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Preface

Linear processes have been one of the most fundamental tools in modeling
serially dependent data. These models and methods heavily depend on Gaussian
processes and their properties and therefore second-order moments have played
the central role in this toolbox. Linear Gaussian models do not allow for large
fluctuations and the stationary distribution when exists has fairly fast decaying
tails, thus are not particularly adequate for modeling high variability. We are
more and more aware that data coming from many scientific fields as diverse as
telecommunications, hydrology or economics show heavy-tailed phenomena which
are not compatible with Gaussian assumption. Therefore, such serially dependent
data need richer parametrization based on nonlinear relations; consequently there
is need to specify and model adequately observations coming from the tails. For
such models, inferential methods based on second-order properties are no longer
adequate and likelihood-based methods frequently cannot be used, since analytical
expressions of likelihood often are not available. Least squares method, which is
equivalent to likelihood-based inference for Gaussian processes, looses its nice
properties as models deviate from Gaussian structure. Quasi-likelihood methods
such as estimating functions and composite likelihood methods seem to work for
some cases, whereas recent advances in sequential Markov Chain Monte Carlo
(MCMC) methods and particle filters, as well as likelihood free methods such
as approximate Bayesian computation (ABC), are quite promising alternatives in
dealing with inference for nonlinear models. The objective of this book is to give an
overall view of all these problems, including the consequences of nonlinearity on
tails, some nonlinear models and adequate inferential methods.

There are many excellent books on nonlinear time series, responding adequately
to these issues. Our approach is to introduce diverse topics that appear in different
sources under one title which can serve as a reference source, without entering into
details. We believe that the book may be particularly useful to graduate students and
other scientists who want to have a starting source for further detailed study of the
subject.

Chapter 1 gives many examples of nonlinear time series and different sources
of nonlinearity. Chapter 2 introduces the basic notions of nonlinearity, and a
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collection of nonlinear models. There are many ways a process can be nonlinear, and
correspondingly there are many different classes of models to cover such diverse
sources. We do not claim that the models we introduce are exhaustive, but we
hope this selection covers most sources of nonlinearity. Chapter 3 is on the tail
behavior of nonlinear processes. The objective of this chapter is to show how
nonlinear relationships generate heavy tails and to quantify the effect of nonlinearity
on tails. Much is known on the extremal properties of linear and nonlinear time
series and the objective of this chapter is to give a quick reference to these results.
Chapter 4 gives inferential methods available for nonlinear processes, including
several tests for nonlinearity. We hope that this chapter will be particularly useful
as an integrated introductory text on inferential techniques, including Bayesian
and simulation-based methods. Finally, in Chap.5 we give linear models based on
thinning operators for integer-valued time series. Although these models are linear
in structure, technically they are nonlinear models. Many would favor observation-
driven or parameter-driven state space models for dealing with such data sets.
However, recently there has been a lot of interest for linear models based on thinning
operators and there is an accumulation of a rich and diverse information on this
subject. To our knowledge, this chapter is the first attempt to put together in a
coherent manner these advances spread out in many journals and other sources.

Several institutions provided support for this work. We would like to thank FCT
(Fundacdo para a Ciéncia e a Tecnologia) of Portugal, which supported our work
through the projects PEst-OE/MAT/UI0006/2011, PEst-C/MAT/UI4106/2011,
PEst-OE/MAT/UI4106/2014, and PTDC/MAT/118335/2010. The third author was
also partially supported by a FCT Sabbatical Grant (ref FRH/BSAB/1138/2011)
from 01 April 2011 to 29 July 2011. We also thank CEAUL — Center of Statistics and
its Applications of the University of Lisbon — and CIDMA - Center for Research
& Development in Mathematics and Applications — for their role in this initiative.
Finally, we would like to thank Profs. John McDermott and Maria Ant6nia Amaral
Turkman and Dr. Sénia Gouveia for reading the manuscript carefully and suggesting
many useful comments which improved the content.

Lisbon and Aveiro, Portugal K. F. Turkman
May 2014 M. G. Scotto
P. de Zea Bermudez
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Chapter 1
Introduction

1.1 Why Do We Need Nonlinear Models?

The Wold decomposition theorem says that under fairly general conditions, a
stationary time series has a unique linear causal representation

o0
X,:Zl//jZ,_j,teZ, (1.1)
j=0

where Z?io wjz- < oo and (Z;) are uncorrelated random variables (r.v’s). Expres-
sion (1.1) is a representation, but not a model for X;, in the sense that we can
only recover uniquely the moments of X, up to the second-order, unless, (Z;) is
a Gaussian sequence. If we look for models for X;, then a theorem by Nisio (1960)
states that we should look for such models within the class of convergent Volterra
series expansions

oo oo

[e’¢) [e’¢) P
=Y 3 Y g, [[ 2t € 2, (1.2)
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i]=—00 ip=—00 i

where (Z;) is an independent and identically distributed (i.i.d.) Gaussian sequence
(although the assumption of Gaussianity is not essential) and (g;1), (gi1,,). . .. are
such that (1.2) converge to a well defined random variable. It is clear that if we
want to go beyond the second-order properties, then the class of linear models given
in (1.1) with i.i.d. Gaussian input (Z;) is a small fraction of possible models for
stationary time series, corresponding to the first term of the infinite order expansion
in (1.2). Finite-order Volterra series expansions are not particularly useful as a
possible class of models, because the conditions of stationarity and invertibility are
hard, if not impossible, to check. Therefore they have very limited use as models for
time series, unless the input series (Z;) is observable.

K.F. Turkman et al., Non-Linear Time Series, DOI 10.1007/978-3-319-07028-5__1, 1
© Springer International Publishing Switzerland 2014
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From a prediction point of view, the projection theorem for Hilbert spaces
tells us how to obtain the best linear predictor for X,4x within the linear span
of (X, Xi—1,...). However, when linear predictors are not sufficiently good, it
is not straightforward to find, if possible at all, the best predictor within richer
subspaces constructed over (X;, X;_i,...). Therefore, in order to improve upon
the linear predictor, it is important to look for classes of nonlinear models which are
sufficiently general, but at the same time are sufficiently flexible to work with.

1.2 Content of the Book

A time series can be nonlinear in many different ways. As a consequence, there are
many classes of nonlinear models to explain such nonlinearities. On one hand, we
have mathematically tractable piecewise linear models that switch from one model
to another at random moments of time; on the other hand, we have the class of
bilinear processes, which are dense within the class of Volterra expansions, but
whose probabilistic and statistical properties are difficult to study. Within such a vast
amount of literature on nonlinear processes, the choice of the material, as well as
the level of mathematical language that appears in a book, will evidently depend on
the personal choice. This book is designed for postgraduate students of mathematics
or probability who are interested in having a general knowledge of nonlinear time
series and some insight into the process of model building for nonlinear processes.
Knowledge of linear time series would be highly useful. We tried to keep a balance
between the probabilistic arguments and the practical statistical inference. However,
for nonlinear processes, due to inherent difficulties in inferential methods, this
balance is very difficult to achieve and overall the manuscript is tilted towards
probabilistic arguments.

One of the main consequences of nonlinearity is heavy tails, in the sense that
nonlinear processes tend to produce more extreme values, as compared to linear
models, even with Gaussian inputs. Extreme value theory for stationary time series
is well known, and in this book we place special emphasis on the tail behavior of
certain classes of nonlinear processes.

Integer-valued linear models based on thinning operators are also included in
this book as a separate chapter. One may find questionable to dedicate a chapter
to such a class of linear models in a book on nonlinearity. However, in the strict
sense, these models do not have the representation (1.1), hence are not linear
processes. Generalized state space models are arguably much more flexible tools
for modeling integer time series, particularly with recent advances in hierarchical
modeling strategies and simulation-based inferential techniques. However, because
there has been extensive accumulated literature on the subject, and because there is
no manuscript which covers the material in a coordinated manner, it makes sense to
reserve a chapter for this class of models.

In the rest of Chap. 1, real and simulated data sets are presented to highlight
different aspects of nonlinear time series.
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In Chap.2, a brief introduction to the different sources of nonlinearity and
consequently, different classes of nonlinear models are given. The choice of these
classes is by no means exhaustive and to some extent represents the individual
choice of the authors.

Chapter 3 provides an introduction to extremal properties of nonlinear processes.
The main emphasis is on the connection between nonlinearity and heavy tails. In
this chapter, we also show how nonlinear input-output relationships often magnify
the error propagation and quantify the effect of this propagation on the tails of some
nonlinear representations.

Chapter 4 focuses on some of the inferential methods available for nonlinear
processes. Some readers may find this chapter disappointing on the grounds that it
does not offer solid, one-fits-all inferential method in a manner that allows the reader
to deal with all nonlinear models effectively. It is difficult to speak of satisfactory
inferential methods when one cannot check the invertibility condition(s) or write
down explicitly the likelihood for some of the nonlinear models at hand. Inferential
methods based on pseudo-likelihoods, such as estimating functions and in particular,
composite likelihood, seem to be possible solutions for certain classes of nonlinear
models. Recent advances in sequential and particle filter Monte Carlo methods
are opening new doors to successful bayesian inference for nonlinear time series.
Thus, we give a brief introduction to these alternative inferential methods. Excellent
detailed accounts of these approaches can be found in many other books. For
example, simulation-based inferential methods for time series can be found in Prado
and West (2010), whereas inference based on pseudo-likelihoods can be found in
Heyde (1997).

Chapter 5 addresses the integer-valued time series models based on thinning
operators. One may question the importance and relevance of these models by
devoting an entire chapter to them, since parameter-driven, as well as observation-
driven state space models for integer-valued time series are given in Chap.4. The
method of maximum likelihood seems to work very well for observation-driven state
space models, but conditions for the existence of stationary solutions, except for
some simple cases, seem to be very difficult to obtain. Parameter-driven generalized
state space models with hierarchical specifications, such as generalized linear mixed
models with a latent process in the linear predictor as initially suggested by Diggle
et al. (1998) (see also Diggle and Ribeiro 2007), and the consequent simulation-
based inference, is probably the best way to model integer time series. However,
there has been increasing interest in ARMA type models based on thinning operators
for integer time series and consequent publication of many articles in the field,
due to their many desirable probabilistic properties. Therefore, a whole chapter is
dedicated to this class of models with the objective of giving an integrated treatment
of these models.

We do hope that this book will generate enough interest among the postgraduate
students to learn more about nonlinearity and a course on nonlinear time series
eventually finds its way into some of the MSc courses in Probability and Statistics.
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Fig. 1.1 (a) Mean daily temperatures observed in Lisbon, Portugal from 2002 to 2006; (b) mean
monthly temperatures; and (c¢) box-plot of the mean daily observations per year (Data provided by
IPMA, Portugal)

1.3 Some Examples of Time Series

The daily and monthly mean temperatures and the box-plot of the daily observations
per year, in degrees Celcius, observed in Lisbon, Portugal from the 1st January 2002
to 31th December 2006, are presented in Fig. 1.1.

There seems to be no significant trend or increase in variability throughout the
years. However, there is a clear seasonal component. A slight (median) trend in
the annual observations also seems to be present, as indicated by the box-plots
in Fig. 1.1c. The AutoCorrelation Function (ACF) and the Partial AutoCorrelation
Function (PACF) of the monthly data, represented in Fig. 1.2, after differentiating
the series at lag 12, resemble a white noise process. There is only a very minor (and
possibly neglectable) spike in both ACF and PACF. No sign of nonlinearity can be
detected in the ACFs of both squared and absolute values of the series. The fitting
of a linear model seems to be the most adequate choice.

The histogram and the normal QQ-plot (plot of the coordinates (®~! (p;.n), Xi:n),
i = 1,2,...,n) strongly support the Gaussian assumption (see Fig. 1.3). This is
confirmed by the Shapiro test (p — value = 0.5205) and also by the Lilliefors test
(p — value = 0.7258). Moreover, there is no evidence to reject the null hypotheses
of linearity upon applying Keenan’s test (p — value = 0.4433).

Figure 1.4 shows the monthly average river Tagus flow, observed in Almourol,
Portugal from October 1974 to September 2004, together with the plots of the
respective ACF and PACF. According to Macedo (2006), Almourol and Tramagal
stations are very important for predicting the flow and the hydrometrical levels in the
event of a flood. The plot of the log transformed series, as well the corresponding
ACF and PACE, are presented in Fig. 1.5. The histogram and the normal QQ-plot
are presented in Fig. 1.6. They all reflect an underlying normal distribution for the
log transformed data, suggesting that the original distribution for the Tagus river
level is lognormal. This result is not surprising. In fact, lognormal distributions are
commonly used in hydrology to model river levels.
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Fig. 1.5 (a) Monthly average Tagus river flow, October 1974—September 2004; (b) corresponding
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the logarithm transformation

The observations plotted in Fig.1.7a, b represent the daily values of the
Portuguese Stock Market Index (PSI20), at closing time and the corresponding daily
log-returns, respectively. The data plotted in Fig. 1.7 dates from 24 January 2000 to
4 January 2012. The plot of the log-returns, defined as
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Fig. 1.7 (a) Daily values of the PSI20 at closing time; and (b) corresponding log-returns (data
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where X, represents the value of the index at day ¢, is given in Fig. 1.7b. Upon
fitting a proper linear model to the series, plots of the ACF of the residuals, squared
residuals and absolute values of residuals are given in Fig. 1.8. These plots clearly
indicate that although the residuals are uncorrelated, they are not independent. The
ACF of squared residuals is often used for testing the presence of nonlinearity in
the data, but it does not provide any guidance for the choice of a proper nonlinear
model. Typically, to log-returns data, a linear model for the mean and a Generalized
AutoRegressive Conditional Heteroskedastic (GARCH) model for the residuals are
fitted to explain the nonlinear feature of the variance. The histograms, the normal
QQ-plots and the box-plots of the absolute values of the negative and positive
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Fig. 1.9 Histograms, QQ-plots and box-plots of the absolute values of the negative (left column)
and the positive log-returns (right column)
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Fig. 1.10 Shape parameter of the GDP and empirical MEF of the absolute values of the negative
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log-returns are presented in Fig. 1.9. The plots presented in Fig. 1.9 show that the
values of the log-returns have a slightly shorter left tail and that both tails are heavier
than the tail of a normal distribution. The empirical mean excess function (MEF) is
given by

Z?:l(Xi —M)I(X,' > M)
Z?:l I(X, > u)

e,(u) ==

where I(-) is the indicator function and u is the threshold. An upwards empirical
en(x), for all x > u, reveals an underlying heavy-tailed distribution. The empirical
MEEF of the positive log-returns clearly shows a right heavy-tailed distribution (see
Fig. 1.10, right). A generalized Pareto distribution (GPD) is fitted to the right tail



10 1 Introduction
a_ b
- 8 1 1 L I
E?,i /. . . - ST 1 ?25’ Jh .\J. \‘T‘ Rl
eg1 ] . . Mopllos AR L R T
2ol 103 b0 11 E iz feediebeitinin,
ST LA ] 1 ki \-‘.Wn'lmai-‘:-.
. . ol o | * orattllage o & alatelle) 1ot T [e/en s oo
8] ] \., / [ iy BEE :..N"J\‘\M;’JL'J'.‘.. ‘.\T’T-IH-
Floalliege i lar el sleglirrallire I e
R Fu® e L.’ L.' Di.‘.‘ .o ""‘" LA XA T EE AN
18‘20 18‘40 18‘60 18‘80 1900 19‘20 17‘00 17‘50 18‘00 18‘50 19‘00 19‘50
Year Year
Fig. 1.11 (a) Canadian lynxes; and (b) Wolf’s sunspot numbers

of the distribution. The maximum likelihood estimates of the shape parameter of
this distribution are plotted in Fig. 1.10 as a function of the number of upper order
statistics used in the estimation. This plot also strongly indicates the heavy-tailed
feature of the data.

The analysis of the number of Canadian lynxes trapped in the Mackenzie River
district in Canada (1821-1934) and the Wolf’s sunspot numbers (1700-1988),
displayed in Fig.1.11, exhibit asymmetric cycles and thus are more accurately
modeled by nonlinear models (see e.g., Tong 1990). These data sets are commonly
used in the time series literature to highlight the differences between linear and
nonlinear behavior. The nonlinear features of both series has been pointed out before
by many authors, see for example Priestley (1981) and Tong (1990). Bilinear (BL),
Self-Exciting Threshold AutoRegressive (SETAR), EXPonential AutoRegressive
(EXPAR), Random Coefficient Autoregressive (RCA) are some of the families of
nonlinear models fitted to the two series. Most of the nonlinear models proved to
be significantly superior, in terms of a lower residual variance and by exhibiting a
better forecasting performance when compared to the linear models.

Figure 1.12 represents the daily mortality numbers observed during the st
January 1983 and the 31th December 1991 in the district of Evora, Portugal.
This data set was provided by the National Statistics Institute (INE) Portugal,
Demographic Statistics. Evora is part of a region called the Alentejo. Frequently,
in summer, high temperatures are observed in this part of the country. Time periods
9-17 February 1983 and 12—18 July 1991 produced cold and hot events. In order
to assess the impact of these two events, the data was plotted (see Fig. 1.13) in the
months before and after the two events.
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Fig. 1.12 Number of deceased observed in the district of Evora (Portugal) from 1st January 1983
to 31th December 1997 (data provided by INE Portugal, Demographic Statistics)

15

10
L

Number of deceased
Number of deceased
8
1

S eSS S S ST T P F S PR SBHELLOEEA SN SN LRLLR PP
QUE NG N S N A G S qF AN R @ KN o 1% @ GV RN RE Y o N o kY "G o g
Date Date

Fig. 1.13 (a) Number of deceased observed before and after the cold wave of February 1983; and
(b) before and after the heat wave that occurred in from in July 1991

The time series plotted in Fig. 1.14 corresponds to the monthly number of cases
of Brucellosis, Typhoid, Hepatitis C and Leptospirosis recorded in Portugal from
January 2000 to December 2008. It is well known that there is a lag between the
notification time and the initial date of appearance of the symptoms. The graphs
clearly show a decrease in the number of cases through the years (decreasing trend).
They also exhibit over dispersion, which is not compatible the Poisson assumption.
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Fig. 1.14 Monthly number of cases reported in the period 2000-2008 of (a) Brucellosis; (b)
Typhoid; (¢) Hepatitis C; and (d) Leptospirosis

1.4 Some Simulated Time Series

In Fig. 1.15, we start by giving two sample paths from linear AR(1) processes
X[ = O.SX[-] + Z[7

where Z; are i.i.d. r.v’s with unit exponential and logistic distributions (with location
parameter ;4 = 9 and scale parameter o = 4), respectively. The logistic distribution
has a heavier right tail and this is reflected in the sample path. Figure 1.16
shows a sample of n = 500 observations simulated from the following Threshold
AutoRegressive (TAR(2, 1, 1)) model:
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Fig. 1.16 Simulated sample path from a TAR(2,1,1) model

X = —01X, 1+ 7, X1 =1
T 08X o +2Z, X > 1

The innovations are N(0, 1). These models are often used for modeling data that

exhibit limit cycles. Consider two linear time series models X, = 0.75X,_; + Z,,

(model 1) and X; = —0.75X;_; + Z,, (model 2), both having standard N (0, 1)

innovations. Suppose that the process switches between these two linear models

according to a latent two state Markov chain with transition probability matrix
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A sample path of size 500 is plotted in Fig. 1.17.

A time series of size n = 500 in which the first 250 observations were simulated
from the AR(1) model

X, =03X,_, + 2z,
and the remaining 250 data points were simulated from the MA(1) model,
X, =07z% + 22,

where Zt(l) and Z,(Z) are two independent i.i.d. samples from the standard Normal
distribution, is given in Fig. 1.18. Figure 1.19 shows the plot of two samples of size
n = 500 simulated from the bilinear model,

X =aX,1Zi1 + Z;, (1.3)

for two different values a = —0.7 and a = 0.3 with standard Gaussian innovations.
The effect of a on the large values produced by the series is quite clear.

Figure 1.20 presents three samples of size n = 3,000 simulated from the same
bilinear model with @ = 0.3, but with innovations having a Pareto distribution with
cumulative distribution function (cdf) given by

Fx|a)=1—x"% x>1landa > 0.
Note that the right-tail of this distribution becomes heavier as o decreases. In fact,

the mean value, the variance, the skewness and the kurtosis of a Pareto() r.v X are
given by

EX) = a Ja > 1,
oa—1
o
V)= ——5——,a > 2;
M= e
2 1 -2
skewness:M a—,a>3;

(¢ —3) o
and

6(c + a® — 60 —2)

w@—3a—a *7H

kurtosis =
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Fig. 1.19 Simulated bilinear model with Gaussian errors —a = —0.7 (a); and (b) a = 0.3

respectively. The graph on the left of Fig. 1.20 shows a sample path of the bilinear
process with Pareto distributed innovations having finite mean but infinite variance
(e = 1.5). The center graph is a sample path with Pareto innovations with both
finite mean and variance (¢ = 2.5). The graph most to the right was obtained with
a = 4.5. In this case, all the moments up to the fourth order exist. The effect of
parameter « on the sample paths is quite clear.

Figure 1.21 shows three sample paths of AR(1) processes

Xt == O.SX[_I + Z[
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Fig. 1.20 Simulated bilinear model with heavy-tailed errors — Pareto(1.5) (a); (b) Pareto(2.5); and
(¢) Pareto(4.5)

15

10

X
X

X
100 150 200 250

T T T T T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
t t t

Fig. 1.21 Simulated AR(1) models with heavy-tailed errors — Pareto(1.5) (a); (b) Pareto(2.5); and
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Fig. 1.22 ACF of the simulated bilinear model with heavy-tailed Pareto(2.5) innovations after
division in three sets of n = 1,000 observations

with innovations having the same three different Pareto distributions. The compar-
ison of plots in Figs. 1.20 and 1.21 clearly indicates that not only the value of «,
but also the nonlinear relation between the input and output series play an important
role in generating large values.

Figures 1.22 and 1.23 represent, respectively, the empirical ACF of three consec-
utive sub-samples of size 1,000 from 3,000 simulated observations for the bilinear
model (1.3), considering a = 0.3, with Pareto error distributions F (x| = 2.5)
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Fig. 1.24 ACEF of the simulated bilinear model with Pareto(0.9) innovations after division in three
sets of n = 1,000 observations

and F(x|a = 4.5), whereas Fig. 1.24 represents the ACF of the same process with
F(x|a =0.9).

In Figs. 1.22 and 1.23 the behavior of the empirical ACF is similar for all the
sub-samples. However, the ACF in Fig. 1.24 shows different structures for each of
the three sub-samples.

For ¢ = 0.9 the mean of the process (1.3) is infinite. The reason for the erratic
behavior of the ACF is that with such heavy-tailed innovations, and with the pres-
ence of nonlinearity, the output series has infinite mean and as a consequence, the
empirical covariance function has a complicated asymptotic behavior, converging
to a random function. The empirical PACF has similar asymptotic behavior. Note
that if we use the empirical autocorrelation and partial autocorrelation functions to
identify a linear model for the data, then we not only end up with an inadequate
linear model, but also choose a wrong linear model for the data due to the erratic
asymptotic behavior of the empirical second order moments.

In general, the tail behavior of the output series is dependent on the tail behavior
of the input series, as well as on the type of nonlinear relationship existing between
the input and the output series. This relationship between the tails of input and
output series will be studied in detail in Chap. 2.

Figure 1.25 represents a sample path of size 300 from the GARCH model

X; =htZtv
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Fig. 1.25 A sample path
from the GARCH(1, 1)
process with g = 1.0,
ap =0.4and g =0.5
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where Z; are i.i.d. N(0,0?%), 0 = 1.25,r.v’s and
hi = o+ X[y + Bhi_,,

with ¢ = 1.0, ¢y = 0.4 and § = 0.5. GARCH models represent the nonlinear
dynamics in the conditional variance, as compared to bilinear models which
may represent the nonlinear dynamics in the conditional mean, as well as in the
conditional variance. Although the conditional moment structures of these two
classes of models are completely different, unconditional moments are quite similar.

Consider the following generalized state space model X; ~ GPD(k, o), where
GPD stands for the generalized Pareto distribution, & is the shape parameter and o;
is scale parameter which follows an AR(1) process

Oy = WOor—1 + Z[.
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Fig. 1.28 (a) Observation-driven integer-valued time series from model (1.4); and (b) a sample
path from a INAR(1) model given in (1.5) witha = 0.4

Here, (Z,) is an i.i.d. sequence with exponential(1) distribution. We assume that X/,
conditional on oy, are independent. Figure 1.26 displays a sample path of n = 1,000
observations generated from this model with w = 0.4 and k = 0.5 (heavy-tailed).
The black line corresponds to the sample path of the latent o; process. Two sample
paths of size n = 500 of the polynomial model

X, = a1 X—1 + e X2, + Z,

where Z, ~ N(0, 1) are represented in Fig. 1.27a, b with a; = 0.2, a, = 0.1 and
a; = 0.2, a; = 0.2, respectively.

Figure 1.28a represents a sample path of size 100 from the observation-driven
Poisson model
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X:|Ar ~ Po(A;)
1.4
A,[ == 10 + 0-4Xt—l ( )
with Xo = 0.
Figure 1.28b represents a sample path of 100 observations from the integer-
valued time series INAR(1) given by the recursion

X, =M(X—1,a) + Z,. (1.5)

M, (-, -) is the binomial thinning operator, defined as

Xi—1

M(X;—1,a) :=ao X, = Z Ej(a)y

J=1

where (§;) is a counting sequence of i.i.d. Bernoulli r.v’s with mean a € [0, 1]
and (Z;) is an i.i.d. sequence of non-negative integer-valued r.v’s, stochastically
independent of X;_; for all points in time, with finite mean @z > 0 and variance
O'% > 0. In this simulated series, we take a = 0.4 and consider that Z, are i.i.d.
Poisson r.v’s with mean one.
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Chapter 2
Nonlinear Time Series Models

2.1 Some Probabilistic Aspects of Nonlinear Processes

2.1.1 Linear Representations and Linear Models

Assume thatfor ¢ € Z, (Z;) and (Z;") are respectively uncorrelated and independent
sequences of r.v’s having identical marginal distribution F(-), with zero mean and
variance cr% < 00. For any ¢, define the time series

o0
Yo=Y ViZ 2.1)
i=0
and
o0
X =Y "%z, 2.2)
i=0

such that 72 ¥? < oo, so that both ¥; and X, are mean-square convergent, having
finite variances. In the representation (2.2), specification of the marginal distribution
for the independent r.v’s (Z;) is enough to specify the finite dimensional distri-
butions of the output series X;. Therefore (2.2) is a fully specified model for X;.
However, the specification of the marginal distribution for uncorrelated r.v’s (Z;)
is not enough to specify fully the finite dimensional distributions of the process
Y, given in (2.1), unless Z; is a Gaussian sequence. In this case, we can merely
calculate uniquely the first two moments, namely the mean, the variance and the
autocovariance function of the series Y;. Therefore (2.1) is not a probabilistic model
for Y;, but can be called a representation. Since this representation uniquely specifies
the second-order moments, we will call it the second-order representation for the
time series Y;. Wold decomposition theorem (see for example Brockwell and Davis
1991) shows that under fairly general conditions any stationary time series will have

K.F. Turkman et al., Non-Linear Time Series, DOI 10.1007/978-3-319-07028-5_2, 23
© Springer International Publishing Switzerland 2014
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the causal linear representation (2.1), but these processes are not necessarily linear
processes given in (2.2) and in fact, they can be highly nonlinear processes. Hence,
Y, in (2.1) is a representation for infinitely many time series, having the same (finite)
second-order moments. On the other hand, if (Z;) in (2.1) have marginal Normal
distribution N (0, 02), then they must also be independent. In this case, (2.1) and
(2.2) are identical Gaussian processes. Uncorrelated versus independent innovations
in (2.1) and (2.2) also have significant different effects on predictions. Y;4; can be
written as

oo
Yoot = D ViZiti-i
i=0

o0
=YoZiy1 + Z ViZiy1—i

i=1

o0
=YoZiy1 + Z Vi1 Z—.

i=0
Similarly
o0
Xiv1 =VoZ[, + Z’Wiﬂzr*—i-
i=0

Let B (t) be the o-field generated by the r.v’s (Z;,s < t). The best mean-square
predictor of Y, 4 in terms of (Z;, Z,;_y, ...) is given by the conditional expectation

E(Yi41|Bz(t) = YoE(Z1|Bz (1)) + Y Vi1 Zii
i=0

with
E(Zi+1|Bz(t)) = /XdFZ,JH\BZ(r)(X)s

where Fz, , 5,)(x) is the distribution of Z, 4, conditional on (Z;, Z;1, ... ). Note
that Z, 1 is not independent of Z;, Z,_,, ..., hence, in general

FZr+1|BZ(t)(x) # FZ,+1(X)

and

E(Z4+1|Bz(1)) # 0.
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In fact, this term will typically be complex, nonlinear function of (Z;, Z,_,...).
Hence, the best predictor of Y;1; in terms of (Z,, Z;—;,...) will be a nonlinear
function. If the process (2.1) is invertible, then the sigma fields generated respec-
tively by (Zs,s < t) and (Y, s < t) are identical, hence

E(Yt+1|Ys,S f t) = E(Yt+l|ZSas 5 t)a

so that E(Y;41|Ys,s < t) in general is a nonlinear function of (Y;,s < t). If (Z;)
have Normal distribution, then the best predictor of Y;4; in this case is a linear
function of the past observations (Y (s), s < ¢). On the other hand, F ZF B0 (x) =

Fzyr,,(x) and E(Z[ 1B (1)) = 0, so that
E(Xi411Xs,s <t) = E(X,41]|Z),s <1),

is a linear function of (X, s < t), irrespective of the marginal distribution F(-)
of Z;.

In order to understand better the relation between best predictions and nonlinear-
ity, we look at the geometric interpretation of predictions.

2.1.2 Linear and Nonlinear Optimal Predictions

Consider a probability space (2, F, P) and the collection C of all r.v’s defined on
this space with zero-mean and finite second-order moments. For any elements X, ¥
of C, define the inner product <X,Y> = E(XY), so that the norm is given by
[|X|| = v/ E(X?). Thus, two elements X and Y of C are orthogonal iff £(XY) = 0,
in which case we write X 1 Y. For simplicity in notation, we assume that the
elements of C have zero means. Alternatively, rather than restricting the class to 0
mean r.v’s, we can define the inner productonC as <X,Y > = E(XY)—E(X)E(Y)
and the norm ||X|| = E(X — E(X))?2, and the properties would still hold. The
norm convergence of any sequence X, is then given by

lim || X, — X|]*> = lim E|X,—X|*>=0,
n—oo n—o0o

which is the usual mean-square convergence and we denote it by
X, 5 X.
Note that X,, = X, iff
E(X,—X,)* =0,

as m,n — oo, in which case we call the sequence a Cauchy sequence.
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If all sequences of C converge in mean-square, then C is complete and hence is a
Hilbert space (e.g., Brockwell and Davis 1991). Let (X,,) be a stationary time series,
such that E(X?) < oo. The norm convergence or mean-square convergence implies
that if

X, B x
and

Y, By,
then

1. E(X,) > E(X);

2. E|X,|*> — E|X|? so that the variance of X, converges to the variance of X;

3. E(X,Y,) — E(XY), so that the covariance and correlations between X,, and Y,
converge to the covariance and correlation between X and Y.

Now, let C; be any closed subspacei of C. Then, from the projection theorem, for any
Y € C, there is a unique element X = P¢, X € C; such that

[|Y — Pe,X||> = inf ||Y — X||* = inf E|Y — X|*.
XeC XeC

We know that the value of X which minimizes the mean-square error E|Y — X |2
is given by E(Y|X), so that the projection P¢, X is the conditional expectation of
Y given C;, and we denote it by E¢,(Y). By the projection theorem E¢,(Y) is a
unique element X of C; which satisfies

E(XE¢ (Y)) = E(XY),

for every X € C;. We now define this conditional expectation in terms of

multivariate r.v’s in time series setting: let (X, X»,..., X)) be r.v’s defined on
{Q,F,P}and Y € C. Define the subspace C; = C;(X1, X, ..., X,;) as the space
of r.v’s consisting of Xi, X»,..., X, and all other r.v’s obtained by measurable

transformations f (X1, X»,..., X,). C; is a closed subspace of C. For any Y € C,
let Po,Y = Peyx,..x,)Y the projection of ¥ in Ci(Xy,...,X,). We define
Peyxy..xn)Y = Ecx,.x,)(Y) to be the conditional expectation of ¥ given
(X1,...,Xy). By the projection theorem, this conditional expectation is unique and
can be obtained from the prediction equation

E(XEc,(x,.x,...x,)(Y)) = E(XY), (2.3)
for every element X € Ci(Xy,...,X,). However, elements X € (; are in
general nonlinear functions f(X1,..., X,) of (X1, ..., X,) and therefore obtaining

this unique conditional mean using the prediction equation (2.3) in general is
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very difficult. However, there is one particular case, when this unique projection
PCl(Xl,Xz ..... X”)X = ECl(Xl,Xz ..... X”)(Y) = EX1 ,,,,, X”(Y) can be calculated with
ease: Restrict C;(X1, ..., X2) to be the closed span of (Xi,...,X,) so that we
only consider linear functions f(Xi,...,X,) = Z?=1 o; X;, and any element
of X € Ci(X1,...,X,) is given by X = Y '_ @ X;. In this case the optimal
EY|Xy,.. X X)) =Y/ o X

We call Y the best linear predictor for Y. This unique function can be obtained
from the prediction equation by solving the set of equations

Y ofE(XiX;) = E(YX)), (2.4)
i=1
for j = 1,2,...,n. However, the best linear predictor need not be the best predictor,
since the best linear predictor is chosen within the closed span of (X1, ..., X;),

Cy :={Xy, X2,..., X, and all linear functions of (X1,..., X,)},
whereas the best predictor is chosen within the closed subspace
Cf = {X}, X2, ..., X, and all measurable functions of (Xi,..., X,)}.

Clearly C; C Cy. The following definition is immediate.

Definition 2.1.1. A best linear prediction of Y in terms of a countable collection of
r.v’s (X;,t € T) is defined to be the element of the closed span C; of (X;,t € T)
which has the smallest mean-square distance from Y, and by the projection theorem
is unique. On the other hand, the best predictor of ¥ in terms of the collection
(X:,t € T) is defined to be the element of the closed subspace C; formed by all
measurable functions of (X,,7 € T).

This definition will be extremely useful in discussing linear and nonlinear time
series models. In general, C; € C{ and C; = Cf, if (Y, X,,t € T) have joint
multivariate Normal distribution.

Example 2.1.1 (Brockwell and Davis 1991). Assume that ¥ = X? + Z, where
X and Z are independent standard Normal r.v’s. Let C*(X) be the closed space
formed by X and all measurable functions ¢ of X. By the projection theorem, the
best mean-square predictor of Y in C*(X) is the unique element E¢(x)(Y) of C(X),
which satisfies

E@(X)Ecix)(Y)) = E(p(X)Y).

Ec+x)(Y) is an element of C*(X), so that Ec+x)(Y) = ¢*(X) for some
measurable function ¢* of X so that



28 2 Nonlinear Time Series Models

E(p(X)p™(X)) = E(p(X)Y)
= E(¢(X)X?) + E(¢(X)2),
since X and Z are independent, for any measurable function ¢, ¢ (X) and Z are also

independent, hence E(¢pZ) = E(¢p)E(Z) = 0. Now, the only measurable function
¢* of X which satisfies

E(@$(X)9* (X)) = E(¢(X)X?),

is *(X) = X?2, hence by the projection theorem, the best mean-square predictor
Ec+x)(Y) of Y is indeed the conditional expectation E(Y |X) = X2 (E(Z|X) =0
due to the independence of X and Z).

Now consider the best linear mean-square predictor of Y, that is, the best mean-
square predictor of Y residing in C(X), the closed span of X. Then Ecx)(Y) =
aX + b, satisfying

E[(@X +b)p(X)] = Elp(X)(X* + 2)],

for any ¢(X) in C(X). In particular, ¢(X) = 1 and ¢(X) = X are in the closed
span of X. Consequently from the prediction equations

<aX+b1>=<y, 1>=EY)=EX* =1,
and
<aX+b,X >=EYX)=0.

Solving for a and b gives a = 0 and b = 1, and the best linear predictor of ¥ in
terms of X is given by Pc(x)(X) = 1. The prediction error of the best predictor is

IEY|X) =Y = E@Z*) =1,
whereas the prediction error of the best linear predictor is
X2+ Z—-1|P=EX*>4+Z—-1)=EXHY+EZ>»-1=3.

Hence, the best linear predictor has three times as much prediction error as the best
mean-square predictor, showing its clear inferior performance.

The above arguments can be applied to predict a future value of a time series.
Consider a discrete parameter time series (X;) defined on (2, F, P), with zero
mean and autocovariance function y (/). Consider the problem of best predictor of
Xu+1 in terms of Xy, X», ..., X,,. Clearly X, 4+; and Xi,..., X,, are all elements
of the Hilbert space with inner product < X;, X;4;, >:= E(X;Xi+1) = y(h),
and norm ||X;||> = y(0). (Note that the mean is assumed to be zero, so that
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E(X;X;+;) = y(h). Otherwise, we either study the series X; — E(X;), or
equivalently define the inner product to be

< Xi, Xign >= E((Xi — E(X;))(Xipn — E(Xi11))) = v(h).

Therefore, the assumption of zero mean is not restrictive.)

Consider the closed subspace Cl* which includes the r.v’s Xi,..., X, and all
measurable functions of (X1, ..., X,). Clearly such closed subspace will include
the closed span C; of (X1, ..., X,). From the projection theorem, the best predictor
of X+ as a function of (X1, ..., X},) is a unique element of ¥ € C; which has the
smallest mean-square distance from X, that is a function Y = f(X1,...,Xy)
such that

1Xo1 = V[P = inf E|X,41 =Y.
Yec;

The projection theorem also says that Y = Ecx (Xn+1) = EXyu+1]1 X1, X2, ..., X0),
can uniquely be obtained by solving the prediction equations

EYY)=EXYXy11),

forevery Y € Cf. Since, Y is any (nonlinear) measurable function f(X,..., X,),
itis not easy to get the optimal predictor of X, 4 using the prediction equation (2.3).
However, if we restrict ourselves to the closed span C; of (X1, ..., X,), we can solve
the prediction equation to obtain the best projection of X, into the closed span Cj,
namely the unique best linear mean-square predictor. In this case, all elements of C;
are of the form Y = Z?=1 o; X;, for some real numbers «;,i = 1,...,n therefore
the best linear predictor of X, 4+ is an element

n
Xnt1 = Z%*Xi,

i=1

where o are obtained uniquely from the prediction equations given by

n
Y o E(XiX)) = E(Xy1 X)), j =1,2,....n. (2.5)

i=1

Writing o* := (o}, ..., ), and

o> y(1) ey —1)
(1) o e yn—2)
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and y, := (y(1),...,y(n)), we can write (2.5) as

T, =y, (2.6)
This system of equations will have a unique solution, provided I, is not singular,
which is satisfied when the function y (k) positive definite. If T',, is singular, then the
best linear predictor of X4 will have infinitely many alternative representations in
terms of Xq,...,X,.

Although simpler to calculate, best linear predictors often are inferior to best

predictors, unless the relationship between X, +; and Xi,..., X, is linear; see
Example 2.1.1. Note that if X, is a Gaussian time series, then the conditional
expectation E(X,4+(|X1,...,X,) is a linear function of (Xi,..., X,) and in this

case the best mean-square predictor and the best linear mean-square predictors
coincide.

Example 2.1.2 (Brockwell and Davis 1991). Consider the stationary discrete time
series

X, = Acos(wt) + Bsin(wt), t € Z, 2.7
where w € (0,7) is a constant, A and B are uncorrelated r.v’s with zero-mean
and variance o2. The mean and the variance of the series are given respectively by
E(X;) =0and

V(X,) = cos*(wt)V(A) + sin®(wt)V(B) = o>.

For any h

y(h) = E(X; Xi11)
= 0% (cos(wt) cos w(t + h) + sin(wt) sinw(t + h))

= o2 cos(wh),

so that the time series (2.7) is second-order stationary. Now consider the best linear
predictor of X3 given by

)23 =X+ ax Xs.
From (2.6) it follows that
o? y(l)}[al}:[ﬂl)} -
[y(l) o lw] =Ly 28

Solving (2.8) for (051,952), we get o = 2cos(w), @y = —1, so that the best linear
predictor is given by X3 = 2 cos(w) X, — X;. Note that the prediction error is
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E(X; — X3)* = E((X3 —2cos(®) X2 + X1))?
= E((X3 — X1)? — 4cos(w) X2(X3 — X1) + 4 cos’*(w) X7)
=20% —2y(2) + 4 cos*(w)o?
= 202(1 — cos(2w)) + 4 cos*(w)o?
=0,

since for any w, cos(2w) = 2 cos?(w) — 1. Hence X; is predicted from X, and X
without any error, which means that

X3 =2cos(w) X, — X;.

Similarly, from stationarity

A

X4 =2cos(w)X3 — X,

with a mean-square error 0. The projection theorem guarantees that there is a
uniquely defined predictor X4. However, X4 has infinitely many linear represen-
tations in terms of X, X, X3, but by the projection theorem they should give
the same predictor. This is due to the fact that (o, ®»,3) in the representation
X, = Zle o; X; satisfies

o2 y()y@Q) | [ y(1)
y() o y() || | =] 7@ |- (2.9)
y(2) y(1) o* o3 y(3)

However, the 3 x 3 matrix on the right and side of Eq.(2.9) is singular, giving
infinitely many solutions for (o, a2, @3). It is easy to check that the determinant

1 cos(w) cos(2w)
I3l =] cos(w) 1 cos(w) |=0.
cos(2w) cos(w) 1

In fact, for any & > 0, the future values of the time series X, given in (2.7) can be
predicted with 0 mean-square error in terms of the linear combination of its observed
values. Notice also that the time series (2.7), as well as its covariance function, is
periodical with period 2.

Definition 2.1.2. We call a time series deterministic, if for any # > 0, the optimal
predictor of X;4+;, X;4+, can be predicted in terms of (X,, X;—1,...) with zero
prediction error.



32 2 Nonlinear Time Series Models
2.1.3 Nonlinear Representations

In the previous section, we saw that if we are interested only in linear predictors due
to its simplicity, then from (2.6), we only need to know the second-order moments
to calculate the best linear predictor. Due to the Wold decomposition theorem,
(2.1) is the most general model we can use for obtaining such linear predictions.
However, we also see that unless the process is Gaussian, the best linear predictor
is inferior to the best predictor which is a nonlinear function of the observed time
series. Suppose that our time series is not Gaussian and we are not content with the
best linear predictor. In this case, we will have to look beyond linear processes and
second-order covariance structures. This situation is very common particularly in
environmental sciences and economy.

The crucial restriction in the Wold decomposition theorem is that the linear
representation is given in terms of an uncorrelated white noise process, so that this
representation serves as a model only for the second order moments of the stationary
process. Under what conditions, can we represent a (strictly) stationary process in
terms of an independent and identically distributed input process (Z,)? If this is
possible, then we should be able to model the whole probability structure of the
process in terms of this independent and identically distributed input process.

In Sect.2.1.2, in order to obtain best linear predictor we looked at the Hilbert
space generated by the closed span C; of (X, s < t), with the inner product
< X,Y >= Cov(X,Y). The members of this Hilbert space are made up of
only the linear combinations of (X;,s < ¢) and their mean-square limits. The
projection theorem then gave us the optimal linear predictors for X; 45 as projection
of X, in this closed span. If we want to extend these results to optimal (nonlinear)
projections, we need to look for much more general setup. Now, consider again
the set (X5, s < t) and consider the set of all r.v’s with finite variance which are
measurable with respect to this set, that is the set

C, :={Y = g(X;5),s <t :G measurable and V(Y) < oo}.

This subspace is a Hilbert space and clearly contains the closed span of (X;,s <1).
If we can find a closed orthogonal basis for this subspace, then any element ¥ of this
subspace can be written as a linear combination of the orthogonal basis functions,
and projection theorem will give us the optimal projection of X;y; in terms of the
elements of this subspace.

Definition 2.1.3. Hermite polynomials H, (x) of degree n are defined as

o0
/ H,(x)H,(x) exp(—x?/2)dx = nl,,,, n,m=0,1,2,... (2.10)
—00

1
N2
where

1, n =m;

Tnm = 0, n # m.
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These polynomials form a closed and complete orthogonal system in the Hilbert
space L2(R, B, —— exp(—x?/2)dx) where the inner product is defined as

V2r
o0 1 )
< f.g >:/_ f(x)g(x)mexp(—x /2)dx. (2.11)

Hence, every Borel measurable function g such that

/oo gz(x) \/12_7t eXp(—x2/2)dx < 00,

can be written as a linear combination (or as a limit) of these Hermite polynomials

N
~ S &
g(x) = lim_ Z;) > Hu (), (2.12)
o

where, the coefficients g, are given by

o0
1
n = (x)H,(x) exp(—x2/2)dx.
g /_ 8 Y H( r p(—x~/
The convergence of (2.12) is in the mean-square sense

N
. °° gn 1 _
Jim_ /_ (s - n§=0: 8 H, ()= expl—x? 2 = 0.

Hermite polynomials are given by

1
V21

and they can also be calculated from the recursions

H,(x) = (-1)" exp(—x?/2),

dn
2
2
exp(x’/2) 7
d
H,11(x) =xH,(x) — —H,(x),
dx
or
Hy(x) = xHy(x) —nH,—(x).
The first five Hermite polynomials are given by

H()(x) =1
Hi(x)=x
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Hz(x) = x2 —1
Hi(x) = x> —3x
Hy(x) = x*—6x% + 3.

Note that the inner product (2.11) is an integral with respect to the standard Gaussian
density and hence the Hermite polynomials are orthogonal with respect to the
standard normal probability distribution. Instead of Hermite polynomials, we can
define Hermite functions

p— 1 — 2
Yn(x) 1= —n!znmexp( x“/2)H,(x).

Hermite functions are normalized versions of the Hermite polynomials, therefore
they form a closed and complete orthonormal basis for £2(R, B, ﬁ exp(—x?/2)

dx). The Hermite polynomials are orthogonal with respect to the standard Normal
distribution, although it is possible to define Hermite polynomials which are
orthogonal with respect to the Normal distribution N (0, 5%). The closed linear span
of Hermite polynomials is the space of all polynomials, therefore any element of
LR, B, f exp(—x2/2)dx) can be written as a polynomial of finite- or infinite-

order. Elements of £2(RR, B, f exp(—x2/2)dx) are deterministic functions. How
can we pass from polynomial representation for deterministic functions to random
functions? Consider now the simple case: let X be a standard Gaussian random
variable and consider the set of all r.v’s ¥ which are measurable functions of X
with finite variances, that is the set

C(X):=1{Y = g(X) : g measurable and V(Y) < oco}.

Define the inner product < Y;,Y, >= Cov(Y1,Y;) on this set. This set forms
a Hilbert space. The above results on Hermite polynomials immediately suggest
the construction of the orthogonal base for this Hilbert space; let H,(X),n =
0,1,2,... ber.v’s, where H,(x) are Hermite polynomials defined in (2.10). Then
any measurable function Y (of X)) can be written as

| ]

H, (X)),

where
gn = Cov(Y, Hy(X))

and
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N
lim V(Y - %H,, (X)) = 0.
=0

N—o00

Note that if we restrict ourselves to the Hilbert space of the closed span generated
by X, then any member of this space is a linear function of X. If we extend this
space to include all measurable functions with finite variances, then the elements
are again represented by a linear function, but this time a linear combination of
(random and nonlinear) Hermite polynomials or simply polynomials of finite- or
infinite-order.

Now let us introduce more complexity and start with a collection of standard
Gaussianr.v’s (X, s < t) and consider the space of all measurable functions defined
on this collection with the usual inner product defined over it. Any element of
this Hilbert space can be written as a linear combination of products of Hermite
polynomials. Here we will not enter into details, which can be found in Terdik
(1999). As an example, consider standard Gaussian r.v’s (X1, X2,..., X,) with
covariances r(i, j). The first five (random) Hermite polynomials which form the
orthogonal basis for the Hilbert space of all measurable functions defined on
(X1, X2, ..., X,) are given by

Hy =1
Hi (X)) = X,
Hy(X1, X2) = X1 X2 —r(1,2)
Hi(X1, X2, X3) = X1 X0 X5 —1r(1,2) X5 —r(1,3) X5 — r(2,3) X,
Hy(X1, X2, X3, X4) = X1 XoX3Xs —r(1,2) X3Xy — r(1,3) X2 X4
—r(L,4H)XoX5—r(2,3) X1 X4 —r(2,) X1 X5 —r(3,4) X1 X»
+ r(1,2)r(2,3) + r(1,3)r(2,4) + r(1,4)r(2,3).

