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Preface

El que sabe que sabe es un sabio. Śıguelo.
El que no sabe que sabe esta dormido. Despiértalo.

El que sabe que no sabe es sencillo. Instrúyelo.
El que no sabe que no sabe es un necio. Apártate de él

(He who knows and knows he knows, he is wise. Follow him.
He who knows and knows not he knows, he is asleep. Wake him.

He who knows not and knows he knows not, he is simple. Teach him.
He who knows not and knows not he knows not, he is a fool. Shun him.)

Proverbio Arabe.
Corrige al sabio y lo harás más sabio, corrige al necio y lo harás tu enemigo.

Sedulo curavi, humanas actiones non ridere, non lugere, neque detestari, sed intelligere.
(I have made a ceaseless effort not to ridicule, not to bewail, not to scorn human actions, but to

understand them.)

Benedictus de Spinoza (1632-1677).

At its introduction the Behavioral Approach for systems and control offered a novel point
of view: it is a representation free framework. By now is a well developed theory with
applications throughout the field. This viewpoint was born out of the necessity to provide
more effective and general tools for the modelling and control design process of physical
systems appearing in engineering. The main goal of the Behavioral Approach is to develop
a suitable mathematical framework for discussing dynamical systems aimed at modelling,
analysis, and synthesis. Hence, computer assisted modelling and control considers systems
that are:

a. Dynamical.

V
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b. Open.

c. Interconnected.

d. Modular.

With this in mind, we shall consider a polynomial matrix approach as a particular case
of our general behavioral point of view. In this thesis we develop theory to enrich the
behavioral approach. We analyze moreover numerical problems that arise during actual
computer implementations of control algorithms. In this sense, we warn about (until now)
unknown numerical complications that appear in this kind of implementations but we also
propose solutions for this. Proceeding this way, we reduce the gap between theory and
practice.
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Chapter 1

Motivating the Behavioral Approach

Modelling and Control of physical systems are well developed branches of Systems and
Control Theory and Control Engineering. Traditionally, these branches of human knowl-
edge have been developed within a paradigmatic perspective of input/output thinking: the
way an abstraction is obtained from the physical entity involves the notions of input and
output variables, and the ideas of cause and effect1. This process is informally referred
to as modelling. In this chapter our aim is to reconsider the input/output paradigm in
modelling by studying some fundamental questions concerning the modelling of physical
systems. After doing this, we hope to understand better why the traditional way of mod-
elling and control of systems may not be the best one. We propose to use ideas from the
Behavioral Approach to Systems and Control. This approach does not wish to neglect or
forget the paradigmatic input/output approach; rather it offers new possibilities.

1.1 Suitable Modelling and Control of Systems

What is a system? This is the first question we have to answer in order to discuss the
topic of this chapter, modelling and control from a different point of view: the Behavioral
Approach. As a matter of fact, etymology teaches us that the word system comes from late
Latin systemat (systema), from Greek systemat-, systema, from synistanai: to combine,
from syn (together) + histanai (to cause, to stand): A system is a regularly interacting or
interdependent group of items forming a unified whole. For us, if those items are physical
elements, then we talk about a physical system.
Intuitively, when we face a phenomenon we observe a series of events, called the outcomes.

1However we have to reflect about the following. Although modelling methods do not impose a cause
- effect make up in the resulting equations, when the to be modeled system is considered linear, we can
compute the associated impedance matrix which induces an input/output structure of the model [83].
Naturally this is not the case if we consider our system as a nonlinear one (modeled for instance by Euler
- Lagrange equations, [83]). Imposing an input/output form in this case has to be done a posteriori for
instance to test the model via computer simulations and further to design a controller. In this paragraph
we mean we have to follow the modelling - testing (via simulations) - controller design (also helped by
numerical simulations) process in order to implement computationally a complete design.
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 1–11 (2008)
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2 Chapter 1. Motivating the Behavioral Approach

Looking for a model of the outcomes that can appear, we have to consider that (before
any modelling) the outcomes are in a set, which we will call the universum. In obtaining
a model of the phenomenon, the outcomes are declared to belong to the behavior of the
model, a subset of the universum. This subset is called the mathematical model. Thus we
arrive at the following definition:

Definition 1 A mathematical model is a subset B of a set U, called the universum, or the
set of outcomes:

B ⊆ U. (1.1)

The subset B is called the behavior of the model.

What does modelling a system mean? For us, a system2 will be any physical structure that
we want to obtain a model of. Traditionally, such model is a mathematical abstraction in
terms of differential (or difference) equations. The way a model is obtained depends on
the point of view of the modeler. We will argue that the Behavioral Approach offers a
generalized perspective to modelling.
When is a representation of a system considered suitable? Again the answer depends on
the modelers considerations and goals. We will argue that providing a suitable abstraction
is one of the goals of the Behavioral Approach to modelling. If we have a good model
available, we shall be able to go further: designing a controller for our system, also from a
Behavioral perspective.

1.2 Paradigms in Modelling

Before the conception and development of the behavioral approach, researchers were look-
ing for an adequate method to model systems from a very general point of view (or from
the most general point of view as possible). We pose the questions given above because
modelling implies to isolate (mentally) a portion of the universe (fixing then a boundary)
we are interested in (the system) in order to study it. Anything outside the boundary be-
comes the environment of the system. However, how general can a modelling approach be?
How to constrain it or how to choose a good enough framework to work with? In order to
give an answer to that, we have to create, to develop such a modelling tool from the most
general point of view we can provide for studying macroscopic3 systems: thermodynamics.
Thermodynamics says that an isolated system is one which does not allow exchange of

2The Behavioral Approach deals with a deterministic system concept.
3The state of a system in mechanics is completely specified at a given instant of time if the position

and velocity of each mass point of the system are given. Naturally, for a system constituted of n mass
points, we would need to know 6n variables in every instant of time. In thermodynamics a different
concept of the state is considered. In fact, the usual dynamical definition of state would be inopportune
because all the systems which are dealt with in thermodynamics contain a very large number of mass
points (atoms, molecules) so it would be rather impossible to determine those 6n variables for all of them.
Moreover, it would be unnecessary to do so, because the main variables thermodynamics considers are
average properties of the system, and hence a detailed knowledge of the motion of each mass point would
be superfluous. In addition, in almost every system studied by thermodynamics, one assumes that the
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matter or energy through its boundary. A closed system is defined as the one which does
allow interchange of energy but not of matter with the environment. Finally, an open
system considers both energy and matter circulating through its boundary as possible [22].
Linking these universal laws with a dynamical systems framework4, yields the definitions
provided in the following section which are key for the behavioral approach: closed and
open dynamical systems5.

1.2.1 Closed dynamical systems

Closed dynamical systems have been studied extensively in mathematics. This kind of
systems can be represented6 by the class dx

dt
= f(x) (see [89]). Note that the evolution in

time of this kind of flows is described by the dynamical laws (in terms of the vector field
f) and the initial state x0 = x(0) associated to the dynamical system at hand. In this
case, from definition 1, B is given by the set of all state trajectories. Improving the latter
flow model by taking into account an output the modeler can observe, would yield to the
following observed flow given by

dx

dt
= f(x), y = h(x) (1.2)

Although also for this case B is the set of all output trajectories y, we have to note that it
may be impossible to express the behavior B as the set of solutions of a differential equation
involving only y [89]. The auxiliary nature of the variable x (the state) then arises. In fact,
the state permits to define an energy flux through the entire system involved. To clarify
the latter, let us consider that equation 1.2 has as particular form dx

dt
= Ax, y = Cx. An

energetic interpretation scheme for such expression is given in figure 1.1. We can appreciate
that energy transformation and dissipation are linked to the matrix A, and an information
extraction map is associated to the matrix C. However, this scheme is based strongly on
one single point belonging to the state space of this system (denoted in the figure as x0).
Thus we realize that, in order to construct the state of the system we are forced to start
with an initial state, which appears to imply a vicious circle.

different parts of the system either are at rest or are moving so slowly that kinetic energies can be neglected
[22].

4Let us consider for a moment the thermodynamics state equation f(P, V, T ) = 0 (P=pressure,
V=volume,T=temperature). Its form depends on the substance under study. Any variable there can
be expressed as a function of the other two. Therefore, the state of the system is completely determined
by any two of the three quantities P, V, T . For instance, if we consider T constant, a point in the (V, P )
plane defines a state of the system. Such a thermodynamical state alone is not sufficient for the determi-
nation of the dynamical state. With increasing time, the system exists successively in all these dynamical
states that correspond to the given thermodynamical state. From this point of view, we may say that
a thermodynamical state is the ensemble of all dynamical states through which, as a result of molecular
motion, the system is rapidly passing [22].

5Nevertheless these terms in the Behavioral Approach are stronger than in Thermodynamics.
6This form is also known as the zero input form of a system, [52]



4 Chapter 1. Motivating the Behavioral Approach

Information

map

C

State
space

Output
space

Energy
transformation

map

A
xo

extraction

Figure 1.1: Energy transformation in a linear system.

1.2.2 Open dynamical systems and the input/output approach

In contrast, a dynamical system that interacts with its environment is referred to as
open [89]. Such interaction is done exchanging a physical quantity as mass or energy,
or it may consist simply of exchange of information. In this case, the evolution in time is
characterized by the dynamical laws, the initial state and, in addition, by the influence of
the environment. The latter may take the form of an input function that drives the system.
For instance, let us consider the following input/output form of a dynamical system:

f1

(

w1,
dw1

dt
,
d2w1

dt2
, . . . , t

)

= f2

(

w2,
dw2

dt
,
d2w2

dt2
. . . , t

)

(1.3)

with the following associated spaces: T = R (time), W = I × Y (input × output signal
spaces) and B = all input/output pairs of trajectories. Depending of the nature of the
system we deal with, it may be difficult to define what variables deserve the honor of being
called inputs or outputs just by inspection of equation 1.3. We would need to know more
about the nature of the system to decide whether obtaining a model within an input/output
framework is adequate or not. It might not be natural.
For the time being, let us assume that we have been able to find an input/output repre-
sentation for our plant, which is assumed linear, causal, time invariant and relaxed (initial
conditions equal to zero) at t = 0. Then for a given input u the corresponding output y
can be expressed by means of

y(t) =

∫ t

0

H(t − τ)u(τ)dτ (1.4)
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SYSTEM

Cause
(Input) (Output)

Effect

Figure 1.2: Input/Output systems.

where H is the impulse response matrix. If we do not assume the plant to be relaxed at
t = 0, then after applying the input u part of the response y will be excited by the initial
conditions and for different initial conditions, different responses will be excited by the
same input u. Hence, the input/output framework fails dealing with initial conditions.
On the other hand, let us consider the representation of a plant as it is given by equation 1.2
(closed dynamical system). If we think of it as an open system, we obtain

dx

dt
= f (x, u) , y = h (x, u) (1.5)

Observing the latter expression we can wonder which of the variables u, y and x deserves
to be called input and which of the variables output of the plant?
In order to show how ambiguous the choice of input and output may be, let us consider
the example provided below.

Example 1 [86] Let us consider a mechanical system of k points with masses mi, i =
1, 2, . . . , k placed at positions qi, i = 1, 2, . . . , k with Fi, i = 1, 2, . . . , k forces acting on
them. We want to determine what set of variables deserves to be called input and what set
of variables will be considered as output of this system.
Newton’s second law establishes that the particles are related by

miq̈i = Fi

As we see, our natural experience indicates to consider the forces Fi as inputs and the
resulting positions qi as outputs. Nevertheless, considering that the forces act in a potential
field V with the paths of the qi’s determined by some external action, the relation becomes

Fi = −∂V (q1, q2, . . . , qk)

∂qi

Now, the roles have been interchanged. The qi’s are inputs and the Fi’s are outputs.
Now, let us combine the equations give above in order to get an expression to determine
the motion of these particles. Thus we obtain

miq̈i +
∂V (q1, q2, . . . , qk)

∂qi

= 0
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The latter model says that our mechanical system has no external influence from its envi-
ronment (we would be obtaining its zero input response). The states are qi and pi = miq̇
for i = 1, 2, . . . , k and the outputs are qi and Fi. The motion would be caused by initial
conditions, i.e., the initial state.
Then, as a result of this example, we realize that there are situations where assigning the
role of input/output to some set of variables may be unclear.

Not always a set of differential equations represent suitably the behavior of a physical
system. Thermal systems are classical examples of this as we show in the example given
next.

Example 2 A thermodynamic engine is illustrated in figure 1.3. There is a heating ter-
minal which concerns two variables: the heat supplied by the environment Qh and an asso-
ciated temperature Th. Also, at the cooling side, we have Qc and Tc as terminal variables.
The dual nature of the work (either applied to or developed by the machine) implies a
bidirectional terminal for this variable.

Thermodynamic 

Engine

(Q
h,Th

)

 

Heating
terminal

(Qc ,Tc )

Cooling
terminal

W

Work 
terminal

Figure 1.3: Thermal system.

The system shown in figure 1.3 involves the following: a time axis T = R, variable of
interest (Qh, Th, Qc, Tc, W ) that takes its values in what we call the signal space W, with
W = R+ ×R+ ×R+ ×R+ ×R, and a behavior B, a suitable family of trajectories. B will
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be restricted by the first and second law of thermodynamics:
∮

(Qh − Qc − W ) dt = 0 (1.6)

∮ (

Qc

Tc

)

dt ≥
∮ (

Qh

Th

)

dt (1.7)

These laws deal with open systems but not with input/output systems. In order to impose
an input/output structure to the diagram displayed in figure 1.3 we have to act against the
nature of the physical system involved in order to fit in such action/reaction paradigm. The
resulting diagram would be figure 1.4. Equations (1.6) and (1.7) do not correspond to such
a cause/effect diagram.

Engine

WoWi
Qh
Qc

Th
Tc

Thermodynamic

Figure 1.4: Is an Input/Output structure always suitable?.

Hence, after explaining the ideas given above, we can conclude that a framework defined
as B ⊆ U has better perspectives because of its flexibility and universality. In fact, such
definition will be more precise in section 2.2.
From the ideas given above, we realize that a dynamical system does not always work as a
signal processor, i.e., just mapping inputs into outputs. Rather a physical system will be
considered as an open dynamical system which does not impose restrictions on the signal
flow of the signals associated to it. As a consequence, although a dynamical system may
be represented as a block diagram, or as as a black box, the traditional unidirectional
input/output flow (as it is shown in figure 1.2) will seldomly be a given structure. In
fact, more frequently we shall meet systems interacting with the environment by means of
bidirectional flows of signals. But always, as we showed in example 1.3, the interaction of
the system with the universe will be via terminal variables. The latter consideration does
not impose directional restrictions on the interaction of the system with its environment,
(see figure 1.5).
Moreover, from the latter diagrams we can infer now how to describe interaction between
systems, namely, how to interconnect systems. What we said before about the flow of
signals for individual blocks remains valid for the interconnection of two blocks. An in-
put/output flow or a bidirectional flow in the blocks will not be the rule, interconnection
of blocks through terminals is the key again (see figure 1.6).
Interconnection is a word that rings a bell to engineers because it is associated with sim-
ulation of interconnected systems. Obviously, before being able to simulate, we have to
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Figure 1.5: Does there exist actual signal flow in dynamical systems?
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Figure 1.6: General scheme for interconnection.

obtain some representation of the plant or interacting systems. Traditionally, within the in-
put/output approach we have to adjust physical interconnections to signal flow assignment.
For instance, although drawing a block diagram for a simple RC-circuit is simple, it is in
general not immediately clear how to represent it as the interconnection of input/output
systems. Let us take a look at the following example.

Example 3 Consider the simple network given by the following block diagram, where R
is a resistor (in ohms) and C is a capacitor (in farads).

Applying Kirchhoff’s voltage and current laws (KVL and KCL respectively) we get the
following equations for the model
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Vi Vo
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Figure 1.7: RC circuit diagram.

I =
Vi − Vo

R
, Vo =

1

C

∫

Idt

The corresponding diagram is as shown below.

+ _ R

1

Cs

1Vi(s) Vo(s)I s )(

Figure 1.8: RC circuit block diagram.

Thus, in order to simulate such a simple network (using the popular SIMULINK [49]
we would need to draw a block diagram for the resistor and the capacitor and draw the
final interconnected input/output representation. Moreover, suppose we want to model a
more complicated circuit consisting of many components (resistors, capacitors, inductors,
transformers, etc.) We would need to proceed analogously as we did for the simple circuit.
We learn from this example that physical interconnections do not necessarily coincide with
the signal flow of the diagram we need to simulate the system from. Thus, although
useful, sometimes a transfer function or transfer matrix approach may not be the best
one. Nevertheless such input/output - based software is widely used in industry and
in the academic world. An example of software which respects the system’s physical
interconnections is MODELICA [50]. On the other hand, we have not said anything about
modelling of distributed parameters systems, like electric cables, antennas, etc. They are
difficult to study within this traditional viewpoint because partial differential equations
come into the picture.

1.2.3 More about the input/output approach

The latter section may seem to indicate that the input/output approach deals only with
linear systems. This is not the case. The input/output framework also applies to nonlinear
systems. In this case, operators between suitable spaces are defined in order to represent
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the systems. The way they interact is by means of energy exchange; passivity is the keyword
(different kinds of passive operators are used). Analysis and synthesis of interconnected
systems are investigated and developed in this spirit. Nevertheless, even this formal frame-
work ([85] and [80]), although well applicable to real physical systems, ([53], [42], [94],) is
not adequate enough to model some systems where interchange of matter and energy actu-
ally occurs, as we already explained. The latter again requires to introduce input/output
maps, regardless of the physical nature of the system.

1.2.4 The behavior of the system is the key

Motivated by the considerations in the latter sections, a more general viewpoint is required.
The central issue seems to be: how does the system under consideration behave? What does
it do? The answer is that a system behaves displaying by different trajectories with respect
to the time. Therefore, we should define the behavior of a system as the set of all trajectories
of the system variables that, according to the mathematical model, are possible.

Time

Event space

Trajectories allowed

Figure 1.9: The permitted trajectories defines the behavior.

1.2.5 Some other frameworks for systems and control

In the past sections we have tried to motivate the behavioral perspective. Nevertheless,
there are other viewpoints to systems and control. Without going into details we mention
the following just to give an idea of how different are some other approaches with respect
to our Behavioral Approach:

a. Input/Output blocks: Wiener [84], Heaviside (see for instance [57] and references
therein).
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b. Input/State/Output systems, Kalman [36]. The state is an important addition be-
cause it avoids to think of the I/O approach as a map and allows us to take care of
initial conditions.

c. Power Ports - Bond Graphs: Ports; Tearing and zooming of subsystems; energy
storage, transmission and dissipation: Paynter [55], Kron (see for instance [39], a
very interesting paper), Karnopp (see [37] and references therein).

d. Geometric Control: Poincaré (see [26] and references therein), Hermann (see for
instance [28]), Brockett [13].

e. Behavioral Control. A dynamical system is considered as a collection of trajectories.
Control is viewed as interconnection of components in open systems, considering
feedback as particular case of interconnecting: Willems [58].

f. Port Hamiltonian Systems: Geometric modelling, control by interconnection, energy
shaping, damping injection: van der Schaft [67], Ortega [53].



Chapter 2

Behavioral framework

2.1 Modelling by Tearing and Zooming

In general, a physical system is constituted of smaller structures called subsystems. As
a consequence, a system is said to be modular. Such structures are interconnected by
means of terminals. A system interacts with its environment via such terminals. We shall
associate to each terminal a certain number of physical variables. Hence, each subsystem
will display a terminal behavior, understood informally now as the evolution in time of all
the physical signals or variables associated with each terminal.

2.1.1 Constitutive models

In order to illustrate the ideas exposed in the latter paragraph, in this section we introduce
an example of modelling a physical system. The modelling takes place by the process
of tearing and zooming, i.e. by considering the system as the interconnection of simpler
subsystems. A system may be conceived as a black box with terminals. For the classical
input/output approach such terminals would be labeled as inputs and outputs, but the
Behavioral Approach is not constrained in that sense. Rather, a set of terminals is consid-
ered as the media utilized by the system (the black box) to interact with its environment.
The terminals are then the interface used to exchange information with the external world.
Assigning a vector valued variable si = (s1, s2, ..., sn) ∈ Si (for some set Si) to the i − th
terminal, we define the terminal signal space of the system as S = S1 × S2 . . . Sn. If we
consider our variables si as functions of another set variables x, called the independent
variables (such as space, time, etc.) defined as belonging to an indexing set I, the set of
all possible outcomes our system can -in principle- take is the set of all possible maps from
I to S, i.e., our universum in this case is U = S

I. Nevertheless, the system is governed as
well by restricting laws (internal constraints) in such a way that the actual set of allowed
signals become just a subset B ⊆ S

I which represents the permitted terminal behavior of
the system involved. Such subset is called the terminal behavior. The latter idea will be
illustrated by means of a modelling example below.
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 13–34 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Figure 2.1: A black box model interacts via terminals.

The way a relatively complex system is modelled is by tearing the system into subsystems
and then zooming in on the individual subsystems. Hence, a model of a physical system
will be characterized by the following elements (see also [17] and [87]:

a. Modules, which represent subsystems.
A module is characterized by its type, parametrization, and parameter values. Once
we have chosen the type of the module (which specifies a set of possible behaviors),
we fix the physical variables corresponding to an ordered set of terminals. Para-
metrization is concerned with mapping the inherent parameters of the module to a
suitable behavior. Then when we define a module in this way, we actually obtain the
behavior of the terminal variables of this module.

b. Terminals, the physical links between subsystems.
A terminal is specified by its type. The type imposes an ordered set of terminal
variables.

c. The interconnection architecture, the layout of the modules and their interconnection.
It consists of a set of terminal pairs (unordered, disjoint, and with distinct elements).
If a terminal pair belong to such a set, then we say that the terminals are connected.
Naturally, terminal pairs must be of the same kind (electrical, mechanical, etc. This
case is called adapted). When the latter is not possible we need a connector (which
can couple different kinds of terminal variables). Pairing of adapted terminals im-
poses an interconnection law.

d. The manifest variable assignment, the variables we want to study.
We realize that the model (at this stage) will contain, in addition to manifest vari-
ables, latent variables that arise either from interconnecting submodules or from
using them as auxiliary modelling variables.

Example 4 Translational mechanical systems
Consider the mechanical system of figure 2.2. In general, the time evolution of a mechan-
ical system in three dimensions involves translations, as well rotations and deformations.
Nevertheless, we consider its components as ideal elements (non deformable). In this spirit,
in translational mechanical systems we assume that there is no rotation (or it is neglected).
In contrast, if we consider a mechanical system that rotates (with neglectable or zero trans-
lational movement) we call this a rotational mechanical system. The elements we use to
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Figure 2.2: Mechanical structure.

model both kind of structures (translational and rotational) are the same (masses, springs
and dampers), that is why we show only the translational case (in a rotational system torque
plays the role of force). In addition, there exists (mechanical - electrical), (electrical - ther-
mal), etc., analogies. These can be treated in analogous way. In order to model now the
above translational mechanical system, we will first need to describe the following building
blocks, which will be identified later on as the constitutive modules of the system.

Example 5 Translational damper.
This system is used to model energy dissipation. The latter phenomenon appears when
kinetic energy is transformed in thermal energy by viscous friction. Such object requires a
steady force to maintain a certain velocity proportional (in terms of the parameter b) to
the force applied (this is the internal restricting law). It is assumed that kinetic and poten-
tial energy storage phenomena are absent. This mechanical system involves two terminal
variables si = (Fi, qi), i = 1, 2.

. . ( F
2

,q
2

))1q,1F(

b

q

Figure 2.3: Translational damper.

B =

{

(F1, q1, F2, q2) : R → R
4 | F1 = F2, F1 = b

d

dt
(q1 − q2)

}
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Example 6 Translational spring.
A spring is a mechanical object which subject to a force either compresses or elongates
without loss of energy due to friction force. Also, it is assumed that the acceleration of its
parts is neglectable. In figure 2.4 we see that it has two mechanical terminals, to each of
which we associate a force Fi and a position qi. Then in this case si = (Fi, qi), i = 1, 2. The
internal restricting law is known as Hooke’s law. This physical law constrains the terminal
variables to the set B shown below:

( F
1

, q
1

)..)2q,2F(

q

k

Figure 2.4: Translational spring.

Bn =
{

(F1, q1, F2, q2) : R → R
4 | F1 = F2, F1 = k(q1 − q2))

}

Example 7 Translational mass.
A pure translational mass is a rigid mechanical object which is moving through a non-
dissipative environment. It is characterized also by a forces Fi and positions qi. Here
also si = (Fi, qi), i = 1, 2. The internal law which restricts the trajectories of a mass is
Newton’s second law, which links the momentum p = mdq/dt of the mass linearly to the
object’s velocity dq/dt. p is defined as F = dp/dt.
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)) ..1q,1F( m

q

Figure 2.5: Mass.

B =

{

(F1, q1, F2, q2) : R → R
4 | F1 = F2, F1 = m

d2

dt2
(q1 − q2))

}

Now, after the introduction of this set of mechanical modules, we proceed with the mod-
elling process outlined above. That indicates that we have to assign a label to the terminals
of each module, see figure 2.6. Next, by zooming in, in the table below we identify seven
mechanical modules (two dampers, three springs and two masses) plus four connectors.
The terminals are indicated as well as the units of each constitutive subsystem.
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Figure 2.6: Tearing : Labeling modules.

Module Type Terminal Parameter

Connector 1 4-terminal connector (1,2,3,4)
b1 Damper (5,6) b (Ns/m)
k1 Spring (7,8) k (N/m)
k3 Spring (9,10) k (N/m)

Connector 2 3-terminal connector (11,12,13)
m1 Mass (14,15) m (kg)

Connector 3 3-terminal connector (16,17,18)
b2 Damper (19,20) b (Ns/m)
k2 Spring (21,22) k (N/m)

Connector 4 4-terminal connector (23,24,25,26)
m2 Mass (27,28) m (kg)

Next, we define the interconnection architecture to be given by
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Pairing={(2, 5), (3, 7), (4, 9), (6, 11), (8, 12), (13, 14), (15, 16),

(17, 19), (18, 21), (20, 23), (22, 24), (10, 25), (26, 27)}
• Equations for the full behavior
By collecting the behavioral equations of the constitutive modules, we finally obtain the
set of equations that represent a model of the original mechanical system. These equations
describe what we will later call the full behavior of the system.

Module Constitutive Equations

Connector 1 F1 = F2 = F3 = F4

b1 F5 = F6 F5 = b1(q̇5 − q̇6)
k1 F7 = F8 F7 = k1(q7 − q8)
k3 F9 = F10 F9 = k3(q9 − q10)

Connector 2 F11 = F12 = F13

m1 q14 = q15 F14 − F15 = m1q̈14

Connector 3 F16 = F17 = F18

b2 F19 = F20 F19 = b2(q̇19 − q̇20)
Connector 4 F23 = F24 = F25 = F26

m2 q27 = q28 F27 − F28 = m2q̈27

Now we put the information about pairing and interconnection equations in order to show
the relation among the pair terminals in our architecture:

Interconnection Interconnection Equations

(2, 5) q2 = q5 F2 + F5 = 0
(3, 7) q3 = q7 F3 + F7 = 0
(4, 9) q4 = q9 F4 + F9 = 0
(6, 11) q6 = q11 F6 + F11 = 0
(8, 12) q8 = q12 F8 + F12 = 0
(13, 14) q13 = q14 F13 + F14 = 0
(15, 16) q15 = q16 F15 + F16 = 0
(17, 19) q17 = q19 F17 + F19 = 0
(18, 21) q18 = q21 F18 + F21 = 0
(20, 23) q20 = q23 F20 + F23 = 0
(22, 24) q22 = q24 F22 + F24 = 0
(10, 25) q10 = q25 F10 + F25 = 0
(26, 27) q26 = q27 F26 + F27 = 0

All of these equations combined define a latent variable representation (a latent variable
is an auxiliary variable, i.e. a variable we use to represent the variables we are actually
interested in, called the manifest variables and that are denoted by w):

w = (F1, q1, F28, q28)
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with latent variables
� = (F2, q2, ..., F27, q27)

In the next section we formalize the concept of dynamical system.

2.2 Dynamical Systems

In the behavioral approach to systems, a dynamical system is a special case of a mathe-
matical model as defined in the previous chapter. Given is a set of independent variables
denoted by T, often called the time axis and a set of dependent variables W, called the
signal space. The universe U is defined as the set of all functions from T to W and the
behavior B of the model, the set of all possible outcomes, is a subset of the universe U. In
this way we arrive at the following definition of dynamical system:

Definition 2 A dynamical system Σ is a triple Σ = (T, W,B) with T a set, called the
time axis; W a set called the signal space, and B ⊆ W

T is the behavior of the system.

Definition 3 A dynamical system Σ = (T, W,B) is called linear if

a. W is a vector space and

b. The behavior B is a subspace of W
T

The latter is nothing but the superposition principle:

w1, w2 ∈ B, k1, k2 scalars, then k1w1 + k2w2 ∈ B

If the time axis T is a semi-group, and σtw is defined by (σtw)(τ) = w(t+τ) for all t, τ ∈ T,
then we can also define time invariance of a behavior.

Definition 4 A dynamical system Σ = (T, W,B) is called time-invariant if for each tra-
jectory w ∈ B the shifted trajectory σtw is again an element of B, for all t ∈ T.

In this book we deal with systems in which the time axis is equal to the real line R, and
where W is a finite dimensional vector space over the field of real numbers R. We restrict
ourselves moreover to linear and time-invariant systems.

2.2.1 Linear Differential Systems

In this book we will restrict ourselves even more to so-called lumped linear time-invariant
dynamical systems. These are dynamical systems Σ = (R, Rw,B), where R is the time
axis, R

w is the signal space, and where the behavior B is a subset of C∞(R, Rw) (the
space of all infinitely often differentiable functions from R to R

w) consisting of all solutions
of a set of linear, constant coefficient differential equations. It is easily seen that such
dynamical system is linear and time-invariant in the sense defined above. The behavioral
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approach makes a distinction between the behavior as the space of all solutions to a set
of (differential) equations, and the set of equations itself. A set of equations in terms of
which the behavior is defined, is called a representation of the behavior. Such equations
are called behavioral equations as well1. The behavior consists of the solutions to these
equations.

Polynomial Matrices and linear differential systems
In the scope of this work, physical systems are modelled by linear differential systems. That
means that we shall frequently have to deal with systems of linear differential equations.
The number of equations depends on the nature of the systems at hand. However, even for
small sized systems, the mathematical representation may be cumbersome. For instance,
let us consider the example shown in figure 2.2. For simplicity, assume that F1 and F2 are
zero. Then a set of behavioral equations of this system turns out to be:

m1
d2z1

dt2
+ b1

dz1

dt
+ k1z1 + b2

(

dz2

dt
− dz1

dt

)

+ k2(z2 − z1) = 0 (2.1)

m2
d2z2

dt2
+ k3z2 + b2

(

dz2

dt
− dz1

dt

)

+ k2(z2 − z1) = 0 (2.2)

We can imagine that for much bigger systems such a notation (and hence representation)
becomes cumbersome. The latter set of equations is a special case of the general one shown
below:

r110w1 + · · · + r11n11

dn11

dtn11
w1 + · · · + r1w0ww + · · · + r1wn1w

dn1w

dtn1w
ww = 0

...
...

