α = 0.3 and different values for

ak . The underlying mixture distribution is a U (−1, 1)-distribution

Moreover, this construction overcomes the drawback of a very restricted support
(compare Fig. 2 with Fig. 3) which was a major disadvantage of Singular Mixture
Copulas. Consequently, the copulas described in this section should find broader
application.

The increased flexibility of the C∗
α copulas is also emphasized by the following

proposition which shows that C∗
α copulas include both the Fréchet-Hoeffding upper

bound and the independence copula as a limiting case.

Proposition 4.2 The Fréchet-Hoeffding upper bound M2 and the independence cop-
ula Π2 are limiting cases of a series of C∗

α copulas.

Proof Let C∗
α,a1,a2 denote the copula given by C∗

α,a1,a2(u, v) = u1−a1v1−a2Cα(ua1 ,

va2), then clearly

lim
a1→0

lim
a2→0

C∗
α,a1,a2(u, v) = uvCα(1, 1) = uv = Π2(u, v).

On the other hand,

lim
a1→1

lim
a2→1

C∗
α,a1,a2(u, v) = Cα(u, v),

and Proposition 3.1 showed that limα→0 Cα(u, v) = M2(u, v). �
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5 Second Extension

Following the approach of Khoudraji (1995), it is also possible to construct a new
copula using two Singular Mixture Copulas Cα and Cβ via

C�(u, v) = Cα(u1−a1, v1−a2)Cβ(ua1, va2)

with a1, a2 ∈ [0, 1].
Proposition 5.1 The copula C� is positively quadrant dependent.

Proof By the fact that both Cα andCβ are positively quadrant dependent (see Propo-
sition 3.2),

C�(u, v) = Cα(u1−a1 , v1−a2)Cβ(ua1 , va2) ≥ u1−a1v1−a2ua1va2

= uv for all u, v ∈ [0, 1]. �

Like the C∗
α copulas, the C� copulas include both the Fréchet-Hoeffding upper

bound and the independence copula as a limiting case as the following proposition
shows.

Proposition 5.2 The Fréchet-Hoeffding upper bound M2 and the independence cop-
ula Π2 are limiting cases of a series of C� copulas.

Proof Let C�
α,β,a1,a2

(u, v) = Cα(u1−a1, v1−a2)Cβ(ua1, va2), then clearly

lim
a1→0

lim
a2→1

C�
α,β,a1,a2(u, v) = Cα(u, 1)Cβ(1, v) = uv = Π2(u, v).

On the other hand,

lim
a1→0

lim
a2→0

C�
α,β,a1,a2(u, v) = Cα(u, v),

and Proposition 3.1 showed that limα→0 Cα(u, v) = M2(u, v). �

As Fig. 4 shows, C� copulas possess quite asymmetric shapes. This copula con-
struction also overcomes—to some extent—the drawback of the restricted support.
In contrast to the C∗

α construction, it is possible to create copulas which distribute
probability mass only on a restricted area, but this area is much less restricted than
the corresponding area in the Singular Mixture Copula approach.

At first glance, Fig. 4 might seem to show that C� can possess a singular com-
ponent. Nevertheless, this is not true. Since Cα and Cβ are absolutely continuous
copulas, it is apparent from its construction that C� is absolutely continuous, too.
What seems to be a singular component is in fact a very narrow band in which
probability mass is distributed.
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Fig. 4 Scatter plots of simulated points from the copula C� for α = 0.3, β = 0.1 and different
values of ak . The underlying mixture distributions are two U (−1, 1)-distributions

6 Concluding Remarks

In this paper, we presented and discussed two extensions of Singular Mixture
Copulas. These extensions are based on the approach introduced inKhoudraji (1995).
We showed that the constructed copulas can overcome some drawbacks of Singular
Mixture Copulas, and thus offer a more flexible tool for modeling stochastic depen-
dence. We also showed that the copula C∗

α possesses a form of asymmetry in the way
that it exhibits no lower tail dependence yet upper tail dependence.

Acknowledgments The authors would like to sincerely thank the reviewers for their detailed
comments, which led to an improvement of the presentation of this paper.
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Strong Laws of Large Numbers
in an Fα-Scheme
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Abstract We study the almost sure limiting behavior of record times and the number
of records, respectively, in a (so-called) Fα-scheme. It turns out that there are certain
“dualities” between the latter results, that is, under rather general conditions strong
laws for record times can be derived from the corresponding ones for the number of
records, but in general not vice versa. The results extend, for example, the classical
strong laws of Rényi (Annals Faculty Science University Clermont-Ferrand 8:7–12,
1962; Selected Papers ofAlfredRényi, vol. 3, pp. 50–65,AkadémiaiKiadó,Budapest
1976) for record times and counts.
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Let L(1) = 1 and define recursively

L(n) = inf{k > L(n − 1) : Xk > X L(n−1)}, n ≥ 2, (1)

where inf ∅ := +∞. The random variables in the sequence L = {L(n), n ≥ 1} are
called the record times constructed from the sequence {Xk, k ≥ 1}.

We also define a counting process μ = {μ(n), n ≥ 1} via

μ(n) = #{k : L(k) ≤ n}, n ≥ 1, (2)

i.e., the value μ(n) represents the number of records up to time n.
Rényi (1962) proved that

lim
n→∞

μ(n)

log n
= 1 almost surely (a.s.), (3)

and

lim
n→∞

log L(n)

n
= 1 almost surely (a.s.) (4)

(see also Gut 2005, pp. 307–308, for a modern presentation). In fact, it will turn out
below that relations (3) and (4) are equivalent.