Therefore any element of this Hilbert space can be represented as sums of products
of polynomials given in the form

00 00 P
E E ailizu-i,,l_[Xiv,

p=0i1=1 ip=1 v=1

o0

with the convention [T°_, X;, = 1.
The following remarkable result due to Nisio (1960) extends this polynomial
representation to any strictly stationary time series.

Definition 2.1.4. Let Z, be independent, standard Gaussian r.v’s. The polynomial
representation
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p

m 00 o0 e
Yt(m) _ Z Z Z Z &irizin l—[Z’_iV

p=1i1=—00i=—00 i =—00 v=1

|
]
=
N
1

1=—00
o0 o0
+ E § gilizzt—ilzl‘—iz
i1 =—00 ip=—00
o0 o0 o0
+ E E E gi1i2i3Zt—iIZl‘—iZZl‘—i3
i1=—OO i2=—00 i3=—00
+ e
o0 o0 o0
+ E E E Girigwim Lt—iy Li—iy *** Li—ipy»
i1 =—00 ip=—00 im=—00

is called a Volterra series of order m. We will call

[ele)
i]=—00 ip=—00 ip=—00

p
Ciriaeiy | | Zimi» (2.13)
v=1

the (infinite-order) Volterra series expansion.

Theorem 2.1.1 (Nisio 1960). Let X; be any strictly stationary time series. Then
there exists a sequence of Volterra series Yt(m) such that

lim v, £ x,,

m—0Q

in the sense that for any n and for any 0;,|j| <n asm — oo,
|E exp(i0_,X_p + - +i0,X,) — Eexp(i0_, Y + .- +i6,Y™)| - 0.

If further X, is Gaussian, then X, can be represented by

o0
Xo= > ¢iZi.
j=—00

The proof of the result above is beyond the scope of this book. However, we only
mention that the proof is centered around first finding a polynomial representation
for a uniformly bounded time series using Hermite polynomials and then extending
the results to any time series using Slutsky type arguments. Although assumption
of independence of the innovations Z, is essential, normality is not essential.
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One can define Hermite polynomials orthogonal with respect to any probability
distribution and therefore the Volterra representation can be given in terms of any
other distribution.

Nisio’s theorem essentially says that although most stationary time series will
have a linear representation in terms of uncorrelated innovations (Wold theorem), it
will have very complicated, nonlinear representations in terms of the independent
innovations. Therefore Nisio’s theorem can be seen as the extension of the Wold
decomposition theorem. While modeling with ARMA classes, we often require that
the innovations are Gaussian, hence the modeling is restricted to the Volterra series
of order 1. Note that (2.13) is a representation for the whole probability structure
of the time series as contrast to the representation (2.1), which is representation for
the covariance structure of the series. Let us give some examples to highlight this
difference.

Example 2.1.3. Consider the process
Xi =2, +aZ;1Zi, t €1,

where (Z;) is a zero-mean i.i.d. sequence with finite variance. It is easy to verify
that X, is covariance stationary with zero mean and constant variance and

COV(X[X[+]1) =0.

Hence, X, is an uncorrelated time series, whose correlation structure is equivalent
to that of the independent innovation process Z,. However, the probability structure
of X, is different from that of Z;. For example,

EX(|Xi—1. Xi—2,...) =aZ,1Z; 5,
whereas
E(ZIIZI_],...) = 0.

Hence, by looking at the second-order properties, we can decide that there is no
structure in X; to model, but certainly X, has structure which should be studied by
its higher-order moments. In fact, if Z; are also Gaussian, then all cumulants higher
then the second-order are zero. However, it is easy to check that the higher-order
cumulants of X; are not identically equal to zero.

Example 2.1.4 (All-pass models). The class of uncorrelated but not independent
processes is quite rich. In fact, one can encounter uncorrelated but not independent
linear processes. The class of all pass models (Andrews et al., 2006) is one example,
which can be constructed within the ARMA class by choosing autoregressive and
moving average polynomials in such a manner that the roots of the autoregressive
polynomial are reciprocals of the roots of the moving average polynomial or
vice-versa. Assume that ¢,(z) = 1 — ¢z —--- — ¢pz” is a causal autoregressive
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polynomial so that ¢, (z) # O for |z| < 1. Define the moving average polynomial
¢y

—b»
= —(B" =B = — )/,

0p(2) =

and consider the time series which satisfies the difference equation
¢]7(B)Xt = Qp(B)Ztv

where (Z,) is an i.i.d. sequence with zero-mean and finite variance o>. The time
series X, has some interesting properties.

1. X, is not invertible, but is causal.
2. The time series satisfies the difference equation

Xi—p1 Xim1 = —9pXip
$p—1 1 1
=z + v O -7,
t 4, t . t—p . t—p

so that, when p = 1, and |¢;| < 1, first order all-pass model is given by
1
X, _¢1Xt—l =7 ——Z
¢

and the second-order all-pass model is given by

X=X —pXo o =Z + 1/ Zi1 — 1/ Z, 5.

3. The spectral density of X, is given by the constant function

02

f) = g
for every w € [—m, 7], so that the X, process is uncorrelated. Further, if Z; are
Gaussian, then X, is an i.i.d. sequence with distribution N (0, ¢;202). However,
if Z, are not Gaussian, then for p > 1, X; is not an independent sequence.

4. Since all-pass processes are uncorrelated but not independent, the usual second-
order techniques based on autocorrelation and partial autocorrelation functions
cannot identify an all-pass model, as these functions will report that the data
have no structure. Inferential methods based on Gaussian likelihood or least
squares do not give the desired results when fitting all-pass models. Instead,
inferential techniques based on cumulants of order greater than two are often
used; see Andrews et al. (2006) for details. The need for inferential methods
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based on cumulants higher than two or approximate methods based on non-
Gaussian likelihoods are quite universal while modeling nonlinear data.

Let us make a summary of the results:

1. Y, = Z?io ¥;Z;—j, Z, uncorrelated r.v’s is called a linear, causal representa-
tion.

2. Y, = Z?io V;Zi—j, Z; ii.d. r.v’s is called a linear causal model.

3. If further, Z, are Gaussian, then any linear representation is also a linear model
and Y, = Z?‘;o Y ; Z,—; is called the Gaussian causal linear model.

4. (Almost) all non-deterministic, second-order stationary time series X; have a
unique linear representation in terms of uncorrelated innovations. In this case,
moments of X; and Y; up to second-order coincide. However, moments of order
higher then two, need not coincide, except when X, is Gaussian.

5. (Almost) all strictly stationary time series X, has a (infinite-order) Volterra series
expansion

for some i.i.d. innovation sequence Z;.

6. Therefore, X; has a linear causal model in terms of an i.i.d. innovation sequence
Z,; iff it has a first order, one-sided Volterra series expansion, that is, iff X; is a
Gaussian process. Hence, the class of causal, linear models is not dense within
the class of stationary time series.

7. If we want only the best linear predictors for future values of the time series, then
we can work with linear causal representations, as we do not need information
other than the second-order moments to obtain best linear predictors.

8. On the other hand, if we want the best predictor, then we need to look for models
within the general class of Volterra series expansions.

Working with linear models, particularly with Gaussian linear model, is relatively
simple, whereas working directly with the general, infinite order Volterra series is
very difficult, if not impossible. For example, it not possible to give conditions of
stationarity on the kernels g;,;,...; b Further, time series such as

Xi=2Z,+aZ,Z,»,
or
X, =Z, +aZ,,

where Z, is a sequence of independent r.v’s, are not invertible (Granger and
Andersen 1978). Hence, one would expect that Volterra series expansions have
limited use as models for predicting future values, unless the input process (Z;)
is observable. Therefore, to model nonlinear data, we need to look for sub-classes
of Volterra series expansions which are easier to study.
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There are many ways a process can be nonlinear. Therefore, in order to come up
with fairly general and useful classes of nonlinear models, we need to look at certain
aspects of the probability structure of the processes to understand and describe
the underlying nonlinear behavior. Since linear and nonlinear processes differ on
moments higher than order two, particular emphasis has to be given to studying the
higher moments and tails of the stationary distributions of the processes. We now
look at certain aspects of nonlinear processes which may indicate how we should
construct useful nonlinear models.

2.1.4 Sensitive Dependence on Initial Conditions, Lyapunov
Exponents

The most striking feature of nonlinear processes is the strong dependence on initial
conditions and the noise amplification. Let us start with deterministic difference
equations, representing some dynamic system in discrete time. Suppose that x, =
f(x,—1) defines a deterministic difference equation, for some function f. Starting
from the initial condition x, let

X = 0 0) = f(fC- (f(x0)))
be the value of the system after n iterations. Now let us disturb the initial starting

value x¢ by a small number §j to xo + §y. We would be interested in the impact of
this initial disturbance on the dynamic system after n iterations, namely

8o = f™(x0 + 80) — £ ™ (x0),

and in particular, we may be interested in the limit as n — coand §o — 0. If f isa
linear function so that

Xp = axp—1 + B,
then it is easy to verify that
X, = o"xo + ,B(oc"_1 +o" 4t 1),
so that
8, = a8y
and

£ (xo 4 80) — £ ™ (x0)
£ (xo)

= 0(5).
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On the other hand, consider the logistic difference equation
Xn41 = ox, (1 — xp). (2.14)

Here, « is called the driving parameter. Now start with an initial value xo € (0, 1).
This difference equation has a peculiar behavior for different values of «. If o €
[0, 3), then as n — oo, the difference equation converges to a single number. When
a = 3.0, then x, no longer converges but oscillates between two values. As « is
increased, in the limit x,, oscillates between increasingly different numbers, and for
o > 3.57 the sample path behavior of xi,...,x, is chaotic, resembling a sample
path of a random process. This chaotic behavior is due to the sensitive dependence of
the difference equation on the initial value x, for increasing values of the parameter
a. In fact, when o = 4, this difference equation has an analytical solution

x, = sin*(2"Br),

where § € [0, 1) is a function of the initial value xo. When x¢ € [0, 1] then S is
almost surely an irrational number which will have different dyadic representation
for each iteration n causing a chaotic behavior of the sample path xi,...,Xx,.
This chaotic behavior caused by the dependence on the initial condition is quite
common for nonlinear difference equations and measuring this dependence on
initial conditions may give a degree of nonlinearity that exists in a difference
equation (Fig.2.1).

Lyapunov exponent A of a dynamic system is a quantity that characterizes this
dependence on the initial conditions through the relationship

8u ~ €"*8p. (2.15)
One can give an heuristic argument for the definition of the Lyapunov exponent.

Assume that x, = f(x,—;) and f is everywhere differentiable. Then using first-
order Taylor series approximation,

8n = ™ (x0) — £ (x0 + 80)

d
~ §q— £
5odxf (x0).
Here,
d d
Z A ()
dxf (x0) dxf (x + do).

calculated at x = x(. Since

SO0 = fUC(fE),
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Fig. 2.1 Simulated samples of 100 observations from the logistic difference equation; (a) « =
1.0; (b) @ = 2.0 with xg = 0.5; (¢) @« = 3.0; and (d) « = 3.9

by the chain rule

%f(")(xo) ~ exp(n log %f(xo))

assuming that each of the factors g—x f(xy) ~ % f(x0) have comparable sizes.
Therefore it is reasonable to consider

1. d
A= lim —In|— f™(x0)|.
n—>oon dx

as an indicator of the degree of dependence on the initial conditions, or equivalently,
as an indicator of the degree of nonlinearity through the relationship (2.15). When
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A < 0, the dynamic system is called dissipative or non-conservative. Such a dynamic
system exhibits asymptotic stability, typically resulting from damped harmonic
oscillations. When A = 0, the system is called conservative and is said to be
Lyapunov stable. The case A > 0 corresponds to an unstable system, resulting in
chaotic sample paths.

Quantifying the degree of dependence on initial conditions or equivalently quan-
tifying the degree of nonlinearity of stochastic difference equations representing
dynamic random systems needs more attention. This is due to the fact that the
system in each iteration is perturbed by a random noise. Since each sample path
of the dynamic system will have different realizations of random shocks, it makes
sense to consider the divergence of expected values (ensemble average) of these
sample paths.

Example 2.1.5. Consider the stochastic difference equation
Xu+1 = A, X, + B,, n>0. (2.16)

Here, for each n, A, and B, are dependent scalar r.v’s, but the pair (4,, B,) is
an i.i.d. sequence. The stochastic difference equation in (2.16) and its multivariate
versions, where X,,, B, are random vectors in R¢ and A4, are d x d matrices, often
appear as basis for studying many different forms of nonlinear time series and will
be revisited in future chapters. Starting from X, and upon # iterations the process
will be in the state (Brandt 1986)

n—1 n—1 n—1
Xo=) | TT 4| Bi-jmr + (]‘[ A,-) Xo.
j=0 \i=n—j i=0

Conditional on the two initial values Xy = xo, Xo = xo + 8o, we can quantify the
deviation in the sample paths with

Sn

£ (xo) — £ (x0 + o)

Note that §, is a random variable. Lyapunov exponent A can now be defined as the
expected deviation on the sample paths upon # iteration, conditional on two initial
realizations Xy = x¢, Xo = Xo + 8o through the relation

E(8,) = "0,
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in which case

1
A= E[;log(|A0||A1| <o |An D]
= Elog(Ap).

(Here, | A; | rather than A; appear in the expression to insure that j—x f(x,) = A, have
comparable sizes and contributions). Brandt (1986) also shows that if the process is
dissipative, that is, A = E log|Ap| < 0 and E(log | Bo|)* < oo then

o0

n—1
nli)nc}oX,, =Z l—[ Ai | Bi—j—1,

j=0 \i=n—j

is the unique stationary solution of (2.16). If A > 0, one would expect a chaotic
behavior, without a stationary limit for the difference equation. Hence, the existence
of stationary solutions for the stochastic difference equation given in (2.16) depends
on the degree of dependence on the initial conditions.

Example 2.1.6 (Fan and Yao 2003). Consider again the dynamic system defined
by the deterministic difference equation x;, = f(x;—;), where f is an everywhere
differentiable function. But now we disturb the dynamic system at each iteration by
a small i.i.d. noise Z;, resulting in the stochastic difference equation

X = f(Xt—l) + Z;.

The process that satisfies this difference equation is called the first order nonlinear
autoregressive model of order 1 (NLA(1)). In order to facilitate arguments, assume
further that Z; are independent of (X;,s < ¢). It may be interesting to know
how much these additive noises affect the variation in this process after n steps.
Again, let us consider two sample paths of this process, starting from X, = xp and
Xo = X0 + 8o and look at how much (on average) these two sample paths diverge
after n iterations. Note that, if f is a linear function, then with any uncorrelated
noise with finite variance, the divergence between these two sample paths would be
of order O(8). Let f™ = f(f(--- f(x))) be the n fold composition of f. Then
by the arguments given in Fan and Yao (2003) which are based on iterative Taylor
series expansions,

n—1 n—1

X, = fOX0)+ D[]/ Kt Zumjr + Zo 2.17)

j=lk=j

In general the derivatives f/(X,—x) are functions of Z, i, Z,—f—1,...7Z].
However, if we assume that the random shocks are of small order, that is
|Z,] < n < 1 almost surely for every n, then by (2.17) for any fixed n,
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f(X,) ~ f™(Xo) + O(n), and this can be used as a second-order approximation
in the arguments of the derivates to give

n—1 n—1
SX) ~ fOX) + D[] S XN Zuj + Zu + O(m).  (2.18)
j=lk=j
Let 62(xo) := V(X,|Xo = xo) be the variance of the process after n iterations.
Then from (2.18),
n—1 n—1
op(x0) = (14 Y _ [T f/(f P06 + o).
j=lk=j

Hence, even when the shocks Z; are almost surely small, the variance of the process
after n iterations is amplified by a quantity (1 4 Z’j’.;ll 1_[’1;1, £'(f% (x0)))?, which
may be quite significant.

2.1.5 Limit Cycles

We have seen that the logistic difference equation given in (2.14) can have very
different sample paths, from a constant to total chaotic behavior depending on the
value of its parameter . The region o € [3.0, 3.7) is interesting, as the sample paths
oscillate among a finite number of states. This type of limiting behavior is quite
common in deterministic and stochastic dynamic systems, particularly involving
population dynamics and is called limit cycle. Typically, dynamics of a population
depends on many internal and external factors, the size of the population being one
of these factors. As the population increases in size over passing a critical threshold,
typically this has a negative influence on the reproductive and survival capacities
of the population, lowering its growth rate. Moreover, as the population size goes
down, these capacities tend to increase, increasing its growth rate. Hence, under
equilibrium conditions the sample paths of a population size will show limit cycles,
switching at random epochs. For example, consider the deterministic difference
equation

b

Nt+l - Nt (1 + aN,f)"’

often used for modeling annual plant population. Here a, b and ¢ are parameters
of the model. The parameter a does not affect the dynamics of the model, whereas
the parameter ¢ has a very strong effect on the dynamics. Again, this deterministic
difference equation will have very different sample path properties, depending
basically on the values of the parameters » and c. For example, when ¢ = 1, for
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Fig. 2.2 Limit cycles of simulated samples of 100 observations (a) a=1,b=1,c=1;
bda=1,b=10,c =3;(c)a=1,b=50,c =4;and (d)a = 1,b = 150,c = 10

any value of b, the sample paths will converge monotonically to a constant, whereas
when ¢ > 2 and b = 10, the sample paths will show damped oscillations, finally
converging to a constant. This sample path behavior then starts getting ever more
erratic as b and ¢ increase. For values of » = 50 and ¢ > 3.5, the sample paths
oscillate between fixed number of population sizes, and this behavior is called the
stable limit cycles. Ultimately, for » > 100 and ¢ > 5, the sample paths behave
in a chaotic way. The limit cycles generated by several samples of size n = 500
are presented in Fig.2.2. In random dynamic systems, stable limit cycle behavior
can manifest itself in many different ways. For example, rather than switching
between fixed number of values, the process can switch between different linear
models at random epochs, depending on internal or external factors, resulting in
many different piecewise linear models such as threshold models. These models
will be discussed in Sect. 2.2.1.
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Fig. 2.3 Simulated Gaussian AR(1) model, n = 500 and parameter 0.7 (a). In (b) the same model
with Gamma(4,1) residuals

2.1.6 Time Reversibility
A process X, is time reversible if

d
(th’ th, ce ,Xt,,) = (Xt,,,Xt,,,l, ce ,th),

for every n and 14, ...,1,. Gaussian processes are time reversible, and except for
few special cases, non-Gaussian processes are time irreversible. In general, if a
stationary time series is stationary and time reversible then for every k, kth order
cumulants satisfy

C(—uy,—uy,...,—ug) = C(uy,uz, ..., ug).

This a very strong condition and it is very unlikely that there will be many
non-Gaussian processes that satisfy this condition. Therefore, time irreversibility
must be a rule among nonlinear processes. Note that if X, is a stationary time
series and Y; = h(X,) is a one-to-one transformation, then Y; is time reversible
if and only if X, is time reversible. Therefore, fitting Gaussian time series models to
transformed data cannot be a adequate method of dealing with nonlinearity. In other
words, in most cases, we cannot get rid of nonlinearity by transformation of the
data. The simplest way of checking reversibility is by plotting the data. In general,
for a reversible stationary time series, the plots of x,,, X,—1,...,x; and x|, X2 ..., X,
should look the same. Similarly, since time irreversibility is a characteristic of
Gaussian data rather than linearity, a time series which is non-Gaussian should be
treated as irreversible (see Fig. 2.3).
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2.1.7 Invertibility

When studying stochastic difference equations of the general form
Xt = f({Xw st < l}),

representing a dynamic system, we restrict our study to relationships (X;, Z;)
in which X; is measurable with respect to (Zs,s < f). These restrictions are
called the conditions of stationarity. Typically in these difference equations, what
is observed is the time series X;, and the innovations are unobserved. However,
almost all statistical properties of the relationship in (X;, Z,) are given in terms of
the innovations Z;. Therefore, in order to be able to make inference and predictions
on the dynamic system, the residuals should be recovered from the observations
Xxs,8 < t. The set of conditions which guarantee this possibility are called the
conditions of invertibility, under which the innovations Z; are measurable with
respect to (X, s < t). Note that, conditions of invertibility and stationarity are
joint properties of the processes (X;, Z;), rather than being a property of X, alone.
Unfortunately these conditions, particularly conditions of invertibility, are not so
easy to obtain for general nonlinear difference equations, except for some special
cases. We will look at these conditions for specific cases, whenever possible.

2.2 A Selection of Nonlinear Time Series Models

According to Tjgstheim (1994), nonlinear models can be broadly classified into the
following categories;

1. Parametric models

* Parametric models for the conditional mean

* Parametric models for the conditional variance

* Mixed parametric models for the conditional mean and variance
* Generalized state space models

2. Semiparametric and nonparametric models

The above classification is by no means exhaustive and mutually exclusive. In its
most general form, a nonlinear model can be written as a stochastic difference
equation

X, = f(Xr—ly cees Xt—ps Zi,Zi—,. .., Zr—q, 0), (2-19)

for some integers p and ¢, model parameters # and some measurable function f
which renders a stationary causal solution. Such general representation contains
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both nonlinear conditional mean and conditional variance components for X; in
terms of the past values. Often, it is easier to look at a simpler class of models

Xt = f(Xf—lv---7X[—plvzt—ls---sZt—qlsol)
+ g(X[_l, cee ,X[-pz, Z[-], ceey Zt—qzv 02)Z,, (220)

for measurable functions f and g, separating the nonlinear models for the condi-
tional mean and the conditional variance components. Taking g as a constant, for
various combinations of f functions, we get subclasses of nonlinear models for the
conditional mean, whereas taking f constant and for various combinations of g,
we get subclasses of models for the conditional variance. The general class (2.19)
can be classified as the class of mixed models, although Tjgstheim (1994) classifies
(2.20) as the class of mixed models.
In this chapter, we give a brief description of some of these models.

2.2.1 Parametric Models for the Conditional Mean

These models represent the conditional mean function of the process X, as a
nonlinear function of the past observations, keeping the conditional variance
constant. Hence, an appropriate general model is given as

X, = f(Fi_1.0) + Z..

Here, the function f has a known parametric form, F;_; is the sigma-field generated
by X, up to time ¢t — 1, Z; is an i.i.d. sequence and # is an unknown parameter
vector to be estimated. In some cases, the function f may also depend on other
external processes. Several different forms of f give different classes of nonlinear
models. One important subclass is the regime models or regime switching models.
Models in this class are typically made up of several piecewise linear processes
and the generating process switches from one linear model to another, depending
on the value of an indicator. This indicator may be a random variable, such as the
delayed value of the series itself, or it can be the value of a different, possibly latent
process. Depending on the parameter values, such piecewise linear regime models
are stationary but nonlinear, in the sense that they cannot be represented in the
form (2.1). This class of models include threshold models, first introduced by Tong
(1990), and later enriched by other classes of similar nature. The fundamental reason
for introducing such classes of models is the need to model random cyclic behavior
that exists in many time series; see Sect.2.1.5 for further details. As we will see,
the class of bilinear processes, which is by far the most general class of nonlinear
models, in the sense that they form a dense subset of the Volterra expansions, cannot
generate limit cycles (e.g., Tong 1990) and therefore the threshold models have
gained importance on their own right in modeling time series. For general treatment
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of regime models see Hamilton (2008), Granger and Terésvirta (1993), and Franses
and Van Dijk (2000). Regime models may also switch at deterministic but unknown
times, in which case the process will be linear but not stationary. Such models are
called segmented time series (e.g., Davis et al. 2008). We now look at some of the
regime models.

Threshold Autoregressive (TAR) and Self-Exciting Threshold (SETAR)
Models

The basic idea behind this class is as follows: we start with a linear model for X,
and allow the parameters of the model to vary according to the values of a finite
number of past values of X;, or a finite number of past values of an associated series
Y:. Hence, such regime models in general can be written as

al’ + Y1 aV X, + Z, i Y <7

X = , (2.21)
a? + 7 aP X+ Z i Y, >

where r is the threshold and Y; is a switching process which can be a latent or an

observable process, determining which regime describes the process in a certain

moment of time. Such processes are called Threshold autoregressive (TAR) models.

When the switching process is the time series itself observed at a certain lag, we

have the SETAR sub-class. In its simplest form a first-order SETAR is given as

a]X[_l + Z[, lf X[_l € A(l)

X = )
azX[_l + Z[, lf X[_l € A(z)

where A®) are some regions. Typically, these regions are intervals such as AV =
{X;—1 <r},and AP = {X,_| > r}, for some threshold r. We can generalize this
class of models to

p
Xo=Y X+ 27, Xioh.... X)) €A i=12...1 (222
j=1

having different error structures in each segment. Note that when [/ = 1, the first-
order threshold model can be seen as a piecewise linear approximation to the general
nonlinear first order model

X = f(Xt—l) + Z;,

whereas the pth order model in (2.22) is a linear piecewise approximation to the
general nonlinear equation
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X = fXim1, Xe2, ... X p) + Z;.

In practice it is not feasible to fit a model of the form (2.22) with a large p, since
the identification of the threshold regions would involve search in a p-dimensional
space. A sub-class of the form

P
Xi=a)+) ayX,j+ 2", X,_qeA?
j=l1

where A®) is in R can be considered, thus simplifying the identification of such
models. These models can still be extended to include cases when switching
between sets of parameters is determined by the past values of a different process
Y;, extending the TAR model given in (2.21)

m; [,'
X =ayp + Zain[—j + Zb,th_j + Zf(’), Y4 € AW,

Jj=1 J=1

Such models are known to be very useful, particularly in modeling data which shows
random cyclic movements.

Smooth Threshold Autoregressive (STAR) Models

As mentioned above, TAR/SETAR models should be used when the process to
be modeled shifts from one regime to another abruptly. However, if the transition
is gradual, then the STAR models are more appropriate. A two-regime STAR(p)
model is defined by Chan and Tong (1986) as follows:

P p
Xi—q—a
X =co+ Zao,iXt—i +G (%) (Cl + Zal,iXt—i) + Z,,

i=1 i=1

where d is the delay parameter, a and b represent the location and scale parameters
of G, respectively. The transition function G, that enables the transition between one
regime to the other, is a smooth, continuous and monotonically increasing function,
satisfying the inequality 0 < G(z) < 1. Two subclasses of STAR models are the
exponential and logistic STAR models, when the function G respectively is given
by the expressions

G(z) = 1 —exp[—a(z—b)?], a > 0,

1

a@=1+mwﬂ@—my“>

0.
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Chan and Tong (1986) give an alternative STAR model with Gaussian smooth
transition function

G(z) = ®la(z—b)].

where ®(-) the cdf of the standard Normal distribution. The parameter » can be
regarded as the threshold and a controls how fast and how abrupt the model shifts
from one regime to another (see e.g., Zivot and Wang 2006).

Markov Switching AutoRegressive (MAR) Models

This class of models was developed by Hamilton (1989), based on ideas previously
proposed by Goldfeld and Quandt (1973). Let S; be a discrete first-order homo-
geneous Markov chain with state space S = {0,1,...,k}. Each member of S
corresponds to a regime. Let P(S; = j | S;—1 = i) = pj;; be the transition matrix
given by

Pi1 P2 --- Pk
p— P.21 P.zz P‘Zk
p;cl P;cz Pl;k
Each state, at time ¢, has an associated probability given by n; := (Py, P, ..., Py),

where 7 = P’'m. A k-regime MAR model is given as
X = HUs, +Xt—105, + Z;,

where X, = (X;—1,Xi—2,...,X;—p), and us,, 05, are the model parameters
that switch between k different values according to the latent Markov chain. Z, is
assumed to be a Gaussian sequence with mean zero and the variance can be taken
as constant, or may switch between k different values depending on the realization
of S;. A classical application of a two-state MAR model to the US GNP time series
is given in Hamilton (1989).

Random Coefficient Models
Sometimes it may be useful to introduce random regime switch into the model
parameters, giving rise to a different class of models. A simple model within this

class is the first order AR model

X, = IﬁtXt—l + Z;,
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Fig. 2.4 Sample path of size
n = 500 of the model (2.23) &
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where V; is a homogeneous Markov chain with a finite space and transition
probabilities p;;, for example taking values a; and a,. In this case, the process X,
will alternate between the two processes

X, =a1Xi—1 + 24,
and

X; arX; 1 + Z;,

according to the transition probabilities (p;) for i, j = 1,2. Smoother changes in
the parameter can be modeled by state space type model

X, = IﬁtXt—l + Z;,

Y = a1 + vy,

where Z; and v; are independent i.i.d. sequences. In general, a regime model will
take the form (X;, S;), where, (S;) is a latent process, typically a homogeneous
Markov chain with a finite state space, such that at any time ¢, X; conditional on
S; = j follows a linear model ARMA(p,,q;). Hence the process will alternate
among various linear models in accordance with the transient behavior of the
unobserved process S;. The estimation, identification and diagnostics for these
models are complicated although not impossible, due to the fact that the process S; is
not observed. Note that if the residual process is made to depend on the unobserved
Markov chain then the variance of the process also changes from one regime to
another. In Fig. 2.4, we have a sample path of the process

X, =CY) 405X, + Z,, (2.23)
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Fig. 2.5 Sample path of size
n = 500 of the model (2.24) Q- |
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where Z, are i.i.d. N(0,1) and

cio_ )2 ifSi=1
10 ifS, =2

where S; is a homogeneous Markov chain with transition matrix

p— 0.90.1 .
0.4 0.6
For this matrix, the stationarity limit distribution is given by = = (0.8,0.2).
A sample path of the extended process

X, =0.5X,_, + 2z, (2.24)
where

7S _ N@O,1) ifS =1
' N(©,10) ifS, =2

is presented in Fig. 2.5.

Segmented Time Series

Davis et al. (2008) introduced a broad class of nonlinear and non-stationary time
series segmented into several pieces. Each segment is assumed to be a stationary
time series modeled by a parametric class of time series, whereas the number and
the locations of the break points or the segments are treated as unknown model
parameters. Thus the observed time series y; is assumed to be generated by a time
series Y; of the form
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Y, = X[’j, Tj—1 =1t <71y, j=1,...,m,

where 7;, j = 1,...,m are the break-points or segments of unknown number m
and each segmented X, ; are stationary times series independent of each other.
Typically, these time series can be AR(p;) or GARCH(p,, g;) models. In a more
general form, each segment may be composed of time series having different state
space representations. The model choice, namely the identification of the number
of segments and their respective locations, as well as the order of the models in
each segment is then performed by using a genetic algorithm. Simulation results
indicate that these models perform well and the availability of software to fit these
models makes this class of models a good candidate for regime models. The main
difference between segmented time series and threshold models is that, whereas in
threshold models, the transition between models is triggered by lagged values of the
time series, in segmented time series, the changes occur at specified time points.
Examples of time series models studied by Davis et al. (2008) include:

» Segmented AR process:
In this case, each segment X ; is assume to be an AR(p;) process given by

Xt,j = alet—l,j + "'+apj,th_pj,j + Zl‘,j’

where Z;, ; ~ WN(O,U}). Here the (unknown) parameters of the model are

0]' = (pj,aj,O'jz-).l
» Segmented GARCH(p;,q,) process:
In this case, each segment Y; is modeled by a GARCH(p;, ¢;) given by

Xt,j = Ut,th’
where Z; ~ WN(O0, 1) and

0_2

— . . 2 . 2 a2
Ly =ajotanX_ ;e tajp X +bjio;

) 2
t=pj.j + +b/*‘1/‘0f—q./~,f’

Lj

Tj—1 =1t <r71j,

where to satisfy stationarity of each segment, the parameters are restricted by
apj > 0,by; > 0and

pj qj
Zai,j + Zbi,j < 1.

i=1 i=1

Here, the model parameters are givenby 8 ; := (p;,q;.a;,b;).

'A discrete counterpart of conventional segmented AR processes, based on the thinning operator
in (1.5), was proposed by Kashikar et al. (2013).
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o Segmented state space models:
In this case the jth segment ¥; ; has a state space representation given by the
equations

Pivilxi) = pielxj Xi—1,¥i-1),Tj—1 <t <7

and the state process X; ; follows a AR(p;) process.

2.2.2 Exponential Autoregressive Models

Consider for example, the second-order autoregressive model
X =a1Xi—1 + @ X + 7y,

where a1, a, instead of being constants, are functions of X;_;. Specifically, assume
that they are exponential functions of X tz_l taking the form

ai = ¢1 + m exp(—=y X)),
a) = ¢y + m GXP(—VX,?_l)-

Such a model then is called second-order EAR(2) model. Note that for large | X;—|,
a; ~ ¢1, a; ~ ¢, whereas for small | X,_;|, a; ~ ¢ + w1, az ~ ¢, + 77, so that
the EAR model behaves like the threshold AR model where the coefficients change
smoothly between two extreme parameter values. EAR models are capable of
producing amplitude dependent frequency effect, limit cycles and jump phenomena;
see Tong (1990) or Priestley (1981). The coefficients a;, a, can be defined as a
function of X;_; in different ways to assure smooth transitions. For example, in the
case of EAR(1) model, a; can be parameterized as

ar = 0 X—1 + 06X, {[1 + exp(63(X,—1 — 0u)] "' — 1/2}, 65 >0,

in which case the model is called logistic exponential model. These models can be
generalized to the form

k
X =dX,o + Zbifpi()’;xt—l) + Z;,

i=1

where X,—; = (X;—1.Xi—2.....X;—p), and @' = (ai,....ap), ¥ =
(y1,...,yp) are p-dimensional parameter vectors and ¢;(-) are known specific
functions. Although such models are used, it is evident that there would be problems
of estimation as the parameter space increases.
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2.2.3 Polynomial-Type Models

One can also use nonlinear regression type models based on polynomials of the form

k
X =) aX/_ +Z.

i=1

More general polynomial models can be devised by introducing terms depending on
X;—2, X;-3,..., X;—p and cross terms. These models are not very much used due to
the feedback of X, into itself, causing explosive behavior.

2.2.4 Bilinear Models

The process X; is said to be a bilinear process BL(p, ¢, m,[) if it satisfies the
difference equation

Zq&,x, - +Ze Zi—j +ZZb,,X, i Zi—j + Zi. (2.25)

j=1 i=1j=1

The conditional mean of the process (2.25) is given by

E(X/|Fim 1)—Z¢,x, — +Ze,z, - +ZZmbt 2=

i=1j=1

whereas the conditional variance is given by V(X;|F—;) = cr%. Hence the bilinear
model given in (2.25) represents the nonlinear dynamics present in the mean. This
class obviously can be extended to include cross terms of (X;—_, ..., X;,—,,) with Z,
resulting in models

Zq&,xt _ +Ze Zi_j +ZZbUX, i Zij + Zi. (2.26)

j=1 i=1j=0

In this case, V(X;|F;—1) will also be a function of passed values of the series,
therefore bilinear models described in (2.26) fall in the class of mixed models for
the conditional mean and variance.

The class of bilinear models plays an important role in modeling nonlinearity
for various reasons. The class is an obvious generalization of ARMA(p, r) models
resulting in nonlinear conditional mean. Under fairly general conditions, bilinear
processes approximate finite order Volterra series expansions to any desired order



58 2 Nonlinear Time Series Models

of accuracy over finite time intervals (Brockett 1976). Due to Nisio’s theorem,
Volterra series expansion are a dense class within the class of nonlinear time
series, therefore, under fairly general conditions, bilinear processes are also a dense
class within nonlinear processes, approximating any nonlinear process to a desired
level of accuracy. However, it is well known that bilinear processes cannot capture
random cyclic movements, such as limit cycles and jump phenomena. The class
is fairly well-studied, and conditions for the existence of unique and stationary
solutions are known. Although identification, estimation and diagnostic techniques
are available, much of the work on the class remains to be completed. Volterra
series expansions and bilinear processes are often used in the control theory and
are somewhat different from the context within which they are used in time series.
In the control theory, the output X/, as well as the input process Z, are observable,
making the probabilistic structure simple. For example conditional on the passed
values of Z,, the process X; is linear, and conditional on the passed values of X,
the process Z; is also linear. In the time series context, the input random process Z;
is not observed and unfortunately, the lack of verifiable conditions for invertibility
(except for very simple bilinear processes) limits the use of these processes as
models. Bilinear processes are capable of producing sudden bursts of large values
and hence are suitable for modeling time series showing heavy tailed phenomena.

The bilinear process BL(p, g, m, ) given in (2.26) can be written in the form
(Resnick and Van den Berg 2000)

X, =A_1X—1 +B,
where
Bt = G)Zt’

O isa p x (1 4+ g) matrix given by

16 ...0,-10,
00. 0 0
®©=|00. 0 01,
00. 0 0
A,_j is a p X p matrix given by
Gt Y by Zi o+ Yo by Zim b+ X1 bpi Zi
1 0 ... 0 0

A =
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and X and Z, are respectively (p — 1) x 1 and ¢ x 1 column vectors
X=X, Xi1, e Xt—p+1)/,
Z[ = (Z[, Z[-], ceey Zt—q)/‘

The general bilinear model (2.25) can also be written in an equivalent state space
form with the observation equation

Xi=HW, .+ Z,
and the state equation
W[ = AtW[—l + Ct.

Here, the state vector W, is a Markov chain, and A,;, C, are random matrices,
depending on the specific form of the general bilinear process given in (2.25).
The general form is quite complicated (e.g., Fan and Yao 2003) but simpler
bilinear models can conveniently be written in this form. For example the model
BL(p,0, p, 1) given by

P P
X = Z¢th—j + ZbilXt—iZt—l + 7,
j=1 i=1
can be written in the vector state space form (e.g., Priestley 1981)
X, =HW, +CZ,
W= (A+BW)W,_, +(A+BZ)CZ,
where

W, =X, Xi—1,..., Xt—p)/s
Hix, :=(1,0,...,0),
Cyx1 = (1,0,...,0),

1 2 - ap
10 --0
01--0

Apo = 5



60 2 Nonlinear Time Series Models

bii bar ... by

0 0. 0
Bpxp - ..

0o 0 - 0

Note that W,_; is independent of the coefficient (A + BZ;) and the error (A +
BZ,)CZ,, and is a Markov chain. Note also that the pair (A+BZ,;, (A+BZ,)CZ,),
forms an i.i.d. sequence of random matrices, but the components of this pair
are not independent of each other. This state space representation, due to its
Markovian nature facilitates the study of the probabilistic properties of the process.
For example, if the process W, is stationary, then so is X;. Due to its Markovian
structure, it is relatively easy to study the conditions under which W, is stationary;
see Meyn and Tweedie (2009) for the study of probabilistic properties of Markov
processes.
If we solve the difference equation given by

W[ == AtWt—l + Cta

where (A;, C;) is an i.i.d. sequence of random matrices, iteratively n times, the
partial solution for W, is given by

n—1j—1

n—1
W, = HAt—th—n + Z 1_[ At—iCt—js
i=0

j=li=1
so that the convergence in probability

n—1 j—1

Z l_[At—iCt—j — 0,

j=li=1

is a sufficient condition for the existence of a stationary solution. For example,
consider the simple bilinear process

X =aX; 1 +bX, 1 Zi 1 + Z;.

Solving iteratively for X,, upon n iterations we get

X = l—[(a + bZt—i)Xt—n
i=1

n—1 Jj

+ Z l—[(a +bZ,-)Z,—;,

j=li=l
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and, if in probability

[[@+bz—;)—o. (2.27)
j=1
then
o
X =Y [la+bz-z;. (2.28)

j=li=1

A sufficient condition for (2.27) is given by Pham and Tran (1981). If Z; are i.i.d.
zero-meanr.v’s with E(Z?2) = 0% and E(Z}) < oo, then (2.27) converges in mean-
square if a®> + b?0? < 1, in which case, (2.28) is the unique stationary solution.
This is also a sufficient condition for invertibility. However, it is far from being a
necessary condition for stationarity and invertibility. Note that (2.28) is a moving
average representation

o0
X[ == Z@jZ,_j,
j=1

with random coefficients

J
0; =[]@+bz-).

i=1

Therefore, one would expect that the second-order properties of this process
resembles that of a linear process. Indeed, assuming o> = 1 simple calculations
show that

o0
pw=EX)=Y a’"'bo’
j=1
b
T 1-a’
1 +2b?
2y
E(Xt)—l_—bzs

y(1) = E(X, X,—1) = 2b%,
and for k > 2,

y(k) = ay(k —1).
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Fig. 2.6 ACF and PACF of the bilinear model (2.29)
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Fig. 2.7 ACF and PACF of the linear model (2.30)
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o L

Note that this is exactly the covariance structure of a linear MA(1, 1) process.
Similarly, the autocovariance function of a BL(p, g, m, ) process behaves like the
autocovariance function of the process MA(p, go) where qo := max(q, /); see Fan
and Yao (2003) for details. It is clear once again that one cannot differentiate a
nonlinear model from a linear model by studying only the second-order properties.
In Figs.2.6 and 2.7 below, we give respectively the autocorrelation and partial
autocorrelation functions based on a data of dimension 500, simulated from the

models

X[ == O.SXt_l + O.6Xt_lzt_1 + Zta

and

X[ == O.SXt_l + 0.62[_1 + Zt

(2.29)

(2.30)
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with i.i.d. standard Normal innovations.

Unfortunately, like for most nonlinear processes, the condition of invertibility
which is crucial for estimation and prediction, is not well understood and cannot be
checked except for some simple bilinear processes (see Chap. 4, for some empirical
ways of checking invertibility). Therefore, although bilinear processes have desired
properties as models, their use in practice is quite restricted.

Here we note a fundamental difference between the bilinear and threshold
models. Threshold models, as in the case of bilinear models, can be put in the state
space representation

X, =HW,,
W,=AOW,_, +BDZY,

for some properly chosen state vector W, and constant matrices A ,B¥) and
regions R). However, the essential difference between threshold models and
bilinear models is that whereas in bilinear processes the nonlinearity is introduced
by the cross terms Z;_; X;—;, in the threshold models the relation between W,
and W,_; is nonlinear (that is a nonlinear function of X,s < t), with residuals
still entering the model linearly. This difference has strong influence on the type
of nonlinear behavior. Bilinear processes, due to this cross terms, in general, are
capable of producing extreme observations but cannot produce limit cycle behavior,
hence each class has its own use in modeling different nonlinear phenomena.

2.2.5 Parametric Models for the Conditional Variance

These models are special case of the representation (2.20) with f = 0 and are based
on modeling the function g in different forms. A useful conceptual division of these
models can be made as

1. Observation-driven models and
2. Parameter-driven models.
Observation-Driven Models
Lets assume that for each ¢, the time series satisfies
2 2
Xilo; ~ N(0,07).

The observation-driven models are based on representing atz as a function of lagged
values of X, taking the general form
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X: = g(Fi-1,02)Z;,
giving rise to the rich classes of ARCH and GARCH models. Since
V(X(|Fim1) = 8 (Fi-1.02)07,

it is customary to represent the function g by o;.

Since the seminal paper of Engle (1982) traditional time series tools such as the
ARMA models for the mean have been extended to essentially analogous models
for the variance. Autoregressive conditional heteroscedasticity (ARCH) models are
now widely used to describe and forecast changes in volatility of financial time
series. For a survey of ARCH-type models and various extensions, see Bollerslev
et al. (1992, 1994), Pagan (1996), Palm (1996), Shephard (1996), Berkes et al.
(2003), Bauwens et al. (2006), Silvennoinen and Terdsvirta (2009), and Terdsvirta
(2009). According to Engle (2004) the original idea was to find a model to assess the
validity of the conjecture of Friedman (1977) that the unpredictability of inflation
was a primary cause of business cycles. Uncertainty due to this unpredictability
would affect the investor’s behavior. Pursuing this idea requires a model which
characterizes the time dynamics of this uncertainty.

Financial time series, such as relative returns of stock indices, share prices and
foreign exchange rates, often show the following features (usually referred to as
stylized facts):

* The sample mean of the data is close to zero whereas the sample variance is of
the order 10~ or smaller;

* Exceedances of high/low thresholds tend to occur in clusters. This property
indicates that there exists dependence in the tails;

* Return data exhibit heavy-tailed marginal distributions;

e The sample autocovariance function of such data is statistically insignificant
at all lags (with a possible exception of the first lag), whereas the sample
autocovariance function of the absolute values or the squares of the time series
are different from zero for a large number of lags and stay almost constant and
positive for large lags.

¢ As one increases the time scale on which returns are calculated, their distribution
looks more and more a Gaussian. This means that the peakedness around zero
and the heavy-tailedness of the empirical distribution turn into bell shapedness.

The list above is far from being complete. An exhaustive analysis of stylized facts
can be found in Cont (2001).

Most models for financial time series (and in particular for return data) used in
practice to accommodate such features are given in the multiplicative form

Xt == O-tZtv IS Z, (231)

where (Z,) forms an i.i.d. sequence of real-valued innovations or noise variables
with zero mean and unit variance, (0y) is a stochastic process such that o; and



2.2 A Selection of Nonlinear Time Series Models 65

Z; are independent for fixed ¢. In general, (o;) and (X,;) are assumed to be
strictly stationary. Motivation for considering this particular choice of a simple
multiplicative model comes from the fact that (a) in practice, the direction of price
changes is well modelled by the sign of Z,, whereas o, provides a good description
of the order of magnitude of this change; and (b) the volatility atz represents the
conditional variance of X, given o;.

Engle (1982) suggested the following simple model for the volatility o;:

ol =ay+a,X:,, t€Z, (2.32)

for positive constants ag and a;. Equations (2.31) and (2.32) define an AutoRe-
gressive Conditionally Heteroscedastic model of order one (in short ARCH(1)).
For example, assume Z; to be an i.i.d. Gaussian white noise distribution. Then
the distribution of tomorrow’s return X, ;, conditionally on today’s return X;, has
Normal distribution with zero mean and variance ag + a1 X tz This allows one to
give a distributional forecast of X;1, given X;. The ARCH(1) fit to real-life data
can be improved by introducing the ARCH(p) model, with p € IN, where o; obeys
the recursive equation

p
of =ao+ Y aiX', 1€, (2.33)

i=1

withag > 0,ay,...,a,—1 > 0and a, > 0. A major improvement upon the expres-
sion in (2.33) was achieved by Bollerslev (1986) and Taylor (1986), independently
of each other, who introduced the Generalized ARCH (GARCH) models of order
p and ¢. In this model, the conditional variance is also a linear function of its own
lags and takes the form

P q
O't2 = aop + Zaith_,- + ijo}z_j, (2.34)

i=1 j=l1

:=ag+a(B)X? + b(B)o?, t € Z,

with ap > 0,611,...,6117_1 > 0, a, > 0, bl,...,bq_l > 0 and bq > 0.
The requirement that all the coefficients are non-negative ensures that o7 is also
non-negative. The most popular GARCH model in applications has been the
GARCH(1, 1) model, with p = ¢ = 1 in (2.34).

The family of GARCH models has been generalized and extended in various
directions in order to accommodate different features often exhibited by financial
time series. One possible generalization of the GARCH models is the so-called
ARCH(o0) sequences defined as follows:

Definition 2.2.1. A random sequence (Y;) is said to satisfy ARCH(oco) equations
if there exists a sequence of i.i.d. non-negative r.v’s (,) such that
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Yi=4m, t €7, (2.35)

and

o0
G=aj+ Y a'Y, . (2.36)

i=1
witha > 0fori =0,1....

The general framework leading to the model in (2.35) and (2.36) traces back to
Robinson (1991). This class of models include, among others, the classical squared
ARCH(00) model, that is the model in (2.31) and (2.33) with p = oo and ¥, = X2,
& = o, n, = Z? and the coefficients aj = ag and a* = a; fori = 1,..., p; or
the squared GARCH(1, 1) with Y; = X2, ¢, = o7, n, = Z}, af = ao/(1—by), and
alf = b’i_la 1.

On the other hand, several extensions of the GARCH models aim at accommo-
dating asymmetric response of the volatility for positive and negative shocks. Giving
heed to this problem, Ding et al. (1993) proposed the Asymmetric Power ARCH of
order (p, g), in short APARCH(p, ¢), model defined as

P q
CT;S =w + Zai(|X,f_i| — )/,'Xt_,')s + ij(fts_j,

i=1 j=1

where > 0,a; > 0,b; > 0,5 > O represents the parameter for the power term,
and —1 < y; < 1isthe leverage parameter. This model allows detecting asymmetric
responses of the volatility for positive or negative shocks. If y; > 0, negative shocks
have stronger impact on volatility than positive shocks, as would be expected in the
analysis of financial time series. If y; < 0, the reverse happens. The APARCH model
includes as special cases the GARCH( p, ¢) model, the Taylor/Schwert GARCH in
standard deviation model (Taylor 1986; Schwert 1989, 1990), the GJIR-GARCH
model (Glosten et al. 1993), the TARCH model (Rabemananjara and Zakoian 1993;
Zakoian 1994), the NARCH models (Higgins and Bera 1992) and the log-ARCH
model (Geweke 1986; Pantula 1986).

