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Preface

I developed this textbook while teaching the course Statistics for Financial
Engineering to master’s students in the financial engineering program at Cor-
nell University. These students have already taken courses in portfolio man-
agement, fixed income securities, options, and stochastic calculus, so I con-
centrate on teaching statistics, data analysis, and the use of R, and I cover
most sections of Chapters 4–9 and 17–20. These chapters alone are more than
enough to fill a one semester course. I do not cover regression (Chapters 12–14
and 21) or the more advanced time series topics in Chapter 10, since these
topics are covered in other courses. In the past, I have not covered cointegra-
tion (Chapter 15), but I will in the future. The master’s students spend much
of the third semester working on projects with investment banks or hedge
funds. As a faculty adviser for several projects, I have seen the importance of
cointegration.

A number of different courses might be based on this book. A two-semester
sequence could cover most of the material. A one-semester course with more
emphasis on finance would include Chapters 11 and 16 on portfolios and the
CAPM and omit some of the chapters on statistics, for instance, Chapters 8,
18, and 20 on copulas, GARCH models, and Bayesian statistics. The book
could be used for courses at both the master’s and Ph.D. levels.

Readers familiar with my textbook Statistics and Finance: An Introduc-
tion may wonder how that volume differs from this book. This book is at a
somewhat more advanced level and has much broader coverage of topics in
statistics compared to the earlier book. As the title of this volume suggests,
there is more emphasis on data analysis and this book is intended to be more
than just “an introduction.” Chapters 8, 15, and 20 on copulas, cointegration,
and Bayesian statistics are new. Except for some figures borrowed from Statis-
tics and Finance, in this book R is used exclusively for computations, data
analysis, and graphing, whereas the earlier book used SAS and MATLAB.
Nearly all of the examples in this book use data sets that are available in R,
so readers can reproduce the results. In Chapter 20 on Bayesian statistics,
WinBUGS is used for Markov chain Monte Carlo and is called from R using
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the R2WinBUGS package. There is some overlap between the two books, and,
in particular, a substantial amount of the material in Chapters 2, 3, 9, 11–13,
and 16, has been taken from the earlier book. Unlike Statistics and Finance,
this volume does not cover options pricing and behavioral finance.

The prerequisites for reading this book are knowledge of calculus, vectors
and matrices; probability including stochastic processes; and statistics typical
of third- or fourth-year undergraduates in engineering, mathematics, statis-
tics, and related disciplines. There is an appendix that reviews probability and
statistics, but it is intended for reference and is certainly not an introduction
for readers with little or no prior exposure to these topics. Also, the reader
should have some knowledge of computer programming. Some familiarity with
the basic ideas of finance is helpful.

This book does not teach R programming, but each chapter has an “R lab”
with data analysis and simulations. Students can learn R from these labs and
by using R’s help or the manual An Introduction to R (available at the CRAN
website and R’s online help) to learn more about the functions used in the
labs. Also, the text does indicate which R functions are used in the examples.
Occasionally, R code is given to illustrate some process, for example, in Chap-
ter 11 finding the tangency portfolio by quadratic programming. For readers
wishing to use R, the bibliographical notes at the end of each chapter mention
books that cover R programming and the book’s website contains examples
of the R and WinBUGS code used to produce this book. Students enter my
course Statistics for Financial Engineering with quite disparate knowledge of
R. Some are very accomplished R programmers, while others have no experi-
ence with R, although all have experience with some programming language.
Students with no previous experience with R generally need assistance from
the instructor to get started on the R labs. Readers using this book for self-
study should learn R first before attempting the R labs.

Ithaca, New York David Ruppert
July 2010
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Notation

The following conventions are observed as much as possible:

• Lowercase letters, e.g., a and b, are used for nonrandom scalars.
• Lower-case boldface letters, e.g., a, b, and θ, are used for nonrandom

vectors.
• Upper-case letters, e.g., X and Y , are used for random variables.
• Uppercase bold letters either early in the Roman alphabet or in Greek

without a “hat,” e.g., A, B, and Ω, are used for nonrandom matrices.
• A hat over a parameter or parameter vector, e.g., θ̂ and θ̂, denotes an

estimator of the corresponding parameter or parameter vector.
• I denotes the identity matrix with dimension appropriate for the context.
• diag(d1, . . . , dp) is a diagonal matrix with diagonal elements d1, . . . , dp.
• Greek alphabet with a “hat” or uppercase bold letters either later in the

Roman alphabet, e.g., X, Y , and θ̂, will be used for random vectors.
• log(x) is the natural logarithm of x and log10(x) is the base-10 logarithm.
• E(X) is the expected value of a random variable X.
• Var(X) and σ2

X are used to denote the variance of a random variable X.
• Cov(X,Y ) and σXY are used to denote the covariance between the random

variables X and Y .
• Corr(X, Y ) and ρXY are used to denote the correlation between the ran-

dom variables X and Y .
• COV(X) is the covariance matrix of a random vector X.
• CORR(X) is the correlation matrix of a random vector X.
• A Greek letter denotes a parameter, e.g., θ.
• A boldface Greek letter, e.g., θ, denotes a vector of parameters.
• < is the set of real numbers and <p is the p-dimensional Euclidean space,

the set of all real p-dimensional vectors.
• A ∩ B and A ∪ B are, respectively, the intersection and union of the sets

A and B.
• ∅ is the empty set.
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• If A is some statement, then I{A} is called the indicator function of A
and is equal to 1 if A is true and equal to 0 if A is false.

• If f1 and f2 are two functions of a variable x, then

f1(x) ∼ f2(x) as x → x0

means that

lim
x→x0

f1(x)
f2(x)

= 1.

Similarly,
an ∼ bn

means that the sequences {an} and {bn} are such that

an

bn
→ 1 as n →∞.

• Vectors are column vectors and transposed vectors are rows, e.g.,

x =




x1
...

xn




and
xT = (x1 · · · xn ) .

• |A| is the determinant of a square matrix A.
• tr(A) is the trace (sum of the diagonal elements) of a square matrix A.
• f(x) ∝ g(x) means that f(x) is proportional to g(x), that is, f(x) = ag(x)

for some nonzero constant a.
• A word appearing in italic font is being defined or introduced in the text.
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Introduction

This book is about the analysis of financial markets data. After this brief in-
troductory chapter, we turn immediately in Chapters 2 and 3 to the sources
of the data, returns on equities and prices and yields on bonds. Chapter 4
develops methods for informal, often graphical, analysis of data. More formal
methods based on statistical inference, that is, estimation and testing, are in-
troduced in Chapter 5. The chapters that follow Chapter 5 cover a variety of
more advanced statistical techniques: ARIMA models, regression, multivari-
ate models, copulas, GARCH models, factor models, cointegration, Bayesian
statistics, and nonparametric regression.

Much of finance is concerned with financial risk. The return on an invest-
ment is its revenue expressed as a fraction of the initial investment. If one
invests at time t1 in an asset with price Pt1 and the price later at time t2 is
Pt2 , then the net return for the holding period from t1 to t2 is (Pt2−Pt1)/Pt1 .
For most assets, future returns cannot be known exactly and therefore are
random variables. Risk means uncertainty in future returns from an invest-
ment, in particular, that the investment could earn less than the expected
return and even result in a loss, that is, a negative return. Risk is often mea-
sured by the standard deviation of the return, which we also call the volatility.
Recently there has been a trend toward measuring risk by value-at-risk (VaR)
and expected shortfall (ES). These focus on large losses and are more direct
indications of financial risk than the standard deviation of the return. Be-
cause risk depends upon the probability distribution of a return, probability
and statistics are fundamental tools for finance. Probability is needed for risk
calculations, and statistics is needed to estimate parameters such as the stan-
dard deviation of a return or to test hypotheses such as the so-called random
walk hypothesis which states that future returns are independent of the past.

In financial engineering there are two kinds of probability distributions

events. Risk-neutral or pricing probabilities give model outputs that agree

of future events. The statistical techniques in this book can be used to esti-

that can be estimated. Objective probabilities are the true probabilities of

with market prices and reflect the market’s beliefs about the probabilities

1
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mate both types of probabilities. Objective probabilities are usually estimated
from historical data, whereas risk-neutral probabilities are estimated from the
prices of options and other financial instruments.

Finance makes extensive use of probability models, for example, those
used to derive the famous Black–Scholes formula. Use of these models raises
important questions of a statistical nature such as: Are these models supported
by financial markets data? How are the parameters in these models estimated?
Can the models be simplified or, conversely, should they be elaborated?

After Chapters 4–8 develop a foundation in probability, statistics, and
exploratory data analysis, Chapters 9 and 10 look at ARIMA models for time
series. Time series are sequences of data sampled over time, so much of the
data from financial markets are time series. ARIMA models are stochastic
processes, that is, probability models for sequences of random variables. In
Chapter 11 we study optimal portfolios of risky assets (e.g., stocks) and of
risky assets and risk-free assets (e.g., short-term U.S. Treasury bills). Chapters
12–14 cover one of the most important areas of applied statistics, regression.
Chapter 15 introduces cointegration analysis. In Chapter 16 portfolio theory
and regression are applied to the CAPM. Chapter 17 introduces factor models,
which generalize the CAPM. Chapters 18–21 cover other areas of statistics and
finance such as GARCH models of nonconstant volatility, Bayesian statistics,
risk management, and nonparametric regression.

Several related themes will be emphasized in this book:

Always look at the data According to a famous philosopher and baseball
player, Yogi Berra, “You can see a lot by just looking.” This is certainly
true in statistics. The first step in data analysis should be plotting the data
in several ways. Graphical analysis is emphasized in Chapter 4 and used
throughout the book. Problems such as bad data, outliers, mislabeling of
variables, missing data, and an unsuitable model can often be detected
by visual inspection. Bad data means data that are outlying because of
errors, e.g., recording errors. Bad data should be corrected when possible
and otherwise deleted. Outliers due, for example, to a stock market crash
are “good data” and should be retained, though the model may need to
be expanded to accommodate them. It is important to detect both bad
data and outliers, and to understand which is which, so that appropriate
action can be taken.

All models are false Many statisticians are familiar with the observation
of George Box that “all models are false but some models are useful.” This
fact should be kept in mind whenever one wonders whether a statistical,
economic, or financial model is “true.” Only computer-simulated data
have a “true model.” No model can be as complex as the real world, and
even if such a model did exist, it would be too complex to be useful.

Bias–variance tradeoff If useful models exist, how do we find them? The
answer to this question depends ultimately on the intended uses of the
model. One very useful principle is parsimony of parameters, which means
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that we should use only as many parameters as necessary. Complex models
with unnecessary parameters increase estimation error and make interpre-
tation of the model more difficult. However, a model that is too simple
will not capture important features of the data and will lead to serious
biases. Simple models have large biases but small variances of the esti-
mators. Complex models have small biases but large variances. Therefore,
model choice involves finding a good tradeoff between bias and variance.

Uncertainty analysis It is essential that the uncertainty due to estimation
and modeling errors be quantified. For example, portfolio optimization
methods that assume that return means, variances, and correlations are
known exactly are suboptimal when these parameters are only estimated
(as is always the case). Taking uncertainty into account leads to other
techniques for portfolio selection—see Chapter 11. With complex models,
uncertainty analysis could be challenging in the past, but no longer is
because of modern statistical techniques such as resampling (Chapter 6)
and Bayesian MCMC (Chapter 20).

Financial markets data are not normally distributed Introductory
statistics textbooks model continuously distributed data with the normal
distribution. This is fine in many domains of application where data are
well approximated by a normal distribution. However, in finance, stock
returns, changes in interest rates, changes in foreign exchange rates, and
other data of interest have many more outliers than would occur un-
der normality. For modeling financial markets data, heavy-tailed distri-
butions such as the t-distributions are much more suitable than normal
distributions—see Chapter 5. Remember: In finance, the normal distribu-
tion is not normal.

Variances are not constant Introductory textbooks also assume constant
variability. This is another assumption that is rarely true for financial
markets data. For example, the daily return on the market on Black Mon-
day, October 19, 1987, was −23%, that is, the market lost 23% of its value
in a single day! A return of this magnitude is virtually impossible under
a normal model with a constant variance, and it is still quite unlikely un-
der a t-distribution with constant variance, but much more likely under a
t-distribution model with conditional heteroskedasticity, e.g., a GARCH
model (Chapter 18).

1.1 Bibliographic Notes

The dictum that “All models are false but some models are useful” is from
Box (1976).
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1.2 References

Box, G. E. P. (1976) Science and statistics, Journal of the American Statis-
tical Association, 71, 791–799.
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Returns

2.1 Introduction

The goal of investing is, of course, to make a profit. The revenue from investing,
or the loss in the case of a negative revenue, depends upon both the change
in prices and the amounts of the assets being held. Investors are interested in
revenues that are high relative to the size of the initial investments. Returns
measure this, because returns on an asset, e.g., a stock, a bond, a portfolio
of stocks and bonds, are changes in price expressed as a fraction of the initial
price.

2.1.1 Net Returns

Let Pt be the price of an asset at time t. Assuming no dividends, the net
return over the holding period from time t− 1 to time t is

Rt =
Pt

Pt−1
− 1 =

Pt − Pt−1

Pt−1
.

The numerator Pt − Pt−1 is the revenue or profit during the holding period,
with a negative profit meaning a loss. The denominator, Pt−1, was the initial
investment at the start of the holding period. Therefore, the net return can
be viewed as the relative revenue or profit rate.

The revenue from holding an asset is

revenue = initial investment× net return.

For example, an initial investment of $10,000 and a net return of 6% earns a
revenue of $600. Because Pt ≥ 0,

Rt ≥ −1, (2.1)

so the worst possible return is −1, that is, a 100% loss, and occurs if the asset
becomes worthless.
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2.1.2 Gross Returns

The simple gross return is

Pt

Pt−1
= 1 + Rt.

For example, if Pt = 2 and Pt+1 = 2.1, then 1 + Rt+1 = 1.05, or 105%, and
Rt+1 = 0.05, or 5%.

Returns are scale-free, meaning that they do not depend on units (dollars,
cents, etc.). Returns are not unitless. Their unit is time; they depend on the
units of t (hour, day, etc.). In the example, if t is measured in years, then,
stated more precisely, this net return is 5% per year.

The gross return over the most recent k periods is the product of the k
single-period gross returns (from time t− k to time t):

1 + Rt(k) =
Pt

Pt−k
=

(
Pt

Pt−1

)(
Pt−1

Pt−2

)
· · ·

(
Pt−k+1

Pt−k

)

= (1 + Rt) · · · (1 + Rt−k+1).

2.1.3 Log Returns

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

x

log(1+x)
x

Fig. 2.1. Comparison of functions log(1 + x) and x.

Log returns, also called continuously compounded returns, are denoted by
rt and defined as
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rt = log(1 + Rt) = log
(

Pt

Pt−1

)
= pt − pt−1,

where pt = log(Pt) is called the log price.
Log returns are approximately equal to returns because if x is small, then

log(1 + x) ≈ x, as can been seen in Figure 2.1, where log(1 + x) is plotted.
Notice in that figure that log(1 + x) is very close to x if |x| < 0.1, e.g., for
returns that are less than 10%.

For example, a 5% return equals a 4.88% log return since log(1 + 0.05) =
0.0488. Also, a −5% return equals a −5.13% log return since log(1− 0.05) =
−0.0513. In both cases, rt = log(1 + Rt) ≈ Rt. Also, log(1 + 0.01) = 0.00995
and log(1 − 0.01) = −0.01005, so log returns of ±1% are very close to the
corresponding net returns.

One advantage of using log returns is simplicity of multiperiod returns. A
k-period log return is simply the sum of the single-period log returns, rather
than the product as for gross returns. To see this, note that the k-period log
return is

rt(k) = log{1 + Rt(k)}
= log {(1 + Rt) · · · (1 + Rt−k+1)}
= log(1 + Rt) + · · ·+ log(1 + Rt−k+1)
= rt + rt−1 + · · ·+ rt−k+1.

2.1.4 Adjustment for Dividends

Many stocks, especially those of mature companies, pay dividends that must
be accounted for when computing returns. Similarly, bonds pay interest. If a
dividend (or interest) Dt is paid prior to time t, then the gross return at time
t is defined as

1 + Rt =
Pt + Dt

Pt−1
, (2.2)

and so the net return is Rt = (Pt + Dt)/Pt−1 − 1 and the log return is
rt = log(1+Rt) = log(Pt +Dt)− log(Pt−1). Multiple-period gross returns are
products of single-period gross returns so that

1 + Rt(k) =
(

Pt + Dt

Pt−1

)(
Pt−1 + Dt−1

Pt−2

)
· · ·

(
Pt−k+1 + Dt−k+1

Pt−k

)

= (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1), (2.3)

where, for any time s, Ds = 0 if there is no dividend between s − 1 and s.
Similarly, a k-period log return is

rt(k) = log{1 + Rt(k)} = log(1 + Rt) + · · ·+ log(1 + Rt−k+1)

= log
(

Pt + Dt

Pt−1

)
+ · · ·+ log

(
Pt−k+1 + Dt−k+1

Pt−k

)
.
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2.2 The Random Walk Model

The random walk hypothesis states that the single-period log returns, rt =
log(1 + Rt), are independent. Because

1 + Rt(k) = (1 + Rt) · · · (1 + Rt−k+1)
= exp(rt) · · · exp(rt−k+1)
= exp(rt + · · ·+ rt−k+1),

we have
log{1 + Rt(k)} = rt + · · ·+ rt−k+1. (2.4)

It is sometimes assumed further that the log returns are N(µ, σ2) for some
constant mean and variance. Since sums of normal random variables are
themselves normal, normality of single-period log returns implies normality
of multiple-period log returns. Under these assumptions, log{1 + Rt(k)} is
N(kµ, kσ2).

2.2.1 Random Walks

Model (2.4) is an example of a random walk model. Let Z1, Z2, . . . be i.i.d.
with mean µ and standard deviation σ. Let S0 be an arbitrary starting point
and

St = S0 + Z1 + · · ·+ Zt, t ≥ 1. (2.5)

The process S0, S1, . . . is called a random walk and Z1, Z2, . . . are its steps.
If the steps are normally distributed, then the process is called a normal
random walk. The expectation and variance of St, conditional given S0, are
E(St|S0) = S0 + µt and Var(St|S0) = σ2t. The parameter µ is called the drift
and determines the general direction of the random walk. The parameter σ is
the volatility and determines how much the random walk fluctuates about the
conditional mean S0 +µt. Since the standard deviation of St given S0 is σ

√
t,

(S0 +µt)±σ
√

t gives the mean plus and minus one standard deviation, which,
for a normal random walk, gives a range containing 68% probability. The
width of this range grows proportionally to

√
t, as is illustrated in Figure 2.2,

showing that at time t = 0 we know far less about where the random walk
will be in the distant future compared to where it will be in the immediate
future.

2.2.2 Geometric Random Walks

Recall that log{1 + Rt(k)} = rt + · · ·+ rt−k+1. Therefore,

Pt

Pt−k
= 1 + Rt(k) = exp(rt + · · ·+ rt−k+1), (2.6)
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Fig. 2.2. Mean and bounds (mean plus and minus one standard deviation) on a
random walk with S0 = 0, µ = 0.5, and σ = 1. At any given time, the probability of
being between the bounds (dashed curves) is 68% if the distribution of the steps is
normal.

so taking k = t, we have

Pt = P0 exp(rt + rt−1 + · · ·+ r1). (2.7)

We call such a process whose logarithm is a random walk a geometric random
walk or an exponential random walk. If r1, r2, . . . are i.i.d. N(µ, σ2), then Pt

is lognormal for all t and the process is called a lognormal geometric random
walk with parameters (µ, σ2).

2.2.3 Are Log Prices a Lognormal Geometric Random Walk?

Much work in mathematical finance assumes that prices follow a lognormal
geometric random walk or its continuous-time analog, geometric Brownian
motion. So a natural question is whether this assumption is usually true.
The quick answer is “no.” The lognormal geometric random walk makes two
assumptions: (1) the log returns are normally distributed and (2) the log
returns are mutually independent.

In Chapters 4 and 5, we will investigate the marginal distributions of sev-
eral series of log returns. The conclusion will be that, though the return density
has a bell shape somewhat like that of normal densities, the tails of the log
return distributions are generally much heavier than normal tails. Typically, a
t-distribution with a small degrees-of-freedom parameter, say 4–6, is a much
better fit than the normal model. However, the log-return distributions do
appear to be symmetric, or at least nearly so.
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The independence assumption is also violated. First, there is some corre-
lation between returns. The correlations, however, are generally small. More
seriously, returns exhibit volatility clustering, which means that if we see high
volatility in current returns then we can expect this higher volatility to con-
tinue, at least for a while.

Before discarding the assumption that the prices of an asset are a lognor-
mal geometric random walk, it is worth remembering that “all models are
false, but some models are useful.” This assumption is sometimes useful, e.g.,
for deriving the famous Black–Scholes formula.

2.3 Bibliographic Notes

The random walk hypothesis is related to the so-called efficient market hy-
pothesis; see Ruppert (2003) for discussion and further references. Bodie,
Kane, and Marcus (1999) and Sharpe, Alexander, and Bailey (1995) are good
introductions to the random walk hypothesis and market efficiency. A more
advanced discussion of the random walk hypothesis is found in Chapter 2 of
Campbell, Lo, and MacKinlay (1997) and Lo and MacKinlay (1999). Much
empirical evidence about the behavior of returns is reviewed by Fama (1965,
1970, 1991, 1998). Evidence against the efficient market hypothesis can be
found in the field of behavioral finance which uses the study of human be-
havior to understand market behavior; see Shefrin (2000), Shleifer (2000), and
Thaler (1993). One indication of market inefficiency is excess volatility of mar-
ket prices; see Shiller (1992) or Shiller (2000) for a less technical discussion.

Zuur, Ieno, Meesters, and Burg, D. (2009) is a good place to start learn-
ing R.
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2.5 R Lab

2.5.1 Data Analysis

Obtain the data set Stock_FX_bond.csv from the book’s website and put it
in your working directory. Start R and you should see a console window open
up. Use Change Dir in the “File” menu to change to the working directory.
Read the data with the following command:

dat = read.csv("Stock_bond.csv",header=TRUE)

The data set Stock_FX_bond.csv contains the volumes and adjusted closing
(AC) prices of stocks and the S&P 500 (columns B–W), yields on bonds
(columns X–AD).

This book does not give detailed information about R functions since this
information is readily available elsewhere. For example, you can use R’s help to
obtain more information about the read.csv function by typing “?read.csv”
in your R console and then hitting the Enter key. You should also use the
manual An Introduction to R that is available on R’s help file and also on
CRAN. Another resource for those starting to learn R is Zuur et al. (2009).

An alternative to typing commands in the console is to start a new script
from the “file” menu, put code into the editor, highlight the lines, and then
type Ctrl-R to run the code that has been highlighted. This technique is useful
for debugging. You can save the script file and then reuse or modify it.

Once a file is saved, the entire file can be run by “sourcing” it. You can
use the “file” menu in R to source a file or use the source function. If the
file is in the editor, then it can be run by hitting Ctrl-A to highlight the entire
file and then Ctrl-R.

The next lines of code print the names of the variables in the data set,
attach the data, and plot the adjusted closing prices of GM and Ford.
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names(dat)

attach(dat)

par(mfrow=c(1,2))

plot(GM_AC)

plot(F_AC)

The R function attach puts a database into the R search path. This means
that the database is searched by R when evaluating a variable, so objects in
the database can be accessed by simply giving their names. The function par
specifies plotting parameters and mfrow=c(n1,n2) specifies “make a figure,
fill by rows, n1 rows and n2 columns.” Thus, the first n1 plots fill the first
row and so forth. mfcol(n1,n2) fills by columns and so would put the first n2
plots in the first column. As mentioned before, more information about these
and other R functions can be obtained from R’s online help or the manual An
Introduction to R.

Run the code below to find the sample size (n), compute GM and Ford
returns, and plot GM returns versus the Ford returns.

n = dim(dat)[1]

GMReturn = GM_AC[2:n]/GM_AC[1:(n-1)] - 1

FReturn = F_AC[2:n]/F_AC[1:(n-1)] - 1

par(mfrow=c(1,1))

plot(GMReturn,FReturn)

Problem 1 Do the GM and Ford returns seem positively correlated? Do you
notice any outlying returns? If “yes,” do outlying GM returns seem to occur
with outlying Ford returns?

Problem 2 Compute the log returns for GM and plot the returns versus the
log returns? How highly correlated are the two types of returns? (The R func-
tion cor computes correlations.)

When you exit R, you can “Save workspace image,” which will create an R
workspace file in your working directory. Later, you can restart R from within
WindowsTM and load this workspace image into memory by right-clicking on
the R workspace file. When R starts, your working directory will be the folder
containing the R workspace that was opened.

2.5.2 Simulations

Hedge funds can earn high profits by the use of leverage, but leverage also
creates high risk. The simulations in this section explore the effects of leverage.

Suppose a hedge fund owns $1,000,000 of stock and used $50,000 of its
own capital and $950,000 in borrowed money for the purchase. If the value of
the stock falls below $950,000 at the end of any trading day, then the hedge
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fund must sell all the stock and repay the loan. This will wipe out its $50,000
investment. The hedge fund is said to be leveraged 20:1 since its position is
20 times the amount of its own capital invested.

The daily log returns on the stock have a mean of 0.05/year and a standard
deviation of 0.23/year. These can be converted to rates per trading day by
dividing by 253 and

√
253, respectively.

Problem 3 What is the probability that the value of the stock will be below
$950,000 at the close of at least one of the next 45 trading days? To answer
this question, run the code below.

niter = 1e5 # number of iterations

below = rep(0,niter) # set up storage

set.seed(2009)

for (i in 1:niter)

{

r = rnorm(45,mean=.05/253,

sd=.23/sqrt(253)) # generate random numbers

logPrice = log(1e6) + cumsum(r)

minlogP = min(logPrice) # minimum price over next 45 days

below[i] = as.numeric(minlogP < log(950000))

}

mean(below)

If you are unfamiliar with any of the R functions used here, then use R’s help
to learn about them; e.g., type ?rnorm to learn that rnorm generates normally
distributed random numbers. You should study each line of code, understand
what it is doing, and convince yourself that the code estimates the probability
being requested. Note that anything that follows a pound sign is a comment
and is used only to annotate the code.

Suppose the hedge fund will sell the stock for a profit of at least $100,000
if the value of the stock rises to at least $1,100,000 at the end of one of the
first 100 trading days, sell it for a loss if the value falls below $950,000 at the
end of one of the first 100 trading days, or sell after 100 trading days if the
closing price has stayed between $950,000 and $1,000,000.

The following questions can be answered by simulations much like the one
above. Ignore trading costs and interest when answering these questions.

Problem 4 What is the probability that the hedge fund will make a profit of
at least $100,000?

Problem 5 What is the probability the hedge fund will suffer a loss?

Problem 6 What is the expected profit from this trading strategy?
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Problem 7 What is the expected return? When answering this question, re-
member that only $50,000 was invested. Also, the units of return are time,
e.g., one can express a return as a daily return or a weekly return. Therefore,
one must keep track of how long the hedge fund holds its position before selling.

2.6 Exercises

1. The daily log returns on a stock are independent and normally distributed
with mean 0.001 and standard deviation 0.015. Suppose you buy $1000
worth of this stock.
(a) What is the probability that after one trading day your investment is

worth less than $990? (Note: The R function pnorm will compute a
normal CDF, so, for example, pnorm(0.3,mean=0.1,sd=0.2) is the
normal CDF with mean 0.1 and standard deviation 0.2 evaluated at
0.3.)

(b) What is the probability that after five trading days your investment
is worth less than $990?

2. The yearly log returns on a stock are normally distributed with mean 0.1
and standard deviation 0.2. The stock is selling at $100 today. What is
the probability that one year from now it is selling at $110 or more?

3. Suppose the price of a stock at times 1, 2, and 3 are P1 = 95, P2 = 103,
and P3 = 98. Find r3(2).

4. The prices and dividends of a stock are given in the table below.
(a) What is R2?
(b) What is R4(3)?
(c) What is r3?

t Pt Dt

1 52 0.2
2 54 0.2
3 53 0.2
4 59 0.25

5. Let rt be a log return. Suppose that r1, r2, . . . are i.i.d. N(0.06, 0.47).
(a) What is the distribution of rt(4) = rt + rt−1 + rt−2 + rt−3?
(b) What is P{r1(4) < 2}?
(c) What is the covariance between r1(2) and r2(2)?
(d) What is the conditional distribution of rt(3) given rt−2 = 0.6?

6. Suppose that X1, X2, . . . is a lognormal geometric random walk with pa-
rameters (µ, σ2). More specifically, suppose that Xk = X0 exp(r1 + · · · +
rk), where X0 is a fixed constant and r1, r2, . . . are i.i.d. N(µ, σ2).
(a) Find P (X2 > 1.3 X0).
(b) Use (A.4) to find the density of X1.
(c) Find a formula for the 0.9 quantile of Xk for all k.
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(d) What is the expected value of X2
k for any k? (Find a formula giving

the expected value as a function of k.)
(e) Find the variance of Xk for any k.

7. The daily log returns on a stock are normally distributed with mean 0.0002
and standard deviation 0.03. The stock price is now $97. What is the
probability that it will exceed $100 after 20 trading days?
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Fixed Income Securities

3.1 Introduction

Corporations finance their operations by selling stock and bonds. Owning a
share of stock means partial ownership of the company. Stockholders share
in both the profits and losses of the company. Owning a bond is different.
When you buy a bond you are loaning money to the corporation, though
bonds, unlike loans, are tradeable. The corporation is obligated to pay back
the principal and to pay interest as stipulated by the bond. The bond owner
receives a fixed stream of income, unless the corporation defaults on the bond.
For this reason, bonds are called “fixed income” securities.

It might appear that bonds are risk-free, almost stodgy, but this is not
the case. Many bonds are long-term, e.g., 5, 10, 20, or even 30 years. Even
if the corporation stays solvent or if you buy a U.S. Treasury bond, where
default is for all intents and purposes impossible, your income from the bond
is guaranteed only if you keep the bond to maturity. If you sell the bond before
maturity, your return will depend on changes in the price of the bond. Bond
prices move in opposite direction to interest rates, so a decrease in interest
rates will cause a bond “rally,” where bond prices increase. Long-term bonds
are more sensitive to interest-rate changes than short-term bonds. The interest
rate on your bond is fixed, but in the market interest rates fluctuate. Therefore,
the market value of your bond fluctuates too. For example, if you buy a bond
paying 5% and the rate of interest increases to 6%, then your bond is inferior
to new bonds offering 6%. Consequently, the price of your bond will decrease.
If you sell the bond, you could lose money.

The interest rate of a bond depends on its maturity. For example, on March
28, 2001, the interest rate of Treasury bills1 was 4.23% for three-month bills.
The yields on Treasury notes and bonds were 4.41%, 5.01%, and 5.46% for 2-,
1 Treasury bills have maturities of one year or less, Treasury notes have maturities

from 1 to 10 years, and Treasury bonds have maturities from 10 to 30 years.
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10-, and 30-year maturities, respectively. The term structure of interest rates
describes how rates change with maturity.

3.2 Zero-Coupon Bonds

Zero-coupon bonds, also called pure discount bonds and sometimes known as
“zeros,” pay no principal or interest until maturity. A “zero” has a par value
or face value, which is the payment made to the bondholder at maturity. The
zero sells for less than the par value, which is the reason it is a discount bond.

For example, consider a 20-year zero with a par value of $1000 and 6%
interest compounded annually. The market price is the present value of $1000
with 6% annual discounting. That is, the market price is

$1000
(1.06)20

= $311.80.

If the interest is 6% but compounded every six months, then the price is

$1000
(1.03)40

= $306.56,

and if the interest is 6% compounded continuously, then the price is

$1000
exp{(0.06)(20)} = $301.19.

3.2.1 Price and Returns Fluctuate with the Interest Rate

For concreteness, assume semiannual compounding. Suppose you bought the
zero for $306.56 and then six months later the interest rate increased to 7%.
The market price would now be

$1000
(1.035)39

= $261.41,

so the value of your investment would drop by ($306.56 − $261.41) = $45.15.
You will still get your $1000 if you keep the bond for 20 years, but if you sold
it now, you would lose $45.15. This is a return of

−45.15
306.56

= −14.73%

for a half-year, or −29.46% per year. And the interest rate only changed from
6% to 7%!2 Notice that the interest rate went up and the bond price went
2 Fortunately for investors, a rate change as large as going from 6% to 7% is rare

on a 20-year bond.
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down. This is a general phenomenon. Bond prices always move in the opposite
direction of interest rates.

If the interest rate dropped to 5% after six months, then your bond would
be worth

$1000
(1.025)39

= $381.74.

This would be an annual rate of return of

2
(

381.74− 306.56
306.56

)
= 49.05%.

If the interest rate remained unchanged at 6%, then the price of the bond
would be

$1000
(1.03)39

= $315.75.

The annual rate of return would be

2
(

315.75− 306.56
306.56

)
= 6%.

Thus, if the interest rate does not change, you can earn a 6% annual rate of
return, the same return rate as the interest rate, by selling the bond before
maturity. If the interest rate does change, however, the 6% annual rate of
return is guaranteed only if you keep the bond until maturity.

General Formula

The price of a zero-coupon bond is given by

PRICE = PAR(1 + r)−T

if T is the time to maturity in years and the annual rate of interest is r with
annual compounding. If we assume semiannual compounding, then the price
is

PRICE = PAR(1 + r/2)−2T . (3.1)

3.3 Coupon Bonds

Coupon bonds make regular interest payments. Coupon bonds generally sell
at or near the par value when issued. At maturity, one receives the principal
and the final interest payment.

As an example, consider a 20-year coupon bond with a par value of $1000
and 6% annual coupon rate with semiannual coupon payments, so effectively
the 6% is compounded semiannually. Each coupon payment will be $30. Thus,
the bondholder receives 40 payments of $30, one every six months plus a
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principal payment of $1000 after 20 years. One can check that the present value
of all payments, with discounting at the 6% annual rate (3% semiannual),
equals $1000:

40∑
t=1

30
(1.03)t

+
1000

(1.03)40
= 1000.

After six months, if the interest rate is unchanged, then the bond (including
the first coupon payment, which is now due) is worth

39∑
t=0

30
(1.03)t

+
1000

(1.03)39
= (1.03)

(
40∑

t=1

30
(1.03)t

+
1000

(1.03)40

)
= 1030,

which is a semiannually compounded 6% annual return as expected. If the
interest rate increases to 7%, then after six months the bond (plus the interest
due) is only worth

39∑
t=0

30
(1.035)t

+
1000

(1.035)39
= (1.035)

(
40∑

t=1

30
(1.035)t

+
1000

(1.035)40

)
= 924.49.

This is an annual return of

2
(

924.49− 1000
1000

)
= −15.1%.

If the interest rate drops to 5% after six months, then the investment is worth

39∑
t=0

30
(1.025)t

+
1000

(1.025)39
= (1.025)

(
40∑

t=1

30
(1.025)t

+
1000

(1.025)40

)
= 1,153.70,

(3.2)
and the annual return is

2
(

1153.7− 1000
1000

)
= 30.72%.

3.3.1 A General Formula

Let’s derive some useful formulas. If a bond with a par value of PAR matures
in T years and makes semiannual coupon payments of C and the discount
rate (rate of interest) is r per half-year, then the value of the bond when it is
issued is

2T∑
t=1

C

(1 + r)t
+

PAR
(1 + r)2T

=
C

r

{
1− (1 + r)−2T

}
+

PAR
(1 + r)2T

=
C

r
+

{
PAR− C

r

}
(1 + r)−2T . (3.3)
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Derivation of (3.3)

The summation formula for a finite geometric series is

T∑

i=0

ri =
1− rT+1

1− r
, (3.4)

provided that r 6= 1. Therefore,

2T∑
t=1

C

(1 + r)t
=

C

1 + r

2T−1∑
t=0

(
1

1 + r

)t

=
C{1− (1 + r)−2T }

(1 + r){1− (1 + r)−1}

=
C

r
{1− (1 + r)−2T }. (3.5)

The remainder of the derivation is straightforward algebra.

3.4 Yield to Maturity

Suppose a bond with T = 30 and C = 40 is selling for $1200, $200 above par
value. If the bond were selling at par value, then the interest rate would be
0.04/half-year (= 0.08/year). The 4%/half-year rate is called the coupon rate.

But the bond is not selling at par value. If you purchase the bond at $1200,
you will make less than 8% per year interest. There are two reasons that the
rate of interest is less than 8%. First, the coupon payments are $40 or 40/1200
= 3.333%/half-year (or 6.67%/year) for the $1200 investment; 6.67%/year is
called the current yield. Second, at maturity you only get back $1000, not the
entire $1200 investment. The current yield of 6.67%/year, though less than
the coupon rate of 8%/year, overestimates the return since it does not account
for this loss of capital.

The yield to maturity, often shortened to simply yield, is the average rate of
return, including the loss (or gain) of capital because the bond was purchased
above (or below) par. For this bond, the yield to maturity is the value of r
that solves

1200 =
40
r

+
{

1000− 40
r

}
(1 + r)−60. (3.6)

The right-hand side of (3.6) is (3.3) with C = 40, T = 30, and PAR = 1000.
It is easy to solve equation (3.6) numerically. The R program in Section 3.11.1
does the following:

• computes the bond price for each r value on a grid;
• graphs bond price versus r (this is not necessary, but it is fun to see the

graph); and
• interpolates to find the value of r such that the bond value equals $1200.
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Fig. 3.1. Bond price versus yield to maturity = r.

One finds that the yield to maturity is 0.0324, that is, 3.24%/half-year. Fig-
ure 3.1 shows the graph of bond price versus r and shows that r = 0.0324
maps to a bond price of $1200.

The yield to maturity of 0.0324 is less than the current yield of 0.0333,
which is less than the coupon rate of 40/1000 = 0.04. (All three rates are
rates per half-year.) Whenever, as in this example, the bond is selling above
par value, then the coupon rate is greater than the current yield because the
bond sells above par value, and the current yield is greater than the yield to
maturity because the yield to maturity accounts for the loss of capital when at
the maturity date you get back only the par value, not the entire investment.
In summary,

price > par ⇒ coupon rate > current yield > yield to maturity.

Everything is reversed if the bond is selling below par value. For example, if
the price of the bond were only $900, then the yield to maturity would be
0.0448 (as before, this value can be determined by interpolation), the current
yield would be 40/900 = 0.0444, and the coupon rate would still be 40/1000
= 0.04. In general,

price < par ⇒ coupon rate < current yield < yield to maturity.

3.4.1 General Method for Yield to Maturity

The yield to maturity (on a semiannual basis) of a coupon bond is the value
of r that solves
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PRICE =
C

r
+

{
PAR− C

r

}
(1 + r)−2T . (3.7)

Here PRICE is the market price of the bond, PAR is the par value, C is
the semiannual coupon payment, and T is the time to maturity in years and
assumed to be a multiple of 1/2.

For a zero-coupon bond, C = 0 and (3.7) becomes

PRICE = PAR(1 + r)−2T . (3.8)

3.4.2 Spot Rates

The yield to maturity of a zero-coupon bond of maturity n years is called
the n-year spot rate and is denoted by yn. One uses the n-year spot rate to
discount a payment n years from now, so a payment of $1 to be made n years
from now has a net present value (NPV) of $1/(1+ yn)n if yn is the spot rate
per annum or $1/(1 + yn)2n if yn is a semiannual rate.

A coupon bond is a bundle of zero-coupon bonds, one for each coupon
payment and a final one for the principal payment. The component zeros
have different maturity dates and therefore different spot rates. The yield to
maturity of the coupon bond is, thus, a complex “average” of the spot rates
of the zeros in this bundle.

Example 3.1. Finding the price and yield to maturity of a coupon bond using
spot rates

Consider the simple example of a one-year coupon bond with semiannual
coupon payments of $40 and a par value of $1000. Suppose that the one-half-
year spot rate is 2.5%/half-year and the one-year spot rate is 3%/half-year.
Think of the coupon bond as being composed of two zero-coupon bonds, one
with T = 1/2 and a par value of $40 and the second with T = 1 and a par
value of $1040. The price of the bond is the sum of the prices of these two
zeros. Applying (3.8) twice to obtain the prices of these zeros and summing,
we obtain the price of the zero-coupon bond:

40
1.025

+
1040

(1.03)2
= 1019.32.

The yield to maturity on the coupon bond is the value of y that solves

40
1 + y

+
1040

(1 + y)2
= 1019.32.

The solution is y = 0.0299/half-year. Thus, the annual yield to maturity is
twice 0.0299, or 5.98%/year. ¤
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General Formula

In this section we will find a formula that generalizes Example 3.1. Suppose
that a coupon bond pays semiannual coupon payments of C, has a par value
of PAR, and has T years until maturity. Let r1, r2, . . . , r2T be the half-year
spot rates for zero-coupon bonds of maturities 1/2, 1, 3/2, . . . , T years. Then
the yield to maturity (on a half-year basis) of the coupon bond is the value
of y that solves

C

1 + r1
+

C

(1 + r2)2
+ · · ·+ C

(1 + r2T−1)2T−1
+

PAR + C

(1 + rn)2T

=
C

1 + y
+

C

(1 + y)2
+ · · ·+ C

(1 + y)2T−1
+

PAR + C

(1 + y)2T
. (3.9)

The left-hand side of equation (3.9) is the price of the coupon bond, and the
yield to maturity is the value of y that makes the right-hand side of (3.9)
equal to the price.

Methods for solving (3.9) are explored in the R lab in Section 3.11.

3.5 Term Structure

3.5.1 Introduction: Interest Rates Depend Upon Maturity

On January 26, 2001, the one-year T-bill rate was 4.83% and the 30-year
Treasury bond rate was 6.11%. This is typical. Short- and long-term rates
usually differ. Often short-term rates are lower than long-term rates. This
makes sense since long-term bonds are riskier, because long-term bond prices
fluctuate more with interest-rate changes. However, during periods of very
high short-term rates, the short-term rates may be higher than the long-term
rates. The reason is that the market believes that rates will return to historic
levels and no one will commit to the high interest rate for, say, 20 or 30 years.
Figure 3.2 shows weekly values of the 90-day, 10-year, and 30-year Treasury
rates from 1970 to 1993, inclusive. Notice that the 90-day rate is more volatile
than the longer-term rates and is usually less than them. However, in the early
1980s, when interest rates were very high, the short-term rates were higher
than the long-term rates. These data were taken from the Federal Reserve
Bank of Chicago’s website.