Our aim is to discuss the above “dualities” in amore general framework, that is, for
a class of nonidentically distributed random variables called an Fα-scheme, which
will be introduced below. A particular case of such a scheme, where the exponents
α = {αn} form a geometric progression has been introduced by Yang (1975).

While the distributional results for Fα-schemes seem to have been studied in
great detail (see, e.g. Nevzorov 2001, and the references therein), the almost sure
convergence has found much less attention. Nevertheless some results are known.

Ballerini and Resnick (1987), for example, treat the case of αn = [λn−1α1 + 1
2 ],

where [ · ] denotes the integer part and λ > 1 is a constant, and prove that

lim
n→∞

μ(n)

n
= 1 − λ−1 a.s. (5)

This result shows the difference between the classical setting αn ≡ 1 reflected in (3)
and an Fα-scheme with geometrically growing indices as in (5).

Weissman (1995) studies an Fα-scheme with exponents {αn} for which

An :=
n∑

j=1

α j → ∞ and max{αk : 1 ≤ k ≤ n} = o(An) as n → ∞. (6)

Here it turns out that

lim
n→∞

μ(n)

log An
= 1 a.s. (7)
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(see Weissman 1995). While (7) fits to the classical scheme, which is, in fact, a
consequence of condition (6), this is not the case for the Ballerini and Resnick
(1987) result (5). A more detailed discussion will follow below.

Some recent results on records in subsets of a random field, which are also related
to Fα-schemes, have been obtained by Gut and Stadtmüller (2013). Further results
concerning strong stability and asymptotic normality for μ(n) in Fα-schemes have
also been discussed in Doukhan et al. (2013) under condition (6). We try to avoid the
latter condition here. For example, relation (10) below does not assume (6). However,
if (6) holds, then our results intersect with those given in Doukhan et al. (2013), but
the methods presented in this paper are different from those used in Doukhan et al.
(2013). Moreover, we also study the behavior of L(n), the dual object to μ(n).

An even more general scheme, called a random Fα-scheme, has been introduced
by Deheuvels and Nevzorov (1994). They extend the classical setting by assuming
that {αn} are independent, positive randomvariables.Deheuvels andNevzorov (1994)
are basically interested in normal approximations for the distribution function ofμ(n)

and do not discuss its almost sure convergence in much detail. For further discussion,
we refer to Doukhan et al. (2013).

The paper is organized as follows. In Sect. 2, we recall some definitions concern-
ing Fα-schemes. Then, in Sect. 3, we provide several almost sure asymptotics for
the number μ(n) of records up to time n. It will be shown that, depending on the
particular Fα-scheme, there is a variety of normalizations for μ(n) as well as for the
corresponding limiting constants. In Sect. 5, we prove that (3) and (4) are equivalent.
Moreover, it is shown that this remains true for arbitrary nonrandom functions μ

and L , which are related via condition (30) below. We also retain (3) and (4) for the
general Fα-scheme and prove that the first relation implies the second one, but that,
in general, these relations are not equivalent. Finally, in Sect. 6, several strong laws
for L are presented, which turn out to be corollaries of the corresponding results for
μ in Sect. 3 in combination with the implication proved in Theorem 5.

2 Fα-Schemes

The class Fα of independent random variables we consider in the sequel has been
introduced by Yang (1975). Let {Xk, k ≥ 1} be a sequence of independent random
variables, α = {αn, n ≥ 1} be a sequence of positive reals, and let F be a continuous
distribution function. Assume that

P (Xn ≤ x) = Fαn (x), n ≥ 1, x ∈ R.

Then we say that {Xn} is an Fα-scheme.
We construct the sequences {L(n)} and {μ(n)} as above and denote by In the

indicator variable of a record at time n, i.e.
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In =
{
1, if Xn > max{X1, . . . , Xn−1},
0, otherwise.

Note that the event {Xn = max(X1, . . . , Xn−1)} occurs with probability 0.
Generalizing the Rényi (1962) classical result for iid random variables, Nevzorov

(1985) showed for a general Fα-scheme that

(1) the random variables In , n ≥ 1, are independent, and
(2) P (In = 1) = αn/An , where An = α1 + · · · + αn

(see also Borovkov and Pfeifer 1995). In fact, property (1) holds only if the sequence
{Xn} constitutes an Fα-scheme (see Nevzorov 1985).

Set

ξk = Ik − αk

Ak
, Sn =

n∑

k=1

ξk .

It is clear that
E ξk = 0 and (8)

var [ξk] = var [Ik] = αk

Ak
·
(
1 − αk

Ak

)
. (9)

3 Strong Laws for the Number of Records

3.1 Case of {An} Bounded

Then obviously
∑

var [Ik] converges and thus
∑

Ik is finite almost surely. This
means that only a finite number of records occurs almost surely, so that the asymp-
totics have no meaning in this case.

3.2 Case of {An} Unbounded

Since An > 1 for (say) n ≥ n0, one has
∫ ∞

An0
x−1(log x)−2dx < ∞, hence also

∞∑

k=n0

αk

Ak (log Ak)
2 < ∞.
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So, in view of (8) and (9), the random series

∞∑

k=1

ξk

log Ak

converges almost surely (see, e.g., Billingsley 1995, Theorem 22.6).
Now, from Kronecker’s lemma it follows that

lim
n→∞

1

log An

n∑

k=1

ξk = 0 a.s.

