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Preface

This third and final part of Convexity and Optimization discusses some opti-
mization methods which when carefully implemented are efficient numerical
optimization algorithms.

We begin with a very brief general description of descent methods and
then proceed to a detailed study of Newton’s method. For a particular class
of functions, the so-called self-concordant functions, discovered by Yurii Nes-
terov and Arkadi Nemirovski, it is possible to describe the convergence rate
of Newton’s method with absolute constants, and we devote one chapter to
this important class.

Interior-point methods are algorithms for solving constrained optimiza-
tion problems. Contrary to the simplex algorithms, they reach the optimal
solution by traversing the interior of the feasible region. Any convex opti-
mization problem can be transformed into minimizing a linear function over
a convex set by converting to the epigraph form and with a self-concordant
function as barrier, and Nesterov and Nemirovski showed that the number
of iterations of the path-following algorithm is bounded by a polynomial in
the dimension of the problem and the accuracy of the solution. Their proof
is described in this book’s final chapter.

Uppsala, April 2015
Lars-Ake Lindahl
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Chapter 14

Descent methods

The most common numerical algorithms for minimization of differentiable
functions of several variables are so-called descent algorithms. A descent
algorithm is an iterative algorithm that from a given starting point gener-
ates a sequence of points with decreasing function values, and the process is
stopped when one has obtained a function value that approximates the min-
imum value good enough according to some criterion. However, there is no
algorithm that works for arbitrary functions; special assumptions about the
function to be minimized are needed to ensure convergence towards the min-
imum point. Convexity is such an assumption, which makes it also possible
in many cases to determine the speed of convergence.

This chapter describes descent methods in general terms, and we exem-
plify with the simplest descent method, the gradient descent method.

14.1 (General principles

We shall study the optimization problem

(P) min f(x)

where f is a function which is defined and differentiable on an open subset
Q of R". We assume that the problem has a solution, i.e. that there is an
optimal point Z € Q, and we denote the optimal value f(Z) as fum,. A con-
venient assumption which, according to Corollary 8.1.7 in Part I, guarantees
the existence of a (unique) optimal solution is that f is strongly convex and
has some closed nonempty sublevel set.

Our aim is to generate a sequence xq,Ts,xs3,... of points in 2 from a
given starting point xy € (2, with decreasing function values and with the
property that f(zg) — fmin as k& — oco. In the iteration leading from the
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point x to the next point xy, 1, except when xy, is already optimal, one first
selects a vector vy such that the one-variable function ¢y (t) = f(zx + tvy) is
strictly decreasing at t = 0. Then, a line search is performed along the half-
line zy, + tug, t > 0, and a point zx1 = zx + hgvy satisfying f(zri1) < f(zx)
is selected according to specific rules.

The vector vy is called the search direction, and the positive number
hy is called the step size. The algorithm is terminated when the difference
f(z) — fuin is less than a given tolerance.

Schematically, we can describe a typical descent algorithm as follows:

Descent algorithm

Given a starting point x € €.
Repeat

1. Determine (if f'(x) # 0) a search direction v and a step size h > 0 such
that f(z 4+ hv) < f(x).
2. Update: x:= x + hv.
until stopping criterion is satisfied.

Different strategies for selecting the search direction, different ways to
perform the line search, as well as different stop criteria, give rise to different
algorithms, of course.

Search direction

Permitted search directions in iteration k are vectors v, which satisfy the
inequality

(f'(wr), vx) <0,

because this ensures that the function ¢x(t) = f(zx + tvy) is decreasing at
the point ¢ = 0, since ¢, (0) = (f'(zx), vk). We will study two ways to select
the search direction.

The gradient descent method selects vy, = — f'(z), which is a permissible
choice since (f'(z),vr) = —|f(zx)||*> < 0. Locally, this choice gives the
fastest decrease in function value.

Newton’s method assumes that the second derivative exists, and the search
direction at points x where the second derivative is positive definite is

ve = —f" (@) 7L f (@)
This choice is permissible since (f(zy),vr) = —{(f'(xx), f"(xr) " f' (zx)) < 0.
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Line search

Given the search direction vy there are several possible strategies for selecting
the step size hy.

1. Ezact line search. The step size hy is determined by minimizing the one-
variable function ¢ — f(x) +tvy). This method is used for theoretical studies
of algorithms but almost never in practice due to the computational cost of
performing the one-dimensional minimization.

2. The step size sequence (hy)32, is given a priori, for example as hy, = h or
as hy = h/vk + 1 for some positive constant h. This is a simple rule that is
often used in convex optimization.

3. The step size hy at the point zy is defined as hy, = p(zy) for some given
function p. This technique is used in the analysis of Newton’s method for
self-concordant functions.

4. Armijo’s rule. The step size hy at the point x; depends on two parameters
a, 5 €]0,1] and is defined as

hk: = /Bm,
where m is the smallest nonnegative integer such that the point zp 4+ S™v
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lies in the domain of f and satisfies the inequality
(14.1) flap+ B8™v) < flax) +aB™(f'(24), vi)-
Such an m certainly exists, since ™ — 0 as n — oo and

lim f(l'k + tvk) — f($k>
t—0 t

= (f'(wr), ve) < a(f'(zr), vr)-

The number m is determined by simple backtracking: Start with m =0
and examine whether x; + 5™v; belongs to the domain of f and inequality
(14.1) holds. If not, increase m by 1 and repeat until the conditions are
fulfilled. Figure 14.1 illustrates the process.

f(zk)

B'm'\éQi t

flxr) +t(f" (wn),ve)  flow) + at(f' (z), vk)

Figure 14.1. Armijo’s rule: The step size is hy = (™,
where m is the smallest nonnegative integer such that

[+ ™) < f(ar) +aB™(f'(zr), vk)-

The decrease in iteration k of function value per step size, i.e. the ratio
(f(xk)—f(xks1))/ s, is for convex functions less than or equal to —(f'(xx), vy)
for any choice of step size hy. With step size hy selected according to Armijo’s
rule the same ratio is also > —a(f'(xy), vx). With Armijo’s rule, the decrease
per step size is, in other words, at least a of what the maximum might be.
Typical values of o in practical applications lie in the range between 0.01
and 0.3.

The parameter § determines how many backtracking steps are needed.
The larger 3, the more backtracking steps, i.e. the finer the line search. The
parameter (3 is often chosen between 0.1 and 0.8.

Armijo’s rule exists in different versions and is used in several practical
algorithms.

Stopping criteria

Since the optimum value is generally not known beforehand, it is not pos-
sible to formulate the stopping criterion directly in terms of the minimum.
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Intuitively, it seems reasonable that x should be close to the minimum point
if the derivative f’(x) is comparatively small, and the next theorem shows
that this is indeed the case, under appropriate conditions on the objective
function.

Theorem 14.1.1. Suppose that the function f: Q — R is differentiable, -
strongly convex and has a minimum at & € ). Then, for all x € )

. - 1 / 2

(1) flx) = f(z) < ﬂ”f ()]l and
y TR

(i) le — ] < ;Hf ()]

Proof. Due to the convexity assumption,

(14.2) fy) > f@)+ (f'(2),y —z) + sully — |

for all z,y € 2. The right-hand side of inequality (14.2) is a convex quadratic
function in the variable y, which is minimized by y = x — = f/(x), and the
minimum is equal to f(z) — s f'(2)||*. Hence,

fy) = flz) = su7 L (@)
for all y € 2, and we obtain the inequality (i) by choosing y as the minimum
point .
Now, replace y with  and = with Z in inequality (14.2). Since f'(z) =0,
the resulting inequality becomes

f@) = f(&) + gplle — 2],
which combined with inequality (i) gives us inequality (ii). O

We now return to the descent algorithm and our discussion of the the
stopping criterion. Let

S={reQ|f(z) < f(zo)},

where xg is the selected starting point, and assume that the sublevel set S
is convex and that the objective function f is p-strongly convex on S. All
the points x1, x9, 3, ... that are generated by the descent algorithm will of
course lie in S since the function values are decreasing. Therefore, it follows
from Theorem 14.1.1 that f(21) < fuin + € if || f/(z2)]] < (2u€)"/2.

As a stopping criterion, we can thus use the condition

1F" (i)l < m,
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which guarantees that f(xy) — fuim < n?/2p and that |zp — 2| < n/p. A
problem here is that the convexity constant p is known only in rare cases.
So the stopping condition ||f/(xy)|| < n can in general not be used to give
precise bounds on f(x) — fmin. But Theorem 14.1.1 verifies our intuitive
feeling that the difference between f(z) and fu;, is small if the gradient of f
at x is small enough.

Convergence rate

Let us say that a convergent sequence xg, x1,Zo,... of points with limit 2
converges at least linearly if there is a constant ¢ < 1 such that

(14.3) [k 1 — &[] < cllee — 2|

for all k, and that the convergence is at least quadratic if there is a constant
C such that

(14.4) k1 = ]| < Cllay — 2|

for all k.

360°
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We also say that the convergence is no better than linear and no better
than quadratic if
i 251 — 2]
hooo |76 — 2|
for « =1 and a = 2, respectively.
Note that inequality (14.3) implies that the sequence ()3 converges to
Z, because it follows by induction that

>0

lox — 2| < *llzo — 2]

for all k.
Similarly, inequality (14.4) implies that the sequence (x})5° convergences
to 2 if the starting point xq satisfies the condition ||zg — 2| < C~!, because

we now have "
i — | < € (Cllo — &)

for all k.

If an iterative method, when applied to functions in a given class of
functions, always generates sequences that are at least linearly (quadratic)
convergent and there is a sequence which does not converge better than
linearly (quadratic), then we say that the method is linearly (quadratic)
convergent for the function class in question.

14.2 The gradient descent method

In this section we analyze the gradient descent algorithm with constant step
size. The iterative formulation of the variant of the algorithm that we have
in mind looks like this:

Gradient descent algorithm with constant step size

Given a starting point x and a step size h.
Repeat
1. Compute the search direction v = — f'(z).
2. Update: x:= x + hv.
until stopping criterion is satisfied.

The algorithm converges linearly to the minimum point for strongly con-
vex functions with Lipschitz continuous derivatives provided that the step
size is small enough and the starting point is chosen sufficiently close to the
minimum point. This is the main content of the following theorem (and
Example 14.2.1).
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Theorem 14.2.1. Let f be a function with a local minimum point T, and
suppose that there is an open neighborhood U of & such that the restriction f|y
of f to U 1s p-strongly convex and differentiable with a Lipschitz continuous
deriwative and Lipschitz constant L. The gradient descent algorithm with
constant step size h then converges at least linearly to & provided that the
step size is sufficiently small and the starting point xq lies sufficiently close
to .

More precisely: If the ball centered at & and with radius equal to ||xq — Z||
lies in U and if h < p/L?, and (z3) is the sequence of points generated by
the algorithm, then xy lies in U and

[ekr1 = 2| < ellex — 2],
for all k, where ¢ = \/1 — hpu.

Proof. Suppose inductively that the points zg, x1,...,x; lie in U and that
lxr — Z|| < ||xo — ||. Since the restriction f|y is assumed to be p-strongly
convex and since f'(z) =0,

(f'(@n),ae — ) = (' (zn) = (@), 20 — 2) = pllay — 2]

according to Theorem 7.3.1 in Part I, and since the derivative is assumed to
be Lipschitz continuous, we also have the inequality

1 (o)l = 1 (z) = f(@) < Lllaw — 2.
By combining these two inequalities, we obtain the inequality

A

A ) f [t
(f'(xx), zx — 2) > pllay — 2> = 5l = 2|+ 5l — |

p ) 1
> Sllze =2l + 5zl @l

212
Our next point zg11 = xx — hf'(xg) therefore satisfies the inequality
[2p 1 = 2)* = ok — hf' () — 2]° = [[(2x — 2) = 2f (z2)|]?

= |l — &[* — 20" (), wp — ) + B2 f' (24 ||
< o = 2)* = hpllay — 2)* ~ h%”f’(ﬂffk)ﬂ2 + 12| f () [

= (1= hp) = >+ h(h = )11 (i) 1

Hence, h < u/L? implies that ||zp1 — 2|2 < (1 — hp)|lz, — 2]]2, and
this proves that the inequality of the theorem holds with ¢ = /1 — hu < 1,
and that the induction hypothesis is satisfied by the point z. 1, too, since
it lies closer to & than the point x; does. So the gradient descent algorithm
converges at least linearly for f under the given conditions on h and xy. [
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We can obtain a slightly sharper result for p-strongly convex functions
that are defined on the whole R™ and have a Lipschitz continuous derivative.

Theorem 14.2.2. Let f be a function in the class S, (R™). The gradient
descent method, with arbitrary starting point xo and constant step size h,
generates a sequence (x) of points that converges at least linearly to the

function’s minimum point T, if

0<h< /H—L
More precisely,
(14,5 o=l < (1= =25) o = .
Moreover, if h = I then
(14.6) o — 2| < (%)k lzo— 2  and
(147) Fan) = fow < 5(E57) o=l

where Q) = L/ is the condition number of the function class S, (R").
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Proof. The function f has a unique minimum point 2, according to Corollary
8.1.7 in Part I, and

lwker = @)1 = llow — 2I* = 2h{f (@), 21 — @) + B[] f () |,

just as in the proof of Theorem 14.2.1. Since f'(z) = 0, it now follows from
Theorem 7.4.4 in Part I (with 2 = & and v = z;, — ) that

. uL . 1
(), =) 2 “Ep =3l + @)l

which inserted in the above equation results in the inequality

2hpl

—A2<(1
e

Sl =l + (= — )1 @)
Soif h <2/(u+ L), then

2hpLN1/2
i< (1o _) .
|Tps1 — 2| < ( it L |z — 2|

and inequality (14.5) now follows by iteration.

The particular choice of h = 2(u + L)™' in inequality (14.5) gives us
inequality (14.6), and the last inequality (14.7) follows from inequality (14.6)
and Theorem 1.1.2 in Part I, since f'(z) = 0. O

The rate of convergence in Theorems 14.2.1 and 14.2.2 depends on the
condition number ¢ > 1. The smaller the @, the faster the convergence.
The constants g and L, and hence the condition number @), are of course
rarely known in practical examples, so the two theorems have a qualitative
character and can rarely be used to predict the number of iterations required
to achieve a certain precision.

Our next example shows that inequality (14.6) can not be sharpened.

ExaMPLE 14.2.1. Consider the function

flz) = %(le + LI2)

where 0 < g < L. This function belongs to the class S, (R?), f'(z) =
(uxy1, Lxs), and & = (0,0) is the minimum point.
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Figure 14.2. Some level curves for the function f(z) = 3(2% + 1623)
and the progression of the gradient descent algorithm with (0 = (16,1)
as starting point. The function’s condition number @ is equal to 16, so
the convergence to the minimum point (0,0) is relatively slow. The
distance from the generated point to the origin is improved by a factor
of 15/17 in each iteration.

The gradient descent algorithm with constant step size h = 2(u + L)™?,

starting point #(*) = (L, 1), and o = % proceeds as follows

2 = (L, )
f'(@®) = (uL, uL)

21— 0 _ hf’(x(o)) = a(L, —p)
f'(@W) = a(uL, —uL)

2@ =2 — hf'(aW) = (L, p)

Consequently,

so inequality (14.6) holds with equality in this case. Cf. with figure 14.2.

Finally, it is worth noting that 2(u+ L)™' coincides with the step size that
we would obtain if we had used exact line search in each iteration step. [

The gradient descent algorithm is not invariant under affine coordinate
changes. The speed of convergence can thus be improved by first making a
coordinate change that reduces the condition number.

EXAMPLE 14.2.2. We continue with the function f(z) = (ua? + La3) in the
previous example. Make the change of variables y; = \/px1, y2 = VL s,
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and define the function g by

9(y) = f(x) = 37 + v3).

The condition number ) of the function ¢ is equal to 1, so the gradient
descent algorithm, started from an arbitrary point y(®, hits the minimum
point (0,0) after just one iteration. O

The gradient descent algorithm converges too slowly to be of practical use
in realistic problems. In the next chapter we shall therefore study in detail
a more efficient method for optimization, Newton’s method.

Exercises

14.1

14.2

14.3

Perform three iterations of the gradient descent algorithm with (1,1) as
starting point on the minimization problem

min x% + 21‘%.

Let X = {z € R? | 21 > 1}, let 2(® = (2,2), and let f: X — R be the
function defined by f(z) = 327 + 3.

a) Show that the sublevel set {z € X | f(z) < f((©)} is not closed.

b) Obviously, fmin = inf f(z) = %, but show that the gradient descent
method, with 2(*) as starting point and with line search according to Armijo’s
rule with parameters a < % and 8 < 1, generates a sequence k) = (ag,ak),
k=0,1,2,..., of points that converges to the point (1,1). So the function
values f(x(®)) converge to 1 and not to fuin.

[Hint: Show that agi1 —1 < (1 — f)(ax — 1) for all &.]

Suppose that the gradient descent algorithm with constant step size con-
verges to the point & when applied to a continuously differentiable function
f. Prove that Z is a stationary point of f, i.e. that f/(&) = 0.
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Chapter 15

Newton’s method

In Newton’s method for minimizing a function f, the search direction at
a point x is determined by minimizing the function’s Taylor polynomial of
degree two, i.e. the polynomial

P(v) = f(z) + Df(z)[v] + 5D* f(2)[v,v] = f(2) + {f'(z),v) + 5(v, f"(2)v),

and since P'(v) = f'(x) + f"(x)v, we obtain the minimizing search vector as
a solution to the equation

P (@) = —f(x).

Each iteration is of course more laborious in Newton’s method than in
the gradient descent method, since we need to compute the second derivative
and solve a quadratic equation to determine the search vector. However, as
we shall see, this is more than compensated by a much faster convergence to
the minimum value.

15.1 Newton decrement and Newton direc-
tion

Since the search directions in Newton’s method are obtained by minimizing

quadratic polynomials, we start by examining when such polynomials have

minimum values, and since convexity is a necessary condition for quadratic

polynomials to be bounded below, we can restrict ourself to the study of
convex quadratic polynomials.

Theorem 15.1.1. A quadratic polynomial

P(v) = 3 (v, Av) + (b,v) + ¢
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in n variables, where A is a positive semidefinite symmetric operator, is
bounded below on R™ if and only if the equation

(15.1) Av = —b

has a solution.

The polynomial has a minimum if it is bounded below, and v is a minimum
point if and only if Av = —b.

If v is a minimum point of the polynomial P, then

(15.2) P(v) — P(0) = (v — b, A(v — 1))

for allv e R™.
If 01 and 0y are two minimum points, then (01, Avy) = (0g, ADg).

Remark. Another way to state that equation (15.1) has a solution is to say
that the vector —b, and of course also the vector b, belongs to the range of
the operator A. But the range of an operator on a finite dimensional space is
equal to the orthogonal complement of the null space of the operator. Hence,
equation (15.1) is solvable if and only if

Av=0= (b,v) =0.
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Proof. First suppose that equation (15.1) has no solution. Then, by the
remark above there exists a vector v such that Av = 0 and (b,v) # 0. It
follows that

P(tv) = (v, Av)t* + (b,v)t + ¢ = (b,v)t + ¢
for all ¢ € R, and since the t-coefficient is nonzero, we conclude that the
polynomial P(t) is unbounded below.
Next suppose that Ao = —b. Then

P(v) — P(9) = +({v, Av) — (b, AD)) + (b, v) — (b, D)

(v, Av) — (0, AD)) — (AD,v) + (A0, D)
(v, Av) + (0, AD) — (A, v) — (0, Av))
=wv—0,A(v—10)) >0

—~~ —~

N N N

for all v € R™. This proves that the polynomial P(t) is bounded below, that
0 is a minimum point, and that the equality (15.2) holds.

Since every positive semidefinite symmetric operator A has a unique pos-
itive semidefinite symmetric square root A'/2, we can rewrite equality (15.2)
as follows:

P(v) = P(0) + 3{A"Y2(v — ), AY2(v — ) = P(0) + 3] A72(v — ).
If v is another minimum point of P, then P(v) = P(0), and it follows that
A2 (y — ) = 0.
Consequently, A(v — ) = AY2(AY%(v — 1)) = 0, i.e. Av = Ad = —b. Hence,
every minimum point of P is obtained as a solution to equation (15.1).
Finally, if 7 and 99 are two minimum points of the polynomial, then

A’lA)l = ATAJQ (: —b), and it follows that <1A}1,A1A}1> = <1A)1,A?A)2> = <A1A)1,1A)2> =
<A’ZA12,’IA}2> - <1A)2,ATA}2>. D

The problem to solve a convex quadratic optimization problem in R” is
thus reduced to solving a quadratic system of linear equations in n variables
(with a positive semidefinite coefficient matrix), which is a rather trivial
numerical problem that can be performed with O(n?) arithmetic operations.

We are now ready to define the main ingredients of Newton’s method.

Definition. Let f: X — R be a twice differentiable function with an open
subset X of R™ as domain, and let x € X be a point where the second
derivative f”(z) is positive semidefinite.

By a Newton direction Az, of the function f at the point x we mean a
solution v to the equation
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Remark. 1t follows from the remark after Theorem 15.1.1 that there exists a
Newton direction at x if and only if

[y =0= (f(z),v) =0.

The nonexistence of Newton directions at x is thus equivalent to the existence
of a vector w such that f”(x)w =0 and (f'(z),w) = 1.

The Newton direction Az, is of course uniquely determined as

Azy = —f"(2)7" f'(2)

if the second derivative f”(z) is non-singular, i.e. positive definite.
A Newton direction Az, is according to Theorem 15.1.1, whenever it
exists, a minimizing vector for the Taylor polynomial

P(v) = f(z) + (f'(z),0) + 3{v, f"(2)),
and the difference P(0) — P(Ax,) is given by

P(0) = P(Azpe) = 5(0 — Az, f(2)(0 — Azpe)) = 2(Azyy, [7(0) Aye).

1

2

Using the Taylor approximation f(x + v) ~ P(v), we conclude that
f(x) = f(z + Azy) = P(0) — P(Azy) = %(Amnm f(@) Azy).

Hence, 2 (Azy, f/(2)Azy) is (for small Az,) an approximation of the de-
crease in function value which is obtained by replacing f(x) with f(z+Azy).
This motivates our next definition.

Definition. The Newton decrement A(f,x) of the function f at the point z
is a quantity defined as

A(f7 l’) - \/(Axnta f”(x)Axnt>

if f has a Newton direction Az, at x, and as
A f,x) = 400
if there is no Newton direction at x.

Note that the definition is independent of the choice of Newton direction
at x in case of nonuniqueness of Newton direction. This follows immediately
from the last statement in Theorem 15.1.1.

In terms of the Newton decrement, we thus have the following approxi-
mation

f@) = f(z + Aww) = FA(f, 2)?
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for small values of Az,;.

By definition f”(z)Axzy = —f'(x), so it follows that the Newton decre-
ment, whenever finite, can be computed using the formula

A f,z) = \/—<A37nt7f/(37)>~

In particular, if z is a point where the second derivative is positive definite,
then

Af,x) = {(f"(x) L f' (), f'(=)).

ExAMPLE 15.1.1. The convex one-variable function
f(z)=—Inz, x>0
has Newton decrement

M) = V(e ), =) = V(=) - (o) = 1

at all points x > 0. U
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At points = with a Newton direction it is also possible to express the
Newton decrement in terms of the Euclidean norm ||-|| as follows, by using
the fact that f”(x) har a positive definite symmetric square root:

A(f,2) = (@) V2 Ay, ()12 D) = || £ (2) 2 At

The improvement in function value obtained by taking a step in the Newton
direction Aw, is thus proportional to ||f”(z)Y2Axy||* and not to ||Azy|?,
a fact which motivates our introduction of the following seminorm.

Definition. Let f: X — R be a twice differentiable function with an open
subset X of R™ as domain, and let x € X be a point where the second
derivative f”(x) is positive semidefinite. The function [-|[.: R" — Ry,
defined by

lolle = Vv, f7(x)v) = || f"(2)"/?v]]

for all v € R"™, is called the local seminorm at = of the function f.

It is easily verified that ||-||, is indeed a seminorm on R™. Since
{veR"[|vll. = 0} = N(f"(x)),

where NV(f”(x)) is the null space of f”(z), ||||= is @ norm if and only if the
positive definite second derivative f”(x) is nonsingular, i.e. positive definite.