Moreover, evidence of long memory and persistence (accordingly to the most
common definition of long memory: autocovariance function, y (k), decaying at the
hypergeometric rate k2?~!, with 0 < d < 0.5) has been documented in many fields
in economics, including volatility of financial series and trading intensity in financial
durations data. Baillie et al. (1996) proposed the Fractionally IGARCH(p, d, q),
or FIGARCH(p, d, g), in order to accommodate long memory in volatility. The
authors started by writing the GARCH(p, ¢) process as an ARMA(m, p) in X}

(1—a(B)—b(B)X} = o + (1 —b(B))v,,
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where m = max{p,q}andv, = X [2 - atz. When the autoregressive lag polynomial
¢(B) := 1 —a(B)—b(B) contains a unit root, the GARCH(p, ¢) process is said to
be integrated in variance (Engle and Bollerslev 1986). The Integrated GARCH(p, q)
or IGARCH(p, g) class of models is given by

¢(B)(1 - B)X} = w + (1 - b(B))v.

The FIGARCH(p,d,q) class of models is simply obtained by allowing the
differencing operator in the above equation to take non-integer values, that is

¢(B)(1— B)'X} =w+ (1 —b(B))v,,

with b(B) and ¢(B) representing lag polynomials having all their roots lying
outside the unit circle. The fractional differencing parameter is denoted as d. The
fractional differencing operator (1 — B)“ is most conveniently expressed as

oo

1-B)=> (Z) (—=1)* B,

k=0
After rearrangement, the FIGARCH(p, d, ¢) model can be represented as

2

_ w 2
o = T AN 2.37)

where

A(B)=1-¢(B)(1-B)'(1-b(B)™' =) 1B (2.38)

i=1

Here, A(1) = 1 for every d, with A; > 0, fori = 1,2,..., so that the
FIGARCH(p, d, q) model is well-defined and the conditional variance is positive
for all . Conrad and Haag (2006) obtained two sets of sufficient conditions for the
conditional variance of the FIGARCH process to be non-negative almost surely.
Nonetheless, general conditions are difficult to establish. The simplest version of
the FIGARCH(p, d, ¢) model, which appears to be particularly useful in practice,
is the FIGARCH(1, d, 1) for which the volatility 0[2 takes the form as in (2.37) with
b(B) = b1 B and ¢(B) = ¢ B with |b;| < 1. Necessary and sufficient conditions
for the non-negativity of the conditional variance for the FIGARCH(1, d, 1) were
obtained by Conrad and Haag (2006). The FIGARCH model has the property that
for high lags, say k, the distributed lag coefficients are A, ~ ck~¢~!, with ¢
a positive constant. This implies that the conditional variance can be expressed
as a distributed lag of past squared returns with coefficients that decay at a
slow, that is hyperbolic, rate which is consistent with the long memory property.
Davidson (2004) proposed an alternative definition of the persistence properties
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of the FIGARCH process in terms of the hyperbolic memory, aiming to make the
distinction of the FIGARCH model from the geometric memory cases represented
by the GARCH and IGARCH processes more precise.

The statistical properties of the general FIGARCH(p, d, ¢) process, however,
remain unestablished. For example, conditions for the existence of a stationary
solution as well as the source of long memory on volatility are not known. For
example, Mikosch and Starica (2004) and Granger and Hyung (2004) advocated that
spurious long memory can be detected from time series exhibiting structural breaks.
As solution to this problem, Baillie and Morana (2009) proposed the Adaptative
FIGARCH model, or A-FIGARCH model in short, which simultaneously accounts
for long memory and incorporates a deterministic time-varying intercept which
allows for breaks, cycles and changes in drift. The A-FIGARCH (p, d, ¢, k) model
can be derived from the FIGARCH (p, d, ¢) in (2.37) by letting the intercept @ to
be time-varying, that is

of = w +[1 - ¢(B)(1— B)(1—b(B)) X2,
or
o} = w + A(B)X?,

with

k
w; = wy + Z[)/j sin(2njt/T) + 8; cosRmjt/T)].

J=1

In practice, k is a small integer often taken as k = 1 or 2. An immediate advantage
of this model is that it does not require pretesting to determine either the number of
structural break points or their locations. Furthermore, this model does not require
any smooth transition between volatility regimes. Note that the inclusion of the
time-varying intercept component implies that the A-FIGARCH process is neither
ergodic nor strictly stationary.

The FIAPARCH(p, d, g) model of Tse (1998) is a special case of (2.31) with

of = 1—Lﬂ(3) + A(B)g(Xy), (2.39)

where g(X;) = (| X,|—yX,)® with |[y| < 1 and § > 0, and A(B) defined as in (2.38)
forevery 0 < d < 1, with A; > 0, fori € N, and w > 0. Furthermore, in order
to allow for long memory, the fractional differencing parameter d is constrained to
lie in the interval 0 < d < 1/2. The FIAPARCH model nests two major classes
of ARCH-type models: the APARCH and the FIGARCH models of Ding et al.
(1993) and Baillie et al. (1996), respectively. When d = 0 the process reduces
to the APARCH(p, ¢) model, whereas for y = 0 and § = 2 the process reduces
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to the FIGARCH(p, d, ¢) model. Conrad et al. (2008) pointed out some advantages
of the FIAPARCH(p, d, q) class of models, namely (a) it allows for an asymmetric
response of volatility to positive and negative shocks, thus being able to traduce
the leverage effect. If y > 0, negative shocks have stronger impact on volatility
than positive shocks as would be expected in the analysis of financial time series. If
y < 0, the reverse happens; (b) in this particular class of models, it is the data that
determines the power of returns for which the predictable structure in the volatility
pattern is the strongest, and (c) the models are able to accommodate long memory
in volatility, depending on the differencing parameter d.

The simplest version of the FIAPARCH(p, d, g) model, which appears to be
particularly useful in practice, is the FIAPARCH(1, d, 1) for which the volatility
o; takes the form as in (2.39) with S(B) = BB and ¢(B) = ¢B. Necessary
and sufficient conditions for the non-negativity of the conditional variance for the
FIAPARCH(1, d, 1) resembles the ones obtained by Conrad and Haag (2006) for
the FIGARCH(1, d, 1) model.

Volatility, asymmetry and long memory may also be captured using various
extensions of the model introduced by Tse (1998) and Davidson (2004) among
others. For example, Diongue and Guégan (2007) introduced the so-called seasonal
hyperbolic APARCH, in short S-HY-APARCH, model where

[1 —b(B)lo} = w+ {p(B)[1 — t(1 — (1 — B ))}g(X)). (2.40)

The parameter t > 0 permits to eliminate the non-stationarity of the process.
Moreover, by assuming that the roots of [1 — b(B)] = 0 lie outside the unit circle,
the conditional variance in (2.40) can be expressed as

o = 1=y 1 B =bB) 1= (1= (1= BY (X)),
Another popular class of GARCH-type models is the Exponential GARCH,
EGARCH in short. Nelson (1991) introduced it in order to overcome some
disadvantages exhibited by the GARCH models, namely (a) parameter restrictions
that are often violated by estimated coefficients; (b) asymmetric responses of
shocks; and (c) interpreting whether shocks to conditional variance persist or not is
difficult in GARCH models, since the usual norms measuring persistence often do
not agree. The family of EGARCH(p, ¢) models can be defined as in (2.31) with

P q
In(6?) = ag + Zaig(Z,_i) + Z b ln(crtz_j). (2.41)

i=1 j=1

For example, setting g(Z,) = 0Z, + y(|Z;| — E|Z;|) with non-zero 6 and y in
(2.41), we get the EGARCH model of Nelson (1991). Moreover, if in (2.31) and
(2.41) we set g(Z,) = 6;In(Z?), fori = 1,..., p, then we get the logarithmic
GARCH (LGARCH) model proposed by Geweke (1986) and Pantula (1986).



70 2 Nonlinear Time Series Models

As a final class of GARCH-type processes, we mention the model introduced
by Liu (2009) which is a generalization of the first-order GARCH processes family
introduced in He and Terésvirta (1999) and further developed by Ling and McAleer
(2002). These authors defined the following general class for the GARCH(1, 1)
model. Assume that in (2.31), o; is modeled by

0! = g(Zim) + e(Zi—))oly, 1 € Z,

where § > 0, (Z;) is a sequence of i.i.d. non-degenerate r.v’s with mean zero.
Further, it is assumed that Z, is independent of X;_;, X,—»,..., and g(:) is a
positive function whereas c(-) is a non-negative function. This family of GARCH
processes includes the GARCH(1, 1) model of Bollerslev (1986), the absolute
value GARCH(1, 1) model of Taylor (1986) and of Schwert (1989), the nonlinear
GARCH(1, 1) model of Engle (1990), the asymmetric GIR-GARCH(1, 1) model
of Ding et al. (1993), the TARCH model (Rabemananjara and Zakoian 1993;
Zakoian 1994), the 4ANLGMACH(1, 1) model of Yang and Bewley (1995), the
generalized quadratic ARCH(1, 1) model of Sentana (1995), and the volatility
switching GARCH(1, 1) model of Fornari and Mele (1997).

Liu (2009) extends He and Teridsvirta (1999) results by allowing for an influence
of higher-order past errors and conditional variances on the current conditional
variance. Specifically, Liu model for o; stands as follows:

00 = g(Zicteo.  Zi) + Y (Zi)ol . 1 € Z

k=1
where g(Z,t,s) = g(Z;—1,...,7Z,—s) is a strictly positive function and ci(-),
k =1,...,r,all are nonnegative functions. This new family of GARCH processes

includes:

1. The GARCH(p, ¢) model of Bollerslev (1986) for 6 = 2, g(Z,t,s) = ay,
cx(Zi—x) = b + axZ>_, fork = 1,....r with r = max{p,q},a; = 0 and
b; =0fori > pandj > g, respectively.

2. The absolute value GARCH(1, 1) model of Taylor (1986) and of Schwert (1989)
foré =1, g(Z,t,s) = ao, cx(Z;—x) = by + ar|Z,—¢| fork = 1,...,r with
r =max{p,q},a; =0and b; = Ofori > p and j > g, respectively.

3. The volatility switching GARCH(1, 1) model of Fornari and Mele (1997) for
§ =2,8(Z.t.s) = ao+ Y j— vesen(Zi—i), cx(Zi—x) = b + ar Z}_, for
k=1,...,r withr = max{p,q},a; =0andb; = O0fori > pand j > g,
respectively.

4. The nonlinear GARCH(p, ¢) model of Engle (1990).

(a) Case § = 1: g(Z,1,5) = ao, cx(Zi—) = bx + ar(1 — 2nsgn(Z,—¢) +
N Zi—k| fork = 1,...,r with r = max{p,q},a; = 0 and b; = 0 for
i > pand j > g, respectively.
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(b) Case § = 2: g(Z,t,5) = ao, cx(Zi—x) = b + ar(1 — 2nsgn(Z;—x) +
nZ)Zf_k fork = 1,...,r with r = max{p.,q},a; = 0and b; = O for
i > pand j > ¢q, respectively.

5. The GJR-GARCH(p, ¢) model of Glosten et al. (1993) for § = 2 g(Z,¢,s) =
ao, ck(Zi—x) = by + (akwkI(Z,_k))th_k where I(Z,—x) = 1if Z,_; < 0 and
I(Z,—x) = 0 otherwise, for k = 1,...,r with r = max{p,q}, a; = 0 and
b; =0fori > pandj > g, respectively.

6. The APARCH(p, ¢) model of Ding et al. (1993) for § > 0, g(Z,t,s) = ao,
ci(Zi—k) = br + ar(1 — 2psgn(Zi—i) + 0| Zi—i|® for k = 1,...,r with
r =max{p,q},a; =0and b; = O0fori > p and j > g, respectively.

7. The threshold GARCH(p, ¢) model for § > 0, g(Z,t,s) = ao, ck(Z,—x) =
b + (aix(l = I(Zi—x)) + anI(Zi— )| Zi—i|® for k = 1,...,r with r =
max{p,q},a; = 0Oand b; = 0 fori > p and j > g, respectively. Note that
this is generalization of the models introduced by Zakoian (1994), Hwang and
Woo (2001), and Hwang and Basawa (2004).

8. The 4ANLGMACH(1, 1) model of Yang and Bewley (1995) for § = 2,
g(Z,t,s) =ao+ Y j—y a(Zi—k — di)* + a (Z,—1 — di)*, ci(Zi—x) = by for
k =1,...,r. As pointed out by Liu (2009) this is a generalization of the family
of moving-average conditional heteroskedasticity models proposed by Yang and
Bewley (1995).

9. The first-order GARCH model of He and Terdsvirta (1999) withr = l ands = 1

We refer the reader to Andersen et al. (2009) for the recent developments and
applications of this class of models.

Parameter-Driven Models

Parameter driven models for conditional variance are based on representing the
variance of the process by a latent stochastic component. A simple example is the
log-normal stochastic variance or volatility model

X:|W; ~ N(0,exp(W,)),
Wiri =vo+ W + v,

where v; ~ i.i.d. N(0,0?). Here W, is not observed but can be estimated using
the observations. These models lack analytic one-step ahead forecast densities and
they need to be approximated through numerical methods. However they extend to
higher dimensions and have continuous time analogs; see Sect. 2.2.7 for an extended
treatment of parameter-driven models. Recent advances in hierarchical modeling
techniques and simulation-based inferential methods make these generalized state
space models very attractive.
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2.2.6 Mixed Models for the Conditional Mean and Variance

The objective behind these models is to join models for the conditional mean and
conditional variance given in the previous sections under a single model. In its
simplest form, these composite models can be given as

= f(Fi-1.01) + g(Fi-1.02) Z;,
Note that
E(Xi|Fi1) = f(Fi-1.01).
V(X[ Fim1) = g(Fi-1,02)°V(Z)).

Here, the function f and g can be chosen in accordance with the partial models
for the conditional mean and variance, discussed in the previous sections. In the
simplest case, the conditional mean can be modeled by a linear ARMA model,
whereas the conditional variance can be modeled by a GARCH model. Typically,
first the model for the conditional mean is fitted, then the conditional variance model
is fitted to the residuals from this model. This is the standard procedure in fitting
GARCH models.
However, models of the type

Z(;S]X, _ +Ze Z_; +ZZbL,Xt iZi—j+ 7

i=1j=0

—ZqﬁjX, _ +Ze Z—; +ZZb,,X, iZi—

i=1j=1

+ > bioX—iZi + Zi.
i=1

give rise to richer and more complex structures. For example, the model
X, =aX;—1 +bXi 1 Zi— +c X1 Z + Z4,
includes nonlinear dynamics both in the mean and the variance, since
E(X:|Fi—1) = ax;—1 + bx;—12—1,
and

V(X:|Fi—1) = (1 + cx?))o?.
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Alternatively, we can consider bilinear models given in (2.25), whose innovations
are generated by a GARCH model. For example the model

r

s
X, = Z Z biXi—iZi—j + Zi, (2.42)

i=1j=1

where i > j, and the innovations Z, are generated by the ARCH(g) process will
represent nonlinear dynamics both in the mean and the variance.

The fundamental difference between GARCH and bilinear models is that
whereas for GARCH models E(X;|F;—;) = 0, and V(X;|F—1) = h,atz, for
bilinear processes given by (2.25), E(X;|F;—1) has a nonlinear structure and
V(X;|F:-1) is constant. However, both classes of models can have similar uncon-
ditional moments. Often, upon fitting an adequate linear model for the conditional
mean, the presence of linear dependence in the squared residuals is tested and this
test is used as an indication for the presence of GARCH or bilinear type nonlinear
structures in the series. However, these tests cannot provide a guidance in choosing
the specific model for the series.

Mixed models of the type described above are quite rich in representing
nonlinear dynamics and are seemingly attractive, but conditions of stationarity and
invertibility are very difficult if not impossible to verify. Also as described above,
there are problems with model identification, thus making these classes of models
difficult to manage in practice.

Finite-Order Volterra Series

Infinite-order convergent Volterra series representation is the most general nonlinear
representation for stationary time series. This suggests using the finite-order Volterra
series

k1
Yt(m) = Z 8i Zl‘—il
i1=0

ky k3

+ Y giinZioiy Zii,

i1=01i,=0

ks ks ke

+ Z Z Z Giriris Li—iy Li—ir Li—is

i1=0i=0i3=0
k7 ks kom

+ Z Z e Z 8irinim Zt—ilzt—iz ce Zt—i,w

i1=01i,=0 im=0
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as a parametric model. Finite-order Volterra series are used as flexible models for
input-output systems where the input process, as well as the output process, are
observable. In these models, often m = 2, so that second-order approximations are
used; see, for example, Mathews and Sicuranza (2000). Within the univariate time
series context, it is possible to identify the order m of the series using tail index
estimation; see Sect. 4.3 for details. Conditional least square method can be used
for parameter estimation. However, the innovation process Z; is not observed and
Granger and Andersen (1978) argue that processes of the form

Xo=Z+aZ,1Z;,

where Z, are i.i.d. r.v’s cannot be invertible. Therefore, finite Volterra series as
models have limited practical value since they cannot be used for forecasting; see
Sect. 4.2 for further discussion on invertibility.

2.2.7 Generalized State Space Models

Although all arguments given in this section can be extended to multivariate time
series, for the sake of ease in notation, we will consider only univariate time series.
A state space model for a linear time series Y; consists of two equations, denoted by
the observation and the state equations, which are given by

Y, =HX, +U,t=12,... (2.43)
X =GX, + V.t =12,.... (2.44)

Here, in the first equation, H; is a sequence of matrices whose elements are
(constant) parameters and observations Y; are written as a linear function of the
unobserved (latent) v-dimensional state vector X;, plus a white noise U;. The second
equation determines the evolution of the state process in time in terms of the
previous state. Here, G; is a sequence of v x v matrices of parameters and V; is
a v dimensional white noise process, uncorrelated with U;. In the simplest case,
when Y, is univariate, we may model the observations as

Y =m + Z,,

where the state process m;, is the mean of the process, and Z; is white noise. The
latent mean m, of the process can be modeled as a simple random walk

my; = my—1 + v;.
It is also possible to add further structure to the model for m;. The Kalman recur-

sions allow a unified approach to prediction and estimation for state-space models;
see Brockwell and Davis (1996) and West and Harrison (1997). Fundamental
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assumptions behind the state-space representation and the consequent Kalman
recursions are linearity and the normality of the error structures. When these
assumptions are no longer valid, then observation and state equations are given by

th = f(Xt—ls Uf)7
X, = g(X;-1, Vi),

for some nonlinear functions f and g and white noise processes U; and V,
independent of each other. Except for some special cases, satisfactory treatment
of such a system of difference equations is not possible, and it is more advantageous
to work directly with conditional distributions (or densities if they exist) which
represent the probability structure of the system. In general terms, these equations
are represented by two conditional densities p(y;|x;,0) and p(x;|x,—1, 6). Here,
0 is the vector of all model parameters of this state space representation. This
general state space structure can take several forms depending on different sets of
further assumptions on these densities, which we examine below. Typically, there
are two sets of fundamental assumptions to facilitate mathematical tractability of
these state space models. In parameter-driven models, observations Y; are assumed
to be independent, conditional on the realization of the state vector X;, and that the
state process X; is assumed to be a (latent) Markov process.

In observation-driven models, again observations Y; are assumed to be inde-
pendent conditional on the realizations of the state vector X;, but rather then
assuming a Markovian structure for the state vector, a model is specified directly
for X, conditional on Y;_; through the conditional density p(x;|y;—1,8). These
two types of models show fundamental differences, particularly in inferential
methods. Parameter driven models, otherwise known as hidden Markov models,
are particularly suitable for Bayesian hierarchical modeling and simulation-based
inferential techniques. Due to some awkward integrals and updating equations,
classical likelihood and least squares methods are not particularly suitable for these
models. On the other hand, observation-driven models do not involve such updating
equations and difficult integrations and hence permit straight forward likelihood and
least square methods. However, it is very difficult to verify stationarity conditions
for the observation-driven models; see Brockwell and Davis (1996) for detailed
comparison of these models. Here we give a brief summary of these models.

Parameter-Driven Models

For simplicity, assume that we have univariate time series Y; and the corresponding
univariate state X;. Let Y,—; := (Y;—1, Yi—2,...) and X;—| := (X,—1, X;—2,...).
Instead of the linear equations (2.43) and (2.44), we define the observation and state
equations in terms of the conditional densities, assuming they exist, in the following
manner:

Assume that Y, conditional on X;, is independent of (X;—;, Y,—1), so that the
density of Y, conditional on (X, Y,—;) can be written as
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PVelxe Xi—1,¥1-1.0) = p(yi[x:,0). (2.45)

We also assume that X, conditional on X, is independent of (X,—_1, Y;) so that we
can write

P(xt+1|xt7xt—ls}’r50) = p(xf+l|xt70)' (246)

For linear Gaussian state space equations, (2.43), (2.44), and the conditional
densities (2.45), (2.46) represent the same probability model, with p(y,|x,, #) and
p(X;+1]x, @) being normal densities. The joint density of the n observations Y,
and the state X, at each time point# = 1, ..., n can be written as

P, %10) = p(VulXn, Xn—1,¥n—1,0) p(Xn, Xp—1,Yn—110)
= p(n|Xn, 0) p(xn|Xn—1,Yn—1,0) p(Xn—1, Yn—-110)

= (1‘[ p(yi|xi,0)) (]‘[ p(xi|xi_1,o>) p(x1).
i=2

i=1

Note that

p(yilx:. 0) = [ | p(yilxi. 0),

hence observations are independent, conditional on the state of the process, and the
time series Y; inherits the dependence structure of the state process X;, which is
often called the latent process. Note also that from (2.46), the state X; is a Markov
process. These are indeed strong assumptions but are necessary to bring in some
mathematical tractability to nonlinear, non Gaussian structures.

Conditional densities p(x;|y:,#) and p(y;+1|y:, @) are particularly relevant in
the study of the system from which one can calculate the conditional expectations
E(X,|y;) and E(Y;41]y;). The former and the latter conditional expectations are the
best predictors for X; and Y;4; in terms of the observation y; and are respectively
called the filtering and prediction problem. With the above assumptions and using
the Bayes’ Theorem

P(Xt, ye,¥i—1]0)
p(y:|0)
Pl Xt yi—1,0) p(xt|yi—1,0) p(yi—1|0)
P(yilyi-1.0)p(yi-110)
_ pelxe, 0)p(x:|yi—1,0)
B P(yilyi-1,0)

p(x:y:, 0) =

(2.47)
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Here, the conditional density p(x;|y;—1, ) has to be calculated from the integral
Pty 8) = [ ploxialyior.6)d

- / Pt )ity O, (2.48)

For non-Gaussian and nonlinear processes, this updating equation for X; in terms
of the state equations p(x;|x,—i, @) is not immediately available and can be
computationally complicated; hence p(x;|y;, @) in (2.47) does not admit closed
form expression.

In order to solve recursive relation in ¢, one assumes that p(x1]yo, ) = p(x1|80).
The density p(x,+1|y:, #) and the corresponding conditional expectation give the
prediction for the future value of the state equation, whereas the predictions for the
future observation y,4; can be obtained as the expected value of the conditional
density p(y;+1]y:, #). In the classical approach, where 6 are unknown but fixed
model parameters to be estimated from data, the unknown parameters are substituted
by their estimates 6 and the plug-in predlctlons are obtained from p(y;+1y;, 0) In
the Bayesian context the parameters are r.v’s and the predictions are obtained from
the predictive density p(y,+1]y;) through the relationship

POrlys) = / pOelye 0)p(®1y)do

and

pOrsilyi. 0) = / POt X1, 0)p(xr|yr, 0)dria.

The key expression for the classical and the Bayesian inferential methods is the
likelihood function L (8 |y;) which can be computed from the relation

Loty = [ [ 0 pix, O
:/.../P(X1|0)l_[p(xi|x,-_1,0)p(yi|xl-,0)dxl...dxn' (2.49)
i=2

The computation of the likelihood given in (2.49) requires the computation of n-
dimensional integrals. Except for few special cases, calculation of such integrals
are very difficult. Thus one relies on approximate solutions based on numerical
methods on Monte Carlo methods. Recent advances in Bayesian simulation-based
inferential methods and composite likelihood methods permit efficient simula-
tion based estimation techniques and approximations. In a Bayesian hierarchical
setup, upon defining a prior density p(@) for the (random) model parameters 6,
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Bayesian inference relies on the joint density p(8,X;|y;) which is proportional to
p(X:,y:10)p(@). This joint density does not have closed form expressions, and
Monte Carlo methods, in particular recent sequential Monte Carlo methods and
particle filters (see, e.g. Andrieu et al. 2010) provide a flexible computational
framework to carry out inference for these data sets with complex time dependence
structures. In Sect.4.5 we give a very brief introduction to these simulation-
based methods. In Sect.4.4.3 we also give a brief introduction to composite
likelihood methods which are used as alternative pseudo-likelihood method for the
observation-driven generalized state space models.

However, it may be possible to escape from such computational difficulties by
specifying in (2.47) a model for p(x;|y;, @), thus eliminating the need for the
updating Eq. (2.48). This strategy simplifies inference for generalized state-space
models and the resulting models are called the observation-driven models.

Observation-Driven Models

In observation-driven models, the observation equation is the same as in parameter-
driven models; namely it is assumed that

PVelxe Xi—1,¥1-1.0) = p(yi[x:, ). (2.50)
However, the representation of the state is done through the densities
p(xlyi—1,0),t =1,2,.... (2.51)
Here, the updating equation for the state

p(xf|xf—lv 0)7

is not specified, since the conditional density of the state vector given the data
p(x/]y:, 0) and the predictive density can be directly calculated from (2.47) and
(2.48) respectively, with the estimated value of the parameter 6. Within the Bayesian
framework, when @ is random with prior specification p(@), this predictive density
is calculated from

PYit1lys) =/P()’t+1|xt+1,0)P(Xr+1|0,Yt)P(0|Yr)dxr+1d9,

where p(0y;) is the posterior density.

The state equation (2.51) without specifying precisely how x; translates from
X;—1, simplifies the calculation of the posterior and the predictive distributions, but
observations are no longer Markovian and y; depend on the whole y, rather than
YVi—1, S0 that
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PO ynl0) =] pGelyior. 0). (2.52)

t=1

The lack of Markovian property particularly makes it more difficult to verify
stationarity conditions. Also, due to the lack of Markovian structure, observation-
driven models are not suitable for Bayesian hierarchical modeling. The specification
given by (2.50) and (2.51) is not unique, in the sense that it can hold for two different
state equations having different transitions, resulting in the same likelihood (2.52)
for the data. This model miss-specification can be overcome by assuming that

p(Xiq1lX:, ¥0) = p(xis1lys),

that is assuming that x;, conditional on y;_, is independent of x;_;. In this case

PXns Yn) = p(Vulxn) pXn|Yn—1) p(Xn—1, Yn—1)

= l—[ P(nlxn) p(x:]yi—1).

t=1

We give an example to highlight the difference between the two modeling strategies.

Example: State Space Models for Count Data

In this example, we follow Brockwell and Davis (1996) and Davis et al. (2003a).
Assume that Y; is a time series of counts. Let F;_; be the o-field generated by
the observation (¥;,s < f1), and let W, be a vector of explanatory variables with
dimension p, observed at time ?.

1. Parameter-driven model:
We assume that observations, conditional on the intensity function A, are
independent, having the observation equation

th |A,[ ~ PO(A[),

so that the likelihood for the data yy, ..., y, conditional on the realization of the
state process or the intensity process A, is given by

Loeh(A,)
P(YIv---,yan,...,ln) :ny—'t
te

t=1

(2.53)

The dependence structure is then introduced into the model through the state
equation (or the link function)
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10gkt == ﬂ/W[ + Utv (254)

where B is a p dimensional vector of regression coefficients and U, a latent
time-dependent process. In the simplest case, U, is assumed to follow an AR(1)
process of the form

U =oU+ Z,

where (Z;) is a sequence of i.i.d. N(0, 0?), independent of the Y, process. In this
case, the state equation can equivalently be written in terms of the conditional
density p(A;|A;—1) by

P(AilAi—1) ~ N(y, 02),

where
e =BW,+¢Ai—1—B'W,_).

The above model expressed in terms of Eqs.(2.53) and (2.54) can be imple-
mented in Bayesian context as a hierarchical model upon defining appropriately
the prior specifications of parameters and hyper-parameters. The posterior den-
sity p(A;|F;—1) and the predictive density p(Y;+|F;), as well as the posterior
densities of all other model parameters can be obtained by applying proper
simulation-based inferential methods; see Brockwell and Davis (1996) for an
alternative Monte Carlo-based estimation method. Implementation of this model,
using standard maximum likelihood estimation is not straightforward and can be
difficult, since the closed form for the unconditional likelihood p(y1,..., y,) is
obtained by integrating the conditional likelihood (2.53) with respect to the joint
density of p(4; ..., A;). Brockwell and Davis (1996) suggest a simulation-based
estimation based on the EM algorithm.

. Observation-driven model for the counts:

Assume for the time-being that there are no explanatory variables available
in modeling the counts and that only information available are the counts
themselves (yi,...,y,). In this case, the observation-driven model can be
written as

th |A,[ ~ PO(A[),

where A, is written as a positive function of the observations y,_1,..., y;. The
class of INGARCH(p, q) processes is constructed by assuming a specific linear
function for A;, where

p q
=p4Y aihi+ Y biY (2.55)
=1

i=1
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where & > 0,a; > 0,b; > Oforeveryi =1,...,pand j = 1,...,q, so that
A, is strictly positive for every ¢. If we further assume that all the roots of the
polynomial A(B) =1 — le - 4 B' lie outside the unit circle (for non-negative
a; this is equivalent to the condition le —,a; < 1), then A; can be written in
terms of the (Yy,s < t) as

o
M=AT" B+ mY .
j=1

Note that (Y¥;) are no longer conditionally independent and the joint density of
(Y1,...,Y,) is written as

POy =[] pGul Fc) p ().

t=1

where

Pyl Fi—1) = p(yelAr).

INGARCH(p, q) processes are restricted, so that the state equation A, can
be written as a strictly positive, linear function of the observations. Such
restriction simplifies the conditions of existence of stationary solutions, as well as
estimation procedures. For example, the INGARCH(p, ¢) process defined above
with Y7 a; + Z']’:l b; < 1, is strictly stationary with finite second-order
moments (see Ferland et al. 2006, for the case p = g = 1 and Weifl 2009
for the general one). The classical (conditional) likelihood-based inference is
also relatively easy. Set B := (a1,...,a,, b1, ..., b,), then the conditional log-
likelihood is written in the form

n

LBly) = Y. [A(B)+ yilogh (B) —logy],

t=max(p.q)

from which we get the score function

OL(Blyn) _ OL(Blyn) .
98 =( 9%; Ji=1,...,p+q),

where

LBly) o B [ v
B - 2 (Mﬂ) 1)'

t=max (p.q)



2 Nonlinear Time Series Models

The elements of the Hessian matrix H,,(f) are calculated as

PLB) Z [8%(/3) Vi i 0(B)

= —-1)— 2.56
9,98, 9,08, B 1) aﬂj] (230

t=max(p.q)

from which a proper numerical optimization method can be constructed.

Extensions of (2.55) for the simplest case p = ¢ = 1 have been recently
proposed by Fokianos et al. (2009) by considering a more general representation
for A;, namely

A= f—) +gYi—), t =1, (2.57)

where f,g : R™ — R™ are known functions up to an unknown finite dimen-
sional parameter vector. The initial values Yy and A are assumed to be fixed.
Special models for A; in (2.57) include the model in (2.55) upon defining
f(x) = ¢+ dxand g(x) = bx with ¢, d,g > 0 and x > 0, and the so-called
exponential autoregressive model with

A = (a1 + crexp{—y1d 1 DA + DY, 1.

Fokianos et al. (2009) proved that under geometric ergodicity the maximum
likelihood estimators of the parameters are asymptotically Gaussian in the linear
model (2.55); see also Tjgstheim (2012) and Fokianos (2011) for further details.
If we have explanatory variables to account for the variations in the latent
intensity A, of the counts, then the statistical and probabilistic properties of the
model get more complicated. In this case, in order to satisfy the positivity of the
intensity process A,, we model log A; by a linear function, giving rise to

Yi|Fi—1 ~ Po(d,),

P q
logA, = ﬂ/Wt + Za,-kt_,- + ijYt_j.

i=1 j=l1

In this case, it is not clear under what conditions this process may be stationary.
For example, the simpler process with

q
logh, = B'W, + ) b;¥i-j,
j=1

cannot be stationary unless some normalization is applied to the observations.
Davis et al. (2003a) suggest using the model
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q
logh, ='W, + Y 6:Z;.

j=1
where

Y, — A
ZIZA—:}, 7]20

Note that Y; is not Markov process, but the intensity process A, is pth-order
Markov. Existence of a stationary solution depends on the value of 7. For
example, for the simpler first-order model and assuming that 8'W, = #,

logh, = B/ + Yioi—dia
A
Davis et al. (2003a) proved the existence of a stationary solution for n € [1/2, 1],
showing that this solution is unique when n = 1.
Estimation of the parameters using likelihood is relatively easy and the
likelihood is maximized by using the Newton-Raphson method; see Davis et al.
(2003Db) for details.

In Chap. 5, we will study alternative models for integer-valued time series, which
have linear representations similar to ARMA models but are constructed with
thinning operations.

2.2.8 Max-Stable Moving Average Processes

Max-stable moving average processes are introduced as models for heavy-tailed
data by Davis and Resnick (1993). This class is defined as follows: X; is said to be
max-stable moving average process if

o0
X =\/v,Z;.
j=0

where \/j ¥; = max; ¥; and (Z,) are i.i.d. r.v’s with distribution exp[—0z!].
Analogous finite parameter version of these models are also defined. The reason why
the authors suggest such classes for modeling heavy-tailed data is that their sample
paths very much resemble the sample paths of corresponding linear models formed
from the same residuals, and the predictions and estimation of parameters for these
models can be done by an optimality criterion which minimizes the probability of
large errors, that is likely to give better fit to sudden burst. The optimal predictor
can be explicitly written for several models. However, since second-order moments
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Fig. 2.8 Sample paths — AR(1) and max-stable models with N(0,1) errors (top row) and
Pareto(a = 2.5) errors (bottom row)

cannot be used for identification and estimation, such classes are not very frequently
used in practice. Figure 2.8 shows the sample path of n = 1,000 observations
generated from an AR(1), X; = 0.5X;_; + Z,, and the corresponding max-stable
process X; = max(0.5X;_1, Z;), where Z, is aN(0, 1) sequence. The same models
are represented in the bottom row for Pareto(a = 2.5) residuals.

2.2.9 Nonparametric Methods

In the class of parametric models, the main emphasis was on building parametric
models for the conditional mean and variance of the process, either separately
or jointly. If the emphasis is on prediction rather than on explaining how these
conditional means and variances change in time, then a plausible alternative is to
estimate them using nonparametric methods. This would be quite flexible, since one
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is not restricted by a specific parametric model. The most common way is to use
kernel estimators. For example, for a given time series (X;) the conditional mean

M(xy,....xp) = E(Xi | Xi1 = x1,..., Xi—p = Xp),
can be estimated by

(= p)" Yt Xe T10=) Kn(Xemi — x)
m—p+ D) T Kn (X —x)

M(xl,...,x,,)z

Where
1;11(;() 1; )

and K representing a kernel function. A similar expression can be obtained for
the conditional variance. The drawback with these models is that one needs large
sample sizes for a reasonable fit and the sample needs to increase drastically with
the increase in p, a typical case of the curse of dimension. The curse of dimension
can be reduced by simplifying the model. In the simplest case, one can model the
conditional mean function by

M(xl,...,x,,) = ij(xp),
j

where the f;(-) are unknown functions to be estimated. Each of these functions are
one-dimensional, thus simplifying the problem. A similar model can be written for
the conditional variance. Such additive models can further be extended to include
linear combinations of past values. Such models are known as projection pursuit
models. In general, these models are taken from regression context and adopted to
the time series context. Further models and references can be found in Tjgstheim
(1994) and Gao (2007). Another possibility is to use splines in estimating these
conditional means and variances. We refer the reader to Hardle et al. (1997) for a
general review of nonparametric methods in time series analysis.

Bayesian Nonparametric Methods

Bayesian nonparametric methods have been one of the fastest growing topics in
statistics. Bayesian methods inherently are likelihood based; therefore they need
specification of a parametric model. Indeed, what is usually called nonparametric
Bayesian method, in fact corresponds to models with priors defined on an infinite
dimensional parameter space. Suppose that X; is a stochastic process with prob-
ability measure F' defined through its finite dimensional distributions. In ordinary
Bayesian inferential methods, one assumes a parametric model for the probability
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distribution and expresses prior belief on the parameters and then the inference
concentrates on deriving the posterior distribution of the model parameters and
the predictive distribution for the future values of the process. In nonparametric
Bayesian methods, no parametric form is assumed for the probability distribution;
instead prior beliefs are assigned to the probability distributions (i.e. models)
which are now random elements themselves belonging to some measure space.
Hence consider the probability space (2, B, P) where the random variable (or the
stochastic process) resides. Typically @ = R¢, B the Borel o-algebra over Q and
P is the probability measure of the random variable. Assume that P is a random
measure residing in a space of probability measures (P, C, Q) so that the probability
measures P of the random variable (or the stochastic process) is a simple element of
P. Often (€2, B, P) is called the base space and (P, C, Q) the distributional space.
The Dirichlet process is a probability measure on (P,C) and is often used as the
prior distribution for the random measure P. A Dirichlet process (DP) is defined
by a concentration parameter « and base distribution Py. Random measure P is
said to follow a DP prior if for any measurable partition (A, Ay, ..., A) of the
sample space of the random variable, the vector (P(A}), ..., P(Ax)) has a Dirichlet
distribution with parameters (¢Py(A1), ..., 2Py(Ax)). The DP is centered at Py, so
that E(P(A)) = Py(A) for any measurable set A € B. The inferential problem is
then given in terms of a hierarchical representation. For example, in the simplest
form, when the observed data are i.i.d. with common marginal distribution F', the
hierarchical model is given as

X1, X2, ..., X, | F ~ iid. F,
FIO{, F() ~ DP(O[, F()),

whereas the classical Bayesian parametric modeling paradigm would result in the
following hierarchical representation;

X1,X2,...,%,|0 ~ iid. F(x|0),
0~ m(0),

where, 77(0) is the prior distribution of the model parameters 6. The difference in
these alternative approaches is evident.

For time-dependent data, the specification of the hierarchical model needs the
notion of dependent Dirichlet processes and is beyond the scope of this book.
We refer the reader to Rodriguez (2007) and Hjort et al. (2010) for excellent
accounts of Bayesian nonparametric modeling.

In Sect. 4.5 we will give a detailed summary of Bayesian inferential methods for
nonlinear time series based on parametric likelihood methods.
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Chapter 3
Extremes of Nonlinear Time Series

3.1 Tail Behavior

We have seen in Sect.2.1.4 that nonlinear processes, due to their dependence
on initial conditions, often magnify error causing unstable behavior. Even when
stationary solutions exist, this noise magnification and dependence on initial
conditions reflects on the tails of the stationary distribution, as well as on how large
values cluster.

In this chapter we show why and how nonlinear processes tend to create
clusters of large values. Specifically, we look at the stationary solutions of fairly
general classes of stationary nonlinear processes and study their extremal properties.
In order to exhibit the heavy-tailed phenomena of nonlinear processes, consider the
following linear process

X =—-01X,-1 + Z; 3.1
and the bilinear process
Xt == (_01 + 0-9Zt—l)Xt—l + Z[, (32)

where Z, are i.i.d. ~ N(0, 1). Two realizations of size 500 of these processes are
given in Fig. 3.1. This figure indicates that such a deviation from linearity can cause
heavy-tailed data, in the sense that the output series has more variability than the
input series. In fact, the stationary distribution of the linear model (3.1) has Gaussian
tails, whereas the stationary distribution of the bilinear model (3.2) has regularly
varying tails with polynomial decay. In this chapter, we make these statements
precise by studying the extremal properties of such processes.

Extreme value theory for stochastic processes is well-known and can be found
in many good references, for example Leadbetter et al. (1983) and Embrechts et al.
(1997). In this chapter, we give a very brief summary of the basic notions and then
some specific results for nonlinear time series.

K.F. Turkman et al., Non-Linear Time Series, DOI 10.1007/978-3-319-07028-5_3, 91
© Springer International Publishing Switzerland 2014
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Fig. 3.1 AR model (a) and bilinear model (b) with n = 500 and Normal residuals

3.1.1 Extreme Value Theory

Extreme value theory deals with the probabilistic mechanisms of a process (X;) that
generate large values, such as the partial maximum M, (X) := max(Xy,..., X,)
and in particular its behavior as n — oo. If (X;) is an i.i.d. sequence with
distribution function F and right endpoint xy,, := sup{x : F(x) < 1}, then

P(M,(X) <x)=F"(x),

so that for all x < Xy, P(M,(X) < x) — 0, as n — oo. Therefore, in order to
obtain meaningful limiting results, we look at normalized limits

P(M,(X) < ayx + b,) = F'"(anx + b,) =: G(x),

for some suitable linear normalization (a,, b,) such that a,x + b, — Xy, in a
controlled fashion as n — oo. Without loss of generality, for ease of notation, we
assume that xy, = oo, unless we need to specifically refer to cases with finite
endpoint.

The major result of the extreme value theory says that if this limit exists, then
G(x) has to be one of three types, called Fréchet, Gumbel and Weibull extreme
value distributions given respectively by

0, x <0

e x>0,0>0.

G(x) = Gi(x) = {

G(x) := Go(x) = exp{—e™"} ,—00 < x < 00

e~ x <0,a > 0;
6= =S
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These three distributions can be written in a single parametric family called the
Generalized Extreme Value (GEV) distribution

G(x) = Gy(x) := exp—(1 + ax)"V/®, (3.3)

where 1 4+ ax > 0 and the parameter «, taking real values, is called the extreme
value index (or simply tail index). When o« = 0, the right-hand side of (3.3) is
interpreted as exp{—e™*}. When (X;) is a stationary but dependent sequence with
distribution function F, if for suitable normalization

F'(ay,x + by) - G(x),
then under fairly general conditions
P(My(X) < anx + by) — G°(x),

where 6 € (0,1] is called the extremal index, and is a measure of how local
dependence affects the extremal behavior of the process. When X; is an independent
sequence, then & = 1, whereas when the local dependence in X, is strong, 6
approaches 0.

The class of distributions F such that F"(a,x + b,) — G(x) for some suitable
normalization (a,, b,) is called the domain of attraction of G (x). It is the behavior of
the tail P(X; > x) =1 — F(x), as x — oo that decides which domain of attraction F
belongs to. Extreme value distributions have the property that G?(x) = G(ax + b),
for some a and b, therefore the local dependence structure of X, does not influence
the domain of attraction of the stationary distribution of X, .

As a general rule, the Fréchet domain of attraction embraces heavy-tailed
distributions, with polynomially decaying tails, that is

P(X;>x)~x""L(x), x>0
for @ > 0 and some slowly varying function L(x), that is
L(cx)/L(x) —> 1,

as x — oo, for every ¢ > 0. All cdf’s belonging to the Weibull domain of
attraction are light-tailed with finite right endpoint. The intermediate case @ = 0
is of particular interest in many applied sciences where extremes are relevant, not
only because of the simplicity of inference within the Gumbel domain of attraction,
but also for the great variety of distributions that belong to this domain. Such
distributions may have finite or infinite endpoints. Tails of distributions that belong
to the domain of attraction of the Gumbel distribution are typically products of
polynomial and exponential functions of the form (Rootzén 1986)

P(X; > x) ~ Cx%e™", (3.4)
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as x — 400, where p > 0, C > 0 and « is a real number. Such tails exhibit
different rates of decay depending on the values of the parameters in (3.4). For
example, the normal and the lognormal, as well as the exponential distributions
belong to this class. We refer the reader to Embrechts et al. (1997) or Beirlant et al.
(2004) for an overview of extreme value theory and its applications.

3.1.2 Tail Behavior of Linear Processes

Gaussian r.v’s have exponentially bounded tails and belong to the domain of
attraction of the Gumbel distribution. For example, the standard Gaussian random
variable X ~ N(0, 1) with density ¢ (x) satisfies

gb(x) 1 —x2/2

P(X >x)~—=~ e , X — 00.

X XA/ 2m

Linear Gaussian time series have exponentially bounded tails, producing moderately
large values. Many types of data, particularly coming from finance, insurance,
telecommunications, as well as from environmental sciences, show behavior often
inconsistent with this observation. These data sets often exhibit an erratic behavior
producing clusters of large values, consistent with distributions having much heavier
tails and dependence structures that go beyond covariances. How we deal with such
data sets depends very much on our understanding of the stochastic mechanisms
that generate such large values and the dependence structures that cluster these large
values.

A random variable X has heavy tails if E|X|” = oo for some p > 0. Naturally,
the behavior of P(X > x) and P(X < —x) as x — oo will define the behavior of
integrals E|X |?. The class of regularly varying distributions is particularly attractive
for modeling heavy-tailed distributions.

Definition 3.1.1. The probability distribution of a random variable is regularly
varying with tail index o > 0, if there exist constants p,qg > Osuchthatp =1—g¢
with p € (0, 1] and as x — oo,

P(X > x) =px *“L(x), (3.5)
and
P(X < —x) = gx “L(x), (3.6)

for some slowly varying function L(x).

An equivalent way of defining a regularly varying distribution is the following:
the probability distribution of a random variable is regularly varying with (tail) index
o > 0, if there exist constants p,g > Osuchthat p =1—g¢g



3.1 Tail Behavior 95

lim M :px_a 3.7
1—oo P(|X|>1t)

and

llm M e qx_a (3 8)
r—oo P(|X|>1) ' '

Here, « is often called the tail index or the index of regular variation, whereas p
and g represent respectively the proportion of left and right tails on the overall tail
behavior of the distribution.

Examples of distributions which have regularly varying tails are the ¢, I, Cauchy,
Pareto and the stable distributions. There is strong empirical evidence for using such
distributions in many real life data sets, particularly in internet communications,
insurance, finance and environment; see for example, Resnick (2007) and Embrechts
etal. (1997). Within this class, distributions with @ € (0, 2) stand out as truly heavy-
tailed, since, if @ < 2, then the second-order moment of X is infinite, whereas, when
o < 1, X will not have finite mean. In general,

E | XI V4 — o0, 17 Z o
<00, p<a.

Another class of distributions which is often used in modeling the heavy-tailed data

is called the class of sub-exponential distributions. The class of sub-exponential

distributions can be defined through the asymptotic relation of the partial sums and

maxima of i.i.d. random sequences.

Definition 3.1.2. The probability distribution of a positive random variable X is

called sub-exponential if for all » > 2 and i.i.d. replicates X, ..., X,,
. PXi+-+X,>x) . PXi+--+X,>x)
lim = lim =1. 3.9)
x—>00 P(M,(X) > x) x—>00 nP(X; > x)

Basically, (3.9) says that sums of i.i.d. r.v’s are dominated by one extreme
observation. Such behavior clearly cannot be displayed by a Gaussian sequence,
since in this case the limit (3.9) would be infinite. Positive, regularly varying
functions are sub-exponential, and therefore the class of regularly varying r.v’s
(as models for the stationary solutions of time series, when they exist), seems to
be a more flexible way of modeling heavy-tailed time series.

Can a linear model with moderately light-tailed innovations generate large
values? In other words, can the distribution of

Xo= Y V;Z,. (3.10)

j==o0
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be heavy-tailed when the innovations Z, have lighter tails? The answer is no. We
know that when the innovations are Gaussian, the stationary distribution of a linear
model is also Normal and therefore will have exponentially bounded tails. This
result is fairly general for other types of innovations having regularly varying tails.
The following theorem which is due to Cline (1983) (see also Resnick 1987) tells us
that the linear time series models will have the same tail behavior as the input series
but may have clusters of large values depending on the model parameters.

Theorem 3.1.1. If Z; satisfies (3.5) and (3.6) and () satisfy
o0
vl < oo,
j=—00
for some 0 < § < min{l, a}, then X, in (3.10) is almost surely convergent and

PO WlZ > x) ,
xlggo P(Z| > x) N ;le '

Moreover,
P(a,"(My(X) —by) <x) = e ™",

where a, = (pp+ + qp—)"Vn=V% b, = 0 and ¢4 = max;(0,¢;), p— =
max; (0, —¢;).

Note that the maximum of the i.i.d. noise process, Mn(Z), has the same
asymptotic behavior, in the sense that

P(a; (My(Z) —b,) <x) = ™",

with normalization a, = n'/® and b, = 0.
Theorem 3.1.1 above clearly indicates that

e If the innovations have regularly varying tails with index ¢ > 0, then the
stationary distribution of X; and the distribution function of Z; belong to the
same domain of attraction, having regularly varying tails with the same tail index;

* An extreme value of X is caused by just one large noise term Z;.