...
...

rg10w1 + · · · + rg1n11

dn11

dtn11
w1 + · · · + rgw0ww + · · · + rgwn1w

dn1w

dtn1w
ww = 0

where we have g scalar differential equations. Each of them involves the scalar variables
w1, w2, ..., ww. A more compact notation for the latter is obtained by defining polynomials
rij(ξ) by rij(ξ) = rij0 + rij1ξ + rij2ξ

2 + . . . + rijnij
ξnij . In this way the above equations can

be re-written as
⎡

⎢

⎣

r11(
d
dt

) . . . r1q(
d
dt

)
...

...
rg1(

d
dt

) . . . rgq(
d
dt

)

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎣

w1

w2
...

ww

⎤

⎥

⎥

⎥

⎦

= 0

If we now introduce a matrix R(ξ) as follows

R(ξ) =

⎡

⎢

⎣

r11(ξ) . . . r1q(ξ)
...

...
rg1(ξ) . . . rgq(ξ)

⎤

⎥

⎦ , (2.3)

1Naturally, discrete systems given in terms of difference equations (T = Z) can also be modelled like
this.
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then these equations obtain the form

R

(

d

dt

)

w = 0. (2.4)

R(ξ) is called a polynomial matrix. A polynomial matrix is a matrix whose entries are
polynomials (in one unknown ξ for lumped systems). Such polynomial matrix can also
be expressed as a matrix polynomial, defined as a polynomial with matrix coefficients:
R(ξ) = R0 + R1ξ + · · · + Rd−1ξ

d−1 + Rdξ
d. Considering the space of all possible solutions

of equation (2.4), this equation defines the system Σ = (R, Rw,B) with

B =

{

w ∈ C∞(R, Rw) | R

(

d

dt

)

w = 0

}

(2.5)

Obviously, this system is linear and time-invariant. Such a system Σ will henceforth
be called a linear differential system2. The set of all linear differential systems with w

variables will be denoted by Lw. Instead of Σ ∈ Lw, we will often simply write B ∈ Lw.
The representation (2.5) of B is called a kernel representation of B, we often write B =
ker(R( d

dt
)).

2.3 Latent variables and elimination

As it was argued in [58], section 6.2, when we obtain a model of a system, in general
we need to introduce a set of auxiliary variables that we later ‘ignore’ after obtaining
the mathematical model of the variables that we are actually interested in (the manifest
variables ). Those auxiliary variables are referred to as latent variables. Thus a model
often has the form of a dynamical system with latent variables, as defined below.

Definition 5 A dynamical system with latent variables is a quadruple ΣL = (T, W, L,Bfull)
where T is the time axis, W is the manifest signal space, L the latent variable space and
Bfull ⊆ (W × L)T. Bfull is referred as to the full behavior of the system.

Definition 6 Let ΣL = (T, W, L,Bfull) be dynamical system with latent variables. The
dynamical system induced by ΣL is defined as Σ = (T, W,B) with the manifest behavior
defined as

B =
{

w ∈ W
T | ∃ � ∈ L

T s.t. (w, �) ∈ Bfull

}

.

If we concentrate attention for a moment on definition 5, we notice that with respect to
definition 6, the latter is obtained from the former after ‘ignoring’ � ∈ L

T. In fact, we have
projected Bfull on the manifest variables w. More formally, defining the projection operator
as Πw : (W × L)T → W

T by Πw(w, �) := w we notice how the idea explained above can be
performed. This allows us to write B = Πw(Bfull).

2Note that a linear differential system is time invariant by definition, in line with the convention used
in [58], for brevity time invariance is not included in the name
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Now, assume that ΣL is a linear differential system. We want to know whether the as-
sociated system Σ induced by ΣL is also a linear differential system. For this Πw needs
to preserve linearity and time-invariance. Due to the fact that in this work we consider
system trajectories from C∞(R, Rw), the following theorem, called elimination theorem, is
valid (see [58], page 206).

Theorem 1 Let Bfull ∈ Lw+�. Consider the behavior defined by

B :=
{

w ∈ C∞(R, Rw) | ∃ � ∈ C∞(R, R�) s.t. (w, �) ∈ Bfull

}

Then B ∈ Lw.

The latter theorem allows us to get B ∈ Lw from Bfull ∈ Lw+� by eliminating the latent
variables �. That means that we can obtain a representation for B as the one given by
equation 2.4. The question is: how to obtain such representation? It was argued in [58]
that in the context of linear differential systems the general form of a system with latent
variables is given by the model

R

(

d

dt

)

w = M

(

d

dt

)

� (2.6)

This representation is called a latent variable representation or hybrid representation. We
want to obtain a method to actually compute a representation of the manifest behavior
associated with this full behavior. This method is called the process of elimination, see
[58], chapter 6. This process involves row compression of polynomial matrices and the
notion of unimodularity.

Definition 7 Let U(ξ) ∈ R
g×g [ξ]. Then U(ξ) is said to be a unimodular polynomial matrix

if there exists a polynomial matrix V (ξ) ∈ R
g×g [ξ] such that V (ξ)U(ξ) = I. Equivalently,

det(U(ξ)) is equal to a nonzero constant.

Theorem 2 Let B ∈ Lw be represented by the latent variable representation 2.6 where
R ∈ R

g×w[ξ] and M ∈ R
g×�[ξ]. Let U ∈ R

g×g[ξ] be a unimodular matrix such that

UM =

[

M1

0

]

. (2.7)

where M1 ∈ R
•×�[ξ] has full row rank. Partition

UR =

[

R1

R2

]

.

accordingly. Then a kernel representation of B is given by R2

(

d
dt

)

w = 0.

The transformation using U applied to M is called row compression.
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2.4 Equivalent representations of behaviors

A behavior B ∈ Lw can have more than one representation. For instance, we already
defined manifest and latent variable representations for a given behavior (and studied
how to get the latter from the former, via elimination). Once we have such a kernel
representation, it would be interesting to find equivalent representations for it. Then we
speak about equivalent kernel representations of a given behavior.

Theorem 3 Let R1(ξ) ∈ R
g×w [ξ] and U(ξ) ∈ R

g×g [ξ]. Define R2(ξ) = U(ξ)R1(ξ). Denote
the behaviors associated with R1(ξ) and R2(ξ) by B1 and B2, respectively. Then:

a. B1 ⊆ B2.

b. If, in addition, U(ξ) is unimodular, then B1 = B2.

The converse version is as follows, see [58].

Theorem 4 The full row rank polynomial matrices R1(ξ), R2(ξ) ∈ R
g×w[ξ] represent the

same behavior B if and only if there exists a unimodular matrix U(ξ) ∈ R
g×g[ξ] such that

R1(ξ) = U(ξ)R2(ξ).

Theorem 5 Let B1,B2 ∈ Lw be represented by kernel representations R1

(

d
dt

)

w = 0 and
R2

(

d
dt

)

w = 0, respectively. Then, B1 ⊆ B2 if and only if there exists a D ∈ R
•×•[ξ] such

that D(ξ)R1(ξ) = R2(ξ).

Definition 8 Let B ∈ Lw and let R ∈ R
p×w[ξ]. The kernel representation R

(

d
dt

)

w = 0 is
said to be a minimal kernel representation of B if, whenever R1 ∈ R

g×w[ξ] induces a kernel
representation of B then p ≤ g, i.e., rowdim(R) ≤ rowdim(R1).

Theorem 6 Let B ∈ Lw and let R ∈ R
g×w induce a kernel representation of the behavior

B. The kernel representation R
(

d
dt

)

w = 0 is minimal if and only if the polynomial matrix
R has full row rank.

2.5 Observability and detectability

A very important notion in control systems is observability. Since the behavioral approach
considers a system to interact with its environment via its terminal variables, we would like
to extend the well known concept of observability (and later on the one of detectability)
contemplating our more general viewpoint. More concretely, knowing the values that a
certain set of variables, say w1 (the observed variables) takes, we are interested in obtaining
the values of another set of variables, say w2 (the to-be-deduced variables) from w1. In this
context we consider dynamical systems with signals space given in terms of a Cartesian
product W1 ×W2. Thus we consider systems of the form Σ = (T, W1 × W2,B) (see figure
2.7). This motivates the following definition, which is valid for general behavioral systems.
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(to be deduced)(observed)

w2w1

Figure 2.7: Observability.

Definition 9 Consider the system Σ = (T, W1 × W2,B). Assume that trajectories in B

are partitioned as (w1, w2) with wi : R → Wi, i = 1, 2. We say that w2 is observable from
w1 if (w1, w2), (w1, w

′
2) ∈ B implies w2 = w′

2.

If we consider systems with latent variables, very often the manifest variables will have the
interpretation of the observed ones, and the latent variables (the auxiliary ones introduced
during the modelling process) will be interpreted as the to-be-deduced variables.
Now, we are interested in getting a test for observability. Consider the system represented
by R1(

d
dt

)w1 + R2(
d
dt

)w2 = 0. The question is: under which conditions on R1(ξ), R2(ξ) ∈
R

•×•[ξ] is w2 observable from w1? The following theorem gives an answer to this question:

Theorem 7 Let R1(ξ) ∈ R
g×w1 [ξ] and R2(ξ) ∈ R

g×w2 [ξ]. Let B be the behavior represented
by R1(

d
dt

)w1 + R2(
d
dt

)w2 = 0. Then the variable w2 is observable from w1 if and only if
rank (R2(λ)) = w2 for all λ ∈ C, equivalently, R2(λ) has full column rank for all λ ∈ C.

Relaxing the constraint of full, row rank for all λ ∈ C to full row rank for all λ ∈ C
+

(the
closed right half complex plane) in the last definition, we obtain the concept of detectability
from our viewpoint. Theorem 8 below will provide the way of testing this property.

Definition 10 Let Σ = (R, W1 × W2,B) be a linear differential system. The trajectories
in B are partitioned as (w1, w2) with wi : R → Wi,i = 1, 2. We say that w2 is detectable
from w1 if (w1, w2), (w1, w

′
2) ∈ B implies limt→∞(w2 − w′

2)(t) = 0.

Theorem 8 Let R1(ξ) ∈ R
g×w1 [ξ] and R2(ξ) ∈ R

g×w2 [ξ]. Let B be the behavior defined
by R1

(

d
dt

)

w1 + R2

(

d
dt

)

w2 = 0. Then the variable w2 is detectable from w1 if and only if

rank (R2(λ)) = w2 for all λ ∈ C
+
, equivalently, R2(λ) has full column rank for all λ in the

closed right half complex plane.

2.6 Controllability and stabilizability

An important concept in the analysis and synthesis of open dynamical systems is the con-
cept of controllability, which deals with modifying the conduct a system exhibits. Suppose
initially our system works in some given mode of operation, considered as undesirable.
Then, the possibility of transferring our system from that mode to another one, referred
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to as a desired mode, reflects the ability of controlling the plant we have at hand. This
property of controllability was originally introduced in the context of state space systems.
It is one of the central notions of control theory.
Let us recall the classical definition we have for this concept. The system described by
ẋ = f(x, u) (where f is a given function from R

n × R
m to R

n) is said to be controllable
if for all a, b ∈ R

n there exists T > 0 and a a function u from [0, T ] to R
m such that the

solution x of ẋ = f(x, u), x(0) = a yields x(T ) = b. As is well known, if the system is linear
and time invariant, i.e., it is given by ẋ = Ax+Bu for appropriate matrices A and B, then
the controllability test is checking that the matrix [B AB A2B · · ·An−1B] has full row
rank. Although generalizations exist (for time varying, nonlinear systems for instance),
all the notions of controllability discussed above have the important drawback of being
representation dependent. We should however realize that a system may be uncontrollable
either for the intrinsic reason that the control signal u can not affect the system variables,
or because the state was chosen inefficiently. The behavioral approach offers the following
definition of controllability in terms of trajectories in the system behavior rather than in
terms of one of its possible representations.

Definition 11 Let Σ = (R, Rw,B) be a linear differential system. Σ is said to be control-
lable if for all w1, w2 ∈ B there exists T ∈ R, T ≥ 0 and w ∈ B such that w(t) = w1(t)
for t < 0 and w(t) = w2(t−T ) for t ≥ T . Thus controllability refers to the ability to switch
from any one trajectory in the behavior to any other one, allowing some time delay.

Of course, if the system happens to be given in terms of a particular representation, we
would like to have tests in order to decide whether the system is controllable. Also we
would like to know whether controllable systems admit a special representation where this
property becomes evident. For linear differential systems, the following theorem [89] deals
with the aspects just mentioned.

Theorem 9 Let Σ = (R, Rw,B) ∈ Lw. Let R( d
dt

)w = 0 be a kernel representation of B,
with R(ξ) ∈ R

•×w[ξ]. Then following statements are equivalent:

a. The system Σ is controllable.

b. The polynomial matrix R has the property that rank(R(λ)) = rank(R) for all λ ∈ C.

c. There exists an integer � and a polynomial matrix M(ξ) ∈ R
w×�[ξ] such that B is the

image of the differential operator M( d
dt

), that is B = M
(

d
dt

)

C∞(R, R�).

A remarkable point of theorem 9 is that a controllable system allows a representation in
terms of a latent variable of the form

w = M

(

d

dt

)

� (2.8)

Equation 2.8 is called an image representation of B.
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Figure 2.8: Controllability.

We now turn to the notion of stabilizability. This notion is concerned with the situation
that we are on a given trajectory of the given behavior B and we want switch to a trajectory
that asymptotically tends to zero, while remaining on a trajectory within the behavior.
The possibility of doing this for every trajectory in the behavior is a less severe condition
on our system behavior than that of controllability.

Definition 12 Let B ∈ Lw. This system is called stabilizable if for every trajectory w ∈
B, there exists a trajectory w1 ∈ B with the property that w1(t) = w(t), t ≤ 0 and
limt→∞w1(t) = 0.

Of course, we also want a mean to test stabilizability of a given behavior B in terms of its
kernel representations. The way to do that is as follows.

Theorem 10 Let R(ξ) ∈ R
g×w[ξ]. The behavior B represented by R

(

d
dt

)

w = 0 is stabiliz-

able if and only if rank(R(λ)) = rank(R) for all λ ∈ C+.

2.7 Autonomous behaviors

As we know, controllability deals with the possibility to switch from any trajectory within
the behavior to any other trajectory within that behavior. In general, for a given behav-
ior, this is not possible. The extreme case of this is when for every given trajectory, its
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future continuation is completely determined by its past. In that case we talk about an
autonomous behavior.

Definition 13 A linear differential system Σ = (R, Rw,B) is called autonomous if for all
w1, w2 ∈ B we have: w1(t) = w2(t), t ≤ 0 ⇒ w1 = w2.

Assume now that system behavior is represented by a kernel representation. We would like
to have conditions on the underlying polynomial matrix for the behavior to be autonomous.
Such a condition is provided in the following theorem:

Theorem 11 Let B ∈ Lw and let R(ξ) ∈ R
•×w[ξ] induce a kernel representation R( d

dt
)w =

0 of B. Then the following statements are equivalent:

a. B is autonomous,

b. rank(R(ξ)) = w, i.e. R(ξ) has full column rank,

c. B is a finite dimensional vector space.

When R( d
dt

)w = 0 is a minimal kernel representation of B then any of the latter statements
is equivalent to the existence of a square polynomial matrix R(ξ) with det((R(ξ))) �= 0.
For autonomous behaviors we have the notion of characteristic polynomial. Let B be
autonomous and let R(ξ) be a w× w polynomial matrix with det(R(ξ)) �= 0 such that B is
represented by R( d

dt
)w = 0. Of course, for any non-zero c ∈ R, the polynomial matrix cR(ξ)

also yields a kernel representation of B. Hence we can choose R(ξ) such that det(R(ξ))
has leading coefficient equal to 1. This monic polynomial is denoted by χB(ξ) and is called
the characteristic polynomial of B. χB(ξ) depends only on B, and not on the polynomial
matrix R(ξ) we used to define it. If R1(ξ), R2(ξ) both represent B minimally then there
exists a unimodular U(ξ) such that R2(ξ) = U(ξ)R1(ξ). Consequently, if det(R1(ξ)) and
det(R2(ξ)) are monic then det(R1(ξ)) = det(R2(ξ)). Finally, the roots of the characteristic
polynomial are called the poles of the autonomous behavior B.

2.8 Defining inputs and outputs

As we have pointed out up to now, the behavioral point of view is a representation free
approach and hence is not subjected to any special framework to explain the way a system
interacts with its environment. Nevertheless, as a particular case, a subset of the system
variables may be defined as inputs while another subset of variables may be considered as
the outputs of the system. In this way, the input/output paradigm becomes (as expected)
a special case of our more general set up. Due to the fact that the latter approach is
very important, we want to find the link between the two points of view. For instance,
the behavioral approach takes into account the possibility of having unconstrained system
variables, called free variables in our argot. These occur if the system does not impose
any restriction on them. Such variables will be called inputs of the system. From section
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2.7, we can see that behaviors represented by a square full row rank polynomial matrix are
autonomous. In general, a polynomial matrix that represents the system will be nonsquare.
This means that there are more system variables than equations, in other words we have
an underdetermined system of equations. As a consequence, some of the variables remain
unconstrained, they will be inputs. Once the inputs are chosen, together with the initial
conditions they will determine the values of the remaining variables of the system. These
are then the outputs. The following definition summarizes these ideas (see [58]).

Definition 14 Let Σ = (R, Rw,B) be a linear differential system. Partition the signal
space as R

w = R
m × R

p and partition w correspondingly as w = [w1, w2]. This partition is
called an input/output partition if:

a. w1 is free, i.e., for all w1 ∈ C∞(R, Rm), there exists a w2 ∈ C∞(R, Rp) such that
[w1, w2] ∈ B.

b. w2 does not contain any further free components, i.e., given w1, none of the compo-
nents of w2 can be chosen freely.

If these conditions hold then we also say: w1 is maximally free. If both conditions above
are satisfied, then w1 is called an input variable (and often denoted as u) and w2 is called
an output variable (often denoted as y).

If u is maximally free then y does not contain any free components. In this case, y is
called often called bound. On the other hand, when we have a kernel representation of a
dynamical system, the following theorem gives conditions for an input/output partition
of w.

Theorem 12 Let R(ξ) ∈ R
g×w[ξ] induce a kernel representation of B. Let w = [u, y] be a

partition of w and let R(ξ) = [Q(ξ) P (ξ)] be a corresponding partition of R(ξ). Then,

a. u is free if and only if rank([Q(ξ) P (ξ)]) = rank(P (ξ));

b. once u is fixed, y is bound if and only if P (ξ) has full column rank, rank(P (ξ)) =
dim(y);

c. w = [u, y] is an i/o (input/output) partition if and only if rank(R(ξ)) = rank(P (ξ)) =
coldim(P (ξ)).

If we choose R(ξ) such that R
(

d
dt

)

w = 0 is a minimal kernel representation, then w = [u, y]
is an input/output partition if and only if P (ξ) is square and nonsingular. In that case the
system is represented by Q

(

d
dt

)

u + P
(

d
dt

)

y = 0. Then −P (ξ)−1Q(ξ) defines the transfer
function of B. Inputs and outputs determine a set of invariants linked to a given behavior
B, see [58]. These invariants are defined as follows:

a. w(B) is the number of components of the system variable w of B.
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b. m(B) is the number of input variables in any input/output partition of the system
variables. This number is called the input cardinality of B.

c. p(B) is the number of outputs in any input/output partition of the system variable w.
This number is called the output cardinality of B. Obviously, w(B) = p(B) + m(B).

Later on in this book we will need to be able to compute the output cardinality of a system
behavior represented by a latent variable representation. Assume that the behavior B ∈ Lw

is represented by

R

(

d

dt

)

w = M

(

d

dt

)

�,

where � is a latent variable. Then we have the following (see [8]):

Lemma 1 p(B) = rank([R M ]) − rank(M).

Of course image representations (see 2.8) are a particular case that the latter lemma
applies to.

2.9 Controllable part of a behavior

Definition 15 Let B ∈ Lw. The controllable part of a behavior B is defined as the behavior
Bcont ∈ Lw satisfying the following three properties:

a. Bcont is controllable.

b. Bcont ⊆ B.

c. If B1 ∈ Lw is controllable and if B1 ⊆ B then B1 ⊆ Bcont.

It can be proven that for every linear differential behavior such Bcont exists, and that it
is unique. Every behavior B ∈ Lw can be written as a direct sum of the controllable part
and an autonomous part, see [58]:

Theorem 13 Let R(ξ) ∈ R
g×w[ξ] be of full row rank and let B be the behavior defined by

R

(

d

dt

)

w = 0

Then there exists an autonomous subbehavior Baut of B such that

B = Baut ⊕ Bcont

The poles of Baut are exactly those values λ ∈ C for which rank(R(λ)) < g. R(ξ) admits
a factorization R(ξ) = D(ξ)R1(ξ) with D(ξ) square and nonsingular, and R1(λ) full row
rank for all λ ∈ C. For any such factorization, the controllable part Bcont is represented
by R1(

d
dt

)w = 0.
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We note that the controllable part is unique, however there are in general many autonomous
subbehaviors Baut such that B = Baut ⊕ Bcont.
Traditionally, this theorem is proved with the help of the Smith form, [58]. The latter pro-
vides a way to compute the associated polynomial matrices representing the behaviors just
described. However, as we shall show in the coming chapters, this popular decomposition
is not numerically reliable. Since in this work we are interested in numerical consequences
of our polynomial approach, we can replace the Smith form method by so called column
compressions and embeddings. The latter term will be formally defined in chapter 5.

2.10 Interconnection of dynamical systems

We now discuss interconnection of dynamical systems. As we have shown, we do not need
to choose any special structure, like an input/output structure, to define our dynamical
systems. Rather, since our systems interact with their environment via terminals, inter-
connecting systems via those terminals will be important. More concretely, let us consider
the following two dynamical systems Σ1 and Σ2 given by

Σ1 = (T, W1 × W2,B1) , Σ2 = (T, W2 × W3,B2) (2.9)

with common axis time T and common factor W2 in the signal spaces. The interconnection
of Σ1 and Σ2 is defined as the dynamical system

Σ1 ∧w2 Σ2 = (T, W1 × W2 × W3,B) (2.10)

with behavior B is given by

B = {(w1, w2, w3) | (w1, w2) ∈ B1, (w2, w3) ∈ B2} (2.11)

The shared variable w2 is referred to as interconnection variable. The system variable of
the interconnection of Σ1 and Σ2 is (w1, w2, w3). Sometimes, after interconnection, the
interconnection variable w2 is considered as a latent variable, and we are only interested
in the behavior of the two remaining variables w1 and w3. This behavior can be obtained
by eliminating w2:

Bw1,w3 = {(w1, w3) | ∃ w2 such that (w1, w2, w3) ∈ B} . (2.12)

The ideas exposed here will be helpful to introduce, in the coming section, the notion of
control by behavioral interconnection.

2.10.1 Control as interconnection

As we explained at the beginning of this chapter, the behavioral approach considers a sys-
tem to interact with its environment via terminal variables. This interaction helps to define
a system behavior as the set of trajectories permitted by the physical laws of the system.
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Figure 2.9: Interconnection of systems.

Nevertheless, we - as designers - do not want to be passive observers of what is happening
with our system dynamics. Rather, we would like to modify the behavior of our system so
that it satisfies our imposed requirements. The way to alter the behavior of our system is
by means of another system (referred to as the controller) which is connected to our given
system (the plant). Notice that we do not specify any special type of interconnection, like
feedback. The way the systems interact is via the terminal variables. The terminals of the
plant consist of to be controlled variables w and the control terminals c. The controller has
only one type of variables which are precisely the control terminal variables c, see figure
2.10. Before interconnecting our plant to the controller, the trajectories w and c obey the
restrictions imposed by the plant behavior. The space of all these trajectories is what we
call the full plant behavior, defined formally as

Pfull =
{

(w, c) ∈ C∞(R, Rw+k) | (w, c) satisfies the plant equations
}

(2.13)

The manifest plant behavior, denoted by (Pfull)w, defines the to be controlled variables w.
It is defined as

(Pfull)w = {(w) ∈ C∞(R, Rw)|∃ c such that (w, c) ∈ Pfull} (2.14)

In this work we deal with linear differential systems. Therefore we assume Pfull ∈ Lw+k. The
manifest plant behavior is obtained by eliminating c from Pfull, i.e., (Pfull)w := Πw(Pfull).
From the elimination theorem (Theorem 1) we can conclude that also (Pfull)w ∈ Lw. On the
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Plant Controllerw

Figure 2.10: Controller interconnection.

other hand, as we mentioned above the controller has only one type of terminal variables,
c. We define the controller behavior C ∈ Lk as

C =
{

c ∈ C∞(R, Rk) | c satisfies the controller equations
}

(2.15)

Once the blocks are interconnected, the restrictions imposed on c by the controller will be
transmitted to the variables w. Choosing the controller in such a way that the variables
w have a desired behavior in the interconnected resultant box (lower part of figure 2.10) is
the basic problem of control within our perspective. Then when the systems interact, we
obtain a new system in which c satisfies both the laws of the plant and the laws required
by the controller. This means that c will be governed by Pfull and C. This fact determines
a new behavior which appears as the result of interconnecting the controller to the plant
and it is called the full controlled behavior. This interconnection behavior is given by

Kfull(C) =
{

(w, c) ∈ C∞(R, Rw+k) | (w, c) ∈ Pfull and c ∈ C
}

(2.16)

The latter behavior represents our controlled plant. Since the interconnection only takes
place through the variable c and not through the whole system variable (w, c), we call this
partial interconnection through c. As we mentioned in this section before, after intercon-
nection, the control variable is often considered as a latent variable. We might get rid of
this variable by applying the elimination theorem. This then defines the manifest control
behavior, defined as follows:

(Kfull(C))w = {w ∈ C∞(R, Rw) | ∃ c such that (w, c) ∈ Kfull(C)} (2.17)

With the definitions given above, we can now formulate the general control problem from
the behavioral point of view:
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Problem 8 Given the full plant behavior Pfull:

a. Describe a set of specifications on the controlled plant, namely, the desired properties
of the manifest controlled behavior (the desired controlled behavior).

b. Find a controller behavior C such that the corresponding manifest controlled behavior
(Kfull(C))w satisfies these specifications (limit of performance).

In fact, the main idea is to make (Kfull(C))w equal to a behavior K that is desired. If
K ∈ Lw, then if a controller behavior C exists such that K = (Kfull(C))w is accomplished, i.e
the desired behavior becomes equal to the manifest controlled behavior, then we say that C
implements K by partial interconnection through c or, equivalently, that K is implemented
by C by partial interconnection through c. If a behavior K ∈ Lw has the property that there
exists a controller C such that K = (Kfull(C))w, then we call K implementable by partial
interconnection (through c).
In the following we will study the question which behaviors K ∈ Lw are implementable by
partial interconnection, i.e. for which behaviors K there exists a controller C ∈ Lc such
that K = (Kfull(C))w. We shall see that the answer to this question is very intuitive. It
will depend only on the manifest plant behavior (Pfull)w and on the behavior consisting of
the plant trajectories with the control variables set to zero. This behavior is referred to as
the hidden behavior is denoted by N . It is defined as follows:

Definition 16 Let Pfull ∈ Lw+k. The hidden behavior N ∈ Lw is the behavior consisting
of the to-be- controlled variable trajectories that can occur when the control variables are
set to zero:

N = {w ∈ C∞(R, Rw) | (w, 0) ∈ Pfull} (2.18)

As we see from 2.17, N ⊆ (Pfull)w. Of course, there are many behaviors that are wedged in
between N and (Pfull)w. Obviously, any manifest controlled behavior (Kfull(C))w must be
contained in the manifest plant behavior (Pfull)w. Also, any manifest controlled behavior
(Kfull(C))w must contain the hidden behavior N , since if the controller receives no infor-
mation about what is happening in the plant, N must remain possible in the controlled
behavior, independently of the controller we have. Now, it turns out that also the converse
holds. This fact is called the controller implementability theorem, which is stated as follows
(see [91]).

w Plant

c=0

Figure 2.11: The hidden behavior.
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Theorem 14 Let Pfull ∈ Lw+k be the full plant behavior, (Pfull)w ∈ Lw the manifest plant
behavior and N ∈ Lw the hidden behavior. Then K ∈ Lw is implementable by a controller
C ∈ Lc acting on the control variables if and only if N ⊆ K ⊆ (Pfull)w.

As we saw, the latter theorem gives conditions for implementability of desired behavior K.
This facts allows us to rephrase the general control problem (posed above as problem 8) as

Problem 9 Given the full plant behavior Pfull:

a. Describe a set of specifications on the controlled plant, namely, the desired properties
of the manifest controlled behavior K (the desired controlled behavior).

b. Find a controlled behavior K that satisfies these specifications and that is imple-
mentable by partial interconnection, i.e., N ⊆ K ⊆ (Pfull)w.

In a sense the controller implementability theorem characterizes the limits of performance
of the given full plant behavior Pfull: it exactly tells which controlled system behaviors can
be obtained.



Chapter 3

Full Interconnection Issues

As we explained in chapter 2, the behavioral approach considers systems that interact
with their environment through their terminals. After a controller is interconnected to
the plant, the variables living on the terminals have to obey both the laws of the plant
and the controller. The plant and the controller may or may not have an input/output
structure when viewed from the interfacing variables. From a general point of view, the
behavioral approach is not restricted to an input/output scheme for modelling and control.
An important special case when interconnecting systems (e.g. plant and controller) is the
so called full interconnection case, i.e., the situation that all the variables are available for
interconnection. In this case, all terminals are used to interconnect the systems.

In this chapter we will study a number of synthesis problems that occur in the behav-
ioral approach to control. In particular, we will establish algorithms for the numerical
computation of controllers that achieve pole placement and stabilization by behavioral full
interconnection. These synthesis problems were studied before in [9]. We stress that in the
present chapter we only deal with the full interconnection case. In chapter 4 we will then
deal with the partial interconnection case.

However, before discussing these synthesis problems, in this chapter we will first recall the
notions of implementability and regular implementability by full interconnection. Given
a full plant behavior, a given behavior is called implementable if it can be achieved as
controlled behavior by interconnecting the plant with a controller. It is called regularly
implementable if the controller that achieves the desired behavior does not re-impose re-
strictions that are already present in the plant behavior. We will present a new condition
for regular implementability of a given behavior. Also, numerical algorithms will be pre-
sented to check regular implementability.

An important issue is also the problem of finding, for a given regularly implementable
subbehavior of the plant behavior, a parametrization of all controllers that regularly
implement this subbehavior. In the present chapter we will establish such parametrization,
again for the full interconnection case. Also, an algorithm will be given to compute such
a parametrization. The extension of this parametrization and of the related algorithm to
the partial interconnection case will be given in chapter 4.

Finally, again for the full interconnection case, we will establish a parametrization of all
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 35–58 (2008)
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controllers that stabilize a given plant behavior, thus establishing the behavioral version
of the Youla parametrization of all stabilizing controllers that was originally obtained in
[93]. We will also present an algorithm to compute such parametrization. Clearly we will
need to stack matrices frequently. To save space we will denote that by col(P,Q) when we
provide a theorem, lemma or their corresponding proof. In our algorithms and programs
we denote that by a semicolon in line with the MATLAB notation:

[P ; Q] :=

[

P
Q

]

.

