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Preface

The importance of controlling pedestrian flow especially during emer-
gencies is being understood by researchers to be a very important
research area. Currently, the use of static emergency routes is not
efficient, since during emergencies, the preferred routes might be con-
gested, or worse yet might not even exist. Hence, it is very important
to use sensors to measure the current traffic and conditions on the
routes and give real-time guidance to pedestrians using feedback con-
trol. This book is the first book that provides feedback control design
for pedestrian movement control in one and two-dimensional prob-
lems using lumped and distributed parameter model settings. There
is much more development that is needed in this important work,
but the authors hope that this book provides inspiration for other
researchers to continue work in this area.

Evacuation can be from a small area, single floor of a building, a
entire building, a parking area, or from a much bigger region such as
an entire city. The feedback control design for evacation of pedestri-
ans in small areas falls under the framework presented in this book.
Evacuation from bigger regions such as a city requires vehicular traf-
fic control from highways, which can involve modeling of networks
using digraphs. Network control for evacuation is not covered in this
book.

This book is the outcome of research carried out for two years
partially supported by National Science Foundation through grant
no. CMS-0428196 with Dr. S. C. Liu as the Program Director.
This support is gratefully acknowledged. Any opinion, findings, and
conclusions or recommendations expressed in this study are those of
the writer and do not necessarily reflect the views of the National
Science Foundation. The research was conducted by the four authors

vii



viii Preface

of this book as well as Dr. M. P. Singh from Virginia Tech. Some
earlier work also involved development of visualization software (not
presented in this book) by Thomas A. Merrell.

Virginia Tech., (visiting) UNLV, Pushkin Kachroo
August 2007
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Chapter 1

Introduction

The work presented in this book is concerned with developing pedes-
trian dynamic models that can be used in the control and the inves-
tigation of crowd behavior. The development of pedestrian dynamic
models to implement evacuation system strategies is an ongoing re-
search area. Since the early 1990s a strong interest in this topic
has shown the importance of this issue [91]. Nevertheless, as stated
in [103], our knowledge of the flow of crowds is inadequate and be-
hind that of other transportation modes. Studies like the ones in
[35, 92|, are concerned with evacuation strategies for regional areas
like cities and states. They are important in the decision making of
an emergency evacuation such as in the case of a natural disaster. In
smaller areas like airports, stadiums, theaters, buildings, and ships,
an evacuation system is an important element in design safety [71].
A good evacuation system in the case of an emergency can prevent
a catastrophic outcome as shown by [42].

It has been suggested in [73], that pedestrian traffic flow can
be treated as vehicle traffic flow, where we can divide the problem
into two categories: the microscopic level and the macroscopic level.
The former involves individual units with characteristics such as in-
dividual speed and individual interaction. Microscopic pedestrian
analysis studies were presented by [39, 46], and followed by many
researchers to improve on the Car-Following model. In [44], the im-
portance of a detailed design and pedestrian interactions is shown by
implementing several case studies. On the other hand, the drawback
to mathematical microscopic models is their difficult and expensive
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simulation, which leads to another approach called pedestrian analy-
sis by simulation and is being increasingly used instead of the math-
ematical models [40]. In such models, pedestrians are treated as dis-
crete individuals moving in a computer simulated environment. In
this approach there are mainly three types of models, cellular based,
physical force based, and queuing network based. More information
on these microscopic models can be found in [10, 32, 38, 43, 45, 70,
78,79, 94, 95, 101].

Macroscopic models aimed at studying pedestrian behavior use
a continuum approach, where the movement of large crowds exhibit
many of the attributes of fluid motion. As a result, pedestrian dy-
namics are treated as a fluid. This idea provides flexibility since
detailed interactions are overlooked, and the model’s characteris-
tics are shifted toward parameters such as flow rate f(p), concen-
tration p (also known as traffic density), and average speed v, all
being functions of 2-D space (z,y) and time (¢). This class of mod-
els is classified under the hyperbolic partial differential equations.
This way of modeling the pedestrian behavior was first introduced
by [29, 30|, and adopted by [11], where macroscopic models can be
developed using (a) fluid flow theory, (b) a continuum responding to
influences (local or non-local). The drawback to this way of mod-
eling is due to the assumption that pedestrians behave similarly to
fluids. Pedestrians tend to interact among themselves and with ob-
stacles in their model area, which is not captured by macroscopic
models.

To introduce feedback control as a strategy in evacuation plans,
where the objective is to control each pedestrian in the model area
is difficult and not practical for the microscopic modeling approach.
The obvious reasons for the impracticality are the detailed design
and pedestrian interactions which make it very difficult to control
such models. Instead, the macroscopic modeling approach is well
suited for understanding the rules governing the overall behavior of
pedestrian flow for which individual differences are not that impor-
tant. By monitoring panic situations like an evacuation, we see that
(a) people tend to move as a group and, (b) behave in a rational
manner, since they think the situation is fully visible to the tallest
member of the group, who is supposed to convey information to the
shorter members by his or her actions [51, 52].
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The first step in this study is to start investigating potential
mathematical models governing crowd dynamics. Two factors need
to be considered in deriving the models: the accurate representation
of the pedestrian flow in an emergency situation (evacuation), and
the complexity of the selected model.

In this book, four macroscopic crowd dynamic models have been
developed. Their theoretical approaches are adopted to represent
crowd motion in 2-D space (2-D). Four distinct 1-D traffic flow mod-
els are extended and modified to represent crowd dynamics in a
2-D environment. The resulting models are divided into two types,
mainly one-equation and two equation crowd models (or systems)
of nonlinear hyperbolic partial differential equations (PDE). These
models start from conventional theory for ordinary fluids. All the
models assume a conservation of continuity and in the last three, the
second partial differential equation is a modified version of the mo-
mentum equation which differs in each model in order to distinguish
them from fluid behavior.

The second step is to simulate the systems responses. For hy-
perbolic PDE’s, computational fluid dynamics methods are used.
These methods are aimed at finding the correct solution out of the
many weak solutions available for the hyperbolic PDE. Here we
applied first order accurate finite volume method schemes such as
Lax-Friedrichs, FORCE, and Roe’s schemes to find the models nu-
merical solution. Then we designed a preliminary control to evacu-
ate pedestrians based on feedback linearization applied directly on
the PDE equation. We also discuss the issues and requirements of
modeling, control, and communications for an intelligent evacuation
system.

Chapter 2 will introduce the basic theory for the traffic flow prob-
lem in 1-D space along with the four macroscopic traffic low models
that will be used to develop the crowd models. In Chap. 3, new 2-D
crowd models are presented, and the microscopic-to-macroscopic re-
lationship for the last models is investigated, where a micro-to-macro
link is established. Chapter 4 survey the state of the art numerical
schemes based on computational fluid dynamic and gives the nu-
merical solution of the models using Matlab software environment.
Feedback linearization control for the 1-D space one-equation model
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is given in Chap. 5. In Chap. 6, we suggest an intelligent evacuation
system, and discuss its control and information technology issues.
The following chapters show control design performed on dis-
cretized models of traffic as well as on the original distributed pa-
rameter models. Simulation studies and corresponding codes are
provided to study the effectiveness of the control strategies.



Chapter 2

Traffic Flow Theory
for 1-D

2.1 Introduction

Interest in modeling traffic flow has been around since the appearance
of traffic jams. Ideally, if you can correctly predict the behavior of
vehicle flow given an initial set of data, then, in theory, adjusting the
flow in crucial areas can maximize the overall throughput of traffic
along a stretch of road. This is of particular interest in regions of
high traffic density, which may be caused by high volume peak time
traffic, accidents or closure of one or more lanes of the road.

The development of the pedestrian evacuation dynamic systems
follows from the traffic flow theory in 1-D space [2, 39, 51]. In many
ways, the pedestrian evacuation system is similar to the vehicle traffic
flow problem [73]. The main conservation equations used in modeling
the vehicle traffic flow and the pedestrian evacuation flow are the
same, with the exception that vehicle traffic is a 1-D space problem
and the evacuation system is a 2-D space problem. Other similarities
exist from having escape routes and escape times in both problems.
In most of the situations a vehicle or a pedestrian has more than one
route to a destination and each route has an associated cost, such
as time.

In this chapter we will give the necessary background on traffic
flow theory and survey the existing macroscopic mathematical mod-
els for single-lane, 1-D space traffic flow. These models will be used
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for crowd flow in 1-D, and they will be modified in Chap. 3 for
2-D flow. In Sect. 2.2, we start with the concept of macroscopic vs
microscopic ways of modeling the traffic flow problem, followed by
Sect. 2.3, where a microscopic model is introduced. The derivation
of the traffic flow theory based on conservation of mass law, and the
relationships between velocity and density are given in Sect. 2.4. In
Sect. 2.5, four macroscopic traffic flow models are presented, derived,
and analyzed based on their mathematical characteristics. Finally,
the exact and weak solutions to the scalar traffic flow PDE, and the
concepts of shock wave, rarefaction wave, and the admissibility of a
solution are considered.

2.2 Microscopic vs Macroscopic

In the traffic flow problem, there are two classes of models: Macro-
scopic, which is concerned with average behavior, such as traffic den-
sity, average speed and module area, and a second class of models
based on individual behavior referred to as microscopic models. The
latter is classified into different types. The most famous one is the
Car-Following models [6, 17, 57], where the driver adjusts his or her
acceleration according to the conditions in front. In these models the
vehicle position is treated as a continuous function and each vehicle is
governed by an ordinary differential equation (ODE) that depends on
speed and distance of the car in front. Another type of microscopic
models are the Cellular Automata or vehicle hopping which differs
from Car-Following in that it is a fully discrete model. It considers
the road as a string of cells which are either empty or occupied by one
vehicle. One such model is the Stochastic Traffic Cellular Automata,
given in [75]. However, microscopic approaches are computationally
expensive, as each car has an ODE to be solved at each time step,
and as the number of cars increases, so does the size of the system
to be solved. On the other hand, the macroscopic models are com-
putationally less expensive because they have fewer design details in
terms of interaction among vehicles and between vehicles and their
environment. Therefore, it is desirable to use macroscopic models if
a good model can be found satisfactorily to describe the traffic flow.
In addition, this idea provides flexibility since detailed interactions
are overlooked, and the model’s characteristics are shifted toward
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parameters such as flow rate f(p,v), concentration p (also known as
traffic density), and average speed v, all functions of 1-D or 2-D space
(z,y), and time (¢). This is also true for first-order fluid dynamic
models of isothermal flow and gases through pipes.

Two main prototypes set the stage for macroscopic traffic flow:
the first is called the LWR model which is a non-linear, first-order
hyperbolic PDE based on law of conservation of mass. The second
one is a second-order model known as the PW model, which is based
on two coupled PDE’s one given by the conservation of mass and a
second equation that mimics traffic flow.

2.3 Car-Following Model

We present the well known car-following microscopic traffic flow
model. In [93], a 2-D version of this model was used for pedestrian
flow in 2-D space. To derive the 1-D model, first assume cars can
not pass each other. Then the idea is that a car in 1-D can move and
accelerate forward based on two parameters; the headway distance
between the current car and the one in front, and their speed differ-
ence. Hence, it is called following, where a car from behind follows
the one in front, and this is the anisotropic property. This property
is also desirable in macroscopic models, since it reflects the actual
observed behavior of traffic flow [23].

Suppose the nth car location is x,(t), then the nonlinear model
is given by
En(t) — @p_1(t)
2 (t) — xp_1(t)’
The acceleration of the current car i, (t) depends on the front car
speed and location, c is the sensitivity parameter. Integrating the
above yields

Tn(t) = cln (2, (t) — 2p—1(t)) + dp. (2.2)
Since by the definition of the density (number of cars per unit area)

1

o, 1) =xp(t) — xp_1(t), (2.3)
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and the integration constant d,, is chosen such that at jam density
pPm, the velocity is zero. Then for steady-state we get
p
Pm

v=—cln (2.4)
We see that for p — 0 we get in trouble, but from observations in
low traffic densities, car speed is the maximum allowed speed, hence
we can assume v = Upax, Which is the maximum allowed speed.

2.4 Traffic Flow Theory

In this section we will cover the vehicle traffic flow fundamentals for
the macroscopic modeling approach. The relation between density,
velocity and flow is presented for traffic flow. Then we derive the
conservation of vehicles, which is the main governing equation for
scalar macroscopic traffic models. Finally, the velocity—density func-
tions that makes the conservation equation a function of only one
variable (density) are given.

2.4.1 Flow

In this section, we will illustrate the close relationship between the
three variables: density, velocity and traffic flow. Suppose there is
a road with cars moving with constant velocity vy, and constant
density pg such that the distance between the cars is also constant
as shown in the Fig. 2.1a. Now let an observer measure the number
of cars per unit time 7 that pass him (i.e. traffic flow f). In 7 time,
each car has moved vg7 distance, and hence the number of cars that
pass the observer in 7 time is the number of cars in vy7 distance, see
Fig. 2.1b.

Since the density pg is the number of cars per unit area and there
is vo7 distance, then the traffic flow is given by

I = povo (2.5)

This is the same equation as in the time varying case, i.e.,

F(p.v) = pla, ol b). (2.6)
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Fig. 2.1. (a) Constant flow of cars; (b) Distance traveled in 7 hours
for a single car

To show this, consider the number of cars that pass point x = zg in a
very small time Atf. In this period of time the cars have not moved far
and hence v(z,t), and p(z,t) can be approximated by their constant
values at * = x¢ and t = typ. Then, the number of cars passing the
observer occupy a short distance, and they are approximately equal
to p(x,t)v(x, t)At, where the traffic flow is given by (2.6).

2.4.2 Conservation Law

The models for traffic, whether they are one-equation or system of
equations, are based on the physical principle of conservation. When
physical quantities remain the same during some process, these quan-
tities are said to be conserved. Putting this principle into a mathe-
matical representation will make it possible to predict the densities
and velocities patterns at future time. In our case, the number of
cars in a segment of a highway [z1, 2] are our physical quantities,
and the process is to keep them fixed (i.e., the number of cars coming
in equals the number of cars going out of the segment). The deriva-
tion of the conservation law is given in [26, 37], and it is presented
here for completion. Consider a stretch of highway on which cars are
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Fig. 2.2. One-dimension flow

moving from left to right as show in Fig. 2.2. It is assumed here
that there are no exit or entrance ramps. The number of cars within
[x1, 2] at a given time ¢ is the integral of the traffic density given by

N = /rz p(x,t)dz. (2.7)

In the above equation, it is implied that the number of people
within [z, z9] is at maximum when traffic density is equal to jam
density p,, which is associated with the maximum number of cars
that could possibly fit in a unit area.

The number of cars can still change (increase or decrease) in time
due to cars crossing both ends of the segment. Assuming no cars are
crated or destroyed, then the change of the number of cars is due to
the change at the boundaries only. Therefore, the rate of change of
the number of cars is given by

O = Fnlpr0) — foulpyv), 23

since the number of cars per unit time is the flow f(p,v). Combining
(2.7), and (2.8), yields the integral conservation law

d [*2
/ p(l‘vt) dz = fin(p,v) _fout(pvv)' (29)
dt /.,
This equation represents the fact that change in number of cars is due
to the flows at the boundaries. Now let the end points be independent
variables (not fixed with time), then the full derivative is replaced
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by partial derivative to get

o [
o / p(2.1) Az = fin(pr0) — fout(py ). (2.10)

The change in the number of cars with respect to distance is given
by
o af

fin(p,v) = four(psv) = — B (p,v)de, (2.11)

1

and by setting the last two equations equal to each other, we get

2
/m B’Z(w,t) + gi (p,v)] dz = 0. (2.12)
This equation states that the definite integral of some quantity is
always zero for all values of the independent varying limits of the
integral. The only function with this feature is the zero function.
Therefore, assuming p(z,t), and ¢(x,t) are both smooth, the 1-D
conservation law is found to be

p+ fo(p,v) = 0. (2.13)

We need to mention that this equation is valid for traffic and many
more physical quantities. The idea here is conservation, and for
vehicle traffic flow, the flow is given by (2.6).

2.4.3 Velocity—Density Relationship(s)

Traffic density and vehicle velocity are related by one equation, con-
servation of vehicles,

pr(z,t) + (p(z, t)v(z, 1)), =0, (2.14)
a()

where the notation (-), = ‘5, will be used from here on. If the initial
density and the velocity field are known, the above equation can be
used to predict future traffic density. This leads us to choose the
velocity function for the traffic flow model to be dependent on density
and call it V' (p). The choice of such function depends on the behavior
the model is trying to mimic. The following is a brief description of
models that have been recognized and used by researchers [57], with
emphasis on Greenshield model that will be used in several traffic
(crowd) models throughout this book.
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Greenshield’s Model [34]

This model is simple and widely used. It is assumed here that the
velocity is a linearly decreasing function of the traffic flow density,
and it is given by
Vip)=v1- ") (2.15)
Pm

where vy is the free flow speed and p,, is the maximum density.
Figure 2.3 shows the speed V(p(x,t)) as a monotonically decreasing
function. For zero density the model allows free flow speed v, while
for maximum density p,, no car can move in or out.

The flux—density relationship for Greenshield’s model (2.15) is
given in Fig. 2.4, where it shows the flux increases to a maximum
which occurs at some density p and then it goes back to zero. This
kind of behavior is due to the fact that f”(p) < 0 (note that f(p) =
pV(p) is the flux flow).

Greenberg Model [33]

In this model the speed—density function is given by

Vip)=erin( ") (2.16)

Underwood Model [33]

In the Underwood model the velocity—density function is represented
by

V(p) = vy exp(” ") (2.17)

m

V(p(x 1)

Vf

P A1)

Fig. 2.3. Greenshield’s model for traffic low speed
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Fig. 2.4. Traffic flow flux as a function of density

Diffusion Model [14, 74]

Diffusion is a good extension to the model given by (2.15), where the
effect of gradual rather than instantaneous reduction of speed by the
driver takes place in response to shock waves. This kind of reaction
can be accomplished by adding an extra term such that the modified
Greenshield model will become

_ py D op
V(p)—vf(l—pm)— p(ax) (2.18)

where D is a diffusion coefficient given by
D =1 >

and v, is a random velocity, 7 is a relaxation parameter.

2.5 Traffic Flow Model 1-D

In this section, we will present four different models for traffic flow
in 1-D space. The first model is one equation model, and the rest
are systems of two-equation models. All the models are described by
partial differential equations and based on conservation of mass and a
second equation that is intended to capture the complex interactions
observed in traffic flow motion. In addition, this second equation
provides another way to couple velocity and density. Hence the flow
is not in equilibrium like the one equation model. This is one of the
main differences between the scalar and the system models.



14 2 Traffic Flow Theory for 1-D

2.5.1 LWR Model

The first model used in describing the traffic flow problem known
as the LWR model, named after the authors in [68] and [87]. The
LWR model is a scalar, time-varying, non-linear, hyperbolic partial
differential equation. The model governing equation is (2.14). In this
equation, traffic density is the conserved quantity, and we rewrite the
model as

pe(x,t) + (p(z,t)V(p(z,t)))s =0 (2.19)
with the flux being replaced by the velocity—density relationship
fa,t) = plz, )V (p(, ) (2.20)

and V(p(z,t)) is the velocity function given by (2.15).

One of the basic assumptions in the LWR model regarding the
velocity is its dependence on density alone. Any changes to density
will be reflected in the velocity. The drawback for this assumption,
as pointed out in [23], is that traffic is in equilibrium when such
velocity—density functions are used, i.e., given a particular density,
especially for light traffic, the velocity will be fixed and the model
does not recognize that there is a distribution of desired velocities
across vehicles. Therefore the model is not able to describe observed
behavior in light traffic, although one can argue that vy is an average
speed which might take care of this issue. On the plus side, the model
is anisotropic as the nature of the observed traffic flow, i.e. vehicle
behavior is affected by mostly the car in front. This can be found
from the model eigenvalue given by

Flote) =)

(p(2,1)) = V(p(z, 1) + pV'(p(x,1)),  (2.21)
which means that the model allows information to travel as fast as
the flow of traffic, and not more, since it satisfies 0 < f'(p) < V(p),
because

Vip)=—"". (2.22)

Pm

The LWR model given by (2.19) and (2.15) is a simple model and
it is unable to capture all of the complex interactions for a realistic
traffic flow model. For this reason, modifications to the LWR model
have been suggested. One way is by the various velocity—density
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functions we gave in Sect. 2.4.3. The second way is by coupling
the conservation of mass with a second equation that tries to mimic
traffic motion instead of the velocity—density models as given next.

2.5.2 PW Model

The first system model to be presented is a two-equation model pro-
posed in the 1970s independently in [82] and [102]. Their model was
the first model to couple velocity dynamics as a second equation,
and it is referred to as the PW model. The first equation is the
conservation of mass as discussed in the previous sections

pr+ (pv)e =0, (2.23)

where the flux function f(p,v) = pv. In the LWR scalar equation
model, a particular form of v was assumed where velocity is a function
of density, but in high order models, v and p are assumed to be
independent and a second equation is formed to link them, as in fluid
and gas models. The second equation is derived from the Navier-
Stokes equation of motion for a 1-D compressible flow, but with the
pressure term replaced by P = C’g p, where Cj is the anticipation term
that describes the response of macroscopic driver to traffic density,
i.e. space concentration, and the pressure now is not “pressure” as
such. The model also includes a traffic relaxation term that keeps
speed concentration in equilibrium

Vi(p) —v
T )
where 7 is a relaxation time, and the velocity V(p) is the maximum
out-of-danger velocity meant to mimic driver’s behavior given ear-
lier by (2.15) to (2.18). The second equation of the PW model in
nonconservative form is then given by
Vip)—v C?
VU U, = (p) - p. (2.24)
T P
To study this model, we have to find its eigenvalues by first rewriting
the model in conservation form. The first step is to use the product
rule
(pv)e = pur + vpr, (2.25)
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and by multiplying (2.23) by v, we get

vpr +v(pv)e = 0. (2.26)

Then by substituting in for vp; from the product rule (2.25), we get

v(pv)z + (pv)e — pve = 0, (2.27)

and by substituting (2.27) into (2.24), and multiply the result by p
we get

Vip) —v
put + pv vz=p< (pi >—C§px.

Then by substituting for pv; from (2.27) we get

Vip) —v
v(pv)z + (pv)t + pv vy =p < (p7)_ > — C2p,. (2.28)
Again using the product rule on (pvv),, i.e.,

(pvv)z = (pv)2v + (p0)vr (2.29)

and substituting in (2.28) we obtain

oo+ )= (V70 = G (2.30)

Hence we obtain (2.24) with the lefthand side in conservation
form

(p0)e + (pv* + C3p)a = p <V(pi N U> (2.31)

where now p and pv are the conserved variables. Equations (2.23)
and (2.31) can be written in vector form as

Q:+F(Q).=S 232
where,
o= n | r@=| s, | 5= p(wg)_v)

(2.33)
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Setting the source term S = 0, we can rewrite the system in
quasi-linear form as

Qi+ A(Q)Qz =0, (2.34)
where oF

0 1
AQ) = 00 =~ [ C2—po? 20 ] . (2.35)

Finally by solving for the eigenvalues from
|A(Q) — AI| =0 (2.36)

we get two distinct and real eigenvalues

)\172 =v*+ CQ, (237)

therefore, the system is strictly hyperbolic.

The model has a major drawback that researchers (see for exam-
ple [23]) are concerned about, mainly, that the model strongly follows
the fluid flow theory. In fluids, the behavior of a particle is affected
by its surrounding particles. Thus the anisotropic nature of traffic
is not preserved since the vehicles are allowed to move with nega-
tive velocity, i.e. against the flow. This is clear from the eigenvalue,
where one of \j 2 = v+ is always greater than the vehicle speed v.
So, information from behind affects the behavior of the driver, and
this is not true for observed traffic flow. This is called the isotropic

property.

2.5.3 AR Model

A new model in [4] and improved in [84] is argued to be an im-
provement on the PW model. The authors of this model say that
other researchers have stuck too closely to fluid flow models and
have not allowed for a significant difference between traffic and flu-
ids, e.g., traffic is more concerned with the flow in front, rather than
behind. Therefore in order to move away from fluids and toward
the anisotropic property of traffic, they argue that replacing the
“pressure” term with an anticipation term describing how the av-
erage driver behaves is not a sufficient fix for the differences between
the two types of flow. They claim that the drawback in the PW
model (letting information travel faster than the flow) is due to an
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incorrect anticipation factor involving the derivative of the pressure
w.r.t. z. Therefore they suggest the correct dependence must involve
the convective derivative (full derivative) of the pressure term. The
convective derivative in its general form is given by

D¢ 99
Dt ot

for ¢(Z,t), and & € R"™. They support their claim by the following
example: “Assuming that in front of a driver traveling with speed
v the density is increasing with respect to x, but decreasing with
respect to (x—wvt). Then the PW type models predict that this driver
would slow down, since the density ahead is increasing with respect
to x! On the contrary, any reasonable driver would accelerate, since
this denser traffic travels faster than him.”

We call the model AR for short, and the first PDE equation is the
same conservation of cars given by (2.23). However, in the AR model
the next lagrangian equation replaces the second PDE equation given
in the PW model. This second equation is found by applying the
full derivative (2.38) to describe traffic motion dynamics, and it is
given by

+ (7-V)o, (2.38)

(v+P(p))e +v(v+ P(p))e =0, (2.39)

where P(p) is an increasing function of density. This choice is to en-
sure that this model caries the anisotropic property, and it is given by

P(p) = C3 p", (2.40)

where v > 0, and Cy = 1. Next we will put the second equation in
conservation form, and find the system eigenvalues. First multiply
(2.39) by p, then by using the product rule

(p(v+P(p))e = p(v+Pp))+pv+ Pp)), (2.41)

(pv (v+ P(p))e = (pv)z(v+ P(p)) + (pv)(v + P(p))s, (2.42)
we obtain
(p(v+P(p))t—pe(v+P(p)) + (pv (v+P(p)))z — (pv)z(v+ P(p)) = 0.

(2.43)

Now, using the conservation law (2.23) for p;, we can simplify the
above equation to

(p (v + P(9))i + (pv (v + P(p)))s =0, (2.44)
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which is the conservation form of (2.39). Then our conserved vari-
ables are p, and p (v + P(p)). We proceed now to find the system
eigenvalues, let X = p(v + P(p)) for simplification, then the AR
model given by (2.23), and (2.44) can be rewritten as

pt+(X—2pP(p))z =0
Xt+<); —XP(p)> = 0

xT

(2.45)

and in vector form (2.32), the stats and the flux are given by

) )g — pP(p)
For the quasi-linear form (2.34), the Jacobian is given by
A or X;(fy +)§')P X :
= = 2 . .
(@) 90 B <p2 L p(p)> < ’ _P(p)> (2.47)

Finally, solving for the eigenvalues from |A(Q)— | = 0, we find two
distinct and real eigenvalues

M =v—7P(p) & X =w. (2.48)

Therefore, the system is strictly hyperbolic and since the “pressure”
is an increasing function, then it is guaranteed that A\; < Ay due to
the fact that the maximum wave speed is equal to the velocity of the
flow v. Hence, the anisotropic property of traffic is preserved.

2.5.4 Zhang Model

We present here a model that was proposed in [104, 105], and it
claims not to be of fluid, or gas-like behavior. The model caries the
anisotropic property, because the second equation is derived from
the microscopic car-following model. Hence, a micro-to-macro link
is established for this model. Again, as in the PW and AR models,
the Zhang model is also a system consisting of the conservation of
cars (2.23), and coupled with a second PDE that describe car motion
given by

v +vvg + pV'(p)ve =0 (2.49)
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We start the micro-to-macro derivation from the homogeneous mi-
croscopic car-following model (the relaxation term can be added for
2-D crowd flow given in the next chapter) given by

T(Sn(t)) l‘n(t) = i‘n—l(t) - i‘n(t)v (2'50)

where

Sn(t) = Tp_1(t) — 2 (L), (2.51)

and s, (t) is a function of the local spacing between cars, x,,(t) is the
position of the nth car, #,(t) is the acceleration, @, (t) is the velocity,
and 7(s,(t)) is the average response time to the headway distance.
Using the above notations, we rewrite (2.50), and define the velocity
as v(x,t) = &(t) to obtain the following

dv(z,t) _ d(s(z(t),t))
t),t = 2.52
r(sa(t), ) P (2.52)
and by using convective derivative 0y + vd, on the velocity compo-
nent, we get

7(8) (ve + vvz) = (8¢ + vSy). (2.53)

From the conservation law (2.23), let p = 1/s, and by using the
following derivative form

a, bDya—aD;b

D, : 2.54
(=" (254)
for any a and b # 0, we get

5t + USy + UuSy = Sv; + Sy, (2.55)

and by direct substituting in the right hand side of (2.53), we obtain
our desired equation in the following form

(vp + vvg) = T(S)vz, (2.56)

where
s

7(s)
is the sound wave speed. This completes the derivation of the macro-
scopic model (2.49) from its microscopic counterpart.

=—C(p)=—pV'(p) 20 (2.57)
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The conservative form of this model is derived next. First collect
terms and rewrite (2.49) to get

v+ (v+pV'(p)) vy =0, (2.58)
then expand the conservation of mass equation
Pt + pvy +vpg = 0. (2.59)
We substitute for pv, from (2.59) into (2.58) to obtain
v +vvge + V' (p) (—pr —vpe) = 0, (2.60)
which can be rewritten as
v+ vog — (V(p))e — v (V(p))a =0, (2.61)
or in lagrangian form as
(v=V(p)t+v(w=V(p)a =0. (2.62)

We now proceed to find the conservation form by multiplying (2.62)
by p and using the product rules

(p(v =V ()t = pt(v—V(p))+plv—V(p), (2.63)
(pv(w=V(p))z = (pv)z(v—=V(p)) +pv(v—"V(p))z,(2.64)

to get

(p(w=V(p))e=pe(v=V(p)) +(pv (v=V(p)))a = (vp)u(v =V (p)) = 0.

(2.65)
From (2.59), we substitute for p; in the above equation to obtain our
final conservation form given by

(p(v=V(p)t+ (pv(v—=V(p))z =0, (2.66)

where our states are given by p and p(v—V(p)). For the quasi-linear
form (2.34), let X = p(v — V(p)), and write the system in vector
form (2.32), such that

X + PV (p)

); _XV(p) (2.67)
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The Jacobian is then can be found to be

OF V(pz) +pV'(p) 1
MOZa0 7 | (T -xvie) (2 ve) | B

Finally by solving for the eigenvalues from |A(Q) — AI| = 0, we find
two distinct and real eigenvalues

M=v+pV(p) & Xo=v (2.69)

therefore the system is strictly hyperbolic. Since V’(p) is negative
and given by (2.22), then the maximum the information can travel
is equal to the vehicle speed v.

2.5.5 Models Summary

The one-equation LWR model consists of a single wave whose velocity
is given by the derivative of the flux function, and information travels
forward at a maximum not faster than the speed of traffic. There-
fore the model behavior is anisotropic, i.e. only reacts to conditions
ahead. For the two-equation models, the PW has two waves traveling
at speeds given by v+ Cj, one of them will always be traveling faster
than the current speed v. This is a major cause of criticism of this
model. The AR model has wave speeds given by v and v — vP(p).
This seems reasonable since, as in the LWR model, the faster wave
will move at the same speed as the traffic v. This is also true for the
Zhang model, whose wave speeds are given by v and v+ pV’(p) with
V'(p) < 0. This demonstrates the desirable anisotropic nature of the
LWR, AR and Zhang models, and the isotropic nature of the PW
model, for which it is severely criticized. In addition, Zhang model
has a microscopic counterpart, which is not true for the PW and AR
models. Although, the AR model has an indirect micro-to-macro re-
lationship [4], where a numerical discretization of the AR model and
a microscopic car-following model gave the same numerical formula.
This suggest that the macroscopic AR model can be considered as
an upper limit to the microscopic model.
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2.6 Method of Characteristics

A typical problem in partial differential equation consists of finding
the solution of a PDE subject to boundary conditions (BVP), initial
conditions (IVP), or both (IBVP). In most cases it is difficult to find
the exact (classical) solution of a hyperbolic PDE, but due to the
simplicity of the LWR model and the fact it is a scalar 1-D space
model we are able to find the exact solution by method of character-
istics. The method of characteristics is a widely used technique to
solve hyperbolic PDE’s [24, 58, 77, 86].

2.6.1 LWR Model Classification

The partial derivative scalar conservation law in (2.19) is classified
as first-order quasi-linear partial differential equation. This is due to
the fact that the derivative of the highest partial occurs linearly. We
can rewrite (2.19) as

pt($>t) + f/(p($>t)) pz =10 (2'70)

where f’(p) is the vehicle speed, and it is called the characteristic
slop or the eigenvalue of the PDE. By using Greenshield’s model
(2.15), we get

df(p(x,t)) 25 p(z,1)

f/(p(fL’, t)) = dx = vy O ) (2'71)

where we see that this eigenvalue is real. Therefore, the LWR model
is classified as strictly hyperbolic PDE. Figure 2.5 below shows the
changes in speed f’(p) with respect to the changes in density p.
This relationship is important in finding the solution to the traffic
flow model (2.70) by using method of characteristics discussed in the
following section.

2.6.2 Exact Solution

Here we will use the method of characteristics to solve the initial
value problem (IVP) and also called the Cauchy problem given by

pt(l‘vt) + f(p(xvt))w =0
{ o(z,0) = pol2) (2.72)
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Fig. 2.5. Characteristic slops vs density

where x € R and time t € R". Flow rate f : R — R is assumed to
be a smooth function, at least C? (i.e., twice differentiable) and the
initial condition pg : R — R is continuous. For the single conserva-
tion law, the eigenvalue of the PDE in (2.72) is given by the slope of
the characteristic curve found from the quasi-linear form (2.70) as

Ap) = f(p) (2.73)

Theorem 2.6.1 Any C' solution of the single conservation law in
(2.72) is constant along its characteristics. Accordingly, character-
istic curves for the partial derivative conservation law in (2.72) are
straight lines.

Proof See [86].
The above theorem implies that any curve of the form

2(t) = kt + 2(0) (2.74)

is a characteristic curve where x(t) is the solution, k = f/(p(z(t),t))
is the constant slope of the characteristic rays and z(0) is the initial
position of the characteristics rays. To show that (2.74) is indeed a
solution to our Cauchy problem, let us first define what is meant by
a solution.

Definition 2.6.1 Let f: R +— R be smooth, and let pg : & — R be
continuous. We say that p(z,t) : (Rx RT) — R is a classical solution
of the Cauchy problem if p(x,t) € C1 (R x RT) N C® (R x RT) and
(2.70) is satisfied.
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We can verify that it is indeed a solution by substituting for
x(0) = x — f't from (2.74) to get

p(x, t) = pO(x - f/ t)? (275)

then, by taking partial derivatives with respect to ¢t and x, respec-
tively, we obtain

pr=po(x — f'O)(=f), and p, = py(x — f'1).
Substituting the above in (2.70), we get
po(z = f')(=f) + floo(z — f't) =0,

which shows (2.72) is satisfied. So, the exact solution is basically
the initial data shifted by the slope of the characteristic as shown in
Fig. 2.6.

From the initial data we are able to generate the slopes of the
characteristic rays originating from the x-axis. For some certain pro-
files of initial data, this gives us a method for solving the Cauchy
problem. To illustrate this method, let us consider the initial data
in Fig. 2.7, where we have the density profile of heavy traffic density
at one end and light at the other end. Substituting for the initial
density values in (2.71) will give the slopes of each of the character-
istics. Then the solution follows from (2.74) along the rays of the
characteristics as shown on the same figure.

2.6.3 Blowup of Smooth Solutions

Unfortunately, other examples with different initial data show how
easily the procedure above fails. In Fig. 2.8, we see a density profile

p(x,t)

po(x _fvt) === v v

Po(X)|---

»
!

X

Fig. 2.6. Exact solution is achieved by shifting the initial density
profile
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Fig. 2.7. Density distribution in the upper part, and the correspond-
ing characteristic rays in the lower part

that describes road condition when cars are approaching red traf-
fic light. Although initial density is continuous, the characteristics
overlap at some later point in time. Since our solution cannot be
multi-valued, we must conclude (in light of Theorem 2.6.1) that the
solution shown cannot be smooth. For this type of initial data, a
theory of discontinuous solutions, or shock wave solution is used.
Moreover, in Fig. 2.9, we face a different kind of problem. This
time we have initial profile corresponding to heavy traffic at the
beginning, then at some point zj it is lighter. This example can

IPZi\N

X

Fig. 2.8. Overlapping characteristics from continuous initial data
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be related to conditions of a red light turns to green. As we all ob-
serve in real situation, cars start to accelerate from high density (low
speed) to low density (higher speed). The exact solution for this data
shows that there is a region untouched by any characteristics from
the given initial data. Thus, the method of characteristics did not
identify a solution in this region. As we shall see next, for this case
we will be able to identify a continuous solution called a rarefaction
or fan wave solution to fill the wedge.