In general, such results may not be true for nonlinear processes. We will see that
Volterra series expansions and stationary solutions of certain types of nonlinear
difference equations have heavier tails than the input noise and may not belong
to the same domain of attraction as the i.i.d. input sequence. Large values of these
processes also tend to cluster in a different manner. This partially explains why
nonlinear relationships generate sudden bursts (clusters) of large values.
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Similar, albeit much more complicated results, exist for linear processes with
lighter tailed input noise process. One such general class is studied by Rootzén
(1986), where the input noise Z, satisfies

P(Z;, > x) ~ Cx% ™ x - o0 (3.11)

where p > 0, C > 0 and o € R. Note that polynomial tails given in Theorem 3.1.1
are a special case with p = 0 and @ < 0, whereas Gaussian noise input is also
another special case with « = —1 and p = 2. For such input noise processes, the
asymptotic behavior of extremes of the linear process is much more complicated,
depending on (¢;) and p in a very intricate manner. In general, the stationary
solution of the linear process is in the same domain of attraction of the i.i.d. noise
sequence, but the normalization and the clustering of large values will be different
depending on three separate cases: when0 < p < 1, p = 1l and p > 1. In all cases,
M, (X) is in the domain of attraction of the Gumbel distribution, that is

P(a; (My(X) —by) <x) — e

Therefore, the extremes are not as large as the extremes of linear processes with
regularly varying input noise process. In general, the case 0 < p < 1 is similar to
the regularly varying case where an extreme value of the linear process is caused by
one large noise term Z;. For p > 1, an extreme value of the linear process depends
on many large and moderately large values of the input process in a very complex
way. The linear process and the input process no longer need to be tail equivalent in
the sense that, as x — oo,

P(X, > x)
——— ~ constant,
P(Z; > x)

and therefore they need different orders of normalization, although they both belong
to the domain of attraction of the Gumbel distribution. Again, in general this may
not be the case for nonlinear processes. We will see that some nonlinear processes
can have regularly varying tails even when the input noise process has lighter tails
of the form (3.11) with p > 1. Rootzén’s results can be found in Kliippelberg and
Lindner (2005).

3.1.3 Bivariate Regular Variation and the Coefficient of Tail
Dependence

Clusters of large values of time series can also be characterised by the coefficient of
tail dependence which in essence characterizes the nature of the limiting dependence
between the margins of a bivariate extreme value distributions. The basic idea is
to look at the bivariate extremes of the pair (X,, X;+,), for some positive lag A.
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The usual approach is to assume that the bivariate distribution Fy,y,,(x,y)
lies in the domain of attraction of the bivariate extreme value distribution with
Fréchet margins. However, in order to allow for more general models, the data are
transformed marginally to obtain Fréchet margins, or alternatively to standard Pareto
margins using the transformation

1

Consider a stationary time series X, with marginal distribution function F,
assumed to be continuous. For any fixed time lag &7 > 0, the pair (X;, X;45) is
said to be regularly varying on (0, 00)? if as u — oo,

P(X; > ux, X;45 > uy)
P(X >u, Xi4p > u)

—d(x,y), (3.13)

for some non-degenerate function d.

Assume that upon the standardization (3.12), the transformed time series satisfies
the bivariate regular variation condition given in (3.13). Then it follows that
(Ledford and Tawn 1996) as u — oo,

P(X; > u, Xopn > u) = P(min(X,, X;42) > 1) ~ u”"L(u), (3.14)

for some slowly varying function L(u) and for some constant n = 7, € (0,1].
Here, the constant 1 describes the type of limiting dependence between the extreme
values of X; and X, and is called the coefficient of tail dependence. The perfect
negative and positive dependence respectively correspond to n — 0 and n = 1,
whereas, asymptotic independence in the tails corresponds to n = 1/2. The
degree of dependence in general is determined by the combination of 1 and the
slowly varying function L(u). However, increased values of 1 can be interpreted as
stronger association between the large values of X; and X;45. These results can be
used to compare competing time series models. For example, it is known that for
GARCH(p, q) models, n = 1, whereas for stochastic volatility models, n = 1/2.
If we can estimate the value of 7 of an observed time series, then we can check if
the observed time series is compatible with a GARCH model, at least in the tails.
However, the estimation of 7 is not straightforward.

If T; := min(Y;, Y;i44), then from (3.12), 1 — Fr(u) = u‘l/”L(u). If T; are
observable, n can be estimated by standard methods such as the Hill estimator: for
suitably chosen k,, and the corresponding upper order statistics Tn—k,:n, . ..., Ty,

nkn

kn
A 1 l‘l n
”:k—E: SRt (3.15)
=1
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However, the stationary marginal distribution of the time series in general is
not known, thus the transformation in (3.12) can not be performed. Draisma et al.
(2004) suggest substituting the marginal distribution by the empirical distribution
function to obtain the corresponding estimator. Drees and Rootzén (2010) study
the asymptotic behavior of such estimator by proving limit theorems for suitable
empirical processes.

The coefficient of tail dependence can be a powerful tool in model choice by
calculating the theoretical 7 for the model under study and comparing it with the
estimated 1 from the observed time series.

3.2 Connection Between Nonlinearity and Heavy Tails

Consider the general difference equation
Xt = g(XSs ZSs § < Z),

where Z,; are i.i.d. r.v’s with distribution function F, and g is some measurable
function, such that the stationary solution for X; with distribution function G exists.
We have seen that for a very general class of noise input processes, under fairly
general conditions, G and F belong to the same domain of attraction when g is
a linear function, although how the large values cluster and what normalization to
choose will depend on the constants in the linear representation, as well as on the tail
of the noise distribution F'. When g is nonlinear, G and F in general do not belong
to the same domain of attraction and the nonlinear relationship g magnifies the large
values of the input noise. To highlight this point, we will report on the extremes of
Volterra expansions, as well as on the extremes of certain types of general nonlinear
difference equations which give raise to many known classes of nonlinear processes.

Extremes of Volterra expansions

Assume that the time series X, has Volterra series expansion

[e9) i

X = Z Z Bjijoii 1_[ Zi— |- (3.16)

i=1 \ljil=00....|jil<o0 r=
where (Z,) is a sequence of i.i.d. innovations with distribution function satisfying
(3.5) and (3.6) and (h;,), (A}, j,), ..., are such that (3.16) converges to a well-
defined random variable. In order to understand the effect of nonlinearity on the
tail behavior of X, we look at mth-order Volterra approximation to X;, namely

m
X = Z thZt—jl + e+ Z hjlsjz~,~~~~,jm l_[Zt—jr‘ (3.17)

lj1l=<o0 lj1l=00.lj2|=00..... jm| <00 r=1
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In order to ensure the absolute almost sure convergence of the mth-order Volterra
series given in (3.17), the sequence of kernels (%,), (A}, j,), ..., has to satisfy the
following summability condition

> )y o]’ < 00, (3.18)

[j11=00.lj2]=00. ...l jm <00

for some § < min(1l,a/m), where « is the tail index given in (3.5) and (3.6). The
following result (Scotto and Turkman 2005) essentially shows how the order of
nonlinearity affects the tail behavior of the process X;.

Theorem 3.2.1. If Z, satisfies (3.5) and (3.6), and the sequence of kernels satisfies
(3.18), then

. P(X:|>x) afm
A Pz sy 2 e <0

ljl<oo
and

lim PXi>x) _ Z\j\soo(h+)a/mv if mis even;
x—o00 P(|Z1|" > x) pz‘j‘s()o(h-l—)a/m +gq lelfoo(h_)a/m7 ifm is odd,

respectively in (3.7) and (3“.’8).
Moreover, as n — 00

where ht = max(h; ;. ;,0), h~ := max(—h;;_;,0) and p, q are given

exp {—(hH)*/mx=elmy if m is even;
exp {—[p(h)¥™ + g(hO)¥/mx=e/mY if m is odd,
(3.19)

PM,(X) <a)x) — {

and the sequence has extremal index

(h(+))d/m
o — | izt
= p(h(Jr))a/m_'_q(h(f))a/m . .
if mis odd.
TN RS SN s T if

if m is even;

Note that if Z, has regularly varying tails with tail index «, then X, has also
regularly varying tails with tail index o/ m. One consequence of this result is that,
while the i.i.d. noise sequence has finite moments up to «, the output process X;
has finite moments up to «/m. This result also shows how large values of the
process cluster through the extremal index 6. Note that the tail of the process is
the clusters are formed in an intricate manner. At present there are no comparable
results when the noise sequence has lighter tails satisfying (3.11). This is due to
the fact that when Z, has regularly varying tails, an extreme value of X, is caused
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by just one large noise variable | Z;|™, whereas when Z; has lighter tails, clusters
of ]_['r":l Z;_j, affect the tail behavior X;, and these clusters are very difficult to
quantify. Since Volterra expansions are the most general representation for nonlinear
processes, Theorem 3.2.1 gives us a very general characterization of the extremal
behavior of nonlinear processes. However, it is not particularly useful and in order to
get a better description, it is important to look at some specific nonlinear structures.

3.2.1 Extremal Properties of Certain Types of Nonlinear
Difference Equations

Consider the stochastic difference equation (alternatively, we will call this a
stochastic recurrence equation) first introduced in (2.16)

X, = A Xi—1 + By, (3~20)

where (A;, By) is a sequence of r.v’s. We will call (3.20) a random difference
equation (or stochastic recurrence equation). It is possible to define (3.20) in a more
general form

X, = A X, + B, (3.21)

where X, and B, are random vectors in R, A, are d x d random matrices and
(A, By) is a strictly stationary ergodic process. For the sake of simplicity and
completeness of presentation, we give most of the results for the scalar difference
equation given in (3.20) but we will also mention the existing ones for the vector
representation (3.21).

The difference equations given in (3.20) and (3.21) are quite general and many
known families of nonlinear processes can be given in these representations.
For example, consider the first-order bilinear process

Xy =aX 1 +bX1Zi—1 + Z4, (3.22)

where Z, are i.i.d. r.v’s and a and b are constants satisfying certain conditions to be
specified later. The representation given in (3.22) can be written as

Xt = (a + bZ[_l)X[_l + Zt‘

This representation is not Markovian and the random pair (a + bZ;_;, Z;) forms a
1-dependent, identically distributed pair. However, by setting

Vi=(a+bZ)X:,

we see that
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V, = (a+bZ)X,
= (a+bZ)a+bZi—)Xi—1 + (a+bZ)Z,
= (a+bZ)Vi1 + (a+bZ)Z,, (3.23)

and
X, =Vio1 + Z;. (3.24)

Note that V; given in (3.23) is a Markov process, and hence X, in (3.24) has
the standard state space representation; see Sect.2.2.7 for details. See also Subba
Rao and Gabr (1984) and Pham (1985) for the existence of such Markovian
representations for a general bilinear process. Note that

Vi=AVi-1 + By,

where (A, By) = (@ + bZ,,(a + bZ,)Z;) forms an i.i.d. random sequence.
Another well-known process which can be put in the form (3.20) is the first order
ARCH process

X, =B+ Ath_l)l/zzt’ (3.25)

where B > 0,0 < A < 1. Here, X? satisfies (3.20) with A, = AZ2, B, = BZ2.
Note that (A;, B;) forms an i.i.d. pair. Higher-order bilinear processes and ARCH
processes can similarly be put in the form (3.21) in the higher dimension. Apart from
this example, it is quite clear that many other nonlinear processes, such as random
coefficient autoregressive models (RCA) and threshold models, can similarly be put
either in the form (3.20) or (3.21), depending on the dimension.

In this section we show that the stationary solutions of (3.20) when they exist,
under fairly general conditions, have regularly varying tails. For example, the simple
bilinear process given in (3.22) and the ARCH model given in (3.25) have stationary
solutions with regularly varying tails even when the input innovation process Z;
has Gaussian or similar lighter tailed distributions. This difference in the tails of
input-output processes is due to the nonlinear nature of the relationship. We also
show that the extremal behavior of these processes differs significantly from those
of linear Gaussian models. The following result (due to Vervaat 1979) establishes
the conditions for the existence of a stationary solution for (3.20).

Theorem 3.2.2. Assume that (A;, B;), t € IN, in (3.20) is an ii.d. sequence of
random pairs. Let

oo k—1

R=>"T]A4B (3.26)

k=1j=1
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1. If E(log|A]) € (—00,0), then the sum in (3.26) converges almost surely
and (3.20) has a strictly stationary solution with distribution equivalent to the
distribution of R in (3.26) iff E(log™ | B|) < oc.

2. If E(log|A|) = —oo then the sum in (3.26) converges almost surely and (3.20)
has a strictly stationary solution with distribution equivalent to the distribution

of R in (3.26) either if E(log™" |B|) < oo or if P(A = 0) > 0.

Here, for simplicity, we drop the index of A; and B;, since they are identically
distributed.

The assumption that (4,, B;) is ani.i.d. sequence can be relaxed and the existence
of stationary solutions can be given in a very general set-up in higher dimensions.
Let | - | be the Euclidian norm in R¢ and || - || be the corresponding operator norm
in R? such that for any d x d matrix M

| Mx||
[[x]]

Theorem 3.2.3 (Brandt 1986). If (A;, B;), t € N, is a strictly stationary ergodic
process such that both E (log™ || A||), E(log™ || B||) are finite and the top Lyapunov
exponent y defined by

1
=inf{ E
y 1n{ (n+1

is strictly negative, then for every t the series

||M||=sup{ xeRY, X#O}.

10g||A0---An||), n e]N} ,

00
X = ZAIAI—I o 'At—k-l-lBt—ka
k=1

converges almost surely and the process X, is the unique strictly stationary solution
of (3.21).

If we assume that (A4,, B;) is an i.i.d. sequence, then the converse of Theo-
rem 3.2.3 is also true.

Theorem 3.2.4 (Bougerol and Picard 1992). If (A;, B;) in (3.21) is an i.id.
sequence and both E(log™ ||A||), E(log™ ||B||) are finite then (3.21) has a strictly
stationary solution, which is independent of (A;, B;) for every t if and only if the
top Lyapunov exponent y is strictly negative.

The top Lyapunov exponent referred to in theorem 3.2.4 is always less than
E(log||Al|), with equality in dimension d = 1. Thatis, y = E(log|A|). Although
it is difficult to get an explicit form for the distribution of R in (3.26), it is possible
to say something about the tail behavior of R. Here we will consider the case when
(A;, B;) are i.i.d. scalar r.v’s. Results on the tail behavior of the stationary solution
of (3.21) need the notion of multivariate regular variation and will be given later in
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the section. In the scalar case, there are basically two cases, depending on A and B
(we use the notation A and B representing the common probability law for each of
the A, and B;).

1. Light-tailed stationary solutions.
Provided that B is sufficiently light-tailed, the case P(|A| < 1) = 1 resultsin a
light-tailed R, in the sense that all moments are finite (Goldie and Griibel 1996).
In this case neither B nor ([T;—; Ax) will have dominant contribution towards
the tails of R.!

2. Heavy-tailed stationary solutions.
This is the most common situation and most of the literature deals with this case.
Heavy tails can arise either when B is heavy-tailed (Grincevi€ius 1975; Grey
1994) or when neither A nor B is heavy-tailed, but A can take values outside
the interval [—1, 1] (Kesten 1973; Goldie 1991; Embrechts and Goldie 1994).
In the former case, individual large B values dominate the tail of R, whereas in
the latter case, clusters of large values of the sequence ([;_, Ax) dominate the
large values of R.

We now give in detail the conditions (Goldie 1991) under which R has heavy- or
light-tailed tails.

Theorem 3.2.5. Suppose that the stationary solution R in (3.26) is non-degenerate
and satisfies

R =% B+ AR, (3.27)

with R independent of (A, B). If P(|A| > 1) > O, then |R| has regularly varying
tails. If |R| is non-degenerate, has all moments finite and satisfies (3.27) then
P(Al=1) =1L

Therefore, if |A| takes values larger then 1 with positive probability, then the
stationary solution of (3.20) cannot have light tails.

Theorem 3.2.6. Let R satisfy (3.27), where P(|A| < 1) = 1 and P(|A| < 1) > 0.
If Ee€1Bl < oo for some € > 0, then P(|R| > x) decreases at least exponentially
fast, in the sense that there is a positive constant p such that

1
limsup — log P(|R| > x) < —p.
b

X—>00

In fact, it is possible to say more about the value of p; see Goldie and Griibel
(1996) for details. Trivially, if P(|B| < b) = 1 for some b < oo, and P(|4| <
¢) = 1 forsome ¢ < 1 then P(|R| > x) = 0, for x > a/(1 — ¢). Examples

TExtensions of Goldie and Griibel’s results, namely the connection between the tails of R and the
behavior of A near 1, can be found in Hitczenko and Wesolowski (2009).
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of processes for which the tail decay of | R| is faster than exponential are given in
Goldie and Griibel (1996), with exact rate of decay.

We first start with the case when neither A nor B have heavy tails (Kesten 1973;
Vervaat 1979; Goldie 1991).

Theorem 3.2.7. Assume that Z; satisfies the difference equation (3.20) with i.i.d.
(A;, B;) such that

« Elogl|A| <0y
e For some o > 0,

E|A|* =1,
E|A|"log™ |A| < oo,
0 < E|B|* < o0;

* log|A| does not have a lattice distribution and for everyr € R, P(B = (1 —
A)yr) < 1.

Then

oo k—1

R=>"T]A4;B.

k=1j=1
converges almost surely and moreover, as x — 00,

P(R > x) ~cyx™¢,
(3.28)
P(R < —x) ~c_x"%,

for some constants c4., c— such that at least one of them is strictly positive. Further,

if P(A <0)>0, thency = c_ > 0.

Note that in the above theorem, it is the distribution of A that is important in
determining the tail behavior of R through the determination of the tail index «.
However, @ does not always exist. Consider the case when A is nonnegative such
that EA“ < 1 and EA? < oo, for some 8 > k > 0 and P(B > x) ~ x “L(x),
where L(x) is a slowly varying function. In this case « satisfying EA* = 1 cannot
exist, since if it does, it needs to be greater that «, and for such a case E|B|* < oo
cannot hold. In this case, it is the distribution of B that is important in defining the
tail of R:

Theorem 3.2.8. Let (A;, B;) be an i.i.d. sequence of r.v’s with E logt |B| < oo,
P(A>0) =1, EA* < 1and EA? < oo for some B > a > 0. Then as x — oo,

P(B > x) ~x"“L(x),
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if and only if

P(R > x) ~ X" L(x),

1
1— EA”
for some slowly varying function L(x).

Theorem 3.2.8 above is stated for non-negative A. Similar results, however, exist
when A also takes negative values (Grey 1994). In that case, simultaneous effects
of the right and the left tails of A on those of R have to be taken into account
complicating slightly the result. For this case, the result is as follows:

Theorem 3.2.9. Let (A;, B;) be jointly distributed rv’s such that for some f >
a > 0, E(JA|%) < 1 and E(|A|?) < oco. In addition, assume that the tails of the
distribution of B satisfy

P(B>x)~x"%L(x)and P(—B > x) ~ sx “L(x),x — 00,
for some slowly varying function L(x) at infinity, and s > 0. Then

P(R > x) ~dyx “L(x) and P(—R > x) ~d_x"“L(x),x — 00,

where

g — 1( 1+ N 1—s )
T2 \U—E[(AH) ] = E[(A7)] T 1= E[(AM)] + E[(A7)]

and

4 l( 1+ ~ 1—s )
T 2= E[AD*] = E[(AT)] 1= E[(AT)] + E[(47)])

Under fairly general conditions, the stationary solution of (3.21) also has
regularly varying tails. In order to write precisely the results, we need the concept
of multivariate regular variation; see Basrak et al. (2002) for details.

Definition 3.2.1. The d-dimensional random vector X is said to be regularly
varying with index o > O if there exists a sequence of constants a, and a random
vector @ with values in the unit sphere S~! C R? such that for all # > 0 and for
every Borel measurable A C S9! asn — oo

nP(X| > ta,, X/|X| € A) — t™*P(0 € A). (3.29)

Here, the convergence is vague convergence on the unit sphere S?~!. Condition
(3.29) is equivalent to the condition that for all # > 0, as x — oo,
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P(X| > tx,X/|X| € 4)
P(X| > )

S 1P € A). (3.30)

One particular consequence of the convergence in (3.30) is that linear combinations

d
ZfﬁiXi,

i=1

for any ¢ € RY\{0} are also regularly varying with the same index o > O.
Specifically,

u—>00

d
lim P (Z ¢ X;i > u) = w(¢p)L(u)u™, (3.31)

i=1

for some function w(¢) such that

w(tg) = 1"w(9).

Conditions (3.30) and (3.31) are essentially equivalent.

Theorem 3.2.10. Assume that EInt ||A|| < oo, EIn" |B| < oo and the top
Lyopunov exponent y < 0. Then

00
X, =B, + ZAn Xoeee X An—j-HBn—js
j=1

converges almost surely and is the unique stationary solution of (3.21). Moreover,
under further technical conditions on the i.i.d. random sequence (A;,B;), (see
Basrak et al. 2002), the stationary solution X is regularly varying with index «,
where Kk is the unique solution to the equation

1
lim =~ InE|[Ay x - x Af|[< = 0.
n—oon

As we have stressed, the stochastic difference equation (3.21) is quite general
and many known nonlinear processes can be put in this form. Bilinear and
GARCH are two classes of nonlinear processes which can be written in this form.
Thus, Theorem 3.2.10 clearly says that under fairly general (but often complex)
conditions, starting with moderately light-tailed innovations, we get heavy-tailed
outputs from general nonlinear systems. We now write the conditions and the results
specifically for these two classes of nonlinear processes.



108 3 Extremes of Nonlinear Time Series
3.2.2 Tails of Bilinear Processes

The bilinear process BL(p, g, m,[)
p q m
Xo=Y ¢iXej+ > 0;Zij+ > biXiiZij + Zi. (3.32)
=1 j=1 i=1j=1
can be written in the form (Resnick and Van den Berg 2000)
X =A_1X—1 + B,
where X; and Z, are respectively (p — 1) x 1 and g x 1 column vectors

Xt = (Xl‘a Xl‘—l#“‘ ,Xt—p+l)/’
Z[ = (Z[7 Zl‘—lv'” ’Zl_q)/'

Here,
B, = ®Zr s

where @ is a p x (1 4+ ¢) matrix given by

00... 0 O
and A,_; is a p X p matrix given by
l i l
¢>1+Zj=1b1j2,_j ¢>2+Zj=1b2,~Z,_,~ ...... q&p—i—Zj:lbp,Z,_j

1 0 ... 0 0
A=

0 0 o1 0
Theorem 3.2.11. Assume that the i.i.d. noise sequence (Z,) has regularly varying
tails with tail index o > 0, satisfying the conditions (3.5) and (3.6).

1. Assume further that

(a) Forl > 1and0 <a <1 +1,
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P i
Z |¢l_|0¢/(l+l) + Z |blj|0¢/(l+l)E(|Zl|loc/(l+l))l/l <1, (3.33)
i=l1 j=1

(b) Forl > landa > 1 + 1,

P 1

Z |¢i|+ZIbijIE(|Zl|Ia/(l+l))(l+l)/la <1 (3.34)

i=1 j=1

Ife; :=(1,0,...,0) is the p-dimensional unit vector,

oo n
X[ == e1®Z, + Zel HA[_J'QZ[_”,
n=1 j=l

is a almost surely convergent stationary solution of (3.32).
2. Further lf]_[::ll b1 # 0 then |X,| has regularly varying tails with tail index
a/(l + 1), satisfying

PUX,| > x)
il >x) _ . 3.35
Pz > ¢ G:3)

for some constant ¢, depending on the expectation of products of the noise
process, as well as the constants bj;.

The proof of this technical theorem, as well as the exact expression for the
constant ¢, can be found in Resnick and Van den Berg (2000). The effect of
nonlinearity on the tail of X; is evident. In the bilinear difference equation, the cross
product terms X;; Z;;, and in particular, the order / of the productterm X; ; Z;,
determines the degree of nonlinearity. The order of these product terms / directly
influences how heavy the tail of X; gets relatively to the input process Z,, whereas
the model parameters, in particular the cross product term kernels b;;, determine the
constant ¢ in (3.35).

So far we have looked at the tail behavior of the stationary solution of (3.20).
The results indicate that under quite general conditions the tails of this stationary
solution will be regularly varying. This would partially explain why some nonlinear
models have sudden bursts of large values. The formation of clusters of large values
is not only a consequence of the heavy tails of the stationary solution, but it is
also a result of the local dependence structure of the process defined in (3.20).
Quantifying the effect of local dependence on the formation of clusters of large
values, particularly when Z, have lighter tails given in (3.11), is difficult and there
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are no known general results on the tail behavior of the BL(p, ¢, m, [) process with
light-tailed innovations, except for some special simple cases such as the first order
bilinear model

Xy =aX; 1 +bXi 1 Zi 1+ Z;.
Theorem 3.2.12 (Turkman and Amaral Turkman 1997). Assume that the con-

ditions of Theorem 3.2.7 hold true. Assume further that P(A < 0) > 0 so that c4
and c_ in (3.28) are strictly positive. Then, X; has an extremal index 0 given by

o0
0 :/ P( max l_[A,- <y Hay™*lay
1 = i

and
lim P(M,(X) <n'®x) = exp{—ciOx7%},
n—>oo

where « is the solution of

Ela+bZ,|* = 1.

3.2.3 The Relation Between the Extremes of Finite-Order
Volterra Series and Bilinear Processes

We now compare the extremes of bilinear processes and finite-order Volterra series
expansions with heavy-tailed input innovations. Consider the first-order bilinear
process
Xi=cXi1Zi1 + Z4, (3.36)
where (Z,) satisfies conditions (3.5) and (3.6). If c¢(c¢ > 0) is such that
“PEZS? <1,
then X; has an almost surely convergent infinite order Volterra series expansion
3] Jj—1
Xo=Z+)Y ¢ (]_[ Z,_i> z: ;. (3.37)
j=1 i=1

Extremal properties of the model (3.36) were first studied by Davis and Resnick
(1996) who proved that
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. P(X,>x) c/?
lim 5 =
¥=>00 P(Z{ > X) 11— c*2EZ

a2’
1

2. If a, is the 1 —n~! quantile of | Z, |,
a, = inf{x : P(|Z,| > x) <n~'},
then
P(a;>M,(X) < x) — exp{—E(V/*)x™/?}, x >0 (3.38)

with V; := maxlsksoo(ck Wy), and

]_[i:% Ui, k> 1;
We=141, k=1,
0, k < 1.

Here, (U;) are i.i.d. r.v’s with the same distribution F' of Z;.

Although the series given in (3.37) has infinite order Volterra series expansion, the
highest order of Z, appearing in the expansion is two, and the random coefficients in
each term are bounded; hence we would expect the extremal behavior of this process
to be well approximated by a second-order expansion. Indeed, if we approximate
this bilinear process by its second-order Volterra series (take ]_[?=1 Zi—i=1)

Xt - Zf +CZ[2_17
we see from Theorem 3.2.11 that

lim M — c%/?
x—00 P(Z? > x)

and, asn — oo
P(a;>M,(X) < x) — exp{—c**x7%%}, x > 0. (3.39)

Thus, the asymptotic distribution of the maximum of this bilinear process differs
from the asymptotic distribution of the maximum of the second-order approximation
by a constant which represents the (average) aggregate weight of the random
coefficients of the Z? terms in the higher-order expansions.



112 3 Extremes of Nonlinear Time Series

We consider now the general bilinear process. Let

Z¢,X, ,+Ze Zi +ZZb,,Xf iZi—j + Zi. (3.40)

i=1j=1

where ]_[;=l bij # 0, and (Z;) satisfies the conditions (3.5) and (3.6). Assume that
the parameters of the model (3.40) satisfy the conditions (3.33) and (3.34), so that
the process in (3.40) is almost surely convergent. We can write the process (3.40) as

®(B)X; = O(B)Z,; + C(B, B)[X;, Z;],

where
p .
®(B) =(1-) ¢:B).
i=1
®(B) = (1+ ) _6,B),
j=1
and
P q ) )
C(B.B)[Xi.Z) =) > bi;(B'X)(B'Z)
i=1j=1
p q
= ZZb,’th_iZt_j.
i=1j=1
Let
o(B)X," = 0(B)Z,.
andfor j =2,3,...,
) (VAdY)
o(B)X) = c(B,B)[Xx"", Z].
Then
N .
X =y x" (3.41)
j=1

is the unique solution of (3.40) (cf. Mathews and Sicuranza 2000). Note also that the
representation given in (3.41) is the Volterra series expansion of the process (3.40).
For example, consider the two processes
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X, = blZXt—IZt—Z + Z,
and
X, = bIIXt—IZt—l + blZXt—IZt—Z + Z,.
Using the representation (3.41), we see that for the first process, we have

J
X =bly' 2 ;1 [ Zis
i=2

J
— pi 172 .
=by Zi_jn l_[ Zi—i,
i=2
i#j =1

whereas for the second process, we have
Xz(l) =7,
X =buZl +bnZiZio.
XD = bibnZ} s + bhZi s Z2 | 4+ b ZE, + biubinZi1 Zia Zi—s.

Higher-order terms are complicated, however no power of Z; higher than 3 appears
in these expansions. Note that while for the first process b;1b1, = 0, for the second
process by1b # 0.

In general, the infinite Volterra series expansions of the process (3.40) will
involve products of innovations Z,, with the highest power of Z, being equal to
I + 1, provided that ]_[5=1 by; # 0. In this case the diagonal kernels /4 ; _; in the
(I + 1)th Volterra term

I+1
E :E :hjlsjz ----- Ji+1 l_[Zl‘—jw
J1 Ji+1 i=l1

are given by

hoo = [ i =141
Sl 0, otherwise.

If, however, b;; = 0 for some i = 1,...,/ then the infinite Volterra series
expansions will involve powers of Z, less than / + 1. If we approximate the general
bilinear process by its (/ 4 1)th order Volterra series expansion, then from (3.19) we
see that, as n — oo
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P(My(X) < a;"*Vx) —

exp {—(h(H))/(H D e/ U+ DY if I 4+ 1is even;
exp {_[p(h(+))a/(l+l) + q(h(_))a/(l+l)]x_a/(l+l)} , 1fl + 1is Odd,

where 2" := max_so<j <oo([ T b17.0),and A := max _oo<j<oo(— [T}, by;-
0). If we compare this result with Theorem 4.1 of Resnick and Van den Berg (2000)
we see that such approximation characterizes the asymptotic distribution of the
maximum of the general bilinear process given in (3.40) up to a constant in the
same way as (3.38) is related to (3.39), although in a much more complicated
manner.

The above results indicate a possible way to determine a finite-order Volterra
(polynomial) model for a given observed input and nonlinear output time series: Let
21,225 --,2p and X, X7, . . ., X, respectively be observations from an i.i.d. regularly
varying input series (we assume for the time being that the input process is observed)
and stationary nonlinear output time series. In this case, when it exists, the stationary
distribution P(X, < x) has regularly varying tails (see for example, Goldie 1991
and Davis and Resnick 1985), and we assume that, as x — oo

P(1X,| > x) = x L(x),

for some o* > 0. The tail indexes @ of Z, and «* of X, can be estimated by
one of the many methods suggested, for example by the Hill estimator (Hill 1975;
Embrechts et al. 1997). Consequently, these results suggest using a Volterra series
approximation of order m, where m is taken to be the integer part of o¢/oc*.

In the classical time series setup the input innovation process Z; is not observed,
therefore o cannot be estimated directly. In this case, one possible way is to over-fit
a high order bilinear or a GARCH model to the data and then estimate the residuals
from this fitted model. The tail index of Z,, and hence the order m1 = &/&*, can then
be estimated from these residuals. However, when the input series is not observed
or reliable estimates of residuals do not exist, we suggest leaving o as well as m to
be unknown model design parameters and choose a combination (¢, m) in such a
way that m is the integer part of &/«a*. Then the corresponding finite-order Volterra
series, although arbitrary and not unique, would be a consistent model with the
observed nonlinearities of the process X;. Note that the choice of a high value for
would permit us, for example, to work with innovations with desired finite moments,
but at the cost of higher-order polynomial approximations. Similar arguments can
be used to identify the order / in the bilinear specification given in (3.32).

In some cases, it may not be possible to find a finite-order Volterra series
approximations. Consider, for example, the bilinear process (3.36) with normally
distributed innovations. In this case, when it exists, the stationary distribution of
the process X; has regularly varying tail and is in the max-domain of attraction of
the Fréchet distribution (see Turkman and Amaral Turkman 1997). However, under
quite general conditions, the low order Volterra terms
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m—1
" [12z-2;
t—i [_j7

i=1

will have comparatively lighter tails; hence the maximum of finite-order Volterra
expansions would be in the domain of attraction of Gumbel distribution. Hence the
extremal behavior of the process and its finite-order Volterra approximation are quite
different. For example, in the second-order approximation

X, =Z +cZ-,

with Gaussian innovations, Z?2 are i.i.d. r.v’s having a y2-distribution, and the
process X; = Z; + cZ tz_l is 1-dependent. Hence the asymptotic distribution of
the maximum of this process will be a Gumbel distribution and the second-order
expansions in this case will not capture all the nonlinearities of the bilinear process
given in (3.36). This is due to the fact that, when the residuals have regularly varying
tails, the tail behavior of the Volterra expansion is dominated by individual large
innovations, whereas in the case of Gaussian distributed innovations, the clusters of
large values of [7_, Z;—; dominate the large values of the process.

3.3 Linear Models at the Presence of Heavy Tails

Suppose that we observe a time series and estimate the tail index & < 2, suggesting
that this time series has infinite variance. In the previous section, we made a case for
using an appropriate nonlinear time series model for such data set depending on the
pair (m, ). One possible choice is m = 1 with @ = «*, that is, to assume a linear
model

o0
X =) V,Zi_;+Z. (3.42)
j=1

where the innovations are i.i.d., having regularly varying tails with index « < 2, sat-
isfying conditions (3.5) and (3.6). We may then be tempted to model the data using
ARMA(p, g) models with heavy-tailed innovations. The tools of identification and
estimation are readily available for using such models; see for example, Brockwell
and Davis (1991), Andrews et al. (2009) and Calder and Davis (1998).

Theorem 3.3.1. Let Z; be an i.i.d. sequence of r.v’s satisfying (3.5) and (3.6) and
(V) is a sequence of constants such that

o0

8
Dol < oo,
j =0

for some § such that § € (0,) N [0, 1]. Then X, converges almost surely.
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Moreover, if 0(z) and ¢(z) are moving average and autoregressive polynomials
of orders q and p such that

Y v =0)/$()
j=0

and

$(2) # 0,
for |z| < 1, then the difference equation
¢(B)X, = 0()Z:,
has the unique stationary solution (3.42). Further, if ¢ (z) and 0(z) have no common

zeroes, then the process is invertible iff 0(z) # 0 for |z| < 1.

The sample autocorrelation function, which is fundamental in linear models for
identification as well as estimation, is given by

YN = X)Xk — X)

o(k) = —
P S (X —X)

This function may not make much sense in the presence of heavy tails, especially
when the data are positive, due to the centering at the sample average. A heavy-tailed
version without centering is given by

—k
1 Xe Xitk
n 2
D=1 Xi
When o < 2 there is no finite variance for X;, hence the mathematical autocovari-

ance function does not exist, but the sample covariance function given in (3.43) still
has many desirable properties. For example,

Phev (k) = (3.43)

Prev (k) = p(k), (3.44)
in probability, where
(k) = Y0 ViVitk
Yiov;

and this consistency result leads to consistency of Yule-Walker estimates of autore-
gressive coefficients in an AR(p) model with non-Gaussian innovations. Therefore,
it is possible to make identification and estimation based on the adjusted sample
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autocovariance function pp,, (k). If a general ARMA(p, ¢) model is identified then
estimation methods other than Yule-Walker estimation are needed. The likelihood
methods implicitly require a specific innovation distribution and may take a very
complicated form. Least squares methods may not be suitable, as they require the
finiteness of the second-order moments. The method of M -estimation suggested
by Calder and Davis (1998) may be much more suitable for this case. Although
inference for nonlinear models will be given in Chap.4 in detail, here we give a
brief description of the M -estimation method since it is specific to linear models
with heavy-tailed innovations.

Let xi,...,x, be observations generated from the heavy-tailed linear model
given above. Let @ be the vector of parameters of this model. An M -estimate ]
of 6 is obtained by minimizing the objective function

> L(Z/(9)), (3.45)

t=1

where L(-) is a suitably chosen loss function and Z;(6#) is an estimate of the
innovation sequence Z;. Innovations of the linear model can be obtained via

Z1(0) = x1,
Z5(0) = x2 — p1x1 — 01 Z1(0),

Many known estimation procedures are special cases of M -estimation. For exam-
ple, in least squares, L(x) is chosen as x2. Other options are least absolute
deviations with L(x) = |x|, and maximum likelihood estimation with L(x) =
—log f(x), where f is the density function of the innovations. For heavy-tailed
linear ARMA(p, g) models, Davis (1996) suggests first defining a centered and
scaled parameter vector

B =an(0—0,).
where the scaling constants are chosen as
a, = inf{x : P(|Z| > x) < 1/n}.

Davis (1996) then shows that minimizing the objective function

n

Y IL(Zi(Bo + a;' B)) — L(Z:(80))],

t=1
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with respect to § is equivalent to minimizing (3.45) with respect to 8. The reason
for rescaling and centering is that convergence results are more tractable under
such transformations. However, the asymptotic distribution of ,3 which depends on
the particular choice of the loss function and innovation distribution, is typically
intractable and resampling techniques are used to approximate these distributions.
For detailed study of these estimators, as well as examples, see Calder and Davis
(1998). Maximum likelihood estimation for such heavy-tailed distributions are in
general difficult, as the limiting distributions of these estimators are generally
intractable. Andrews et al. (2009) suggest using bootstrapping to study asymptotic
properties.

Asymptotic consistency of the adjusted sample covariance function (3.44) holds
under the specific linear model given above. However, this property may not
exist when data is generated by a nonlinear process. For example, if the data
X; is generated by a bilinear BL(p, ¢, m,[) process satisfying the conditions of
Theorem 3.2.11, then

Prev(k), kb =1,...,p) = (Y1,... 7)), (3.46)

where (Y1,...,Y,) are r.v’s depending on the innovations in a rather complicated
and nonlinear manner; see Resnick and Van den Berg (2000) for details.

Figure 1.24 shows the autocovariance function of three independent and identical
samples of 100 observations from a bilinear process with tail index o« < 1.
Hence, these observations are from a process with infinite mean. The serious
implication of the result given in (3.46) is that if we have data truly coming from
a nonlinear process, then the sample covariance function, estimated from different
samples or from different portions of the same sample, will not be consistent with
the autocorrelation function estimated from the whole sample; thus identification
methods based on autocovariance function will give misleading results. Therefore
the modeler runs not only the risk of using a inferior linear model when the data
come from a nonlinear process but also of using the wrong linear model; see Resnick
(1998) for further details. It is our belief that if the observed data is heavy-tailed with
the estimated tail index & < 2, then nonlinear models should be considered as better
alternatives to heavy-tailed linear models.
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Chapter 4
Inference for Nonlinear Time Series Models

4.1 Identification of Nonlinearity

Suppose we have an observed time series xp,X»,...,X, and want to know if
a linear time series model is adequate for the data, or an alternative nonlinear
model should be considered. Linear models are often taken as the null hypotheses
against a nonlinear alternative due to the simplicity of inference. Often we know
much about the underlying process which generate the data set. Therefore it is
possible to decide if a linear model will be adequate and if not, what aspects
of nonlinearity should be modeled as alternative. For example, if the data is on
population dynamics, as explained before, limit cycle behavior can be expected,
and an adequate model such as a self-exciting threshold model should seriously
be considered as an alternative. On the other hand, bilinear models may be more
adequate for telecommunication data which often exhibit heavy-tailed behavior.
However, if we know little about the underlying process, we will have to rely only on
the information contained in the data, and empirical methods for testing nonlinearity
are needed. In this case, formulation of formal tests is quite difficult due to the fact
that there are many different ways a process can be nonlinear, and often it is difficult
to specify alternative hypotheses to a linear model. Naturally, the power of tests
constructed will depend on how well the alternative hypotheses are constructed, and
complicated tests of hypotheses may not worth the effort put into devising such
tests. Therefore, quick graphical methods and portmanteau tests are often used for
checking nonlinearity.

Subba Rao and Gabr (1980) were possibly the first to propose a linearity test,
which is based on the characteristics of the third-order cumulant spectrum of a linear
process, and later this test was improved by Hinich (1982). McLeod and Li (1983)
proposed a portmanteau test and Keenan (1985) devised an easy to use test which
is based on arranged auto-regressions. Petruccelli and Davies (1986) constructed a
CUSUM test which is also based on the arranged auto-regression approach. Brock
et al. (1996) (see also Luukkonen et al. 1988) proposed a test for linearity against
a STAR model alternative. Tsay (1989) devised an F-type test for assessing a
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© Springer International Publishing Switzerland 2014
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TAR/SETAR model alternative hypothesis that used the arranged auto-regression
methodology. Tsay (1991) modified his previously proposed test in order to be both
simple to use and general enough in order to be able to identify several types of
nonlinearity, and consequently a wide range of possible nonlinear models such as
Bilinear, STAR, EXPAR and SETAR were included as alternative hypotheses. These
tests were also used as basis for model selection. Peat and Stevenson (1996) slightly
modified the test proposed by Tsay (1991). Bera and Higgins (1997) proposed two
stage tests for GARCH and bilinear type models. In the first stage, a joint test is
devised to see if existing nonlinearity can be attributed to ARCH or bilinearity. Then
in the next stage, GARCH and bilinear models are taken as null and alternative
hypotheses. In the next section we look at some simple tests for checking the
presence of nonlinearity in the data. Detailed discussion of tests for linearity can
be found in Tong (1990).

4.1.1 Graphical Methods and Other Informal Tests for Types
of Nonlinearity

Checking for the Gaussian structure of the data is the first step to see possible
deviations from linearity. Apart from the QQ-normal plots and histograms, one can
check other deviations from Gaussian assumption by verifying;

* Reversibility: Reversibility is more a Gaussian property then linearity, but it
is a strong indication of nonlinearity. The reverse data plots are the simplest
way of checking reversibility. By comparing the plots of xi,x2,...,x, and
Xns Xn—1,...,X1, time irreversibility can be revealed.

e Sample autocorrelation function of squared residuals: If X, is a Gaussian
stationary time series, then the autocorrelation function of the squared process X2
and the square of the autocorrelation function of X; should be identical, namely

px2(k) = (px (k)

for every k = 1,2,.... A departure from this observation indicates the
possibility of nonlinearity. Therefore a comparison of the plots of the respective
autocorrelation functions, can reveal deviations of nonlinearity.

Often the autocorrelation functions of the absolute values and the squares of
residuals from a fitted linear model also indicate nonlinearity. Suppose we fit an
adequate linear model to data, and let (2 Loenns Zn) be the fitted residuals. If Z;
are i.i.d. r.v’s, then

pz2(k) = pz (k)

and
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piz|(k) = pz(k),

but these results need not hold if Z, are identical but uncorrelated r.v’s.

We can compare the plots of sample autocorrelation functions pz, (k) and
pz (k) (similarly P21 (k) with p, (k)). Any deviation may be used as an indication
that there is structure in the series other than the linear model. This graphical
check is particularly valuable for assessing linearity against GARCH-type
alternatives. The above idea can be formalized as a portmanteau test. If

n—k ;% A 5 A
=1 (27 =692} = 6%)

SU_ (2} —62)

r(k) =

3

where
n
6% = Z th /n,
=1
then under the assumption that the innovations are i.i.d.,

Q :=nn+2)) r’(k)/(n-k). (4.1)

k=1

has asymptotic distribution x2. Another alternative is to look at the cross
correlations between Z, and th For linear models, these cross correlations
should be zero, and the plot of this cross correlation function may reveal
deviations from this assumption. The expression given in (4.1) is the widely
known McLeod-Li (1983) test statistics. Here, m has to be chosen as a function
of the sample size and m = n/4 is often seen as a good compromise.
¢ Index of Linearity

If X; is a linear process, then for every j = 1,2,..., E(X;|X,—;) is a linear
function of X;_;. Therefore, if we have good, nonparametric estimates of the
regression functions of X; on X;_; for various values of j, and plot them as
function of #, we may get an understanding of the degree of nonlinearity that
exists in the series. The degree of nonlinearity between X; and X;_; can be
quantified in the following way:

Let X, be a stationary time series with p := E(X;), 0% := E(X?) < oo and
ACF p(k). Consider the best mean-square predictor of X, in terms of X,_;, for
J =1,2,... whichis given by E(X;|X,_;). If we restrict ourselves to the best
linear predictor then

EL(Xi|Xi—j) =+ p(j)(Xi—j — p).

The variance about the best predictor £ (X;|X,_;) is given by
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E(X, — E(Xt|Xt—j))2 =0’ - V(E(X:|Xi—))),

and in particular, if we have the best linear predictor, the variance about this best
linear predictor is given by

E(X; — EL(X/|X,—)))* = 0" — 0?0’ (j).
For a nonlinear stationary time series, clearly
0<EX — E(X,|X,_j))2 < EX — EL(Xt|Xt—j))2,
hence
o> = V(E(X:|X,—))) < 0% = a’p(j),
so that

o?p(j) =1, if X; and X,—; are related linearly;
T V(E(X/|X:i—;)) [ =1, if not.

Therefore, we can define the index of linearity as

e TPU)
J V(E(Xt|th))'

This index may give some indication of the degree of deviation of the data from
linearity.

4.1.2 Statistical Tests for Linearity and Gaussianity

Tests Based on Polyspectra

The most important property of polyspectra that has relevance to nonlinear models
is that all polyspectra higher than the second-order vanish if X; is a Gaussian
process. Existence of higher-order polyspectra thus can be used as a measure of
deviation from normality and to some extend, deviation from linearity. Hence, tests
for Gaussianity and linearity can be devised based on polyspectra. Two tests are due
to Subba Rao and Gabr (1980).

1. If the process is Gaussian then all the polyspectra, in particular bispectrum, of the
process should be 0 for all frequencies. Hence a test statistic can be constructed
from bispectral estimates over a grid of frequencies based on this observation.
The distribution of the test statistic will depend on the region over which the



4.1 Identification of Nonlinearity 125

grid is defined, and as a result the test is performed in two stages depending on
the regions. The details of the test can be found in Subba Rao and Gabr (1984)
or Priestley (1981). The problem with this test is that it is possible to have a
non-Gaussian process with zero bispectrum. However, it is reasonable to expect
that the bispectrum should be a good indicator of deviation from the Gaussian
assumption.

2. If the data is generated by a linear model of the form

o0
X, = Z Wj Zt—jv
j=0
then the cumulant C(sy, 5) is given by

C(s1,52) = E(Z)) Y V¥4 ¥jtn
j=0

Taking the Fourier transforms, the bispectrum for such a process is given by

E(Z} . - .
m(@1,02) = DSy ey g e )Y e
J J J

42

3
= E:Z;)F[_(wl + ©)]T (@1]T ().
T

Since the spectral density function of the process is given by

2
hw) = S£|T (@),

the function

|h3 (w1, wz)|2

Xon o) = o h(r + o)

4.2)

is constant for all w; and w;. A test of linearity can then be constructed to test the
null hypothesis that the function X (w1, w,) is zero for all w;, w, by substituting
the functions A3(w;,w,) and h(w) by their sample estimates and testing the
constancy of the X (w1, w,) over a fine grid of frequencies w, w,. This naturally
suggests the use of the statistics

ZZ}; |ﬁ3(0)1,0)2)|2

o o (@)h(@)h(@ + an)
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Again the details of the test can be found in Subba Rao and Gabr (1984) and
Priestley (1981). We note that this is not a full-proof test of linearity. It is possible
to find nonlinear processes for which (4.2) is zero. However, it is reasonable
to expect that comparing the bispectrum with the spectrum should indicate the
presence of nonlinearity. Criticism to these tests are given in Tong (1990). His
general criticism is basically due to lack of power and possible problems due to
smoothing the spectral estimates.