3.1 Implementability

Implementability deals with the issue which system behaviors can be achieved (‘imple-
mented’) by interconnecting a given system behavior with a controller, and is thus con-
cerned with the limits of performance of a given plant In the contexts of synthesis of dissi-
pative systems [91], pole placement and stabilization , an important role is also played by
the notion of regular implementability. A given behavior is called regularly implementable
if it can be achieved by a controller behavior that does not impose restrictions on the
control variable that are already present in the plant, equivalently, the number of outputs
of the associated full controlled behavior is equal to the sum of the number of outputs of
the plant and the number of outputs of the controller. In [91], for a given plant behavior
a characterization was given of all implementable behaviors and in [9] a characterization
was given of all regularly implementable behaviors.
In this section we will briefly review the notions of implementability and regular imple-
mentability for the full interconnection case. We will also present a new condition for
regular implementability. Finally, we will establish two algorithms to check whether a a
given desired subbehavior is regularly implementable, and if it is, to compute a suitable
controller.
Let P ∈ Lq be a plant behavior. A controller for P is a system behavior C ∈ Lq. The full
interconnection of P and C is defined as the system which has the intersection P ∩C as its
behavior. This controlled behavior is again an element of Lq. The full interconnection is
called regular if

p(P ∩ C) = p(P) + p(C).

Let K ∈ Lq be a given behavior, to be interpreted as a ‘desired’ behavior. If K can be
achieved as controlled behavior, i.e. if there exists C ∈ Lq such that K = P ∩ C, then we
call K implementable by full interconnection (with respect to P). If K can be achieved by
regular interconnection, i.e. if there exists C such that K = P∩C and p(P∩C) = p(P)+p(C),
then we call K regularly implementable by full interconnection.
Obviously, a given K ∈ Lq is implementable by full interconnection with respect to P if and
only if K ⊆ P. Indeed, if K ⊆ P then with ‘controller’ C = K we have K = P ∩C. Thus, if
P and K have minimal kernel representations R( d

dt
)w = 0 and K( d

dt
)w = 0, respectively,

then K is implementable with respect to P if and only if there exists a polynomial matrix
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F such that R = FK (see [58]). Before going deeper into this, we need to provide. We
now propose a new condition for regular implementability, which says that this property
is equivalent with the existence of a polynomial matrix F with, in addition, F (λ) full row
rank for all λ ∈ C. However, before doing that, we need to review a very important concept
we work with: minimal left/right annihilators.

3.1.1 Minimal Annihilators of a Polynomial Matrix

If M is a polynomial matrix, then the polynomial matrix R is called a minimal left anni-
hilator (MLA) of M if im(M) = ker(R). For a given polynomial matrix R, the polynomial
matrix M is called a minimal right annihilator (MRA) of R if im(M) = (ker(R))cont. The
following useful fact is well known:

Theorem 15 Let R and M be polynomial matrices. R is an MLA of M if and only if
RM = 0, R(λ) has rank independent of λ for λ ∈ C and rank(R) = rowdim(M)−rank(M).

In this paper, in many places we will use, for a given M , a MLA of R with full row rank.
If the given M has full row rank, say q, then for consistency we define such full row rank
MLA as the ‘void’ matrix R with 0 rows and q columns. Likewise we often use, for a
given R, a MRA with the property that M(λ) has full column rank for all λ. If R has full
column rank q we define such M to be the void matrix with q rows and 0 columns. In that
case, if K is a given matrix with q columns, then KM is again void. Finally, we use the
convention that if R is void, with zero rows and q columns, then a full column rank MRA
if given by the q × q identity matrix Iq.
We will also need some facts on the representation of sums of behaviors. It is well known
that the space of all linear differential systems Lq is closed under addition. Suppose that
B1,B2 ∈ Lq, where B1 and B2 have kernel representations R1(

d
dt

)w = 0 and R2(
d
dt

)w = 0,
respectively. The problem to find a kernel representation of B1 + B2 was solved in [65]
(see also [11]):

Proposition 10 : Let [S1 S2] be a MLA of col(R1, R2). Then the polynomial matrix
S1R1 = −S2R2 yields a kernel representation of B1 + B2

In the following theorem we now give a new condition for regular implementability.

Theorem 11 : Let P ,K ∈ Lq. Let R( d
dt

)w = 0 and K( d
dt

)w = 0 be minimal kernel
representations of P and K, respectively. Then the following statements are equivalent:

1. K is regularly implementable w.r.t. P by full interconnection,

2. there exists a polynomial matrix F with F (λ) full row rank for all λ ∈ C, such that
R = FK,

3. K + Pcont = P.
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Here, Pcont denotes the controllable part of P.

Proof : The equivalence of 1. and 3. was proven in [9]. Here, we will give a new proof,
passing through the condition 2.
(1. ⇒ 2.) Suppose there exists a polynomial matrix C such that

[

R( d
dt

)
C( d

dt
)

]

w = 0

is a minimal kernel representation of K. Then there exists a unimodular U such that
col(R, C) = UK. This implies R = U1K, with U1 consisting of the upper rows of U .
(2. ⇒ 1.) Assume R = FK. Let U2 be such that col(F, U2) is unimodular. Define
C = U2K. Then

[

R( d
dt

)
C( d

dt
)

]

w = 0

is a minimal kernel representation of K, so K is regularly implemented by the controller
C( d

dt
)w = 0.

(2. ⇒ 3.) Assume that R = FK. Factorize R = DR1 with det(D) �= 0 and R1(λ)
full row rank for all λ. We want to prove that ker(R1) + ker(K) = ker(R). We first
claim that (D,−F ) is an MLA of col(R1, K). Indeed, DR1 − FK = 0 and (D(λ),−F (λ))
has full row rank for all λ. It remains to prove that rowdim(D,−F ) = coldim(D,−F ) −
rank(col(R1, K)). On the one hand, since D is square, we have rowdim(D,−F ) =
rowdim(R1). On the other hand,

[

D 0
0 I

] [

R1

K

]

=

[

F
I

]

K,

which implies that rank(col(R1, K)) = rank(K) = rowdim(K). Hence rowdim(R1) =
rowdim(R1, K) − rowdim(K) = coldim(D,−F ) − rank(col(R1, K)). The proof is then
completed by noting that, by proposition 10, DR1 = FK = R yields a kernel representation
of ker(R1) + ker(K).
(3. ⇒ 2.) Assume that ker(R1) + ker(K) = ker(R). Let (W1, W2) be a full row rank MLA
of col(R1, K). By proposition 10 W1R1 = −W2K yields a kernel representation of ker(R).
We claim that W2K in fact yields a minimal kernel representation. Indeed, let p be a
polynomial row vector such that pW2K = 0. Then also pW1R1 = 0. Since both K and
R1 have full row rank, this implies p(W1, W2) = 0, so p = 0, which proves the claim. As a
consequence, there exists a unimodular U such that R = UW2K. Define F := UW2. We
will prove that F (λ) has full row rank for all λ. Suppose, for some λ and some complex
row vector η, ηU(λ)W2(λ) = 0. Then it follows that ηU(λ)W1(λ)R1(λ) = 0, which implies
ηU(λ)W1(λ) = 0. Since (W1(λ), W2(λ)) has full row rank, this implies ηU(λ) = 0, so η = 0.

�

Given a minimal kernel representation R( d
dt

)w = 0 of the plant behavior P , and a minimal
kernel representation K( d

dt
)w = 0 of the desired behavior K, we would like to have an

algorithm to decide whether K is regularly implementable by full interconnection. In the
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following we propose two possible algorithmic implementations of theorem 11 to check
regular implementability of a given behavior, and to compute a controller that regularly
implements it. The first algorithm is based on the equivalence of 1. and 2. in the theorem.
Note that if K has full row rank and the polynomial equation R = FK has a solution F ,
then it is unique.

Algorithm 1 Input: full row rank polynomial matrices R and K.

1. Solve the equation R = FK. If no solution exists, K is not regularly

implementable. If a solution F exists, it is unique.

2. (Column compression) Compute a unimodular U such that FU = [F1 0], with

F1 full column rank.

3. Check if F1 is unimodular. If not, then K is not regularly implementable,

so stop. If F1 is unimodular go to step 4 to compute a controller.

4. Compute W such that [F ; W ] is unimodular.

5. Put C = WK. Then the controller ker(C) regularly implements K.

The latter algorithm is coded in MATLAB as it is shown below.

Listing 1
function [C,flag]=behimpl(R,K)

%[C,flag]=behimpl(R,K) tests whether ker(K) is implementable

% by regular full interconnection as a subbehavior of ker(R).

% If that is the case, a controller C is calculated % and the flag is set to 1.

% R and K are frr (full row rank matrices)

% Step 1

% xab is a standard MATLAB function which solves the polynomial

% matrix equation XA=B

F=xab(K,R);

% Step 2

[Fc, r, U, UI]=colred(F);
% (Fc stores [F1 | 0])
% The following command separates the compressed (non zero matrix)

% F1 of Fc = [F1 | 0]

F1=separate0(Fc);
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% Step 3

if isunimod(F1)==1

disp(’The behavior K is reg. implementable by full interconnection’)

% Step 4

W=embedding(F);

% Step 5

C=W*K;

else

error(’The behavior ker(K) is not reg. implementable by full interconnection’)

%%%%% Function to separate the non zero matrix Fc of F1 %%%%%

function [F1, Zero]=separate0(Fc)

% [F1,Zero]=separate0(Fc)

% In Fc=[F1; 0] or [F1 0] this command

% extracts F1 from Fc giving

% also the matrix 0 called here Zero.

% REMARK: Conjugate transpose is denoted by A’

% and non-conjugate transpose is denoted by A.’

[m, n]=size(Fc);

%%%%%%%%%%%%%%

% m>n vertical, m<n horizontal

if m<n

vert=0;

else

Fc=Fc.’;

vert=1;

end

%%%%%%%%%%%%%%

[m, n]=size(Fc);

c=0;

for i=1:m,

if (Fc(i,:))∼=0

c=c+1;

else
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end

end

F1=Fc((1:c),:);

if vert==1

F1=F1’;

else

end

if vert==0

Zero=zeros(m-c,n);

else

Zero=zeros(m-c,n).’;

end

In the listing above we only included the essential commands. In the actual implementation
we check whether K and R have full row rank. In fact the final algorithm will also be able
to do implementation by partial interconnection as explained in chapter 4.

Example 12 Let us consider the following full row rank polynomial matrices R(ξ) and
K(ξ), given respectively by

R =
[

−15 − 0.87s − 0.13s2 − 3.5s3 9.9 + 6.4s + 29s2 − 12s3 1.6 + 7.9s − 5.8s2 + 5.3s3

17 + 8s + 8.8s2 − 2.2s3 3 − 5.2s − 1.6s2 − 0.98s3 10 + 4.3s − 0.26s2 − 3.8s3

]

K =

⎡

⎣

−12 + 7.6s + 12s2 − 10s3 17 − 4.9s + 1.7s2 + 3.5s3 −2.5 − 1.5s − 12s2 − 0.22s3

6.2 + 19s + 0.82s2 + 16s3 −3.8 − 13s − 7.2s2 − 5.6s3 6.2 − 13s − 1.2s2 − 11s3

−1.2 − 2.3s − 0.94s2 + 0.12s3 −0.26 + 1.2s + 0.17s2 − 0.037s3 1 + 1.6s + 1.3s2 + 0.52s3

⎤

⎦

We do not show all the matrices computed by the program. After running our MATLAB
file we obtain C:

Running 1
>> C=behimpl(R,K)
The behavior ker(K) is regularly implementable by full interconnection

Polynomial matrix in s: 1-by-3, degree: 12

C =

C =
[

−16 − 4s − 4s2 − 1.4s3 20 − 8.7s + 26s2 − 8.7s3 −6.8 + 8.6s − 6.8s2 + 5.9s3
]
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Our second algorithm is based on the equivalence between 2. and 3. in theorem 11 We first
explain the underlying theory. Given a minimal kernel representation R( d

dt
)w = 0 of the

plant behavior P , and a minimal kernel representation K( d
dt

)w = 0 of the desired behavior
K, we compute a factorization R = DR1, where D is a square, nonsingular polynomial
matrix and where R1(λ) has full row rank for all λ ∈ C. Then R1(

d
dt

)w = 0 is a minimal
kernel representation of Pcont. Clearly, condition 3. of theorem 11 is then equivalent with

ker(K( d
dt

)) + ker(R1(
d
dt

)) = ker(R( d
dt

)). (3.1)

In order to check this condition, we compute a kernel representation of the left-hand side
(3.1) in this equation. For this we compute a full row rank MLA [X1 X2] of the stacked
polynomial matrix [K; R1]. Then X1K = −X2R1 and the left hand side of (3.1) has kernel
representation ker(X2(

d
dt

)R1(
d
dt

))w = 0. As a consequence, K is regularly implementable
if and only if

ker(D( d
dt

)R1(
d
dt

)) = ker(X2(
d
dt

)R1(
d
dt

)). (3.2)

Now, we have the following lemma:

Lemma 2 Condition (3.2) holds if and only if X2D
−1 is a unimodular polynomial matrix.

Proof : (⇒) DR1 has full row rank. Also, X2R1 has full row rank. Indeed, let p be a
polynomial row vector such that pX2R1 = 0. Then also pX1K = 0. Since both K and
R1 have full row rank, this implies p(X1, X2) = 0, so p = 0, which proves the claim. If
(3.2) holds, then there exists a unimodular polynomial matrix U such that UDR1 = X2R1.
Since R1(λ) has full row rank for all λ this now implies that UD = X2, so X2D

−1 is a
unimodular polynomial matrix.
(⇐) Assume that X2 = UD from some unimodular U . Then X2R1 = UDR1, so (3.2)
holds. �

It can easily be shown that if U := X2D
−1 is unimodular, then R = FK, with F defined

by F := −U−1X1, and F (λ) has full row rank for all λ ∈ C. This leads to the following
algorithm to check regular implementability and to compute a required controller:

Algorithm 2 Input: full row rank polynomial matrices R and K.

1. Compute a factorization R = DR1, with D square and nonsingular, and

R1(λ) full row rank for all λ.

2. Compute a full row rank MLA [X1 X2] of [K; R1].

3. Compute the solution U of X2 = UD. Check whether U is unimodular. If

it is not then K is not regularly implementable, otherwise it is.

In that case go to step 4 to compute a controller.

4. Compute the solution F of UF = X1.

5. Compute W such that [F ; W ] is unimodular
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6. Compute C = WK. The controller ker(C) regularly implements K.

In order to simplify the coding of the latter algorithm, we first provide the listing cor-
responding only to step 1. In this step, the decomposition R = DR1 means that we
separate the controllable behavior of a given one. That program is called behctrb.m (from
“controllable behavior”).

Listing 2
function [D,R1]=behctrb(R)

% [D,R1]=behctrb(R)

% Computation of the controllable part of a given behavior.

% This command decomposes R=D*R1, R with full row rank (frr),

% R1 frr and D nonsingular.

% RM=0, i.e., M=MRA(R) then

M=null(R);

R1=(null(M’))’;

% Since R=D*R1 and we have R and R1 we can determine D as

D=xab(R1,R);

[mR,nR]=size(R);

if D*R1-R =zeros(mR,nR)

error(’There is something wrong with R=F*K’)

else

end

Next, we continue with the remaining steps of the first algorithm which is based in the
equivalence of statements 2 and 3 of theorem 11.

Listing 3
function C=behimplmla(R,K)

% C=behimplmla 2(R,K)

% Given R,K (min.ker.rep. of the plant beh. and cont. beh. resp)

% behimplmla tests whether ker(K) is implementable by

% regular full interconnection (irfi).

% If that is the case, a controller C is computed

% (based in the equivalence of statements 2 and 3

% of theorem 11).

% Step 1

[D,R1]=behctrb(R);
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[mR,nR]=size(R);

[mR1,nR1]=size(R1);

[mD,nD]=size(D);

[mK,nK]=size(K);

% Step 2

S=[K;R1];

[mS,nS]=size(S);

X=(null(S’))’;

[mX,nX]=size(X);

% X1 and X2 are obtained from X=[X1 | X2]

nX1=mK;

nX2=nX-nX1;

mX1=mX;

mX2=mX;

X1=X(:,1:nX1);

X2=X(:,nX1+1:nX1+nX2);

% Step 3

U=xab(D,X2);

if isunimod(U)==1

disp(’ker(K) is regularly implementable by reg.full interconnection’)

% Step 4

F=axb(U,X1);

% Step 5

W=embedding(F)

% Step 6

C=W*K

else

error(’ker(K) is not regularly implementable by reg.full interconnection’)

end

An example illustrates the ideas explained up to now.
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Example 13 Let us consider the following full row rank matrices R(ξ) and K(ξ) defined
as it is shown below.

R =

[

2.5 − 8.6s + 11s2 − 3s3 + 12s4 10 + 21s − 6.6s2 − 11s3 + 9.5s4 −4 − 3.8s + 4.8s2 + 4.4s3 + 3.8s4

11 + 8.6s − 12s2 + 4s3 − 5.8s4 −9.8 + 1.2s + 0.68s2 − 5.3s3 + 5.4s4 6.8 + 5.4s − 5.1s2 − 13s3 − 6.1s4

]

K =

⎡

⎣

0.86 + 6.9s + 21s2 − 0.029s3 − 0.9s4 −2.5 − 8.7s + 4.2s2 − 1.3s3 + 5.4s4 8.8 − 13s + 8.7s2 − 8s3 − 7.5s4

−7.5 − 3.1s − 15s2 + 8.3s3 − 6.1s4 9.6 + 20s + 2.9s2 − 3.9s3 + 5.8s4 −11 + 0.61s + 0.12s2 − 1.7s3 − 6.9s4

1 + 0.68s + 0.37s2 − 0.32s3 0.21 + 0.52s − 0.18s2 + 0.61s3 −0.67 + 0.28s − 0.73s2 − 0.8s3

⎤

⎦

The program computes C showing that

Running 2
>> C=behimplmla(R,K)

ker(K) is regularly implementable by reg.full interconnection

Polynomial matrix in s: 1-by-3, degree: 3

C =
[

−16 − 4s − 4s2 − 1.4s3 20 − 8.7s + 26s2 − 8.7s3 −6.8 + 8.6s − 6.8s2 + 5.9s3
]

3.2 Stabilization and pole placement by regular full

interconnection

This section deals with the synthesis problems of stabilization and pole placement by reg-
ular full interconnection. We will give algorithms to compute, for a given plant behavior,
controllers that achieve pole placement and stabilization. Both problems require the com-
putation of a unimodular embedding.
We will first discuss the problem of pole placement by regular full interconnection. This
problem is defined as follows.
Let P ∈ Lq be a given plant behavior. Let r(ξ) be a monic real polynomial. Find a
controller behavior C such that the controlled behavior K = P ∩ C is autonomous, has
characteristic polynomial χK = r, and the interconnection is regular.
It was proven in [9] that for every monic real polynomial r(ξ) there exists such controller
C if and only if the plant behavior P is controllable and p(P) < q.
Assume now that P is represented by the minimal kernel representation R( d

dt
)w = 0, with

R(ξ) a real polynomial matrix. We assume that P is controllable, equivalently R ∈ U .
Obviously, p(P) < q if and only if the number of rows of R is less than q. Now let r(ξ) be
an arbitrary real monic polynomial. In the following we describe an algorithm to compute
a required controller:

Algorithm 3 Input: The polynomial matrix R(ξ) and the real monic polynomial

r(ξ)
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1. Compute a real polynomial matrix C1(ξ) such that [R; C1] is unimodular.

2. Output: C(ξ) is the polynomial matrix obtained by multiplying one of the

rows of C1(ξ) by r(ξ).

Define the controller behavior C ∈ Lq as the system represented by C( d
dt

)w = 0. The
controlled system behavior K = P ∩ C is then represented by

[

R( d
dt

)
C( d

dt
)

]

w = 0,

Clearly, det(R; C) = r, so the controlled system K is autonomous and χK = r.

Below we provide the MATLAB code of the m-file that computes a required controller.

Listing 4

function C=behplace(R,r)

%C=behplace(R,r) places poles by means of a suitable controller.

% Data, R(ξ) ∈ R
m×n, r(ξ)

C1 =embedding(R)

% Compute the controller C (for any i ≤ m)

C = r ∗ C1(i, :)
% Testing the resulting placement...

if (det([R;C])-r)~=0

error(’Wrong placement’)

else

disp(’Pole allocated at ’),roots(det([R;C]))

end

Next, we provide an example.

Example 14 Let the plant behavior be represented by R( d
dt

)w = 0, where R(ξ) is the
polynomial matrix given by

R(ξ) =

[

11 + 1 9.5ξ + 2 3ξ + 3
1.4ξ + 2.5 3ξ + 1.7 2.7ξ + 7.6

]

, r(ξ) = ξ + 1

Let the desired polynomial be given by r(ξ) = ξ + 1. We want to compute the controller
representation C(ξ) to allocate the desired pole at ξ = −1.

The corresponding output is shown below:



3.2. Stabilization and pole placement by regular full interconnection 47

Running 3
>> C=behplace(R,r)

R =

1 + 11s 2 + 9.5s 3 + 3s
2.5 + 1.4s 1.7 + 3s 7.6 + 2.7s

C1 =

-0.7549 -0.6310 -0.1787

r =

1 + s

C =

-0.75 - 0.75s -0.63 - 0.63s -0.18 - 0.18s

Pole allocated at

ans =

-1.0000

>>

We will now turn to the stabilization problem. The problem of stabilization by regular
full interconnection is formulated as follows. Let P ∈ Lq be a given plant behavior. Find
a controller behavior C such that the controlled behavior K = P ∩ C is autonomous, its
characteristic polynomial χK is Hurwitz, and the interconnection is regular. It was proven
in [9] that there exists such controller C if and only if the plant behavior P is stabilizable.
Assume that P is represented by the minimal kernel representation R( d

dt
)w = 0, with

R(ξ) a real polynomial matrix. Assume that P is stabilizable. This is equivalent to the
condition that R(λ) has full row rank for all λ ∈ C

+, equivalently, R ∈ M. In the following
we describe an algorithm to compute a required controller:

Algorithm 4 Input: The polynomial matrix R(ξ).

1. Factorize R(ξ) = G(ξ)R1(ξ), with G Hurwitz and R1 ∈ M.

2. Compute a real polynomial matrix C(ξ) such that [R1; C] is unimodular.
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The controller behavior C ∈ Lq represented by C( d
dt

)w = 0 stabilizes the system: clearly,
det[R; C] = det(G)det[R1; C], so the controlled system K is autonomous. The characteris-
tic polynomial χK is then a scalar multiple of det(G) so K is stable.
Below we provide the code of the relevant m-file:

Listing 5
function C=behstab(R)

% C=behstab(R) finds a stabilizing controller.

% Data: R(ξ)
% The following command factorizes R as R = GR1

[G,R1]=behctrb(R)
C=embedding(R1)

The corresponding running is given below.

Example 2: Stabilization by regular full interconnection. Let us see how the latter
works with the following system represented by the polynomial matrix R(ξ) = [−12 −
2ξ 6 + 7ξ + ξ2].

Running 4
[G,R1]=behctrb(R)

R =

−12 − 2s 6 + 7s + s2

G =

12 + 2s

R1 =

-1 0.5 + 0.5s

C =

0 -1

>>

The latter implies that there is an uncontrollable (but stabilizable) mode at ξ = −6. The
controller is represented by the constant polynomial matrix C = [0 − 1].
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3.3 All regularly implementing controllers

In this section we will establish, for a given plant P ∈ Lq and a given regularly imple-
mentable behavior K ∈ Lq, a parametrization of all controllers C ∈ Lq that regularly
implement K by full interconnection. This problem was considered before in [40] for the
case that the plant behavior P is controllable, and the given subbehavior K is autonomous.
The approach in [40] is heavily based on the use of image representations for P . Here, we
will establish a parametrization for arbitrary P and arbitrary (regularly implementable)
K.
In the following, let K ∈ Lq. Let K be a real polynomial matrix such that K( d

dt
)w =

0 is a (not necessarily minimal) kernel representation of K. Our first goal is to find a
condition on the polynomial matrix K that is necessary and sufficient for K to be regularly
implementable. In order to formulate such condition, let R( d

dt
)w = 0 be a minimal kernel

representation of P , and let M be MRA of R such that M(λ) has full column rank for all
λ ∈ C. Next, consider the polynomial matrix KM , and let Q be a full row rank MLA
of KM . Finally, let W be a polynomial matrix such that col(Q,W ) is unimodular. Note
that the number of rows of W is equal to rank(KM). The following lemma gives necessary
and sufficient conditions, in terms of the representing polynomial matrix K, for regular
implementability of K:

Lemma 3 K is regularly implementable by full interconnection w.r.t. P if and only if
[

R( d
dt

)
W ( d

dt
)K( d

dt
)

]

w = 0 (3.3)

is a minimal kernel representation of K. A controller that regularly implements K is then
represented by the minimal kernel representation W ( d

dt
)K( d

dt
)w = 0.

Proof : Factor R = DR1, with D square and nonsingular and R1(λ) full row rank for all
λ. Then Pcont = ker(R1). Let S be such that col(R1, S) is unimodular. Define

[

R1

S

]−1

=
[

N1 M1

]

.

Then we have im(M1) = ker(R1) = im(M), so there exists a unimodular Z such that
M1 = MZ. It follows that N1R1 + MZS = Iq. We claim that there exists a polynomial
matrix T such that TR = QK. In order to prove this, we will show that ker(R) ⊆ ker(QK).
Indeed, let w be such that R( d

dt
)w = 0. Since P = K + Pcont, there exist w1 ∈ K and

w2 ∈ Pcont such that w = w1 +w2. Hence (omitting the symbol d
dt

in the equations below),

QKw = QK(w1 + w2) = QKw2 = QK(N1R1 + MZS)w2 = QKN1R1w2 = 0.

Next, note that
⎡

⎣

Ip 0
−T Q
0 W

⎤

⎦

[

R
K

]

=

⎡

⎣

R
0

WK

⎤

⎦ .
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Note that the left-most matrix in this equation is unimodular. Thus we have: w ∈ K if
and only if K( d

dt
)w = 0 and R( d

dt
)w = 0 if and only if W ( d

dt
)K( d

dt
)w = 0 and R( d

dt
)w = 0.

This proves that (3.3) is indeed a kernel representation of K.
Finally, we show that the representation (3.3) is minimal. Indeed,

[

R
WK

]

[

N1 MZ
]

=

[

D 0
WKN1 WKMZ

]

.

It is easily seen that, by construction, WKM has full row rank. Since D is nonsingular,
we conclude that col(R, WK) must have full row rank as well. �

We will now apply lemma 3 to establish the main result of this section. It gives, for a
given regularly implementable subbehavior K of P , a parametrization of all controllers
that regularly implement K.

Theorem 15 : Let P ∈ Lq, with minimal kernel representation R( d
dt

)w = 0. Let K ∈ Lq

be regularly implementable by full interconnection and let K be a polynomial matrix such
that K( d

dt
)w = 0 is a kernel representation of K. Construct a polynomial matrix W as

follows:

1. Choose a MRA M of R such that M(λ) has full column rank for all λ,

2. Choose a full row rank MLA Q of KM,

3. Choose W such that col(Q,W ) is unimodular.

Then for any C ∈ Lq represented by C( d
dt

)w = 0 the following statements are equivalent:

1. C has minimal kernel representation C( d
dt

)w = 0 and regularly implements K,

2. there exists a polynomial matrix F and a unimodular polynomial matrix U such that

C = FR + UWK. (3.4)

Proof : (2. ⇒ 1.) First note that since K is regularly implementable, by lemma 3 the
polynomial matrix col(R, WK) has full row rank. Since

[

Ip 0
F U

] [

R
WK

]

=

[

R
FR + UWK

]

, (3.5)

this implies that also C = FR+UWK has full row rank, so C( d
dt

)w = 0 is a minimal repre-
sentation of C. It also follows from (3.5) that C implements K. Clearly, the interconnection
of P and C is regular.
(1. ⇒ 2.) Assume that C has full row rank, and C regularly implements K. Then both

[

R( d
dt

)
C( d

dt
)

]

w = 0 and

[

R( d
dt

)
W ( d

dt
)K( d

dt
)

]

w = 0
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are a minimal representation of K. Consequently, there exists a unimodular polynomial
matrix

V =

[

V11 V12

V21 V22

]

such that V col(R, WK) = col(R, C). As in the proof of lemma 3, let S be such that
col(R1, S) is unimodular, and let N1 and Z be such that col(R1, S)−1 = [N1 MZ], with
Z unimodular. Then we have

[

R
WK

]

[

N1 MZ
]

=

[

D 0
WKN1 WKMZ

]

.

and
[

R
C

]

[

N1 MZ
]

=

[

D 0
CN1 CMZ

]

.

This implies V12WKMZ = 0. Since WKM has full row rank, V12 = 0. Also, V11D = V11

so V11 = Ip. Thus

V =

[

Ip 0
V21 V22

]

.

It follows that V22 is unimodular. We also have

[

Ip 0
V21 V22

] [

R
WK

]

=

[

R
C

]

,

from which C = V21R + V22WK. This completes the proof of the theorem �

Summarizing the above, for a given plant P with kernel representation R( d
dt

)w = 0 and a
given regularly implementable subbehavior K ⊆ P with kernel representation K( d

dt
)w = 0

(not necessarily minimal!) a parametrization of all controllers that regularly implement K
is obtained in the following steps:

1. find a MRA M of R such that M(λ) has full column rank for all λ,

2. find a full row rank MLA Q of KM ,

3. find W such that col(Q,W ) is unimodular,

4. the controllers C ∈ Lq that regularly implement K are parameterized by

C = {w ∈ Lloc
1 (R, Rq) | (FR + UWK)( d

dt
)w = 0}

with F ranging over all polynomial matrices with p columns and r rows, and U
ranging over all unimodular r × r polynomial matrices. Here, r := rank(KM).

This leads to the following MATLAB code:
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Listing 6

function W=behallimpl(R,K)

% W=behallimpl(R,K)

% All implementing controllers: The full interconnection case.

% Checking whether ker(K) is regularly implementable by rfi:

C=behimpl(R,K)

% M is fcr:

M=null(R)

% Q=MLA(K*M)

T=K*M;

Q=(null(T’))’

W=embedding(Q)

disp(’The set of all parameterizing controllers is (FR+UWK)(d/dt)w=0’)

In order to illustrate the latter computation, let us consider the following example.

Example 16 Let us consider matrices R and K given as

R = [ξ + 1 ξ + 2], K =

[

ξ + 3 ξ + 4
ξ + 5 ξ + 6

]

The corresponding W is

Running 5

D =

0.71

R1 =

1.4 + 1.4s 2.8 + 1.4s

W =

0 1
The set of all parameterizing controllers is (FR+UWK)(d/dt)w=0
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3.4 All stabilizing controllers

In this section we will consider the problem of parametrizing all stabilizing controller
behaviors for P . Our result in this section generalizes the result from [40] that was obtained
under the assumption that P can be represented by an image representation, equivalently,
P is controllable.

Assume that P is represented by the minimal kernel representation R( d
dt

)w = 0. Assume
that P is stabilazable, equivalently R(λ) has full row rank for all λ ∈ C

+ = {λ ∈ C |
Re(λ) ≥ 0}. The following corollary of theorem 15 yields a parametrization of all stabilizing
controllers for the stabilizable plant P :

Corollary 1 Let P ∈ Lq be stabilizable. Let R1(
d
dt

)w = 0 be a minimal kernel representa-
tion of the controllable part Pcont. Let C0 be such that col(R1, C0) is unimodular. Then for
any C ∈ Lq represented by the kernel representation C( d

dt
)w = 0 the following statements

are equivalent:

1. P ∩ C is autonomous and stable, the interconnection is regular and the kernel repre-
sentation C( d

dt
)w = 0 is minimal,

2. there exist a polynomial matrix F and a Hurwitz polynomial matrix D such that
C = FR1 + DC0.