2.6.4 Weak Solution

From the discussion above, smooth solutions of a single conservation
laws can blow up (develop discontinuities or singularities) in finite
time which fails to make any sense. Therefore, one cannot follow the
practice of accepting solutions to the hyperbolic partial differential
equations as given directly by method of characteristics. In order to
understand discontinuous solutions, one needs to extend the notion
of solution itself. One of the main features of the quasi-linear theory
for hyperbolic PDE’s is the notion of weak solutions. For a given
initial data,

Definition 2.6.2 Let py € L. Then p is a weak solution or a
solution in the distributional sense of (2.72) if and only if p € L (R x
RT) and,
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/ / (e t) on(a,t) + F(p(w,)) dale, t)] dadt
+ /OO po(x) p(z,0) dz =0 (2.76)

is satisfied for every ¢ € C§°(R x [0, oof)

and C3°(R x [0,00]) := {CF°(R x [0,00]) | 37 > 0 s.t. support of
¢ C B,(0,0) N (R x [0,00])}

Here ¢(x,t) is a test function with compact support on the bound-
ary (i.e., ¢(x,t) is zero outside the boundary). In the weak solution
(2.76), the partial derivative is moved to the test function that is
guaranteed to be smooth. In addition, the definition above is an
extension of the classical solution according to

Theorem 2.6.2 Suppose p € CL(R x [0,00[) is a classical solution
of (2.72). Then p is also a weak solution.

Proof is given in [86].

We have to keep in mind that a weak solution might not be a
classical solution. So we need necessary and sufficient conditions
for the weak solutions to be the correct solution. We start by the
necessary condition for a piecewise-smooth weak solution known as
the Rankine-Hugoniot condition given by

[p] PR, —PL
where s is the shock speed. Let’s look at the earlier example in
Fig. 2.8, where the initial density was given by
Pm
_ 9 z <0,

p(z,0) { oo >0 (2.78)
and we seek a solution to our Cauchy problem (2.72), using the
method of characteristics. Since the characteristics do overlap at
some point in time, the shock speed is calculated from (2.77)

o — (Wrpr—vph/pm) = (oL = v5pL/ pm)

PR — PL
v
= v~ T (pr+p1)
m
_ . vf Pm
= vy pm(pm+ 2)

= —05vy
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and the solution is given by

P
5 T < st,

Pm x> st. (2.79)

p(a: ) t) = {
This solution is shown in Fig. 2.10.

Let’s look now at the example of Fig. 2.9, and try to solve the
traffic flow problem there. We will give two methods to find the solu-
tion and discuss which one must be used to get the correct solution.
Using the initial density values

_ ) Pm x <0,
ooy ={ o TS0 (2.80)

we get the first solution as a shock wave given by

’Uf(

m

v
s = wp— PR+ pL) = vf—pf(pm/2+pm) = —05uvy
m

As we can see “—0.5 v” is the same shock speed as in the previous
example and it is plotted in the Fig. 2.11b. The second solution is
continuous and it provides another way to fill the wedge. It is called
the rarefaction wave solution. The general form of the solution for
traffic flow is given by

pLx x <f/(pL)t7
sty =4 FCI Pt = < flont (281
PR z > f'(pr)t,
Po(x) &
P

Y B

t A

Fig. 2.10. Shock solution
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Fig. 2.11. Initial density profile followed by two weak solutions, shock
and fan respectively

¢

where the “—1” is an inverse mapping. For the traffic flow problem,

f’(at:)_l can be found by letting

X -1 . Ufp . X
Fe)— = U, T (2.82)

and solving for the density solution to get

Ty Pm  PmT
t) = f' = — . 2.83
p(z,t) f(t) 2 " 20t (2.83)

Then, the continuous solution for the PDE is given by

PL r < —vf t,
plz,t) = f'(f)—l —upt< oz <0, (2.84)
PR z >0.

For the initial data given in Fig. 2.11a, the rarefaction wave solution
is plotted in Fig. 2.11c.
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Fig. 2.12. Lax shock condition for traffic flow problem: (a) not a
shock, (b) shock

Such multiplicity of solutions is unacceptable. Thus we need a
selection criterion that picks out the physically reasonable solution
from among the possible weak solutions (2.81), and (2.84). Lax shock
condition or Laz entropy condition [66] is a sufficient condition for
scalar conservation laws. The condition for the traffic low PDE
states that the discontinuous solution for the traffic flow problem
is admissible (i.e., a shock solution is selected with the direction of
increased entropy) if

pL < 5 < PR, (2.85)

otherwise, the rarefaction wave solution is the admissible one (see
Fig. 2.12 for easy interpretation). In the example of Fig. 2.11a, and
according to the Lax condition, the rarefaction solution is the ad-
missible one and the shock solution is not admissible. Finally, we
summarize the solution for the LWR model by mentioning the fol-
lowing two points:

e The solution is piece-wise smooth as t — oo with jumps in
density (shocks) separating the pieces.

e This means traffic is predicted to be stable with transition be-
tween stable regions approximated by discontinuous shocks.



Chapter 3

Crowd Models for 2-D

3.1 Introduction

In this chapter we preseodelnt four macroscopic crowd dynamic mod-
els that can be used to study crowd behavior. These models modify
the 1-D traffic flow models so that bi-directional controlled flow is
possible. The models have different characteristics; for instance, the
first model is a simple conservation of pedestrians based on the one-
equation partial differential equation model given in Sect. 2.5.1. The
other three are based on a 1-D space systems of two-coupled partial
deferential equations (two-equation models) given in Sects. 2.5.2,
2.5.3, and 2.5.4 respectively.

The first system model which is called “the second” model in this
chapter follows fluid flow closely, such that it carries the isotropic
nature of fluid flow. The last two models move away from fluid flow
and mimic traffic flow observed behavior by having the anisotropic
property. In addition, the last model not only inherits the same
anisotropic property, but it can also be derived from microscopic
car-following model [1].

This chapter is organized in the following matter. Section 3.2
gives the 2-D flow theory for hyperbolic PDE’s. In Sect. 3.3 we
present the one-equation crowd model. Section 3.4 shows the first
system model derivation, conservation form, and eigenvalues followed
by Sects. 3.5 and 3.6 for the second and third systems respectively.

33
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A comparison between the crowd models developed based on the
analytical results is presented in Sect. 3.7. Finally, we conclude this
chapter with a linearized version of the four models.

3.2 Traffic Flow Theory in 2-D

In this section we extend the same ideas that is found in Sect. 2.6.
We consider the scalar equation in 2-D:

pr+ fo(p) +9y(p) = 0 in B> xR, (3.1)
p(,0) = po in R

for given functions f and g and p. We assume that f and g are
sufficiently smooth. As we have seen the solution of the scalar 1-D
conservation law can become singular within finite time, the same
can happen here. Therefore, similar to the definition given by 2.6.2,
a weak solution of (3.1), and (3.2) need to be defined.

Definition 3.2.1 Let py € L>®(R?). Then p is called a weak solu-
tion of (3.1), (3.2) if and only if p € L®(R? x R*) and if,

/W/ p ot + [(p) ¢z + 9(p) &) + /2p0¢(.,0):0

is satisfied for every ¢ € C§°(R? x [0, 00])

For completion, we give the entropy condition for the 2-D one-
equation case.

Definition 3.2.2 A weak solution of (3.1), (3.2) is called an entropy
solution if we have for all ¢ € C5°(R2 x RT), ¢ > 0 and for all k € R

/ / (Bdlp— K+ Bpbsignip— k) [F() — F(k)]
R2 JR+

+ Oy ¢sign(p —k)lg(p) —g(k)]} =0

The following theorem gives the existence and uniqueness of an
entropy solution for the scalar 2-D hyperbolic PDE in (3.1),

Theorem 3.2.1 Let pyg€ L' (R?)NL>°(R?). Then there exist one and
only one entropy solution p of (3.1), (3.2) and pc C°([0,T], L'(R?))
N L>([0,T], R?).
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The details of this proof can be found in [65]. For systems in
2-D, Let Q € R™, then the scalar equation (3.1) and (3.2) become a
system of PDE’s for 2-D given by

Qi+ F(Q)+Gy(Q) = 0 in R xR, (3.3)
Q(,0) = Qo in R™, (3.4)

and

Definition 3.2.3 The system is called (strictly) hyperbolic system
if all eigenvalues of aF (Q) + £G'(Q) are real (and distinct) for all
a, EER, Qe R™.

We also note that if the two matrices coefficients do not commute,
i.e., AB # BA and the matrices A(Q) and B(Q) do not have the
same eigenvectors [67], then they can be diagonalized separately

A= R*A(R*)™', B=RYARY) !, (3.5)

where the two matrices have different eigenvectors. This means that
the PDE’s are more intricately coupled.

For 2-D hyperbolic PDE’s, the general existence of a solution
does not exist for (3.3) globally in time [13]. This implies that there
are no convergent results for numerical schemes. Therefore we can
only use some schemes that have been successful in numerical test
problems as we will see in the next chapter [64].

3.3 One Equation Crowd Model

In this section, we present a 2-D scalar, nonlinear, time-varying, hy-
perbolic PDE crowd model. This is a simple extension to the LWR
1-D conservation of continuity model given in Sect. 2.4.3. The model
consist of crowd concentration (density) and flow rate f(p) = pV(p)
in the z-axis, and g(p) = pU(p) in the y-axis. We use the fundamen-
tal velocity—density relation given by (2.15) to describe V(p) and
U(p). The free flow speed vgi, vyo are the velocities in the z-axis
and y-axis, and they are used as control parameters to direct crowd
flow to any desired direction. Here, they are taken as constant, but
in control design, they become a function of time and space. The
model in conservation form is given by

pr+ (pV(p))z + (pU(p))y =0, (3.6)
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and its quasi-linear form is

pe+ f(p)pe + 9 (p)py = 0. (3.7)

The characteristic slopes, or the eigenvalues of this scalar PDE are
simply f’(p), and ¢'(p) and they are given by

N = v, (1= 2p/pm), (3.8)
N =y, (1= 2p/pm), (3.9)

The eigenvalues are real and distinct, therefore, the LWR model is
classified as strictly hyperbolic since f/(p), and ¢'(p) are distinct and
real respectively. The model carries the anisotropic property as the
maximum characteristics are vy and vy respectively.

3.4 First System Crowd Dynamic Model

The first system model to be extended from 1-D to 2-D is based on
the higher order model given in Sect. 2.5.2. The model is classified
as nonlinear, time-varying, hyperbolic PDE traffic flow system. This
model uses two-coupled PDE’s to describe crowd flow; the conserva-
tion of continuity and a second equation that looks like the momen-
tum equation in fluid flow with a modification to the “pressure” term
to mimic crowd motion. This model is known for its isotropic nature
that is preserved when we extend the model to 2-D space assuming
pedestrian motion is influenced from all directions.

3.4.1 Model Description

Here we extend (2.23), and (2.24) from 1-D to 2-D, and add relax-
ation terms to allow bi-directional flow. The first equation is the 2-D
conservation law given by

pt + (pv)z + (pu)y =0 (3.10)

where the density p(x,y,t) depends on the two spatial dimensions
and time, v(z,y,t) and u(z,y,t) are the x-axis and y-axis compo-
nents of the velocity. The flux flow rate in both directions is repre-
sented by pv and pu. The above equation is defined on x € R, y € R
and time ¢t € R*. We can derive the above equation from Fig. 3.1,
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Fig. 3.1. Two-dimensional flow

where the conserved density changes according to the changes in the
flow at the boundary endpoints.

The second equation is derived by taking a 2-D form of (2.24)
and it is found to be

C

Uy + VU + Uy + E)p) Po = S1, (3.11)
C

Up + Vg + vty + ;p) Py = S2, (3.12)

where the equations in non-conservative form represent the z-axis,
and y-axis components. Initial condition are p(z,y,0) > 0, and
¥(2,0) < |vg|. The “pressure” term is the same as in the 1-D case,
and it is equal to P(p) = pC(p), where C(p) is the anticipation factor
that is equal to a constant squared C’g. The relaxation terms

o = VO (3.13)
9 = U(pi_“ (3.14)

rule is to capture how pedestrians modify their velocity according to
the desired one V(p), and U(p) as given in (2.15) over a period of
time denoted by the relaxation time 7.



38 3 Crowd Models for 2-D

3.4.2 Conservation Form and Eigenvalues

The model developed is a nonlinear, time-varying hyperbolic PDE
system. There is no analytical solution for this kind of systems, and
we know for hyperbolic PDE’s we have discontinuous solutions, i.e.,
more than one solution at some point in time and space (for more
details on hyperbolic PDE’s; see [67]). Therefore, we need to put the
model in a form that can be solved numerically and provide results
that are consistent with the observed behavior. To do so, we will de-
rive the conservation form of the model which will be used in finding
the numerical solution (more on this will be discussed in the next
chapter). Using this form we also prove the system hyperbolic prop-
erty and its isotropic nature by finding the system roots according
to definition 3.2.3.

After some manipulations to the equations in (3.11), and (3.12)
we rewrite them in conservation form as

(pv)e + (pv* + pC3)a + (pu)y = psi, (3.15)
(pu)e + (pvu)z + (pu2 + ng)y = psa. (3.16)

In vector form, the model can be written as

Q+F(@Q):+GQ)y=S (3.17)

where @) is the conservative variables (states), F' and G are the fluxes
in the two space dimension, and S is considered as the source term.
These are given by

p pv pu
Q= | p |, F(Q = | p*+Cip |, GQ)= pou
pu | pvu pu® + C2p
. 0 i,

(0|

Next we write the system in quasi-linear form, and by setting the
relaxation terms to zero, our homogenous hyperbolic PDE in vector
form is

Qi+ AQ)Qz +B(Q)Qy =0 (3.18)
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where the flux Jacobian matrices A(Q) and B(Q) can be found from
the partial derivative of the fluxes given by

oF 2O , 1 0 PYe 0 0 1
A= 90 = Cs—v: 2v 0|, B= 90 = —vu U v
@ —vu U v @ C3—u? 0 2u

The eigenvalues of the matrices A and B are found from the flux
Jacobian matrices roots calculated from

|A(Q) — M| = 0. (3.19)

The corresponding eigenvalues and eigenvectors for the A matrix are
given by
)\A:v—C’o, )\’24:2), )\?:v—i—Co,

and
1 0 1
e=1uv-Co|,ef=10]|,el=|v+C
U 1 U

For the B matrix they are given by

Af:u—C’o, )\fzu, )\fzu—i—Co,

and
1 0 1
6119: v ,653: 1 ,efz v
U—C() 0 U+Oo

To check if the system is (strictly) hyperbolic or not, we need to
do more than just getting the eigenvalues for A and B separately.
Since this is a 2-D problem, we find the overall system eigenvalues
from the roots of the combined Jacobian matrixes satisfying defini-
tion 3.2.3. Hence, the first crowd dynamic model eigenvalues are
found to be

Xl =0 — Cy, 0o=10, A3=1v+ Cy, (3.20)



40 3 Crowd Models for 2-D

where v = av(x,y,t) + u(x,y,t). The corresponding eigenvectors
are given by

. 1 . 0 . 1
e’f =|v—aCy |, 6’24 = =€ |, e? =1 v+ aly
u — é.CO o U+§CO

The system eigenvalues are real and distinct, and their corresponding
eigenvectors are linearly independent, which confirms that the model
is strictly hyperbolic. In addition, the system preserves its isotropic
nature as seen from Aq 3, where one of them is always greater than A.
This means that information from all directions affect pedestrians’
motion (isotropic nature) and this is the most distinct characteristic
of this model.

3.5 Second Crowd Dynamic Model

Here we present a crowd dynamic model in 2-D space based on a
1-D traffic flow model given in [4, 84]. This model is considered
an improvement over the first system model since it does not closely
follow fluid and gas-like models. In addition, it allows observed traffic
conditions such as traffic flow with the flow in front, rather than
with the flow that is upstream. Hence, the model carries the desired
anisotropic nature of traffic flow, which is carried from the 1-D model
by modifying the “pressure” terms.

3.5.1 Model Description

This model is also a nonlinear, time-varying, hyperbolic system of
two PDE’s. We develop the model by first extending (2.23), and
(2.39) from a 1-D to a 2-D PDE system. The first PDE is the same
conservation of continuity given in (3.10). The second equation is
derived for the z-axis and y-axis by applying the convective derivative
(2.38) on the pressure terms for the 2-D case. By doing so, the
resulting second equation is given by

(v+ Pi(p,v))e +v(v + Pi(p,v))s +u(v+ Pi(p,v))y = psi, (3.21)
(u+ Py(p,u))e +v(u+ Pa(p,u))y + u(u+ Pa(p,u))y = psa. (3.22)
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Initial condition are p(x,y,0) > 0, and v(x,0) < |vg] and u(y,0) <
|vfa|. The Py (p,v), and P (p, u) functions proposed here are given by

vpv—i-l
Pl (p7 7)) = /8 o p’Y+1 ) (323)

and valid for v > 0, and § > p%fl such that we do not divide by zero
or change the sign that could affect the system dynamics. We modified
these functions from the 1-D case to maintain the increasing property
of the density that is required to achieve the anisotropic property of
the system. Thus, the model preserve the anisotropic property and
the modification is justified by the system Eigenvalues found next. The
second modification is adding the relaxation terms s, and s5 that made
possible to simulate bi-directional pedestrian motion.

3.5.2 Conservation Form and Eigenvalues

To show that the crowd dynamic model in (3.10), (3.21), and (3.22) is
a hyperbolic PDE system, and numerically find its solution. We need
to find the system conservation form and find its eigenvalues. We re-
strict our self to derive the x-component only since the y-component
can be obtained by the same procedure. First, we start by multiply-
ing (3.21) by p to get

p(v+Pi(p,v))i+pv (v +Pi(p,0)s+pu(v+Pi(p,v))y = psi, (3.25)
and we drop (p,v) from P;(p,v) for convenience for the rest of this
section. We know from the product rule that

(p(v+P1))e = p(v+P1)+pw+ P,
(pr(v+P1))z = (pv)e(v+ P1)+ (pv)(v + P1)a,
(pu(v+Pr))y = (pu)y(v+ P1) + (pu)(v + Pr)y,
and by substituting the above terms in (3.25) and using (3.10) to
write the model in conservation form (follow same steps for the
Y-component using P») we get
pe+ (pv)e + (pu)y = 0 (3.26)
(0 + P+ (o (04 P))a+ (pu (04 P))y = psy (32)
(0 (-4 Po))u+ (v (w4 Po)a+ (pu(ut )y = s (329)
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Next is to write the system in 2-D vector form (3.17) where @ is the
conservative variables (states), and F' & G are the fluxes in the x
and y-directions respectively. The model in vector form is given by

P pv pu 0
plo+P) | +| plv+P) | + | pulv+P) | = | psi
pur Py |, Lot p) |, [puwrr) |, | os

(3.29)

From the quasi-linear form (3.18), we can obtain A and B eigenvalues
by finding the flux Jacobian matrices A = 0F/0Q and B = 0G/0Q).
For this model the matrices and the corresponding eigenvalues and
eigenvector are found by first simplifying the calculations. To do so,
we change variables by setting the states to be

w
p plv+P)=w=v= —P,
Q=| w |, and £
2 p(u+P2):z:>u:p—P2.
We substituted the new states in the fluxes to get
w—ph z— pPy
w2 wz
— — wPQ
F@Q=1| , "N, c@=] o ,
wz P 25 2P,
and the Jacobian are
[ —P,—pPy, 1—pPy 0
2
w w
AQ) = | T el 2 Rl 00 330)
wz z w
- 9 = ZPlp — Zle — P1
L P P p _
—Py — png 0 1—pP,,
wz z w
- —wP. - P —wP
B(Q) = p22 wi2p o 2 0 w2z (3.31)
—22 —ZPQP 0 2Z —P2 —ZPQZ
L P P
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We solve for the eigenvalues and eigenvectors for the A(Q) matrix to
get

[V w — (pP1 + p* Py + wpPry) —v—v(7+1)m+1
1 = p - ﬁ _ p~/+1
= U — (’Y + 1)P1
Nz = vk v
’ p
_
ﬁ p’y (/8 - p7+1)2 0
u +1
- a ced = | BB |
i 0 !
and for B(Q)) matrix we obtain
B 2Pt Pyt zpPy) o (v 1)
- p B B—prtt
= Uu-— (’Y + 1)P2
)‘233 - 7 PPy =u
’ P
_ L
/8 5pfy 0 (ﬁ - p'7+1)2
v +1
€1B: 1 ,€2B: 1 ,63B: ﬁu(ﬁ+07p’y )
u 0 1
v

Here we also find the eigenvalues by solving the combined Jacobian
matrixes satisfying definition 3.2.3. For this system the eigenvalues
are found to be

U C ) s 5 % -
A =0-70 B gl =0—(1+7)P, A3=10
and their corresponding eigenvectors are given by
B—pr Tt (B—p71)? ¢ (B—p71)?
i Bu i | Feerey | Bo(B+yp+)
61 = v 762 = 1 763 =

u

1 0 1
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Clearly, we have real eigenvalues with two of them repeated. Nev-
ertheless, we are able to find linearly independent eigenvectors, and
therefore the crowd dynamic model derived is a nonlinear hyperbolic
system of PDE. In addition, the “pressure” term is an increasing
function of density, and from the eigenvalue \;, we are sure to have
the maximum wave speed to be ¥. Thus, the model has the desired
anisotropic property (information that affect the current position de-
pends on current Ao 3, and ahead A1 information only).

3.6 Third Crowd Dynamic Model

The third crowd dynamic model presented here is a macroscopic
model derived from a microscopic car-following model. The model is
based a 1-D macroscopic traffic flow model given in Sect. 2.5.4. This
crowd 2-D model is different from the other models because it has
a direct microscopic-to-macroscopic link. The model is classified as
a traffic low nonlinear, time-varying, hyperbolic system of two par-
tial differential equations. The anisotropic property is carried from
the microscopic to the macroscopic model assuming that pedestrian
motion is influenced mainly from current and front conditions.

Here we present the macroscopic model, and then we derive the
macroscopic system from the microscopic model. Finally, we put
the crowd model in conservation form and find its eigenvalues and
eigenvectors.

3.6.1 Model Description

The first equation is the 2-D conservation of continuity that conserve
mass (pedestrians) given by (3.10). The second equation is similar
to the momentum equations in 2-D for comprisable flow with some
manipulation to mimic crowd dynamics and it is given by

Vi) —

v + vy + uvy + pV' (p)(vg + uy) = (p7)_ ! (3.32)
Ulp) —

ug + vug + uuy + pU' (p)(vy + uy) = (pj_ “ (3.33)

where V(p) and U(p) are the desired velocities functions meant to
mimic pedestrian behavior given by the velocity—density relation
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(2.15), and pV'(p) is the traffic sound speed at which small traf-
fic disturbances are propagated relative to the moving crowd stream.
The relaxation terms (V(p) — v)/7 and (U(p) — u)/7 are added to
the model as a modification to keep speed concentration in equilib-
rium, where 7 is this process relaxation time. They are important to
the system because vy and vy can be used as control parameters
for crowd speed and direction. Initial conditions are p(z,y,0) > 0,
v(z,0) < |vp], and u(y,0) < |vyal.

3.6.2 Derivation of a Macroscopic Model
from a Microscopic Model in 2-D

In this section we will show how to derive the second equation of
the model (3.32), (3.33) from the microscopic car-following model
that is used to represent traffic flow in 1-D. For 2-D we use the same
idea given in Chap. 2 by Sect. 2.5.4 and start the derivation from a
microscopic model in 2-D given by

AX

(5 (8)) % (1) = Ko () = (1) + A [V <sn<t>

) —Xn(t)] . (3.34)

where
Sn(t) = Xny1(t) — xn (1), (3.35)

is a function of the local spacing between pedestrians, x,(t) is the 2-D
position of the nth pedestrian, A X is the width of a single pedestrian,
Xn(t) is the acceleration, X, () is the velocity, and 7(s,(t)) is the
pedestrian response (relaxation) time to the headway distance and it
depends on spacing. This response time is different than pedestrian
reaction time which is on average a small constant number. For the
constant A > 0 a relaxation term is added and for the homogeneous
case we set A = 0. Using the above notations, we rewrite (3.34) for
the x-component where the local spacing s is in the x-direction only.
We start by defining the velocity field v(z,y,t) : ©(t) = v(z,(t),1),
and pedestrian spacing function s(x,t) : s,(t) = s(z,(t),t). We also
define local density by
AX
p(@;y,t) < pn(t) s (1) (3.36)

which is the number of people per unit length. In our definition
the density is normalized and therefore dimensionless, so that jam
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density (maximum capacity) is p,, = 1. We substitute the new
variables in (3.34) for the z-component and get

(s(a(e), 1) U0 = ACEOD 4y o, 1) o, 0).
(3.37)

Using the convective derivative d; + v0, + ud, on the velocity
component of the x-axis (for y-axis use u instead of v), we obtain

7(8) (v +vvy +uvy) = (st +vsy +usy) + AV (p(x,y,t) —v(z,y,t)].
(3.38)
From the conservation law (3.10), let p = 1/s, and by using the

full derivative
a, bDya—aD;b

Dw(b) b2 9

(3.39)

we get
5t + USy + USy = SUz + SUy, (3.40)

and by direct substituting in the right hand side of (3.38), we arrive
to our desired equation

(v + vVg + uvy) = TiS) (v +uy) + Té) V(p(z,y,t)) —v(z,y,t)],
(3.41)

where s
=—C(p) =—pV'(p) 2 0, (3.42)

7(s)
is the sound wave speed, and A is a constant equals one. Finally,
the process relaxation term 7 replaces 7(s) for macroscopic behavior
to get (3.32). This completes the derivation of the 2-D macroscopic
model from its microscopic counterpart for the x-axis. We follow
similar steps for the y-axis. The macroscopic conservative form of
this model for the z-axis is derived next.

3.6.3 Conservation Form and Eigenvalues

To find the eigenvalues of the system and check if the system is
hyperbolic (real eigenvalues), we write the model in conservation
vector form. The same form will be used in the numerical simulation
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to obtain the system response. We start deriving the conservation
form by expanding the derivatives in (3.10) to get

p(vz +uy) = —(pr + pav + pyu), (3.43)

and we know that for V(p) given by (2.15)

V'(p)pe = Vilp), V'(p)ps = Va(p), V'(p)py =Vylp).  (3.44)
Then substitute the above in (3.32) and multiply by p to get

o= V(p))et oo (0= V(e tpulw—Vipy=p" P ", (315)

and by using the product rules

(p(v=V(P))e = pe(v—=V(p)+p—=V(p), (3.46)
(pv (v =V (p))a = (pv)z(v—V(p)) + (pv)(v = V(p))z, (3.47)
(pu(v=V(p)))y = (pu)y(v—V(p)) + (pu)(v — V(p))y, (3.48)

we substitute in (3.45) and use the conservation law (3.10) to write
the model in conservation form (we follow similar steps for the
y-component using U(p) instead of V(p)). Finally, after manipu-
lating (3.41) we get our equation in conservative form as

(0o = V(D) + (ow (0 = Ve))s + (oulo ~ V) =" 7 7"
(3.49)

and for the y-direction it is given by

(0 (0= U(@))e + (o0 (= Ulp)))a + (o= Uy = o7 P
(3.50)

Next we write the system in 2-D vector form (3.17), where @
is the conservative variables (states), F' and G are the fluxes in the
z and y-directions respectively, and .S can be considered as the source
term. These are given by

p pv pu
plo=V(p) | +| pplo=V(p) | + | pulv=V(p) | =8
pu—=U(p)) |, pv(u—"U(p)) |, pu(u—U(p)) ],
(3.51)
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and S = [0 : s; : s9]7. Next we rewrite the system in the general
quasi-linear form given by (3.18), where the source term is zero and
the flux Jacobian matrices are found from A(Q) = 0F(Q)/0Q, and
B(Q) = 90G(Q)/0Q. For this system the matrices and their corre-
sponding eigenvalues and eigenvectors are found by first setting the
conservative values (states) as

p po-Vip)=w=v="+V()
Q= | w |, where £
z p(u—U(p))=Z$u:p+U(p)
We rewrite the fluxes F/(Q) and G(Q) as
ul;g +pV(p) wzz—i— pU(p)
B + wV(p) - +wU(p)
FQ=| » Co@=| v,
u;z + 2V (p) P +2U(p)

Their corresponding Jacobian matrices are found to be

[ V(p2) +pV'(p) 1 0
A(Q) _ —152 —I—wV’(p) 21: + V(p) 0 , (3'52)
_ —Z’j +2V'(p) : , HV0)
Ui(fz) + pU'(p) 0 llu
BQ = | o T O )
_ _22 + 22U (p) 0 22 +U(p)

Solving for the eigenvalues and eigenvectors of A(Q) we get

M=v+pV(p), & N3 = v, (3.54)

1 1 0
=l o=V |,ed=|v=V-pV |, ef=]0
u—U 0 1
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and for the B(Q) matrix we obtain

M =wu+pU'(p), & )\53 = u (3.55)
1 0 1
P=1ov-Vp) |,el=]11],el= 0
u—Ul(p) 0 u—"U(p) — pU'(p)

Since the system is a 2-D problem, and in order to verify that the
system is hyperbolic, we need to check that our eigenvalues found
earlier are valid for any combination of the roots of the combined
system as defined by Sect. 3.2.3. The eigenvalues are found to be

M=0+pV, X3=1 (3.56)

where » = aw(z,y,t) + fu(z,y,t), and V! = aV’ + €U’. Since the
eigenvalues above are real, we conclude that our model is hyperbolic,
and the fact that we also have repeated eigenvalues our model is not
strictly hyperbolic. The first eigenvalue is always less or equal than
the second one due to pV' effect (V' < 0). From this fact we acknowl-
edge the anisotropic property of the system that shows information
can not travel faster than the actual wave, i.e., pedestrian move-
ment is influenced from current and front stimuli only. Secondly,
despite repeated eigenvalues, each matrix has linearly independent

eigenvectors.
For each eigenvalue the corresponding eigenvectors are given by
1 ! 0
= v=V(p) |, ed=| 27V =PV | o | 1
_ o _
u—U(p) 0 ¢
0 1
A 3 0
ez = | — or| . ~ .
o v —=V(p) = pV(p)
£

For 6‘24 the “or” is to get back both 6‘24 and 62B, and the same can be
said about e
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3.7 Comparison Between the Models

Four models that are aimed at studying crowd dynamics have been
presented in this chapter. They are derived from the 1-D traffic flow
theory, with the proper adjustment to account for the bi-directional
pedestrian flow. Table 3.1 summarizes the main characteristics of
the four models.

We divide the models into two types; crowd model that closely
follow gas and fluid-like traffic flow, and models that do not. We fur-
ther divided the models into two types; scalar and systems of PDE’s
as shown in Fig. 3.2. The models are classified as nonlinear, hy-
perbolic, time-varying partial differential equation(s) with distinct
characteristics separating them; for example, the first crowd model
use Greenshield’s equation (2.15) to describe the velocity as a func-
tion of density. This one-equation model is an extension to the scalar
LWR traffic 1-D model. Although it is simple compared to the first
model, it gives the desired anisotropic nature of traffic flow. In addi-
tion, the model is strictly hyperbolic. The second model is a system
model that use two-coupled PDE’s with an anticipation term C/(p)
and the relaxation terms § = V(p) — /7. These terms change the
momentum equation to mimic crowd dynamic flow. The anticipation
factor’s role is to find the macroscopic response of pedestrian to traffic
density, i.e., its response when interaction between pedestrians and
obstacles are overlooked within their domain. On the other hand,
the relaxation factor’s role is to keep the velocity in equilibrium. If
a pedestrian velocity is greater than the preferred value, then this
relaxation term will slow the pedestrian traffic down. From the sys-
tem eigenvalues (real and distinct), we can conclude that this model
has an isotropic nature since one of its eigenvalues is always moving
faster than the velocity itself. This means that information can travel
faster than the flow, which may contradicts the observed behavior
for pedestrians in normal situations, where pedestrians movement are
mostly influenced from current and front conditions and not from be-
hind. On the other hand, in panic situations like in the case of an
emergency situations such as evacuation, and at exits we know that
when crowds or pedestrians are moving close to each other there will
be various influences from those surrounding them to some extent,
including the ones from behind [46]. In the third model, we do have
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Macroscopic Crowd Flow Models

Fluid like behavior Traffic flow behavior
Two-equation Scalar Two-equation
First Crowd System One-equation Crowd  Second Crowd
Model Model System Model
&
Third Crowd
System Model

Fig. 3.2. Crowd model types

a relaxation term, but instead of the anticipation term that depends
on space only in the first system model, a convective derivative on
the “pressure” term is used. This change will enable the second PDE
equation to predict the expected response of crowd behavior as time
and space changes. The third system model has three real and two
repeated eigenvalues; nevertheless, we found linearly independent
eigenvectors that enabled us to solve the problem using numerical
finite volume methods. The system has an anisotropic nature that
is evident from its eigenvalues, where A\; < Ay 3 for both velocity
directions. This means that all information moves at a speed equal
or less than the velocity of the corresponding state. This feature is
preferred for traffic flow in general where pedestrian movement re-
sponse is mostly due to conditions ahead like in normal conditions.
In addition, we can relate a panic crowd situation to this from the
fact that in most panic situations with high-density crowds, pedes-
trians tend to slowly form groups and move together without looking
back. They just follow, assuming that the leader of this group knows
or sees the way out.

The fourth model can be derived from a microscopic model, i.e.,
has a direct micro-to-macro link. In the model second PDE, the use
of the convective derivative for the velocity terms leads to the sound
wave speed —C'(p) = —pV’(p), which enables the model to predict
the expected response of crowd behavior. That is they are used as
anticipation terms to find the macroscopic response of pedestrians
to traffic density. The terms V(p(x,y,t)), and U(p(x,y,t)) change
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the momentum equation to mimic crowd dynamic flow. At the same
time, these terms help to keep velocity in equilibrium. If a pedestrian
velocity is greater than the preferred value, these terms will tend to
reduce the velocity and vice versa. The source terms in this model
are essential in providing controlled behavior. They are considered as
relaxation terms, where the change in direction would not be possible
if they are not present.

The model has six real eigenvalues; three for each direction and
two of them are repeated pair. Although we have repeated eigenval-
ues, the corresponding eigenvectors are linearly independent. This
enabled us to perform simulations using numerical finite volume
methods. The system has an anisotropic nature that appears from
its eigenvalues A1 < Ag 3.

3.8 Linearization

In this section we will linearize the PDE’s modeling the crowd flow
dynamics. We use Taylor series expansion to find the linearized mod-
els around some solution that we assume it exist and a perturbation,
and we ignore higher order terms. Taylor series is given by

(Ax)?

fla+A2) = f (@) + Baf' (@) +

7 (x) + ... (3.57)
and for two variables Taylor series it becomes

flz+Az,y+ Ay) = f(2,y) +[fe (2,y) Az + £, (v,y) Ay|+ H.O.T.

(3.58)
3.8.1 One Equation Crowd Model
For the one equation model given by
pe+ (pV(p)), + (pU(p)), =0 (3.59)

where V(p) and U(p) are the velocity—density functions given in
(2.15). To linearize this model, we first assume that we have a density
solution pg and vary it with small perturbation p to get

p=po+p.
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We first need to find the velocity—density expansion to make our later
substitutions easier. The expansion gives

_ +p V1 _
Vipo+p) = Uf1<1—p0p p>=vf1<1—50>— 5

m m pm
= Vi(po) +V'p, (3.60)
U(po+p) = Ulpo) +U'p, (3.61)
where

oV (p) vr1

V'(p) = ==y 3.62

=", =" (3.62)
U (p) Uf2

U'(p) = = — =U. 3.63

(p) op o (3.63)

We consider V(pg), and U(pg) to be the velocity solutions, and in
the subsequence sections when we have velocity dynamics it is equal
to vg, and uyg.