Tests Based on Residuals

We have seen how to use the sample ACF of squared residuals obtained from a linear
model to check graphically the presence of possible nonlinearity. These arguments
can be formalized by devising a formal test based on Tukey’s one degree of freedom
test for nonadditivity (Keenan 1985). Suppose that xi, ..., x, is an observed time
series and we start by assuming that

M
Ho:Xi=p+Y ¢ Xij+Zi,
j=1

where Z, are i.i.d. zero-mean, with finite variance and finite fourth moment. The
test is constructed by fitting linear models for X; and X? on

(Xt_l’ ... 7Xt_M)7

for some large, fixed value M. Let Z, and n,,t = M + 1,...,n be the respective
residuals obtained from these regressions. Now, regress Z, on 7, with

Zl =ay+ an; + Sl‘-
Note that, under H), there should be no linear relationship between Z; and n;,. If
N 172
i= ( 5 s?) ,
r=M+1

then under the null hypothesis Hy, the test statistic

b (N —2M —2)

= =5 PSR
Zt=M+l Zi—a

has the asymptotic F-distribution with (1, N — 2M — 2) degrees of freedom; see
Tong (1990) for the proof. Large value of the test statistics F should indicate
deviation from linearity. See also Tong (1990) for slightly modified tests to improve
the power of the above F test.
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Lagrange Multiplier Tests or Score Tests

In this approach, a specific nonlinear model is indicated as alternative hypothesis
to the null hypothesis of a linear model. Such tests have more power than the
nonparametric approach based on bispectra due to having a specific alternative
hypothesis. These tests depend on a variant of the likelihood approach, and the basic
idea is to assume a model of the form

X, =aX, + f0.Xi-1) + Z,,
where X/_| = (X;-1,...,X;—p) and @’ := (ai,...,a,) are unknown model
parameters. The function f is assumed to be known and @ is a parameter vector

such that £(8,X;—1) = 0, when § = 0. Under such model, the test of nonlinearity
can be formulated as

Hy:0 =0vsH;:0 #0.
The problem with these tests, as expected, is that they are very sensitive to the choice
of f, that is, to the choice of alternative hypotheses.
Consider for example, the hypothesis H versus H; defined as

Hy: X, ~AR(p) vs H, : X; ~BL(p,0,m,1),
specifically defined as

Hy: X, +q1 X+ +¢pXi—p = n+ Z;
versus

m
Ho: X+ ¢ X+ +dpXip=p+Zi+ Y Y b5 Zi-iXiej,

i=1j=1

where (Z;) are i.i.d. N(0, 0?). Therefore the test of nonlinearity can be reduced to
the test

Hy : ¢;j =0, vs Hy : not all are zero.
Here ® := (¢ij,i = 1,...,m,j = 1,...,1) are the parameters of interest and

a := (¢1,...,¢,, ) are the nuisance parameters. The Lagrange multiplier test
statistic L in its general form is given by (see Tong 1990)

L = S(®o,a0)" (I — I1215," 11)" S(®0, ay),
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where
N Iy Iy
I1(®, = ,
(®0.0) [ " 122}

is the Fisher Information matrix, partitioned according to the parameters (®y, ao)
and S(®, ay) is the score statistic for (®, a), calculated under the null hypothesis.
Here, ag are the maximum likelihood estimates of a under the null hypothesis,
conditional on the fixed values of (xi,...,x,). Tong (1990) also gives the specific
expression of the test statistic L for the above bilinear alternative hypothesis. Under
Hy, the test statistic L has asymptotic X;Zn ; distribution and can be used to test
deviation of linearity from bilinear BL(p, 0, m,[) processes; see Tong (1990) for
details.

Petruccelli and Davies Test

Other tests with different alternative hypotheses are also available. For example,
Petruccelli and Davies (1986) present a linearity test which is commonly classified
in the literature as a CUSUM test. This test is devised with the purpose of testing a
null hypothesis of AR(p) model vs a SETAR model as alternative. The test is based
on the arranged autoregression methodology.

Bera and Higgins Test

It is possible to device test of hypotheses to see if nonlinear dynamics in the mean
and variance are present in an observed time series. Based on the model (2.42), Bera
and Higgins (1997) suggest a test

Hy:b =0, = 0versus H; : not all are equal to 0,

where b := (b;;,¢;j) and & := (ap, a1, ..., ,). This test has power against both
GARCH and bilinear type nonlinearity, but if the null hypothesis is rejected, it
cannot give any guidance as to the origin of nonlinearity.

4.2 Checking for Stationarity and Invertibility

For linear processes, conditions of stationarity and invertibility are given elegantly
in terms of the roots of AR and MA characteristic polynomials and are relatively
easy to check. These conditions depend heavily on the linear representation and
cannot be extended to nonlinear processes. However, some nonlinear processes
can be given in a Markovian representation, and one can use the general theory
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of Markov processes to find conditions for the existence of stationary solutions.
We have seen in Sect. 3.2.1 that some of the well-known nonlinear processes can be
put in the Markov representation

Xr = AtXt—l + Btv

and conditions for the existence of stationary solutions for such representations
are well studied; see Meyn and Tweedie (2009), Tjgstheim (1990) and Nummelin
(1984) for details.

Let (X;; ¢ > 0) be a homogeneous discrete time Markov process taking values in
(R¥, B), where B is the Borel o-algebra of subsets of R. Denote by p” (x, B), the
n-step transition probabilities P(X, € B|Xo = x), so that p(x, B) is the one-step
transition probability.

Theorem 4.2.1. Existence of a stationary solution.

s Ifforany € > 0, there exists a compact set B C RF such that
p(x, BY) <,

for all x € R¥, then X, is bounded in probability and hence there exists at least
one stationary solution for the chain.

o [If further the chain is aperiodic and satisfies Doeblin’s condition given below,
then it is uniformly ergodic and hence it has an unique stationary distribution.

Definition 4.2.1 (Doeblin’s condition). The sequence X, is said to satisfy the
Doeblin’s condition, if there exists a probability measure v on o-field 5 and € < 1,
8 > 0 such that whenever v(B) > € > 0, then

inf p™(x, B) > 6,

for some integer m > 1.

In general, it is not easy to verify the tightness of the m-step transition probabil-
ities and the Doeblin’s condition. Another problem is to write these conditions in
terms of the model parameters, which may create further difficulties. Yet, even with
these difficulties, the verification of stationarity is relatively easier than verifying
the condition of invertibility. Conceptually stationarity and invertibility are quite
similar. If we have a nonlinear model of the form

Xo=fXi—j.Zix), j=1,....p, k=0,1....q,

then stationarity imposes conditions on the function f so that X, is measurable
with respect to the o-field Bz generated by (Z,—;;j = 0,1,...). On the other
hand, invertibility imposes conditions on f so that Z, is measurable with respect
to the o-field By generated by (X;—;;j = 0,1,...). Since in a nonlinear model
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the innovations are not observed and are recovered from the data, for the purpose of
prediction and model diagnosis, invertibility is crucial in obtaining the residuals
from the observed data. Unfortunately, apart from few special cases it is very
difficult to find conditions of invertibility.

Consider first the general univariate class of processes of the form

Xt - f(Xf—isZt—i) + Z[, l = 1,2,...,(], (43)

for some i.i.d. unobserved sequence Z; and model parameters 6. If such a model is
chosen to represent the data with the objective of making forecasts, it is necessary
to be able to estimate the noise process Z; from the observed data. Typically this
can be done by assuming initial values for 7 1 Zz, .. Z and the innovations can
be estimated through

Zt zxt—f(xt—j,ZAt—j)’ j=12,...,q,

iteratively for t = g + 1,.... The error attached to this procedure can be
quantified by

~

e = Z[ — Zt'

See Mauricio (2008) for alternative ways of defining residuals in linear models.
Granger and Andersen (1978) define invertibility in terms of these errors. The model
in (4.3) is said to be invertible if E(e?) — 0 as 1 — oo. This definition implicitly
assumes that the functional form f(-) as well as the parameters # are completely
known. If the model parameters are not known but estimated by an earlier set of
data, then Granger and Andersen (1978) suggest relaxing this condition by assuming
that E(e?) — ¢, as t — oo, for some constant ¢ < oo. Equipped with this
simpler definition of invertibility, Tong (1990) suggests testing invertibility based
on simulated data. The above definition of invertibility is slightly different from
the definition of invertibility given for the linear MA(g) processes. Consider, for
example, the MA(1) process

X, =bZi_1 + Z;.

Assuming that Z, = 0, the innovations can be conditionally generated from
2y =2, —bZi_,

so that

E[ZZt_Z[

= (=b)'eo.
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Clearly, if || < 1 then E(e?) — 0 and the process is invertible. However, if the
parameter b is not known but estimated from the data, then

e = b- B)Zt—l - l;é’r—l-

The solution for this difference equation is given in two parts of which the first
component is

e = (=b)'eo,
whereas the second component has the following expression
t
e =(b-b>Y b1z
i=1

For large ¢,

(b—b)?

V(el‘) = 1 _bf\z

V(Z,).

hence condition |l;| < 1 is required for the first component to converge and for the
second component to have a finite variance. In order to achieve these results, often
b is assumed to be estimated once, but not updated as more data becomes available.
When X; follows a simple bilinear process

X, =Z, +bXi1Z,,
assuming that Z, = 0, the innovations can be calculated iteratively from
Zi =X, —bX,21Zi-1,
and
e =2,—7,
= —bX;_ 16,1

(=b) (1_[ Xt—i) €o.

i=1

A necessary and sufficient condition for e, — 0 in probability as t — oo is given by

E(n|X,|) =In|b| <0,
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(see e.g., Quinn 1982) but this condition depends on the unknown stationary
distribution of X,. However, if Z, are zero-mean, i.i.d. r.v’s with variance O'% and if
b*c% < 1then E(X?) = 0%/(1 — b%0%) and

1
In|b| + E(In|X;]) = E(1nb2 + EIn(X?))
1
< E(1nb2 + In(EX?))
1
= Ebzaﬁ/(l —b%*o2).

Hence, in this case, a sufficient condition for the invertibility of this model is
given by

oz|b| < 1/4/2.

However, such conditions are far from being necessary. For example, when Z; are
further assumed to be Gaussian, then E(In|X;|) can be calculated to give (see,
Quinn 1982)

1 1
E(In|X,|) = In(oz) — E(y +1n2) + EE(1n(1 +b%X}2)),
where y denotes the Euler’s constant and a sharper sufficient condition is given by

o71b| < 2exp(y)/(1 + 2exp(y))"/? ~ 0.8836.

Although, it is relatively easy to obtain sufficient conditions for the invertibility
of this simple bilinear model, conditions for higher-order models are much more
difficult if not impossible; see Subba Rao and Gabr (1980) for a set of sufficient
conditions for the invertibility of the BL(p, 0, p, 1) model. Assuming invertibility,
it is possible to obtain conditional least squares estimators (alternatively conditional
likelihood if the (Z;) are assumed to be i.i.d. Normal r.v’s). However, asymptotic
distributions of these estimators are not known. Therefore, except for very simple
cases such as the model BL(1, 0, 1, 1), their practical use is very limited.

Tong (1990) suggests the following practical procedure for checking invertibility:
assume that the model

Xt = f(Xf—js Zt—j) + Zts

was fitted to the data x;, j = 1,...,n conditional on xo = x; = -+ = x, =
Zo = -+ = Z, = 0. Here, the choice of p depends on the model chosen. Using

this fitted model, simulate further m residuals Z,4q,..., 2,, +m from the model.
We can also simulate m innovations Z, ..., Z,, from the fitted distribution of the

innovations. Note that if (Z,) are i.i.d. N(0,c?) r.v’s then the fitted distribution is
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N(0,6?). Tong (1990) suggests calculating the sample mean of (Z, — Z,)Z, for
t = 1,...,m. Explosive tendency suggests noninvertibility. However, if the data
indicates noninvertibility, it is not clear what diagnostic tools can be used to adjust
the model towards invertibility.

4.3 Tail Index Estimation

We have seen in Sect. 3.2 that heavy-tailed data are a good indicator of the presence
of nonlinearity. Naturally, heavy-tailed data are also consistent with linear models
with heavy-tailed innovations. However, in order to employ standard inferential
methods, one often needs to assume finite fourth-order moments. Therefore, if there
is evidence in the data of heavy-tailed behavior, and in particular if there is an
indication that the variance is infinite, then a proper nonlinear model, rather than
a linear model with heavy-tailed innovations, should seriously be considered. There
are several ways we can check for the presence of heavy tails;

1. The kurtosis of a random variable X with distribution F is defined to be

_ EX—-p?
CO(E(X — )

Kurtosis can also be defined in terms of the quantiles x,,

1
§(x0.75 — X0.25)
k= 2"—"2 "7
X0.9 — Xo.1

where 0 < p < 1 and x, = F~!(p) is the pth quantile of F. For the normal
distribution, k = 3 and k, = 0.263. A distribution function is called leptokurtic,
if either k > 3 or k, > 0.263. Hence, estimated kurtosis in terms of empirical
quantiles may give an indication of tail heaviness.

2. Exploratory data analysis for extremes. Probability and QQ-plots are often used
to compare several distributions which may be a good model for the data, and
they are also appropriate for indicating tail heaviness. For a given observed
stationary time series X1, . .., X,, with marginal distribution F, let us define the
ordered sample as

Xin ZXopn = = Xpn-

The QQ-plot is obtained by plotting x;,, against F~!(p.,), where py, are the
plotting positions. Typical choices of py , are given by

n—k+0.5
n bl

Pkn =
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Fig. 4.1 QQ-plots of Pareto data vs theoretical Gaussian quantiles (a); and (b) theoretical Pareto
quantiles

or by

_n—k+1_1 k
Pien = n+1 n+1

If the data are generated from the reference distribution F', the plot should look
linear. On the other hand, if the data were generated from a distribution with
heavier tails than the reference distribution, then the plot should curve upwards.
These features can be seen in the plots presented in Fig.4.1. The plots show the
QQ-plot of a Pareto (1.5) sample of size n = 1,000 against the reference standard
Gaussian distribution (a) and a Pareto distribution (b) (Fig.4.1).

There are other exploratory plots that may be useful in understanding the tail
heaviness, such as the mean excess function that was referred to in Chapter 1.
The theoretical MEF of a positive random variable X with cdf F is defined as

L= F(y)dy

ew) = EX —u| X >u) = T~ FQ

for a certain threshold u and xr < oo is the end-point of the distribution. For an
observed sample x1, x3, ..., x, of size n, the MEF is estimated by

Yoo (i —w)I(xi > u)
Y I(xi > u)

en(u) =

where I(-) is the indicator function.

Although it might be interesting to analyze the behavior of the MEF for
several statistical models, it is particularly useful in the case of the Generalized
Pareto distribution (GPD). The GPD plays a very important role in the extreme
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value theory (Pickands 1975). GPD has been widely used to model the asymp-
totic distributional behavior of the excesses above a sufficiently high threshold.
This approach is known in the literature as the Peaks Over Threshold (POT), and
was first used in a hydrological framework. Nowadays, the POT has been applied
to many other areas such as insurance, finance, environment and meteorology
(see Embrechts et al. 1997; Coles 2001; Beirlant et al. 2004).

Let F, be the conditional cdf of the excesses above u defined as

Fu+y)—F(u)

Fy)=PX-u=y|X>u= T~ Fe)

then

lim sup | F,(x)—F(x]|k,0)|=0,

U=XF 0<x<Xp—u

where F is the cdf of the GPD(k,0) given by

Fx | k.0) = 1—(1+%)—1/k’k7é0,
1 —exp(=3), k=0

where k and o are respectively the shape and scale parameters satisfying k > 0
when x > 0,and 0 < x < —o/k when k < 0. Heavy-tailed distributions are
obtained for k > 0, whereas light-tailed behavior is observed when & is negative.
The theoretical MEF of the GPD given as

k
e(uy= —4+u——-,k<lando + ku > 0,

o
1—k 1-k

is clearly a straight line with intercept and slope equal to 2 and ﬁ,
respectively. If the tail of the underlying distribution is exponential then the line is
constantly equal to o whereas it increases (decreases) for k > 0 (k < 0) reflect-
ing a heavier tailed (lighter tailed) than the exponential distribution. Figure 4.2
shows the graphical representation of the MEF of an Exponential, a Pareto and
an Uniform distributions. These three distributions correspond to special cases
of the GPD(k,0) for k = 0, k > 0 and k = —1, respectively. In practice
choosing an adequate threshold above which the GPD model assumptions hold
is frequently a difficult task. We refer the reader to Embrechts et al. (1997) for a
detailed study of exploratory data analysis for extremes.

3. Estimation of tail index. We have seen in Chap.3 that under fairly general
conditions, nonlinear relations X; = f(Z,) cause heavy tails in the sense that
even for moderately heavy-tailed input Z;, the output process X;, will have a

stationary solution (when exists) with a regularly varying distribution
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Fig. 4.2 Theoretical MEF of
some common distributions
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The tail index parameter «, as explained in the previous chapter, quantifies the
degree of tail heaviness and is also a good indicator of nonlinearity in the data.
The tail index o can be estimated from data either by using likelihood or semi-
parametric methods. One such estimator is the Hill estimator.

Let X;, <--- < X, be the order statistics corresponding to an i.i.d. sample
of size n coming from a distribution with regularly varying tail with tail index c.
The Hill estimator of the tail index « is given by

k

o 1
Q! = Z ZlOan—j—l—l,n — log Xy,
j=1

where k = k(n) is the number of upper order statistics used in the estimator.
Here k is a design parameter chosen as k(n) — oo as n — 00, in a manner
that k(n)/n — 0. The proper choice of k affects the bias and variance of the
resulting estimator and there are many suggestions in the literature as to how it
should be chosen. There are also several variants of Hill estimator resulting in
more efficient estimators. Hill estimator is a natural and versatile estimator for
the tail index and different estimators based on maximum likelihood and other
semi and nonparametric methods give asymptotically equivalent versions. Hill
estimator can still be used for dependent data. The general argument is that serial
dependence among high upper order statistics in general is expected to be low.
Under fairly general dependence conditions, Hill estimators are still consistent,
but their asymptotic bias may increase. See for example Embrechts et al. (1997)
or Beirlant et al. (2004) for a complete treatment of tail index estimation for i.i.d.
and dependent observations.
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4.4 Methods of Inference

There are two principal methods of parameter estimation commonly used for time
series analysis, the maximum likelihood and the least squares methods. These two
methods coincide when the time series have a Gaussian likelihood. It is possible to
give an unified approach to these alternative methods in a very general setting which
is often called quasi-likelihood method (e.g., Heyde 1997). This theory is developed
in terms of estimating functions, as compared to estimators. Estimators are functions
of data only, ideally having desired properties such as unbiasness and consistency,
whereas estimating functions are functions of the data, as well as the model
parameters, satisfying similar characteristics. When we deal with linear time series
models with finite variances, likelihood and least squares methods give good results
and there is no need to look further for other methods of parameter estimation.
Likelihood functions of most nonlinear time series are quite complicated, often
analytical expressions for these likelihoods are not available and least squares
methods cannot be used with simple conditioning. Similarly, the sampling properties
of the parameter estimators obtained by these methods are quite diverse and are
often very hard to get. Quasi-likelihood methods, based on estimating functions,
although by no means numerically easier to obtain, give a better unified approach
to parameter estimation for nonlinear time series. In Sect.4.4.1, we give a brief
introduction to parameter estimation for linear time series using least squares and
likelihood approaches under the Gaussian assumption. Under this assumption, the
likelihood can be written in terms of the one-step predictors and their variances. This
representation is a natural gateway to estimating functions and their use in nonlinear
time series estimation. In Sect.4.4.2, we give a brief introduction to estimating
functions.

4.4.1 Least Squares and Likelihood Methods

Complete and precise treatment of parameter estimation of linear time series can be
found in Brockwell and Davis (1991); see also Brockwell and Davis (1996, 2006)
for a lighter treatment. Here we will only give a summary to tie the likelihood-
based methods to estimating functions. Details can be found in Brockwell and Davis
(1996).

Assume that we have n observations xi, ..., X, coming from the stationary and
invertible linear model

i=1

P q
X = ZaiXt—i + ijzt—ja
=0
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where (Z,) are i.i.d. Normal r.v’s, with zero-mean and variance cr%. In this case, the
joint density of Zy, ..., Z, is given by

fGi.z) = Qr) ™ oz) " exp(= Y 22/203).

=1
Since
Zi=Xi—ar X1 ——ap Xy p—b1Zi oy — - —byZ .,
we can write the likelihood for the model parameters (6, 0%), where
0 :=(ai,....ap,b1,....by),

as

n

_ _ 1
L0z 2) = @) P02 " exp(—5 5 YL ZOxezo)) (44)
0z t=max(p.q)+1

with
2,2(0 [X:,20-1) = (@1 X—1 — -+ — aApXt—p — bizg—g —--— bth—q)z-

The residuals in the likelihood have to be calculated iteratively as functions of the
parameters and the data, therefore, by fixing z* = (z1,22,...,Zmax pq) at their
respective expected values, namely at E(z) = 0, we get the conditional likelihood

LOx.z*) = —(27) " (07)™" exp(—ﬁswx,z*»,
VA

where

n

S@xzH= Y Z0xzY).

t=max(p.q)+1

is the conditional sums of squares.
The conditional sum of squares (equivalently the conditional likelihood) can then
be minimized by using standard numerical methods to obtain the estimates for 6.
The innovation variance o is then estimated by
A2 N *
0; = —S(0|x,2").
b=, SOk

Here n — 2p — g represents the degrees of freedom resulting from fitting p + ¢
number of parameters, using n — p observations.
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Asymptotically, the conditional likelihood estimators have the same properties
of the estimators obtained from the full likelihood. However, estimators can be
obtained by maximizing the full (unconditional) likelihood. Assume that (X;) is
a Gaussian time series, not necessarily stationary, with mean 0 and ACF r (i, j) :=
E(X;X,). Let X, := (X1,...,X,) and set X, := E(X,|X,—1) and X, :=
()21, .. .,)fn) (set )21 = X)). Denote by v, = E(X,+1 — )fn_H)z, the variance
of the one-step ahead prediction errors. Since for linear models, one-step ahead
prediction errors U, are the innovations (Z,), we have v, = 0%. Therefore, we can
write the likelihood in (4.4) as

1 5
L(B|x) = (Vo X Uy X -+ X Uy_y) V2 exp(—3 D (X = X)) v
=1

1
(27‘[)”/2

This intuitive argument can be shown rigorously by starting from the density
function of (X1,...,X,). Let y := E(X'X), be the (non-singular) covariance
matrix of X. The likelihood is then given by

1 1
L(ylx) = W(dety)_l/z exp(—5 X'y 7'X). 4.5)

Since for each linear ARMA(p, ¢g) model, we know the exact form of the covariance
matrix p in terms of the model parameters (direct maximization of the likelihood
can be done by numerical methods). However, writing y and its inverse in terms of
the model parameters is not practical. But the likelihood can be written in terms of
the one-step prediction errors X, — X, ;. Since the time series X, is linear, the mean
square predictor X, is a linear function of X,_;; therefore the one-step prediction
errors U, = (U, ..., U,) are linear functions of X,,. Let U, = A, X,,. Here, A, is
of the lower triangular form

1 0 0 -0

An _ ai 1 0 --0

ann 1 0 --0

An—1n—1 An—1,n-2 an—l,n—3 R

Note that A, is non-singular with
1 0 0 -0
_ o 1 0 -0
C.=A'=

" 622 1 0 -0
9)1—1,)1—1 9}1—1,)1—2 en—l,n—?) -1

Hence
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sothatforn =1,2,...,
n
Xnt1 = Onj (Xn1—j — Xng1-j).
j=1

Since

we see that
X, = C,(X, — X,).

Note that U, are one-step ahead prediction errors, which under linearity, are the
uncorrelated innovations Z, = (Z,...,Z,), therefore the covariance matrix D,
of U, is a diagonal matrix diag(vy, ..., v,—1). Since X, = C,U,, the covariance
function y of X, can be written as

Y= C;,Dncns
with
n—l1
dety, = (detC,)*(detD,) = [ | v;
j=0

and since C,, is lower triangular,
Xy 'X, = (X, —X,)'D; ' (X, — X)
n
=D (X; = X;)*/vj1.
j=1
Hence, the likelihood in (4.5) can be written as

n

1 R
exp(— Y (X=X v, (46)

1
\ (27{)”1)0"'1),,_1 j=1

L(y|x) =

One-step predictors )2,-4_1 and their corresponding mean square errors v; can
be calculated recursively by using the innovation algorithm (see e.g., Brockwell
and Davis 1996) in terms of the model parameters through the covariance func-
tion. The likelihood can then be maximized numerically. If X, is not Gaussian,
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maximizing the Gaussian likelihood (4.6) with respect to the model parameters
to obtain estimators still makes sense. Estimating functions give justification for
obtaining estimators using this Gaussian likelihood for non-Gaussian data.

4.4.2 Estimating Functions

In point estimation, the focus is on a function of the data, i.e., statistics, called
estimators, having desirable properties such as unbiasedness, consistency, suffi-
ciency and we search for the optimal estimator among these subclasses. Optimality
is often defined in terms of maximization or minimization of some objective
function. Minimum variance unbiased estimators which are built on the concept of
sufficiency and obtained from Rao-Blackwell or Lehmann-Scheffé theorems have
the most desired properties, but they only exist for certain families of distributions.
Two methods of estimation, namely the methods of least squares and maximum
likelihood (ML), are the most widely used methods of point estimation. The least
squares method is widely applicable under the assumption of existence of the first
two moments, whereas the maximum likelihood method needs the full specification
of joint distributions, although there are variants such as composite likelihood
methods which do not need the full specification of the joint distributions. ML
estimators are generally optimal or asymptotically optimal, whereas least squares
method is only optimal when the underlying distribution is Normal. Estimating
functions or the method of quasi-likelihood permit the unification of these methods
of estimation under a very general setting. Estimating functions are functions of data
as well as the model parameters, and desirable characteristics are given in terms of
these functions, rather than on the estimators. Typically, the focus is on functions
h(x, 0) of the data x and the model parameters 6, and the study is then centered in
finding estimators as solutions of

h(x,0) = 0.

Estimating functions already play a very strong role in least squares and ML
methods; for example the maximization of the likelihood passes through finding
the roots of the score function, which is a function of the data and the parameters,
and hence is an estimating function. The least squares estimators are obtained by
finding the solutions of a system of equations which are obtained by differentiating
the sum of squares of errors with respect to the model parameters, which again is an
estimating function. For example, if we have a time series of size n from the AR(1)
model

X, =aX,—1+ Z,, Z; ~ N(0,0?),
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one can obtain the least squares estimate for a by minimizing

n
> v —axi-r),
=2

for all possible a. Under the normality assumption is equivalent to maximizing the
(conditional) likelihood function. The estimator is found by solving the equation

n n
2
h(x;,a) = E X X1 —a E x_; =0,
t=2 =2

which results in the estimate
n n
A 2
a= X1 Xi—1/ E X;_;-
1=2 1=2

Most of the effort is then given to studying the properties of the estimator 9 of 0.
The method of estimating functions concentrates on studying the properties of the
function h(x, #) rather than the estimator 6 of 0. At first sight, by looking at this
example, the benefits of such inferential strategy may not be clear. However, when
the full likelihood for the model parameters is not known and due to the deviations
from normality, the quality of least squares estimators is in doubt, then as we will see
the method of estimating functions appears as the right approach. This is particulary
relevant when dealing with different types of nonlinear time series models for
which the likelihood functions cannot be fully specified. In this section, we give
a brief description the theory of estimating functions. For the general treatment of
estimation functions, see Godambe (1991), Heyde (1997) and Bera et al. (2006).

We start by the scalar parameter case. Assume that (X7, ..., X,) is a time series
with joint distribution function F(x, 6), 8 € ® C R and let h(x, 8) be a measurable
real valued function of the sample and the model parameter.

Definition 4.4.1. A (x, 0) is called a regular unbiased estimating function if

1. E(h(x.0)) = [h(x,0)f(x,0)dx = 0, where f is the density function of X :=

(Xl,...,Xn);
Wx0) exists for all € ©;

3 [ h(x,0) f(x,0)dx __ dh(x,0) f(x,6) .
o =/ o dx

E[(*52)"] > 0;

V(h(x.0)) < co.

nkwon

Let H be the class of all unbiased estimating functions. Note that when 0 is
the true value, h(x, ) should be as near as possible to zero and this requires
V(h(x,0)) = E[(h*(x, y)] to be as small as possible. Hence the optimal estimating
function 2*(x, 6) should satisfy
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V(h*(x,0)) < V(h(x,0)),

for any h € H. Note also that, 2* should be sensitive to deviations from the true
value of the parameter. Namely, 2*(x, 6 + §) should differ from its expected value
E(h(x,0)) = 0 as much as possible whenever |§| > 0. That is, [E(dh*/00)]?
should be as large as possible. Hence, for any & € H,

[E(0h* (x,0)/30)] > [E(9h(x, 0)/30)].

These two arguments can be joined together to give the following definition of
optimality.

Definition 4.4.2. h* € H is said to be optimal if

V(h*(x,0)) - V(h(x,0))
[E(0h*(x,0)/00)]> ~— [E(dh(x,0)/00)]*

forallh €e Hand 6 € ©.

The corresponding optimal estimator 6 based on the time series Xy = (X1, ..., Xy)
is then found by solving for 6 the equation

h* (X,, 6) = 0.

Let hs(x,0) = h(x,0)/E(h(x,60)/00) be the normalized estimating function.
Then the unbiased estimating function 2* is optimum if

V(hi(x,0)) = V(hs(x.0)),

for all & € ‘H. There is an alternative intuitive argument to justify the definition
of optimality in terms of the normalized estimating function rather than the
optimizing function itself: for any constant k # 0, two unbiased estimating
functions & and g = kh will result in the same estimator. However, they have
variances V' (h) and k2V (h), respectively and the latter can be made arbitrarily small
(or large). Therefore the comparison of two non-normalized estimating functions
based on their variances is not meaningful. On the other hand, with the proposed
standardization we have V(h) = V(g;).
Let

_ dlog f(x,0)

S ,
00

be the score function. The following theorem due to Godambe (1960) says that the
score function is the optimal estimating function.
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Theorem 4.4.1. Forallh € H,

1
V0000 2

and the equality is attained by the estimating function

dlog f(x,0)

h*(x,60) = 59

The proof follows the same line of arguments for getting the Cramér-Rao lower
bound. For simplicity, dropping the arguments in the respective functions and
replacing the partial differential operator d by d, E(h) = 0 implies that

d [hfdx [ dh dlog f .
i _ @fdx—k/h 2L fax =0,
so that
dh
=—FE[—]. 4.7
Cov(h,S) [de] 4.7
Hence
dh 7 dlog f\7?
] = [ (5]
< Var(h)Var (d 1;§f) ,
so that
Vih) = V(h) - 1

[ECP ~ (E(4lely)’

This result has several consequences. When the score function is known, it is
the optimal estimating function; therefore the estimators obtained from the optimal
estimating function and the ML estimators coincide. When the score function is not
known, choosing the optimal estimating function by minimizing the variance of the
normalized unbiased estimating function corresponds to choosing the estimating
function which has the highest correlation with the score function. Let S be the
score function. It follows from (4.7) that
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[E(h, S)]?
E(h?)E(S?)
(E(4h))?
E(h)E(S?)
1
V(hg)V(s)

Corr(h,S) =

Therefore choosing the normalized estimating function with the minimum variance
is equivalent to choosing the estimating function which maximizes the correlation
with the score function. Equivalently, we choose 4 in such a manner that the
normalized estimating function minimizes the distance from the score function

hy = arginf E[(S — n)?].

A useful interpretation of optimal estimating functions is given in terms of the
Hilbert space setting: Consider again £? norm and the Hilbert space of £L>(2, F, P)
of r.v’s with finite second-order moments, and let H be a closed subspace of this
space. Let (X |H) be the orthogonal projection of X onto H, so that

_ — . — . 2
lX —h(X[H)[| = inf ||X —hl| = inf E(X —h)".

Specifically, if X is the score function, then the unbiased optimal estimating
function, which is the orthogonal projection of the score function onto the cho-
sen space of estimating functions, is the optimal estimating function. For these
reasons, inference based on optimal estimating functions are called quasi-score or
quasi-likelihood methods.

Now assume that X; is a time series having finite dimensional distributions
F(x,0), where 6 := (61,...,0,) € ® C R”. Let

h(x,0) := (hi(x,0),....h,(x,0)),

where each /1 (x, ) satisfies the conditions of regularity in Definition 4.4.1 for each
;. Let 3, be the p x p covariance matrix

¥, = V(h(x,0)h(x,0)) = E(h(x,0)h'(x, 0))
and let

- (8h(x,0))’

a0
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where

Bh(x,e)_ 0h;(x,0) . .
20 =( 56, ,j=1...,p,i=1,...,p),

is the p x p matrix of partial derivatives of jth estimating function with respect to
the ith parameter 6;, so that H;, is a p x p non-singular matrix. The normalized
estimating function is then written as a p x 1 vector

h, := H; 'h(x,0),

with covariance matrix X; := V(h;). The optimal estimating function then can be
defined as

Definition 4.4.3. h* is said to be optimal if for any other unbiased regular
estimating function vector h, V'(h}) < V(hy).

Interpretation of this definition is not as straightforward as its scalar counterpart
since V(hy) = X, is a p x p matrix and there are many ways one can compare
matrices. For example, we may say that V(h}) < V(hy) if for all h,

* V(h}) — V(h,) is nonnegative definite;
* Trace(V(h})) < Trace(V(hy));
o V()| = V(hy).

However, all these optimality criteria are equivalent provided that an optimal
estimating function exists; see Bera et al. (2006) and Heyde (1997) for details.
The existence of an optimal estimating function is not guaranteed and the choice
of optimal estimating functions in general is not straightforward except for certain
classes of estimating functions. One such class of estimating functions, which
is relatively easy to verify, is the class of estimating functions with orthogonal
differences; see Heyde (1997) for details. This observation is the basis of the class
of linear estimating functions given by Godambe (1985).

How can we apply the notion of estimating functions to find optimal estimators
for nonlinear time series models? Unfortunately, for a broad class of unbiased
estimating functions, it is not possible to find a unique optimal estimating function,
but the general theory highlighted above can be used, provided we choose a good but
restricted class of unbiased estimating functions from which we choose the optimal
estimating function. We now define one such class. Assume that (xi,...,x,) are
observations from a time series X, with finite-dimensional distribution functions
F(x,0). Godambe (1985) suggests starting from the elementary estimating func-
tions &, (x, #) which are martingale differences, that is,

E(h|Fi—1)=0,t=1,...,n,

where F;_ is the o-algebra generated by (x;, s < ¢t —1). Such estimating functions
are orthogonal in the sense that E(h,hs) = 0, for t # s. Clearly, one-step ahead
prediction errors
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X — EX¢|x1,...,x-1), t =1,...,n,

have the properties of desired elementary estimating functions. Godambe (1985)
suggests restricting the class of unbiased regular estimating functions to the linear
combination of these elementary estimating functions. Let

Hi={h:h(x0)=> c, 1h(x.0)}. (4.8)
t=1

Here, the coefficients ¢;_; are functions of xy, ..., x;—; and . The objectAive is then
to find the optimal estimating function and the corresponding estimator . For this
linear class of estimating functions, this optimization reduces to the optimal choice
of the coefficients ¢,—;. The following theorem gives us the optimal estimating
function for the class given by (4.8).

Theorem 4.4.2. Let 'H be the class of estimating functions given in (4.8). Then the
optimal estimating function h* within this class is given by

R*(x,0) = "¢t h(x.0),

t=1

where

E(G 2| Fi)

cF o =cr (x,0)= 90
S E(h?|Fi-1)
E(PG2|F i)
= — =1
, ] yeees P

E(h{|Fi-1)

Note that the construction depends on the martingale differences X, — E(X,|F,—1)
and one-step ahead prediction errors E((X, — E(X;|F,—1))*|Fi—1). We have seen
in (4.6) that the Gaussian likelihood is also written in a similar fashion in terms of
martingale differences and the one-step ahead prediction errors and, hence, when
the time series is Gaussian, likelihood and quasi-likelihood inference based on
optimal estimating functions coincide. This is one justification for the commonly
used strategy in large sample estimation problems to make the Gaussian assumption
and maximize the corresponding likelihood, even when the Gaussian assumption is
not valid for the data set; see Brockwell and Davis (1991, 1996), Hannan (1970) and
Heyde (1997).

Example 4.4.1. Consider the AR(1) process

X =aX,1 + Z;,
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with Z, ~ WN(0,0?). Then,
he = h(x;,a) = x —axi—, t =2,...,n,

are n — 1 estimating functions with E(h?|F,_;) = o>. Let

n
* *
h = E Cl‘—lht’
t=2

be the optimal estimating function. Then

*

ohy (X,
E(M0 |7 )
1=

E(h7|Fi-1)

= —xt—l/Uz-

Solving for a in

hi(x,a) =Y —xi-1/0%(x —ax,—1) =0,

=2

gives

=2 =2
If we consider the two parameter AR(1) with non-zero mean
Xi—p=alX,—n)+ Z,
then we use the n — 1 basic unbiased estimating functions
he(x, ,a) = (x; — ) —a(x;— — ), t =2,...,n.

Note that again E(h?|F,_;) = 02, and the optimal coefficients are given by

o (% @) = (e (%, ), ¢ (%, )

~ E(aht(g/lﬂ,u)l‘ﬂ_l) E(aht(g(;l/u“)l‘/”.}_l)
ER|Fie)  E(|F-)

= (—x,_l/(fz, —(1- a)/UZ) :
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Now solving the set of equations

~1/0? ) (v = ) = p) = alxy — ) =0,
=2

—(1—a)/0” Y (x — ) —a(xi—1 — p) =0,
t=2
we get

Z;;z X Z?=z xtz—l - Z?=z Xi—1 Z;;z X Xi—1
>
(n—1) Z?:z xtz_l - (Z?:z xt—l)z(l —a)

l:\L =
Dorma X o Xem — 2 (= 1) Y XX
Qo xi—)? = (=130, xtz—l

Note that these estimates coincide with the ML estimates conditional on X; = xq,
when Z; is Gaussian noise.

&:

Example 4.4.2. Consider the AR(p) model
Xi=a1 X1+ +apyXi—p + Z,
and the unbiased basic estimating functions
hi(x,a) =X, —a1 X1 —-—apX—p, t=p+1,....n.

One-step ahead prediction errors are given by % (see Chaps. 1 and 2), so that for
each 7,

E(h}|Fi—1) = 0.
The optimal estimating function is given by
n
W)= ) b,
t=p+1

where

oh,

C:_I(X, aj) = E(g
J

)/02 = —xt—j/az-
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Then the optimal estimates for a; are obtained by solving the system of p equations

n
_1/0_2 Z xt—j(xt — A Xp] — v — apxt_p) = 0.
t=p+1

Again, these estimators are equivalent to ML estimators conditional on
(X1,...,Xp) = (x1,...,x,) under the assumption of Gaussian error structure.

In these examples, due to the linearity of the models, the system of equations
that we need to solve are simple, having analytical solutions. First, the one-step
ahead prediction errors are constant being equal to the error variance. Second, the
derivatives are nice linear functions of the data, again facilitating the estimating
equations. In general, for nonlinear models, no such easy construction exists.
Often solutions have to be found numerically and/or asymptotic arguments have
to be brought in for approximations. Still, the estimating functions facilitate the
construction of good estimators in the absence of a likelihood function, which is
often the case for many nonlinear processes. We now give some examples on how
estimating functions can be used in obtaining estimators for nonlinear time series.
We follow Thavaneswaran and Abraham (1988) and Heyde (1997).

Example 4.4.3 (Random coefficient autoregressive model). Consider the AR(p)
process

P
X, = Zat,iXt—i + Z;, (4.9)

i=1

where Z; are i.i.d. zero-mean r.v’s having variance 0%. The random parameters a; ;
are given independent random shocks at each time point, so that

ai; =a; + W,

Here, the random shocks W;_; are zero-mean independent random sequences,
independent of each other and independent of Z;, having common variance (for
convenience in calculations) CII%V. Consider the estimating functions

n
E ¢ii—1hy,

t=1

where h; := X; — E(X;|F;—1). Then by Theorem 4.4.2, the optimal estimating
function for a; is given by

n
* *
h; = E i,

t=1
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where
i} E (52| Fim1)
¢y = ——.
L EM|F)
It follows from independence assumptions that

P
he =Y laiX,—i + EWiei| Fim)) X, i) + E(Zi| Fio)

i=1

P
=X; — ZaiXt—i

i=1

and
P
EM}|Fir) = E(X, =) ai X, | Fi1)
i=1
P
= E([Zt + Z I/Vt—iXt—l]2|—7:t—l)
i=1
P
— ot + Y X2 0k
i=1
so that
c* = _Xt_i
h oy + 2o X2 oh
The optimal estimate for 6, := (a;; i = 1,..., p) is then obtained by solving i

equations simultaneously

h;k = ZC:t—lhl‘ =0,
=1
giving

A Z;l:p X[_IX;/VI

0, = ,
! Z:l=p Xf—lX;—l/vl‘

where

Xr—1 = (X—1, Xi—2, .. -, -xt—p)y
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and v, = a% + le -1 xtz_la%, are the one-step ahead prediction errors. The solution
for the special AR(1) case

X, =@+ W)Xi—1 + Z;,
is given by

s i XX /(0 + X7 o)
n — .
i xp/(0g + X7 0)

For the AR(1) case, Nicholls and Quinn (1980) (see also Tjgstheim 1986) give the
estimator for 6,

é _ Z:l:zxt—lxr
n — “T~—n_ -
> = xt2—1

The estimator é,, is a weighted version of 6, and has the same properties of
consistency and asymptotic normality. However, it is more efficient. Note that 02
and 07, are nuisance parameters, which are generally unknown. Yet, initial estimates
can be given; see Nicholls and Quinn (1980) for details.

Example 4.4.4 (First-order random coefficient autoregressive model). Consider the
AR(1) version of (4.9) given by Heyde (1997) with different error assumptions. Let

X[ = (9 + I/111‘))(t—1 + Zl"

where E(W;|F—1) = 0, E(Z/|F—1) = 0 and E(Z?|F—1) = 0*X,—;. The
alternative representation for X; is given in the form

X, =0X1 +u,
u = W Xi—1 + Z;.
The optimal estimating function based on n observations is given as
h: = Zcz‘*—l(Xl‘ —0X,-1).
=1

where

X

o ==
U EW|Fim)

Here

EG2|Fiy) = X2 | EW2|Fi—) + 2X, \E(W, Z,|Fi—1) + E(Z}| Fi_y).
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may not be tractable without assuming additional structure for W, and Z,. For
example, if we further assume that W, and Z; are independent sequences and
E(W;|Fi—1) = 0},, then

E@Wl\Fimy) = of) X2, + 02 X,—1,

and the optimal estimating function is given by

n

Z Xi—1
*
hn = 2 XZ ZX (Xt - 9Xl—1)7
= OwAiog t0z4-
so that
n n 2
b = X¢Xi—1 Xi—1
n = 2 : ) 2 Z 2 2 2
= OwXi—1 t0zXi—1 = O X + 07X

This expression depends on the nuisance parameters o7, and o2, but if X, — oo,
then 6, has the asymptotic expression

n
Xt

N 1
0, = — .
n =2 Xe—1

See Heyde (1997) for the concept of asymptotic quasi-likelihood methods.

Example 4.4.5 (Doubly stochastic time series). Consider the process
X =a, f(t, Fim1) + Z;,

where a, is a stochastic sequence, f (¢, F;—;) is a measurable function with respect
to the o-field F;—; := (X;—1, X;—2,...), and Z, is an i.i.d., zero-mean random
sequence with variance 0. In order to be more precise, let us assume a specific
form for the random sequence a, by assuming that

ar=a+ W, + W,

where (W} ) is a i.i.d. zero-mean sequence, independent of Z;, having variance UI%V.

Hence,

X, =af(t, Fim) + W f(t, Fimr) + Wit f(t. Fim) + Zs,
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so that from the independence assumptions
hy = X, — E(Xt|-7:r—l)
= af(t, Fi—1) + EW | Fi) f (1, Frmr)
+EW—1|Fi—) f (&, Fi—1) + E(Z:|Fi-1)
= (a + mt—l)f(t7 -7:t—1)7
where m;—; = E(W;—{|F;—1). Also
E(h}|Fim1) = E((X: — E(X{|F=1)*|Fi1))
= E((Zi + (W, + Wimy —my 1) f (8. Fi1)? | Fimh)
=0y + [2(t. Fic)EW; + Wimy —mi—1|Fimy)
=0y + f(t. Fi-Dloy — vi-1l,

where

Viet = E(Wiey — my—1)?|Fim1)
= V(Z-1|Fi-).

Hence the optimal estimate for a is given as a solution to

n
hf = ¢ h =0,
=2

where
E()
 E(2|Fi—)

S F)( + 25
o2 + f2t, F-)lod, — yi—1]’

from which we obtain

n *
D=2 €y X

27=2 Cl‘*—lf(t’ -7:t—1)'

&:

Here, m;_;, dm;_1/da and y;—; need to be calculated iteratively. If xo = O,
then mop = 0, yo = cr%V and m;, y; satisfy the following recursive relations (see
Thavaneswaran and Abraham 1988):
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_ of, f(t, Fe)xe — (a + mi—y) f(t, Fr—1)]
o2 + f2t, Fm)lod, — vi—i]

3

_ 2 fz(ts -7:2‘—1)0-]‘/1[/
Y =Ow 2 2 2 :
oz + f2(t, Fi-)loy — vi—1l

Note that y, does not depend on the parameter a, therefore

om, _ —lof £2(. Fimn)(1 = M)
00— o2+ 2t Fnod — vl

and consequently dm, /da can be calculated recursively along with m, and y,. This
estimator depends on the nuisance parameters 07, and 02, and these parameters
will have to be estimated using a different set of data. Conditional least squares
estimators are given by (see, Tjgstheim 1986)

Z;l=2 f(t7 -7:t—1)(1 “+ a”g{;l )Xt
St Fo) (1 + 2=

Again, a (given in page 149) is a weighted version of the least squares estimator d,
using the information in the nuisance parameters o7, and 0.

d:

Example 4.4.6 (General recursive estimation). Consider the general nonlinear time
series model given by (see Aase 1983)

Xe=aft—1,F-1)+ Z, (4.10)
where f is a nonlinear measurable function of F;_;, which does not depend on
the parameter @ and (Z;) are i.i.d., zero-mean r.v’s with variance cr%. Then, based
on estimating functions, it is possible to give a recursive scheme for estimating the

parameter a; see Thavaneswaran and Abraham (1988) or Heyde (1997) for details.
Set

he ==X, —af(t —1,F-1),

the optimal estimating function for n observations is given by

n
* k
ht == E ct—lhf’
t=1
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where
_EGE|F-)
T EMFi)
= f(t —1,F—1)/0%,

so that the optimal parameter estimator for a, based on the n observations, is given
by

4. — e G X
Y fa =1L F)

Writing

n
K =) et fa =1, Fm),

t=1

dy —dn_y = K, (Z ¢ X, —an_lK;l) (4.11)
t=1

and after some calculations, (4.11) can be put in the form

K,,_lc;
1 + f(n - 1, fn—l)C:Kn—l

&n = &n—l + (Xn - &n—lf(n =1, -7:;1—1))-

Starting from initial values 4o and Kj, it is then possible to obtain the optimal esti-
mator d, recursively. The above recursive method of estimation can be generalized
for a class of general nonlinear models given by

Xt = g(t - 15-7:2‘—1) +af([ - 15-7:2‘—1) +U(t - 15-7:2‘—1)22"

See Aase (1983) and Thavaneswaran and Abraham (1988) for further details.

Example 4.4.7 (Threshold autoregressive model). Consider the process

P
X, = Zajlj(Xt—l)Xt—l + Z,
j=1

where (Z;) are zero-mean uncorrelated r.v’s with variance a% and /; (-) are indicator
functions given by

1, Xt—l (S Aj
0, otherwise ’

I (X = {
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for some disjoint regions of the sample space R, such that U; A; = R. Then

hr = Xt - E(Xt|—7:t—l)

P
= Xt — Zajlj(th)Xt—l,
j=1

and
EMR\Fio1) = 03.

The optimal estimator for a; is given by

n n
aj =Y xixialj(im)/ Y X7 1 (i),
r=2 1=2

Note that these estimators are equal to the least squares estimators and ML estima-
tors under normality assumptions (Tjgstheim 1986), since the weights E (h?|F,—;)
are constant.

Example 4.4.8 (First-order bilinear model). Consider the simple bilinear model
X, = bXt—th—l + Z,

where (Z;) are i.i.d., zero-mean r.v’s with finite variance a%. We also assume that
the process is invertible so that Z,_; is measurable with respect to the o-field
Fio1 = (Xt—la X;—2,...). Note that

E(th}—t—l) =bm,_1x;_1,
where m,_ := E(Z,;—1|F;=1), so that the one-step ahead prediction errors are given
by E(h?|F;—1) = 02. The optimal estimating function for b is given by
n
he = e (X —bX,ym, ), (4.12)
=2
where

amy—
—X—1My—1 — b#

3
0z

* —_—
€1 =
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Hence,

n Lk
b= D= Gy X

n Lk *
D=0 o X1

Note that ct*_1 depends on b and there is no easy solution for b,, even in recursive
form. However,

mi— = bx;om; s,

om; om;
= —X;—aM— + bx;— )
ob ob
therefore, starting from initial values by, mo = Zy, and % = 0, m,, % and b

can be calculated iteratively. Conditional least squares estimator for b is obtained
by solving the equation

om;

Z(Xt - QXt—lmt—l)(_Xt—lmt—l — 00X, b

=2

) = 0. (4.13)

By comparing (4.12) and (4.13) we see that quasi-likelihood estimator obtained
from the optimal estimating function is equivalent to the conditional least squares
estimator.