The term structure of interest rates is a description of how, at a given
time, yield to maturity depends on maturity.

3.5.2 Describing the Term Structure

Term structure for all maturities up to n years can be described by any one
of the following:
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Fig. 3.2. Treasury rates of three maturities. Weekly time series. The data were
taken from the website of the Federal Reserve Bank of Chicago.

• prices of zero-coupon bonds of maturities 1-year, 2-years, . . . , n-years are
denoted here by P (1), P (2), . . . , P (n);

• spot rates (yields of maturity of zero-coupon bonds) of maturities 1-year,
2-years, . . . , n-years are denoted by y1, . . . , yn;

• forward rates r1, . . . , rn, where ri is the forward rate paid in the ith future
year (i = 1 for next year, and so on).

As discussed in this section, each of the sets {P (1), . . . , P (n)}, {y1, . . . , yn},
and {r1, . . . , rn} can be computed from either of the other sets. For example,
equation (3.11) ahead gives {P (1), . . . , P (n)} in terms of {r1, . . . , rn}, and
equations (3.12) and (3.13) ahead give {y1, . . . , yn} in terms of {P (1), . . . ,
P (n)} or {r1, . . . , rn}, respectively.

Term structure can be described by breaking down the time interval be-
tween the present time and the maturity time of a bond into short time
segments with a constant interest rate within each segment, but with inter-
est rates varying between segments. For example, a three-year loan can be
considered as three consecutive one-year loans.

Example 3.2. Finding prices from forward rates

As an illustration, suppose that loans have the forward interest rates listed
in Table 3.1. Using the forward rates in the table, we see that a par $1000
one-year zero would sell for

1000
1 + r1

=
1000
1.06

= $943.40 = P (1).

A par $1000 two-year zero would sell for



26 3 Fixed Income Securities

1000
(1 + r1)(1 + r2)

=
1000

(1.06)(1.07)
= $881.68 = P (2),

since the rate r1 is paid the first year and r2 the following year. Similarly, a
par $1000 three-year zero would sell for

1000
(1 + r1)(1 + r2)(1 + r3)

=
1000

(1.06)(1.07)(1.08)
= 816.37 = P (3).

Table 3.1. Forward interest rates used in Examples 3.2 and 3.3.

Year (i) Interest rate (ri)(%)

1 6
2 7
3 8

¤

The general formula for the present value of $1 paid n periods from now
is

1
(1 + r1)(1 + r2) · · · (1 + rn)

. (3.10)

Here ri is the forward interest rate during the ith period. If the periods are
years, then the price of an n-year par $1000 zero-coupon bond P (n) is $1000
times the discount factor in (3.10); that is,

P (n) =
1000

(1 + r1) · · · (1 + rn)
. (3.11)

Example 3.3. Back to Example 3.2: Finding yields to maturity from prices and
from the forward rates

In this example, we first find the yields to maturity from the prices derived
in Example 3.2 using the interest rates from Table 3.1. For a one-year zero,
the yield to maturity y1 solves

1000
(1 + y1)

= 993.40,

which implies that y1 = 0.06. For a two-year zero, the yield to maturity y2

solves
1000

(1 + y2)2
= 881.68,

so that
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y2 =

√
1000

881.68
− 1 = 0.0650.

For a three-year zero, the yield to maturity y3 solves

1000
(1 + y3)3

= 816.37,

and equals 0.070.
The yields can also be found from the forward rates. First, trivially, y1 =

r1 = 0.06. Next, y2 is given by

y2 =
√

(1 + r1)(1 + r2)− 1 =
√

(1.06)(1.07)− 1 = 0.0650.

Also,

y3 = {(1 + r1)(1 + r2)(1 + r3)}1/3 − 1

= {(1.06)(1.07)(1.08)}1/3 − 1 = 0.0700,

or, more precisely, 0.06997. Thus, (1 + y3) is the geometric average of 1.06,
1.07, and 1.08 and very nearly equal to their arithmetic average, which is 1.07.
¤

Recall that P (n) is the price of a par $1000 n-year zero-coupon bond. The
general formulas for the yield to maturity yn of an n-year zero are

yn =
{

1000
P (n)

}1/n

− 1, (3.12)

and
yn = {(1 + r1) · · · (1 + rn)}1/n − 1. (3.13)

Equations (3.12) and (3.13) give the yields to maturity in terms of the
bond prices and forward rates, respectively. Also, inverting (3.12) gives the
formula

P (n) =
1000

(1 + yn)n
(3.14)

for P (n) as a function of the yield to maturity.
As mentioned before, interest rates for future years are called forward

rates. A forward contract is an agreement to buy or sell an asset at some fixed
future date at a fixed price. Since r2, r3, . . . are rates that can be locked in
now for future borrowing, they are forward rates.

The general formulas for determining forward rates from yields to maturity
are

r1 = y1, (3.15)

and

rn =
(1 + yn)n

(1 + yn−1)n−1
− 1, n = 2, 3, . . . . (3.16)

Now suppose that we only observed bond prices. Then we can calculate yields
to maturity and forward rates using (3.12) and then (3.16).
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Table 3.2. Bond prices used in Example 3.4.

Maturity Price

1 year $920
2 years $830
3 years $760

Example 3.4. Finding yields and forward rates from prices

Suppose that one-, two-, and three-year par $1000 zeros are priced as given
in Table 3.2. Using (3.12), the yields to maturity are

y1 =
1000
920

− 1 = 0.087,

y2 =
{

1000
830

}1/2

− 1 = 0.0976,

y3 =
{

1000
760

}1/3

− 1 = 0.096.

Then, using (3.15) and (3.16),

r1 = y1 = 0.087,

r2 =
(1 + y2)2

(1 + y1)
− 1 =

(1.0976)2

1.0876
− 1 = 0.108, and

r3 =
(1 + y3)3

(1 + y2)2
− 1 =

(1.096)3

(1.0976)2
− 1 = 0.092.

¤

The formula for finding rn from the prices of zero-coupon bonds is

rn =
P (n− 1)

P (n)
− 1, (3.17)

which can be derived from

P (n) =
1000

(1 + r1)(1 + r2) · · · (1 + rn)
,

and
P (n− 1) =

1000
(1 + r1)(1 + r2) · · · (1 + rn−1)

.

To calculate r1 using (3.17), we need P (0), the price of a 0-year bond, but
P (0) is simply the par value.3

3 Trivially, a bond that must be paid back immediately is worth exactly its par
value.
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Example 3.5. Forward rates from prices

Thus, using (3.17) and the prices in Table 3.2, the forward rates are

r1 =
1000
920

− 1 = 0.087,

r2 =
920
830

− 1 = 0.108,

and
r3 =

830
760

− 1 = 0.092.

¤

3.6 Continuous Compounding

Now assume continuous compounding with forward rates r1, . . . , rn. Using
continuously compounded rates simplifies the relationships amon the forward
rates, the yields to maturity, and the prices of zero-coupon bonds.

If P (n) is the price of a $1000 par value n-year zero-coupon bond, then

P (n) =
1000

exp(r1 + r2 + · · ·+ rn)
. (3.18)

Therefore,
P (n− 1)

P (n)
=

exp(r1 + · · ·+ rn)
exp(r1 + · · ·+ rn−1)

= exp(rn), (3.19)

and

log
{

P (n− 1)
P (n)

}
= rn. (3.20)

The yield to maturity of an n-year zero-coupon bond solves the equation

P (n) =
1000

exp(nyn)
,

and is easily seen to be

yn = (r1 + · · ·+ rn)/n. (3.21)

Therefore, {r1, . . . , rn} is easily found from {y1, . . . , yn} by the relationship

r1 = yn,

and
rn = nyn − (n− 1)yn−1 for n > 1.
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Example 3.6. Continuously compounded forward rates and yields from prices

Using the prices in Table 3.2, we have P (1) = 920, P (2) = 830, and
P (3) = 760. Therefore, using (3.20),

r1 = log
{

1000
920

}
= 0.083,

r2 = log
{

920
830

}
= 0.103,

and

r3 = log
{

830
760

}
= 0.088.

Also, y1 = r1 = 0.083, y2 = (r1 + r2)/2 = 0.093, and y3 = (r1 + r2 + r3)/3 =
0.091. ¤

3.7 Continuous Forward Rates

So far, we have assumed that forward interest rates vary from year to year but
are constant within each year. This assumption is, of course, unrealistic and
was made only to simplify the introduction of forward rates. Forward rates
should be modeled as a function varying continuously in time.

To specify the term structure in a realistic way, we assume that there is a
function r(t) called the forward-rate function such that the current price of a
zero-coupon bond of maturity T and with par value equal to 1 is given by

D(T ) = exp

{
−

∫ T

0

r(t)dt

}
. (3.22)

D(T ) is called the discount function and the price of any zero-coupon bond is
given by discounting its par value by multiplication with the discount function;
that is,

P (T ) = PAR×D(T ), (3.23)

where P (T ) is the price of a zero-coupon bond of maturity T with par value
equal to PAR. Also,

log P (T ) = log(PAR)−
∫ T

0

r(t)dt,

so that
− d

dT
log P (T ) = r(T ) for all T. (3.24)

Formula (3.22) is a generalization of formula (3.18). To appreciate this,
suppose that r(t) is the piecewise constant function
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r(t) = rk for k − 1 < t ≤ k.

With this piecewise constant r, for any integer T , we have

∫ T

0

r(t)dr = r1 + r2 + · · ·+ rT ,

so that

exp

{
−

∫ T

0

r(t)dt

}
= exp{−(r1 + · · ·+ rT )}

and therefore (3.18) agrees with (3.22) in this special situation. However,
(3.22) is a more general formula since it applies to noninteger T and to arbi-
trary r(t), not only to piecewise constant functions.

The yield to maturity of a zero-coupon bond with maturity date T is
defined to be

yT =
1
T

∫ T

0

r(t) dt. (3.25)

Thinking of the right-hand side of (3.25) as the average of r(t) over the interval
0 ≤ t ≤ T , we see that (3.25) is the analog of (3.21). From (3.22) and (3.25) it
follows that the discount function can be obtained from the yield to maturity
by the formula

D(T ) = exp{−TyT }, (3.26)

so that the price of a zero-coupon bond maturing at time T is the same as it
would be if there were a constant forward interest rate equal to yT . It follows
from (3.26) that

yT = − log{D(T )}/T. (3.27)

Example 3.7. Finding continuous yield and discount functions from forward
rates

Suppose the forward rate is the linear function r(t) = 0.03+0.0005 t. Find
r(15), y15, and D(15).

Answer: r(15) = 0.03 + (0.0005)(15) = 0.0375,

y15 = (15)−1

∫ 15

0

(0.03 + 0.0005 t)dt

= (15)−1(0.03 t + 0.0005 t2/2)

∣∣∣∣∣

15

0

= 0.03375,

and D(15) = exp(−15y15) = exp{−(15)(0.03375)} = exp(0.5055) = 0.6028.
¤
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The discount function D(T ) and forward-rate function r(t) in formula
(3.22) depend on the current time, which is taken to be zero in that formula.
However, we could be interested in how the discount function and forward
rate function change over time. In that case we define the discount function
D(s, T ) to be the price at time s of a zero-coupon bond, with a par value of
$1, maturing at time T . Also, the forward-rate curve at time s is r(s, t), t ≥ s.
Then

D(s, T ) = exp

{
−

∫ T

s

r(s, t)dt

}
. (3.28)

Since r(t) and D(t) in (3.22) are r(0, t) and D(0, t) in our new notation, (3.22)
is the special case of (3.28) with s = 0. However, for the remainder of this
chapter we assume that s = 0 and return to the simpler notation of r(t) and
D(t).

3.8 Sensitivity of Price to Yield

As we have seen, bonds are risky because bond prices are sensitive to inter-
est rates. This problem is called interest-rate risk. This section describes a
traditional method of quantifying interest-rate risk.

Using equation (3.26), we can approximate how the price of a zero-coupon
bond changes if there is a small change in yield. Suppose that yT changes
to yT + δ, where the change in yield δ is small. Then the change in D(T ) is
approximately δ times

d

dyT
exp{−TyT } ≈ −T exp{−TyT } = −TD(T ). (3.29)

Therefore, by equation (3.23), for a zero-coupon bond of maturity T ,

change bond price
bond price

≈ −T × change in yield. (3.30)

In this equation “≈” means that the ratio of the right- to left-hand sides
converges to 1 as δ → 0.

Equation (3.30) is worth examining. The minus sign on the right-hand side
shows us something we already knew, that bond prices move in the opposite
direction to interest rates. Also, the relative change in the bond price, which
is the left-hand side of the equation, is proportional to T , which quantifies the
principle that longer-term bonds have higher interest-rate risks than short-
term bonds.

3.8.1 Duration of a Coupon Bond

Remember that a coupon bond can be considered a bundle of zero-coupon
bonds of various maturities. The duration of a coupon bond, which we denote
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by DUR, is the weighted average of these maturities with weights in proportion
to the net present value of the cash flows (coupon payments and par value at
maturity). Now assume that all yields change by a constant amount δ, that is,
yT changes to yT + δ for all T . Then equation (3.30) applies to each of these
cash flows and averaging them with these weights gives us that for a coupon
bond,

change bond price
bond price

≈ −DUR× change in yield. (3.31)

The details of the derivation of (3.31) are left as an exercise. Duration analysis
uses (3.31) to approximate the effect of a change in yield on bond prices.

We can rewrite (3.31) as

DUR ≈ −1
price

× change in price
change in yield

(3.32)

and use (3.32) as a definition of duration. Notice that “bond price” has been
replaced by “price.” The reason for this is that (3.32) can define the durations
of not only bonds but also of derivative securities whose prices depend on
yield, for example, call options on bonds. When this definition is extended
to derivatives, duration has nothing to do with maturities of the underlying
securities. Instead, duration is solely a measure of sensitivity of price to yield.
Tuckman (2002) gives an example of a 10-year coupon bond with a duration
of 7.79 years and a call option on this bond with a duration of 120.82 years.
These durations show that the call is much riskier than the bond since it is
15.5 (= 129.82/7.79) times more sensitive to changes in yield.

Unfortunately, the underlying assumption behind (3.31) that all yields
change by the same amount is not realistic, so duration analysis is falling into
disfavor and value-at-risk is replacing duration analysis as a method for eval-
uating interest-rate risk.4 Value-at-risk and other risk measures are covered
in Chapter 19.

3.9 Bibliographic Notes

Tuckman (2002) is an excellent comprehensive treatment of fixed income se-
curities, which is written at an elementary mathematical level and is highly
recommended for readers wishing to learn more about this topic. Bodie, Kane,
and Marcus (1999), Sharpe, Alexander, and Bailey (1999), and Campbell, Lo,
and MacKinlay (1997) provide good introductions to fixed income securi-
ties, with the last-named being at a more advanced level. James and Webber
(2000) is an advanced book on interest rate modeling. Jarrow (2002) covers
many advanced topics that are not included in this book, including modeling
the evolution of term structure, bond trading strategies, options and futures
on bonds, and interest-rate derivatives.
4 See Dowd (1998).
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3.11 R Lab

3.11.1 Computing Yield to Maturity

The following R function computes the price of a bond given its coupon pay-
ment, maturity, yield to maturity, and par value.

bondvalue = function(c,T,r,par)

{

# Computes bv = bond values (current prices) corresponding

# to all values of yield to maturity in the

# input vector r

#

# INPUT

# c = coupon payment (semiannual)

# T = time to maturity (in years)

# r = vector of yields to maturity (semiannual rates)

# par = par value

#

bv = c/r + (par - c/r) * (1+r)^(-2*T)

bv

}

The R code that follows computes the price of a bond for 300 semiannual
interest rates between 0.02 and 0.05 for a 30-year par $1000 bond with coupon
payments of $40. Then interpolation is used to find the yield to maturity if
the current price is $1200.

# Computes the yield to maturity of a bond paying semiannual

# coupon payments

#

# price, coupon payment, and time to maturity (in years)

# are set below
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#

# Uses the function "bondvalue"

#

price = 1200 # current price of the bond

C = 40 # coupon payment

T= 30 # time to maturity

par = 1000 # par value of the bond

r = seq(.02,.05,length=300)

value = bondvalue(C,T,r,par)

yield2M = spline(value,r,xout=price) # spline interpolation

The final bit of R code below plots price as a function of yield to maturity
and graphically interpolates to show the yield to maturity when the price is
$1200.

plot(r,value,xlab=’yield to maturity’,ylab=’price of bond’,

type="l",main="par = 1000, coupon payment = 40, T = 30",lwd=2)

abline(h=1200)

abline(v=yield2M)

Problem 1 Use the plot to estimate graphically the yield to maturity. Does
this estimate agree with that from spline interpolation?

As an alternative to interpolation, the yield to maturity can be found using
a nonlinear root finder (equation solver) such as uniroot, which is illustrated
here:

uniroot(function(r) r^2-.5, c(0.7,0.8))

Problem 2 What does the code

uniroot(function(r) r^2-.5, c(0.7,0.8))

do?

Problem 3 Use uniroot to find the yield to maturity of the 30-year par
$1000 bond with coupon payments of $40 that is selling at $1200.

Problem 4 Find the yield to maturity of a par $10,000 bond selling at $9800
with semiannual coupon payments equal to $280 and maturing in 8 years.



36 3 Fixed Income Securities

3.11.2 Graphing Yield Curves

R’s fEcofin package has many financial data sets. The data set mk.maturity
has yield curves at 55 maturities recorded monthly. The following code plots
the yield curves on four consecutive months.

library(fEcofin)

plot(mk.maturity[,1],mk.zero2[5,2:56],type="l",

xlab="maturity",ylab="yield")

lines(mk.maturity[,1],mk.zero2[6,2:56],lty=2,type="l")

lines(mk.maturity[,1],mk.zero2[7,2:56],lty=3,type="l")

lines(mk.maturity[,1],mk.zero2[8,2:56],lty=4,type="l")

legend("bottomright",c("1985-12-01", "1986-01-01",

"1986-02-01", "1986-03-01"),lty=1:4)

Run the code above and then, to zoom in on the short end of the curves,
rerun the code with maturities restricted to 0 to 3 years; to do that, use xlim
in the plot function.

Problem 5 Describe how the yield curve changes between December 1, 1985
and March 1, 1986. Describe the behavior of both the short and long ends of
the yield curves.

Problem 6 Plot the yield curves from December 1, 1986 to March 1, 1987
and describe how the yield curve changes during this period.

3.12 Exercises

1. Suppose that the forward rate is r(t) = 0.028 + 0.00042t.
(a) What is the yield to maturity of a bond maturing in 20 years?
(b) What is the price of a par $1000 zero-coupon bond maturing in 15 years?

2. A coupon bond has a coupon rate of 3% and a current yield of 2.8%.
(a) Is the bond selling above or below par? Why or why not?
(b) Is the yield to maturity above or below 2.8%? Why or why not?

3. Suppose that the forward rate is r(t) = 0.032 + 0.001t + 0.0002t2.
(a) What is the five-year continuously compounded spot rate?
(b) What is the price of a zero-coupon bond that matures in five years?

4. The 1/2-, 1-, 1.5-, and 2-year semiannually compounded spot rates are
0.024, 0.029, 0.031, and 0.035, respectively. A par $1000 coupon bond
matures in two years and has semiannual coupon payments of $35. What
is the price of this bond?
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5. Verify the following equality:

2T∑
t=1

C

(1 + r)t
+

PAR
(1 + r)2T

=
C

r
+

{
PAR− C

r

}
(1 + r)−2T .

6. One year ago a par $1000 20-year coupon bond with semiannual coupon
payments was issued. The annual interest rate (that is, the coupon rate)
at that time was 8.5%. Now, a year later, the annual interest rate is 7.6%.
(a) What are the coupon payments?
(b) What is the bond worth now? Assume that the second coupon pay-

ment was just received, so the bondholder receives an additional 38
coupon payments, the next one in six months.

(c) What would the bond be worth if instead the second payment were
just about to be received?

7. A par $1000 zero-coupon bond that matures in five years sells for $818.
Assume that there is a constant continuously compounded forward rate
r.
(a) What is r?
(b) Suppose that one year later the forward rate r is still constant but

has changed to be 0.042. Now what is the price of the bond?
(c) If you bought the bond for the original price of $828 and sold it one

year later for the price computed in part (b), then what is the net
return?

8. A coupon bond with a par value of $1000 and a 10-year maturity pays
semiannual coupons of $22.
(a) Suppose the current interest rate for this bond is 4% per year com-

pounded semiannually. What is the price of the bond?
(b) Is the bond selling above or below par value? Why?

9. Suppose that a coupon bond with a par value of $1000 and a maturity
of seven years is selling for $1050. The semiannual coupon payments are
$24.
(a) Find the yield to maturity of this bond.
(b) What is the current yield on this bond?
(c) Is the yield to maturity less or greater than the current yield? Why?

10. Suppose that the continuous forward rate is r(t) = 0.035 + 0.0013t. What
is the current value of a par $100 zero-coupon bond with a maturity of 15
years?

11. Suppose that the continuous forward rate is r(t) = 0.03 + 0.001t −
0.00021(t− 10)+. What is the yield to maturity on a 20-year zero-coupon
bond? Here x+ is the positive part function defined by

x+ =
{

x, x > 0,
0, x ≤ 0.
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12. An investor is considering the purchase of zero-coupon bonds with matu-
rities of one, three, or five years. Currently the spot rates for 1-, 2-, 3-, 4-,
and 5-year zero-coupon bonds are, respectively, 0.031, 0.035, 0.04, 0.042,
and 0.043 per year with semiannual compounding. A financial analyst has
advised this investor that interest rates will increase during the next year
and the analyst expects all spot rates to increase by the amount 0.005, so
that the one-year spot rate will become 0.03, and so forth. The investor
plans to sell the bond at the end of one year and wants the greatest return
for the year. This problem does the bond math to see which maturity, 1,
3, or 5 years, will give the best return under two scenarios: interest rates
are unchanged and interest rates increase as forecast by the analyst.
(a) What are the current prices of 1-, 3-, and 5-year zero-coupon bonds

with par values of $1000?
(b) What will be the prices of these bonds one year from now if spot rates

remain unchanged?
(c) What will be the prices of these bonds one year from now if spot rates

each increase by 0.005?
(d) If the analyst is correct that spot rates will increase by 0.005 in one

year, which maturity, 1, 3, or 5 years, will give the investor the greatest
return when the bond is sold after one year? Justify your answer.

(e) If instead the analyst is incorrect and spot rates remain unchanged,
then which maturity, 1, 3, or 5 years, earns the highest return when
the bond is sold after one year? Justify your answer.

(f) The analyst also said that if the spot rates remain unchanged, then
the bond with the highest spot rate will earn the greatest one-year
return. Is this correct? Why?

(Hint: Be aware that a bond will not have the same maturity in one year
as it has now, so the spot rate that applies to that bond will change.)

13. Suppose that a bond pays a cash flow Ci at time Ti for i = 1, . . . , N . Then
the net present value (NPV) of cash flow Ci is

NPVi = Ci exp(−Ti yTi).

Define the weights

ωi =
NPVi∑N

j=1 NPVj

and define the duration of the bond to be

DUR =
N∑

i=1

ωiTi,

which is the weighted average of the times of the cash flows. Show that

d

dδ

N∑

i=1

Ci exp{−Ti(yTi + δ)}
∣∣∣∣
δ=0

= −DUR
N∑

i=1

Ci exp{−Ti yTi}
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and use this result to verify equation (3.31).
14. Assume that the yield curve is YT = 0.04 + 0.001 T .

(a) What is the price of a par-$1000 zero-coupon bond with a maturity
of 10 years?

(b) Suppose you buy this bond. If one year later the yield curve is YT =
0.042 + 0.001 T , then what will be the net return on the bond?

15. A coupon bond has a coupon rate of 3% and a current yield of 2.8%.
(a) Is the bond selling above or below par? Why or why not?
(b) Is the yield to maturity above or below 2.8%? Why or why not?

16. Suppose that the forward rate is r(t) = 0.03 + 0.001t + 0.0002t2

(a) What is the five-year spot rate?
(b) What is the price of a zero-coupon bond that matures in 5 years?

17. The 1/2-, 1-, 1.5-, and 2-year spot rates are 0.025, 0.029, 0.031, and 0.035,
respectively. A par $1000 coupon bond matures in two years and has
semiannual coupon payments of $35. What is the price of this bond?

18. Par $1000 zero-coupon bonds of maturities of 0.5-, 1-, 1.5-, and 2-years
are selling at $980.39, $957.41, $923.18, and $888.489, respectively.
(a) Find the 0.5-, 1-, 1.5-, and 2-year semiannual spot rates.
(b) A par $1000 coupon bond has a maturity of two years. The semiannual

coupon payment is $21. What is the price of this bond?
19. A par $1000 bond matures in four years and pays semiannual coupons

of $26. The price of the bond is $1020. What is the semiannual yield to
maturity of this bond?

20. A coupon bond matures in four years. Its par is $1000 and it makes
eight coupon payments of $21, one every one-half year. The continuously
compounded forward rate is

r(t) = 0.022 + 0.005 t− 0.004 t2 + 0.0003 t3.

(a) Find the price of the bond.
(b) Find the duration of this bond.
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Exploratory Data Analysis

4.1 Introduction
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Fig. 4.1. Daily log returns on the S&P 500 index from January 1981 to April 1991.
This data set is the variable r500 in the SP500 series in the Ecdat package in R.
Notice the extreme volatility in October 1987.

This book is about the statistical analysis of financial markets data such
as equity prices, foreign exchange rates, and interest rates. These quantities
vary random thereby causing financial risk as well as the opportunity for
profit. Figures 4.1, 4.2, and 4.3 show, respectively, time series plots of daily
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log returns on the S&P 500 index, daily changes in the Deutsch Mark (DM)
to U.S. dollar exchange rate, and changes in the monthly risk-free return,
which is 1/12th the annual risk-free interest rate. A time series is a sequence
of observations of some quantity or quantities, e.g., equity prices, taken over
time, and a time series plot is a plot of a time series in chronological order.
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Fig. 4.2. Daily changes in the DM/dollar exchange rate, January 2, 1980, to May
21, 1987. The data come from the Garch series in the Ecdat package in R. The
DM/dollar exchange rate is the variable dm.

Despite the large random fluctuations in all three time series, we can see
that each series appears stationary, meaning that the nature of its random
variation is constant over time. In particular, the series fluctuate about means
that are constant, or nearly so. We also see volatility clustering, because there
are periods of higher, and of lower, variation within each series. Volatility
clustering does not indicate a lack of stationarity but rather can be viewed
as a type of dependence in the conditional variance of each series. This point
will be discussed in detail in Chapter 18.

Each of these time series will be modeled as a sequence Y1, Y2, . . . of random
variables, each with a CDF that we will call F .1 F will vary between series
1 See Section A.2.1 for definitions of CDF, PDF, and other terms in probability

theory.
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Fig. 4.3. Monthly changes in the risk-free return, January 1960 to December 2002.
The rates are the variable rf in the Capm series in the Ecdat package in R.

but, because of stationarity, is assumed to be constant within each series. F is
also called the marginal distribution function. By the marginal distribution of
a time series, we mean the distribution of Yt given no knowledge of the other
observations, that is, no knowledge of Ys for any s 6= t. Thus, when modeling
a marginal distribution, we disregard dependencies in the time series. Depen-
dencies such as autocorrelation and volatility clustering will be discussed in
later chapters.

In this chapter, we explore various methods for modeling and estimating
marginal distributions, in particular, graphical methods such as histograms,
density estimates, sample quantiles, and probability plots.

4.2 Histograms and Kernel Density Estimation

Assume that the marginal CDF F has a probability density function f . The
histogram is a simple and well-known estimator of probability density func-
tions. Panel (a) of Figure 4.4 is a histogram of the S&P 500 log returns using
30 cells (or bins). There are some outliers in this series, especially a return
near −0.23 that occurred on Black Monday, October 19, 1987. Note that a
return of this size means that the market lost 23% of its value in a single day.
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Fig. 4.4. Histograms of the daily log returns on the S&P 500 index from January
1981 to April 1991. This data set is the SP500 series in the Ecdat package in R.

The outliers are difficult, or perhaps impossible, to see in the histogram, ex-
cept that they have caused the x-axis to expand. The reason that the outliers
are difficult to see is the large sample size. When the sample size is in the
thousands, a cell with a small frequency is essentially invisible. Panel (b) of
Figure 4.4 zooms in on the high-probability region. Note that only a few of
the 30 cells are in this area.

The histogram is a fairly crude density estimator. A typical histogram
looks more like a big city skyline than a density function and its appearance is
sensitive to the number and locations of its cells—see Figure 4.4, where panels
(b), (c), and (d) differ only in the number of cells. A much better estimator is
the kernel density estimator (KDE). The estimator takes its name from the
so-called kernel function, denoted here by K, which is a probability density
function that is symmetric about 0. The standard2 normal density function is
a common choice for K and will be used here. The kernel density estimator
based on Y1, . . . , Yn is

f̂(y) =
1
nb

n∑

i=1

K

(
Yi − y

b

)
,

2 “Standard” means having expectation 0 and variance 1.
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Fig. 4.5. Illustration of kernel density estimates using a sample of size 6 and two
bandwidths. The six dashed curves are the kernels centered at the data points, which
are indicated by vertical lines at the bottom. The solid curve is the kernel density
estimate created by adding together the six kernels. Although the same data are
used in the top and bottom panels, the density estimates are different because of the
different bandwidths.

where b, which is called the bandwidth, determines the resolution of the esti-
mator.

Figure 4.5 illustrates the construction of kernel density estimates using a
small simulated data set of six observations from a standard normal distribu-
tion. The small sample size is needed for visual clarity but, of course, does not
lead to an accurate estimate of the underlying normal density. The six data
points are shown at the bottom of the figure as vertical lines called a “rug.”
The bandwidth in the top plot is 0.4, and so each of the six dashed lines is
1/6 times a normal density with standard deviation equal to 0.4 and centered
at one of the data points. The solid curve is the superposition, that is, the
sum, of the six dashed curves and estimates the density of the data.

A small value of b allows the density estimator to detect fine features in
the true density, but it also permits a high degree of random variation. This
can be seen in the plot in the bottom of Figure 4.5 where the bandwidth is
only half as large as in the plot on the top. Conversely, a large value of b
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dampens random variation but obscures fine detail in the true density. Stated
differently, a small value of b causes the kernel density estimator to have high
variance and low bias, and a large value of b results in low variance and high
bias.

Choosing b requires one to make a tradeoff between bias and variance. Ap-
propriate values of b depend on both the sample size n and the true density
and, of course, the latter is unknown, though it can be estimated. Roughly
speaking, nonsmooth or “wiggly” densities require a smaller bandwidth. For-
tunately, a large amount of research has been devoted to automatic selection
of b, which, in effect, estimates the roughness of the true density.

The solid curve in Figure 4.6 has the default bandwidth from the density()
function in R. The dashed and dotted curves have the default bandwidth mul-
tiplied by 1/3 and 3, respectively. The tuning parameter adjust in R is the
multiplier of the default bandwidth, so that adjust is 1, 1/3, and 3 in the
three curves. The solid curve with adjust equal to 1 appears to have a proper
amount of smoothness. The dashed curve corresponding to adjust = 1/3 is
wiggly, indicating too much random variability; such a curve is called under-
smoothed and overfit. The dotted curve is very smooth but underestimates
the peak near 0, a sign of bias. Such a curve is called oversmoothed or un-
derfit. Here overfit means that the density estimate adheres too closely to the
data and so is unduly influenced by random variation. Conversely, underfitted
means that the density estimate does not adhere closely enough to the data
and misses features in the true density. Stated differently, over- and underfit-
ting means a poor bias–variance tradeoff with an overfitted curve having too
much variance and an underfitted curve having too much bias.

Automatic bandwidth selectors are very useful, but there is nothing mag-
ical about them, and often one will use an automatic selector as a starting
point and then “fine-tune” the bandwidth; this is the point of the adjust
parameter. Generally, adjust will be much closer to 1 than the values, 1/3
and 3, used above. The reason for using 1/3 and 3 before was to emphasize
the effects of under- and oversmoothing.

Often a kernel density estimate is used to suggest a parametric statistical
model. The density estimates in Figure 4.6 are bell-shaped, suggesting that
a normal distribution might be a suitable model. To further investigate the
suitability of the normal model, Figure 4.7 compares the kernel density esti-
mate with adjust = 1 with normal densities. In panel (a), the normal density
has mean and standard deviation equal to the sample mean and standard de-
viation of the returns. We see that the kernel estimate and the normal density
are somewhat dissimilar. The reason is that the outlying returns inflate the
sample standard deviation and cause the normal density to be too dispersed
in the middle of the data. Panel (b) shows a normal density that is much closer
to the kernel estimator. This normal density uses robust estimators which are
less sensitive to outliers—the mean is estimated by the sample median and
the MAD estimator is used for the standard deviation. The MAD estimator
is the median absolute deviation from the median scaled so that it estimates
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Fig. 4.6. Kernel density estimates of the daily log returns on the S&P 500 index
using three bandwidths. Each bandwidth is the default bandwidth times adjust and
adjust is 1/3, 1, and 3. This data set is the SP500 series in the Ecdat package in R.
The KDE is plotted only for a limited range of returns to show detail in the middle
of the distribution.

the standard deviation of a normal population.3 The sample standard devi-
ation is 0.011, but the MAD is smaller, 0.0079; these values were computed
using the R commands sd and mad. Even the normal density in panel (b)
shows some deviation from the kernel estimator, and, as we will soon see,
the t-distribution provides a better model for the return distribution than
does the normal distribution. The need for robust estimators is itself a sign
of nonnormality.

We have just seen a problem with using a KDE to suggest a good model
for the distribution of the data in a sample—the parameters in the model
must be estimated properly. Normal probability plots and, more generally,
quantile–quantile plots, which will be discussed in Sections 4.3.2 and 4.3.4,
are better methods for comparing a sample with a theoretical distribution.

Though simple to compute, the KDE has some problems. In particular, it
is often too bumpy in the tails. An improvement to the KDE is discussed in
Section 4.8.
3 See Section 5.16 for more discussion of robust estimation and the precise definition

of MAD.
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Fig. 4.7. Kernel density estimates (solid) of the daily log returns on the S&P 500
index compared with normal densities (dashed). (a) The normal density uses the
sample mean and standard deviation. (b) The normal density uses the sample median
and MAD estimate of standard deviation. This data set is the SP500 series in the
Ecdat package in R.

4.3 Order Statistics, the Sample CDF, and Sample
Quantiles

Suppose that Y1, . . . , Yn is a random sample from a probability distribution
with CDF F . In this section we estimate F and its quantiles. The sample or
empirical CDF Fn(y) is defined to be the proportion of the sample that is less
than or equal to y. For example, if 10 out of 40 (= n) elements of a sample
are 3 or less, then Fn(3) = 0.25. More generally,

Fn(y) =
∑n

i=1 I{Yi ≤ y}
n

, (4.1)

where I{·} is the indicator function so that I{Yi ≤ y} is 1 if Yi ≤ y and
is 0 otherwise. Figure 4.8 shows Fn for a sample of size 150 from an N(0, 1)
distribution. The true CDF (Φ) is shown as well. The sample CDF differs from
the true CDF because of random variation. The sample CDF is also called
the empirical distribution function, or EDF.
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Fig. 4.8. The EDF Fn (solid) and the true CDF (dashed) for a simulated random
sample from an N(0, 1) population. The sample size is 150.

The order statistics Y(1), Y(2), . . . , Y(n) are the values Y1, . . . , Yn ordered
from smallest to largest. The subscripts of the order statistics are in paren-
theses to distinguish them from the unordered sample. For example, Y1 is
simply the first observation in the original sample while Y(1) is the smallest
observation in that sample. The sample quantiles are defined in slightly dif-
ferent ways by different authors, but roughly the q-sample quantile is Y(k),
where k is qn rounded to an integer. Some authors round up, others round
to the nearest integer, and still others interpolate. The function quantile
in R has nine different types of sample quantiles, the three used by SASTM,
S-PLUSTM, and SPSSTMand MinitabTM, plus six others. With the large sam-
ple sizes typical of financial markets data, the different choices lead to nearly
identical estimates, but for small samples they can be considerably different.

The qth quantile is also called the 100qth percentile. Certain quantiles
have special names. The 0.5 sample quantile is the 50th percentile and is
called the median. The 0.25 and 0.75 sample quantiles are called the first and
third quartiles, and the median is also called the second quartile. The 0.2, 0.4,
0.6, and 0.8 quantiles are the quintiles since they divide the data into five
equal-size subsets, and the 0.1, 0.2, . . ., 0.9 quantiles are the deciles.

4.3.1 The Central Limit Theorem for Sample Quantiles

Many estimators have an approximate normal distribution if the sample size
is sufficiently large. This is true of sample quantiles by the following central
limit theorem.
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Theorem 4.1. Let Y1, . . . , Yn be an i.i.d. sample with a CDF F . Suppose that
F has a density f that is continuous and positive at F−1(q), 0 < q < 1. Then
for large n, the qth sample quantile is approximately normally distributed with
mean equal to the population quantile F−1(q) and variance equal to

q(1− q)
n [f{F−1(q)}]2 . (4.2)

This result is not immediately applicable, for example, for constructing
a confidence interval for a population quantile, because

[
f{F−1(q)}]2 is un-

known. However, f can be estimated by kernel density estimation (Section
4.2) and F−1(q) can be estimated by the qth sample quantile. Alternatively,
a confidence interval can be constructed by resampling. Resampling is intro-
duced in Chapter 6.

4.3.2 Normal Probability Plots

Many statistical models assume that a random sample comes from a normal
distribution. Normal probability plots are used to check this assumption, and,
if the normality assumption seems false, to investigate how the distribution
of the data differs from a normal distribution. If the normality assumption is
true, then the qth sample quantile will be approximately equal to µ+σ Φ−1(q),
which is the population quantile. Therefore, except for sampling variation, a
plot of the sample quantiles versus Φ−1 will be linear. One version of the
normal probability plot is a plot of Y(i) versus Φ−1{i/(n + 1)}. These are the
i/(n + 1) sample and population quantiles, respectively. A divisor of n + 1
rather than n is used to avoid Φ−1(1) = +∞ when i = n.

Systematic deviation of the plot from a straight line is evidence of nonnor-
mality. There are other versions of the normal plot, e.g., a plot of the order
statistics versus their expectations under normality used by R’s qqnorm, but
for large samples these will all be similar, except perhaps in the extreme tails.

Statistical software differs about whether the data are on the x-axis (hor-
izontal axis) and the theoretical quantiles on the y-axis (vertical axis) or vice
versa. R allows the data to be on either axis depending on the choice of the
parameter datax. When interpreting a normal plot with a nonlinear pattern,
it is essential to know which axis contains the data. In this book, the data will
always be plotted on the x-axis and the theoretical quantiles on the y-axis,
so in R, datax=TRUE was used to construct the plots rather than the default,
which is datax=FALSE.

If the pattern in a normal plot is nonlinear, then to interpret the pattern
one checks where the plot is convex and where it is concave. A convex curve
is one such that as one moves from left to right, the slope of the tangent line
increases; see Figure 4.9(a). Conversely, if the slope decreases as one moves
from left to right, then the curve is concave; see Figure 4.9(b). A convex-
concave curve is convex on the left and concave on the right and, similarly,
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Fig. 4.9. As one moves from (a) to (d), the curves are convex, concave, convex-
concave, and concave-convex. Normal plots with these patterns indicate left skewness,
right skewness, heavier tails than a normal distribution, and lighter tails than a
normal distribution, respectively, assuming that the data are on the x-axis and the
normal quantiles on the y-axis, as will always be the case in this textbook.

a concave-convex curve is concave on the left and convex on the right; see
Figure 4.9(c) and (d).

A convex, concave, convex-concave, or concave-convex normal plot indi-
cates, respectively, left skewness, right skewness, heavy tails (compared to the
normal distribution), or light tails (compared to the normal distribution)—
these interpretations require that the sample quantiles are on the horizontal
axis and need to be changed if the sample quantiles are plotted on the vertical
axis. By the tails of a distribution is meant the regions far from the center.
Reasonable definitions of the “tails” would be that the left tail is the region
from −∞ to µ−2σ and the right tail is the region from µ+2σ to +∞, though
the choices of µ−2σ and µ+2σ are somewhat arbitrary. Here µ and σ are the
mean and standard deviation, though they might be replaced by the medium
and MAD estimator, which are less sensitive to tail weight.

Figure 4.10 contains normal plots of samples of size 20, 150, and 1000
from a normal distribution. To show the typical amount of random variation
in normal plots, two independent samples are shown for each sample size. The
plots are only close to linear because of random variation. Even for normally
distributed data, some deviation from linearity is to be expected, especially
for smaller sample sizes. With larger sample sizes, the only deviations from
linearity are in the extreme left and right tails, where the plots are more
variable.
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Fig. 4.10. Normal probability plots of random samples of size 20, 150, and 1000 from
an N(0, 1) population. The reference lines pass through the first and third quartiles.

Often, a reference line is added to the normal plot to help the viewer
determine whether the plot is reasonably linear. One choice for the reference
line goes through the pair of first quartiles and the pair of third quartiles; this
is what R’s qqline function uses. Other possibilities would be a least-squares
fit to all of the quantiles or, to avoid the influence of outliers, some subset of
the quantiles, e.g., all between the 0.1 and 0.9-quantiles.

Figure 4.11 contains normal probability plots of samples of size 150 from
lognormal (0, σ2) distributions,4 with the log-standard deviation σ = 1, 1/2,
and 1/5. The concave shapes in Figure 4.11 indicate right skewness. The
skewness when σ = 1 is quite strong, and when σ = 1/2,the skewness is
4 See Section A.9.4 for an introduction to the lognormal distribution and the defi-

nition of the log-standard deviation.
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Fig. 4.11. Normal probability plots of random samples of sizes 150 and 1000 from
lognormal populations with µ = 0 and σ = 1, 1/2, or 1/5. The reference lines pass
through the first and third quartiles.

still very noticeable. With σ reduced to 1/5, the right skewness is much less
pronounced and might not be discernable with smaller sample sizes.