Since μ(n) = ∑n
k=1 Ik , the number of records up to time n, we get from the latter

relation that

lim
n→∞

[
μ(n)

log An
− 1

log An

n∑

k=1

αk

Ak

]
= 0 a.s. (10)

Various special cases will now be treated in more detail.

3.2.1 Case of αn = o(An)

Let
lim

n→∞
αn

An
= 0. (11)

Theorem 1 Assume that (11) holds. Then

lim
n→∞

μ(n)

log An
= 1 a.s. (12)

Proof Indeed, for all k ≥ 2,

αk

Ak
≤

∫ Ak

Ak−1

dx

x
= log Ak − log Ak−1, (13)

whence

lim sup
n→∞

1

log An

n∑

k=1

αk

Ak
≤ 1. (14)

On the other hand, if (11) holds, then Ak/Ak−1 → 1. We fix δ > 0 and find a
sufficiently large k0 such that (1 + δ)Ak−1 ≥ Ak , k ≥ k0. Then, for k ≥ k0,

(1 + δ)αk

Ak
≥ αk

Ak−1
≥

∫ Ak

Ak−1

dx

x
= log Ak − log Ak−1. (15)
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Hence

lim inf
n→∞

1

log An

n∑

k=1

αk

Ak
≥ 1

1 + δ
.

Since δ > 0 can be chosen arbitrarily small, this together with (14) and (10)
implies (12). �

Corollary 1 Let c > −1 and αn = nc�(n) for n ≥ 1, where � is a slowly varying
function. Then

lim
n→∞

μ(n)

log n
= c + 1 a.s.

Proof Note that in this case, by Karamata’s theorem, An ∼ nc+1�(n)/(c + 1), and
thus log An ∼ (c + 1) log n, since log �(n) = o(log n). �

The simplest case of Corollary 1 corresponds to c = 0 and �(n) ≡ a > 0, where
all αn are the same. If a = 1, then we are in the iid case and the result of Corollary 2
coincides with (3).

Corollary 2 If αn = a > 0 for n ≥ 1, then (3) holds.

Remark 1 In fact, Corollary 2 coincides with the iid case even if a �= 1. Indeed,
the distribution function Fa is the same for all random variables Xn in this case. A
more general setting corresponds to a finite number of possible values for {αn} (cf.
Doukhan et al. 2013, Example 2). Denoting by m and M the minimal and maximal
values of {αn}, we have nm ≤ An ≤ nM , whence An → ∞. Thus (11) holds and
we obtain (12) from Theorem 1. Moreover, since log An ∼ log n, we get (3).

An even more general result can be obtained as follows (see Doukhan et al. 2013,
Example 3).

Corollary 3 Assume that

inf{αi |i ≥ 1} > 0 and sup{αi |i ≥ 1} < ∞.

Then (3) holds.

Another asymptotic corresponds to the case c = −1 extending Corollary 1.

Corollary 4 Let � be a slowly varying function such that the series
∑

�(n)/n
diverges. Assume that

αn = �(n)

n
, n ≥ 1.

Then (12) prevails.
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Proof In view of Theorem 1 one only needs to show that (11) holds. For the latter
result, we refer to Lemma11.9.2 in Buldygin et al. (2012), which extends a result in
Parameswaran (1961) from integrals to sums. Note that {An} is also a slowly varying
sequence (see Buldygin et al. 2012). �

Corollary 4 provides various strong laws of large numbers for μ corresponding
to specific choices of �. Assume, for example, �(x) = (log x)a , x ≥ 3, with some
a > −1. Then An ∼ (log n)a+1/(a + 1), whence

lim
n→∞

μ(n)

log log n
= a + 1 a.s. (16)

The asymptotic behavior changes if a = −1. Indeed, let �(x) = (log x)−1, x ≥ 3.
Then An ∼ log log n, whence

lim
n→∞

μ(n)

log log log n
= 1 a.s. (17)

In the case of a < −1 the series
∑

�(n)/n converges, which corresponds to the
discussion in Sect. 3.1.

Now we study the case where condition (11) does not hold.

3.2.2 Case of αn ∼ λAn, for Some 0 < λ < 1

Let
lim

n→∞
αn

An
= λ with 0 < λ < 1. (18)

The normalizing sequence for {μ(n)} then changes as compared to Theorem 1.

Theorem 2 Assume that (18) holds. Then

lim
n→∞

μ(n)

log An
= − λ

log(1 − λ)
a.s. (19)

An equivalent form of (19) is given by

lim
n→∞

μ(n)

n
= λ a.s. (20)

Proof In case of (18),

n∑

k=1

αk

Ak
∼ nλ and log An ∼ n log

(
1

1 − λ

)
. (21)

Thus (19) and (20) follow from assertion (10).
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Here, the first asymptotic in (21) is a straightforward consequence of (18),
and the second one follows since (18) implies that An−1/An → 1 − λ, whence
log(An/An−1) → − log(1 − λ), which results in log An ∼ −n log(1 − λ). �

Remark 2 The limit on the right-hand side of (19) equals 1 as λ ↓ 0, which is “in
agreement” with (12). Moreover, the limit in (19) equals 0 as λ ↑ 1, which “agrees”
with (23) below.

Theorem 2 generalizes the Ballerini and Resnick (1987) result (5) corresponding
to the case of geometrically growing {αn}.
Corollary 5 Let θ > 1 and

αn = θn − θn−1, n ≥ 1.