Example 4.4.9 (General bilinear model). Consider the bilinear model BL(p, g, m, [)
defined in (2.25) where (Z;) are i.i.d. zero-mean r.v’s with variance a%. We further
assume that the model is invertible. We again consider optimal estimating functions
based on elementary estimating functions

14 q m
hy = X; — E(X;|Fi—1) = X; — Zatxt—i + chmr—j + Z Zbij-xt—imt—jv
i=1 j=1 i=1j=1
4.14)

where m;—; = E(Z;—j|Fi-1),j = 1,2,...,q. The optimal estimating functions
are given by the following set of equations:

n
* _ Lk
hl‘,a,' - Z : Ct—l,aiht’

t=k+1
n
h;k,c‘/ = Z Ct*—l,cyhl"
t=k+1
n
By = D O e (4.15)

t=k+1
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where k := max(p, ¢, m, ). Note that the invertible process is of the form
X = f(]:t—l) + Zi,

where f is a JF;_;-measurable function, hence one-step ahead prediction errors
E (h?|F;-) are constant and equal to 02. Then

(ah’ |Fi-1)
c =
t—1.a; 2
0z
=X
o2
ah
. E(|F )
c =
t—l,Cj O—%
amy—; Bm,_j
—Mi—j —Cj ac; Zs—l bl]xf ST
o2 ’
oh
E (55,1 Fi-1)
ct =
t—l,b,’j O—%
Bm, om _j
—X—imy—j — 0; =L 5 — by Xi—i T,
é
Optimal estimators of the parameters
= (als'-'7ap7cls--'7cq7blls--'sbml)s

can be obtained iteratively by finding simultaneously the zeroes of the optimal
estimating functions given in (4.15) using numerical methods. Let G(6) be the set
of all estimating functions given in (4.15). Then, the solution for

G(0) =0,
can be found iteratively using the Newton-Raphson method by

—1
~(r A GO
¢+”=0”—(—é;l) G(6").

)y . . . o N .
where % is the observed matrix of partial derivatives of the estimating functions

with respect to the parameters. The success of the method depends heavily on the
choice of the initial values. There may be multiple solutions for
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G(@9) = 0.

See Heyde (1997) for possible ways of discriminating between the multiple roots
when they exist. Note that the estimators obtained from estimating functions are
equivalent to the estimators obtained from the conditional least squares method.
Similar results can be obtained for the extended bilinear model given in (2.26). Note
that for these models E (h?|F,_;) is no longer constant. For example, if

X, =aX. 1 +bXiZin+c X Zi + Zy,
then
Eh?|F—1) = (1 + *x2))o?

and the optimal estimating function and the corresponding estimators given in (4.12)
can be adjusted accordingly.

4.4.3 Composite Likelihood Methods

We have seen in the previous section that when the likelihood does not have an
analytical form or the likelihood requires prohibitive computations, it may be feasi-
ble to look for other pseudo-likelihood methods, such as the method of estimating
functions for a specific choice of estimating functions. Composite likelihood is a
pseudo-likelihood inference and is based on combinations of likelihoods for small
subsets of the data or based on combinations of conditional likelihoods. Following
Varin et al. (2011), let X be a n-dimensional vector of r.v’s with density function
p(x|6). Denote by (A;,..., Ax) a set of marginal or conditional events with
associated likelihoods L (#]|x) o p(x € Ax|#). A composite likelihood is the
weighted product

K
L0 =] L0,

k=1

where wy are some nonnegative weights. Often these weights are taken to be equal,
hence they can be ignored. The above definition is very flexible and allows for
combinations of marginal and conditional densities. However, composite likelihood
based on pairwise likelihoods, defined as the product of the bivariate likelihood of
all possible pairs of observations, are often used due to their simplicity. Hence for
the n observations x := (xy, ..., X,), the pairwise likelihood is defined as

Lr(0]x) = l—[p(x,-,xjw),

i<j
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where p(x;,x;|6) is the joint density of the r.v’s X; and X;. Consequently, this
pairwise likelihood can be seen as the likelihood based on n(n — 1)/2 independent
samples of bivariate observations. As such, composite likelihood is a pseudo-
likelihood method based on a misspecified model. For example, the simplest
composite likelihood is based on the one dimensional densities constructed under
the full independence assumption

Li0x) =[] p(x6).

i=1

In this case, composite likelihood permits inference on marginal parameters, but it
contains no information on the parameters that govern the dependence structure.
Thus, a compromise between loss of information and computational feasibility
has to be made while choosing the right composite likelihood for the problem at
hand, capturing some, but not, all features of the full likelihood. For time series
models based on n observations x, simplified versions of the pairwise likelihood
of consecutive pairs of observations are often used, due to the fact that most of the
dependence occurs in adjacent observations; therefore such pseudo-likelihoods have
mathematical and computational tractability without loss of too much information
on the dependence structure of the series.
Pairwise log-likelihood based on successive pairs of observations is given by

n—1n—j

log Lc(B]y) =) log p(x;, xi+10),

j=1t=1
and the simplified kth order consecutive pairwise log-likelihood is given as

k n—j

log Li(0]y) = Y > "log p(x:, Xi+,16),

j=11=1
and in particular the first order consecutive pairwise log-likelihood is given as

n—1

log £1(8y) = ) log p(x:, X;+1]6).

t=1

Note that the score function of the composite likelihood is the sum of the
score functions based on the corresponding marginal densities. Hence, in the full
likelihood, the estimators are found by solving the score function equation

S(0]x) = 0,
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whereas in the composite likelihood case, the estimators are found by solving the
composite score function

1 0
S.(6,x) = Zw =0.
k

which is a linear combination of the scores associated with each of the likelihood
term L;(0|x). Hence the composite likelihood method is a special case for
estimating functions where the scores based on marginal likelihoods are taken as
the unbiased estimating functions, as compared to the estimating functions based on
one-step ahead prediction errors considered in the previous section. However, this
does not guarantee satisfactory properties of the resulting estimator. An overview of
the composite likelihood methods can be found in Varin et al. (2011); see Davis and
Yau (2011) for the use of consecutive pairwise composite likelihood for linear time
series models.

For general state space models, which are arguably most suitable representations
for nonlinear time series, composite likelihood methods based on pairwise likeli-
hood can result in robust estimation of the parameters. We have seen in Sect. 2.2.7
that a generalized state space model is specified by a system of equations given
respectively by

Y, = fl(Xnv Zn)
X, = fZ(Xn—lsWn)

where Xy, (Z,) and (w,) are mutually independent r.v’s and fi(-) and f5(-) are
measurable functions. Often X, is taken to be a first-order Markov process and the
observations Y,, are assumed to be conditionally independent given the states X,.
Such state space models are often called latent Markov processes and the process
(Y, X, is specified by

{p(XOIO)’ p(xn|xn—lv 0)7 p(ynlxm 0)}’

where @ is an unknown vector of parameters to be estimated from the data. As was
explained in (2.47) and (2.48), the likelihood function depends on complicated
recursive calculations based on n-dimensional integrals

20ty = [+ [ pol0) [ o1 00pGil. 00y -d. 416

i=1

Expressions (2.47) and (2.48) explain how the recursive calculations may be done,
although the solutions still require the calculation of n-dimensional integrals and
except for special cases (for example when f| and f, are linear functions, in
which case the Kalman filter provides an elegant solution) exact and efficient
methods for calculating and maximizing the likelihood are not available. In the next
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section we give Bayesian Monte Carlo methods for obtaining numerical simulation
based methods for calculating and maximizing the likelihood given in (4.16).
Composite likelihood methods based on pairwise likelihood, and in particular
pairwise likelihoods of consecutive observations, can reduce the computational
burden significantly, replacing the calculation of n-dimensional integrals by the
calculation of two-dimensional integrals. The composite likelihood L (€ |y) based
on consecutive observations is given by

n—1

Le@ly) =[] pGisyitil6),

i=1

with
PO yis1]0) = //p(yi,y,-+1,x,-,x,-+1|0)dxidx,-+1

=//P(xi|0)l7(xi+1|xi,9)P(Yi+1|)’i,xi+1,0)
xp(yilxi, 0)dx;dx; 4.

Although the integral still has to be calculated numerically and some of the
conditional densities may not have explicit analytical expressions, this pseudo-
likelihood is written in terms of bivariate integrals, resulting in more robust methods
due to the lack of error propagation that is often present in sequential MCMC
methods which we will study in next section. Hence such methods not only reduce
the computational burden, but can result in more robust estimation. Note that
this pseudo-likelihood method also avoids the miss-specification of higher-order
dimensional distributions. However, we still need to know the properties of the
estimators obtained when the full likelihood is substituted by a pairwise pseudo-
likelihood based on a misspecified model.

Asymptotic Properties of Composite Likelihood Estimators

Here we give a very brief summary of the asymptotic properties of the composite
likelihood estimators. Details can be found in Varin et al. (2011). If we have
a composite likelihood based on m-dimensional marginal distributions and have
n ii.d. samples from this m-dimensional distributions, then the log composite
likelihood can be written as

log Lc(Bly) =Y log L, (0y:)

i=1

= " log pu(yil6),

i=1
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and hence the score function is based on the marginal likelihoods. Under fairly
reasonable regularity conditions on the component log densities, one may expect
that, from the central limit theorgm for the composite score statistics, the composite
maximum likelihood estimator 6 ¢ is unbiased and asymptotically normal with

V(e —0) =P N©.G,(0)).
where G, '(0) is called the Godambe information matrix and is given by
G, ' (0) = Hy ()™ Ju(8)H, (6)™"
with
Ju(0) = V(VLu(0]y))
and
H,(0) = E(V2L, (8]y)).

Here, VL,,(8]y) and V2L, (0y) are respectively the gradient vector and the
Hessian matrix of the marginal score functions with respect to the model parameters.
The ratio of the G (@) to the Fisher’s information matrix /(#) may give an idea of
the asymptotic efficiency of the composite likelihood estimators. This comparison
ideally should be made by analytical calculation of G(0) and 1(6), but these
expressions are rarely available. Alternatively, the comparison can be made either
by simulation-based estimates of G(8) or /(). In exceptional cases pairwise likeli-
hood estimators are efficient. In fact, Cox and Reid (2004) report that composite
likelihood estimators may even be inconsistent. However, Mardia et al. (2009)
show that composite likelihood estimators can give full efficiency in multivariate
normal distribution. In fact composite likelihood estimators are fully efficient in
exponential families that have certain closure properties. Davis and Yau (2011)
look at the relative efficiency of the composite likelihood estimators in linear time
series models and show that for AR(1) models, relative efficiency of the composite
likelihood estimators based on pairwise likelihood, compared to full likelihood, is
equal to one. In contrast, they show that the relative efficiency for MA(1) processes
is disappointingly low, particularly considering that the correlations in MA(1) do
not extend beyond lag 1. Thus, it is not very clear, in which time series models
the composite likelihood based on pairwise densities performs well. Davis and
Yau (2011) also report good performance of the pairwise likelihood applied to
a nonlinear model for time series of counts and come to a conclusion that this
good performance may suggest that composite likelihood methods may be quite
promising for more complicated nonlinear models. Davison and Gholamrezaee
(2012) also obtain similar encouraging results for composite likelihood methods
based on pairwise likelihood applied to max-stable processes. Varin and Vidoni
(2009) show that the composite likelihood estimators, based on pairwise likelihood



4.5 Bayesian Methods 165

for the generalized state space models, are consistent when the time series exhibit
short range dependence, but if the series exhibits long-range dependence, then
convergence (asymptotic normality) may be slow, or even the estimators may be
inconsistent. These reported good results are possibly due to the robust, simple
models and to lack of error propagation often seen in numerical methods in
nonlinear processes based on full likelihood methods, which may compensate for
the miss-specification that pairwise likelihoods bring into the estimation.

4.5 Bayesian Methods

We have seen in Sect. 2.2.7 that a generalized state space model is characterized by
the conditional densities (2.47) and (2.48), which for non-Gaussian and nonlinear
systems do not have closed forms. Therefore, inference based on likelihood is
in general very difficult to carry out and one needs to resort to simulation-based
methods. Bayesian hierarchical models and simulation-based inferential methods,
known as Markov Chain Monte Carlo (MCMC) methods, are particularly suited for
such complex systems. Here we give a very brief introduction to these methods. For
complete and deeper treatment, see Congdon (2010), Prado and West (2010) and
Liang et al. (2010). See also Andrieu et al. (2010) and Chopin et al. (2013) for a
review of the recent advances in Sequential and Particle MCMC methods.

A generalized state space model is composed of three components, observations
y:, the state or the hidden (latent) process x, and the parameters 6. In the
Bayesian context, the parameters are also considered as random and the process
can totally be characterized by the joint density of (y;, X, §) which can be written
componentwise as

(Y. X1, 0) = p(y/|x:,0)p(x,10) p(0).

Here, p(y:|x;, @) is the likelihood or the first stage of the hierarchical specification,
p(x]0) is the conditional specification of the latent process or the state process
and finally p(@) is the third stage or the prior specification for the model param-
eters. Often there is a fourth stage for this hierarchical specification, namely the
hyperparameters that may be needed while specifying the prior distribution for
the parameters. Target quantities which we are of interested in this hierarchical
specification are:

1. The joint posterior density of the parameters and the state

p(y:10,x:)p(x[0)p(0)
p(y:) .

p(0.x|y:) =

Here,

py) = / p(yi10.%) (0. %)d0dx,. @.17)
x;,0
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does not depend on (0, x;) and hence is a constant. Therefore the joint posterior
is proportional to the product of the likelihood and the prior

P(0.x:|y;) < p(y:|0.%x:) p(x,]0)p(0).

This formulation is useful since the integral in (4.17), called the constant
of proportionality, is in general difficult to calculate. Most simulation-based
inferential techniques avoid this constant in calculations.

2. The marginal posterior densities p(@|y;) and p(x|y;), can be obtained from
the joint posterior density by integration. Alternatively, the marginal posterior
density p(6|y;) can be obtained from the marginal likelihood

p(yi10) = / p(10)p(y:Ix, 8)dx,.

3. The joint predictive density of future observations is given by

P(Ye+1-Xe+1]¥1) :/P(Yt+1|Yts07Xt+1)P(0th+l|Yr)d07 (4.18)

from which marginal predictive distributions p(y;+1]y;) and p(X,+1]y;) can be
obtained by integration. The future predicted values y,+; and x,4; then can be
calculated as posterior means E(y;+1|y;) and E(X;+1]y;), respectively.

Often, we write 8§ := (0,,0,) to highlight the parameters that are relevant to
the observation equation and the state equation, respectively. Then it is generally
assumed that the observations are conditionally independent of 6, given X, so that

P X, 0) = p(y:[x,, 0,) p(x10) p(0,10)p(0y),

which simplifies the hierarchical specification.

4.5.1 Simulation-Based Methods

Simulation-based inferential methods are iterative sampling methods, that generate
samples from the target densities, namely the joint posterior distribution p(x;, 8 |y;)
and marginal posterior densities p(@|y;) and p(x;|y;). Once sufficient values from
the target densities are simulated, posterior summaries such as posterior means
and variances of the target densities, as well as credible intervals, can be obtained
from these simulations. Simulated samples from the target joint posterior density
p(x¢, 0y;) will also permit obtaining samples from the joint predictive distribution
through the relation (4.18), which will give us predictions for future values, as well
as their credible intervals.

For nonlinear and non-Gaussian processes, the joint posterior p(8,x,|y;) as well
as marginal posteriors p(x;|y;) and p(@]y;) do not have closed form expressions,
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and sampling directly from them is impossible. It is therefore necessary to approx-
imate target densities by simpler forms, often called proposal densities, which are
relatively easy to sample from and yet sufficiently structured to capture the scale,
as well as complex dependence structure that exists within the process. Successful
MCMC sampling schemes depend in finding such approximate target densities. In
small dimensions, this is relatively feasible, but for nonlinear time series it is a
challenge. For example, the joint posterior density of (x;, #) has dimension n + p,
where n is the sample size and p is the dimension of the parameter space. Efficient
approximate sampling schemes for such high dimensional densities is now a very
active field of research. Sequential and particle MCMC methods are currently being
used with success for these highly complex models; see Andrieu et al. (2010) and
Chopin et al. (2013) for an overview of the field.

Before we give an overview of these sequential methods for state space models,
consider the simpler case when we have a dependent observationy := (y1, ..., y,)
coming from the model p(y|@), where 6 has prior density p(@). If p(0) is a
conjugate prior, then it is possible to obtain the analytical expression for the
marginal posterior density p(6]y;) and samples can be generated from this target
density. Often due to high dimension it may not be feasible to sample directly from
this target density and componentwise methods are used to sample from a portion of
the parameter space. Assume that the parameter space can be written in components
0 :=(01,0>,...,0,) andlet

p(0:10—i1.y) « p(y|0:)p(0)),

be the density of the component #; conditional on the rest of the parameters which
we denote by 6 ;1. These densities are called full conditionals. The Gibbs sampling
scheme (Gelfand and Smith 1990) draws samples from 6 in a componentwise
manner, using the full conditionals as the sampling densities. Thus samples are
drawn sequentially in such a way that at iteration i + 1,

i+1 i

« 07V~ p(0116".y)
i+1 i

« 05" ~ p(6210)",.y,)

=05~ p(0,10 7, y0).
Here,

TR (IR N TN 1))

There are other variations on this general scheme of Gibbs sampler; see Congdon
(2010), for details. Gibbs sampler is a very powerful tool applicable to many
statistical models, but it is not particularly useful if we does not have expressions for
the full conditionals. In this case, Metropolis-Hasting algorithm is used. Metropolis-
Hasting (M-H) algorithm is based on two basic sampling methods:
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1. Acceptance-Rejection methods: Acceptance-rejection methods are proposed for
simulating random numbers from a d-dimensional random variable whose
probability structure does not permit direct or efficient simulation of samples
from its probability distribution. If X has a density p(x) and U, conditional on x,
is uniform in (0, p(x)), then the surface under the density curve

Sp={(x.u),0 <u < p(x)} C R,

has a unit volume. Hence, if the random pair (X, U) is uniformly distributed in
this region then X will have density p(x). If we rescale p(x) by f(x) such that

sup p(x) < f(x) <k < oo, (4.19)

and if (X, U) is uniform in
Sypi={(xu).0<u< f(x)} c R,
then X will still have the marginal density p(x).

If it is difficult to sample from p(x) and if it is possible to find another density
f(x) satisfying (4.19), which is easier to sample from, then the above remarks
suggest a way of sampling from p(x). Note that S, C Sy, hence we can
sample from p(x) by first getting samples from Sy and then by considering
only those points which fall within S,. Here p(x) is called the target density,
whereas f(x) is called the envelope or proposal density. Thus, based on these
arguments, the following algorithm called the acceptance-rejection algorithm
can be implemented to sample from p(x):

(a) Simulate x from the proposal density f(x), and simulate U ~ U(0,1)
independent of x.
(b) If

L)
T kfx)

then accept x as a sample from p(x). Otherwise reject x.

The acceptance rate is the ratio of the volume of the target region S, to the
volume of the proposal region Sy.
2. Sampling from a Markov process

When it is not feasible to simulate i.i.d. samples from a target distribution
P(dx) (here we use the notation P(dx) for the distribution function whereas
p(x) for the density, which we assume that exists), it may be possible to
simulate dependent samples with relative ease by loosing some efficiency in
the simulations. This can be done by using discrete time homogeneous Markov
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processes. A Markov process is defined by its initial distribution Py(dx) and the
one-step transition kernel P, (x, A), which represents the probability P(X;+; €
A|X; = x). When the process is homogeneous, the transition kernel does not
depend on time, so that P,1(x, A) = P(x, A). In this case, at any time point
t+1,

Piii(dy) = P(y = X;41 <y +dy)

- / 3 Prs (x, dy)dx.

Thus, at any time point ¢, P;(y) is uniquely determined by the initial distribution
Py(dx) and the transitional kernel P (X, dy). Under fairly mild conditions (when
the Markov process is Harris positive recurrent and aperiodic, that is when it is
ergodic; see Meyn and Tweedie 2009)

lim P:(dy) = P(dy)

and P (dy) is called the limiting or equilibrium distribution of the process which
is independent of the initial distribution and satisfies the equality

P(dy) = /p(x)P(x,dy)dx. (4.20)

If p(y) and p(y|x) are the corresponding densities for P(dy) and P(x,dy)
respectively, then (4.20) can be written as

py) = / PN pA)dx.

With a given initial distribution and a transition kernel, it is relatively easy
to simulate dependent samples from a Markov process. This facility can be
used to get independent samples from a target density p(x) by constructing
an ergodic Markov process with limiting distribution p(x). If we can construct
such a Markov process with known initial distribution and transition kernel,
then a sample simulated from this Markov process, upon an initial period of
convergence (burn-in) will be a sample from the limiting density p(x), which
by construction is our target density. However, for a given limiting density
p(x), there is no unique transition kernel, hence the construction of an ergodic
Markov process for a given target density is not very simple. Imposing further
the condition of reversibility on the Markov process facilitates this construction.
Limiting distribution p(x) (and the corresponding ergodic Markov process) is
said to be reversible if

pX)p(y[x) = p(y) p(xy).
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Kelly (1979) showed that if a Markov process is reversible, then it is also ergodic.
It is relatively easy to take samples from a reversible Markov chain by

(a) Specifying a proposal density p(y|x) which is symmetrical so that p(y|x) =
p(x[y).

(b) Carrying out an acceptance-rejection sampling from this proposal density in
such a way that the resulting Markov process is reversible and thus ergodic
with target stationary distribution p(x).

The Metropolis algorithm is based on this principle:

(a) At any time point 7, with X; = Xx;, sample a candidate value y from the
symmetrical proposal density p(y|x;);
(b) Compute the acceptance ratio

a(y, x;) := min { 1

p(y) } )
’P(Xt) '

(c) Set x;4+; =y with probability «(y, X;) otherwise, set X;+; = X;.

This method samples from the ergodic Markov chain with stationary distribution
p(x); thus sampled values, after an initial burn-in, can be considered as observa-
tions from the stationary distribution. The Metropolis-Hastings (M-H) algorithm
generalizes the Metropolis algorithm in a way that permits sampling from non-
symmetrical densities, yet still sampling from an ergodic Markov chain with the
desired stationary distribution.

The Metropolis-Hastings Algorithm

(a) At any time point ¢ with X; = x;, draw a candidate sample y from p(y|x;),
where p(y|x;) need not be equal to p(x;|y);
(b) Compute the ration

’

p(y)p(x|y) }

o) = min f1. ZBLELY

(c) Set x;4; =y with probability «(y, X, ), otherwise set X;+; = X;.

See Congdon (2010) and the references therein, and in particular Roberts and
Rosenthal (2004), for the construction of such Markov process and the resulting
acceptance-rejection schemes for sampling.

In the simple time series case when we have dependent observations y; from the
model p(y,|@), the target distribution from which we want to sample is the posterior
distribution p(@|y,). Except for special cases, it is not possible to sample directly
from this target density, therefore the M-H algorithm can be adopted.
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By adopting the M-H algorithm, at any iteration i + 1, a candidate value 0©
is sampled from the proposal density q(0(c)|0(’)) and is accepted as the next
generation sample # “ T with probability c(8 )| /) so that

gitn _ |0 © | with probability (8 )| 1);
~ | 09, with probability 1 — (8|6,

where

p(0y)q(0©16)
(0 V1y)q(8101)

a(0©10") = min §1

With such a sampling scheme, the transition kernel of the Markov process is given
by

pOUFVI00) = a0V [0V)q(0 V10 ).

so that the probability of staying at the current state ) after an iteration is given
by

p(g(i+l) — 0(i)|0(i)) =1 _/ a(ﬂ(c)|0(i))q(0(c)|0(i))d0(c).
6(©)

Such a scheme guarantees sampling from the stationary distribution of the Markov
chain, that is from the posterior distribution upon initial burn-in period; see Roberts
and Rosenthal (2004) for theoretical justification. When the chosen proposal
distribution ¢ (8|0 ?) is symmetric, that is ¢(0©[07) = ¢(0?]0() then the
acceptance probability reduces to

a(09109) = min{1, ——=—
p(0(1)|3’t)

p(0<“>|y,)}

thus we accept the candidate @ as the next generation sample, if the posterior
probability at 8 is larger than the posterior probability calculated at *). Since

p(y:10)p(9)

0ly,) =
P®ly) r(y:)

’

acceptance of the candidate value @) as next generation sample is done with
probability

. P10 p(8)
min 1,ﬁ .
p(y:[077)p(0™)
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Note also that since we compare ratios, the difficult integral p(y) disappears in the
comparison, and the M-H is implemented by comparing functions which are non-
normalized posterior distributions calculated at ) and 8.

There are other variations on M-H sampling scheme such as hit-and-run, the
Langavin and the multiple-try algorithms. M-H algorithms can also be combined
with the Gibbs sampler to give algorithms such as the Metropolis within Gibbs
sampler; see Liang et al. (2010) and Congdon (2010) for details.

In order for these algorithms to work efficiently, the choice of the proposal
distribution is crucial. The acceptance probability o depends on the variance of
the proposal density. If the acceptance rate is too high (consequently smaller
proposal variance), then the scheme will be sampling in a restricted zone of the
parameter space, which may result in non-convergence to the target distribution.
If the acceptance probability is too low, then sampling might get stuck around a
fixed value of @, thus slowing convergence. The proposal distribution is often
chosen with some knowledge on how the posterior distribution might look like. The
normal distribution is often used as a proposal distribution, since asymptotically
most posterior distributions are Normal. We refer to Congdon (2010), and to the
references there in for a good choice of acceptance and proposal distributions.

Importance Sampling

Importance sampling is a standard technique for estimating integrals. Suppose that
we want to calculate / = [ f(x)dx. If it is not possible to calculate this integral
directly, then it may be possible to approximate it by drawing samples from an
easy-to-sample density ¢(x) such that g(x) > 0 whenever f(x) > 0. In this case,
the integral I can be written as an expectation with respect to g

] = Qq(x)dx = E,[w(X)],
q(x)
where
_f®
Y=

The integral / then can be approximated by

1. Drawing N samples xV, ..., x™) from ¢(x),
2. Calculating the empirical mean

LN
[ — (@)
I = N iE:l w(x).

I is a consistent estimator of 7, as N — oo, and assuming E,[w?*(X)] < oo,
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V() = Vy[w(X)).

For generalized state space models, one of our target integrals is the marginal
likelihood (most often, an analytical expression does not exist)

pi10) = / pilxi. 0) p(x,|0)dx.

calculated at a set of @ values. Writing

p(x/10) p(y:|x,0)
q(x;)

w(x,) =

we can approximate this marginal likelihood by Importance Sampling, provided we
have the analytical expressions for p(x;|0) and for the likelihood p(y;|0, x;). This

approximation can be done along the following steps:
1. Draw N samples X;l) yeens fo) from the proposal density g (x;).
2. Calculate the weights

pe O pyilx"0)
D Jd=1,...,N.
q(x;")

w(x) =

Then, for a fixed value of @, approximate p(y,|8) by

N (@) (@)
R 1 o P& 10)p(yilx; . 0)
ply:0) = — ;
i ; q(x”)

The quality of the approximation I for I depends on the choice of the proposal
density ¢ (x). The optimal choice, in the sense of reduced variance V (1), is given by

qopl‘(x) = p(X)/I,

but this is hardly a useful proposal. The design of a proposal density will depend on
the process and it is by no means an easy task; see Fearnhead (2008) for ways of
designing proposal densities and some examples.

Importance sampling is extensively used as part of sequential MCMC methods
for approximating posterior densities for generalized state space models. We now
give a brief introduction to these sequential methods.
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4.5.2 Sequential MCMC Methods for Generalized State Space
Models

Generalized state space models, as explained in Sect.2.2.7, bring extra difficulties
in adopting appropriate MCMC methods. First, the target posterior distribution
p(0,x|y;), or the marginal posterior distributions p(@|y;) and p(x;|y;), as well
as the likelihood p(y;|6#), may not have closed form expressions. Second, the
dimension of the parameter space (including the unknown values of the latent state
process X;) is n + p, which brings very difficult design as well as computational
problems. In this context, efficient sequential and particle MCMC methods (see for
example Fearnhead 2008 and Andrieu et al. 2010) can be constructed to sample from
the joint posterior density. Standard Sequential MCMC methods (SMCMC) are
constructed with the aim of sampling from the marginal posterior density p(x;|y;)
for a fixed value of the parameter 8, whereas particle MCMC (PMCMC) methods
are more complicated as they aim to sample from the joint posterior p(8, x;|y;).

These methods are typically implemented for the so called hidden Markov state
process, where the latent process X, is assumed to be a homogeneous Markov
process with transition density p(x;+1|X;, 0) = p(x,+1|x;, @), and the observations
Y, are assumed to be independent conditional on the realizations of the state process,
having common marginal density p(y;| X1 = x1,..., Xy = x;,0) = p(y¢|xs, 0).
In this case (assuming that yr := (y1, ¥2,..., yr) is the observed time series), for
a fixed value of 6 *

P(X |y, 0%) o< p(x;,y:10%)

T T
o p(eil0*) [ T p(uilximr, 0 [ ] p(ilx:. 0%).
t=2 t=1

In SMCMC methods, the marginal posterior density p(x,|y;, #*) is approximated
sequentially by first approximating the pair p(x;]y;,0*) and p(y1]/6), then
p(x1,x2|y1, y2,0%) and p(yi, y2]0™) and these iterations are continued until the
approximate densities for p(x7|0,yr) and p(yr|@) are obtained. For this sequential
approximation, it is more convenient to write

p(x1, X2|y1, ¥2,0%) o p((x1, y1), (x2.y2)|0™)
o p(2]x2,0) p(x2|x1,0 %) p(x1]y1,07).

Hence, foranyz < T

p(Xly:, 9*) o p(yelxs, 0*)17(36: |xr—1, 0*)P(Xt—1 ly:—1, 0%). (4.21)

The expression in (4.21) clearly suggests that the posterior density p(x;|y;, 0*),t =
1,...,T can be approximated sequentially using the following general guideline:
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1. Fort =1, let

P(dx|y.0%) = / Py 0%)dz,

{x1=z=x1+dx1}

be the posterior distribution corresponding to the posterior density p(x;|y;, 8)
in the interval [x|, x; +dx). Approximate this integral using IS with an adequate
importance (proposal) density ¢(x]y, ™). Note that by definition, for small
dxy, this will give the corresponding approximation for the posterior density
p(xi|y1,07%), which we denote by p(x;|y, 0%).

2. IS will produce xik) ,k = 1,..., N samples or particles with corresponding
importance weights ng) .

3. The corresponding approximation for the posterior density is given by

N

5 — _ (k)

p(xily)) = P(dxi|y) = kal Ly ey
=1

where,

’ _ VLt X e fvxy + dixy);

(X Ve x+dx} T 0, otherwise,
is the indicator function.

4. Further re-sample xik), k =1,..., N from the approximate density p(x;|y;) to
be used as part of the sampling from p(x1, x2|y1, y2, 0 ™) in next stage.

5. At stage ¢ = 2, aim to approximate the posterior density p(x1, x2|y1, y2, 07).
Since

P(x1,X2]y1, ¥2,07) o< p((x1, y1), (x2, ¥2)|07)
o p(x1|y1, 0%) p(y2]x2, 0%) p(x2]x1,0%),

use the sample x%k) ,k =1,..., N obtained in the previous stage by re-sampling

from the approximate density p(x{|y;,0%) and extend this to (xik) ,xék)),

k = 1,...,N, where xék) is now sampled from an importance sampling

proposal density ¢ (x2|y2, x1). The extended sample (xik) , xék) L, k=1...,N
is approximately distributed according to p(x1|y1, 0 *)g(x2]y2. x1, 0 ™). Weights
W(Zk) = w(lk) , w;k) ), corresponding to this extended sample, are calculated and

the approximate posterior density

N

. o _ *)

Plxr.xalyr. y1.0%) = w) Lo® e xo-dxoy
k=1
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is obtained. Additional re-sample (xfk), xék)), k =1,...,N is taken from this
approximate density to keep as the seed for the next step.

6. Foreach 2 < ¢t < T, the above sampling, approximation and re-sampling steps
are repeated, augmenting the parent sample

ik) (k) (k)

xy o x

to

k) _(k (k k
X, ),x2 ),...,xt_)l,x,( )).

However, at each step t > 2, unpromising samples are eliminated and only
promising samples are allowed to propagate to the next generation augmented
sample. This elimination is done as follows: at step # — 1, standard multinomial
resampling procedure is carried out in order to retain particles x}k), j =
1,...,t—1 with larger importance weights and discard those particles which have
smaller importance weights. The discarded particles are substituted by others
according to the relative sizes of the importance weights.

7. Once the samples (x%k) , xék) e ,x(Tk) ) are available, the approximate densities

p(x/|y;,0*) and p(y,|0™) are calculated as

N

A * _2 : (k)

p(xt|yt’9 )_ W[ l{x;k)e[xrvxt‘i’dxt)}’
k=1

T
P10 = pOn10*) [ [ A(yilyi—1.0%).
t=2

where

N
. 1 k
Pilyi-1.0%) = > walx?),
k=1
which estimates at time ¢ < T the conditional density

IWWHﬁﬂ=/WWMWMJHﬁmﬂHM+mMM

Xt

We refer the reader to Andrieu et al. (2010) for the pseudo-code for this sequential
Monte Carlo (SMC) algorithm, as well as for an adjusted M-H sampler, called
Particle Independent M-H sampler, in which the SMC approximation p(x,|6,y;) is
used as the proposal density; See also Andrieu et al. (2010) for specific algorithms
and design issues.
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The main drawback of SMC algorithms is that, when the size T of the vector
X, is large, approximations for p(x;|6,y,) deteriorate very quickly and extension of
such algorithms to approximate joint posteriors p(@,x;|y,) do not work so well.

Particle MCMC methods are specifically designed to sample from the joint poste-
rior p(x;, 0,|y;). Typically these algorithms use sequential MCMC to sample from
the approximate density p(x,|6,y;) as surrogate proposal density for p(x,|6,y;).
The particle marginal M-H sampler, given below, is suggested by Andrieu et al.
(2010) to combine sequential MCMC and M-H sampler for taking samples from
the joint posterior density:

1. Set i = 0, sample 8 from the prior density for # and run SMCMC
to draw samples from p(x,|0®.y,). Sample x§°) from approximate density
P(x09,y,). Let p(y;|0¥) be the marginal likelihood.

2. For any i > 1, sample the candidate value 6 from the proposal density
q(0©10V) and repeat step (1) with 0 by running SMCMC targeting
p(x,/0.y;) and then sampling ch) from p(x,|0,y,) giving the marginal
likelihood p(y;|0©).

3. With probability

P18 p(®) 6“6

miny 1, - - - ,
Ay 0 ) p0 V) q(010 D)

set ) = 0(6),'xfi) = ch) and p(y;]09) = p(y:|0). Otherwise, set 8 =
00, x" =x/ ™" and p(y:[0”) = p(y[6097").

It is shown in Andrieu et al. (2010) that, under fairly mild conditions, this sampling
scheme is ergodic and, after a sufficient burn-in, samples from the posterior density
p(X;, 0]y;). See Andrieu et al. (2010) for other sampling schemes, such as Particle
Gibbs sampler and improvements, as well as extensions. We note however that due
to the high dimensions (for example for # we sample from a p dimensional density,
whereas for x;, we sample from a 7" dimensional density) there are very important
computational issues, and the success of the methods depends on very good choice
of proposal densities.

SMCMC and PMCMC methods are applicable to inference for nonlinear models,
provided that the likelihood functions of these models are tractable. In general, as
was explained above, the samples are taken from the posterior density

P:|9)p(®)

0 t) —
p@ly.) 200

Often the constant p(y,) is intractable, but MCMC methods are developed to deal
with this case. The SMC and PMCMC methods that we examined in this section
fall into this category. However, many nonlinear processes are doubly intractable
in the sense that the likelihood p(y,|@) is not available or is very difficult to
calculate. Standard MCMC methods cannot be applied to these cases. For example,
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bilinear models are examples of such situations. For such processes, although
the likelihood is intractable, it is relatively easy to simulate sample paths of the
process. In such cases, there is a class of inferential methods, called Approximate
Bayesian Computation (ABC) methods, which are likelihood free algorithms. These
algorithms use as basis of inference the simulated sample paths of the process. The
basic form of the ABC algorithm is given as follows: (see for example Wilkinson
2008 or Plagnol and Tavaré 2003)

1. Draw a sample from the prior density: @ ~ p(6);

2. Simulate the sample path y;* from the model M (8);

3. Accept @ if the simulated data y; do not differ from the observed data y,, that s,
if D(y/.yr) <.

Here, M (@) is the model, often expressed in terms of a random difference equation,
and from which it is supposed to be relatively easy to simulate sample paths starting
from a set of fixed initial values. D(:, -) is a distance measure on the realizations of
the process and § is a tolerance limit that establishes how much the simulated sample
path for a given @ value is allowed to differ from the observed time series. Accepted
0 values are not sampled from the true posterior density but from an approximation,
written as p(0|D(y;,y;) < §). When § — 0, accepted 6’s are drawn from the
true posterior p(0]y;) and when § — oo, they are drawn from the prior p(@); see
Plagnol and Tavaré (2003) for details. When the sample size of the time series is
large, it is suggested that rather than comparing y, and y;, appropriately chosen
summary statistics, say S(y;) and S(y;), can be compared. Ideally, S(-) should be
a sufficient statistic. However, if the likelihood is not known, sufficient statistics
cannot be identified. Other reasonable summary statistics can be used, but this adds
another layer of deviation from the true model.

Although this algorithm is, in principle, easy to implement when the underlying
process is easy to simulate, and gives good results when the process under study
has discrete sample space, it is not clear how well it works for nonlinear time series
models such as bilinear processes. The choice of the distance measure, as well as
the tolerance limit § are arbitrary and have significant effect on the simulations.
However, there are variations to this basic ABC algorithm. See Biau et al. (2012)
for a variation which avoids fixing the awkward tolerance limit §.

4.6 Parameter Estimation for GARCH-Type Processes

Likelihood based methods work quite well for some classes of nonlinear models.
GARCH type models fall within this category. In the next section, we give a brief
summary of inferential methods for this class of models on the account of their
prominent role in nonlinear time series analysis.

Most of the work in parameter estimation for GARCH-type processes is focused
in the time-domain approach. In particular, likelihood-based estimators have
become most popular for estimating the parameters of GARCH-type processes.
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The conditional maximum likelihood estimator (CMLE, in short) based on
Gaussian innovations, is arguably the most frequently used estimator in practice.
The Gaussianity of the innovations is, however, not essential for the asymptotic
properties of the CMLE as we will see. Recently, Bayesian methods for estimating
the parameters of GARCH models have been also proposed, and we will give
a brief summary of these methods in Sect.4.6.3. A different approach considers
frequency-domain methods and in particular the Whittle criterion. This method
was originally proposed to estimate the parameters of Gaussian ARMA processes
(i.e., linear processes with finite variance). The applicability of the Whittle criterion
for non-Gaussian and nonlinear processes was discussed in detail by Dzhaparidze
and Yaglom (1983) who introduced the class of non-Gaussian mixing processes.
Dzhaparidze and Yaglom (1983) showed that, for this class of processes, the Whittle
estimator is weakly consistent and asymptotically normal.

4.6.1 Conditional Maximum Likelihood

Consider the GARCH(p, ¢) model
Xt = Oy Zts IS Z

with

P q
2 _ y?2 02
o =ao+ E a; X;_; + E bjo,_;,

i=1 j=l1

where (Z,) forms a sequence of i.i.d. r.v’s with zero-mean and unit variance, and
0 = (ap,ai,...,ap,bi,..., bq)/ represents the parameters of the model. For the
ARCH(p) case, with ¢ = 0 and p fixed and assuming temporally that (Z,) are
i.i.d standard Normal r.v’s, it is possible to write down explicitly the joint density
of the vector (X,+1,...,X,) conditional on (Xy,..., X,), which turns out to be
proportional to

n 1/2 n
1 X?
2 ‘
( | | crt) eXp ) =5 _E oz [

t=v+1

where v = p. The latter expression remains valid for GARCH(p, g) processes with
v > max(p,q) + 1. Maximizing this conditional likelihood, as a function of the
model parameters, leads to the CMLE estimator @ defined as

A 1 < [Xx2
f = argming o — Z =L +log(o?) | . (4.22)
n t=ot1 L0
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If the condition

P q
E(Z)Y ai+ Y by <1,

i=1 j=l1

holds, then a more convenient expression for o7 is given by

) q
Utz I—Zq—l +Za,X,, iZ

bj b X}
i=1 i=1 k=1 j1,....jk=1

t—i—ji——jk’

(4.23)

where the multiple sum vanishes if ¢ = 0 (see Hall and Yao 2003). Thus, in the

maximization procedure, 0[2 is replaced by a truncated version of the expression in

(4.23), defined as

min(p,t—1)
~2
o = + a; X 4.24
RS ETAEPS e

o q
XZ“’Z Z bjv--+b; thlll— —pdt—i= ==k 2 1)

One of the obvious problems with this estimation procedure is that, in practice,
the Z,’s are better modeled by a heavy-tailed distribution. However, under certain
conditions, asymptotic properties of the estimator in (4.22), such as the /n-
consistency of the CMLE, remain valid for large classes of noise distribution. For
example, under condition E(|Z;|)*™¢ < oo for € > 0, 9 is asymptotically normal.
Furthermore, the convergence rate is the standard \/n rate, provided E(Z;)* < oo
(see Hall and Yao 2003). Within this context, the asymptotic properties of the CMLE
have been discussed by Weiss (1986), who treated the ARCH(p) case and by Lee
and Hansen (1994) and Lumsdaine (1996) for GARCH(1, 1) processes. In contrast,
however, when the innovation distribution is heavy-tailed with an infinite fourth
moment, the estimators may not be asymptotically normal, the range of possible
limit distributions is quite large and the convergence rate is slower than the standard
J/n-rate. Studies for general GARCH(p, q) processes, without the condition of
fourth finite moment, may be found in Hall and Yao (2003), Berkes et al. (2003),
Straumann and Mikosch (2006) and Mikosch and Straumann (2006). In particular,
Hall and Yao (2003) obtained the following result.

Theorem 4.6.1. Assume that M = Eo((rl_4UUT) isa(p+qg+1)x(p+qg+1)
matrix, where Eq denotes expectation when the components of 0 take their true
values, say 0°, and U = U(9), the (p + q + 1)-vector of first derivatives Of(fl2 =
(712(0) with respect to the components of 0, is non-singular. Furthermore, assume
that p > 1 andthatag > 0, ay, ..., a, are nonzero, that forq > 1 all the by, ..., b,
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are nonzero and that there exists a local minimum 0 within radius §, strictly positive
and small, of 0°.

1 If E(Zg) = o0 but the distribution of Zg is in the domain of attraction of the
normal law, then

\—1/p d —
nA) (0 —8) = N(O0pygs1, M),
where A, = inf{A* > 0: nHAY) < (A2}, with H(AY) = E(Z(Z2 < A%)).

2. If the distribution of Zg is in the domain of attraction of a stable law with
exponent « € (1,2), then

o0
oA d
n(A)7N0 —0) S5 Y NV — EX)E(V)}
k=1
where V1, V, ..., arel.i.d. as (II_ZM_IU, Yi,Y,...,arerv’s with

ye
J

k—1
Fy,(y) =exp(-y™) Y =—. y >0
j=0

and A} = inf{A¥ > 0:nP(Z} > A}) < 1}.

3. If the distribution of Zg is in the domain of attraction of a stable law with
exponenta = 1 and if n(A¥)VE(Z21(Z2 > A}))* — O, then

n(A)~'0 - 9)
+ (AT E(Z2I(ZE > A5)E (V)

—YE(V) 5 YV + Y (Ve - EQOE(V)}
k=2

where y denotes Euler’s constant.

On the other hand, in order to overcome the drawbacks due to the possible slow
convergence rates of the CMLE, as an alternative Peng and Yao (2003) introduced
the least absolute deviations estimator (LADE, in short) which is robust with respect
to the heavy tails of the innovation distribution. The LADE estimator of Peng and
Yao (2003) is as follows: let ¢ > 0 be a constant such that the median of €2 = ¢Z?
is equal to 1. Then, (2.31) and (2.34) can be rewritten as

P q
_ 2 % * v 2 o2
X; =016, 57 =0 + E ol X, E bjs,_;,

i=1 j=l1



182 4 Inference for Nonlinear Time Series Models

where s,2 =c 1crt2, ocO = ¢ lay, of = ¢ 'a;. In this case, the vector of true
parameters is given by 0™ = (o5, of . . .. ,oz;, bi,...,by) . Thus

log(X?) = log(s?) + log(e?).

being the median of log(e?), equals 0. Hence, the true value of #* minimizes
E(|log(X?) —log(s?)|) which motivates the LADE

Ak

6" =argmingco Y |log(X?) —log(5)|.
t=v+1

where 52 is a truncated version of s> defined as

min(p,t—1)

~2 * 2
S =TS Z]—l + Z o X[, X

i=1

P ) q
XD D ba b X =i === ez ),

i=1 k=1 jleji=I

which directly follows from (4.24). Note that the LADE may also be viewed as
a maximum conditional likelihood estimator by assuming that the log-squared
innovations log(e?) follow a Laplace distribution. Peng and Yao (2003) proved
that the LADE is asymptotically normal with standard convergence /n-rate under
the assumption that the second moment of the innovation distribution is finite.
Simulation studies, carried out by Peng and Yao (2003), also indicate that the
finite sample performance of the LADE is better than that of the CMLE when the
innovations exhibit a heavy-tailed distribution; see Huang et al. (2008) for further
details.

For the ARCH(00) class of models, Robinson and Zaffaroni (2006) established
strong consistency and asymptotic normality for the CMLE estimator of the
model parameters, under some general conditions which also cover, for example,
the FIGARCH model for which strict stationarity and ergodicity are not yet
established properties. Dahlhaus and Rao (2006) generalized the class of ARCH(c0)
processes to the non-stationary class of ARCH(oco) processes with time-varying
coefficients, establishing consistency and asymptotic normality for the segmented
CMLE estimator. Furthermore, the asymptotic properties of the CMLE for non-
stationary GARCH(p, ¢) models have been also addressed recently. Jensen and
Rahbek (2004a,b) proved the asymptotic behavior of the CMLE for non-stationary
GARCH(1, 1) and ARCH(1) models. For the ARCH(1) model, Jensen and Rahbek
(2004a) proved the following result.

Theorem 4.6.2. Assume that the ARCH(1) process in (2.31) and (2.32) does not
allow a stationary version or equivalently E(log(a1 Z?)) > 0. Assume further that
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the i.i.d. innovations (Z,) have E(Z;) = 0, V(Z,) = 1, and V(Z?) = E(Z})—1 =
¢ < oo and ag is known. Then, as n — oo, the CMLE estimator for a| obtained
from (4.22) as a special case, is consistent and asymptotically normal

Vi —8) 5 N©.a)).

In a companion paper, Jensen and Rahbek (2004b) derived a similar result for an
estimator of (a;, b;) in the GARCH(1, 1) framework.

Based on the results given in Kliippelberg et al. (2004) and Francq and Zakoian
(2008) concluded that the result in Theorem 4.6.2 is valid only under the assumption
E [log(alltz)] > 0. Moreover, these authors also argued that the estimator studied
in Jensen and Rahbek’s paper is not the usual CMLE but a constrained estimator of
the ARCH parameters, where aq is known, defined as

n

A . 1 X?
) = argmin, efo o0~ Z |:0—; + log(o? i| .

t=1 !

Instead, to overcome these drawbacks, Francq and Zakoian (2008) proved the
following results.

Lemma 4.6.1. Let the ARCH(1) model defined in (2.31) and (2.32), with X} > 0.
Then, if E[log(a1 Z?)] > 0 holds

1 1
;3 = O(dn) and X—y% = O(dn),

almost surely as n — oo for any constant d such that
exp{E [log(Z{)]}/ar < d < 1.

The lemma presented above allows to obtain the strong consistency and asymptotic
normality of the CMLE of a;.

Theorem 4.6.3 (Francq and Zakoian 2008). Under the assumptions of
Lemma 4.6.1 and if 0y = (ap,a;) € O, the CMLE

1 < [Xx2
(@0, a1) = argming co— Z I:—tz + log(o? } ,
n t=v+1 !

where © is a compact subset of (0, 00)?, satisfies 4, — a; a.s. and, if 0 ¢ belongs to
the interior of ©

Jn(ay —a)) S N0, Lad),
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asn — oQ.