Figure 4.12 contains normal plots of samples of size 150 from t-distributions
with 4, 10, and 30 degrees of freedom. The first two distributions have heavy
tails or, stated differently, are outlier-prone, meaning that the extreme obser-
vations on both the left and right sides are significantly more extreme than
they would be for a normal distribution. One can see that the tails are heav-
ier in the sample with 4 degrees of freedom compared to the sample with
10 degrees of freedom, and the tails of the t-distribution with 30 degrees-
of-freedom are not much different from the tails of a normal distribution. It
is a general property of the t-distribution that the tails become heavier as
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the degrees-of-freedom parameter decreases and the distribution approaches
the normal distribution as the degrees of freedom approaches infinity. Any
t-distribution is symmetric,5 so none of the samples is skewed. Heavy-tailed
distributions with little or no skewness are common in finance and, as we
will see, the t-distribution is a reasonable model for stock returns and other
financial markets data.

Sometimes, a normal plot will not have any of the patterns discussed here
but instead will have more complex behavior. An example is shown in Fig-
ure 4.13, which uses a simulated sample from a trimodal density. The alter-
nation of the QQ plot between concavity and convexity indicates complex
behavior which should be investigated by a KDE. Here, the KDE reveals the
trimodality. Multimodality is somewhat rare in practice and often indicates a
mixture of several distinct groups of data.

It is often rather difficult to decide whether a normal plot is close enough to
linear to conclude that the data are normally distributed, especially when the
sample size is small. For example, even though the plots in Figure 4.10 are close
to linear, there is some nonlinearity. Is this nonlinearity due to nonnormality
or just due to random variation? If one did not know that the data were
simulated from a normal distribution, then it would be difficult to tell, unless
one were very experienced with normal plots. In such situations, a test of
normality is very helpful. These tests are discussed in Section 4.4.

4.3.3 Half-Normal Plots

The half-normal plot is a variation of the normal plot that is used with positive
data. Half-normal plots are used for detecting outlying data rather than check-
ing for a normal distribution. For example, suppose one has data Y1, . . . , Yn

and wants to see whether any of the absolute deviations |Y1−Y |, . . . , |Yn−Y |
from the mean are unusual. In a half-normal plot, these deviation are plotted
against the quantiles of |Z|, where Z is N(0, 1) distributed. More precisely,
a half-normal plot is used with positive data and plots their order statistics
against Φ−1{(n+ i)/(2n+1)}. The function halfnorm in R’s faraway package
creates a half-normal plot and labels the most outlying observations.

5 However, t-distributions have been generalized in at least two different ways to
the so-called skewed-t-distributions, which need not be symmetric. See Section
5.7.
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Fig. 4.12. Normal probability plot of a random sample of size 150 and 1000 from a
t-distribution with 4, 10, and 30 degrees of freedom. The reference lines pass through
the first and third quartiles.

Example 4.2. DM/dollar exchange rate—Half-normal plot

Figure 4.14 is a half-normal plot of changes in the DM/dollar exchange
rate. The plot shows that case #1447 is the most outlying, with case #217
the next most outlying.

¤

Another application of half-normal plotting can be found in Section 13.1.3.
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Fig. 4.13. Kernel density estimate (left) and normal plot (right) of a simulated
sample from a trimodal density. The reference lines pass through the first and third
quartiles. Because of the three modes, the normal plot changes convexity three times,
concave to convex to concave to convex, going from left to right.
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Fig. 4.15. Normal and t probability plots of the daily returns on the S&P 500 index
from January 1981 to April 1991. This data set is the SP500 series in the Ecdat

package in R. The reference lines pass through the first and third quartiles.

4.3.4 Quantile–Quantile Plots

Normal probability plots are special cases of quantile-quantile plots, also
known as QQ plots. A QQ plot is a plot of the quantiles of one sample or
distribution against the quantiles of a second sample or distribution.

For example, suppose that we wish to model a sample using the tν(µ, σ2)
distribution defined in Section 5.5.2. The parameter ν is called the “degrees
of freedom,” or simply “df.” Suppose, initially, that we have a hypothesized
value of ν, say ν = 6 to be concrete. Then we plot the sample quantiles
against the quantiles of the t6(0, 1) distribution. If the data are from a t6(µ, σ2)
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distribution, then, apart from random variation, the plot will be linear with
intercept and slope depending on µ and σ.

Figure 4.15 contains a normal plot of the S&P 500 log returns in panel (a)
and t-plots with 1, 2, 4, 8, and 15 df in panels (b) through (f). None of the
plots looks exactly linear, but the t-plot with 4 df is rather straight through
the bulk of the data. There are approximately nine returns in the left tail and
four in the right tail that deviate from a line through the remaining data, but
these are small numbers compared to the sample size of 2783. Nonetheless, it is
worthwhile to keep in mind that the historical data have more extreme outliers
than a t-distribution. The t-model with 4 df and mean and standard deviation
estimated by maximum likelihood6 implies that a daily log return of −0.228,
the return on Black Monday, or less has probability 3.2 × 10−6. This means
approximately 3 such returns every 1,000,000 days or 40,000 years, assuming
250 trading days per year. Thus, the t-model implies that Black Monday was
extremely unlikely, and anyone using that model should be mindful that it
did happen.

There are two reasons why the t-model does not give a credible probability
of a negative return as extreme as on Black Monday. First, the t-model is
symmetric, but the return distribution appears to have some skewness in the
extreme left tail, which makes extreme negative returns more likely than under
the t-model. Second, the t-model assumes constant conditional volatility, but
volatility was usually high in October 1987. GARCH models (Chapter 18) can
accommodate this type of volatility clustering.

Quantile–quantile plots are useful not only for comparing a sample with
a theoretical model, as above, but also for comparing two samples. If the
two samples have the same sizes, then one need only plot their order statistics
against each other. Otherwise, one computes the same sets of sample quantiles
for each and plots them. This is done automatically with the R command
qqplot.

The interpretation of convex, concave, convex-concave, and concave-convex
QQ plots is similar to that with QQ plots of theoretical quantiles versus sam-
ple quantiles. A concave plot implies that the sample on the x-axis is more
right-skewed, or less left-skewed, than the sample on the y-axis. A convex
plot implies that the sample on the x-axis is less right-skewed, or more left-
skewed, than the sample on the y-axis. A convex-concave (concave-convex)
plot implies that the sample on the x-axis is more (less) heavy-tailed than
the sample on the y-axis. As before, a straight line, e.g., through the first and
third quartiles, is often added for reference.

Figure 4.16 contains sample QQ plots for all three pairs of the three time
series, S&P 500 returns, changes in the DM/dollar rate, and changes in the
risk-free return, used as examples in this chapter. One sees that the S&P 500
returns have more extreme outliers than the other two series. The changes
in DM/dollar and risk-free returns have somewhat similar shapes, but the

6 See Section 5.14.
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changes in the risk-free rate have slightly more extreme outliers in the left
tail. To avoid any possible confusion, it should be mentioned that the plots in
Figure 4.16 only compare the marginal distributions of the three time series.
They tell us nothing about dependencies between the series and, in fact, the
three series were observed on different time intervals.
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Fig. 4.16. Sample QQ plots. The straight lines pass through the first and third
sample quantiles.

4.4 Tests of Normality

When viewing a normal probability plot, it is often difficult to judge whether
any deviation from linearity is systematic or instead merely due to sampling
variation, so a statistical test of normality is useful. The null hypothesis is
that the sample comes from a normal distribution and the alternative is that
the sample is from a nonnormal distribution.
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The Shapiro–Wilk test uses the normal probability plot to test these hy-
potheses. Specifically, the Shapiro–Wilk test is based on the correlation be-
tween Y(i) and Φ−1{i/(n + 1)}, which are the i/n quantiles of the sample and
of the standard normal distribution, respectively. Correlation will be discussed
in greater detail in Chapter 7. For now, only a few facts will be mentioned.
The covariance between two random variables X and Y is

Cov(X, Y ) = σXY = E
[
{X − E(X)}{Y − E(Y )}

]
,

and the Pearson correlation coefficient between X and Y is

Corr(X,Y ) = ρXY = σXY /σX σY . (4.3)

A correlation equal to 1 indicates a perfect positive linear relationship, where
Y = β0 +β1X with β1 > 0. Under normality, the correlation between Y(i) and
Φ−1{i/(n + 1)} should be close to 1 and the null hypothesis of normality is
rejected for small values of the correlation coefficient. In R, the Shapiro–Wilk
test can be implemented using the shapiro.test function.

The Jarque–Bera test uses the sample skewness and kurtosis coefficients
and is discussed in Section,5.4 where skewness and kurtosis are introduced.

Other tests of normality in common use are the Anderson–Darling, Cramér–
von Mises, and Kolmogorov–Smirnov tests. These tests compare the sample
CDF to the normal CDF with mean equal to Y and variance equal to s2

Y . The
Kolmogorov–Smirnov test statistic is the maximum absolute difference be-
tween these two functions, while the Anderson–Darling and Cramér–von Mises
tests are based on a weighted integral of the squared difference. The p-values of
the Shapiro–Wilk, Anderson–Darling, Cramér–von Mises, and Kolmogorov–
Smirnov tests are routinely part of the output of statistical software. A small
p-value is interpreted as evidence that the sample is not from a normal dis-
tribution.

For the S&P 500 returns, the Shapiro–Wilk test rejects the null hypoth-
esis of normality with a p-value less than 2.2 × 10−16. The Shapiro–Wilk
also strongly rejects normality for the changes in DM/dollar rate and for the
changes in risk-free return. With large sample sizes, e.g., 2783, 1866, and 515,
for the S&P 500 returns, changes in DM/dollar rate, and changes in risk-free
return, respectively, it is quite likely that normality will be rejected, since any
real data will deviate to some extent from normality and any deviation, no
matter how small, will be detected with a large enough sample. When the
sample size is large, it is important to look at normal plots to see whether
the deviation from normality is of practical importance. For financial time
series, the deviation from normality in the tails is often large enough to be of
practical significance.7

7 See Chapter 19 for a discussion on how tail weight can greatly affect risk measures
such as VaR and expected shortfall.
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Fig. 4.17. Boxplots of the S&P 500 daily log returns, daily changes in the DM/dollar
exchange rate, and monthly changes in the risk-free returns.

The boxplot is a useful graphical tool for comparing several samples. The
appearance of a boxplot depends somewhat on the specific software used. In
this section, we will describe boxplots produced by the R function boxplot.
The three boxplots in Figure 4.17 were created by boxplot with default choice
of tuning parameters. The “box” in the middle of each plot extends from the
first to the third quartiles and thus gives the range of the middle half of the
data, often called the interquartile range, or IQR. The line in the middle of the
box is at the median. The “whiskers” are the vertical dashed lines extending
from the top and bottom of each box. The whiskers extend to the smallest
and largest data points whose distance from the bottom or top of the box is at
most 1.5 times the IQR.8 The ends of the whiskers are indicated by horizontal
lines. All observations beyond the whiskers are plotted with an “o”. The most
obvious differences among the three boxplots in Figure 4.17 are differences in
scale, with the monthly risk-free return changes being the most variable and
the daily DM/dollar changes being the least variable.

8 The factor 1.5 is the default value of the range parameter and can be changed.
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Fig. 4.18. Boxplots of the standardized S&P 500 daily log returns, daily changes in
the DM/dollar exchange rate, and monthly changes in the risk-free returns.

These scale differences obscure differences in shape. To remedy this prob-
lem, in Figure 4.18 the three series have been standardized by subtracting the
median and then dividing by the MAD. Now, differences in shape are clearer.
One can see that the S&P 500 returns have heavier tails because the “o”s are
farther from the whiskers. The return of the S&P 500 on Black Monday is
quite detached from the remaining data.

When comparing several samples, boxplots and QQ plots provide different
views of the data. It is best to use both. However, if there are N samples,
then the number of QQ plots is N(N − 1)/2 or N(N − 1) if, by interchanging
axes, one includes two plots for each pair of samples. This number can get out
of hand quickly, so, for large values of N , one might use boxplots augmented
with a few selected QQ plots.

4.6 Data Transformation

There are a number of reasons why data analysts often work, not with the
original variables, but rather with transformations of the variables such as
logs, square roots, or other power transformations. Many statistical methods
work best when the data are normally distributed or at least symmetrically
distributed and have a constant variance, and the transformed data will often
exhibit less skewness and a more constant variable compared to the original
variables.
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Fig. 4.19. Changes in risk-free returns (top) and changes in the logarithm of the
risk-free returns (bottom) plotted against time and against lagged rate. The risk-free
returns are the variable rf of the Capm data set in R’s Ecdat package.

The logarithm transformation is probably the most widely used transfor-
mation in data analysis, though the square root is a close second. The log
stabilizes the variance of a variable whose conditional standard deviation is
proportional to its conditional mean. This is illustrated in Figure 4.19, which
plots monthly changes in the risk-free rate (top row) and changes in the log of
the rate (bottom row) against the lagged risk-free rate (left column) or year
(right column). Notice that the changes in the rate are more variable when
the rate is higher. This behavior is called nonconstant conditional variance or
conditional heteroskedasticity. We see in the bottom row that the changes in
the log rate have relatively constant variability, at least compared to changes
in the rate.

The log transformation is sometimes embedded into the power transfor-
mation family by using the so-called Box–Cox power transformation
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y(α) =
{

yα−1
α , α 6= 0

log(y), α = 0.
(4.4)

In (4.4), the subtraction of 1 from yα and the division by α are not essential,
but they make the transformation continuous in α at 0 since

lim
α→ 0

yα − 1
α

= log(y).

Note that division by α ensures that the transformation is increasing even
when α < 0. This is convenient though not essential. For the purposes of in-
ducing symmetry and a constant variance, yα and y(α) work equally well and
can be used interchangeably, especially if, when α < 0, yα replaced by −yα

to ensure that the transformation is monotonically increasing for all values of
α. The use of a monotonically decreasing, rather than increasing, transforma-
tion is inconvenient since decreasing transformations reverse ordering and, for
example, transform the pth quantile to the (1− p)th quantile.

It is commonly the case that the response is right-skewed and the condi-
tional response variance is an increasing function of the conditional response
mean. In such case, a concave transformation, e.g., a Box–Cox transforma-
tion with α < 1, will remove skewness and stabilize the variance. If a Box–Cox
transformation with α < 1 is used, then the smaller the value of α, the greater
the effect of the transformation. One can go too far—if the transformed re-
sponse is left-skewed or has a conditional variance that is decreasing as a
function of the conditional mean, then α has been chosen too small. Instances
of this type of overtransformation are given in Examples 4.3, 4.5, and 10.2.

Typically, the value of α that is best for symmetrizing the data is not the
same value of α that is best for stabilizing the variance. Then, a compromise
is needed so that the transformation is somewhat too weak for one purpose
and somewhat too strong for the other. Often, however, the compromise is
not severe, and near symmetry and homoskedasticity can both be achieved.

Example 4.3. Gas flows in pipelines

In this example, we will use a data set of daily flows of natural gas in three
pipelines. These data are part of a larger data set used in an investigation
of the relationships between flows in the pipelines and prices. Figure 4.20
contains histograms of the daily flows. Notice that all three distributions are
left-skewed. For left-skewed data, a Box–Cox transformation should use α > 1.

Figure 4.21 shows KDEs of the flows in pipeline 1 after a Box–Cox transfor-
mation using α = 1, 2, 3, 4, 5, 6. One sees that α between 3 and 4 removes most
of the left-skewness and α = 5 or greater overtransforms to right-skewness.
Later, in Example 5.10, we will illustrate an automatic method for selecting
α and find that α = 3.5 is chosen.

¤



4.6 Data Transformation 65

Flow 1

flow

de
ns

ity

40 60 80 100 1200.
00

0
0.

01
0

0.
02

0
0.

03
0

Flow 2

flow

de
ns

ity

160 170 180 190 200 210 220 230

0.
00

0.
02

0.
04

Flow 3

flow

de
ns

ity

0 10 20 30 40 50

0.
00

0.
02

0.
04

Fig. 4.20. Histograms of daily flows in three pipelines.
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Fig. 4.21. Kernel density estimates for gas flows in pipeline 1 with Box–Cox trans-
formations.
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Example 4.4. t-Tests and transformations

This example show the deleterious effect of skewness and nonconstant
variance on hypothesis testing and how a proper data transformation can
remedy this problem. The boxplots on the panel (a) in Figure 4.22 are of
independent samples of size 15 from lognormal(1,4) (left) and lognormal(3,4)
distributions. Panel (b) shows boxplots of the log-transformed data.

Suppose one wants to test the null hypothesis that the two populations
have the same means against a two-sided alternative. The transformed data
satisfy the assumptions of the t-test that the two populations are normally
distributed with the same variance, but of course the original data do not
meet these assumptions. Two-sided independent-samples t-tests have p-values
of 0.105 and 0.00467 using the original data and the log-transformed data,
respectively. These two p-values lead to rather different conclusions, for the
first test that the means are not significantly different and for the second test
that the difference is highly significant. The first test reaches an incorrect
conclusion because its assumptions are not met.

¤

The previous example illustrates some general principles to keep in mind.
All statistical estimators and tests make certain assumptions about the dis-
tribution of the data. One should check these assumptions, and graphical
methods are often the most convenient way to diagnose problems. If the as-
sumptions are not met, then one needs to know how sensitive the estimator
or test is to violations of the assumptions. If the estimator or test is likely to
be seriously degraded by violations of the assumption, which is called nonro-
bustness, then there are two recourses. The first is to find a new estimator or
test that is suitable for the data. The second is to transform the data so that
the transformed data satisfy the assumptions of the original test or estimator.

4.7 The Geometry of Transformations

Response transformations induce normality of a distribution and stabilize vari-
ances because they can stretch apart data in one region and push observations
together in other regions. Figure 4.23 illustrates this behavior. On the hor-
izontal axis is a sample of data from a right-skewed lognormal distribution.
The transformation h(y) is the logarithm. The transformed data are plotted
on the vertical axis. The dashed lines show the transformation of y to h(y) as
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Fig. 4.22. Boxplots of samples from two lognormal distributions without (a) and
with (b) log transformation.
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Fig. 4.23. A symmetrizing transformation. The skewed lognormal data on the
horizontal axis are transformed to symmetry by the log transformation.

one moves from a y-value on the x-axis upward to the curve and then to h(y)
on the y-axis. Notice the near symmetry of the transformed data. This sym-
metry is achieved because the log transformation stretches apart data with
small values and shrinks together data with large values. This can be seen by
observing the derivative of the log function. The derivative of log(y) is 1/y,
which is a decreasing function of y. The derivative is, of course, the slope of
the tangent line and the tangent lines at y = 1 and y = 5 are plotted to show
the decrease in the derivative as y increases.
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Consider an arbitrary increasing transformation, h(y). If x and x′ are two
nearby data points that are transformed to h(x) and h(x′), respectively, then
the distance between transformed values is |h(x) − h(x′)| ≈ h(1)(x)|x − x′|.
Therefore, h(x) and h(x′) are stretched apart where h(1) is large and pushed
together where h(1) is small. A function h is called concave if h(1)(y) is a de-
creasing function of y. As can be seen in Figure 4.23, concave transformations
remove right skewness.
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Fig. 4.24. A variance-stabilizing transformation.

Concave transformations can also stabilize the variance when the untrans-
formed data are such that small observations are less variable than large
observations. This is illustrated in Figure 4.24. There are two groups of re-
sponses, one with a mean of 1 and a relatively small variance and another
with a mean of 5 and a relatively large variance. If the expected value of the
response Yi, conditional on Xi, followed a regression model m(Xi; β), then
two groups like these would occur if there were two possible values of Xi, one
with a small value of m(Xi; β) and the other with a large value. Because of
the concavity of the transformation h, the variance of the group with a mean
of 5 is reduced by transformation. After the transformation, the groups have
nearly the same variance.

The strength of a transformation can be measured by how much its deriva-
tive changes over some interval, say a to b. More precisely, for a < b, the
strength of an increasing transformation h is the derivative ratio h′(b)/h′(a).
If the transformation is concave, then the derivative ratio is less than 1 and the
smaller the ratio the stronger the concavity. Conversely, if the transformation
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Fig. 4.25. Derivative ratio for Box–Cox transformations.

is convex, then the derivative ratio is greater than 1 and the larger the ratio,
the greater the convexity. For a Box–Cox transformation, the derivative ratio
is (b/a)α−1 and so depends on a and b only through the ratio b/a. Figure 4.25
shows the derivative ratio of Box–Cox transformations when b/a = 2. One
can see that the Box–Cox transformation is concave when α < 1, with the
concavity becoming stronger as α decreases. Similarly, the transformation is
convex for α > 1, with increasing convexity as α increases.

Example 4.5. Risk-free returns—Strength of the Box–Cox transformation for
variance stabilization

In this example, we return to the changes in the risk-free interest returns.
In Figure 4.19, it was seen that there is noticeable conditional heteroskedastic-
ity in the changes in the untransformed rate but little or no heteroskedasticity
in the changes in the logarithms of the rate. We will see that for a Box–Cox
transformation intermediate in strength between the identity transformation
(α = 1) and the log transformation (α = 0), some but not all of the het-
eroskedasticity is removed, and that a transformation with α < 0 is too strong
for this application so that a new type of heteroskedasticity is induced.

The strength of a Box–Cox transformation for this example is illustrated
in Figure 4.26. In that figure, the correlations between the lagged risk-free
interest returns, rt−1, and absolute and squared changes, |r(α)

t − r
(α)
t−1| and

{r(α)
t − r

(α)
t−1}2, in the transformed rate are plotted against α. The two corre-
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Fig. 4.26. Correlations between the lagged risk-free returns and absolute (solid) and
squared (dashed) changes in the Box–Cox transformed returns. A zero correlation
indicates a constant conditional variance. Zero correlations are achieved with the
transformation parameter α equal to 0.036 and 0.076 for the absolute and squared
changes, respectively, as indicated by the vertical lines. If α = 0, then the data are
conditionally homoskedastic, or at least nearly so.

lations are similar, especially when they are near zero. Any deviations of the
correlations from zero indicate conditional heteroskedasticity where the stan-
dard deviation of the change in the transformed rate depends on the previous
value of the rate. We see that the correlations decrease as α decreases from
1 so that the concavity of the transformation increases. The correlations are
equal to zero when α is very close to 0, that is, the log transformation. If α
is much below 0, then the transformation is too strong and the overtransfor-
mation induces a negative correlation, which indicates that the conditional
standard deviation is a decreasing function of the lagged rate.

¤

4.8 Transformation Kernel Density Estimation

The kernel density estimator (KDE) discussed in Section 4.2 is popular be-
cause of its simplicity and because it is available on most software platforms.
However, the KDE has some drawbacks. One disadvantage of the KDE is
that it undersmooths densities with long tails. For example, the solid curve
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Fig. 4.27. Kernel density and transformation kernel density estimates of annual
earnings in 1988–1989 expressed in thousands of 1982 dollars. These data are the
same as in Figure 4.28.

in Figure 4.27 is a KDE of annual earnings in 1988–1989 for 1109 individuals.
The data are in the Earnings data set in R’s Ecdat package. The long right
tail of the density estimate exhibits bumps, which seem due solely to random
variation in the data, not to bumps in the true density. The problem is that
there is no single bandwidth that works well both in the center of the data
and in the right tail. The automatic bandwidth selector chose a bandwidth
that is a compromise, undersmoothing in the tails and perhaps oversmoothing
in the center. The latter problem can cause the height of the density at the
mode(s) to be underestimated.

A better density estimate can be obtained by the transformation kernel
density estimator (TKDE). The idea is to transform the data so that the
density of the transformed data is easier to estimate by the KDE. For the
earnings data, the square roots of the earnings are closer to being symmetric
and have a shorter right tail than the original data; see Figure 4.28, which
compares histograms of the original data and the data transformed by the
square root. The KDE should work well for the square roots of the earnings.

Of course, we are interested in the density of the earnings, not the density
of their square roots. However, it is easy to convert an estimate of the latter
to one of the former. To do that, one uses the change-of-variables formula
(A.4). For convenience, we repeat the result here—if X = g(Y ), where g is
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Fig. 4.28. Histograms of earnings and the square roots of earnings. The data are
from the Earnings data set in R’s Ecdat package and use only age group g1.

monotonic and fX and fY are the densities of X and Y , respectively, then

fY (y) = fX{g(y)} |g′(y)|. (4.5)

For example, if x = g(y) =
√

y, then

fY (y) = {fX(
√

y)y−1/2}/2.

Putting y = g−1(x) into equation (4.5), we obtain

fY {g−1(x)} = fX(x) |g′{g−1(x)}|. (4.6)

Equation (4.6) suggests a convenient method for computing the TKDE:

1. start with data Y1, . . . , Yn;
2. transform the data to X1 = g(Y1), . . . , Xn = g(Yn);
3. let f̂X be the usual KDE calculated on a grid x1, . . . , xm using X1, . . . , Xn;
4. plot the pairs

[
g−1(xj), f̂X(xj)

∣∣g′{g−1(xj)}
∣∣
]
, j = 1, . . . ,m.

The dashed curve in Figure 4.27 is a plot of the TKDE of the earnings
data using the square-root transformation. Notice the smoother right tail, the
faster decrease to 0 at the left boundary, and the somewhat sharper peak at
the mode compared to the KDE (solid curve).

When using a TKDE, it is important to choose a good transformation. For
positive, right-skewed variables such as the earnings data, a concave transfor-
mation is needed. A power transformation, yα, for some α < 1 is a common
choice. Although there are automatic methods for choosing α (see Section
4.9), trial-and-error is often good enough.
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4.9 Bibliographic Notes

Exploratory data analysis was popularized by Tukey (1977). Hoaglin, Mostell-
er, and Tukey (1983, 1985) are collections of articles on exploratory data anal-
ysis, data transformations, and robust estimation. Kleiber and Zeileis (2008)
is an introduction to econometric modeling with R and covers exploratory data
analysis as well as material in latter chapters of this book including regression
and time series analysis. The R package AER accompanies Kleiber and Zeileis’s
book.

The central limit theorem for sample quantiles is stated precisely and
proved in textbooks on asymptotic theory such as Serfling (1980), Lehmann
(1999), and van der Vaart (1998).

Silverman (1986) is an early book on nonparametric density estimation and
is still well worth reading. Scott (1992) covers both univariate and multivari-
ate density estimation. Wand and Jones (1995) has an excellent treatment
of kernel density estimation as well as nonparametric regression, which we
cover in Chapter 21. Wand and Jones cover more recent developments such
as transformation kernel density estimation. An alternative to the TKDE is
variable-bandwidth KDE; see Section 2.10 of Wand and Jones (1995) as well
as Abramson (1982) and Jones (1990).

Atkinson (1985) and Carroll and Ruppert (1988) are good sources of in-
formation about data transformations.

Wand, Marron, and Ruppert (1991) is a good introduction to the TKDE
and discusses methods for automatic selection of the transformation to min-
imize the expected squared error of the estimator. Applications of TKDE to
losses can be found in Bolance, Guillén, and Nielsen (2003).
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4.11 R Lab

4.11.1 European Stock Indices

This lab uses four European stock indices in R’s EuStockMarkets database.
Run the following code to access the database, learn its mode and class, and
plot the four time series. The plot function will produce a plot tailored to
the class of the object on which it is acting. Here four time series plots are
produced because the class of EuStockMarkets is mts, multivariate time series.

data(EuStockMarkets)

mode(EuStockMarkets)

class(EuStockMarkets)

plot(EuStockMarkets)

If you right-click on the plot, a menu for printing or saving will open. There
are alternative methods for printing graphs. For example,

pdf("EuStocks.pdf",width=6,height=5)

plot(EuStockMarkets)

graphics.off()

will send a pdf file to the working directory and the width and height pa-
rameters allow one to control the size and aspect ratio of the plot.
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Problem 1 Write a brief description of the time series plots of the four in-
dices. Do the series look stationary? Do the fluctuations in the series seem to
be of constant size? If not, describe how the volatility fluctuates.

Next, run the following R code to compute and plot the log returns on the
indices.

logR = diff(log(EuStockMarkets))

plot(logR)

Problem 2 Write a brief description of the time series plots of the four series
of log returns. Do the series look stationary? Do the fluctuations in the series
seem to be of constant size? If not, describe how the volatility fluctuates.

In R, data can be stored as a data frame, which does not assume that the
data are in time order and would be appropriate, for example, with cross-
sectional data. To appreciate how plot works on a data frame rather than
on a multivariate time series, run the following code. You will be plotting the
same data as before, but they will be plotted in a different way.

plot(as.data.frame(logR))

Run the code that follows to create normal plots of the four indices and to
test each for normality using the Shapiro–Wilk test. You should understand
what each line of code does.

index.names = dimnames(logR)[[2]]

par(mfrow=c(2,2))

for(i in 1:4)

{

qqnorm(logR[,i],datax=T,main=index.names[i])

qqline(logR[,i],datax=T)

print(shapiro.test(logR[,i]))

}

Problem 3 Briefly describe the shape of each of the four normal plots and
state whether the marginal distribution of each series is skewed or symmetric
and whether its tails appear normal. If the tails do not appear normal, do they
appear heavier or lighter than normal? What conclusions can be made from
the Shapiro–Wilk tests? Include the plots with your work.

The next set of R code creates t-plots with 1, 4, 6, 10, 20, and 30 degrees
of freedom and all four indices. However, for the remainder of this lab, only
the DAX index will be analyzed. Notice how the reference line is created by
the abline function, which adds lines to a plot, and the lm function, which
fits a line to the quantiles. The lm function is discussed in Chapter 12.
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n=dim(logR)[1]

q.grid = (1:n)/(n+1)

df=c(1,4,6,10,20,30)

for(i in 1:4)

{

windows()

par(mfrow=c(3,2))

for(j in 1:6)

{

qqplot(logR[,i], qt(q.grid,df=df[j]),

main=paste(index.names[i], ", df=", df[j]) )

abline(lm(qt(c(.25,.75),df=df[j])~quantile(logR[,i],c(.25,.75))))

}

}

Problem 4 What does the code q.grid = (1:n)/(n+1) do? What does
qt(q.grid,df=df[j]) do? What does paste do?

Problem 5 For the DAX index, state which choice of the degrees-of-freedom
parameter gives the best-fitting t-distribution and explain why.

Run the next set of code to create a kernel density estimate and two parametric
density estimates, t with 5 degrees of freedom and normal, for the DAX index.

library("fGarch")

x=seq(-.1,.1,by=.001)

par(mfrow=c(1,1))

plot(density(logR[,1]),lwd=2,ylim=c(0,60))

lines(x,dstd(x,mean=median(logR[,1]),sd=mad(logR[,1]),nu=5),

lty=5,lwd=2)

lines(x,dnorm(x,mean=mean(logR[,1]),sd=sd(logR[,1])),

lty=3,lwd=4)

legend("topleft",c("KDE","t: df=5","normal"),lwd=c(2,2,4),

lty=c(1,5,3))

To examine the left and right tails, plot the density estimate two more times,
once zooming in on the left tail and then zooming in on the right tail. You can
do this by using the xlim parameter of the plot function and changing ylim
appropriately. You can also use the adjust parameter in density to smooth
the tail estimate more than is done with the default value of adjust.

Problem 6 Do either of the parametric models provide a reasonably good fit
to the first index? Explain. Include your three plots with your work.

Problem 7 Which bandwidth selector is used as the default by density?
What is the default kernel?
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4.12 Exercises

1. This problem uses the data set ford.s in R’s fEcofin package. This data
set contains 2000 daily Ford returns from January 2, 1984, to December
31, 1991.
(a) Find the sample mean, sample median, and standard deviation of the

Ford returns.
(b) Create a normal plot of the Ford returns. Do the returns look normally

distributed?
(c) Test for normality using the Shapiro–Wilk test? What is the p-value?

Can you reject the null hypothesis of a normal distribution at 0.01?
(d) Create several t-plots of the Ford returns using a number of choice

of the degrees-of-freedom parameter (df). What value of df gives a
plot that is as linear as possible? The returns include the return on
Black Monday, October 19, 1987. Discuss whether or not to ignore
that return when looking for the best choice of df.

(e) Find the standard error of the sample median using formula (4.2) with
the sample median as the estimate of F−1(0.5) and a KDE to estimate
f . Is the standard error of the sample median larger or smaller than
the standard error of the sample mean?

2. This problems uses the Garch data set in R’s Ecdat package.
(a) Using a solid curve, plot a kernel density estimate of the first dif-

ferences of the variable dy, which is the U.S. dollar/Japanese yen
exchange rate. Using a dashed curve, superimpose a normal density
with the same mean and standard deviation as the sample. Do the
two estimated densities look similar? Describe how they differ.

(b) Repeat part (a), but with the mean and standard deviation equal to
the median and MAD. Do the two densities appear more or less similar
compared to the two densities in part (a)?

3. Suppose in a normal plot that the sample quantiles are plotted on the
vertical axis, rather than on the horizontal axis as in this book.
(a) What is the interpretation of a convex pattern?
(b) What is the interpretation of a concave pattern?
(c) What is the interpretation of a convex-concave pattern?
(d) What is the interpretation of a concave-convex pattern?

4. Let diffbp be the changes (that is, differences) in the variable bp, the
U.S. dollar to British pound exchange rate, which is in the Garch data set
of R’s Ecdat package.
(a) Create a 3 × 2 matrix of normal plots of diffbp and in each plot

add a reference line that goes through the p- and (1 − p)-quantiles,
where p = 0.25, 0.1, 0.05, 0.025, 0.01, and 0.0025, respectively, for the
six plots. Create a second set of six normal plots using n simulated
N(0, 1) random variables, where n is the number of changes in bp
plotted in the first figure. Discuss how the reference lines change with



78 4 Exploratory Data Analysis

the value of p and how the set of six different reference lines can help
detect nonnormality.

(b) Create a third set of six normal plots using changes in the logarithm
of bp. Do the changes in log(bp) look closer to being normally dis-
tributed than the changes in bp?
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Modeling Univariate Distributions

5.1 Introduction

As seen in Chapter 4, usually the marginal distributions of financial time
series are not well fit by normal distributions. Fortunately, there are a num-
ber of suitable alternative models, such as t-distributions, generalized error
distributions, and skewed versions of t- and generalized error distributions.
All of these will be introduced in this chapter. Typically, the parameters in
these distributions are estimated by maximum likelihood. Sections 5.9 and
5.14 provide an introduction to the maximum likelihood estimator (MLE),
and Section 5.18 provides references for further study on this topic.

Software for maximum likelihood is readily available for standard models,
and a reader interested only in data analysis and modeling often need not be
greatly concerned with the technical details of maximum likelihood. However,
when performing a statistical analysis, it is always worthwhile to understand
the underlying theory, at least at a conceptual level, since doing so can prevent
misapplications. Moreover, when using a nonstandard model, often there is
no software available for automatic computation of the MLE and one needs
to understand enough theory to write a program to compute the MLE.

5.2 Parametric Models and Parsimony

In a parametric statistical model, the distribution of the data is completely
specified except for a finite number of unknown parameters. For example,
assume that Y1, . . . , Yn are i.i.d. from a t-distribution1 with mean µ, variance
σ2, and degrees of freedom ν. Then this is a parametric model provided that,
as is usually the case, one or more of µ, σ2, and ν are unknown.
1 The reader who is unfamiliar with t-distributions should look ahead to Section

5.5.2.
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A model should have only as many parameters as needed to capture the
important features of the data. Each unknown parameter is another quantity
to estimate and another source of estimation error. Estimation error, among
other things, increases the uncertainty when one forecasts future observations.
On the other hand, a statistical model must have enough parameters to ade-
quately describe the behavior of the data. A model with too few parameters
can create biases because the model does not fit the data well.

A statistical model with little bias, but without excess parameters, is called
parsimonious and achieves a good tradeoff between bias and variance. Finding
one or a few parsimonious models is an important part of data analysis.

5.3 Location, Scale, and Shape Parameters

Parameters are often classified as location, scale, or shape parameters de-
pending upon which properties of a distribution they determine. A location
parameter is a parameter that shifts a distribution to the right or left without
changing the distribution’s shape or variability. Scale parameters quantify dis-
persion. A parameter is a scale parameter for a univariate sample if the param-
eter is increased by the amount |a| when the data are multiplied by a. Thus,
if σ(X) is a scale parameter for a random variable X, then σ(aX) = |a|σ(X).
A scale parameter is a constant multiple of the standard deviation provided
that the latter is finite. Many examples of location and scale parameters can
be found in the following sections. If λ is a scale parameter, then λ−1 is
called an inverse-scale parameter. Since scale parameters quantify dispersion,
inverse-scale parameters quantify precision.

If f(y) is any fixed density, then f(y− µ) is a family of distributions with
location parameter µ; θ−1f(y/θ), θ > 0, is a family of distributions with a
scale parameter θ; and θ−1f{θ−1(y − µ)} is a family of distributions with
location parameter µ and scale parameter θ. These facts can be derived by
noting that if Y has density f(y) and θ > 0, then, by Result A.6.1, Y + µ
has density f(y − µ), θY has density θ−1f(θ−1y), and θY + µ has density
θ−1f{θ−1(y − µ)}.

A shape parameter is defined as any parameter that is not changed by
location and scale changes. More precisely, for any f(y), µ, and θ > 0, the
value of a shape parameter for the density f(y) will equal the value of that
shape parameter for θ−1f{θ−1(y−µ)}. The degrees-of-freedom parameter for
t-distributions is a shape parameter. Other shape parameters will be encoun-
tered later in this chapter. Shape parameters are often used to specify the
skewness or tail weight of a distribution.



5.4 Skewness, Kurtosis, and Moments 81

−0.2 0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

3.
0

(a): Right−skewed

y

D
en

si
ty

(y
)

−0.6 −0.4 −0.2 0.0 0.2

0.
0

1.
0

2.
0

3.
0

(b): Left−skewed

y

D
en

si
ty

(y
)

−0.4 −0.2 0.0 0.2 0.4

0.
0

1.
0

2.
0

3.
0

(c): Symmetric

y

D
en

si
ty

(y
)

Fig. 5.1. Skewed and symmetric densities. In each case, the mean is zero and is
indicated by a vertical line.

5.4 Skewness, Kurtosis, and Moments

Skewness and kurtosis help characterize the shape of a probability distribu-
tion. Skewness measures the degree of asymmetry, with symmetry implying
zero skewness, positive skewness indicating a relatively long right tail com-
pared to the left tail, and negative skewness indicating the opposite. Figure 5.1
shows three densities, all with an expectation equal to 0. The densities are
right-skewed, left-skewed, and symmetric about 0, respectively, in panels (a)–
(c).

Kurtosis indicates the extent to which probability is concentrated in the
center and especially the tails of the distribution rather than in the “shoul-
ders,” which are the regions between the center and the tails.

In Section 4.3.2, the left tail was defined as the region from −∞ to µ− 2σ
and the right tail as the region from µ + 2σ to +∞. Here µ and σ could
be the mean and standard deviation or the median and MAD. Admittedly,
these definitions are somewhat arbitrary. Reasonable definitions of center and
shoulder would be that the center is the region from µ− σ to µ + σ, the left
shoulder is from µ−2σ to µ−σ, and the right shoulder is from µ+σ to µ+2σ.
See the upper plot in Figure 5.2. Because skewness and kurtosis measure
shape, they do not depend on the values of location and scale parameters.
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Fig. 5.2. Comparison of a normal density and a t-density with 5 degrees of freedom.
Both densities have mean 0 and standard deviation 1. The upper plot also shows the
center, shoulders, and tail regions.

The skewness of a random variable Y is

Sk = E

{
Y − E(Y )

σ

}3

=
E{Y − E(Y )}3

σ3
.

To appreciate the meaning of the skewness, it is helpful to look at an example;
the binomial distribution is convenient for that purpose. The skewness of the
Binomial(n, p) distribution is

Sk(n, p) =
1− 2p√
np(1− p)

, 0 < p < 1.

Figure 5.3 shows the binomial probability distribution and its skewness
for n = 10 and four values of p. Notice that

1. the skewness is positive if p < 0.5, negative if p > 0.5, and 0 if p = 0.5;
2. the absolute skewness becomes larger as p moves closer to either 0 or 1

with n fixed;
3. the absolute skewness decreases to 0 as n increases to ∞ with p fixed;

Positive skewness is also called right skewness and negative skewness is
called left skewness. A distribution is symmetric about a point θ if P (Y >
θ + y) = P (Y < θ − y) for all y > 0. In this case, θ is a location parameter
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and equals E(Y ), provided that E(Y ) exists. The skewness of any symmetric
distribution is 0. Property 3 is not surprising in light of the central limit
theorem. We know that the binomial distribution converges to the symmetric
normal distribution as n →∞ with p fixed and not equal to 0 or 1.
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Fig. 5.3. Several binomial probability distributions with n = 10 and their skewness
determined by the shape parameter p. Sk = skewness coefficient and K = kurtosis
coefficient. The top left plot has left-skewness (Sk = −0.84). The top right plot has
no skewness (Sk = 0). The bottom left plot has moderate right-skewness (Sk = 0.47).
The bottom-left plot has strong right skewness (Sk = 2.17).

The kurtosis of a random variable Y is

Kur = E

{
Y − E(Y )

σ

}4

=
E{Y − E(Y )}4

σ4
.

The kurtosis of a normal random variable is 3. The smallest possible value of
the kurtosis is 1 and is achieved by any random variable taking exactly two
distinct values, each with probability 1/2. The kurtosis of a Binomial(n, p)
distribution is

KurBin(n, p) = 3 +
1− 6p(1− p)

np(1− p)
.
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Notice that KurBin(n, p) → 3, the value at the normal distribution, as n →∞
with p fixed, which is another sign of the central limit theorem at work. Fig-
ure 5.3 also gives the kurtosis of the distributions in that figure. KurBin(n, p)
equals 1, the minimum value of kurtosis, when n = 1 and p = 1/2.

It is difficult to interpret the kurtosis of an asymmetric distribution be-
cause, for such distributions, kurtosis may measure both asymmetry and tail
weight, so the binomial is not a particularly good example for understand-
ing kurtosis. For that purpose we will look instead at t-distributions because
they are symmetric. Figure 5.2 compares a normal density with the t5-density
rescaled to have variance equal to 1. Both have a mean of 0 and a standard
deviation of 1. The mean and standard deviation are location and scale pa-
rameters, respectively, and do not affect kurtosis. The parameter ν of the
t-distribution is a shape parameter. The kurtosis of a tν-distribution is finite
if ν > 4 and then the kurtosis is

Kurt(ν) = 3 +
6

ν − 4
. (5.1)

For example, the kurtosis is 9 for a t5-distribution. Since the densities in
Figure 5.2 have the same mean and standard deviation, they also have the
same tails, center, and shoulders, at least according to our somewhat arbitrary
definitions of these regions, and these regions are indicated on the top plot.
The bottom plot zooms in on the right tail. Notice that the t5-density has more
probability in the tails and center than the N(0, 1) density. This behavior of
t5 is typical of symmetric distributions with high kurtosis.