At points x with a Newton direction, we now have the following simple
relation between direction and decrement:

Afs ) = [| Az |-

EXAMPLE 15.1.2. Let us study the Newton decrement A(f,z) when f is a
convex quadratic polynomial, i.e. a function of the form

f(x) = 5{x, Az) + (b,x) +

with a positive semidefinite operator A. We have f'(z) = Az +0b, f"(z) = A
and [|v||, = \/(v, Av), so the seminorms ||-||, are the same for all z € R".
If Az, is a Newton direction of f at x, then

AAxnt = —(Ax + b),

by definition, and it follows that A(z + Azy) = —b. This implies that the
function f is bounded below, according to Theorem 15.1.1.

So if f is not bounded below, then there are no Newton directions at any
point x, which means that A(f,z) = 4oo for all .
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Conversely, assume that f is bounded below. Then there exists a vector
vg such that Avg = —b, and it follows that

f"(x)(vg — z) = Avg — Az = —b — Az = — f'(x).

The vector vy — x is in other words a Newton direction of f at the point x,
which means that the Newton decrement A(f,z) is finite at all points x and
is given by
A(f,z) = llvo — 2z
If f is bounded below without being constant, then necessarily A # 0 and
we can choose a vector w such that ||w]||, = \/(w, Aw) = 1. Let xy = kw+wvy,
where k is a positive number. Then

A(fsax) = llvo = kllay, = Kljwlla, =

and we conclude from this that sup,cgn A(f, ) = +o0.
For constant functions f, the case A =0, b =0, we have ||v||, = 0 for all
x and v, and consequently A(f,z) = 0 for all z.

In summary, we have obtained the following result:

The Newton decrement of downwards unbounded convex quadratic func-
tions (which includes all non-constant affine functions) is infinite at all points.
The Newton decrement of downwards bounded convex quadratic functions
f is finite at all points, but sup, A(f,z) = oo, unless the function is con-
stant. 0

We shall give an alternative characterization of the Newton decrement,
and for this purpose we need the following useful inequality.

Theorem 15.1.2. Suppose A(f,x) < co. Then

(' (), v)] < A(f, o) vl
for allv e R™.
Proof. Since A(f,x) is assumed to be finite, there exists a Newton direction
Az, at x, and by definition, f”(x)Az, = —f'(x). Using the Cauchy—
Schwarz inequality we now obtain:
[(f (@), 0)] = [(f" () Acg, )| = [(f"(2)2 A, [ ()" 20)]
<" (@) 2 Az || (@) 20 = A, 2) ]l O

Theorem 15.1.3. Assume as before that x is a point where the second deriva-
tive f"(x) is positive semidefinite. Then

A(f,z) = sup (f'(z),v).

llvlle<1
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Proof. First assume that A\(f, ) < co. Then

(f'(z),v) < A(f, )

for all vectors v such that ||v||,, < 1, according to Theorem 15.1.2. In the case
A(f,z) = 0 the above inequality holds with equality for v = 0, so assume
that A\(f,z) > 0. For v = —=\(f, ) 'Az,, we then have ||[v], =1 and

(f'(@),v) = =A(f,2)"{f'(z), Azw) = A(f, ).

This proves that A(f,x) = sup,,<i(f'(z),v) for finite Newton decrements
A f, ).

Next assume that A(f,z) = +o0, i.e. that no Newton direction exists at
x. By the remark after the definition of Newton direction, there exists a
vector w such that f”(z)w =0 and (f'(z),w) = 1. It follows that ||tw]|, =
t||w|l, = ty/(w, f"(z)w) =0 < 1 and (f'(z), tw) =t for all positive numbers
t, and this implies that sup, <; (f'(x),v) = +oo = A(f, x). O

We sometimes need to compare |Axyl|, || f/(z)] and A(f, z), and we can
do so using the following theorem.
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Theorem 15.1.4. Let M\ and \nax denote the smallest and the largest eigen-
value of the second derivative f"(x), assumed to be positive semidefinite, and
suppose that the Newton decrement \(f,x) is finite. Then

\L/2

min

Az | < A(f,2) < A2

ax

[a|
and

M fox) < | @) < ALZA(S, ).

min max

Proof. Let A be an arbitrary positive semidefinite operator on R™ with small-
est and largest eigenvalue i, and .y respectively. Then

pnin[0]] < (| AV < prmae ||

for all vectors v.

Since /\rlr{i and e are the smallest and the largest eigenvalues of the
operator f”(z)'/2, we obtain the two inequalities of our theorem by applying
the general inequality to A = f”(x)"/? and v = Ay, and to A = f"(x)/?

and v = f(x)/2Axzy, noting that || f”(x)Y2Axy|| = M(f, ) and that
17" ()2 (f" (@) 2 D) || = 1" () A | = || f ()] O

Theorem 15.1.4 is a local result, but if the function f is p-strongly convex,
then Apin, > i, and if the norm of the second derivative is bounded by
some constant M, then Ap.x = ||f”(z)]] < M for all x in the domain of f.
Therefore, we get the following corollary to Theorem 15.1.4.

Corollary 15.1.5. If f: X — R is a twice differentiable u-strongly convex
function, then

PP Azyl| < A(fyx) < 72 f ()]
for all x € X. If moreover || f"(x)|| < M, then
M= f (@) S A(f,2) < MY || Ay
The distance from an arbitrary point to the minimum point of a strongly

convex function with bounded second derivative can be estimated using the
Newton decrement, because we have the following result.

Theorem 15.1.6. Let f: X — R be a p-strongly convex function, and sup-
pose that f has a minimum at the point & and that ||f"(z)|| < M for all
x € X. Then

N M 9
fl@) = f(2) < @A(f, x)

and
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o — ] < @A(f, ).

Proof. The theorem follows by combining Theorem 14.1.1 with the estimate
|/ (z)]| < MY2X\(f,z) from Corollary 15.1.5. O

The Newton decrement is invariant under surjective affine coordinate
transformations. A slightly more general result is the following.

Theorem 15.1.7. Let f be a twice differentiable function whose domain €2 is
a subset of R", let A: R™ — R"™ be an affine map, and let g = f o A. Let
furthermore x = Ay be a point in €2, and suppose that the second derivative
f"(x) is positive semidefinite. The second derivative g"(y) is then positive
semidefinite, and the Newton decrements of the two functions g and f satisfy
the inequality

Ag,y) < A(f.a).

Equality holds if the affine map A is surjective.

Proof. The affine map can be written as Ay = C'y + b, where C is a linear
map and b is a vector, and the chain rule gives us the identities

(g'(y),w) = (f'(x),Cw) and  (w,g"(y)w) = (Cw, f"(x)Cw)

for arbitrary vectors w in R™. It follows from the latter identity that the
second derivative ¢”(y) is positive semidefinite if f”(z) is so, and that

[wlly = [|Cwlls-
An application of Theorem 15.1.3 now gives

Mg.y) = ” S|1|1121<9’(y),w> - ||csﬁp<1<f/($)’ Cw) < ”s”ugl<f’(:v),v> = A(f,2).

If the affine map A is surjective, then C' is a surjective linear map, and
hence v = C'w runs through all of R™ as w runs through R™. In this case,
the only inequality in the above chain of equalities and inequalities becomes
an equality, which means that \(g,y) = \(f, z). O

15.2 Newton’s method

The algorithm

Newton’s method for minimizing a twice differentiable function f is a descent
method, in which the search direction in each iteration is given by the Newton
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direction Az, at the current point. The stopping criterion is formulated in
terms of the Newton decrement; the algorithm stops when the decrement is
sufficiently small. In short, therefore, the algorithm looks like this:

Newton’s method

Given a starting point x € dom f and a tolerance ¢ > 0.
Repeat
1. Compute a Newton direction Az, and the Newton decrement A(f, z)
at x.
2. Stopping criterion: stop if \(f,r)? < 2e.
3. Determine a step size h > 0.
4. Update: x:= x4+ hAxy.

The step size h is set equal to 1 in each iteration in the so-called pure
Newton method, while it is computed by line search with Armijo’s rule or
otherwise in damped Newton methods.

The stopping criterion is motivated by the fact that %)\( f,x)? is an ap-
proximation to the decrease f(x)— f(x + Azy) in function value, and if this
decrease is small, it is not worthwhile to continue.
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Newton’s method generally works well for functions which are convex in
a neighborhood of the optimal point, but it breaks down, of course, if it hits
a point where the second derivative is singular and the Newton direction is
lacking. We shall show that the pure method, under appropriate conditions
on the objective function f, converges to the minimum point if the starting
point is sufficiently close to the minimum point. To achieve convergence for
arbitrary starting points, it is necessary to use methods with damping.

EXAMPLE 15.2.1. When applied to a downwards bounded convex quadratic
polynomial

f(x) = 3{z, Ax) + (b,x) +c,

Newton’s pure method finds the optimal solution after just one iteration,
regardless of the choice of starting point z, because f'(z) = Az+b, f'(x) = A
and AAz,, = —(Az +b), so the update z* = z + Ax,, satisfies the equation

f(xt)=AzT +b= Az + AAx, + b =0,

which means that zt is the optimal point. O

Invariance under change of coordinates

Unlike the gradient descent method, Newton’s method is invariant under
affine coordinate changes.

Theorem 15.2.1. Let f: X — R be a twice differentiable function with a
positive definite second derivative, and let (zx)° be the sequence generated
by Newton’s pure algorithm with xo as starting point. Let further A: Y — X
be an affine coordinate transformation, i.e. the restriction to'Y of a bijective
affine map. Newton’s pure algorithm applied to the function g = f o A with
Yo = A7lxg as the starting point then generates a sequence (yi)y with the
property that Ay, = x for each k.

The two sequences have identical Newton decrements in each iteration,
and they therefore satisfy the stopping condition during the same iteration.

Proof. The assertion about the Newton decrements follows from Theorem
15.1.7, and the relationship between the two sequences follows by induction
if we show that Ay = x implies that A(y + Ayn) = 2 + Ay, where Az, =
—f"(x)7 f(x) and Ayy = —g"(y)'¢'(y) are the uniquely defined Newton
directions at the points x and y of the respective functions.

The affine map A can be written as Ay = C'y+0b, where C'is an invertible
linear map and b is a vector. If z = Ay, then ¢'(y) = CTf'(z) and ¢"(y) =
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CTf"(z)C, by the chain rule. It follows that
CAyue = =Cg"(y) "¢ (y) = —=CO™ f"(x)H(CT) I CT f'(2)
= —f"(2)7'f'(z) = Az,

and hence

Ay+Ayn) = Cly+Ayn) +b = Cy+b+CAyy = Ay+Axyy = 2+ Axy. O

Local convergence

We will now study convergence properties for the Newton method, starting
with the pure method.

Theorem 15.2.2. Let f: X — R be a twice differentiable, u-strongly convex
function with minimum point T, and suppose that the second derivative f" is
Lipschitz continuous with Lipschitz constant L. Let x be a point in X and
set

T =24 Axy,

where Az, is the Newton direction at x. Then
. L .
lz — 2 < o1z = >
1

Moreover, if the point x+ lies in X then

1 @I < ||f( .

Proof. The smallest eigenvalue of the second derivative f”(z) is greater than
or equal to p by Theorem 7.3.2 in Part 1. Hence, f”(x) is invertible and the
largest eigenvalue of f”(x)~! is less than or equal to x~!, and it follows that

(15.3) 1f" () < pt
To estimate the norm of 2+ — 2, we rewrite the difference as
(15.4) ot —d=ax+ vy =03 — f(x) f(2)
= f"(@) (@) (2 —2) = fl(z) = = f"(x) " w

with
w=f'(z) = f(z)(x - ).
For 0 <t <1 we then define the vektor w(t) as

w(t) = f'(@ +tx —2)) = tf"(x)(z - ),
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and note that w = w(1) — w(0), since f'(z) = 0. By the chain rule,
w'(t) = (f"(@ +ta —2)) — f'(2))(z — 2),

and by using the Lipschitz continuity of the second derivative, we obtain the
estimate

[’ O < [11(2 + t(x = 2)) = f(@)l| [l — 2|
< Ll +t(z — 2) — alllle — 2l = L(1 - t)[|lz — 2[|*.

Now integrate the above inequality over the interval [0, 1]; this results in the
inequality

1 1 1
(15.5) ||w||:H/ w'<t)dt||g/ ||w’(t)||dt§L||x—§c||2/ (1—1)dt.
0 0 0
1

By combining equality (15.4) with the inequalities (15.3) and (15.5) we
obtain the estimate

. _ _ L .
lz* = 2 = 1/ (2) " wl < 1" (@) " wll < 21~ 2|2,

which is the first claim of the theorem.
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To prove the second claim, we assume that ™ lies in X and consider for
0 <t <1 the vectors

v(t) = f'l(x + tAxy) — tf" (x) Axy,
noting that

(1) =v(0) = f'(a") = f"(@)Azn, = f'(x) = f/(2") + f/(2) = f'(2) = f'(&7).

Since v'(t) = (f"(z + tAzy) — f"(2)) Ay, it follows from the Lipschitz
continuity that

WO < 1f" (2 + tAzue) — [ (@) | |Au]l < L] Az,
and by integrating this inequality, we obtain the desired estimate

L

1 1 L
1@l = | / J(t)di| < / @ de < FlAzl? < S5l @I

where the last inequality follows from Corollary 15.1.5. O

One consequence of the previous theorem is that the pure Newton method
converges quadratically when applied to functions with a positive definite
second derivative that does not vary too rapidly in a neighborhood of the
minimum point, provided that the starting point is chosen sufficiently close
to the minimum point. More precisely, the following holds:

Theorem 15.2.3. Let f: X — R be a twice differentiable, p-strongly convex
function with minimum point T, and suppose that the second derivative f”
is Lipschitz continuous with Lipschitz constant L. Let 0 < r < 2u/L and
suppose that the open ball B(Z;r) is included in X .

Newton’s pure method with starting point o € B(&;r) will then generate

a sequence (xy) of points in Q such that

2

for all k, and the sequence therefore converges to the minimum point T as
k — oo.

The convergence is very rapid. For example,

N 2p
o — ) < == 27

if the initial point is chosen such that ||zg — Z|| < /L, and this implies that
|lzx — 2| <107 ¥u/L already for k = 6.
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Proof. We keep the notation of Theorem 15.2.2 and then have z4; = a7, so
if xy lies in the ball B(%;r), then

. L .
(15.6) T [ 2%,

and this implies that ||x;,1 — 2| < Lr*/2u < r, i.e. the point zj,; lies in the
ball B(&; 7). By induction, all points in the sequence (xy)5° lie in B(Z;r), and
we obtain the inequality of the theorem by repeated application of inequality
(15.6). O

Global convergence

Newton’s damped method converges, under appropriate conditions on the
objective function, for arbitrary starting points. The damping is required
only during an initial phase, because the step size becomes 1 once the al-
gorithm has produced a point where the gradient is sufficiently small. The
convergence is quadratic during this second stage.

The following theorem describes a convergence result for strongly convex
functions with Lipschitz continuous second derivative.

Theorem 15.2.4. Let f: X — R be a twice differentiable, strongly convex
function with a Lipschitz continuous second derivative. Let xq be a point in
X and suppose that the sublevel set

S={reX|f(z) < f(z0)}

15 closed.

Then, f has a unique minimum point T, and Newton’s damped algorithm,
with xo as initial point och with line search according to Armijo’s rule with
parameters 0 < a < % and 0 < B < 1, generates a sequence (xy)° of points
i S that converges towards the minimum point.

After an initial phase with damping, the algorithm passes into a quadrat-
wcally convergent phase with step size 1.

Proof. The existence of a unique minimum point is a consequence of Corol-
lary 8.1.7 in Part I.

Suppose that f is p-strongly convex and let L be the Lipschitz constant
of the second derivative. The sublevel set S is compact since it is bounded
according to Theorem 8.1.6. It follows that the distance from the set S to
the boundary of the open set X is positive. Fix a positive number r that is
less than this distance and also satisfies the inequality

r < u/L.
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Given x € S we now define the point % by
T = x + hAxy,

where £ is the step size according to Armijo’s rule. In particular, z, 1 = x;
for all k.

The core of the proof consists in showing that there are two positive
constants v and n < ur such that the following two implications hold for all
reS:

Q) N @l=n = fl") - flz) <=
(i) @I <n = h=1&]|f ") <n.

Suppose that we have managed to prove (i) and (ii). If || f'(zx)|| > n for
0 < k <m, then

—_

Jain = f(x0) < fam) = fz0) = ) _(f(2f) = flax)) < —mry,

0

3

i

because of property (i). This inequality can not hold for all m, and hence
there is a smallest integer ko such that || f'(zx,)| <7, and this integer must
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satisfy the inequality
kO S (f(«rO) - fmin)/'y-

It now follows by induction from (ii) that the step size h is equal to 1 for
all k > ky. The damped Newton algorithm is in other words a pure Newton
algorithm from iteration ky and onwards. Because of Theorem 14.1.1,

ok, — 2| < p M| (ar)ll < p~'n<r < pLl™h

so it follows from Theorem 15.2.3 that the sequence (zx)° converges to z,
and more precisely, that the estimate

N 2/L L R 2" 2/L ok
lzesws =20 < (5l = 2l1) - < 7270

holds for k& > 0.
It thus only remains to prove the existence of numbers 1 and v with the
properties (i) and (ii). To this end, let

S, =S+ B(x;r);

the set S, is a convex and compact subset of 2, and the two continuous
functions f’ and f” are therefore bounded on S,, i.e. there are constants K
and M such that

[f(@)l <K and |[f"(z)] <M
for all x € S,.. It follows from Theorem 7.4.1 in Part I that the derivative f’

is Lipschitz continuous on the set S, with Lipschitz constant M, i.e.

1 (y) = F (@) < Mlly — |

for z,y € S,.

We now define our numbers n and ~ as

77:1rnin{3<1_—206)'u2 pm} and v = % 2 where c:min{i L}
L M M’ K

Let us first estimate the stepsize at a given point € S. Since
[Azy|| < g7t f' (@) < p7 K

the point o + tAxy lies in i S, and especially also in X if 0 < t < ruK !
The function
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is therefore defined for these t-values, and since f is u-strongly convex and
the derivative is Lipschitz continuous with constant M on S,., it follows from
Theorem 1.1.2 in Part I and Corollary 15.1.5 that

f(@+tAzy) < f2) + t{(f'(2), Azye) + 2 M| Az |*t?
< fx) +t{f(2), Avae) + 5Mp N(f,2)*
= f(@) +t(1 = $Mp ") (f'(z), Azyy).
The number ¢ = cu lies in the interval [0,7uK '] and is less than or

equal to uM~1. Hence, 1 — %Mu‘lf > % > o, which inserted in the above
inequality gives

flx +tAzy) < f(z)+ ot (f(2), Azy).

Now, let h = 8™ be the step size given by Armijo’s rule, which means that
the Armijo algorithm terminates in iteration m. Since it does not terminate
in iteration m — 1, we conclude that ™! > ¢, i.e.

h > Bt = Bep,
and this gives us the following estimate for the point 1 = x + hAzy:
f@®) = f(z) < ah{f'(z), Azu) = —ah A(f,2)*
< —afepMf. )’ < —afepM | ()| = =y~ f ().

So, if || f'(z)|| > n then f(z) — f(x) < —~, which is the content of implica-
tion (i).

To prove the remaining implication (ii), we return to the function g(t) =
f(z + tAxy), assuming that || f'(z)|| < . The function is well-defined for
0 <t <1, since

Azl < g7 f (@) < pin <.
Moreover,
g (t) = (f'(x + tAxy), Axy) and ¢"(t) = (Axy, f7(2 + AL Azyy).
By Lipschitz continuity,

19"(t) = 9" (0)| = [(Azne, ["(& + tAne) Azng) — (A, (1) Ay |
< "+ tAzw) — f (@) | Azu|l* < L Az,

and it follows, since ¢”(0) = A(f,z)? and ||Azy|| < p=2A(f, z), that

g"(t) < A(f,2)* + tL|Azw|® < A(f,2)* + L2 A(f, x)?.
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By integrating this inequality over the interval [0, ¢], we obtain the inequality
g (t) = g'(0) < tA(f,2)* + 52 Lp~ " 2A(f, 2)*.

But ¢'(0) = (f'(z), Azw) = =A(f, x)?, so it follows that

g(t) < =A(fi2)* + tA(f,2)? + 5 Lu=PA(f, 2)%,
and further integration results in the inequality

9(t) = g(0) < —tA(f,2)* + 3t2A(f, 2) + L~ 2A(f, 2)°.
Now, take t = 1 to obtain
(15.7) fl@+ Aaw) < f(x) = 3A(f,2)* + L PA(f, 2)°
= F@) = ACF2)2(5 = 1L A (f, )
= f(z) + {f'(), Awa) (5 — §Lu"*A(f, 7).

Our assumption || f/(x)|| < n implies that

Mfoa) S p P f @) < Py < et 3(1-20)° L7 = 3(1-20)* 2L
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We conclude that
L—LiLp P PA(f,2) > o,

which inserted into inequality (15.7) gives us the inequality
fl@+ Azy) < f2) + of'(2), Az,

which tells us that the step size h is equal to 1.
The iteration leading from z to ™ = x + hAz, is therefore performed
according to the pure Newton method. Due to the inequality
lz = 2| < p I f @) <pin <,
which holds by Theorem 14.1.1, x is a point in the ball B(z;7), so it follows
from the local convergence Theorem 15.2.2 that

L
(15.8) 1 (@)l < 2—MQHf’(x)H2-
Since n < ur < u?/L,
L U
£l < g < £ <o
and the proof is now complete. n

By iterating inequality (15.8), one obtains in fact the estimate

2k*k0

2[12 L 2#2 _ok—kq
17/l < - (5alf @) <72
for k > ko, and it now follows from Theorem 14.1.1 that

2/13 _ok—kg+1
f(l'k) — fmin < 72 2
for k > ky. Combining this estimate with the previously obtained bound
on kg, one obtains an upper bound on the number of iterations required to
estimate the minimum value f,;, with a given accuracy. If

f(xO) - fmin 2,&3
f —+ 10g2 10g2 L—2€,

k>
then surely f(zx)— fuin < €. This estimate, however, is of no practical value,
because the constants ~y, i and L are rarely known in concrete cases.
Another shortcoming of the classical convergence analysis of Newton’s
method is that the convergence constants, unlike the algorithm itself, de-
pend on the coordinate system used. For self-concordant functions, it is
however possible to carry out the convergence analysis without any unknown
constants, as we shall do in Chapter 16.5.
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15.3 Equality constraints

With only minor modifications, Newton’s algorithm also works well when
applied to convex optimization problems with constraints in the form of
affine equalities.

Consider the convex optimization problem

(P) min f(z)
st. Az =0

where f: 2 — R is a twice continuously differentiable convex function, € is
an open subset of R", and A is an m X n-matrix.
The problem’s Lagrange function L: 2 x R™ — R is given by

L(z,y) = f(z) + (Az = b))y = f(z) + 2"ATy — by,

and according to the Karush-Kuhn-Tucker theorem (Theorem 11.2.1 in Part
IT), a point Z in €2 is an optimal solution if and only if there is a vector § € R™
such that

1( 4 Ty —
o (e

Therefore, the minimization problem (P) is equivalent to the problem of
solving the system (15.9) of linear equations.

ExXAMPLE 15.3.1. When f is a convex quadratic function of the form
f(a) = 3(w, Pz) + {q,2) +1,
the linear system (15.9) becomes
Pi+ Alj= —q
Az = b,
and this is a quadratic system of linear equations with a symmetric coefficient
matrix of order m + n. The system has a unique solution if rank A = m and

N(A) NN (P) = {0}. See exercise 15.4. In particular, there is a unique
solution if the matrix P is positive definite and rank A = m. m

We now return to the general convex minimization problem (P). Let X
denote the set of feasible points, so that

X ={reQ|Ax =0

In optimization problems without any constraints, the descent direction
Az at the point x is a vector which miminizes the Taylor polynom of degree
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two of the function f(x+wv), and the minimization is over all vectors v in R".
As anew point T with function value less than f(x) we select 27 = x+hAx,,
with a suitable step size h. In constrained problems, the new point z+ has
to be a feasible point, of course, and this requires that AAx, = 0. The
minimization of the Taylor polynomial is therefore restricted to vectors v
that satisfy the condition Av = 0, and this means that we have to modify
our previous definition of Newton direction and decrement as follows for
constrained optimization problems.