Proof : Let R( d
dt

)w = 0 be a minimal kernel representation of P . Then R = D1R1, with
D1 Hurwitz. (2. ⇒ 1.) Assume C = FR1 + DC0. We have

[

R
C

]

=

[

D1 0
F D

] [

R1

C0

]

.

This implies that col(R, C) has full row rank, so the interconnection of P and C is regular.
Also, for some nonzero constant c, det col(R, C) = cdet(D1)det(D), so the interconnection
is autonomous and stable.

(1. ⇒ 2.) Denote P ∩ C by K, and define K := col(R, C). Then K( d
dt

)w = 0 is a kernel
representation of K. Let M be a MRA of R such that M(λ) has full column rank for all λ,
and let Q be a full row rank MLA of KM. Let W be such that col(Q,W ) is unimodular.
Then according to theorem 3, K has a minimal kernel representation

[

R( d
dt

)
W ( d

dt
)K( d

dt
)

]

w = 0.

Note that since K is autonomous, col(R, WK) is in fact square and nonsingular. Let N1

and M1 be such that
[

R1

C0

]−1
[

N1 M1

]

.
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Then im(M1) = ker(R1) = im(M), so there exists a unimodular matrix Z such that
M1 = MZ. This implies that N1R1 + MZC0 = Iq. We then also have

[

R
WK

]

=
[

N1 MZ
]

=

[

D1 0
WKN1 WKMZ

]

,

so WKMZ is square and

det

[

R
WK

]

= det(D1)det(WKMZ).

Since K is stable, col(R, WK) is Hurwitz, so WKMZ is Hurwitz. Finally, since C regularly
implements K, by theorem 15 there exists a polynomial matrix F ′ and a unimodular U
such that C = F ′R + UWK. Hence

C = F ′R + UWK(N1R1 + MZC0) = (F ′D1 + UWKN1)R1 + UWKMZC0.

The proof of the theorem is then completed by taking F := F ′D1 + UWKN1 and D :=
UWKMZ. �

If, in the latter proof, we assume that P is controllable, then we can take R = R1, and we
recover the parametrization of all stabilizing controllers that was obtained in [40].
Below we establish an m-file that computes a parametrization of all stabilizing controllers.

Listing 7
function [R1, D, C0]=behallstab(R)
% [R1, D, C0]=behallstab(R)
% All stabilizing controllers: The full interconnection case

[D,R1]=behcntr(R)

% Is D Hurwitz?

ra=roots(det(D))

c=0;

for i=1:length(ra)

if real(ra(i))<0

c=c+1;

else

end

end

if c==length(ra)

disp(’OK: D is Hurwitz’)
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else

error(’Matrix D is not Hurwitz’)

end

C0=embedding(R1)

disp(’Then a parameterization of all the stabilizing controllers for the’)

disp(’stabilizable plant behavior ker(P) is C=F*R1+D*C0’)

disp(’where the polynomial matrix F is the free parameter’)

Example 17 The plant is represented by R(ξ) = [1 − ξ − ξ2 + ξ3 2 − ξ − ξ2].

The family of all stabilizing controllers for this plant is computed as follows.

Running 6

>> R

R =

1 − s − s2 + s3 2 − s − s2

>> [R1, D, C0]=behallstab(R)

ker(K) is implementable w.r.t ker(P) according to R=F*K

D =

-2.6 + 2.6s

R1 =

−0.38 + 0.38s2 − 0.76 − 0.38s

ra =

1.0000

??? Error using ==> behallstab
Matrix D is not Hurwitz
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>>

As we see, matrix R(s) is not suitable for finding a family of stabilizing controllers. Now,
let us examine an example that does work which is the following.

Example 18 The system is again R = [−12 − 2s 6 + 7s + s2].

After running the corresponding program we obtain the following computations:

Running 7
>>R

R =

−12 − 2s 6 + 7s + s2

>> [R1, D, C0]=behallstab(R)

ker(K) is implementable w.r.t ker(P) according to R=F*K

D =

12 + 2s

R1 =

−1 0.5 + 0.5s

ra =

-6.0000

OK: D is Hurwitz

C0 =

>> C0=[0 − 1]

C0 =
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0 − 1

D*C0=

0 − 12 − 2s

Then a parametrization of all the stabilizing controllers for the
stabilizable plant behavior ker(P) is C=F*R1+D*C0
where the polynomial matrix F is the free parameter

C=F*[−1 0.5 + 0.5s] + [0 − 12 − 2s]

>>

To conclude this section, as another corollary of theorem 15 we will, for a given monic
real polynomial r(ξ), give a parametrization of all controllers that achieve this desired
characteristic polynomial.
If P is represented by the minimal kernel representation R( d

dt
)w = 0 then P is controllable

if and only if R(λ) has full row rank for all λ ∈ C. The condition p(P) < q is then
equivalent to the condition that the number of rows of R is less than q. The proof of the
following corollary is completely analogous to that of the previous one:

Corollary 2 Let P ∈ Lq be controllable and let R( d
dt

)w = 0 be a minimal kernel repre-
sentation of P. Let r(ξ) be a monic real polynomial. Let C0 be such that col(R, C0) is
unimodular. Then for any C ∈ Lq represented by the kernel representation C( d

dt
)w = 0 the

following statements are equivalent:

1. χP∩C = r, the interconnection of P ∩ C is regular and the kernel representation
C( d

dt
)w = 0 is minimal,

2. there exist a polynomial matrix F and a square polynomial matrix D with the property
that det(D) = cr for some constant c �= 0, such that C = FR + DC0.

3.5 Summary

In this chapter important synthesis problems were defined and solved. Starting with the
pole placement and stabilization problems, a parametrization of all regularly implementing
and stabilizing controllers is offered for the full interconnection case. This result from a
behavioral point of view, resembles the Youla parametrization of all stabilizing controllers
from the classical control theory. We have seen that since the Behavioral Approach consid-
ers as particular case of modelling and control a matrix polynomial point of view, analysis
and synthesis of control systems are based on three main operations: finding minimal
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left/right annihilators, row/column compressions and embeddings. Nevertheless, we have
not talked about numerical consequences. This part will be considered later.



Chapter 4

Partial Interconnection Issues

In this chapter we shall continue the development we started in the previous chapter. In-
stead of full interconnection, we will now deal with the case of partial interconnection.
We will start with reviewing the notions of implementability and regular implementabil-
ity. Next we will deal with the problems of pole placement and stabilization by partial
regular interconnection. We will set up algorithms to compute regular controllers for a
given plant that achieve pole placement or stabilization. Next, we show how to implement
these algorithms in MATLAB. An important part of this chapter deals with the problem
of parametrizing (for the partial interconnection case) all controllers that regularly imple-
ment a given desired behavior. We will establish such parametrization, first under certain
observability assumptions, and afterwards also in the general case. Also for this parame-
trization problem, we will give numerical algorithms. Finally, we will address the problem
of parametrizing for a given plant, all controllers that stabilize the given plant by regular
partial interconnection. Also for this problem we give the corresponding MATLAB codes
and some examples runned with comments. We conclude the chapter with a summary.

4.1 Regular implementability by partial

interconnection

In subsection 2.10.1 we discussed the notion of implementability by partial interconnection,
which deals with the question which system behaviors are achievable by interconnecting a
given plant with a controller behavior. Then, in section 3.1 we treated implementability
and regular implementability for the special case of full interconnection. In the present
section we will study the notion of regular implementability by partial interconnection and
generalize the results of section 3.1 to the partial interconnection case. For a given full
plant behavior, we will give characterizations of all regularly implementable behaviors. Let
K ∈ Lw be a given behavior, which should be interpreted as a ‘desired’ behavior. If K can be
achieved by regular partial interconnection, i.e. if there exists C such that K = (Kfull(C))w

and

p(Kfull(C)) = p(Pfull) + p(C),
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 59–93 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



60 Chapter 4. Partial Interconnection Issues

then we call K regularly implementable by partial interconnection. Conditions for regular
implementability were given in [9]:

Proposition 19 : Let Pfull ∈ Lw+k. K ∈ Lw is regularly implementable by partial inter-
connection through c if and only if N ⊆ K ⊆ (Pfull)w and K is regularly implementable
w.r.t. (Pfull)w by full interconnection.

4.2 Pole placement and stabilization by regular

partial interconnection

In subsection 3.2 we have discussed pole placement and stabilization by regular full inter-
connection. In the present section we will discuss these synthesis problems in the more
general context of partial interconnection. Again, we will establish algorithms to compute,
for a given full plant behavior, controllers that achieve the design specifications. This
section is subdivided into two subsections. The first subsection deals with the problem of
pole placement, in the second subsection we treat the stabilization problem.

4.2.1 Pole placement by regular partial interconnection

The problem of pole placement by regular partial interconnection through c is formulated
as follows: given a real monic polynomial r(ξ), find a controller C ∈ Lk such that the
manifest controlled behavior K is autonomous, has characteristic polynomial χK = r, and
the interconnection is regular. Necessary and sufficient conditions for the existence of such
controller for any given r(ξ) can be expressed in terms of the manifest plant behavior and
hidden behavior associated with the full plant Pfull.
It was shown in [9] that for every real monic polynomial r there exists a required controller
C if and only if (Pfull)w is controllable, p((Pfull)w) < w and N = 0.
In the following we will establish an algorithm to compute, for a given r, a required
polynomial matrix C (representing a controller C) in case that the full plant behavior Pfull

is given by a minimal kernel representation. In the algorithm we have to solve a unimodular
embedding problem twice.
Let Pfull be represented by R1(

d
dt

)w + R2(
d
dt

)c = 0, with [R1 R2] full row rank. Let U be a
unimodular matrix such that

UR2 =

[

R12

0

]

, (4.1)

such that R12 has full row rank. Let R11 and R21 be obtained by partitioning the product
UR1 as in (4.1):

UR1 =

[

R11

R21

]

,

Evidently, Pfull is then also represented by the minimal kernel representation
[

R11(
d
dt

) R12(
d
dt

)
R21(

d
dt

) 0

] [

w
c

]

= 0
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From this representation it is clear that the manifest plant behavior (Pfull)w is represented
minimally by R21(

d
dt

)w = 0 (since R12 has full row rank), and that the hidden behavior N
is represented by

[

R11(
d
dt

)
R21(

d
dt

)

]

w = 0. (4.2)

Assume that (Pfull)w is controllable. Then R21(λ) has full row rank for all λ, so R21 can
be embedded into a unimodular polynomial matrix. Also, assume that N = 0. Then
[R11(λ); R21(λ)] has full column rank for all λ, so [R11; R21] can be embedded into a uni-
modular matrix as well. Now choose polynomial matrices U12 and U22 such that

[

R11 U12

R21 U22

]

(4.3)

is unimodular. Next, solve the polynomial equation (unknowns X and Y )

[

R11 U12

R21 U22

] [

X
Y

]

=

[

R12

0

]

. (4.4)

Then we have
[

R11 U12

R21 U22

] [

I X
0 Y

]

=

[

R11 R12

R21 0

]

,

so Pfull also has the minimal kernel representation

[

I X( d
dt

)
0 Y ( d

dt
)

] [

w
c

]

= 0.

From this, note that (w, c) ∈ Pfull implies w = −X( d
dt

)c. Next, let C0 be such that [R21; C0]
is unimodular, and let C1 be any polynomial matrix obtained by multiplying one of the
rows of C0 by the desired polynomial r. Then of course det[R21; C1] = r. Define now the
controller behavior C ∈ Lk as the behavior represented by C( d

dt
)c = 0, with C defined

by C := C1X. We claim that the corresponding manifest controlled behavior K is then
represented by

[

R21(
d
dt

)
C1(

d
dt

)

]

w = 0,

and that the interconnection of Pfull with C is regular.
Indeed, let w∈K. Then there exists c such that (w, c) ∈ Pfull and c ∈ C. Hence, C( d

dt
)c = 0,

so C1(
d
dt

)X( d
dt

)c = 0. Also, (w, c) ∈ Pfull, so w = −X( d
dt

)c. This yields C1(
d
dt

)w = 0. Also,
R21(

d
dt

)w = 0. Conversely, assume that R21(
d
dt

)w = 0 and C1(
d
dt

)w = 0. There exists c
such that (w, c) ∈ Pfull. Hence w = −X( d

dt
)c so C1(

d
dt

)X( d
dt

)c = 0, equivalently, c ∈ C.
Thus we obtain (w, c) ∈ Kfull, so w ∈ K. We conclude that χK = r. It can also be shown
that the interconnection is regular. This leads to the following algorithm that takes the
polynomial matrices representing the full plant behavior and the desired polynomial as
input, and produces as output a polynomial matrix representing a desired controller:
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Algorithm 5 Input: The polynomial matrices R1(ξ) and R2(ξ) and the real

polynomial r(ξ)

1. Compute a unimodular matrix U and a full row rank polynomial matrix R12

such that UR2 = [R12; 0]

2. Compute polynomial matrices R11 and R21 such that UR1 = [R11; R21]

3. Compute polynomial matrices U12 and U22 such that (4.3) is unimodular

4. Compute polynomial matrices X and Y that solve the polynomial equation

(4.4).

5. Compute a polynomial matrix C0 such that [R21; C0] is unimodular. Compute

C1 as the polynomial matrix obtained by multiplying one of the rows of

C0 by r(ξ).

6. Output: C = C1X.

Below the MATLAB code of an m-file that computes a required controller is given. The
program which computes the controller is a direct implementation of the steps indicated
in the algorithm. We note that we take advantage of the MATLAB command xab, i.e.,
X = xab(A,B) that computes a solution for the matrix equation XA = B (in addition the
command axb solves AX = B for X).

Listing 8
function C=behplace(R1,R2,r)

% C=behplace pi(R1,R2,r)

% Algorithm to compute a pole placement

% controller by partial interconnection.

% Step 1: Compute a unimodular matrix U and a frr R12

% s.t. U*R2=[R12;0]

[m, n]=size([R1 R2]);

% We start considering a polynomial matrix

% given as: R=[R1 R2],i.e., R is a kernel

% representation given by R1(d/dt)*w+R2(d/dt)*c=0.

% R1 has frr but R2 does not.

% Rowcompression of R2:
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[R2rowred,rR2rowred,U,UI]=rowred(R2);

% R2rowred=[R12;0],i.e., R2 does not have frr

% Step 2: Compute R11, R21 s.t U*R1=[R11;R21]

% The same transformation defined by U above

% is applied to R1,i.e., we obtain U*R1

UR1=U*R1;

[mUR1, nUR1]=size(UR1);

%R1=[R11;R21];

% We retrieve R11,R12,R21,R22=Zero:

[R12, Zero]=separate0(R2rowred);

[mR12, nR12]=size(R12);
[mZero, nZero]=size(Zero);

R11=UR1(1:mR12,:);

R21=UR1(mR12+1:m,:);

if isempty(R21) =1

else

error(’R21 is empty’)

end

% Step 3: Compute polynomial matrices U12,U22 s.t. [R11 U12;R21; U22],i.e,

% that means Uemb=embedding([R11;R21])=embedding(U*R1) where

% Uemb will be partitioned as =[Uemb12;Uemb22].

% The embedded matrix looks like [U*R1;Uemb].

% REMARK: In the papers and in the book the transpose of the

% matrices shown below is used. That is why we have to transpose.

% Transposition without conjugating is done as M.’

% Wemb is the embedded matrix by Q.

% Uemb is the unimodular rowreducing matrix.

[Wemb,Q,Uemb,detUemb,deteWemb]=embedding(UR1);

U12 22=Q.’;
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% Step 4: Solve [U*R1;U12 22]*Z=[R12;0] where [R12;0]=U*R2=R2rowred

% i.e., we solve Wemb*Z=R2rowred

% Z is obtained here.

Z=xab(Wemb.’,R2rowred);

[mR2rowred,nR2rowred]=size(R2rowred);

if Wemb*Z.’-R2rowred.’ =zeros(nR2rowred,mR2rowred)

error(’xab equation not satisfied’)

else

end

[mZ,nZ]=size(Z);

% We partition Z=[X;Y]

mX=mR12; %nR11

%nX=nR12

X=Z(1:mX,:);

%mY=mZ-mX;

%nY=nX;

Y=Z(mX+1:mZ,:);

% Step 5: C0=embedding(R21) and C1=C0(i,:)*r;

[W R21C0, Q R21C0, U R21C0, detU R21C0, deteW R21C0]=embedding(R21);
C0=Q R21C0;

[mC0, nC0]=size(C0);

% We construct C1 as follows. We compute C0(i,:)*r where i<=mC0.

% Let us take i=1. Then C1=[C0(1,:)*r;C0((2:mC0),:)].

C1=[C0(1,:)*r;C0((2:mC0),:)];

% The controller is given by C.

C=C1*X.’;

% REMARK: It has to be true that: det([R21;C1])=r

disp(’Poles placed at:’)

roots(det([R21;C1]))

Note that the algorithm has the same name as the one for full interconnection in chapter
3. The actual algorithm combines the two by counting the number of input arguments.
We illustrate the algorithm by applying it to a simple example.



4.2. Pole placement and stabilization by regular partial interconnection 65

Example 20 Consider the system given by R1(
d
dt

)w + R2(
d
dt

)c = 0 where the polynomial
matrices R1 and R2 are defined by

R1(ξ) =

[

ξ + 1 ξ + 2 ξ + 3
ξ + 4 ξ + 5 ξ + 6

]

, R2(ξ) =

[

ξ + 7 ξ + 8 ξ + 9
3.1ξ + 22 3.1ξ + 25 3.1ξ + 28

]

Let the desired polynomial be given by r(ξ) = ξ + 77.

Running 8
R2rowred =

22 + 3.1s 25 + 3.1s 28 + 3.1s
0 0 0

rR2rowred =

1

Constant polynomial matrix: 2-by-2

U =

0 1
1 − 0.32

R12 =

22 + 3.1s 25 + 3.1s 28 + 3.1s

Zero =

0 0 0

R11 =

4 + s 5 + s 6 + s

R21 =

−0.27 + 0.68s 0.41 + 0.68s 1.1 + 0.68s

Wemb =
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4 + s 5 + s 6 + s
−0.27 + 0.68s 0.41 + 0.68s 1.1 + 0.68s
1 − s − 1s − 1s

Q =

1 − s − 1s − 1s

Uemb =

s 1 − s 0
s − 1s 1
1 − 2 1

Constant polynomial matrix: 1-by-1

detUemb =

1

Constant polynomial matrix: 1-by-1

deteWemb =

3

C0 =

1 − s − 1s − 1s
1 1 0

C1 =

77 − 76s − s2 − 77s − s2 − 77s − s2

1 1 0

C =

2.2e + 03 + 2.7e + 02s + 3.1s2

−71 − 8.3s

Poles placed at:
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ans =

-77.0000

>>

4.2.2 Stabilization by regular partial interconnection

We now consider the problem of stabilization by regular partial interconnection. This
problem is formulated as follows: given Pfull ∈ Lw+k, find a controller C ∈ Lk such that the
corresponding manifest controlled behavior (Kfull(C))w is stable, and the interconnection
is regular. This problem was studied extensively in [9], and it was shown that for the full
plant behavior Pfull such controller exists if and only if the manifest plant behavior (Pfull)w

is stabilizable and the hidden behavior N is stable.
In this subsection we will establish an algorithm to compute a required polynomial matrix
C (representing a controller C) in case that Pfull is represented by the minimal kernel
representation R1(

d
dt

)w + R2(
d
dt

)c = 0.
Let U be a unimodular matrix that leads to the polynomial matrices R11, R12 and R21

as in the previous subsection. Again, P is represented by R21(
d
dt

)w = 0 and N by (4.2).
We assume that P is stabilizable and N is stable. Then R21(λ) has full row rank for all
λ ∈ C

+ and [R11(λ); R21(λ)] has full column rank for all λ ∈ C
+. Hence there exists a

Hurwitz polynomial matrix G and polynomial matrices R′
11 and R′

21 such that

[

R11

R21

]

=

[

R′
11

R′
21

]

G (4.5)

and such that [R′
11(λ); R′

21(λ)] has full column rank for all λ ∈ C. Choose polynomial
matrices U12 and U22 such that

[

R′
11 U12

R′
21 U22

]

(4.6)

is unimodular. Next, solve the polynomial equation (unknowns X and Y )

[

R′
11 U12

R′
21 U22

] [

X
Y

]

=

[

R12

0

]

. (4.7)

Then we have

[

R′
11 U12

R′
21 U22

] [

G X
0 Y

]

=

[

R11 R12

R21 0

]

,

so Pfull also has the minimal kernel representation

[

G X( d
dt

)
0 Y ( d

dt
)

] [

w
c

]

= 0.
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From this, note that (w, c) ∈ Pfull implies G( d
dt

)w = −X( d
dt

)c. Next, let C0 be such that
[R′

21; C0] is Hurwitz (such C0 exists since R′
21(λ) has full row rank for all λ ∈ C

+, see
subsection 3.2). Define now the controller behavior C ∈ Lk as the behavior represented by
C( d

dt
)c = 0, with C defined by C := C0X. Similar as in the previous subsection, it can be

shown that the corresponding manifest controlled behavior K is then represented by
[

R21(
d
dt

)
(C0G)( d

dt
)

]

w = 0,

and that the interconnection of Pfull with C is regular. Since det[R21; C0G] = det[R′
21; C0]

det(G), K is stable. Summarizing, this leads to the following algorithm:

Algorithm 6 Input: The polynomial matrices R1(ξ) and R2(ξ).

1. Compute a unimodular matrix U and a full row rank polynomial matrix R12.

such that UR2 = [R12; 0].

2. Compute polynomial matrices R11 and R21 such that UR1 = [R11; R21].

3. Compute a Hurwitz polynomial G and polynomial matrices R′
11 and R′

21 such

that (4.5) holds and such that [R′
11(λ); R′

21(λ)] has full column rank for

all λ ∈ C.

4. Compute polynomial matrices U12 and U22 such that the matrix in equation

(4.6) is unimodular.

5. Compute polynomial matrices X and Y that solve the polynomial equation

(4.7).

6. Compute a polynomial matrix C0 such that [R′
21; C0] is Hurwitz.

7. Output: C = C0X.

We now give the code of the m-file that computes a required controller.

Listing 9
function C=behstab(R1,R2)

% C=behstab pi(R1,R2)

% Algorithm to compute a stabilizing

% controller by partial interconnection.

% R1, R2 are given horizontally but they are transposed for the

% computations.

% Step 1: Compute a unimodular matrix U and a frr R12

% s.t. U*R2=[R12; 0];
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% Data: R1, R2

[m, n]=size([R1 R2]);

% We start considering a polynomial matrix

% given as: R=[R1 R2],i.e., R is a kernel

% representation given by R1(d/dt)*w+R2(d/dt)*c=0.

% R1 has frr but R2 does not.

% Rowcompression of R2:

% R2rowred=[R12; 0],i.e., R2 does not have frr

[R2rowred, rR2rowred, U, UI]=rowred(R2);
[mR2rowred, nR2rowred]=size(R2rowred);

% Step 2: Compute R11, R21 s.t U*R1=[R11; R21]

% The same transformation defined by U above

% is applied to R1,i.e., we obtain U*R1

UR1=U*R1;

[mUR1, nUR1]=size(UR1);

%R1=[R11; R21];

% We retrieve R11,R12,R21,R22=0=Zero

[R12, Zero]=separate0(R2rowred);

[mR12, nR12]=size(R12);
[mZero, nZero]=size(Zero);

R11=UR1(1:mR12,:);

[mR11, nR11]=size(R11);

R21=UR1(mR12+1:m,:);

if isempty(R21)∼=1

else

error(’R21 is empty’)

end

% Step 3: We decompose: R1=Rprima*G where Rprima=[Rprima11;Rprima21]

% where Rprima is fcr and G is a non sing. matrix.

% We transpose the equation given above which yields:
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% R.’=G.’*Rprima.’

% (because the papers and book computations are done in terms of columns)

[G, Rprima]=ctrbbeh(R1);

[mRprima, nRprima]=size(Rprima);

% Step 4: U12 22=embedding(Rprima),i.e.,

[Wemb, Q, Uemb, detUemb, deteWemb]=embedding(Rprima);
U12 22emb=Q.’;

% Step 5: Z=axb(Wemb,R2rowred.’);

Zz=xab(Wemb.’,R2rowred);

if Wemb*Zz.’-R2rowred.’∼=zeros(nR2rowred,mR2rowred)

error(’xab equation is not satisfied’)

else

end

[mZz,nZz]=size(Zz);

% We partition Z=[X;Y]

nX=nR12;

% Partitioning Rprima=[Rprima11;Rprima21]

mRprima11=mR12;

mRprima21=mZero;

%nRprima11=mX

% Step 6: C0=embedding(Rprima21) s.t [Rprima21;C0] is Hurwitz

% First, we have to retrieve Rprima11,Rprima21:

% Since R1=Rprima*G , mR11=mRprima11 and nR11=nRprima11

mRprima11=mR11;

nRprima11=nR11;

[mR1, nR1]=size(R1);

Rprima11=Rprima(1:mR11,1:nR11);

Rprima21=Rprima(mR11+1:mR1,:);
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[Wemb21, Q, Uemb21, detUemb21, deteWemb21]=embedding(Rprima21);
C0=Q.’;

mX=nRprima;

X=Zz(1:mRprima11,:)

%mY=mZ-mX

%Y=Zz(mX+1:mZz,:)

Y=Zz(mRprima11+1:mZz,:);

% Step 7: C=C0.’*X

C=C0.’*X.’

disp(’Stabilized poles at:’)

roots(det([R21;(C0*G).’]))

4.3 All regularly implementing controllers:

the observable case

In this section and the subsequent one we deal with the problem of parametrizing all
controllers that regularly implement a given behavior. The problem that we study is
formulated as follows.
Let Pfull be represented minimally by R1(

d
dt

)w + R2(
d
dt

)c = 0. Let K ∈ Lw be a desired
behavior, represented minimally by K( d

dt
)w = 0. Then the problem is: give a parametriza-

tion, in terms of the polynomial matrices R1, R2 and K of all polynomial matrices C such
that the controller C( d

dt
)c = 0 regularly implements K.

Example 21 : Consider the plant behavior Pfull with manifest variable w = (w1, w2)
and control variable c = (c1, c2) represented by

w1 + ẇ2 + ċ1 + c2 = 0

c1 + c2 = 0

Clearly, (Pfull)w = C∞(R, R2). For the desired behavior K we take K = {(w1, w2) | w1 +
ẇ2 = 0}. The following controller regularly implements K through c: C = {(c1, c2) |
ċ1 + c2 = 0}. Also every controller represented by kc1 + c2 = 0, with k �= 1, regularly
implements K. We would like to find a parametrization of all 1 × 2 polynomial matrices
C(ξ) = [C1(ξ) C2(ξ)] such that C = {(c1, c2) | C1(

d
dt

)c1 + C2(
d
dt

)c2 = 0} regularly
implements K.
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We will first assume that in the full plant behavior Pfull, c is observable from w. Starting
from this assumption, we will in the present section establish a parametrization. Then, in
the next section we will lift the observability assumption and describe a parametrization
for the general case.
First, let us recall some notation. If Kfull is a subbehavior of Pfull, then (Kfull)w denotes the
behavior obtained from Kfull by eliminating c. Likewise, (Kfull)c is obtained by eliminating
w from Kfull. Suppose now that K is implementable through c w.r.t. Pfull. Associated
with K an important role will be played by the subbehavior Lfull of Pfull defined as the
interconnection of Pfull and K through w.
We will now first consider the problem of finding one controller C ∈ Lk that implements
K. We will derive a representation of such controller in terms of representations of Pfull

and K. Let R1(
d
dt

)w + R2(
d
dt

)c = 0 and K( d
dt

)w = 0 be kernel representations of Pfull and
K, respectively. The behavior Lfull introduced above is then represented by the kernel
representation

[

R1(
d
dt

) R2(
d
dt

)
K( d

dt
) 0

] [

w
c

]

= 0. (4.8)

Also note that R1(
d
dt

)w = 0 is a representation of the hidden behavior N . Since N ⊆ K
we have that, for all w, R1(

d
dt

)w = 0 implies K( d
dt

)w = 0. As a consequence, there exists
a polynomial matrix F such that K = FR1. Now define a controller behavior C∗ ∈ Lk by

C∗ := ker(FR2(
d
dt

)) (4.9)

This controller behavior indeed implements K:

Lemma 4 K = (Kfull(C∗))w.

Proof. Let Lfull ∈ Lw+k be the interconnection of Pfull and K through w. We have
[

R1 R2

0 FR2

]

=

[

I1 0
F −I2

] [

R1 R2

K 0

]

,

with I1 and I2 identity matrices of appropriate dimensions. Consequently, Lfull is equal to
the full controlled behavior Kfull(C∗). Also, since K ⊆ P, it is easily seen that K is obtained
by eliminating c from Lfull. Thus we conclude that K = (Kfull(C∗))w.

Remark 22 : The controller C∗ represented by (FR2)(
d
dt

)c = 0 contains the ‘canonical
controller’ that was studied in [66], [90] and [8]. Indeed, the behavior Lfull above is equal
to the interconnection of Pfull and K through the variable w. By definition, the canonical
controller is obtained from this interconnection by eliminating w. This can be done by
choosing a unimodular matrix V such that V R1 = col(R11, 0) with R11 full row rank, and
to partition V R2 = col(R12, R22). Then

⎡

⎣

R11(
d
dt

) R12(
d
dt

)
0 R22(

d
dt

)
0 (FR2)(

d
dt

)

⎤

⎦

[

w
c

]

= 0
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is a kernel representation of Lfull. Since R11 has full row rank, a representation of the
canonical controller is therefore given by :

[

R22(
d
dt

)
(FR2)(

d
dt

)

]

c = 0.

The following lemma states that if c is observable from w, and if a given subbehavior of
the manifest plant behavior is obtained by elimination of c from a subbehavior of Pfull,
then this subbehavior of Pfull is unique:

Lemma 5 Let Pfull ∈ Lw+k with system variable (w, c). Assume that c is observable from
w. Let K1

full,K2
full ∈ Lw+k be subbehaviors of Pfull. Then we have: (K1

full)w = (K2
full)w if and

only if K1
full = K2

full.