By substitution the above in our model and using Taylor series
we get

(po+0)e + ((po+p)(V(po)+V'p)),
+ ((po+p)(Ulpo) +U'D)), =0.  (3.64)

Since pg is constant, all the derivatives associated with it are

equal to zero. In addition, any high order terms are ignored (e.g.
pp = 0) and the following linearized model is obtained

pt+V (po) pz + poV'pu + U (po) py + poU’py = 0. (3.65)

If we collect terms and rearrange the above equation as shown

pt (Vi) +ooV) gt (Uloo) +mU') =0,  (3.66)

~ - ~ ~ -
— 2p _ 2p
f/(Q)q:qo—vfl(l— pn?) Ql(Q)q:qo—Uﬁ(l—pTS)

where g = pV(p) is the crowd flow, f'(q) = ‘9]{;&)‘1), and ¢'(q) = 3%(;!)

are the characteristics speeds (also known as the eigenvalues). Thus,
we end up with the same quasi-linear form that was introduced in
(3.7), but here the eigenvalues are constant and the final form of the
linearized model is given by

Pt + f/(q)q:%p_w + g/(q)q:‘bﬁy =0. (3'67)
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3.8.2 First System Model

In this section we linearize the first system crowd dynamic model
given by (3.10), (3.11), and (3.12). As we have done in the previous
section, we use Taylor series expansion around an assumed solution
trajectory. The difference here is because we linearize around the
solutions of the density, and velocity in both directions as given by

p=po+p, v=v+v, uU=u +u,

where vg = V(pg), and ug = U(pg) are the assumed velocity solu-
tions. We substitute the above into our model to get

(po + ), + ((po +p) (vo +0)), + ((po + p) (w0 + @), = 0(3.68)
(vo+ ), + (vo + ) (vo+ ), + (up +a) (vo + @)y

g
+ _ (po+p), =51 (3.69
(o +p) ( ) (3.69)
(up + ﬂ)t + (up + u) (up + ﬂ)z + (vo + v) (up + ’L_L)y
2
+, % (po+p),=s2 (3.70
(PO + p) (PO p)y 2 ( )
where
L WnEn) =) (Ulpo+p)— (o +0)
1 . ) 2 . .
After terms cancelation we get
Pt + Vopz + UopPy + Po (0 + ﬂy) = 0, (3.71)
2 V'o—7o
Vg + Vol + Ty + o 5y = PV (3.72)
Po T
02 Ulf =
i+ volia + oy + gy = o F " (3.73)
Po T

which is the final form of the linearized model, and in vector form it
is

Qt + AQ, + BQy = S(Q). (3.74)

The matrices A and B are constant, and the vector S(Q) contains
the relaxation terms which are functions of the states. The vector
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form of the model is given by

p v po O p
v + Cg/po vg O v
U . L 0 0 wvo U N
[ o 0 po p
+ 0 ug 0 v =5(Q), (3.75)
L Og/po 0 wuo U y
where
0
S@)=| (V'ip—v)/7
(Up—u)/r

The eigenvalues of the system above are the same ones found in
Sect. 3.4.2 for the nonlinear model, and they are given by

)\14 = o, )\12473 = o + Oo, and )\1B = Uo, )\53 = U + C()

We need to rewrite S(Q) to separate the control variables for
control design by the following manner

5(Q) = N(Q) +M(Q)n

N~ a7

EQ

where 7 denote the controlled variables and E is a constant matrix.
The above equation is given by

0 0 0 p
S(Q) = 0 —1/7 0 v
0 0 —=1/7 u
[0 0 0 0
+ 0 —p/(pmT) 0 vf1
L 0 0 —p/(pmT) Uf2

3.8.3 Second System Model

Here we linearize the second system model given by (3.10), (3.21),
and (3.22). To start, we first linearize the “pressure” terms using
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Taylor series expansion given by (3.58) on the z-axis velocity com-
ponent use u for y-axis given by

7+1
P(p,v) = <Bv_ppﬂ/+1> )

P(po + p,vo +v) = P(po,v0) + [Py, (p0,v0)p + Puy (po, v0)7]

1 1 1
[ wopg” Bv+Dwpd™  pt
= N 2 Pt v+
B—pg (5_pv+1) B = po

P(pO7UO)+P (pa )po ’Uo p+P (p7 )PO;UBT)'

call it P, (po o) call it P, (po,vo)

and we get

The linearized conservation of mass is given by (3.71). The lin-
earized form for (3.21) and (3.22) is given by

v + (P,(po,vo)p + Py(po,v0)0): + vtz
+ v0(P,(po,v0)p + Py(po,v0)0)s

_ _ _ Vip—v
+ oy + uo(Fp(po, vo)p + Polpo, vo)v)y = = * - (3.76)
ut + (Pp(po,uo)p + Pulpo, uo)u)t + votiy
+ vo(P,(po, uo)p + Pulpo,uo)t)s
_ _ ~ Up—u
+ uoty + uo(Py(po, uo)p + Pulpo,vo)tt)y = i (3.77)
In vector form DQ; + AQ, + BQ, = S, we obtain
[P
Q = v
i U
[ 1 0
D = P,(po,vo) 1+ Py(po,vo)
| Pp(po,uO) 0 1+P po,vo
[ ) P0 0
A = voP,(po,vo)  vo (1 + Py(po,vo)) 0
| voBp(po, uo) 0 vo (1 + Pu(po,vo))
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U 0 P0
B = | uoP,(po,vo) wuo (1 + Pu(po,uo)) 0
| w0 Py (pos vo) 0 uo (1 + Pu(po,uo))
i 0
S = (V'p—0)/1
| U'p—a)/T

To put the system in the general vector form (3.74), we multiply the
equation by the inverse of the nonsingular matrix D to get

Qi+ (D7TA) Q. + (D7'B) Q, = (D719) (3.78)

The eigenvalues found from (3.78) are the same as the ones found in
Sect. 3.5.2, but here they are time-invariant given by

A A (v+1)prt!
A2 =0, Ay3 =1 (1 T B

and

B B (v+1)prt?
Alg =up, Ay3=up (1 T B

3.8.4 Third System Model

For the third nonlinear system model given by (3.10), (3.32), and
(3.33) we linearize the dynamics around some solution with a small
perturbation. The result is given by (3.71), and the following two
equations

V/

e+ 00, + oty + (V2 + oo (V)0 = 7 (379)
_ _ _ N2 = N2 ~ Up—u
Uy + voly + uoly + po(U') " pa + po(U')"py = - (3.80)

In vector form (3.74), the linearized model is given by

p Vo po 0 p
v + | po (V) v 0 v
u + L P0 (U,)z 0 o u z
[ ug 0 po p 0
+ | (V) wg 0 v | = Vp-n)r
L oo (U0 g u (U'p—u)/T
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The system eigenvalues are found to be
At =wo,Ao3 =vo £ poV', and A\ =wup, Aoz = uo % pol’,

which are the time-invariant version of the ones found in Sect. 3.6.3.
This concludes the linearization section.



Chapter 4

Numerical Methods

4.1 Introduction

This chapter presents numerical schemes that approximate the so-
lution of the hyperbolic, non-linear, time-varying, partial differen-
tial equations that represent crowd models developed in Chap. 3.
Due to the hyperbolic nature of PDEs, discontinuous solutions like
shocks and rarefaction waves can occur. Therefore, we use shock
capturing finite difference schemes called Finite Volume Methods
(FVM) [64, 67, 97]. These kind of schemes are capable of automati-
cally choosing the correct weak solution, including shocks. This can
be achieved because these methods are based on the integral form of
the conservation laws which allow discontinuous solution, and not on
the differential form where discontinuous solutions are not defined.
For the purpose of finding the numerical solution to the crowd
models we use three first order accurate methods. The methods used
are mainly, the Lax-Friedrichs scheme, First-Order Centered scheme
(FORCE), and Roe’s scheme. Higher order methods can be applied
to obtain more accurate results but they are not considered here. The
numerical solution can also be obtained by composite schemes, using
first order Lax-Friedrichs method to smooth shocks in conjunction
with a second order Lax-Wendroff method to increase accuracy [69],
by using second or higher order schemes with flux limiters to smooth
the shock waves instability (Roe’s scheme can be modified to be a
second order accurate). One family of schemes can not be applied on
the models of Chap. 3, they are the flux vector splitting methods.

61
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This is due to the homogeneity property F'(Q) = A(Q)Q which is
not satisfied in our crowd models. The organization of this chapter
is as follows, Sect. 4.2 presents the theory behind the FVM, followed
by the description of three schemes.

4.2 Fundamentals of FVM

A finite volume method is based on dividing the space into grid
cells or finite volumes and approximating the integral of the state Q
over each volume. In each time step we update these values using
approximations to the flux through the endpoints [x;_; /25 Tig1 /2] of
the intervals as given by

1 Tiy1/2 1 Tit1/2

@~ [ awae=s o f (4.1)

i—-1/2 i—-1/2

where Az = x;,1/9 — x;_1/2 is the length of each cell on a uniform
grid. By using a conservative numerical method we will guarantee
that ZZ]\L 1 Q' Az over the entire space will change only due to fluxes
at the boundaries. We will show this by recalling the integral con-
servation form (2.9) and rewrite it as

d Tit1/2
a / q(z,t) dz = fin(q(zi_1/2,1)) — fout(@(Tiy1/2,1)).  (4.2)
Ti—1/2

For a given Q' we would like to approximate Q:‘H, that is the volume
average after At =t,11 — t,. To do so, we integrate (4.2) over time
to obtain

Tit1/2 Tit1/2
[ tide = [ ot

Ti-1/2 Ti—1/2
tnt1 tn41
:/ fin(q(xi1)2, t))—/ fout(q(zit1/2,1)).
tn 129

Dividing the above by Az and rearranging we get
1 /-:ci+1/2 ( ) d 1 Tit1/2 ( ) d
q(x,thy1) do = / q(z,t,) dx
Az Ti—1/2 Az Ti—1/2

1 tn+1 tn+1
pn | ottty = [ atatonya ],
T L, tn
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and by comparing with (4.2), this translate to numerical method of
the following form

At

Q?H = Qi - A [ i7:Li-1/2 - Fin—l/Q]’ (4.3)

X

where

Lpm a0

Z+1/2 At . q 7,+1/27 .
The difference in finding the fluxes F' at the boundary points of each
cell is how these schemes vary (examples are in next section). Lets
go back to the point of conservation, if we take Z;-]:I Q?HA@* we
will get

J J

E QZ +1A.Z’ = E Q’L A.Z’ — Ax [FJ+1/2 — FI—1/2]' (44)
i=1 =1

that shows very clearly the conservative nature of this method. Here
the changes to the hyperbolic PDE if any are due to the flow at the
extreme boundary points only.

4.2.1 Formulation of 2-D Numerical Schemes

We are trying to solve the following problem

PDEs : Qi+ F(Q)s +G(Q)y =0
ICs  : Q(z,9,0)=Q° (4.5)
B.Cs : non — slip walls, and/or one exit

We start by identifying the notations involved in this process. The
solution space (x,y,t) is split up into a uniform computational grid,
where the grid spaces in the  and y directions are given by Az, and
Ay respectively as shown in Fig. 4.1, and in time direction by At.
The positions of the ith and jth nodes in the x and y directions, and
nth node in time direction (z;,y;,t") are given by (iAx, jAy, nAt).

There are various ways of approximating the spatial and time
derivatives. Here we will concentrate on schemes that approximate
the time derivative @) by a one-sided approximation given by

~ Qn—i—l _Qn

@ At
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Y a
jt12
Ay 9]
j-1/2
i-1/2 1 i+1/2 X
Ax

Fig. 4.1. Two-dimensional grid

By doing so, the schemes for 2-D space can be written in a general
form as

A A
Qi = ZJ_A:Z[ iﬁl/zj_Fi"—l/Zj]_Ai[ 12— Gijayl (4.6)
We use two approaches to solve the 2-D space problem. One is fully
discrete flux difference method like Lax-Friedrichs scheme and obtain
a solution according to (4.6), and another is dimensional splitting
scheme like FORCE and Roe’s. In the later method, we split the
2-D problem into a sequence of two 1-D problems as follows

PDEs : Q1+ F(Q),=0
s ¢ Qz,y.0) = Q" LAt oty (47)
B.Cs : non-slip walls, and one exit

PDEs : Q;+G(Q), =0

ICs : Qnte _AL L gntl (4.8)
B.Cs : mnon-slip walls, and one exit
and use
n-‘,—l At
Qij’ = Qi — A Fiaps — Flipyl (4.9)
+1 n+l At n+ 2 n+!
QZ]’ = Qi;°— Ax [Gi,jfl/Z o Gi,j—21/2]' (4.10)
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4.3 Numerical Schemes

4.3.1 Lax-Friedrichs Scheme

Lax-Friedrichs is a classical scheme with first order accuracy that
solves (4.5) using (4.6) with numerical fluxes calculated at the inter-
face. For 1-D and 2-D the scheme is given by

1 At

QU = @+ Q) — o [F@) - F@L)] (1)
1 A
QZ;_I = 4[ i—1,5m + Qz—i—l ] + ng 1 + Qz ]+1] 2Atx [F( ?—l—l,j)
A
Q1) — g [GQ) — G@L) (412)

The scheme was selected because it is less expensive (takes less time
computationally), and gives a good idea of the expected solution
behavior. This method has numerical diffusion that damps the in-
stabilities arising when shock solution is approximated. The method
in 1-D is stable for v = At/Ax max |IAP| < 1 with A as one of the

system eigenvalues. For 2-D, we use von Neumann Stability Analysis
[67] to get v.

4.3.2 FORCE Scheme

The First Order Centered (FORCE) method is a first order accurate
total variation diminishing (TVD) scheme that comes from the mean
fluxes of the Lax-Friedrichs (4.11) and the Richtmyer second order
accurate scheme [97]. The FORCE scheme solves numerically (4.5)
by (4.7), and (4.8). The scheme computes a numerical flux by first

1
defining an intermediate state @, +1 , then the flux is computed based

on this new intermediate state. Mathematically for 1-D problem this
translates to

n+l 1 At
Qi+§2 = (@ + Qi) — 9AL [F — F (4.13)
n+} 1 At
QU = QL QI [FP - FL) (1)
then,
1 n+ n+ At n+1 n—i—l
n+1l __ 2 2] _ 2 _ 2
Q= Q)+ QI =\ F - F Y (4.15)
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where

n-+ ! n—+ !
FH; = F(Qi+f). (4.16)

For the 2-D problem we use i, j instead of i as in (4.9) and (4.9)
and use dimensional splitting method.

4.3.3 Roe’s Scheme

The idea behind Roe’s scheme is to take a non-linear PDE system in
quasi-linear form

Q + A(Q)Qx = 0. (4.17)
and linearize locally by approximating the Jacobian matrix A(Q) on
an interval using Roe averages and in every time step repeat the pro-
cess. The resulting system can then approximate speed found from
the eigenvalues of the averaged Jacobian matrix A(Q) (see below).
For the purpose of this section we define Qr and @, that represent
the states on the right and left in any direction from the flow bound-
ary points ¢ = 1/2. This will make the 2-D problem easier. First step
in this process is to linearize locally, given by

F(Q) = F(Qu)+AQ)Q - Qrl (4.18)
FQ) = F(Qr)+AQ)Q - Qr] (4.19)
then add the above two equations to get

F(Qr) — F(Qr) = A(Q)[Qr — Q1] (4.20)

where here we solve for the averages in A(Q), and substitute them in

Qe Qn) = J[F(Qu) + F(Qw)] — L RIARQr — Qu) (421

to obtain our approximated solution A(Q) = R|A|R™', where R is
an eigenvector and A is diagonal matrix of the eigenvalues. The same
thing is done for G(Q).

For the first system crowd model the averages are found to be

@
1~
2

p = PLPR (4.22)

_ UL\/pL +URVPR (4.23)
VPL /PR '

i = UL\/PL""U«R\/PR' (4.24)

VPL + /PR
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4.4 Simulation

This chapter presents the numerical solutions for the four models
developed in Chap. 3 simulated by the numerical methods discussed
in Chap. 4. We show the Roe scheme result for the first crowd sys-
tem given by (3.18), while the Lax-Friedrichs and FORCE methods
results are applied on the four 2-D models. Test problem were con-
ducted on each model to produce a behavior close to what we would
physically expect from real observation. The tests fall under two
main types:

1. Gaussian density distribution with different initial velocities
and changing the magnitude and sign of vy and vys.

2. Gaussian density distribution with one exit at a boundary.

We analysis and compare the results from all the models. First, we
start with initial and boundary conditions.

4.4.1 Initial and Boundary Conditions

In the test problems we use gaussian distribution in 2-D space given
by

p(x,y,0) = Cexp(_(m —a)’ = (y—b)?) . (4.25)

where C' is the maximum density value, and a & b determines the
center of the density distribution. The free flow average speed (pre-
ferred speed) is assumed to be vy = vy = 1.36 ms~! as many stud-
ies have used this value (it depends on service level concept), while
density values vary from one study to another due to weather condi-
tions, and location at the time of the study (winter, summer, men,
children, Virginia, Moscow, etc.). Density is the number of pedestri-
ans per unit area, and for the purpose of this simulation we set the
maximum density p,, = 1.

Simulation is done on a square area with no obstacles that can
divert the crowd flow, therefore, pedestrian are assumed to move
freely within the boundaries. At the boundary non-slip conditions
are enforced, except when we have an exit at some point (ze,Ye)
(i.e., large room, one exit, and without any obstacles). By non-slip
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we mean closed walls where no pedestrian (density) can pass through,
but they can move tangent to the walls. We use ghost cells, which is
basically an imaginary extra cells that works as an extra boundary
layer on the outer sides of the grid to simulate the boundary effect as
described in [67]. The exit is a free flow point, where we assume that
once a pedestrian reach the exit cell, his exiting velocity is equal to
the free flow velocity vy; or vy (sucking point).

For the crowd to move toward the exit, we simply point them to
it by forcing them to follow the desired direction using the velocity-
density function V(p), and this is done by

LTe — Ty

V=Veoso=Vip) o

(4.26)

Ye — Yi

UzU(p)sinHzU(p)\/(x )Pt (e )?

(4.27)

4.4.2 Simulation Results

First model (one-equation model): We have two simulation results,
the first show the model dynamic response to direction change as the
velocity sign (direction) change to obtain the contours in Fig. 4.2.
This show the model ability to have a controlled bi-direct- ional
crowd flow and the response is consistent with the actual crowd be-
havior. When the space is not a constraint, pedestrians will move
with free flow speed and diffuse in their given direction as time pro-
gresses. The scale of the diffuse in this simulation is bigger than the
later figures due to simulation space and computational time. To
distinguish this model dynamics from the others. We compare the
result given in Fig. 4.3d with the Fourth model result in Fig. 4.17d.
We notice that the inner contour in both plots are different, the one
corresponding to the one-equation model is smaller. In addition,
due to the lake of the relaxation term the direction change occur
instantaneously by +vy, , for one-equation model. Therefor, pedes-
trians are moving faster as seen by reaching the bottom left corner in
part (d).
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Fig. 4.2. Test 1 Contours of the density response for the one-equation
model using Lax-Friedrichs method
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Fig. 4.3. Test 1 Contours of the density response to direction
change at different time frames for the one-equation model using
Lax-Friedrichs scheme
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Second model (or first system model): Here we did several test
to show the anticipation factor effect on the model. In Figs. 4.4 and
4.5 we changed the anticipation factor Cy from 0.5 in the first to
1.1 in the second. The effect is clear from the figures part (d) plots.
The first exceeded the maximum jam density, while the second its
on target. In Fig. 4.6, and it corresponding contours in Fig. 4.7
show the effect of the shock wave formation as crowd move toward
a corner in a closed area. In Fig. 4.8, we introduced an exit and
the results show (a) how crowd move toward the exit, and (b) traffic
jam at the exit point. In Figs. 4.9 and 4.10 we compare Roe’s and
FORCE schemes. Roe’s scheme results are more concentrated than
the FORCE scheme as seen from the center contour ring in part (d)
in both figures.

Third model (or second system model): To compare this model with
the previous one, we did the same last test as shown in Fig. 4.11. Al-
though FORCE scheme is used, we got a response that is almost similar
to the one in Fig. 4.9 for Roe’s scheme. This shows the effect of the
numerical schemes and their accuracy. In Fig. 4.12, we introduced an
exit to simulate the second test response. We can see from the results
how crowd flow toward the exit, and traffic jam is obvious at the exit
point.

Fourth model (or the third system model): The density contours
shown in Fig. 4.17 correspond to the density response when the ini-
tial free flow velocities are positive and equal (i.e., vy1 = vya). After
some time the sign is changed to negative as seen from the system
simulation in part (¢). The results show that as time progresses,
crowd (density) moves as expected toward the right upper corner,
and then they change direction. At the same time the variation in
the density concentration is changing as seen by plots (b) and (c)
(diffusing in the direction of the flow). Figure 4.13, and its corre-
sponding contours in Fig. 4.14 show a clear picture of the density
flow. Here y-axis velocity is positive and z-axis is negative. The
last test is to show the model response at the exit (see Figs. 4.15
and 4.16). The simulation predicts jam density at the exit which is
verified by the observed behavior in an emergency evacuation near
bottleneck areas.
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Fig. 4.4. Test 1 Density response at different time frame for the first

system model with Cy = 0.5 using Roe scheme

(a)

Density

Density

Fig. 4.5. Test 1 Density response at different time frame for the first

system model with Cy = 1.1 using Roe scheme
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Fig. 4.6. Test 1 Density response at different time frame for the first
system model with Cy = 1.1 using Roe scheme
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Fig. 4.7. Test 1 Contours of the density response at different time
frame for the first system model with Cy = 1.1 using Roe scheme
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Fig. 4.8. Test 2 Density response at different time frame for the
first system model with an exit. Simulated using Roe Scheme and
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Fig. 4.9. First system model using Roe scheme, response at different

time frame
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Fig. 4.10. First system model using FORCE scheme, response at
different time frame
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Fig. 4.11. Second system model using FORCE scheme, response at
different time frame



4.4 Simulation 75

(a) (b)
0.4
2
2 0.2
[}
a !
0 AN
10
y 00 X
() (d)
10 10
8 8
@
6 6
> >
4 4
2 2
0 0
0 5 10 0 5 10

Fig. 4.12. Test 2 Density response at different time frame for the
second system model with an exit. Simulated using Roe Scheme and
7=5
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Fig. 4.13. Test 1 Density response to direction change at different
time frames for the third system using FORCE scheme
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Fig. 4.14. Test 1 Contours of the density response to direction change
at different time frames for the third system using FORCE scheme
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Fig. 4.15. Test 2 Density response directed toward an exit at different
time frames for the third model using FORCE scheme
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Fig. 4.16. Test 2 Contours of the density distribution directed toward
an exit at different time frames for the third system using FORCE
scheme

CY (b)
40 40
30 30
> 20 > 20 /)
10 10
0 0
0 10 20 30 40 0 10 20 30 40
X X
(© (d)
40 40
10 10
0 0
0 10 20 30 40 0 10 20 30 40
X X

Fig. 4.17. Test 1 Contours of the density response to direction change
at different time frames for the third system using Lax-Friedrichs
scheme
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4.5 Matlab Program Code

4.5.1 One-equation Model
Yoo lo 1o 1o oo o To ToTo o o o o o ToTo o o o o Jo o ToTo oo o o o o To Fo o
% One-equation Model, FORCE scheme %
Yoo 1o 6 To o 1o o To s ToToTo o JoToTo o To To o o o ToTo o o o To o o o o To o o
D_t=0.04; D_x=0.2; D_y=0.2; max=40;
time=450; row_m=1; Vm=1.36; Vmm=1.36;
x=[0:D_x:max] ;y=[0:D_y:max] ;
N=length(x);
y1=0; for yy=0:D_y:max

x1=0;yl=y1+1;

for xx=0:D_x:max

x1=x1+1;
row_ic(yl,x1)=1xexp(-1/12*%((xx-20) "2+ (yy-20)~2));
end

end row=row_ic;

ToIoTo o Too T To o o To o o To o o

Nx=length(x); Ny=length(y); for t=1:time
if t==180 ; Vm=-1.36;Vmm=-1.36;end
for i=2:Ny

for j=2:Nx

%Setting B.C, ghost cells, and speed = 0 at

% the boundary and calculate the fluxes
if j==2; %left B.C
row(i,j-1)=row(i,j);
f(i,j-1)=row(i,j-1)*-Vm*x(l-row(i,j-1)./row_m);
else
f(i,j-1)=row(i,j-1)*Vm*(l-row(i,j-1)./row_m);
end

if j==Nx; % Right B.C

row(i, j+1)=row(i,j);
f(i,j+1)=row(i,j+1)*-Vm*(1-row(i,j+1)./row_m);
else
f(i,j+1)=row(i,j+1)*Vm*(1-row(i,j+1)./row_m);
end
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if i==2; Ybottom

row(i-1,j)=row(i,j);

g(i-1,j)=row(i-1,j)*-Vmm* (1-row(i-1,j)./row_m);
else

g(i-1,j)=row(i-1,j)*Vmm* (1-row(i-1,j)./row_m);
end

if i==Ny; % Top
row(i+1l,j)=row(i,j);
g(i+1l,j)=row(i+1, j)*-Vmm* (1-row(i+1,j)./row_m);
else
g(i+1,j)=row(i+1, j)*Vmm* (1-row(i+1,j)./row_m);
end

%»  Updating the density "row"
row_updated(i, j)=(row(i-1,j)+row(i+1,j)

+row(i,j-1+...

row(i,j+1))/4-(D_t/(2*D_x)*(£(1,j+1)-£(i,j-1))+...

D_t/(2*D_y)*(g(i+1,j)-g(i-1,3)));
end
end
row(2:Ny,2:Nx)=row_updated(2:Ny,2:Nx) ;
r(1:Ny-1,1:Nx-1)=row(2:Ny,2:Nx);

end

ToTo o ToTo ToTo o To o To o To o fo o o oo Fo o o o o To o o T o oo o o o To o

% One-equation Model, FORCE scheme %

TototoIo S To o To T oo To o to Fo o To Foto o o To o oo o Fo o oo Fo o To o o o
D_t=0.04;D_x=0.2;D_y=0.2;vf=1.36/2;vEf=0%1.36;max=80;
Rm=1;max_t=2400;x=[0:D_x:max] ;y=[0:D_y:max] ;
N=length(x) ;

% To find the I.C

y1=0;

for yy=0:D_y:max x1=0;yl=yl1+1;

for xx=0:D_x:max x1=x1+1;
R_new(yl,x1)=1*exp(-1/2*((xx-10) "2+(yy-65)"2));
end

end

Rin=R_new; %I.C

79



80 4 Numerical Methods

for t=1:max_t % time loop
% velocity direction
if t==max_t/4; vf=0%1.36;vff=-1.36/2;end
if t==2*max_t/4; vf=-1.36/2;vff=0%1.36;end
if t==3*max_t/4; vf=0%1.36;vff=1.36/2;end
% x and y loops
i=2:N+1;
j=2:N+1;
R(j,i)=R_new(1:N,1:N);
% Goust Cell B.C Down, Top, Right, Left
R(1,1)=R(2,i); R(N+2,i)=R(N+1,i); R(j,1)=R(j,2);
R(j,N+2)=R(j,N+1);
for j=2:N+1
for i=2:N+1
[FL]1=FORCE(R(j,1i),R(j,i-1),vf,D_t,D_x,Rm);
[FR]=FORCE(R(j,i+1),R(j,1),vf,D_t,D_x,Rm);
R_04(j,1i)=R(j,1)-D_t/(D_x)*[FR-FL];
end
end
i=2:N+1;
j=2:N+1;
R_04(1,i)=R_04(2,1);R_04(N+2,i)=R_04(N+1,1i);
R_04(j,1)=R_04(j,2);R_04(j,N+2)=R_04(j,N+1);
for j=2:N+1
for i=2:N+1
[GL]=FORCE(R_04(j,i),R_04(j-1,i),vff,D_t,D_y,Rm);
[GR]=FORCE(R_04(j+1,i) ,R_04(j,i),vff,D_t,D_y,Rm);
R_new(j-1,i-1)=R_04(j,1i)-D_t/(D_y)* [GR-GL];
end
end
end

function [F]=FORCE(Rr,R1,Vf,Dt,Dx,Rm);
F_R=Rr*Vf*(1-Rr/Rm);
F_L=R1*Vf#*(1-R1/Rm);
q_r=Rr;
q_1=R1;
Q_RI=0.5%(q_1+q_r)+0.5%Dt/Dx*(F_L-F_R) ;
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F_LF=0.5%(F_L+F_R)+0.5*Dx/Dt*(q_1-q_r);
F_RI=Q_RI*Vf*(1-Q_RI/Rm);
F=0.5%(F_LF+F_RI);

4.5.2 First System Model

TooToToToTo oo To o To fo o ToTo ToTo ToTo To o To o To o Fo o o o o fo o o o oo o o
% First System Model by Roe’s scheme %
ToToTo o Too o To o o To o o To o o Jo o o Jo o o Jo o 1o o To o o Jo o o Jo o o o To o
function Roe
clear all
ToloToToToToTotoTo o To o To fo o Jo o JoTo ToTo To o To o To o JoFo To o To o
% Initial condition
TooToto ToToTo oo o To oo fo o Toto ToTo To o To o To o o o o o oo o o
D_t=0.04;D_x=0.2;D_y=0.2;tow=0.2;vf=1.36;
max=20;Rm=1;x=[0:D_x:max] ;y=[0:D_y:max] ;
N=length(x); y1=0;
for yy=0:D_y:max
x1=0;yl=y1+1;
for xx=0:D_x:max
x1=x1+1;
R_new(yl,x1)=1*xexp(-1/4*((xx-16) "2+ (yy-4)~2));
U_new(y1,x1)=-vf*(1-R_new(y1l,x1)/Rm);
V_new(yl,x1)=vEf*x(1-R_new(y1l,x1)/Rm);
end
end
Rin=R_new;Uin=U_new;Vin=V_new;
o JoTo o To o o To o o Jo o o Jo o o Jo o o Jo o o Jo o o o Fo 1o o To o o Jo o o
for t=1:150
i=2:N+1;
j=2:N+1;
R(j,i)=R_new(1:N,1:N);
U(j,1)=U_new(1:N,1:N);
V(j,1i)=V_new(1:N,1:N);
clear R_new U_new V_new Qold f_s FL FR GL GR...
g_s Qold_04 Qold_34 Q_new Q_new_04 Q_new_34..
R_04 U_04 V_04 R_34 U_34 V_34
% Goust Cell B.C Down, Top, Right, Left
R(1,1)=R(2,1) ;R(N+2,i)=R(N+1,1);R(j,1)=R(j,2);
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R(j,N+2)=R(j,N+1);U(1,i)=U(2,1) ;UN+2,i)=U(N+1,1);
U(3,1)=-U(j,2);U(j,N+2)=-U(j,N+1) ;V(1,1)=-V(2,1);
V(N+2,1)=-V(N+1,1);V(j,1)=V(],2);V(j,N+2)=V(j,N+1);

for j=2:N+1
for i=2:N+1

[FL]=Approx_Roe_PW(R(j,i),R(j,i-1),U(j,1),U0(j,i-1),...
V(§,1),V(§,i-1),0);

[FR]=Approx_Roe_PW(R(j,i+1),R(j,1),U(j,i+1),U(j,1),...
V(j,i+1),V(j,1),0);

Qold_04=[R(j,i);R(j,1)*U(j,i);R(j,1)*V(j,1)];
g_new_04=Qold_04-D_t/(D_x)* [FR-FL];
HUR=vE*(1-R(j,1) /1) *sign(U(j,1));
r=q_new_04(1);
u=q_new_04(2)/q_new_04(1);
v=q_new_04(3)/q_new_04(1);
UR=vf*(1-r/1)*sign(u);
f_s=[0;r*(UR-u)/tow;0];%u
Q_new_04=q_new_04+D_t*f_s;

R_04(j,1)=Q_new_04(1);
U_04(j,i)=Q_new_04(2)/Q_new_04(1);
V_04(j,1i)=Q_new_04(3)/Q_new_04(1);
end
end
i=2:N+1;
j=2:N+1;
R_04(1,i)=R_04(2,i); R_04(N+2,i)=R_04(N+1,1i);
R_04(j,1)=R_04(j,2);R_04(j,N+2)=R_04(j,N+1);
U_04(1,i)=U_04(2,1i);U_04(N+2,1i)=U_04(N+1,1i);
U_04(j,1)=-U_04(j,2);U_04(j,N+2)=-U_04(j,N+1);
V_04(1,i)=-V_04(2,i);V_04(N+2,1)=-V_04(N+1,i);
V_04(j,1)=V_04(j,2);V_04(j,N+2)=V_04(j,N+1);
for j=2:N+1
for i=2:N+1
[GL]=Approx_Roe_PW(R_04(j,i),R_04(j-1,1i),...
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V_04(j,1i),v_04(j-1,1),0U_04(j,1),U_04(j-1,1),1);
[GR]=Approx_Roe_PW(R_04(j+1,i) ,R_04(j,1i),...
V_04(j+1,1),V_04(j,1),U_04(j+1,1),U_04(j,1),1);

Qold_34=[R_04(j,i);R_04(j,i)*U_04(j,1i);R_04(j,1)...
*V_04(j,1)]1;
g_new_34=Qold_34-D_t/(D_x)*[GR-GL];

end
end
end

r=q_new_34(1);
u=q_new_34(2)/q_new_04(1);
v=q_new_34(3)/q_new_34(1);
VR=vf*(1-r/1)*sign(v);
g_s=[0;0;r*x(VR-v) /tow] ; %v
Q_new_34=q_new_34+D_t*xg_s;

R_new(j-1,i-1)=Q_new_34(1);
U_new(j-1,i-1)=Q_new_34(2)/Q_new_34(1);
V_new(j-1,i-1)=Q_new_34(3)/Q_new_34(1);

function [F]=Approx_Roe_PW(Rr,R1,Ur,U1,Vr,V1,M);
c0=0.8;tow=0.2;

u=(Ur*(Rr) "~ (1/2)+U1l*(R1)~(1/2))/((Rr) "~ (1/2)+(R1)~(1/2));
v=(Vr*(Rr) ~(1/2)+V1x(R1)~(1/2))/((Rr)~(1/2)+(R1)~(1/2));

eig=[-cO+u
RR=[1

0O 0; 0 u 0; 0 O cO+ul]; if M==0
0 1; cO+u 0 -cO+u; v 1 v];

F_R=[Rr*Ur; Rr*Ur~2+c0"2*Rr; Rr*Urx*Vr];
F_L=[R1*Ul; R1*Ul1"2+c0"2%R1; R1*U1*V1];
q_r=[Rr; Rrx*Ur; Rrx*Vr];
q_1=[R1; R1#Ul; R1*V1];

else
RR=[1

0O 1; v 1 wv; cO+u O -cO+ul;

F_R=[Rr*Ur; Rr*Ur*Vr; Rr*Ur~2+cO0~2%*Rr];
F_L=[R1*Ul; R1*Ul*V1; R1*Ul~2+c0~2%R1];
q_r=[Rr; Rr*Vr; Rr*Ur];
q_1=[R1; R1#V1l; R1x*Ul];
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end
epsl=max ([0, eig(1,1)-(c0+Ul), (cO+Ur)-eig(1,1)]1);
Lamda_l=max(epsl,abs(eig(1,1)));
eps2=max([0,eig(2,2)-(ULl), (Ur)-eig(2,2)]1);
Lamda_2=max (eps2,abs(eig(2,2)));
eps3=max([0,eig(3,3)-(-c0+Ul), (-cO+Ur)-eig(3,3)]1);
Lamda_3=max (eps3,abs(eig(3,3))); eig_f=[Lamda_1 O...
0; 0 Lamda_2 0;0 0 Lamda_3];

Qa=RR*abs(eig_f)*inv(RR); F=0.5%[F_R +
F_L]-0.5*%Qax[q_r-q_1];