Every normal distribution has a skewness coefficient of 0 and a kurtosis of
3. The skewness and kurtosis must be the same for all normal distributions,
because the normal distribution has only location and scale parameters, no
shape parameters. The kurtosis of 3 agrees with formula (5.1) since a normal
distribution is a t-distribution with ν = ∞. The “excess kurtosis” of a distri-
bution is (Kur− 3) and measures the deviation of that distribution’s kurtosis
from the kurtosis of a normal distribution. From (5.1) we see that the excess
kurtosis of a tν-distribution is 6/(ν − 4).

An exponential distribution2 has a skewness equal to 2 and a kurtosis of 9.
A double-exponential distribution has skewness 0 and kurtosis 6. Since the ex-
ponential distribution has only a scale parameter and the double-exponential
has only a location and a scale parameter, their skewness and kurtosis must
be constant.

The Lognormal(µ, σ2) distribution, which is discussed in Section A.9.4,
has the log-mean µ as a scale parameter and the log-standard deviation σ as
a shape parameter—even though µ and σ are location and scale parameters
for the normal distribution itself, they are scale and shape parameters for the
lognormal. The effects of σ on lognormal shapes can be seen in Figures 4.11
and A.1. The skewness coefficient of the lognormal(µ, σ2) distribution is
2 The exponential and double-exponential distributions are defined in Section

A.9.5.
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{exp(σ2) + 2}
√

exp(σ2)− 1. (5.2)

Since µ is a scale parameter, it has no effect on the skewness. The skewness
increases from 0 to ∞ as σ increases from 0 to ∞.

Estimation of the skewness and kurtosis of a distribution is relatively
straightforward if we have a sample, Y1, . . . , Yn, from that distribution. Let the
sample mean and standard deviation be Y and s. Then the sample skewness,
denoted by Ŝk, is

Ŝk =
1
n

n∑

i=1

(
Yi − Y

s

)3

, (5.3)

and the sample kurtosis, denoted by K̂ur, is

K̂ur =
1
n

n∑

i=1

(
Yi − Y

s

)4

. (5.4)

Often the factor 1/n in (5.3) and (5.4) is replaced by 1/(n − 1). Both the
sample skewness and the excess kurtosis should be near 0 if a sample is from
a normal distribution. Deviations of the sample skewness and kurtosis from
these values are an indication of nonnormality.
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Fig. 5.4. Normal plot of a sample of 999 N(0, 1) data plus a contaminant.
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A word of caution is in order. Skewness and kurtosis are highly sensitive
to outliers. Sometimes outliers are due to contaminants, that is, bad data not
from the population being sampled. An example would be a data recording
error. A sample from a normal distribution with even a single contaminant
that is sufficiently outlying will appear highly nonnormal according to the
sample skewness and kurtosis. In such a case, a normal plot will look linear,
except that the single contaminant will stick out. See Figure 5.4, which is a
normal plot of a sample of 999 N(0, 1) data points plus a contaminant equal
to 30. This figure shows clearly that the sample is nearly normal but with
an outlier. The sample skewness and kurtosis, however, are 10.85 and 243.04,
which might give the false impression that the sample is far from normal.
Also, even if there were no contaminants, a distribution could be extremely
close to a normal distribution and yet have a skewness or excess kurtosis that
is very different from 0.

5.4.1 The Jarque–Bera test

The Jarque–Bera test of normality compares the sample skewness and kurtosis
to 0 and 3, their values under normality. The test statistic is

JB = n{Ŝk
2
/6 + (K̂ur− 3)2/24},

which, of course, is 0 when Ŝk and K̂ur, respectively, have the values 0 and
3, the values expected under normality, and increases as Ŝk and K̂ur deviate
from these values. In R, the test statistic and its p-value can be computed with
the jarque.bera.test function.

A large-sample approximation is used to compute a p-value. Under the
null hypothesis, JB converges to the chi-square distribution with 2 degrees of
freedom (χ2

2) as the sample size becomes infinite, so the p-value is 1−Fχ2
2
(JB),

where Fχ2
2

is the CDF of the χ2
2-distribution.

5.4.2 Moments

The expectation, variance, skewness coefficient, and kurtosis of a random vari-
able are all special cases of moments, which will be defined in this section.

Let X be a random variable. The kth moment of X is E(Xk), so in par-
ticular the first moment is the expectation of X. The kth absolute moment is
E|X|k.

The kth central moment is

µk = E
[{X − E(X)}k

]
, (5.5)

so, for example, µ2 is the variance of X. The skewness coefficient of X is

Sk(X) =
µ3

(µ2)3/2
, (5.6)
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and the kurtosis of X is
Kur(X) =

µ4

(µ2)2
. (5.7)

5.5 Heavy-Tailed Distributions

Distributions with higher tail probabilities compared to a normal distribution
are called heavy-tailed. Because kurtosis is particularly sensitive to tail weight,
high kurtosis is nearly synonymous with having a heavy tailed distribution.
Heavy-tailed distributions are important models in finance, because equity
returns and other changes in market prices usually have heavy tails. In finance
applications, one is especially concerned when the return distribution has
heavy tails because of the possibility of an extremely large negative return,
which could, for example, entirely deplete the capital reserves of a firm. If one
sells short,3 then large positive returns are also worrisome.

5.5.1 Exponential and Polynomial Tails

Double-exponential distributions have slightly heavier tails than normal dis-
tributions. This fact can be appreciated by comparing their densities. The
density of the double-exponential with scale parameter θ is proportional to
exp(−|y/θ|) and the density of the N(0, σ2) distribution is proportional to
exp{−0.5(y/σ)2}. The term −y2 converges to −∞ much faster than −|y| as
|y| → ∞. Therefore, the normal density converges to 0 much faster than the
double-exponential density as |y| → ∞. The generalized error distributions
discussed soon in Section 5.6 have densities proportional to

exp (− |y/θ|α) , (5.8)

where α > 0 is a shape parameter and θ is a scale parameter. The special
cases of α = 1 and 2 are, of course, the double-exponential and normal den-
sities. If α < 2, then a generalized error distribution will have heavier tails
than a normal distribution, with smaller values of α implying heavier tails.
In particular, α < 1 implies a tail heavier than that of a double-exponential
distribution.

However, no density of the form (5.8) will have truly heavy tails, and, in
particular, E(|Y |k) < ∞ for all k so all moments are finite. To achieve a very
heavy right tail, the density must be such that

f(y) ∼ Ay−(a+1) as y →∞ (5.9)

for some A > 0 and a > 0, which will be called a right polynomial tail, rather
than like
3 See Section 11.5 for a discussion of short selling.
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f(y) ∼ A exp(−y/θ) as y →∞ (5.10)

for some A > 0 and θ > 0, which will be called an exponential right tail.
Polynomial and exponential left tails are defined analogously.

A polynomial tail is also called a Pareto tail after the Pareto distribution
defined in Section A.9.8. The parameter a of a polynomial tail is called the
tail index. The smaller the value of a, the heavier the tail. The value of a must
be greater than 0, because if a ≤ 0, then the density integrates to ∞, not 1.
An exponential tail as in (5.8) is lighter than any polynomial tail, since

exp(−|y/θ|α)
|y|−(a+1)

→ 0 as |y| → ∞

for all θ > 0, α > 0, and a > 0.
It is, of course, possible to have left and right tails that behave quite

differently from each other. For example, one could be polynomial and the
other exponential, or they could both be polynomial but with different indices.

A density with both tails polynomial will have a finite kth absolute moment
only if the smaller of the two tail indices is larger than k. If both tails are
exponential, then all moments are finite.

5.5.2 t-Distributions

The t-distributions have played an extremely important role in classical statis-
tics because of their use in testing and confidence intervals when the data are
modeled as having normal distributions. More recently, t-distributions have
gained added importance as models for the distribution of heavy-tailed phe-
nomena such as financial markets data.

We will start with some definitions. If Z is N(0, 1), W is chi-squared4 with
ν degrees of freedom, and Z and W are independent, then the distribution of

Z/
√

W/ν (5.11)

is called the t-distribution with ν degrees of freedom and denoted tν . The α-
upper quantile of the tν-distribution is denoted by tα,ν and is used in tests
and confidence intervals about population means, regression coefficients, and
parameters in time series models.5 In testing and interval estimation, the
parameter ν generally assumes only positive integer values, but when the
t-distribution is used as a model for data, ν is restricted only to be positive.

The density of the tν-distribution is

ft,ν(y) =
[

Γ{(ν + 1)/2}
(πν)1/2Γ (ν/2)

]
1

{1 + (y2/ν)}(ν+1)/2
. (5.12)

Here Γ is the gamma function defined by
4 Chi-squared distributions are discussed in Section A.10.1.
5 See Section A.17.1 for confidence intervals for the mean.
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Γ (t) =
∫ ∞

0

xt−1 exp(−x)dx, t > 0. (5.13)

The quantity in large square brackets in (5.12) is just a constant, though a
somewhat complicated one.

The variance of a tν is finite and equals ν/(ν − 2) if ν > 2. If 0 < ν ≤ 1,
then the expected value of the tν-distribution does not exist and the variance
is not defined. If 1 < ν ≤ 2, then the expected value is 0 and the variance is
infinite. If Y has a tν-distribution, then

µ + λY

is said to have a tν(µ, λ2) distribution, and λ will be called the scale parameter.
With this notation, the tν and tν(0, 1) distributions are the same. If ν > 1,
then the tν(µ, λ2) distribution has a mean equal to µ, and if ν > 2, then it
has a variance equal to λ2ν/(ν − 2).

The t-distribution will also be called the classical t-distribution to distin-
guish it from the standardized t-distribution defined in the next section.

Standardized t-Distributions

Instead of the classical t-distribution just discussed, some software uses a
“standardized” version of the t-distribution. The difference between the two
versions is merely notational, but it is important to be aware of this difference.

The tν{0, (ν − 2)/ν} distribution with ν > 2 has a mean equal to 0 and
variance equal to 1 and is called a standardized t-distribution, and will be de-
noted by tstdν (0, 1). More generally, for ν > 2, define the tstdν (µ, σ2) distribution
to be equal to the tν [ µ, {(ν − 2)/ν}σ2] distribution, so that µ and σ2 are the
mean and variance of the tstdν (µ, σ2) distribution. For ν ≤ 2, tstdν (µ, σ2) cannot
be defined since the t-distribution does not have a finite variance in this case.
The advantage in using the tstdν (µ, σ2) distribution is that σ2 is the variance,
whereas for the tν(µ, λ2) distribution, λ2 is not the variance but instead λ2 is
the variance times (ν − 2)/ν.

Some software uses the standardized t-distribution while other software
uses the classical t-distribution. It is, of course, important to understand which
t-distribution is being used in any specific application. However, estimates
from one model can be translated easily into the estimates one would obtain
from the other model; see Section 5.14 for an example.

t-Distributions Have Polynomial Tails

The t-distributions are a class of heavy-tailed distributions and can be used
to model heavy-tail returns data. For t-distributions, both the kurtosis and
the weight of the tails increase as ν gets smaller. When ν ≤ 4, the tail weight
is so high that the kurtosis is infinite. For ν > 4, the kurtosis is given by (5.1).
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By (5.12), the t-distribution’s density is proportional to

1
{1 + (y2/ν)}(ν+1)/2

which for large values of |y| is approximately

1
(y2/ν)(ν+1)/2

∝ |y|−(ν+1).

Therefore, the t-distribution has polynomial tails with tail index a = ν. The
smaller the value of ν, the heavier the tails.

5.5.3 Mixture Models

Discrete Mixtures

Another class of models containing heavy-tailed distributions is the set of mix-
ture models. Consider a distribution that is 90% N(0, 1) and 10% N(0, 25).
A random variable Y with this distribution can be obtained by generating a
normal random variable X with mean 0 and variance 1 and a uniform(0,1) ran-
dom variable U that is independent of X. If U < 0.9, then Y = X. If U ≥ 0.9,
then Y = 5X. If an independent sample from this distribution is generated,
then the expected percentage of observations from the N(0, 1) component is
90%. The actual percentage is random; in fact, it has a Binomial(n, 0.9) dis-
tribution, where n is a sample size. By the law of large numbers, the actual
percentage converges to 90% as n → ∞. This distribution could be used to
model a market that has two regimes, the first being “normal volatility” and
second “high volatility,” with the first regime occurring 90% of the time.

This is an example of a finite or discrete normal mixture distribution,
since it is a mixture of a finite number, here two, different normal distribu-
tions called the components. A random variable with this distribution has a
variance equal to 1 with 90% probability and equal to 25 with 10% probabil-
ity. Therefore, the variance of this distribution is (0.9)(1)+(0.1)(25) = 3.4, so
its standard deviation is

√
3.4 = 1.84. This distribution is much different than

an N(0, 3.4) distribution, even though the two distributions have the same
mean and variance. To appreciate this, look at Figure 5.5.

You can see in Figure 5.5(a) that the two densities look quite different.
The normal density looks much more dispersed than the normal mixture,
but they actually have the same variances. What is happening? Look at the
detail of the right tails in panel (b). The normal mixture density is much
higher than the normal density when x is greater than 6. This is the “outlier”
region (along with x < −6).6 The normal mixture has far more outliers than
6 There is nothing special about “6” to define the boundary of the outlier range,

but a specific number was needed to make numerical comparisons. Clearly, |x| > 7
or |x| > 8, say, would have been just as appropriate as outlier ranges.
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Fig. 5.5. Comparison of N(0, 3.4) distribution and heavy-tailed normal mixture dis-
tributions. Both distributions have the same mean and variance. The normal mixture
distribution is 90% N(0, 1) and 10% N(0, 25). In (c) and (d) the sample size is 200.

the normal distribution and the outliers come from the 10% of the population
with a variance of 25. Remember that ±6 is only 6/5 standard deviations from
the mean, using the standard deviation 5 of the component from which they
come. Thus, these observations are not outlying relative to their component’s
standard deviation of 5, only relative to the population standard deviation of√

3.4 = 1.84 since 6/1.84 = 3.25 and three or more standard deviations from
the mean is generally considered rather outlying.

Outliers have a powerful effect on the variance and this small fraction of
outliers inflates the variance from 1.0 (the variance of 90% of the population)
to 3.4.

Let’s see how much more probability the normal mixture distribution has
in the outlier range |x| > 6 compared to the normal distribution. For an
N(0, σ2) random variable Y ,

P{|Y | > y} = 2{1− Φ(y/σ)}.
Therefore, for the normal distribution with variance 3.4,
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P{|Y | > 6} = 2{1− Φ(6/
√

3.4)} = 0.0011.

For the normal mixture population that has variance 1 with probability 0.9
and variance 25 with probability 0.1, we have that

P{|Y | > 6} = 2
[
0.9{1− Φ(6)}+ 0.1{1− Φ(6/5)}

]

= 2{(0.9)(0) + (0.1)(0.115)} = 0.023.

Since 0.023/0.0011 ≈ 21, the normal mixture distribution is 21 times more
likely to be in this outlier range than the N(0, 3.4) population, even though
both have a variance of 3.4. In summary, the normal mixture is much more
prone to outliers than a normal distribution with the same mean and standard
deviation. So, we should be much more concerned about very large negative
returns if the return distribution is more like the normal mixture distribution
than like a normal distribution. Large positive returns are also likely under a
normal mixture distribution and would be of concern when an asset was sold
short.

It is not difficult to compute the kurtosis of this normal mixture. Because a
normal distribution has kurtosis equal to 3, if Z is N(µ, σ2), then E(Z−µ)4 =
3σ4. Therefore, if Y has this normal mixture distribution, then

E(Y 4) = 3{0.9 + (0.1)252} = 190.2

and the kurtosis of X is 190.2/3.42 = 16.45.
Normal probability plots of samples of size 200 from the normal and normal

mixture distributions are shown in panels (c) and (d) of Figure 5.5. Notice
how the outliers in the normal mixture sample give the probability plot a
convex-concave pattern typical of heavy-tailed data. The deviation of the plot
of the normal sample from linearity is small and is due entirely to randomness.

In this example, the conditional variance of any observations is 1 with
probability 0.9 and 25 with probability 0.1. Because there are only two com-
ponents, the conditional variance is discrete, in fact, with only two possible
values, and the example was easy to analyze. This example is a normal scale
mixture because only the scale parameter σ varies between components. It is
also a discrete mixture because there are only a finite number of components.

Continuous Mixtures

The marginal distributions of the GARCH processes studied in Chapter 18 are
also normal scale mixtures, but with infinitely many components and a contin-
uous distribution of the conditional variance. Although GARCH processes are
more complex than the simple mixture model in this section, the same theme
applies—a nonconstant conditional variance of a mixture distribution induces
heavy-tailed marginal distributions even though the conditional distributions
are normal distributions and have relatively light tails.
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The general definition of a normal scale mixture is that it is the distribution
of the random variable

µ +
√

UZ (5.14)

where µ is a constant equal to the mean, Z is N(0, 1), U is a positive random
variable giving the variance of each component, and Z and U are independent.
If U can assume only a finite number of values, then (5.14) is a discrete (or
finite) scale mixture distribution. If U is continuously distributed, then we
have a continuous scale mixture distribution. The distribution of U is called
the mixing distribution. By (5.11), a tν-distribution is a continuous normal
scale mixture with µ = 0 and U = ν/W , where ν and W are as defined above
equation (5.11).

Despite the apparent heavy tails of a finite normal mixture, the tails are
exponential, not polynomial. A continuous normal mixture can have a poly-
nomial tail if the mixture distribution’s tail is heavy enough, e.g., as in t-
distributions.

5.6 Generalized Error Distributions

Generalized error distributions mentioned briefly in Section 5.5.1 have expo-
nential tails. This section provides more detailed information about them. The
standardized generalized error distribution, or GED, with shape parameter ν
has density

f std
ged (y|ν) = κ(ν) exp

{
−1

2

∣∣∣∣
y

λν

∣∣∣∣
ν}

, −∞ < y < ∞,

where κ(ν) and λν are constants given by

λν =
{

2−2/νΓ (ν−1)
Γ (3/ν)

}1/2

and κ(ν) =
ν

λν21+1/νΓ (ν−1)

and were chosen so that the function integrates to 1, as it must to be a
density, and the variance is 1. The latter property is not necessary but is
often convenient.

The shape parameter ν > 0 determines the tail weight, with smaller values
of ν giving greater tail weight. When ν = 2, a GED is a normal distribution,
and when ν = 1, it is a double-exponential distribution. The generalized
error distributions can give tail weights intermediate between the normal and
double-exponential distributions by having 1 < ν < 2. They can also give
tail weights more extreme than the double-exponential distribution by having
ν < 1.
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Fig. 5.6. A comparison of the tails of several generalized error (thin curves) and
t-distributions (thick curves).

Figure 5.6 shows the right tails of several t- and generalized error densities
with mean 0 and variance 1.7 Since they are standardized, the argument
y is the number of standard deviations from the median of 0. Because t-
distributions have polynomial tails, any t-distribution is heavier-tailed than
any generalized error distribution. However, this is only an asymptotic result
as y → ∞. In the more practical range of y, tail weight depends as much on
the tail weight parameter as it does on the choice between a t-distribution or
a generalized error distribution.

The t-distributions and generalized error densities also differ in their
shapes at the median. This can be seen in Figure 5.7, where the generalized
error densities have sharp peaks at the median with the sharpness increasing
as ν decreases. In comparison, a t-density is smooth and rounded near the
median, even with ν small. If a sample is better fit by a t-distribution than
by a generalized error distribution, this may be due more to the sharp central
peaks of generalized error densities than to differences between the tails of the
two types of distributions.

The f std
ged (y|ν) density is symmetric about 0, which is its mean, median,

and mode, and has a variance equal to 1. However, it can be shifted and
rescaled to create a location-scale family. The GED distribution with mean
µ, variance σ2, and shape parameter ν has density
7 This plot and Figure 5.7 used the R functions dged and dstd in the fGarch

package.
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Fig. 5.7. A comparison of the centers of several generalized error (thin) and t-
densities (thick) with mean 0 and variance 1.

f std
ged (y|µ, σ2, ν) := f std

ged {(y − µ)/σ|ν}/σ.

5.7 Creating Skewed from Symmetric Distributions

Returns and other financial markets data typically have no natural lower or
upper bounds, so one would like to use models with support equal to (−∞,∞).
This is fine if the data are symmetric since then one can use, for example,
normal, t, or generalized error distributions as models. What if the data are
skewed? Unfortunately, many of the well-known skewed distributions, such
as, gamma and log-normal distributions, have support [0,∞) and so are not
suitable for many types of financial markets data. This section describes a
remedy to this problem.

Fernandez and Steel (1998) have devised a clever way for inducing skewness
in symmetric distributions such as normal and t-distributions. The fGarch
package in R implements their idea. Let ξ be a positive constant and f a
density that is symmetric about 0. Define

f∗(y|ξ) =
{

f(yξ) if y < 0,
f(y/ξ) if y ≥ 0.

(5.15)

Since f∗(y|ξ) integrates to (ξ + ξ−1)/2, f∗(y|ξ) is divided by this constant to
create a probability density. After this normalization, the density is given a
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Fig. 5.8. Symmetric (solid) and skewed (dashed) t-densities, both with mean 0,
standard deviation 1, and ν = 10. ξ = 2 in the skewed density. Notice that the mode
of the skewed density lies to the left of its mean, a typical behavior of right-skewed
densities.

location shift and scale change to induce a mean equal to 0 and variance of 1.
The final result is denoted by f(y|ξ).

If ξ > 1, then the right half of f(y|ξ) is elongated relative to the left
hand, which induces right skewness. Similarly, ξ < 1 induces left skewness.
Figure 5.8 shows standardized symmetric and skewed t-distributions8 with
ν = 10 in both cases and ξ = 2 for the skewed distribution.

If f is a t-distribution, then f(y|ξ) is called a skewed t-distribution. Skewed
t-distributions include symmetric t-distributions as special cases where ξ = 1.
In the same way, skewed generalized error distributions are created when f is
a generalized error distribution. The skewed distributions just described will
be called Fernandez–Steel or F-N skewed distributions.

Fernandez and Steel’s technique is not the only method for creating skewed
versions of the normal and t-distributions. Azzalini and Capitanio (2003) have
created somewhat different skewed normal and t-distributions.9 These distri-
butions have a shape parameter α that determines the skewness; the dis-
8 R’s dstd (for symmetric t) and dsstd (for skewed t) functions in the fGarch

package were used for to create this plot.
9 Programs for fitting these distributions, computing their densities, quantile, and

distribution functions, and generating random samples are available in R’s sn

package.
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tributed is left-skewed, symmetric, or right-skewed according to whether α is
negative, zero, or positive.

An example is given in Section 5.14 and multivariate versions are discussed
in Section 7.9. We will refer to these as Azzalini–Capitanio or A-C skewed
distributions.

5.8 Quantile-Based Location, Scale, and Shape
Parameters

As has been seen, the mean, standard deviation, skewness coefficient, and
kurtosis are moments-based location, scale, and shape parameters. Although
they are widely used, they have the drawbacks that they are sensitive to
outliers and may be undefined or infinite for distributions with heavy tails.
An alternative is to use parameters based on quantiles.

Any quantile F−1(p), 0 < p < 1, is a location parameter. A positive
weighted average of quantiles, that is,

∑L
`=1 w` F−1(p`), where w` > 0 for

all ` and
∑L

`=1 w` = 1, is also a location parameter. A simple example is
{F−1(1 − p) + F−1(p)}/2 where 0 < p < 1/2, which equals the mean and
median if F is symmetric.

A scale parameter can be obtained from the difference between two quan-
tiles:

s(p1, p2) =
F−1(p2)− F−1(p1)

a

where 0 < p1 < p2 < 1 and a is a positive constant. An obvious choice is
p1 < 1/2 and p2 = 1 − p1. If a = Φ−1(p2) − Φ−1(p1), then s(p1, p2) is equal
to the standard deviation when F is a normal distribution. If a = 1, then
s(1/4, 3/4) is called the interquartile range or IQR.

A quantile-based shape parameter that quantifies skewness is a ratio with
the numerator the difference between two scale parameters and the denomi-
nator a scale parameter:

s(1/2, p2)− s(1/2, p1)
s(p3, p4)

. (5.16)

where p1 < 1/2, p2 > 1/2, and 0 < p3 < p4 < 1. For example, one could use
p2 = 1− p1, p4 = p2, and p3 = p1.

A quantile-based shape parameter that quantifies tail weight is the ratio
of two scale parameters:

s(p1, 1− p1)
s(p2, 1− p2)

, (5.17)

where 0 < p1 < p2 < 1/2. For example, one might have p1 = 0.01 or 0.05 and
p2 = 0.25.
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5.9 Maximum Likelihood Estimation

Maximum likelihood is the most important and widespread method of esti-
mation. Many well-known estimators such as the sample mean, and the least-
squares estimator in regression are maximum likelihood estimators if the data
have a normal distribution. Maximum likelihood estimation generally provides
more efficient (less variable) estimators than other techniques of estimation.
As an example, for a t-distribution, the maximum likelihood estimator of the
mean is more efficient than the sample mean.

Let Y = (Y1, . . . , Yn)T be a vector of data and let θ = (θ1, . . . , θp)T be a
vector of parameters. Let f(Y |θ) be the density of Y , which depends on the
parameters.

The function L(θ) = f(Y |θ) viewed as a function of θ with Y fixed at the
observed data is called the likelihood function. It tells us the likelihood of the
sample that was actually observed. The maximum likelihood estimator (MLE)
is the value of θ that maximizes the likelihood function. In other words, the
MLE is the value of θ at which the likelihood of the observed data is largest.
We denote the MLE by θ̂ML. Often it is mathematically easier to maximize
log{L(θ)}. If the data are independent, then the likelihood is the product of
the marginal densities and products are cumbersome to differentiate. Also,
in numerical computations, using the log-likelihood reduces the possibility
of underflow or overflow. Taking the logarithm converts the product into an
easily differentiated sum. Since the log function is increasing, maximizing
log{L(θ)} is equivalent to maximizing L(θ).

In examples found in introductory statistics textbooks, it is possible to find
an explicit formula for the MLE. With more complex models such as the ones
we will mostly be using, there is no explicit formula for the MLE. Instead,
one must write a program that computes log{L(θ)} for any θ and then use
optimization software to maximize this function numerically; see Example 5.8.
However, for many important models, such as, the examples in the Section
5.14 and the ARIMA and GARCH time series models discussed in Chapter 9,
R and other software packages contain functions to find the MLE for these
models.

5.10 Fisher Information and the Central Limit Theorem
for the MLE

Standard errors are essential for gauging the accuracy of estimators. We have
formulas for the standard errors of simple estimators such as Y , but what
about standard errors for other estimators? Fortunately, there is a simple
method for calculating the standard error of a maximum likelihood estimator.
We assume for now that θ is one-dimensional. The Fisher information is
defined to be minus the expected second derivative of the log-likelihood, so if
I(θ) denotes the Fisher information, then
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I(θ) = −E

[
d2

d θ2
log{L(θ)}

]
. (5.18)

The standard error of θ̂ is simply the inverse square root of the Fisher infor-
mation, with the unknown θ replaced by θ̂:

sbθ =
1√
I(θ̂)

. (5.19)

Example 5.1. Fisher information for a normal model mean

Suppose that Y1, . . . , Yn are i.i.d. N(µ, σ2) with σ2 known. The log-
likelihood for the unknown parameter µ is

log{L(µ)} = −n

2
{log(σ2) + log(2π)} − 1

2σ2

n∑

i=1

(Yi − µ)2.

Therefore,
d

dµ
log{L(µ)} =

1
σ2

n∑

i=1

(Yi − µ),

and
d2

dµ2
log{L(µ)} = −

∑n
i=1 1
σ2

= − n

σ2
.

It follows that I(µ̂) = n/σ2 and sbµ = σ/
√

n. Since the MLE is µ̂ = Y , this
result is the familiar fact that when σ is known, then sY = σ/

√
n and when

σ is unknown, then sY = s/
√

n.
¤

The theory justifying using these standard errors is the central limit the-
orem for the maximum likelihood estimator. This theorem can be stated in a
mathematically precise manner that is difficult to understand without training
in advanced probability theory. The following less precise statement is more
easily understood:

Theorem 5.2. Under suitable assumptions, for large enough sample sizes,
the maximum likelihood estimator is approximately normally distributed with
mean equal to the true parameter and with variance equal to the inverse of the
Fisher information.

The central limit theorem for the maximum likelihood estimator justifies
the following large-sample confidence interval for the MLE of θ:
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θ̂ ± sbθ zα/2, (5.20)

where zα/2 is the α/2-upper quantile of the normal distribution and sbθ is
defined in (5.19).

The observed Fisher information is

Iobs(θ) = − d2

d θ2
, log{L(θ)}. (5.21)

which differs from (5.18) in that there is no expectation taken. In many ex-
amples, (5.21) is a sum of many independent terms and, by the law of large
numbers, will be close to (5.18). The expectation in (5.18) may be difficult to
compute and using (5.21) instead is a convenient alternative.

The standard error of θ̂ based on observed Fisher information is

sobsbθ =
1√

Iobs(θ̂)
. (5.22)

Often sobsbθ is used in place of sbθ in the confidence interval (5.20). There is
theory suggesting that using the observed Fisher information will result in a
more accurate confidence interval, that is, an interval with the true coverage
probability closer to the nominal value of 1−α, so observed Fisher information
can be justified by more than mere convenience; see Section 5.18.

So far, it has been assumed that θ is one-dimensional. In the multivari-
ate case, the second derivative in (5.18) is replaced by the Hessian matrix
of second derivatives, and the result is called the Fisher information ma-
trix. Analogously, the observed Fisher information matrix is the multivariate
analog of (5.21). Fisher information matrices are discussed in more detail in
Section 7.10.

Bias and Standard Deviation of the MLE

In many examples, the MLE has a small bias that decreases to 0 at rate n−1

as the sample size n increases to ∞. More precisely,

BIAS(θ̂ML) = E(θ̂ML)− θ ∼ A

n
, as n →∞, (5.23)

for some constant A. The bias of the MLE of a normal variance is an example
and A = −σ2 in this case.

Although this bias can be corrected is some special problems, such as,
estimation of a normal variance, usually the bias is ignored. There are two
good reasons for this. First, the log-likelihood usually is the sum of n terms
and so grows at rate n. The same is true of the Fisher information. Therefore,
the variance of the MLE decreases at rate n−1, that is,

Var(θ̂ML) ∼ B

n
, as n →∞, (5.24)
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for some B > 0. Variability should be measured by the standard deviation,
not the variance, and by (5.24),

SD(θ̂ML) ∼
√

B√
n

, as n →∞. (5.25)

The convergence rate in (5.25) can also be obtained from the CLT for the
MLE. Comparing (5.23) and (5.25), one sees that as n gets larger, the bias
of the MLE becomes negligible compared to the standard deviation. This is
especially important with financial markets data, where sample sizes tend to
be large.

Second, even if the MLE of a parameter θ is unbiased, the same is not true
for a nonlinear function of θ. For example, even if σ̂2 is unbiased for σ2, σ̂ is
biased for σ. The reason for this is that for a nonlinear function g, in general,

E{g(θ̂)} 6= g{E(θ̂)}.
Therefore, it is impossible to correct for all biases.

5.11 Likelihood Ratio Tests

Some readers may wish to review hypothesis testing by reading Section A.18
before starting this section.

Likelihood ratio tests, like maximum likelihood estimation, are based upon
the likelihood function. Both are convenient, all-purpose tools that are widely
used in practice.

Suppose that θ is a parameter vector and that the null hypothesis puts
m equality constraints on θ. More precisely, there are m functions g1, . . . , gm

and the null hypothesis is that gi(θ) = 0 for i = 1, . . . , m. It is also assumed
that none of these constraints is redundant, that is, implied by the others. To
illustrate redundancy, suppose that θ = (θ1, θ2, θ3) and the constraints are
θ1 = 0, θ2 = 0, and θ1 + θ2 = 0. Then the constraints have a redundancy and
any one of the three could be dropped. Thus, m = 2, not 3.

Of course, redundancies need not be so easy to detect. One way to check
is that the m× dim(θ) matrix



∇g1(θ)

. . .
∇gm(θ)


 (5.26)

must have rank m. Here ∇gi(θ) is the gradient of gi.
As an example, one might want to test that a population mean is zero;

then θ = (µ, σ)T and m = 1 since the null hypothesis puts one constraint on
θ, specifically that µ = 0.

Let θ̂ML be the maximum likelihood estimator without restrictions and
let θ̂0,ML be the value of θ that maximizes L(θ) subject to the restrictions of
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the null hypothesis. If H0 is true, then θ̂0,ML and θ̂ML should both be close
to θ and therefore L(θ̂0,ML) should be similar to L(θ̂). If H0 is false, then the
constraints will keep θ̂0,ML far from θ̂ML and so L(θ̂0,ML) should be noticeably
smaller that L(θ̂).

The likelihood ratio test rejects H0 if

2
[
log{L(θ̂ML)} − log{L(θ̂0,ML)}

]
≥ c, (5.27)

where c is a critical value. The left-hand side of (5.27) is twice the log of
the likelihood ratio L(θ̂ML)/L(θ̂0,ML), hence the name likelihood ratio test.
Often, an exact critical value can be found. A critical value is exact if it gives
a level that is exactly equal to α. When an exact critical value is unknown,
then the usual choice of the critical value is

c = χ2
α,m, (5.28)

where, as defined in Section A.10.1, χ2
α,m is the α-upper quantile value of

the chi-squared distribution with m degrees of freedom.10 The critical value
(5.28) is only approximate and uses the fact that under the null hypothesis,
as the sample size increases the distribution of twice the log-likelihood ratio
converges to the chi-squared distribution with m degrees of freedom if certain
assumptions hold. One of these assumptions is that the null hypothesis is not
on the boundary of the parameter space. For example, if the null hypothesis is
that a variance parameter is zero, then the null hypothesis is on the boundary
of the parameter space since a variance must be zero or greater. In this case
(5.27) should not be used; see Self and Liang (1987). Also, if the sample size
is small, then the large-sample approximation (5.27) is suspect and should be
used with caution. An alternative is to use the bootstrap to determine the
rejection region. The bootstrap is discussed in Chapter 6.

Computation of likelihood ratio tests is often very simple. In some cases,
the test is computed automatically by statistical software. In other cases,
software will compute the log-likelihood for each model and these can be
plugged into the left-hand side of (5.27).

5.12 AIC and BIC

An important practical problem is choosing between two or more statistical
models that might be appropriate for a data set. The maximized value of the
log-likelihood, denoted here by log{L(θ̂ML)}, can be used to measure how
well a model fits the data or to compare the fits of two or more models.
10 The reader should now appreciate why it is essential to calculate m correctly by

eliminating redundant constraints. The wrong value of m will cause an incorrect
critical value to be used.
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However, log{L(θ̂ML)} can be increased simply by adding parameters to the
model. The additional parameter do not necessarily mean that the model is a
better description of the data-generating mechanism, because the additional
model complexity due to added parameters may simply be fitting random
noise in the data, a problem that is called overfitting . Therefore, models should
be compared both by fit to the data and by model complexity. To find a
parsimonious model one needs a good tradeoff between maximizing fit and
minimizing model complexity.

AIC (Akaike’s information criterion) and BIC (Bayesian information cri-
terion) are two means for achieving a good tradeoff between fit and complexity.
They differ slightly and BIC seeks a somewhat simpler model than AIC. They
are defined by

AIC = −2 log{L(θ̂ML)}+ 2p (5.29)

BIC = −2 log{L(θ̂ML)}+ log(n)p, (5.30)

where p equals the number of parameters in the model and n is the sample
size. For both criteria, “smaller is better,” since small values tend to maximize
L(θ̂ML) (minimize − log{L(θ̂ML)}) and minimize p, which measures model
complexity. The terms 2p and log(n)p are called “complexity penalties” since
the penalize larger models.

The term deviance is often used for minus twice the log-likelihood, so AIC
= deviance + 2p and BIC = deviance + log(n)p. Deviance quantifies model
fit, with smaller values implying better fit.

Generally, from a group of candidate models, one selects the model that
minimizes whichever criterion, AIC or BIC, is being used. However, any model
that is within 2 or 3 of the minimum value is a good candidate and might be
selected instead, for example, because it is simpler or more convenient to use
than the model achieving the absolute minimum. Since log(n) > 2 provided,
as is typical, that n > 8, BIC penalizes model complexity more than AIC does,
and for this reason BIC tends to select simpler models than AIC. However,
it is common for both criteria to select the same, or nearly the same, model.
Of course, if several candidate models all have the same value of p, then AIC,
BIC, and −2 log{L(θ̂ML)} are minimized by the same model.

5.13 Validation Data and Cross-Validation

When the same data are used both to estimate parameters and to assess fit,
there is a strong tendency towards overfitting. Data contain both a signal and
noise. The signal contains characteristics that are present in each sample from
the population, but the noise is random and varies from sample to sample.
Overfitting means selecting an unnecessarily complex model to fit the noise.
The obvious remedy to overfitting is to diagnose model fit using data that
are independent of the data used for parameter estimation. We will call the
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data used for estimation the training data and the data used to assess fit the
validation data or test data.

Example 5.3. Estimating the expected returns of midcap stocks

This example uses 500 daily returns on 20 midcap stocks in the midcapD.ts
data set in R’s fEcofin package. The data are from February 28, 1991, to
December 29, 1995, Suppose we need to estimate the 20 expected returns.
Consider two estimators. The first, called “separate-means,” is simply the
20 sample means. The second, “common-mean,” uses the average of the 20
sample means as the common estimator of all 20 expected returns.

The rationale behind the common-mean estimator is that midcap stocks
should have similar expected returns. The common-mean estimator pools data
and greatly reduces the variance of the estimator. The common-mean estima-
tor has some bias because the true expected returns will not be identical,
which is the requirement for unbiasedness of the common-mean estimator.
The separate-means estimator is unbiased but at the expense of a higher vari-
ance. This is a classic example of a bias–variance tradeoff.

Which estimator achieves the best tradeoff? To address this question, the
data were divided into the returns for the first 250 days (training data) and for
the last 250 days (validation data). The criterion for assessing goodness-of-fit
was the sum of squared errors, which is

20∑

k=1

(
µ̂ train

k − Y
val

k

)2

,

where µ̂ train
k is the estimator (using the training data) of the kth expected

return and Y
val

k is the validation data sample mean of the returns on the kth
stock. The sum of squared errors are 3.262 and 0.898, respectively, for the
separate-means and common-mean estimators. The conclusion, of course, is
that in this example the common-mean estimator is much more accurate that
using separate means.

Suppose we had used the training data also for validation? The goodness-
of-fit criterion would have been

20∑

k=1

(
µ̂ train

k − Y
train

k

)2

,

where Y
train

k is the training data sample mean for the kth stock and is also
the separate-means estimator for that stock. What would the results have
been? Trivially, the sum of squared errors for the separate-means estimator
would have been 0—each mean is estimated by itself with perfect accuracy!
The common-mean estimator has a sum of squared errors equal to 0.920. The
inappropriate use of the training data for validation would have led to the
erroneous conclusion that the separate-means estimator is more accurate.
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There are compromises between the two extremes of a common mean
and separate means. These compromise estimators shrink the separate means
toward the common mean. Bayesian estimation, discussed in Chapter 20, is
an effective method for selecting the amount of shrinkage; see Example 20.12,
where this set of returns is analyzed further.

¤

A common criterion for judging fit is the deviance, which is −2 times the
log-likelihood. The deviance of the validation data is

−2 log f
(
Y val|θ̂ train

)
, (5.31)

where θ̂
train

is the MLE of the training data and Y val is the validation data.
When the sample size is small, splitting the data once into training and

validation data is wasteful. A better technique is cross-validation, often called
simply CV, where each observation gets to play both roles, training and vali-
dation. K-fold cross-validation divides the data set into K subsets of roughly
equal size. Validation is done K times. In the kth validation, k = 1, . . . , K,
the kth subset is the validation data and the other K−1 subsets are combined
to form the training data. The K estimates of goodness-of-fit are combined,
for example, by averaging them. A common choice is n-fold cross-validation,
also called leave-one-out cross-validation. With leave-one-out cross-validation,
each observation takes a turn at being the validation data set, with the other
n− 1 observations as the training data.

An alternative to actually using validation data is to calculate what would
happen if new data could be obtained and used for validation. This is how
AIC was derived. AIC is an approximation to the expected deviance of a hy-
pothetical new sample that is independent of the actual data. More precisely,
AIC approximates

E
[
−2 log f

{
Y new

∣∣ θ̂(Y obs)
}]

, (5.32)

where Y obs is the observed data, θ̂(Y obs) is the MLE computed from Y obs,
and Y new is a hypothetical new data set such that Y obs and Y new are i.i.d.
Since Y new is not observed but has the same distribution as Y obs, to obtain
AIC one substitutes Y obs for Y new in (5.32) and omits the expectation in
(5.32). Then one calculates the effect of this substitution. The approximate
effect is to reduce (5.32) by twice the number of parameters. Therefore, AIC
compensates by adding 2p to the deviance, so that

AIC = −2 log f
{

Y obs
∣∣ θ̂(Y obs)

}
+ 2p, (5.33)

which is a reexpression of (5.29).
The approximation used in AIC becomes more accurate when the sample

size increases. A small-sample correction to AIC is
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AICc = AIC +
2p(p + 1)
n− p− 1

. (5.34)

Financial markets data sets are often large enough that the correction term
2p(p + 1)/(n−p−1) is small, so that AIC is adequate and AICc is not needed.
For example, if n = 200, then 2p(p + 1)/(n − p − 1) is 0.12, 0.21, 0.31, and
0.44 and for p = 3, 4, 5, and 6, respectively. Since a difference less than 1
in AIC values is usually considered as inconsequential, the correction would
have little effect when comparing models with 3 to 6 parameters when n is at
least 200. Even more dramatically, when n is 500, then the corrections for 3,
4, 5, and 6 parameters are only 0.05, 0.08, 0.12, and 0.17.

Traders usually develop trading strategies using a set of historical data
and then test the strategies on new data. This is called back-testing and is a
form of validation.

5.14 Fitting Distributions by Maximum Likelihood

Our first application of maximum likelihood will be to estimate parameters in
univariate marginal models. Suppose that Y1, . . . , Yn is an i.i.d. sample from
a t-distribution. Let

f std
t,ν (y |µ, σ) (5.35)

be the density of the standardized t-distribution with ν degrees of freedom
and with mean µ and standard deviation σ. Then the parameters ν, µ, and σ
are estimated by maximizing

n∑

i=1

log
{

f std
t,ν (Yi |µ, σ)

}
(5.36)

using any convenient optimization software. Estimation of other models is
similar.