Proof : Assume (w, c) ∈ K1
full. Then w ∈ (K1

full)w = (K2
full)w, so there exists c′ such

that (w, c′) ∈ K2
full. Thus, (w, c − c′) = (w, c) − (w, c′) ∈ Pfull, so c = c′. It follows that

(w, c) ∈ K2
full. �

As a consequence of the previous lemma we have that if in Pfull, c is observable from w,
if K is implementable through c, and if C is a controller that implements K, then the
corresponding full controlled behavior Kfull(C) is in fact equal to Lfull, the interconnection
of Pfull and K through w:

Lemma 6 Let Pfull ∈ Lw+k with system variable (w, c). Let K ∈ Lw be implementable
through c w.r.t. Pfull. Let C be a controller such that K = (Kfull(C))w, Then we have:

1. Kfull(C) ⊆ Lfull.

2. If c is observable from w then Kfull(C) = Lfull.

Proof : (1.) If (w, c) ∈ Kfull(C) then w ∈ (Kfull(C))w = K Also, (w, c) ∈ Pfull. It follows
that (w, c) ∈ Lfull. (2.) Clearly (Kfull(C))w = K = (Lfull)w. If c is observable from w then
this implies Kfull(C) = Lfull. �

For the special case that, in Pfull, c is observable from w, the following theorem reduces the
problem of parameterizing all controllers that regularly implement K via interconnection
through c with respect to Pfull to that of parameterizing all controllers that regularly
implement (Lfull)c via full interconnection with respect to (Pfull)c:

Theorem 23 : Let Pfull ∈ Lw+k, with system variable (w, c). Assume that c is observable
from w. Let K ∈ Lw be regularly implementable through c. Let Lfull be the interconnection
of Pfull and K through w. Let C ∈ Lk. Then the following two statements are equivalent:

1. C regularly implements K by interconnection through c,

2. C regularly implements (Lfull)c via full interconnection w.r.t. (Pfull)c.
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Proof : Let R1(
d
dt

)w + R2(
d
dt

)c = 0 be a minimal kernel representation of Pfull. Let V
be unimodular such that V R1 = col(R11, 0) with R11 full row rank. Partition V R2 =
col(R12, R22). Then R22(

d
dt

)c = 0 is a minimal kernel representation of (Pfull)c. K is
implementable so there exists a polynomial matrix, say C∗ (with C∗ any polynomial matrix
such that C∗( d

dt
)c = 0 is a kernel representation of the controller C∗ given by (4.9)), such

that
⎡

⎣

R11(
d
dt

) R12(
d
dt

)
0 R22(

d
dt

)
0 C∗( d

dt
)

⎤

⎦

[

w
c

]

= 0

is a kernel representation of Lfull. Hence a kernel representation of (Lfull)c is given by
[

R22(
d
dt

)
C∗( d

dt
)

]

c = 0.

(1. ⇒ 2.) Assume that C regularly implements K, i.e., K(C) = K and the interconnection
is regular. Let C( d

dt
)c = 0 be a minimal representation of C. Then the polynomial matrix

⎡

⎣

R11 R12

0 R22

0 C

⎤

⎦ (4.10)

has full row rank. We claim that (Pfull)c ∩ C = (Lfull)c. Indeed, let R22(
d
dt

)c = 0 and
C( d

dt
)c = 0. Since R11 has full row rank, there exists w such that

⎡

⎣

R11(
d
dt

) R12(
d
dt

)
0 R22(

d
dt

)
0 C( d

dt
)

⎤

⎦

[

w
c

]

= 0, (4.11)

so (w, c) ∈ Kfull(C) = Lfull. This implies that c ∈ (Lfull)c. Conversely, let c ∈ (Lfull)c.
Then there exists w such that (w, c) ∈ Lfull = Kfull(C), so (4.11) holds. This implies that
R22(

d
dt

)c = 0 and C( d
dt

)c = 0, so c ∈ (Pfull)c ∩ C. Obviously, col(R22, C) has full row rank,
so the full interconnection of (Pfull)c and C is regular.
(2. ⇐ 1.) Conversely, assume C regularly implements (Lfull)c w.r.t. (Pfull)c by full inter-
connection, and C( d

dt
)c = 0 is a minimal kernel representation of C. Then

[

R22(
d
dt

)
C( d

dt
)

]

c = 0

is a minimal kernel representation of (Lfull)c. We claim that C regularly implements K
through c. Indeed, (w, c) ∈ Kfull(C) if and only if R11(

d
dt

)w + R12(
d
dt

)c = 0, R22(
d
dt

)c = 0
and C( d

dt
)c = 0. Since C implements (Lfull)c w.r.t. (Pfull)c, this is equivalent with

R11(
d
dt

)w + R12(
d
dt

)c = 0, R22(
d
dt

)c = 0 and C∗( d
dt

)c = 0, which, in turn, is equivalent
with (w, c) ∈ Lfull. Hence Kfull(C) = Lfull, which implies (Kfull(C))w = (Lfull)w = K. In
addition, (4.10) has full row rank so the interconnection is regular. �
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A parametrization of all controllers that regularly implement (Lfull)c by full interconnection
w.r.t. (Pfull)c can be obtained by applying theorem 15. In this way we will now establish,
for the case that in Pfull c is observable from w, a parametrization of all controllers that
regularly implement a given K w.r.t. Pfull. Let R1(

d
dt

)w + R2(
d
dt

)c = 0 and K( d
dt

)w = 0 be
minimal kernel representations of Pfull and K, respectively. We will compute representa-
tions of (Pfull)c and (Lfull)c. As before, let V be unimodular such that V R1 = col(R11, 0)
with R11 full row rank. Partition V R2 = col(R12, R22). Then (Pfull)c has minimal kernel
representation

R22(
d
dt

)c = 0. (4.12)

Clearly, the hidden behavior N is represented by R11(
d
dt

)w = 0, so there exists a polynomial
matrix F1 such that K = F1R11. As in the proof of lemma 4, Lfull is therefore represented
by

⎡

⎣

R11(
d
dt

) R12(
d
dt

)
0 R22(

d
dt

)
0 (F1R12)(

d
dt

)

⎤

⎦

[

w
c

]

= 0,

so a kernel representation of (Lfull)c is given by

[

R22(
d
dt

)
(F1R12)(

d
dt

)

]

c = 0. (4.13)

A parametrization of all controllers C that regularly implement (Lfull)c by full intercon-
nection w.r.t (Pfull)c is now obtained as follows. First, let M be a MRA of R22 with M(λ)
full column rank for all λ. According to theorem 15, the next step is to choose a full row
rank MLA of

[

R22

F1R12

]

M.

Since R22M = 0, such MLA can be chosen of the form

[

I 0
0 Q2

]

,

with Q2 a full row rank MLA of F1R12M . The next step is to choose W = (W1, W2) such
that

⎡

⎣

I 0
0 Q2

W1 W2

⎤

⎦

is unimodular. Obviously, here it suffices to choose W1 = 0 and W2 such that col(Q2, W2)
is unimodular. Summarizing, writing Q instead of Q2, the following steps lead to a desired
parametrization:

1. choose a MRA M of R22 with M(λ) full column rank for all λ,

2. choose a full row rank MLA Q of F1R12M ,
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3. choose W such that col(Q,W ) is unimodular,

4. a parametrization of all controllers that regularly implement (Lfull)c by full inter-
connection w.r.t (Pfull)c, equivalently that regularly implement K through c w.r.t.
Pfull, is then given by C = GR22 + UWF1R12, where G ranges over all polynomial
matrices and U ranges over all unimodular polynomial matrices, of course of suitable
dimensions.

Of course, our ultimate goal is to obtain a parametrization in terms of the original system
parameters R1, R2 and K. This goal is achieved in the following theorem:

Theorem 24 : Let Pfull∈Lw+k, with minimal kernel representation R1(
d
dt

)w+R2(
d
dt

)c = 0.
Assume that c is observable from w. Let K ∈ Lw, with minimal kernel representation
K( d

dt
)w = 0, be regularly implementable through c w.r.t. Pfull. Construct polynomial

matrices V1, V2, F1 and W as follows:

1. let V2 be a full row rank MLA of R1,

2. choose V1 such that col(V1, V2) is unimodular,

3. let M be a MRA of V2R2 with M(λ) full column rank for all λ,

4. let F1 be such that K = F1V1R1,

5. let Q be a full row rank MLA of F1V1R2M ,

6. choose W such that col(Q,W ) is unimodular.

Then for any C ∈ Lk represented by C( d
dt

)c = 0 the following statements are equivalent:

1. C has minimal kernel representation C( d
dt

)c = 0 and regularly implements K through
c with respect to Pfull,

2. there exists a polynomial matrix G and a unimodular U such that

C = (UWF1V1 + GV2)R2.

Proof : If V2 is a full row rank MLA of R1 then the unimodular matrix V = col(V1, V2)
satisfies V R1 = col(V1R1, 0) with V1R1 full row rank. Also V R2 = col(V1R2, V2R2). The
proof then follows by identifying R11 = V1R1, R12 = V1R2 and R22 = V2R2. �

In order to implement the latter theorem, we have the following code.
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Listing 10
function [W,F1, V 1, V 2]=behallimpl(R1,R2,K)
% [W,F1, V 1, V 2]=behallimpl(R1,R2,K)
% All controllers that regularly implement a given behavior ker(K):

% The observable case.

% There exists a polynomial matrix G and a unimodular U such that

% C=(U*W*F1*V1+G*V2)*R2

% Assume R1, R2 and K to be given.

V2=(null(R1’))’

V1=embedding(V2)

M=null(V2*R2)

F1=xab(V1*R1,K)

Q=(null(F1*V1*R2*M)’)’

W=embedding(Q)

disp(’C(d/dt)c=0 regularly implements ker(K) by partial interconnection iff’)

disp(’there exists a polynomial matrix G and a unimodular U such that’)

disp(’C=(U*W*F1*V1+G*V2)R2 ’)

4.4 All regularly implementing controllers:

the nonobservable case

We will now treat the nonobservable case. Again consider the system Pfull represented by
the minimal kernel representation R1(

d
dt

)w + R2(
d
dt

)c = 0. We will no longer assume that
c is observable from w. We will however show that the general case can be reduced to the
observable case. This reduction requires two steps. First, we will reduce the general case
to the case that R2 has full column rank. Next we will reduce the latter to the case that
R2(λ) has full column rank for all λ, i.e. the observable case.

1. Reduction to the case that R2 has full column rank. Let V be a unimodular matrix
such that

R2 =
[

R̃2 0
]

V,

with R̃2 full column rank k′. Define the new system P ′
full ∈ Lw+k′

as the system (with
control variable c′) represented by

R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0.

2. Reduction to the observable case. Assume now that in Pfull the matrix R2 has full
column rank. Let L be a square, nonsingular polynomial matrix such that R2 = R̃2L,
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with R̃2(λ) full column rank for all λ ∈ C. Define the new system P ′
full as the system

(with control variable c′) represented by

R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0.

In the system P ′
full, c′ is observable from w.

It will turn out that, in both reduction steps, K ∈ Lw is regularly implementable through
c w.r.t. Pfull, if and only if it is regularly implementable through c′ w.r.t. P ′

full. Also,
every controller that regularly implements K w.r.t P ′

full will turn out to lead to a set of
controllers that implement K w.r.t Pfull. In the following two subsections, we will treat the
two reduction steps separately.

4.4.1 Reduction to the case that R2 has full column rank

In this subsection the parametrization problem for the original plant Pfull will be reduced
to the parametrization problem for a plant P ′

full in which the R2-matrix has full column
rank. In the following, let V be a unimodular matrix such that R2 = [R̃2 0]V , with R̃2 full
column rank k′ = rank(R2). Let P ′

full be the system represented by R1(
d
dt

)w+R̃2(
d
dt

)c′ = 0.

Theorem 25 : Let K ∈ Lw. Then K is regularly implementable through c w.r.t. Pfull if
and only if K is regularly implementable through c′ w.r.t. P ′

full. Let C ∈ Lk be represented
by the minimal kernel representation C( d

dt
)c = 0. Then the following two statements are

equivalent:

1. the controller C regularly implements K through c w.r.t Pfull,

2. there exist a polynomial matrix C11, polynomial matrices C12 and C21 of full row
rank, and a unimodular matrix U such that

C = U

[

C11 C12

C21 0

]

V, (4.14)

and such that the controller C21 ∈ Lk′
represented by C21(

d
dt

)c′ = 0 regularly imple-
ments K through c′ w.r.t. P ′

full.

Proof : The statement that K is regularly implementable through c w.r.t. Pfull if and only
if K is regularly implementable through c′ w.r.t. P ′

full is easy to prove: Pfull and P ′
full share

the same hidden behavior N and the same manifest plant behavior (P ′
full)w = (Pfull)w.

(1. ⇒ 2.) If C regularly implements K then (omitting the d
dt

’s) then K = (Kfull(C))w with
Kfull(C) = {(w, c) | R1w + R2c = 0 and Cc = 0} and

[

R1 R2

0 C

]
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full row rank. Partition CV −1 = [V1 V2] with the number of columns of V1 equal to
k′ = rank(R2). Choose a unimodular matrix U such that U−1C2 = col(C12, 0) with C12

full row rank. Partition U−1C1 = col(C11, C21). Since [C1 C2] has full row rank, also C21

has full row rank. Moreover, (4.14) holds. We claim that the controller C21 represented by
C21(

d
dt

)c′ = 0 regularly implements K w.r.t. P ′
full. Indeed, denote by

K′
full(C21) := {(w, c1) | R1w + R̃2c1 = 0 and C21c1 = 0}.

the full controlled behavior of P ′
full using the controller C21. Since C12 has full row rank,

{w | there exists c1 s.t. R1w + R̃2c1 = 0, C21c1 = 0}
= {w | there exists c1, c2 s.t. R1w + R̃2c1 = 0, C11c1 + C12c2 = 0, C21c1 = 0}
= {w | there exists c1, c2 s.t. R1w + R2V

−1col(c1, c2) = 0, U−1CV −1col(c1, c2) = 0}
= {w | there exists c s.t. R1w + R2c = 0, Cc = 0 }.

Thus we obtain (K′
full(C21))w = (Kfull(C))w = K. Finally, using the fact that C12 has full

row rank,
[

R1 R2

0 C

]

(4.15)

has full row rank if and only if
[

R1 R̃2

0 C21

]

(4.16)

has full row rank. Hence the interconnection of C12 and P ′
full is regular if and only if the

interconnection of C and Pfull is regular.
(2. ⇒ 1.) Conversely, if (4.14) holds then by reversing the above argument we see that if the
controller C21c

′ = 0 regularly implements K w.r.t P ′
full, then Cc = 0 regularly implements

K w.r.t Pfull. �

4.4.2 Reduction to the observable case

In the previous subsection it was shown that our parametrization problem can be reduced to
a problem for a plant behavior with R2-matrix full column rank. In the present subsection
we will reduce the full column rank case to the observable case. Let Pfull be represented
by the minimal kernel representation R1(

d
dt

)w + R2(
d
dt

)c = 0, with R2 full column rank.

Let L be square, nonsingular such that R2 = R̃2L, with R̃2(λ) full column rank for all λ.
Let P ′

full be the (observable) system represented by R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0.

Theorem 26 : Let K ∈ Lw. Then K is regularly implementable through c w.r.t. Pfull if
and only if K is regularly implementable through c′ w.r.t. P ′

full. Let C ∈ Lk be represented
by the minimal kernel representation C( d

dt
)c = 0. Then the following two statements are

equivalent:
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1. the controller C regularly implements K through c w.r.t Pfull,

2. the controller C′ represented in latent variable representation (with latent variable �)
by

[

I
0

]

c′ =

[

L( d
dt

)
C( d

dt
)

]

� (4.17)

regularly implements K through c′ w.r.t. P ′
full.

Proof : Again, it is easily verified that the hidden behavior and manifest plant behavior
of Pfull and P ′

full coincide. This proves the first statement.
The full controlled behavior resulting from the interconnection of Pfull and C is equal to

Kfull(C) = {w | there exists c such that R1w + R2c = 0, Cc = 0}
= {w | there exists c such that R1w + R̃2Lc = 0, Cc = 0}.

Since L is nonsingular this behavior equals

{w | there exists c′, c such that R1w + R̃2c
′ = 0, c′ = Lc, Cc = 0},

which is equal to K′
full(C′), the full controlled behavior resulting from the interconnection

of P ′
full and C′. Clearly, C implements K w.r.t Pfull if and only if K = (Kfull(C))w, while C′

implements K w.r.t P ′
full if and only if K = (Kfull(C′))w. This shows that C implements K

w.r.t Pfull if and only if C′ implements K w.r.t P ′
full.

Next, we will prove that the interconnection of Pfull and C is regular if and only if the inter-
connection of P ′

full and C′ is regular. Note that K′
full(C′) has latent variable representation

⎡

⎣

R1 R̃2

0 I
0 0

⎤

⎦

[

w
c′

]

=

⎡

⎣

0
L
C

⎤

⎦ �.

Hence the output cardinality of K′
full(C′) equals

p(K′
full(C′)) = rank

⎡

⎣

R1 R̃2 0
0 I L
0 0 C

⎤

⎦ − rank

⎡

⎣

0
L
C

⎤

⎦ .

Using elementary row and column operations and the fact that L is nonsingular, this can
be shown to be equal to

rank

[

R1 R2

0 C

]

= p(Kfull(C)).

Also,

p(C′) = rank

[

I L
0 C

]

− rank

[

L
C

]

= rank(C) = p(C).

Finally, p(Pfull) = rank[R1 R2] = rank[R1 R̃2] = p(P ′
full). This proves our claim. �
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According to this theorem, a controller represented by C( d
dt

)c = 0 works for Pfull if and
only if the controller c′ = L( d

dt
)�, C( d

dt
)� = 0 (with control variable c′) works for the

observable system P ′
full. What we are looking for here is a parametrization of all such

polynomial matrices C. Now, we do already have a parametrization of all controllers
C ′( d

dt
)c′ = 0 that work for P ′

full. Indeed, this parametrization was established in theorem
24. Hence the question arises under what conditions the latent variable representation
c′ = L( d

dt
)�, C( d

dt
)� = 0 and the kernel representation C ′( d

dt
)c′ = 0 represent the same

behavior C ′. The answer to this is given in the following lemma:

Lemma 7 Let L be a k × k, square, nonsingular polynomial matrix. Let C and C ′

be polynomial matrices with k columns. Then the latent variable representation c′ =
L( d

dt
)�, C( d

dt
)� = 0 and the kernel representation C ′( d

dt
)c′ = 0 represent the same behavior

if and only if ker(C ′L) = ker(L) + ker(C).

Proof : (⇒) Let C ′L� = 0. Then c′ := L� ∈ ker(C ′), so there exists �′ such that
c′ = L( d

dt
)�′, C( d

dt
)�′ = 0. Define �′′ := � − �′ Then � = �′ + �′′ ∈ ker(C) + ker(L).

Conversely, let C� = 0. Define c′ = L�. Then C ′c′ = 0 so C ′L� = 0. (⇐) Assume C ′c′ = 0.
Let � be such that c′ = L�. Then C ′L� = 0 so there exists �′ ∈ ker(C) and �′′ ∈ ker(L) such
that � = �′ + �′′. This implies that c′ = L�′, while C�′ = 0. Conversely, assume c′ = L�
with C� = 0. Then clearly C ′L� = 0 so C ′c′ = 0. �

Corollary 3 The controller represented by C( d
dt

)c = 0 regularly implements K through c
w.r.t. Pfull if and only if there exists a polynomial matrix C ′ such that C ′( d

dt
)c′ = 0 regularly

implements K through c′ w.r.t. P ′
full and C satisfies ker(C) + ker(L) = ker(C ′L).

Since we already have a parametrization of all polynomial matrices C ′ such that the con-
troller C ′( d

dt
)c′ = 0 regularly implements K w.r.t. P ′

full, a parametrization of all controllers
that implement K through c w.r.t. Pfull can be obtained by parameterizing for fixed C ′ all
polynomial matrices C such that ker(C) + ker(L) = ker(C ′L). Such parametrization can
be derived from the following theorem:

Theorem 27 : Let L be a k × k, square, nonsingular polynomial matrix. Let C and C ′

be full row rank polynomial matrices with k columns. Then ker(C ′L) = ker(L) + ker(C) if
and only if there exists a square, nonsingular polynomial matrix X such that C ′L = XC
and

[

−X(λ) C ′(λ)
]

has full row rank for all λ ∈ C.

Proof : (⇒) Let [−X Y ] be a full row rank MLA of col(C,L). Then by proposition 10,
ker(XC) = ker(Y L) = ker(C ′L). We claim that XC has full row rank. Indeed, if p is a
polynomial row vector such that pXC = 0 then also pX = 0. Since XC = Y L and L is
nonsingular, also pY = 0. Since [−X Y ] has full row rank this yields p = 0. Thus XC
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and C ′L yield minimal representations of the same behavior so there exists a unimodular
U such that C ′L = UXC. This implies Y L = U−1C ′L so, by the nonsingularity of L,
Y = U−1C ′. Define X̃ = UX. Then [−X̃ C ′] is a full row rank MLA of col(C,L). This
implies C ′L = X̃C. Also, [−X̃(λ) C ′(λ)] has full row rank for all λ. Finally, X̃ is square
and nonsingular. Clearly, X has full row rank. Also,

rowdim(X) = rowdim(C) + rowdim(L) − rank[C L].

Since L is nonsingular, rank[C L] = rank(L), so rowdim(X) = rowdim(C). Of course,
also coldim(X) = rowdim(C), so X is square and nonsingular. The same then holds for
X̃.
(⇐) We have XC − C ′L = 0 and [−X(λ) C ′(λ)] has full row rank for all λ. It is easily
verified that rank[X C ′] = coldim(X,C ′) − rank[C L], so [X C ′] is a full row rank
MLA of col(C,L). By proposition 10, this implies that ker(C) + ker(L) = ker(C ′L) as
desired. �

Corollary 4 Let Pfull be represented by the minimal kernel representation R1(
d
dt

)w +

R2(
d
dt

)c = 0, with R2 full column rank. Let L be square, nonsingular such that R2 = R̃2L,

with R̃2(λ) full column rank for all λ. Let P ′
full be the (observable) system represented by

R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0. Let C ∈ Lk be represented by the minimal kernel representation
C( d

dt
)c = 0. Then for every K ∈ Lq that is regularly implementable through c w.r.t. Pfull

the following two statements are equivalent:

1. the controller C regularly implements K through c w.r.t Pfull,

2. there exists a square, nonsingular polynomial matrix X and a full row rank polynomial
matrix C ′ such that

C = X−1C ′L,

where (X(λ), C ′(λ)) has full row rank for all λ ∈ C and the controller C ′ represented
by C ′( d

dt
)c′ = 0 regularly implements K through c′ w.r.t. P ′

full.

Thus, for any given full row rank C ′ that works for the observable system P ′
full, a set of

polynomial matrices C that work for Pfull is obtained by dividing C ′L by those nonsingular
polynomial matrices X that have the the properties that (X(λ), C ′(λ)) has full row rank
for all λ, and the quotient X−1C ′L is a polynomial matrix again.

4.5 All stabilizing controllers

In this section we return to the stabilization problem. We will solve the problem of para-
metrizing, for a given plant Pfull, all stabilizing controllers. This will be done along the
same lines as the parametrization of all regularly implementing controllers: we will first
establish a parametrization under the condition that in Pfull c is observable from w. Then
we will lift the assumption and treat the general case. For the observable case the following
lemma is instrumental:
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Lemma 8 Let Pfull ∈ Lw+k with system variable (w, c). Assume that c is observable from
w. Assume that (Pfull)w is stabilizable and thatw is detectable from c. Let C ∈ Lk. Then
the following two statements are equivalent:

1. C stabilizes Pfull through c,

2. C stabilizes (Pfull)c by full interconnection.

Proof : (1. ⇒ 2.) K := (Kfull(C))w is stable and the interconnection is regular. Let Lfull

be the interconnection of Pfull and K through w. Then, by observability, Kfull(C) = Lfull.
According to theorem 23, C regularly implements (Lfull)c by full interconnection with
(Pfull)c. We claim that (Lfull)c is stable. Indeed, let c ∈ (Lfull)c. There exists w such
that (w, c) ∈ Lfull ⊆ Pfull. Let R+

2 be a polynomial left-inverse of R2. Then we have
c = −R+

2 R1w. Hence c(t) → 0 (t → ∞) (note that the components of w are products of
polynomials and stable exponentials).
(2. ⇒ 1.) Let K := (Kfull(C))w. Let Lfull be the interconnection of Pfull and K through
w. Then Lfull = Kfull(C) and according to theorem 23, C regularly implements (Lfull)c by
full interconnection with (Pfull)c. Thus, (Lfull)c is stable. We claim that (Lfull)w is stable.
Indeed, assume that w ∈ (Lfull)w. Then there exists c such that (w, c) ∈ Lfull. Note that
c ∈ (Lfull)c, so the components of c are products of polynomials and stable exponentials.
Now, (w, c) satisfies R1(

d
dt

)w + R2(
d
dt

)c = 0. By detectability of w from c, R1(λ) has full
column rank for all λ ∈ C

+. This implies that w(t) → 0 (t → ∞). �

The following theorem then gives a parametrization of all stabilizing controllers for the
observable case:

Corollary 5 Let Pfull ∈ Lw+k satisfy the assumptions of lemma 8. Let R1(
d
dt

)w+R2(
d
dt

)c =
0 be a minimal kernel representation of Pfull. Construct polynomial matrices V2, S and C0

as follows:

1. let V2 be a full row rank MLA of R1,

2. factorize V2R2 = TS with T square, nonsingular and S(λ) full row rank for all λ ∈ C.

3. let C0 be such that col(S,C0) is unimodular

Then for any C ∈ Lk represented by the kernel representation C( d
dt

)c = 0 the following
statements are equivalent:

1. C stabilizes Pfull through c and the kernel representation C( d
dt

)c = 0 is minimal,

2. there exist a polynomial matrix F and a Hurwitz polynomial matrix D such that
C = FS + DC0.

Proof : This is an immediate corollary of lemma 1 and corollary 8. �

The code needed to implement the latter theorem is given below.
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Listing 11
function C=behallstab(R1,R2)

% C=behallstab(R1,R2)

% All stabilizing controllers: The partial interconnection case.

% It gives a parametrization of all stabilizing controllers

% for the observable case: C=F*S+U*D*C0

% R1, R2 are supposed to be given. [R1 R2] is frr

% Since C is a set of controllers, if such family is obtainable

% the boolean variable C is set to 1. The parameters of this set C

% are F, U (unimodular), and D (Hurwitz).

if isfullrank([R1 R2])==0
error(’[R1 R2] does not satisfy the frr property’)

else

end

% V2 is a frr MLA of R1

V2=(null(R1’))’

% Factorize V2*R2=T*S where T is square nonsingular matrix and S is frr.

Vbar=V2*R2

[T, S]=behctrb(Vbar)

if isempty(S)==1,

warning(’The set of all stabilizing controllers could not be found’)

C=0;

else

C=1;

C0=embedding(S)

disp(’Then there exists pol.matrices F, U (unimodular), and D (Hurwitz) s.t.’)

disp(’ C=F*S+U*D*C0’)

end

Example 28 : Let us illustrate the above algorithm. Let Pfull be represented by
R1(

d
dt

)w + R2(
d
dt

)c = 0 where the polynomial matrices R1 and R2 are given by

R1(ξ) =

[

1 ξ
0 0

]

, R2(ξ) =

[

ξ 1
1 1

]

.

When we run the program we obtain the following result.

Running 9
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>> R1

R1 =

1 s
0 0

>> R2

R2 =

s 1
1 1

>> C=behallstab(R1,R2)

Constant polynomial matrix: 1-by-2

V2 =

0 1

Constant polynomial matrix: 1-by-2

Vbar =

1 1

ker(K) is implementable w.r.t ker(P) according to R=F*K

Constant polynomial matrix: 1-by-1

T =

1.4

Constant polynomial matrix: 1-by-2

S =

0.71 0.71
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C0 =

0 − 1

C =

1

Then there exist pol.matrices F, U (unimodular), and D (Hurwitz) s.t.
C=F*S+U*D*C0
>>

Example 29 Another example is the following. This time Pfull is represented by

R1 =

⎡

⎣

1 ξ
0 1
0 0

⎤

⎦ , R2 =

⎡

⎣

ξ 1
1 1

ξ + 1 ξ + 2

⎤

⎦

The resulting computation is shown below.

Running 10

>> R1

R1 =

1 s
0 1
0 0

>> R2

R2 =

s 1
1 1
1 + s 2 + s

>> C=behallstab(R1,R2)

Constant polynomial matrix: 1-by-3

V2 =
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0 0 1

Vbar =

1 + s 2 + s

ker(K) is implementable w.r.t ker(P) according to R=F*K

Constant polynomial matrix: 1-by-1

T =

0.71

S =

1.4 + 1.4s 2.8 + 1.4s

C0 =

1 − 1

Then there exists pol.matrices F, U (unimodular), and D (Hurwitz) s.t.
C=F*S+U*D*C0

C =

1
>>

Thus we have obtained a parametrization of all stabilizing controllers for the observable
case. In order to arrive at a parametrization for the general case, we can perform the same
two reduction steps as in section 4.4. We will describe both steps separately now, the
proofs are left to the reader.
The first step concerns the reduction of a general Pfull to a full plant behavior P ′

full with
R2-matrix full column rank. Let V be a unimodular matrix such that R2 = [R̃2 0]V ,
with R̃2 full column rank. Let P ′

full be represented by R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0.

Corollary 6 (Pfull)w is stabilizable if and only if (P ′
full)w is stabilizable, and in Pfull, w

is detectable from c if and only in P ′
full, w is detectable from c′. Furthermore, if C ∈ Lk

is represented by the minimal kernel representation C( d
dt

)c = 0 then the following two
statements are equivalent:

1. the controller C stabilizes Pfull through c,
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2. there exist a polynomial matrix C11, polynomial matrices C12 and C21 of full row
rank, and a unimodular matrix U such that

C = U

[

C11 C12

C21 0

]

V, (4.18)

and such that the controller C21 ∈ Lk′
represented by C21(

d
dt

)c′ = 0 stabilizes P ′
full

through c′.

The next step concerns the reduction of a full plant behavior Pfull with full column rank
R2-matrix to a behavior P ′

full in which the control variable c′ is observable from w. Let L
be square, nonsingular, such that R2 = LR̃2, with R̃2(λ) full column rank for all λ. Let
P ′

full be represented by R1(
d
dt

)w + R̃2(
d
dt

)c′ = 0.

Corollary 7 (Pfull)w is stabilizable if and only if (P ′
full)w is stabilizable, and in Pfull, w

is detectable from c if and only in P ′
full, w is detectable from c′. Furthermore, if C ∈ Lk

is represented by the minimal kernel representation C( d
dt

)c = 0 then the following two
statements are equivalent:

1. the controller C stabilizes Pfull through c,

2. there exists a square, nonsingular polynomial matrix X and a full row rank polynomial
matrix C ′ such that

C = X−1C ′L,

where [X(λ) C ′(λ)] has full row rank for all λ ∈ C and the controller C ′ represented
by C ′( d

dt
)c′ = 0 stabilizes P ′

full through c′.

4.6 Examples for the nonobservable case

In order to illustrate the theory developed in this chapter on the parametrization in the
nonobervable case, in this section we will present some worked-out examples.

Example 30 : Let Pfull with with manifest variable w = (w1, w2) and control variable
c = (c1, c2) be represented by

w1 + ẇ2 + ċ1 + c2 = 0

c1 + c2 = 0

Clearly, (Pfull)w = C∞(R, R2). For K we take the behavior represented by w1 + ẇ2 = 0. K
is regularly implementable through (c1, c2) w.r.t. Pfull. We have

R1(ξ) =

[

1 ξ
0 0

]

and R2(ξ) =

[

ξ 1
1 1

]

.
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R2 has full column rank. We factorize R2 = R̃2L with R̃2 = I2, the 2 × 2 identity matrix,
and L = R2. The resulting system P ′

full represented by R2w + R̃2c
′ = 0 is observable.