Weak consistency and asymptotic normality of the CMLE for the parameters of non-
stationary GARCH(p, q) general models have been recently established by Chan
and Ng (2009).

4.6.2 Whittle Estimation

An alternative to the conditional maximum likelihood approach is to use the so-
called Whittle estimator. It is one of the standard estimators for ARMA processes
which is asymptotically equivalent to the Gaussian maximum likelihood estimator
and the least squares estimator. The Whittle estimator works in the spectral domain
of the process. The idea of such estimation procedure in the GARCH case was first
pointed out by Bollerslev (1986) who noted that th in (2.31) and (2.34) can be
rewritten as an ARMA (k, ¢) model, where k = max(p, q) as follows:

k q
th =ay+ Zwith—i + Z(PjUt—j + vy, (4.25)
i=1 j=1

where ¥; = a; —¢; with the convention¢; = 0ifi € (¢, p]anda; = 0ifi € (p,q],
= —b;,and

v =X} —o} =0X(Z? —1). (4.26)

Under the assumptions that (6?) is strictly stationary and V(X?) < oo, the sequence
(vy) constitutes a white noise sequence.

For estimating the parameters of an ARMA process, Whittle suggested a
procedure which is based on the periodogram. In his setup (X;) is a causal and
invertible ARMA(p, q) of the form ¢ (B)X, = ¥(B)Z,, where (Z,) is a sequence
of ii.d. r.v’s with E(Zy) = 0 and V(Zy) < oo. Denoting by @ the vector of
unknpwn parameters and ® the set of admissible values of 8, the Whittle estimator,
say 0, is given by

N n w
0 = argm1n0€0 Z g(:)( é; (4.27)
]

where I, y(w) represents the periodogram of the mean-corrected sample
Xi,..., X, defined as

2

1 |« -
- Z(Xf _X)e—za)t
n

t=1

In,X(a)) = , W E (—71’,7[].
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For simplicity in computation, the periodogram is evaluated at the Fourier frequen-
ciesw; = 2nj/n, j = —[(n —1)/2],...,[n/2]. On the other hand, the normalized
spectral density g(w; @) is often explicitly given. For example, for GARCH(p, gq)
models it equals to

1-b®) |
1 —a(ei®) —b(ei®)| ’

g(w; 0) := (4.28)

where a(z) = }°/_ ;7' and b(z) = Y} %_, b;z'. The Whittle estimator for ARMA
processes also works well if the innovations have infinite variance and its rate of
convergence compares favorably to /n-rates.

Mikosch and Straumann (2002) investigated the large sample properties of the
Whittle estimator based on the squares of a GARCH(1, 1) process. These authors
proved that under the assumption E(X8) = oo the Whittle estimator for the squared
GARCH process is unreliable, being its limiting distribution an unfamiliar non-
Gaussian law. Furthermore, if E(X ,4) = oo the Whittle estimator is inconsistent.
Note that this is in contrast to the ARMA case with i.i.d. innovations where the
rate of convergence improves when the tails become fatter. The results obtained by
Mikosch and Straumann (2002) are summarized below.

Let us rewrite the GARCH(1, 1) as the ARMA model in (4.25) withk = g = 1,
and assume that @ = (v, ¢;1). In proving consistency, the following assumptions
are needed.

1. Z, has a positive density on R.
2. ag > 0. In addition, condition £ log(alzg + b1) < 0 holds.

3. There exists hy < oo such that E(Zé’) < oo forall h < hy and EZM = .

The conditions above lead us to conclude that the equation E(a; Z2 + b1)*/? = 1
has a unique positive solution «.

Theorem 4.6.4. Let (X;) be a strictly stationary GARCH(1, 1) process. Assume
that the vector of true parameters 0 € C with

C:={0ecR’: -1<¢ <0, —p; <y <1}

Then the following statements hold.:

1. If « <4 anday, by > 0, then the Whittle estimator (4.27) is not consistent.
2. If k > 4, the Whittle estimator is strongly consistent.

Finally, one arrives at the following result.

Theorem 4.6.5. In addition to the conditions of Theorem 4.6.4 assume that k > 4
and E(Z§) < occ. Then the following limit relation holds:
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X (0 — 80) 4 [(W(60)]! (fo(eo)Vo +2 Z fk(ao)Vk) , n— 00, (4.29)

k=1

where

n/2 k>38’

{ ni=9c < 8
Xp =

(V) is a sequence of k/4-stable rv’s for k € (4,8) and a sequence of centered
Gaussian r.v’s for k > 8. The infinite series on the right-hand side of (4.29) is
understood as the weak limit of its partial sums. Moreover, [W(0)]™" is the inverse
of the matrix

Wioo) — ﬂ/n |:8logg(w;00):| [8log(w;00):| o

2r J_, a0 a0
and
1 (™ dlog(l 10 X
fi(0o) = —/ og(l/g(@ 0))e"’“"da), k € INy.
2 ), a0
The parameter aq is estimated through the expression 4o = [n7!>/_ (X, —

X)2](1—1r), where v, is the Whittle estimator of . If & > 4, thenn™" 30 (X, —
X)?> — V(X)) as. and hence 4 is strongly consistent under the assumptions of
Theorem 4.6.4.

Giraitis and Robinson (2001) considered Whittle estimation for the class of
ARCH(00) models with E(X?) < oo. Again the idea is to embed the model in
(2.31) with

o0
0,2 =ap+ Zain_,-, tez,

i=1

into an ARMA-type representation of the form

o0
of =ag(0)+ Y ()X, +u. t €L
i=1
wherev; = X tz_ tz are martingale differences and «; (@), fori = 0, 1, ... represent
the parameters depending on the corresponding #. Giraitis and Robinson (2001)
proved that the Whittle estimator is consistent if the following assumptions hold:

1. The fourth conditional moment of Z, is finite.
2. © is compact.
3. 00 ®ando? > 0.
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4. Forall @ € ©
/ log g(w; 0)dw =0

with g(-, -) defined as in (4.28).

5. g(w; @)~ is continuous in (w, 0) € [—m, 7] x O.

6. The set {w : g(w;0) # g(w;0y)} has positive Lebesgue measure, for all § €
©/{00}.

Under some additional regularity and moment conditions Giraitis and Robinson
(2001) proved the asymptotic normality of the Whittle estimator through the next
result.

Theorem 4.6.6. Assume that the eighth conditional moment of Z; is finite and that
assumptions 2—6 hold. Assume further that

e 0y in an interior point of ©.

s In a neighborhood of 0, (3/00)g™" (w; 0) and (3*/30030") g~ (w; 0) exist and
are continuous in w and 6.

e (0/00)g ' (w;00) € Lip(n), n > 0.5.

e The matrix

1L ["[0dlogg(w;0o) dlog(w;00)7
wow = o [ [T | [P e

is nonsingular.

Then
n2(0 = 00) S N©O,2W + WV WY, 0 — oo,

where

2 [T dg(w;00)”" [dg(w;00)7' ]
L [ et [0 007, s <o
1 —I

with f(,-,-) representing the fourth-order cumulant spectrum of X 2.

Finally, the strong consistency and asymptotic normality of the Whittle estimator
for a class of exponential volatility model, which contains as special cases the
EGARCH model of Nelson (1991) and the GIR-GARCH model of Glosten et al.
(1993), have been recently established by Zaffaroni (2009).
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4.6.3 Bayesian Approach

A common feature of the previous works is that all of them rely on a likelihood-
based approach. Recently, Bayesian methods for the estimation of GARCH-type
models driven by normal or Student-¢ innovations have also been proposed. The
analysis of these models, from a Bayesian point of view, is a recent area of
research and can be considered very promising due to the advantages of the
Bayesian approach, in particular the possibility of obtaining small-sample results
and integrating these results in a formal decision model. Bayesian inference
on GARCH-type model has been implemented using importance sampling (e.g.,
Geweke 1989 and Kleibergen and van Dijk 1993) and, more recently, using Markov
chain Monte Carlo (MCMC) including Bauwens and Lubrano (1998) and Bauwens
and Rombouts (2007) (Gibbs sampler), Geweke (1994), Nakatsuma (2000), Vrontos
et al. (2000) and Ardia (2008) (Metropolis-Hastings algorithm) and Mitsui and
Watanabe (2003) (acceptance-rejection/Metropolis-Hastings). Excellent reviews of
MCMC methods for estimating GARCH models are Asai (2006) and Miazhynskaia
and Dorftner (2006). In this section we briefly explain the approaches suggested
by Ardia (2008) and Bauwens and Lubrano (1998) for the GARCH(1, 1) and the
ARCH(1) model, respectively.
We first consider the GARCH(1, 1) model in (2.31) and

2 2 2
of =ap+a1X;_, +bio_,,

where (Z;) are i.i.d. standard normal r.v’s and ay > 0, a;,b; > 0. Let § =
(ao, a1, by) be the vector of unknown parameters and x = (xy,...,x,) a sample
generated by the GARCH(1, 1) model. In addition, we define the (n x n) diagonal
matrix ¥ := X(0) = diag({o(0)}'_,) with 62(0) = ap + a1 X2, + bio?_,(9).
Then the likelihood function of # takes the form

1
L(0]x) « (det2)™ /% exp { —Ex’Z_lx} ,

where, for convenience, we have considered the first observation as an initial
condition and the initial variance fixed and equal to «g. In order to obtain the
posterior distribution we have to consider prior distributions for the parame-
ters. Prior distributions are intended to represent beliefs about parameter values,
prior to the availability of data. Ardia (2008) proposed the joint prior p(6) =
plao,ar)p(br) with p(ag,a1) < Na(ao.aili ey 2 agar))!(@,a1 > 0) and
p(br) o< N(bi|py,, >y )1 (by > 0), where p and ) are the hyperparameters and
1(-) is an indicator function. The posterior distribution is proportional to

p@|x) oc L(O|x)p(0). (4.30)
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The joint posterior distribution of the parameters is sampled using Nakatsuma’s
(1998, 2000) approach, which provides a MCMC method based on the Metropolis-
Hastings algorithm for a linear regression model with an ARMA-GARCH error.
The steps required to implement the algorithm are the following:

1. Draw a set of initial values § © = (a(()o) , aio) , bio) ) from the joint prior p(6);

2. Draw (a(()l), agl)) from p(ag, a; |b§0), x);

3. Draw bil) from p(bﬂaé”,ail),x);

4. Generate J sets of random numbers (a(()]),agj),bﬁj)) for j = 2,...,J by

repeating stages 2-3, with
. : - : . :
(ag’.a{") ~ plag.ai|b ™", x), and b ~ p(bilay’.a}, x).

Point estimates can then be easily obtained by taking the mean or the median
of the posterior distribution. It is important to stress that, since none of the full
conditional distributions are known analytically, we sample (a\’,a\’, bV ))112 |
from two proposal distributions. These distributions are obtained by considering
the ARMA representation of the GARCH(1, 1) given in (4.25) and (4.26) with
k = q = 1. Note that v, = (33 — 1)a so that, by construction, (v;) is a martingale
difference process with variance 20,4. Nakatsuma (1998) pointed out, however, that
in practice is difficult to generate the sets (a(()J ) , aﬁj ), bi’ ) ) directly from (4.25). To
overcome this difficulty, the idea is to approximate v, by a variable ¢, ~ N (0, 20}").
This leads to the following auxiliary model:

X7 =ao+ V1 X, +gi&—1 + e,
By noting that €, and 6 are both functions of 6, respectively given by
€0) =X} —ao— Y1 X2, — gre—1(0) (4.31)
and
07 (0) = ao+a X, +bio(9),
by defining the (n x n) diagonal matrix A := A(8) = diag({20,'(#)}"_,) and the

vector € := (€y,...,€,) we can approximate the likelihood function of @ from the
auxiliary model as follows:

1
L(0|x) o< (det A)~2exp { —EG/A_IG} .

The construction of the proposal distribution for (ag,a;) and b is based on this
likelihood function.
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In order to generate (ao, a;) we use the following recursive transformations (e.g.,
Chib and Greenberg 1994)

re=14+bir—
st=x;y+bisty’

which allow to express the function €, (@) in (4.31) as a linear function of (ao, a).
The initial values of ry and s% are set to zero. If we regroup the terms within vectors
x? = (xl2 .- -xﬁ)’ , ¢; = (r; Y;) and construct the (n x 2) matrix C where the tth
element is ¢;, then, it turns out that e = x2 — C (ag a1)’ and that we can express the
likelihood function of (ag, @)’ as follows:

1
L(ap, a1]by, x) o (detA )~'/? exp{—zé/A_le} . (4.32)

Furthermore, the proposal distribution to sample (ag, a;) is obtained by combining
this likelihood function and the prior distribution by the usual Bayes update:

* q(do,ar,ap, ar) < N(ao, arlfagar)s 2-(ag.ar)) ! (@, a1 > 0);
ol =C'A7'C+ 3z}

(ao.a1) (00,01);

ﬁ’(ao,al) = Z(“Oaal)(C/A_lxz + E(_a}),al)”’(!loqal))’
where the (n x n) diagonal A := diag({52}_,) is such that

62 = ao +axt, + b5,
The value (dg,a;) is the previous draw of (ag,a;) in the Metropolis-Hastings

sampler. A candidate (aj,a}) is sampled from this proposal distribution and
accepted with probability

P(a())ks aikvbllx) q(a;saiksdch dl)

min — — , .
p(ao.ai, bilx) q(ao.ar,ag,ay)

Now, in order to generate b; the idea is to express ¢, (8 ) in (4.31) as a linear function
of b; and proceed similar as in the case of (ao, a1). However, this approach is not
feasible since it is not possible to rewrite ¢, as a linear function of b;. To overcome
the problem, we linearize €, (b;) by the first order Taylor expansion at point, say, b;
as follows:

th

e (b1) =~ (b)) + b

b=b) (bl - l;l)

with b, representing the previous draw of b; in the Metropolis-Hastings sam-
pler. Hence, the proposal distribution to sample b; results from combining the
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approximated likelihood and the prior distribution utilizing a similar scheme as in
the case of (ao, a;) and the prior distribution by the usual Bayes update:

. q(bl,bl) o< N(bilfy, . £5,) 1 (b1 > 0);

- 3l =VATly + =,k

o iy = S0 (VAT 5.

where r = (ry--+ry) and V = (V; ---V,)) with
ry = Gt(l;l) + l;lvt

and

de ~
v,z_db’l pi—i, (b1 = b1) .

The terms V, can be computed by the following recursion
vV, = [ 1~ €— l(bl) + blvt 1
with the initial value Vy = 0. Thus, we can approximate the expression in (4.32) by

exp%—%(r — b VYA (r — blV)} )

Finally, a candidate b} is sampled from this proposal distribution and accepted with
probability

| pvr.ag, ailx) q(bF, by)
min e
{ p(bi.ag.arlx) q(b1.b})’ }
An important issue, when implementing MCMC methods, is the assessment of the
convergence of the algorithm. Although there is a reassuring theoretical literature
concerning the convergence of MCMC methods, results do not easily translate
into clear guidelines for the practitioners. The most straightforward approach for
assessing convergence is based on simply plotting and inspecting traces of the
observed MCMC sample. If the trace of values, for each of the parameters, stays
relatively constant over the last, say, m iterations, this may be satisfactory evidence
for convergence. It is worthwhile to mention that such diagnosis should be carried
out for each of the estimated parameters by the MCMC algorithm, because conver-
gent behavior by one parameter does not imply evidence for convergence for other
parameters in the analysis. The ad hoc techniques described above fail, however,
to guarantee convergence of the observed MCMC sample in the presence of a
phenomenon called metastability, i.e., the Markov chain appears to have converged
to the true equilibrium value, but after some period of stability around this value,
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the Markov chain may suddenly move to another region of the parameter space.
Unfortunately, there is no statistical technique available for detecting metastability.
Finally, we also would like to refer the work of Yu and Mykland (1998) who
propose to monitor the mixing or convergence behavior of a Markov sampler using
the CUSUM path plot of a chosen one-dimensional summary statistic. The authors
proved that the smoothness of the CUSUM path plot corresponds to the slowness of
the mixing behavior of the summary statistic. Along with the ad hoc techniques
described above, a number of more formal methods exist which are prevalent
in the literature. For example, Gelman and Rubin (1992) introduce a diagnostic
based on multiple chains (with very dispersed starting values), in order to check
if the posterior results are not too sensitive to the starting values. This criterion
is not very attractive as it requires to run many times the Gibbs sampler, which
is computationally demanding. Convergence criteria based on the examination of a
single long run are thus preferable. Zellner and Min (1995) put forward three simple
criteria which are useful only when @ is partitioned in two blocks of parameters.
Geweke (1992) provides a statistic that compares the estimate of a posterior mean
from the first say, n; draws to the estimate from the last say, n, draws of the chain.
The statistic is normally distributed provided » is large and the chain has converged.
For an overview of the early work in this area see Cowles and Carlin (1996), Robert
and Casella (2004) and Carlin and Thomas (2009) for recent developments.

Next, we focus on the estimation of the non-zero mean ARCH(1) model with
(conditionally) normal innovations

X =u-+o0,7Z;, 0,2 =14a (X, —u)z.

In this case the vector of unknown parameters is @ := (u,a;). Bauwens and
Lubrano (1998) applied the Griddy-Gibbs sampler (GGS) proposed by Ritter and
Tanner (1992) in order to conduct Bayesian inference. By assuming a flat prior, the
conditional posterior density p(u|a;, x) has a kernel given by

N2
1 —u) } (4.33)

n
—1

r(ula;, x) = tl:[lat 0) exp{ 720
Likewise, the conditional posterior density p(a;|u, x) has the same expression as
in (4.33) but for a fixed u. Since atz is a function of both u and a;, the conditional
posterior density of u cannot be a normal or any other well-known density from
which random numbers could be easily generated. Hence, there is no property of
conjugacy. Note, however, that the kernel in (4.33), conditionally on a previous draw
of the conditioning parameter, can be evaluated over a grid of points. One can then
compute the corresponding distribution function using a deterministic integration
rule. Afterwards, one can generate a draw of u (respectively a;) by inversion of the
distribution at a random value sampled uniformly in [0, 1].

An advantage of the GGS is that it is successful in dealing with the shape of
the posterior, such as the skewness, by using smaller MCMC outputs compared to
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other methods. This is due to the fact that integration is done on a grid so that every
direction can be explored in detail.

Bauwens and Lubrano (1998) state that the choice of the grid of points has to
be made carefully and constitutes the main difficulty in applying the GGS. Even if
the parameter space is bounded, the authors recommend restricting the integration
to the subset of the parameter space where the value of the posterior density is large
enough to contribute to the integrals.

Bauwens and Lubrano (1998) implemented the following algorithm in order to
extract n draws of the posterior distribution p (€ |x) in (4.30).

1. Set an initial value aﬁo) for ay;

2. Loop starting at j = 1;

3. Compute r(u|a§1_l),x) over the grid (uy, ..., up) to obtain the vector M, =
r1seooofm);

4. By a deterministic integration rule' using M points, compute the values Mg =
0, Dy, ..., Dy) where

P, :/ r(u|a§j_l),x)du, i=2,...,M.
u

Compute (and cumulate for the marginal) the normalized pdf values M, =
M, /Dy of qo(ulagj_l),x). Compute E(u|a§j_1),x) and V(ulaij_l),x) by the
same type of integration rule and store them in a table;

5. Generate y ~ UJ0, )] and invert @(u|a§j - x) by numerical interpolation to

1)

get a draw of u|a§’ ,x, indexed u'/). Store this draw in a table;

6. Repeat steps 3-5 for ai’)lu(j), x;

. Increment j by one and go to step 3 unless j > n;

8. Compute the posterior moments of # and a; from the tables where conditional
moments are stored (by averaging). Likewise, plot the marginal densities (cumu-
lated M,). With the table containing (u(l), agl), cou®, aﬁ")) one can compute
posterior moments and draw a histogram of any function of the parameters.

~
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Chapter 5
Models for Integer-Valued Time Series

5.1 Introduction

The analysis of time series of (small) counts has become an important area of
research in the last two decades partially because of its wide applicability to

¢ Social science (McCabe and Martin 2005);

* Queueing systems (Ahn et al. 2000);

» Experimental biology (Zhou and Basawa 2005);

e Public health and medicine (Yu et al. 2013; Weil3 2013; Moriia et al. 2011;
Andersson and Karlis 2010; Alosh 2009);

* Environmental processes (Scotto et al. 2014; Villarini et al. 2010; Cui and Lund
2009; Thyregod et al. 1999);

e Economy (Jung and Tremayne 2011; Fokianos et al. 2009; Quoreshi 2006;
Blundell et al. 2002);

¢ International tourism demand (Bridnnds and Nordstrom 2006; Brinnds et al.
2002; Garcia-Ferrer and Queralt 1997; Nordstrom 1996);

» Statistical control processes (Weifl 2007, 2009; Lambert and Liu 2006; Ye et al.
2001);

¢ Telecommunications (Weil3 2008a);

e Alarm systems (Monteiro et al. 2008).

We refer to McKenzie (2003) and Kedem and Fokianos (2002) for an overview of
the early work in this area and to Tjgstheim (2012), Fokianos (2011), Jung and
Tremayne (2006, 2011), and Weif3 (2008b) for recent developments.

As an example, Fig.5.1 displays a time series containing the monthly number
of fires in Faro district (Portugal) for the period January 2004-January 2011.
One way to obtain models for integer-valued data is to replace multiplication in
conventional ARMA models by an appropriate thinning operator' to ensure the

ISeveral other approaches have been proposed in the literature for the analysis of the time series of
counts, including static regression models and autoregressive conditional mean models; see Jung
and Tremayne (2011) for further details.

K.F. Turkman et al., Non-Linear Time Series, DOI 10.1007/978-3-319-07028-5_5, 199
© Springer International Publishing Switzerland 2014
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integer discreteness of the process. The procedure of thinning is more common in
the study of point processes but is also appropriate here as many discrete variate
processes arise as aggregated point processes, i.e., counts of a point process in
consecutive intervals of time. The most popular thinning operator is the binomial
thinning, first introduced by Steutel and van Harn (1979), to adapt the terms of self-
decomposability and stability for integer-valued time series.

Definition 5.1.1 (Binomial thinning). Let (£;) be a counting sequence of i.i.d.
Bernoulli r.v’s with mean a € [0, 1] and Z a non-negative integer-valued random
variable with range {0, 1,...,n} or INy, independent of the counting sequence. The
binomial thinning operator ao is defined by

aoZ = ZJZ'=1§j(a)Z>O'
0 Z=0

Some important properties of the binomial thinning operator are stated in the
following lemma.

Lemma 5.1.1. Let Z and V two r.v’s with support in Ny. For the binomial thinning
operator it holds that, for ay,a, € [0, 1]

1.00Z =0;

2.10Z =27;

3. a10a,0Z7Z iazoaloz;

4 a,0(Z+VVEa10Z+ayoV;

J1+Y zZ+v

h . z
Letay s Y = Y04 gi(a). Then,aio(Z+ V)£ ay & Z+ay 3" v
6. ay0(aroZ) % (@ar) o Z;
d

“

7.a10Z +ay0Z # (a1 +az) o Z;
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8. Let X := a; o Z. The mean value and the variance of X are given by E(X) =
@ E(Z) and V(X) = alV(Z) + ai(1 — a1) E(Z), respectively.

Property 4 in the previous lemma holds true provided that the counting sequences
involved in defining a; o Z and a; o V are independent.

Various modifications of the binomial thinning operator have been proposed
to make the integer-valued models based on thinning more flexible for practical
purposes. Brinnds and Hellstrém (2001), for instance, suggested allowing for
dependence between the indicators of the counting series (£;). A different gener-
alization was proposed by Latour (1998). Latour’s operator is defined as follows:

wop 7= ) DimE@Z >0

0 Z=0
where the 1.v’s §;’s are i.i.d. and independent of Z. However, in contrast to binomial
thinning in Definition 5.1.1, the variables £; s are now allowed to have the full range
INy, with mean a and variance B. Latour’s operator is referred to as generalized
thinning. Note that this operator includes the binomial thinning as a special case
where B = a(1 — a). Another special case of the generalized thinning operator is
the extended thinning operator proposed by Zhu and Joe (2003) which takes the form

i®7 Zﬁ@ﬂ@2>o’
0 Z=0

where the £;’s are i.i.d. r.v’s independent of Z, with the same distribution as a
random variable & (a) with generating probability function

(I-a)+(a—y)s

1%@%““);:Eba@]:(l—ay)—(l—ahw’

y €(0,1] (5.1)

with mean E(£(a)) = a and variance V(£(a)) = a(l — a)lli'—;'. Clearly, the
binomial thinning operator corresponds to y = 0 in (5.1). Further extensions of the
binomial thinning operator have been recently proposed by Zhu and Joe (2010) who
introduced the expectation thinning operator based on a family of self-generalized”
r.v’s, as follows: let {£(a) : 0 < a < 1} be a family of self-generalized r.v’s with
support on INy and finite mean. The expectation thinning operator between a and Z

is defined as

Yo &i@ Z>0

Z = ,
a® 0 Z=0

2A r.v. Y(a) is said to be self-generalized with respect to parameter a, if Py(q)(Py)(s;a);a’) =
Py (s;ad’), foralla,a’ € [0, 1].
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where the £;’s are i.i.d. r.v’s independent of Z, with the same distribution as a
r.v. £(a) with E(£(a)) < 1, forall a € (0, 1).

Another important modification of the binomial thinning operator was proposed
by Kim and Park (2008) who introduced the signed binomial thinning operator
for handling over-dispersed and non-stationary integer-valued time series. One
advantage of Kim and Park’s operator is that it can handle negative integer-valued
time series. This is in contrast with the binomial and the generalized operator which
are only applicable to non-negative integer-valued time series. The signed binomial
thinning is as follows:

4
a®Z:=sgn(a)- -sgn(Z) - ZEJ (a), a € (—1,1), 5.2)
j=1
where
1
e | 728

and (£;) are a counting sequence of i.i.d. Bernoulli r.v’s with mean |a|.
Kim and Park’s operator has been generalized by Zhang et al. (2010) who
introduced the signed generalized power series thinning operator ® defined as

1Z|

a®Z :=sgn(a)-sgn(Z) - Z £i(a), (5.3)

Jj=1
where (§;) are i.i.d. with generalized power series distribution of the form

c(n)[g(@)]"

h(@) ,w>0nels,

P& =n)=

where S is any non-empty enumerable set of non-negative integers and c(-), g(-),
and A(-) are positive, finite, and differentiable functions.

Note that a common feature of all these thinning operators is the assumption of
independence of the counting variables £;’s. Recently, Risti¢ et al. (2013) introduced
a new binomial thinning operator based on a counting sequence of Bernoulli
dependent r.v’s. Risti¢ and co-authors’ thinning operator is defined as

Z .
aogZ = Yi=16@Z>0
0 7Z =0
with

E=0-VpW; +V;Y, jeN, 5.4
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where (W;) and (V;) are sequences of i.i.d. Bernoulli r.v’s with parameters a €
[0,1] and 8 € [0, 1], respectively, and Y is also a Bernoulli random variable with
parameter a € [0, 1]. Furthermore, it is assumed that W;, V; and Y are independent
for all i, j € IN. The representation in (5.4) implies that (§;) forms a sequence of
dependent Bernoulli r.v’s with parameter a € [0, 1], since Corr(&;,&;) = 6% # 0
for 6 # Oand i # j. The case § = 0 corresponds to the binomial thinning
operator.

Joe (1996) and Zheng et al. (2007) suggested extending the thinning concept
by allowing a to be random itself. The resulting thinning operation is then called
random coefficient thinning.

Definition 5.1.2 (Random coefficient thinning). Let Z be a random variable
having the range INy. Let ¢ € [0, 1] be a random variable. Further, assume that ¢ is
independent of Z. Then the random variable ¢ o Z is obtained from Z by random
coefficient thinning if the operator o is the binomial thinning operator, performed
independently of Z and ¢.

The concept of random coefficient thinning has been recently extended by Gomes
and Canto e Castro (2009) by allowing a different discrete distribution associated to
the thinning operator.

Definition 5.1.3 (Generalized random coefficient thinning). Let Z be a random
variable having the range INjy. Let ¢ be a random variable with supporton R . Then,
¢ 0% Z is a random variable satisfying

(¢ 0% Zlp, Z) ~ G(p,0?),

where G is a given discrete-type distribution associated to the generalized thinning
operation, with mean y = ¢Z and finite variance 0> = §Z with § possibly
depending on ¢ and Z.

5.2 Integer-Valued ARMA Models

Among the most successful integer-valued time series models based on thinning
operators are the INteger-valued AutoRegressive model of order p (INAR(p)) and
the INteger-valued Moving Average model of order ¢ (INMA(q)). The former was
first introduced by McKenzie (1985) and Al-Osh and Alzaid (1987) for the case
p = 1. It is worth noting that the INAR(1) model is a subcritical Galton-Watson
process with immigration. Empirical relevant extensions for the INAR(1) model
have been suggested by Brinnis (1995, explanatory variables), Brinnis et al. (2002,
panel data), Brinnds and Hellstrom (2001, extended dependence structure), and
Silva et al. (2005, replicated data). Further extensions and generalizations were
proposed by Latour (1998), Du and Li (1991), Ispany et al. (2003), Zhu and Joe
(2006), and Weill (2008a). The INMA(g) model was proposed by Al-Osh and
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Alzaid (1988) and McKenzie (1988) and subsequently studied by Brinnéds and
Hellstrom (2001) and Weil (2008c). Related models were introduced by Aly and
Bouzar (1994, 2005) and Zhu and Joe (2003). Moreover, there have been also
some attempts to make the models based on thinning more attractive for economic
applications by introducing covariates. Blundell et al. (2002), for example, studied
the number of patents in firms, Rudholm (2001) analyzed competition in the generic
pharmaceutical markets, Briannis et al. (2002) estimated a nonlinear integer-valued
model for tourism demand, and Bridnnids and Nordstrom (2006) focused on the
tourist accommodation impact of two large festivals in Sweden: the Water Festival
Stockholm and the Gothenburg Party. Extensions for random coefficients integer-
valued autoregressive models have been proposed by Zheng et al. (2006, 2007) who
investigated basic probabilistic and statistical properties of these models. Zheng and
co-authors illustrated their performance in the analysis of epileptic seizure counts
(e.g., Latour 1998) and in the analysis of the monthly number cases of poliomyelitis
in the US for the period 1970-1983.

This section summarizes some of the basic probabilistic properties of INAR and
INMA models, including discussions on the existence of stationarity solutions and
the tails of the marginal distribution. Furthermore some complementary extreme
value results are also presented. We restrict our attention to time series with an
infinite range of counts.’

5.2.1 INAR(1) Model

A discrete time non-negative, integer-valued process (X;) is called an INAR(1)
process, if it follows the recursion

X, =M(X,,a)+Z,, t €, (5.5)

where M, (-,-) is a random operator which preserves the discreteness of the counts
at time ¢ and (Z;) is an i.i.d. sequence of non-negative integer-valued r.v’s,
stochastically independent of X,_; for all points in time, with finite mean pz > 0
and variance O'% > 0. The most commonly used random operator is the binomial
thinning operator introduced in Definition 5.1.1, i.e.,

Xi—1
M(Xi-1,a) = Z Ej(a) =aoX,—,

J=1

3 An excellent account for the theory of INAR(1) models with a finite range of counts can be found
in Weif3 and Kim (2013) and the references therein.



5.2 Integer-Valued ARMA Models 205

Table 5.1 Important
properties of the INAR(1)
based on the binomial
thinning operator

EX) = L

Vx) = S

EX/|X—) =aX,— + pz;

V(X/|Xi—1) = a(l fa)Xr—l + U%;

Cov(X, Xi4j) = a’ V(X));

Corr(X;, X,+;) = a’;

Py, (s) = P2, (s)Px, (1 —a + as), with Py(s) := E(s%).

NNk »wD =

where (&;) is a counting sequence of i.i.d. Bernoulli r.v’s with mean a € [0, 1],*
independent of X,_,. It is important to stress the fact that the binomial thinning
operator is performed at each time 7. Hence, it would be more appropriate to write o,
instead of o to emphasized this fact. Nevertheless, since in the case of the INAR(1)
model there is no risk of misinterpretation, the index ¢ of the thinning operators is
omitted since there is no advantage in retaining it. Note that X, can be interpreted
as being the sum of @ o X;,_, i.e., those who survive (with equal probability a) from
time (t — 1) and ¢, and Z, which represents those who arrive in the interval (t — 1, ¢)
and survive until time ¢. It is worth noting that the INAR(1) process in (5.5) based
on binomial thinning operator is stationary. Important properties of this model are
given in Table 5.1. Note that the ACF at lag k is of the same form as in the case of
the conventional AR(1) model.’> Despite this fact, a remarkable difference between
the conventional AR(1) and the INAR(1) process is that the latter is nonlinear which
implies that the second-order structure will not necessarily show up accurately all
features exhibited in the process.

Al-Osh and Alzaid (1987) proved that the stationary distribution of (X,) is given
by that of

o0
d .
X = E a'oZ;_;.
i=0

Furthermore, by the stationarity of (X;) and property 7 in Table 5.1, it follows that
the distribution of X; can be determined through the relation

Px(s) = Pz(s)Px(1 —a +as),

which allows us to conclude that the marginal distribution of the INAR(1) model
must be discrete self-decomposable® (DSD). Important distributions belonging to

4The case a € (0, 1) is called the stable case. Ispany et al. (2003) introduced a nearly-unstable
INAR(1) model witha, =1 —4§,/n, and 6, — § asn — oo.

3 Although for the INAR(1) model the values of the ACF are always non-negative.

S A discrete distribution in IN, with probability generating function P(z) is called DSD if P(z) =
P(1 —a + az)P,(2), for |z < 1and a € (0,1), with P,(-) being some probability generating
function. Alternatively, a non-negative integer-valued random variable X is DSD if for each a €
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the class of DSD distributions are the negative binomial, Poisson, generalized Pois-
son distribution and discrete stable distributions as a sub-class. This class, however,
does not include distributions defined on bounded sets ruling out the possibility to
consider the binomial distribution, for example, as a marginal distribution for X,.
Alzaid and Al-Osh (1988) proved that the distributions of Z, and X, belong to the
same family of distributions iff one of them belongs to the class of discrete stable
distributions. Within the context of the INAR(1) process the Poisson distribution
plays a role similar to that of the Gaussian distribution in the conventional AR(1)
process. Specifically, it is easy to check that the marginal distribution of (X;) is
Po(A/(1—a)) iff the innovations constitutes an i.i.d. sequence of Poisson-distributed
r.v’s, Po(A) with uz = 02 = A, and if the initial distribution X is Po(A/(1 — a)).

In order to obtain INAR(1) models with negative binomial (and in particular
geometric) marginals, a number of approaches have been proposed in the literature.
McKenzie (1986) first introduced the INAR(1) model based on the binomial
thinning operator with binomial negative marginals. The author proved that Z; 4
Z,N=1 aY o W;, where N is a Poisson-distributed random variable with parameter
—nln(a), (U;) forms a sequence of i.i.d. uniformly distributed r.v’s in the interval
(0,1) and (W;) is a sequence of i.i.d. binomial negative r.v’s with parameters n = 1
and «. The author, however, did not identify the distribution of Z;.

Leonenko et al. (2007) extended McKenzie’s results and proved that if X, has a
negative binomial distribution with parameters n > 0 and « := n/m with m > 0,

thatis
! n!F(i]) 7] m+7] ’ T

then Z; has a negative-binomial geometric distribution with parameters (1, k/(k +
a),a), thatis

_ _oo i+n—1 K\ a \'(n+i-1 N
P(Z,_n)_;( n )(K+a) (K+a) ( i )a”(l a).

Risti¢ et al. (2009) showed that if &;’s are i.i.d. geometric r.v’s with parameter
a/(14a),beinga € [0, 1), and (X,) is a stationary process with marginal geometric
with parameter /(1 + @) where u := E(X;), then

n

=0,1,....

P(Z,fzn)z(l— a“) i an

i—a) v p—adtrap

(0, 1) there is a non-negative random variable X, such that X Laox + X,, where a o X’ and
X, independent, and X is distributed as X .
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Hence, Z, is a mixture of two geometric r.v’s with parameters p/(1+u) and a/(1+
a), respectively.

A different approach for generating INAR(1) models with negative binomial
marginals is due to Al-Osh and Aly (1992). These authors consider the INAR(1)
in (5.5) with the random operator

(axb)oX;—1

M(Xi—,axb)y= Y &(b), be(01),

Jj=1

provided that X; | > 0 and O otherwise. The £;’s are i.i.d. r.v’s with range contained
in INy and distribution depending on the parameter . In this case, it follows that if
Xois BN(n,b(1 —a)/[1 + b(1 — a)]) and that Z, has a BN(n,b/[1 + b]), then X,
is BN(n,b(1 —a)/[1 + b(1 —a))]).

The INAR(1) model in (5.5) based on the binomial thinning operator has been
generalized in several ways. A possible extension is to consider an INAR(1) model
with periodically varying parameter of the form

Xi=¢0oXi1 + 7, (5.6)

with¢, =a; € (0,1)fort = j +kT,(j =1,...,T, k € Ny), where the thinning
operator o is defined as

Xi—1

¢ 0 X1 i Z &1 (Pr),

i=1

where (&;,(¢;)), fori = 1,2,..., is a periodic sequence of independent Bernoulli
r.v’s with success probability P[&;,(¢;) = 1] = ¢,. The model in (5.6) was
first introduced by Monteiro et al. (2010) and is referred to as Periodic INteger-
valued AutoRegressive process of order one with period 7 (hereafter PINAR(1)7).
Furthermore, Monteiro et al. (2010) assumed that (Z;) constitutes a periodic
sequence of independent, Poisson-distributed r.v’s with mean v, = A; fort =
J+kT,(j =1,...,T, k € INy), which are assumed to be independent of X,_; and
¢, o X;—. To avoid ambiguity, T is taken as the smallest positive integer satisfying
(5.6). For this model Monteiro and co-workers proved the following result. For
simplicity in notation we define

i—1

¢t—j i>0
j=0 '
1 i=0

Bii =

Proposition 5.2.1. For a fixed value of j = 1,...,T, with T € N, the process
(X;) fort = j + kT and k € INy is an irreducible, aperiodic and positive recurrent
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(and hence ergodic) Markov chain. Moreover, the stationary distribution of (X;) is
given by that of

+oo T—1 j—1
Vi = Z (B BrsBrT') © Zrmay—s + Z BimoZj—m,
m=1 s=0 m=0

where the series converges almost surely and also in L,.

Now we are prepared to obtain the periodic mean and autocovariance function of
(X0).

Lemma 5.2.1. For a fixed value of j = 1,..., T, withT € N, t = j + kT and
k e IN()

-1 T—j—1

Bjkrj—k + Bj; Z Briir—i

i=0
1 —Brr

~.

IIM

wj=p = EX;) =V(X;) = =0

with the convention Z,;lo = 0. Moreover, for j = 1,...,T andh > 0, y; 14r(h) =
vi(h) = Bjtnnpj and yjpir(=h) = y;(=h) = Bjtkrnitj+kr—h-

Note that, in contrast to the autocovariance function of a stationary series,
y;(-) is not symmetric in /; however y,(—h) = y;—(h) and y;(h) = y,44(—h).
Furthermore, in view of the fact that 4 can be rewritten in the form & = i + mT,
for some i € {l,...,T} and m € N, the autocovariance function takes the form
vi(h) = B7rBj+iik; and y;(=h) = BT Bj+riltj+r—i-

Within the context of the PINAR(1)7 process the Poisson distribution also plays a
role similar to that of the Gaussian distribution in the conventional PAR(1) process,
as the following result shows.

Theorem 5.2.1. The marginal distribution of (X;), witht = j + kT for a fixed
value of j = 1,...,T, withT € N, and k € Ny, is Poisson with mean u; if and
only if (Z,) forms a sequence of independent Poisson-distributed r.v’s with mean A ;.

In order to account for the so-called piecewise phenomena, Monteiro et al. (2012)
introduced the class of self-exciting, integer-valued autoregressive model of order
one with two regimes defined by the recursive equation

aro X1+ 7, Xi 1 <R
X, = , 5.7
"Tlao X1 4+ Zi, Xim1 > R ©7

where R represents the threshold level and (Z;) constitutes an i.i.d. sequence of
Poisson-distributed r.v’s with mean A, for each ¢. The authors proved that (X,) is
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an irreducible, aperiodic and positive recurrent (and hence ergodic) Markov chain,
implying that there exists a strictly stationary process satisfying (5.7).

Another possible extension of the INAR(1) model is to replace the binomial
thinning operator by the operator o of Gomes and Canto e Castro (2009) which
leads us to express X, as

X =¢ % Xim1 + Zy. (5.8)

Gomes and Canto e Castro (2009) obtained necessary and sufficient conditions to
ensure the existence of a weak stationary process satisfying (5.8).

Theorem 5.2.2. Let (¢;) be a sequence of i.i.d. r.v’s with ¢; € Ry and (Z;) a non-
correlated sequence of non-negative integer-valued r.v’s, independent of (¢;). If, for
allt € Z, E((ptz) < 1, then there exists a unique non-negative integer-valued weakly
stationary process (X;) satisfying (5.8).

An explicit form for the causal solution of (5.8) is given in the following result.

Proposition 5.2.2. Under the conditions of the theorem above, there exists a
sequence of non-correlated r.v’s (€;), such that the process (X;) in (5.8) admits
as a stationary causal representation

o0
X =Y Ble (5.9)
i=0

where €, = ¢; 0% X,_1 — o, X, + Z; and

i—1
13*. — l—[(pt_ji>0
i =0 .
1 i=0

A major drawback with the representation (5.9) is that it is not canonical in the
sense that the sequences (¢;) and (X,) are not independent. The expressions for the
mean, variance and autocovariance function are the following:

_ Hz

P = T
V(X)) = o + Vi) 1 :
DT + EXen] T V) + EXe]

y(k) = [E@)]V(X), k = 0.
Example 5.2.1. Assume that

X, = of Xi 1+ 2, t €2,
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where P stands for a Poisson distribution with mean value and variance equal to
¢ X;—1 and Z, ~ Po(A). Then

_ E(X:) A
V&) = g TEEII T Ty

As a third extension of the INAR(1) model in (5.5) we consider the zero-
truncated Poisson INAR(1) (in short ZTPINAR(1)) model with parameter A > 0
introduced by Bakouch and Risti¢ (2010), defined as

E(X;) = I——E(qof)’

2 with probability e~
"7 laoX,_ + Z, with probability 1 — e’

where (Z;) is a sequence of i.i.d. r.v’s. Bakouch and Risti¢ (2010) proved that for
this model

[(1 —a)" = (—a)"|A"e*

Pz =m= nl(e* — 1)

(5.10)

Note that condition a € (0, %) ensures the non-negativity of the probabilities in
(5.10).

For the zero-truncated Poisson INAR(1) model the expressions for the mean,
variance and autocovariance function are as follows:

A
EX)= — 2.
(X0) I1—a(l—e™?)
et (e* — Da(l —a)
V(X)) = AR
(Xo) ek+a2—azex( e* +a—ae* MZ+UZ)

y(k) =d"(1—e™*, k>o0.
It is straightforward to show that the ZTPINAR(1) model can be rewritten as
X:=a;0X,—1+ Z4, (5.11)
where (a;) is a sequence of i.i.d r.v’s independent of (X;) and (Z,) with distribution

P(a, = 0) = 1 — P(a; = a) = e~*. Bakouch and Risti¢ (2010) showed that the
mean square solution of Eq. (5.11) is

e’} i—1
thz ]—[a,_,- 0 Zii + Z, (5.12)
i=1 \j=0

leading to the following result.
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Theorem 5.2.3. Equation (5.11) has the unique, strictly stationary and ergodic
solution given by (5.12).

5.2.2 INAR(p) Model

The counterpart of the conventional AR(p) model in the context of integer-valued
time series is the so-called INAR(p) model which follows the recursion

Xt = Mf(X[_l,...,Xf_p,al,...,ap) + Zts IS Z, (513)

where M, (-) represents again a random operator which preserves the discreteness
of the counts at time ¢ with0 <a; <1,i =1...,p—1,0<a, < 1,and (Z;)
an i.i.d. sequence of non-negative integer-valued r.v’s, stochastically independent of
X,—; for all points in time, with finite mean @z > 0 and variance 0% > 0. The
binomial thinning operator is obtained by considering

Xi—1 Xi—p
Mt(Xf—ls ey Xf—psalv .. 7ap) = Z Ej(l:i(al) + e + Z Ej(t)p(ap)
j=1 =1

=a; o X1 +---+apo; Xt—pv

the counting sequences (éyl) ) involved in a; o, X,—;, at each time ¢ are mutually
independent and independent of (Z;). Note that since the thinning operators are
probabilistic, the joint distribution of

(@041 X450 »dp Ot+p X)),

has to be considered, leading to different types of INAR(p) models. Alzaid and
Al-Osh (1990) assume a conditional multinomial distribution whereas Du and Li
(1991) require conditional independence. We note that the statistical properties of
the Alzaid and Al-Osh (1990) model are very different from the properties of the
model suggested by of Du and Li (1991) which is less tractable. The stationarity
condition for the INAR(p) process is that the roots of the polynomial

—1
2 —afT - —apz—a, =0,

are inside the unit circle, that is |z] < 1. This condition, however, is equivalent
to Zp a; < 1. These two different formulations of the INAR(p) model lead us

i=1
to obtain different second-order structures for the processes. For the Alzaid and
Al-Osh representation (INAR(p)-AA) the ACF resembles the one obtained for the
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ARMA(p, p—1) model whereas Du and Li formulation INAR(p)-DL) implies that
the ACF is the same as that of an AR(p) model.

The major drawback of the representations considered by Alzaid and Al-Osh
and Du and Li is that the stationary marginal distribution of (5.13), for p > 2 is not
necessarily in the DSD class. To circumvent this difficulty Zhu and Joe (2006) and
Weif3 (2008a) introduced the so-called Combined INAR(p) (hereafter CINAR(p))
model which is constructed so that the stationary marginal distribution is, indeed,
part of the DSD family.

Definition 5.2.1. Let (Z;) be an i.i.d. sequence with range INy and a € (0, 1). Let
(D;) be an i.i.d. process of r.v’s D; = (D;1,...,D;p) ~ MULT(1;¢1,...,¢,)
independent of (Z;). A process (X;) which follows the recursion

X, =Di1(ao; Xi—1) + -+ D plaoc Xi—p) + Zs, t € Z,

is called a CINAR(p) process if

1. The thinning operators at time n are performed independently of each other, of
(Z;) and (Dy). Additionally, the thinning operators of X, are independent of those
of (Xg)s<s;

2. Z; and D, are independent of all X; and a o, ; X, withs <¢,j =1,...,p;

3. The conditional probability P(a 0,11 X;,...,a o4, X;|X; = x;,,H,—1) equals
P(aoci41X,,...,a0,4,X:| X, = x;), where H,_; abbreviates the process history
ofall X; anda og4; Xy fors <t —1l,and j =1,..., p.

Note that the above definition states that X, is equal to a o; X;—; + Z; with
probability ¢;, i = 1,..., p. The CINAR(p) model shares some properties with
the INAR(1) model, namely that the expectation and the variance are given by the
same form. The autocorrelation structure was first derived for the CINAR(2) model
by Zhu and Joe (2006) and for the general case by Weif3 (2008a).

Theorem 5.2.4 (ACF of the CINAR(p) model). Let (X;) be a stationary
CINAR(p) process according to Definition 5.2.1. Let y(k) be the autocovariance
function and

wu(i,j):=E(ao X;—)Xi—) —aE(X,—i Xi—x), k = 1.
Then the autocovariances can be determined recursively from the equations

P P
y(oy=a) ¢iy(k =i+ > ¢ipli.k).

i=1 i=k+1
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where u(i, k) = 0 fori <k, and otherwise

i—1
p(i k) = ¢i—x(Cov(a oy Xi—i,a or—k X;—i) — 020)2() +a Z Gr—ik (i, 7).
r=k+1

In particular, 0(i,i — 1) = ¢1(Cov(a o; X;—j,a op—ijy1 X;—;i) — aza)zf).