Then

lim
n→∞

μ(n)

n
= 1 − 1

θ
a.s.

Proof Here, αn/An → 1 − θ−1 =: λ as n → ∞, whence log An ∼ logαn ∼
n log θ = −n log(1 − λ). �

3.2.3 Case of αn ∼ An

Let
lim

n→∞
αn

An
= 1. (22)

Theorem 3 Assume that (22) holds. Then

lim
n→∞

μ(n)

log An
= 0 a.s. (23)

Proof Indeed, in case of (22),

n∑

k=1

αk

Ak
= o(log An), (24)

and (23) follows from (10). The argument for proving (24) is similar to that in the
proof of the second part of (21). Note that (22) implies

n∑

k=1

αk

Ak
∼ n.



Strong Laws of Large Numbers in an Fα-Scheme 295

On the other hand, we obtain from (22) that An/An−1 → ∞. Let ρ > 0 be
fixed. Then there exists an n0 such that An ≥ ρ An−1 for all n ≥ n0, whence
An ≥ An0−1ρ

n−n0+1, n ≥ n0. Passing to the limit results in

lim inf
n→∞

1

n
log An ≥ log ρ.

Since ρ can be chosen arbitrarily large, this means that

lim
n→∞

1

n
log An = ∞,

which implies (24). �

Corollary 6 Let α1 = 1 and

αn = n! − (n − 1)!, n ≥ 2.

Then

lim
n→∞

μ(n)

n log n
= 0 a.s. (25)

Proof Note that An = n!, αn/An = 1 − n−1 → 1, and log An ∼ n log n. �

Remark 3 The second factor of the variance in (9) is of order o(1) in case of (22).
This can be used to improve the asymptotics of (23). Just for a brief demonstration,
let us consider the Fα-scheme from Corollary 6. Then

var ξk = O(1)

(
1 − αk

Ak

)
= O(1)

k
.

Fix γ > 1/2. By the three series theorem,

∑ ξk

(log k)γ

converges almost surely, whence

lim
n→∞

1

(log n)γ

[
μ(n) −

n∑

k=1

αk

Ak

]
= 0 a.s.

Now,
n∑

k=1

αk

Ak
= 1 +

n∑

k=2

(
1 − 1

k

)
= n − log n + O(1).
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Therefore, for all γ > 1/2,

lim
n→∞

1

(log k)γ

[
μ(n) − n + log(n)

] = 0 a.s. (26)

In other words, there are very many records, since the “population grows too fast”.
In particular,

lim
n→∞

μ(n)

n
= 1 a.s. (27)

(compare with (25)).
An interesting question would be to investigate the case of γ = 1/2, which will

be studied elsewhere.

4 Random Fα-Schemes

Deheuvels and Nevzorov (1993, 1994) introduced and investigated a (so-called) ran-
dom Fα-scheme, in which the {αn} are independent, positive random variables. We
briefly discuss this scheme for the particular case of independent, identically distrib-
uted {αn} possessing a positive first moment γ = E α1, since this is a straightforward
generalization of the classical iid case. For a more detailed discussion, we refer to
Doukhan et al. (2013).

Denote byA the σ -algebra generated by the sequence {αn}. Then (see Deheuvels
and Nevzorov 1994) the record indicators are conditionally independent given A .
Moreover,

P (In|A ) = αn

An
a.s., (28)

where again An := α1 + · · · + αn .
Limit theorems for conditionally independent random variables have been dis-

cussed in several papers (see, e.g., Beck 1974). For example, Kolmogorov’s strong
law of large numbers for nonidentically distributed randomvariables has been proved
in Majerak et al. (2005) with a normalization bn = n. For conditionally independent
random variables, one can similarly treat the strong law of large numbers for the gen-
eral case of increasing unbounded normalizations {bn}. In particular, one can prove
a conditionally independent version of Kolmogorov’s strong law. As a consequence,
we obtain for μ(n) = I1 + · · · + In that

μ(n) − E [μ(n)|A ]
log n

→ 0 a.s.
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Combining the latter result with (28), we have

1

log n

(
μ(n) −

n∑

k=1

αk

Ak

)
→ 0 a.s.

Now, by Kolmogorov’s strong law of large numbers for iid random variables,

An

n
→ γ a.s.,

whence we conclude that condition (6) holds almost surely. Denote the random event
where (6) holds by Ω1. Then, for any ω ∈ Ω1, we can use (13)–(15) to obtain

1

log n

n∑

k=1

αk

Ak
→ 1 a.s.,

which finally results in
μ(n)

log n
→ 1 a.s..

Hence the limiting behavior of μ in the random Fα-scheme with integrable iid
random variables {αn} is the same as in the classical setting (confer (3)).

Remark 4 It should be noted that the result obtained above holds true in much more
general settings. The case of iid {αn} has just been chosen for the sake of an easy
presentation.

5 An Auxiliary Result

By definition it is clear that

μ(L(n)) = n, n ≥ 1. (29)

Due to (29), the limit results (3) and (4) are equivalent (see Theorem 4 below).
Moreover, this is true in more general cases, even for dependent and nonidentically
distributed random variables {Xn}.We also like tomention that the equivalence holds
for general numerical sequencesμ and L , too, if they are only related via the relation

lim
n→∞

μ(L(n))

n
= 1 (30)

instead of (29), so the randomness does not really matter. In fact, we only need this
weaker condition for our asymptotics below.
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In what follows in this section we assume that μ and L are two arbitrary positive
sequences or functions.