We first parameterize all controllers that regularly implement K w.r.t. P ′
full. For this, we

perform the steps described in theorem 4.3: V2 = [0 1], V1 = [1 0], V2R2 = [1 1] so
M = col(1,−1). Next, V1R1 = K = [1 ξ], so F1 = 1. We have F1V1R2M = ξ − 1. Thus
Q, as full row rank MLA of ξ − 1, is void. We take W = 1. A parametrization of all full
row rank controllers representations C ′ that regularly implement K w.r.t. P ′

full is given by
C ′(ξ) = [u g(ξ)], with 0 �= u ∈ R and g an arbitrary polynomial with real coefficients.

The latter computations can of course also be performed using the MATLAB program
behallimpl obtained and described before. The resulting running appears below.

Running 11
>> help behallimpl

[W,F1, K, V 1, V 2]=behallimpl(R1,R2)
All controllers that regularly implement a given behavior ker(K):

The observable case.

There exists a polynomial matrix G and a unimodular U such that

C=(U*W*F1*V1+G*V2)R2

Assume R1, R2 and K to be given.

>> [W,F1, K, V 1, V 2]=behallimpl(R1,R2)

Constant polynomial matrix: 1-by-2

V2 =

0 1

V1=embedding(V2)

>> V1=[1 0]

V1 =

cont reg obs

1 0

>> M=null(V2*R2)

[K, rank, F1, F1inv]=rowred(V1*R1,’bas’)

Q=(null(F1*V1*R2*M)’)’
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W=embedding(Q)

C(d/dt)c=0 regularly implements ker(K) by partial interconnection iff

there exists a polynomial matrix G and a unimodular U such that

C=(U*W*F1*V1+G*V2)R2

Constant polynomial matrix: 2-by-1

M =

-0.71

0.71

K =

1 s

rank =

1

Constant polynomial matrix: 1-by-1

F1 =

1

Constant polynomial matrix: 1-by-1

F1inv =

1

NULL: No polynomial right null space

Q =

Empty polynomial matrix: 1-by-0

Continuing the example now, we parametrize all controllers C that regularly implement
K w.r.t. the original full plant behavior Pfull. According to corollary 4, for any choice of
u �= 0 and polynomial g, we should find all nonzero polynomials x(ξ) that divide C ′L =
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[uξ + g(ξ) u + g(ξ)] such that [x(λ) u g(λ)] �= 0 for all λ ∈ C. Since u �= 0, this
constraint is automatically satisfied. Thus we only need to compute all common factors
x(ξ) of the polynomials uξ + g(ξ) and u + g(ξ). It is easily seen that if λ is a common root
of these two polynomials, then we must have λ = 1. There are now two possibilities:

1. g(1) �= −u. In this case uξ + g(ξ) and u+ g(ξ) are coprime. The only common factor
is then x(ξ) = 1.

2. g(1) = −u. In this case x(ξ) = ξ − 1 is a common factor. It is easily seen that
(ξ − 1)2 cannot be a common factor: for this, λ = 1 should be a common root of the
derivatives u + dg

dξ
(ξ) and dg

dξ
(ξ), which is impossible since u �= 0.

Thus we find that a parametrization of all controllers that regularly implement K for Pfull

is given by: C(ξ) = [uξ + g(ξ) u + g(ξ)), u �= 0, g arbitrary polynomial, or C(ξ) =

[uξ+g(ξ)
ξ−1

u+g(ξ)
ξ−1

], u �= 0 and g arbitrary polynomial such that g(1) = −u. Since g(1) = −u

if and only if there exists a polynomial h such that g(ξ) = −u + h(ξ)(ξ − 1), the latter is
equivalent with: C(ξ) = [u + h(ξ) h(ξ)], u �= 0 and h arbitrary polynomial.

Example 31 : Let Pfull with w = (w1, w2, w3) and c = (c1, c2) be represented by

w1 + ċ1 + c̈2 = 0

ẅ2 + ċ1 + c̈2 = 0

w3 + ċ2 = 0

Then

R1(ξ) =

⎡

⎣

1 0 0
0 ξ2 0
0 0 1

⎤

⎦ and R2(ξ) =

⎡

⎣

ξ2 ξ
ξ2 ξ
0 ξ

⎤

⎦ .

R1 has full row rank, R2 has full column rank. (Pfull)w is represented by w1 = ẅ2. For the
behavior to be regularly implemented we take K represented by w1 = ẅ2, ẅ1 = 0. Hence

K =

[

1 −ξ2 0
ξ2 0 0

]

.

Factor R2 = R̃2L with

R̃2(ξ) =

⎡

⎣

1 1
1 1
0 1

⎤

⎦ and L(ξ) =

[

ξ2 0
0 ξ

]

.

The resulting system P ′
full represented by R2w + R̃2c

′ = 0 is observable. We first parame-
terize all controllers that regularly implement K w.r.t. P ′

full. For this, we perform the steps
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described in theorem 4.3: V2 is void, so for V1 we take I3. V2R̃2 is void, so a suitable MRA
is M = I2. Take

F1 =

[

1 −1 0
ξ2 0 0

]

.

Then K = F1V1R̃2. A full row rank MLA of F1V1R̃2M is then Q = [1 0]. Take W =
[0 1]. Then a parametrization of all full row rank controllers representations C ′ that
regularly implement K w.r.t. P ′

full is given by C ′(ξ) = u[ξ2 ξ2], with 0 �= u ∈ R.
Next we parameterize all controllers C that regularly implement K w.r.t. the original
full plant behavior Pfull. We should find all nonzero polynomials x(ξ) that divide C ′L =
u[ξ4 ξ3] such that [x(λ) λ2 λ2] �= 0 for all λ ∈ C. Among all possible factors x(ξ) =
1, ξ, ξ2, ξ3 only x(ξ) = 1 qualifies, so we conclude that the parametrization of all C’s is
given by C(ξ) = u[ξ4 ξ3] with 0 �= u ∈ R.

Example 32 : Let Pfull be represented by

w1 + ċ + c = 0

ẅ2 + ċ + c = 0.

Then (Pfull)w is represented by w1 = ẅ2. Let K be represented by w1 = ẅ2, ẅ1 = 0. We
have

R1 =

[

1 0
0 ξ2

]

, R2 =

[

1 + ξ
1 + ξ

]

, R̃2 =

[

1
1

]

, L(ξ) = 1 + ξ.

In P ′
full, represented by R1w + R̃2c

′, = 0, c′ is observable from w. We parameterize all
controllers C ′ that regularly implement K w.r.t. P ′

full. Performing the steps of theorem
4.3, we obtain V2 void, V1 = I2, V2R2 void, M = 1. Furthermore,

K =

[

1 −ξ2

ξ2 0

]

, F1 =

[

1 −1
ξ2 0

]

.

We take Q = [1 0] and W = [0 1]. The required parametrization is then C ′(ξ) = uξ2,
0 �= u ∈ R. To obtain a parametrization for the original plant Pfull, note that C ′(ξ)L(ξ) =
uξ2(1 + ξ). According to corollary 4 we should compute all nonzero factors x(ξ) of this
polynomial with the property that [x(λ) λ2] �= 0 for all λ. Among all possible factors
1, ξ, ξ2 and 1 + ξ, only 1 and 1 + ξ qualify. We conclude that a parametrization of all
controllers C is given by: C(ξ) = uξ2, 0 �= u ∈ R or C(ξ) = uξ2(1 + ξ), 0 �= u ∈ R.

Example 33 : Consider the full plant behavior Pfull represented by

w1 + ẇ2 + ċ1 + c2 = 0

w2 + c1 + c2 = 0

ċ1 + c1 + ċ2 + c2 = 0
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We will parameterize all controllers C( d
dt

)c = 0 that stabilize Pfull through c. We have

R1 =

⎡

⎣

1 ξ
0 1
0 0

⎤

⎦ , R2 =

⎡

⎣

ξ 1
1 1

ξ + 1 ξ + 1

⎤

⎦ , R̃2 =

⎡

⎣

1 0
0 1
0 ξ + 1

⎤

⎦ , L =

[

ξ 1
1 1

]

.

In P ′
full, represented by R1w + R̃2c

′, = 0, c′ is observable from w. We first parameterize
all controllers C ′( d

dt
)c′ = 0 that stabilize P ′

full. Performing the steps of corollary 5, we

obtain V2 = [0 0 1], V2R̃2 = TS with T (ξ) = ξ + 1 and S = [0 1] Choose C0 = [1 0].
The required parametrization is then C ′(ξ) = [d(ξ) f(ξ)] with d an arbitrary Hurwitz
polynomial, and f an arbitrary polynomial. We compute C ′(ξ)L(ξ) = [ξd(ξ)+f(ξ) d(ξ)+
f(ξ)]. A parametrization for the original plant Pfull is obtained by computing, for any choice
of d and f , all nonzero common factors x(ξ) of the polynomials ξd(ξ)+f(ξ) and d(ξ)+f(ξ)
with the property that [x(λ) d(λ) f(λ)] �= 0 for all λ. Let d and f be given, d Hurwitz.
We distinguish the following cases:

1. x(ξ) = c, constant, unequal to zero. These x(ξ)’s satisfy the requirements

2. x(ξ) has at least one zero λ �= 1. Then λd(λ) + f(λ) = 0 and d(λ) + f(λ) = 0. If
d(λ) = 0 then also f(λ) = 0, and this leads to [x(λ) d(λ) f(λ)] = 0, violating
the rank condition. If d(λ) �= 0 then a simple calculation shows that λ = 1, which
contradicts the assumption that λ �= 1. Thus this case does not yield required x(ξ)’s.

3. x(ξ) has only λ = 1 as zero, in other words, x(ξ) = c(ξ − 1)k for some c �= 0 and
integer k ≥ 1. In this case we distinguish further between the following cases:

(a) k = 1. We have d(1) + f(1) = 0. Since d is Hurwitz, d(1) �= 0, so we have
[x(1) d(1) f(1)] �= 0, and the rank condition holds. We conclude that x(ξ) =
c(ξ − 1), with c �= 0, satisfies the requirements.

(b) k > 1. In this case λ = 1 is also a common zero of the derivative polynomials
d(ξ) + ξd′(ξ) + f ′(ξ) and d′(ξ) + f ′(ξ). This implies d(1) = 0, which contradicts
the fact that d is Hurwitz. We conclude that x(ξ) = c(ξ − 1)k for k > 2 does
not satisfy the requirements.

Our conclusion is that a parametrization of all stabilizing controllers for Pfull is given by:
C(ξ) = [ξd(ξ) + f(ξ) d(ξ) + f(ξ)], d Hurwitz polynomial, f arbitrary polynomial, or
C(ξ) = 1

ξ−1
[ξd(ξ) + f(ξ) d(ξ) + f(ξ)], d Hurwitz polynomial and f polynomial such that

d(1) + f(1) = 0.

4.7 Summary

In this chapter we have considered the complementary part of chapter 3. We proceeded in
the same way as there. Pole placement and stabilization problems were solved first. Then
we provided the whole family of regularly implementing and stabilizing controllers for the
partial interconnection case.



Chapter 5

Embedding Algorithms

Embedding, i.e expanding a nonsquare matrix to a square one, plays a significant role in
systems and control theory. For instance, embedding a polynomial matrix P (ξ) unimodu-
larly allowed us to solve the pole placement problem in chapter 3 and stable embedding (a
less restrictive version) yielded a solution for the stabilization problem.
In this chapter we will discuss existing and new algorithms1 to solve the embedding prob-
lem. The scope of the chapter is as follows. In section 5.1 we define the problem and give
some motivating examples, in section 5.2 we give an overview of existing algorithms to solve
the embedding problem, and we give a couple of examples to show that the method based
on the Smith form does not give acceptable answers. After that we turn to the algorithm
of Beelen [4],[5] based on matrix pencils. In section 5.3 we introduce matrix pencils, in
section 5.4 we relate the embedding problem for an arbitrary polynomial matrix to one for
a pencil by using a state space representation. In section 5.5 we give the solution for the
embedding problem for a pencil, section 5.6 describes the way to calculate that solution, in
section 5.7 we describe the algorithm that gives a unimodular or stable embedding starting
from a polynomial matrix.

5.1 Problem formulation

Let P (ξ) be a nonsquare polynomial matrix. Embedding P (ξ) into a square matrix means
to enhance P (ξ) with the necessary number of rows or columns to get a square matrix
W (ξ). This problem in itself is of course not very interesting, it becomes interesting if we
add additional conditions to the resulting W (ξ). In this chapter we will look specifically at
two forms of this problem, the unimodular and the stable embedding problem, unimodular
embedding problem defined as follows:

Given P (ξ), the unimodular (stable) embedding problem consists in finding a (polynomial)

1As we know, an algorithm is a sequence of commands or actions to accomplish some task after a finite
number of steps. The name was taken from the very famous Muslim mathematician and astronomer Abu
Ja’far Muhammad ibn Musa Al-Khwarizmi (born nearby of Baghdad, ca. 780- ca. 850 AD). The words
“algebra” and “guarism” (the Arabic sign which represents a number) were taken from him as well.
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 95–113 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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matrix Q(ξ) such that the resulting stacked matrix

W (ξ) =

[

P (ξ)
Q(ξ)

]

(5.1)

is unimodular (Hurwitz).
Recall that a polynomial matrix is unimodular if it is square and its determinant is a
nonzero constant, and Hurwitz if it is square and its determinant has no zeros in the closed
right half plane.

Physically speaking, we can interpret this as follows. Let us consider a given electrical,
mechanical, thermal,etc. (in general a physical ) one -port with generalized impedance
Z1 (which can be represented by a polynomial matrix P (ξ)), and suppose we want to
find a second generalized impedance Z2 (represented by another polynomial matrix Q(ξ)),
such that the equivalent generalized parallel impedance Zeq (seen from this equivalent
one -port) allows no activity (unimodular embedding problem), or allows only declining
activity (stable embedding problem). Then, such an equivalent generalized impedance is
represented by the enhanced matrix [P (ξ); Q(ξ)]. An additional requirement could be that
the impedance Z2 (the controller) has to be constructed in such a way that the internal
structure of Z1 has to be taken into account (see chapter 2)
Consider the following example. Let us assume we have the following SISO2 electrical
system consisting of one resistor and one inductor. Such a network is modelled by the
equation

v1 + L
di1
dt

+ R1i1 = 0

where v1 is the exciting voltage (in volts), i1 is the instant current (output in Amperes),
R1 is the value of the resistor (measured in Ohms) and L is the inductance of the inductor
(in Henrys). We can write the latter model in matrix form as follows:

[

1 L
d

dt
+ R1

] [

v1

i1

]

= 0, i.e., P (
d

dt
)w = 0

Unimodular embedding means to enhance P (ξ) with the necessary number of rows in such
a way that we get a square matrix W (ξ) with non zero constant determinant. When this
is the case, we have solved the unimodular embedding problem . By inspection, we might
propose an embedding of P (ξ) looking like Q(ξ) = [1 Lξ]. Then, we would have the
following result:

W (ξ)=

[

1 Lξ + R1

1 Lξ

]

,

2Single input, single output



5.2. Preliminaries 97

which is unimodular: det W (ξ) = −R1.
According to the example given above, it would mean that we have to generate another
network (in terms of the unique existing one) such that the parallel connection has only
the zero solution.
If we have to force that det(W (ξ)) has only stable roots, we refer to that as the stable
embedding problem . The collection of rows determined will define a matrix called Q(ξ),
which will be the embedding of P (ξ) or equivalently said, P (ξ) will be embedded by Q(ξ).
In this case, a 1 × 2 matrix Q(ξ) will do the work.
If we change the example above by adding a factor ξ + 1 on the left hand side:

(ξ + 1)
[

1 Lξ + R1

]

[

v1

i1

]

= 0, i.e., P (ξ)w = 0

then we can never solve the unimodular embedding problem, since the first row of the
resulting matrix W would be zero for ξ = −1. However, we can solve the stable embedding
problem, i.e. finding a W (ξ) which is Hurwitz. The same Q would yield then det(W (ξ)) =
−R1(ξ+1), but we could also take Q = [−ξ 1], since then det(W (ξ)) = Lξ2+R1ξ+1,which
has only roots in the left half plane.

5.2 Preliminaries

Since the behavioral point of view is a polynomial based approach, embedding polyno-
mial matrices means that physically, we are connecting a given plant, represented by the
polynomial matrix P (ξ), to some suitable controller, represented by C(ξ). Hence, every
time we embed a polynomial matrix, we actually connect the corresponding plant to some
controller in order to implement a desired behavior, for instance a stable one, or one in
which the poles are at certain desired locations.

5.2.1 Historical overview

In spite of the theoretic research some people have done on the unimodular embedding
problem just described above ([20], [2], [4]), it is amazing to find out that little attention
has been paid to the numerical implementation of the solutions ([4], [95]).
In fact the embedding problem is readily solved using the Smith form: Write P = U [D 0]V ,
with, which U and V unimodular of appropriate size and D diagonal. Note the problem
is only solvable if P (λ) has full row rank for all λ ∈ C. In that case we can take D = I,
and then Q = [0 I]V leads to

W =

[

U 0
0 I

] [

D 0
0 I

]

V,

so Q solves the unimodular embedding problem. Unfortunately the numerical implemen-
tation of this solution is not satisfying. If for instance we try to do this in MAPLE we get
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wrong answers. Constructing the Smith form is based on elementary column and row op-
erations. These transformations are numerically unstable as we can see from the following
example.

Example 34 Let P (ξ) be given as

P (ξ) =

[

α ξ
ξ ξ

]

where α ≈ 0 but α �= 0. The corresponding Smith form can be obtained via the row
transformation as it is indicated below

[

1 0
−ξ/α 1

] [

α ξ
ξ ξ

]

=

[

α ξ
0 −ξ2/α + ξ

]

As we see, the entries of the transforming matrix diverge for small values of α. Conse-
quently, the numerical errors will not converge in this case. This example is small and
something could be done in order to deal with small values of α. Nevertheless, for bigger
matrices, the accumulation of such effects renders the reduction to Smith form numerically
unstable.

Next, we shall try to embed a bigger matrix by means of the Smith form, by using the
command smith in MAPLE.

Example 35

P (ξ) =

[

1 + 11 ξ 2 + 9.5 ξ 3 + 3 ξ

2.5 + 1.4 ξ 1.7 + 3 ξ 7.6 + 2.7 ξ

]

The corresponding Smith form will be

S(ξ) =

[

1 0 0

0 1 0

]

= U(ξ)P (ξ)V (ξ)

where

U(ξ) =

[

−0.0536 0.4214

−2.5 − 1.4 ξ 1.0 + 11.0 ξ

]

V (ξ) =

⎡

⎢

⎢

⎣

1.0 0.2597 + 0.06907 ξ 10.1 + 63.5 ξ + 16.65 ξ2

0.0 −0.3037 − 0.10579 ξ −0.1 − 74.6 ξ − 25.5 ξ2

0.0 −0.0245 + 0.08172 ξ −3.3 − 4.85 ξ + 19.7 ξ2

⎤

⎥

⎥

⎦

Matrices U and V are unimodular but let us take a look at how unimodular they are
numerically speaking. Obtaining determinants we see that
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det(U(ξ)) = 1.0 + 0.0000000001 ξ

and

det(V (ξ)) = 1.0 + 0.000000001 ξ − 0.000000002 ξ2,

So det(U) = 1+O(10−10)ξ and the zeros of det(V ) are λ1,2 = {−22360.42978, 22360.92978}.
Partitioning V −1 = [V1; V2] where V1 is m×n and V2 is n−m×n, we complete the “miss-
ing” rows of P (ξ) with V2, i.e., W (ξ) = [P ; V2] which is given by

W (ξ) =

⎡

⎢

⎢

⎣

1.0 + 11.0 ξ 2.0 + 9.5 ξ 3.0 + 3.0 ξ

2.5 + 1.4 ξ 1.7 + 3.0 ξ 7.6 + 2.7 ξ

0.0 0.0245 − 0.0817 ξ −0.3038 − 0.1058 ξ

⎤

⎥

⎥

⎦

Computing det(W (ξ)) we obtain

det(W (ξ)) = 1.0 − 2(10−9) ξ − 10−9 ξ2 + 10−9 ξ3

In fact det(W ) = 0 for

λ1,2 = 500.3337221 ± 866.0247300j, λ3 = −999.6674442

We see that the command smith in MAPLE does give the Smith form and det(W ) = 1
if we neglect O(10−9) terms. Nevertheless, we examine now an example where the latter
does not happen in line with the observations of Van Dooren [78].

Example 36 Next let us consider the following polynomial matrix of degree d = 4.

P (ξ) =

[

0.96 + 6700ξ+14ξ2+20ξ3+ξ4 0.0 0.054 + 50ξ+0.1ξ2 −0.033 − 50ξ

0.0 0.96 + 6700ξ + 14ξ2 + 20ξ3 + ξ4 −0.033 − 50ξ −0.038 − 150ξ − 0.1ξ2

]

In this case

S(ξ) =

[

1 0 0 0

0 1 0 0

]

= U(ξ)P (ξ)V (ξ)

Embedding P (ξ) as we did in example 35 produces the following determinant

det(W (ξ)) = 1.0 − 0.01 ξ2 + 10 ξ3 − 0.1 ξ4 − 0.01 ξ5

which has stable and unstable roots

λ1 = 27.01512230, λ2,3 = 0.2320179368 ± 0.4025966714j, λ4 = −0.4631458693, λ5 = −37.016011230.

So, the Smith form does not give in general- a unimodular W.
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The behavioral approach concerns modelling and control of physical systems and therefore
it is important to have reliable numerical procedures for our algorithms. As far as we know
there does not exist a single work which studies the numerical properties of the embedding
problem. Even serious computing libraries3 do not have a tool to solve the problem.

As a next try we turned to the algorithm explained in the work of Beelen[4]. We will
explain the method in detail in the last part of this chapter. Unfortunately this method
also turned out to be unreliable as we will show in chapter 6.

Fortunately in the end we succeeded in finding a simple, elegant algorithm that behaves
very well numerically. We will describe it the final chapter 7. The current chapter will be
concerned with the algorithm as described by Beelen. We think that understanding the
reason why this algorithm does not yield satisfactory answers is important because there
are algorithms for other polynomial problems that are currently solved by the same lin-
earization procedure. These might suffer from similar numerical problems. The procedure
is for instance applied in the calculation of row reduced matrices, in coprime factorization
and in the calculation of Kronecker indices.

In the work of Beelen [4] only the unimodular embedding problem is treated. We will
extend his results to the stable embedding problem in this chapter. For completeness we
also discuss the unimodular embedding problem in detail.

The unimodular embedding problem has solutions in a small set: we require at the end that
W is unimodular, and unimodular matrices form an algebraic strict subset of all square
matrices. Hurwitz matrices on the other hand are not that special, they form an open set.
Therefore we expect that the stable embedding problem might be more robust than the
unimodular embedding problem.

5.2.2 Notation

For notational convenience we denote the class of non constant polynomial matrices P (ξ),
such that P (λ) has full row rank for all λ ∈ C, by U , and those that have full row rank for
all λ in the closed right half plane by M. A unimodular matrix is a square matrix in U , a
Hurwitz matrix is a square matrix in M.

In this book a special role is played by polynomial matrices of degree one. In line with
usual terminology we call this a (matrix) pencil , and we will denote such polynomial ma-
trices by ξE − A.

3LAPACK, BLAS , SLICOT. Actually, the SLICOT library is built on the LAPACK and BLAS libraries,
containing a collection of highly performant and numerically reliable basic linear algebra subroutines [72].
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5.3 Pencils and Matrix Pencils

We can obtain an idea of the meaning of pencil if we recall the basic fact that through a
given single point an infinite number of straight lines can pass. Geometrically speaking
they form a “bundle” of lines passing through that point. A matrix polynomial of degree
1, ξE − A, describes analogously a bundle of lines through the “point” (E,A). In fact in
this way we can build a pencil of many mathematical structures and a pencil of matrices is
not an exception. Matrix pencils arise in the study of linear continuous and discrete time
invariant state space systems and descriptor systems. In the approach of Beelen, matrix
pencils are used as linearizations of arbitrary matrix polynomials. Now we are dealing with
a matrix polynomial of degree one, instead of handling a matrix polynomial of degree d.

5.3.1 Canonical forms of pencils

We will define canonical forms for square and nonsquare pencils. We recall that, to a square
pencil ξI−A, we can associate its corresponding Jordan canonical form. For a more general
(not necessarily square) pencil ξE−A there exists the so called Kronecker canonical form.
Kronecker showed that any pencil can be expressed as a canonical block diagonal matrix
(see Gantmacher [25]). If we restrict both pencils to the case that E = I, this canonical
form yields the Jordan canonical form. This canonical form is quite appreciated from a
theoretical point of view because it displays the complete eigenstructure of the pencil, i.e.,
many properties of ξE − A can be derived from the block entries of this structure. From
a numerical point of view, however, canonical forms have been shown to be impractical
to implement [77]. A more suitable way to deal with this problem had to be found. An
example of an equivalent form is the so called generalized Schur form [5]. This form is
defined in the following section.

5.3.2 A little bit deeper into matrix pencils

It is also possible to define a generalized Schur form for matrix pencils. Let us consider
the pencil ξE−A where A and E are arbitrary constant matrices of equal dimensions. We
say that a pencil is regular if

det(ξE − A) �= 0

The pencil is called singular if either the latter is not satisfied or if ξE − A is not square.
A strictly equivalent pencil is obtained if we apply constant, invertible matrices U, V such
that

U(ξE − A)V = ξE1 − A1

which implies the equivalence (denoted by “∼”) of two pencils:
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ξE − A ∼ ξE1 − A1

If U , V are unitary matrices, the pencils are said to be unitarily equivalent. Taking this
into account, we can define the generalized Schur form as a unitarily equivalent pencil
given by

ξE − A ∼

⎡

⎢

⎢

⎣

ξEε − Aε ∗ ∗ ∗
ξE∞ − A∞ ∗ ∗

ξEf − Af ∗
ξEη − Aη

⎤

⎥

⎥

⎦

where
a) ξEf − Af is a square regular pencil containing the finite elementary divisors of ξE − A
(Ef is invertible).
b) ξE∞−A∞ is a square regular pencil containing the infinite elementary divisors of ξE−A
(E∞ is nilpotent, A∞ is invertible)
c) ξEη − Aη and ξEε − Aε are singular pencils containing the Kronecker row and column
structure, respectively.

Without loss of generality, we will consider a simpler version of the structure shown above:

U(ξE − A)V =

[

ξEε∞ − Aε∞ ∗
0 ξEfη − Afη

]

In this case the diagonal block ξEε∞ − Aε∞ is in so called staircase form that completely
reveals the structure elements of Kronecker canonical form. More precisely, the inner
structure of the block entries looks as follows

[

ξEε∞ − Aε∞ ∗
0 ξEfη − Afη

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−A11 ξE12 − A12 . . . ξE1�+1 − A1�+1

0 −A22 . . . ξE2�+1 − A2�+1

...
...

. . .
...

...
0 0 . . . −A�� ξE��+1 − A��+1

0 0 . . . 0 ξE�+1�+1 − A�+1�+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where ξE�+1�+1 − A�+1�+1 := ξEfη − Afη and

1) E�+1�+1 has full row rank
2) All the Aii have full row rank νi (i = 1, . . . , �)
3) The Ei−1i have full column rank µi, (i = 2, . . . , �)
4) The following block has full row rank and is in echelon form
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[

E��+1

E�+1�+1

]

We will be exploiting the above mentioned generalized Schur form of the pencil, ξE − A,
in both embedding problems that we consider. But first we will explain the way pencils
come in.

5.4 The state space representation

Any behavior, defined by a kernel representation, can also be represented by an observ-
able state space representation ([60, 64]). Let the behavior be given by B = {w ∈
L1

loc(R, Rn|P (
d

dt
)w = 0}, where P (ξ) = P0 + P1ξ + P2ξ

2 + . . . + Pdξ
d is a matrix poly-

nomial of size m × n (we consider solutions to the differential equations in distributional
sense in the space of locally integrable functions). Let the truncation of P, T (P ) be defined
by T (P ) = [−Pdξ;−Pdξ

2 − Pd−1ξ; . . . ;−Pdξ
d−1 − . . . − P2ξ].

Let Bs = {(x,w) |(E d

dt
− A)x = 0, w = Cx} where the dm × (d − 1)m + n matrices A

and E are defined by

A =

⎡

⎢

⎢

⎢

⎣

Im

. . .

Im

P0

⎤

⎥

⎥

⎥

⎦

, E =

⎡

⎢

⎢

⎢

⎣

0 −Pd

Im
. . . −Pd−1

. . . . . .
...

Im −P1

⎤

⎥

⎥

⎥

⎦

and C = [0 0 . . . 0 In]. Bs is an observable state space representation for B, in

fact (x,w) ∈ Bs if and only if x = (T (P )(
d

dt
)w; w) and P (

d

dt
)w = 0, as can be seen by

premultiplying ξE − A with the unimodular matrix

U(ξ) = −

⎡

⎢

⎢

⎢

⎣

I 0 . . . 0
ξI I . . . 0
...

. . .

ξd−1I . . . . . . I

⎤

⎥

⎥

⎥

⎦

:

(x,w) ∈ Bs if and only if

⎡

⎢

⎣

I −T (P )(
d

dt
)

0 P (
d

dt
)

⎤

⎥

⎦x = 0
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and w = Cx, so if and only if x = [T (P )(
d

dt
)w; w], with w ∈ B. Therefore Bs is a latent

variable representation of B, and since the equations (in the original formulation) are of
degree one in x and of degree zero in w, it is a state space representation.

This also shows that B is controllable (stabilizable) if and only if Bs is. In fact, the rank
of λE − A equals the rank of P (λ) + (d − 1)m, so in particular we have

Corollary 8 P (ξ) ∈ U (M) if and only if ξE − A ∈ U (M).

We will exploit this relation with the state representation to solve the problem. Suppose
we find a K(ξ) such that [ξE − A; K(ξ)] is unimodular (or Hurwitz). This amounts to

adding an equation K(
d

dt
)x = 0 to the state space representation (E

d

dt
− A)x = 0. Now

consider the behavior Ba determined by these two equations:

Ba = {(x,w) |

⎡

⎢

⎣

E
d

dt
− A

K(
d

dt
)

⎤

⎥

⎦x = 0}

Multiplying the equation by the unimodular matrix diag(U, In−m) we see that we can also
represent Ba by

⎡

⎢

⎢

⎢

⎢

⎣

I −T (P )(
d

dt
)

0 P (
d

dt
)

K1(
d

dt
) K2(

d

dt
)

⎤

⎥

⎥

⎥

⎥

⎦

x = 0

where we split K conformally. Finally premultiplying by

⎡

⎣

I 0 0
0 I 0

−K1 0 I

⎤

⎦

we find the equivalent representation

⎡

⎢

⎢

⎢

⎢

⎣

I −T (P )(
d

dt
)

0 P (
d

dt
)

0 K2(
d

dt
) + K1T (P )(

d

dt
)

⎤

⎥

⎥

⎥

⎥

⎦

x = 0.

Taking

Q(ξ) = K2(ξ) + K1(ξ)T (P )(ξ) (5.2)
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and noting that
⎡

⎣

I −T (P )(ξ)
0 P (ξ)
0 Q(ξ)

⎤

⎦

is still unimodular (Hurwitz), we see that in fact [P (ξ); Q(ξ)] is unimodular (Hurwitz).