Extensions of the INAR(p) model in (5.13) can be obtained by replacing the
binomial thinning operator by the operators defined in (5.2) and (5.3). For example,
the integer-valued autoregressive model of order p based on the signed binomial
thinning (5.2) (INARS(p)) introduced by Kim and Park (2008) takes the form

X =a1 & Xt—l+"'+ap O Xt—p+Zta (5.14)

where |a;| < 1,i =1 ..., p and (Z;) is an i.i.d. sequence of non-negative integer-
valued r.v’s, stochastically independent of X;_; for all points in time, with finite
mean (7 > 0 and variance cr% > 0. One advantage of the INARS(p) model is
that it can handle negative integer-valued time series, whereas the previous integer-
valued time series models are only applicable to non-negative integer-valued time
series. Furthermore, the INARS(p) model also allows negative autocorrelations of
the general pth-order to an integer-valued time series, whereas the previous integer-
valued time series models can only work with positive autocorrelations. Kim and
Park (2008) proved that the INARS(p) process is stationary and ergodic. The result
states as follows:

Theorem 5.2.5. Suppose that all roots of the polynomial z° —a,z° ™' —- - —ap12—
a, = 0 are inside the unit circle. Then, the process X, in L,-space uniquely satisfies
(5.14) and Cov(Xs, Z;) = 0 for s < t. Furthermore, the process is stationary and
ergodic.

To handle non-stationary integer-valued time series with a large dispersion Zhang
et al. (2010) introduced the so-called GINARS(p) model based on the thinning
operator defined in (5.3). The GINARS(p) model is defined as follows:

Xi=a1® X~ +--+a,® Xi—p+ 2,1 €7, (5.15)
where a; ®, X,—; := sgn(a;) - sgn(X;—;) - ZIJ.X;]"‘ ¢;i» with £;; being i.i.d. with
generalized power-series distribution with finite mean |a;| and variance agzi < 00
fori = 1,..., p. Zhang et al. (2010) give a sufficient condition to ensure that the

GINARS(p) process has a unique strictly stationary and ergodic solution. The result
is as follows. For simplicity in notation we define the (p X p) matrix
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lai| laz| -+ lap—1] lapl
1 0 - 0 0
A=| 0 1 - 0 0
0 0 -+ 1 0

Theorem 5.2.6. Suppose all the eigenvalues of A are inside the unit circle, then
there exists a unique strictly stationary integer-valued random series (X;) that
satisfies (5.15) and Cov(X5, Z;) = 0 for s < t. Furthermore, the process is also
ergodic.

For the above GINARS(p) model, we have the following results.
Proposition 5.2.3. Suppose (X,) is a stationary process and y +_, a; # 1. Then

p
E(X/|Xi—,1<i<p)= ZaiXt—i + uz:

i=1

p
E(X) =pz/(1— Zai);

i=1

P
VX)X, 1 <i < p) =) 0| Ximi| + 0

i=1

P
yk) = aiyk —i).

i=1

5.2.3 INMA(q) Model

The discrete analogue of the conventional gth-order moving average process (in
short INMA(q)) is defined by

Xt =b()ot Z["‘b] Ot Z[_1+"'+bq Oy Zt_q,IEZ, (5.16)

with (Z,) being an i.i.d. sequence of non-negative integer-valued r.v’s with finite
mean iz > 0 and variance a% > 0, and by,...,b; € [0,1] with b, # 0 and
usually by = 1. Note that a closer look to (5.16) reveals that each Z; is involved
in g + 1 thinning operators, at ¢ + 1 different times ¢, ..., + g. This implies, for
example, that for the same set of parameters (b, ..., b,) a wide variety of models
exhibiting very different autocovariance functions and joint distribution structure
can be constructed by only changing the dependence structure of the thinning
operators. Al-Osh and Alzaid (1988) suggest considering a dependence structure
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between the thinning operators of b; o, Z;, and b; o, Z,, involved in the variables
X,+; and X, 4 ; respectively, forall i # j and ¢. One interpretation is the following:
at each time ¢, Z; individuals, say, enter into the system independent of previous
inputs and have a maximum life-time of ¢ + 1 time units. The presence of these
individuals in the process (X, ) during each of their g + 1 time units of total life-times
may depend on their past and future presence along these units. Thus each of the
individuals will be present in the system during its life-time according to some set of
probabilities according with a vector of ¢ + 1 Bernoulli r.v’s. Note that a dependence
structure between the thinning operators by o, Z,,by o, Z;_y, ..., by o; Z,_4 is
then generated for all 7. We will further assume that all other thinning operators
are independent. According with the dependence structure described above, several
different INMA(g) models can be defined:

Model 1 (McKenzie 1988): in this case all thinning operators are independent,
provided that, for finite ¢, all the Z; individuals that come into the systems at
time ¢ are available until time ¢ + g. Furthermore, it is also assumed that the
thinning operators performed on them are independent. For this model the ACF
is given by

)/(k)Z G%Z?;gbibi+kk=1,...,q
0 k>qg+1

Model 2 (Briannids and Hall 2001):  suppose that Z, represents the number of
individuals that join the system at time ¢ having a fixed maximum life-time.
Furthermore, suppose that if an individual remains alive at time ¢ + j, with
J =0,...,q,thenitis presentin X;4;.Letn;, j = 1,...,q, be the probability
of surviving an extra time-unit conditional on survival for j time-units, then the
probability of survival until time i = 1,...,q, for each individual, is given by
b; = nibi—1 = by ]_[’j=l n;. According with this definition, the INMA(q) model
in (5.16) expresses the total number of individuals present in the system at time
t, which is defined as the sum of the contributions of survivors of the present and
past ¢ time units. For this model the ACF is given by

Z?;g pz (1 —b;i)b; i
y(k) = +U§bib,’+k k=1,....q.
0 k>qg+1

Model 3 (Al-Osh and Alzaid 1988): Al-Osh and Alzaid’s model resembles
Model 2. However, this model allows migration of individuals and therefore,
individuals can come and go several times during their fixed life-times. For this
model the ACF is given by

?;]S puzbi (b —biti)
V(k): +O—%bibi+k k = 1,...,q.
0 k>q+1
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Model 4 (Briannids and Hall 2001):  this model is useful for describing time series
representing volumes of sold goods of gradually deteriorating quality. Suppose
now that Z, represents the number of new items that enter the system (i.e. a
store) at time ¢ having a fixed maximum life ¢ + 1 time units. Note that from
a sales point of view, each item will either be sold at some instant of its life-
time, or put away after the instant # 4+ ¢g. By assuming that b; represents the
probability of each item in Z, being sold at time ¢ + i, the joint distribution
(booi Z;,b10,Z;, ..., byo; Z,), conditioned on Z; is multinomial and Z?:o b; <
1. Within this framework the INMA(q) model in (5.16) expresses the total sales
volume at time ¢. For this model the ACF is given by

(k) = )% —puz) Yy bibisk k=1.....q

0 k>g+1 °

Note that for the four models the cutoff property of the ACF is equivalent to that
of a conventional MA(g) process. Weill (2008c) showed that these four models
can be embedded into a single family of INMA(g) models.

5.3 Parameter Estimation

Parameter estimation can be grouped according to three broad categories: moment-
based, regression-based, and likelihood-based estimators. We present the results
only for models based on the binomial thinning operator.

5.3.1 Moment-Based Estimators

Estimation procedures based on sample moments are appealing because of their
simplicity. Without employing any distributional assumption, the Yule-Walker
(YW) estimators for the binomial thinning parameters ay, ... ,a, of the INAR(p)
model satisfy the following system of linear equations

pO)  p1) - p(p—D [ @ 5(0)
pay  pO) - p(p—2) || @ _ p(1)
plp—=1) p(p—=2)--- p(0) ap o(p)

For the Poisson INAR (hereafter POINAR) model of order one, the YW estimators
for the thinning parameter a and the mean A are given by
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ST (Xigr — Y)(g(i - X)
Yoo (Xi — X)?

dyw =
and
Ayw = X (1 — ayw),

respectively. Jung et al. (2005) proposed the following alternative estimator for the
thinning parameter when dealing with small and medium size samples

nY I (X — X)(Xi__ X)
(n—1) 30 (Xi — X)?

&YW

Freeland and McCabe (2005) proved that the asymptotic distribution of the estima-
tors based on YW equations is asymptotically equivalent to that of estimators based
on the Conditional Least Squares (CLS) estimator.

For the DL and AA specifications of the INAR(2) model, YW estimators can be
obtained from the first- and second-order sample autocorrelations. The ACF of the
PoINAR(2)-AA model yields the following YW estimators for a; and a;

arjyw—aa = p(1)
and
Aojyw—an = P(2) — p(1)*,

whereas the associated YW estimator for A can be obtained from the unconditional
mean of the POINAR(2)-AA and is given by

Avw—ar = X (1 = Q1jyw-na — dojyw—an)- (5.17)

Moreover the corresponding YW estimators for the INAR(2)-DL model are
obtained by recalling that the ACF is the same as that of an AR(2) model, yielding

. ~ 1—-5(2)
ayjyw—pr = p(1) (W)
and
4 _ o=@
20YW—DL T2

The YW estimator for the parameter A is as in (5.17), being ﬁl‘YW_AA and &2‘YW_AA
replaced by a;|yw—pr and @ |yw—pr, respectively.
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5.3.2 Conditional Least Squares

The CLS estimator is based on the minimization of the sum of squared deviations
about the conditional mean E (X;|F;—1)

Q(0) ==Y (Xi — E(Xi| Fi-))’,

i=1

with @ being the vector of unknown parameters and F; the o-algebra generated
by the r.v’s X, ..., Xi. By assuming that 1z and 02 are known, Q(8) has to be
minimized with respect to the parameter a. The resulting CLS estimator d s, based

on the observations (X1, ..., X,), takes the form
Aers = Yo (Xi —pnz)Xio
Zty'l=l Xiz—l

Using the arguments given in Hall and Heyde (1980, §6.3), it follows easily that acys
is a strongly consistent estimator of a, as n — oo, for all @ € [0, 1). Furthermore,
under the assumption E(Z?) < oo it follows that

d
Vn(dcrs —a) — N(0,07), n — oo,
with

, _a(l—a)E(X?) + 03 E(X?)
% = [E(XD)P ’

where the distribution of X is the common distribution of the unique stationary
solution of the INAR(1) model.

By considering now the case (a, pz) unknown, it turns out that the CLS
estimators (@crs, flz|cLs) of (a, jLz) are given by

Bors = n Z?:z XiXi1 — Z?=l Xi Z?:z Xi—1
n n 2
ny i Xi2—1 - (Zi:Z Xi—l)

and

1 n n
(0 = — X,' —& X,'_ .
Mz|cLs n (Z CLS ; 1)

i=1

Following again the arguments given in Hall and Heyde (1980, §6.3) it follows that
the pair (dcrs, flz|cLs) is a strongly consistent estimator of (a, jtz), as n — 00,
for all (a,uz) € [0,1) x (0, 00). Furthermore, as in the previous case under the
assumption E(Z;) < oo, it follows that
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«/ﬁ(flCLs —a)

L N @, W),
Vn(fzicLs — nz)
with
11 —E(X)} V[1 —E(X)}
T V(X)?2 [ -E(X) E(X?) —E(X) E(X?)
and

V=a(l-a) + 05 E(X) 1

[ E(X?) E(Xz)}

2 [ E(X?) E(X)
| E(X?) E(X) '

As stated above, Freeland and McCabe (2005) proved that for the PoOINAR(1)
model the asymptotic distribution of the resulting CLS estimators are asymptotically
equivalent to that of estimators based on the YW estimators as the next result shows.

Theorem 5.3.1. In the POINAR(1) model

(@YW—{:CLS) EPPRTES
= 0,112,

Ayw — Aces
and this is sufficient for the CLS and YW estimators to have the same asymptotic
distribution.
The asymptotic distribution of the CLS estimators is given in the next result.

Theorem 5.3.2. In the PoINAR(1) model the CLS estimators are asymptotically
normal, i.e.

i §E T8 S N v,
Acrs — A

where

=@ L (1 4 a)(1—a) —(1 + a)A
Vvl =
—(1+a)A A+ EHea

For the INAR(p)-DL model, Du and Li (1991) showed the strongly consistency and
asymptotic normality of the CLS estimators. Later on Latour (1998) corrected some
misprints and errors found in Du and Li’s paper.
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Theorem 5.3.3. The CLS estimators é = (&I\CLS—DLs Ceey &p|CLS—DLv /:Lz) of
0 = (a1,...,ap, uz) are strongly consistent. In addition, under the assumption
E(Z}) < oo

S —8) S N©, . VIWYT,

Here, the elements of the matrices V and W are given by

p
Wiy =Y aEXpit1Xp—jr) + 05 [V]ij, 1<i,j <p+1
k=1

and

0 0 ..
Vi, =E %@E(Xp+l|fp)aTE(Xp+l|]:p)} JA1=<i,j<p+1,

J

where

0 _ Xp_i+1i=1,...,p
3—9’,15(Xp+1|ﬂ)—{1 bt

Furthermore, the inverse of matrix V is

y-l = r, —uxT,'1,
—puxT,", 14+ p31,T,', |

withT = [y(i — )< j<pand 1, :=[1,...,1].

5.3.3 Conditional Maximum Likelihood Estimation

Conditional Maximum Likelihood (CML) estimation for the INAR(p) model is
based upon the fact that conditioning on the first p observations the conditional

likelihood L(# |x1, ..., x,) can be expressed as
n
L@x.....xp) = [] Pulxici....xiop), (5.18)
i=p+1

and so the knowledge of the transition probabilities is sufficient for its construction.
For the PoINAR(p)-DL model, Bu et al. (2008) derived the following explicit
expression for the conditional probabilities in (5.18).
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Proposition 5.3.1. For the PoINAR( p)-DL model, it follows that

P(xi|xi-1,... ,Xi—p)

min(x;—1,%;)

X, ) min(x; —2,X; —j1) X, )
= X (M )eta—apo () aba -y

J1=0 J2=0

min(x; —p,x; —(j1++jp—1))

> (Xi'_ ’ ) ay (1 —a,) ==
J

ip=0 P
e pxi—ittip)
X - - .
[xi = Gr 4+ jpl!

The score function fora;, i = 1,..., p, is given by
1 n
t, =——— Y {E(a;oX,—)— E—1(a; o X,—)}.
a,-(l — a,-) P
with

al‘Xt_[P(.xt — 1|x,_1,...,x,_i — 1,...,x,_p)

Eiai o Xi) =
(a0 X, ) P(xt|_xt_1,...,-x[—p)

whereas the score for A is
1 n
=5 D E(Z) = Ei(Z)},
t=p+1
where

AP(X[ — 1|X[_1, e ,x;_p)

E(Z,) =
Z1) P(xl‘|xl‘—ls---s-xt—p)

The asymptotic distribution of the CML estimators is given below.

Theorem 5.3.4. In the PoINAR( p)-DL model the CML estimators 0 are asymptot-
ically normal, i.e.

~ d
V(@ —0) > N©,+1. V7,

where V denotes the Fisher information matrix whose elements are given by
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e;/i“i =21 _ .2 Z {Q2a; — D)Ei(a; o X;—;)

20 —a)?
(1 di ) t=p+1
+Vi(aio X,—j) —a; E;—1(ai o X,—)},
" 1

n
L, = Covi(a; o Xy—j,a; o X;—;),
iaj aiaj(1—a;)(1—aj) t=2p;-1 t t J 1—j

4 1

b = m Z Covi(a;j o Xi—i, Z1)

and

= > {Vi(Z) - E(Z)}.

t=p+1

For the POINAR(1)-DL model the derivatives of the log-conditional likelihood
function with respect to A and a are

S, = BlogL(uAIXl ..... Xp) N Zz _ PIP(V(,VI D — -1
dlog L(aAlX1,...X Pi(xi—1
Sa=W=O©Z?=z[(M—axz'—l) A P(X(x))]/a(l—a)ZO

where

minQi1¥) N i
Pi(x)=e" Z ( ’,_l)a{‘(l —a) T i =2,...,n.
= ) (xi = j)!

Note that

doxi—a) xi=(@n-1A, (5.19)
i=2 i=2

implying that Eq.(5.19) can be used to eliminate one of the parameters, say a,
providing that S can be written as a function of A only, and hence the CML estimate
can be found by iterating on Sj.
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5.3.4 Bayesian Approach

In this section, a Bayesian analysis is conducted in order to estimate the parameters
of the integer-valued ARMA (in short INARMA (p, ¢)) model

P q
X, = Zai o X, +Zb,~ o Zi_j + Zi, (5.20)
j=1

i=1

where (Z;) is an i.i.d. sequence of non-negative, integer-valued r.v’s with finite
variance a% > 0. For conciseness, throughout this section we shall assume that Z;
is Poisson-distributed with parameter A. Furthermore, it is assumed that the thinning
operators are all independent and that the orders p and ¢ are fixed parameters. For
simplicity in notation we define a'”) := (ay, ... ,ap) and b9 = (by,..., bg).

In order to facilitate inference for the INARMA(p, ¢) model it is necessary to
augment the data. For this purpose, Neal and Subba Rao (2007) introduced the
following procedure: for a fixed value of t € Z,1etY;; := a; o X;—;,1 = ..., p,
andV;j:=b;jo0Z,_;,j=1...,q. Thus,

In addition, let Y”' = (¥,,.....Y,,). Y = ¥ ... y®), v? .=
Vitooo Vi), Vo= (V9 VD), and let Z, := (Z,....,Z;). Fort > 1,
let y, == (yi1o...,yep) and v, = (v1,....vq) With y = (y,...,¥,)
and v := (vi,...,v,). For ¢ > 1, let z;y := (21—....,20) representing the
initial values of Z, and for ¢+ > 1, let z, := (zy,...,z) with zy corresponding
to the empty set. Furthermore, assume that we have the observed time series
X 1= (X1—max{p.g}s - - - » ). Note that given (zmv.z,—1, x,—1, 2, b@ A, p,q), with
X5 1= (X1—max{pg}s- - - » Xs), (s > 0), each of the components (qu), Yfp),Z,) is

independent. Moreover, in a Bayesian framework it is also necessary to assign prior
distributions to each parameter. Let us consider the independent priors

P
g@?”)o«c1,0<a; <1,(1<i<p), Zai <L
i=1

q
g(b(q)) x 1, Ofbj <1, =<j=<gq), Zbl <L
j=1

g(A) =T'(Ay, By), Ay, By > 0,

where I" stands for the Gamma distribution. Therefore, it follows that
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n P
A& _ _ o
0. y. 2., 25,27 b9 A|x) | | {Ee—k | l (?;t ‘z)aiym(l — )i
* 1

t=1 i=1 ’

q
« l_[ (Zt—j ) b;t'j(l — )i A= Bid
j=1

Vt!]‘

maxtpa} 52,

e, (5.21)

X

N
=1 i

subject to the constrains
P q
ZJ’t,i + th,j +a=x,vi;<zu—;(1=2j=<¢q), yi<x-(1=<i=p).

i=1 j=l1
(5.22)

Furthermore, since the inference for the vector of unknown parameters (a'”), b, 1)
shall be done through the Gibbs/rejection sampling procedure, we have to derive the
set of full conditional posterior densities. The results are summarized below.

Lemma 5.3.1. Given (5.21), the full conditional posterior densities are

7@y, y. 2, 2y, 2" D X x) ~ Beta (1 + ) v 4+ (i — yt,i)) ,
t=1 t=1
(5.23)

fori = 1,..., p where al@ = (ai,...,qi-1,0qi+1,...,4p), and subject to the

constrain that Z]f=1 ap < 1;
n n
w(bilv.y. 2y, 2y, 2P B A, x) ~ Beta (1 +Y v L+ D (@i - Vt,i)) :
=1 =1
(5.24)

for j = 1,...,q where b;”l = (b1,....bj—1,bj11,...,by), and subject to the
constrain that Z;’Zl by < 1; and

n
AW,y 20z, a? DD x) ~T | A+ D 2 Bitn+q|. (529
t=1—q
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The steps required to implement the MCMC algorithm are the following:
1. One component at a time, draw a proposed value for @; from (5.23).

(a) If a; is drawn such as Z,le ay < 1, accept the proposed value of g;, and
update the value of a;. Otherwise repeat step 1.

2. One component at a time, draw a proposed value for b; from (5.24).

(a) If b; is drawn such as Z?:l by < 1, accept the proposed value of b;, and
update the value of ;. Otherwise repeat step 2.

3. Draw A from (5.25).
4. Use the following Metropolis-Hastings procedure to update (v, y,z,). For t =
1,...,n

(a) Draw y;; from Bin(x;—;,a;), fori = 1,..., p;

(b) Draw v;’j from Bin(z,—;.b;), for j =1,....,q;

(©) Ifx, < 3/_ v/, +>%_, v, then repeat steps (a) and (b);

(d Setz, = x, — (X0, Vi + Z(;=1 v, ;). Thus, the proposal distribution
for (v, y!,z)) is independent of (v;,y,,z) and depends only upon x and
(-1, ziv, 2P, D@);

(e) Calculate the acceptance probability, @, for the move

f(v/s ylv Z;|x, ZN, a(p)’ b(({)’ A)
f,y.z,|x,z;v, a0 b@D Q)

w = min{ 1,

G, Y 20%, Zin, Z—1, 2P D)
q vV, y,. 7%, 2y, 21,2 @) |

where g, (v!, y!,2,|x, Ziv, 2,—1, 2", b?) is the conditional proposal probabil-
ity for (v/, y!, 7)) given (x,zy,7,—1,a”, b@).

(f) If the move is accepted set (v;, y,,z) equal to (v}, y},z,), otherwise leave
(v+, y;,z) unchanged.

5. Finally, in order to update z;y we proceed as follows:

(a) Draw z, from Po(1);

(b) If z, > x;, then repeat step (a); otherwise the proposal probability is
q(Z|A, x) = g(z|A,x)/F(x;), where F(-) denotes the cumulative distribu-
tion of a Poisson random variable with mean A.

(c) Calculate the acceptance probability, w, for the move

f(v/s y/,z;|x,z1N, a(p),b(q),k)g(Z”A,X) % q(Z[|A,X)
TS0y X, 2, aP) DD Vg (A, x) T q(zlA X))

w = min? 1
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6. Repeat stages (1)—(5) say, N times, to generate a MCMC sequence of non-
independent observation from the posterior distribution of both the model
parameters (a”,b@, 1) and the augmented data (v, y,z,,z;y). Moreover, the
assessment of the convergence of the algorithm can be carried out through ad hoc
methods such as plotting and inspecting traces of the observed MCMC sample.
These ad hoc methods, however, tend to fail in the presence of a phenomenon
called metastability, i.e. the Markov chain appears to have converged to the true
equilibrium value, but after some period of stability around this value the Markov
chain may suddenly move to another region of the parameter space. Along with
the ad hoc techniques described above, a number of more formal methods exist
which are prevalent in the literature. Two of the most popular were proposed by
Geweke (1992) and by Raftery and Lewis (1992).

5.4 Model Selection

In this section an automatic criterion for identifying the most appropriate INARMA
model is presented, with emphasis on the underlying ideas rather than on the
mathematical details. The basic motivation behind model selection is to choose a
model from a family of models so that the selected model describes the data best
according with some criterion.

In analyzing INARMA processes, model-selection criteria based on the likeli-
hood approach are in general intractable due to the complexity of the likelihood
function. To tackle this issue, an alternative approach has been suggested by Enciso-
Mora et al. (2009) who developed an efficient reversible jump Markov Chain Monte
Carlo (MCMC) method for conducting inference for the orders p and g for moving
between competing INARMA models. For completeness and reader’s convenience
basic results on the general reversible jump MCMC methodology are given below.
We follow closely Brooks et al. (2003).

Suppose that we have a countable collection of candidate models, say,
M, ..., My, ..., where model M; has a continuous parameter space ®; containing
elements 6 lying in R, where the dimension n; may vary from model to model.
Let 7(M;,0) denote the density part of the target distribution () restricted to
model M;. Thus, for an arbitrary set B it follows that

n(B) = Z/Bno T (M;,0)de®.

Attention is focused on moves between models M; and M; with n; < n;. Note
that by reversibility this also characterizes the reverse move and moves between all
collection of pairs of models can be dealt with similarly.

In a typical application, given that the chain is currently in state (M;,8),
a new value for the chain (M}, 0/)) is drawn from some proposal distribution
q(09,d0)), which is either accepted or rejected. Green (1995) proved that,
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if 7(d0Y)qg(0D,deV)) is dominated by a symmetric measure and has Radon-
Nikodym derivative, say r(8?), 8 )) with respect to this symmetric measure, then
detailed balance is preserved if the proposed new state is accepted with probability

o{(M;,07),(M;,0V))} := min{1, 4; ;(6,6)},
where

; ) r(ﬂ(j),O(i))
Aij((M;, 09, [M;,69)]) = (0000

For the large majority of model selection problems, however, this general formu-
lation can be simplified by restricting attention to certain jump constructions, as
follows. To move from model M; to M, first a random vector V of length n; — n;
consisting of variables drawn from some proposal density, say ¢(-) is generated. For
simplicity in notation, the joint density of V will be denoted by

I’Lj—ni

On—n (V) = [ o).

i=1

Secondly, we propose to move from 8@ to §V) = h; ; (0, V), where the
so-called jump function h; ; : ®; x R"/™" denotes an injection, mapping the
current state of the chain together with the generated random vector V to a point
in the higher dimensional space. Finally, this move is accepted with probability
o{(M;,09), (M, 0)} being A; j given by

m(M;,09)s;,(8Y)
w(M;,0D)s:,;(0)@n;—n, (V)

oh; ; (0D, v)

A’.,j(g(i)’g(j)) = 307 v)

. (5.26)

with s; ; (0 () denoting the probability that a proposed jump to model j is attempted
at any particular iteration, starting from 0" in ®,. The case n; > n ; follows
easily by taking A; ; 09,00y = Aj,,-(0(j), 0)~!. Extensions, variations and
modifications of reversible jump MCMC methodology can be found in Brooks et al.
(2003).

For the general situation in which the order p and g of the INARMA process
are unknown the reversible jump MCMC method is adopted to estimate model
parameters and also the optimal order. Within this framework, the updating of the
parameters and the data augmentation is carried out in a two-step procedure:

e The MCMC algorithm of Neal and Subba Rao (2007) introduced in Sect. 5.3.4
is used as a sub-algorithm for the within model moves (which corresponds to
update both the parameters and the data augmentation when assuming p and ¢
as fixed); and
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* A new order for p and g is proposed by means of the efficient reversible jump
MCMC introduced by Enciso-Mora et al. (2009) to perform moves between
models.

The order determination algorithm, introduced by Enciso-Mora and co-authors, is as
follows: let (X;) be the INARMA(p, ¢q) process in (5.20). For within-model moves
the choice of prior distributions for p and g deserves special care since, as either
p and ¢q increases by one, the number of parameters within the model increases by
n + 1 and n new augmented data. For large sample sizes (n > 400) a good choice
is g(p) o« n77/? and g(q) o< n=9/2. Finally, for 1 — max{p,q} <t < 0 we take
g(z|A, x) as being Poisson-distributed with parameter A subject to the constraint
that z; < x;, since a priori not only Z, is Poisson distributed with parameter A, but
also by definition z; < Xx;.

Thus, the full joint likelihood of (V,Y,Z,,a®” b@ A p, q) given the data
takes the form

fO,y. 20,2y, 2P DD 4 pglx) = g(p)g(q)plq! x

n Az P Xr_i .
% 1—[ _.e_l 1—[ l‘—‘l a;\’t.x (1 _ai)xt—i_)’t.i X

V[’J

q
X l_[ (Zt_,j ) b;u (1 = by)ya—J—i } AAre=Bad

subject to the constrains in (5.22).

We now describe the order switching step proposed by Enciso-Mora et al. (2009).
We restrict our attention to moves within either INAR model or INMA models. At
each iteration alter the dimensionality of the INAR model (increasing or decreasing)
by one with each move being proposed with probability 1/2. This is subject to
constraints at p = 0 and p = pjay, With pp,, representing the maximum value
allowed for p. Next adopt the same procedure for the INMA order with constraints
atg = 0 and ¢ = ¢ In order to develop an efficient reversible jump MCMC
algorithm, a natural suggestion when constructing the order switching step is to keep
Wy fixed. This procedure remains valid as long as we are not proposing to move the
INAR (INMA) order p (g) either to or from p = 0 (¢ = 0). When dealing with
INAR models the algorithm is as follows: consider extending an INAR(p) model to
an INAR(p’) with p’ = p + 1. In order to retain uy fixed, a?") has to be choose
such that

P P
dod=>a. (5.27)

i=1 i=1
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with b@) = b@ and A’ = A. This can be accomplished as follows: let U be
a uniformly distributed random variable in the interval [0, 1] and let K be drawn
uniformly at random from {1,..., p}. Thenfori € {1,..., p}/Kseta;. Leta}, =
Uag and a/p+1 = (1 — U)ag. In addition, for 1 < ¢ < n, let N; be a Binomial-
distributed random variable with parameters y, x and U respectively, and set y; , =
Ny, ylf’ p+1 = Y.k — N;. The rest of the augmented data terms are kept fixed. Note
that in this case, ) = 0”) = (@@, w?) | p) with w?) = (y» v(») zP). Thus
the acceptance ratio in (5.26), can be expressed as

Lx|0P))  g(0P)g(My)  sy.,(07)

A, ,(0(17)’0(17’)) - x x
" L(x|0P) "~ g(0M)g(M,) 5., 0P)p®)

x|/

= likelihood ratio X prior ratio x proposal ratio x Jacobian,

where g(M,)/g(M,) = 1,5, ,(8")) =5, ,(07) = 1/2p),

Xi—K ’ N\ I \Xi—K =V
, n a i,.K 1 —a i,.K
L(x|8") _ ( Vik ) (@ =

Lxlo®) ] (x,-_K
Yi.k

)t - agy-sons

_X:<_ / . v
« ( i p/) (a;/)yi»f”’(l _a;/)xﬁp/ yl;p,,

!
Vi

g0y g@?gw?))  g(p)

207) — g@P)gw) ~ g(p) <PTD

and

n
o) =) =[] (y ’}’K) U (1= Uy,
io \Yik
Finally, the Jacobian |J| = ak. The reverse move from p to p’ = p — 1 is simply
the reverse of that given above.

The INMA order step procedure is basically identical to that given above with

condition (5.27) replaced by
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with a®?) = a(® and A’ = A. In particular, choose K uniformly from {1,...,q},
splitting the K'th term with by = Ubg and b}, = (1 — U)bk. Afterwards split
the corresponding augmented data terms and set vt’,K = S; and Vt/,q+1 = vk — S
with S; being a Binomial-distributed random variable with parameters v; x and U
respectively.

5.5 Extremal Behavior

Within the reasonably large spectrum of integer-valued models proposed in the
literature, only a few have already been studied with regard to their tail behavior
and extremal properties. In part this is due to the fact that many integer-valued
distributions do not belong to the domain of attraction of a extreme-value distribu-
tion. Anderson (1970) gave a remarkable contribution to the study of the extremal
properties of integer-valued i.i.d. sequences and as an example the author analyzed
the behavior of the maximum queue length for M/M/1 system. Extensions of
Anderson’s results were proposed by Hooghiemstra et al. (1998) who provided
bounds and approximations for the distribution of the maximum queue length for
M/M/s queues, based on an asymptotic analysis involving the extremal index.
McCormick and Park (1992) were the first to study the extremal properties of
some models obtained as discrete analogues of continuous models, replacing scalar
multiplication by random thinning. Hall (1996) analyzed the asymptotic behavior
of the maximum term of a particular Markovian model. Hall (2001) provided
results regarding the limiting distribution of the maximum of sequences within
a generalized class of INMA models driven by i.i.d. heavy-tailed innovations.
Extensions in the INMA context were also proposed for systematic (Hall and
Scotto 2003), periodic (Hall et al. 2004), and randomly sub-sampled (Hall and
Scotto 2008) INMA sequences. Extremal properties of random coefficients INAR
and INMA models have been considered by Roitershtein and Zhong (2013) and
Hall et al. (2010), respectively. The extremal behavior of exponential type-tailed
innovations has been analyzed by Hall (2003), Hall and Scotto (2006), and
Hall and Temido (2009, 2012). Hall and Moreira (2006) derived the extremal
properties of a particular moving average count data model introduced by McKenzie
(1986).

The analysis of integer-valued sequences of i.i.d. non-degenerate r.v’s

(Zi,...,Z,) with common distribution F require extra care since, in many
cases, there is no non-degenerate limiting distribution for the maximum term
M,(Z) := max(Zi,...,Zy,). This is due to the fact that one needs to impose

certain continuity conditions on F at its right endpoint. The following result quoted
in Leadbetter et al. (1983, Theorem 1.7.13) is crucial to understand which conditions
of F ensure that the limit of P(M,(Z) < u,) as n — o0, exists for an appropriate
sequence of real numbers (u,).
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Theorem 5.5.1. Let F be a distribution function with right endpoint xp = sup{x :
F(x) < 1}, (xp < 00), and let T € (0, 00). There exist a sequence (uy) satisfying
n(l—F(u,)) — tiff

fim L F® (5.28)
x=xp 1 — F(x—)

Unfortunately, condition (5.28) tends to fail when F is a discrete distribution
such as the Binomial, Poisson or Negative Binomial. To tackle this problem
Anderson (1970) defined a particular class of discrete distributions for which the
maximum term (under an i.i.d. setting) possesses an almost stable behavior in the
sense of the following theorem:

Theorem 5.5.2. Let F be a distribution function whose support consists of all
sufficiently large integers. Then, there exists a sequence of real numbers (d,) so
that

limsup,_, o F"(x +d,) <e™* "
liminf, oo F"(x + dy) > e=¢ """

for some oo > 0 and for every x € R, iff

fim =0 e, (5.29)
n—ool—F(m+1)

with d, = F7'(1 — %) where I, is any continuous distribution in the domain of
attraction of the Gumbel distribution with F.([n]) = F(n).

Whenever a distribution F satisfies the conditions of the above theorem, we shall
denote it by F € D, (Anderson). The Geometric and the Negative Binomial distri-
butions are well-known members of this class. An important family of distributions
belonging to Anderson’s class are those having exponential-type tails of the form

1—F(n) ~Kn*(1+A2)™", n — oo, (5.30)

with £ € R and A, K > 0. Note that for this class of distributions the expression in
(5.29) holds with e* =1 + A.

Extensions for stationary sequences exhibiting weak, long-range dependence
at high levels (Leadbetter’s D(u,) condition) along with the local dependence
condition D®)(u,), k € IN, were first proposed by McCormick and Park (1992)
for the case k = 1 and by Hall (1996) who obtained the following result for the
general case.

Theorem 5.5.3. Suppose that for some k > 1, conditions D(u,) and D® (u,) hold
for the stationary sequence (Z,) with marginal F € Dy(Anderson), where (u,) is a
sequence of the form u, = x + d,,. Then there exists a value 0 < 8 < 1 such that
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—ax

limsup,_, oo P(My(Z) <x +d,) < e
liminf,,_mo P(Mn(Z) <x+ dn) > e_gefot()rfl) s

P(Myy(Z) < un|Zy > up) =20, (5.31)

where M, (Z) = —oo, for2 > k, and M5 1 (Z) = maxa<,<k(Z,), for 2 < k.
Remark 5.5.1. If k = 1then 8 = 1.

Here, 60 in (5.31) is the extremal index.

When attention is focused on the characterization of the extremal properties of
models involving the binomial thinning operator, it is necessary to analyze the effect
of this operator upon the tail distribution of the thinned random variable Y := bo Z.
Hall (2003) proved that if the tail of F; satisfies (5.30) then the tail distribution of
Y is of the same type.

Theorem 5.5.4. Let Z be a non-negative integer-valued random variable with
Fz € Dy(Anderson) of the form (5.30). Then Fy € Dy (Anderson) and

1— Fy(n) ~ K*n¥(1 4+ A/b)™",

with K* = Kb(;35)5.

It is also possible to assess the influence of the thinning operator on the random
variable Y for distributions not belonging to Anderson’s class. For example, assume
that the random variable Z has distribution function belonging to the domain of
attraction of the Fréchet distribution with parameter o > 0, that is

1—Fz(n)=n"%Lzn), n>0, (5.32)

for some slowly varying function Lz (n) at +o0, in short Fz € D(®,). This class of
distributions includes some usual discrete distributions such as the Zeta distribution
(Z ~ Zeta(p), < P(Z =n) =n"*tD/t(p+ 1), n € {1,2,...}, p > 0 where
() is the Riemann zeta function). In this case, the thinning operator produces the
same asymptotic effect as multiplying the random variable Z by the real constant b.

Lemma 5.5.1. Let Z be a non-negative integer-valued random variable with Fz €
D(®,), a > 0. Then Fy € D(®,) and

1— Fy(n) _

li = b*.
nl>nolo 1— FZ(”)
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A general approach to look at the extremal properties of integer-valued ARMA
models is through the analysis of INMA(co) models of the form’

oo
Xe =) bio Zimi, (5.33)
i=0

with (Z,) being an i.i.d. sequence of non-negative integer-valued r.v’s, with common
distribution F satisfying either (5.32) or (5.30). Furthermore, in order to ensure the
almost sure convergence of the sum on the right-hand side of (5.33), for every #, the
coefficients need to satisfy Z?io bf < 00, with § < min(e, 1), for the heavy-
tailed case and ) ;2 b; < oo, for the exponential-type case. The following results
characterize the tail behavior of the marginal distribution Fy of X, whenever F; €
D(D,).

Lemma 5.5.2. If F; € D(®,) then Fx € D(®,). Moreover for some sequence of
real numbers (uy,), with u, = a;x, a,,x > 0, it holds that

o0
lim n(1 = Fz(u,)) =t = lim n(1— Fy(u,)) =7y _bf, 7> 0.
n—>oo n—>oo i—o

In contrast, however, the analysis of the tail behavior of the marginal distribution
Fx of X, with F; satisfying (5.30) is completely different since in this case only
the summands corresponding to the largest coefficients have influence in the tail.

Lemma 5.5.3. Assume that the sequence of coefficients (b;) in (5.33) are such
that b; = O(|i|™%), as i — oo, for some § > 2. In addition, define by, =
MmaXo<i<oo(bi) and Y = {iy, ... ik}, i1 < -++ < iy, as the set of indices such that
b; = byax. Then

1= Fy(n) ~ Knf(1 + )™, n — oo,

for & # —1, where A = A/ bax

g_ kE+k—-18&>-1
& £E<-1’
and
T+4 \¢M!
K* = Bpax K | ———
ek (5 )
with

7In what follows we will omit the index ¢ below the thinning operator if there is no risk of
misinterpretation.
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L(k(E+1)) )
KK*(E[(1 + D])F'E [(1 n A)Zifybi‘)Z*i] £<—1

] Jh—1 goxk CEED [(1 + )X bf°Z—f] £§>—1

We now proceed to obtain the limiting distribution of the maximum term of the
INMA(o0) model in (5.33), where (Z,) is an i.i.d. sequence of non-negative integer-
valued r.v’s, with common distribution F satisfying either (5.32) or (5.30).

Theorem 5.5.5. Let (X;) be the integer-valued time series sequence defined in
(5.33).

1. Assume that F; € D(®,), a > 0 and that

T
YiZob

for some sequence of real numbers (u,),en where u, = a; x with

ar ~ (Z bf‘) F7'(1—nh.

lim n(l — Fz(u,)) = T >0,
n—od

i=0

Then

—a

lim P(M,(X) < uy,) =e
n—o00

3

where the extremal index 0 is given by

maxo<; <co(h;")

Yt bf

2. Assume now that Fyz satisfies (5.30). Then under the conditions of Lemma 5.5.3
with k = 1, it holds that

0 = (5.34)

limsup, _, oo P(My(X)—d, <x) < o=+
liminf, oo P(M,(X) —d, < x) > e_(H_A)—(x—l) >

with d, = (In(1 + 1))"'(Inn + £Inlnn + In K).

Note that, whereas for the heavy-tailed case the extremal index is in general
less than one reflecting the influence of the dependence structure on the extremes,
the integer-valued moving average driven by a sequence of innovations with
exponential-type tail has similar extremal behavior as an i.i.d. sequence with the
same marginal distribution.
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It is important to mention that the second statement in Theorem 5.5.5 shows the
well-known fact referred to above that for distributions belonging to Anderson’s
class, the maximum limiting distribution cannot be expressed in a closed form.
However, in order to overcome the presence of these limiting bounds, Hall and
Temido (2007) proved that if instead of looking at the maximum term of the n
observations we consider only the maximum term of the first k,, observations, with
(k,) being a nondecreasing positive sequence satisfying®

ky
lim 22 — oo o > 0. (5.35)

n—oo k,

we can then derive a well-defined limiting distribution for the maximum term. Hall
and Temido (2007) obtained the following results for the maximum term for integer-
valued moving average driven by a sequence of innovations with exponential-type
tail.

Theorem 5.5.6. Let (X;) be the integer-valued time series sequence defined in
(5.33). Assume that Fz satisfies (5.30). Then under the conditions of Lemma 5.5.3
with k = 1, it holds that there exist a nondecreasing positive integer sequence (k)
satisfying (5.35) and a real sequence (d,) such that

lim P(My,(X) <x +dy) = R
n—>oo

5.5.1 Some Extensions

In order to make the integer-valued time series models more flexible, several
extensions may be considered. For example, it may be of interest to include
covariates in the model to account for the dependence of the thinning probabilities
on several factors. Alternatively, it is possible to study integer time series models
with random coefficients. Further extensions may include periodic integer-valued
sequences. Potential applications of integer-valued time series models with periodic
structure can be found in the analysis of demographic data sets. In this section some
results related with the extremal behavior of integer-valued moving averages with
random coefficients and periodic integer-valued time series are presented.
Assume first that X, admits the representation

o0
X, = Z BioZ,_i teZ, (5.36)
i=0

8Note that condition (5.29) is necessary and sufficient for the existence of such a sequence and of
a real sequence (u,) such that k, (1 — F(u,)) = © > 0, as n — o0.
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where (Z;) constitutes an i.i.d. sequence of non-negative, integer-valued r.v’s, with
common distribution Fz € D(®,), and (B;) consists in a sequence of independent
r.v’s, being (Z,) and (B;) mutually independent. The thinning operator o is defined
as follows:

Zi—i
BioZi =Y &.(B),
j=1
where &;,(p),j = 1,2,..., are ii.d. Bernoulli r.v’s with success probability

p = B; €0, 1]. All thinning operators involved in (5.36) are independent, for each
t. Nevertheless, dependence is allowed to occur between the thinning operators
Bi, o Z; and B;, o Z,, i} # i> (which belong to X,4;, and X,1;, respectively).
Thus we consider a general class of models consisting of all the stationary sequences
defined by (5.36) for which the vector of terms (Byo Z;, Bjo Z;, ... ) has some fixed
dependence structure for every n, and all other thinning relations are independent.
Furthermore, the sequence of coefficients (B;) will be taken to satisfy

o0
ZE(B?) < 00, § < min(a, 1),
i=0

in order to guarantee the a.s. convergence of the infinite series in (5.36).

Motivation for considering this class of models with random coefficients comes
from the desire to focus on non-negative, integer-valued time series assuming low
values with high probability but exhibiting at the same time sudden burst of large
positive values. Examples of applications can be found in the analysis of time series
of count data that are generated from stock transactions, where each transaction
refers to a trade between a buyer and a seller in a volume of stocks for a given price;
see Quoreshi (2006) for details. As a particular example of times series exhibiting
this type of behavior, a simulated sample path for the model

Xt - BoOZ, +BIOZf_1 +B202t_2+B3OZf_3, (537)

where B; ~ U[0,1],7 = 0,1,2,3 and Fz(x) = e_m, x > 0, is displayed in
Fig.5.2 below. The study of the tail properties of the marginal distribution Fy of
X;, is carried out in two stages: first, the tail behavior of Y := B o Z is obtained,;
later we will obtain the tail properties of Fy. Hall et al. (2010) proved the following
result.

Lemma 5.5.4. Let Z be a non-negative integer-valued random variable with Fz €
D(®,), @ > 0. In addition, assume that B is a random variable distributed over the
interval 0, 1]. Then it follows that Fy € D(®,) and

. 1—Fy(n)
hm _—

Jim T = BB,
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Fig. 5.2 Simulation results
for model (5.37) with
n =400
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The following results totally characterize the tail behavior of the marginal
distribution Fy of X;.

Lemma 5.5.5. If F; € D(®,) then Fx € D(®,). Moreover for some sequence of
real numbers (uy,), with u, = a;x, ay,x > 0, it holds that

o0
lim n(1 — Fz(u,)) =t = lim n(1 = Fx(u,)) =1y _ E(Bf). 7> 0.
n—>0o0 n—o0 i—o

Our main task now is to derive the limiting distribution of the normalized maxima
of the integer-valued moving average sequence (X;). This is formalized through the
next result.

Theorem 5.5.7. Let (X;) be the integer-valued time series sequence defined in
(5.36). Assume that Fz € D(®,), o > 0 and that

lim n(1 — Fz(u,)) = 0,
n—o0o

T
—_—\ T >
20 E(BY)

for some sequence of real numbers (u,) where u, = a; x with

ar ~ (Z E(B;”)) F7'(1—n7h).
i=0

Then

lim P(M,(X) <u,) =e ",
n—>o00

where the extremal index 0 is given by
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0 . ZT:O E (B;X l_lf;e,- Fp, (Bj))
= 1im .
oo Y20 E(BY)

As an example of the result above assume that X; admits the representation
X:=ByoZ;+BioZi_, teZ
with
F;(x) = e_m, x>0

and B; ~ UJ[0,1],i = 0, 1. The choice of this distribution is justified by the fact
that it is the natural integer analogue of the Fréchet distribution. From Theorem 5.5.7
the extremal index is given by

_ E[B{Fp (Bo) + E[By F,(B))] _ o +1

0 = .
E[BY] + E[BY] o+ 2

Note that if « = 0.5 then the extremal index 8 = 3/5 which is considerably smaller
than one and hence reveals a relevant dependence of the high-threshold exceedances.

Next we turn our attention to the extremal properties of periodic integer-valued
times series. We make use of the term periodic in a different sense than in the
literature of periodic stochastic processes in which a sequence (Y;) is said to be
periodically stationary (in the wide sense) if its mean and autocovariance structure
are periodic functions of time with the same period. This class of processes,
however, does not appear to be sufficiently flexible to deal with data which exhibit
non-standard features like nonlinearity and/or heavy tails, since in this case the
autocovariance function is relatively uninformative and their empirical counterparts
can behave in a very unpredictable way. Thus, by periodic sequence with period
say T, we mean that for a sequence of r.v’s (¥;) there exists an integer 7 > 1
such that, for each choice of integers 1 < iy < i < «-+ < iy, (¥3,...,Y;,) and
(Yi,+71,...,Yi +r) are identically distributed. The period T will be considered the
smallest integer satisfying the above definition.

In this case the setting is as follows’: let (Z;) be a sequence of T-periodic
independent integer-valued r.v’s. We will assume that for some o > 0

1—Fz,n)=PZ,>n)=n"%L,(n), r=1,....,T,neN,

Results for periodic sequences with exponential-type tails as in (5.30) can be found in Hall and
Scotto (2006).
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for some slowly varying functions L, : R+ — R4+ (r = 1,...,T) at infinity, in
short Fz, € D(®q,), r = 1,...,T. We further assume that the tails are equivalent
in a sense that
1-F
1mﬂ:y1k, (0<)/1k<00) .k eZ. (5.38)
n—oo 1 — Fz (n) ’ ’
Note that y;x = yi+rk. Let (X,) be a T-periodic non-negative integer-valued
moving average sequence defined as in (5.33).
We start with the analysis of the tail behavior of X, r = 1,..., T. In doing so,

the following representation for X, is very useful

ng

00
Z ]T+SOZ r—jT—s-

From the representation above Hall et al. (2010) proved the following result which
completely characterizes the tail behavior of X,.

Lemma 5.5.6. For the process defined in (5.33), it holds that forr =1,...,T

P(X, > n)
Sz Zy’ ”be”"nem

Now we can obtain the limiting distribution of the normalized maxima of the
periodic sequence (X,). The result is as follows:

Theorem 5.5.8. Let (X1,...,X,) be the T-periodic non-negative integer-valued
moving average sequence defined in (5.33). Assume that Fz, € D(®y,), r =
., T satisfying
lim n(1 — Fz, (uy)) s >0
im n(l — Fz, (u,)) = . T ,
e Yoiso Vrosr >0 bis

for some sequence of real numbers (u,) and

T—1

D g0 Vr—sr Zjo 0 b+
T—1

D sm0 Vies a0 by

with Ty = x~%. Then, the distribution of X, satisfies

Ty = Yr17T1,

lim n(1 — Fx,(uw,)) =7, r=1,...,T.
n—>oo
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Ifu, = a; x with

T
1
* —1 -1
ay ~ 5 E Yri E bi | Fz (1—n""),

r=1 j=0

then

—a

lim P(M,(X) < uy,) = e
n—o0o

and the extremal index 0 is given by

0 = mo—oé——(/), (5.39)

o

Z]:o j

Note that the expression for the extremal index in (5.39) coincides with the one
obtained by Hall (2001) in (5.34) for the stationary case. This means that the
extremal index is not affected when considering the tail equivalence condition in
(5.38). In other words, for these models the clustering tendency of high-threshold
exceedances is completely determined by the coefficient values and the tail index of
the marginal distributions in the same way as in the stationary case.
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