Definition. In the equality constrained minimization problem (P), a vector
Ax,y is called a Newton direction at the point x € X if there exists a vector
w € R™ such that

I (L e

The quantity

M f,x) = \/(A:Unt, (@) Axyy)

is called the Newton decrement.
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It follows from Example 15.3.1 that the Newton direction Az, (if it
exists) is an optimal solution to the minimization problem

min f(x) + (f/(@),0) + S, ()
s.t. Av=0.

And if (Azy, w) is a solution to the system (15.10), then

—(f'(x), Awpe) = (f"(2)Azyy + ATw, Ay
= (f"(x)Axpe, Azpe) + (w, AAT )
= (f"(2) Axpe, Axpe) + (w,0) = (Axye, [ (1) Axy),

so it follows that

A(fa l’) - \/—<f/(23), Axnt>7
just as for unconstrained problems.
The objective function is decreasing in the Newton direction, because

%f(x + 1Az |,y = (' (2), Azng) = —A(f,2)* <0,

so Axy is indeed a descent direction.
Let P(v) denote the Taylor polynomial of degree two of the function
f(z +v). Then

f(x) = f(z + Ary) = P(0) — P(Azy)
= —(f"(x), Azne) — Az, [ (@) Ane) = 3A(f, 2)%,

just as in the unconstrained case.

With our modified definition of the Newton direction, we can now copy
Newton’s method verbatim for convex minimization problem of the type

min f(z)
st. Ax =b.

The algorithm looks like this:

Newton’s method

Given a starting point x € () satisfying the constraint Az = b, and a
tolerance € > 0.

Repeat
1. Compute the Newton direction Az, at x by solving the system of
equations (15.10), and compute the Newton decrement A(f, z).
2. Stopping criterion: stop if A\(f,z)* < 2.
. Compute a step size h > 0.
4. Update: x:= x + hQAxy.

w
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Elimination of constraints

An alternative approach to the optimization problem

(P) min f(z)
s.t. Az =0b,

with z € Q as implicit condition and r = rank A, is to solve the system of
equations Ax = b and to express r variables as linear combinations of the
remaining n — r variables. The former variables can then be eliminated from
the objective function, and we obtain in this way an optimization problem in
n — r variables without explicit constraints, a problem that can be attacked
with Newton’s method. We will describe this approach in more detail and
compare it with the method above.

Suppose that the set X of feasible points is nonempty, choose a point
a € X, and select an affine parametrization
r=¢£(2), 2€Q
of X with £(0) = a. Since {x € R" | Az = b} = a + N(A), we can write the
parametrization as
(z)=a+Cxz

where C': R? — R" is an injective linear map, whose range V(C') coincides
with the null space N'(A) of the map A, and p = n — rank A. The domain
Q={z€R?|a+CzecQ}isan open convex subset of R.

A practical way to construct the parametrization is of course to solve the
system Ax = b by Gaussian elimination.

Let us finally define the function f: @ — R by setting f(z) = f(&(2)).
The problem (P) is then equivalent to the convex optimization problem

(P) min f(z)

which has no explicit constraints.

Let Ax, be a Newton direction of the function f at the point z, i.e. a
vector that satisfies the system (15.10) for a suitably chosen vector w. We
will show that the function f has a corresponding Newton direction Azy at
the point z = £71(z), and that Az, = CAzy.

Since AAx,, = 0 and N(A) = V(C), there is a unique vector v such that
Azy = Cv. By the chain rule, f'(z) = CTf'(z) and f"(z) = CTf"(2)C, so
it follows from the first equation in the system (15.10) that

(20 = CTf"(x)Cv = CTf"(2) Azy = —CTf' () — CTATw
= —f'(z) - C"ATw.
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A general result from linear algebra tells us that N'(S) = V(ST)* for
arbitrary linear maps S. Applying this result to the maps C* and A, and
using that V(C') = N(A), we obtain the equality

N(CT) =V(C)F = N(A) = V(AT)+ = p(AT),
which implies that CTATw = 0. Hence,

f'lzw = ~f(2),

and v is thus a Newton direction of the function f at the point z. So, Az, = v
is the direction vector we are looking for.

The iteration step z — 27 = z + hAz, in Newton’s method for the
unconstrained problem (P) takes us from the point z = £~*(x) in Q to the
point 2" whose image in X is

£(27) = &(z + hAzy) = a+ C(z + hAzy) = a+ Cz + hC(Azy)
=&(2) + hAxy = x + hAxy,

and this is also the point we get by applying Newton’s method to the point
x in the constrained problem (P).
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Also note that the Newton decrements are the same at corresponding
points, because

~('(2), Az) = —(CTf'(x), Azae) = —(f'(2), CAz)
= —(f'(&), Azae) = A(f, 2)".

A(f, 2)?

In summary, we have arrived at the following result.

Theorem 15.3.1. Let (x1)5° be a sequence of points obtained by Newton’s
method applied to the constrained problem (P). Newton’s method applied to
the problem (P), obtained by elimination of the constraints and with €~ (xg)

as initial point, will then generate a sequence (zx)y with the property that

xp = &(zx) for all k.

Convergence analysis

No new convergence analysis is needed for the modified version of Newton’s
method, for we can, because of Theorem 15.3.1, apply the results of The-
orem 15.2.4. If the restriction of the function f: Q2 — R to the set X of
feasible points is strongly convex and the second derivative is Lipschitz con-
tinuous, then the same also holds for the function f: Q — R. (Cf. with
exercise 15.5.) Assuming x to be a feasible starting point and the sublevel
set {z € X | f(z) < f(xo)} to be closed, the damped Newton algorithm will
therefore converge to the minimum point when applied to the constrained
problem (P). Close enough to the minimum point, the step size h will also
be equal to 1, and the convergence will be quadratic.

Exercises

15.1 Determine the Newton direction, the Newton decrement and the local norm
at an arbitrary point z > 0 for the function f(z) =zlnz — z.

15.2 Let f be the function f(z1,22) = —lnx; —lnxy — In(4 — 1 — z2) with
X ={z € R?| 21 > 0,70 > 0,21 + 22 < 4} as domain. Determine the
Newton direction, the Newton decrement and the local norm at the point x
when

a) z = (1,1) b) z = (1,2).

15.3 Determine a Newton direction, the Newton decrement and the local norm
for the function f(z1,22) = e®1+%2 4 21 4+ x5 at an arbitrary point z € R2.

15.4 Assume that P is a symmetric positive semidefinite n x n-matrix and that
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A is an arbitrary m x n-matrix. Prove that the matrix

P AT
u=1i %)

is invertible if and only if rank A = m and N (A) NN (P) = {0}.

15.5 Assume that the function f: 2 — R is twice differentiable and convex, let
x =&(z) = a+ Cz be an affine parametrization of the set

X ={zx € Q| Az = b},

and define the function f by f(z) = f(£(2)), just as in Section 15.3. Let
further o denote the smallest eigenvalue of the symmetric matrix C7C.

a) Prove that f is po-strongly convex if the restriction of f to X is p-strongly
convex.

b) Assume that the matrix A has full rank and that there are constants K
and M such that Ax = b implies
f'(z) AT -1
A

o =K ad @<

Show that f is p-strongly convex with convexity constant y = o K~2M 1.

(]
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Chapter 16

Self-concordant functions

Self-concordant functions were introduced by Nesterov and Nemirovski in
the late 1980s as a product of their analysis of the speed of convergence of
Newton’s method. Classic convergence results for two times continuously
differentiable functions assume that the second derivative is Lipschitz con-
tinuous, and the convergence rate depends on the Lipschitz constant. One
obvious weakness of these results is that the value of the Lipschitz constant,
unlike Newton’s method, is not invariant under affine coordinate transfor-
mations.

Suppose that a function f, which is defined on an open convex subset X
of R", has a Lipschitz continuous second derivative with Lipschitz constant
L, i.e. that

1) = £/l < Llly — 2

for all z,y € X. For the restriction ¢, ,(t) = f(x+tv) of f to a line through
x with direction vector v, this means that

[0 (1) =l o (0)] = (v, (f"(z+tv)—f"(2))v)| < Llla+tv—z[[v]* = Lit||jo]°.

T,V

So if the function f is three times differentiable, then consequently

")y — " (0
67 (0) :hm‘ oo (t) : 20(0)

T t—0

< L],

But . ,
¢/.TICU(0) = Z L(x)vivjvk = D3f(:L‘)[U,U, U]>

eyl x;02,;0x),

so a necessary condition for a three times differentiable function f to have a
Lipschitz continuous second derivative with Lipschitz constant L is that

(16.1) |D*f(@)[v, v,9]| < Lol
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for all x € X and all v € R, and it is easy to show this is also a sufficient
condition.

The reason why the value of the Lipschitz constant is not affinely invariant
is that there is no natural connection between the Euclidean norm ||-|| and the
function f. The analysis of a function’s behavior is simplified if we instead use
a norm that is adapted to the form of the level surfaces, and for functions
with a positive semidefinite second derivative f”(z), such a (semi)norm is
the local seminorm ||-||,, introduced in the previous chapter and defined as
lv]l = v/{v, f’(x)v). Nesterov—Nemirovski’s stroke of genius consisted in
replacing ||-|| with the local seminorm |||, in the inequality (16.1). For the
function class obtained in this way, it is possible to describe the convergence
rate of Newton’s method in an affinely independent way and with absolute
constants.

16.1 Self-concordant functions

We are now ready for Nesterov—Nemirovski’s definition of self-concordance
and for a study of the basic properties of self-concordant functions.

Definition. Let f: X — R be a three times continuously differentiable func-
tion with an open convex subset X of R" as domain. The function is called
self-concordant if it is convex, and the inequality

(16.2) |[D*f(@)[v,v,0]] < 2(D*f()[v, 0])™"
holds for all x € X and all v € R".
Since D*f(x)[v,v] = |v||Z, where ||||. is the local seminorm defined by

the function f at the point z, we can also write the defining inequality (16.2)
as
| D° f(2)[v, v, 0]| < 2|]v]l2,

and it is this shorter version that we will prefer, when we work with a single
function f.

Remark 1. There is nothing special about the constant 2 in inequality (16.2).
If f satisfies the inequality |D®f(z)[v,v,v]| < K]|v||2, then the function
F = ZiK 2f, obtained from f by scaling, is self-concordant. The choice of 2
as the constant facilitates, however, the wording of a number of results.
Remark 2. For functions f defined on subsets of the real axis and v € R,
|v]|2 = f"(x)v?* and D3f(z)[v,v,v] = f”(z)v®. Hence, a convex function
f: X — R is self-concordant if and only if
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()] < 2" ()2
for all z € X.

Remark 3. In terms of the restriction ¢, ,(t) = f(z+tv) of the function f to
the line through = with direction v, we can equivalently write the inequality

|D3f($ + t’l))[’l), 'U7’U]| S 2||'U||i+tv

as @, (t)] < 2¢%,(t)*?. A three times continuously differentiable convex

T,V

function of several variables is therefore self-concordant if and only if all its
restrictions to lines are self-concordant.

EXAMPLE 16.1.1. The convex function f(x) = — Inx is self-concordant on its
domain R, . Indeed, inequality (16.2) holds with equality for this function,
since f(x) = 272 and f"(z) = —2273. O

EXAMPLE 16.1.2. Convex quadratic functions f(z) = 1(z, Az) + (b,z) + ¢
are self-concordant since D? f(x)[v,v,v] = 0 for all z and v.

Hence, affine functions are self-concordant, and the function z — ||z||?,
where ||| is the Euclidean norm, is self-concordant. O
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The expression

n
3
D f(z)[u,v,w] = Z o axjgxkulvjwk
i,k,k=1
is a symmetric trilinear form in the variables u, v, and w, if the function f is
three times continuously differentiable in a neighborhood of the point z. For
self-concordant functions we have the following generalization of inequality
(16.2) in the definition of self-concordance.

Theorem 16.1.1. Suppose f: X — R is a self-concordant function. Then,
| D° f (), v, wl| < 2flulla]vll[[wl].
for all x € X and all vectors u, v, w in R™.

Proof. The proof is based on a general theorem on norms of symmetric tri-
linear forms, which is proven in an appendix to this chapter.

Assume first that x is a point where the second derivative f”(x) is positive
definite. Then ||-||, is a norm with (u,v), = (u, f”(x)v) as the corresponding
scalar product. We can therefore apply Theorem 1 of the appendix to the
symmetric trilinear form D?f(z)[u, v, w] with ||-||, as the underlying norm,
and it follows that

D @)wv,ul] D (),

sup = su <2
wowo [ullellvllllwlle w0 ([ ’

which is equivalent to the assertion of the theorem.
To cope with points where the second derivative is singular, we consider
for € > 0 the scalar product

(U, )z = (u, ['(2)0) + €(u, v),

where (-, -) is the usual standard scalar product, and the corresponding norm

[V]l2e = V(v 0)ze = VVIZ + ellv]|*
Obviously, ||v]l; < ||v]|.. for all vectors v, and hence
|D°f(@)[v,v,0]] < 2|l

for all v, since f is self-concordant. It now follows from Theorem 1 in the
appendix that

|1D° f()[u, v, w]| < ellwlla.e
= 2/ ([Jull2 + ellul®) ([[o[|2 + ello2) (w2 + ellullw?),
and we get the sought-after inequality by letting € — 0. O
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Theorem 16.1.2. The second derivative f"(x) of a self-concordant function
f: X — R has the same null space N(f"(x)) at all points x € X.

Proof. We recall that N'(f"(z)) = {v | ||v||. = 0}.
Let z and y be two points in X. For reasons of symmetry, we only have

to show the inclusion N'(f"(x)) C N (f"(y)).

Assume therefore that v € N(f”(x)) and let a* = x + ¢t(y — ). Since X
is an open convex set, there is certainly a number a > 1 such that the points
2! lie in X for 0 < ¢t < a, and we now define a function g: [0,a] — R by
setting

g(t) = D* f(z")[v,v] = [[v]l5.
Then ¢(0) = ||[v]|2 =0 and g(¢) > 0 for 0 < ¢ < a, and since

g'(t) = D’ f(a")[v,v,y — x],
it follows from Theorem 16.1.1 that
19 ()] < 2[[ollzelly — 2]l = 29(8)ly — |-

But the seminorm

ly — x|+ = /D2 f(a!)[y — =,y — 2]

depends continuously on ¢, and it is therefore bounded above by some con-
stant C' on the interval [0, a]. Hence,

lg'(1)] < 2Cyg(1)

for 0 <t < a. It now follows from Theorem 2 in the appendix to this chapter
that g(t) = 0 for all ¢, and in particular, g(1) = ||| = 0, which proves that

v € N(f"(y)). This proves the inclusion N'(f"(x)) C N(f"(y)). O

Our next corollary is just a special case of Theorem 16.1.2; because f”(x)
is non-singular if and only if N'(f”(x)) = {0}.

Corollary 16.1.3. The second derivative of a self-concordant function is ei-
ther non-singular at all points or singular at all points.

A self-concordant function will be called non-degenerate if its second
derivative is positive definite at all points, and by the above corollary, that
is the case if the second derivative is positive definite at one single point.

A non-degenerate self-concordant function is in particular strictly convex.
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Operations that preserve self-concordance

Theorem 16.1.4. If f is a self-concordant function and o > 1, then af is
self-concordant.

Proof. If a > 1, then o < /2, and it follows that

|D*(af)(z)[v,v,v]| = a|D?f(z)[v,v,v]| < 2a(D2f(x)[v,v])3/2

< 2(aD*f(x)[v,v))** = 2(D*(af)(x)[v, v]) .

O
Theorem 16.1.5. The sum f+ g of two self-concordant functions f and g s
self-concordant on its domain.

Proof. We use the elementary inequality

a3/2 + b3/2 < (a+ b)3/2,

which holds for all nonnegative numbers a, b (and is easily proven by squaring
both sides) and the triangle inequality to obtain
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|D(f + g)(@)[v, v,0]| = [D*f(2)[v,v,v] + Dg()[v, v, V]|
< 2(D*f(x)v, v])3/2 +2(D%g(z)[v, v])3/2
< 2(D* (). o] + Dg(x)lo,v])™*
= 2(D2(f + g)(a)[v, v]) . O
Theorem 16.1.6. If the function f: X — R is self-concordant, where X

1s an open convexr subset of R™, and A is an affine map from R™ to R",

then the composition g = f o A is a self-concordant function on its domain
ATH(X).

Proof. The affine map A can be written as Ay = C'y 4+ b, where C' is a linear
map and b is a vector. Let y be a point in A~}(X) and let u be a vector in
R™, and write = Ay och v = C'u. According to the chain rule,

DQQ(y)[uv u] = D2f(Ay)[C'u, CU] = D2f({E)[U, U] and
Dgg(y) [u7 u, u] = Dgf(Ay)[Cu’ Cu, Cu] - D?’f(x)[v, v, U],

so it follows that

| D3g(y) [, u,u)| = | D*f (), v, 0] < 2(Df(@)[v,0]) >

= 2(D(y)[u, u])"”. =
ExamMpPLE 16.1.3. It follows from Example 16.1.1 and Theorem 16.1.6 that
the function f(z) = —In(b — (¢, x)) with domain {x € R" | (¢, z) < b} is
self-concordant. O

EXAMPLE 16.1.4. Suppose that the polyhedron

X =Wz eR"|{,2) <bj}

j=1
has nonempty interior. The function f(z) = —>7_, In(b; — (¢;,z)), with
int X as domain, is self-concordant. O

16.2 Closed self-concordant functions
In Section 6.7 of Part I we studied the recessive subspace of arbitrary convex

functions. The properties of the recessive subspace of a closed self-concordant
function is given by the following theorem.
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Theorem 16.2.1. Suppose that f: X — R is a closed self-concordant func-
tion. The function’s recessive subspace Vy is then equal to the null space
N(f"(x) of the second derivative f"(x) at an arbitrary point x € X. More-
over,

(i) X=X+ Vf.

(i) f(x+v)= f(x)+ Df(z)[v] for all vectors v € V.

(1it) If A(f,z) < oo, then f(x +v) = f(x) for all v € V.

Proof. Assertions (i) and (ii) are true for the recessive subspace of an arbi-
trary differentiable convex function according to Theorem 6.7.1, so we only
have to prove the remaining assertions.

Let x be an arbitrary point in X and let v be an arbitrary vector in R",
and consider the restriction ¢, ,(t) = f(z + tv) of f to the line through x
with direction v. The domain of ¢, , is an open interval I =]«, 8] around 0.

First suppose that v € V. Then

Gon(t) = f(z) + 1D f(2)[v]
for all ¢ € I becuse of property (ii), and it follows that

lvllz = D*f(x)[v, v] = ¢7,(0) = 0,

T,

i.e. the vector v belongs to the null space of f”(z). This proves the inclusion
Vi C N(f"(x)). Note that this inclusion holds for arbitrary twice differen-
tiable convex functions without any assumptions concerning self-concordance
and closedness.

To prove the converse inclusion N'(f”(z)) C V}, we instead assume that
v is a vector in N(f”(z)). Since N(f"(z +tv)) = N(f"(x)) for all t € I due
to Theorem 16.1.2, we now have

$ro(t) = D fz + to)[v,0] = [[v]340, = 0
for all t € I, and it follows that

Pao(t) = G20(0) + ¢, (0)t = f(z) + Df(x)[v] .

If f < oo, then z 4 fv is a boundary point of X and lim,_,5 ¢, (t) < co.
However, according to Corollary 8.2.2 in Part I this is a contradiction to f
being a closed function. Hence, f = 0o, and similarly, « = —oo. This means
that I =]—o00, 00|, and in particular, I contains the number 1. We conclude
that the point o + v lies in X and that f(z+v) = ¢, (1) = f(x)+ Df(x)[v]
for all z € X and all v € N(f”(x)), and Theorem 6.7.1 now provides us with
the inclusion N'(f”(z)) C V;. Hence, Vy = N (f"(x)).
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DESCENT AND INTERIOR-POINT METHODS:
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Finally, suppose that A(f,z) < oco. Then there exists, by definition, a
Newton direction at x, and this implies, according to the remark after the
definition of Newton direction, that the implication

f"(x)v=0= Df(x)[v] =0

holds. Since V; = N(f”(z)), it now follows from assertion (ii) that f(z+v) =
f(z) for all v € V. O

The problem of minimizing a degenerate closed self-concordant function
f: X — R with finite Newton decrement A(f,z) at all points x € X can be
reduced to the problem of minimizing a non-degenerate closed self-concordant
function as follows.

Assume that the domain X is a subset of R", and let V; denote the
recessive subspace of f. Put m = dim Vfl and let A: R™ — R" be an
arbitrary injective linear map onto VfL, and put Xo = A71(X). The set X,
is then an open subset of R™, and we obtain a function g: X, — R by
defining g(y) = f(Ay) for y € Xj.

The function g is self-concordant according to Theorem 16.1.6, and since
(y,t) belongs to the epigraph of ¢ if and only if (Ay, t) belongs to the epigraph
of f, it follows that g is also a closed function.
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Suppose v € N(g"(y)). Since g"(y) = AT f"(Ay)A,
(Av, f"(Ay)Av) = (v, AT f"(Ay) Av) = (v,¢"(y)v) = 0,

which means that the vector Av belongs to N'(f”(Ay)), i.e. to the recessive
subspace V. But Av also belongs to VfL, by definition, and VfﬂVfJ_ = {0}, so
it follows that Av = 0. Hence v = 0, since A is an injective map. This proves
that M (¢”(y)) = {0}, which means that g is a non-degenerate function.

Each vector x € X has a unique decomposition x = x1 + x5 with 1 € VfL
and xy € Vy, and 27 (= x — x2) lies in X according to Theorem 16.2.1.
Consequently, there is a unique point y € X, such that Ay = x;. Therefore,
9(y) = f(Ay) = f(x1) = f(z) by the same theorem.

The functions f and g thus have the same ranges, and ¢ is a minimum
point of ¢ if and only if Ay is a minimum point of f, and thereby also all
points Ay + v with v € V} are minimum points of f.

We also note for future use that

Mg, y) < Af, Ay) = Mf, Ay +v)

for all y € Xy and all v € V}, according to Theorem 15.1.7. (In the present
case, the two Newton decrements are actually equal, which we leave as an
exercise to show.)

Corollary 16.2.2. A closed self-concordant function f: X — R is non-
degenerate if its domain X does not contain any line.

Proof. By Theorem 16.2.1, X = X + V;. Hence, if f is degenerate, then
X contains all lines through points in X with directions given by nonzero
vectors in V. So the function must be non-degenerate if its domain does not
contain any lines. O]

Corollary 16.2.3. A closed self-concordant function is non-degenerate if and
only if it is strictly convez.

Proof. The second derivative f”(x) of a non-degenerate self-concordant func-
tion f is positive definit for all x in its domain, and this implies that f is
strictly convex.

The recessive subspace V; of a degenerate function f is non-trivial, and
the restriction ¢, ,(t) = f(x + tv) of f to a line with a direction given by a
nonzero vector v € V; is affine, according to Theorem 16.2.1. This prevents
f from being strictly convex. O
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16.3 Basic inequalities for the local seminorm

The graph of a convex function f lies above its tangent planes, and the
vertical distance between the point (y, f(y)) on the graph and the tangent
plane through the point (z, f(z) is greater than or equal to $ully —||* if f is
pu-strongly convex. The same distance is also bounded below if the function
is self-concordant, but now by an expression that is a function of the local
norm ||y — z||,. The actual function p is defined in the following lemma,
which also describes all the properties of p that we will need.

Lemma 16.3.1. Let p: |—o00, 1[— R be the function
p(t) = —t —In(1 —1).
(i) The function p is convex, strictly decreasing in the interval |—o0, 0],

and strictly increasing in the interval [0, 1], and p(0) = 0.
(i) For 0 <t <1,

2
) = 53—
In particular, p(t) <t? if 0 <t < %
(i11) If s <1 and t < 1, then p(s) + p(t) > —st

Proof. Assertion (i) follows easily by considering the sign of the derivative,
and assertion (ii) follows from the Taylor series expansion, which gives

pt) =32+ 18+t + <P+t P+ ) = (1 - )

for 0 <t < 1.
To prove (iii), we use the elementary inequality x —In(1+z) > 0 and
take x = st — s — t. This gives

st+p(s)+p(t)=st —s—t—In(l —s) —In(1 — 1)
=st—s—t—In(l+st—s—1t)>0.