In the following examples, t-distributions and generalized error distribu-
tions are fit.

Example 5.4. Fitting a t-distribution to changes in risk-free returns

This example uses one of the time series in Chapter 4, the changes in the
risk-free returns that has been called diffrf.

First we will fit the t-distribution to the changes in the risk-free returns
using R. There are two R functions that can be used for this purpose, stdFit
and fitdistr. They differ in their choices of the scale parameter. stdFit
fits the standardized t-distribution, tstd, and returns the estimated standard
deviation, which is called “sd” (as well as the estimated mean and estimated
df). stdFit gives the following output for the variable diffrf.
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$minimum
[1] -693.2

$estimate
mean sd nu

0.001214 0.072471 3.334112

Thus, the estimated mean is 0.001214, the estimated standard deviation is
0.07247, and the estimated value of ν is 3.334. The function stdFit minimizes
minus the log-likelihood and the minimum value is −693.2, or, equivalently,
the maximum of the log-likelihood is 693.2.

fitdistr fits the classical t-distribution and returns the standard devia-
tion times

√
(ν − 2)/ν, which is called s in the R output and is the parameter

called “the scale parameter” in Section 5.5.2 and denoted there by λ. fitdistr
gives the following output for diffrf.

m s df
0.001224 0.045855 3.336704
(0.002454) (0.002458) (0.500010)

The standard errors are in parentheses below the estimates and were computed
using observed Fisher information. The estimates of the scale parameter by
stdFit and fitdistr agree since 0.045855 =

√
1.3367/3.3367 × 0.072471.

Minor differences in the estimates of µ and ν are due to numerical error and
are small relative to the standard errors.

AIC for the t-model is (2)(−693.2) + (2)(3) = −1380.4 while BIC is
(2)(−693.2) + log(515)(3) = −1367.667 because the sample size is 515.

Because the sample size is large, by the central limit theorem for the MLE,
the estimates are approximately normally distributed and this can be used to
construct confidence intervals. Using the estimate and standard error above,
a 95% confidence interval for λ is

0.045855± (1.96)(0.002458)

since z0.025 = 1.96.
¤

Example 5.5. Fitting an F-S skewed t-distribution to changes in risk-free re-
turns

Next the F-S skewed t-distribution is fit to diffrf using the R function
sstdFit. The results are

$minimum
[1] -693.2
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$estimate
mean sd nu xi

0.001180 0.072459 3.335534 0.998708

The shape parameter ξ is nearly 1 and the maximized value of the log-
likelihood is the same as for the symmetric t-distribution, which imply that a
symmetric t-distribution provides as good a fit as a skewed t-distribution.

¤

Example 5.6. Fitting a generalized error distribution to changes in risk-free
returns

The fit of the generalized error distribution to diffrf was obtained from
the R function gedFit and is

$minimum
[1] -684.8

$estimate
[1] -3.297e-07 6.891e-02 9.978e-01

The three components of $estimate are the estimates of the mean, standard
deviation, and ν, respectively. The estimated shape parameter is ν̂ = 0.998,
which, when rounded to 1, implies a double-exponential distribution. Note
that the maximum value of the likelihood is 684.8, much smaller than the value
693.2 obtained using the t-distribution. Therefore, t-distributions appear to
be better models for these data compared to generalized error distributions.
A possible reason for this is that, like the t-distributions, the density of the
data seems to be rounded near the median; see the kernel density estimate
in Figure 5.9. QQ plots of diffrf versus the quantiles of the fitted t- and
generalized error distributions are similar, indicating that neither model has a
decidedly better fit than the other. However, the QQ plot of the t-distribution
is slightly more linear.

The fit to the skewed ged obtained from the R function sgedFit is

$minimum
[1] -684.8

$estimate
[1] -0.0004947 0.0687035 0.9997982 0.9949253

The four components of $estimate are the estimates of the mean, standard
deviation, ν, and ξ, respectively. These estimates again suggest that a skewed
model is not needed for this example since ξ̂ = 0.995 ≈ 1.

¤
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Fig. 5.9. Kernel estimate of the probability density of diffrf, the changes in the
risk-free returns.

Example 5.7. Comparing models for changes in risk-free returns

AIC and BIC for the four models fit to the risk-free returns are reported
in Table 5.1, as well as for fifth and sixth models, t-mixture and normal
mixture, to be discussed next. We will ignore the mixture models for now and
only consider the first four models in the table. Then, by either criterion, the
t-model is best. With AIC, the skewed t-distribution is a close second, but
since this model is more complex than the t-model, there is no good reason
to prefer it.

Table 5.1. AIC and BIC for six models for the marginal distribution of diffrf.
1300 was added to all AIC and BIC values to improve readability.

Distribution # Parameters AIC BIC

t 3 −80.4 −67.7
skewed t 4 −78.4 −61.4

ged 3 −75.6 −50.9
skewed ged 4 −61.6 −44.6
t mixture 5 −82.3 −61.1

normal mixture 4 −84.2 −67.2

¤
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Fig. 5.10. (a) QQ plot of diffrf versus the quantiles of a tstdν (µ, s2) distribution
with µ, s2, and ν estimated by maximum likelihood. A 45o line through the origin
has been added for reference. (b) A similar plot for the generalized error distribution.
(c) A similar plot for the normal mixture model in Example 5.8.

Example 5.8. Fitting a mixture model to the risk-free returns changes by max-
imum likelihood

The QQ plots in Figures 5.10(a) and (b) show that the risk-free returns
changes have somewhat heavier tails compared to the t- and generalized error
distributions.

Now consider a mixture of t-distributions as an alternative to the t- and
GED models. Let dstd(y|µ, s2, ν) be the value at y of the tstdν (µ, s2) density.11

Then our model for the marginal density is

β5 dstd(y|β1, β2, β4) + (1− β5) dstd(y|β1, β2 + β3, β4)

with constraints

β2 > 0, (5.37)
β3 > 0, (5.38)
β4 > 2.1, (5.39)
β5 ∈ (0, 1). (5.40)

Thus, the marginal density is a mixture of two t-distributions with a common
mean of β1 and a common degrees-of-freedom parameter of β4 = ν. The
first component has a variance of β2 and the second component has a larger
variance equal to β2 + β3. The parameter β5 is the proportion of the changes
in the risk-free returns coming from the first component. Since a t-distribution
has an infinite variance if ν ≤ 2, the constraint ν = β4 > 2.1 is imposed.
11 The notation dstd was suggested by the name of an R function that computes

this density.
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A possible interpretation of this model is that the market can be in either
of two possible “regimes,” the market is more volatile under the second regime
than under the first, β5 is the probability of it being in the first regime, and β3

is the extra variance associated with the second regime. The somewhat outly-
ing points in any of the three panels of Figure 5.10 would then be interpreted
as data from the second regime.

AIC and BIC for this mixture model are found in the last row of Table 5.1.
The mixture model has the smallest AIC among the first five models, which is
evidence in its favor. However, the simpler t-model has a considerably smaller
BIC value. Because of the rather small deviation from linearity in the QQ plot
in Figure 5.10(a) and the large BIC value of the mixture model, our choice
would be to use the simpler t-model rather than the t-mixture model.

To find the MLE for the mixture model, an R function was written to
compute the log-likelihood. This function used the R function dstd to com-
pute the densities of the two components. Then minus the log-likelihood was
minimized using R’s minimization function optim, which has several differ-
ent optimization algorithms—the“L-BFGS-B” algorithm was used because
this algorithm allowed us to put lower and upper bounds on parameters to
implement constraints (5.37)–(5.40). Optimization algorithms start at user-
supplied initial values and then iteratively improve these starting values to
locate a function’s minimum. The algorithm stops when some convergence
criterion is met. The optim function was used 15 times starting at randomly
chosen values—the starting values were uniformly distributed over ranges,
(−0.01, 0.01), (0.001, 0.05), (0.001, 0.05), (2.1, 60), and (0, 1) for β1, . . . , β5,
respectively. The values of AIC, BIC, and the parameter estimates at the 15
final values are:

iter AIC BIC beta[1] beta[2] beta[3] beta[4] beta[5] beta[4]start
[1,] -1382.3 -1361.1 0.0018379 0.048386 0.10908 37.218 0.88010 37.218
[2,] -1381.5 -1360.3 0.0016881 0.051003 0.11491 10.950 0.89835 10.954
[3,] -1382.3 -1361.1 0.0018038 0.048847 0.10994 24.791 0.88343 24.791
[4,] -1382.2 -1361.0 0.0017831 0.049163 0.11055 20.550 0.88574 20.552
[5,] -1382.3 -1361.1 0.0018538 0.048117 0.10873 54.093 0.87815 54.093
[6,] -1382.3 -1361.1 0.0018257 0.048531 0.10934 32.153 0.88116 32.153
[7,] -1382.3 -1361.1 0.0018567 0.048077 0.10868 58.141 0.87787 58.141
[8,] -1382.3 -1361.1 0.0018414 0.048307 0.10894 40.751 0.87956 40.751
[9,] -1382.3 -1361.1 0.0018272 0.048447 0.10919 34.958 0.88054 34.963
[10,] -1382.3 -1361.1 0.0018421 0.048259 0.10888 42.918 0.87909 42.920
[11,] -1382.3 -1361.1 0.0018491 0.048108 0.10868 54.481 0.87809 54.481
[12,] -1382.3 -1361.1 0.0018303 0.048403 0.10914 36.640 0.88029 36.641
[13,] -1382.2 -1361.0 0.0017822 0.049174 0.11056 20.399 0.88581 20.410
[14,] -1233.4 -1212.2 0.0044000 0.045578 0.00010 13.641 0.89385 13.643
[15,] -1382.3 -1361.1 0.0018399 0.048152 0.10877 50.468 0.87843 50.468

The last column gives the randomly chosen starting value of β4. Note that only
11 of the 15 final AIC values achieve the minimum12 of −1382.3 though two
more come close at −1382.2. The degrees-of-freedom parameter (beta[4]) is
very poorly determined and rarely moves much from its starting value. If this
12 Since the number of parameters is fixed, minimizing AIC is equivalent to maxi-

mizing the likelihood.
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parameter starts at too low a value, as in cases 2 and 14, then the global
minimum of AIC may not be reached. The problem is due to having three
parameters, β4 = ν, β3 and β5, to determine tail weight, in contrast to the
t-distribution with only a single tail -eight parameter ν.

Thus, three tail-weight parameters seem to be too many. The question then
is whether one tail-weight parameter (as with the simple t-model) is enough.
To address this question, one can fit a two-component normal mixture model
similar to the two-component t-mixture model just fit. In fact, the normal
mixture model is the t-mixture model with ν = ∞. Fixing ν reduces the
number of tail-weight parameters from three to two. The MLE was found
using optim in R and was stable—10 random starting values all reached the
same final value.13

The AIC and BIC values for the normal mixture model are in Table 5.1.
We see that the normal mixture model is best by AIC and second best by BIC,
and for both criteria it is better than the t-mixture model. Figure 5.10(c) is
a QQ plot for the two-component normal mixture model.14 Notice that it is
similar to the QQ plots for the t- and GED models shown in panels (a) and
(b).

The results of this example are essentially negative. We haven’t been able
to improve upon the simple t-model. However, the negative results are reas-
suring. A good way to test whether a model fits the data adequately is to see
if more complex models can achieve a better fit. If the more complex models
cannot achieve substantially better fits, then this is evidence that the simpler
model is adequate. Thus, there is some assurance that the simple t-model
provides an adequate fit to the changes in the risk-free returns.

This example has illustrated several important concepts. The first is that
maximum likelihood is a very general estimation method that is suitable for
a wide variety of parametric models. The reason for this is that there are
general-purpose optimization functions such as optim that can be used to find
the MLE whenever one can write a function to compute the log-likelihood.
The second is that unstable estimates whose final values depend heavily on
the starting values can occur. When, as here, very different final estimates
achieve nearly the same value of the log-likelihood, this is a sign of having too
many parameters, a problem called overparameterization.

The third concept illustrated by this example is the somewhat limited
practical value of asymptotic concepts such as polynomial versus exponen-
13 One minor computational difficulty was that, during the iteration, the standard

deviations of the components sometimes became too small and the R function
dnorm that computes the normal density returned infinite values. This problem
was solved by putting lower bounds on the standard deviations. The final esti-
mates were above these bounds, showing that the lower bounds did not affect the
final result. This problem illustrates how numerical computation of an MLE is not
fool-proof and requires some care, but this is true of many numerical methods.

14 The quantiles of the normal mixture model were obtained from the R function
qnorMix in the norMix package.
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tial tails and the index of a polynomial tail. Remember that these quantities
describe tail behavior only in the limit as |x| → ∞. It takes a long time to
get to ∞! In the range of x-values relevant in practice, a distribution with
asymptotically light tails may appear heavy-tailed. The tail weight of any
finite mixture model is no greater than the heaviest tail weight among its
components.15 Therefore, any finite normal mixture model has the very light
tail of a normal distribution. Nonetheless, in this example a light-tailed nor-
mal mixture model was quite similar to a polynomial-tailed t4 distribution
and to an exponentially tailed generalized error distribution.

¤

Example 5.9. A-C skewed t-distribution fit to pipeline flows

This example uses the daily flows in natural gas pipelines introduced in
Example 4.3. Recall that all three distributions are left-skewed. There are
many well-known parametric families of right-skewed distributions, such as,
the gamma and log-normal distributions, but there are not as many families of
left-skewed distributions. The F-S skewed t- and A-C skewed t-distributions,
which contain both right- and left-skewed distributions, are important excep-
tions. In this example, the A-C skewed t-distribution will be used, though the
F-S skewed t-distributions could have been used instead.

Figure 5.11 has one row of plots for each variable. The left plots have
two density estimates, an estimate using the Azzalini–Capitanio skewed t-
distribution (solid) and a KDE (dashed). The right plots are QQ plots using
the fitted skewed t-distributions.

The flows in pipelines 1 and 2 are fit reasonably well by the A-C skewed
t-distribution. This can be seen in the agreement between the parametric
density estimates and the KDEs and in the nearly straight patterns in the
QQ plots. The flows in pipeline 3 have a KDE with either a wide, flat mode
or, perhaps, two modes. This pattern cannot be accommodated very well
by the A-C skewed t-distributions. The result is less agreement between the
parametric and KDE fits and a curved QQ plot. Nonetheless, a skewed t-
distribution might be an adequate approximation for some purposes.

For the flows in pipeline 1, the MLEs are

location scale shape df
114.50 22.85 -9.17 15.65

and the standard errors are

location scale shape df
0.637 1.849 1.977 14.863

15 Note the assumption that there are only a finite number of components. Con-
tinuous mixtures of normal distributions include the t-distributions and other
heavy-tailed distributions.
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Fig. 5.11. Parametric (solid) and nonparametric (dashed) density estimates for
daily flows in three pipelines (left) and QQ plots for the parametric fits (right). The
reference lines go through the first and third quartiles.

Notice that the estimated shape parameter (α) of the A-C family is very
negative, with a magnitude over four times its standard error. This is strong
evidence of a highly left-skewed distribution and is in agreement with the
histograms and KDEs.

For the flows in pipeline 2, the MLEs are

location scale shape df
224.57 14.33 -6.43 6.58

and the standard errors are

location scale shape df
0.517 1.322 1.091 2.800

Thus, in comparison with pipeline 1, pipeline 2 has higher average flows, less
variability, and less skewness.



5.15 Profile Likelihood 115

For pipeline 3, the MLEs are

location scale shape df
45.5 18.1 -42.9 10228.0

The function st.mle in R does not return standard errors for pipeline 3 flows
because of numerical problems. The difficulty may be the very large value
of df (the MLE of the degrees-of-freedom parameter).16 This value suggests
that the skewed-normal distribution, which corresponds to df equal to ∞,
should be used instead of the skewed t-distribution. For the skewed-normal fit
to pipeline 3 flows, the MLEs are

location scale shape
45.4 17.9 -38.1

and the standard errors are

location scale shape
0.233 0.710 17.271

The estimates for skewed-normal fit are very close to those for skewed-t fit,
at least relative to the standard errors of the former.

¤

5.15 Profile Likelihood

Profile likelihood is a technique based on the likelihood ratio test introduced
in Section 5.11. Profile likelihood is used to create confidence intervals and is
often a convenient way to find a maximum likelihood estimator. Suppose the
parameter vector is θ = (θ1, θ2), where θ1 is a scalar parameter and the vector
θ2 contains the other parameters in the model. The profile log-likelihood for
θ1 is

Lmax(θ1) = max
θθθ2

L(θ1,θ2). (5.41)

The right-hand side of (5.41) means the L(θ1, θ2) is maximized over θ2 with
θ1 fixed to create a function of θ1 only. Define θ̂2(θ1) as the value of θ2 that
maximizes the right-hand side of (5.41).

The MLE of θ1 is the value, θ̂1, that maximizes Lmax(θ1) and the MLE of
θ2 is θ̂2(θ̂1). Let θ0,1 be a hypothesized value of θ1. By the theory of likelihood
ratio tests in Section 5.11, one accepts the null hypothesis H0 : θ1 = θ0,1 if

Lmax(θ0,1) > Lmax(θ̂1)− 1
2
χ2

α,1. (5.42)

16 A more recent version of R does not even return an estimate when fitting the
skewed t-distribution to these data with the st.mle function.
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Here χ2
α,1 is the α-upper quantile of the chi-squared distribution with one de-

gree of freedom. The profile likelihood confidence interval (or, more properly,
confidence region since it may not be an interval) for θ1 is the set of all null
values that would be accepted, that is,

{
θ1 : Lmax(θ1) > Lmax(θ̂1)− 1

2
χ2

α,1

}
. (5.43)

The profile likelihood can be defined for a subset of the parameters, rather
than for just a single parameter, but this topic will not be pursued here.

Example 5.10. Estimating a Box–Cox transformation

An automatic method for estimating the transformation parameter for a
Box–Cox transformation assumes that for some values of α, µ, and σ, the
transformed data Y

(α)
1 , . . . , Y

(α)
n are i.i.d. N(µ, σ2)-distributed. All three pa-

rameters can be estimated by maximum likelihood. For a fixed value of α, µ̂

and σ̂ are the sample mean and variance of Y
(α)
1 , . . . , Y

(α)
n and these values

can be plugged into the log-likelihood to obtain the profile log-likelihood for
α. This can be done with the function boxcox in R’s MASS package, which
plots the profile log-likelihood with confidence intervals.

Estimating α by the use of profile likelihood will be illustrated using the
data on gas pipeline flows. Figure 5.12 shows the profile log-likelihoods and
the KDEs and normal QQ plots of the flows transformed using the MLE of
α. The KDE used adjust = 1.5 to smooth out local bumpiness seen with the
default bandwidth. For the flows in pipeline 1, the MLE is α̂ = 3.5. Recall that
in Example 4.3, we saw by trial-and-error that α between 3 and 4 was best
for symmetrizing the data. It is gratifying to see that maximum likelihood
corroborates this choice. The QQ plots show that the Box–Cox transformed
flows have light tails. Light tails are not usually considered to be a problem
and are to be expected here since the pipeline flows are bounded, below by 0
and above by the capacity of the pipeline.

¤

It is worth pointing out that we have now seen two distinct methods for
accommodating the left skewness in the pipeline flows, modeling the untrans-
formed data by a skewed t-distribution (Example 5.9) and Box–Cox transfor-
mation to a normal distribution (Example 5.10). A third method would be
to forego parametric modeling and use the kernel density estimation. This is
not an atypical situation; often data can be analyzed in several different, but
equally appropriate, ways.
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Fig. 5.12. Profile log-likelihoods and 95% confidence intervals for the parameter α of
the Box–Cox transformation (left), KDEs of the transformed data (middle column),
and normal plots of the transformed data (right).

5.16 Robust Estimation

Although maximum likelihood estimators have many attractive properties,
they have one serious drawback of which anyone using them should be aware.
Maximum likelihood estimators can be very sensitive to the assumptions of the
statistical model. For example, the MLE of the mean of a normal population
is the sample mean and the MLE of σ2 is the sample variance, except with the
minor change of a divisor of n rather than n−1. The sample mean and variance
are efficient estimators when the population is truly normally distributed, but
these estimators are very sensitive to outliers. Because these estimators are
averages of the data and the squared deviations from the mean, respectively, a
single outlier in the sample can drive the sample mean and variance to wildly
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absurd values if the outlier is far enough removed from the other data. Extreme
outliers are nearly impossible with exactly normally distributed data, but if
the data are only approximately normal with heavier tails than the normal
distribution, then outliers are more probable and, when they do occur, more
likely to be extreme. Therefore, the sample mean and variance can be very
inefficient estimators. Statisticians say that the MLE is not robust to mild
deviations from the assumed model. This is bad news and has led researchers
to find estimators that are robust.

A robust alternative to the sample mean is the trimmed mean. An α-
trimmed mean is computed by ordering the sample from smallest to largest,
removing the fraction α of the smallest and the same fraction of the largest
observations, and then taking the mean of the remaining observations. The
idea behind trimming is simple and should be obvious: The sample is trimmed
of extreme values before the mean is calculated. There is a mathematical
formulation of the α-trimmed mean. Let k = nα rounded17 to an integer; k is
the number of observations removed from both ends of the sample. Then the
α-trimmed mean is

Xα =
∑n−k

i=k+1 Y(i)

n− 2k
,

where Y(i) is the ith order statistic. Typical values of α are 0.1, 0.15, 0.2,
and 0.25. As α approaches 0.5, the α-trimmed mean approaches the sample
median, which is the 0.5-sample quantile.

Dispersion refers to the variation in a distribution or sample. The sample
standard deviation is the most common estimate of dispersion, but as stated
it is nonrobust. A robust estimator of dispersion is the MAD (median absolute
deviation) estimator, defined as

σ̂MAD = 1.4826 ×median{|Yi −median(Yi)|}. (5.44)

This formula should be interpreted as follows. The expression “median(Yi)”
is the sample median, |Yi − median(Yi)| is the absolute deviation of the ob-
servations from their median, and median{|Yi − median(Yi)|} is the median
of these absolute deviations. For normally distributed data, the median{|Yi−
median(Yi)|} estimates not σ but rather Φ−1(0.75)σ = σ/1.4826, because
for normally distributed data the median{|Yi − median(Yi)|} will converge
to σ/1.4826 as the sample size increases. Thus, the factor 1.4826 in equa-
tion (5.44) calibrates σ̂MAD so that it estimates σ when applied to normally
distributed data.

σ̂MAD does not estimate σ for a nonnormal population. It does measure
dispersion, but not dispersion as measured by the standard deviation. But
this is just the point. For nonnormal populations the standard deviation is
very sensitive to the tails of the distribution and does not tell us much about
the dispersion in the central range of the distribution, just in the tails.
17 Definitions vary and the rounding could be either upward or to the nearest integer.
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In R, mad(x) computes (5.44). Some authors define MAD to be median{|Yi−
median(Yi)|}, that is, without 1.4826. Here the notation σ̂MAD is used to em-
phasize the standardization by 1.4826 in order to estimate a normal standard
deviation.

An alternative to using robust estimators is to assume a model where out-
liers are more probable. Then the MLE will automatically downweight out-
liers. For example, the MLE of the parameters of a t-distribution is much more
robust to outliers than the MLE of the parameters of a normal distribution.

5.17 Transformation Kernel Density Estimation with a
Parametric Transformation

We saw in Section 4.8 that the transformation kernel density estimator
(TKDE) can avoid the bumps seen when the ordinary KDE is applied to
skewed data. The KDE also can exhibit bumps in the tails when both tails
are long, as is common with financial markets data. An example is the vari-
able diffrf whose KDE is in Figure 5.9. For such data, the TKDE needs a
transformation that is convex to the right of the mode and concave to the
left of the mode. There are many such transformations, and in this section
we will use some facts from probability theory, as well as maximum likelihood
estimation, to select a suitable one.

The key ideas used here are that (1) normally distributed data have light
tails and are suitable for estimation with the KDE, (2) it is easy to transform
data to normality if one knows the CDF, and (3) the CDF can be estimated
by maximum likelihood. If a random variable has a continuous distribution
F , then F (X) has a uniform distribution and Φ−1{F (X)} has an N(0, 1)
distribution; here Φ is the standard normal CDF. Of course, in practice F is
unknown, but one can estimate F parametrically, assuming, for example, that
F is some t-distribution. It is not necessary that F actually be a t-distribution,
only that a t-distribution can provide a reasonable enough fit to F in the tails
so that an appropriate transformation is selected. If it was known that F was
a t-distribution, then, of course, there would be no need to use a KDE or
TKDE to estimate its density. The transformation to use in the TKDE is
g(y) = Φ−1{F (y)}, which has inverse g−1(x) = F−1{Φ(x)}. The derivative of
g is needed to compute the TKDE and is

g′(y) =
f(y)

φ[Φ−1{F (y)}] .

Example 5.11. TKDE for risk-free returns

This example use the changes in the risk-free returns in Figure 4.3. We
saw in Section 5.14 that these data are reasonably well fit by a t-distribution

Transformation Kernel Density Estimation with a Parametric Transformation
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Fig. 5.13. Kernel density and transformation kernel density estimates of monthly
changes in the risk-free returns, January 1960 to December 2002. The data are in
the Capm series in the Ecdat package in R.

with mean, standard deviation, and ν equal to 0.00121, 0.0724, and 3.33,
respectively. This distribution will be used as F . Figure 5.13 compares the
ordinary KDE to the TKDE for this example. Notice that the TKDE is much
smoother in the tails; this can be seen better in Figure 5.14, which gives detail
on the left tail.
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Fig. 5.14. Kernel density and transformation kernel density estimates of monthly
changes in the risk-free returns, January 1960 to December 2002, zooming in on left
tail.
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The transformation used in this example is shown in Figure 5.15. Notice
the concave-convex shape that brings the left and right tails closer to the
center and results in transformed data without the heavy tails seen in the
original data. The removal of the heavy tails can be seen in Figure 5.16,
which is a normal plot of the transformed data.
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Fig. 5.15. Plot of the transformation used in Example 5.11.
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Fig. 5.16. Normal plot of the transformed data used in Example 5.11.

Transformation Kernel Density Estimation with a Parametric Transformation
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5.18 Bibliographic Notes

Maximum likelihood estimation and likelihood ratio tests are discussed in all
textbooks on mathematical statistics, including Casella and Berger (2002) and
Wasserman (2004).

Burnham and Anderson (2002) is a comprehensive introduction to model
selection and is highly recommended for further reading. They also cover
multimodel inference, a more advanced topic that includes model averaging
where estimators or predictions are averaged across several models. Chap-
ter 7 of Burnham and Anderson provides the statistical theory behind AIC as
an approximate deviation of hypothetical validation data. The small-sample
corrected AIC is due to Hurvich and Tsai (1989).

Buch-Larsen, Nielsen, Guillén, and Bolance (2005) and Ruppert and Wand
(1992) discuss other methods for choosing the transformation when the TKDE
is applied to heavy-tailed data.

The central limit theorem for the MLE is stated precisely and proved in
textbooks on asymptotic theory such as Serfling (1980), van der Vaart (1998),
and Lehmann (1999).

Observed and expected Fisher information are compared by Efron and
Hinkley (1978), who argue that the observed Fisher information gives superior
standard errors.

Box–Cox transformations were introduced by Box and Cox (1964)
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5.20 R Lab

5.20.1 Earnings Data

Run the following R code to find a symmetrizing transformation for 1998 earn-
ings data from the Current Population Survey. The code looks at the untrans-
formed data and the square-root and log-transformed data. The transformed
data are compared by normal plots, boxplots, and kernel density estimates.

library("Ecdat")

?CPSch3

data(CPSch3)

dimnames(CPSch3)[[2]]

male.earnings = CPSch3[CPSch3[,3]=="male",2]

sqrt.male.earnings = sqrt(male.earnings)

log.male.earnings = log(male.earnings)

par(mfrow=c(2,2))

qqnorm(male.earnings,datax=T,main="untransformed")

qqnorm(sqrt.male.earnings,datax=T,main="square-root transformed")

qqnorm(log.male.earnings,datax=T,main="log-transformed")

par(mfrow=c(2,2))

boxplot(male.earnings,main="untransformed")

boxplot(sqrt.male.earnings,main="square-root transformed")

boxplot(log.male.earnings,main="log-transformed")
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par(mfrow=c(2,2))

plot(density(male.earnings),main="untransformed")

plot(density(sqrt.male.earnings),main="square-root transformed")

plot(density(log.male.earnings),main="log-transformed")

Problem 1 Which of the three transformation provides the most symmetric
distribution? Try other powers beside the square root. Which power do you
think is best for symmetrization? You may include plots with your work if you
find it helpful to do that.

Next, you will estimate the Box–Cox transformation parameter by max-
imum likelihood. The model is that the data are N(µ, σ2)-distributed after
being transformed by some λ. The unknown parameters are λ, µ, and σ.

Run the following R code to plot the profile likelihood for λ on the grid
seq(-2, 2, 1/10) (this is the default and can be changed). The command
boxcox takes an R formula as input. The left-hand side of the formula is
the variable to be transformed. The right-hand side is a linear model (see
Chapter 12). In this application, the model has only an intercept, which is
indicated by “1.” “MASS” is an acronym for “Modern Applied Statistics with
S-PLUS,” a highly-regarded textbook whose fourth edition also covers R. The
MASS library accompanies this book.

library("MASS")

windows()

boxcox(male.earnings~1)

The default grid of λ values is large, but you can zoom in on the high-likelihood
region with the following:

boxcox(male.earnings~1,lambda = seq(.3, .45, 1/100))

To find the MLE, run this R code:

bc = boxcox(male.earnings~1,lambda = seq(.3, .45, by=1/100),interp=F)

ind = (bc$y==max(bc$y))

ind2 = (bc$y > max(bc$y) - qchisq(.95,df=1)/2)

bc$x[ind]

bc$x[ind2]

Problem 2 (a) What are ind and ind2 and what purposes do they serve?
(b) What is the effect of interp on the output from boxcox?
(c) What is the MLE of λ?
(d) What is a 95% confidence interval for λ?
(e) Modify the code to find a 99% confidence interval for λ.
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Rather than trying to transform the variable male.earnings to a Gaussian
distribution, we could fit a skewed Gaussian or skewed t-distribution. R code
that fits a skewed t is listed below:

library("fGarch")

fit = sstdFit(male.earnings,hessian=T)

Problem 3 What are the estimates of the degrees-of-freedom parameter and
of ξ?

Problem 4 Produce a plot of a kernel density estimate of the pdf of male.
earnings. Overlay a plot of the skewed t-density with MLEs of the parameters.
Make sure that the two curves are clearly labeled, say with a legend, so that it
is obvious which curve is which. Include your plot with your work. Compare
the parametric and nonparametric estimates of the pdf. Do they seem similar?
Based on the plots, do you believe that the skewed t-model provides an adequate
fit to male.earnings?

Problem 5 Fit a skewed GED model to male.earnings and repeat Problem
4 using the skewed GED model in place of the skewed t. Which parametric
model fits the variable male.earnings best, skewed t or skewed GED?

5.20.2 DAX Returns

This section uses log returns on the DAX index in the data set EuStock-
Markets. Your first task is to fit the standardized t-distribution (std) to the
log returns. This is accomplished with the following R code.

Here loglik std is an R function that is defined in the code. This function
returns minus the log-likelihood for the std model. The std density function
is computed with the function dstd in the fGarch package. Minus the log-
likelihood, which is called the objective function, is minimized by the function
optim. The L-BFGS-B method is used because it allows us to place lower and
upper bounds on the parameters. Doing this avoids the errors that would be
produced if, for example, a variance parameter were negative. When optim is
called, start is a vector of starting values. Use R’s help to learn more about
optim. In this example, optim returns an object fit std. The component
fig std$par contains the MLEs and the component fig std$value contains
the minimum value of the objective function.

data(Garch,package="Ecdat")

library("fGarch")

data(EuStockMarkets)

Y = diff(log(EuStockMarkets[,1])) # DAX
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##### std #####

loglik_std = function(x) {

f = -sum(log(dstd(Y, x[1], x[2], x[3])))

f}

start=c(mean(Y),sd(Y),4)

fit_std = optim(start,loglik_std,method="L-BFGS-B",

lower=c(-.1,.001,2.1),

upper=c(.1,1,20))

print(c("MLE =",round(fit_std$par,digits=5)))

m_logL_std = fit_std$value # minus the log-likelihood

AIC_std = 2*m_logL_std+2*length(fit_std$par)

Problem 6 What are the MLEs of the mean, standard deviation, and the
degrees-of-freedom parameter? What is the value of AIC?

Problem 7 Modify the code so that the MLEs for the skewed t-distribution
are found. Include your modified code with your work. What are the MLEs?
Which distribution is selected by AIC, the t or the skewed t-distribution?

Problem 8 Compute and plot the TKDE of the density of the log returns us-
ing the methodology in Sections 2.8 and 3.16 of the lecture notes. The transfor-
mation that you use should be g(y) = Φ−1{F (y)}, where F is the t-distribution
with parameters estimated in Problem 1. Include your code and the plot with
your work.

Problem 9 Plot the KDE, TKDE, and parametric estimator of the log-return
density, all on the same graph. Zoom in on the right tail, specifically the region
0.035 < y < 0.06. Compare the three densities for smoothness. Are the TKDE
and parametric estimates similar? Include the plot with your work.

5.21 Exercises

1. Load the CRSPday data set in the Ecdat package and get the variable
names with the commands

library(Ecdat)
data(CRSPday)
dimnames(CRSPday)[[2]]

Plot the IBM returns with the commands

r = CRSPday[,5]
plot(r)
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Learn the mode and class of the IBM returns with

mode(r)
class(r)

You will see that the class of the variable r is “ts,” which means “time
series.” Data of class ts are plotted differently than data not of this class.
To appreciate this fact, use the following commands to convert the IBM
returns to class numeric before plotting them:

r2 = as.numeric(r)
class (r2)
plot(r2)

The variable r2 contains the same data as the variable r, but r2 has class
numeric.
Find the covariance matrix, correlation matrix, and means of GE, IBM,
and Mobil with the commands

cov(CRSPday[,4:6])
cor(CRSPday[,4:6])
apply(CRSPday[,4:6],2,mean)

Use your R output to answer the following questions:
(a) What is the mean of the Mobil returns?
(b) What is the variance of the GE returns?
(c) What is the covariance between the GE and Mobil returns?
(d) What is the correlation between the GE and Mobil returns?

2. Suppose that Y1, . . . , Yn are i.i.d. N(µ, σ2), where µ is known. Show that
the MLE of σ2 is

n−1
n∑

i=1

(Yi − µ)2.

3. Show that f∗(y|ξ) given by equation (5.15) integrates to (ξ + ξ−1)/2.
4. Let X be a random variable with mean µ and standard deviation σ.

(a) Show that the kurtosis of X is equal to 1 plus the variance of {(X −
µ)/σ}2.

(b) Show that the kurtosis of any random variable is at least 1.
(c) Show that a random variable X has a kurtosis equal to 1 if and only

if P (X = a) = P (X = b) = 1/2 for some a 6= b.
5. (a) What is the kurtosis of a normal mixture distribution that is 95%

N(0, 1) and 5% N(0, 10)?
(b) Find a formula for the kurtosis of a normal mixture distribution that

is 100p% N(0, 1) and 100(1 − p)% N(0, σ2), where p and σ are pa-
rameters. Your formula should give the kurtosis as a function of p and
σ.
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(c) Show that the kurtosis of the normal mixtures in part (b) can be made
arbitrarily large by choosing p and σ appropriately. Find values of p
and σ so that the kurtosis is 10,000 or larger.

(d) Let M > 0 be arbitrarily large. Show that for any p0 < 1, no matter
how close to 1, there is a p > p0 and a σ, such that the normal mixture
with these values of p and σ has a kurtosis at least M . This shows that
there is a normal mixture arbitrarily close to a normal distribution but
with a kurtosis above any arbitrarily large value of M .

6. Fit the F-N skewed t-distribution to the gas flow data. The data set is
in the file GasFlowData.csv, which can be found on the book’s website.
The F-N skewed t-distribution can be fit using the function sstdFit in
R’s fGarch package.

7. Suppose that X1, . . . , Xn are i.i.d. exponential(θ). Show that the MLE of
θ is X.

8. The number of small businesses in a certain region defaulting on loans was
observed for each month over a 4-year period. In the R program below,
the variable y is the number of defaults in a month and x is the value
for that month of an economic variable thought to affect the default rate.
The function dpois computes the Poisson density.

start =c(1,1)

loglik = function(theta) {-sum(log(dpois(y,lambda=theta[1]+

theta[2]*x)))}

mle= optim(start,loglik,hessian=T)

invFishInfo = solve(mle$hessian)

options(digits=4)

mle$par

mle$value

mle$convergence

sqrt(diag(invFishInfo))

The output is

> mle$par

[1] 28.0834 0.6884

> mle$value

[1] 150.9

> mle$convergence

[1] 0

> sqrt(diag(invFishInfo))

[1] 1.8098 0.1638

(a) Describe the statistical model being used here.
(b) What are the parameter estimates?
(c) Find 95% confidence intervals for the parameters in the model. Use a

normal approximation.
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9. In this problem you will fit a t-distribution by maximum likelihood to the
daily log returns for BMW. The data are in the data set bmw that is part
of the evir package. Run the following code:

library(evir)
library(fGarch)
data(bmw)
start_bmw = c(mean(bmw),sd(bmw),4)
loglik_bmw = function(theta)
{
-sum(log(dstd(bmw,mean=theta[1],sd=theta[2],nu=theta[3])))
}

mle_bmw = optim(start_bmw, loglik_bmw, hessian=T)
FishInfo_bmw = solve(mle_bmw$hessian)

Note: The R code defines a function loglik bmw that is minus the log-
likelihood. See Chapter 10 of An Introduction to R for more information
about functions in R. Also, see page 59 of this manual for more about
maximum likelihood estimation in R. optim minimizes this objective func-
tion and returns the MLE (which is mle bmw$par) and other information,
including the Hessian of the objective function evaluated at the MLE
(because hessian=T—the default is not to return the Hessian).
(a) What does the function dstd, and what package is it in?
(b) What does the function solve do?
(c) What is the estimate of ν, the degrees-of-freedom parameter?
(d) What is the standard error of ν?

10. In this problem, you will fit a t-distribution to daily log returns of Siemens.
You will estimate the degrees-of-freedom parameter graphically and then
by maximum likelihood. Run the following code, which produces a 3 ×
2 matrix of probability plots. If you wish, add reference lines as done in
Section 4.11.1.

data(siemens)
n=length(siemens)
par(mfrow=c(3,2))
qqplot(siemens,qt(((1:n)-.5)/n,2),ylab="t(2) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,3),ylab="t(3) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,4),ylab="t(4) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,5),ylab="t(5) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,8),ylab="t(8) quantiles",

xlab="data quantiles")
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qqplot(siemens,qt(((1:n)-.5)/n,12),ylab="t(12) quantiles",
xlab="data quantiles")

R has excellent graphics capabilities—see Chapter 12 of An Introduction
to R for more about R graphics and, in particular, pages 67 and 72 for
more information about par and mfrow, respectively.
(a) Do the returns have lighter or heavier tails than a t-distribution with

2 degrees of freedom?
(b) Based on the QQ plots, what seems like a reasonable estimate of ν?
(c) What is the MLE of ν for the Siemens log returns?
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Resampling

6.1 Introduction

Finding a single set of estimates for the parameters in a statistical model is not
enough. An assessment of the uncertainty in these estimates is also needed.
Standard errors and confidence intervals are common methods for expressing
uncertainty.1 In the past, it was sometimes difficult, if not impossible, to
assess uncertainty, especially for complex models. Fortunately, the speed of
modern computers, and the innovations in statistical methodology inspired
by this speed, have largely overcome this problem. In this chapter we apply
a computer simulation technique called the “bootstrap” or “resampling” to
find standard errors and confidence intervals. The bootstrap method is very
widely applicable and will be used throughout the remainder of this book. The
bootstrap is one way that modern computing has revolutionized statistics.
Markov chain Monte Carlo (MCMC) is another; see Chapter 20.

The term “bootstrap” was coined by Bradley Efron (1979) and comes from
the phrase “pulling oneself up by one’s bootstraps.”

When statistics are computed from a randomly chosen sample, then these
statistics are random variables. Students often do not appreciate this fact.
After all, what could be random about Y ? We just averaged the data, so
what is random? The point is that the sample is only one of many possible
samples. Each possible sample gives a different value of Y . Thus, although we
only see one value of Y , it was selected at random from the many possible
values and therefore Y is a random variable.

Methods of statistical inference such as confidence intervals and hypoth-
esis tests are predicated on the randomness of statistics. For example, the
confidence coefficient of a confidence interval tells us the probability, before a
random sample is taken, that an interval constructed from the sample will con-
tain the parameter. The confidence coefficient is also the long-run frequency of
1 See Sections A.16.2 and A.17 for introductions to standard errors and confidence

intervals.
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intervals that cover their parameter. Confidence intervals are usually derived
using probability theory. Often, however, the necessary probability calcula-
tions are intractable, and in such cases we can replace theoretical calculations
by Monte Carlo simulation.

But how do we simulate sampling from an unknown population? The an-
swer, of course, is that we cannot do this exactly. However, a sample is a
good representative of the population, and we can simulate sampling from
the population by sampling from the sample, which is called resampling.

Each resample has the same sample size n as the original sample. The
reason for this is that we are trying to simulate the original sampling, so we
want the resampling to be as similar as possible to the original sampling. By
bootstrap approximation, we mean the approximation of the sampling process
by resampling.

There are two basic resampling methods, model-free and model-based,
which are also known, respectively, as nonparametric and parametric. In this
chapter, we assume that we have an i.i.d. sample from some population. For
dependent data, resampling requires different techniques, which will be dis-
cussed in Section 10.5.

In model-free resampling, the resamples are drawn with replacement from
the original sample. Why with replacement? The reason is that only sampling
with replacement gives independent observations, and we want the resamples
to be i.i.d. just as the original sample. In fact, if the resamples were drawn
without replacement, then every resample would be exactly the same as the
original sample, so the resamples would show no random variation. This would
not be very satisfactory, of course.

Model-based resampling does not take a sample from the original sample.
Instead, one assumes that the original sample was drawn i.i.d. from a density
in the parametric family, {f(y|θ) : θ ∈ Θ}, so, for an unknown value of
θ, f(y|θ) is the population density. The resamples are drawn i.i.d. from the
density f(y|θ̂), where θ̂ is some estimate of the parameter vector θ.