TooToToToTo oo To o To fo o To o ToTo ToTo To o To o To o o oo o o fo o o o o o o o
% First System Model by FORCE scheme 7%
TooToToToTo oo To o To fo o To o ToTo ToTo To o To o To o o o o o o fo o o o o o o o
function ForcedPW clear all
ToTo o ToTo To o foTo o To o Jo o o To o oo Jo o o o oo
% Initial condition %
ToTo o ToTo To o foTo o To o Jo o o o o oo Jo o o o oo
D_t=0.04;D_x=0.2;D_y=0.2;tow=0.2;vE=-1.36;vif=1.36;
max=20;Rm=1;c=0.8; x=[0:D_x:max];y=[0:D_y:max];
N=length(x); y1=0;
for yy=0:D_y:max
x1=0;yl=y1+1;
for xx=0:D_x:max
x1=x1+1;
R_new(yl,x1)=1*exp(-1/4*((xx-16) "2+(yy-4)"2));
U_new(yl,x1)=-vf*(1-R_new(yl,x1)/Rm);
V_new(y1l,x1)=vff*(1-R_new(yl,x1)/Rm);
end
end
Rin=R_new;Uin=U_new;Vin=V_new;
TotoToToToTo oo To o To fo o Toto ToTo To o To o o fo o o o o o o o o o o o Fo o
for t=1:150
i=2:N+1;
j=2:N+1;
R(j,i)=R_new(1:N,1:N);
U(j,1)=U_new(1:N,1:N);
V(j,i)=V_new(1:N,1:N);
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clear R_new U_new V_new Qold f_s FL FR GL GR...
g_s Qold_04 Qold_34 Q_new Q_new_04 Q_new_34...
R_04 U_04 V_04 R_34 U_34 V_34
% Goust Cell B.C Down, Top, Right, Left
R(1,1)=R(2,i); R(N+2,i)=R(N+1,1i);
R(j,1)=R(j,2); R(j,N+2)=R(j,N+1);
U(1,1)=0(2,1);U(N+2,i)=U(N+1,1);
U(3,1)=-U(j,2); U(F,N+2)=-U(j,N+1);
V(1,1)=-V(2,1);V(N+2,1)=-V(N+1,i);
V(i,1)=V(j,2); V(j,N+2)=V(j,N+1);

for j=2:N+1
for i=2:N+1
[FL]=FORCE(R(j,1),R(j,1-1),U(j,1),U(j,i-1),V(j,1),...
V(j,i-1),D_t,D_x,c,0);
[FR]=FORCE(R(j,i+1),R(j,1),U(j,i+1),U(j,1),V(j,i+1),...
v(j,i),D_t,D_x,c,0);

Qold_04=[R(j,1i);R(j,1)*U(j,1);R(F,1I*V(j,i)];
g_new_04=Qold_04-D_t/(D_x)* [FR-FL];
Rr=q_new_04(1);

Uu=q_new_04(2)/(q_new_04(1));

UR=vf*(1-Rr/Rm) ;%*sign(Uu) ;

f_s=[0;Rr*(UR-Uu) /tow;0];
Q_new_04=q_new_04+D_t*f_s;
R_04(j,1i)=Q_new_04(1);
U_04(j,1)=Q_new_04(2)/(Q_new_04(1));
V_04(j,i)=Q_new_04(3)/(Q_new_04(1));

end

end
i=2:N+1;
j=2:N+1;
R_04(1,i)=R_04(2,1); R_04(N+2,i)=R_04(N+1,1i);
R_04(j,1)=R_04(j,2); R_04(j,N+2)=R_04(j,N+1);
U_04(1,1)=U_04(2,1); U_04(N+2,i)=U_04(N+1,1i);
U_04(j,1)=-U_04(j,2); U_04(j,N+2)=-U_04(j,N+1);
V_04(1,i)=-V_04(2,1i); V_04(N+2,1)=-V_04(N+1,1);
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V_04(j,1)=V_04(j,2); V_04(j,N+2)=V_04(j,N+1);
for j=2:N+1
for i=2:N+1

[GL]=FORCE(R_04(j,i),R_04(j-1,1),U_04(j,1),
U_04(j-1,1i),...
V_04(j,i),V_04(j-1,1i),D_t,D_x,c,1);
[GR]=FORCE(R_04(j+1,1) ,R_04(j,i),U_04(j+1,1),
U_04(3,1),...
V_04(j+1,i),V_04(j,1),D_t,D_x,c,1);

Qold_34=[R_04(j,1);R_04(j,1)*U_04(j,1);R_04(j,1). ..
*V_04(j,1)]1;
g_new_34=Qold_34-D_t/(D_x)*[GR-GL];

Rn=q_new_34(1);
Vn=g_new_34(3)/(q_new_34(1));

VR=vff*(1-Rn/Rm) ; %*sign(Vn) ;

g_s=[0;0;Rn*(VR-Vn) /tow] ;
Q_new_34=q_new_34+D_t*g_s;

R_new(j-1,i-1)=Q_new_34(1);
U_new(j-1,i-1)=Q_new_34(2)/(Q_new_34(1));
V_new(j-1,i-1)=Q_new_34(3)/(Q_new_34(1));
end
end
end

function [F]=FORCE(Rr,R1,Ur,Ul,Vr,V1l,Dt,Dx,cO,M);

if M==0
F_R=[Rr*Ur; Rr*xUr~2+c0"2*Rr; Rr*Urx*Vr];
F_L=[R1*Ul; R1*Ul"2+c0"2%R1; R1*U1l*V1];
q_r=[Rr; Rr*Ur; Rr*Vr];
q_1=[R1; R1#Ul; R1*V1l];
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F_LF=0.5%(F_L+F_R)+0.5%Dx/Dt*(q_1l-q_r);
Q_RI=0.5%(q_1+q_r)+0.5%Dt/Dx*(F_L-F_R) ;
r=Q_RI(1);
u=Q_RI(2)/(r);
v=Q_RI(3)/(1);
F_RI=[r*u; r*u”2+c0”2*r; rxu*v];
F=0.5*(F_LF+F_RI);

else
G_R=[Rr*Vr; Rr*Ur*Vr; Rr*Vr~2+c0~2%*Rr];
G_L=[R1*V1; R1*Ul*V1; R1*V1~2+cO~2%R1];
q_r=[Rr; Rrx*Ur; Rrx*Vr];
q_1=[R1; R1#Ul; R1*V1l];

G_LF=0.5%(G_L+G_R)+0.5%Dx/Dt*(q_l1-q_r); %Lax

Q_RI=0.5%(q_l+q_r)+0.5+Dt/Dx*(G_L-G_R);

r=Q_RI(1);

u=Q_RI(2)/(r);

v=Q_RI(3)/(x);

G_RI=[r*v; r*uxv; r*v-2+c0"2x*r]; % Richm. ..

F=0.5%(G_LF+G_RI); % Force
end

4.5.3 Second System Model
TooToToToToTotoTo o To o To fo o To o ToTo ToTo To o To o To o Jo o To o To o Jo o oo Fo o
% Second System Model by FORCE scheme %
TooToToToToToto To o To o To fo o To o FoTo ToTo To 1o To o To o Jo o To o To o Jo o oo Fo o
function ForcedAW clear all
TooToToToToTotoTo o To o To fo o JoTo o To Jo o To o To o
pA Initial condition Y%
ToTo o ToTo To o foTo o To o Jo o o To o oo Jo o o o oo
D_t=0.04;D_x=0.2;D_y=0.2;tow=0.2;vE=1.36;vif=1.36;
eps=0.000001;max=10;b=13;g=1;Rm=1;x=[0:D_x:max] ;
y=[0:D_y:max] ;N=length(x); y1=0;
for yy=0:D_y:max

x1=0;yl=y1+1;

for

xx=0:D_x:max

x1=x1+1;
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R_new(yl,x1)=1*xexp(-1x((xx-5) "2+(yy-5)"2));
U_new(y1l,x1)=-vf*(1-R_new(yl,x1)/Rm);
V_new(yl,x1)=vff*(1-R_new(yl,x1)/Rm);
end
end
Rin=R_new;Uin=U_new;Vin=V_new;
ToTo T ToTo To o foTo o To o To o foJo o To o Jo o o Jo o Jo o o To o Jo o o o o Jo
for t=1:100
i=2:N+1;
j=2:N+1;
R(j,i)=R_new(1:N,1:N);
U(j,i)=U_new(1:N,1:N);
V(j,1i)=V_new(1:N,1:N);
clear R_new U_new V_new Qold f_s FL FR GL GR g_s...
Qold_04 Qold_34 Q_new Q_new_04 Q_new_34 R_04 U_04...
V_04 R_34 U_34 V_34
% Goust Cell B.C Down, Top, Right, Left
R(1,1)=R(2,1i) ;R(N+2,1)=R(N+1,1i);
R(j,1)=R(j,2);R(j,N+2)=R(j,N+1);
U(1,1)=0(2,1i); UN+2,i)=U(N+1,i);
U(j,1)=-U(j,2);U(j,N+2)=-U(j,N+1);
V(1,1)=-V(2,1);V(N+2,1)=-V(N+1,i);
V(,1=V(j,2);V(j,N+2)=V(j,N+1);

for j=2:N+1
for i=2:N+1
[FL]=FORCE(R(j,1),R(j,1i-1),U(j,1),U(j,i-1),V(j,1),...
v(j,i-1),D_t,D_x,g,b,0,eps);
[FR]=FORCE(R(j,i+1),R(j,1),U(j,i+1),U(j,1),V(j,i+1),...
v(j,i),b_t,D_x,g,b,0,eps);

P1=U(j,1)*R(j,1)"(g+1)/(b-R(j,1) " (g+1));
P2=V(j,i)*R(j,1)"(g+1)/(b-R(j,1)"(g+1));
Qo1d_04=[R(j,1);R(j,1)*(U(j,1)+P1);R(j,1)*(V(j,1)+P2)];
g_new_04=Qold_04-D_t/(D_x)* [FR-FL];

R_4(j,i)=q_new_04(1);
U_4(j,i)=q_new_04(2)*(b-q_new_04(1)"(g+1))/...
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(b*q_new_04(1)+eps);
UR=vf*(1-R_4(j,i)/Rm);
f_s=[0;R_4(j,1)*(UR-U_4(j,1))/tow;0];
Q_new_04=q_new_04+D_t*f_s;

R_04(j,i)=Q_new_04(1);
U_04(j,i)=Q_new_04(2)*(b-R_04(j,i)~(g+1))/...
(b*R_04(j,1i)+eps);
V_04(j,i)=Q_new_04(3)*(b-R_04(j,i)"(g+1))/...
(b*R_04(j,1i)+eps);
end
end
i=2:N+1;
j=2:N+1;
R_04(1,i)=R_04(2,1); R_04(N+2,i)=R_04(N+1,i);
R_04(j,1)=R_04(j,2); R_04(j,N+2)=R_04(j,N+1);
U_04(1,1)=U_04(2,1i); U_04(N+2,i)=U_04(N+1,1);
U_04(j,1)=-U_04(j,2); U_04(j,N+2)=-U_04(j,N+1);
V_04(1,i)=-V_04(2,1); V_04(N+2,i)=-V_04(N+1,i);
V_04(j,1)=V_04(j,2); V_04(j,N+2)=V_04(j,N+1);

for j=2:N+1
for i=2:N+1
[GL]=FORCE(R_04(j,i),R_04(j-1,1),U_04(j,1),
U_04(j-1,1),...
V_04(j,i),v_04(j-1,i),D_t,D_x,g,b,1,eps);
[GR]=FORCE(R_04(j+1,1),R_04(j,1),U_04(j+1,1),
U_04(j,i),...
V_04(j+1,1),V_04(j,i),D_t,D_x,g,b,1,eps);

pp1=U_04(j,i)*R_04(j,1) " (g+1)/(b-R_04(j,1) " (g+1));
pp2=V_04(j,i)*R_04(j,i) " (g+1)/(b-R_04(j,i)"(g+1));
Qold_34=[R_04(j,i);R_04(j,i)*(U_04(j,i)+pp1);R_04(j,1)...
*(V_04(j,i)+pp2)];
q_new_34=Qold_34-D_t/(D_x)*[GR-GL] ;

R_n(j,i)=q_new_34(1);
V_n(j,i)=q_new_34(3)*(b-q_new_34(1)"(g+1))/...
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(b*q_new_34(1)+0.000001) ;
VR=vif*(1-R_n(j,1i)/1);%*sign(V_n(j,1i));
g_s=[0;0;R_n(j,i)*(VR-V_n(j,i))/tow];
Q_new_34=q_new_34+D_t*g_s;
R_new(j-1,i-1)=Q_new_34(1);
U_new(j-1,i-1)=Q_new_34(2)*(b-Q_new_34(1)"(g+1)) /...

(b*Q_new_34(1)+eps);
V_new(j-1,i-1)=Q_new_34(3)*(b-Q_new_34(1) " (g+1))/...
(b*Q_new_34(1)+eps);
end
end
end

function [F]=FORCE(Rr,R1,Ur,U1,Vr,V1,Dt,Dx,g,b,M,eps);

P1_1=R17(g+1)*U1l/(b-R1"~(g+1)); Pr_1=Rr~(g+1)*Ur...
/(b-Rr~(g+1));

P1_2=R1~(g+1)*V1/(b-R1" (g+1)); Pr_2=Rr" (g+1)*Vr...
/(b-Rr~(g+1));

if M==0
F_R=[Rr*Ur; Rr*Ur*x(Ur+Pr_1); Rr*Urx(Vr+Pr_2)];
F_L=[R1*Ul; R1*Ul*(Ul+P1_1); R1*Ul*(V1+P1_2)];
q_r=[Rr; Rr*(Ur+Pr_1); Rr*(Vr+Pr_2)];
q_1=[R1; R1*(Ul+P1_1); R1*(V1+P1_2)];

F_LF=0.5%(F_L+F_R)+0.5*Dx/Dt*(q_l-q_r);
Q_RI=0.5%(q_l+q_r)+0.5*Dt/Dx*(F_L-F_R);
r=Q_RI(1);
u=Q_RI(2)*(b-r~(g+1))/(b*r+eps);
v=Q_RI(3)*(b-r~(g+1))/(b*r+eps);
pl=r~(g+1)*u/(b-r~(g+1));
p2=r~ (g+1)*v/(b-r~(g+1));
F_RI=[r*u; r¥ux(u+pl); r¥ux(v+p2)];
F=0.5%(F_LF+F_RI);

else
G_R=[Rr*Vr; Rr*Vr*(Ur+Pr_1); Rr*Vrx(Vr+Pr_2)];
G_L=[R1*V1; R1*V1*(Ul+P1_1); R1xV1x(V1+P1_2)];
q_r=[Rr; Rr*(Ur+Pr_1); Rrx(Vr+Pr_2)];
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gq_1=[R1; R1*(U1+P1_1); R1*(V1+P1_2)];

G_LF=0.5%(G_L+G_R)+0.5%Dx/Dt*(q_l-q_r); %Lax

Q_RI=0.5%(q_l+q_r)+0.5+Dt/Dx*(G_L-G_R);

rr=Q_RI(1);

uu=Q_RI(2)*(b-rr~(g+1))/(b*rr+eps);

vv=Q_RI(3)*(b-rr~(g+1))/(bxrr+eps) ;

ppl=rr~ (g+1)*uu/(b-rr-~(g+1));

pp2=rr” (g+1)*vv/(b-rr~(g+1));

G_RI=[rr*vv; rrxvv*(uu+ppl); rr*vv*(vv+pp2)];

F=0.5%(G_LF+G_RI); % Force
end

4.5.4 Third System Model

To 1ot ToTo Too To o o To o To o JoJo o To o Jo o Jo T o To o Jo Jo o Jo o o o o To o Jo 1o o
% Third System Model by Lax scheme %
To 1ot ToTo Too ToTo o To o To o Jo Jo o To o To o Jo T o To o Jo Jo o Jo o o o o To o Jo 1o o
function ForcedZhang
clear all
T 161 ToTo Jo o JoTo o To o To o JoJo o To o Jo o Jo o o
% Initial condition Y%
T 16T To o Too JoTo o To o To o JoJo o To o Jo o Jo o o
D_t=0.04;D_x=0.2;D_y=0.2;max=20;time=150;row_m=1;
Vm=1.36;Vmm=-1.36;x=[0:D_x:max] ;y=[0:D_y:max] ;
N=length(x) ;
y1=0; for yy=0:D_y:max
x1=0;yl=y1+1;
for xx=0:D_x:max
x1=x1+1;
R_new(yl,x1)=1%exp(-1/2*((xx-10) "2+ (yy-10)~2));
V_new(y1l,x1)=Vm*(1-R_new(y1l,x1)/row_m);
U_new(y1l,x1)=Vmm* (1-R_new(yl,x1)/row_m) ;
end
end Ri=R_new;Ui=U_new;Vi=V_new;
To1o T ToTo To o foTo o To o To o foTo o To o Jo o o Jo o Jo o Jo Fo o Jo o o o o Jo o
for t=1:time
R(2:N+1,2:N+1)=R_new(1:N,1:N);
V(2:N+1,2:N+1)=V_new(1:N,1:N);
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U(2:N+1,2:N+1)=U_new(1:N,1:N);
for i=2:N+1
for j=2:N+1
% Setting B.C, ghost cells and speed=0 at the boundary
% and calculating the fluxes
if j==2; %left B.C
R(i,j-1)=R(i,]);
V@i, j-1D=-V(,]);
U(i,j-1D=UG,j);
end
if j==N+1; % Right B.C
R(i,j+1)=R(i,j);
V@, j+1)=-V({i,j);
U(i,j+1)=U(i,j);
end
if i==2; Ybottom
R(i-1,j)=R(i,]);
V(i-1,3)=V{,3);
U(i-1,7)=-U(,j);
end
if i==N+1; % Top
R(i+1,j)=R(i,]);
V(i+1,3)=V(i,j);
U(i+1,3)=-U(,j);
end

[Q_new] =FORCE(R(i,j-1) ,R(i,j+1),R(i-1,j) ,R(i+1,3), ...
v(i,j-1),v(i,j+1),v(i-1,7),V(i+1,j),U(1,j-1),U(i,j+1),. ..
U(i-1,3),U(i+1,j),D_t,D_y,D_x,Vm,Vmm,row_m) ;

R_new(i-1,j-1)=Q_new(1);
V_r_n=Vm*(1-Q_new(1) /row_m) ;
U_r_n=Vmm* (1-Q_new (1) /row_m) ;
V_new(i-1,j-1)=Q_new(2)/Q_new(1)+V_r_n;
U_new(i-1,j-1)=Q_new(3)/Q_new(1)+U_r_n;
end
end
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end

function [q_new]=FORCE(RL,RR,RB,RU,VL,VR,VB,VU,UL,...
UR,UB,UU,Dt,Dy,Dx,vf,vff,Rm);
V1=vf*(1-RL/Rm) ;
Ul=vff*(1-RL/Rm) ;
Vr=vf*(1-RR/Rm) ;
Ur=vff*(1-RR/Rm) ;
Vb=vf*(1-RB/Rm) ;
Ub=vff*(1-RB/Rm) ;
Vu=vf*(1-RU/Rm) ;
Uu=vff*(1-RU/Rm) ;

ql=[RL;RL* (VL-V1) ;RL* (UL-UL)] ;
qr=[RR;RR* (VR-Vr) ;RR* (UR-Ur)];
qb=[RB;RB* (VB-Vb) ; RB* (UB-Ub) ] ;
qu=[RU; RU* (VU-Vu) ; RU* (UU-Uw) ] ;

f£1=[RL*VL;RL*VL* (VL-V1) ; RL*VL* (UL-U1)];
fr=[RR*VR;RR*VR* (VR-Vr) ; RR*VR* (UR-Ur)];

gb=[RB*UB; RB*UB* (VB-Vb) ; RBxUB* (UB-Ub)] ;

gu=[RU*UU; RUxUU* (VU-Vu) ; RUxUU* (UU-Uu) ] ;
%  Updatting the density "R"

g_new=(ql+qr+qb+qu) ./4-(Dt/(2*Dx) . ..

*x(fr-£1)+Dt/ (2*Dy) * (gu-gb)) ;



Chapter 5

Feedback Linearization
(1-D Patches)

5.1 Introduction

In this chapter we present a controller design for the LWR one-
equation model given in Chap. 2 using feedback linearization method.
The usual approach for the control of PDEs is by controlling the
linear or nonlinear ODEs that result from spatial discretization of
the original PDEs. Known difficulties and disadvantages associated
with this approach are, for example controllability and observability
that should depends only on the locations of sensors and actuators,
may also depend on the discretization points number, location, and
method [85]. In addition, moving from infinite dimensional to finite
dimensional systems may lead to conclusions about the stability of
the open-loop and/or closed-loop system that are not generally cor-
rect. Therefore, significant amount of interest is aimed toward the
development of a control design based on the distributed parameter
systems which accounts for the nature of the PDEs [18] and refer-
ences therein.

Here we areinterested in designing a feedback controller to evacuate
pedestrians from a 1-D area (e.g., corridor). The method of feedback
linearization works in a way to cancel the non-linearities in the system
and it is well-know in nonlinear control for ODEs [59], and it was intro-
duced to quasi-linear hyperbolic PDEs in [18]. This chapter presents
the feedback linearization control design for the LWR model.
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This chapter is organized in the following manner: In Sect. 5.2,
we give a mathematical background on the control design using state
feedback linearization. Section 5.3 presents an application of the con-
troller and discusses its closed-loop stability and simulation results.
In Sect. 5.4, we extend this approach by dividing the 1-D area into
n number of sections (also called patches).

5.2 Theory

5.2.1 Control Problem

The general quasi-linear 1-D PDE system can be written as

Q 2Q _
5 = AQL+1@+9Qnu

y = hQ), (5.1)
B.C : Cip(a,t)+ Cap(b,t) = R(t)

where Q(x,t) is the vector of state variables defined on Q(z,t) €
H?[(a,b),R]. Using the patch idea (see Fig. 5.1) we set

ala,t) = Y () (t) (5.2)
=1

Tit+1

yilt) = ciw,t):cih(@):/ ¢ (@) (Q(x, 1)) d (5.3)

T

where C! is an operator that depends on the desired performance
given by an integral same as in the majority of the applications in

u'(t) u'(t) u(t)
S S S S S S
T 1 -3

y (@) yi@) y"(@)

Fig. 5.1. Control specification in case of a 1-D problem
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[18], ¢'(z) and bi(x) are known smooth functions on z assumed to
be normalized and are given by

Z/mﬂ ' da:—Z/xZH ' —1 (5.4)

Using the above notation we rewrite the quasi-linear PDE to get

= 4@ 1 1@ + g @b
) = ChQ), 5.5)
B.C : Cip(a,t)+ Cop(b,t) = R(t)

1

where u = [u" ... !

T, and y = [y ... 1T

't
5.2.2 Characteristic Index

The concept of characteristic index o is simply the smallest number
of Lie derivatives (the derivative of a scalar field in the direction of a
vector field) that establishes a direct relationship between the output
y and the input u. The characteristic index can be found from

y = Ch(Q)
d 0Q;
W (Z @i, +Lf> hQ)
. ’ o o—1
it}j = (Z 0Q; La, + Lf> +CL, (Z 90 La; + Lf) h(Q)b(z)u.

Once the term that includes the input u is nonzero we stop and
proceed to the following step in control design. If ¢ = oo, then u
does not show up and this design method will not work.

5.2.3 State Feedback Control

Assuming all states are available for measurement, the controller we
seek can be found from

d%y dy B
Yo qo Foo N g FY=0 (5.6)
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and for our system (5.5) it is given by
o—1 -1

u = |%CL Y 82JLaj+Lf h(Q)b(z)
j=1

g n a .
< Ju-on@ -0 (N Wi, i) hQp 67)
v=1 j=1

5.2.4 Closed-Loop Stability

Here we use the definition of closed-loop stability given in [18] for
the system (5.5) under the controller (5.7). The controlled system is
exponentially stable (i.e., the differential operator of the linearized
closed-loop system generates an exponentially stable semigroup) if
the following conditions are satisfied:

1. The roots of the equation
I1+7ms+...+7%s” =0
lie in the open left hand of the complex plain.

2. The zeros dynamics of the system (5.5) are locally exponen-
tially stable.

The first condition can be designed easily by pole placement, and the
second condition is checked by setting the output y = Ch(Q) = 0.
For more details see [18, 85].

5.3 Application to the LWR (One patch)

Our aim is to control the LWR model using one patch only. The
one-equation PDE is given by

ap _ _8q
ot oz
(- 2))__ oli-2)
B . ox - Y ox
9q(p)

(5.8)
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where u = vy is the control variable, and the density p is the variable
we want to control (for pedestrian evacuation, final p = 0). The area
is [0,1] € R and the boundary condition is closed from the left and
open at the right end. Comparing this PDE to the general form (5.1)
we find that f(Q) =0, and ¢(Q) = 0. If we take a = g,g the system
can be represented by

ap dp

g = U@ g (5.9)
_ 2p : i _ 1 :
where a = (1 - pm>. The choice of ¢'(z) = 2ii1—x; BGTEEs With (5.4)
and gives
1 1 1
y=cnp = [ L pendr= [pande (510)

where the output operator C is one patch only, and b(z) = 1. Next
we proceed with the control design as follows:

1. For the characteristic index if we just take the derivative of the
output one time vy will show as:

y = Ch(Q) = Cp(x,t)

. Op . _0pJp
b= Co,P=Ch, o
B op aq
= —Cvfa&E—C—vf&E
16q~
= —vy . o dx

= —vy(q(1) — q(0)).

Hence, the characteristic index is equal to one. The manip-
ulated input vy is outside of the integral because it depends
on time only. The integral and the partial derivative operator
cancel out and we are left with the ¢ evaluated at the boundary
points.

2. The state feedback controller comes from (5.6) which in our
case reduces to y + K y = 0, where v = 0 and K = 711. Thus
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the controller is given by

1
K/ p(z,t)dx
0

@) - () - (5.11)

’l)f:u:

The closed-loop system can be found by substituting (5.11) in
(5.8) to get

1
oty | K ), oo L0 )
o @) ~a) (< or |

For the stability of the closed-loop system, and according to
the conditions given in Sect. 5.2.3 we first choose v > 0 or
K >0 because 1 + 718 =0 = s = _’Yll is in the left half of

07 T T T
1.C.
after t1
0.6 after t2
after t3
final
0.5
> 04 ]
‘@
c
[0}
[a)

0.3

0.2

0.1

X

Fig. 5.2. Density response for one patch controller. Initial density
maximum value is 0.6, At = 0.002sec and Az = 0.01, gain K=1,
and total time =~ 7 sec. to reach zero density
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the complex plain. For the zero dynamics we set y = 0, and
this can happen if and only if p = 0 because the density is a
non-negative value ((y = 0) <= (p =0)) and we get

=0
-1 -~ ~
Op(. 1) ) _K/O p(x,t) dx . 9a
ot (q(1) = q(0)) — Ox°
dp

=0

ot
Hence, zero dynamics are stable. Therefore the closed-loop
system is stable.

The control action response for a corridor with exit at the right
hand side is shown in Fig. 5.2. After some finite time, evacuation is
completed and the density is zero. This controller attempt to control
the flow around y = fol p(x,t) dz every time which is shown in the
figure by the different time responses.

5.4 Application to the LWR (n=5 patches)

Here we repeat the design steps 1 to 4 shown in the previous section
with five patches instead of one. Therefore, we have i=1,...5 and
b'u’ = u', where b are taken as unity distribution functions and

ul(t), [0.0,0.2]
u?(t), [0.2,0.4]
u(t) = ¢ u3(t), [0.4,0.6] (5.13)
u(t), [0.6,0.8]
u®(t), [0.8,1.0]

y' (1) = fyo pla,t)dz
VA1) = Jo pla,t)da
y(t) =4 950 = Joi ple, e (5.14)
yh (1) = Jos pla,t)da
y5(t) = 01.8 p(z,t)dx
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So the output is

y'(t) = / c(z)p(z,t) dz (5.15)

1

where ¢'(z) = i1

1. The characteristic index is equal to one as shown by item 1 in
Sect. 5.3.

2. The state feedback controller is given by

1+1
K/ dz
Tit+1 — T4

(A(xis1) — 4(a2)) (5.16)

07 T T T
1.C.
after t1
0.6 after t2
after t3
final
0.5
> 0.4} b
‘@
c
5 \
0.3F =
0.2f i
0.1 b
0 = Il L L L
0 0.2 0.4 0.6 0.8 1

x—direction

Fig. 5.3. Density response for five patch controller. Initial density
maximum value is 0.6, At = 0.000005 sec and Az = 0.01, gain K=1,
and total time =~ 0.2 sec. to reach zero density
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3. Closed-loop system is given by

8p (x,t) > i 8‘](/7)
; (x —x;) — H(x — x441)) u'| X P
(5.17)

4. For closed-loop stability, condition one is satisfied if K > 0 as
in the one patch case. For the zero dynamics we set y = 0,
and this happens if and only if in each patch p = 0. Substitute
y = 0 in the closed-loop in 3 we obtain o (x Y — 0. Hence the
closed-loop system is stable.

The control action response for a corridor with exit at the right
hand side is shown in Fig. 5.3. After some finite time, evacuation
is completed and the density is zero. The response here is different
than the one for the single patch as seen by the responses approaching
Zero.

5.5 Matlab Program Code

5.5.1 Omne-patch Control

T Toto s ToTo o To o o ToTo o To o o ToTo o JoTo o JoTo o o To o o To o o o To o o

% Control: One patch matlab Code %

Do Toto s ToTo o To oo To o o To o o ToTo o JoTo o JoTo o o To o o Jo o o o Fo o o

n=100;L=1; d_x=L/n;d_t=0.002; K=1.0; rm=1; h=d_x;
% n: number of points, L: length, K: gain,

% rm: jam density.

x=[0:d_x:1]; N=length(x); % Corridor length

x1=0; % Start of the initial condition
for xx=0:d_x:1 x1=x1+1; Ro(x1)=0.6*exp(-10*(xx-0.6)"2);
end % End of the initial condition

r(1,1:n+1)=Ro(1:n+1);

for t=1:3500; % Total time = t* d_t
% We first find the integral using trapezoid rule
% for every time step

sum=0;

for c=1:n
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sum=sum+(r(t,c)+r(t,c+1));
end
% Next we compute the PDE
for j=2:n+1
if j==2;r(t,j-1)=0*r(t,j);end
if j==n+1 ; r(t,j+1)=1*xr(t,j);end
qt,j+D=r(t,j+D*(1-r(t,j+1)./rm);
q(t,j-D=r(t,j-D*(1-r(t,j-1)./rm);
r(t+1,3)=0.5%(r(t,j+D+r(t,j-1))...
-(d_t/d_x)/2x(Kxh/2xsum) *(q(t, j+1) ...
-q(t,j-1))/((r(t,n+1) . *x(1-r(t,n+1) ./rm)) ...
-(r(t,2) .x(1-r(t,2)./rm)));
end
end

5.5.2 Five-patch Control

Yoo 1o 6 1o s 1o o To s ToToTo o JoToTo o To To o o o ToTo o o o To o o o o To o o

% Control: 5 patches matlab Code %

Yoo lo 1o 1o oo o s To ToTo o o o o fo ToTo o o o o Jo o ToTo oo o o o o To Fo o

n=100;L=1; d_x=L/n;d_t=0.000005; h=d_x; K=1; rm=1;
% you can change d_t, gain K, and jam density rm.
x=[0:d_x:1]; N=length(x); 7’ Corridor length
x1=0; % Start of the initial condition
for xx=0:d_x:1

x1=x1+1;

Ro(x1)=0.6%exp(-10*(xx-0.6)"2);

end % End of the initial condition

r(1,1:n+1)=Ro(1:n+1);

for t=1:20000; % Total time = t* d_t
% We first find the integral using trapezoid rule for
% every time step for the five patches.
sum_1=0;sum_2=0;sum_3=0;sum_4=0;sum_5=0;
for c=1:n/5
sum_1=sum_1+h/2*(r(t,c)+r(t,c+1))*1/0.2;
end
for c=n/5+1:n%*2/5
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end
for

end
for

end
for

end

sum_2=sum_2+h/2*(r(t,c)+r(t,c+1))*1/0.2;

c=n*2/5+1:n%*3/5
sum_3=sum_3+h/2*(r(t,c)+r(t,c+1))*1/0.2;

c=n*3/5+1:n%4/5
sum_4=sum_4+h/2*(r(t,c)+r(t,c+1))*1/0.2;

c=n*4/5+1:n
sum_b=sum_5+h/2*(r(t,c)+r(t,c+1))*1/0.2;

% Next we compute the PDE

for

j=2:n+1

% no inflow from the left B.C.

if j==2;r(t,j-1)=0*r(t,j);end

% outflow from the right B.C.

if j==n+1 ; r(t,j+1)=1*xr(t,j);end
% calculate the fluxes
q(t,j+)=r(t,j+1)*(1-r(t,j+1)./rm);
q(t,j-D=r(t,j-1)*1-r(t,j-1)./rm);

% Next we update each patch

if j<=n/5; sum=sum_1;
qg_R=r(t,n/5) .x(1-r(t,n/5)./rm);
q_L=r(t,2).*(1-r(t,2)./rm);

r(t+1,j)=0.5%x(r(t,j+1)+r(t,j-1))-(d_t/d_x) /2% (Kxsum) . ..

*(q(t,j+1)-q(t,j-1))/(q_R-q_L);
end

if j>n/5 & j<=2*n/5; sum=sum_2;
q_L=r(t,n/5+1) .x(1-r(t,n/5+1)./rm);
q_R=r(t,2*n/5) .*(1-r(t,2*n/5) ./rm) ;

r(t+1,j)=0.5%(r(t,j+1)+r(t,j-1))-(d_t/d_x) /2% (K*sum). ..

*x(q(t,j+1)-q(t,j-1))/(q_R-q_L);
end

if j>2*n/5 & j<=3#n/5; sum=sum_3;
q_L=r(t,2*n/5+1) .*(1-r(t,2*n/5+1) ./rm) ;
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q_R=r(t,3#n/5) .*(1-r(t,3*n/5)./rm) ;
r(t+1,j)=0.5%(r(t,j+1)+r(t,j-1))-(d_t/d_x) /2% (K*sum). ..
*x(q(t,j+1)-q(t,j-1))/(q_R-q_L);

end

if j>3*n/5 & j<=4*n/5; sum=sum_4;
q_L=r(t,3*n/5+1) .*(1-r(t,3*n/5+1)./rm);
q_R=r(t,4*n/5) .*(1-r(t,4*n/5)./rm);
r(t+1,j)=0.5%(r(t,j+1)+r(t,j-1))-(d_t/d_x) /2% (K*sum). ..
*(q(t,j+1)-q(t,j-1))/(q_R-q_L);
end

if j>4*n/5; sum=sum_5;
q_L=r(t,4*n/5+1) .*(1-r(t,4*n/5+1)./rm) ;
g_R=r(t,n+1) .x(1-r(t,n+1)./rm);
r(t+1,j)=0.5%(r(t,j+1)+r(t,j-1))-(d_t/d_x) /2% (K*sum). ..
*(q(t,j+1)-q(t,j-1))/(q_R-q_L);
end
end
end



Chapter 6

Intelligent Evacuation
Systems

In this chapter we discuss the new concept of intelligent evacuation
system or IES. This new technology will make a major change in
evacuation strategies. Control, communication and computing tech-
nologies will be combined into IES system that can increase crowd
safety and management without changing the physical structure of
the facility. This chapter outlines the key features of medium area
IES and shows how core crowd decisions may improve. We also pro-
pose a basic IES control system architecture based on the one given
by [98], and we discuss the information technology issues related to
its implementation.

6.1 Introduction

Congestion conditions during an emergency evacuation poses a great
challenge for any evacuation management system. Congestion oc-
cur when the demand for travel exceeds the runway (corridor, stairs,
highways), and bottleneck (exits, intersections) capacity. Hence a
sound approach for reducing congestions will involve a mix of policies
affecting demand and capacity depending on local circumstances and
priorities. These policies include buildings, parking lots, stadiums,
subway stations, airports, highways, and reducing demand by mass
transit, carpooling on highways. This chapter discusses the poten-
tial of another strategy option called Intelligent Evacuation System

107
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(IES). In this strategy, we claim that a proper combination of control,
communication and computing technologies, placed on corridors, ex-
its, TVs , internet, cars, and highways can assist people’s decisions in
ways that will increase evacuation safety and management without
changing the physical structure of a facility or roads.

The intelligent evacuation system we propose here should take
the following aspects into consideration

e Function: The range of functions associated with the evacua-
tion system to be automated, and the degree of automations.

e Architecture: The breakdown of these functions into various
control tasks, and the delegation of these tasks.

e Design: The division of intelligence between evacuees and facil-
ity, and how the use of technologies can realize this architecture.

e Effectiveness: The cost effectiveness and benefits of different
evacuation systems.