5.5 Embedding for a pencil

If the pencil ξE − A has a special form: upper block diagonal with full row rank constant
and unimodular (or Hurwitz) matrices on the diagonal, then finding K is easy.

Lemma 9 Let the pencil ξ ̂E − ̂A be given by

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−A11 ξE12 − A12 . . . ξE1�+1 − A1�+1

0 −A22 . . . ξE2�+1 − A2�+1

...
...

. . .
...

...
0 0 . . . −A�� ξE��+1 − A��+1

0 0 . . . 0 ξE�+1�+1 − A�+1�+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5.3)

such that each Aii has full row rank for i = 1 . . . � and ξE�+1�+1 − A�+1�+1 is unimodular
(Hurwitz). Let K̂ = diag(K11(ξ), . . . , K��(ξ), 0), be such that each block [Aii; Kii(ξ)] is

unimodular (Hurwitz). Then [ξ ̂E − ̂A; K̂] is unimodular (Hurwitz)

Proof. The proof is straightforward. Using row permutations we bring the resulting pencil
in an upper block triangular form with the blocks [−Aii; Kii(ξ)] and ξE�+1�+1 − A�+1�+1

on the diagonal, proving that the determinant of the pencil is a nonzero constant (has its
roots in the open left half plane).

The idea of the construction is to find orthogonal matrices M and N such that M(ξE−A)N
has the structure displayed in (5.3). Then K̂(ξ)NT is the polynomial matrix that we are
looking for:

Lemma 10 Let ξE −A be an arbitrary matrix pencil in U (M), and let M, N be orthog-
onal, constant matrices such that M(ξE −A)N has the structure (5.3) of lemma 9. Then,
there exists a polynomial matrix K(ξ) such that [ξE − A; K(ξ)] is unimodular (Hurwitz).

Proof. Choose K̂(ξ) such that [M(ξE − A)N ; K̂] is unimodular (Hurwitz). Since
[

ξE − A

K̂(ξ)NT

]

=

[

MT 0
0 I

] [

M(ξE − A)N

K̂(ξ))

]

NT ,

it is also unimodular (Hurwitz). So we can take K(ξ) = K̂(ξ)NT .

So the remaining task is to find for an arbitrary pencil in U (M) the matrices M and N .
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5.6 Transforming the pencil

The next theorem proves that we can find M and N .

Theorem 16 Let ξE − A be a pencil in U(M). Then there exist orthogonal matrices M
and N such that M(ξE − A)N =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−A11 ξE12 − A12 . . . ξE1�+1 − A1�+1

0 −A22 . . . ξE2�+1 − A2�+1

...
. . . . . .

...
...

0 . . . 0 −A�� ξE��+1 − A��+1

0 . . . 0 ξE�+1�+1 − A�+1�+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where Aii has full row rank for i = 1 . . . �, and the pencil ξE�+1�+1 − A�+1�+1 is either
unimodular (Hurwitz) or void.

Remark 37 By void we mean that it has size 0 × 0, so then the whole last block column
is missing.

Proof. The theorem is proved by induction on the size s of the pencil, the sum of the
number of rows and columns.
For s = 2 the pencil is scalar, and being in M it has to be a nonzero constant, so � = 1,
and the lower right pencil is missing (or � = 0, and the lower right pencil is constant).
Now suppose that s > 2. Let the pencil have m rows and n columns (because it is in M
we have that m ≤ n). If m = n then the pencil is Hurwitz and it has the desired form
already with � = 0, so assume that m > n.
Let N1 be an orthogonal matrix such that EN1 = [0 E2], where E2 has full column rank.
Decompose AN1 in the same way: AN1 = [A1 A2].
If A1 = 0, then ξE2 − A2 has to be Hurwitz, so we are finished with N1 = N,M = I, and
� = 0.
If A1 �= 0, then let M1 be an orthogonal matrix such that M1A1 = [A11; 0], with A11

having full row rank. Decompose the products of M1 with the other blocks likewise:
M1A2 =: [A12; A22], M1E2 =: [E12; E22].
The lower right pencil ξE22 − A22 is in M and has size smaller than s, so by induction
there exist M2, N2 such that M2(ξE22 − A22)N2 has the desired structure.
Let M = (diag(I, M2))M1, N = N1(diag(I,N2)), then

M(ξE − A)N

=

[

I 0
0 M2

] [

A11 ξE12 − A12

0 ξE22 − A22

] [

I 0
0 N2

]

=

[

A11 ξE12 − A12N2

0 M2(ξE22 − A22)N2

]

which proves the theorem.
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5.7 The algorithm

Summing up: starting with a polynomial matrix P (ξ) ∈ U (M) we construct the associated
pencil ξE−A ∈ U (M). We find M and N such that M(ξE−A)N has the structure of (5.3),
and construct a K̂(ξ) which embeds this structured pencil into a unimodular (Hurwitz)
pencil. K = K̂NT then embeds the original ξE − A. Decomposing K = [K1 K2], then
yields Q(ξ) as K1(ξ)T (P )(ξ) + K2(ξ).
Note that the associated pencil and T (P ) are defined directly in terms of the original
matrix P (ξ), so the only elements that we really compute are the matrices Ki(ξ). Starting
from the associated pencil this is accomplished by QR decompositions alone.
In this section we will first discuss the orthogonal decompositions that we will use in the
actual implementation of the algorithm, then we will concentrate on the transformation of
the original pencil into staircase form, and finally we will describe the implementation of
the complete algorithm.

5.7.1 QR Decompositions

In order to obtain the structure given by 5.3, we need to find a “good” class of row and
column transformations (matrices M and N there). At this moment, and likely also in
the near future, the most attractive method is still the QR algorithm [82]. Because of its
characteristics (like convergence velocity, ease of implementation, etc) QR decompositions
were chosen4 [33], [54]. From a numerical point of view, the QR factorization is an
attractive tool, used extensively [33], [27], [29]. Of course the ratio cost - profit depends on
the problem at hand and on the way to compute it. It can be implemented by the use of
Householder reflections, by Givens rotations or by the Gram-Schmidt method. In general,
a QR factorization of A ∈ R

m×n with m ≥ n is a decomposition

A = QT RA = QT

[

Ar

0

]

(5.4)

where Q ∈ R
m×m is orthogonal and Ar ∈ R

r×n has full row rank. We call this structure
a row compression of the matrix A. Since we want to construct a staircase form, we shall
consider (5.4) written slightly different:

RA = QA,

The QR factorizations yields more: Ar is not only full row rank but is in row echelon form.
For numerical reasons it is advisable not to apply the decomposition to A, but first order
the columns of A to their Euclidean norm. This is called QR decomposition with column
pivoting [27].

4In fact, the QR algorithm belongs to a more general class known as GR algorithms, where “G” stands
for generic or general. When G=Q (unitary or orthogonal transformation) the algorithm is called QR [82].
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QR Decomposition with column pivoting

Given A ∈ R
m×n it computes the following factorization

RA = QAP, RA =

[

R1,1 R1,2

02,1 02,2

]

(5.5)

where R1,1 ∈ R
ρA×ρA is upper triangular, R1,2 ∈ R

ρA×n−ρA , 02,1 ∈ R
m−ρA×ρA , 02,2 ∈

R
m−ρA×n−ρA , ρA = rank(A), Q is orthogonal, and P is a permutation matrix.

Next, the corresponding pseudo code is given. It is Matlab syntax based. We remark that
a line starting with “%” means a comment. The first pseudo code line means the way the
algorithm is called in the real program, i.e., it is a program function which receives some
data in the right hand side and produces a result, given in the left hand side. So, the mean-
ing of the first line given below is that the function (the program) is called “algorithmQR”
and it needs a matrix A as data in order to compute RA, P and Q. Lines of commands
with no “%” indicates that something has to be computed. Finally, “;” means end of line
with no need of showing what is computed.

Algorithm 7 [Algorithm QR with column pivoting]

(% indicates comment)

[RA, Q, P ] = algorithmQR(A)
Q = Im; P = In;

k=1;

while k ≤ min(m, n)
colj(A) := Ak≤i≤m,k≤j≤n;
% Determine � (k ≤ � ≤ n) such that

‖col�(A)‖ = maxk≤j≤n‖colj(A)‖;
if � − k �= 0 then

Interchange colk(A) and col�(A);
According to the latter, update P ;
for i = m : −1 : k + 1

% Zeroing entries A(i, k) as well as updating of Q is done here

% Q is a Givens rotation

A := Pi−1,iA; Q := Pi−1,iQ;
end

end

k=k+1;

end

%Result:

RA, Q, P

RQ Decomposition

An RQ factorization of an m × n matrix A is given by
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A = R̄AQ̄T =
[

0 Ac

]

Q̄T

where Q̄ is orthogonal Ac ∈ R
m×r is in column echelon form, and has full column rank.

Such a form is called column compression. As we did for the QR case we can write as well

R̄A = AQ̄

In addition, as we did before, we can provide the latter with a row permutation matrix P̄
as follows

RQ Decomposition with column pivoting

Given A ∈ R
m×n it computes the following factorization

R̄A = P̄AQ̄, R̄A =

[

01,1 R1,2

02,1 R2,2

]

(5.6)

where 01,1 ∈ R
m−ρA×n−ρA , R1,2 ∈ R

m−ρA×ρA , 02,1 ∈ R
ρA×n−ρA , R2,2 ∈ R

ρA×ρA is upper
echelon, ρA = rank(A), P̄ a permutation matrix and Q̄ is an orthogonal transformation.

Algorithm 8 [RQ decomposion with pivoting]

(% indicates comment)

[R̄A, Q̄, P̄ ] = algorithmRQ(A)
Ā = (rot180(A))T ;

[ ̂A, Q, P ] = algorithmQR(Ā)

R̄A = (rot180( ̂A))T ; P̄ = rot180(P ); Q̄ = rot180(Q);
% Result:

R̄A, Q̄, P̄

Above, rot180 indicates we rotate 180 degrees clockwise the entries of a given matrix:
(rot180A)ij = Am−i+1,n−j+1. Note that rot180 is its own inverse.

5.7.2 Staircase form of ξE − A

The main structure of this algorithm is the implementation of the constructive proof of
theorem 16. This algorithm consists of a nested collection of QR and RQ decompositions.
Depending on the position of the transforming matrix (left or right multiplying our pencil
ξE − A) we need to apply either a QR or an RQ decomposition. Of course it is very
difficult to specify all details here, but having the cited proof in mind plus the two basic
algorithms described, the reader can get a good idea of the general implementation.
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The starting point for each iteration step is a pencil ξEj − Aj of size mj × nj. We first
obtain a column echelon form [0 | Ej,2] for the matrix Ej of the pencil. To achieve this
we have to find an RQ-decomposition of it, getting two matrices: a column transformation
Q̃j and the corresponding row permutation, P̃j. Since we have modified E, we have to do
the same with A, getting P̃jAjQ̃j = [Aj,1 | Aj,2], partitioning Aj conformally. From this
partition we can immediately derive ρj = ρ(E) = ρ(Ej,2) = rank(Ej). Define νj = nj − ρj.
It is now the turn of the row compression of Aj,1. Let µj = rank(Aj,1). As a result of
such a process, we get two transformation matrices Q̄j (row compression) and P̄j (column
permutation) for Aj,1. Let Q̄jAj,1P̄j = (Aj,11; 0). It yields the first block zeroing of the
original pair (Ej, Aj) (see the proof of theorem 16).

Q̄jP̃j(ξEj − Aj)Q̃jP̄j =

[

−Aj,11 ξEj,21 − Aj,21

0 ξEj,22 − Aj,22

]

with Aj,11 ∈ R
µj×νj .

Start for j = 1 with ξE1 − A1=ξE − A, and take ξEj+1 − Aj+1 = ξEj,22 − Aj,22. Define
the accumulated sums sj+1 = µj + s(j), s1 = 0, tj+1 = νj + tj, t1 = 0. The size of the new
structure ξE1,22 − A1,22 is then mj+1 = mj − tj by nj+1 = nj − sj.
Define Mj = diag(Isj

, Q̄jP̃j), M = Mjmax · · ·M1, and Nj = diag(Itj , Q̃jP̄j), N =
Njmax · · ·N1. Then M(ξE − A)N is in the generalized Schur form.
We remark that it was very helpful to build 3D matrices (called here sometimes “cells” or
arrays) because we could construct the block entries of 5.3 computing each step of the
algorithm within a “page” of a 3D matrix (page means the third dimension of our set of
3D arrays).

Algorithm 9 Block Quasi-triangular form of ξE − A
(% indicates comment)

[ξ ̂E − ̂A,M,N ] = Staircase(ξE − A);

% Initializing variables:

j := 1; m1 := m; n1 := n; ρ1 = m; A1,1,1 = A; E1,1,1 = E;
% Induction step for j ≥ 1
while ρj ≥ 1
%RQ decomposition of E1,1,j yielding its column echelon form

[Ep(1,2,j), Mj, Nj] = algorithm RQ(E1,1,j);

ρj = rank(Ep(1,2,j)); νj = nj − ρj

Ep(1,1,j) = 0mj ,νj

% We have a partition of MjEjNj as Ej = [0 | Ep(1,2,j)]
% where 0 ∈ R

mjv×nj−ρ(j), Ep(1,2,j) ∈ R
mj×ρ, ρ = rank(E)

[Ap(1,1,j), Ap(1,2,j)] := MjA1,1,jNj;



5.7. The algorithm 111

if νj = 0
break

else

% Row compression of Ap(1,1,j) to full rank µj while keeping E(1,1,j) zero

[Ac(1,1,j), Qcj
, Pcj

] = algorithm QR(Ap(1,1,j))
µj = rank(Ac(1,1,j))
Ac(2,1,j) = 0mj−µj ,νj

[Ac(1,2,j); Ac(2,2,j)] = Qcj
Ap(1,2,j)

[

Ec(1,1,j) Ec(1,2,j)

Ec(2,1,j) Ec(2,2,j)

]

= [0 | QcjEp(1,2,j)]

% New small pencil to work with

Aj+1 := Ac(2,2,j); Ej+1 := Ec(2,2,j)

% M and N are the accumulated row and column

% transformations, respectively

ρj+1 = ρ(j); sj :=
∑j−1

i=1 νi; tj :=
∑j−1

i=1 µi;
Mj := diag(Isj

, Qcj
Pj)Mj−1;

Nj := Nj−1diag(Itj , NjQcj
);

mj+1 := mj − νj; nj+1 := nj − µj;
end

j := j + 1; jmax := j;
end

Retrieve of required matrices from 3D-arrays;

% Result

ξ ̂E − ̂A

We recall that since our matrices are subindexed we needed to use cells (Matlab term to
denote matrix storage of any dimension). This fact was an advantage because in all the

steps of the algorithm, we had available all the intermidiate matrices to compute ξ ̂E− ̂A. A
small example is shown below. There we have a subcell which stores part of ̂A (a submatrix

of ̂A) calculated at some step j of the program’s running.

5.7.3 Algorithm: Embedding P (ξ)

At this moment every step needed to compute a Q that embeds P in a W of the required
form has been covered, except the construction of KF from lemma 9. Since the staircase
algorithm (algorithm 9) finds Aii in row echelon form, an obvious choice would be to take
KF = diagKi where Ki ∈ R

νi−µi,νi has a single one in each row to make up for the ‘missing
rows’ is Aii:
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4.137

0

Figure 5.1: 3D storing of Ec and Ac

Algorithm 10 [Embedding a row echelon matrix]

K=Regular embedding(A, ν)
% 0 = ν0 < ν1 < ν2 < . . . < νm < νm+1 = n + 1, A ∈ R

m,n

% in upper row echelon form with Ajνj
the first non zero entry in row j

% We make K by putting ones in the columns that are not covered by ν
For j = 1 : m + 1
Kj = [0νj−νj−1−1,νj−1

, Iνj−νj−1−1, 0νj−νj−1−1,n+1−νj
]

end

K = [K1; . . . ; Km]

This may not be the wisest choice from a numerical point of view. We will come back to
this in chapter 6.

Algorithm 11 [Computation of Q(ξ)]
(% indicates comment)

[ξE − A] = pencil(P (ξ));

[ξ ̂E − ̂A,M,N ] = Staircase(ξE − A);
KF = diag(Regular embedding(Ajj), νjj)
Compute Q(ξ) with equation 5.2

Build the final embedding W given by equation 5.1

We use an algorithm (not listed but implemented from section 5.4) called “pencil” to
compute the associated pencil ξE − A from P (ξ), by [ξE − A,Ri] =pencil(P (ξ)).
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5.8 Summary

Since the Behavioral Approach considers lumped dynamical systems as polynomial matri-
ces (in one unknown). Such dynamical systems have to be controlled or stabilized. In this
setting stabilization is equivalent to adding rows to a polynomial matrix s.t. the resulting
square matrix is Hurwitz, while for pole placement we need to add rows in such a way that
the resulting square matrix is unimodular, see chapter 3.

In this chapter we discussed two existing algorithms, one based on the Smith form, and one
developed by Beelen [5]. We relaxed the conditions imposed in Beelen on the embedding
process in order to provide a less restrictive and possibly more promising algorithm for the
stable embedding problem. The process we followed was transferring the Hurwitz property
as it is indicated here:

[

ξE − A
K(ξ)

]

Hurwitz
→

[

ξ ̂E − ̂A
̂K(ξ)

]

Hurwitz
→

[

P (ξ)
Q(ξ)

]

Hurwitz

Hence:
• A stable polynomial matrix embedding is computed for a stabilazable one.

• This algorithm resembles the one described by [4], [5] for the unimodular embedding
problem (although there, no further development or implementation, as far as we know,
was done).

• Numerical problems associated with this kind of algorithms are treated in chapter 6.
• In Chapter 7 we will describe a new algorithm for embedding.



Chapter 6

Numerical Implementation

6.1 Introduction

In chapter 5 we described an algorithm to find an embedding for a given polynomial matrix.
We started the chapter by showing that using the Smith form leads to unsatisfying answers.
Therefore we turned to the algorithm developed by Van Dooren and Beelen [5]. In this
chapter we will discuss the numerical properties of this algorithm. It turns out that the
implementation that we suggested in chapter 5 does not work well. We start this chapter
by giving a number of examples that show this. In the remaining part of the chapter
we will investigate the properties of matrix pencils to show that the transformation from
polynomial matrices to matrix pencils (see section 5.4) suffers from some inherent numerical
problems.

6.2 Analysis of an example

Let us consider the following full row rank polynomial matrix (d = 3, m = 2, n = 4).

P (ξ) =

⎡

⎣

ξ2 − 1 ξ3 + 1 ξ3 + 11 ξ2 + 7
ξ3 + 2 ξ3 − 4 3ξ3 + 3ξ + 1 ξ2 + ξ + 22

ξ3 + ξ + 1 ξ2 + ξ + 5 ξ3 + ξ + 9 ξ2 + 78

⎤

⎦

With corresponding linearization ξE−A, denoted below as Π(ξ) (d = 1, mp = 9, np = 10).
R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 115–134 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Π(ξ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0 0 0 −ξ −ξ 0

0 −1 0 0 0 0 −ξ −ξ −3 ξ 0

0 0 −1 0 0 0 −ξ 0 −ξ 0

ξ 0 0 −1 0 0 −ξ 0 0 −ξ

0 ξ 0 0 −1 0 0 0 0 −ξ

0 0 ξ 0 0 −1 0 −ξ 0 −ξ

0 0 0 ξ 0 0 1 −1 −11 −7

0 0 0 0 ξ 0 −2 4 −3 ξ − 1 −ξ − 22

0 0 0 0 0 ξ −ξ − 1 −ξ − 5 −ξ − 9 −78

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In order to transform the latter Π(ξ) to the equivalent form ̂Π = ξ ̂E − ̂A we apply the
following row/column orthogonal transformation matrices, M (which is 10×10 big) and N,
which is 9×9 big, respectively:

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0123 0.0123 0.0123 0 0.0123 −0.0000 0.0860 0.2704 0.9586
0.0248 −0.0125 0.0248 −0.0871 −0.3110 −0.9329 −0.1372 −0.0632 0.0337
0.1330 0.2404 0.7809 0.1108 −0.0724 0.1218 −0.5052 −0.1473 0.0730

−0.0979 0.1765 0.5153 0.0078 0.2061 −0.1763 0.7835 −0.0324 −0.0714
−0.1566 0.0999 −0.1969 0.6238 −0.0151 −0.0195 0.0695 −0.7028 0.1954
−0.3565 0.1289 −0.0270 0.4282 0.5938 −0.2437 −0.2628 0.4254 −0.1008
−0.1007 0.2328 −0.1044 −0.6068 0.5575 −0.0794 −0.1611 −0.4429 0.1319
−0.8109 0.3232 −0.0008 −0.1876 −0.4247 0.1329 −0.0278 0.0622 −0.0033
−0.3906 −0.8517 0.2710 −0.0648 0.1063 0.0011 −0.0632 −0.1590 0.0616

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.4472 0.0811 0.1170 0.5549 −0.1300 −0.2666 0.1855 −0.5392 0.2413 0.0192
−0.4472 0.0431 −0.0349 −0.0004 0.2304 −0.0653 −0.5566 0.3892 0.5266 −0.0316
−0.4472 0.0811 −0.8055 −0.2487 −0.1683 0.0336 0.1519 −0.0463 −0.1675 −0.0003

0 −0.0888 −0.1555 0.0593 0.9143 0.1044 0.3137 −0.1317 0.0400 0.0188
−0.4472 −0.2612 0.4183 −0.4933 −0.0041 0.4339 −0.0434 −0.3416 −0.0659 0.0472

0.0000 −0.9510 −0.1487 0.1885 −0.0939 −0.1353 −0.0158 0.1018 −0.0006 −0.0183
0.0000 0.0254 −0.0932 0.4656 −0.1465 0.8174 0.0966 0.1747 0.1201 −0.1734
0.0000 0.0254 −0.0932 0.2356 0.1714 0.0295 −0.6296 −0.3019 −0.5428 −0.3502

−0.0000 −0.0127 0.0669 −0.2012 −0.0307 −0.1369 0.2397 0.0150 0.1891 −0.9175
−0.4472 0.0558 0.3051 0.1874 0.0721 −0.1355 0.2626 0.5379 −0.5345 −0.0345

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Being thus the equivalent pencil ̂Π(ξ) = ξ ̂E − ̂A the one provided below. Because of the

size of ̂Π(ξ) we had to partition it as ̂Π(ξ) = [̂Π1(ξ) ̂Π2(ξ)]

̂Π1(ξ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

36 − ξ − 4.50 −0.0690 ξ − 25 −0.320 ξ − 15 0.00170 ξ − 6 −0.550 ξ + 11 0.00420 ξ − 21 −0.0560 ξ − 43

0 −1 1.10 ξ + 0.0270 0.670 ξ − 0.370 0.210 ξ − 0.100 −0.180 ξ − 0.160 −0.180 ξ + 0.390 0.500 ξ − 0.0560

0 0 1.40 −0.350 ξ − 1 −0.400 ξ − 0.110 −0.970 ξ − 1 −0.140 ξ + 1.70 −0.0340 ξ + 0.740

0 0 0 2.40 0.940 ξ + 0.0820 −0.350 ξ + 1.60 −0.250 ξ − 1.20 −0.190 ξ + 0.630

0 0 0 0 −1.50 −1.40 ξ + 1.10 0.680 ξ + 2 −0.0900 ξ + 1.20

0 0 0 0 0 −1.70 −1.40 ξ − 0.720 − ξ − 0.650

0 0 0 0 0 0 2.30 1.20 ξ + 1.10

0 0 0 0 0 0 0 −1.30

0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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̂Π2(ξ)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.21 ξ + 43.0 2.2 ξ + 13.0

−1.2 ξ + 0.52 −0.50 ξ − 1.0

−0.11 ξ + 0.55 1.6 ξ − 4.5

−0.14 ξ − 1.5 0.77 ξ + 7.3

0.48 ξ + 2.0 −1.7 ξ + 2.8

0.48 ξ − 0.97 ξ − 3.8

0.15 ξ + 1.1 −0.72 ξ − 0.28

−0.79 ξ + 0.37 0.21 ξ − 0.25

1.6 −3.4 ξ + 0.0069

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The associated matrix Q(ξ) for this case is given below.

Q(ξ) =
[

0.1734 0.3502 0.1975 0.0346
]

+

ξ
[

0.0202 −0.0189 0.1233 0.0219
]

+

ξ2
[

0.0197 −0.0369 0.1233 0.0822
]

+

Notice that this Q(ξ) is not the desired embedding of P (ξ) because det(W (ξ)) = (ξ −
2.216)(ξ+19.36)(ξ+2.124)(ξ+1.549±3.996j)(ξ+1.114±0.9672j)(ξ−0.5177±2.158j)(ξ−
1.616 ± 1.156j) is neither a zero constant nor Hurwitz.
The question addressed in this chapter is concerned with this: why does not Q have the
theoretically predicted properties? The first explanation might be that the orthogonal
transformations M and N are not really orthogonal: computing M−1

̂Π(ξ)N−1 does not
yield the original pencil Π(ξ). This is true in fact but the deviations are of the same order
as the machine precision, while the roots of det(W (ξ)) are in normal range, so there has to
be another difficulty in the procedure. In section 6.3 we will describe the geometry of the
pencil space, in section 6.5 we calculate condition numbers for polynomial matrices and
pencils.

6.3 The geometry of the orbit of a pencil

Elmroth ([21], and references therein) author gives a nice theoretical/practical point of
view to study the structure of matrix pencils. We give a short overview of his results here.
For any pencil define its orbit as the set of all pencils that are strictly equivalent to it in
the sense that we defined in chapter 5

o(ξE − A) = {M(ξE − A)N : det(M), det(N) �= 0}

In this way any matrix pencil ξE − A with real or complex entries defines a manifold of
strictly equivalent pencils in the 2mpnp dimensional space. Hence, it is possible to say that
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an orbit of matrix pencils is a set of pencils with the same Kronecker canonical form. In
fact, if we find that for some pencil ξE − A, mp �= np, then for almost all (E,A) it will
have the same Kronecker structure, depending only on its size [21]. In this generic case
the pencil has full rank ∀λ ∈ C. In contrast, when the (non-square) pencil at hand does
not have full rank for all λ ∈ C, it has to be non generic.

Since the dimension of the orbit of ξE − A is equal to the dimension of the tangent space
to the orbit at that point (ξE−A), it is possible to say that the tangent space is the range
space of the following 2mpnp × n2

p + m2
p matrix T (⊗ denotes (right) Kronecker product):

T =

[

−AT ⊗ Imp −Inp ⊗−A
−ET ⊗ Imp −Inp ⊗−E

]

We can define the normal space nor(ξE − A), as the space perpendicular to its tangent
space tan(ξE − A). The dimension of the normal space is also known as the codimension
of the orbit, cod(ξE −A) which can be computed as the number of zero singular values of
T . Finally, with all this, it is possible to compute for a given pencil a lower bound on the
distance to the closest non generic pencil ξ(E + δE) − (A + δA) by means of

d = 1 Size of P (ξ) Size of ξE − A cod(ξE − A) ‖(δE, δA)‖ det(W (ξ))
ExT (3,6) (3,6) 0 0.3333 Ok
Ex0 (2,3) (2,3) 0 0.2998 Ok
Ex1 (5,14) (5,14) 0 0.4256 Ok
Ex2 (7,9) (7,9) 0(≈ 1) 0.0095 Not Ok

d=2
Ex1 (5,24) (10,29) 0 0.1584 Not Ok
Ex2 (4,6) (8,10) 0(many ≈ 0) 8.243 ×10−5 Not Ok

d=3
Ex1 (3,4) (9,10) 0 (many ≈ 0) 0.0014 Not Ok
Ex2 (3,5) (9,11) 0 (many ≈ 0) 2.2923 ×10−4 Not Ok
Ex3 (4,6) (12,14) 0 (many ≈ 0) 1.2286 ×10−4 Not Ok

d=4
Ex1 (4,5) (16,17) 0 (many ≈ 0) 4.827 ×10−5 Not Ok

d=6
ExK (3,5) (18,20) 66 7.2310 ×10−18 Not Ok

d=7
ExM (2,5) (14,17) 350(many ≈ 0) 3.2097 ×10−18 Not Ok

Table 6.1: Geometric parameters.
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||(δE, δA)|| ≥ σmin(T )√
mp + np

=
σmin(T )√

n − m

where the norm is the induced Euclidean matrix norm.
Now, we explain the content of table 6.1. The first column includes the set of examples for
different degrees d. Next to it, we give the sizes of the corresponding polynomial matrices
P (ξ) under study as well as the size of their associated pencils (notice the way the size
increases). Column 4 gives the number of zero singular values of T , or equivalently the
codimension of the orbit of ξE−A. If cod(ξE−A) = 0, the dimension of the corresponding
complementary space is 2mpnp. In this case, tan ξE − A spans the whole 2mpnp space.
The lower bound specified above is in fact a corollary of a more general lower bound for
the distance to a nongeneric pencil of codimension r, which involves the r smallest singular
values of T . So if many singular values of T are small, the pencil could be close to a very
nongeneric pencil. Column 6 specifies this number (the table counts the number of singular
values smaller1 than 10−8). This number is zero for for the examples with d = 1 but not
for d > 1. The latter implies that numerically the 2mpnp pencil will not be spanned and
we run into computational problems.
Column 5 gives the calculated lower bound to the nearest non generic pencil. Since that
pencil will have a different Kronecker structure, inaccuracies in the calculations of order
bigger than this lower bound might lead to a wrong generalized Schur form, and hence to
a wrong K̂,K and Q(ξ).
The last column shows whether the outcome of the algorithm is indeed unimodular.

Figure 6.1: Corruption of controllability.Ex1,d = 7

Finally look at figure 6.1 It gives an idea of how nearly singular T is by applying a QR

1We take this size since calculating distances involves taking square roots
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factorization. Let us take Ex1,d = 7. The black squares represent non zero entries and
blank squares are zero entries. We observe that white zones are “invading” the black one.
Many rows are practically blank. That represents that T is very close to lose rank, which
is equivalent to say that ξE −A has practically lost controllability and is close to be rank
deficient. This QR factorization was applied to all the examples. All of them shown the
latter pattern.

Concluding we can say that for polynomial matrices of high degree, or with significantly
more columns than rows, the linearized pencil is very close to a nongeneric pencil, in
fact closer than the machine precision, which could explain the failure of the proposed
algorithm.

6.4 Matrix pencils as mathematical relations

It is known [10] that a pencil can be defined as a relation. A matrix pencil ξE −A,E,A ∈
R

mp×np defines the relation Ξ ⊂ R
np × R

np

Ξ = {(x, y) ∈ R
np × R

np |Ey = Ax} = null([A − E])

for Ξ ∈ R
2np×2np−mp. The latter has the pencil as a special case for y = ξx. This relation

has an advantage. It considers the joined effect of A and E in a single matrix (independent
of ξ), null([A − E]). By constructing these relations for the twelve standard examples,
and applying a QR factorization on each of them, it is possible to see how Ξ loses rank for
big values of d. It is not surprising (after having seen the material of the latter sections)
that Ξ also shows that the pencil (constructed from those two matrices) almost loses rank.
More precisely, let us pay attention to an example to illustrate this. We took Ex1, d = 3.
In figure 6.2 we can observe the way that Ξ loses rank. We can see blanks. This fact
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QR(null( [A  −E])

Figure 6.2: QR(null([A -E])),Ex1, d = 3.
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Figure 6.3: κ(P (λ)),Ex1, d = 3.

expresses the same that we saw in the previous section: ξE − A is close to be degenerate.