The number of resamples taken should, in general, be large. Just how large
depends on the context and is discussed more fully later. Sometimes thousands
or even tens of thousands of resamples are used. We let B denote the number
of resamples.

When reading the following section, keep in mind that with resampling,
the original sample plays the role of the population, because the resamples
are taken from the original sample. Estimates from the sample play the role
of true population parameters.

6.2 Bootstrap Estimates of Bias, Standard Deviation,
and MSE

Let θ be a one-dimensional parameter, let θ̂ be its estimate from the sam-
ple, and let θ̂∗1 , . . . , θ̂∗B be estimates from B resamples. Also, define θ̂∗ to be
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the mean of θ̂∗1 , . . . , θ̂∗B . An asterisk indicates a statistic calculated from a
resample.

The bias of θ̂ is defined as BIAS(θ̂) = E(θ̂)− θ. Since expectations, which
are population averages, are estimated by averaging over resamples, the boot-
strap estimate of bias is

BIASboot(θ̂) = θ̂∗ − θ̂. (6.1)

Notice that, as discussed in the last paragraph of the previous section, in the
bootstrap estimate of bias, the unknown population parameter θ is replaced
by the estimate θ̂ from the sample. The bootstrap standard error for θ̂ is the
sample standard deviation of θ̂∗1 , . . . , θ̂∗B , that is,

sboot(θ̂) =

√√√√ 1
B − 1

B∑

b=1

(θ̂∗b − θ̂∗)2. (6.2)

sboot(θ̂) estimates the standard deviation of θ̂.
The mean-squared error (MSE) of θ̂ is E(θ̂ − θ)2 and is estimated by

MSEboot(θ̂) =
1
B

B∑

b=1

(θ̂∗b − θ̂)2.

As in the estimation of bias, when estimating MSE, the unknown θ is replaced
by θ̂. The MSE reflects both bias and variability and, in fact,

MSEboot(θ̂) ≈ BIAS2
boot(θ̂) + s2

boot(θ̂). (6.3)

We would have equality in (6.3), rather than an approximation, if in the
denominator of (6.1) we used B rather than B − 1. Since B is usually large,
the error of the approximation is typically very small.

6.2.1 Bootstrapping the MLE of the t-Distribution

Functions that compute the MLE, such as, fitdistr in R, usually compute
standard errors for the MLE along with the estimates themselves. The stan-
dard errors are justified theoretically by an “asymptotic” or “large-sample”
approximation, called the CLT (central limit theorem) for the maximum like-
lihood estimator.2 This approximation becomes exact only as the sample size
increases to ∞. Since a sample size is always finite, one cannot be sure of the
accuracy of the standard errors. Computing standard errors by the bootstrap
can serve as a check on the accuracy of the large-sample approximation, as
illustrated in the following example.
2 See Section 5.10.
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Example 6.1. Bootstrapping GE Daily Returns

This example uses the GE daily returns from January 3, 1969, to Decem-
ber 31, 1998, in the data set CRSPday in R’s Ecdat package. The sample size
is 2528 and the number of resamples is B = 1000. The t-distribution was fit
using fitdistr in R and the model-free bootstrap was used. The first and
third lines in Table 6.1 are the estimates and standard errors returned by
fitdistr, which uses observed Fisher information to calculate standard er-
rors. The second and fourth lines have the results from bootstrapping. The
differences between “Estimate” and “Bootstrap mean” are the bootstrap es-
timates of bias—they are all zero to three significant digits, so bias seems
negligible in this example. Small, and even negligible, bias is common when
the sample size is in the thousands, as in this example.

Table 6.1. Estimates from fitting a t-distribution to the 2528 GE daily returns.
“Estimate” = MLE. “SE” is standard error from observed Fisher information re-
turned by the R function fitdistr. “Bootstrap mean” and “Bootstrap SE” are the
sample mean and standard deviation of the maximum likelihood estimates from 1000
bootstrap samples. ν is the degrees-of-freedom parameter. The model-free bootstrap
was used.

µ σ ν

Estimate 0.000873 0.0112 6.34
Bootstrap mean 0.000873 0.0112 6.34

SE 0.000254 0.000259 0.73
Bootstrap SE 0.000257 0.000263 0.81

It is reassuring that “SE” and “Bootstrap SE” agree as closely as the
do in Table 6.1. This is an indication that both are reliable estimates of the
uncertainty in the parameter estimates. Such close agreement is more likely
with samples as large as this one.

¤

Example 6.2. Bootstrapping GE daily returns, continued

To illustrate the bootstrap for a smaller sample size, we now use only the
first 250 daily GE returns, approximately the first year of data. The number of
bootstrap samples is 1000. The results are in Table 6.2. For µ and s, the results
in Tables 6.1 and 6.2 are comparable though the standard errors in Table 6.2
are, of course, larger because of the smaller sample size. For the parameter ν,
the results in Table 6.2 are different in two respects from those in Table 6.1.
First, the estimate and the bootstrap mean differ by more than 1, a sign that
there might be some bias. Second, the bootstrap standard deviation is 2.99,
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considerably larger than the SE, which is only 1.97. This suggests that the
SE, which is based on large-sample theory, specifically the CLT for the MLE,
is not an accurate measure of uncertainty in the parameter ν, at least not for
the smaller sample.

Table 6.2. Estimates from fitting a t-distribution to the first 250 GE daily returns.
Notation as in Table 6.1. The nonparametric bootstrap was used.

µ σ ν

Estimate 0.00142 0.01055 5.51
Bootstrap mean 0.00146 0.01067 6.81

SE 0.000767 0.000817 1.97
Bootstrap SE 0.000777 0.000849 2.99

Using the results in Table 6.2, for µ the squared bias is (0.00142 −
0.00146)2 = 1.6× 10−9 and the variance is (0.000777)2 = 6.04× 10−7. Thus,
the contribution of bias to the MSE is very small, and the MSE is nearly
entirely due to variance. For ν, the squared bias is (5.51− 6.81)2 = 1.69, the
variance is (2.99)2 = 8.94, and the MSE is 1.69 + 8.94 = 10.63. The squared
bias is still small compared to the variance, but the bias is not negligible.
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Fig. 6.1. Kernel density estimates of 1000 bootstrap estimates of df using (a) the
first 250 daily GE returns and (b) all 2528 GE returns. The default bandwidth was
used in R’s density function to create the estimates.

To gain some insight about why the results about ν in these two tables
disagree, kernel density estimates of the two bootstrap samples were plotted in
Figure 6.1. We see that with the smaller sample size in panel (a), the density
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is bimodal and has noticeable right skewness. The density with the full sample
is unimodal and has much less skewness.

Tail-weight parameters such as ν are difficult to estimate unless the sample
size is in the thousands. With smaller sample sizes, such as 250, there will not
be enough extreme observations to obtain a precise estimate of the tail-weight
parameters. This problem has been nicely illustrated by the bootstrap. The
number of extreme observations will vary between bootstrap samples. The
bootstrap samples with fewer extreme values will have larger estimates of ν,
since larger values of ν correspond to thinner tails.

However, even with only 250 observations, ν can be estimated accurately
enough to show, for example, that for the GE daily returns ν is very likely
less than 13, the 98th percentile of the bootstrap distribution of ν. Therefore,
the bootstrap provides strong evidence that the normal model corresponding
to ν = ∞ is not as satisfactory as a t-model.

By the CLT for the MLE, we know that the MLE is nearly normally
distributed for large enough values of n. But this theorem does not tell us
how large is large enough. To answer that question, we can use the bootstrap.
We have seen here that n = 250 is not large enough for near normality of ν̂,
and, though n = 2528 is sufficiently large so that the bootstrap distribution
is unimodal, there is still some right skewness when n = 2528.

¤

6.3 Bootstrap Confidence Intervals

Besides its use in estimating bias and finding standard errors, the bootstrap
is widely used to construct confidence intervals. There are many bootstrap
confidence intervals and some are quite sophisticated. We can only describe
a few and the reader is pointed to the references in Section 6.4 for additional
information.

Except in certain simple cases, confidence intervals are based on approxi-
mations such as the CLT for the MLE. The bootstrap is based on the approx-
imation of the population’s probability distribution using the sample. When
a confidence interval uses an approximation, there are two coverage probabil-
ities, the nominal one that is stated and the actual one that is unknown. Only
for exact confidence intervals making no use of approximations will the two
probabilities be equal. By the “accuracy” of a confidence interval, we mean the
degree of agreement between the nominal and actual coverage probabilities.

6.3.1 Normal Approximation Interval

Let θ̂ be an estimate of θ and let sboot(θ̂) be the estimate of standard error
given by (6.2). Then the normal theory confidence interval for θ is

θ̂ ± sboot(θ̂) zα/2, (6.4)
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where zα/2 is the α/2-upper quantile of the normal distribution. When θ̂ is
an MLE, this interval is essentially the same as (5.20) except that bootstrap,
rather than the Fisher information, is used to find the standard error.

To avoid confusion, it should be emphasized that the normal approxima-
tion does not assume that the population is normally distributed but only
that θ̂ is normally distributed by a CLT.

6.3.2 Bootstrap-t Intervals

Often one has available a standard error for θ̂, for example, from Fisher infor-
mation. In this case, the bootstrap-t method can be used and, compared to
normal approximation confidence intervals, offers the possibility of more ac-
curate confidence intervals, that is, with nominal coverage probability closer
to the actual coverage probability. We start by showing how the bootstrap-t
method is related to the usual t-based confidence interval for a normal popu-
lation mean, and then discuss the general theory.

Confidence Intervals for a Population Mean

Suppose we wish to construct a confidence interval for the population mean
based on a random sample. One starts with the so-called “t-statistic,”3 which
is

t =
µ− Y

s/
√

n
. (6.5)

The denominator of t, s/
√

n, is just the standard error of the mean, so that
the denominator estimates the standard deviation of the numerator.

If we are sampling from a normally distributed population, then the prob-
ability distribution of t is known to be the t-distribution with n−1 degrees of
freedom. Using the notation of Section 5.5.2, we denote by tα/2,n−1 the α/2
upper t-value, that is, the α/2-upper quantile of this distribution. Thus, t in
(6.5) has probability α/2 of exceeding tα/2,n−1. Because of the symmetry of
the t-distribution, the probability is also α/2 that t is less than −tα/2,n−1.

Therefore, for normally distributed data, the probability is 1− α that

−tα/2,n−1 ≤ t ≤ tα/2,n−1. (6.6)

Substituting (6.5) into (6.6), after a bit of algebra we find that

1− α = P

{
Y − tα/2,n−1

s√
n
≤ µ ≤ Y + tα/2,n−1

s√
n

}
, (6.7)

3 Actually, t is not quite a statistic since it depends on the unknown µ, whereas
a statistic, by definition, is something that depends only on the sample, not on
unknown parameters. However, the term “t-statistic” is so widespread that we
will use it here.
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which shows that
Y ± s√

n
tα/2,n−1

is a 1−α confidence interval for µ, assuming normally distributed data. This
is the confidence interval given by equation (A.44). Note that in (6.7) the
random variables are Y and s, and µ is fixed.

What if we are not sampling from a normal distribution? In that case, the
distribution of t defined by (6.5) is not the t-distribution, but rather some
other distribution that is not known to us. There are two problems. First, we
do not know the distribution of the population. Second, even if the popula-
tion distribution were known, it is a difficult, usually intractable, probability
calculation to get the distribution of the t-statistic from the distribution of
the population. This calculation has only been done for normal populations.
Considering the difficulty of these two problems, can we still get a confidence
interval? The answer is “yes, by resampling.”

We start with a large number, say B, of resamples from the original sample.
Let Y boot,b and sboot,b be the sample mean and standard deviation of the bth
resample, b = 1, . . . , B, and let Y be the mean of the original sample. Define

tboot,b =
Y − Y boot,b

sboot,b/
√

n
. (6.8)

Notice that tboot,b is defined in the same way as t except for two changes.
First, Y and s in t are replaced by Y boot,b and sboot,b in tboot,b. Second, µ in t
is replaced by Y in tboot,b. The last point is a bit subtle, and uses the principle
stated at the end of Section 6.1—a resample is taken using the original sample
as the population. Thus, for the resample, the population mean is Y !

Because the resamples are independent of each other, the collection tboot,1,
tboot,2, . . . can be treated as a random sample from the distribution of the
t-statistic. After B values of tboot,b have been calculated, one from each re-
sample, we find the α/2-lower and -upper quantiles of these tboot,b values. Call
these percentiles tL and tU .

If the original population is skewed, then there is no reason to suspect
that the α/2-lower quantile is minus the α/2-upper quantile as happens for
symmetric populations such as the t-distribution. In other words, we do not
necessarily expect that tL = −tU . However, this fact causes us no problem
since the bootstrap allows us to estimate tL and tU without assuming any
relationship between them. Now we replace −tα/2,n−1 and tα/2,n−1 in the
confidence interval (6.7) by tL and tU , respectively. Finally, the bootstrap
confidence interval for µ is

(
Y + tL

s√
n

, Y + tU
s√
n

)
. (6.9)

In (6.9), Y and s are the mean and standard deviation of the original sample,
and only tL and tU are calculated from the B bootstrap resamples.
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The bootstrap has solved both problems mentioned above. One does not
need to know the population distribution since we can estimate it by the sam-
ple. A sample isn’t a probability distribution. What is being done is creating a
probability distribution, called the empirical distribution, from the sample by
giving each observation in the sample probability 1/n where n is the sample
size. Moreover, one doesn’t need to calculate the distribution of the t-statistic
using probability theory. Instead we can simulate from the empirical distribu-
tion.

Confidence Interval for a General Parameter

The method of constructing a t-confidence interval for µ can be generalized to
other parameters. Let θ̂ and s(θ̂) be the estimate of θ and its standard error
calculated from the sample. Let θ̂∗b and sb(θ̂) be the same quantities from the
bth bootstrap sample. Then the bth bootstrap t-statistic is

tboot,b =
θ̂ − θ̂∗b
sb(θ̂)

. (6.10)

As when estimating a populations mean, let tL and tU be the α/2-lower and
-upper sample quantiles of these t-statistics. Then the confidence for θ is

(
θ̂ + tLs(θ̂), θ̂ + tUs(θ̂)

)

since

1− α ≈ P

{
tl ≤ θ̂ − θ̂∗b

sb(θ̂)
≤ tU

}
(6.11)

≈ P

{
tl ≤ θ − θ̂

s(θ̂)
≤ tU

}
(6.12)

= P
{

θ̂ + tLs(θ̂) ≤ θ ≤ θ̂ + tUs(θ̂)
}

.

The approximation in (6.11) is due to Monte Carlo error and can be made
small by choosing B large. The approximation in (6.12) is from the bootstrap
approximation of the population’s distribution by the empirical distribution.
The error of the second approximation is independent of B and becomes small
only as the sample size n becomes large. Though one generally has no control
over the sample size, fortunately, sample sizes are often large in financial
engineering.

6.3.3 Basic Bootstrap Interval

Let qL and qU be the α/2-lower and -upper sample quantiles of θ̂∗1 , . . . , θ̂∗B .
The fraction of bootstrap estimates that satisfy
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qL ≤ θ̂∗b ≤ qU (6.13)

is 1− α. But (6.13) is algebraically equivalent to

θ̂ − qU ≤ θ̂ − θ̂∗b ≤ θ̂ − qL, (6.14)

so that θ̂− qU and θ̂− qL are lower and upper quantiles for the distribution of
θ̂ − θ̂∗b . The basic bootstrap interval uses them as lower and upper quantiles
for the distribution of θ− θ̂. Using the bootstrap approximation, it is assumed
that

θ̂ − qU ≤ θ − θ̂ ≤ θ̂ − qL (6.15)

will occur in a fraction 1−α of samples. Adding θ̂ to each term in (6.15) gives
2θ̂ − qU ≤ θ ≤ 2θ̂ − qL, so that

(2θ̂ − qU , 2θ̂ − qL) (6.16)

as a confidence interval for θ. Interval (6.16) is sometimes called the basic
bootstrap interval.

6.3.4 Percentile Confidence Intervals

There are several bootstrap confidence intervals based on the so-called per-
centile method. Only one, the basic percentile interval, in discussed here in
detail.

As in Section 6.3.3, let qL and qU be the α/2-lower and -upper sample
quantiles of θ̂∗1 , . . . , θ̂∗B . The basic percentile confidence interval is simply

(qL, qU ). (6.17)

By (6.13), the proportion of θ̂∗b -values in this interval is 1 − α. This interval
can be justified by assuming that θ̂∗ is distributed symmetrically about θ̂.
This assumption implies that for some C > 0, qL = θ̂ − C and qU = θ̂ + C.
Then 2θ̂ − qU = qL and 2θ̂ − qL = qU , so the basic bootstrap interval (6.16)
coincides with the basic percentile interval (6.17).

What if θ̂∗ is not distributed symmetrically about θ̂? Fortunately, not all
is lost. As discussed in Section 4.6, often random variables can be transformed
to have a symmetric distribution. So, now assume only that for some mono-
tonically increasing function g, g(θ̂∗) is symmetrically distributed about g(θ̂).
As we will now see, this weaker assumption is all that is needed to justify
the basic percentile interval. Because g is monotonically strictly increasing
and quantiles are transformation-respecting4, g(qL) and g(qU ) are lower- and
upper-α/2 quantiles of g(θ̂∗1), . . . , g(θ̂∗B), and the basic percentile confidence
interval for g(θ) is

4 See Appendix A.2.2.
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{g(qL), g(qU )}. (6.18)

Now, if (6.18) has coverage probability (1−α) for g(θ), then, since g is mono-
tonically increasing, (6.17) has coverage probability (1−α) for θ. This justifies
the percentile interval, at least if one is willing to assume the existence of a
transformation to symmetry. Note that it is only assumed that such a g exists,
not that it is known. No knowledge of g is necessary, since g is not used to
construct the percentile interval.

The basic percentile method is simple, but it is not considered to be very
accurate, except for large sample sizes. There are two problems with the per-
centile method. The first is an assumption of unbiasedness. The basic per-
centile interval assumes not only that g(θ̂∗) is distributed symmetrically, but
also that is symmetric about g(θ̂) rather than g(θ̂) plus some bias. Most es-
timators satisfy a CLT, such as, the CLTs for sample quantiles and for the
MLE in Sections 4.3.1 and 5.10. Therefore, bias becomes negligible in large
enough samples, but in practice the sample size might not be sufficiently large
and bias can cause the nominal and actual coverage probabilities to differ.

The second problem is that θ̂ may have a nonconstant variance, a problem
called heteroskedasticity. If θ̂ is the MLE, then the variance of θ̂ is, at least
approximately, the inverse of Fisher information and the Fisher information
need not be constant—it often depends on θ. For example, when creating a
confidence interval for a normal mean, s is used in place of the unknown σ, so
the exact variance of Y is not used. Confidence intervals that use theoretical
t-quantiles, as well bootstrap-t confidence intervals, correct for the effect of
estimation error in s. The basic percentile method does not make such a
correction. The effect of a nonconstant variance of θ̂ also becomes smaller
with larger sample sizes, but may not be negligible in practice.

More sophisticated percentile methods can correct for bias and het-
eroskedasticity. The BCa and ABC (approximate bootstrap confidence) per-
centile intervals are improved percentile intervals in common use. In the name
“BCa,” “BC” means “bias-corrected” and “a” means “accelerated,” which
refers to the rate at which the variance changes with θ. The BCa method
automatically estimates both the bias and the rate of change of the variance
and then makes suitable adjustments. The theory behind the BCa and ABC
intervals is beyond the scope of this book, but is discussed in references found
in Section 6.4. Both the BCa and ABC methods have been implemented in
statistical software such as R. In R’s bootstrap package, the functions bcanon,
abcpar, and abcnon implement the nonparametric BCa, parametric ABC, and
nonparametric ABC intervals, respectively.

Example 6.3. Confidence interval for a quantile-based tail-weight parameter

It was mentioned in Section 5.8 that a quantile-based parameter quanti-
fying tail weight can be defined as the ratio of two scale parameters:
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s(p1, 1− p1)
s(p2, 1− p2)

, (6.19)

where

s(p1, p2) =
F−1(p2)− F−1(p1)

a
,

a is a positive constant that does not affect the ratio (6.19) and so can be
ignored, and 0 < p1 < p2 < 1/2. We will call (6.19) quKurt. Finding a
confidence interval for quKurt can be a daunting task without the bootstrap,
but with the bootstrap it is simple. In this example, BCa confidence intervals
will be found for quKurt. The parameter is computed from a sample y by this
R function, which has default values p1 = 0.025 and p2 = 0.25:

quKurt = function(y,p1=0.025,p2=0.25)

{

Q = quantile(y,c(p1,p2,1-p2,1-p1))

(Q[4]-Q[1]) / (Q[3]-Q[2])

}

The BCa intervals are found with the bcanon function in the bootstrap
package using B = 5000. The seed of the random number generator was fixed
so that these results can be reproduced.

library("fEcofin") # for bmw return data

library("bootstrap")

set.seed("5640")

bca_kurt= bcanon(bmwRet[,2],5000,quKurt)

bca_kurt$confpoints

The output gives a variety of confidence limits.

> bca_kurt$confpoints

alpha bca point

[1,] 0.025 4.069556

[2,] 0.050 4.104389

[3,] 0.100 4.144039

[4,] 0.160 4.175559

[5,] 0.840 4.412947

[6,] 0.900 4.449079

[7,] 0.950 4.498149

[8,] 0.975 4.538596

The results above show, for example, that the 90% BCa confidence is (4.10,
4.50). For reference, any normal distribution has quKurt equal 2.91, so these
data have heavier than Gaussian tails, at least as measured by quKurt.

¤
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Example 6.4. Confidence interval for the ratio of two quantile-based tail-weight
parameters
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Fig. 6.2. QQ plot of returns on two stocks in the midcapD.ts data set. The reference
lines goes through the first and third quartiles.

This example uses the data set midcapD.ts of returns on midcap stocks in
the fEcofin package. Two of the stocks in this data set are LSCC and CSGS.
From Figure 6.2, which is a QQ plot comparing the returns from these two
companies, it appears that LSCC returns have lighter tails than CSGS returns.
The values of quKurt are 2.91 and 4.13 for LSCC and GSGS, respectively, and
the ratio of the two values is 0.704. This is further evidence that LSCC returns
have the lesser tail weight. A BCa confidence interval for the ratio of quKurt
for LSCC and CSGS is found with the following R program.

library("fEcofin")

data(midcapD.ts)

attach(midcapD.ts)

qqplot(LSCC,CSGS)

n=length(LSCC)

quKurt = function(y,p1=0.025,p2=0.25)

{

Q = quantile(y,c(p1,p2,1-p2,1-p1))

as.numeric((Q[4]-Q[1]) / (Q[3]-Q[2]))

}

compareQuKurt = function(x,p1=0.025,p2=0.25,xdata)
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{

quKurt(xdata[x,1],p1,p2)/quKurt(xdata[x,2],p1,p2)

}

quantKurt(LSCC)

quantKurt(CSGS)

xdata=cbind(LSCC,CSGS)

compareQuKurt(1:n,xdata=xdata)

library("bootstrap")

set.seed("5640")

bca_kurt= bcanon((1:n),5000,compareQuKurt,xdata=xdata)

bca_kurt$confpoints

The function compareQuKurt computes a quKurt ratio. The function
bcanon is designed to bootstrap a vector, but this example has bivariate data
in a matrix with two columns. To bootstrap multivariate data, there is a trick
given in R’s help for bcanon—bootstrap the integers 1 to n, the sample size.
The resamples of 1, . . . , n allow one to resample the rows of the data vector.

The 95% confidence interval for the quKurt ratio is 0.568 to 0.924, so with
95% confidence it can be concluded that LSCC has a smaller value of quKurt

> bca_kurt$confpoints

alpha bca point

[1,] 0.025 0.5675610

[2,] 0.050 0.5941584

[3,] 0.100 0.6230570

[4,] 0.160 0.6462355

[5,] 0.840 0.8049214

[6,] 0.900 0.8338403

[7,] 0.950 0.8639597

[8,] 0.975 0.9236320

¤

6.4 Bibliographic Notes

Efron (1979) introduced the name “bootstrap” and did much to popularize re-
sampling methods. Efron and Tibshirani (1993), Davison and Hinkley (1997),
Good (2005), and Chernick (2007) are introductions to the bootstrap that
discuss many topics not treated here, including, the theory behind the BCa

and ABC methods for confidence intervals. The R package bootstrap is de-
scribed by its authors as “functions for Efron and Tibshirani (1993)” and the
package contains the data sets used in this book. The R package boot is a
more recent set of resampling functions and data sets to accompany Davison
and Hinkley (1997).
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6.6 R Lab

6.6.1 BMW Returns

This lab uses a data set containing 6146 daily returns on BMW stock from
January 3, 1973 to July 23, 1996. Run the following code to fit a skewed
t-distribution to the returns and check the fit with a QQ plot.

library("fEcofin") # for bmw return data

library("fUtilities") # for kurtosis and skewness functions

library("fGarch") # for skewed t functions

n = dim(bmwRet)[1]

kurt = kurtosis(bmwRet[,2],method="moment")

skew = skewness(bmwRet[,2],method="moment")

fit_skewt = sstdFit(bmwRet[,2])

q.grid = (1:n)/(n+1)

qqplot(bmwRet[,2], qsstd(q.grid,fit_skewt$estimate[1],

fit_skewt$estimate[2],

fit_skewt$estimate[3],fit_skewt$estimate[4]),

ylab="skewed-t quantiles" )

Problem 1 What is the MLE of ν? Does the t-distribution with this value of
ν have a finite skewness and kurtosis?

Since the kurtosis coefficient based on the fourth central moment is infinite
for some distributions, we will define a quantile-based kurtosis:

quantKurt(F) =
F−1(1− p1)− F−1(p1)
F−1(1− p2)− F−1(p2)

,
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where F is a CDF and 0 < p1 < p2 < 1/2. Typically, p1 is close to zero
so that the numerator is sensitive to tail weight and p2 is much larger and
measures dispersion in the center of the distribution. Because the numerator
and denominator of quantKurt are each the difference between two quantiles,
they are location-free and therefore scale parameters. Moreover, because quan-
tKurt is a ratio of two scale parameters, it is scale-free and therefore a shape
parameter. A typical example would be p1 = 0.025 and p2 = 0.25. quantKurt
is estimated by replacing the population quantiles by sample quantiles.

Problem 2 Write an R program to plot quantKurt for the t-distribution as a
function of ν. Let ν take values from 1 to 10, incremented by 0.25. Include the
plot and your R code with your work. If you want to get fancy while labeling
the axes, xlab=expression(nu) in the call to plot will put a ν on the x-axis.

Run the following code, which defines a function to compute quantKurt
and bootstraps this function on the BMW returns. Note that p1 and p2 are
given default values that are used in the bootstrap and that both model-free
and model-based bootstrap samples are taken.

quantKurt = function(y,p1=0.025,p2=0.25)

{

Q = quantile(y,c(p1,p2,1-p2,1-p1))

k = (Q[4]-Q[1]) / (Q[3]-Q[2])

k

}

nboot = 5000

ModelFree_kurt = rep(0,nboot)

ModelBased_kurt = rep(0,nboot)

set.seed("5640")

for (i in 1:nboot)

{

samp_ModelFree = sample(bmwRet[,2],n,replace = TRUE)

samp_ModelBased = rsstd(n,fit_skewt$estimate[1],

fit_skewt$estimate[2],

fit_skewt$estimate[3],fit_skewt$estimate[4])

ModelFree_kurt[i] = quantKurt(samp_ModelFree)

ModelBased_kurt[i]= quantKurt(samp_ModelBased)

}

Problem 3 Plot KDEs of ModelFree kurt and ModelBased kurt. Also, plot
side-by-side boxplots of the two samples. Describe any major differences be-
tween the model-based and model-free results. Include the plots with your work.

Problem 4 Find 90% percentile method bootstrap confidence intervals for
quantKurt using the model-based and model-free bootstraps.
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Problem 5 BCa confidence intervals can be constructed using the function
bcanon in R’s bootstrap package. Find a 90% BCa confidence interval for
quantKurt. Use 5000 resamples. Compare the BCa interval to the model-free
percentile interval from Problem 4. Include your R code with your work.

6.7 Exercises

1. To estimate the risk of a stock, a sample of 50 log returns was taken
and s was 0.31. To get a confidence interval for σ, 10,000 resamples were
taken. Let sb,boot be the sample standard deviation of the bth resample.
The 10,000 values of sb,boot/s were sorted and the table below contains
selected values of sb,boot/s ranked from smallest to largest (so rank 1 is
the smallest and so forth).

Rank Value of sb,boot/s
250 0.52
500 0.71

1000 0.85
9000 1.34
9500 1.67
9750 2.19

Find a 90% confidence interval for σ.
2. In the following R program, resampling was used to estimate the bias and

variance of the sample correlation between the variables in the vectors x
and y.

samplecor = cor(x,y)

n = length(x)

nboot = 5000

resamplecor = rep(0,nboot)

for (b in (1:nboot))

{

ind = sample(1:n,replace=TRUE)

resamplecor[b] = cor(x[ind],y[ind])

}

samplecor

mean(resamplecor)

sd(resamplecor)

The output is

> n

[1] 20

> samplecor

[1] 0.69119

> mean(resamplecor)
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[1] 0.68431

> sd(resamplecor)

[1] 0.11293

(a) Estimate the bias of the sample correlation coefficient.
(b) Estimate the standard deviation of the sample correlation coefficient.
(c) Estimate the MSE of the sample correlation coefficient.
(d) What fraction of the MSE is due to bias? How serious is the bias?

Should something be done to reduce the bias? Explain your answer.
3. The following R was used to bootstrap the sample standard deviation.

( code to read the variable x )

sampleSD = sd(x)

n = length(x)

nboot = 15000

resampleSD = rep(0,nboot)

for (b in (1:nboot))

{

resampleSD[b] = sd(sample(x,replace=TRUE))

}

options(digits=4)

sampleSD

mean(resampleSD)

sd(resampleSD)

The output is

> sampleSD

[1] 1.323

> mean(resampleSD)

[1] 1.283

> sd(resampleSD)

[1] 0.2386

(a) Estimate the bias of the sample standard deviation of x.
(b) Estimate the mean squared error of the sample standard deviation of

x.
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Multivariate Statistical Models

7.1 Introduction

Often we are not interested merely in a single random variable but rather in
the joint behavior of several random variables, for example, returns on sev-
eral assets and a market index. Multivariate distributions describe such joint
behavior. This chapter is an introduction to the use of multivariate distribu-
tions for modeling financial markets data. Readers with little prior knowledge
of multivariate distributions may benefit from reviewing Sections A.12–A.14
before reading this chapter.

7.2 Covariance and Correlation Matrices

Let Y = (Y1, . . . , Yd)T be a random vector. We define the expectation vector
of Y to be

E(Y ) =




E(Y1)
...

E(Yd)


 .

The covariance matrix of Y is the matrix whose (i, j)th entry is Cov(Yi, Yj)
for i, j = 1, . . . , N . Since Cov(Yi, Yi) = Var(Yi), the covariance matrix is

COV(Y ) =




Var(Y1) Cov(Y1, Y2) · · · Cov(Y1, Yd)
Cov(Y2, Y1) Var(Y2) · · · Cov(Y2, Yd)

...
...

. . .
...

Cov(Yd, Y1) Cov(Yd, Y2) · · · Var(Yd)


 .

Similarly, the correlation matrix of Y , denoted CORR(Y ), has i, jth element
ρYiYj . Because Corr(Yi, Yi) = 1 for all i, the diagonal elements of a correlation
matrix are all equal to 1. Note the use of “COV” and “CORR” to denote
matrices and “Cov” and “Corr” to denote scalars.

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_7, © Springer Science+Business Media, LLC 2011 
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The covariance matrix can be written as

COV(Y ) = E
[
{Y − E(Y )} {Y − E(Y )}T

]
. (7.1)

There are simple relationships between the covariance and correlation matri-
ces. Let S = diag(σY1 , . . . , σYd

), where σYi is the standard deviation of Yi.
Then

CORR(Y ) = S−1COV(Y )S−1 (7.2)

and, equivalently,
COV(Y ) = S CORR(Y )S. (7.3)

The sample covariance and correlation matrices replace Cov(Yi, Yj) and
ρYiYj by their estimates given by (A.29) and (A.30).

A standardized variable is obtained by subtracting the variable’s mean and
dividing the difference by the variable’s standard deviation. After standard-
ization, a variable has a mean equal to 0 and a standard deviation equal to 1.
The covariance matrix of standardized variables equals the correlation matrix
of original variables, which is also the correlation matrix of the standardized
variables.

Example 7.1. CRSPday covariances and correlations

This example uses the CRSPday data set in R’s Ecdat package. There are
four variables, daily returns from January 3, 1969, to December 31, 1998, on
three stocks, GE, IBM, and Mobil, and on the CRSP value-weighted index,
including dividends. CRSP is the Center for Research in Security Prices at
the University of Chicago. The sample covariance matrix for these four series
is

ge ibm mobil crsp
ge 1.88e-04 8.01e-05 5.27e-05 7.61e-05
ibm 8.01e-05 3.06e-04 3.59e-05 6.60e-05
mobil 5.27e-05 3.59e-05 1.67e-04 4.31e-05
crsp 7.61e-05 6.60e-05 4.31e-05 6.02e-05

It is difficult to get much information just by inspecting the covariance ma-
trix. The covariance between two random variables depends on their variances
as well as the strength of the linear relationship between them. Covariance
matrices are extremely important as input to, for example, a portfolio anal-
ysis, but to understand the relationship between variables, it is much better
to examine their sample correlation matrix. The sample correlation matrix in
this example is
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ge ibm mobil crsp
ge 1.000 0.334 0.297 0.715
ibm 0.334 1.000 0.159 0.486
mobil 0.297 0.159 1.000 0.429
crsp 0.715 0.486 0.429 1.000

We can see that all sample correlations are positive and the largest correlations
are between crsp and the individual stocks. GE is the stock most highly
correlated with crsp. The correlations between individual stocks and a market
index such as crsp are a key component of finance theory, especially the
Capital Asset Pricing Model (CAPM) introduced in Chapter 16.

¤

7.3 Linear Functions of Random Variables

Often we are interested in finding the expectation and variance of a linear
combination (weighted average) of random variables. For example, consider
returns on a set of assets. A portfolio is simply a weighted average of the assets
with weights that sum to one. The weights specify what fractions of the total
investment are allocated to the assets. For example, if a portfolio consists of
200 shares of Stock 1 selling at $88/share and 150 shares of Stock 2 selling at
$67/share, then the weights are

w1 =
(200)(88)

(200)(88) + (150)(67)
= 0.637 and w2 = 1− w1 = 0.363. (7.4)

Because the return on a portfolio is a linear combination of the returns
on the individual assets in the portfolio, the material in this section is used
extensively in the portfolio theory of Chapters 11 and 16.

First, we look at a linear function of a single random variable. If Y is a
random variable and a and b are constants, then

E(aY + b) = aE(Y ) + b.

Also,
Var(aY + b) = a2Var(Y ) and σaY +b = |a|σY .

Next, we consider linear combinations of two random variables. If X and
Y are random variables and w1 and w2 are constants, then

E(w1X + w2Y ) = w1E(X) + w2E(Y ),

and

Var(w1X + w2Y ) = w2
1Var(X) + 2w1w2Cov(X, Y ) + w2

2Var(Y ). (7.5)
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Check that (7.5) can be reexpressed as

Var(w1X + w2Y ) = (w1 w2 )
(

Var(X) Cov(X,Y )
Cov(X,Y ) Var(Y )

)(
w1

w2

)
. (7.6)

Although formula (7.6) may seem unnecessarily complicated, we will show
that this equation generalizes in an elegant way to more than two random
variables; see (7.7) below. Notice that the matrix in (7.6) is the covariance
matrix of the random vector ( X Y )T.

Let w = (w1, . . . , wd)T be a vector of weights and let Y = (Y1, . . . , Yd) be
a random vector. Then

wTY =
N∑

i=1

wiYi

is a weighted average of the components of Y . One can easily show that

E(wTY ) = wT{E(Y )}

and

Var(wTY ) =
N∑

i=1

N∑

j=1

wi wj Cov(Yi, Yj).

This last result can be expressed more succinctly using vector/matrix nota-
tion:

Var(wTY ) = wTCOV(Y )w. (7.7)

Example 7.2. The variance of a linear combination of correlated random vari-
ables

Suppose that Y = (Y1 Y2 Y3)T, Var(Y1) = 2, Var(Y2) = 3, Var(Y3) = 5,
ρY1,Y2 = 0.6, and that Y1 and Y2 are independent of Y3. Find Var(Y1 + Y2 +
1/2 Y3).

Answer: The covariance between Y1 and Y3 is 0 by independence, and the
same is true of Y2 and Y3. The covariance between Y1 and Y2 is (0.6)

√
(2)(3) =

1.47. Therefore,

COV(Y ) =




2 1.47 0
1.47 3 0
0 0 5


 ,

and by (7.7),

Var(Y1 + Y2 + Y3/2) = ( 1 1 1
2 )




2 1.47 0
1.47 3 0
0 0 5







1
1
1
2
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= ( 1 1 1
2 )




3.47
4.47
2.5




= 9.19.

¤

A important property of a covariance matrix COV(Y ) is that it is sym-
metric and positive semidefinite. A matrix A is said to be positive semidefinite
(definite) if xTAx ≥ 0 (> 0) for all vectors x 6= 0. By (7.7), any covariance
matrix must be positive semidefinite, because otherwise there would exist a
random variable with a negative variance, a contradiction. A nonsingular co-
variance matrix is positive definite. A covariance matrix must be symmetric
because ρYi Yj = ρYj Yi for every i and j.

7.3.1 Two or More Linear Combinations of Random Variables

More generally, suppose that wT
1 Y and wT

2 Y are two weighted averages of
the components of Y , e.g., returns on two different portfolios. Then

Cov(wT
1 Y ,wT

2 Y ) = wT
1 COV(Y )w2 = wT

2 COV(Y )w1. (7.8)

Example 7.3. (Example 7.2 continued)

Suppose that the random vector Y = (Y1, Y2, Y3)
T has the mean vector

and covariance matrix used in the previous example and contains the returns
on three assets. Find the covariance between a portfolio that allocates 1/3 to
each of the three assets and a second portfolio that allocates 1/2 to each of
the first two assets. That is, find the covariance between (Y1 +Y2 +Y3)/3 and
(Y1 + Y2)/2.

Answer: Let
w1 = ( 1

3
1
3

1
3 )T

and
w2 = ( 1

2
1
2 0 )T .

Then

Cov
{

Y1 + Y2

2
,
Y1 + Y2 + Y3

3

}
= wT

1 COV(Y )w2

= ( 1/3 1/3 1/3 )




2 1.47 0
1.47 3 0
0 0 5







1/2
1/2
0
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= ( 1.157 1.490 1.667 )




1/2
1/2
0




= 1.323.

¤

Let W be a nonrandom N × q matrix so that W TY is a random vector
of q linear combinations of Y . Then (7.7) can be generalized to

COV(W TY ) = W TCOV(Y )W . (7.9)

Let Y 1 and Y 2 be two random vectors of dimensions n1 and n2, respec-
tively. Then ΣY1,Y2 = COV(Y 1, Y 2) is defined as the n1 × n2 matrix whose
i, jth element is the covariance between the ith component of Y 1 and the jth
component of Y 2, that is, ΣY1,Y2 is the matrix of covariances between the
random vectors Y 1 and Y 2.

It is not difficult to show that

Cov(wT
1 Y 1,w

T
2 Y 2) = wT

1 COV(Y 1, Y 2)w2, (7.10)

for constant vectors w1 and w2 of lengths n1 and n2.

7.3.2 Independence and Variances of Sums

If Y1, . . . , Yd are independent, or at least uncorrelated, then

Var
(
wTY

)
= Var

(
n∑

i=1

wiYi

)
=

n∑

i=1

w2
i Var(Yi). (7.11)

When wT = (1/n, . . . , 1/n) so that wTY = Y , then we obtain that

Var(Y ) =
1
n2

n∑

i=1

Var(Yi). (7.12)

In particular, if Var(Yi) = σ2 for all i, then we obtain the well-known result
that if Y1, . . . , Yd are uncorrelated and have a constant variance σ2, then

Var(Y ) =
σ2

n
. (7.13)

Another useful fact that follows from (7.11) is that if Y1 and Y2 are uncorre-
lated, then

Var(Y1 − Y2) = Var(Y1) + Var(Y2). (7.14)
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7.4 Scatterplot Matrices

A correlation coefficient is only a summary of the linear relationship between
variables. Interesting features, such as nonlinearity or the joint behavior of
extreme values, remain hidden when only correlations are examined. A so-
lution to this problem is the so-called scatterplot matrix, which is a matrix
of scatterplots, one for each pair of variables. A scatterplot matrix can be
created easily with modern statistical software such as R. Figure 7.1 shows a
scatterplot matrix for the CRSPday data set.

ge

−0.10 0.00 0.10 −0.06 −0.02 0.02
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2
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02

−0.05 0.00 0.05 0.10

crsp

Fig. 7.1. Scatterplot matrix for the CRSPday data set.

One sees little evidence of nonlinear relationships in Figure 7.1. This lack
of nonlinearities is typical of returns on equities, but it should not be taken
for granted—instead, one should always look at the scatterplot matrix. The
strong linear association between GE and crsp, which was suggested before
by their high correlation coefficient, can be seen also in their scatterplot.
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A portfolio is riskier if large negative returns on its assets tend to occur
together on the same days. To investigate whether extreme values tend to
cluster in this way, one should look at the scatterplots. In the scatterplot for
IBM and Mobil, extreme returns for one stock do not tend to occur on the same
days as extreme returns on the other stock; this can be seen by noticing that
the outliers tend to fall along the x- and y-axes. The extreme-value behavior
is different with GE and crsp, where extreme values are more likely to occur
together; note that the outliers have a tendency to occur together, that is, in
the upper-right and lower-left corners, rather than being concentrated along
the axes. The IBM and Mobil scatterplot is said to show tail independence.
In contrast, the GE and crsp scatterplot is said to show tail dependence. Tail
dependence is explored further in Chapter 8.

7.5 The Multivariate Normal Distribution

In Chapter 5 we saw the importance of having parametric families of uni-
variate distributions as statistical models. Parametric families of multivariate
distributions are equally useful, and the multivariate normal family is the best
known of them.