Other aspects of this strategy relate to the timing of the system
development, which concerns the accommodation of new functions
in new design. This chapter is concerned with the above four points
only.

Section 6.2 presents a framework for describing IES functions and
their relation to key evacuee decision for different evacuation scenar-
ios. Different IES proposals can be compared according to the degree
of influence they exert on those decisions. These proposals may range
from systems that are relatively simple from control viewpoint, since
they merely provide information or advice to the evacuee, to more
automated systems using open loop and feedback control strategies.
In an open loop scheme the traffic will flow in a predetermined way
which would be assessed based on the initial condition of the flow.
Since the evacuation of people is a very dynamic situation hence a
feedback solution is obviously better suited. We argue that an evac-
uation system that use feedback control strategy can achieve much
better evacuation time reduction and management. The evacuation
strategies will be optimally calculated on a real-time basis using ad-
vanced concepts of the feedback control theory.

Section 6.3 outlines two evacuation scenarios of evacuating peo-
ple, train, and cars from a train substation, and an airport. For city
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Table 6.1. Evacuee decisions and IES functions

Stage Evacuee decision IES aim 1ES job Approach
Pre-evac Evacuation plan Efficient use Demand shift 1,2, 4
and methodology of resource
In-evac Route choice Optimize travel  Route guidance 1,2,3
time and flow control
Path planning Smooth flow Congestion control 1, 2, 3
Regulation Increase flow, Proper spacing, 1,3
safety steering, etc.
Post-evac  Parking, Shelters Add safety Efficient use 1,2, 3,4

evacuation we refer the reader to [98]. We discuss these scenarios in
terms of the evacuee decisions listed in Table 6.1. Designing such
systems poses a challenging problem for control.

Section 6.4 proposes a four-layer hierarchical control architecture
which splits this problem into more manageable units. Starting at the
top, the layers are called the network, link, planning and regulation
layers. The regulation layer’s task is to execute feedback laws for
acceleration, direction change, and stop. The planning layer’s task
is to coordinate the movement of neighboring evacuee/vehicles and
supervise the regulation layer during the execution of feedback laws.
The link layer is responsible for the control of aggregated traffic flow
over some area of the facility. Finally, the network layer assigns
routes to evacuees/vehicles and controls admission into exits.

Section 6.5 discusses the control architecture for evacuation sce-
narios described in Sect. 6.3. Section 6.6 discusses the information
technology issues.

Section 6.7 gives a brief discussion on feedback control and mod-
eling of the crowd dynamics.

6.2 IPES Functions

Here we present five decisions made by an evacuee in the course of
an emergency evacuation for small size area (includes floor, building,
and parking lot), mid size area (subway station, airport), and large
size area (includes city, county, and state). Table 6.1 gives these
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decisions and points out how they can be modified to increase safety
and management of an evacuee. We divide the decisions into three
stages, pre-evac, in-evac, and post-evac. Corresponding to these de-
cisions, IES objectives and tasks are given, which if carried out ac-
cordingly, would realize the desired objectives.

We can add more decisions to this decision list, but in our view,
the five decisions given in the table are the most important to TES
plan and the rest do not affect it significantly. Also including more
decisions to the list will increase its size considerably. In addition,
people will be more comfortable with a system that can take care
of these non-core issues. For instant, an automated exit doors can
eliminate the need to stop, find the keys, and open these doors. Doors
here could be building exit doors, subway or train doors, parking lot
gates, highway toll, etc.

The last column in the table gives possible approaches to carry
out the IES tasks, and these are

1. Supplying information (road condition, exit locations, etc.)
Giving advice.

Controlling the decisions.

L S

Changing choices based on cost related issues (the use of a car,
carpooling, toll, etc.)

These approaches increase the evacuation system difficulty, as we
move from providing information to giving advice to applying control
(can be either open loop or feedback) as represented by

Information —Advice —Control

However, at the same time evacuee decisions are becoming more
automated as we go from providing information to applying control.

In the next section we see how the functions listed in Table 6.1
work for two different evacuation scenarios. Generally speaking, sce-
narios can be divided into three broad categories: small area, mid-size
area, and large area. The small area scenarios cover the cases of a
floor, building, and a parking lot. The mid-size area scenarios which
we discuss next covers a subway station and an airport. The large
area scenarios deal with evacuating people/cars from towns, cities
etc.



6.3 IES Functions for Evacuation Scenarios 111

6.3 IES Functions for Evacuation Scenarios

Here we will argue that a controlled evacuation system will provide
better safety and management results than the information or advice
evacuation strategies. To do that, we take a close look at two scenar-
ios and discuss the effect of Table 6.1 on improving the evacuation
process.

6.3.1 Subway Station

First scenario is a one level subway station given in Fig. 6.1. In a
pre-evac phase, we will discuses how information, advice and cost
can affect the evacuation generation and model choice, and how the
TES system makes them more efficient. An information based evacu-
ation system can consist of sensors connected to an alarm, and lights
signs showing train doors and exit locations. An alarm will start
and evacuees’ decision will be to take the train, walk or run to safety
(exit the station), or maybe ask for information. In an advice sys-
tem, trained human resources can provide the decision by asking the
evacuees to move slowly, run toward an exit, or take a shelter and so
on. To make this phase more efficient a controlled process can pro-
vide the decision based on open loop or feedback controller. Possible

Subway Train I

-—>

\ CRVR A A A P

Exit B Exit A

(22 A 2 2

Subway Train II

Fig. 6.1. Subway station
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methods are voice commands, automatic doors, or light matrix that
shows slow light changing for walking and fast for running. These
methods are different in open loop from feedback based on sensing
other information like jam at one of the exits, possibility of trains
colliding (from network information), biological threat [80], etc.
The in-evac phase, the route choice decision for an information
based system can be following signs or other evacuees toward what
is supposed to be safety. However, this could guide to congestions
at bottleneck locations (exit doors, and stairs) and increase evacua-
tion time [49, 50]. Information that evacuees obtain from visual, and
interactions with other evacuees/obstacles that is categorized under
behavior observations of the traffic flow will influence their maneu-
ver, and regulation decisions. For the advice system, route choice and
path planning can be provided. Nevertheless, since advice is given
based on visual area conditions, same bottleneck problem could still
occur, even if advisors (trained human resources) are communica-
tion with each other. For example, they have no control on exit
doors, changes to trains route, etc. To improve this phase, control
design can choose the route with minimum time to reach an exit or
safety based on current location and flow control. It also provides
the evacuee with a plan to reach the exit by preventing congestion
near bottleneck locations. In addition, to increase safety and man-
agement of evacuees, maneuver and regulation decisions can be used
to coordinate exits (open and close), train doors, etc., and flow con-
trol (e.g., variation in moving velocities and direction). Finally, the
post-evacuation phase is concerned with providing help by notify-
ing emergency services, guide them to the disaster area and guiding
injured evacuee to their parking area to get the fastest help possible.

6.3.2 Airport

An airport is considered a mid size area. Example of an airport
schematic is given in Fig. 6.2. It consists of a terminal, airplanes,
parking lots, building services, and vehicle routs. The aim here is
to discuss this scenario and how the functions in Table 6.1 improve
the evacuation process. Before we do so, we note that the plan is to
evacuate all pedestrians in the affected area. If this area is a floor,
building, or a parking lot we can create scenarios for them as well,
but this is not considered here.
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Fig. 6.2. Airport traffic flow



114 6 Intelligent Evacuation Systems

In pre-evac, a simple evacuation system can consist of sensors
in a building connected to an alarm, and lights signs showing exit
locations. When an alarm starts, evacuee’s decision will be to ask
for information, walk or run to safety following the exit signs that
will lead them to exit the building. Next they go to the parking lot
to their vehicles, or any other transportation available to drive them
out of the airport area (disaster area). In an advice system, trained
human resources can guide the evacuees to use certain routs, like
taking refuge in a shelter and so on. But both systems can not deal
with mass evacuation where congestion and jam will occur in build-
ings, parking lots, and on the roads connecting these facilities. To
improve this process, an open loop or feedback controller can be used
to assign an evacuation route, and synchronize the number of evac-
uees and vehicles flow into the roads. By doing so, smooth flow could
be achieved. Possible methods are commands asking the controller
of each node (facility) to evacuate a certain number of evacuees per
unit time, automatic road and air traffic control, etc. These methods
are different in open-loop from feedback based on sensing informa-
tion like congestions, road blocks, number of airplanes landing and
leaving from the airport, etc.

The in-evac phase, the route choice decision for a simple sys-
tem can be self or following other evacuees that will eventually lead
to congestions at bottleneck locations and increase evacuation time.
For the advice system, route choice and path planning is based on
visual and limited communication between system advisors (secu-
rity personals, police). In addition, their control on roads, and air-
planes traffic is insufficient (many airplane accidents happen in nor-
mal situation). To improve this phase, control design can choose
the route with minimum time to reach an exit or safety based on
current location and flow control of the different system nodes. Ma-
neuver and regulation decisions can increase safety and management
of evacuees by controlling velocity and direction of evacuees/vehicles.
Finally, the post-evac phase is concerned with identifying an appro-
priate shelter, notifying emergency services and lead them to the
disaster area, and guide injured evacuee to safe areas to get the
fastest help possible.
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6.4 Four-Layer System Architecture

With the above mentioned scenarios as background we now discuss
how to formulate the problem of designing the control system which
carries the tasks of IES. In this section we propose a control system
architecture similar to one proposed in [98]. Here we will represent
the functions given in Table 6.1 by a control system architecture
whose block diagram representation is given by Fig. 6.3. From top,
the layers are called network, link, planning and regulation.

There is a single network layer. The controller task in this layer
is to assign an escape route for the evacuees in the system, and an
entrance route for the emergency services. From abstract point of
view, this controller must determine a routing table with entries of
the form

(Current evacuee location, exit)—(Evacuee route)

This table is updated based on the area affected in a way to optimize
evacuee flow. The updates would be based on the information about
the aggregate state of the flow of people. To find the entries for this
table, we make use of controllers that identify the route associated
with optimum time. This can be done either by feedback or open-
loop controller. A feedback assignment of routes would correspond
to assessing the current traffic and incident situation, then deciding
dynamically about the route assignment. In an open-loop scheme

I I I
[ Regulation ]—[ Regulation ]—[ Regulation ]
I I I

[ Physical ] [ Physical ] [ Physical ]

Fig. 6.3. Four layer architecture
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the traffic will flow in a predetermined way which would be assessed
based on the initial condition of the flow. Since the evacuation of
people is a very dynamic situation, hence a feedback solution is ob-
viously better suited. We suggest the use of central computer for
the calculations of the entries, since on board calculation is difficult,
because it requires equipments such as computing devices, sensing
information, and communication to be available with every evacuee.

In the TES, the disaster area is divided into various sections with a
link layer controller assigned to each section. Each link layer assigns
target speed and path to all the evacuees in such a way that (a)
evacuee follow the assigned rout toward the exit, (b) congestion in
and between the links is avoided. Thus, if there is a jam condition at
a front link, the control link layer must adopt and change its speed
command (slow down or stop). The calculations are updated based
on the response in density distribution and speed changes in each
section. The updates depends on the link area size and they are
made more frequently in this layer to assist the situation. The link
layer controller design is based on the macroscopic models for crowd
dynamics given in Chap. 3.

There is a planning layer and a regulation layer controller as-
sociated with each evacuee. The planning layer has a task of path
planning. It generates a plan which closely follows the path or route
assigned to evacuees by the link layer. Once a plan is generated the
regulation layer’s task is to execute a trajectory for an evacuee target
speed which conforms with the plan.

The planning layer is assumed to have information at all times
of the evacuees position, its path and target speed as assigned by
link layer. It then decides what actions to take in order to evolve a
plan which should stay as close as possible to the proposed path. In
addition, it exchanges this information with the planning layers of
neighboring evacuees to coordinate the action. Then, requests the
regulation layer to implement the feedback control law to accomplish
that action.

The regulation layer implements the necessary feedback law per-
taining to the request from its planning layer. It informs the planning
layer of completion of the action which then plans the next action.
The feedback laws compute the value for the velocity vector actua-
tors based on the sensor inputs of the evacuees present state. The
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physical layer is a macroscopic model of the evacuee density rep-
resented by partial differential equations. This layer has actuator
inputs and sensor outputs.

The layers we have presented are in a general form. They can be
applied on different physical scenarios and different choices of control
authority based on the size of the problem.

6.5 Four-Layer System: Scenarios

In this section we discuss the control system architecture described
in previous section for our scenarios.

6.5.1 Subway Station

Here we describe the four layer control system architecture for the
subway station:

1. Network layer: This layer assigns route to the evacuees in the
station that could be toward an exit or taking the train to the
next or final stop. Feedback control is used to identify the
route associated with optimum time. A feedback assignment
of routes would correspond to assessing the current state of the
situation (danger, evacuee density and location).

2. Link layer: Here links are section of the waiting area, train
cabins, stairs, or a train in a subway network. The controller
in this layer assigns a path to each evacuee such that the flow
is smooth from all links. It also assigns a target speed for each
link to ensure smooth flow and avoid congestion.

3. Planning layer: This layer decides the actions to take by evac-
uee in different links in order to stay as close as possible to the
assigned path. It should coordinates the maneuvers of neigh-
boring evacuees or trains such that there is no conflict between
the evacuees or collision between trains as well as to ensure the
safety of motion.

4. Regulation layer: Here the various control laws based on the
control inputs given by the planning layer are implemented
using the hardware in the physical layer.
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6.5.2 Airport

In the airport scenario, the four layer control system architecture are
given by the following:

1. Network layer: In this layer the feedback controller assigns
routes to the evacuees that achieve optimum time based on
their location, which might be airplane door, terminal exits,
parking lot exit, on road or air traffic. A feedback assignment
of routes would correspond to assessing the current conditions
of the system (danger, road conditions, evacuee density and
location).

2. Link layer: In this scenario links are roads, buildings, parking
lots, airplanes. The controller in this layer assigns a path to
each evacuee such that the flow is smooth from all links. It also
assigns a target speed for each link to ensure smooth flow and
avoid congestion.

3. Planning layer: This layer trays to keep evacuees as close as
possible to their assigned path. Coordinates the maneuvers
of neighboring evacuees, airplanes, and cars such that there is
no conflict between the evacuees and to ensure the safety of
motion.

4. Regulation layer: Here the various control laws based on the
control inputs given by the planning layer are implemented
using the hardware in the physical layer.

6.6 IT Issues and Requirements

From recent disasters (e.g., Hurricane Katrina), communication sys-
tems used by early responders agencies, such as, police, firefighters,
costal guard, homeland security, and others lead to a slower and un-
coordinated response. This problem is due to the lack of common
standards (interoperability) between the different communications
systems. When the lack of compatibility coupled with the loss of
infrastructure, the needed resources are not dispatched where they
are most wanted. For the control architecture given by Fig. 6.3 we
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suggest the use of a communication architecture that deals with the
different communication issues in case of an evacuation.

Network topology deals with how the network is physically ar-
ranged, physically constructed, and electrically connected. It also
have a set of rules that control communications (protocols). These
issues need to be address for the IES system proposed. We require
that information collecting and sharing within each layer and with
other layers should be robust, and the different standards must be
able to communicate with each other correctly.

To physically construct a network (i.e., the way a medium con-
nect the network nodes) there are two ways. The wired media and
its technologies, and second is the wireless topology. For the IES sys-
tem the wireless topology can be used as a backup medium due to
bad weather conditions associated with evacuations (like hurricanes,
storms, etc.). Electrical topology would be the communication path
between nodes and how they can share information and resources,
i.e., the way the wires or cables are actually connected. One solution
could be the use of a hybrid network, which is a combination of the
three basic star, bus, and ring networks. This form provides redun-
dancy of paths that will enable other path choices in case of some
link failure. To have a valuable network, it should be

reliable error free, error detection system
available 24*7, from any point, continuous stable power source

perform provide stable bandwidth under varying conditions, such
as fixed, or dynamic bandwidth, bandwidth on demand, and
brusty traffic

secure physical, Virtual, data.

6.7 Feedback Control and Dynamic
Modeling

The control laws executed by the regulation layers of IES will be
based on the feedback control theory. It will interpret and synthesize
the data collected from sensors (hazard detection sensors and video
cameras) to formulate feedback control command to be delivered to
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the entrapped people through actuators (speakers, TV monitors, and
lighted matrix displays). The system will continuously monitor, on
a real-time basis, how the evacuation evolves including the develop-
ment of congestion at bottleneck points, to re-direct people to other
less congested locations if it is deemed necessary.

The optimal evacuation strategy will be established based on the
most advanced mathematical concepts of the feedback control theory
of distributed systems. To do control design in a microscopic model
environment, we need to keep following each evacuee’s position, its
interactions with other evacuees, and give a targeted control input
to each one. Obviously this increases the complexity of the system
as the number of evacuees increase and it is practically impossible to
control each evacuee. Therefore, the IES uses macroscopic dynamic
models where the evacuees are treated as a continuum and the af-
fected area can be divided to sections and the control commands are
locally implemented.

The development of the preliminary theoretical framework for the
feedback control design has been already done with controllers being
designed for a simple evacuation scheme. This preliminary work is
expected to provide a sound theoretical framework for the solution of
the more complex evacuation problem. The feedback control design
for distributed dynamics can be done either in distributed setting
(pde control) or in lumped setting (ode control). The distributed
feedback controllers have been developed in Chap. 5 for 1-D space
and in [99, 100] for one and 2-D spaces respectively.



Chapter 7

Discretized Feedback
Control

7.1 Introduction

Pedestrian evacuation is a multi disciplinary problem that poses
various concerns for design of infrastructure, pedestrian behavior,
strategy etc. Considerable effort has been put in understanding the
pedestrian behavior in normal and panic situations. Hoogendoorn
and Bovy [50] have developed a normative theory that proposes a
rational optimization based basis for the tactical decisions involved
in route choice and activity scheduling of pedestrians. In their theory
they account for the uncertainties involved in such decision making
and the fact that pedestrians can choose from an infinite number
of paths. The walking behavior on which this tactical decision is
based is presented by Hoogendoorn in [49]. Hill [47] has proposed
that directness is an important aspect in route selection as it is done
unconsciously. Other simulation based works on pedestrian route
choice selection can be found in [12, 31]. Helbing et al. [41] have
done simulations using a pedestrian behavior model and assessed
the pedestrian behavior in panic situations. The design of infras-
tructure has to facilitate the evacuation by providing adequate space
and exits. The design of infrastructure for evacuation has been ad-
dressed in various codes from various regulating agencies that specify
certain minimum dimensions for various architectural elements like
corridors, doors etc. and placement of exits, for example the life

121
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safety code handbook by NFPA [20]. Cellular automata formula-
tions for simulation of pedestrian movement are also a widely used
tool [15, 60, 61, 62| and [89]. A continuum theory for the pedestrian
movement which is different from a typical fluids theory modeling
pedestrians has been proposed by Hughes [51]. As far as strategy for
evacuation is concerned it can be dealt with at the network level and
link level. At the network level the main concern is that of assigning
the various links for the evacuating population. This problem has
been dealt with in the literature from both a theoretical and a prac-
tical perspective [5, 16, 21| and [72]. Control of vehicular traffic by
sensing the state of the system is addressed formally in the dynamic
traffic assignment literature [53, 54, 55, 56] and [57]. Barrett et al.
[7] have done dynamic traffic assignment for hurricane related evac-
uations. In pedestrian evacuation smooth evacuation of the people
without jamming is a major concern at the link level. This issue is
addressed in the following sections.

In this chapter the focus will be on developing the controls for
evacuating pedestrians from a corridor. The motion of the pedes-
trians is assumed to be along the length of the corridor and appro-
priate equations governing the motion of the pedestrians are
proposed. Since the purpose of developing the equations governing
the pedestrian evacuation motion is to develop controls for it hence
the equations are purposely kept to be simplistic. The modeling of
the pedestrian motion is done at the macroscopic level wherein the
pedestrian flow is assumed to be a continuum. The continuity partial
differential equation is used as the governing equation. The corridor
is then divided into a finite number of sections, n for the purpose of
discretizing the partial differential equation into n, ode’s to develop
the control. Each ode and control variable corresponds to a section
of the corridor. Since the pedestrian flow is treated as a continuum
hence the pedestrian densities in each section are assumed to be the
state variables. The following steps roughly outline the procedure
adopted to model the system and develop the control:

1. Divide the corridor into a finite number, n, of sections and
discretize the governing continuity partial differential equa-
tion into n ordinary differential equations. Each equation cor-
responds to a section of the corridor. A schematic of the
corridor and its division into sections is shown in Fig. 7.1.
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Fig. 7.1. Schematic of a 1-D corridor

Corresponding to each section will be an input discharge an
output discharge and a pedestrian density.

2. Assume a model relating the velocity of the pedestrian flow,
v to the pedestrian density, p which has a control parameter
associated with it. Use this relation to obtain a relation for the
discharge or through-put of pedestrians and substitute in the
above developed ordinary differential equations. Thus we have
a ordinary differential equation in terms of the states and the
control parameter.

3. Using the control parameter in the assumed v—p relationship
develop a control based on certian criteria to control the ordi-
nary differential equations developed in step 2.

7.2 Pedestrian Flow Modeling

As stated before continuity partial differential equation is used as the
governing equation to model pedestrian evacuation flow. It relates
the pedestrian density to the discharge. In 1-D this equation has the
following form:

op  Oq

ot~ ox’ (7.1)
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In (7.1) p is the pedestrian density and ¢ is the discharge. The
time is denoted by ¢ and x is the distance along the length of the
corridor from the fixed end. For the purpose of developing the control
the corridor is divided into a finite number n of sections. This is
done so that the above partial differential equation (pde) can be
discretized into n ordinary differential equations (ode’s). This is done
by assuming no spatial variation of the pedestrian density in a section
and integrating (7.1) over the length of the section. The following
set of ode’s are obtained by doing so:

: (7.2)

In (7.2) p; denotes the density in the ith section and ¢; denotes the
output discharge of the ith section. L; is the length of the section.
This completes the 1st step in the procedure described above. Next
we proceed with assuming the v—p model to obtain an expression
for the discharge ¢ in the above equations in terms of the densities
and the control variables. A well established model in traffic theory
is the Greenshield’s model which assumes a linearly decreasing re-
lationship between the flow velocity v and the pedestrian density p.
The Greenshield’s model can be expressed by the following equation
below:
’)
Pm
The parameter vy in the above equation is the free flow velocity
i.e., the velocity at p = 0. The parameter p,, is the jam density i.e.,
the density at which v = 0. The velocity v in (7.3) is the spatially
averaged pedestrian velocity. Hence this velocity can be used to
compute the discharge given by the following relation:

v=uvp(l— , 0<p<pm, (7.3)

q = pv. (7.4)
Substituting (7.4) in (7.2) we get the following ode’s:

. pl(l_pp;)vfl
P1 = Ll )
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pi(1 — pp; Jog, — pi-1(1 — p;;l s,
L; ’
These equations are in the standard state-space format. We can
normalize the above (7.5) by dividing all the equations by p,,. This
results in the following set of equations:

pi = — (7.5)

p1 = —p1(1 — p1)bidy,

pi = pic1(1 — pi—1)bivy,_, — pi(1 — py)bivy, (7.6)
where I
~ Pi ~ Uf;
Pi pm7 Uf, L’ 7 Lz

Henceforth we drop the “tilde” on the normalized quantities and
hence (7.6) become:

p1=—pi(1 = p1)bivg
pi = pi—1(1 — pi1)bivy,_ — pi(1 — pi)bivy, (7.7)

From now onwards (7.7) will be used to describe the dynamics
of the pedestrian flow. The constraints in the Greenshield’s model
(7.3) translate into the following constraints for the state variables
pi in the normalized state equation (7.7):

0<p <1 (7.8)

7.3 Feedback Linearization of State Equations

Linear systems are well understood from a controls and dynamics
point of view. Observe that the state equations (7.7) are non-linear
equations. The objective of this section is to choose the controls that
will cancel the non-linearities in the above state equations. In doing
so we will obtain a set of linear state equations that will hold for
the entire state-space and make our analysis considerably easier. A
simple control which can achieve this is:

k

= (7.9)

U
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In (7.9) k = const. is the control gain. If we substitute the control
in (7.9) in (7.7) we will obtain the following equations:

p1 = —kbipy

Observe that the non-linearities in (7.7) are not present in (7.10)
owing to our specific choice of control. Thus using this control we
are able to convert the non-linear equation (7.7) to linear equations
(7.10) in the state variables p;. Also we can see in (7.9) that the
control vy, depends on the state variable p;. Thus its a feedback
control. Thus this is a feedback control that linearizes the system
of governing differential equations. Hence it is a feedback linearizing
control. Feedback linearization is a technique widely discussed in the
standard texts on non-linear control [59, 76, 90]. In the next section
we discuss the stability of the system under this control.

7.3.1 Stability Under Feedback Linearizing
Control

Equation (7.9) can be written in the matrix form as:
p=—kBp. (7.11)

In this equation k£ > 0 and B is a nxn matrix which has the following
form:

- b
—by by
0 —b3 b3

B—| o0 by by (7.12)

_bn bn i

The stability issues for a linear system like (7.11) are dealt with
in standard texts on linear systems specifically [88]. The system
of (7.11) is stable if the matrix —k(BT + B) < 0 (i.e. is negative
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definate). Since k > 0 this is equivalent to (BT + B) > 0 (positive
definate). This is equivalent to requiring that D = BT2+B > 0. The
form which D assumes for a general n dimensional system is:

_ ) i
A
__ 02 b2 _ 03
2 _b3 2 b
0 2 bs 2
D=| 0 b by . (7.13)
bn
! 2
L . . . o= by |

For D > 0 we need the determinants D; of the i dimensional matri-
ces D; having the 1st i elements along the diagonal of D along its
diagonal. If we observe the structure of D then we can conclude the
following reccurence relation for D;:

Dy =b
by
Dy = b1by — 4 (7.14)
b2
D; =b;D; 1 — iDi—2 3<i<n.

D; >0if V1 <j <7 D; > 0. This implies the following inequality
relations for b;’s:
b1 >0

by < 4by (7.15)

4D; 4
b,
"= D
3<1<n.
Thus if we choose b; such that the inequalities (7.15) are satisfied
then D > 0 (positive definate) and the system is stable. This in-turn

implies that the section lengths L; have to be chosen such that the
inequalities (7.15) are satisfied.
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Stability in the Equal Section Case

In this section we will study the stability of the linear system given
by (7.11) under the equal section case. Under the equal section case

b = (Lﬁn) = n. Thus the reccurence relation (7.14) assumes the
following form:
D1 = bl =N
b2 3n?
Dy = -2 = 1
2 b1b2 A A (7 6)
b? n _
D; =b;D; 1 — 4 Do =n(Di—1 — 4Di—2) 3<i<n.

By simple mathematical induction we can prove that:
i1

Di =N 9i

>0 1<:<n (7.17)
This means that for b, =n V 1 < i <n the system is asymptoti-
cally stable.

7.3.2 Saturation of Control

It can be seen from (7.3) that the flow velocity v is directly propor-
tional to the free flow velocity which is the control parameter in the
state equations (7.7). In fact its the velocity of a pedestrian under
the situation where the density p = 0. Since there is a upper limit
on how fast even a single pedestrian can move hence there is a upper
limit on the parameter v;. This translates to an upper limit on the
control parameters vy, in the state equations (7.7). Since the con-
trol parameters are already normalized with respect to the length of
the corridor hence the saturation limit vy represents the maximum
number of lengths of the corridor that can be covered in a unit time.
From (7.9) this translates mathematically to the following inequality:

k

- < 1
g S (7.18)

Uf;

Readjusting the inequalities (7.18) results in the following inequali-
ties in terms of the state variables to ensure non-saturation of control:

k
pi§<1—2_}f>:,u 1<i<n. (7.19)
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Conditions (7.19) are sufficient for keeping all the control variables
vy, 1 <4 < n under the saturation limit. To ensure that the state
constraints (7.8) are satisfied choose k in (7.19) such that:

E=avy 0<a<1 (7.20)
This results in the following value for p in (7.19):
w=(1-a). (7.21)

Theorem 7.3.1 If p;(0) < p then pi(t) < p for 0 <t < co.
1.e. if the control is initially unsaturated then it is always unsatu-
rated.

Proof
p1 = —kbip1

fork=1
p1 = —kbipr <0

This implies
() <p(0)<p V 0<t<oo (7.23)

Let p, = pforsome 2 <k <n&p; <pr 2<j<n&k#jat
t = 7 this implies

Pk = kbp(pr—1 — pr) = —a <0 (7.24)
for a > 0 this implies
pk(T+07) = pr(7) — adT < (7.25)

for o7 — 0
HenceV 2<k<n prt) <p YV 0<t<oo

7.4 Simulation Results

A comparison is made between what would be an obvious choice in
a panic situation for the evacuees under an emergency evacuation
order and the feedback control developed. It is also shown later that
if the feedback control developed is discretized still the decay profile



130 7 Discretized Feedback Control

of the densities is not affected much. The obvious choice made by
the pedestrians without guidance would be to move at the fastest
possible free flow speed. In terms of the system (7.7) developed
this would mean that the control parameters vy, are operating at a
saturation value. A sample case is chosen such that the normalized
pedestrian densities in all the sections are equal and are very close
to . The densities chosen are:

pi=09u 1<i<n (7.26)

A corridor of length 50 m is assumed and divided into three sec-
tions. A non-normalized saturation free flow speed is assumed to be
vy, = 4m/s. This would correspond to a normalized saturation free
flow speed of vy = 0.08s7!. The « value in (7.20) is chosen to be
sufficiently small so as to get a reasonably high value for p. o = 0.1
is chosen so that pu = 0.9. Figure 7.2 shows the evolution of the
normalized pedestrian densities if the evacuees were to move at a
saturation free flow speed of vy, = 4m/s having a normalized value
of vy = 0.08 s7!. It is clearly seen from the plot that within 8s of
the start of the evacuation the normalized pedestrian density in the

Fig. 7.2. Evolution of the normalized pedestrian densities under sat-
uration control
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2nd section reaches a critical value of 1 which implies from (7.3) that
the flow velocity, v = 0 and jamming occurs. This is highly unde-
sirable as not only is the evacuation process stopped but there is an
increased possibility of panic and could result in something as catas-
trophic as a stampede. Hence there is a high motivation for control-
ling the free flow velocity such that a smooth transition of the pedes-
trian densities in all the sections from their initial values to empty
state of the corridor is ensured. This controlling mechanism also has
to ensure that the free flow velocity remains within the saturation
value. Figure 7.3 shows the evolution of the normalized pedestrian
densities under the proposed feedback control for the same initial
conditions.

It can be clearly seen that the pedestrian densities asymptoti-
cally approach 0 and there is no possibility of reaching jam density
anywhere. Figure 7.4 show the evolution of the normalized control
free flow velocities.

From these plots it is evident that the normalized control free
flow velocities are well below their saturation value at all times in all
the sections. Hence the objective of non-saturation is easily obtained
without having to artificially impose the saturation constraint.

0 50 100 150 200 250 300 350 400

t(s)

Fig. 7.3. Evolution of the normalized pedestrian densities under feed-
back linearized control
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Fig. 7.4. Control free flow velocity for continuous feedback control

In reality however the continuous form of the control equation
(7.9) has to be implemented in a discretized form. Hence a simulation
was run to see how the performance would be under the discretized
implementation of this control. It was assumed for implementation

0 . . |
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Fig. 7.5. Evolution of the normalized pedestrian densities under dis-
cretized feedback control
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Fig. 7.6. Discretized normalized control free flow velocities in sections
1,2 and 3

purposes that the control in the from of normalized free flow velocity
can take 10 distinct values between 0 and v;. The feedback control
was computed using (7.9) and was rounded off to the nearest control
value that could be implemented. Figure 7.5 shows the evolution of
the normalized pedestrian densities in all the three sections under
discretized feedback control implementation. Figure 7.6 shows the
control free flow velocities in all the three sections.

A comparison of Fig. 7.3 and 7.5 shows similar evolution of state
profiles. Thus the control proposed in (7.9) has a good feasibility
of practical implementation. In the next section the matlab code
written to perform the above simulations is presented.

7.5 Code

In this section the Matlab code used for the above simulation is de-
scribed. This code can be found in the section Computer Code 7.7
after the exercises. The idea is to explain the numerical implemen-
tation with the help of a working Matlab code. The code is divided
into three files:



134 7 Discretized Feedback Control

1. main.m
2. rhodot nsec.m
3. vifentrl nsec try.m

The file main.m sets up the parameters for the simulation. It sets
up the number of sections, the interval of simulation, assigns values
to a, b; and vy and assigns initial values to the pedestrian densities
in each section. It then uses various control options in the variable
cntrl to perform simulations and obtain results for the states p in
terms of the time ¢t. To do this it uses the well established ode solver
ODE/5 which uses the routine rhodot_nsec to compute the deriva-
tives of the state. The routine rhodot_nsec computes the deriva-
tives of the states using the state equations in (7.7). To compute
the derivative it needs the control values v¢ which it acquires from
the routine vfcntrl_nsec_try. The routine vfcntrl_nsec_try has
a variable cntrl which decides on the type of control to be used.
cntrl=1 corresponds to saturation control, cntrl=2 corresponds to
feedback linearizing control and cntrl=3 corresponds to discretized
feedback linearizing control.

7.6 Exercises

Problem 7.6.1 Instead of using the Greenshields model as the v—p
model use the following models to derive the feedback linearizing
control in (7.9):

n
1. Pipes-Munjal Model: v = vy (1 - (IOZ) )

2. Greenberg Model: v =vsln (p’;)

3. Underwood Model: v = v exp (— p’:n)

Problem 7.6.2 In the simulation for the length of the corridor L =
50 m use unequal section lengths L;, ¢ = 1,2,3 and see if there is
any performance improvement over the equal section case?

Problem 7.6.3 Repeat the above simulation for four sections and
see if there is any performance improvement?
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Problem 7.6.4 Adjust the value of a such that the gain increases
while the initial densities p;o can be kept the same as above. Find
the performance improvement in this case?

7.7 Computer Code

7.7.1 main.m

% Code to run the simulations for various
% controls and plot the results for
% pedestrian evacuation

% Setting up the parameters

alpha=0.1 ;
n=3 ; % n=number of sections of corridor;
tspan=[0,400]; % interval of simulation
vEfm=0.08; % Normalized saturation free

% flow velocity
b=ones(n,1)*n; % b=vector of b_i.
k=alpha*vfm ; % k=feedback linearization

% gain

mu=1-alpha ; % mu=upper limit on the states

% to avoid saturation of control

% rhoeq is the equal rho assumed in
% each section

rhoeq=0.9*mu ;

rhoO=ones(n,1)*rhoeq ;

cntrl=1 ; % simulation for saturation

% control
[t,rho]l=0de45(@rhodot_nsec,tspan,rho0, [],vim. ..
,b,k,cntrl) ;

cntrl=2 ; % simulation for feedback
% linearizing control
[tcnt,rhocnt]=o0de45(@rhodot_nsec,...
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tspan,rho0, [],vfm,b,k,cntrl) ;

cntrl=3 ; % simulation for discretized
% feedback linearizing control

[tdis,rhodis]=o0de45(@rhodot_nsec,...
tspan,rho0, [],vfm,b,k,cntrl) ;

% recomputing the control from the
% state values.