Since p is strictly decreasing in the interval |—oo, 0], assertion (iv) will
follow once we show that p(—s) > p(t) when s = t/(1 —t). To show this

inequality, let
t
)= p(———) — p(t
9(t) = p(=1—) = r(®)
for 0 <t < 1. We simplify and obtain

gt)=t—1+ (1=t +2In(1 —1).

Download free eBooks at bookboon.com



Since g(0) = 0 and ¢'(t) = 1+ (1 —t)2 =21 —t)"' = *(1 —t)"% > 0,
we conclude that g(t) > 0 for all ¢ € [0, 1], and this completes the proof of
assertion (iv). O

The next theorem is used to estimate differences of the form ||w||, —||w||.,

Df(y)lw]=Df(x)[w], and f(y)—f(x)=Df(z)[y—=] in terms of [|wlla, [[y—zll

and the function p.

Theorem 16.3.2. Let f: X — R be a closed self-concordant function, and
suppose that x is a point in X and that ||y — x|, < 1. Then, y is also a
point in X, and the following inequalities hold for the vector v =1y — x and
arbitrary vectors w:

o]l e
(16.3) THUHw <|vll, < 1— o[,
(16.4) #ﬂ’g”x < Df(y)l] = Df(x)[v] < %
(16.5) p(=llvlla) < f(y) = f(z) = Df(@)[v] < p(llv]l)
(16.6) (A = llvllo)lwlle < lwlly < { Hw“H;”x
(16.7)  Df(y)[w] — Df(x)[w] < D*f(z)[v,w] + H1v|_|z||lz/”|!: < ||1@!x;‘|z)|’||;

The left parts of the three inequalities (16.3), (16.4) and (16.5) are also
satisfied with v =1y — x for all y € X.

Proof. We leave the proof that y belongs to X to the end and start by showing
that the inequalities (16.3-16.7) hold under the additional assumption y € X.
I. We begin with inequality (16.6). If ||w|, = 0, then ||w|, = 0 for all
z € X, according to Theorem 16.1.2. Hence, the inequality holds in this case.
Therefore, let w be an arbitrary vector with ||w]|, # 0, let 2* = x + t(y — z),
and define the function ¢ by

V(t) = Jwl' = (D*f(2")w, w))

The function v is defined on an open interval that contains the interval [0, 1],
¥(0) = [Jw];* and 9(1) = |Jw||,*. Tt now follows, using Theorem 16.1.1, that

—-1/2

(168) (O] = 5| (D (e, w]) ™D e, 0]
= ol | D, w, o] < gl - 2wl ol
T
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If ||v]]lz = 0, then |jv||; = 0 for all 2 € X, and hence ¥'(t) = 0 for
0 <t < 1. This implies that ¢/(1) = ¢(0), i.e. that ||w||, = ||w|l,. The
inequalities (16.3) and (16.6) are thus satisfied in the case ||v||, = 0.

Assume henceforth that ||v||,, # 0, and first take w = v in the definition of
the function . In this special case, inequality (16.8) simplifies to [¢'(t)| < 1
for t € [0,1], and hence (0) — 1 < ¥(1) < 9(0) + 1, by the mean-value
theorem. The right part of this inequality means that |[v][;* < [[v]|;" + 1,
which after rearrangement gives the left part of inequality (16.3). Note, that
this is true even in the case [|v]|, > 1.

Correspondingly, the left part of the same inequality gives rise to the right
part of inequality (16.3), now under the assumption that [[v||, < 1.

To prove inequality (16.6), we return to the function ¢ with a general w.
Since |[tv||, = t]jv]|. < 1 for 0 < ¢t < 1, it follows from the already proven
inequality (16.3) (with z* = x + tv instead of y) that

[tvll vl
L={ftvlle 1= tfjvfl

1 1
Jollae = 7 ol < 7
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Insert this estimate into (16.8); this gives us the following inequality for the
derivative of the function In(t):

')
»(t)

Let us now integrate this inequality over the interval [0, 1]; this results in the
estimate

In ||w||y‘7}1 |7‘1 —Ine(0 \_‘/ (In(t) dt‘

[l

1
. / Mdt: —In(1  [lo]l,),
0

1—tfjvll

ol
<l —
et < T3

[(Ingp(£))'] =

= [lv

which after exponentiation yields

1= Jvfl. <
and this is inequality (16.6).

lwlly
lwll

< (L= |lvlle)™

I1. To prove the inequality (16.4), we define
¢(t) = D f(a")[v],

where ' = x + t(y — x), as before. Then
¢'(t) = D*f(a)[v, 0] = [Jv]|3 = t72[[tv]|3,

so by using inequality (16.3), we obtain the inequality

1 H?va2 _ ol
2

”UH2 1 Ht/UHQ /
- = T — < ¢P'(t) <

(L +tlloll)? 2 1+ [to]l.)
for 0 <t < 1. The left part of this inequality holds with v = y — x for all
y € X, and the right part holds if ||v||,, < 1, and by integrating the inequality
over the interval [0,1], we arrive at inequality (16.4).

ITI. To prove inequality (16.5), we start with the function

O(t) = f(z') — Df(x)[v]t,

noting that

and that
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By replacing y with z* in inequality (16.4) , we obtain the following inequality

tlvll2 0 tlollz
Lt tffofla — I altd | P

where the right part holds only if ||v]|, < 1. By integrating the above in-
equality over the interval [0, 1], we obtain

pl=loll) = | e gy < g1y~ a(0) < / e gy — o),

1+ t[[v]], 1 —tfv]l
i.e. inequality (16.5).

IV. The proof of inequality (16.7) is analogous to the proof of inequality
(16.4), but this time our function ¢ is defined as

¢(t) = Df(a")[w].
Now, ¢'(t) = D*f(z")[w,v] and ¢"(t) = D3f(z")[w,v,v], so it follows from
Theorem 16.1.1 and inequality (16.6) that

lwllallo]l3

[¢" (O] < 2llwllarfloll7e < 27—F =
(1 =)

By integrating this inequality over the interval [0, s], where s < 1, we get the
estimate

/ / ° 1! ’ ”UHidt
&' (s) — ¢'(0) S/O o (t)ldté2llwllac/0 1 —tlo].)?
B V]
— ||w|]x[m - ||U\|x],

and another integration over the interval [0, 1] results in the inequality

o 0) — A (0) < 106y — aon ds < Nellellollz
¢(1) — ¢(0) — ¢'(0) < i (@'(s) = ¢'(0)) ds < T— ol
which is the left part of inequality (16.7).
By the Cauchy-Schwarz inequality,
D?f (@) v, w] = (v, f"(x)w) = (f" ()0, " (2)"/w)
< 17" @)2oll|L 7 (2) Pl = flollew]l,
and we obtain the right part of inequality (16.7) by replacing D?f(x)[v, w]
with its majorant ||v||,||w]|.-
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V. It now only remains to prove that the condition ||y —z||, < 1 implies that
the point y lies in X.

Assume the contrary. i.e. that there is a point y outside X such that
|ly — x|l < 1. The line segment [z, y] then intersects the boundary of X in
a point = + tv, where ¢ is a number in the interval |0, 1]. The function p is
increasing in the interval [0, 1], and hence p(t||v].) < p(||v]lz) if 0 <t < & It
therefore follows from inequality (16.5) that

fle+tv) < flz)+tD f(z)v]+p(tlv]l) < flx)+[Df(@)[v]]+p(v]l) <400

for all ¢ in the interval [0,7[. However, this is a contradiction, because
lim, 7 f(z +tv) = +o0, since f is a closed function and z + tv is a boundary
point. Thus, y is a point in X. O

16.4 Minimization
This section focuses on minimizing self-concordant functions, and the results

are largely based on the following theorem, which also plays a significant role
in our study of Newton’s algorithm in the next section.

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

pookboo
Prof. Dr. Nick H.M. van Dam

21st Century Corporate
Learning & Development

Download free eBooks at bookboon.com Click on the ad to read more

56


http://s.bookboon.com/Download_Free

Theorem 16.4.1. Let f: X — R be a closed self-concordant function, sup-
pose that x € X is a point with finite Newton decrement A = \(f,x), let
Axy be a Newton direction at x, and define

et =2+ (1+ X)) Azy.
The point x™ is then a point in X and
f@®) < fz) = p(=A).
Remark. So a minimum point  of f must satisfy the inequality

f(@) < f(x) = p(=A)

for all x € X with finite Newton decrement .
Proof. The vector v = (1 + A)"*Ax, has local seminorm
[vlle = (1 4+ XM Azl = M1+ 1) <1,

so it follows from Theorem 16.3.2 that the point 1t = z + v lies in X and
that

£ < £(@)+ DI+ plloll) = F@) + 5 (P, A + o)
A2 A 1
= f(z) — T 1+)\—ln1+/\:f(x)—)\+ln(1+)\)
= f(x) = p(=A). O

Theorem 16.4.2. The Newton decrement \(f,z) of a downwards bounded
closed self-concordant function f: X — R is finite at each point x € X and

Proof. Let v be an arbitrary vector in the recessive subspace V; = N (f"(x)).
Then

[l +tv) = f(x) + 1{f'(x),v)
for all ¢ € R according to Theorem 16.2.1, and since f is supposed to be
bounded below, this implies that (f’(x),v) = 0. This proves the implication

f'(@)v=0=(f'(z),v) =0,
which means that there exists a Newton direction at the point x. Hence,
A(f, ) is a finite number.
If there is a positive number § such that A\(f,x) > ¢ for all z € X, then
repeated application of Theorem 16.4.1, with an arbitrary point zg € X
as starting point, results in a sequence (z3)° of points in X, defined as
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Try1 = 2, and satisfying the inequality f(xy) < f(xo) — kp(—0d) for all k.
Since p(—d) > 0, this contradicts our assumption that f is bounded below.
Thus, inf,ex A(f,z) = 0. ]

Theorem 16.4.3. All sublevel sets of a non-degenerate closed self-concordant
function f: X — R are compact sets if N(f,xo) < 1 for some point zo € X.

Proof. The sublevel sets are closed since the function is closed, and to prove
that they are also bounded it is enough to prove that the particular sublevel
set S ={x € X | f(z) < f(xg)} is bounded, because of Theorem 6.8.3 in
Part L.

So, let x be an arbitrary point in S, and write r = ||z — x¢||,, and
Ao = A(f, xg) for short. Then

f(@) = f(xo) + D f(xo)lx — xo] + p(—r),
according to Theorem 16.3.2, and

D f(xo)[z — o] = (f'(w0), ® — @0) = =A(f, @o)[|& — Tollay = —Aor,
by Theorem 15.1.2. Combining these two inequalities we obtain the inequal-
ity

f(zo) > f(x) > f(wo) — Ao + p(—7),
which simplifies to
r—In(l+4r) = p(—r) < Aor.
Hence,
(1=Xo)r <In(l+7)

and it follows that r < rq, 7o being the unique positive root of the equation
(1 — Xo)r = In(1 + r). The sublevel set S is thus included in the ellipsoid
{z € R"| ||z — x¢l||z, < 70}, and it is therefore a bounded set. O

Theorem 16.4.4. A closed self-concordant function f: X — R has a mini-
mum point if A(f,xg) <1 for some point xo € X.

Proof. 1f in addition f is non-degenerate, then S = {x € X | f(x) < f(zo)}
is a compact set according to the previous theorem, so the restriction of
f to the sublevel set S attains a mininum, and this minimum is clearly a
global minimum of f. The minimum point is furthermore unique, since non-
degenerate self-concordant functions are strictly convex.

If f is degenerate, then there is a non-degenerate closed self-concordant
function ¢g: Xy — R with the same range as f, according to the discussion
following Theorem 16.2.1. The relationship between the two functions has
the form ¢(y) = f(Ay + v), where A is an injective linear map and v is
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an arbitrary vector in the recessive subspace V;. To the point z( there
corresponds a point yy € Xy such that Ay, + v = zy for some v € V}, and
Ag,%) < A(f,xo) < 1. By the already proven part of the theorem, g has
a minimum point g, and this implies that all points in the set Ay + V; are
minimum points of f. [

Theorem 16.4.5. Every downwards bounded closed self-concordant function
f: X — R has a minimum point.

Proof. 1t follows from Theorem 16.4.2 that there is a point zy € X such that
A(f, o) < 1, so the theorem is a corollary of Theorem 16.4.4. O

Our next theorem describes how well a given point approximates the
minimum point of a closed self-concordant function.

Theorem 16.4.6. Let f: X — R be a closed self-concordant function with
a minimum point T. If x € X is an arbitrary point with Newton decrement

A= A\f,z) <1, then

(16.9) p(=A) < flz) = f(@) < p(N),
A A
(16.11) e — 2[5 < ﬁ

Remark. Since p(t) < t?if t < 1, we conclude from inequality (16.9) that
f(l’) - fmin S /\(f7 :E)Q

as soon as A(f,z) < 1.

Proof. To simplify the notation, let v =2 — 2z and r = ||v||,.

The left part of inequality (16.9) follows directly from the remark after
Theorem 16.4.1. To prove the right part of the same inequality, we recall the
inequality

(16.12) (f'(z),v) < A, 2)[olle = Ary

which we combine with the left part of inequality (16.5) in Theorem 16.3.2
and inequality (iii) in Lemma 16.3.1. This results in the following chain of
inequalities:

f(@) = f(x—v) > f(x) + (f'(x), —v) + p(—[—v])
= f(x) = (f'(z),v) + p(—r)
> f(z) = Ar+ p(=1) > f(x) — p(N),

and the proof of inequality (16.9) is now complete.
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A

Since x —v = & and f'(z) = 0, it follows from inequality (16.12) and the
left part of inequality (16.4) that
2

U [ AN
M2 (f(@),v) = (e = v) =) = (f'@), =) = e =

and by solving the inequality above with respect to r, we obtain the right
part of inequality (16.10).

The left part of the same inequality obviously holds if » > 1. So assume
that < 1. Due to inequality (16.7),

<f’(x),w> = <f/<£lf - U), _w> - <f/(fE), _w> <

and hence

L=[-vll.  1-

A= sup (f'(z),w) <

Jwlle<1 L=r
which gives the left part of inequality (16.10).

To prove the remaining inequality (16.11), we use the left part of inequal-
ity (16.5) with y replaced by = and x replaced by &, which results in the
inequality

p(=llz = 2l|z) < f(z) — f(2).
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According to the already proven inequality (16.9), f(x)— f(z) < p(}), so
it follows that p(—||lz — z|/z) < p(N), and by Lemma 16.3.1, this means that

s < -2 0
I — #lls < —2

Theorem 16.4.7. Let f be a closed self-concordant function whose domain
X is a subset of R, and suppose that

v=sup{\(f,z) |z e X} < 1.

Then X is equal to the whole space R™, and f is a constant function.

Proof. 1t follows from Theorem 16.4.4 that f has a minimum point & and
from inequality (16.9) in Theorem 16.4.6 that

p(—v) < f(z) — f(2) < p(v)

for all z € X. Thus, f is a bounded function, and since f is closed, this
implies that X is a set without boundary points. Hence, X = R".

Let v be an arbitrary vector in R". By applying inequality (16.11) with
r = T + tv, we obtain the inequality

Mfa) v

—ANf,x) T 1—-v

for all ¢ > 0, and this implies that ||v||z = 0. The recessive subspace Vy of
f is in other words equal to R", so f is a constant function according to
Theorem 16.2.1. O

tlolls = 1o — 3l < <

16.5 Newton’s method for self-concordant func-
tions

In this section we show that Newton’s method converges when the objec-
tive function f: X — R is closed, self-concordant and bounded below. We
shall also give an estimate of the number of iterations needed to obtain the
minimum with a given accuracy € — an estimate that only depends on e
and the difference between the minimum value and the function value at
the starting point. The algorithm starts with a damped phase, which re-
quires no line search as the step length at the point x can be chosen equal to
1/(14+A(f,x)), and then enters into a pure phase with quadratic convergence,
when the Newton decrement is sufficiently small.
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The damped phase

During the damped phase, the points z, in Newton’s algorithm are generated
recursively by the equation

1
14+ M

Tpy1 = T + Vg,

where A\, = A(f,xy) is the Newton decrement at xp and vy is a Newton
direction at the same point, i.e

f”(il?k)vk = —f/(ﬂfk;)-

According to Theorem 16.4.1, if the starting point xg is a point in X, then
all generated points x; will lie in X and

f(rra) = fzr) < p(=Ap).

If § > 0 and Ay > 0, then p(—A;) > p(—0d), because the function p(t)
is decreasing for for ¢ < 0. So if xy is the first point of the sequence that
satisfies the inequality Ay = A(f, zn) < J, then

Fuin — F(20) < Flon) = Flao) = S (o) — Fln)
< pA) <3 p-8) = —Np(—d),

which implies that att N < (f(x¢) — fiin)/p(—0). This proves the following
theorem.

Theorem 16.5.1. Let f: X — R be a closed, self-concordant and downwards
bounded function. Using Newton’s damped algorithm with step size as above,
we need at most
LM |
p(=9)
iterations to generate a point x with Newton decrement \(f,x) < § from an
arbitrary starting point xo in X.

Local convergence

We now turn to the study of Newton’s pure method for starting points that
are sufficiently close to the minimum point z. For a corresponding analysis
of Newton’s damped method we refer to exercise 16.6.
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Theorem 16.5.2. Let f: X — R be a closed self-concordant function, and
suppose that x € X is a point with Newton decrement A(f,z) < 1. Let Axy
be a Newton direction at x, and let

2t =a 4+ Axy.

Then, xt is a point in X and

A ) 2
M) < (200
P =30
Proof. The conclusion that x lies in X follows from Theorem 16.3.2, because
Azl = A(f,z) < 1. To prove the inequality for A(f,z"), we first use
inequality (16.7) of the same theorem with v = 2% — z = Az, and obtain

/ ’ " )\(f,l‘)Q”’UJHx
(@), w) < U/ (@), w) + 4" (@) A, w) + G5

O V0 A0 12 P00 1
_<f<)? >+< f()v >+ l—A(f,x) 1_)\(]071,)

. ol
W| g+
w]l. < m»
360°
thinking
|
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by inequality (16.6), so it follows that

: A(fs 2)?|Jwl],+
and this implies that
A(f,z)?

A(f,2T) = sup (f'(z"),w) <

wll,+ <1 (1= A(f,2))?

We are now able to prove the following convergence result for Newton’s
pure method.

Theorem 16.5.3. Suppose that f: X — R is a closed self-concordant func-
tion and that xy is a point in X with Newton decrement

A(f,mg) <0< X=1(3—+/5)=0.381966....
Let the sequence (xy)° be recursively defined by
T4l = T + Vg,
where vy 1s a Newton direction at the point xy,.

The sequence (f(xg))5° converges to the minimum value fum of the func-
tion f, and if € > 0 then

f(@n) = fuin <€

for k > A+ log,(log, B/€), where A and B are constants that only depend
on .

Moreover, if f is a non-degenerate function, then (xy)y converges to the

unique minimum point of f.

Proof. The critical number X is a root of the equation (1 — \)? = A, and if
0 <A< Athen A < (1—M\)>2

Let K(\) = (1 — \)~2; the function K is increasing in the interval [0, \[
and K (M)A < 1. It therefore follows from Theorem 16.5.2 that the following
inequality is true for all points # € X with A\(f,z) <& < \:

Af at) < KO 2) M, 2)? < KOS, 2)2 < K(0)OMf,2) < \(f,z) < 6.

Now, let \y = A(f, ). Due to the inequality above, it follows by induc-
tion that A\x < ¢ and that
Mer1 < K(6)AF
for all k, and the latter inequality in turn implies that

k

e < K@) (K@))” < (1= 62 (K (0)5)*
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Hence, A\ tends to 0 as k — oo, because K(J)0 < 1. By the remark
following Theorem 16.4.6,

f(xk) - fmin S )\137

if \p < %, so we conclude that
lim f(xr) = fin-
k—o00

To prove the remaining error estimate, we can without loss of generaliza-
tion assume that € < 6%, because if € > §? then already

f(x(J) - fmin S A(f) -1'0)2 S 52 < €.
Let A and B be the constants defined by
A= —log,(—2logy(K(6)8)) and B=(1-4)"

Then 0 < B < 1, and log,(log, B/¢) is a well-defined number, since B/e >
(1—0)*/6% = (K(0)0)"2 > 1. If k > A + log,(log, B/¢), then

2k+1

A2 < (1- 0 (K(©0)) <

and consequently f(zy) — fun < A7 < €.
If f is a non-degenerate function, then f has a unique minimum point z,
and it follow from inequality (16.11) in Theorem 16.4.6 that

Ak
1—

|z — 2|2 < — 0, ask — 0.

Since ||-||z is a proper norm, this means that z; — 2. O

When 6 = 1/3, the values of the constants in Theorem 16.5.3 are A =
0.268... and B = 16/81, and A + log,(log, B/€) = 6.87 for ¢ = 107°. So
with a starting point z, satisfying A(f, o) < 1/3, Newton’s algorithm will
produce a function value that approximates the minimum value with an error
less than 10730 after at most 7 iterations.

Newton’s method for self-concordant functions

By combining Newton’s damped method with 1/(1+\(f, z)) as damping fac-
tor and Newton’s pure method, we arrive at the following variant of Newton’s
method.
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Newton’s method

Given a positive number § < %(3 —/5), a starting point zy € X, and a
tolerance € > 0.

1. Initiate: x:= xg.
2. Compute the Newton decrement A = A\(f, z).
3. Go to line 8 if A < ¢ else continue.
4. Compute a Newton direction Az, at the point z.
5. Update: x:= x4+ (1 + \) "' Axy.
6. Go to line 2.
7. Compute the Newton decrement A = A\(f, x).
8. Stopping criterion: stop if A < y/e. x is an approximate optimal point.
9. Compute a Newton direction Az, at the point x.
10. Update: z:= x + Axy.
11. Go to line 7.

Assuming that f is closed, self-concordant and downwards bounded, the
damped phase of the algorithm, i.e. steps 2—6, continues during at most

L(f(20) = frin)/p(—0)]
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iterations, and the pure phase 7-11 ends according to Theorem 16.5.3 after
at most [A + log,(log, B/e€)] iterations. Therefore, we have the following
result.

Theorem 16.5.4. If the function f is closed, self-concordant and bounded
below, then the above Newton method terminates at a point x satisfying
f(z) < fmin + € after at most

L(f(20) = fuin))/p(=0)] + [A + log,(log, B/e)]
iterations, where A and B are the constants of Theorem 16.5.5.

In particular, 1/p(—¢) = 21.905 when 6 = 1/3, and the second term can
be replaced by the number 7 when ¢ > 1073°. Thus, at most

L22(f($0) - fmin)J +7

iterations are required to find an approximation to the minimum value that
meets all practical requirements by a wide margin.

Exercises

16.1 Show that the function f(z) = xIlnz —Inz is self-concordant on R ;.

16.2 Suppose f;: X; — R are self-concordant functions for ¢ = 1,2,...,m, and
let X = X7 X Xo x---x X,,. Prove that the function f: X — R, defined by

f(wr, 22, .. mm) = fi(z1) + fa(z2) + -+ fin(2m)
for x = (z1,29,...,2m) € X, is self-concordant.

16.3 Suppose that f: Ry — R is a three times continuously differentiable,
convex function, and that

f"(x)

")) < 3

for all z.

a) Prove that the function
9(z) = —In(—f(z)) — Inwz,
with {x € R4y | f(z) < 0} as domain, is self-concordant.
[Hint: Use that 3ab + 3a’c + 2b% + 2¢3 < 2(a® 4+ b? + ¢?)3/? if a,b,¢ > 0]
b) Prove that the function
F(z,y) = —In(y — f(z)) —Inz

is self-concordant on the set {(z,y) € R* |z >0, y > f(z)}.
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16.4

16.5

16.6

Show that the following functions f satisfy the conditions of the previous
exercise:

a) f(x) =—Inz b) f(z) =xInz c) f(z) = —aP, where 0 < p < 1.

Let us write o’ for (x1,29,...,2,—1) when & = (21, 22,...,2,), and let |-
denote the Euclidean norm in R""!. Let X = {x € R" | ||2'|| < x,.}, and
define the function f: X — R by f(x) = —In(22 — ||2/||?). Prove that the
following identity holds for all v € R™:

2

D*f(x)[v.0] = 5 (Df@)le])

(23 — =/ [P) (I’ [Pl = (', v)?) + (vnll2’|]? — 2nla’,v))?
(x5, = ll'[*)? ]| ’

+2

and use it to conclude that f is a convex function and that A(f,z) = 2 for
all z € X.