(a) corr = 0.5
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(b) corr = −0.95
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Fig. 7.2. Contour plots of a bivariate normal densities with N(0, 1) marginal dis-
tributions and correlations of 0.5 or −0.95.

The random vector Y = (Y1, . . . , Yd)T has a d-dimensional multivariate
normal distribution with mean vector µ = (µ1, . . . , µd)T and covariance ma-
trix Σ if its probability density function is
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φd(y|µ, Σ) =
[

1
(2π)d/2|Σ|1/2

]
exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
, (7.15)

where |Σ| is the determinant of Σ. The quantity in square brackets is a
constant that normalizes the density so that it integrates to 1. The density
depends on y only through (y−µ)TΣ−1(y−µ), and so the density is constant
on each ellipse {y : (y − µ)TΣ−1(y − µ) = c}. Here c > 0 is a fixed constant
that determines the size of the ellipse, with larger values of c giving smaller
ellipses, each centered at µ. Such densities are called elliptically contoured.
Figure 7.2 has contour plots of bivariate normal densities. Both Y1 and Y2 are
N(0, 1) and the correlation between Y1 and Y2 is 0.5 in panel (a) or −0.95 in
panel (b). Notice how the orientations of the contours depend on the sign and
magnitude of the correlation. In panel (a) we can see that the height of the
density is constant on ellipses and decreases with the distance from the mean,
which is (0, 0). The same behavior occurs in panel (b), but, because of the
high correlation, the contours are so close together that it was not possible to
label them.

If Y = (Y1, . . . , Yd)T has a multivariate normal distribution, then for every
set of constants c = (c1, . . . , cd)T, the weighted average (linear combination)
cTY = c1 Y1 + · · · + cdYd has a normal distribution with mean cTµ and
variance cTΣc. In particular, the marginal distribution of Yi is N(µi, σ

2
i ),

where σ2
i is the ith diagonal element of Σ—to see this, take ci = 1 and cj = 0

for j 6= i.
The assumption of multivariate normality facilitates many useful proba-

bility calculations. If the returns on a set of assets have a multivariate normal
distribution, then the return on any portfolio formed from these assets will
be normally distributed. This is because the return on the portfolio is the
weighted average of the returns on the assets. Therefore, the normal distribu-
tion could be used, for example, to find the probability of a loss of some size of
interest, say, 10% or more, on the portfolio. Such calculations have important
applications in finding a value-at-risk; see Chapter 19.

Unfortunately, we saw in Chapter 5 that often individual returns are not
normally distributed, which implies that a vector of returns will not have a
multivariate normal distribution. In Section 7.6 we will look at an important
class of heavy-tailed multivariate distributions.

7.6 The Multivariate t-Distribution

We have seen that the univariate t-distribution is a good model for the returns
of individual assets. Therefore, it is desirable to have a model for vectors of
returns such that the univariate marginals are t-distributed. The multivariate
t-distribution has this property. The random vector Y has a multivariate
tν(µ, Λ) distribution if

Y = µ +
√

ν

W
Z, (7.16)



158 7 Multivariate Statistical Models

where W is chi-squared distributed with ν degrees of freedom, Z is Nd(0,Λ)
distributed, and W and Z are independent. Thus, the multivariate t-distribu-
tion is a continuous scale mixture of multivariate normal distributions. Ex-
treme values of Z tend to occur when W is near zero. Since W−1/2 multiplies
all components of Z, outliers in one component tend to occur with outliers in
other components, that is, there is tail dependence.

For ν > 1, µ is the mean vector of Y . For 0 < ν ≤ 1, the expectation of Y
does not exist, but µ can still be regarded as the “center” of the distribution
of Y because, for any value of ν, the vector µ contains the medians of the
components of Y and the contours of the density of Y are ellipses centered
at µ.
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Fig. 7.3. (a) Plot of a random sample from a bivariate t-distribution with ν = 3,
µ = (0 0)T and identity covariate matrix. (b) Plot of a random sample of pairs of
independent t3(0, 1) random variables. Both sample sizes are 2500.

For ν > 2, the covariance matrix of Y exists and is

Σ =
ν

ν − 2
Λ. (7.17)

We will call Λ the scale matrix. The scale matrix exists for all values of
ν. Since the covariance matrix Σ of Y is just a multiple of the covariance
matrix Λ of Z, Y and Z have the same correlation matrices, assuming ν >
2 so that the correlation matrix of Y exists. If Σi,j = 0, then Yi and Yj

are uncorrelated, but they are dependent, nonetheless, because of the tail
dependence. Tail dependence is illustrated in Figure 7.3, where panel (a) is a
plot of 2500 observations from an uncorrelated bivariate t-distribution with
marginal distributions that are t3(0, 1). For comparison, panel (b) is a plot
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of 2500 observations of pairs of independent t3(0, 1) random variables—these
pairs do not have a bivariate t-distribution. Notice that in (b), outliers in Y1

are not associated with outliers in Y2, since the outliers are concentrated near
the x- and y-axes. In contrast, outliers in (a) are distributed uniformly in all
directions. The univariate marginal distributions are the same in (a) and (b).
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Fig. 7.4. Scatterplot matrix of 500 daily returns on six midcap stocks in R’s
midcapD.ts data set.

Tail dependence can be expected in equity returns. For example, on Black
Monday, almost all equities had extremely large negative returns. Of course,
Black Monday was an extreme, even among extreme events. We would not
want to reach any general conclusions based upon Black Monday alone. How-
ever, in Figure 7.1, we see little evidence that outliers are concentrated along
the axes, with the possible exception of the scatterplot for IBM and Mobil. As
another example of dependencies among stock returns, Figure 7.4 contains a
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scatterplot matrix of returns on six midcap stocks in the midcapD.ts data set
in R’s in fEcofin package. Again, tail dependence can be seen. This suggests
that tail dependence is common among equity returns and the multivariate
t-distribution is a promising model for them.

7.6.1 Using the t-Distribution in Portfolio Analysis

If Y has a tν(µ, Λ) distribution, which we recall has covariance matrix Σ =
{ν/(ν − 2)}Λ, and w is a vector of weights, then wTY has a univariate
t-distribution with mean wTµ and variance {ν/(ν − 2)}wTΛw = wTΣw.
This fact can be useful when computing risk measures for a portfolio. If the
returns on the assets have a multivariate t-distribution, then the return on
the portfolio will have a univariate t-distribution. We will make use of this
result in Chapter 19.

7.7 Fitting the Multivariate t-Distribution by Maximum
Likelihood

To estimate the parameters of a multivariate t-distribution, one can use the
function cov.trob in R’s MASS package. This function computes the maximum
likelihood estimates of µ and Λ with ν fixed. To estimate ν, one computes
the profile log-likelihood for ν and finds the value, ν̂, of ν that maximizes
the profile log-likelihood. Then the MLEs of µ and Λ are the estimates from
cov.trob with ν fixed at ν̂.

Example 7.4. Fitting the CRSPday data

This example uses the data set CRSPday analyzed earlier in Example 7.1.
Recall that there are four variables, returns on GE, IBM, Mobil, and the
CRSP index. The profile log-likelihood is plotted in Figure 7.5. In that figure,
one see that the MLE of ν is 5.94, and there is relatively little uncertainty
about this parameter’s value—the 95% profile likelihood confidence interval
is (5.41, 6.55).

AIC for this model is 7.42 plus 64,000. Here AIC values are expressed
as deviations from 64,000 to keep these values small. This is helpful when
comparing two or more models via AIC. Subtracting the same constant from
all AIC values, of course, has no effect on model comparisons.

The maximum likelihood estimates of the mean vector and the correlation
matrix are called $center and $cor, respectively, in the following output:
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Fig. 7.5. CRSPday data. A profile likelihood confidence interval for ν. The solid curve
is 2Lmax(ν), where Lmax(ν) is the profile likelihood minus 32,000. 32,000 was sub-
tracted from the profile likelihood to simplify the labeling of the y-axis. The horizontal
line intersects the y-axis at 2Lmax(bν)− χ2

α,1, where bν is the MLE and α = 0.05. All
values of ν such that 2Lmax(ν) is above the horizontal line are in the profile likelihood
95% confidence interval. The two vertical lines intersect the x-axis at 5.41 and 6.55,
the endpoints of the confidence interval.

$center
[1] 0.0009424 0.0004481 0.0006883 0.0007693

$cor
[,1] [,2] [,3] [,4]

[1,] 1.0000 0.3192 0.2845 0.6765
[2,] 0.3192 1.0000 0.1584 0.4698
[3,] 0.2845 0.1584 1.0000 0.4301
[4,] 0.6765 0.4698 0.4301 1.0000

These estimates were computed using cov.trob with ν fixed at 5.94.
When the data are t-distributed, the maximum likelihood estimates are

superior to the sample mean and covariance matrix in several respects—the
MLE is more accurate and it is less sensitive to outliers. However, in this
example, the maximum likelihood estimates are similar to the sample mean
and correlation matrix. For example, the sample correlation matrix is
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ge ibm mobil crsp
ge 1.0000 0.3336 0.2972 0.7148
ibm 0.3336 1.0000 0.1587 0.4864
mobil 0.2972 0.1587 1.0000 0.4294
crsp 0.7148 0.4864 0.4294 1.0000

¤

7.8 Elliptically Contoured Densities

The multivariate normal and t-distributions have elliptically contoured densi-
ties, a property that will be discussed in this section. A d-variate multivariate
density f is elliptically contoured if can be expressed as

f(y) = |Λ|−1/2g
{
(y − µ)TΛ−1(y − µ)

}
, (7.18)

where g is a nonnegative-valued function such that 1 =
∫
<d g

(‖y‖2) dy, µ is
a d× 1 vector, and Λ is a d× d symmetric, positive definite matrix. Usually,
g(x) is a decreasing function of x ≥ 0, and we will assume this is true. We will
also assume the finiteness of second moments, in which case µ is the mean
vector and the covariance matrix Σ is a scalar multiple of Λ.

For each fixed c > 0,

E(c) = {y : (y − µ)TΣ−1(y − µ) = c}

is an ellipse centered at µ, and if c1 > c2, then E(c1) is inside E(c2) because
g is decreasing. The contours of f are concentric ellipses as can be seen in
Figure 7.6. That figure shows the contours of the bivariate t4-density with
µ = (0, 0)T and

Σ =
(

2 1.1
1.1 1

)
.

The major axis of the ellipses is a solid line and the minor axis is a dashed
line.

How can the axes be found? From Section A.20, we know that Σ has an
eigenvalue-eigenvector decomposition

Σ = O diag(λi) OT,

where O is an orthogonal matrix whose columns are the eigenvectors of Σ
and λ1, . . . , λd are the eigenvalues of Σ.

The columns of O determine the axes of the ellipse E(c). The decomposi-
tion can be found in R using the function eigen and, for the matrix Σ in the
example, the decomposition is
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Fig. 7.6. Contour plot of a multivariate t4-density with µ = (0, 0)T, σ2
1 = 2, σ2

2 = 1,
and σ12 = 1.1.

$values
[1] 2.708 0.292

which gives the eigenvalues, and

$vectors
[,1] [,2]

[1,] -0.841 0.541
[2,] -0.541 -0.841

which has the corresponding eigenvectors as columns; e.g., (−0.841,−0.541) is
an eigenvector with eigenvalue 2.708. The eigenvectors are only determined up
to a sign change, so the first eigenvector could be taken as (−0.841,−0.541),
as in the R output, or (0.841, 0.541).

If oi is the ith column of O, the ith axis of E(c) goes through the points
µ and µ + oi. Therefore, this axis is the line

{µ + k oi : −∞ < k < ∞}.

Because O is an orthogonal matrix, the axes are mutually perpendicular. The
axes can be ordered according to the size of the corresponding eigenvalues. In
the bivariate case the axis associated with the largest (smallest) eigenvalue is
the major (minor) axis. We are assuming that there are no ties among the
eigenvalues.
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Since µ = 0, in our example the major axis is k (0.841, 0.541), −∞ < k <
∞, and the minor axis is k (0.541,−0.841), −∞ < k < ∞.

When there are ties among the eigenvalues, the eigenvectors are not unique
and the analysis is somewhat more complicated and will not be discussed in
detail. Instead two examples will be given. In the bivariate case if Σ = I,
the contours are circles and there is no unique choice of the axes—any pair
of perpendicular vectors will do. As a trivariate example, if Σ = diag(1,1,3),
then the first principle axis is (0,0,1) with eigenvalue 3. The second and third
principal axis can be any perpendicular pair of vectors with third coordinates
equal to 0. The eigen function in R returns (0,1,0) and (1,0,0) as the second
and third axes.

7.9 The Multivariate Skewed t-Distributions

Azzalini and Capitanio (2003) have proposed a skewed extension of the multi-
variate t-distribution. The univariate special case was discussed in Section 5.7.
In the multivariate case, in addition to the shape parameter ν determining
tail weight, the skewed t-distribution has a vector α = (α1, . . . , αd)T of shape
parameters determining the amounts of skewness in the components of the dis-
tribution. If Y has a skewed t-distribution, then Yi is left-skewed, symmetric,
or right-skewed depending on whether αi < 0, αi = 0, or αi > 0. Figure 7.7 is
a contour plot of a bivariate skewed t-distribution with α = (−1, 0.25)T. No-
tice that, because α1 is reasonably large and negative, Y1 has a considerable
amount of left skewness, as can be seen in the contours, which are more widely
spaced on the left side of the plot compared to the right. Also, Y2 shows a
lesser amount of right skewness, which is to be expected since α2 is positive
with a relatively small absolute value.

Example 7.5. Fitting the skewed t-distribution to CRSPday

We now fit the skewed t-model to the CRSPday data set using the function
mst.fit in R’s sn package. This function maximizes the likelihood over all
parameters, so there is no need to use the profile likelihood as with cov.trob.
The estimates are as follows.

$dp$beta
[,1] [,2] [,3] [,4]

[1,] -0.0001474 -0.001186 3.667e-05 0.0002218

$dp$Omega
[,1] [,2] [,3] [,4]

[1,] 1.242e-04 4.751e-05 3.328e-05 4.522e-05
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Fig. 7.7. Contours of a bivariate skewed t-density. The contours are more widely
spaced on the left compared to the right because X1 is left-skewed. Similarly, the
contours are more widely spaced on the top compared to the bottom because X2 is
left-skewed, but the skewness of X2 is relatively small and less easy to see.

[2,] 4.751e-05 1.822e-04 2.255e-05 3.822e-05
[3,] 3.328e-05 2.255e-05 1.145e-04 2.738e-05
[4,] 4.522e-05 3.822e-05 2.738e-05 3.627e-05

$dp$alpha
[1] 0.07929 0.12075 0.03998 -0.01585

$dp$df
[1] 5.8

Here dp$beta is the estimate of µ, dp$Omega is the estimate of Σ, dp$alpha
is the estimate of α, and dp$df is the estimate of ν. Note that the estimates
of all components of α are close to zero, which suggests that there is little if
any skewness in the data.

AIC for the skewed t-model is 9.06 plus 64,000, somewhat larger than 7.45,
the AIC for the symmetric t-model. This result, and the small estimated values
of the αi shape parameters, suggest that the symmetric t-model is adequate
for this data set.
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Fig. 7.8. Normal plots of the four returns series in the CRSPday data set. The
reference lines go through the first and third quartiles.

In summary, the CRSPday data are well fit by a symmetric t-distribution
and no need was found for using a skewed t-distribution. Also, normal plots in
Figure 7.8 of the four variables show no signs of serious skewness. Although
this might be viewed as a negative result, since we have not found an im-
provement in fit by going to the more flexible skewed t-distribution, the result
does give us more confidence that the symmetric t-distribution is suitable for
modeling this data set.

¤

7.10 The Fisher Information Matrix

In the discussion of Fisher information in Section 5.10, θ was assumed to be
one-dimensional. If θ is an m-dimensional parameter vector, then the Fisher
information is an m×m square matrix, I, and is equal to minus the matrix of
expected second-order partial derivatives of log{L(θ)}.1 In other words, the
i, jth entry of the Fisher information matrix is
1 The matrix of second partial derivatives of a function is called its Hessian matrix,

so the Fisher information matrix is the expectation of minus the Hessian of the
log-likelihood.
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Iij(θ) = −E

[
∂2

∂θi ∂θj
log{L(θ)}

]
. (7.19)

The standard errors are the square roots of the diagonal entries of the inverse
of the Fisher information matrix. Thus, the standard error for θi is

sbθi
=

√
{I(θ̂)−1}ii. (7.20)

In the case of a single parameter, (7.20) reduces to (5.19). The central limit
theorem for the MLE in Section 5.10 generalizes to the following multivariate
version.

Theorem 7.6. Under suitable assumptions, for large enough sample sizes,
the maximum likelihood estimator is approximately normally distributed with
mean equal to the true parameter vector and with covariance matrix equal to
the inverse of the Fisher information matrix.

The key point is that there is an explicit method of calculating standard
errors for maximum likelihood estimators. The calculation of standard errors
of maximum likelihood estimators by computing and then inverting the Fisher
information matrix is routinely programmed into statistical software.

Computation of the expectation in I(θ) can be challenging. Programming
the second derivatives can be difficult as well, especially for complex models.
In practice, the observed Fisher information matrix, whose i, jth element is

Iobs
ij (θ) = − ∂2

∂θi ∂θj
log{L(θ)} (7.21)

is often used. The observed Fisher information matrix is, of course, the mul-
tivariate analog of (5.21). Using observed information obviates the need to
compute the expectation. Moreover, the Hessian matrix can be computed nu-
merically by finite differences, for example, using R’s fdHess function in the
nlme package.

Inverting the observed Fisher information computed by finite differences
is the most commonly used method for obtaining standard errors. The ad-
vantage of this approach is that only the computation of the likelihood, or
log-likelihood, is necessary, and of course this is necessary simply to compute
the MLE.

7.11 Bootstrapping Multivariate Data

When resampling multivariate data, the dependencies within the observation
vectors need to be preserved. Let the vectors Y 1, . . . , Y n be an i.i.d. sample
of multivariate data. In model-free resampling, the vectors Y 1, . . . , Y n are
sampled with replacement. There is no resampling of the components within
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a vector. Resampling within vectors would make their components mutually
independent and would not mimic the actual data where the components are
dependent. Stated differently, if the data are in a spreadsheet (or matrix)
with rows corresponding to observations and columns to variables, then one
samples entire rows.

Model-based resampling simulates vectors from the multivariate distribu-
tion of the Y i, for example, from a multivariate t-distribution with the mean
vector, covariance matrix, and degrees of freedom equal to the MLEs.
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Fig. 7.9. Histograms of 200 bootstrapped values of bα for each of the returns series
in the CRSPday data set.

Example 7.7. Bootstrapping the skewed t fit to CRSPday

In Example 7.5 the skewed t-model was fit to the CRSPday data. This
example continues that analysis by bootstrapping the estimator of α for each
of the four returns series. Histograms of 200 bootstrap values of α̂ are found
in Figure 7.9. Bootstrap percentile 95% confidence intervals include 0 for all
four stocks, so there is no strong evidence of skewness in any of the returns
series.



7.14 R Lab 169

Despite the large sample size of 2528, the estimators of α do not appear to
be normally distributed. We can see in Figure 7.9 that they are right-skewed
for the three stocks and left-skewed for the CRSP returns. The distribution of
α̂ also appears heavy-tailed. The excess kurtosis coefficient of the 200 boot-
strap values of α̂ is 2.38, 1.33, 3.18, and 2.38 for the four series.

The central limit theorem for the MLE guarantees that α̂ is nearly nor-
mally distributed for sufficiently large samples, but it does not tell us how
large the sample size must be. We see in this example that in such cases the
sample size must be very large indeed since 2528 is not large enough. This
is a major reason for preferring to construct confidence intervals using the
bootstrap rather than a normal approximation.

A bootstrap sample of the returns was drawn with the following R code.
The returns are in the matrix dat and yboot is a bootstrap sample chosen by
taking a random sample of the rows of dat, with replacement of course.

yboot = dat[sample((1:n),n,replace =T),]

¤

7.12 Bibliographic Notes

The multivariate central limit theorem for the MLE is stated precisely and
proved in textbooks on asymptotic theory such as Lehmann (1999) and van
der Vaart (1998). The multivariate skewed t-distribution is in Azzalini and
Capitanio (2003).
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7.14 R Lab

7.14.1 Equity Returns

This section uses the data set berndtInvest in R’s fEcofin package. This data
set contains monthly returns from January 1, 1987, to December 1, 1987, on
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16 equities. There are 18 columns. The first column is the date and the last
is the risk-free rate.

In the lab we will only use the first four equities. The following code
computes the sample covariance and correlation matrices for these returns.

library("fEcofin")

Berndt = as.matrix(berndtInvest[,2:5])

cov(Berndt)

cor(Berndt)

If you wish, you can also plot a scatterplot matrix with the following R code.

pairs(Berndt)

Problem 1 Suppose the four variables being used are denoted by X1, . . . , X4.
Use the sample covariance matrix to estimate the variance of 0.5X1 +0.3X2 +
0.2X3. Include with your work the R code used to estimate this covariance.
(Useful R facts: “t(a)” is the transpose of a vector or matrix a and “a %*% b”
is the matrix product of a and b.)

Fit a multivariate-t model to the data using the function cov.trob in the
MASS package. This function computes the MLE of the mean and covariance
matrix with a fixed value of ν. To find the MLE of ν, the following code
computes the profile log-likelihood for ν.

library(MASS) # needed for cov.trob

library(mnormt) # needed for dmt

df = seq(2.5,8,.01)

n = length(df)

loglik_max = rep(0,n)

for(i in 1:n)

{

fit = cov.trob(Berndt,nu=df[i])

mu = as.vector(fit$center)

sigma =matrix(fit$cov,nrow=4)

loglik_max[i] = sum(log(dmt(Berndt,mean=fit$center,

S=fit$cov,df=df[i])))

}

Problem 2 Using the results produced by the code above, find the MLE of
ν and a 90% profile likelihood confidence interval for ν. Include your R code
with your work. Also, plot the profile log-likelihood and indicate the MLE and
the confidence interval on the plot. Include the plot with your work.

Section 7.14.3 demonstrates how the MLE for a multivariate t-model can
be fit directly with the optim function, rather than be profile likelihood.
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7.14.2 Simulating Multivariate t-Distributions

The following code generates and plots three bivariate samples. Each sam-
ple has univariate marginals that are standard t3-distributions. However, the
dependencies are different.

library(MASS) # need for mvrnorm

par(mfrow=c(1,4))

N = 2500

nu = 3

set.seed(5640)

cov=matrix(c(1,.8,.8,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w,w)

plot(x,main="(a)")

set.seed(5640)

cov=matrix(c(1,.8,.8,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w1 = sqrt(nu/rchisq(N, df=nu))

w2 = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w1,w2)

plot(x,main="(b)")

set.seed(5640)

cov=matrix(c(1,0,0,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w1 = sqrt(nu/rchisq(N, df=nu))

w2 = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w1,w2)

plot(x,main="(c)")

set.seed(5640)

cov=matrix(c(1,0,0,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w,w)

plot(x,main="(d)")

Note the use of these R commands: set.seed to set the seed of the ran-
dom number generator, mvrnorm to generate multivariate normally distributed
vectors, rchisq to generate χ2-distributed random numbers, cbind to bind
together vectors as the columns of a matrix, and matrix to create a matrix
from a vector. In R, “a*b” is elementwise multiplication of same-size matrices
a and b, and “a%*%b” is matrix multiplication of conforming matrices a and
b.
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Problem 3 Which sample has independent variates? Explain your answer.

Problem 4 Which sample has variates that are correlated but do not have
tail dependence? Explain your answer.

Problem 5 Which sample has variates that are uncorrelated but with tail
dependence? Explain your answer.

Problem 6 Suppose that (X, Y ) are the returns on two assets and have a
multivariate t-distribution with degrees of freedom, mean vector, and covari-
ance matrix

ν = 5, µ =
(

0.001
0.002

)
, Σ =

(
0.10 0.03
0.03 0.15

)
.

Then R = (X +Y )/2 is the return on an equally weighted portfolio of the two
assets.

(a) What is the distribution of R?
(b) Write an R program to generate a random sample of size 10,000 from

the distribution of R. Your program should also compute the 0.01 upper
quantile of this sample and the sample average of all returns that exceed
this quantile. This quantile and average will be useful later when we study
risk analysis.

7.14.3 Fitting a Bivariate t-Distribution

When you run the R code that follows this paragraph, you will compute the
MLE for a bivariate t-distribution fit to CRSP returns data. A challenge
when fitting a multivariate distribution is enforcing the constraint that the
scale matrix (or the covariance matrix) must be positive definite. One way to
meet this challenge is to let the scale matrix be AT A, where A is an upper
triangular matrix. (It is easy to show that AT A is positive semidefinite if A
is any square matrix. Because a scale or covariance matrix is symmetric, only
the entries on and above the main diagonal are free parameters. In order for
A to have the same number of free parameters as the covariance matrix, we
restrict A to be upper triangular.)

library(mnormt)

data(CRSPday,package="Ecdat")

Y = CRSPday[,c(5,7)]

loglik = function(par)

{

mu = par[1:2]



7.15 Exercises 173

A = matrix(c(par[3],par[4],0,par[5]),nrow=2,byrow=T)

scale_matrix = t(A)%*%A

df = par[6]

f = -sum(log(dmt(Y, mean=mu,S=scale_matrix,df=df)))

f

}

A=chol(cov(Y))

start=as.vector(c(apply(Y,2,mean),A[1,1],A[1,2],A[2,2],4))

fit_mvt = optim(start,loglik,method="L-BFGS-B",lower=c(-.02,-.02,

-.1,-.1,-.1,2),

upper=c(.02,.02,.1,.1,.1,15),hessian=T)

Problem 7 Let θ = (µ1, µ2, A1,1, A1,2, A2,2, ν), where µj is the mean of the
jth variable, A1,1, A1,2, and A2,2 are the nonzero elements of A, and ν is the
degrees-of-freedom parameter.

(a) What does the code A=chol(cov(Y)) do?
(b) Find θ̂ML, the MLE of θ.
(c) Find the Fisher information matrix for θ. (Hint: The Hessian is part of

the object fit mvt. Also, the R function solve will invert a matrix.)
(d) Find the standard errors of the components of θ̂ML using the Fisher in-

formation matrix.
(e) Find the MLE of the covariance matrix of the returns.
(f) Find the MLE of ρ, the correlation between the two returns (Y1 and Y2).

7.15 Exercises

1. Suppose that E(X) = 1, E(Y ) = 1.5, Var(X) = 2, Var(Y ) = 2.7, and
Cov(X, Y ) = 0.8.
(a) What are E(0.2X + 0.8Y ) and Var(0.2X + 0.8Y )?
(b) For what value of w is Var{wX +(1−w)Y } minimized? Suppose that

X is the return on one asset and Y is the return on a second asset.
Why would it be useful to minimize Var{wX + (1− w)Y }?

2. Let X1, X2, Y1, and Y2 be random variables.
(a) Show that Cov(X1 + X2, Y1 + Y2) = Cov(X1, Y1) + Cov(X1, Y2) +

Cov(X2, Y1) + Cov(X2, Y2).
(b) Generalize part (a) to an arbitrary number of Xis and Yis.

3. Verify formulas (A.24)–(A.27).
4. (a) Show that

E{X − E(X)} = 0

for any random variable X.
(b) Use the result in part (a) and equation (A.31) to show that if two

random variables are independent then they are uncorrelated.
5. Show that if X is uniformly distributed on [−a, a] for any a > 0 and if

Y = X2, then X and Y are uncorrelated but they are not independent.
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6. Verify the following results that were stated in Section 7.3:

E(wTX) = wT{E(X)}

and

Var(wTX) =
N∑

i=1

N∑

j=1

wi wj Cov(Xi, Xj)

= Var(wTX)wTCOV(X)w.
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Copulas

8.1 Introduction

Copulas are a popular method for modeling multivariate distributions. A cop-
ula models the dependence—and only the dependence—between the variates
in a multivariate distribution and can be combined with any set of univariate
distributions for the marginal distributions. Consequently, the use of copulas
allows us to take advantage of the wide variety of univariate models that are
available.

A copula is a multivariate CDF whose univariate marginal distributions
are all Uniform(0,1). Suppose that Y = (Y1, . . . , Yd) has a multivariate CDF
FY with continuous marginal univariate CDFs FY1 , . . . , FYd

. Then, by equa-
tion (A.9) in Section A.9.2, each of FY1(Y1), . . . , FYd

(Yd) is Uniform(0,1) dis-
tributed. Therefore, the CDF of {FY1(Y1), . . . , FYd

(Yd)} is a copula. This CDF
is called the copula of Y and denoted by CY . CY contains all information
about dependencies among the components of Y but has no information about
the marginal CDFs of Y .

It is easy to find a formula for CY . To avoid technical issues, in this section
we will assume that all random variables have continuous, strictly increasing
CDFs. More precisely, the CDFs are assumed to be increasing on their sup-
port. For example, the exponential CDF

F (y) =
{

1− e−y, y ≥ 0,
0, y < 0,

has support [0,∞) and is strictly increasing on that set. The assumption that
the CDF is continuous and strictly increasing is avoided in more mathemati-
cally advanced texts; see Section 8.8.

Since CY is the CDF of {FY1(Y1), . . . , FYd
(Yd)}, by the definition of a CDF

we have

CY (u1, . . . , ud) = P {FY1(Y1) ≤ u1, . . . , FYd
(Yd) ≤ ud}

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_8, © Springer Science+Business Media, LLC 2011 
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= P
{
Y1 ≤ F−1

Y1
(u1), . . . , Yd ≤ F−1

Yd
(ud)

}

= FY

{
F−1

Y1
(u1), . . . , F−1

Yd
(ud)

}
. (8.1)

Next, letting uj = FYj (yj), j = 1, . . . , d, in (8.1) we see that

FY (y1, . . . , yd) = CY {FY1(y1), . . . , FYd
(yd)} . (8.2)

Equation (8.2) is part of a famous theorem due to Sklar which states that the
FY can be decomposed into the copula CY , which contains all information
about the dependencies among (Y1, . . . , Yd), and the univariate marginal CDFs
FY1 , . . . , FYd

, which contain all information about the univariate marginal
distributions.

Let

cY (u1, . . . , ud) =
∂d

∂u1 · · · ∂ud
CY (u1, . . . , ud) (8.3)

be the density of CY . By differentiating (8.2), we find that the density of Y
is equal to

fY (y1, . . . , yd) = cY {FY1(y1), . . . , FYd
(yd)}fY1(y1) · · · fYd

(yd). (8.4)

One important property of copulas is that they are invariant to strictly
increasing transformations of the variables. More precisely, suppose that gj is
strictly increasing and Xj = gj(Yj) for j = 1, . . . , d. Then X = (X1, . . . , Xd)
and Y have the same copulas. To see this, first note that the CDF of X is

FX(x1, . . . , xd) = P {g1(Y1) ≤ x1, . . . , gd(Yd) ≤ xd}
= P

{
Y1 ≤ g−1

1 (x1), . . . , Yd ≤ g−1
d (xd)

}

= FY

{
g−1
1 (x1), . . . , g−1

d (xd)
}

(8.5)

and therefore the CDF of Xj is

FXj (xj) = FYj

{
g−1

j (xj)
}

.

Consequently,
F−1

Xj
(u) = gj

{
F−1

Yj
(u)

}
(8.6)

and by (8.1) applied to X, (8.5), (8.6), and then (8.1) applied to Y , the copula
of X is

CX(u1, . . . , ud) = FX

{
F−1

X1
(u1), . . . , F−1

Xd
(ud)

}

= FY

[
g−1
1

{
F−1

X1
(u1)

}
, . . . , g−1

d

{
F−1

Xd
(ud)

}]

= FY

{
F−1

Y1
(u1), . . . , F−1

Yd
(ud)

}

= CY (u1, . . . , ud).

To use copulas to model multivariate dependencies, we need parametric
families of copulas. We turn to that topic next.
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8.2 Special Copulas

There are three copulas of special interest because they represent indepen-
dence and the two extremes of dependence.

The d-dimensional independence copula is the copula of d independent
uniform(0,1) random variables. It equals

C ind(u1, . . . , ud) = u1 · · ·ud, (8.7)

and has a density that is uniform on [0, 1]d, that is, its density is c ind(u1, . . . ,
ud) = 1 on [0, 1]d.

The d-dimensional co-monotonicity copula CM has perfect positive de-
pendence. Let U be Uniform(0,1). Then, the co-monotonicity copula is the
CDF of U = (U, . . . , U); that is, U contains d copies of U so that all of the
components of U are equal. Thus,

CM(u1, . . . , ud) = P (U ≤ u1, . . . , U ≤ ud) = P{Y ≤ min(u1, . . . , ud)}
= min(u1, . . . , ud).

The two-dimensional counter-monotonicity copula CCM copula is the CDF
of (U, 1− U), which has perfect negative dependence. Therefore,

CCM(u1, u2) = P (U ≤ u1 & 1− U ≤ u2)
= P (1− u2 ≤ U ≤ u1) = max(u1 + u2 − 1, 0). (8.8)

It is easy to derive the last equality in (8.8). If 1 − u2 > u1, then the event
{1 − u2 ≤ U ≤ u1} is impossible so the probability is 0. Otherwise, the
probability is the length of the interval (1 − u2, u1), which is u1 + u2 − 1.
It is not possible to have a counter-monotonicity copula with d > 2. If, for
example, U1 is counter-monotonic to U2 and U2 is counter-monotonic to U3,
then U1 and U3 will be co-monotonic, not counter-monotonic.

8.3 Gaussian and t-Copulas

Multivariate normal and t-distributions offer a convenient way to generate
families of copulas. Let Y = (Y1, . . . , Yd) have a multivariate normal distribu-
tion. Since CY depends only on the dependencies within Y , not the univari-
ate marginal distributions, CY depends only on the correlation matrix of Y ,
which will be denoted by Ω. Therefore, there is a one-to-one correspondence
between correlation matrices and Gaussian copulas. The Gaussian copula with
correlation matrix Ω will be denoted C Gauss( · |Ω).

If a random vector Y has a Gaussian copula, then Y is said to have
a meta-Gaussian distribution. This does not, of course, mean that Y has a
multivariate Gaussian distribution, since the univariate marginal distributions
of Y could be any distributions at all. A d-dimensional Gaussian copula whose
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correlation matrix is the identity matrix, so that all correlations are zero, is the
d-dimensional independence copula. A Gaussian copula will converge to the
co-monotonicity copula if all correlations in Ω converge to 1. In the bivariate
case, as the correlation converges to −1, the copula converges to the counter-
monotonicity copula.

Similarly, let C t( · |ν, Ω) be the copula of a multivariate t-distribution
with correlation matrix Ω and degrees of freedom ν.1 The shape parameter
ν affects both the univariate marginal distributions and the copula, so ν is
a parameter of the copula. We will see in Section 8.6 that ν determines the
amount of tail dependence in a t-copula. A distribution with a t-copula is
called a t-meta distribution.

8.4 Archimedean Copulas

An Archimedean copula with a strict generator has the form

C(u1, . . . , ud) = φ−1{φ(u1) + · · ·+ φ(ud)}, (8.9)

where the function φ is the generator of the copula and satisfies

1. φ is a continuous, strictly decreasing, and convex function mapping [0, 1]
onto [0,∞],

2. φ(0) = ∞, and
3. φ(1) = 0.

Figure 8.1 is a plot of a generator and illustrates these properties. It is
possible to relax assumption 2, but then the generator is not called strict
and construction of the copula is more complex. There are many families of
Archimedean copulas, but we will only look at three, the Clayton, Frank, and
Gumbel copulas.

Notice that in (8.9), the value of C(u1, . . . , ud) is unchanged if we permute
u1, . . . , ud. A distribution with this property is called exchangeable. One con-
sequence of exchangeability is that both Kendall’s and Spearman’s rank cor-
relation introduced later in Section 8.5 are the same for all pairs of variables.
Archimedean copulas are most useful in the bivariate case or in applications
where we expect all pairs to have similar dependencies.

8.4.1 Frank Copula

The Frank copula has generator

φFr(u) = − log
{

e−θu − 1
e−θ − 1

}
, −∞ < θ < ∞.

1 There is a minor technical issue here if ν ≤ 2. In this case, the t-distribution does
not have covariance and correlation matrices. However, it still has a scale matrix
and we will assume that the scale matrix is equal to some correlation matrix Ω.
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Fig. 8.1. Generator of the Frank copula with θ = 1.

The inverse generator is

(φFr)−1(y) = − log
[
e−y{e−θ − 1}+ 1

]

θ
.

Therefore, by (8.9), the bivariate Frank copula is

CFr(u1, u2) = −1
θ

log
{

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
. (8.10)

The case θ = 0 requires some care, since plugging this value into (8.10) gives
0/0. Instead, one must evaluate the limit of (8.10) as θ → 0. Using the ap-
proximations ex − 1 ≈ x and log(1 + x) ≈ x as x → 0, one can show that as
θ → 0, CFr(u1, u2) → u1u2, the bivariate independence copula. Therefore, for
θ = 0 we define the Frank copula to be the independence copula.

It is interesting to study the limits of CFr(u1, u2) as θ → ±∞. As θ → −∞,
the bivariate Frank copula converges to the counter-monotonicity copula. To
see this, first note that as θ → −∞,

CFr(u1, u2) ∼ −1
θ

log
{

1 + e−θ(u1+u2−1)
}

. (8.11)

If u1 + u2 − 1 > 0, then as θ → −∞, the exponent −θ(u1 + u2 − 1) in (8.11)
converges to ∞ and
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Fig. 8.2. Random samples from Frank copulas.

log
{

1 + e−θ(u1+u2−1)
}
∼ −θ(u1 + u2 − 1)

so that CFr(u1, u2) → u1+u2−1. If u1+u2−1 < 0, then −θ(u1+u2−1) → −∞
and CFr(u1, u2) → 0. Putting these results together, we see that CFr(u1, u2)
converges to max(0, u1+u2−1), the counter-monotonicity copula, as θ → −∞.

As θ → ∞, CFr(u1, u2) → min(u1, u2), the co-monotonicity copula. Veri-
fication of this is left as an exercise for the reader.

Figure 8.2 contains scatterplots of bivariate samples from nine Frank cop-
ulas, all with a sample size of 200 and with values of θ that give dependencies
ranging from strongly negative to strongly positive. The convergence to the
counter-monotonicity (co-monotonicity) copula as θ →−∞ (+∞) can be seen
in the scatterplots.

8.4.2 Clayton Copula

The Clayton copula, with generator (t−θ − 1)/θ, θ > 0, is
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CCl(u1, . . . , ud) = (u−θ
1 + · · ·+ u−θ

d − d + 1)−1/θ.

We define the Clayton copula for θ = 0 as the limit

lim
θ↓0

CCl(u1, . . . , ud) = u1 · · ·ud

which is the independence copula. There is another way to derive this result.
As θ ↓ 0, l’Hôpital’s rule shows that the generator (t−θ − 1)/θ converges to
φ(t) = − log(t) with inverse φ−1(t) = exp(−t). Therefore,

CCl(u1, . . . , ud) = φ−1{φ(u1) + · · ·+ φ(ud)}
= exp {− (− log u1 − · · · − log ud)} = u1 · · ·ud.

It is possible to extend the range of θ to include −1 ≤ θ < 0, but then the
generator (t−θ − 1)/θ is finite at t = 0 in violation of assumption 2. of strict
generators. Thus, the generator is not strict if θ < 0. As a result, it is necessary
to define CCl(u1, . . . , ud) to equal 0 for small values of ui. To appreciate this,
consider the bivariate case. If −1 ≤ θ < 0, then u−θ

1 + u−θ
2 − 1 < 0 occurs

when u1 and u2 are both small. In these cases, CCl(u1, u2) is set equal to 0.
Therefore, there is no probability in the region u−θ

1 +u−θ
2 −1 < 0. In the limit,

as θ → −1, there is no probability in the region u1 + u2 < 1.
As θ → −1, the bivariate Clayton copula converges to the counter-

monotonicity copula, and as θ → ∞, the Clayton copula converges to the
co-monotonicity copula.

Figure 8.3 contains scatterplots of bivariate samples from Clayton copulas,
all with a sample size of 200 and with values of θ that give dependencies
ranging from counter-monotonicity to co-monotonicity. Comparing Figures
8.2 and 8.3, we see that the Frank and Clayton copulas are rather different
when the amount of dependence is somewhere between these two extremes.
In particular, the Clayton copula’s exclusion of the region u−θ

1 + u−θ
2 − 1 < 0

when θ < 0 is evident, especially in the example with θ = −0.7. In contrast,
the Frank copula has positive probability on the entire unit square. The Frank
copula is symmetric about the diagonal from (0, 1) to (1, 0), but the Clayton
copula does not have this symmetry.

8.4.3 Gumbel Copula

The Gumbel copula has generator {− log(t)}θ, θ ≥ 1, and consequently is
equal to

CGu(u1, . . . , ud) = exp
[
−{

(log u1)θ + · · ·+ (log ud)θ
}1/θ

]
.

The Gumbel copula is the independence copula when θ = 1 and converges to
the co-monotonicity copula as θ → ∞, but the Gumbel copula cannot have
negative dependence.
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Fig. 8.3. Random samples of size 200 from Clayton copulas.

Figure 8.4 contains scatterplots of bivariate samples from Gumbel copulas,
with a sample size of 200 and with values of θ that give dependencies ranging
from near independence to strong positive dependence.

In applications, it is useful that the different copula families have different
properties, since this increases the likelihood of finding a copula that fits the
data.

8.5 Rank Correlation

The Pearson correlation coefficient defined by (4.3) is not convenient for fitting
copulas to data, since it depends on the univariate marginal distributions as
well as the copula. Rank correlation coefficients remedy this problem, since
they depend only on the copula.

For each variable, the ranks of that variable are determined by ordering
the observations from smallest to largest and giving the smallest rank 1, the
next-smallest rank 2, and so forth. In other words, if Y1, . . . , Yn is a sample,
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Fig. 8.4. Random samples from Gumbel copulas.

then the rank of Yi in the sample is equal to 1 if Yi is the smallest observation,
is 2 if Y2 is the second smallest, and so forth. More mathematically, the rank
of Yi can be defined also by the formula

rank(Yi) =
n∑

j=1

I(Yj ≤ Yi), (8.12)

which counts the number of observations (including Yi itself) that are less
than or equal to Yi. A rank statistic is a statistic that depends on the data
only through the ranks. A key property of ranks is that they are unchanged by
strictly monotonic transformations. In particular, the ranks are unchanged by
transforming each variable by its CDF, so the distribution of any rank statistic
depends only on the copula of the data, not on the univariate marginals.