Theorem 4 Let μ be a nondecreasing sequence and L be a sequence of integers
such that (30) holds. Then (31) and (32) are equivalent, where

lim
n→∞

μ(n)

log n
= 1 (31)

and

lim
n→∞

log L(n)

n
= 1. (32)

Proof First we prove that (31) implies (32). Note that L(n) → ∞ as n → ∞ in
view of (30). We have

n

log L(n)
= n

μ(L(n))
· μ(L(n))

log L(n)
, (33)

where the first factor on the right-hand side tends to 1 by (30), while the second one
tends to 1 in view of (31). This proves (32).

Now we prove that (32) implies (31). Note that this implication does not follow
via (33), since (33) proves (31) only for the subsequence {L(n)}. Instead we apply
the following lemma.

Lemma 1 Let f be a nondecreasing function and g be a positive function on
(0,∞). If

f (g(x)) ∼ x and log g(x) ∼ x as x → ∞, (34)

then
f (x) ∼ log x . (35)

We first complete the proof of Theorem 4 and then come back to the proof of
Lemma 1. Set

f (x) = μ([x]), g(x) = L([x]).

Obviously, (34) follows from (30) and (32). Thus (35) follows from Lemma 1, which
yields (31). �

Proof of Lemma 1. Let 0 < ε < 1. It follows from (34) that there exists an x0
such that

e(1−ε)x ≤ g(x) ≤ e(1+ε)x , x ≥ x0,

and also
(1 − ε)x ≤ f (g(x)) ≤ (1 + ε)x, x ≥ x0.
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Since f is nondecreasing, f (g(x)) ≤ f
(
e(1+ε)x

)
, x ≥ x0, and

(1 − ε)x ≤ f (g(x)) ≤ f
(

e(1+ε)x
)

, x ≥ x0,

whence

f (y) ≥ 1 − ε

1 + ε
log y, y ≥ e(1+ε)x0 .

Similarly,

f
(

e(1−ε)x
)

≤ f (g(x)) ≤ (1 + ε)x, x ≥ x0,

and

f (y) ≤ 1 + ε

1 − ε
log y, y ≥ e(1+ε)x0 .

Passing to the limit y → ∞ in the latter two relations we get

1 − ε

1 + ε
≤ lim inf

y→∞
f (y)

log y
≤ lim sup

y→∞
f (y)

log y
≤ 1 + ε

1 − ε
.

Since ε > 0 is arbitrary, this proves (32). �
In the next section, we derive some strong laws of large numbers for L by using

the results for μ obtained in Sect. 3. To do so we need the following generalization
of the implication (31) =⇒ (32).

Theorem 5 Let μ and L be two integer-valued sequences. Assume that μ is nonde-
creasing and that relation (30) holds. Let � ∈ [0,∞]. If

lim
n→∞

μ(n)

log An
= � (36)

for some sequence of positive numbers {An}, then

lim
n→∞

log AL(n)

n
= 1

�
, (37)

where 1/0 := ∞ and 1/∞ := 0.

Proof We only consider the case of 0 < � < ∞. Note that L(n) → ∞ as n → ∞
in view of (30). Inserting L(n) instead of n into (36), we get

μ(L(n)) ∼ � log AL(n) as n → ∞,

whence (37) follows from (30). The proof for � = 0 or � = ∞ is similar. �
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6 Strong Laws for Record Times

Recall from Sect. 1 that μ = {μ(n)} denotes the numbers of records up to time n and
L = {L(n)} are the nth record times, respectively. Using the results for μ proved
in Sect. 3 together with Theorem 5, we now obtain the corresponding asymptotics
for L .

6.1 Case of αn = o(An)

Theorem 6 If (11) holds, then

lim
n→∞

log AL(n)

n
= 1 a.s.

Proof Since μ(L(n)) = n, Theorem 6 follows immediately from a combination of
Theorems 1 and 5. �

Corollary 7 Let c > −1 and αn = nc�(n) for n ≥ 1, where � is a slowly varying
function. Then

lim
n→∞

log L(n)

n
= 1

c + 1
a.s. (38)

Proof Condition (11) holds in this case, since An ∼ nc+1�(n)/(c + 1). Thus
Theorem6 implies that

lim
n→∞

log(L(n))c+1�(L(n))

n
= 1 a.s.,

whence (38) follows since log �(L(n))/ log L(n) → 0 on the random event where
L(n) → ∞. �

The case of c = −1 is considered next.

Corollary 8 Let b ≥ −1, a > 0, and αn = a(log n)b/n. Then

lim
n→∞

log log L(n)

n
= 1

b + 1
a.s.,

if b > −1, and

lim
n→∞

log log log L(n)

n
= 1 a.s.,

if b = −1.



Strong Laws of Large Numbers in an Fα-Scheme 301

Proof Condition (11) holds in this case, since An ∼ a(log n)b+1/(b+1), if b > −1,
and An ∼ a log log n, if b = −1. By an application of Theorem 6 the proof can be
completed. �

The result of the next corollary with a = 1 coincides with (4) (confer also
Remark 1).

Corollary 9 If αn = a > 0 for n ≥ 1, then (4) holds.

Proof Combine Theorem 6 and Corollary 2. �

Corollary 10 Assume that

min{αi |i ≥ 1} > 0 and max{αi |i ≥ 1} < ∞.

Then (4) holds.