Convergence for Newton’s damped method.
Suppose that the function f: X — R is closed and self-concordant, and
define for points x € X with finite Newton decrement the point ™ by

1
+ = — A
x $+1—|—>\(f,x) Tnt,

where Az, is a Newton direction at x.

a) Then x™ is a point in X, according to Theorem 16.3.2. Show that
A(f,xt) < 20(f,2)%,

and hence that A(f,zF) < A(f,z) if M(f,2) < 3.

b) Suppose zg is a point in X with Newton decrement A(f,zg) < %, and
define the sequence (z)3° recursively by zj41 = :L‘z Show that

2k+l

f(xk)_fmmgi(%) )

and hence that f(xy) converges quadratically to fiin-

Appendix

We begin with a result on tri-linear forms which was needed in the proof
of the fundamental inequality |D?f(z)[u,v, w]| < 2||ul.||v]s]jw]. for self-
concordant functions.
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CONVEXITY AND OPTIMIZATION - PART IIi SELF-CONCORDANT FUNCTIONS
Fix an arbitrary scalar product (-,-) on R™ and let ||-|| denote the cor-
responding norm, i.e. ||v|| = (v,v)2. If ¢(u,v,w) is a symmetric tri-linear
form on R™ x R™ x R, we define its norm ||¢|| by
o(u, v, w
ol = sup 1202

woo |[ull[[v]l[lw]]

The numerator and the denominator in the expression for ||¢|| are homoge-
neous of the same degree 3, hence

ol = sup  [(u, v, w)],
(u,v,w)€S3
where S denotes the unit sphere in R" with respect to the norm |-||, i.e.

S={ueR"||ul| =1}.
It follows from the norm definition that

|9(w, v, w)| < [l[|ul[[[o]]jw]

for all vectors u, v, w in R".
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Since tri-linear forms are continuous and the unit sphere is compact, the
least upper bound ||¢|| is attained at some point (u,v,w) € S?, and we will
show that the least upper bound is indeed attained at some point where
u = v = w. This is the meaning of the following theorem.

Theorem 1. Suppose that ¢(u,v,w) is a symmetric tri-linear form. Then

|¢(u, v, w)| ¢(v,v, )]
ol = sup 2Ll _ g, [0(0 0. 0)]

wowzo [[ull[vllflw] w0 [v]]
Remark. The theorem is a special case of the corresponding result for sym-
metric m-multilinear forms, but we only need the case m = 3. The general
case is proved by induction.

Proof. Let

|9(v, v,v)|

I E A
We claim that ||¢|| = ||¢||". Obviously, ||¢]]" < ||¢||, so we only have to prove
the converse inequality ||¢]| < |||/

To prove this inequality, we need the corresponding result for symmetric
bilinear forms v (u,v). To such a form there is associated a symmetric linear
operator (matrix) A such that i (u,v) = (Au,v), and if ey, ey, ..., €, is an
ON-basis of eigenvectors of A and Ay, A, ..., A\, denote the corresponding
eigenvalues with A; as the one with the largest absolute value, and if u,v € S
are vectors with coordinates uy, uo, ..., u, and vy, vs,...,v, with respect to
the given ON-basis, then

|6]]" = sup
v#0

n n n
[, 0)] = 1) Avwgor] < Palluslloil < Ml sl o]
i=1 i=1 i=1

<l (3 0) (0 8) " = Il = ter,en),

1= 1=

which proves that sup, ,)esz [{(u, v)| = sup,eg [¥(v,v)].

We now return to the tri-linear form ¢(u, v, w). Let (4, 0,) be a point
in S% where the least upper bound defining ||¢|| is attained, i.e.

0]l = o(a, 0, w),

and consider the function

P(u,v) = ¢(u, v, w);

this is a symmetric bilinear form on R™ x R™ and
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sup |¢h(u, v)| = o]

(u,v)€S52

But as already proven,

sup |¥(u,v)| = sup [¢(v,v)|.
(u,v)€52 veS

Therefore, we conclude that we can withour restriction assume that a4 = 0.

We have in other words shown that the set
A={(v,w) € 5% | |¢(v,0,w)| = |4}
is nonempty. The set A is a closed subset of S?, and hence the number
a = max{{v,w) | (v,w) € A}

exists, and obviously 0 < a < 1.
Due to tri-linearity,

ou+v,u+v,w)— d(u—v,u—v,w) = 4¢(u,v,w).
So if u, v, w are arbitrary vectors in .S, i.e. vectors with norm 1, then
4 o(u, v, w)| < Jop(u+v,u+v,w)| + |p(u —v,u — v, w)|
< |¢(u +v,u+v,w)| + [|9lllu — vf?[w]]
= |¢(u+v,u+v,w)| = [|gllllu+ol* + gl (lu+ ] + lu—v|?)
= |p(u+v,u+v,w0)| = ||ll[[u+vl* + o]l (2[ull® + 2[|v]*)
= [p(u+v,u+v,w)| — || ¢ll[[u+v[* + 4]].

Now choose (7,w) € A such that (v,w) = . By the above inequality, we
then have

4|l = 4[o(v,v,w)| = 4|¢(v,w, )]
<16 +w,v+w,7) - [T+ + 4|4l

and it follows that
6(v +w,7+w,7)| > ||¢]l][v+ @|*.

Note that ||[v +w||* = ||v]|* + |[@|* + 2(v,w) = 2 + 2a > 0. Therefore, we
can form the vector Z = (v + w)/||v 4+ @|| and write the above inequality as

0(z,%,0)| = [|9l,

which implies that

(16.13) 6(z,2, )| = |4l
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since Z and ¥ are vectors in S. We conclude that the pair (Z,7) is an element
of the set A, and hence

0> (2,7) = (v,7) + (w,v) _ 1+a 1+0z'

= o+ ] VZt2a V2
This inequality forces o to be greater than or equal to 1. Hence a = 1 and

(z,0) =1 ==l

So Cauchy—Schwarz’s inequality holds with equality in this case, and this
implies that Z = ©. By inserting this in equality (16.13), we obtain the
inequality

ol = o(@,2,7) = 4],

and the proof of the theorem is now complete. n

Our second result in this appendix is a uniqueness theorem for functions
that satisfy a special differential inequality.

Theorem 2. Suppose that the function y(t) is continuously differentiable in
the interval I = [0,b[, that y(t) > 0, y(0) = 0 and y'(t) < Cy(t)* for some
given constants C' > 0 and o > 1. Then, y(t) = 0 in the interval I.

Proof. Let a =sup{x € I | y(t) =0 for 0 <t < z}. We will prove that a = b
by showing that the assumption a < b gives rise to a contradiction.
By continuity, y(a) = 0. Choose a point ¢ €la, b and let
M =max{y(t) | a <t < c}.
Then choose a point d such that a < d < ¢ and d —a < $C* M~ The
maximum of the function y(t) on the interval [a, d] is attained at some point

e, and by the least upper bound definition of the point a, we have y(e) > 0.
Of course, we also have y(e) < M, so it follows that

y(e) = u(e) — yla) = / dt<c/
< C(d— a)y(e)® < C(d — a) M Ty(e) <

which is a contradiction. O
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Chapter 17

The path-following method

In this chapter, we describe a method for solving the optimization problem

min f(z)
st. relX

when X is a closed subset of R™ with nonempty interior and f is a con-
tinuous function which is differentiable in the interior of X. We assume
throughout that X = cl(int X'). Pretty soon, we will restrict ourselves to
convex problems, i.e. assume that X is a convex set and f is a convex func-
tion, in which case, of course, automatically X = cl(int X) for all sets with
nonempty interior.

Descent methods require that the function f is differentiable in a neigh-
borhood of the optimal point, and if the optimal point lies on the boundary
of X, then we have a problem. One way to attack this problem is to choose
a function F': int X — R with the property that F(z) — 400 as x goes
to boundary of X and a parameter p > 0, and to minimize the function
f(z) + pF(x) over int X. This function’s minimum point #(p) lies in the
interior of X, and since f(z) + uF(x) — f(x) as p — 0, we can hope that
the function value f(Z(u)) should be close to the minimum value of f, if the
parameter p is small enough. The function F' acts as a barrier that prevents
the approximating minimum point from lying on the boundary.

The function g~ f(x) + F () has of course the same minimum point (1)
as f(x)+ puF(x), and for technical reasons it works better to have the param-
eter in front of the objective function f than in front of the barrier function
F'. Henceforth, we will therefore instead, with new notation, examine what
happens to the minimum point Z(¢) of the function Fi(z) = tf(x) + F(x),
when the parameter ¢ tends to +oo.
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17.1 Barrier and central path

Barrier
We begin with the formal definition of a barrier.

Definition. Let X be a closed convex set with nonempty interior. A barrier
to the set X is a differentiable function F': int X — R with the property that
limy 00 F'(z5) = +oo for all sequences (z);° that converge to a boundary
point of X.

If a barrier function has a unique minimum point, then this point is called
the analytic center of the set X (with respect to the barrier).

Remark 1. A convex function with an open domain goes to co at the bound-
ary if and only if it is a closed function. Hence, if F': int X — R is convex
and differentiable, then F' is a barrier to X if and only if F' is closed.

Remark 2. A strictly convex barrier function to a compact convex set has
a unique minimum point in the interior of the set. So compact convex sets
with nonempty interiors have analytic centers with respect to strictly convex
barriers.
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Now, let I’ be a barrier to the closed convex set X, and suppose that we
want to minimize a given function f: X — R. For each real number ¢ > 0
we define the function F;: int X — R by

Fy(z) =tf(x) + F(z).

In particular, Fy = F. The following theorem is the basis for barrier-based
interior-point methods for minimization.

Theorem 17.1.1. Suppose that f: X — R is a continuous function, and let
F be a downwards bounded barrier to the set X. Suppose that the functions
F; have minimum points z(t) in the interior of X for each t > 0. Then,

lim f(z(t)) = inf f(z).

t——+o0 zeX

Proof. Let vy, = infeex f(x) and M = inf e x F(z). (We do not exclude
the possibility that vy, = —o0, but M is of course a finite number.)
Choose, given 17 > vy, a point * € int X such that f(z*) <n. Then

v < (1)) < J(0(0) + () — M) = 1 (R (1)) — M)
<t N Fy(z*) = M) = f(2*) + 7 (F(z*) — M).
Since the right hand side of this inequality tends to f(z*) as t — +o0, it

follows that vy, < f(2(t)) < n for all sufficiently large numbers ¢, and this
proves the theorem. O

In order to use the barrier method, one needs of course an appropriate
barrier to the given set. For sets of the type

X={2ze€Q|gx)<0, i=1,2,...,m}

we will use the logarithmic barrier function

m

(17.1) F(a) = =3 In(—gi(x)).

i=1

Note that the barrier function F' is convex if all functions g;: 2 — R are
convex. In this case, X is a convex set, and the interior of X is nonempty if
Slater’s condition is satisfied, i.e. if there is a point T € Q2 such that ¢;(Z) < 0
for all 1.

Other examples of barriers are the exponential barrier function

i=1
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and the power function barriers
F(z) =Y (—gi(z))™",

where p > 0.

Central path

Definition. Let F' be a barrier to the set X and suppose that the functions
F; have unique minimum points Z(t) € int X for all ¢ > 0. The curve
{z(t) | t > 0} is called the central path for the problem min,cx f(x).

Note that 2(0) is the analytic center of X with respect to the barrier F,
so the central path starts at the analytic center.

Since the gradient is zero at an optimal point, we have
(17.2) tf'(z(t) + F'(2(t)) =0

for all points on the central path. The converse is true if the objective
function f and the barrier function F' are convex, i.e. &(t) is a point on the
central path if and only if equation (17.2) is satisfied.

The logarithmic barrier F' to X = {x € Q| g;(x) <0, i =1,2,...,m}
has derivative
1

i1 9i()

NE

F'(z) = —

gi(z),

so the central path equation (17.2) has in this case the following form for
t>0:

(17.3) f1(&(t) —

S

m 1 o B
> Gaew =

Let us now consider a convex optimization problem of the following type:

) min f(z)
st gi(z) <0, i=1,2,....m

We assume that Slater’s condition is satisfied and that the problem has an
optimal solution .
The corresponding Lagrange function L is given by

Lz, A) = f(x) + Z Aigi(@),
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2

>

x1

Figure 17.1. The central path associated with the problem of mini-
mizing the function f(z) = z1e”172 over X = {z € R? | 2 + 22 < 1}
with barrier function F(z) = (1 — 22 — 23)~!. The minimum point is

# = (—0.5825,0.8128).

and it follows from equation (17.3) that L’ (&(t),A) = 0, if A € R7 is the
vector defined by

~

—_

t (@)
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T2

Tp

T t t .

Figure 17.2. The central path for the LP problem min,cx 227 — 3z2
with X = {z € R? | 29 > 0,29 < 321,22 < 21 + 1, 11 + 29 < 4}
and logarithmic barrier. The point Zr is the analytic center of X, and
Z = (1.5,2.5) is the optimal solution.

Since the Lagrange function is convex in the variable x, we conclude that
Z(t) is a minimum point for the function L(-,)). The value at A of the
dual function ¢: R} — R to our minimization problem (P) is therefore by
definition X A

P(A) = L(&(t), A) = f(&(t)) —m/t.

~

By weak duality, ¢(A\) < f(z), so it follows that

fQ@(t)) —m/t < f(&).

We have thus arrived at the following approximation theorem, which for
convex problems with logarithmic barrier provides more precise information
than Theorem 17.1.1.

Theorem 17.1.2. The points z(t) on the central path for the conver mini-
mization problem (P) with optimal solution & and logarithmic barrier satisfy
the inequality

f@(t) — f(@) <

Note that the estimate of the theorem depends on the number of con-
straints but not on the dimension.

m
/ .

17.2 Path-following methods

A strategy for determining the optimal value of the convex optimization
problem

(®) min f(z)
st gi(z) <0, i=1,2,....,m

Download free eBooks at bookboon.com



for twice continuously differentiable objective and constraint functions with
an error that is less than or equal to ¢, would in light of Theorem 17.1.2
be to solve the optimization problem min F}(x) with logarithmic barrier F'
for t = m/e, using for example Newton’s method. The strategy works for
small problems and with moderate demands on accuracy, but better results
are obtained by solving the problems min F;(z) for an increasing sequence of
t-values until ¢t > m/e.

A simple version of the barrier method or the path-following method, as
it is also called, therefore looks like this:

Path-following method

Given a starting point x = x(y € int X, a real number ¢ =ty > 0, an update
parameter o > 1 and a tolerance € > 0.
Repeat
1. Compute Z(t) by minimizing F; = tf + F with = as starting point
2. Update: x:= &(t).
3. Stopping criterion: stop if m/t < e.
4. Increase t: t:= at.

Step 1 is called an outer iteration or a centering step because it is about
finding a point on the central path. To minimize the function F}, Newton’s
method is used, and the iterations of Newton’s method to compute Z(t) with
x as the starting point are called inner iterations.

It is not necessary to compute #(t) exactly in the outer iterations; the
central path serves no other function than to lead to the optimal point z,
and good approximations to points on the central path will also give rise to
a sequence of points which converges to .

The computational cost of the method obviously depends on the total
number of outer iterations that have to be performed before the stopping
criterion is met, and on the number of inner iterations in each outer iteration.

The update parameter «

The parameter o (and the initial value ¢y) determines the number of outer
iterations required to reach the stopping criterion ¢ > m/e. If v is small, i.e.
close to 1, then many outer iterations are needed, but on the other hand,
each outer iteration requires few inner iterations since the minimum point
x = z(t) of the function Fj is then a very good starting point in Newton’s
algorithm for the problem of minimizing the function F;.

For large o values the opposite is true; few outer iterations are needed,
but each outer iteration now requires more Newton steps as the starting point
z(t) is farther from the minimum point #(at).
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From experience, it turns out, however, that the above two effects tend
to offset each other. The total number of Newton steps is roughly constant
over a wide range of o, and values of o between 10 and 20 usually work well.

The initial value ¢,

The choice of the starting value ¢, is also significant. A small value requires
many outer iterations before the stopping criterion is met. A large value,
on the other hand, requires many inner iterations in the first outer iteration
before a sufficiently good approximation to the point #(tg) on the central
path has been found. Since f(z(to)) — f(Z) = m/ty, it may be reasonable
to choose ty so that m/ty is of the same magnitude as f(z¢) — f(Z). The
problem, of course, is that the optimal value f(Z) is not known a priori, so
it is necessary to use a suitable estimate. If, for example, a feasible point A
for the dual problem is known and ¢ is the dual function, then ¢(X) can be
used as an approximation of f(z), and to = m/(f(zo) — ¢(A)) can be taken
as initial t-value.

The starting point z

The starting point zy must lie in the interior of X, i.e. it has to satisfy all
constraints with strict inequality. If such a point is not known in advance,
then one can use the barrier method on an artificial problem to compute such
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a point, or to conclude that the original problem has no feasible points.
The procedure is called phase 1 of the path-following method and works as
follows.

Consider the inequalities

(17.4) gi(z) <0, i=1,2,....m

and suppose that the functions g;: {2 — R are convex and twice continuously
differentiable. To determine a point that satisfies all inequalities strictly or
to determine that there is no such point, we form the optimization problem

(17.5) min s
st ogi(z)<s, i=1,2,....m

in the variables = and s. This problem has strictly feasible points, because we
can first choose xy €  arbitrarily and then choose sy > max; g;(x), and we
obtain in this way a point (zg, sp) € €2 x R that satisfies the constraints with
strict inequalities. The functions (z,s) — g¢;(x) — s are obviously convex.
We can therefore use the path-following method on the problem (17.5), and
depending on the sign of the problem’s optimal value vy,;,, we get three cases.

Umin < 0: The system (17.4) has strictly feasible solutions. Indeed, if (z, s)
is a feasible point for the problem (17.5) with s < 0, then g;(z) < 0
for all 7. This means that it is not necessary to solve the optimization
problem (17.5) with great accuracy. The algorithm can be stopped as
soon as it has generated a point (z,s) with s < 0.

Umin > 0: The system (17.4) is infeasible. Also in this case, it is not necessary
to solve the problem with great accuracy. We can stop as soon as we
have found a feasible point for the dual problem with a positive value
of the dual function, since this implies that v,;, > 0.

Umin = 0: If the greatest lower bound v,;, = 0 is attained, i.e. if there is
a point (z,5) with § = 0, then the system (17.4) is feasible but not
strictly feasible. The system (17.4) is infeasible if v,,;, is not attained.
In practice, it is of course impossible to determine exactly that v,,;, = 0;
the algorithm terminates with the conclusion that |vy,| < € for some
small positive number ¢, and we can only be sure that the system
gi(x) < —e is infeasible and that the system g;(z) < € is feasible.

Convergence analysis

At the beginning of outer iteration number k, we have t = of ¢, . The
stopping criterion will be triggered as soon as m/(a*71ty) < e, ie. when
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k—1> (log(m/(ety))/ log a. The number of outer iterations is thus equal to

e/l

(for e < m/ty).
The path-following method therefore works, provided that the minimiza-
tion problems

(17.6) min tf(x)+ F(x)
st. rzeintX

can be solved for t > ty. Using Newton’s method, this is true, for example,
if the objective functions satisfy the conditions of Theorem 15.2.4, i.e. if F}
is strongly convex, has a Lipschitz continuous derivative and the sublevel set
corresponding to the starting point is closed.

A question that remains to be resolved is whether the problem (17.6)
gets harder and harder, that is requires more innner iterations, when ¢ grows.
Practical experience shows that this is not so — in most problems, the number
of Newton steps seems to be roughly constant when ¢ grows. For problems
with self-concordant objective and barrier functions, it is possible to obtain
exact estimates of the total number of iterations needed to solve the opti-
mization problem (P) with a given accuracy, and this will be the theme in
Chapter 18.
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Chapter 18

The path-following method
with self-concordant barrier

18.1 Self-concordant barriers

Definition. Let X be a closed convex subset of R" with nonempty interior
int X, and let v be a nonnegative number. A function f: int X — R is called
a self-concordant barrier to X with parameter v, or shorter a v-self-concordant
barrier, if the function is closed, self-concordant and non-constant, and the
Newton decrement satisfies the inequality

(18.1) AMf,z) < v'/?
for all x € int X.
It follows from Theorem 15.1.2 and Theorem 15.1.3 that inequality (18.1)
holds if and only if
[(f'(2), 0)] < vV2|oll.

for all vectors v € R", or equivalently, if and only if

(Df(x)[v])* < v D f(x)[v, 2]
for all v € R™.

A closed self-concordant function f: 2 — R with the property that
sup,ecqo A(f, z) < 1 is necessarily constant and the domain §2 is equal to R™,
according to Theorem 16.4.7. The parameter v of a self-concordant barrier
must thus be greater than or equal to 1.

ExaMpLE 18.1.1. The function f(z) = —Inz is a 1-self-concordant barrier
to the interval [0, oo, because f is closed and self-concordant and A(f,z) =1
for all z > 0. O]
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ExampPLE 18.1.2. Convex quadratic functions
fla) = 5z, Azx) + (b,2) + ¢

are self-concordant on R”, but they do not function as self-concordant barri-
ers, because sup A(f, ) = oo for all non-constant convex quadratic functions
f, according to Example 15.1.2. O

We will show later that only subsets of halfspaces can have self-concordant
barriers, so there is no self-concordant barrier to the whole R".

ExXAMPLE 18.1.3. Let g(z) be a non-constant convex, quadratic function.
The function f, defined by

f(x) = —In(—g(x)),

is a 1-self-concordant barrier to the set X = {z € R" | g(z) < 0}.

Proof. Let g(z) = 3(z, Az) + (b, x) + ¢, let v be an arbitrary vector in R",
and set

L L 2 TV, v| = _L (% (%
a:_ng(ZE)[U] and 6:_mD g( )[ ) ] g(l’)< A >7

where x is an arbitrary point in the interior of X. Note that 8 > 0 and that
D3g(x)[v,v,v] = 0. It therefore follows from the differentiation rules that

Df(@)lt] = ~—==Dy(a)lv] = o
D (@)levr] = sz (Dg(a)D])’ = = Da(w)lv.v) = a*+ 5 > 0.
D (@)levv.1] =~ (Do(w)lu])” + 5 DPg(a)[v, 1 Dg(a)
— ﬁlf’g(w)[v, v,v] = 20° + 3af.

The function f is convex since its second derivative is positive semidef-
inite, and it is closed since f(z) — +o0 as g(z) — 0. By squaring it is
easy to show that the inequality |2a® + 3a3| < 2(a® + 3)*? holds for all
a € R and all 8 € Ry, and obviously o? < o + 3. This means that
| D3 f(z)[v, v,0]| < 2(D2f(2)[v,v])** and that (Df(z)[])? < D2f(x)[v, ).
So f is 1-self-concordant. O

Download free eBooks at bookboon.com



DESCENT AND INTERIOR-POINT METHODS: THE PATH-FOLLOWING METHOD
CONVEXITY AND OPTIMIZATION - PART Il WITH SELF-CONCORDANT BARRIER

The following three theorems show how to build new self-concordant bar-
riers from given ones.

Theorem 18.1.1. If f is a v-self-concordant barrier to the set X and o > 1,
then af is an av-self-concordant barrier to X.

Proof. The proof is left as a simple exercise. O

Theorem 18.1.2. If f is a p-self-concordant barrier to the set X and g is a
v-self-concordant barrier to the set'Y, then the sum f+ g is a self-concordant
barrier with parameter p + v to the intersection X NY. And f + ¢ is a u-
self-concordant barrier to X for each constant c.

Proof. The sum f + ¢ is a closed convex function, and it is self-concordant
on the set int(X NY’) according to Theorem 16.1.5. To prove that the sum
is a self-concordant barrier with parameter (u + v), we assume that v is an
arbitrary vector in R" and write a = D?f(x)[v,v] and b = D?*g(x)[v,v]. We
then have, by definition,

(Df@)W])* <pa and  (Dg(a)])” < vb,
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and using the inequality 2v/purvab < va + pub between the geometric and the
arithmetic mean, we obtain the inequality

(D(f + 9)(@)e])* = (Df@)[e])” + (Dg(@)[v])” +2Df (2)[v] - Dy(a)[v]
< pa + vb+ 2~/ pavb < pa + vb + va + pb
= (u+v)(a+b) = (u+v)D*(f + g)(x)[v,v],
which means that A\(f + g, z) < (u+ v)Y2.