6.5 Conditioning of the pencil

Another clue to understanding the failure of the algorithm is the condition function. Define
for a polynomial matrix P (λ) the condition function κ as the quotient of the largest and
smallest singular value for each value of λ ∈ C: κ(P (λ)) = σmax(P (λ))/σmin(P (λ)), where
σmax and σmin denote the largest resp. smallest singular value of a matrix. Applying M, N
to the pencil will lead to rounding errors in the calculation of ξ ̂E − ̂A which will have the
largest consequences for the λ′s with a high value of the condition function.
First we show some figures exhibiting the condition function κ(P (λ)) for the starting
polynomial matrix P (λ), and the one for the corresponding pencil, κ(Π(λ)) = σmax(λE −
A)/σmin(λE − A).

Example 38 Let us consider the following polynomial matrix.
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Figure 6.4: κ(Π(λ)),Ex1, d = 3.

P =

⎡

⎢

⎢

⎣

−1 + ξ2 1 + ξ3 11 + ξ3 7 + ξ2

2 + ξ3 −4 + ξ3 1 + 3 ξ + 3 ξ3 22 + ξ + ξ2

1 + ξ + ξ3 5 + ξ + ξ2 9 + ξ + ξ3 78 + ξ2

⎤

⎥

⎥

⎦

The corresponding κ(P (λ)) is shown in figure 6.3. The figure reveals its deviating character.
As usual the exponent log(κ(H))) (for H any constant matrix) of the condition number
indicates the number of significant decimal places that the computer can loose to roundoff
errors. IEEE standard double precision numbers have about 16 decimal digits of accuracy,
so if a matrix has a condition number of 1010, you expect only six digits to be accurate
in the answer. If the condition number is much greater than 1/

√
ε, caution is advised

for subsequent computations. For IEEE arithmetic, the machine precision, ε, is about
2.2 × 10−16, and 1/

√
ε = 6.7 × 108. Although some of the pictures may look inoffensive

in this sense, κ(P (λ)) certainly reveal the inherent difficult nature of handling a physical
system represented by P (ξ). Worse is handling an associated system Π(ξ) (not numerically
equivalent at all) with κ(Π(λ)) (see figure 6.4) because then we have a conditioning gain
function p(λ) = κ(Π(λ))/κ(P (λ)). See also figure 6.5.



6.5. Conditioning of the pencil 123

Figure 6.5: p(λ)),Ex1, d = 3.
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In table 6.2 we show for all examples the maximum of the condition functions for both the
polynomial matrix and the pencil. It is interesting to notice that the condition function
for the pencil resembles that for the original polynomial matrix but that in general the
condition function of the pencil is a factor (depending of λ) bigger than the one of the
original P , and especially the peaks for the pencil are much more pronounced than those
for the matrix. In all examples the condition number (at each λ) for the corresponding
pencil is worse than the one for the original matrix.

Degree Size Size max(κ(P (λ))) max(κ(Π(λ))) max(log(κ(Π(λ))/κ(P (λ))))
of P of Π

ExT (3,6) (3,6) 1 1 0
Ex0 (2,3) (2,3) 9.6 9.6 0
Ex1 (5,14) (5,14) 12.6 12.6 0
Ex2 (7,9) (7,9) 116 116 0

d=2
Ex1 (5,24) (10,29) 10 55 0.74
Ex2 (4,6) (8,10) 33 120 0.56

d=3
Ex1 (3,4) (9,10) 40 900 1.35
Ex2 (3,5) (9,11) 30 220 0.86
Ex3 (4,6) (12,14) 55 1400 1.4

d=4
Ex1 (4,5) (16,17) 4.5 2500 2.74

d=6
ExK (3,5) (18,20) 106 108 2

d=7
ExM (2,5) (14,17) 106 108 2.5

Table 6.2: Condition Numbers.
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Figure 6.6: κ(P (λ)), Ex1, d = 4.

In figures 6.6, 6.7 and 6.8 we show the graphs of κ(P (ξ)), κ(Π(ξ)) and log(κ(P (ξ))/κ(Π(ξ)))
for the following example:

P =

⎡

⎢

⎢

⎣

0.59 4.70 4.80 9.60 6.10
0.89 9.10 6.00 6.00 7.00
2.70 6.00 1.60 0.29 0.92
4.10 3.30 8.30 8.10 4.20

⎤

⎥

⎥

⎦

+

+ξ

⎡

⎢

⎢

⎣

3.80 4.50 7.70 6.40 4.90
1.70 9.60 4.40 2.50 4.10
8.30 1.50 6.20 3.50 4.60
8.40 8.70 9.50 1.90 6.10

⎤

⎥

⎥

⎦

+ ξ2

⎡

⎢

⎢

⎣

0.7100 6.20 4.60 4.00 3.90
3.10 2.50 5.40 3.10 5.00
6.10 5.90 9.40 4.10 7.20
1.80 5.10 3.40 2.90 3.10

⎤

⎥

⎥

⎦

+

+ξ3

⎡

⎢

⎢

⎣

1.10 6.60 7.10 9.00 1.70
4.40 7.20 7.80 4.50 3.90
4.70 2.80 9.90 8.00 5.20

0.1500 2.60 4.70 8.30 7.20

⎤

⎥

⎥

⎦

+ ξ4

⎡

⎢

⎢

⎣

5.70 4.40 7.60 6.00 7.00
4.60 3.70 9.50 8.20 5.20
4.50 3.00 5.60 9.80 9.30

0.8800 8.50 0.1400 2.20 7.10

⎤

⎥

⎥

⎦

+
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Figure 6.7: κ(Π(λ)), Ex1, d = 4.
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Figure 6.8: p(λ)), Ex1, d = 4.
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6.6 Modelling polynomially and assessing numerically

Let us consider the following 4th order mechanical system illustrated in figure 6.9 [41].
Their parameters are: m1=1, m2=1; k1=5, k2=33, k3=21; b1=10, b2=5, where mi, i = 1, 2
are the masses (in kg), kj, j = 1, 2, 3 are the spring stiffness constants (in N/m) and
bq, q = 1, 2 are the damper viscosity parameters (in N/(m/s)). The polynomial description
of the plant is

P (ξ) =
[

960 0 54 −33
0 960 −33 −38

]

+

+ξ

[

670 0 5 −5
0 670 −5 −15

]

+ ξ2

[

140 0 1 0
0 140 0 −1

]

+

+ξ3

[

20 0 0 0
0 20 0 0

]

+ ξ4

[

1 0 0 0
0 1 0 0

]

P (λ) has full row rank for all λ ∈ C, so P (ξ) represents a controllable system [58].
Numerically speaking, it is known that a way to measure how much difficulty a system
offers to be controlled is by means of its condition number. For each λ ∈ C this number is
defined by

κ(P (λ)) =
σmax (P (λ))

σmin (P (λ))
(6.1)

Obviously, getting the condition number as indicated above would be difficult and useless
to describe the inner nature of P (ξ). Nevertheless, we shall get helpful resources if we
sweep the complex plane for a lot of values of λ = a + bj ∈ C (ideally for all of them)
and we obtain κ(P (λ)) as we proceeded before. Then, we shall be able of finding out the

b1

b2 k

k1

2

3
km 1

m
2

F

F

z
2

z
1

2

1

Figure 6.9: Mechanical structure P (ξ).
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Figure 6.10: κ(P (λ)) (scaled) of the mechanical structure

condition number at each λ (i.e., at each frequency ω given in rad/s). The latter will reveal
again an interesting pattern shown in figure 6.10.

We noticed that, although P (λ) has full row rank for all λ ∈ C, such a property is a little
bit “damaged” (but not destroyed!) at four points of the complex plane. It is there, at each

point where those values of λ, ̂λ produce a “high” condition number. They behave almost
as eigenvalues because it is there when P (λ) is closest to lose rank numerically. These
numerical “quasi eigenvalues” are nothing but the poles of the mechanical structure. They
are placed at ̂λ1 = −12.40, ̂λ2,3 = −2.72 ± 5.35j, ̂λ4 = −2.16 where κ(̂λ1) = 13.58,

κ(̂λ2,3) = 2.17 and κ(̂λ4) = 3.10, resp. As well, we realize that at each value of ̂λ there is a
corresponding ω̂ at which the system is more difficult to control than for other value of ω.
These ̂λ behave as “quasi uncontrollable” modes of the mechanical plant, i.e., the system
will be more reluctant to be controlled at those frequencies ω̂. Moreover, in [95] and [96]
we remarked that linearizing P (ξ) via ξE−A the uncontrollability and instability of W (ξ)
were activated at the same time (the embedding problems are not numerically solved)
because ξE − A computationally almost loses rank. The latter was explained in detail in
[96] and from above, we have a clearer idea about why this happens. This situation is

linked to the fact that as higher the peaks produced at the poles ̂λ as higher the plane
κ(P (λ)) is (with respect to the original κ(P (λ)) = 1, i.e., the whole surface κ(P (λ)) is lifted
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Figure 6.11: Zooming from below at the pole ̂λ1 in κ(P (λ)).

up by means of the peaks). In addition, this lifting up action creates a level curves effect
on C, appearing roundish contours on C which defines new stability/instability regions
created by numerical/physical effect on ξE−A (see figure 6.11 where the concentric circles
represent the new stability/instability area). This means that although the poles of the
system are stable, linearizing its degree d polynomial version adds unstable (regions of )
new poles in ξE − A. All of this damage seriously the “embedding” W (ξ). We can have

an idea of that by zooming (from below) on ̂λ1 (figures 6.11, 6.12). In figure 6.13 we show
the function p(λ) which has the same shape as κ(Π(λ)).
For instance Pg1 = [sI I], Pg2 = [I sI s2I], etc. are examples of that. Naturally, these
polynomial matrices are perfectly conditioned,i.e.,κ(λ) = 1 (they are perfectly controllable
for all frequencies ω) because its condition number is always one, something that can not
occur to non generic structures. In addition, we notice that for almost all frequencies ω
(for almost all λ ∈ C) the conditioning of P (λ) is perfect (κ(P (λ)) = 1). But there are

some frequencies ω̂ at which controlling the plant will be more difficult (κ(P (̂λ) > 1)).
When we consider ξE −A and P (ξ) equivalents, the latter effects are much more stressed.
In the latter sections we have described some numerical issues which show the inherent
difficulty to deal with the linearization ξE − A. Nevertheless, we need to remember that
linearizing P (ξ) via ξE − A is the key step in this way of constructing an embedding
Q(ξ) for P (ξ). After having completed this stage and once with some Q(ξ) at hand
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Figure 6.12: κ(λE − A) associated to the mechanical model

(which will be numerically “contaminated”) we still have to verify whether the embedded
matrix W (ξ) = [P (ξ); Q(ξ)] is unimodular (which naturally will not be the case), i.e.,
the determinant of W (ξ) will need to be a non zero constant. Besides, computing the
determinant of a polynomial matrix offers some difficulties. This fact complicates the
numerical solution of the embedding problem even more. Some problems linked to this
fact are briefly described below.

6.7 Computing the determinant of a polynomial

matrix

It is known that the degree q of det(W (ξ)) is given by the number of finite zeros of W (ξ),
ν(zf (W )) in terms of the following expression [99]:

q = ν(zf (W )) = ν(p∞(W )) − ν(z∞(W ))

where ν(p∞(W )) and ν(z∞(W )) denote algebraic multiplicity of the pole and zero of W (ξ)
at infinity, respectively. Naturally, since W (ξ) is theoretically unimodular, q = 0 and
ν(p∞(W ))=ν(z∞(W )). However, recalling our first example considered in the appendix
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Figure 6.13: Conditioning gain p(λ).

(Ex1, d = 1), we saw that q = 2. If we compute the same example with SCILAB [69]
(Leverrier’s command based detr ), the determinant will be given as

det(W (ξ)) = (−0.966ε)ξ2 + (−31.4088ε)ξ − 6.9719888

where ε is the machine precision. Nevertheless, the command determ (the one which is
implemented via FFT) produces det(W (ξ)) = −6.9719888. On the other hand, for this
example, the palindromic form W �(ξ) of W (ξ) reveals the corresponding infinite structure
of this embedded result. Such an infinite structure says that we have two poles λp∞(W ) =
{λ1

1, λ
1
1} plus one infinite zero of degree zero, λ∞(W ) = {λ0

1}. The finite structure will
be given by the roots of the determinant (quite variable between some MATLAB releases
and SCILAB). The Polynomial Toolbox, for instance ([59]) rounds off numbers up to two
significative digits. That produces two finite roots (which of course would not be present in
a unimodular matrix!): λf (W ) = {−84.0205, 80.9522}. We can get all the zeros λ(W ) by
means of the MATLAB command “polyeig”. The behavior in SCILAB is quite alike to this
one. In fact there, this determinant is thrown by a two commands: one is Leverrier’s based
algorithm [71] and the second one available considers an FFT (Fast Fourier Transform)
based instruction. Although it does not seem to exist a stability analysis in the literature
for the former, what does exist is an analysis and comparison of calculating these kind of
determinants using the FFT and other forms (see [70] and references therein). However,
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Figure 6.14: Number of digits lost due to round off errors in κ(Π(λ))

even using the latter form to evaluate the determinants of our embeddings they did not
improve a lot, which is attributed to the consideration of the numerical (finite) value of
the multiple λ = ∞ during the embedding process among other reasons sketched below.
Computing zeros of a polynomial matrix via its determinant is not very stable as we
verified here (and as it is known in our days [99], [70]) because calculating a determinant
is already difficult. In addition, we have to compute the roots of such determinant, which is
not easy either. Additionally, determining the rank of matrices implies arising of numerical
instability in natural way. Besides, the conditioning (sensitivity to small perturbations)
of linearizations has to be taken into account because different linearizations for a given
polynomial matrix can have different condition numbers. Finally, we remark that all the
algorithms involved in [5], [95], [96] were programed in MATLAB and SCILAB.

6.8 Concluding remarks

And then shall we linearize in order to embed? The answer to this question is now clear.
According to [95], [96], and the content of this chapter, we rather could say what we
should not do in order to linearize (and hence to embed) P (ξ). Any linearization has a set
of numerical drawbacks. This comes as a result of the physical/numerical characteristics
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a given plant P (ξ) has, because the numerical problems exhibited by ξE − A are nothing
but an amplified effect of the the dynamics displayed by P (ξ) reflected computationally in
its numerical model P (ξ). Up to this extend, it seems we should find a linearization able
enough to avoid this or we could find a different way of constructing an embedding for P (ξ).
Up to now, embedding numerically P (ξ) generate unstable eigenvalues of the controlled
system W (ξ), defining then new rounded stability/instability areas in C (as a result of the
level curves projected on C which can be observed in the 3D surfaces κ(P (λ)), κ(λE−A)).
We can not get rid of this yet. Moreover, several linearizations were proposed while we
investigated the one discussed here with no success.
After collecting the observations we have, we can make the following remarks:

a. The linearization as proposed by Beelen and Van Dooren does not lead to a numeri-
cally reliable algorithm.

b. The geometry of the space of pencils seems to be weird, in the sense that non-generic
pencils seem to be scattered all over the space, such that every pencil, certainly in
higher dimension is awfully close to a non-generic one.

c. A suitable linearization method has to guarantee at least that some of the geometric
and numeric problems that we encountered are circumvented. At this moment we do
not see such a linearization.

d. An additional argument for this is the fact that the ratio of the condition functions
of P (ξ) and the associated pencil has large values for all examples considered.

e. Most of the arguments do apply in general for linearizations, they are restricted to
application to the embedding problem.

We realize that other authors reported difficulties with the linearization before, for instance
Byers, He and Mehrmann [14], Iwata and Shimizu [32] and Pervouchine [56]. Concluding,
we can say that the linearization proposed in [4], causes an ill conditioned solution for the
embedding problems.
In this aspect it is interesting to realize that the polynomial toolbox in MATLAB does not
use linearization in the calculation of the null space of a polynomial matrix, in fact the
main application described in the thesis of Beelen. As we said before, our algorithms were
implemented in MATLAB. In order to have a wider perspective, our embedding algorithms
were programmed in SCILAB as well [69]. This package does contain some computer com-
mands developed in [4]. We noticed that the algorithms in SCILAB performed slightly
better than our own programs in MATLAB. We attribute the latter to the use of FOR-
TRAN based numerically optimized subroutines (taken from BLAS [45] and LAPACK
[44]).
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A new algorithm for embedding
problems

In this chapter we describe the algorithm for embedding problems that we promised in
chapter 5. Let us first quickly rephrase the problem:
Let P (ξ) be a polynomial matrix with m rows and n columns, where m < n. The uni-
modular embedding problem is to find a polynomial matrix Q(ξ) with n − m rows and n
columns such that the stacked matrix

[

P (ξ)
Q(ξ)

]

is unimodular. Recall that such a Q(ξ) exists if and only if the Smith form of P (ξ) is
equal to [Im 0], where Im denotes the m × m identity matrix. Below we will describe an
algorithm to compute a required Q(ξ) [98].

7.1 The algorithm

If P has full row rank then there exists a unimodular matrix U of size n such that PU =
[P ∗ 0], where P ∗ is a square nonsingular matrix. If P (λ) has full row rank for every λ ∈ C,
the same holds for P ∗, so then P ∗ is unimodular:

Lemma 11 Let P ∈ R[ξ]m×n have full row rank for all λ ∈ C, then there exists a unimod-
ular U such that PU = [P ∗ 0], with P ∗ unimodular.

If U−1 = [V1; V2] with V2 of size (m − n) × n, then Q = V2 will solve the problem:

Theorem 17 Let P ∈ R[ξ]m×n have full row rank for all λ ∈ C, and let V = [V1; V2] be
such that PV −1 = [P ∗; 0] as in lemma 11, then [P ; V2] is unimodular.

Proof. Clearly P ∗ is unimodular and V is unimodular, so
[

P ∗ 0
0 I

]

V =

[

P
V2

]

R.Z. Yoe: Modelling and Control of Dynamical Systems: Numerical Implementation in a Behavioral Framework, Studies in

Computational Intelligence (SCI) 124, 135–140 (2008)
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is unimodular.

Note that this actually works for any embedding problem for which the resulting polynomial
matrix can be post multiplied by a unimodular matrix without losing the desired property.
This holds in particular for the stable embedding problem: if W is Hurwitz, so is WV for
any unimodular V .
This leads to the following algorithms for the embedding problems considered in this book:

step 1. (Column compression) . Find a n × n unimodular polynomial matrix U(ξ) such
that P (ξ)U(ξ) = [P ∗(ξ) 0] with P ∗(ξ) full column rank.

step 2. Check the number of columns p of P ∗(ξ). If p < m then a required Q(ξ) does not
exist (in that case rank(P (λ)) is at most p < m for any complex value of λ).

step 3. If p = m, then check whether P ∗(ξ) is unimodular. If not, then again a required
Q(ξ) does not exist (in that case there exists a value for λ such that rank(P (λ)) < m).

step 4. If P ∗(ξ) is unimodular, then a required Q(ξ) does exist. We compute one as
follows. Solve the polynomial equation Q(ξ)U(ξ) = [0 In−m]. Then

[

P (ξ)
Q(ξ)

]

U(ξ) =

[

P ∗(ξ) 0
0 In−m

]

Since the matrix on the right in this equation is unimodular, the same holds for the
matrix on the left. Thus Q(ξ) does the job.

Now let P (ξ) be a polynomial matrix with m rows and n columns, where m < n. The
goal is now find a polynomial matrix Q(ξ) with n − m rows and n columns such that the
stacked matrix

[

P (ξ)
Q(ξ)

]

is Hurwitz. Obviously such Q(ξ) exists if and only if P (λ) has full row rank m for every
complex number λ with Re(λ) ≥ 0. Below we describe the algorithm to compute a required
Q(ξ).

step 1. (Column compression). Find a n × n unimodular polynomial matrix U(ξ) such
that P (ξ)U(ξ) = [P ∗(ξ) 0] with P ∗(ξ) full column rank.

step 2. Check the number of columns p of P ∗(ξ). If p < m then a required Q(ξ) does not
exist (in that case rank(P (λ)) is at most p < m for any complex value of λ).

step 3. If p = m, then check whether P ∗(ξ) is Hurwitz. If not, then again a required
Q(ξ) does not exist (in that case there exists a value for λ with Re(λ) ≥ 0 such that
rank(P (λ)) < m).
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step 4. If P ∗(ξ) is Hurwitz, then a required Q(ξ) does exist. We compute one as follows.
Solve the polynomial equation Q(ξ)U(ξ) = [0 In−m]. Then

[

P (ξ)
Q(ξ)

]

U(ξ)

[

P ∗(ξ) 0
0 In−m

]

Since the matrix on the right in this equation is Hurwitz, the same holds for the
matrix on the left. Thus Q(ξ) does the job.

Notice that the embedding of [P ∗; 0] obtained in lemma 11 does not need necessarily to
be in terms of the identity matrix i.e. [0; I]. If we rather take Q as Q = ΩV2(ξ) (with Ω
non singular) the embedding of [P ∗; 0] is [0; Ω]. Moreover, we may take Q = Ω(ξ)V2(ξ) in
order to obtain a more general embedding [0; Ω(ξ)] for [P ∗; 0]. In (numerical) practice this
is more difficult (as we shall see below where we provide the MATLAB based pseudocode
to implement this) because then we would have to solve a polynomial matrix equation of
the form QU = Γ where Γ is polynomial rather than constant (see listings of chapter 3
and [59]).

Algorithm 12
% Column compression of P (ξ)
% (we compute a unimodular U(ξ) s.t.)

P (ξ)U(ξ) = [P ∗(ξ) 0]
% P ∗(ξ) has full column rank (fcr)

[m∗, n∗]=size(P
∗(ξ))

if n∗ == m∗ and det(P (ξ))=k�=0,k ∈ R or

real(roots(det(P ∗)))<0
Define Γ := [0 Ω], Ω ∈ R

(n−m)×(n−m)

Determine Q(ξ) from Q(ξ)U(ξ) = Γ(ξ)
else

% There does not exist such a Q(ξ)
error(’P (ξ) can not embedded’)

end

7.2 Inside the algorithm

To find the embedding we used column compressing in the previous section. At first sight
this seems a circle: column compression can be achieved by calculating a Minimal Right
Annihilator R(ξ) for a polynomial matrix P (ξ) and embedding R(ξ) that into a unimodular
matrix.
Therefore we use not simply column compression, but column reduction: instead of finding
a minimal right annihilator we find a unimodular U(ξ) such that
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P (ξ)U(ξ) = [P ∗(ξ) 0],

where the columns of P ∗(ξ) form a minimal polynomial basis (in the sense of Forney [23])
of the column space of P (ξ).
This is achieved by the algorithm colred.m in the polynomial toolbox [59]. Colred uses
either the factor extraction method of Callier, or the iterative algorithm of Beelen, van der
Hurk and Praagman [7].

7.3 Numerical computation

The computer implementation is based in the explanation given below. It resembles the
way we apply the Smith form to this problem, although, as it is known, this popular matrix
form is not reliable numerically speaking (see chapter 6).
Let P (ξ) be an m by n full row rank polynomial matrix. Let us say that m < n. Naturally,
a row compression of P (ξ) will not be useful because of the property of full row rank matrix
P (ξ) has (it would not compress anything). On the other hand, if we transpose P (ξ) we
could row compress P T (ξ) applying a unimodular transformation U(ξ) as U(ξ)P T (ξ) =
[P (ξ)∗; 0]. An obvious choice to enhance [P (ξ)∗; 0] is [0; I]. In this way we get an embedding
for [P (ξ)∗; 0]. Solve U(ξ)Q(ξ) = [0; I] then leads to the desired embedding Q for P . This
equation is solved in MATLAB by using the standard command axb.
Note that U(ξ) is known (it was used to rowcompress P T (ξ) and we have only one matrix
unknown, the embedding Q(ξ)). Of course, we can start with a full row rank matrix P (ξ)
(m > n) without considering its transpose, P T (ξ) and applying column compression.

7.4 Examples

Next, we show some full row rank polynomial matrices P (ξ) embedded by another full row
rank matrix Q(ξ). The resultant matrix W (ξ) is either unimodular or Hurwitz as we shall
see. The constant value of det(W (ξ)) is also given.

Example 39 Let us consider the following polynomial matrix.

P =

⎡

⎢

⎢

⎣

−1 + ξ2 1 + ξ3 11 + ξ3 7 + ξ2

2 + ξ3 −4 + ξ3 1 + 3 ξ + 3 ξ3 22 + ξ + ξ2

1 + ξ + ξ3 5 + ξ + ξ2 9 + ξ + ξ3 78 + ξ2

⎤

⎥

⎥

⎦

The matrix Q(ξ) which embeds P (ξ) into a unimodular one W (ξ) is given by

Q =
[

1.0000 −0.1177 0.0000 1.0448
]

+

+ξ
[

−0.0524 −0.0974 0.3198 0.3007
]

+
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+ξ2
[

−0.1414 0.1514 0.3661 −0.0566
]

+

+ξ3
[

0.1593 −0.0380 0.2992 0.0000
]

+

In this case det(W (ξ)) = −3.9 × 103.

Example 40 Now we consider a polynomial matrix P (ξ) which is stabilizable (full row
rank for all λ ∈ C+ and hence the embedded W is Hurwitz.

P =

⎡

⎣

2 + 3ξ + ξ2 0 0 −1 1
0 2 + 3ξ + ξ2 0 4 − ξ − ξ2 8 + ξ − 2ξ2

0 0 1 + ξ 2 − ξ 4 − 2ξ

⎤

⎦

The corresponding embedding Q(ξ) is as follows.

Q =
[

−3.4ξ 0.29ξ 1 −0.29ξ −0.57ξ
−1.2ξ − 0.53ξ2 0.044ξ2 0.16ξ 1 − 0.067ξ − 0.044ξ2 −0.089ξ2

]

where det(W (ξ)) = (ξ + 1)(ξ + 2).

Example 41 In order to finish with the examples section we give an example with degree
d = 5.

P (ξ) =
[

−1.6656 −0.0376 2.1832
−0.8323 0.8580 0.6900

]

+

+ξ

[

0.1253 0.3273 −0.1364
0.2944 1.2540 0.8156

]

+

+ξ2

[

0.2877 0.1746 0.1139
−1.3362 −1.5937 0.7119

]

+

+ξ3

[

−1.1465 −0.1867 1.0668
0.7143 −1.4410 1.2902

]

+

+ξ4

[

1.1909 0.7258 0.0593
1.6236 0.5711 0.6686

]

+ξ5

[

1.1892 −0.5883 −0.0956
−0.6918 −0.3999 1.1908

]

This matrix is embedded by Q(ξ). Such matrix is exhibited below.

Q(ξ) =
[

0.2758 0.2544 0.5636
]

+
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ξ
[

−0.6097 −0.9607 0.4723
]

+

ξ2
[

0.4089 −0.5812 0.4048
]

+

ξ3
[

0.0859 0.0589 0.3940
]

+

ξ4
[

−0.7086 0.0212 0.5608
]

Here, det(W (ξ)) = −1.5.

7.5 Summary

In this chapter we offered a solution to the unimodular/stable embedding problems in a
relative simple way. We provided some working examples which verify the theory. From
those examples (and from many others we work with) we observed that the degree dq of
the embedding matrix Q(ξ) is almost always equal to the degree d of P (ξ). Finding bounds
for dq still needs to be done.



Conclusions and further research

In this book the behavioral point of view is considered in a polynomial matrix perspective.
As such, the tools we need to construct, to develop all the theoretical machinery are:
right/left annihilators, row/column compressions, solutions of polynomial matrix equations
of the type AX = B and XA = B as well as unimodular or stable embeddings. As we saw,
actual numerical implementation of the latter operations represent additional problems,
which may in fact lead to new solutions as illustrated by the embedding problem solved
in chapter 7. During many years, the paradigmatic equivalent pencil was used without
knowing that this representation defines an ill posed problem (if we consider rectangular
polynomial matrices where m × n, m < n). The numerical experiments in fact showed
that the difficulties that arise reflect the internal nature of the system represented by a
polynomial matrix. The alternative theory we have developed in this book is numerically
implementable in a computer.

At the end of this project we could say that numerical implementation of existing theory
produced problems which eventually led to an enrichment of the crude theoretical part,
closing in a sense a virtuous circle.

The set of MATLAB based commands developed in this work will be joined to the older
version of the Behavioral Toolbox [19], [17].

On the other hand, since the family of all implementing and stabilizing controllers have
been found, a natural step further would be to robustify our designs with respect to some
requirement. For instance, we may find those sets of all controllers for a perturbed plant
P∆ in such a way the perturbed system P + P∆ preserves the full row rank property. We
may find stability radii to provide robust margins in the frequency domain (λ). Once in
this direction, we may optimize our designs with respect to some performance. Optimizing
is linked to derivatives, in this case, we may work with the derivatives of the eigenvalues
with respect to some parameter, or as we did in [96] obtaining derivatives of P, λE − A
with respect to λ might define an optimization measure.
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Summary

Professionals involved in systems and control theory and control engineering formulate
equations which describe a physical system for all time. This fact is referred to as mod-
elling . The better the model (the equations obtained) the better the knowledge we get
from the system under study. Using these model we can modify the original system if
we are not satisfied with its performance (as most of the times happens). This process is
called controlling a system. Since the model of a system is given in terms of differential
or difference equations, designing a controller means finding a new set of equations which
“combined” in some way with the model of the given system produces a desired perfor-
mance. Such a specification is established by the designer (a systems and control theorist
or a control engineer).

There has been a paradigmatic point of view during the controller design stage: the cause -
effect point of view (referred to as input - output approach). Although at first sight this
approach might look logical, this is not always the case. It is well known that there exist
systems for which this way of modelling is not suitable. We describe some of these in the
book. They illustrate the necessity of having a wider point of view. Roughly speaking, such
a wider point of view for modelling and control systems is offered by the so called Behavioral
Approach for systems and control. Here, we consider that our systems are representation -
free structures and as such we are not restricted to any other paradigm, rather we give our
point of view as an alternative. We consider a system as an entity that is described by
its trajectories (solutions to differential or difference equations) over time. In this way we
don’t need to be model structure dependent. This is an issue in our field because we can
consider traditional results in our area as particular cases of our more general approach.
Although this Behavioral Approach is well established, the main contribution done in this
book is - roughly speaking - providing a description of all controllers that satisfy a certain
performance. This is called a parametrization of all controllers.

On the other hand, since the Behavioral Approach is intended to be a tool for modelling
and control of physical systems, a natural and key issue is the numerical implementa-
tion of the obtained models and controls from this viewpoint. Particularly, controllers are
implemented via algorithms which end up with actual computational implementations sim-
ulating the controlled system (the modified system which satisfies our new requirements).
This is remarkable because we might not have the real, actual physical structure at hand
and one way to simulate it is by means of programs which run in a digital computer.

In this book we study a well known technique to design polynomial control algorithms
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(neither implemented in the computer before nor reported about its consequences). As a
matter of fact, we show that this technique does not work correctly in actual numerical
implementations. In contrast, we offer improved options to do this. This way is simpler
and easier to implement in the computer. We tested this result in many examples to
support our claim. We consider this fact as key during this work. The algorithms were
implemented in MATLAB and SCILAB. MAPLE was also useful.
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