% Continuous Control

for it=1:1:length(tcnt)

rhot=rhocnt (it,:) ;

rhot=rhot’ ; % col. vect. of states at t
cntrl=2 ; 7 feedback linearizing control
vit=vfcntrl_nsec_try(rhot,vfm,k,cntrl) ;
% vit= free flow velocity control for

% feedback linearizing control

vient(it, :)=vft’ ;

end

% Discretized Control

for it=1:1:length(tdis)

rhot=rhodis(it,:) ;

rhot=rhot’ ; % col. vect. of states at t

% discretized feedback linearizing control
cntrl=3 ;

% vit= free flow velocity control for

% disc. feedback linearizing control
vidis(it, :)=vft’ ;

end

% Plotting of Results
% rho v/s t for saturation control

figure ;
rsp=plot(t,rho(:,1),’k-",t,rho(:,2),...
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’k-.”,t,rho(:,3),’k.?) ;
set(rsp,’LineWidth’,2) ;
h=legend(’\rho_1’,’\rho_2’,’\rho_3’) ;
set(h,’FontSize’,16) ;
xlabel(’t(s)’,’FontSize’,16) ;
ylabel(’\rho’,’FontSize’,16) ;
axis([0 t(end) 0 1]) ;

% rho v/s t for feedback lin. control

figure ;

rcp=plot(tecnt,rhocnt(:,1), k-’ ,tcnt, . ..
rhocnt(:,2),’k-.’ ,tcnt,rhocnt(:,3),’k.’);

set(rcp,’LineWidth’,2) ;

h=legend(’\rho_1’,’\rho_2’,’\rho_3");

set(h,’FontSize’,16) ;

xlabel(’t(s)’,’FontSize’,16) ;

ylabel(’\rho’,’FontSize’,16) ;

axis([0 tcnt(end) 0 1]) ;

% vf v/s t for feedback lin. control

figure ;

vip=plot(tcnt,vfcnt(:,1),’k-",tcnt, ...
vfent(:,2),’k-." ,tcent,vfcnt(:,3),°k.”) ;

set (vfp,’LineWidth’,2) ;

h=legend (’v_{f_1}’,’v_{f_2}’,’v_{£f_3}’);

set(h,’FontSize’,16);

xlabel(’t(s)’,’FontSize’,16);

ylabel(’v_£f’,’FontSize’,16) ;

% rho v/s t for disc. feedback lin. control
figure ;
rcdp=plot(tdis,rhodis(:,1),’k-’,tdis,...
rhodis(:,2),’k-.’,tdis,rhodis(:,3),’k.’) ;
set(rcdp, ’LineWidth’,2) ;
h=legend(’\rho_1’,’\rho_2’,’\rho_3’);
set(h,’FontSize’,16) ;
xlabel(’t(s)’,’FontSize’,16);
ylabel (’\rho’,’FontSize’,16) ;
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axis ([0 tdis(end) 0 1]);

% vf v/s t for disc. feedback lin. control

figure ;

vidp=plot(tdis,vfdis(:,1),’k-’,tdis, ...
vfdis(:,2),’k-.",tdis,vfdis(:,3),’k.’) ;

xlabel (’time’) ; ylabel(’v_f_o’) ;

legend(’v_£f_1’,°v_£f_2’,°v_£_3’) ;

set (vfp,’LineWidth’,2) ;

h=legend (’v_{f_1}’,’v_{f_2}’,’v_{£_3}’);

set(h, ’FontSize’,16) ;

xlabel(’t(s)’,’FontSize’,16);

ylabel (’v_f’,’FontSize’,16) ;

return ;

7.7.2 rhodot nsec.m

% Routine: rhodot_nsec

function rhod=rhodot_nsec(t,rho,vfm,b,k,cntrl)
n=length(rho) ; % n sections

% Routine to compute the control
vi=vfcntrl_nsec_try(rho,vfm,k,cntrl) ;

% time derivative of rho(1)
rhod(1,1)=-rho(1)*(1-rho(1))*b(1)*xvf(1,1) ;
% column vector of time

% derivative of rho(2:n)
rhod(2:n,1)=rho(1:n-1) .*(1-rho(1:n-1))...
.*b(2:n,1) .*xvf(1:n-1,1)-rho(2:n) ...
.*%(1-rho(2:n)) .*b(2:n,1) .xvf(2:n) ;

7.7.3 vfcntrl nsec try.m

function vf=vfcntrl_nsec_try(rho,vfm,k,cntrl)
switch cntrl

case 1
% saturation control

n=length(rho) ; % number of sections
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vf(:,1)=vfm*ones(n,1) ; % saturation
% value in each section
case 2

%feedback linearizing control
vE(:,1)=k./(1-rho) ;

% Feedback linearized value in each section
case 3

% discrete feedback linearizing control
vE(:,1)=k./(1-rho) ;

% Feedback linearized value computed in each

% section
vEfs=vfm/10 ; % interval of discretization
nvf=round (vf/vfs) ;

Jnvi=vector of integers created by rounding

% off the

% ratio vf_i/vfs for each section i
vi=nvfxvfs ;

% vif=vector of discretized feedback

% linearized control

% values

end



Chapter 8

Discretized Optimal
Control

Evacuation Dynamics and Control is a field of critical importance
given the threats of modern urban life. Evacuation can be classi-
fied as broadly belonging to two types: (1) Evacuation from a built
up facility and (2) Evacuation from a locality. While the first kind
involves moving pedestrians out of the buildings quickly the second
type mainly involves appropriate routing of vehicular traffic. This
paper involves optimal evacuation of pedestrians from the building
facilities. Pedestrian dynamics has been studied using two types of
models (1) macroscopic and (2) microscopic. The macroscopic mod-
els typically deal with the pedestrian flow as a continuum where as
the microscopic models deal with the movement and interactions of
the individual pedestrians. Various cellular automata and simulation
based models are available to deal with the pedestrian flow at the
microscopic level [42, 47, 49, 50]. At the macroscopic level the pedes-
trian flow is analyzed in terms of the variables like pedestrian flow
density and flow velocity. Various models developed for macroscopic
traffic flow (Chap. 2 of [57]) can be readily extended to capture the
dynamics of pedestrian flow. The dynamics of pedestrian flow de-
scribed at the macroscopic level can be utilized to develop control
for quick evacuation. Feedback controls for evacuation have been
developed based on macroscopic models in [99] for the 1-D case and
in [100] for the 2-D case. A wealth of literature exists dealing with
dynamic traffic assignment [57, 81, 96]. A Building structure can be

141
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considered to be a network of rooms, corridors, stairways and exits.
While the rooms and exits can be thought of as the sources and sinks
of the pedestrian flow respectively, the corridors and stairways can
be thought of as circulation elements which will be the key elements
in routing the pedestrians out of the buildings. A controlled flow of
pedestrians in these links can achieve a fast evacuation of the pedes-
trians from these links and hence from the entire facility. Studies
have also been done to design network links of proper dimensions to
accommodate a quick evacuation using queuing theory [5].

8.1 Optimal Control

In this section we state the necessary conditions for the optimal con-
trol of pedestrian flow described by (7.6) derived for the pedestrian
flow model in Chap. 7. In Sect. 8.1.1 we give the state equations
and there by define the control variables. In Sect. 8.1.2 we define
the cost function that we intend to minimize. Then using the state
equations and the cost function we develop the necessary conditions
for the optimal control in Sect. 8.1.3 by the calculus of variations
method described in Chap. 5 of [63]. The problem considered here
is that of free final state and fixed final time.

8.1.1 State Equations

For the purpose of developing an optimal control for the system of
(7.6) in Chap. 7 we write them in the following form by dropping
the tildes. Henceforth the normalized quantities will be represented
without the tildes.

pr=—p1(1 = p1)bivy, (8.1)
pi = pi-1(1 — pi—1)bivg,_, — pi(1 — pi)bivy, (8.2)
VY, = U (8.3)

The control variable u is introduced in the last (8.3). As is ap-
parent from the equation the control input represents the time rate
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of change of free flow velocities in the various sections. State vector
in this formulation is

vr

x:[ P ] (8.4)

We collect the right hand sides of (8.1), (8.2) and (8.3) in the
vector a(x(t),u(t),t) given as follows.

a1 (x(t),u(t),t) = —p1(1 — p1)brvy (8.5)

ai(x(t),u(t),t) = pi—1(1 — pi—1)bivy,_, — pi(1 — pi)bivy,

8.6
2<i<n (86)
ay, (x(t),u(t),t) = u;
5, (x(t) (? ) ®7)
1<i1<n
This results in the following state equations:
x = a(x(t),u(t),t). (8.8)

8.1.2 Cost Function

For the development of the optimal control we use the following as
the cost function:

J(u(t)) = / " g(x(t),u(t), dr + hix(ty) ), (89)

0

where .
g(x(t),u(t),t) = pi* +u;’ (8.10)
i=1
and
tf tf Zpl tf . (8.11)

Here, h(x(tf),t¢) represents the termlnal cost. By defining the cost
function by (8.9) we are assured that its minimization will ensure low
pedestrian density as well as low rate of change of free flow velocity at
every instant of time. Since both the attributes are highly desirable
from the point of view of evacuation, the particular choice of cost
function given by (8.9) is justified.
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8.1.3 Calculus of Variation

We now use the calculus of variations approach to develop the Euler
Lagrange equations that need to be satisfied by the optimal control
and the corresponding states. The Hamiltonian for the equations

x = a(x,u,t)
is given by
H(x(t), u(t), p(t). t) = g(x(t), u(t),t) + pTa(x(t), u(t).t). (8.12)
In the above equation the vector p is the co-state vector. For (8.1),

(8.2) and (8.3) the Hamiltonian is given by

n

H(x(t),u(t),p(t),t) = Y (0 +uf)

i—1
+ pi(=p1(1 = p1)brvy,)

n
+ Y pilpia (1= pici)bivy,
=2

n
— pi(l=pi)bivg) + > puy i
=1

(8.13)

Necessary Conditions

We now state Euler Lagrange equations which specify the necessary
conditions for the control to be a optimal

H
K= 6 p) (5.19)

These (8.14) are the state equations given by (8.1), (8.2) and
(8.3). These equations are stated collectively in terms of the vector

x:[jf],

in (8.8).
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ok 8H * * *
p' = 9 (x*,u*,p*, t). (8.15)

Equation (8.15) gives the co-state equations that are specified
below:

: —(2pi + pi(—1+ 2p;)bjvg,+ >

i = ' : 8.16

P ( Pit1(1 = 2p;)biv1vy;) (8.16)
1<i<n-—1,

Pn = —(2pn + pu(=1+ 2pn)bpnvy,), (8.17)

Doy, = —(0i(=pi(L = pi)bi) + pit1(pi(1 = pi)biy1)), (8.18)
1<i<n-—1,

Pog, = —=(Pn(=pn(1 = pn)bn)). (8.19)

Another necessary condition on the Hamiltonian is that its partial
derivative with respect to the control must vanish for all times ¢y, <
t <ty

OH
ou

We choose the case in which final time ¢ is specified and the final
state x(t) is free. Hence we get the following boundary conditions.

At the initial time tg we have,

(x*,u*,p*,t) = 2u; —l—pf,f_ =0 (8.20)

p*(to) = po (8.21)

vt (to) =0 (8.22)
At the final time ¢y we have,

p(tf) = gz (x*(tr)ty) (8.23)

pi(ty) = 2p; (ty) (8.24)
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pf,fi =0 (8.25)

This is a typical two point boundary value problem that occurs in
optimal control. The boundary conditions are a part of the necessary
conditions.

8.2 The Method of Steepest Descent

The Method of Steepest Descent was used to compute the optimal
control in a piecewise constant manner. This is described in Chap. 6
of [63]. This is an iterative method in which the control profile is
updated in every iteration at every discretized time instant at which
it was initially assumed. An initial piecewise constant control profile
is assumed and the states are computed by forward integration. The
the boundary conditions for the co-state p}(t;) are computed using
(8.24) and (8.25). Then (8.16), (8.17), (8.18) and (8.19) are inte-
grated backwards in time from ¢ = t; to t = #y. Using the co-state
values OH (t)/0u is calculated using the first equality in (8.20) at
every discrete time instant at which the control value u is assumed.
Since the control profile was arbitrarily chosen this in general will
not be zero. As the necessary condition (8.20) requires this quantity
to be zero, the control will have to be updated in the direction of the
steepest descent of the Hamiltonian H at every discrete time instant.
This corresponds to the negative gradient of H with respect to u,
—0H /Ou. Hence we have the following control update law at every
iteration

OH®
ou
7 in (8.26) has to be chosen such that the cost function in (8.9) has
to continually decrease in every iteration. This usually is done by an

ad hoc strategy. The iterations stop when

u) = u® — 7 (8.26)

dH®
I g IS toh (8.27)
or 4 '
|(JEFD — J9)| < toly, (8.28)

where toly and toly are pre-specified tolerances.
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8.3 Numerical Results

A test case was considered for the above optimal control formulation.
A corridor was divided into two sections and each was assigned a
initial normalized pedestrian density of p;g = 0.6. The initial free
flow velocities were set to vy, = 0 as the crowd is stationary initially.
The sections are taken to be of equal length, so b; = 2. The initial
time and final times are tg = 0 and ¢ty = 10s respectively. The
interval [tg,ts] was divided into subintervals of 0.1s. The method
of steepest descent described above was used to obtain the optimal
control. A matlab code was written to solve the two-point boundary
value problem above and the plots were obtained for p;, vf;, u;, ps,
Puf, versus time. A simple euler solver was used to solve the ode’s
involved.

It can be seen in Fig. 8.2 that almost all of the population is
evacuated in a period of 10s. From Fig. 8.6 it is apparent that the
value of OH /Ou; is very close to zero. This was forced using a low
value of tolerance, tol; in (8.27). Thus the requirement of optimality
in (8.20) is closely satisfied. In reality when implementing this control
strategy we can give instructions based on the profile of v¢ in Fig. 8.3
rather than u in Fig. 8.1.

0.8
—Uu
0.73‘ 1]
1 === U2
06" §
\
1
0.5F i
1
3'_ 4
6 8 10

Fig. 8.1. Optimal control u; and wuy as a function of time, ¢
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Fig. 8.2. Evolution of pedestrian densities p; and ps as a function of
time, ¢
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Fig. 8.3. Evolution of free flow velocities vy, and vy, as a function of
time, ¢
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Fig. 8.4. Evolution of co-state, p; and ps as a function of time, ¢
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Fig. 8.5. Evolution of co-state, p, " and p, 5, A5 @ function of time, ¢
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Fig. 8.6. gfi as a function of time, ¢
8.4 Code

In this section the code written to perform the above simulation is
explained. It is written in matlab and consists of two m-files. The
m-files are:

1. main.m
2. optimal cntrl calc var nsec odesol.m

The idea of this section is to explain the numerical method of steepest
descent described above with a working code written in matlab. In
the following sections the workings of the above mentioned m-files
are described.

8.4.1 main.m

This file performs the task of setting up the parameters namely tvec
which is a column vector consisting of time instants at which the con-
trol profile is assumed and sought, st0 the initial states and b which
is a vector of L/L;. After this the routine optimal_cntrl_calc_var
_nsec_odesol is called for computing the optimal control, utim,
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the corresponding states stmat, co-states, costmat, 0H /Ou, dhdu, a
vector consisting of the cost J in each iteration Jiter and the Hamil-
tonian corresponding to the optimal control H at each time instant
in tvec.

8.4.2 optimal cntrl calc var nsec odesol.m

This file contains a function with the same name which uses the method
of steepest descent to compute the optimal control at each instant
of time in tvec. It uses the following functions for this purpose:

1. [stmat,utim,J,test] = cntrl_update (tvec,stmat,utim,
dhdu,b,gaml,gam2): This routine performs the contorl update
and computes the corresponding states and co-states.

2. stmat = fwdstinteg(tvec,utim,st0,b): This routine per-
forms the forward integration to compute the states.

3. stdot = stdyn(st,b,u): This routine computes the time
derivative of the state vector.

4. costmat = bkcostinteg(tvec,stmat,costf,b): Thisroutine
performs the backward integration to compute the co-states

5. costdot = costdyn(cost,b,st): This routine computes the
time derivative of the co-state vector.

An initial control profile is assumed in the variable utim and the
states stmat, are computed by forward integration using the routine
fwdstinteg. Using this value of utim and stmat the cost function
J is computed. After this the tolerences toll and tol2 are specified
which determine when the iterations updating the control are to stop.
The iterations updating the control stop when [|0H® /ou| < toly
or [(JUHY — J¥)| < toly. The variable test determines whether
the above two requirements are met. test==0 indicates that the
convergence is not achieved while test==1 indicates that conver-
gence has been achieved. In the iteration loop the co-states are ini-
tially computed by backward integration of the co-state equations.
This is done using the routine bkcostinteg. Next the gradient of
the Hamiltonian wrt the control 0H /Ou is computed in the matrix
dhdu.Subsequently the control update step is done by the routine
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cntrl_update. This routine outputs the updated control utim and
the states stmat and the cost J corresponding to these. The routine
cntrl_update also assigns a value to the variable test after check-
ing the convergence from the criteria described above. Thus after
checking the value of the variable test it is decided whether to pro-
ceed with the next iteration or not. In the next section the interface
to the code routines is explained.

8.5 Exercises

Problem 8.5.1 Instead of using the Greenshields model as the v—p
model use the following models to derive the state equations (8.1),
(8.2),(8.3), the co-state equations (8.16), (8.17), (8.18) and (8.19)
and the necessary condition (8.20)

n
1. Pipes-Munjal Model: v = vy (1 - (;;) )

2. Greenberg Model: v = vyln (pi)
3. Underwood Model: v = vsexp (— p’;)

Problem 8.5.2 Obtain the control, state and the co-state profiles
for the above models for the 2 section case using the method of
steepest descent described in Sect. 8.2. In case you intend to use the
code given you only need to modify the routines stdyn and costdyn.

Problem 8.5.3 Try to see if changing the b values can improve the
optimal performance time. If you are using the code given you only
need to change the value of b at multiple places.

8.6 Computer Code

8.6.1 optimal corridor evacuation/main

% Setting up the parameters

%time instants for simulation
tvec=[0:0.1:10]";
st0=[1;1;0;0]%0.6; % initial state
b=2%ones(2,1); % b values



8.6 Computer Code 153

% Calling the optimal control routine
[stmat,utim, costmat,dhdu,Jiter ,H]...
=optimal_cntrl_calc_var_nsec_odesol...
(tvec,st0,b) ;

% Plotting the results

% rho=ped. densities, vf= free flow

% velocities

rho=stmat(:,1:2) ; vf=stmat(:,3:4) ;

% plot of (u_1,u_2) v/s time

figure ;

hp=plot(tvec,utim(:,1),°k-",...
tvec,utim(:,2),’k--");

set (hp, ’LineWidth’,2) ;

h=legend(’u_1’,’u_2’);

set(h, ’FontSize’,16) ;

xlabel(’t(s)’,’FontSize’,16) ;

ylabel(Pu_i’,’FontSize’,16) ;

% plot of (rho_1,rho_2) v/s time
figure ;
hp=plot(tvec,stmat(:,1),’k-",...
tvec,stmat(:,2),’k--");
set (hp, ’LineWidth’,2) ;
h=legend(’\rho_1’,’\rho_2’);
set(h,’FontSize’,16) ;
xlabel(’t(s)’,’FontSize’,16) ;
ylabel(’\rho_i’,’FontSize’,16) ;

% plot of (vf_1,vf_2) v/s time
figure ;
hp=plot(tvec,stmat(:,3),°k-",...
tvec,stmat(:,4),’k--");

set (hp, ’LineWidth’,2) ;

h=legend (C’v_{f_1}’,’v_{£f_2}’);
set(h,’FontSize’,16) ;
xlabel(’t(s)’,’FontSize’,16) ;
ylabel (’vf_i’,’FontSize’,16) ;
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% plot of (p_1,p_2) v/s time
figure;
hp=plot(tvec,costmat(:,1),...
’k-’,tvec,costmat(:,2),’k-—-");
set (hp, ’LineWidth’,2);
h=legend(’p_1’,’p_2");

set (h, ’FontSize’,16) ;

xlabel (’t(s)’,’FontSize’,16) ;
ylabel(’p_i’,’FontSize’,16) ;

% plot of (p_vfl,p_vf2) v/s time
figure ;
hp=plot(tvec,costmat(:,3),’k-"...
,tvec,costmat(:,4),’k--7);

set (hp, ’LineWidth’,2);

h=legend Cp_{vf1}’,’p_{vE2}’);
set(h,’FontSize’,16) ;
xlabel(’t(s)’,’FontSize’,16) ;
ylabel (’p_{vf_i}’,’FontSize’,16)

% plot of (dh/du_1,dh/du_2) v/s

% time

figure ;

hp=plot (tvec,dhdu(:,1),’k-",...

tvec,dhdu(:,2),’k--") ;

set (hp, ’LineWidth’,2);

h=legend (’{\partial H}/{\partial u_1}’...
,’{\partial H}/{\partial u_2}’) ;

set(h, ’FontSize’,16) ;

xlabel (’t(s)’,’FontSize’,16) ;

ylabel(’{\partial H}/{\partial u_i}’...
,’FontSize’,16) ;

% plot of hamiltonian v/s time
figure ;
plot(tvec,H) ; legend(’H’) ;



8.6 Computer Code 155

8.6.2 optimal cntrl calc var nsec odesol

function [stmat,utim,costmat,dhdu,Jiter,H]...
=optimal_cntrl_calc_var_nsec_odesol(tvec,st0,b)
% This function computes the optimal control and
% the corresponding states and the co-states.

% Method of Steepest Descent is used for this.

% n=no. of sections

nt=length(tvec) ; n=length(st0) ; n=n/2 ;
utim=0.1*ones(nt,n) ; % assume control

% forward integration for states
stmat=fwdstinteg(tvec,utim,st0,b) ;
rho=stmat(:,1:n); rhof=rho(end,:);

% time increment for simulation
dt=tvec(2)-tvec(l) ;

% cost function for the simulation
J=sum(sum(rho. " 2+utim."2,2)*dt)+sum(rhof."2);
% iter=no of control update iterations

% Jiter=vector of iteration cost values
iter=1 ; Jiter(iter)=J ;

% convergence:

% test=0 => not occured test=1 => occured.
test=0 ;

% tolerences

to0l1=10"-4 ; tol2=10"-6 ;

% iterations for control and cost till

% convergence occurs

while test==0 7, check for convergence
iter=iter+1 ;

stf=stmat(end,:)’ ; rhof=stf(1l:n) ;
costf=[2*rhof;zeros(n,1)] ;

% backward integration for co-states
costmat=bkcostinteg(tvec,stmat,costf,b) ;
% calculation dhdu at all time
dhdu=2*utim+costmat (:,n+1:2%n) ;

% "cntrl_update" updates the control and state
% for the next iteration
[stmat,utim,J,test]=...
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cntrl_update(tvec,stmat,utim,dhdu,b,toll,tol2) ;
% Jiter(iter)=value of the cost function at the
% current iteration.
Jiter(iter)=J ;
end
rho=stmat(:,1:n) ; vf=stmat(:,n+1:2%n) ;
p=costmat(:,1:n) ; pvf=costmat(:,n+1:2%n) ;
% Computation for hamiltonian
H=zeros(nt,1) ;
for i=1:1:n
H=H+rho(:,i). 2+utim(:,1). 2+p(:,1)...
*%(-rho(:,i).*(1-rho(:,1i))*b (i) .*vf(:,1)) ;
H=H+pvf (:,i) .*utim(:,i) ;
if i>=2
H=H+p(:,i) .*(rho(:,i-1) .*(1-rho(:,i-1))...
*b (1) . *+vE(:,i-1)) ;
end
end
end

function [stmat,utim,J,test]=...

cntrl_update(tvec,stmat,utim,dhdu,b,toll,tol2)

test=0 ;

dt=tvec(2)-tvec(l); nsi=size(stmat);

% n=no of sections, stO=initial states

n=nsi(2); n=n/2; stO=stmat(1l,:)’;

rho=stmat(:,1:n); rhof=rho(end,:);

% norm of dhdu

nordhdu=sqrt (sum(sum(dhdu. "2,2) *dt)) ;

% cost for current control

J=sum(sum(rho. " 2+utim."2,2)*dt) ...
+sum(rhof . 2);

% norm check for convergence

if nordhdu <= toll

test=1 ;

disp([’nordhdu=’ ,num2str(nordhdu)]) ;

return ;

end
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% J1= some qty set > J. will be used in the

% iteration below to assign the updated cost

J1=J+1 ;

% step taken in terms of the maximum value of utim

tau=0. 1*max (max(abs(utim))) ;

% control update procedure:

while J1>=]

% control update

utiml=utim-tauxdhdu ;

% state update

stmat=fwdstinteg(tvec,utiml,st0,b) ;

% rho and rhof extracted

rho=stmat(:,1:n); rhof=rho(end,:);

% Jl=new cost

Ji=sum(sum(rho. " 2+utiml.~2,2)*dt)...
+sum(rhof."2) ;

% adjustment in the step size

tau=tau/2 ;

end

% updated control and cost

utim=utiml ;

if abs(J1-J) <= tol2

test=1 ;

disp([’abs(J1-J) =’,num2str(abs(J1-J))]1) ;

end

J=J1 ;
end

function stmat=fwdstinteg(tvec,utim,st0,b)

% This routine performs the forward integration
% of the state equations using the euler step

’% method.

nt=length(tvec) ; 7% length of the time vector
st=st0 ;

dt=tvec(2)-tvec(l) ;

% iterative procedure for the simulation

for it=1:1:(nt-1)



158 8 Discretized Optimal Control

stmat (it,:)=st’ ;

u=utim(it,:) ;

% time derivative of the states
stdot=stdyn(st,b,u) ;

% euler step method to compute the
% state at next time instant
st=st+stdot*xdt ;

end

stmat (nt,:)=st ;

end

function stdot=stdyn(st,b,u)

% This routine performs the backward integration
% of the state equations using the euler step

% method.

n=length(st)/2 ; ' number of sections
rho=st(1:n) ; vf=st(n+1:2%n) ;
rd(1,1)=-rho(1)*(1-rho(1))*b(1)*vf (1) ;
rd(2:n,1)=rho(1:n-1,1) .*(1-rho(1:n-1,1))...
. *b(2:n) .*xvf(1:n-1,1)-rho(2:n,1)...
.*(1-rho(2:n,1)) .%b(2:n) .*vf(2:n,1) ;
vfd(1:n,1)=u ;

stdot=[rd;vfd] ;

return

end

function costmat=bkcostinteg(tvec,...
stmat,costf,b)

% This routine computes the time derivative

% of the co-state equations

nt=length(tvec) ; 7% length of the time vector

cost=costf ;

dt=tvec(2)-tvec(l) ;

for it=nt:-1:2

costmat (it, :)=cost’ ;

st=stmat (it,:)’ ;

costdot=costdyn(cost,b,st) ;
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cost=cost-costdot*dt ;
end

costmat (1, :)=cost ;
end

function costdot=costdyn...

(cost,b,st)
% This routine computes the time
% derivative of the co-state vector
n=length(cost)/2 ; % no of sections
rho=st(1:n); vf=st(n+1:2%n);
p=cost(1l:n); pv=cost(n+1l:2%n);
pd(1:n-1,1)=-(2%rho(1:n-1,1)...
+p(1:n-1,1) . x((-1+2*xrho(1:n-1,1))...
4b(1l:n-1) .*xvEf(1:n-1))+p(2:n)...
.x((1-2*rho(1:n-1)) .*b(2:n) .*vf(1:n-1))) ;
pd(n,1)=-(2*rho(n)+p(n)*. ..
((-1+2*rho (n))*b(n)*vi(n))) ;
pvd(l:n-1,1)=-(p(1:n-1) .*(-rho(1:n-1)...
.*x(1-rho(1:n-1)) .*xb(1:n-1))...
+p(2:n) .*(rho(1:n-1) .*x(1-rho(1:n-1))...
.*b(2:n))) ;
pvd(n,1)=-(p(@)*(-rho(n)*(1-rho(n))*b(n))) ;
costdot=[pd;pvd] ;
end



Chapter 9

Distributed Feedback
Control 1-D

The goal of this chapter is on developing feedback control strategies
for models that can be used for evacuation control. The first step
towards this goal is to obtain mathematical models governing crowd
dynamics. The development of pedestrian evacuation dynamic sys-
tems follows from the traffic flow theory in one-dimensional space.
The main conservation equations used in modeling the vehicle traffic
flow and the pedestrian evacuation flow are the same with the ex-
ception that vehicle traffic is a one-dimensional space problem and
the evacuation system is a 2-D space problem. This chapter presents
design of nonlinear feedback controllers for two different models rep-
resenting evacuation dynamics in 1-D. The models presented here are
based on the laws of conservation of mass and momentum. The first
model is the classical one equation model for a traffic flow based on
conservation of mass with a prescribed relationship between density
and velocity. The other model is a two equation model in which the
velocity is independent of the density. This model is based on con-
servation of mass and momentum. The equations of motion in both
cases are described by nonlinear partial differential equations. We
address the feedback control problem for both models. The objec-
tive is to synthesize a nonlinear distributed feedback controller that
guarantees stability of a closed loop system. The problem of con-
trol and stability is formulated directly in the framework of partial
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differential equations. Sufficient conditions for Lyapunov stability
for distributed control are derived.

9.1 Introduction

This chapter presents design of nonlinear feedback controllers for two
models representing crowd dynamics in 1-D. The models are based
on the laws of conservation of mass and momentum. The first model
is the classical one-equation model for a traffic flow based on conser-
vation of mass with a prescribed relationship between density and
velocity. The model dynamics are represented by a single partial
differential equation. The other model is a two equation model in
which the velocity is independent of the density. This model is based
on conservation of mass and momentum. As such, the model dynam-
ics are represented by means of a system of two partial differential
equations. The equations of motion in both cases are described by
nonlinear partial differential equations. The system is distributed,
i.e. both the state and control variables are distributed in time and
space.

The control objectives are to design feedback controllers for
removing people from the evacuation area effectively by generat-
ing distributed control commands. We address the feedback control
problem for both models. The objective is to synthesize a nonlinear
distributed feedback controller that guarantees stability of a closed
loop system. The problem of control and stability is formulated di-
rectly in the framework of partial differential equations. Sufficient
conditions for Lyapunov stability for distributed control are derived.
There are two approaches to the design of feedback controllers for
distributed systems. In the conventional approach, the distributed
mathematical model is approximated by a lumped parameter model
having finite dimensions. The spatial discretization of the system
is performed using either the finite difference or the finite element
method. The controllers are designed on the basis of the resulting
linear or nonlinear ordinary differential equation model using known
techniques available for such systems [22, 36]. This approach however
has certain disadvantages. By neglecting the infinite dimensional na-
ture of original system, design of controllers may result in instability
even though the resulting finite dimensional system is stable using
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the same controllers. Moreover, properties like controllability and ob-
servability depend on the method of discretization used [83]. Thus,
in order to avoid errors introduced by spatial discretization, it is de-
sirable to formulate the control and stability problem directly in the
framework of a distributed model of partial differential equations. In
this chapter the latter approach is used.

Here we are interested in designing a feedback controller for evac-
uating pedestrians from a 1-D area (e.g., corridor). We adopt the
method of feedback linearization for control design. The method
works by canceling the nonlinearities in the system and is well known
in nonlinear control for ODEs [59]. This method is introduced to
quasi-linear hyperbolic PDEs. This chapter presents the feedback
linearization control design for the LWR model. First we discuss the
design of nonlinear feedback control for the model based on conti-
nuity equation alone and next we will discuss the feedback control
design for the system described by both the equations where back-
stepping approach is used for the control design. In both cases the
objective of control design is to synthesize a nonlinear distributed
feedback controller that stabilizes the system and guarantees stabil-
ity in the closed loop system.

The organization of this chapter is as follows. Section 9.2 presents
the two mathematical models. In Sect. 9.3 we formulate the control
model and present feedback control design for the first model. This
section also studies Lyapunov stability for this model and finally
presents some simulation results. The feedback control however is
unbounded. In Sect. 9.4 we modify the control law to take care of
the unboundedness. Section 9.5 presents the feedback control design
and stability analysis for second model. Simulation results for closed
loop are presented.

9.2 Modeling

In this section mathematical models of the evacuation problem are
presented. We will discuss the evacuation model of a 1-D single exit
corridor of length L. The model is similar to the 1-D traffic flow
model. Both these models are similar to fluid flow and are based on
the principle of conservation. The model is described by a nonlinear
hyperbolic partial differential equation. The first model is based on
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continuity equation alone. We call this model One Equation Model.
The second model is based on a system of PDEs. There are two par-
tial differential equations that we use to model the control problem.
The first is the equation of conservation of mass and the second is
the conservation of momentum. We call this a Two Equation Model.

There are two main approaches to modeling. One approach is
microscopic [48] where each individual is taken into consideration and
his behavior is expressed by a set of rules or an equation involving
adjacent individuals. The other approach is macroscopic [68]. Here
the overall behavior of the flow of people is considered. The area
is treated as a series of sections within each of which the density
and average velocity of people can be measured for a given time.
The changes in these variables may then be described using partial
differential equations. The models presented here are macroscopic
with the dynamics being represented in terms of density, flow and
speed. As a result the system is distributed with all the parameters
as functions of space and time.

9.2.1 One Equation Model

This model is based on equation of conservation of mass. The con-
servation law of mass in case of an evacuation system means that
the number of people is conserved in the system. Let us consider the
case of a single exit 1-D corridor of length L. Let p(z,t) denote the
density of people as a function of position vector x and time ¢, ¢(z,t)
the flow at a given x and time ¢ and, and v(z,t) the velocity vector
field associated with the flow. The conservation of mass equation
holds and is given by:

Ip(w,t)
ot

with following initial and boundary conditions

+ div(gq(z,t)) =0 (9.1)

p(x,to) = po (x) (9-2)
p(0,t) =0and p(L,t) =0Vt € [0,00)

Here p(z,t) € H?[(0,L),R] with H2[(0,L),R] being the infinite di-
mensional Hilbert space of 1-D like vector function defined on the
interval [0, L] whose spatial derivatives upto second order are square
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integrable with a specified Ly norm. g¢(x,t) € H?[(0,L),R] and
po(x) € H[(0,L),R]. The vectors x € [0,L] C R and ¢t € [0,00)
denote position and time respectively. For the rest of the chapter it
will be assumed that the vector spaces are Sobolev spaces [18]. The
flow ¢ is obtained as a product of density and velocity as

q(z,t) = p(x, t)v(z,t) (9.4)
The dynamics for 1-D are therefore given by

Op(x,t) | O(p(z,)v(z,1))

ot dx =0 (9:5)

subject to the initial conditions and boundary conditions given by
(9.2) and (9.3) respectively. To describe the relationship between
velocity vector field v(z,t) and density p(x,t) we need one more
equation. Here we make use of Greenshields model

t
v(z,t) = vy (2,1) (1 _ el )> (9.6)
Pmax
where vy(x,t) is the free flow speed and pmax is the jam density that
is the maximum number of people that could possibly fit a single cell.
Using (9.6) in (9.5) we get modified one-equation model given by

8p(89§,t) * ai [”f(xvt)(l - pp(i;i))p(ﬂc,t)} —0  (9.7)

subject to conditions (9.2) and (9.3).

9.2.2 Two Equation Model

The model presented earlier is one of the original models represent-
ing the traffic flow dynamics. Since its appearance a number of other
models have appeared in literature where velocity is independent of
density. One such model is being presented here. In this section we
consider a higher order model or more precisely a system of two par-
tial differential equations for a 1-D corridor. This model consists of
conservation of mass equation coupled with a second equation based
on the principle of conservation of momentum. The first equation
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is the conservation of mass equation (9.5). The second equation is
derived from conservation of momentumfor 1-D flow [3] given by

ooty  O(P@Or@D) ey

ot ox Ox

where p(x,t) € H'[(0,L),R] is pressure. The relationship between
density and flow is given by (9.4). Thus we have the dynamics of an
evacuation system given by following two-equation model

Op (x,t) n 0q (z, 1)

ot or O (98)
dq(z,t) 9 [q(=t)*\  p
ot ox < p(z,t) ) T Ox (9:9)

subject to the following initial and boundary conditions
p(z,to) = po (z),q(x,t0) = qo (x) (9.10)
and

p(0,t) = p(L,t) =0
q(0,t) =q(L,t) =0V te€]0,00) (9.11)

9.3 Feedback Control for One-Equation Model

In this section we formulate the control model and present feedback
control design for the one-equation model. This section also studies
Lyapunov stability and presents some simulation results.