The assertion about the sum f + ¢ is trivial, since A(f,z) = A\(f + ¢, x)
for constants c. O

Theorem 18.1.3. Suppose that A: R™ — R™ is an affine map and that f is
a v-self-concordant barrier to the subset X of R"™. The composition g = fo A
is then a v-self-concordant barrier to the inverse image A~ (X).

Proof. The proof is left as an exercise. m

ExAMPLE 18.1.4. It follows from Example 18.1.1 and Theorems 18.1.2 and
18.1.3 that the function

flx) = —Zln(bi — (@, 7))

is an m-self-concordant barrier to the polyhedron
X={zeR"|{a;,z) <b;, i=1,2,...,m}. O
Theorem 18.1.4. If f is a v-self-concordant barrier to the set X, then

<f/<$>’y_$> <v
forallx € int X and ally € X.

Remark. Tt follows that a set with a self-concordant barrier must be a subset
of some halfspace. Indeed, a set X with a v-self-concordant barrier is a subset
of the closed halfspace {y € R" | (¢,y) < v+ (¢, z0)}, where 2y € int X is an
arbitrary point with ¢ = f’(z¢) # 0.

Proof. Fix x € int X and y € X, let ' = z +t(y — ) and define the function

¢ by setting ¢(t) = f(x'). Then ¢ is certainly defined on the open interval

Ja, 1] for some negative number «, since z is an iterior point. Moreover,
¢'(t) = D f(x')ly — =],

and especially, ¢'(0) = Df(x)ly — z] = (f'(z),y — x). We will prove that

¢'(0) <w.
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If ¢'(0) < 0, then we are done, so assume that ¢'(0) > 0. By v-self-
concordance,
¢"(t) = D*f(a")y — x,y — 2] > v (Df(")y — a])” = v 1¢/()* > 0.

The derivative ¢’ is thus increasing, and this implies that ¢/(t) > ¢'(0) > 0
for ¢t > 0. Furthermore,

d(_ 1 )_gb”(t) >1
#\"e@) T g v

for all ¢ in the interval [0, 1], so by integrating the last mentioned inequality
over the interval [0, 5], where 8 < 1, we obtain the inequality

1 1 1 B d 1 B
- — [ S(——=)dt>".
55 70 75~ a2
Hence, ¢/(0) < v/p for all 8 < 1, which implies that ¢'(0) < v. O

Theorem 18.1.5. Suppose that f is a v-self-concordant barrier to the set X.
Ifreint X, ye X and (f'(x),y —x) >0, then

ly—zlls < v+2v0.

Remark. If x € int X is a minimum point, then (f'(x),y — x) = 0 for all
points y € X, since f'(z) = 0. Hence, ||y — x|, <v+2y/vforalye X if
is a minimum point.

Proof. Let r = |ly—z||.. If < /v, then there is nothing to prove, so assume
that r > /v, and consider for « = y/v/r the point z = = + a(y — ), which
lies in the interior of X since v < 1. By using Theorem 18.1.4 with z instead
of x, the assumption (f’(z),y — ) > 0, Theorem 16.3.2 and the equalities
y—z=(1—-a)(ly—xz) and z — z = a(y — ), we obtain the following chain
of inequalities and equalities:

v (f(2),y—2) =1 —a){f(2),y —x) 2 (1 - a){f'(2) = f'(x),y — x)

1—a l—a |z—2z|?

= ) - S w) -0 2

(A =a)ally ==} rVr-v
 dltally—zfl, 1+

« 1+ |z — x|

The inequality between the extreme ends simplifies to r < v + 24/, which
is the desired inequality. ]
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Given a self-concordant funktion f with the corresponding local seminorm
IIIl:, we set

E(w;r) ={y e R" | [ly —zl. <r}.

If f is non-degenerate, then |||, is a norm at each point = € int X, and the
set £(x;r) is a closed ellipsoid in R™ with axis directions determined by the
eigenvectors of the second derivative f”(x).

For non-degenerate self-concordant barriers we now have the following
corollary to Theorem 18.1.5.

Theorem 18.1.6. Suppose that [ is a non-degenerate v-self-concordant bar-
rier to the closed convex set X. Then f attains a minimum if and only if X
is a bounded set. The minimum point T¢ € int X is unique in that case, and

E(@;1) CX CE(Epv+2/D).

Remark. A closed self-concordant function whose domain does not contain
any line, is automatically non-degenerate, so it is not necessary to state
explicitly that a self-concordant barrier to a compact set should be non-
degenerate.
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Proof. The sublevel sets of a closed convex function are closed, so if X is
a bounded set, then each sublevel set {x € int X | f(z) < a} is both closed
and bounded, and this implies that f has a minimum, and the minimum
point of a non-degenerate convex function is necessarily unique.

Conversely, assume that f has a minimum point 2. Then by the remark
following Theorem 18.1.5, |ly — ¢z, < v+ 2y/v for all y € X, and this
amounts to the right inclusion in Theorem 18.1.6, which implies, of course,
that X is a bounded set.

The remaining left inclusion follows from Theorem 16.3.2, which implies
that the open ellipsoid {y € R" | ||y — x||. < 1} is a subset of int X for each
choice of x € int X. The closure £(x;1) is therefore a subset of X, and we
obtain the left inclusion by choosing z = ;. m

Given a self-concordant barrier to a set X we will need to compare the
local seminorms ||v||, and [|v]|, of a vector at different points x and y, and in
order to achieve this we need a measure for the distance from y to x relative
the distance from y to the boundary of X along the half-line from x through
x. The following definition provides us with the relevant measure.

Definition. Let X be a closed convex subset of R™ with nonempty interior.
For each y € int X we define a function m,: R" — R, by setting

my(z) =inf{t >0 |y+t (z—y) € X}.

Obviously, m,(y) = 0. To determine m,(z) if  # y, we consider the half-
line from y through z; if the half-line intersects the boundary of X in a point
z, then m,(z) = ||z — y||/||z — y|| (with respect to arbitrary norms), and if
the entire half-line lies in X, then m,(x) = 0. We note that m,(z) < 1 for
interior points x, that m,(x) = 1 for boundary points x, and that m,(z) > 1
for points outside X.

We could also have defined the function m, in terms of the Minkowski
functional that was introduced in Section 6.10 of Part I, because

Ty (2) = ¢—yix (T —Y),
where ¢_,; x is the Minkowski functional of the set —y + X.

The following simple estimate of 7, (z) will be needed later on.

Theorem 18.1.7. Let X be a compact convex set, let x and y be points in
the interior of X, and suppose that

B(z,r) € X C B(0; R),

where the balls are given with respect to an arbitrary norm ||-||. Then
(z) 2R
my(x
ST 2R+
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Proof. The inequality is trivially true if x = y, so suppose that x # y. The
half-line from y through x intersects the boundary of X in a point z and
Iz =yl = ||z — z|]| + ||z — y||. Furthermore, ||z — z|| > r and ||z — y|| < 2R,
so it follows that

el (g eyt ey 2
w@ =T U my) Ut T

The direction derivative (f'(x),v) of a v-self-concordant barrier function
f is bounded by /v||v]|,, by definition. Our next theorem shows that the
same direction derivative is also bounded by a constant times ||v||,, if y is an
arbitrary point in the domain of f. The two local norms ||v||, and ||v||, are
also compared.

Theorem 18.1.8. Let f be a v-self-concordant barrier to X, and let x and y
be two points in the interior of X. Then, for all vectors v

(18.2) (@), )] € s Il
and

v+ 2V ;
(18.3) Iolle < =225 ol

Proof. The two inequalities hold if y = = since

[{f'(2), v} < VVlvlle <vivle

and 7, () = 0. They also hold if ||v||, = 0, i.e. if the vector v belongs to the
recessive subspace of f, because then ||v]|, = 0 and (f'(x),v) = 0. Assume
henceforth that y # x and that ||v]|, # 0.

First consider the case ||v||, = 1, and let s be an arbitrary number greater
than v + 2y/v. Then, by Theorems 16.3.2 and 18.1.5, we conclude that

(i) The two points y £ v lie in X.
s

0]

By the definition of m,(z) there is a vector z € X such that

(ii) At least one of the two points z + v lies outside X.

r=y+my@)(z—y),
and since
r+ (1 —m(z))v=m(r)z + (1 —m(2))(y £ v),
it follows from convexity that
(iii) The two points x £ (1 — m,(x))v lie in X.
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It now follows from (iii) and Theorem 18.1.4 that

1 v

m(f’(l")ax + (1 —my(z))v—z) < =)

(f'(z), +v) =

which means that y

[(f'(z),v)| < =)

This proves inequality (18.2) for vectors v with ||v]|, = 1, and if v is an
arbitrary vector with ||v||, # 0, we obtain inequality (18.2) by replacing v in
the inequality above with v/||v|,.

By combining the two assertions (ii) and (iii) we conclude that

S
1—m () < ——
) <
i.e. that
S S

z < = ’
||’U|| 1—7Ty(1') 1—7Ty(l')||v||y
and since this holds for all s > v + 24/v, it follows that
v+ 2\

—— vl

1 —my(z)

“UHw < Y-

v---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers

','

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
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Download free eBooks at bookboon.com

Click on the ad to read more

91



http://s.bookboon.com/AlcatelLucent

This proves inequality (18.3) in the case ||v||, = 1, and since the inequality
is homogeneous, it holds in general. O]

Definition. Let ||| be the local seminorm at x which is associated with the
two times differentiable convex function f: X — R, where X is a subset
of R™. The corresponding dual local norm is the function ||-||*: R* — R,
which is defined by
[ollz = sup (v,w)
llwlle<1

for all v € R".

The dual norm is easily verified to be subadditive and homogeneous, i.e.
v+ w|z < |Jvllz + [Jw|% and |||z = |A||v||% for all v,w € R™ and all real
numbers A, but ||-||% is a proper norm on the whole of R" only for points «
where the second derivative f”(z) is positive definite, because ||v||Z = oo if v
is a nonzero vector in the null space N'(f”(x)) since [[tv|, =0 for all t € R
and (v, tv) = t|jv]|* = oo as t — co. However, ||-||¥ is always a proper norm
when restricted to the subspace N(f”(z))*. See exercise 18.2.

By Theorem 15.1.3, we have the following expression for the Newton
decrement A\(f,x) in terms of the dual local norm:

Af, ) = 1 (@)]]5-

The following variant of the Cauchy—Schwarz inequality holds for the local
seminorm.

Theorem 18.1.9. Assume that ||v||5 < co. Then
{0, w)| < vl ]lwl]

for all vectors w.

Proof. If ||w]|; # 0 then +w/||w]|, are two vectors with local seminorm equal
to 1, so it follows from the definition of the dual norm that

1

o
[l

(v, 0) = (v, Fw/|wll) <[l

and we obtain the sought inequality after multiplication by |Jw||,.

If instead ||w||, = 0, then |[tw||, = 0 for all real numbers ¢, and it follows
from the supremum definition that t(v, w) = (v,tw) < ||[v||X < oo for all .
This being possible only if (v, w) = 0, we conclude that the inequality applies
in this case, too. [
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Later we will need various estimates of ||v||%. Our first estimate is in
terms of the width in different directions of the set X, and this motivates
our next definition.

Definition. Given a nonempty subset X of R”, let Vary: R” — R be the
function defined by

Vary (v) = sup(v, z) — inf (v, x).
z€X zeX

Varx (v) is obviously a finite number for each v € R™ if the set X is
bounded, and if v is a unit vector, then Varx(v) measures the width of the
set X in the direction of v.

Our next theorem shows how to estimate ||-||Z using Vary.

Theorem 18.1.10. Suppose that f: X — R is a closed self-concordant func-
tion with a bounded open conver subset X of R™ as domain, and let ||| be
the dual local norm associated with the function f at the point x € X. Then

lv]l; < Varx (v)

for allv e R™.

Proof. 1t follows from the previous theorem that y is a point in cl X if x is a
point in X and [ly — ||, < 1. Hence,

[0z = sup (v,w) = sup (v,y—=x) < sup (v,y —x) =sup(v,y - x)

H’LUHTSI ||y_x||mgl yecl X yeX
= sup (v, y) — (v, x) < sup (v,y) — inf (v, y) = Varx(v). O
yeXx yeX yeX

We have previously defined the analytic center of a closed convex set X
with respect to a given barrier as the unique minimum point of the barrrier,
provided that there is one. According to Theorem 18.1.6, every compact
convex set with nonempty interior has an analytic center with respect to any
given v-self-concordant barrier. We can now obtain an upper bound on the
dual local norm ||v||% at an arbitrary point x in terms of the parameter v and
the value of the dual norm at the analytic center.

Theorem 18.1.11. Let X be a compact convex set, and let Ty be the analytic
center of the set with respect to a v-self-concordant barrier f. Then, for each
vector v € R™ and each x € int X,

lvllz < (v +2vw)oll3,-
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Proof. Let By = &(x;1) and By = E(&y;v + 24/v). Theorems 16.3.2 and
18.1.6 give us the inclusions B; C X C B, so it follows from the definition
of the dual local norm that

|vllz = sup (v,w) = sup(v,y —x) < sup(v,y — )
llwll-<1 yeB1 yE€By

=(v,&f —x)+sup(v,y — &y) = (v, &y —x) + sup (v, w)
vebs lwlle, <v+2vv

= (v, @y —x) + (v +2VV)|vll3,.
Since ||—v||X = ||v||%, we may now without loss of generality assume that
(v,2y —x) <0, and this gives us the required inequality. O

18.2 The path-following method

Standard form

Let us say that a convex optimization problem is in standard form if it is
presented in the form

min (c, )

st. ze kX

where X is a compact convex set with nonempty interior and X is equipped
with a v-self-concordant barrier function F'.

Remark. One can show that every compact convex set X has a barrier func-
tion, but for a barrier function to be useful in a practical optimization prob-
lem, it has to be explicitly given so that it is possible to efficiently calculate
its partial first and second derivatives.

The assumption that the set X is bounded is not particularly restric-
tive for problems with finite optimal values, for we can always modify such
problems by adding artificial, very big bounds on the variables.

We also recall that an arbitrary convex problem can be transformed into
an equivalent convex problem with a linear objective function by an epigraph
formulation. (See Chapter 9.3 of Part II.)

ExaMPLE 18.2.1. Each LP problem with finite optimal value can be written
in standard form after suitable transformations. By first identifying the affine
hull of the polyhedron of feasible points with R™ for an appropriate n, we
can without restriction assume that the polyhedron has a nonempty interior,
and by adding big bounds on the variables, if necessary, we can also assume
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that our polyhedron X of feasible points is compact. And with X written in
the form

(18.4) X={zeR"|{c,z) <b;, i=1,2,...,m},
we get an m-self-concordant barrier F' to X, by defining
F(r)=— Zln(bi — (¢, 1)) O
i=1

ExAMPLE 18.2.2. Convex quadratic optimization problems, i.e. problems of
the type

min g(x)

st. relX

where g is a convex quadratic function and X is a bounded polyhedron in R”
with nonempty interior, can be transformed, using an epigraph formulation
and an artificial bound M on the new variable s, to problems of the form

min s
st. (z,s) €Y

/

Leadiny
% Maastricht University s Learnin’

Join the best at
P 5. N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd . 2" place: MSc Management of Learning
. - 2" place: MSc Economics
Econom |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com

Click on the ad to read more

95


http://www.mastersopenday.nl

where Y = {(z,s) e R*" xR |z € X, g(z) < s < M} is a compact convex
set with nonempty interior. Now assume that the polyhedron X is given by
equation (18.4) as an intersection of closed halfspaces. Then the function

F(z,s) = — Zln(bi —(ci, ) — In(s — g(z)) — In(M — s)

is an (m + 2)-self-concordant barrier to Y according to Example 18.1.3. [

Central path
We will now study the path-following method for the standard problem

(SP) min (c,x)
st. reX

where X is a compact convex subset of R™ with nonempty interior, and F
is a v-self-concordant barrier to X. The finite optimal value of the problem
is denoted by vpi,.

For t > 0 we define functions F;: int X — R by
Fi(xz) =t{c,x) + F(x).

The functions F; are closed and self-concordant, and since the set X is com-
pact, each function F; has a unique minimum point Z(¢). The central path
{z(t) | t > 0} is in other words well-defined, and its points satisfy the equa-
tion

(18.5) te+ F'(&(t)) = 0,

and the starting point z(0) is by definition the analytic center Zp of X with
respect to the given barrier F'.

We will use Newton’s method to determine the minimum point (),
and for that reason we need to calculate the Newton step and the Newton
decrement with respect to the function F; at points in the interior of X.

Since F}'(x) = F"(x), the local norm ||v||, of a vector v with respect to
the function Fj is the same for all ¢ > 0, namely

1]l = /v, F"(x)v).

In contrast, Newton steps and Newton decrements depend on ¢; the Newton
step at the point x is equal to —F”(z)~'F/(z) for the function F}, and the
decrement is given by

ME;, 2) = V(F/ (), F'(2) 7 Fl(2)) = | F"(2) 7' F{(2)]-
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The following theorem is used to formulate the stopping criterion in the
path-following method.

Theorem 18.2.1. (i) The points &(t) on the central path of the optimization
problem (SP) satisfy the inequality

(e, 2 (1)) — Umin < %

(i) Moreover, the inequality

v+ k(1 — /@)*1\/5'

<07 .I> — Umin > /

holds for t > 0 and all point x € int X satisfying the condition
AMF,x) <k<l1.

Proof. (i) Because of equation (18.5), ¢ = —t~'F'(Z(t)), and it therefore
follows from Theorem 18.1.4 that

(e, 2(t)) — (e, y) = %(F’(ii“(t)), y—a(t) <

for all y € X. We obtain inequality (i) by choosing y as an optimal solution
to the problem (SP).

SN

(il) Since (¢, ) — Vmin = ((¢, ) — (¢, 2(t))) + ({¢, Z(t)) — Vi), it suffices, due
to the already proven inequality, to show that

K

NS

(18.6) {c,x) = (¢, (1)) <

11—k

if x € int X and A\(Fy,z) < k < 1. But it follows from Theorem 16.4.6 that

. A Fy, ) K
- t T S S )
HQJ :C( )” () 1 _ )\(Ft,ai) 1—k

so by using that tc = —F'(z(t)) and that F' is v-self-concordant, we get the
following chain of equalities and inequalities:

H{e,x) — (e, 2(1))) = —(F'(2(1), = — #(1)) < |F' (@) e — 20
= ME,# )]z — #(0) ) < Vo—

11—k’

which proves inequality (18.6). O
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Algorithm
The path-following algorithm for solving the standard problem
(SP) min (¢, x)
st. zelX

works in brief as follows.

We start with a parameter value ¢y > 0 and a point xg € int X, which
is close enough to the point Z(#y) on the central path. ”Close enough” is
expressed in terms of the Newton decrement A(F},, zo), which must be suffi-
ciently small.

Then we update the parameter ¢t by defining t; = at, for a suitable a > 1
and minimize the function F}, using the damped Newton method with x4 as
the starting point. Newton’s method is terminated when it has reached a
point 1, which is sufficiently close to the minimum point (¢;) of F},.

The procedure is then repeated with ¢, = at; as new parameter and with
x7 as starting point in Newton’s method for minimization of the function F,,
etc. As a result we obtain a sequence tgy, g, t1, o1, ta, Ta, ...of parameter
values and points, and the procedure is terminated when ¢; has become
sufficiently large with z; as an approximate optimal point.
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From this sketchy description of the algorithm it is clear that we need two
parameters, one parameter « to describe the update of ¢, and one parameter
k to define the stopping criterion in Newton’s method. We shall estimate the
total number of inner iterations, and the estimate will be the simplest and
most obvious if one writes the update parameter « in the form o = 14/4/v.

The following precise formulation of the path-following algorithm there-
fore contains the parameters v and k. The addition 'phase 2’ is due to the
need for an additional phase to generate feasible initial values xy and ty.

Path-following algorithm, phase 2
Given an update parameter v > 0, a neighborhood parameter 0 < x < 1, a
tolerance € > 0, a starting point o € int X, and a starting value ¢ty > 0
such that A(Fy,, o) < k.
Initiate: x:= x¢ and t:= tg.
Stopping criterion: stop if et > v+ k(1 — k)1 /.
Increase t: t:= (1 +~/\/v)t.
Update x by using Newton’s damped method on the function Fy with the
current T as starting point:
(i) Compute the Newton decrement A = A\(F}, x).
(ii) quit Newton’s method if A < k, and go to line 2.
(iii) Compute the Newtonstep Az, = —F"(x) " F/(x).
)
)

W=

(iv) Uppdate: z:=x + (1 4+ \) "' Axy
(v) Go to (i).

We can now show the following convergence result.

Theorem 18.2.2. Suppose that the above path-following algorithm is applied
to the standard problem (SP) with a v-self-concordant barrier F. Then the
algorithm stops with a point x € int X which satisfies

(¢, ) — Umin < €.

For each outer iteration, the number of inner iterations in Newton’s al-
gorithm is bounded by a constant K, and the total number of inner iterations
in the path-following algorithm is bounded by

C\v ln(L + 1) ,
toE
where the constants K and C' only depend on k and 7.

Proof. Let us start by examining the inner loop 4 of the algorithm.

Each time the algorithm passes by line 2, it does so with a point x in
int X, which belongs to a t-value with Newton decrement A\(F;,z) < k.
In step 4, the function Fs, where s = (1 + v/y/v)t, is then minimized
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using Newton’s damped method with yy = x as the starting point. The
points y,, k = 1,2,3,..., generated by the method lie in int X accord-
ing to Theorem 16.3.2, and the stopping condition A\(Fy,y,) < k implies,
according to Theorem 16.5.1, that the algorithm terminates after at most
| (Fy(z) — Fy(2(s)))/p(—r)] iterations, where p is the function

p(u) = —u—1In(1l — u).

We shall show that there is a constant K, which only depends on the param-
eters k and ~, so that

|l FU50D) |

and for that reason we need to estimate the difference Fi(x)— F(Z(s)), which
we do in the next lemma.

Lemma 18.2.3. Suppose that A\(F;,x) < k < 1. Then, for all s >0

RA/V

Fy(x) = F(#(s)) < plr) + 7 - y; — 1| +vp(1 = s/t).

Proof of the lemma. We start by writing
(18.7)  Fu(x) = Fu(i(s)) = (Fulw) = F(2(1)) + (F(2(1) — Fu(()))-

By using the equality t¢ = —F’(#(t)) and the inequality
[(F"(2(1)), v)| < AMF,2(0)[vllaey < VVIvllew),

we obtain the following estimate of the first difference in the right-hand side
of (18.7):

(18.8) Fy(z) — F(2(t)) = Fi(z) — F(2(t) + (s — t){c,x — ()
= Fi(r) = Fi(2(1)) = (s/t = D{F'(2()), © - &(t))
< Fy(w) = F(2(1) + |s/t = 1 Vv [l& = &) ]la)-

By Theorem 16.4.6,

Fi(x) = F(#(1) < p(A(Fry)) < plr)

. A Fy, x) K
_ )l < < .
Iz = 2@l < 1= XNF,z) ~ 1—=&

and
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Therefore, it follows from inequality (18.8) that

rVY

1—k

R s
(18.9) Fy(z) = Fy(&(1) < p(r) + |5 = 1] -
It remains to estimate the second difference

(18.10) ¢(s) = Fs((t)) — Fu(2(s))
= s(c, 2(t)) — s{c, &(s)) + F(2(1)) — F(i(s))

in the right-hand side of (18.7).
The function #(s) is continuously differentiable. This follows from the
implicit function theorem, because #(s) satisfies the equation

sc+ F'(z(s)) =0,

and the second derivative F”(x) is continuous and non-singular everywhere.
By implicit differentiation,

c+ F'(2(s))2'(s) = 0,
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which means that

P(s) = —F"(2(s)) e
It now follows from equation (18.10) that the difference ¢(s) is continuously
differentiable with derivative

¢'(s) = (¢, &(t)) — (¢, 2(s)) — s{c, &'(s)
= (¢, &(t) — &(s)) — s(c, #'(s)) +
= (¢, 2(t) — 2(s)),

and a further differentiation gives

¢"(s) = —(c, ' (s)) = (¢, F"(2(s)) ")
= (sT'F'(&(s)), s F"(2(s)) T F(2(s)))
= s (F'(&(s)), F"(&(s)) " F'(2(s))) = s A(F, 2(s))* <ws ™.
Now note that ¢(t) = ¢/(t) = 0. By integrating the inequality for ¢”(s)
over the interval [¢, u|, we therefore obtain the following estimate for u > ¢:

u

S =)=~ ¢ (0 < [ vsrds =it - u),

t

Integrating once more over the interval [t, s| results in the inequality
(18.11)  Fy(2(t)) — Fy(2(s) / ¢ (u) du < y/ t ™t —u ) du
—1/(—— 1—1nt) =vp(l—s/t)

t

for s > t. The same conclusion is also reached for s < t by first integrating the
inequality for ¢”(s) over the interval [u,t], and then the resulting inequality
for ¢'(u) over the interval [s,t].