Proof Combine Theorem 6 and Corollary 3. �

6.2 Case of αn ∼ λAn, for Some 0 < λ < 1

Theorem 7 Assume that (18) holds. Then

lim
n→∞

L(n)

n
= 1

λ
a.s. (39)

Proof Combine (20), with L(n) replacing n, and (29). �

Corollary 11 Let θ > 1 and

αn = θn − θn−1, n ≥ 1.

Then

lim
n→∞

L(n)

n
= θ

θ − 1
a.s.

Proof Combine Theorem 7 and Corollary 5. �

6.3 Case of αn ∼ An

Theorem 8 Assume (22) holds. Then

lim
n→∞

AL(n)

n
= ∞ a.s. (40)
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Proof Combine Theorem 3 and (29). �

Corollary 12 Let α1 = 1 and αn = n! − (n − 1)!, n ≥ 2. Then

L(n) log L(n)

n
→ ∞ a.s.

Proof Combine Theorem 8 and Corollary 6.

A more precise asymptotic in case of Corollary 12 follows from (27).

Corollary 13 Let α1 = 1 and αn = n! − (n − 1)!, n ≥ 2. Then

lim
n→∞

L(n)

n
= 1 a.s.

Proof Combine (27) and (29). �
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On Two Results of P. Deheuvels

Ju-Yi Yen and Marc Yor

Abstract We highlight some works in the probabilistic literature which are closely
related to two results by P. Deheuvels.

1 Introduction

The aim of this paper is to show the closeness between two results of P. Deheuvels
(and G. Martynov) on one hand, and two results of M. Yor (and C. Donati-Martin)
on the other hand, and more generally related works in the probabilistic literature.

• A first result, discussed in particular cases by the two authors is the existence
of Brownian motions obtained as integral linear transforms of a given Brown-
ian motion. One such transform originates very naturally from considerations of
Brownian Bridges.

• A second result, again discussed in particular cases by the two authors, is that two
quadratic functionals of Brownian motion may have the same law.

2 The Filtration of Brownian Bridges and Related Topics

2.1 The filtration

Given a Brownianmotion (Bt , t ≥ 0), we consider, for fixed t , the σ−field generated
by Bu − u

t Bt , for u < t . This family of σ−fields increases with t , and deserves to
be called the filtration of Brownian bridges. It is easily shown that this filtration is
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the natural filtration of a Brownian motion, obtained by taking Bt − ∫ t
0

Bs ds
s (see

also Jeulin and Yor (1990), Najnudel et al. (2012)). This process is precisely one of
the transforms of Brownian motion considered by P.D. in Deheuvels (1982). CallT
this transform. It preserves Wiener measure, and it is shown in Yor (1992), Chap.1,
that this transform is ergodic. Indeed, if we iterateT , then the nth Brownian motion
is identical to

∫ t
0 d Bs Ln(log t

s ), (see formula (2.n) in Jeulin and Yor (1990)), where
Ln denotes the nth Laguerre polynomial, that is, the canonical sequence of ortho-
normal polynomials for the probability on R+, with exponential density. Moreover,
considered up to time t , the nth Brownian motion is independent of the values at
time t of the kth Brownian motions, for k ≤ n − 1. The ergodicity of T follows
from the fact that these polynomials form an orthonormal basis for the L2 space of
this probability.

Wealsonote that inNajnudel et al. (2012) a continuousgroupofWiener transforms
extending the iterates of T has been exhibited.

2.2 A related computation

The computations by Chiu (1995), inspired by Lévy, show in particular that:

Xn(t) =
∫ t

0
Pn

(u

t

)
d Bu, for Pn(t) = 2n + 1

n
tn − n + 1

n
,

is also a Brownian motion. Integration by parts shows that:

Xn(t) = Bt −
∫ t

0

ds

s
(2n + 1)

∫ s

0
d Bu

(u

s

)n
.

In particular, for n = 0, we recover the Brownian motion we considered above, i.e.;

β(t) −
∫ t

0

ds

s
β(s),

which we now denote by γ (t). In fact, we may view that Xn(t) is a Brownian motion
from simple manipulations of both Xn and γ : take h(s) = s2n+1

2n+1 .

We leave it to the reader to establish that
∫ t
0 snd Xn(s) is distributed as γ time-

changed with h(t), which is also distributed as
∫ t
0 sndγ (s). Consequently Xn and γ

have the same law, i.e. Xn is a Brownian motion. Thus, the Chiu-Lévy computations
are not so far from the content of Sect. 2.1, which corresponds to n = 0+. We also
note that the covariance of Xn may be shown directly to be that of Brownian motion.
Moreover, the same computation shows that the filtration of Xn is strictly contained
in that of B because

∫ t
0 snd Bs is independent of the past of Xn , up to time t .

http://dx.doi.org/10.1007/978-3-319-12442-1_1


On Two Results of P. Deheuvels 307

3 Brownian Quadratic Functionals with the Same
Law (Deheuvels and Martynov 2008),
(Donati-Martin and Yor 1991)

Themain aimofDeheuvels andMartynov (2008)was to enlarge the class ofGaussian
processes for which an explicit Karhunen-Loeve decomposition may be computed
(see also Pycke (2001)). This class is not so large. Then, this leads to identities in
law for the integrals of the squares of such processes. It has been noticed by several
authors, including P.D. and M.Y., that the variance of the Brownian path, on the unit
time interval, is distributed as the integral of the square of the Brownian bridge, on
the same unit interval. This result may be obtained as a consequence of a Fubini
argument involving two independent Brownian motions, namely:

∫ 1

0

∫ 1

0
d BudCsψ(u, s) =

∫ 1

0

∫ 1

0
dCsd Buψ(u, s)

Taking characteristic functions of these two quantities, one finally obtains the identity
in law: ∫ 1

0
du

(∫ 1

0
dCsψ(u, s)

)2
(law)=

∫ 1

0
du

(∫ 1

0
dCsψ(s, u)

)2

This may be called a Fubini-Wiener identity in law.
The identity in law between the variance of the Brownian path and the integral

of the square of the Brownian bridge may be obtained as a particular case of a
Fubini-Wiener identity in law. The origin of the interest by M.Y. in these identities
in law comes from computations by physicists of laws related to radius of gyration
(Duplantier 1989) (see also Chan (1994), Dean and Jansons (1992), Pycke (2001),
Pycke (2005), Yen and Yor (2013)), as well as looking for some explanations of
the celebrated Ciesielski-Taylor identities in law: the total time spent by Brownian
motion in the unit sphere in R

d+2 is distributed as the first hitting time of 1 by the
radial part of Brownian motion in Rd (Ciesielski and Taylor 1962).

With the help of the corresponding Ray-Knight theorems for the local times of the
Bessel processes involved, the Fubini-Wiener identity in law allows to recover the
Ciesielski-Taylor identities. One may of course argue that the use of the Ray-Knight
theorem is a formidable hammer to break this stone! However, from the purely one-
dimensional Brownian viewpoint, this detour brings out remarkable identities in law
which one might not have noticed otherwise. See Yor (1992), Chap.4.

http://dx.doi.org/10.1007/978-3-319-12442-1_4
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Some Topics in Probability Theory

Ju-Yi Yen and Marc Yor

Abstract We present a succinct discussion of a number of topics in Probability
Theory which have been of interest in recent years.

1 The Set of Martingale Laws

Consider, on the Skorokhod space of càdlàg functions, all probabilities P which
make the canonical process of coordinates a martingale. Call M this set. Clearly,
it is a convex set, and it may be of interest to characterize its extremal points. An
application of Hahn-Banach theorem (to the pair H1-BMO, and the fact that a BMO
martingale is locally bounded) allows to show that P inM is extremal if and only if
any martingale under P may be written as the sum of a constant and of a stochastic
integral with respect to the canonical (martingale) process. A particularly illustrative
example is that of P = W, Wiener measure. Indeed, on one hand, from Lévy’s
martingale characterization of Brownianmotion, it is easily shown thatW is extremal
in M . On the other hand, it is a theorem (due to Itô) that all Brownian martingales
may be written as the sum of a constant and of a stochastic integral with respect to
Brownian Motion. That these two properties hold for W is not a mere coincidence,
but is explained by the general statement above (Jacod and Yor 1977).

To our knowledge, the first authorwho tried to connect the two properties, namely:
extremality of P, and martingale representation property under P is Dellacherie
(1974, 1975). Dellacherie (1975) corrects Dellacherie (1974) partially, but the local
boundedness property which seems necessary for a correct proof is only found in
Jacod and Yor (1977).
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The use of the H1-BMO duality in this topic is reminiscent to that of the L1-L∞
duality in the characterization of extremal probabilities, solutions of a (generalized)
moment problem. In fact, it is a theorem, according to Douglas and Naimark (inde-
pendently) the extremal points P of such a moment problem are those for which
the vector space generated by the functions defining the problem and the constant
function 1 is dense in L1(P). Yor (1978) explains how to relate the two frameworks
and extremality results.

2 Strong and Weak Brownian Filtrations

We shall say that a filtration Ft is strongly Brownian if it is the natural filtration of
a Brownian Motion. On the other hand, we shall sayFt is weakly Brownian if there
exists a Brownian Motion B for this filtration such that all martingales for this filtra-
tionmay bewritten as the sum of a constant and a stochastic integral with respect to B
(but the integrand is predictable with respect toFt ). Any strongly Brownian filtration
is weakly Brownian (Itô’s theorem recalled in Sect. 1). It is natural to ask whether any
weaklyBrownian filtration is stronglyBrownian. The answer turns out to be negative:

• it is easily shown that on the canonical space of continuous functions, endowed
with any probability Q equivalent to Wiener measure W, the canonical filtration
is weakly Brownian; however, it has been shown by Dubins et al. (1996) that there
are infinitely many Q’s such that Ft is not strongly Brownian under Q;

• the filtration of Walsh’s Brownian Motion with N rays, for N ≥ 3, is weakly but
not strongly Brownian, another result due to Tsirelson (1997). A posteriori, a clear
explanation of this result emerged as it was shown that M. Barlow’s conjecture
holds: for g, the end of a predictable set in a strong Brownian filtration, the pro-
gressive σ -field up to g can only differ from the predictable one by, at most the
addition of a set. This is clearly not the case for Walsh’s Brownian motion with N
rays, N ≥ 3, and g the last zero of this process before time 1;

• there exist time changes of the canonical Brownian filtration such that the time
changed filtration is weakly, but not strongly Brownian, a result due to Émery and
Schachermayer (1999).