9.3.1 Continuity Equation Control Model

To formulate the control problem based on the continuity equation
model we need to choose a controlvariable. To do so we use Green-
shields model to represent the relationship between traffic density
and the velocity field which is given by (9.6) as

v(w,t) = vy (z,1) (1 - p(m’t)>

Pmax



9.3 Feedback Control for One-Equation Model 167

with vs(x,t) being free flow speed and p,, the jam density. In this
model we take free flow velocity vector field vy(x,t) as the distributed
control variable denoted by wu(x,t). If the density at a location is
zero then the speed at that location will be the free flow speed.
However, with the actuation system implemented, we can tell people
to change the speed. Also the traffic density affects the achievable
speeds, therefore we choose v¢(x,t) as the control variable, giving us
the following representation

op(ayt) 0 plat),

5 = op [u(z,t)(1 .

where u(x,t) € H[(0, L), R] is the control variable.

p(x,t) (9.12)

9.3.2 State Feedback Control

Here we address the problem of synthesizing a distributed state feed-
back controller wu(z,t) that stabilizes origin p(x,t) = 0 of system
(9.12) or in other words control the evacuation of pedestrians from
a 1-D area. We shall use the method of feedback linearization for
PDEs. The method of feedback linearization works by canceling the
nonlinearities in the system and is discussed for nonlinear ODEs in
[59]. More specifically we consider control law of the form

u(z,t) = F(p(x,t))
which makes origin of the closed loop dynamics exponentially sta-
ble. Here F(p) is a nonlinear operator mapping H2[(0, L), R] into
H1[(0,L),R]. Designing the operator F(p) we get our state feedback
controller as

Flp(a.t)) = - <1—"f’t)>p<x,t> ‘bapgg” (9.13)

we get the following closed loop dynamics

Ap(x,t)  Pp(xt)
T (9.14)

with boundary conditions given by (9.2) and (9.3). The closed loop
dynamics represent the heat equation with D being the diffusion
constant. Equation (9.14) suggests that the people are diffusing or
in other words the motion of people is because of diffusion only. The
rate of diffusion is determined by the diffusion constant D.
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9.3.3 Lyapunov Stability Analysis

In order to check the stability of the closed loop system (9.14) we
use the Lyapunov function analysis. The stability problem is to
establish sufficient conditions for which the origin of the closed loop
dynamics (9.14) is exponentially or asymptotically stable. Within
the framework of our system the definition of Lyapunov stability
can be established by writing system dynamics (9.14) as an abstract
differential equation in terms of operator theory. Towards that end,
we introduce a differential operator A on H?[(0, L), R] defined by

2

_ 0
Ap = k&rQ Vo e D(A) (9.15)

Here D(A) C H?[(0,L), %] is the domain of operator A defined as
D(A)={p e H?: ¢,¢' € H[0,L};(0) = (L) = 0}

The system dynamics can be written using operator (9.15) which
makes the dynamics look like ordinary differential equation in Sobolev
(Banach) spaces [8, 9]. Thus the abstract version or state space rep-
resentation of (9.14) can be put into the form

d

4P = Ap(t) vt > 0:p(0) = po (9.16)

The operator A is known to generate a strongly continuous semi-
group U(t) of bounded linear operators on a normed linear space
H?[(0,L), R]. The system motion starting from any initial state
p (to) at time ¢¢ is defined by U (¢) p (to). Thus a partial differential
equation can be regarded as an evolution system where U (t) evolves
po forward in time. The stability problem is to establish sufficient
conditionsfor which the origin of the closed loop dynamics (9.14) is
exponentially stable. Within the framework of our system the defi-
nition of stability in terms of Lyapunov can be established as follows

Definition 9.3.1 An equilibrium state peq of a dynamical system
(9.14) is stable with respect to a specified norm ||p (x,t)]| if for every
real number £ > 0 there exists a real number 6 (g,t9) > 0 such that

1 (t0) = peall < 8= [T (8) p(t0) — peqll < £ ¢ > tg
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If in addition ||U (t) p (to) — peq|| — Oast — oo then the equilibrium
is said to be asymptotically stable. Furthermore, if there exist two
positive constants a and b such that

10 (8) 9 (t0) — peall < allo (to) — peall 710 ¥ 1> £

is satisfied, then peq is said to be exponentially asymptotically stable.
More precisely the problem is to find a condition under which opera-
tor A generates an exponentially stable semigroup U (t) that satisfies
the following growth property with respect to a specified norm

U)o < ae™bt >0 (9.17)

where b > 0. In other words we say that A generates an exponen-
tially stable semigroup U(t) [28]. The determination of conditions
for which estimate (9.17) is satisfied amounts to establishing con-
ditions for which the null state of the linear system (9.14) is expo-
nentially asymptotically stable with respect to the specified norm
ie. [[p(t)l; = 0 as t — oo. It should be noted here that for infi-
nite dimensional systems stability with respect to one norm does not
necessarily imply stability with respect to others unlike finite dimen-
sional systems where all norms are equivalent. For our system we
have chosen the following Lo norm defined by

L 1/2
Io(t.2)lly — [ / \p(t,xﬂ?dx} (9.18)

This norm represents the total energy of the system at any time.
Thus the exponential for this norm implies that the systems total
energy goes to zero as time goes to infinity.

Let us consider a Lyapunov functional V() for the system (9.14).
Here V : H?[0, L] — R is a smooth functional of the form

L
V() = Lot o)l =} /O Ip(t, z)Pdz (9.19)

Using the norm properties we can easily see that V (t) is a positive
definite function. The time rate of change of V() using Leibniz rule
in (9.19) is given as

L X
d‘gt(t) - /0 o) P (at’ D 4 (9.20)
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Using (9.12) and integrating (9.20) we get
dV (¢) Op(x,t)

. = [kp(a;,t) ) OL] _k/OL <5ﬂ(gﬂ;,t)>2dm

The first term vanishes by boundary condition (9.3). For the second
integral we make use of Gagliardo-Nirenberg-Sobolev Inequality [25].
The inequality as applied to our case states

lp ()]l < C[Vp (2,8l (9.21)

where C is a positive real number. Using (9.21) we have

/L % 0) >C—2/L 2(t,x)d
e x> ; p°(t, z)dx
0

The rate of change of V(¢) can be thus be bounded by

dv (1)

L
Gy S RO / p*(t,x)dz < —2kCTPV () = BV (1)
0

It follows that
V(t) < V(tg)e Pt—to)

or
lo(t.2)l, < lIp(to, )], e

with 3 = 2kC~2. As long as 3 > 0, null state of (9.14) is expo-
nentially stable and condition (9.15), ||U(t)|l, < e~?(—%) is satisfied
with b = 3. Thus equilibrium of closed loop system (9.14) using
feedback control (9.13) is exponentially stable.

9.3.4 Simulation Results

This section shows simulation results for closed loop system (9.14)
using the control law (9.13). The numerical method used is the Lax-
Friedrichs scheme [67]. For simulation the initial distribution for
density is considered to be Gaussian. The initial density distribution
is given by.

p(x,0) = Gexp(—(z — a)?)
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Distance Time

Fig. 9.1. Density response for one-equation model

with a being the centre of the Gaussian distribution and G is the
highest magnitude of the distribution. We have three simulation re-
sults for the one-equation model. The control action response for a
corridor with exit at the right is shown in Fig. 9.1. The simulation

Density

0.1 b

0.6~

Time

0.4

Distance

Fig. 9.2. Contours of the density response for one equation model
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0.7

Density

Distance

Fig. 9.3. Density response at different time instants for one-equation
model

shows the density response as a mesh plot. After some finite time
the density has decreased to zero. The second simulation is shown
as a contour plot in Fig. 9.2 where the contour lines vary from 0.6
to 0.1 and as seen from plots density at every point in space is de-
creasing exponentially with time. The third simulation shows the
density response at different time instants in Fig. 9.3, where the den-
sity flattens out with time. The plots indicate the diffusion of people
throughout the length of the corridor.

9.4 Control Saturation

The feedback controller for the one-equation model discussed in pre-
vious section have saturation issues which will be discussed here. The
control values in the previous controller become unbounded. So far
we have assumed unbounded control. However, the unboundedness
poses a limitation on the practical implementation of the controller.
Therefore in order to take care of control saturation we redesign our
controller so that there is no unboundedness of control. In the con-
trol model (9.12) by using the control law (9.14) we have the issue
of control saturation. The controllaw (9.14) is
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-1
Fip(e.0) = |- """ Do w7500

With this control we could cancel the nonlinearity in the system
and convert the system into a heat equation. But the issue with this
control is that it is unbounded because of the inverse. At p (z,t) = pm,
the control becomes unbounded. This kind of situation is practically
impossible as we have limitations on the control variable. So in order
to take care of control saturation we redesign our controllers so that
there is no unboundedness of control. Now we choose the following
control law Lo
F(p(w,1)) = { ey (9.22)
Uminp = 0
With this control law we get the following closed loop dynamics
Op(x,t) 0 [(1 B p(:rjt))Dap(af,t)]

ot ox Pm ox

or

9p (z,1) plx,t)\ Pp(wt) 1 (Op(x,t)\”
ot +<1_ pm> Ox? +pm< Ox >:O (8:23)

Let us consider a Lyapunov functional V(¢) for the system (9.23)
given by (9.19) as:

L
V() = lota)l3 =} [ ottt
The time rate of change of V(¢) using Leibniz rule is given as

dv(t) L Op (x,t)
Using (9.23) we get

[ (e

or

dx

av [t p(,1) 00l 1)
it :/0 —p(x,t) <1— o > 92 dz

., /L p(a, ) (ap<x,t>>2 " 021)

Pm Oz
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Equation (9.24) can be written as

dv (1)

=] +1I
At 1+ 12

Integrating the first integral gives us

L
b= stenn "o
L . N )
_/0 1+ 2p/()m,t)) <8p((9m,t)> " -

The first term of (9.25) vanishes by boundary condition (9.3). Thus
(9.24) reduces to the following

WO [* et (),

N )

. { p(z, 1) (‘%(w ”) da (9.26)

or

For the first integral of (9.26) we make use of Gagliardo-Nirenberg-
Sobolev Inequality (9.21) which for our case is

lp ()]l < C[Vp (2, )]l

where C is a positive real number. Using (9.21) we have

/L %@ 0) >C—2/L 2(t,x)d
e x> ; p(t, z)dx
0

The second integral of (9.26) can be written as
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Using Young’s Inequality [25] we can show that

1t L op(z, t)\*
<
I< 2/0 p (t,ac)da:—l—/o < O > dz

The rate of change of V(¢) can be thus be bounded by

v (¢) /L P2 (t, x)dx
0

L
<—kC™? 2(t, x)dx —

L 4
1 / Op(x,t) da
2pm 0 Ox

L L
d‘gt(t) < —QA p2(t,x)dx—6/0 p4(t,x)da: (927)

where a = kC~2 — 1/2p,,. Using Young’s inequality again to the
second term of (9.27) we get the following

or

dV (t)

L L
<-a / Pt x)dz — 8 / Pt 2)da

where 3 = k=2 /2p,, with k being a positive constant. Both the first
and second terms are positive definite functions, therefore as long as
a > 0and 8 > 0 we have

dVv (¢)

0
a <

It follows that null state of (9.22) is asymptotically stable using feed-
back control (9.22).

9.5 Feedback Control for Two Equation Model

In this section we design a feedback control for the two-equation
model of the evacuation system given by (9.8) and (9.9) subject to
boundary conditions (9.10) and (9.11) using backstepping approach.
The Lyapunov functional (9.19) which was used as a stability analysis
tool for one-equation model will be used as a feedback control design
tool for this system. The design of feedback control is done in such a
way that Lyapunov functional or its derivative has certain properties
that guarantee boundedness or convergence to an equilibrium point.
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9.5.1 Two Equation Control Model

In the two equation model (9.8) and (9.9) we choose divergence of
pressure Op (x,t)/0x as distributed control variable w (z,¢) which
gives us the following control model

Op(x,t) _ 9q(w,1)

ot Ox
awt) 0 (q(w1)?
ot __8x<p(m,t)>+u(x’t)

This system can be rewritten in the form

op(z,t)  Oq(z,1)
ot Ox (9:28)

oq (x,t)
PR (x,t) (9.29)

where @ (z,t) = _88x <q"0(éct2)2> + u(z, t).

9.5.2 State Feedback Control Using Backstepping

Here we address the problem of synthesizing a distributed state feed-
back controller u(z,t) that stabilizes origin p(z,t) = 0,¢(x,t) = 0 of
control system (9.28) and (9.29). More specifically we consider con-
trol law

u(z,t) = F(p(z,t),q (x,1))

such that origin of closed loop dynamics are exponentially stable.
F is a nonlinear operator mapping H2[(0, L), R] into H'[(0, L), R].
The control strategy adopted here is similar in principle to feed-
back control by backstepping for ordinary differential equations [59]
and is extended to PDEs. Backstepping is a Lyapunov-based control
method of feedback linearization. It is a recursive method that de-
signs the feedback control law based on the choice of the Lyapunov
function. It breaks the design problem for a system of equations into
a sequence of design problems for scalar systems. We proceed with
the control design as follows:

1. First we design control law for (9.28) where ¢(x,t) can be
viewed as an input. We proceed to design a conceptual control
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law gq(z,t) = G(p(x,t)) to stabilize origin p(x,t) = 0. G is
a nonlinear operator mapping H2[(0, L), R] into H?[(0, L), R].
With control law

T 92 T
g(2,) = Glp(x, 1)) = — /0 0 g;é D 4m (9.30)

we get the conceptual closed-loop system for (9.28) as

dp(a,t) _ 0%p(a,t)
ot Ox? (9:31)

which is similar to (9.14). As we have already shown the origin
of this equation is asymptotically exponentially stable with a
conceptual Lyapunov functional (9.19)

L
V()= L ot )2 = /0 Ip(t, ) Pda

for this system which satisfies dV (¢)/dt < —fV (¢) and ensures
the stability of above equation.

2. We have used the term “conceptual” with the control law,
closed loop system and the Lyapunov function. This is done in
order to stress the fact that the control law cannot be imple-
mented in practice as ¢(x,t) is not a control variable. However,
this conceptual design helps us to recognize the benefit of the
input ¢(x,t) being close to G(p). From the knowledge of the
conceptual Lyapunov function V' (¢) we want to design a smooth
feedback control for stabilizing the origin of the overall system.
We therefore add to the conceptual Lyapunov function (9.19)
a term penalizing the difference between ¢ and G(p). For this
purpose we rewrite the dynamics (9.28) as

Op(a,t) __0G(p(w1) _ 0

ot 0n gy @) =Gp(@,1))

Defining the difference between ¢ and G(p) by an error a new
variable z (z,t) = q(z,t) — G (p(z,t)) we get the following

dynamics.
op(z,t)  O0G(p(x,t)) Oz(x,t)
ot ox Y (9:32)
@t) ) (9.33)

ot
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where u, (z,t) = u(z,t) — 0G (p(x,t))/0t is the new control
variable and z(x,t) € H2[(0, L), R].

. Now let us modify the Lyapunov functional (9.19) by adding

an error term to it thus resulting in the Lyapunov function for
the overall system as

Vat) = V() + 5]z (.0)3

L L
_ ;/ |p(a;,t)|2dx+;/ (@, )2 dz (9.34)
0 0

The time rate of change of this functional using (9.32) and
(9.33) is given as

v, (1) [* 0%p (x,t) /L 0z (z,t)
&t —/0 p(z,t) 92 dz + ; p(z,t) P dz

L
—I—/O z(z, t)uy (x,t) de

Using (9.21) we know that the first term is bounded by —3V ().
Therefore

L L
Wal) gy it / o (1) P2 @ gy / (), (2,1) da
dt 0 Ox 0
We have to choose a new control law w,, (z,t) in such a manner
that the time derivative of new functional or the sum of second
and third terms is also bounded by a negative definite function.
By choosing the following control law

0z (x,t)

Up (x,t) = —kz (z,t) — 2z (z,t) " p(x,t) 9

(9.35)

we get the following result

av; (1)

G S =BV~ K|z (@)l = 26V ()

with k = 23 > 0. This shows that the origin of closed loop
system (9.28) and (9.29) is exponential stable.
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The control law is given by the partial differential-integral equation

w(@,t) = up (2,8) + OC (paix’t)) + ;E <Q($’t)2> (9.36)

with u, (z,t) given by (9.35) as

up (x,t) = k2 (z,t) — 2 (m7t)—1 o (1) 8zéa;, t)

where z (2,t) = q (z,t) — G (p (z,t)). Hence the closed loop dynamics
for two equation model are exponentially stable.

9.5.3 Simulation

In this section we show simulation results for the closed loop system
(9.28) and (9.29) using controller (9.36). We have used the same Lax-
Friedrichs numerical technique as before. For simulation the initial
distribution for both density and flow is considered to be Gaussian.
The simulation results are shown in the following figures. The density
plots are shown in Figs. 9.4-9.6. The flow plots are shown in Fig. 9.7
and Fig. 9.8. As is seen from the plots flow of people at every point
in space is decreasing exponentially with time.

Distance

Time

Fig. 9.4. Density response for the two-equation model
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Fig. 9.5. Contours of the density response for two-equation model
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Fig. 9.6. Density response at different time instants for two-equation
model
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Fig. 9.7. Flow response for the two-equation model
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Fig. 9.8. Contours of flow response for two-equation model
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9.6 Exercises

Problem 9.6.1 Add the term 1/p,,0p(x,t)/0z to control law (9.22)
and repeat the Lyapunov Analysis. Is the system still exponentially
stable?

Problem 9.6.2 Work out the details of Sobolev inequality for (9.20).
Problem 9.6.3 Work out the details of Young’s inequality for (9.26).
Problem 9.6.4 What is Leibnitz rule?

Problem 9.6.5 What is the difference between a Banach and a
Sobolev space?

Problem 9.6.6 Prove that the norms are not equivalent in infinite
dimensional case.

Problem 9.6.7 Prove that the norms are not equivalent in infinite
dimensional case.

9.7 Computer Code

In this section the code used for the above simulations is included.
The code is in matlab and consists of m-file named feedback 1d mass
and feedback 1d momentum.

9.7.1 feedback 1d mass

%n=10; Y%points in x direction
n=20;

%m=300; Ytime samples

m=600;

T=3;

L=2;

h=L/(n-1); % spacing in x-direction
k=T/(m-1); % spacing in time
s=k/(h"2);

x=[-1:h:1];

t=[0:k:3];

rm=1000;
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std=L/8;meanx=0; Row_0 = 100*exp(-(x-meanx)."2./...
(2xstd"2)) / (std*sqrt(2*pi));
Row=Row_0;
Row(1:m,1)=0;
for r=1:m-1
for c=2:n-1
Row(r+1,c)=Row(r,c)+s*x(Row(r,c+1)—.........
2*Row(r,c)+Row(r,c-1));
end
end
for i=1:m
for j=1:n-1
del_row(i,j)=1/h*(Row(i,j+1)-Row(i,j));
end
end
del_row(m,n)=0;

for i=1:m
del2_row(i,1)=1/(h) "2*(Row(i,2)-2*Row(1,1)+0);
for j=2:n-1
del2_row(i,j)=1/h"2x(Row(i, j+1)-2*Row (i, j)+Row(i,j-1) );
end
end
del2_row(m,n)=0;
A=1./(1-2%Row/rm) ;
B=(del_row);
C=(del2_row);

vE=(A/B)*C;
v=vf.*(1-Row/rm) ;
for i=1:m
for j=1:n
if v(i,j)<0
v(i,j)=0;
end
end
end
q=Row.*v;
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figure(1)

mesh(t,x,Row’)

% title(’Heat Equation solution’)
xlabel (’Time’)

ylabel(’Distance’)

zlabel (’Density’)

figure(2)

subplot(2,1,1),
plot(t’,Row(:,n/2));

axis([0 1.5 0 200])

% title(’Density plot at x=L/2’)
xlabel (’Time’)

ylabel(’Density’)

subplot(2,1,2),

axis([-1 1 0 11)

[c,h1] = contour(x,t,Row); clabel(c,hl,’manual’);
axis([-1 1 0 1.5])

% title(’Density Contours’)
xlabel (’Distance’)

ylabel(’Time’)

figure(3)

mesh(t,x,q’)

% title(’Heat Equation solution’)
xlabel(°Time’)

ylabel (’Distance’)

zlabel (°Flow’)

figure(4)

subplot(2,1,1),
plot(t’,q(:,n/2));

axis([0 0.2 0 100])

% title(’Flow plot at x=L/2’)
xlabel (’Time’)

ylabel (’Flow’)
subplot(2,1,2),

[c,h1] = contour(x,t,q); clabel(c,hl,’manual’);
% title(’Flow Contours’)
axis([-1 1 0 0.2])
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xlabel (’Distance’)
ylabel(’Time’)

9.7.2 feedback 1d momentum

n=20;%points in x dir
m=800; Y%time samples
T=3;

L=2;

delta_x=L/(n-1);
delta_t=T/(m-1);
x=[-1:delta_x:1];
t=[0:delta_t:3];
vm=0.1;

row_m=1;
lamda=delta_t/delta_x;

std=L/8;meanx=0; row_0 = 10*exp(-(x-meanx)..........

"2./(2*std"2)) / (stdxsqrt(2*pi));
row=row_0;
row(l:m,1)=0;

std=L/8;meanx=0; q_0 = 10*exp(-(x-meanx).........
"2./(2xstd"2)) / (std*sqrt(2*pi));

q=9_0;
q(1l:m,1)=0;
for i=1:m-1
for j=2:n-1
f1(i,j+1)=1/delta_x*(row(i, j+1)-row(i,j));
f1(i,j-1)=1/delta_x*(row(i,j)-row(i,j-1));
row(i+1,j)=0.5%(row(i,j+1)+row(i,j-1))......
-lamda/2*(£1(i,j+1)-£f1(i,j-1));
end
end

for i=1:m
del2_row(i,1)=1/(delta_x) " 2*%(row(i,2).......
-2xrow(1,1)+0);
for j=2:n-1

185
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del2_row(i,j)=1/(delta_x) "2x(row(i,j+1)........
-2xrow (i, j)+row(i,j-1) );

end

end

del2_row(m,n)=0;

for i=1:m
F_row(i,1)=del2_row(i,1);
F=0;
for j=2:n
F_row(i,j)=F+delta_x/2*(del2_row(i,j)....
+del2_row(i,j-1));
F=F_row(i,j);
end
end

for i=1:m-1

for j=1:n-1
delt_F(i,j)=1/delta_t*(F_row(i+1,j)-F_row(i,j));
end
end
delt_F(m,n)=0;

k=0.5;

for i=1:m-1
g_hat(i,1)=q(i,1)-F_row(i,1);
q_hat(i,2)=q(i,2)-F_row(i,2);
delx_q_hat(i,1)=1/delta_xx*

(q_hat(i,2)-q_hat(i,1));

u(i,1)=delt_F(i,1)-k*q_hat(i,1)-.........
(1/q_hat(i,1))*row(i,1)*delx_q_hat(i,1);
P(i,1)=u(i,1);
p=0;

for j=2:n-1
q_hat(i,j)=q(i,j)-F_row(i,j);
g_hat(i,j+1)=q(i,j+1)-F_row(i,j+1);
if j>=n-1
g_hat (i, j+2)=0;
else
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g_hat(i,j+2) = q(i,j+2)-F_row(i,j+2);
end
delx_q_hat(i,j)
= 1/delta_x*(q_hat(i,j+1)-q_hat(i,j));
delx_q_hat(i,j+1)
= 1/delta_x*(q_hat(i,j+2)-q_hat(i,j+1));

u(i,j)=delt_F(i,j)-k*q_ hat(i,j)-......
(1/q_hat(i,j))*row(i,j)*delx_q_hat(i,j);
u(i,j+1)=delt_F(i,j+1)-k*q_hat(i,j+1).....
-(1/q_hat (i, j+1))*row(i, j+1)*delx_q_hat(i,j+1);

P(i,j)=p+delta_x/2*(u(i,j)+u(i,j-1));
P(i,j+1)=P(i,j)+delta_x/2*(u(i,j+1)+u(i,j));
p=P(i,j);

£2(i,j+1)=(q(i,j+1)) "2+P(i,j+1);
£2(i,j-1)=(q(i,j-1))"2+P(i,j-1);
q(i+1,3)=0.5%(q(i,j+1)+q(i,j-1)).....
-lamda/2*(£2(i,j+1)-£f2(i,j-1));
end
end

figure(1)

mesh(t,x,row’)
title(’Backstepping solution’)
xlabel(°Time’)

ylabel (’Distance’)
zlabel(’Density’)

figure(2)

subplot(2,1,1),
plot(t’,row(:,n/2));
title(’Density plot at x=L/2’)
xlabel (’Time’)
ylabel(’Density’)
subplot(2,1,2),

[c,h1] = contour(t,x,row’); clabel(c,hl,’manual’);
title(’Density Contours’)
xlabel (’Disatance’)
ylabel(’Time’)



Chapter 10

Distributed Feedback
Control 2-D

This chapter presents design of nonlinear feedback controllers for
two different models representing evacuation dynamics in 2-D. The
models presented here are similar to the ones discussed in Chap. 9
but take care of the pedestrian flow in 2-D. We address the feedback
control problem for both models and the sufficient conditions for
Lyapunov stability for distributed control are derived.

10.1 Introduction

This chapter presents the design of nonlinear feedback controllers
for two models representing evacuation dynamics in 2-D. The mod-
els presented here are based on the laws of conservation of mass and
momentum. The first model is a one-equation model based on con-
servation of mass with a prescribed relationship between density and
velocity. The model dynamics are represented by means of a single
partial differential equation. The other is a two-equation model in
which the velocity is independent of density. This model is based on
conservation of mass and momentum. Here the dynamics are repre-
sented by means of a set of three partial differential equations. The
equations of motion in both cases are described by nonlinear partial
differential equations. The system is distributed, i.e. both the state
and control variables are distributed in time and space.

189
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We address the feedback control problem for both models. The
objective is to synthesize a nonlinear distributed feedback controller
that guarantees stability of a closed loop system. The problem of
control and stability is formulated directly in the framework of partial
differential equations. Sufficient conditions for Lyapunov stability for
distributed control are derived.

We are interested in designing feedback controllers to evacuate
pedestrians from a 2-D area. We use the same methods of feedback
control as in Chap. 9 and extend the results to a 2-D case. The
method of feedback linearization is used for the one-equation model
which works by canceling nonlinearities in the system. For a two-
equation system model the feedback control design is done by the
backstepping approach. In both cases objective of control design is to
synthesize a nonlinear distributed feedback controller that stabilizes
the system and guarantees stability in closed loop system.

The objective of this chapter is to design feedback controllers and
study their stability properties for an evacuation control system in
2-D. The dynamics that are used to model an evacuation system in
this chapter are based on traffic flow theory [57] modified for the
bidirectional pedestrian flow. In this chapter again we are adopting
the approach of designing controllers in distributed setting. Suffi-
cient conditions for Lyapunov stability for distributed control are
also derived. First we discuss the design of nonlinear feedback con-
trol for the model based on continuity equation alone. To increase
resolution and accuracy of the model we add the equation of con-
servation of momentum. We discuss the feedback control design for
the system described by both equations. Backstepping approach for
control design used in Chap. 9 will be modified for the 2-D case.
In both cases the objective of control design is to synthesize a non-
linear distributed feedback controller that stabilizes the system and
guarantees stability in closed loop system.

The organization of this chapter is as follows. In Sect. 10.2 we
formulate the mathematical and control models and present feedback
control design for the first model. This section also studies Lyapunov
stability for this model. Section 10.3 presents the feedback control
design and stability analysis for second model. Finally some simula-
tion results for closed loop are presented.
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10.2 Feedback Control of One-Equation Model

In this section we formulate the control model and present feedback
control design for the one-equation model. This section also studies
Lyapunov stability for this model and presents simulation results.

10.2.1 One-Equation Model

In this section mathematical and control models and control design
for first model of the evacuation problem are presented. We will
discuss the evacuation model of a 2-D single exit corridor of dimen-
sions L x L. The model is described by nonlinear hyperbolic partial
differential equation.

This model is based on equation of conservation of mass. The
conservation law of mass in case of an evacuation system means that
the number of people is conserved in the system. Let us consider
the case of a single exit 2-D corridor of dimension L x L. Let Q =
(0, L) x (0, L) be a bounded, open subset of a 2-D Euclidean space R?
and 0f) be its boundary. Let p(z,t) denote the density of people as a
function of position vector  and time ¢. The vector z € Q C #2 and
is expressed in terms of its coordinates as x = [z1, 22]”. Let q(z,t) be
the flow at a given x and t with q;(x,t) and go(z,t) as flow in z; and
x9 directions. v(z,t) is the velocity vector field associated with the
flow with vy (x,t) and ve(x,t) as x1 and x9 components respectively.
The conservation of mass equation holds and is given by:

Ip(z,1)

Y + div(gq(z,t)) =0 (10.1)

with initial and a boundary condition given as

p(z,to) = po () (10.2)
plx,t) =0V tel0,00), z € (10.3)

Here p(x,t) € H?[Q,R] with H?[Q,R] being the infinite dimen-
sional Hilbert space of 2-D like vector function defined on domain
), whose spatial derivatives upto second order are square integrable
with a specified Ly norm. q(z,t) € H?[Q,R] and po(z) € H[Q,R].
The vectors = €  C R? and t € [0,00) denote position and time
respectively. For the rest of the chapter it will be assumed that the
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vector spaces are Sobolev spaces [18]. The flow ¢(z,t) is obtained as
a product density and velocity as

qi(aj¢t) = p(a:,t)vi(ac,t),z' =1,2 (104)
The dynamics for 2-D are therefore given by

op(a.t) , 0(p(@t)vr (@.0)) , (p(a,0)va ()

ot dxy Ao =0 (105)

subject to the initial conditions and boundary conditions given by
(10.2) and (10.3) respectively. To describe the relationship between
velocity vector field v(x,t) and density p(x,t) we again make here
use of Greenshields model in 2-D

viz, 1) = vig (a,8) (1 - p(m’t)> (10.6)
pmax
where v;f (x,t) is the free flow speed in z; direction ¢ = 1,2 and
Pmax 18 the jam density that is the maximum number of people that
could possibly fit a single cell. Using (10.6) in (10.5) we get modified
one-equation model given by

ap (2,t) Za [vzf _- <1_ P(%t))p(x,t)} =0 (10.7)

pmax

subject to conditions (10.2) and (10.3).

10.2.2 Control Model

To formulate the control problem we need to choose a control vari-
able. To do so we use Greenshields model to represent the relation-
ship between traffic density and the velocity field given by (10.6). In
this model we take free flow velocity vector fields vy (x,t) as the dis-
tributed control variables denoted by wu; (x,t). This gives us following
representation of the control system

2

ap z,1) Z [ul _ (1 _ P(xvt)> p(x,t)} (10.8)

— Pmax

where u;(x,t) € H[Q2, R] are the control variables.
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10.2.3 State Feedback Control

Here we address the problem of synthesizing a distributed state feed-
back controller wu(z,t) that stabilizes origin p(x,t) = 0 of system
(10.8). We use the method of feedback linearization for PDEs as in
Chap. 9. More specifically we consider control law of the form

ui(x,t) = Fi(p(x, 1))

which makes origin of the closed loop dynamics exponentially stable.
Here Fj(p) is a nonlinear operator mapping H2[Q2, R] into H'[Q, R].
Designing the operator F;(p) as

Flpta) == | (1= ") oot R SAC L TY

Pmax z;

we get the following closed loop dynamics

Op (x,t) 0? 0? B
ot g [ax% * 0x3 pla.t)=0
or a
p((;;’t) — V2 (2,t) =0 (10.10)

with boundary conditions given by (10.2) and (10.3).

10.2.4 Lyapunov Stability Analysis

The stability problem is to establish sufficient conditions for which
the origin of the closed loop dynamics (10.8) is exponentially sta-
ble. In order to check the stability of the closed loop system we use
Lyapunov function analysis. For the 2-D system, definition of stabil-
ity in terms of Lyapunov can be established in a similar way to the
1-D case as given in Sect. 9.3.3.

The determination of conditions for which estimate (9.17) is sat-
isfied amounts to establishing conditions for which the null state of
the closed loop system (10.10) is exponentially stable with respect
to the Lo norm given by

1/2

loll, = | [ 1ol (10.11)
Q
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where exponential stability implies ||p (t)||, — 0 as t — oo. Let us
consider the same Lyapunov functional V() as given by (9.21) for
the system (10.10). Here V : H%[Q] — R, is a smooth functional of
the form

VO = leta)li =4 [ peaae (1012

Differentiating with respect to time, we get the time rate of change

of as
op(x,t)
_—D/Z< o, >dQ

Now we make use of Sobolev Inequality (9.21) which for the 2-D

o /Z( >dQ>C /2dQ

where C' is a positive real number. The rate of change of V(¢) can
be thus be bounded by

av (1) _

—Dc—1/ p?dQ = —2DCT'V (t) = —pV (t)
dt Q

Y X

Fig. 10.1. Density response at different time instants for one-equation
model
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It follows that V(t) < V (tg)e Bt—t0) or

lo(t.2)l, < lIp(to, )], e

with 8 = 2kC~2. As long as 3 > 0, null state of (10.10) is expo-
nentially stable and condition (9.17), |U(t)||, < e~?*~%) is satisfied
with b = . Thus equilibrium of closed loop system (10.10) using
feedback control (10.9) is exponentially stable.

10.2.5 Simulation Results

This section shows simulation results for the closed loop system
(10.10) using control law (10.9 and 10.10). The simulation results
are shown in Fig. 10.1 and Fig. 10.2. The numerical method used is
the Lax-Friedrichs scheme [67]. For simulation the initial distribu-
tion of density is considered to be Gaussian. The initial condition is
given by

p(x,0) = G exp(— (1 — a)® — (w2 — b))

with (a,b) being the centre of the Gaussian distribution and G, the
highest magnitude of the distribution. The control action response

2
WL
0
-1
2 L L L L L L L
) 15 4 05 0 05 1 15 2
2
i
~ of
b
) 1 1 1 L 1 L 1
) s a 05 0 05 1 15 2
2
JL
of
-1r
2 I I I I
) 15 a 05 0 05 1 15 2

Fig. 10.2. Contours of the density response at different time instants
for one-equation model
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Fig. 10.3. Density response at different time instants for two-equation

model
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Fig. 10.4. Contours of the density response at different time instants

for two-equation model



10.3 Feedback Control for Two-Equation Model 197

for a corridor is shown in Fig. 10.3. The simulation shows the density
response as mesh plot snapshots. After some finite time the density
has decreased to zero. The second simulation is shown as contour
plot snapshots in Fig. 10.4. As seen from plot, density at every point
in space is decreasing exponentially with time.

10.3 Feedback Control for Two-Equation
Model

In this section we design a feed back control for the two-equation
model of the evacuation system using backstepping approach. The
Lyapunov functional (10.15) which was used as a stability analysis
tool for one-equation model will be used as a feedback control design
tool for this system. The design of feed back control is done in such
a way that Lyapunov functional or its derivative has certain prop-
erties that guarantee boundedness or convergence to an equilibrium
point.

10.3.1 Two Equation Model

In this section we consider a higher order model or more precisely a
system of two partial differential equations for a 2-D corridor. This
model consists of conservation of mass equation coupled with a sec-
ond set of equations based on the principle of conservation of mo-
mentum. The first equation is the conservation of mass equation
(10.5). The second set of equations is derived from conservation of
momentum for 2-D flow [3] given by

9 (p (z,t) vi (2,1))
ot

+ div (pvv) = _5pa(;34,t)’ i=1,2

The z1 and x2 components of momentum equation can be written as

A (p (x,t)vr (2,1)) 9 (p (2,t) v1 (:v,t)z)
ot 8%1
d(p(z,t)v (z,t) v (x,t)) _ Op(x,t)

+ 85132 N 8%1
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and

A (p(w,t)vr (2,1)) 9 (p (2,t) v2 (:c,t)z)

ot 8%2
9 (p(x,t)vr (z,t) vz (z,t)) _ Op(x,1)
+ —
oxy Oz

where p(z,t) € HY(0,L),R] is pressure. The relationship between
density and flow is given by ¢; (z,t) = p(x,t)v; (x,t). Thus we
have the dynamics of an evacuation system given by following two-

equation model
2

o g’; Dy ; aqi?(;’ D _y (10.13)
and
Oy (x,1) (ch <x,t>2> L9 <q1q2 <x,t>> _ o
ot ox1 \ p(z,t) Oxa \ pl(x,t) 0xq
S S Gl R G B
with initial conditions
p(x,to) = po (x),q(z,to) = qo (2) (10.15)

and subject to boundary conditions
plx,t) =0Vt e0,00),x € 0N

q(z,t) =0Vt €|0,00),z € 0N (10.16)

10.4 Control Model

In the two equation model (10.13) and (10.14) we choose divergence
of pressure 8178(;”;0 , as distributed control variables u; (x,t) which give

us the following control model

0p (x,t) _ 22: 0q; (x,t)
8t im1 61‘2
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and
oq (z.t) 0 [ar(xt)®\ 0 [qiga(.t)
o Oxy ( p(x,t) Oxas \ pl(x,t) o (@)
Og2 (w,t) 0 (@@, 0 (qg(z1)
ot Oz \ pla,t) ox1 \ p(z,t) oz (1)
This system can be rewritten in the form
Op (x,t) L 2 0qi (z,1)
o= ; Do (10.17)
aqz’éf’t) = (2,1) ;i = 1,2 (10.18)
where
i 0 (a@t)?) 0 (g ()
uy (x,t) = . < o (1) s \ p (1) +uy(x,t)
and
_ 0 (@t 0 [(qg(nt)
i () = Oy < p(z,t) dx1 \ p(z,t) (2, 1)

are the new control variables.