The inequality in the lemma is now finally a consequence of equation
(18.7) and the estimates (18.9) and (18.11). O

Continuation of the proof of Theorem 18.2.2. By using the lemma’s estimate
of the difference Fy(z) — Fy(Z(s)) when s = (1 + v/4/v)t, we obtain the
inequality

Fy(x) — Fy(2(s)) p(k) + KL — k) v p(— )
e = o) J
and v p(—yw~?) < 142, because p(u) = —u — In(1 — u) < 2u? for u < 0.

The number of inner iterations in each outer iteration is therefore bounded
by the constant

K — V(fﬁ) + ’m&__n,;)—l i %VQJ’
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which only depends on the parameters x and . For example, K = 5 if
k= 0.4 and v = 0.32.

We now turn to the number of outer iterations. Set

B(k) =v+r(l—rK) V.

Suppose that the stopping condition et > (k) is triggered during iteration
number k when ¢ = (1 + v//v)*ty. Because of Theorem 18.2.1, the current
point x then satisfies the condition

<C7 JI> — Umin S €,
which shows that x approximates the minimum point with prescribed accu-

racy.
Since k is the least integer satisfying the inequality (1 + «/y/v)F

B(k)/toe, we have
[t
(L + /v |

To simplify the denominator, we use the fact that In(1 4+ yz) is a concave
function. This implies that In(1 + ~vx) > zIn(1 + ) if 0 < 2 < 1, and hence

(1 +7/v/7) > “ﬁ”’

Furthermore, 3(xk) = v+k(1—k)"'\v <v+r(1—r)"'v = (1—k)"'v. This

gives us the estimate

Vln(fléfw v/toﬂ < Kvoin( e+ 1)

for the number of outer iterations with a constant K’ that only depends
on x and v, and by multiplying this with the constant K we obtain the
corresponding estimate for the total number of inner iterations. O

Phase 1

In order to use the path-following algorithm, we need a ¢y > 0 and a point
xo € int X with Newton decrement A(F},,z9) < k to start from. Since the
central path begins in the analytic center Zr of X and A(F,zr) = 0, it can
be expected that (zg, 1) is good enough as a starting pair if only xq is close
enough to Zp and ¢, > 0 is sufficiently small. Indeed, this is true, and we
shall show that one can generate such a pair by solving an artificial problem,
given that one knows a point = € int X.
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Therefore, let G;: int X — R, where 0 <t < 1, be the functions defined
by

Gy(z) = —t(F'(T), z) + F(z).

The functions G; are closed and self-concordant, and they have unique min-
imum points Z(t).

Note that Gy = F, and hence Z(0) = &p. Since G}(z) = —tF'(Z) + F'(x),
G (%) = 0, and this means that T is the minimum point of the function G;.
Hence, (1) = Z. The curve {Z(¢) | 0 < t < 1} thus starts in the analytic
center £ and ends in the given point . By using the path-following method,
now following the curve backwards, we will therefore obtain a suitable starting
point for phase 2 of the algorithm.

We use Newton’s damped method to minimize G; and note that G} = F”
for all ¢, so the local norm with respect to the function G; coincides with the
local norm with respect to the function F', and we can thus unambiguously
use the symbol |||, for the local norm at the point .

The algorithm for determining a starting pair (x¢, %) now looks like this.

(]
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Path-following algorithm, phase 1

Given 7 € int X, and parameters 0 < v < % v and 0 <k < 1.

Initiate: x:=7 and t:= 1.

Stopping criterion: stop if \(F,z) < %Ii and set xg = x.

Decrease t: t:= (1 —~v/\/V)t.

Update x by using Newton’s damped method on the function G; with the

current x as starting point:
(i) Compute A = A(Gy, x).

(ii) quit Newton’s method if A < k/2, and go to line 2.

(iii) Compute the Newton step Axy, = —F"(z)'G)(z).
)
)

- =

(iv) Update: z:=x + (1 + \) "' Azy.
(v) Go to (i).
When the algorithm has stopped with a point xg, we define ¢y by setting
to = max{t | \(F},zo) < K}.
The number of iterations in phase 1 is given by the following theorem.

Theorem 18.2.4. Phase 1 of the path-following algorithm stops with a point
xo € int X after at most

ovn(— 1)
1 — 7, (T)
inner iterations, where the constant C' only depends on k and vy, the number

to satisfies the conditions N\(Fy,, xo) < k and ty > k/4 Varx(c).

Proof. We start by estimating the number of inner iterations in each outer
iteration; this number is bounded by the quotient

where s = (1 —v/4/v)t, and Lemma 18.2.3 gives us the majorant
KV
2— Kk v

for the numerator of the quotient. By Lemma 16.3.1, vp(v/y/v) < 72, so the
number of inner iterations in each outer iteration is bounded by the constant

p(K/2) + + v p(v/Vv)

p(/2) + K2 —rK)'v+9°
p(—K/2)
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We now consider the outer iterations. Since F' = G} + tF'(T),
(18.12)  A(F,z) = [F'(2)[; = [|Gi(z) + tF' (@) < (G @)L + HIF @)
= MG, x) + | F' (@[3
It follows from Theorem 18.1.11 that
IF' @) < (v +2v)IF@)]5, < 3vF' @3,
and from Theorem 18.1.8 that

v
|F'(@);, = sup (F'(T),v) < .
T ells < 1 — 73, (7)
Hence
32
18.13 Falf< ———.
(18.13) IF @ < =7

During outer interation number k, we have t = (1 — v/4/v)* and the point
x satisfies the condition A\(Gy,x) < k/2 when Newton’s method stops. So
it follows from inequality (18.12) and the estimate (18.13) that the stopping
condition A(F,z) < 3k in line 2 of the algorithm is fulfilled if

1 3
z = (1= ke 2
ie. if oy
12Kk~
kln(1 —~/\/v) < —ln(ll%—y_).

— Tép (:IZ‘

By using the inequality In(1 — ) < —z, which holds for 0 < z < 1, we see
that the stopping condition is fulfilled for

Y

— T (T

12 —-1.,2
s YV 1n(L)
1
So the number of outer iterations is less than
v

Kﬁln<—_)+1>,

— Tpp (T

where the constant K only depends on s and ~, and this proves the estimate
of the theorem, since the number of inner iterations in each outer iteration
is bounded by a constant, which only depends on x and ~.
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The definition of t, implies that k = A(F},, xo), so we get the following
inequalities with the aid of Theorem 18.1.10:

K= AMF, mo) = 1 Fy (o) Iz, = [ltoc + F'(wo)ll3, < tollelly, + 1 F" (o)

[
3
= tollc|lz, + AMF,z0) < to Varx(c) + e

It follows that

to > ——. O
0= 4Vary c

The following complexity result is now obtained by combining the two
phases of the path-following algorithm.

Theorem 18.2.5. A standard problem (SP) with v-self-concordant barrier,
tolerance level € > 0 and starting point T € int X can be solved with at most

CvVrin(v®/e+ 1)
Newton steps, where
Varx(c)
O = —T
1 — 7, (7)

and the constant C only depends on v and k.
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Proof. Phase 1 provides a starting point zy and an initial value ¢, for phase 2,
satisfying the condition ty > /(4 Varx(c)). The number of inner iterations
in phase 2 is therefore bounded by

OV n(2YAD ) — o)y (VD ),

RE €

So the total number of inner iterations in the two phases is

O(l)\/;ln<1; +1) +O(1)\/51H(WLX(C) +1)

— T3 (T) €

= O(1)VrIn(v®/e + 1). O

Remark. The algorithms in this section provide nice theoretical complexity
results, but they are not suitable for practical use. The main limitation is
the low updating factor (1 4+ O(1)r~2) of the penalty parameter ¢, which
implies that the total number of Newton steps will be proportional to /v.
For an LP problem with n = 1000 variables and m = 10000 inequalities, one
would need to solve hundreds of linear equations with 1000 variables, which
requires far more time than what is needed by the simplex algorithm. In
the majority of outer iterations, one can, however, in practice increase the
penalty parameter much faster than what is needed for the theoretical worst
case analysis, without necessarily having to increase the number of Newton
steps to maintain proximity to the central path. There are good practical
implementations of the algorithm that use various dynamic strategies to con-
trol the penalty parameter ¢, and as a result only a moderate total number
of Newton steps is needed, regardless of the size of the problem.

18.3 LP problems

We now apply the algorithm in the previous section on LP problems. Con-
sider a problem of the type

(18.14) min (c,x)
st. Az <b

where A = [a;;] is an m x n-matrix. We assume that the polyhedron

X ={reR"| Az <b}
of feasible points is bounded and has a nonempty interior. The boundedness
assumption implies that m > n.
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The ith row of the matrix A is denoted by a;, that is a; = [an a2 ... ain).
The matrix product a;x is thus well-defined.
As a barrier to the set X we use the m-self-concordant function

F(z) = — Zln(bi — a;T).

The path-following algorithm started from an arbitrary point = € int X
results in an e-solution, i.e. a point with a value of the objective function
that approximates the optimal value with an error less than e, after at most

O(1)v/mIn(m®/e + 1)

inner iterations, where
& — VarX(c)_ '
1—n g (;C)

We now estimate the number of arithmetic operations (additions, sub-
tractions, multiplications and divisions) that are required during phase 2 of
the algorithm to obtain this e-solution.

For each inner iteration of the Newton algorithm, we first have to compute
the gradient and the hessian of the barrier function at the current point z,
ie.

F'(z) = zm: —aiT och F"(z)= z’”‘: —aiTai :
i1 bz — ;T i1 (bz — (IZ‘ZE)Q

This can be done with O(mn?) arithmetic operations. The Newton direction
Axy at x is obtained as solution to the quadratic system

F"(2)Axy, = —(tc + F'(2))

of linear equations, and using Gaussian elimination, we find the solution after
O(n?) arithmetic operations. Finally, O(n) additional arithmetic operations,
including one square root extraction, are needed to compute the Newton
decrement A = A\(F}, ) and the new point 27 =z + (1 + ) 7 Axy.

The corresponding estimate of the number of operations is also true for
phase 1 of the algorithm.

The gradient and hessian computation is the most costly of the above
computations since m > n. The total number of arithmetic operations in
each iteration is therefore O(mn?), and by multiplying with the number of
inner iterations, the overall arithmetic cost of the path-following algorithm
is estimated to be no more than O(m?®?n?) In(m®/e + 1) operations.

The resulting approximate minimum point Z(e€) is an interior point of the
polyhedron X, but the minimum is of course attained at an extreme point
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on the the boundary of X. However, there is a simple procedure, called
purification and described below, which starting from #(e) finds an extreme
point & of X after no more than O(mn?) arithmetic operations and with an
objective function value that does not exceed the value at Z(e). This means
that we have the following result.

Theorem 18.3.1. For the LP problem (18.14) at most
O(m??n?) In(m® /e + 1)

arithmetic operations are needed to find an extreme point T of the polyhedron
of feasible points that approzimates the minimum value with an error less
than e.

Purification

The proof of the following theorem describes an algorithm for how to generate
an extreme point with a value of the objective function that does not exceed
the value at a given interior point of the polyhedron of feasible points.
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Theorem 18.3.2. Let

min (c,x)
st. Az <b

be an LP problem with n vartables and m constraints, and suppose that the
polyhedron X of feasible points is line-free and that the objective function
15 bounded below on X. For each point of X we can generate an extreme
point of X with a value of the objective function that does not exceed the
value at the given point with an algorithm using at most O(mn?) arithmetic
operations.

Proof. The idea is very simple: Follow a half-line from the given point z(®)
with non-increasing function values until hitting upon a point ™ in a face
Fy of the polyhedron X. Then follow a half-line in the face F} with non-
increasing function values until hitting upon a point 3 in the intersection
Fy N F, of two faces, etc. After n steps, one has reached a point 2™ in the
intersection of n (independent) faces, i.e. an extreme point, with a function
value that is less than or equal to the value at the starting point.

To estimate the number of arithmetic operation we have to study the
above procedure in a little more detail.

We start by defining v = ey if ¢; < 0, v = —e; if ¢; > 0, and
v = +e; if ¢; = 0, where the sign in the latter case should be chosen so
that the half-line (' 4+tvM, ¢ > 0, intersects the boundary of the polyhedron;
this is possible since the polyhedron is assumed to be line-free. In the first two
cases, the half-line also intersects the boundary of the polyhedron, because
(e, 2@ + tvW) = (¢, 2} — t|e;| tends to —oco as ¢ tends to oo and the
objective function is assumed to be bounded below on X. The intersection
point 2 = 2 4-¢,0(1) between the half-line and the boundary of X can be
computed with O(mn) arithmetic operations, since we only have to compute
the vectors b — Az(® and AvM, and quotients between their coordinates in
order to find the nonnegative parameter value t;.

After renumbering the equations, we may assume that the point (! lies
in the hyperplane a11x1 + @222 + -+ + a1,2, = by. We now eliminate the
variable x; from the constraints and the objective function, which results in
a system of the form

/ / /
Ty + AT + -+ Ay, T, = by
L2

AI < b/

(18.15)

T
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where A’ is an (m — 1) x (n — 1)-matrix, and in a new objective function
CoTo + -+ x, + d,

which is the restriction of the original objective function to the current face.
The number of operations required to perform the eliminations is O(mn).

After O(mn) operations we have thus managed to find a point z(!) in
a face F| of X with an objectiv function value (c,z(") = (¢, 2(0) — t,|c,]
not exceeding (c,z(®), and determined the equation of the face and the
restriction of the objective function to the face. We now have a problem of
lower dimension n — 1 and with m — 1 constraints.

We continue by choosing a descent vector v(? for the objective function
that is parallel to the face F, and we achieve this by defining v® so that
v£2) = =£1, véz) == =0 (and 7152) = —a’uvé?)), where the sign of 1152)
should be chosen so that the objective function is non-decreasing along the
half-line (M +tv®) | t > 0, and the half-line instersects the relative boundary
of Fy. This means that U§2) =1lif ¢, < 0 and véz) = —1if ¢, > 0, while
the sign of vf) is determined by the requirement that the half-line should
intersect the boundary in the case ¢, = 0.

We then determine the intersection between the half-line 2! +tv(2), t>0,
and the relative boundary of F}, which occurs in one of the remaining hyper-
planes. If this hyperplane is the hyperplane abxs + - - - + al, x, = b}, say, we
eliminate the variable x5 from the remaining constraints and the objective
function. All this can be done with at most O(mn) operations and results in
a point z(?) in the intersection of two faces, and the new value of the objective
function is (¢, z®) = (¢, 2M) — t5|c,| < (¢, 2M).

After n iterations, which together require at most nO(mn) = O(mn?)
arithmetic operations, we have reached an extreme point & = z™ with a
function value that does not exceed the value at the starting point #(®). The
coordinates of the extreme point are obtained by solving a triangular system
of equations, which only requires O(n?) operations. The total number of
operations is thus O(mn?). O

ExaMPLE 18.3.1. We exemplify the purification algorithm with the LP prob-
lem
min —2x1 + T2 + 323
—x1+ 204+ 23 <4

<t —T1+ X9+ $3§2
o 171—2172 Sl
T — x2—2x3§1
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Starting from the interior point (® = (1,1,1) with objectiv function
value ¢’z(®) = 2, we shall find an extreme point with a lower value.

Since ¢; = —2 < 0, we begin by choosing v(*) = (1,0, 0) and by determin-
ing the point of intersection between the half-line z = 2@ 4-to™ = (1+¢,1, 1),
t > 0, and the boundary of the polyhedron of feasible points. We find that the
point () = (3,1,1), corresponding to ¢ = 2, satisfies all constraints and the
third constraint with equality. So 2 lies in the face obtained by intersecting
the polyhedron X with the supporting hyperplane z; — 2z, = 1. We elimi-
nate x; from the objectiv function and from the remaining constraints using
the equation of this hyperplane, and consider the restriction of the objective
function to the corresponding face, i.e. the function f(z) = —3zy + 3x3 — 2
restricted to the polyhedron given by the system

561—21‘2 =1
1’3§5

— T2+ I3 <3
To—2x3 <0

The xo-coefficient of our new objective function is negative, so we follow
the half-line xo = 1+4+¢, 3 = 1, t > 0, in the hyperplane r; — 2z, = 1 until it
hits a new supporting hyperplane, which occurs for ¢ = 1, when it intersects
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the hyperplane x5 — 2x3 = 0 in the point z(? = (5,2,1). Elimination of x

results in the objective function f(z) = —3x3 — 2 and the system
T — 2ZE2 =1
To — 2(E3 =0
T3 S 5
— X3 S 3

Our new half-line in the face FyNF5 is given by the equation x3 = 1+t, ¢ > 0,
and the halfline intersects the third hyperplane x3 = 5 when t = 4, i.e. in a
point with z3-coordinate equal to 5. Back substitution gives 2(3) = (21, 10, 5),
which is an extreme point with objective function value equal to —17. O

18.4 Complexity

By the complexity of a problem we here mean the number of arithmetic
operations needed to solve it, and in this section we will study the complexity
of LP problems with rational coefficients. The solution of an LP problem
consists by definition of the problem’s optimal value and, provided the value
is finite, of an optimal point. All known estimates of the complexity depend
not only on the number of variables and constraints, but also on the size of
the coefficients, and an appropriate measure of the size of a problem is given
by the number of binary bits needed to represent all its coefficients.

Definition. The input length of a vector x = (x1,23,...,x,) in R™ is the
integer ¢(x) defined as

n

Uz) = [logy(lz;] + 1)1.

Jj=1

The number of digits in the binary expansion of a positive integer z is
equal to [logy(|z| + 1)]. The binary representation of a negative integer
z requires one bit more in order to take care of the sign, and so does the
representation of z = 0. The number of bits to represent an arbitrary vector
x in R™ with integer coordinates is therefore at most ¢(z) + n.

The norm of a vector can be estimated using the input length, and we
shall need the following simple estimate in the two cases p = 1 and p = 2.

Lemma 18.4.1. ||z, < 2°® for all x € R™ and all p > 1.

Proof. The inequality is a consequence of the following trivial inequalities
> o105 < Iljmi(a +1), a? +1 < (a+ 1)P and logy(a+ 1) < [logy(a+ 1)1,

J=1

Download free eBooks at bookboon.com



which hold for nonnegative numbers a, a;, and imply that

n n n

lzllp =D oy P H ja;” +1) < [Jlayl + 1P < 274, O

j=1 j=1 j=1
We will now study LP problems of the type

(LP) min (c, )
st. Az <b

where all coefficients of the m x n-matrix A = [a;;] and of the vectors b and
c are integers. Every LP problem with rational coefficients can obviously be
replaced by an equivalent problem of this type after multiplication with a
suitable least common denominator. The polyhedron of feasible points will
be denoted by X so that

X ={z e R"| Az < b}.

Definition. The two integers
U(X)=0A)+£(0) and L=4(X)+{l(c)+m+n,
where ((A) denotes the input length of the matrix A, considered as a vector

in R™ are called the input length of the polyhedron X and the input length
of the given LP problem (LP), respectively.

The main result of this section is the following theorem, which implies
that there is a solution algorithm that is polynomial in the input length of
the LP problem.

Theorem 18.4.2. There is an algorithm which solves the LP problem (LP)
with at most O((m +n)"/2L) arithmetic operations.

Proof. 1. We begin by noting that we can without restriction assume that
the polyhedron X of feasible points is line-free. Indeed, we can, if necessary
replace the problem (LP) with the equivalent and line-free LP problem

min (c,z") — {c,z7)
Azt — Az=<b
s.t. —zt <0
—x~ <0.
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This LP problem in n’ = 2n variables and with m’ = m + 2n constraints has
input length

L' =20(A) +2n+ £(b) + 20(c) +m' +n’
< 2(0(A) +L(b) 4+ l(c) + m +n) +4n = 2L + 4n < 6L,

so any algorithm that solves this problem with O((m/ 4 n')"/2L’) operations
also solves problem (LP) with O((m + n)7/2L) operations since m’ + n' <
4(m +mn) and L' <6L.

From now on, we therefore assume that X is a line-free polyhedron, and
for nonempty polyhedra X this implies that m > n and that X has at least
one extreme point.

The assertion of the theorem is also trivially true for LP problems with
only one variable, so we assume that m > n > 2. Finally, we can naturally
assume that all the rows of the matrix A are nonzero, for if the kth row is
identically zero, then the corresponding constraint can be deleted if by > 0,
while the polyhedron X of feasible point is empty if by < 0. In the future,
we can thus make use of the inequalities

UX)>l(A)>m>n>2and L>U(X)+m+n>0(X)+4.
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II. Under the above assumptions, we will prove the theorem by showing:

1. With O(m™?2L) operations, one can determine whether the optimal
value of the problem is +o00, —oo or finite, i.e. whether there are any
feasible points or not, and if there are feasible points whether the ob-
jective functions is bounded below or not.

2. Given that the optimal value is finite, one can then determine an opti-
mal solution with O(m?3/2n?L) operations.

Since the proof of statement 1 uses the solution of an appropriate auxiliary
LP problem with finite value, we begin by showing statement 2.

III. As a first building block we need a lemma that provides information
about the extreme points of the polyhedron X in terms of its input length.

Lemma 18.4.3. (i) Let & be an extreme point of the polyhedron X. Then,
the following inequality holds for all nonzero coordinates Z;:

2 HX) < 2, < 2UX)
Thus, all extreme points of X lie in the cube {x € R" | [|z|ls < 219},

(i) If T and T are two extreme points of X and (c, &) # (¢, T), then
l(c, 2) — (c, &) > 474X,

Proof. To prove the lemma, we begin by recalling Hadamard’s inequality for

k x k-matrices C' = [¢;;] with columns C,q, Cla, ..., Ci, and which reads as
follows:
k k s
detC < [TICq I =TT <)
j=1 j=1 =1

The inequality is geometrically obvious — the left-hand side |det C| is the
volume of a (hyper)parallelepiped, spanned by the matrix columns, while the
right-hand side is the volume of a (hyper)cuboid whose edges are of the same
length as the edges of the parallelepiped.

By combining Hadamard’s inequality with Lemma 18.4.1, we obtain the
inequality

k
[det C| < [ 2199 = 219

J=1

If C' is a quadratic submatrix of the matrix [A b], then obviously ¢(C) <
((A) + £(b) = ¢(X), and it follows from the above inequality that

(18.16) |det O] < 2640,
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Now let & be an extreme point of the polyhedron X. According to Theo-
rem 5.1.1 in Part I, there is a set {iy,4s,...,4,} of row indices such that the
extreme point Z is obtained as the unique solution to the equation system

n

E Q55 :bi, T =11,12,...,10pn.

=1
By Cramer’s rule, we can write the solution in the form

A

ii’j — Kj,
where A is the determinant of the coefficient matrix and A; is the determi-
nant obtained by replacing column number j in A with the right-hand side
of the equation system. The determinants A and A; are integers, and their
absolute values are at most equal to 2/X)| because of inequality (18.16). This
leads to the following estimates for all nonzero coordinates ;, i.e. for all j
with A; # 0:
3] = [A,1/1A] < 20971 = 209 and || = |A,|/]A] 2 1/209 = 2709,

which is assertion (i) of the lemma.

(ii) The value of the objective function at the extreme point Z is

(c, ) = (i chj> /A =T/A,

=1

where the numerator 7" is an integer. If T is another extreme point, then of
course we also have (¢, z) = T"/A’ for some integer 7" and determinant A/
with |A/] < 24%) Tt follows that the difference

(e,) — (¢, 2) = (TA" = T'A) /AN’
is either equal to zero or, if the numerator is nonzero, an integer with absolute

value > 1/]AA/] > 47¢X), O

IV. We shall use the path-following method, but this assumes that the poly-
hedron of feasible points is bounded and that there is an inner point from
which to start phase 1. To get around this difficulty, we consider the following
auxiliary problems in n + 1 variables and m + 2 linear constraints:

(LPay) min (¢, x) + Mz,
Az 4+ (b—1)xp1 < b
s.t. Tn+1 S 2
—Tp+1 S 0.
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Here, M is a positive integer, 1 denotes the vector (1,1,...,1) in R™ and
x is as before the n-tuple (1, z9, ..., x,).