3 Weak Brownian Motions of Any Given Order

Although the adjective weak is used again here, this topic has nothing to do with
topic in Sect. 2. It was suggested by a question of Stoyanov in his book of counter
examples (Stoyanov 1987): does there exist, for a given integer k, a process which
has the same k-dimensional marginals as Brownian Motion? The answer is yes, as
was proven by Föllmer et al. (2000), by constructing probabilitiesQ equivalent toW,
the Wiener measure, such that the k-dimensional marginals of the canonical process
under Q are those under W.
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4 Martingales with One-Dimensional Brownian Marginals

Note that this topic differs from Sect. 3, where the processes constructed there are
not martingales, but, in general, semimartingales. For constructions of martingales,
see Albin (2008), Baker et al. (2011), Hamza and Klebaner (2007), Madan and Yor
(2002). There are at least two versions of these constructions, one where it is required
that the martingale is continuous, e.g., Albin (2008); the other where discontinuity
is allowed, e.g., Madan and Yor (2002).

5 Explicit Skorokhod Embedding

The problem is nowwell known: given a centered probabilityμ onR, find a stopping
time T of Brownian motion B, such that BT is μ distributed and Bt∧T is a uniformly
integrable martingale. Although J. Obłój found 21 different solutions scattered in the
literature (Obłój 2004), few of them are explicit, as in general, the authors proceed
by finding solutions for simple μ’s then pass to the limit.

Azéma-Yor found that if Tμ := inf{t : St ≥ Hμ(Bt )}, where St = sup
s ≤ t Bs , and

the Hardy-Littlewood function Hμ(x) is defined as:

Hμ(x) = 1

μ([x,∞))

∫

[x,∞)

tdμ(t),

then Tμ solves Skorokhod problem for μ (Azéma and Yor 1979). To prove this
result, Azéma and Yor (1979) use first-order stochastic calculus, whereas Rogers
(1981) uses excursion theory. Madan and Yor (2002) remarked that for a family μt

such that the corresponding Hardy-Littlewood family is pointwise increasing in t ,
the Brownian motion B taken at those stopping times is a martingale.

6 Peacocks and Associated Martingales

We say that a process Xt is a peacock (:PCOC) if, when composed with any convex
function, the expectation of the obtained process is increasing in t . It is a consequence
of Jensen’s inequality that a martingale is a peacock. Conversely, it is a deep theorem
due toKellerer (1972) that a peacock is a processwhich has the sameone-dimensional
marginals as a martingale. Moreover, this martingale may be chosen Markovian.
Thus, at least, two questions arise:

1. How to create peacocks in a systematicway?One answer is: the arithmetic average
of a martingale is always a peacock. The original example of this seems to be due
to Carr et al. (2008) who took for a martingale the geometric Brownian motion;
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2. Given a peacock, how to associate to it a martingale with the same marginals?
So far, there does not seem to exist a general answer. But, in their monograph,
Hirsch, Profeta, Roynette, and Yor exhibit a number of general cases where some
construction may be done (Hirsch 2011).

7 (Brownian) Penalisations

Consider W, the Wiener measure and Ht , positive, a family of adapted probability
densities (with respect to the canonical filtration). This allows to create a familyWt

of probabilities on Ft . The penalisation problem is to find whether, as t → ∞, Wt

when restricted to Fs , for fixed s, converges weakly, and if so to describe the limit
law. Two monographs have been devoted to this problem: Roynette and Yor (2009)
and Najnudel et al. (2009), the first is a collection of examples, the second aims at
finding general convergence criterions.

8 Martingales with the Wiener Chaos Decomposition

It is a well-known result, due to Wiener, that every L2-martingale for the Brownian
filtration may be written as the sum of a series of multiple integrals with respect
to Brownian motion, with the series of squares of (deterministic) integrands, inte-
grated with respect to Lebesgue measure on their corresponding sets of definitions,
converging. A similar result is true for the martingale of the compensated Poisson
process. For a long time, it was thought that these were the only twomartingales with
Wiener chaos decomposition. But, Émery (1989) showed that Azéma’s martingale,
i.e., the projection of Brownian motion on the filtration of Brownian signs up to
time t , also satisfies this property. See also Azéma and Yor (1989) for another proof.
Émery (1989) considered more generally some martingales solutions of so-called
structure equations, some of which also enjoy the Wiener chaos decomposition; he
also wrote a synthesis Émery (1991).

9 Asymptotics of Planar Brownian Windings

A number of limit theorems (in law) for additive functionals of one- or two-
dimensional Brownian motion have been obtained throughout the years. This is
in particular the case for the winding number of planar Brownian motion up to
time t , which, when multiplied by 2

log(t) converges in law toward a standard Cauchy
variable Spitzer (1958). This result admits a number of multivariate extensions, in
particular: with the same normalization 2

log(t) ,the vector of n Brownian winding
numbers around different points converges in law toward a random vector with
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(linked) Cauchy marginals Pitman and Yor (1986). The dependence between the
different Cauchy marginals may be explained from the Kallianpur and Robbins
(1953) asymptotic theorem: normalized by 1

log(t) , the time spent in an integrable
Borel set by two-dimensional Brownian motion up to time t is asymptotically expo-
nentially distributed.

10 How to Modify the Burkholder-Davis-Gundy Inequalities
up to Any Time?

Aversion of theBDG inequalities is: for any positive p, the supremumof the absolute
value of Brownian motion up to a stopping time T has L p moment which is equiv-
alent to that of

√
T . How could one modify this result when T is replaced by any

random time L? A technique consists in making L a stopping time and to con-
sider the semimartingale decomposition of Brownian motion stopped at L . Then, an
extension of Fefferman’s inequality allows to obtain the desired variants. For details,
see Yor (1985).
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