10.4.1 State Feedback Control Using Backstepping

Here we address the problem of synthesizing a distributed state feed-
back controller u(x,t) = [uy (x,t),us (z,t)] that stabilizes origin
p(x,t) = 0,q(x,t) = 0 of control system (10.17 and 10.18). More
specifically we consider control law

ﬂi(m7t) = E (p(a:,t), q (a;,t))

such that origin of closed loop dynamics is exponentially stable. Fj
is a nonlinear operator mapping H2[Q), ] into H'[2, R]. The control
strategy adopted here is similar to feedback control by backstepping
PDEs for 1-D case which is extended to the 2-D case here. The
sequence of steps in control design is the same as before and is given
as follows:
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1. First we design control law for (10.17) where ¢(z,t) can be

viewed as an input. We proceed to design a conceptual control
law ¢;(x,t) = G;(p(z,t)) to stabilize origin p(z,t) =0 as

_ _ [T Ppat),
gi(z,t) = Gi(p(z,t)) = /0 Im2 dm, i=1,2 (10.19)

G; is a nonlinear operator mapping H2[Q,R] into H2[Q, R].
The conceptual closed loop dynamics for (10.17) are

op (z,t) o 0?
o P {aaﬂ D gz | Pl@D)

or

Ip (z,t)
ot
which is similar to (10.10). As we have already shown the ori-
gin of this equation is asymptotically exponentially stable. In
addition there exists a conceptual Lyapunov functional

V() = Llo(t 2)[2 = 1 / Ip(t, ) 240

V(t

= DV?p (z,t) (10.20)

for this system which satisfies
stability.

< —pBV (t) and ensures its

. From the knowledge of this conceptual Lyapunov function V()

we design a smooth feedback control to stabilize the origin
of the overall system. We therefore add to the conceptual
Lyapunov function (10.12) a term penalizing the difference be-
tween ¢ and G(p). For this purpose we rewrite the dynamics
(10.17) as

8pxt 2
DI Z oo (0:(@1) = i p (@)

Defining error variables z; (x,t) = ¢; (z,t) — G; (p (x,t)) result
in the following modified dynamics

2 (o (x zi (x
8péa;,t) Y 9G; (p(w,1)) Z 9 8(@ 1) (10.21)

i=1 1=

= up; (z,t)  (10.22)
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where up; (x,t) = u; (x,t) — aGi(gt(m’t)),i = 1,2 are the new

control variables and z;(x,t) € H2[(Q, R].

3. Now let us modify the Lyapunov functional (10.12) for the
overall system as

L
Va(t) = V(E) + 31z (@, 0)|2 = ) /0 ol ) de
2
+§/Z|zi(:r,t)|2d§2
Q=1

where z(z,t) = [z1 (x,t), 22 (z,t)]. The time rate of change of
this functional using (10.21) and (10.22) is given as

(10.23)

dV, (1) 9 0z; (z,1)
" _/ (z,t) V2p xtdQ—l—/prt 92, o

_|_/Q;zi(x,t)um (2,)dQ2

we know that the first term is bounded by —3V(¢). Therefore

dv, 822 (x,t
UEm—— Zp o

+/Q;zi(ac,t)um- (z,t)dQ

We have to choose a new control law wu,; (z,t) in such a manner
that the time derivative of new functional or the sum of sec-
ond and third terms is also bounded by some negative definite
function. By choosing the control law

0z; (z,t)

Ui (z,t) = —kz (z,t) — 2z (z, ) " p(2,1) P

(10.24)

we get the following result

dV, (t)

o <GV - ke (@ 0)]F = —26V ()
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with k=23>0. This shows that the origin plz,t) =0,z(x,t) =
0 of closed loop system (10.21) and (10.22) is exponential
stable.

The feedback control laws are given by the following partial
differential-integral equations

0G1 (p(e,0) | 0 <q1 (x,t)2>
ot Oy \ p(@,t) (10.25)

0 (qiqz(z,t)
" o, < p (1) >
Walp@t) , (

ot
7192 (
+3$1 < p(z

up (x,t) = upp (x,t) +

and

ug (z,t) = upa (z,t) +

')
)

with w,; (z,t) given by (10.24) as

0z; (z,t)

Ui (T, 1) = —kz (z,t) — 2z (z,8) "L p () P

where z; (z,t) = ¢; (x,t)—G; (p (x,t)). Hence the closed loop dynam-
ics for two equation model are exponentially stable with this control
law.

10.4.2 Simulation Results

Here we show simulation results for the closed loop system (10.17)
and (10.18) using controller (10.25) designed in previous section.
The simulation results showing the density response is plotted in
Fig. 10.3 and Fig. 10.4 and the flow response is plotted in Fig. 10.5
and Fig. 10.6. The numerical technique used to simulate the system
is same as before. For simulation the initial distribution for both
density and flow is considered to be Gaussian. As seen from the
plots after some finite time, the density and flows in both directions
have decreased to zero.
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Fig. 10.5. Flow response at different time instants for two-equation

model
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10.5 Exercises

Problem 10.5.1 Change the components of control (10.9) to the
following control law

1 09p(x,t)

Fi(p(z,1)) = p(a,t) O

Apply this control to system (10.8). Find the closed loop dynamics
and repeat the stability analysis.

Problem 10.5.2 Add the term 1/pmaxdp(z,t)/0x to each compo-
nent of control in above problem and repeat the Lyapunov Analysis.
Is the system still exponentially stable?

Problem 10.5.3 Work out the details of Sobolev inequality for
(10.20).

10.6 Computer Code

In this section the code used for the above simulations is included.
The code is in matlab and consists of m-file named feedback 2d.

10.6.1 feedback 2d

n=20;%points in x direction
1=20;%points in y direction
m=600;%time samples

T=3;

L=2;

hx=L/(n-1); Y’ spacing in x-direction
hy=L/(1-1) ;

ht=T/(m-1); 7% spacing in time
s=ht/(hx"2);

r=ht/(hy~2);

x=[-1:hx:1];

y=[-1:hy:1];

t=[0:ht:3]

rm=1000;
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X_max=1;
y_max=1;

[x,y] = meshgrid(-x_max:hx:x_max, -y_max:hy:y_max);

R=sqrt (x.

~2+y."2);

std_R=x_max/4;

mean_R=0;

Row_0 = 50%exp(-(R-mean_R)."2./

(2%std_R"2))/ (std_Rxsqrt(2x*pi));

205

Row(i+1,j,k)=Row(i,j,k)+s*(Row(i,j+1,k)-2*Row (i, j,k)

+r*(Row(i, j,k+1)-2*xRow(i, j,k)+Row(i,j,k-1));

B=0;
Row(1,1:n,1:1)=Row_0;
for i=1:m-1

for j=2:n-1

for k=2:1-1
+Row(i,j-1,k)).....
end
end

end

for i=1:m
for j
for

=1:n

k=1:1

if i ==

A(j,k)=Row(i+1,j,k)
end

if i ==
B(j,k)=Row(i+1,j,k)
end

if i == 10
C(j,k)=Row(i+1,j,k)
end

if i == 20
D(j,k)=Row(i+1,j,k)
end

if i == 25
E(j,k)=Row(i+1,j,k)
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end
end

end
end

figure(1)
subplot(4,1,1),
mesh(x,y,A)

subplot(4,1,2),
mesh(x,y,B)
subplot(4,1,3),
mesh(x,y,C)

subplot(4,1,4),
mesh(x,y,D)

figure(2)

subplot(4,1,1),

[c,h1] = contour(x,y,A); clabel(c,hl,’manual’);
subplot(4,1,2),

[c,h1] = contour(x,y,B); clabel(c,hl,’manual’);
subplot(4,1,3),

[c,h1] = contour(x,y,C); clabel(c,hl,’manual’);
subplot(4,1,4),

[c,h1] = contour(x,y,D); clabel(c,hl,’manual’);

a=1./(1-2*row/row_m) ;
b=(del_row);
c=(del2_row);

vEi=(a/b)*c;
v=vf.*x(l-row/row_m) ;

for i=1:m
for j=1:n
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if v(i,j)<0
v(i,j)=0;
end

end

end

ql=row.*v;
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Chapter 11

Robust Feedback Control

This chapter presents design of robust nonlinear feedback controllers
for two different models representing evacuation dynamics in 2-D. The
models presented here are similar to the ones discussed in Chap. 9.
We address the feedback control problem for both models.

11.1 Introduction

In previous chapters we addressed the control of crowd dynamic sys-
tems without accounting for the presence of uncertainty in the de-
sign of the controller. The uncertainty is a mismatch between the
model used for controller design and the actual process model. The
uncertain function may include uncertain model parameters or ex-
ternal disturbances. Here we consider the case where we have an
uncertainty in the input to the system. The uncertainty is due to
the mismatch between the control command and the actual control
command followed by people and is distributed in space. The objec-
tive is to develop a framework for the synthesis of distributed robust
controllers that handle the effect of this uncertain variable. A dis-
tributed robust controller is derived that guarantees boundedness of
state and achieves asymptotic stabilization with arbitrary degree of
asymptotic attenuation of the effect of uncertain variables on the
output of the closed-loop system. The controller is designed con-
structively using Lyapunov’s direct method [59] and requires the exis-
tence of known bounding functions that capture the magnitude of the

209
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uncertain term. This chapter presents the design of robust nonlinear
feedback controllers for two models given in Chap. 9 representing
crowd dynamics in 1-D with uncertainty in the control input. The
models are based on the laws of conservation of mass and momentum
and are given in Sect. 9.2.1. In both cases the objective of control
design is to synthesize a nonlinear distributed feedback controller
that stabilizes the system and guarantees stability of the closed loop
system in presence of uncertainty. The organization of this chap-
ter is as follows. In Sect. 11.2 we formulate the uncertain control
model and present robust control design for the one-equation crowd
model. This section also studies Lyapunov stability for this model.
Simulation results for closed loop dynamics are presented where the
developed control method is tested with a disturbance in the system.
Section 11.3 presents the robust control and stability analysis for the
two-equation system model.

11.2 Feedback Control for Continuity
Equation Model

In this section we formulate the uncertain control model and present
robust control design for the one-equation model. The problem is to
design a state feedback control that guarantees the desired perfor-
mance of the closed-loop system irrespective of uncertain elements.
The one-equation model is given in Sect. 9.2.1 by (9.7) as

Ap(x,t))  Olq(x,1))

o e =0 (11.1)

Here p(x,t) is the variable we want to control. The flow ¢(z,t) is
obtained as a product of density and velocity as q(z,t) = p(x,t)v(z,t)
and the velocity—density relationship as given by Greenshield’s
model is

v= Uf(l - p/pmax) (11’2)

where vy = vy(x,t) is the free flow speed and ppax is the maximum
or jam density. The one-equation model is therefore given by

dp

ot " aag; (pvs(1 = p/pmax)) = 0 (11.3)
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By choosing free flow velocity vector field vy = vy¢(x,t) as the dis-
tributed control variable denoted by u we get the following control
model

dp

Ot (pull— p/pma)) = 0 (11.4)

11.2.1 Input Uncertain Control Model

Let us consider that the uncertain variable for this system is the
control input or the free flow velocity. This means that there is an
error in the control command and the actual input command followed
by people. The uncertain model is therefore given as

% 4 O 10— /ool + 0] = 0 (11.5)

In above equation denotes the unknown function which takes care of
uncertainty in the input to the system. The uncertain term here satis-
fies an important structural property namely it enters the state equa-
tion exactly at the point where the control variable enters. This prop-
erty will be referred to as the matching condition. The nominal model
(the system without uncertainty) for this system is described by

op 0 B
ot + Or [(1 - p/pmax)pu] =0

The first step is to design a stabilizing feedback controller for the
nominal model. With the feedback controller (9.8) u = F(p) given
in Chap. 9 as

_1 - 0p
F(p(a,t)) = = [(1 = p/pmax)p] ' D, (11.6)
we get the nominal closed-loop system as
dp 9?p
-D = 11.
ot Ox? 0 (11.7)

Thus with |0(t,u,p)] = 0 and v = F(p) the nominal closed loop
model (11.7) has exponentially stable origin and there exists a Lya-
punov function

L
Vi) =1 lpl2 =} /0 p2de

which satisfies ") < —gV (1) = —2DC~ ||p|% with 3 = 2D.
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11.2.2 Robust Control by Lyapunov
Redesign Method

In this section we consider the system of (11.5) and address the
problem of synthesizing a distributed state feedback controller that
stabilizes the closed-loop system irrespective of the uncertainty. The
controller is designed constructively using Lyapunov’s direct method
where we use the Lyapunov function for the system to design feed-
back control. A standard method for finding a Lyapunov function for
an uncertain system is developed in [19] and is known as Lyapunov
redesign. This technique has been incorporated in various books like
[27, 59]. The key idea of this method is to employ a Lyapunov func-
tion for the nominal system as Lyapunov function for the uncertain
system. This re-use of the same Lyapunov function is referred to by
the term “redesign”. The Lyapunov redesign technique uses a Lya-
punov functional of a nominal system to design an additional control
component to robustify the design to a class of large uncertainties
that satisfy the matching condition; i.e., the uncertain terms enter
the state equation at the same point as the input. Lyapunov re-
design can be used to achieve robust stabilization. The goal is to
design feedback control law for (11.5) as

u=F(p)+G(p) (11.8)

such that we achieve closed loop stability and asymptotic attenuation
of §(t,u, p) where G(p) is a nonlinear operator mapping H?[(0, L), R]
into H1[(0, L), R] . In (11.8), F(p) achieves closed loop stability and
G(p) asymptotically attenuates the effect of 6(¢,u, p). The function
F(p) will be designed by the previous approach and G(p) will be
designed using Lyapunov redesign method. The design of function
G(p) is known as Lyapunov redesign [59] and is done on the basis
of the assumption that we have a bounding function that captures
the size of the disturbance. Let us assume with controller (11.8)
there exists a known smooth function which bounds the magnitude
of uncertain variables as:

10CE, p, w)ll = 102, p, (F(p) + G(p))| < (t p) + £GPl (11.9)

where ~ is a nonnegative H' function and is a measure of size of
uncertainty 6(t,u, p). From estimate (11.9), the only requirement is
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the knowledge of v which doesn’t necessarily have to be small. From
the knowledge of Lyapunov function V' (¢) and functions v and ~ the
goal is to design G(p) and apply u = F(p) + G(p) to the actual
system (11.5) such that the overall closed loop system is stabilized in
presence of uncertainty. By using the control law (11.6) the feedback
control law (11.8) is given by

u= [~ p/pus)) DI + (o) (11.10)

Under the feedback control law (11.10) the closed-loop dynamics for
(11.5) take the form

ap ?p 0 B
ot - Daxg - ox [p(]' - p/pmaX)G(p)] =0 (1111)

Thus the error in the closed loop dynamics (11.10) and (11.11) due
to input uncertainty is given by

0= (1~ p/pws) o) (11.12)

Let us denote the component G(p) of control input (11.8), by v and

w(p) = p(1 = p/pmax) We can rewrite (11.12) as

O(wv)
Ox

where Ow/0z = (1 — 2p/pmax)9p/0z. The magnitude of this uncer-
tain term with respect to Ls norm is given by

0=— = v(0w/dx) — w(dv/dx) (11.13)

L L
16(t, p,u)]|3 :/|v(8w/8x)\2dm+/\w((‘)v/am)\Qdm
0 0

L
+2/|v(8w/8$)||w(8v/8x)|dx (11.14)
0

The bound on the magnitude of uncertainty (11.14) can be found by
applying Holders Inequality [25] to each integral term in the above
equation, which results in

ov |7
16t 0,0) 13 < 013 1@uw/02) 3 + w3 ()
2
ow ov
+2HU(8ZL‘) 9 w(&r) 9
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Therefore from the above inequality we have the following bound on
uncertainty

ov

16t .l < ol /() )

+ [lwlly
2 2

=v(p,t) + k(p, t)v (11.15)

where k(p, 1) =|[(Ow/0z)], 7 (p, t) =lwll, and ¥ = [[v]l/]|(Ov/dz)]|,.
This bound will be utilized to design the control law. We have the
closed-loop dynamics

op 0 0

ot T o P =P/ Pm)(E(P)]+ 5 [p(1— PG +6) =0 (11.16)

x Pm
As can be seen the system (11.16) is a perturbation of the nominal
closed-loop system (11.7), the third term being the perturbation. Let
us choose the Lyapunov function V' (¢) for (11.7) same as before. To
design G(p) we find the rate of change of Lyapunov function as

L
dv(t) dp
dt _/patdx
0

L

<kl + [ 1oL = p/pn) (Gl + 0N (1L17)
0

The first inequality is because of the asymptotic stability of nominal
closed-loop system (11.7). We need to choose a control law G(p) so
as to cancel the destabilizing effort of 0(t,u,p) on dV (¢)/dt. The
law G(p) should be such that the second term in (11.17) is negative
semi-definite in order to have asymptotic stability. By using w(p) =
p(1 — p/pm) and denoting G(p) by v we can rewrite (11.17) as

L L

avt) _ 9 O(wv) O(wh)

dt < kaHz—i—/p 9 dx—i—/p 5 dz (11.18)
0 0

Since the disturbance in our case is a function of space and time
that is 0 = 0(t,u, p), let us define § = O(wf)/Ox and a new control
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variable 0 = J(wv)/0x. Therefore we have

L L
d‘gt(t) < —k|pl3 + (/ podx + /péda:) (11.19)
0 0

Now let us apply the Holders inequality to the second integral in the
second term of (11.19). This results in the following

L

dV (t . A
< —kloll = ([ pias+ 1o, 0] (11.20)
0

By using Sobolev inequality (9.16) we can show that HéHQ = [|0(wh) /

oz, > C71||wh|, and by using (11.15) we have the rate of change
of Lyapunov as

L

2 ~ _
<kl | [ pido+ ol fwll (v -+ x0) | (1r21)
0

av (1)
dt

Now let us choose the state feedback control as following

. —n(p,t)wx
U= oty Y
or 1 ; -
= A w(x T .
v = w0/< coot) ,t)>d (11.22)

where n(p,t) > v(p,t) is a nonnegative function. By using this con-
trol law we can show that o = ||v||y/[|0v/dz||y > ||vl5/C ||v|l, = C~1.
Using this relation we can write (11.21) as

L
dV (t . _ _
W0 < kol — [ [ oz ol ol -+ 07

0
(11.23)
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By using the control law (11.22) and then applying Holders inequality
L

to the integral term in above equation it becomes [podz <C'||p||y [|w],
0

|ln/k|ly. Hence (11.23) can be written as

dv (t)

i SR lel3 = ol el (e,

+C7 ol ol (€ | 7|, = €7

As long as (C|n/k|ly — kC~') < v, we have asymptotic stability
in presence of the disturbance. The robust control law for (11.5) is
therefore given as

L
B 1 ,0p 1 —n(p;t)
w=—[0=plo D L [ (T w0 s 12

11.2.3 Simulation Results

This section shows simulation results for the system (11.5) using the
robust control law (11.26). For simulation the initial distribution
of density is considered to be Guassian. The simulation results are
shown in Figs. 11.1, 11.2 and 11.3. The density response for nomi-
nal control model (model without uncertainty) is shown in Fig. 11.1.
In Fig. 11.2 the density response is shown as a contour plot which
shows people moving towards the right (exit) of the corridor. The
simulation in Fig. 11.1 shows the density response at different time
instants where the response flattens with time. The density response
for uncertain model is shown in Fig. 11.2. We have added a step
function (with respect to time over all distance) disturbance to the
system. As seen from the plot in Fig. 11.2. the density is moving
back because of the disturbance. In Fig. 11.3. we show the re-
sponse with the robust controller (11.26) added to the system. As
is seen from the figure the response has improved and the effect of
disturbance is cancelled.
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11.3 Robust Control for Two-Equation
Model

In this section we formulate the control model and present robust
control design for the two-equation model. This section also studies
Lyapunov stability for this model and presents some simulation re-
sults. We also consider the uncertainty in the input to the system.
The control design is done using a combination of both Lyapunov
redesign and backstepping and the technique is referred to as robust
backstepping. Let us consider the two-equation model for a 1-D cor-
ridor. The model is a higher order model or more precisely a system
of two partial differential equations and consists of conservation of
mass equation coupled with a second equation based on the principle
of conservation of momentum. The model is given in Sect. 9.2.2 by
(9.8) and (9.9) as

dp 9
P O

ot T o =0 (11.25)
9¢ 0 45, Op
ot - 8:E(q /r) = Ox (11.26)

Here p and ¢ are the variables we want to control. For pedestrian
evacuation the final density and flow should be equal to zero; that is
p(x,ty) =0 and g(z,ty) = 0. For this model we choose divergence of
pressure dp/0x as distributed control variable u thus giving us the
following representation

dp dq
=— 11.27
ot Ox ( )
9q
=q 11.28
gt = U (11.28)
where 4 = — (r)az (¢? / p) + u is the new control variable. Now let us

consider the uncertainty in the control input for this system. We
can have both matched as well as unmatched uncertainties depend-
ing upon which equation contains the uncertainty. We can have
uncertainty in (11.27) where it enters the equation through the flow
variable ¢ which means that there is an error between the flow control
command and the actual people flow. For this case the uncertainty is
unmatched since ¢ is the “conceptual” control input to this equation
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and is not the actual control input (11.28). We can also have uncer-
tainty in the control variable dp/Jdx in which case the uncertainty
is matched and we can have both. The control design scheme in all
cases is that of robust backstepping [27] where we do a combination
of backstepping and Lyapunov redesign. Now let us discuss these
cases one by one.

11.3.1 Robust Backstepping: Unmatched Uncertainty

Let us first consider the uncertainty in the input ¢ to the nominal
system (11.27). This means that there is an error in the actual flow
control command ¢ and the actual people flow of people. The control
design strategy here is robust backstepping which is the combina-
tion of backstepping and Lyapunov redesign. The uncertain model is
given as

0
af =~ (a+0) (11.29)
gz = (11.30)

where 0 = 0(t,u, p) is the unknown function which takes care of the
disturbance in the input ¢ to (11.27). The uncertain term for the
overall system (11.30) is unmatched as it does not enter the system
at the same point as the input @ even though it enters equation
(11.27) through the conceptual input ¢q. As a first step we design a
robust control for (11.30) using Lyapunov redesign technique and in
the next step find the control law for the overall system (11.30) using
backstepping.

1. Lyapunov redesign: The first step is to design a robust con-
troller for (11.29) using Lyapunov redesign method. The goal is to
design robust control law for (11.29) as

q=G(p) +v==Glp) (11.31)

such that we achieve closed loop stability and asymptotic attenuation
of O(t,u,p). G(p) in (11.31) achieves closed loop stability and v
asymptotically attenuates the effect of 6(¢, u, p). The function G(p) is
designed from the feedback linearization of nominal model (11.27) for
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(11.29) and v will be designed by using Lyapunov redesign method.
The nominal model (11.27) is given as

ap dq

ot ox

The stabilizing feedback controller ¢ = G(p) for this nominal model
from (9.30) given in Chap. 9 is

Glp) = —D/w PP i (11.32)
p)= 0 8m2 '
which gives the conceptual nominal closed-loop system as
dp 9?p
-D = 11.
ot Ox? 0 (11.33)

The nominal closed loop model (11.33) has an exponentially stable
origin and there exists a Lyapunov function V(¢) given by (9.19)
which satisfies d‘ggt) < —pV(t) with 8 = 2DC~!. Now by using
(11.32) the control law (11.31) becomes

x 82p
q= —D/amzdm—l—v (11.34)
0

which gives the following closed-loop dynamics for (11.27)
op D82p v
ot dz?  Ox

Thus the error in the closed loop dynamics (11.33) and (11.35) due
to input uncertainty is given by

=0 (11.35)

ov
0(t,p,u) = ~ 9 (11.36)
The magnitude of this uncertain term with respect to Lo norm is
given by [|0(t, p,u)||, = — ||0v/0x||, which due to Sobolev inequality
(9.21) is
16t p, )l < 0], (11.37)

where v = C~1. Let us now apply control law (11.33) to the input-
uncertain system (11.29) so that the closed-loop dynamics take the
form

op B D82p ov 00

ot 002 " 0r  or 0 (11.38)
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Let us choose the Lyapunov function V(¢) for (11.29) same as before.
To design v we find the rate of change of Lyapunov function as

oV (t) s [T v L 9
< — — —
g <~ Dllel /0 P oy e /0 P oz 1

Now let us define § = 99/dz and a new control variable ¢ = dv/dz.
Therefore we have

L L
W (1) < —DHpH% —/ p@dm—/ pOdx (11.39)
ot 0 0

Now let us apply the Holders inequality to the second integral of
(11.39). This results in the following

MO < Dlolk - [ otz ol 9],

From Sobolev inequality (9.21) we have Hé“2: 1060/0x|y, > C~1||0]|,,

thus by using this relation in conjunction with (11.37) we get the rate
of change of Lyapunov function as

oV (t) L _ .
o <-Dlol3— [ pide=C ol ol,  (1140)
0
Now let us choose the control law as
. n
= — t
==, rlat)
or
L
v = —/ K pdx (11.41)
1-k
0
where n(p,t) > v(p,t). Using this control law in (11.41) we get
dV (t) 2 2|l M -1
<-D — c -1
R T Y N IR

which is negative semi-definite as long as C~! — 1 > 0 thus giving
us asymptotic stability. Therefore robust control that stabilizes the
uncertain model (11.29) is given as

L

[ 9% 7
q= —D/ D2 dm — / 1— Kpdm (11.42)
0 0
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2. Control by backstepping method: The next step is to design a feed-
back controller for overall system (11.30) using backstepping method.
The goal is to design feedback control law u to stabilize the overall
system from the knowledge of Lyapunov function V' (¢) for (11.29)
and modifying it. We proceed with the control design as follows

1. First design a conceptual control law ¢ = G(p) for (11.29)
from the previous step to stabilize origin p(z,t) = 0. With this
control law the conceptual closed loop dynamics for (11.29) are
asymptotically stable and there exists a Lyapunov function to
(9.19) which satisfies d‘gt(t) < =BV ().

2. Since ¢ is not the actual control variable, defining the difference
between ¢ and G (p) by an error variable z = g — G (p), we get
the following modified dynamics.

odp  0G(p) 0z
ot~ Oz Ox (11.43)

0z
g = Un (11.44)

where u, = 4 — 0G(p) /0t is the new control variable.

3. Now let us modify the Lyapunov functional by adding the error
term to it as in (9.34) which is given by

L L
1 1 1
Valt) =V + el =, [ ol dot ) [1afdo
0 0

with z = ¢ — G (p). The control law wu,, is given by (9.35) as
0z
-1
P oz
This control ensures that the origin of the system (11.43) and
(11.44) is asymptotically stable.

Thus the final robust feedback control law for (11.29) and (11.30) is
given by the following partial differential-integral equation

U= up + aGaip) + ai: (@®/p) (11.46)

up(z,t) = —Kz— 2 (11.45)

oOm?2

x L
with w,(z,t) given by (11.45) and G(p) = —D [ & dm— [ " pdx.
0 0
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11.3.2 Robust Control: Matched Uncertainty

Let us consider the uncertainty in the input to the overall system
(11.26) which means that there is an error between the actual value
and control command for gradient of pressure dp/dz. By assuming
the uncertainty in input w in second equation we have our input
uncertain model as

op dq
= — 11.47
8t ox ( )
dq
o = o T/P) p+9) (11.48)
Here the uncertainty is matched as it enters the system at the same
point as actual control input u. With |0(¢,u,p)| = 0 the nominal

model for this system is given by (11.27) and (11.28). As a first step
towards the control design we design feedback control for the nominal
model (the system without disturbance) by applying backstepping
technique. After that the robust control for the uncertain system
(11.48) is designed using Lyapunov redesign technique. We proceed
with the control design as follows

1. Control by backstepping method: The first step is to design a
feedback controller u = —dp/dx for the nominal two-equation
system (11.27) and (11.28) using backstepping technique. The
controller is given by (9.36) as

op 9G (p) 9 9
= — = U 11.4
u=—g =unt 4 (@/p) (11.49)
where u,, is given by (9.35) as un = —Kz—z 1pgz, with
z=q—G(p) and G(p) = —D fo onadm. The nominal system

(11.27) and (11.28) is asymptotically stable and there exists a
Lyapunov function V,(t) given by (11.27) as

L L
Va(t):x/(t)+§|yz|y§:;/ |p|2dx+;/0 2?de (11.50)

which satisfies dv“(t < —2BV,(t) with 8 = 2DC~!

2. Lyapunov redesign: The next step is to design a robust control
for the uncertain model (11.47) and (11.48) using Lyapunov
redesign method. The goal is to design feedback control law
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U=u+v (11.51)

such that we achieve closed loop stability and asymptotic atten-

uation of 6(t,u, p). w is given by (11.49) and v will be designed

by using Lyapunov redesign method. Now with the feedback
L

controller & = w4+ v or p = [ 4dxz + v the error in the closed-

0
loop dynamics for the nominal and actual models due to the
input uncertain term is

ov

9(t7p7u) = _8x

The magnitude of this uncertain term with respect to Ly norm

is given by
v
ox

which by using Sobolev inequality can be shown as

”9(t7 P, u)”2 -

2

10Ct, )]y < =7 lvll; (11.52)

where v = C~!. After applying control law 11.51 the rate of
change of Lyapunov functional V,(t) is

L L
dVa (t) 2 2 ov 00
< _ _ _ _
i <Dl - K113 [ oo [ oy s
0 0
or
dV, (t) r 0 r 06
alt) _ - v,
i@ = 28V, (t) /pamdm /pamdx (11.53)
0 0

Let us define & = 9(v)/dx and 0 = () /0, therefore (11.53)
becomes

L

L
< =28V, (t) — [ ppdz — [ pbdx (11.54)
[re]

dV, (t)
dt
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By applying Holders inequality and Sobolev inequality (9.21)
to the third term in the above equation and then by using
(11.52) we have

L
dv, (t N _ N
o < opvi - [ pada— ol loly (1155)
0

Let us choose the control law as before

Ui

YTk

pz,t)

or

Loy
S d 11.56
e R (1156)

where n(p,t) > v(p,t). Using this control law (11.54) becomes

av; (t)
dt

n

L (c™t-1)

2

< —26V, (t) — |0l

Hence we have asymptotic stability as long as (C~! —1 > 0).
Thus the robust feedback control is given as 4 = u + v with u
given by (11.49)and v is given as

L
n
= — d 11.
v /1_ﬁpm (11.57)
0

11.3.3 Robust Control: Both Matched
and Unmatched Uncertainties

Now let us consider both matched and unmatched uncertainties for
the two-equation model. This means that there is uncertainty in the
input dp/dx to the overall system (11.25) and (11.26) and also in
the input ¢ to (11.25) in the flow. Therefore we have our uncertain
model as

op 0

- _8x(q+91) (11.58)
dqg 0 q> 0
o = —&E( p )+ 8$(p—|—92) (11.59)
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Here the uncertainties are both matched as well as unmatched. The
errors #; and 2 are given by (11.36) and (11.52) as 6,(t,p,u) =
—0v1/0x and Os(t, p,u) = —dve/Ox respectively and are bounded
as 101 (¢ p, w)lly < 7 llonly and [[Ba(t, p. )]y < 5 [[vall,. The control
design scheme will be a combination of the designs for matched and
unmatched uncertainties obtained in Sects. 11.3.1 and 11.3.2. We
proceed with the control design as follows

1. Control by Lyapunov redesign: The first step is to design a
robust feedback controller ¢ = G(p) + v1 for (11.58) using Lya-
punov redesign technique. The control is given by (11.43) as

x L
o2
q= —D/ amp? dm — / 1 2 /{pdm (11.60)
0 0

L
with v1 = — [ /1 — kpdz. The controller stabilizes (11.59) in
0

presence of uncertainty ;. The Lyapunov function is given by
(11.33) as V(1) = —=1/2p|l5 .

2. Control by backstepping: The next step is to design a controller
for the nominal model (model without uncertainty ;) using
the backstepping approach. The model given by (11.29) and
(11.30) is the nominal model

dp
=— 0
8q__8(q2)+8p__8(q2)+u (11.61)
ot Ox p oxr  Ox p ’
The controller v = —gz is given by (11.46) as the following
partial differential-integral equation
oG (p 0
U= u, + 8; ) + ax(qz/p) (11.62)

The control law wu, (z,t) is given by (11.45) as u, (z,t) =
_ _ x

—Kz— z_lpg; with z = ¢— G (p) and G(p) = —D [ g;pzdm—
0
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L
/ " _pdx. The modified Lyapunov function for this system is
0

L L
Va(t) = Vi($) + L l)2 = /O pl2de+ ) /O 122 da

3. Control by Lyapunov redesign: In the final step we design the
robust feedback control & = u+wvy for overall system (11.60) us-
ing Lyapunov redesign obtained in Sect. 11.3.2. The feedback
control is thus given as

L
a:u—i—vg:u—/ K pdx (11.63)
1—k
0

The control law u is given by (11.62). The Lyapunov function for
this system is same as in the previous step. Therefore we achieve
asymptotic stability and disturbance attenuation with this controller.

In this chapter we designed robust feedback controllers for 1-D
case. We designed controllers for uncertainty in the input. For one-
equation model the uncertainty is matched and we used the method
of Lyapunov redesign which achieved the attenuation of disturbance.
For the two-equation model we discussed both matched as well as
unmatched uncertainties and a combination of both. We used the
method of robust backstepping which is a combination of Lyapunov
redesign and backstepping. In all the controllers we achieved both
asymptotic stability and disturbance attenuation.

11.4 Computer Code

In this section the code used for the above simulations is included.
The code is in matlab and consists of m-file named robust 1d

11.4.1 robust 1d

L=2; %hhlength

T=1; Y%%khkhtotal time

n=30; %h% space samples

d_x=L/n; %%h%k%h spacing in x-direction
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d_t=0.002; %kk%kh%s spacing in time
N=T/d_t; %hhhh/h time samples
V=4,

D=0.9;

rm=10;

h=d_x;

g=d_t;

s=(g/h);

f=(g/(h"2));

K=g/(h"2);

x=[0:d_x:L];

t1=[0:d_t:T];

std=L/10;meanx=1; Row_0 = ((10/(std*sqrt(2*pi)))/33)
*xexp (- (x-meanx) . 2./(2*%std"2));
r(1,1:n+1)=Row_0(1:n+1);

V2=20; %%%hh%% Initial Condition

for t=1:N; % Total time = t* d_t

for j=2:n+1;

if j==2;r(t,j-1)=0*r(t,j);end

if j==n+1 ; r(t,j+1)=1*r(t,j);end

r(t+1,j)=0.5%(r(t,j+L)+r(t,j-1))-(s/2)*V. ...

*(r(t,j+1)-r(t,j-1));

if t > 49 & t < 81

r(t+1,j)=0.5%(r(t,j+1)
+r(t,j-1))-(s/2)*(V-V2) ... .%%%%step noise

*(r(t,j+D)-r(t,j-1));

w(t+l,j)=r(t+1,j)*(1-r(t+1,j)./rm);

d_w(t+1,j)=(1/h) *(w(t+1,j)-w(t+1,j-1));

v(t+1l,j)=—(w(t+1,j) . *xw(t+1,3));%./d_w(t+1,j);

r(t+1,j)=0.5%(r(t,j+1)
+r(t,j-1))-(s/2)*(V-V2) ... .%%%%step noise

*(r(t,j+)-r(t,j-1))+v(t+1,3);

end
end
end
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x2=[0:d_x:L+d_x];
figure(1)
plot(x2,r(1,:),’g’);
hold on
plot(x2,r(20,:),’b’);
plot (x2,r(30,:),°c’);
plot(x2,r(50,:),’r’);
plot (x2,r(80,:),°k?);
plot(x2,r(100,:),’m’);
plot(x2,r(150,:),’b’);
plot(x2,r(250,:),%y’);
hold off

xlabel (’Distance’)
ylabel(’Density’)
figure(2)

[c,h1] = contour(x2,t1,r); clabel(c,hl,’manual’);
xlabel(’Distance’)
ylabel(’Time’)
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