Let X’ denote the polyhedron of feasible points for the problem (LP,;).
Since (x,x,41) = (0, 1) satisfies all constraints with strict inequality, (0, 1) is
an inner point in X’.

We obtain the following estimates for the input length ¢(X’) of the poly-
hedron X" and the input lenght L(M) of problem (LP,):

m

(18.17)  6(X') =L(A) + > [log,y(|bi — 1] + 1)] + 1+ 1 + £(b) +2

<UX)+4+ Xm:(l + [log, (1+ 1b:)])

=1

= U(X)+4+m+ D) <2X)+4 < 2L — 4,

(18.18)  L(M)=0X")+{l(c)+ [logo(M +1)]+m+n+3
<20(X) +2l(c) + [logg M| +m +n+8
=2L+ [logy, M| — (m+n)+8 < 2L + [log, M| + 4.
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The reason for studying our auxiliary problem (LP,;) is given in the
following lemma.

Lemma 18.4.4. Assume that problem (LP) has a finite value. Then:
(i) Problem (LPy;) has a finite value for each integer M > 0.
(11) If (&,0) is an optimal solution to problem (LPy), then & is an optimal
solution to the original problem (LP).
(iii) Assume that M > 2*L and that the extreme point (&, 2,41) of X' is an
optimal solution to problem (LPys). Then, Z,,1 =0, so Z is an optimal
solution to problem (LP).

Proof. (i) The assumption of finite value means that the polyhedron X is
nonempty and that the objective function (¢, z) is bounded below on X, and
by Theorem 12.1.1 in Part II, this implies that the vector c lies in the dual
cone of the recession cone recc X. Since

recc X' = {(z,2p41) | Az + (b — 1)xpy1 <0, 2py1 =0}
= recc X x {0},

the dual cone of recc X’ is equal to (recc X)™ x R. We conclude that the
vector (¢, M) lies in the dual cone (recc X’)™, which means that the objective
function of problem (LP},) is bounded below on the nonempty set X’. Hence,
our auxiliary problem has a finite value.

The polyhedron X' is line-free, since

lin X' = {(z,2,11) | Az + (b — D)zpy1 = 0, 2,1 = 0}
=lin X x {0} = {(0,0)}.

(ii) The point (z,0) is feasible for problem (LP,,) if and only if = belongs
to X, i.e. is feasible for our original problem (LP). So if (#,0) is an optimal
solution to the auxiliary problem, then in particular

(e,3) = (e,&) + M -0 < {e,z) + M -0 = (¢, z)
for all x € X, which shows that Z is an optimal solution to problem (LP).

(iii) Assume that (Z,2,41) is an extreme point of the polyhedron X’ and
an optimal solution to problem (LP,;). By Lemma 18.4.3, applied to the
polyhedron X', and the estimate (18.17), we then have the inequality

(18.19) [12]|os < 20X < 92(X)H4 < 9204
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so it follows by using Lemma 18.4.1 that

n
e ) <D lejlla5] < lleflifl o < 29 - 22000 < 920+t 44
j=1
< 22L—2m—2n+4 < 22[/—4.

Assume that 2,41 # 0. Then #,,,; > 27/ > 2721 according to
Lemma 18.4.3. The optimal value vy, of the auxiliary problem (LP,;) there-
fore satisfies the inequality

op = <Ca '@> + Mi'nJrl > M-’i'nJrl - ‘(C, i’>‘ > M- 272[/ — 22L74.

Let now = be an arbitrary extreme point of X. Since (z,0) is a feasible point
for problem (LP,;) and since ||z, < 24%) by lemma 18.4.3, the optimal
value 05, must also satisfy the inequality

oy < Ae,zy +M-0< e, z)| <l - xOo§2€(0)+€(X):2L_m_"§2]4_4.
(c,x) 7

By combining the two inequalities for v,,, we obtain the inequality
2L—4 > M- 2—2L _ 22L—4
which implies that
M < 23L—4 + 24L—4 < 24L.
So if M > 2% then &, = 0. O

V. We are now ready for the main step in the proof of Theorem 18.4.2.

Lemma 18.4.5. Suppose that problem (LP) has a finite value. The path-
following algorithm, applied to the problem (LPy) with ||z]s < 2% as an
additional constraint, M = 2*F ¢ = 274L and (0,1) as starting point for
phase 1, and complemented with a subsequent purification operation, gener-
ates an optimal solution to problem (LP) after at most O(m>/*n2L) aritmetic
operations.

Proof. Tt follows from the previous lemma and the estimate (18.19) that
the LP problem (LP,/) has an optimal solution (Z,0) which satisfies the
additional constraint |||l < 22F if M = 2%%. The LP problem obtained
from (LP,,) by adding the 2n constraints

x; < 2% and —x; < 2% j=1,2,...,n,

therefore has the same optimal value as (LPy).
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The extended problem has m+2n+2 = O(m) linear constraints, and the
point Z = (Z,T,41) = (0,1) is an interior point of the compact polyhedron
of feasible points, which we denote by Z. By Theorem 18.3.1, the path-
following algorithm with € = 27%F and 7 as the starting point therefore stops
after O((m+2n-+2)%2n2) In((m+2n+2)®/e+1) = O(m*?n?) In(m2¢d 4 1)
arithmetic operations at a point in the polyhedron X’ and with a value of
the objective function that approximates the optimal value ©,; with an error
less than 2740,

Purification according to the method in Theorem 18.3.2 leads to an ex-
treme point (Z, Z,.1) of X’ with a value of the objective function less than
Oon + 27*F, and since 27 = 4728 < 474X it follows from Lemma 18.4.3
that (Z, Z,,41) is an optimal solution to (LP /). By Lemma 18.4.4, this implies
that Z is an optimal solution to the original problem (LP).

The purification process requires O(mn?) arithmetic operations, so the
total arithmetic cost is

O(mn?) + O(m3?n?) In(m2*E® + 1) = O(m*?n?) In(m2*2® + 1)

operations. It thus only remains to prove that In(m24® + 1) = O(L), and
since m < L, this will follow if we show that In ® = O(L).
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By definition,
1
b=V M) ——
arZ(Q ) I Tip (E)

where Zp is the analytic center of Z with respect to the relevant logarithmic
barrier F'. The absolute value of the objective function at an arbitrary point
(x,Zn41) € Z can be estimated by

l(c, x) + Mxpq| < |lefil|z]lo + 2M < 24F2L 9. 4L < 94142
and the maximal variation of the function is at most twice this value. Hence,
Varz(c, M) < 24+3,

The second component of ¢ is estimated using Theorem 18.1.7. Let
Boo(a, ani1;7) denote the closed ball of radius r in R"™' = R" x R with
center at the point (a, a,11) and with distance given by the maximum norm,
ie.

Boo(a, ang1;r) = {(z,201) € R" X R [z —alloc <7, |T011 — anaa| <7}

The polyhedron Z is by definition included in the ball B,(0,0;2%5). On
the other hand, the tiny ball B, (z;27%) is included in Z, for if ||z, < 27T
and |7,41 — 1] < 27F, then

n

Z CLijl‘j + (bz — 1).Z‘n+1 — bz = Zaijxj + bi(xn—‘,-l — 1) — Tn+1

J=1 J=1

<Y laggllag] + il — 1 = @y <27 (Z |ai;| + |b,-|> -(1-27")
j=1

j=1

which proves that the ith inequality of the system Az+ (b—1)z,,1 < b holds
with strict inequality for ¢ = 1,2,...,m, and the remaining inequalities that
define the polyhedron Z are obviously strictly satisfied.

It therefore follows from Theorem 18.1.7 that

2. 22L
T S G
and that consequently
;§2-23L+1<23L+2.
1-— Tsp (E)
This implies that ® < 24543 . 2342 = 97L+5  Hence, In® = O(L), which
completes the proof of the lemma. O
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VI. It remains to show that O(m7/2L) operations are sufficient to decide
whether the optimal value of the original problem (LP) is +o00, —oc or finite.

To decide whether the value is 400 or not, i.e. whether the polyhedron
X is empty or not, we consider the artificial LP problem

min x,41q

ot Ar — 1z, < b
o —Tn41 S 0

This problem has feasible points since (0,¢) satisfies all constraints for suf-
ficiently large positive numbers t. The optimal value of the problem is ap-
parently greater than or equal to zero, and it is equal to zero if and only if
X 40,

So we can decide whether the polyhedron X is empty or not by deter-
mining an optimal solution to the artificial problem. The input length of
this problem is ¢(X) + 2m + n + 4, and since this number is < 2L, it fol-
lows from Lemma 18.4.5 that we can decide whether X is empty or not with
O(m®?n%L) aritmethic operations.

Note that we do not need to solve the artificial problem exactly. If the
value is greater than zero, then, because of Lemma 18.4.3, it is namely greater
than or equal to 272%. It is therefore sufficient to determine a point that
approximates the value with an error of less than 272* to know if the value
is zero or not.

VII. If the polyhedron X is nonempty, we have as the next step to decide
whether the objective function is bounded below. This is the case if and
only if the dual problem to problem (LP) has feasible points, and this dual
maximization problem is equivalent to the minimization problem

min (—b,y)
ATy < ¢
s.t. —ATy < —c
-y < 0,

which is a problem with m variables, 2n+m (= O(m)) constraints and input
length

20(A) +m +2l(c) +L(b) + m+ (2n+m) < 2L +m < 3L.

So it follows from step VI that we can decide whether the dual problem has
any feasible points with O(m"/2L) operations.

The proof of Theorem 18.4.2 is now complete. O]
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Exercises

18.1 Show that if the functions f; are v;-self-concordant barriers to the subsets
X; of R then f(z1,...,2m) = fi(x1) + -+ f(zm) s a (11 + -+ + vi)-
self-concordant barrier to the product set X7 x - -+ x X,,.

18.2 Prove that the dual local norm ||v||% that is associated with the function f
is finite if and only if v belongs to N'(f”(x))*, and that the restriction of
|-z to N'(f”(z))* is a proper norm.

18.3 Let X be a closed proper convex cone with nonempty interior, let v > 1 be
a real number, and suppose that the function f: int X — R is closed and
self-concordant and that f(tz) = f(x) —vint for all z € int X and all ¢t > 0.
Prove that
a) f'(tz) =t~ f'(2) b) f'(z) = —f"(x)x ) A(f,z) = v

The function f is in other words a v-self-concordant barrier to X.

18.4 Show that the nonnegative orthant X = R”, v = n and the logarithmic

barrier f(z) = — Y, Inz; fulfill the assumptions of the previous exercise.
18.5 Let X = {(z,2p+1) € R" x R | 2p41 > ||z]|2}-
a) Show that the function f(z) = —In(zZ,, — (2% + -+ + 22)) is self-

concordant on int X.
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b) Show that X, v = 2 and f fulfill the assumptions of exercise 18.3. The
function f is thus a 2-self-concordant barrier to X.

18.6 Suppose that the function f: Riy — R is convex, three times continuously
differentiable and that
f" (@)

1" (z)] < 37

for all x > 0. The function

F(r,y) = —In(y — f(z)) —Inx

with X = {(x,y) € R? | 2 > 0,y > f(z)} as domain is self-concordant
according to exercise 16.3. Show that F'is a 2-self-concordant barrier to the
closure cl X.

18.7 Prove that the function
F(z,y)=—In(y —zlnz) —lnx
is a 2-self-concordant barrier to the epigraph
{(z,y) e R? |y > zlnz, > 0}.
18.8 Prove that the function
G(z,y) = —In(lny —z) —Iny
is a 2-self-concordant barrier to the epigraph {(z,y) € R? | y > ”}.
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Bibliografical and historical
notices

Newton’s method is a classic iterative algorithm for finding critical points of
differentiable functions, and it was proven by Kantorovich [1] that the algo-
rithm converges quadratically when the function has a Lipschitz continuous,
positive definite second derivatives in a neighborhood of the critical point,
provided the starting point is selected close enough.

Barrier methods for solving nonlinear optimization problems were first
used during the 1950s. The central path with logarithmic barriers was stud-
ied by Fiacco and McCormick, and their book on sequential minimization
techniques — Fiacco-McCormick [1], first published in 1968 — is the stan-
dard work in the field. The methods worked well in practice, for the most
part, but there were no theoretical complexity results. They lost in popularity
in the 1970s and then experienced a renaissance in the wake of Karmarkar’s
discovery.

Karmarkar’s [1] polynomial algorithm for linear programming proceeds
by mapping the polyhedron of feasible points and the current approximate
solution z; onto a new polyhedron and a new point x} which is located near
the center of the new polyhedron, using a projective scaling transformation.
Thereafter, a step is taken in the transformed space which results in a point
i1 with a lower objective function value. The progress is measured by
means of a logarithmic potential function.

It was soon noted that Karmarkar’s potential-reducing algorithm was
akin to previously studied path-following methods, and Renegar [1] and Gon-
zaga [1] managed to show that the path-following method with logarithmic
barrier is polynomial for LP problems.

A general introduction to linear programming and the algorithm devel-
opment in the area until the late 1980s (the ellipsoid method, Karmarkar’s
algorithm, etc.) is given by Goldfarb—Todd [1]. An overview of potential-
reducing algorithms is given by Todd [1], while Gonzaga [2] describes the
evolution of path-following algorithms until 1992.
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A breakthrough in convex optimization occurred in the late 1980s, when
Yurii Nesterov discovered that Gonzaga’s and Renegar’s proof only used two
properties of the logarithmic barrier function, namely, that it satisfies the two
differential inequalities, which with Nesterov’s terminology means that the
barrier is self-concordant with finite parameter v. Since explicit computable
self-concordant barriers exist for a number of important types of convex
sets, the theoretical complexity results for linear programming could now be
extended to a large class of convex optimization problems, and Nemirovskii
together with Nesterov developed algorithms for convex optimization based
on self-concordant barriers. See Nesterov—Nesterovski [1].

A modern textbook on convex optimization, which in addition to theory
and algorithms also contains lots of interesting applications from a variety of
fields, is the book by Boyd—Vandenberghe [1].
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Answers and solution to the
exercises

Chapter 14

141z, = (% _%) Ly = (227 %)’ €r3 = (%’_2 5)-

14.3 hf'(zy) = flz ) f(@ea) = f(2) — f(2) = 0 and hf'(zk) = hf'(Z).
Hence, f'(2) =

Chapter 15

15.1 Az = —xlnz, A f,z) =+zlnz, ||v]. = |[v|/V/z.
15.2 a) Azy = (1), A(f,2) = \/; [v]la = /503 + 20105 + 503

39
b) Ade = (5,-2), M) = /5, lolle = $v/8e7 + Sorvs + 503,
15.3 Az = (U1, Uz) where v; + vy = —1 — e*(xlﬂfz)
<f7 ) —e (z14z2)/2 +e —(z1+x2) /2 HUH _ e(r1+:172 /2’1) +1)2‘

15.4 If rank A < m, then rank M < m + n, and if N'(4) N N(P) contains
a nonzero vector x, then M B] = [8] Hence, the matrix M has no

inverse in these cases.

Conversely, suppose that rank A = m, i.e. that N'(AT) = {0}, and
that N'(A) N N (P) = {0}. We show that the coefficient matrix M is
invertible by showing that the homogeneous system

Prx+Aly =0
Ax =0
has no other solutions than the trivial one, x = 0 and y = 0.
By multiplying the first equation from the left by 27 we obtain
0= 2TPx + 2TATy = 2TPx + (Ax)Ty = 2T Pz,
and since P is positive semidefinite, it follows that Pz = 0. The first

equation now gives ATy = 0. Hence, x € N(A)NN(P) and y € N (A7),
which means that x = 0 and y = 0.
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15.5 a) By assumption, (v, f”(z)v) > ullv||? if Av = 0. Since AC' = 0, we
conclude that
(w, f"(z)w) = (w, CTf"(x)Cw) = (Cw, ["(z)Cw) > p||Cuwl|?
— juw, CTCw) > puofuw?
for all w € RP, which shows that the function f is po-strongly convex.

b) The assertion follows from a) if we show that the restriction of f to
X is a K~2M~‘-strongly convex function. So assume that z € X and

that Av = 0. Then
o 4

and due to the bound on the norm of the inverse matrix, we conclude
that

[oll < K[ f"(z)v]]
The positive semidefinite second derivative f”(x) has a positive semidef-
inite square root f”(z)/2 and || f"(x)Y?|| = || f"(2)||/? < MY2 Tt
follows that
£ (@)ol® = 1" ()2 7 (@) 2ol < L7 @) 2120 ()20

< M| f"(@)' 2ol = Mv, f"(x)v),

which inserted in the above inequality results in the inequality
(v, ["(x)v) > K2M vl

Chapter 16

16.2 Let P; denote the projection of R™ x --- x R™" onto then ith factor
R™. Then f(z) = Y ", fi(Px), so it follows from Theorems 16.1.5
and 16.1.6 that f is self-concordant.

fl@)? @) 1

f@r ) T

16.3 a) The function ¢ is convex, since ¢"(z) =

@) L@ f () S (@)

T B o f(l[ﬁ(_n? imihes "
O <3 @ T e R e

The inequality |¢”'(x)| < 2¢”(x)*?, which proves that the function g

is self-concordant, is now obtained by choosing a = +/f"(z)/|f(x)|,
b=|f"(x)|/|f(z)| and ¢ = 1/x in the equality

3a®b + 3a’c + 2b° + 2¢° < 2(a® + b* + Cz>3/2‘
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To prove this inequality, we can due to homogeneity assume that
A+ +cF=1

Inserting a®> = 1 — b*> — ¢ into the inequality, we can rewrite it as
(b+¢)(3 — (b+ ¢)?) <2, which holds since z(3 — 2?) < 2 for = > 0.
16.3 b) Let ¢(t) = F(xo+ at, yo + ft) be the restriction of F' to an arbitrary
line through the point (xg,yo) in dom F. We will prove that ¢ is self-
concordant, and we have to treat the cases & = 0 and a # 0 separately.
If @« =0, then ¢(t) = —In(St + a) + b, where a = yo — f(zo) and
b= —Inxg, so ¢ is self-concordant in this case.
To prove the case a # 0, we note that f(x) — Az — B satisfies the
assumptions of the exercise for each choice of the constants A and
B, and hence h(z) = —In(Az + B — f(z)) — Inz is self-concordant
according to the result in a). But ¢(t) = h(at + xg), where A = 5/«
and B = yg — fxg/a. Thus, ¢ is self-concordant.
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16.6 a) Set A = A(f, z) and use the inequalities (16.7) and (16.6) in Theorem
16.3.2 with y = 27 and v = 2™ — 2 = (1 + A\)"'Azy. This results in
the inequality

AJwlla

(I4+ X221 —=X/(1+N)

1 2
Ry . ’
= (f'(v),w) —1+/\<f()7 >+1+>\||w\|x
Ao A2
= 1+—)\<f (z),w) + 1 +>\Hme
A A2 2)\2
< N _
<7 +)\)‘|Iw||oc + 1+)\||w||:c : Jr)\||w||gc
2 2
e o7

T (I+NA=A(14+N)

with A(f,27) < 2A? as conclusion.

Chapter 18

18.1 Follows from Theorems 18.1.3 and 18.1.2.

18.2 To prove the implication ||v[|* < co = v € N(f"(x))* we write v
as v = vy + vy with v; € N(f"(x)) and vy, € N(f"(c))*, noting that
lv1lle = 0. Hence [[v][§ = (vi,v1) = (v,v1) < [[o]l;[lon]la = 0, and we
conclude that v; = 0. This proves that v belongs to N'(f”(x))*.
Given v € N'(f"(x))* there exists a vector u such that v = f”(x)u. We
shall prove that ||v||X = ||ul|;. From this follows that ||v[|% < oo and
that ||-||* is a norm on the subspace N (f”(z))* of R™.

Let w € R™ be arbitrary. By Cauchy—-Schwarz’s inequality;,

(v, w) = (f"(@)u, w) = (f"(2)"?u, f'(2)"*w)
< (@) 2l (2) 2wl = ullallolls,

and this implies that [|v]|% < ||u||.. Suppose v # 0. Then u does not
belong to N'(f”(z)), which means that |ju||, # 0, and for w = u/||ul|,
we get the identity

(v, ) = [Jull (" (@) 2, (@) ) =l (2) 2l = Jull,

which proves that ||v||% = ||u||,. If on the other hand v = 0, then u is
a vector in N (f”(x)) so we have |[v||Z = ||u||, in this case, too.
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18.3 a) Differentiate the equality f(tx) = f(z) — vInt with respect to x.

b) Differentiate the equality obtained in a) with respect to ¢ and then
take t = 1.

¢) Since X does not contain any line, f is a non-degenerate self-concor-
dant function, and it follows from the result in b) that z is the unique
Newton direction of f at the point x. By differentiating the equality
f(tz) = f(z)—vInt with respect to t and then putting t = 1, we obtain
(f'(x),x) = —v. Hence
V= —<f/(ZL'), l’> = —<f/($), AIHt) = )‘(fv I)Q‘
18.5 Define g(z, zyq1) = (23 + -+ 22) — a2, = ||z||* — 22, ,, so that
f(x) = = In(—g(z, Tns1)),
and let w = (v,vp41). Then

Dg = Dg(q:,xnﬂ)[w] =2 <U,ZC> - xn+1vn+1>7

w,w] = 2([[v[* = v34),
w, w

w,w] =0,
Df = Dfauin)fw] = — Dy
DA = D@}l ] = —((Dg)? = 9D%),
DS = D), w,w] = 5 (=2(Dg)* + 3gDg D).

Consider the difference
A = (Dg)’—gD%g = 4((x, V) = Tni1vni1)*+2(x] = |2]]*) ([[0]|* =034 1)-

Since 41 > |jz||, we have A > 0 if |v,11] < ||v]]. So suppose that
|Una1| > ||v]|. Then

|Zni1Vnt1 — (2, V)] > Tpga|vnga| = [(z,0)]
> Tpy1|vna| — ||zl [Jv]] >0,
and it follows that
A > Az lvna| = Nl ll[o)? + 2022 = =) ([o]]* = v )
= 2(@n1|vnga| — 2 |0]))? + 2(@nia o]l = 2|l Jonsa])? > 0.

This shows that D?f = A/g*> > 0, so f is a convex function.
To prove that the function is self-concordant, we shall show that

A(D?f)? = (D°f)* z 0.
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18.6

18.7
18.8

After simplification we obtain
AD2f)? = (D°f)? = g~ (D?9)*(3(Dg)* — 4gD?g),

and the problem has now been reduced to showing that the difference

A" = 3(Dg)? — 49D?g
= 12((2,v) = Tns10p41)° + 8(xpyy — 2*) ([0 = v341)

is nonnegative. This is obvious if |v,1| < ||v]], and if |v,41| > [|v|| then
we get in a similar way as above

A 2 12z vna | = 201D + 8(zny — Iz ([0 ]* = vaya)

= d(@ns1|van] = [l2lllv])? + 8(@nsi o]l = [2ll[vasa])* = 0.

Let w = (u,v) be an arbitrary vector in R?. Writing a = 1/(y — f(z)),
b=—1/x, A= f'(x) and B = f”(x) for short, where a > 0 and B > 0,
we obtain
DF(z,y)[w] = (aA + b)u — av
D*F(z,y)[w,w] = (aB + a*A* + b*)u® — 2a* Auv + a®v?,

and

2D*F(z,y)[w,w] — (DF(z, y)[w})z
= a?A*u? + b*u® + a*v? + 2abuv — 2a* Auv — 2abAu* + 2a Bu®
= (aAu — bu — av)* + 2aBu® > 0.
So F'is a 2-self-concordant function.
Use the previous exercise with f(z) = zInz.
Taking f(z) = —Inx in exercise 18.5, we see that

F(z,y) = —In(lnz+y) —Inz

is a 2-self-concordant barrier to the closure of the region —y < Inz.
Since G(z,y) = F(y, —x), it then follows from Theorem 18.1.3 that G
is a 2-self-concordant barrier to the region y > e*.
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