We will be concerned with rank statistics that measure statistical associ-
ation between pairs of variables. These statistics are called rank correlations.
There are two rank correlation coefficients in widespread usage, Kendall’s tau
and Spearman’s rho.

8.5.1 Kendall’s Tau

Let (Y1, Y2) be a bivariate random vector and let (Y ∗
1 , Y ∗

2 ) be an independent
copy of (Y1, Y2). Then (Y1, Y2) and (Y ∗

1 , Y ∗
2 ) are called a concordant pair if
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the ranking of Y1 relative to Y ∗
1 is the same as the ranking of Y2 relative to

Y ∗
2 , that is, either Y1 > Y ∗

1 and Y2 > Y ∗
2 or Y1 < Y ∗

1 and Y2 < Y ∗
2 . In either

case, (Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0. Similarly, (Y1, Y2) and (Y ∗
1 , Y ∗

2 ) are called a
discordant pair if (Y1 − Y ∗

1 )(Y2 − Y ∗
2 ) < 0. Kendall’s tau is the probability

of a concordant pair minus the probability of a discordant pair. Therefore,
Kendall’s tau for (Y1, Y2) is

ρτ (Y1, Y2) = P{(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0} − P{(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) < 0}
= E [sign{(Y1 − Y ∗

1 )(Y2 − Y ∗
2 )}] , (8.13)

where the sign function is

sign(x) =

{ 1, x > 0,
−1, x < 0,

0, x = 0.

It is easy to check that if g and h are increasing functions, then

ρτ{g(Y1), h(Y2)} = ρτ (Y1, Y2). (8.14)

Stated differently, Kendall’s tau is invariant to monotonically increasing trans-
formations. If g and h are the marginal CDFs of Y1 and Y2, then the left-hand
side of (8.14) is the value of Kendall’s tau for the copula of (Y1, Y2). This shows
that Kendall’s tau depends only on the copula of a bivariate random vector.
For a random vector Y , we define the Kendall tau correlation matrix to be
the matrix whose (j, k) entry is Kendall’s tau for the jth and kth components
of Y .

If we have a bivariate sample Y i = (Yi,1, Yi,2), i = 1, . . . , n, then the
sample Kendall’s tau is

ρ̂τ (Y1, Y2) =
(

n
2

)−1 ∑

1≤i<j≤n

sign {(Yi,1 − Yj,1)(Yi,2 − Yj,2)} . (8.15)

Note that
(

n
2

)
is the number of summands in (8.15), so ρ̂ is sign{(Yi,1−Yj,1)

(Yi,2−Yj,2)} averaged across all distinct pairs and is a sample version of (8.13).

8.5.2 Spearman’s Correlation Coefficient

For a sample, Spearman’s correlation coefficient is simply the usual Pearson
correlation calculated from the ranks of the data. For a distribution (that is,
an infinite population rather than a finite sample), both variables are trans-
formed by their CDFs and then the Pearson correlation is computed from the
transformed variables. Transforming a random variable by its CDF is analo-
gous to computing the ranks of a variable in a finite sample.
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Stated differently, Spearman’s correlation coefficient, also called Spear-
man’s rho, for a bivariate random vector (Y1, Y2) will be denoted by ρS(Y1, Y2)
and is defined to be the Pearson correlation coefficient of {FY1(Y1), FY2(Y2)}:

ρS(Y1, Y2) = Corr{FY1(Y1), FY2(Y2)}.

Since the distribution of {FY1(Y1), FY2(Y2)} is the copula of (Y1, Y2), Spear-
man’s rho, like Kendall’s tau, depends only on the copula.

The sample version of Spearman’s correlation coefficient can be computed
from the ranks of the data and for a bivariate sample Y i = (Yi,1, Yi,2), i =
1, . . . , n, is

ρ̂S(Y1, Y2) =
12

n(n2 − 1)

n∑

i=1

{
rank(Yi,1)− n + 1

2

}{
rank(Yi,2)− n + 1

2

}
.

(8.16)
The set of ranks for any variable is, of course, the integers 1 to n and (n+1)/2
is the mean of its ranks. It can be shown that ρ̂S(Y1, Y2) is the sample Pearson
correlation between the ranks of Yi,1 and the ranks of Yi,2.2

If Y = (Y1, . . . , Yd) is a random vector, then the Spearman correlation
matrix of Y is the correlation matrix of {FY1(Y1), . . . , FYd

(Yd)} and contains
the Spearman correlation coefficients for all pairs of coordinates of Y . The
sample Spearman correlation matrix is defined analogously.

8.6 Tail Dependence

Tail dependence measures association between the extreme values of two ran-
dom variables and depends only on their copula. We will start with lower tail
dependence, which uses extremes in the lower tail. Suppose that Y = (Y1, Y2)
is a bivariate random vector with copula CY . Then the coefficient of lower
tail dependence is denoted by λl and defined as

λl := lim
q↓0

P
{
Y2 ≤ F−1

Y2
(q) |Y1 ≤ F−1

Y1
(q)

}
(8.17)

= lim
q↓0

P
{
Y2 ≤ F−1

Y2
(q) and Y1 ≤ F−1

Y1
(q)

}

P
{
Y1 ≤ F−1

Y1
(q)

} (8.18)

= lim
q↓0

P {FY2(Y2) ≤ q and FY1(Y1) ≤ q}
P {FY1(Y1) ≤ q} (8.19)

= lim
q↓0

CY (q, q)
q

. (8.20)

2 If there are ties, then ranks are averaged among tied observations. For example,
if there are two observations tied for smallest, then they each get a rank of 1.5.
When there are ties, then these results must be modified.
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It is helpful to look at these equations individually. As elsewhere in this chap-
ter, for simplicity we are assuming that FY1 and FY2 are strictly increasing on
their supports and therefore have inverses.

First, (8.17) defines λl as the limit as q ↓ 0 of the conditional probability
that Y2 is less than or equal to its qth quantile, given that Y1 is less than or
equal to its qth quantile. Since we are taking a limit as q ↓ 0, we are looking
at the extreme left tail. What happens if Y1 and Y2 are independent? Then
P (Y2 ≤ y2 |Y1 ≤ y1) = P (Y2 ≤ y2) for all y1 and y2. Therefore, the conditional
probability in (8.17) equals the unconditional probability P (Y2 ≤ F−1

Y2
(q)) and

this probability converges to 0 as q ↓ 0. Therefore, λl = 0 implies that in the
extreme left tail, Y1 and Y2 behave as if they were independent.

Equation (8.18) is just the definition of conditional probability. Equation
(8.19) is simply (8.18) after applying the probability transformation to both
variables.

The numerator in equation (8.20) is just the definition of a copula and
the denominator is the result of FY1(Y1) being Uniform(0,1) distributed; see
(A.9).

Deriving formulas for λl for Gaussian and t-copulas is a topic best left
for more advanced books. Here we give only the results; see Section 8.8 for
further reading. For any Gaussian copula with ρ 6= 1, λl = 0, that is, Gaussian
copulasdo not have tail dependence except in the extreme case of perfect
positive correlation. For a t-copula with ν degrees of freedom and correlation
ρ,

λl = 2Ft,ν+1

{
−

√
(ν + 1)(1− ρ)

1 + ρ

}
, (8.21)

where Ft,ν+1 is the CDF of the t-distribution with ν + 1 degrees of freedom.
Since Ft,ν+1(−∞) = 0, we see that λl → 0 as ν →∞, which makes sense

since the t-copula converges to a Gaussian copula as ν → ∞. Also, λl → 0
as ρ → −1, which is also not too surprising, since ρ = −1 is perfect negative
dependence and λl measures positive tail dependence.

The coefficient of upper tail dependence, λu, is

λu := lim
q↑1

P
{
Y2 ≥ F−1

Y2
(q) |Y1 ≥ F−1

Y1
(q)

}
(8.22)

= 2 + lim
q↑1

1− CY (q, q)
1− q

. (8.23)

We see that λu is defined analogously to λl; λu is the limit as q ↑ 1 of the
conditional probability that Y2 is greater than or equal to its qth quantile,
given that Y1 is greater than or equal to its qth quantile. Deriving (8.23) is
left as an exercise for the interested reader.

For Gaussian and t-copula, λu = λl, so that λu = 0 for any Gaussian cop-
ula and for a t-copula, λl is given by the right-hand side of (8.21). Coefficients
of tail dependence for t-copulas are plotted in Figure 8.5. One can see λl = λu

depends strongly on both ρ and ν.
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Fig. 8.5. t-copulas coefficients of tail dependence as functions of ρ for ν = 1, 4, 25,
and 250.

For the independence copula, λl and λu are both equal to 0, and for the
co-monotonicity copula both are equal to 1.

Knowing whether or not there is tail dependence is important for risk
management. If there are no tail dependencies among the returns on the assets
in a portfolio, then there is little risk of clusters of very negative returns, and
the risk of an extreme negative return on the portfolio is low. Conversely, if
there are tail dependencies, then the likelihood of extreme negative returns
occurring simultaneously on several assets in the portfolio can be high.

8.7 Calibrating Copulas

Assume that we have an i.i.d. sample Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, and
we wish to estimate the copula of Y i and perhaps its marginal distributions
as well.

An important task is choosing a copula model. The various copula models
differ notably from each other. For example, some have tail dependence and
others do not. The Gumbel copula allows only positive dependence or inde-
pendence. The Clayton copula with negative dependence excludes the region
where both u1 and u2 are small. As will be seen in this section, an appropriate
copula model can be selected using graphical techniques as well as with AIC.
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8.7.1 Maximum Likelihood

Suppose we have parametric models FY1(· |θ1), . . . , FYd
(· |θd) for the marginal

CDFs as well as a parametric model cY (·|θC) for the copula density. By taking
logs of (8.4), we find that the log-likelihood is

L(θ1, . . . , θd, θC) =
n∑

i=1

(
log

[
cY

{
FY1(Yi,1|θ1), . . . , FYd

(Yi,d|θd)
∣∣∣θC

}]

+ log
{
fY1(Yi,1|θ1)

}
+ · · ·+ log

{
fYd

(Yi,d|θd)
}
)

. (8.24)

Maximum likelihood estimation finds the maximum of L(θ1, . . . , θd, θC) over
the entire set of parameters (θ1, . . . , θd, θC).

There are two potential problems with maximum likelihood estimation.
First, because of the large number of parameters, especially for large values of
d, maximizing L(θ1, . . . , θd, θC) can be a challenging numerical problem. This
difficulty can be ameliorated by the use of starting values that are close to the
MLEs. The pseudo-maximum likelihood estimates discussed in the next sec-
tion are easier to compute than the MLE and can used either as an alternative
to the MLE or as starting values for the MLE.

Second, maximum likelihood estimation requires parametric models for
both the copula and the marginal distributions. If any of the marginal dis-
tributions are not well fit by a convenient parametric family, this may cause
biases in the estimated parameters of both the marginal distributions and
the copula. The semiparametric approach to pseudo-maximum likelihood es-
timation, where the marginal distributions are estimated nonparametrically,
provides a remedy to this problem.

8.7.2 Pseudo-Maximum Likelihood

Pseudo-maximum likelihood estimation is a two-step process. In the first step,
each of the d marginal distribution functions is estimated, one at a time. Let
F̂Yj be the estimate of the jth marginal CDF, j = 1, . . . , d. In the second step,

n∑

i=1

log
[
cY

{
F̂Y1(Yi,1), . . . , F̂Yd

(Yi,d)
∣∣∣θC

}]
(8.25)

is maximized over θC . Note that (8.25) is obtained from (8.24) by deleting
terms that do not depend on θC and replacing the marginal CDFs by es-
timates. By estimating parameters in the marginal distributions and in the
copula separately, the pseudo-maximum likelihood approach avoids a high-
dimensional optimization.

There are two approaches to step 1, parametric and nonparametric. In
the parametric approach, parametric models FY1(· |θ1), . . . , FYd

(· |θd) for the
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marginal CDFs are assumed as in maximum likelihood estimation. The data
Y1,j , . . . , Yn,j for the jth variate are used to estimate θj , usually by maximum
likelihood as discussed in Chapter 5. Then, F̂Yj (·) = FYj (·|θ̂j). In the non-
parametric approach, F̂Yj is estimated by the empirical CDF of Y1,j , . . . , Yn,j ,
except that the divisor n in (4.1) is replaced by n + 1 so that

F̂Yj (y) =
∑n

i=1 I{Yi,j ≤ y}
n + 1

. (8.26)

With this modified divisor, the maximum value of F̂Yj (Yi,j) is n/(n + 1)
rather than 1. Avoiding a value of 1 is essential when, as is often the case,
cY (u1, . . . , ud|θC) = ∞ if some of u1, . . . , ud are equal to 1.

When both steps are parametric, the estimation method is called paramet-
ric pseudo-maximum likelihood. The combination of a nonparametric step 1
and a parametric step 2 is called semiparametric pseudo-maximum likelihood.

In the second step of pseudo-maximum likelihood, the maximization can
be difficult when θC is high-dimensional. For example, if one uses a Gaussian
or t-copula, then there are d(d − 1)/2 correlation parameters. One way to
solve this problem is to assume some structure to the correlation. An extreme
case of this is the equi-correlation model where all nondiagonal elements of
the correlation matrix have a common value, call it ρ. If one is reluctant to
assume some type of structured correlation matrix, then it is essential to have
good starting values for the correlation matrix when maximizing (8.25). For
Gaussian and t-copulas, starting values can be obtained via rank correlations
as discussed in the next section.

The values F̂Yj (Yi,j), i = 1, . . . , n and j = 1, . . . , d, will be called the
uniform-transformed variables, since they should have approximately Uni-
form(0,1) distributions. The multivariate empirical CDF [see equation (A.38)]
of the uniform-transformed variables is called the empirical copula and is a
nonparametric estimate of the copula. The empirical copula is useful for check-
ing the goodness of fits of parametric copula models; see Example 8.2.

8.7.3 Calibrating Meta-Gaussian and Meta-t-Distributions

Gaussian Copulas

Rank correlation can be useful for estimating the parameters of a copula.
Suppose Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, is an i.i.d. sample from a meta-
Gaussian distribution. Then its copula is C Gauss( · |Ω) for some correlation
matrix Ω. To estimate the distribution of Y , we need to estimate the univari-
ate marginal distributions and Ω. The marginal distribution can be estimated
by the methods discussed in Chapter 5. Result (8.28) in the following theorem
shows that Ω can be estimated by the sample Spearman correlation matrix.

Theorem 8.1. Let Y = (Y1, . . . , Yd) have a meta-Gaussian distribution with
continuous marginal distributions and copula C Gauss( · |Ω) and let Ωi,j be the
i, jth entry of Ω. Then
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ρτ (Yi, Yj) =
2
π

arcsin(Ωi,j), and (8.27)

ρS(Yi, Yj) =
6
π

arcsin(Ωi,j/2) ≈ Ωi,j . (8.28)

Suppose, instead, that Y i, i = 1, . . . , n, has a meta t-distribution with
continuous marginal distributions and copula C t( · |ν, Ω). Then (8.27) still
holds, but (8.28) does not hold.

The approximation in (8.28) uses the result that

6
π

arcsin(x/2) ≈ x for |x| ≤ 1. (8.29)

The left- and right-hand sides of (8.29) are equal when x = −1, 0, 1 and their
maximum difference over the range −1 ≤ x ≤ 1 is 0.018. However, the relative
error

{
6
π arcsin(x/2)− x

}
/ 6

π arcsin(x/2) can be larger, as much as 0.047, and
is largest near x = 0.

By (8.28), the sample Spearman rank correlation matrix Y i, i = 1, . . . , n,
can be used as an estimate of the correlation matrix Ω of C Gauss( · |Ω). This
estimate could be the final one or could be used as a starting value for maxi-
mum likelihood or pseudo-maximum likelihood estimation.

t-Copulas

If {Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n} is a sample from a distribution with a
t-copula, C t( · |ν, Ω), then we can use (8.27) and the sample Kendall’s taus to
estimate Ω. Let ρ̂τ (Yj , Yk) be the sample Kendall’s tau calculated using the
samples {Y1,j , . . . , Yn,j} and {Y1,k, . . . , Yn,k} of the jth and kth variables, and
let Ω̃

∗∗
be the matrix whose j, kth entry is sin{π

2 ρ̂τ (Yj , Yk)}. Then Ω̃
∗∗

will
have two of the three properties of a correlation matrix; it will be symmetric
with all diagonal entries equal to 1. However, it may not be positive definite,
or even semidefinite, because some of its eigenvalues may be negative.

If all its eigenvalues are positive, then we will use Ω̃
∗∗

to estimate Ω.
Otherwise, we alter Ω̃

∗∗
slightly to make it positive definite. By (A.47),

Ω̃
∗∗

= O diag(λi) OT

where O is an orthogonal matrix whose columns are the eigenvectors of Ω̃
∗∗

and λ1, . . . , λd are the eigenvalues. We then define

Ω̃
∗

= O diag{max(ε, λi)}OT,

where ε is some small positive quantity, for example, ε = 0.001. Now, Ω̃
∗

is
symmetric and positive definite, but its diagonal elements, Ω̃∗

i,i, i = 1, . . . , p,
may not be equal to 1. This problem is easily fixed; multiple the ith row and



8.7 Calibrating Copulas 191

the ith column of Ω̃
∗

by
(
Ω̃∗

i,i

)−1/2

, for i = 1, . . . , d. The final result, which

we will call Ω̃, is a bona fide correlation matrix; that is, it is symmetric and
positive definite and it has all diagonal entries equal to 1.

After Ω has been estimated by Ω̃, an estimate of ν is still needed. One can
be obtained by plugging Ω̃ into the log-likelihood (8.25) and then maximizing
over ν.

Example 8.2. Flows in pipelines

In this example, we will continue the analysis of the pipeline flows data
introduced in Example 4.3. Only the flows in the first two pipelines will be
used.
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Fig. 8.6. Pipeline data. Histograms (a) and (b) and a scatterplot (c) of the uniform-
transformed flows. The empirical copula is the empirical CDF of the data in (c).
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In a fully parametric pseudo-likelihood analysis, the univariate skewed t-
model will be used for flows 1 and 2. Let U1,j , . . . , Un,j be the flows in pipeline
j, j = 1, 2, transformed by their estimated skewed-t CDFs. We will call the
Ui,j “uniform-transformed flows.” Define Zi,j = Φ−1(Ui,j), where Φ−1 is the
standard normal quantile function. The Zi,j should be approximately N(0, 1)-
distributed and we will call them “normal-transformed flows.”

Both sets of uniform-transformed flows should be Uniform(0,1). Figure 8.6
shows histograms of both samples of uniform-transformed flows as well as their
scatterplot. The histograms show some deviations from uniform distributions,
which suggests that the skewed t may not provide excellent fits and that a
semiparametric pseudo-maximum likelihood approach might be tried—this
will be done soon. However, the deviations may be due to random variation.

The scatterplot in Figure 8.6 shows some negative correlation as the data
are somewhat concentrated along the diagonal from top left to bottom right.
Thus, we can expect that the Gumbel copula, which cannot have negative
dependence, will not fit well. Also, the Clayton copula may not fit well either,
since the scatterplot shows data in the region where both u1 and u2 have
small values, but this region is excluded by a Clayton copula with negative
dependence. We will soon see that AIC agrees with these conclusions from a
graphical analysis, since both the Clayton and Gumbel have higher (worse)
AIC values compared to the Gaussian, t, and Frank copula models.

Figure 8.7 shows that the normal-transformed flows have approximately
linear normal plots, as is to be expected, and their scatterplot again shows
negative correlation.

We will assume for now that the two flows have a meta-Gaussian distri-
bution. There are three ways to estimate the correlation in their Gaussian
copula. The first, Spearman’s sample rank correlation, is −0.357. The second,
which uses (8.27) is sin(πτ̂/2), where τ̂ is the sample Kendall rank correla-
tion; its value is −0.359. The third way, Pearson’s correlation of the normal-
transformed flows, is −0.335. There is reasonably close agreement among the
three values, especially relative to their uncertainties; for example, the 95%
confidence interval for the Pearson correlation of the normal-transformed flows
is (−0.426,−0.238), and the other two estimate are well within this interval.

Five parametric copulas were fit to the uniform-transformed flows: t,
Gaussian, Gumbel, Frank, and Clayton. Since we used parametric estimates
to transform the flows, we are fitting the copulas by parametric maximum
pseudo-likelihood. The results are in Table 8.1. Looking at the maximized
log-likelihood values, we see that the Gumbel copula fits poorly, which was
to be expected since that copula only allows positive dependence and these
data show negative dependence. The Frank copula fits best since it minimizes
AIC, but the t and Gaussian fit reasonably well. Figure 8.8 plots uniform-
transformed flows and contours of the distribution functions of five copulas:
the empirical copula and four estimated parametric copulas. The t-copula is
similar to the Gaussian since ν̂ is large, specifically 22.3, so the t-copula was



8.8 Bibliographic Notes 193

−2 0 1 2 3

−3
−1

1
3

Normal QQ Plot

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

−2 −1 0 1 2 3

−3
−1

1
3

Normal QQ Plot

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

−2 0 1 2 3

−2
0

1
2

3

z1

z 2

Fig. 8.7. Pipeline data. Normal plots (a) and (b) and a scatterplot (c) of the normal-
transformed flows.

not included in the figure. The Frank copula fits best in the sense that its con-
tours are closest to those of those of the empirical copula. This is in agreement
with the AIC values.

The analysis in the previous paragraph was repeated with the flows
transformed by their empirical CDFs. Doing this yielded the semiparamet-
ric pseudo-maximum likelihood estimates. Since the results were very similar
to those for parametric pseudo-maximum likelihood estimates, they are not
presented here.

¤

8.8 Bibliographic Notes

For discussion of Archimedean copula with nonstrict generators, see McNeil,
Frey, and Embrechts (2005). These authors discuss a number of other topics in
more detail than is done here. They discuss methods defining nonexchangeable
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Fig. 8.8. Uniform-transformed flows for pipeline data. Scatterplot, empirical copula,
and fitted copulas using four parametric models.

Table 8.1. Estimates of copula parameters using the uniform-transformed pipeline
flow data.

Copula family Estimates Maximized AIC
log-likelihood

t bρ = −0.34 21.0 −38.0bν = 22.3
Gaussian bρ = −0.331 20.4 −38.8

Gumbel bθ = 0.988 1.06 −0.06

Frank bθ = −2.25 23.1 −44.1

Clayton bθ = −0.167 9.87 −17.7
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Archimedean copulas. The coefficients of tail dependence for Gaussian and t-
copulas are derived in their Section 5.2. The theorem and calibration methods
in Section 8.7.3 are discussed in their Section 5.5.

Cherubini, Luciano, and Vecchiato (2004) treat the application of copulas
to finance. Joe (1997) and Nelsen (2007) are standard references on copulas.

Li (2000) developed a well-known but controversial model for credit risk
using exponentially distributed default times with a Gaussian copula. An arti-
cle in Wired magazine states that Li’s Gaussian copula model was “a quick—
and fatally flawed—way to assess risk” (Salmon, 2009). Duffie and Singleton’s
(2003) Section 10.4 also discusses copula-based methods for modeling depen-
dent default times.
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8.10 Problems

8.11 R Lab

8.11.1 Simulating Copulas

Run the R code that appears on the next page to generate data from a copula.
The first line loads the copula library. The second line defines a copula. At
this point, nothing is done with the copula—it is simply defined. However, the
copula is used in the fourth line to generate a random sample. The remaining
lines create a scatterplot matrix of the sample and print its sample correlation
matrix.
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library(copula)

cop_t_dim3 = tCopula(c(-.6,.75,0), dim = 3, dispstr = "un",

df = 1)

set.seed(5640)

rand_t_cop = rcopula(cop_t_dim3,500)

pairs(rand_t_cop)

cor(rand_t_cop)

You can use R’s help to learn more about the functions tCopula and rCopula.

Problem 1 (a) What type of copula has been sampled? (Give the copula fam-
ily, the correlation matrix, and any other parameters that specify the cop-
ula.)

(b) What is the sample size?

Problem 2 Examine the scatterplot matrix and answer the questions below.
Include the scatterplot matrix with your work.

(a) Var 2 and Var 3 are uncorrelated. Do they seem independent? Why or
why not?

(b) Do you see signs of tail dependence? If so, where?
(c) What are the effects of correlation upon the plots?
(d) The nonzero correlations in the copula do not have the same values as the

corresponding sample correlations. Do you think this is just due to random
variation or is something else going on? If there is another cause besides
random variation, what might that be? To help answer this question, you
can get confidence intervals for correlation: For example,
cor.test(rand_t_cop[,1],rand_t_cop[,2])
will give a confidence interval for the correlation between Var 1 and Var
2. Does this confidence interval include −0.6?

The first line of the following R code defines a normal copula. The sec-
ond line defines a multivariate distribution by specifying its copula and its
marginal distributions—the copula is the one just defined. The fourth line
generates a random sample of size 1000 from this distribution, and the vari-
able are labeled “Var 1,” “Var 2,” and “Var 3.” The remaining lines create a
scatterplot matrix and kernel estimates of the marginal densities.

cop_normal_dim3 = normalCopula(c(-.6,.75,0), dim = 3, dispstr = "un")

mvdc_normal <- mvdc(cop_normal_dim3, c("exp", "exp","exp"),

list(list(rate=2), list(rate = 3), list(rate=4)) )

set.seed(5640)

rand_mvdc = rmvdc(mvdc_normal,1000)

pairs(rand_mvdc)

par(mfrow=c(2,2))

plot(density(rand_mvdc[,1]))
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plot(density(rand_mvdc[,2]))

plot(density(rand_mvdc[,3]))

Run the code above to generate the random sample.

Problem 3 (a) What are the marginal distributions of the three variables in
rand mvdc? What are their expected values?

(b) Are the second and third variables independent? Why or why not?

8.11.2 Fitting Copulas to Returns Data

In this section, you will fit copulas to a bivariate data set of returns on IBM
and the CRSP index.

First, you will fit a model with univariate t-distributions and a t-copula.
The model has three degrees-of-freedom parameters, one each for the two
univariate models and a third for the copula. This means that the univariate
distributions can have different tail weights and that their tail weights are
independent of the tail dependence in the copula.

Run the following R code to load the data and necessary libraries, fit
univariate t-distributions to the two variables, and convert estimated scale
parameters to estimated standard deviations:

library(Ecdat) # need for the data

library(copula) # for copula functions

library(fGarch) # need for standardized t density

library(MASS) # need for fitdistr and kde2d

library(fCopulae) # additional copula functions (pempiricalCopula

# and ellipticalCopulaFit)

data(CRSPday,package="Ecdat")

ibm = CRSPday[,5]

crsp = CRSPday[,7]

est.ibm = as.numeric(fitdistr(ibm,"t")$estimate)

est.crsp = as.numeric(fitdistr(crsp,"t")$estimate)

est.ibm[2] = est.ibm[2]*sqrt(est.ibm[3]/(est.ibm[3]-2))

est.crsp[2] = est.crsp[2]*sqrt(est.crsp[3]/(est.crsp[3]-2))

The univariate estimates will be used as starting values when the meta t-
distribution is fit by maximum likelihood. You also need an estimate of the
correlation coefficient in the t-copula. This can be obtained using Kendall’s
tau. Run the following code and complete the second line so that omega is the
estimate of the correlation based on Kendall’s tau.

cor_tau = cor(ibm,crsp,method="kendall")

omega =

Problem 4 How did you complete the second line of code? What was the
computed value of omega?
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Next, define the t-copula using omega as the correlation parameter and 4 as
the degrees-of-freedom parameter.

cop_t_dim2 = tCopula(omega, dim = 2, dispstr = "un", df = 4)

Now fit copulas to the uniform-transformed data.

n = length(ibm)

data1 = cbind(pstd(ibm,mean=est.ibm[1],sd=est.ibm[2],nu=est.ibm[3]),

pstd(crsp,mean=est.crsp[1],sd=est.crsp[2],nu=est.crsp[3]))

data2 = cbind(rank(ibm)/(n+1), rank(crsp)/(n+1))

ft1 = fitCopula(cop_t_dim2, method="L-BFGS-B", data=data1,

start=c(omega,5),lower=c(0,2.5),upper=c(.5,15) )

ft2 = fitCopula(cop_t_dim2, method="L-BFGS-B", data=data2,

start=c(omega,5),lower=c(0,2.5),upper=c(.5,15) )

Problem 5

(a) Explain the difference between methods used to obtain the two estimates
ft1 and ft2.

(b) Do the two estimates seem significantly different (in a practical sense)?

The next step defines a meta t-distribution by specifying its t-copula and its
univariate marginal distributions. Values for the parameters in the univariate
margins are also specified. The values of the copula parameter were already
defined in the previous step.

mvdc_t_t = mvdc( cop_t_dim2, c("std","std"),

list(list(mean=est.ibm[1],sd=est.ibm[2],nu=est.ibm[3]),

list(mean=est.crsp[1],sd=est.crsp[2],nu=est.crsp[3]) ) )

Now fit the meta t-distribution. Be patient. This takes awhile; for instance,
it took over four minutes on my laptop. The elapsed time in minutes will be
printed.

start=c(est.ibm,est.crsp,ft1@est)

objFn = function(param)

{

-loglikMvdc(param, cbind(ibm,crsp), mvdc_t_t)

}

t1 = proc.time()

fit_cop = optim(start,objFn,method="L-BFGS-B",

lower = c(-.1,.001,2.5, -.1,.001,2.5, .2,2.5),

upper = c(.1,.03,15, .1,.03,15, .8,15)

)

t2 = proc.time()

total_time = t2-t1

total_time[3]/60
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Lower and upper bounds are used to constrain the algorithm to stay inside
a region where the log-likelihood is defined and finite. The function fitMvdc
in the copula package does not allow setting lower and upper bounds and did
not converge on this problem.

Problem 6

(a) What are the estimates of the copula parameters in fit cop?
(b) What are the estimates of the parameters in the univariate marginal dis-

tributions?
(c) Was the estimation method maximum likelihood, parametric pseudo-maximum

likelihood, or semiparametric pseudo-maximum likelihood?
(d) Estimate the coefficient of lower tail dependence for this copula.

Now fit normal, Gumbel, Frank, and Clayton copulas to the data.

fnorm = fitCopula(data=data1,copula=normalCopula(-.3,dim=2),

method="BFGS",start=.5)

fgumbel = fitCopula(data=data1,method="BFGS",

copula=gumbelCopula(3,dim=2),start=1)

ffrank = fitCopula(data=data1,method="BFGS",

copula=frankCopula(3,dim=2),start=1)

fclayton = fitCopula(data=data1,method="BFGS",

copula=claytonCopula(1,dim=2),start=1)

The estimated copulas (CDFs) will be compared with the empirical copula.

u1 = data1[,1]

u2 = data1[,2]

dem = pempiricalCopula(u1,u2)

par(mfrow=c(3,2))

contour(dem$x,dem$y,dem$z,main="Empirical")

contour(tCopula(param=ft2@est[1],df=ft2@est[2]),

pcopula,main="t")

contour(normalCopula(fnorm@est),pcopula,main="Normal")

contour(gumbelCopula(fgumbel@est,dim=2),pcopula,

main="Gumbel")

contour(frankCopula(ffrank@est,dim=2),pcopula,main="Frank")

contour(claytonCopula(fclayton@est,dim=2),pcopula,

main="Clayton")

Problem 7 Do you see any difference between the parametric estimates of
the copula? If so, which seem closest to the empirical copula? Include the plot
with your work.

A two-dimensional KDE of the copula’s density will be compared with the
parametric density estimates.
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par(mfrow=c(3,2))

contour(kde2d(u1,u2),main="KDE")

contour(tCopula(param=ft2@est[1],df=ft2@est[2]),

dcopula,main="t",nlevels=25)

contour(normalCopula(fnorm@est),dcopula,

main="Normal",nlevels=25)

contour(gumbelCopula(fgumbel@est,dim=2),

dcopula,main="Gumbel",nlevels=25)

contour(frankCopula(ffrank@est,dim=2),

dcopula,main="Frank",nlevels=25)

contour(claytonCopula(fclayton@est,dim=2),

dcopula,main="Clayton",nlevels=25)

Problem 8 Do you see any difference between the parametric estimates of
the copula density? If so, which seem closest to the KDE? Include the plot
with your work.

Problem 9 Find AIC for the t, normal, Gumbel, Frank, and Clayton copulas.
Which copula model fits best by AIC? (Hint: The fitCopula function returns
the log-likelihood.)

8.12 Exercises

1. Kendall’s tau rank correlation between X and Y is 0.55. Both X and Y
are positive. What is Kendall’s tau between X and 1/Y ? What is the
Kendall’s tau between 1/X and 1/Y ?

2. Suppose that X is Uniform(0,1) and Y 2. Then the Spearman rank corre-
lation and the Kendall’s tau between X and Y will both equal 1, but the
Pearson correlation between X and Y will be less than 1. Explain why.

3. Show that the generator of a Frank copula

φFr(u) = − log
{

e−θu − 1
e−θ − 1

}
, −∞ < θ < ∞,

satisfies assumptions 1–3 of a strict generator.
4. Show that as θ → ∞, CFr(u1, u2) → min(u1, u2), the co-monotonicity

copula.
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Time Series Models: Basics

9.1 Time Series Data

A time series is a sequence of observations in chronological order, for example,
daily log returns on a stock or monthly values of the Consumer Price Index
(CPI). In this chapter, we study statistical models for time series. These mod-
els are widely used in econometrics, business forecasting, and many scientific
applications.

A stochastic process is a sequence of random variables and can be viewed as
the “theoretical” or “population” analog of a time series—conversely, a time
series can be considered a sample from the stochastic process. “Stochastic” is
a synonym for random.

One of the most useful methods for obtaining parsimony in a time series
model is to assume stationarity, a property discussed next.

9.2 Stationary Processes

When we observe a time series, the fluctuations appear random, but often with
the same type of stochastic behavior from one time period to the next. For
example, returns on stocks or changes in interest rates can be very different
from the previous year, but the mean, standard deviation, and other statistical
properties often are similar from one year to the next.1 Similarly, the demand
for many consumer products, such as sunscreen, winter coats, and electricity,
has random as well as seasonal variation, but each summer is similar to past
summers, each winter to past winters, at least over shorter time periods.
Stationary stochastic processes are probability models for time series with
time-invariant behavior.
1 It is the returns, not the stock prices, that have time-invariant behavior. Stock

prices themselves tend to increase over time, so this year’s stock prices tend to
be higher and more variable than those a decade or two ago.
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A process is said to be strictly stationary if all aspects of its behavior
are unchanged by shifts in time. Mathematically, stationarity is defined as
the requirement that for every m and n, the distributions of Y1, . . . , Yn and
Y1+m, . . . , Yn+m are the same; that is, the probability distribution of a se-
quence of n observations does not depend on their time origin. Strict station-
arity is a very strong assumption, because it requires that “all aspects” of
behavior be constant in time. Often, we can get by assuming less, namely,
weak stationarity. A process is weakly stationary if its mean, variance, and
covariance are unchanged by time shifts. More precisely, Y1, Y2, . . . is a weakly
stationary process if

• E(Yi) = µ (a constant) for all i;
• Var(Yi) = σ2 (a constant) for all i; and
• Corr(Yi, Yj) = ρ(|i− j|) for all i and j for some function ρ(h).

Thus, the mean and variance do not change with time and the correlation
between two observations depends only on the lag, the time distance between
them. For example, if the process is stationary, then the correlation between
Y2 and Y5 is the same as the correlation between Y7 and Y10, since each
pair is separated by three units of time. The adjective “weakly” in “weakly
stationary” refers to the fact that we are only assuming that means, variance,
and covariances, not other distributional characteristics such as quantiles,
skewness, and kurtosis, are stationary. The term stationary will sometimes be
used as a shorthand for strictly stationary.

The function ρ is called the autocorrelation function of the process. Note
that ρ(h) = ρ(−h). Why?

The covariance between Yt and Yt+h is denoted by γ(h) and γ(·) is called
the autocovariance function. Note that γ(h) = σ2ρ(h) and that γ(0) = σ2.
Also, ρ(h) = γ(h)/σ2 = γ(h)/γ(0).

As mentioned, many financial time series are not stationary, but often the
changes in them, perhaps after they have been log transformed, are station-
ary. For this reason, stationary time series models are far more applicable
than they might appear. From the viewpoint of statistical modeling, it is not
important whether it is the time series itself or changes in the time series that
are stationary, because either way we get a parsimonious model.

The beauty of a stationary process is that it can be modeled with relatively
few parameters. For example, we do not need a different expectation for each
Yt; rather they all have a common expectation, µ. This implies that µ can
be estimated accurately by Y . If instead we did not assume stationarity and
each Yt had its own unique expectation, µt, then it would not be possible to
estimate µt accurately—µt could only be estimated by the single observation
Yt itself.

When a time series is observed, a natural question is whether it appears
to be stationary. This is not an easy question to address, and we can never be
absolutely certain of the answer. However, visual inspection of the time series
and changes in the time series can be helpful. A time series plot is a plot of
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the series in chronological order. This very basic plot is useful for assessing
stationary behavior, though it can be supplemented with other plots, such as
the plot of the sample autocorrelation function that will be introduced later.
In addition, there are statistical tests of stationarity—these are discussed in
Section 9.10.

A time series plot of a stationary series should show oscillation around
some fixed level, a phenomenon called mean-reversion. If the series wanders
without returning repeatedly to some fixed level, then the series should not
be modeled as a stationary process.

Example 9.1. Inflation rates and changes in inflation rates—Time series
plots
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Fig. 9.1. Time series plots of (a) one-month (in percent, annual rate) inflation rate
and (b) first differences in the rate. It is unclear if the series in (a) is stationary,
but the differenced series in (b) seems suitable for modeling as stationary.

The one-month inflation rate (in percent, annual rate) is plotted in Fig-
ure 9.1(a). The data come from the Mishkin data set in R’s Ecdat package.
The series may be wandering without reverting to a fixed mean, as would be
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expected with a stationary time series, or it may be slowly reverting to a mean
of approximately 4%. In panel (b), the first differences, that is, the changes
from one month to the next, are plotted. In contrast to the original series, the
differenced series certainly oscillate around a fixed mean that is 0%, or nearly
so. The differenced series is clearly stationary, but whether or not the original
series is stationary needs further investigation. We will return to this question
later. ¤

Example 9.2. Air passengers
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Fig. 9.2. Time series plot of monthly totals of air passengers (in thousands).

Figure 9.2 is a plot of the monthly totals of international airline passengers
for the years 1949 to 1960. The data are in the data set AirPassengers in R’s
Datasets package. There are three types of nonstationarity seen in the plot.
First is the obvious upward trend, second is the seasonal variation, and third
is the increase over time in the size of the seasonal oscillations. ¤
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9.2.1 White Noise

White noise is the simplest example of a stationary process. We will define
several types of white noise with increasingly restrictive assumptions.

The sequence Y1, Y2, . . . is a weak white noise process with mean µ and
variance σ2, which will be shortened to “weak WN(µ, σ2),” if

• E(Yi) = µ for all i;
• Var(Yi) = σ2 (a constant) for all i; and
• Corr(Yi, Yj) = 0 for all i 6= j.

If the mean is not specified, then it is assumed that µ = 0.
Y1, Y2, . . . is an i.i.d. process, then we call it an i.i.d. white noise process

or simply i.i.d. WN(µ, σ2). An i.i.d. white noise process is also a weak white
noise process, but not vice versa.

If, in addition, Y1, Y2 . . . is an i.i.d. process with a specific marginal distri-
bution, then this might be noted. For example, if Y1, Y2 . . . are i.i.d. normal
random variables, then the process is called a Gaussian white noise process.
Similarly, if Y1, Y2 . . . are i.i.d. t random variables with ν degrees of freedom,
then it is called a tν white noise process.

A weak white noise process is weakly stationary with

ρ(0) = 1,

ρ(h) = 0 if h 6= 0,

so that

γ(0) = σ2,

γ(h) = 0 if h 6= 0.

I.i.d. white noise is strictly stationary and weak white noise is weakly
stationary.

9.2.2 Predicting White Noise

Because of the lack of correlation, past values of a white noise process contain
no information that can be used to predict future values. More precisely,
suppose that . . . , Y1, Y2, . . . is an i.i.d. WN(µ, σ2) process. Then

E(Yi+t|Y1, . . . , Yi) = µ for all t ≥ 1. (9.1)

What this equation is saying is that one cannot predict the future deviations
of a white noise process from its mean, because its future is independent of
its past and present. Therefore, the best predictor of any future value of the
process is simply the mean µ, what you would use even if Y1, . . . , Yi had not
been observed. For weak white noise, (9.1) need not be true, but it is still true
that the best linear predictor2 of Yi+t given Y1, . . . , Yi is µ.
2 Best linear prediction is discussed in Section 14.10.1.
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9.3 Estimating Parameters of a Stationary Process

Suppose we observe Y1, . . . , Yn from a stationary process. To estimate the
mean µ and variance σ2 of the process, we can use the sample mean Y and
sample variance s2.

To estimate the autocovariance function, we use the sample autocovariance
function

γ̂(h) = n−1
n−h∑

j=1

(Yj+h − Y )(Yj − Y ). (9.2)

Equation (9.2) is an example of the usefulness of parsimony induced by the
stationarity assumption. Because the correlation between Yt and Yt+h is in-
dependent of t, all n− h pairs of data points that are separated by a lag of h
time units can be used to estimate γ(h). Some authors define γ̂(h) with the
factor n−1 in (9.2) replaced by (n− h)−1, but this change has little effect if n
is reasonably large and h is small relative to n, as is typically the case.

To estimate ρ(·), we use the sample autocorrelation function (sample ACF )
defined as

ρ̂(h) =
γ̂(h)
γ̂(0)

.

9.3.1 ACF Plots and the Ljung–Box Test

Most statistical software will plot a sample ACF with test bounds. These
bounds are used to test the null hypothesis that an autocorrelation coefficient
is 0. The null hypothesis is rejected if the sample autocorrelation is outside
the bounds. The usual level of the test is 0.05, so one can expect to see about
1 out of 20 sample autocorrelations outside the test bounds simply by chance.

An alternative to using the bounds to test the autocorrelations one at
a time is to use a simultaneous test. A simultaneous test is one that tests
whether a group of null hypotheses are all true versus the alternative that at
least one of them is false. The null hypothesis of the Ljung–Box test is H0 :
ρ(1) = ρ(2) = · · · = ρ(K) = 0 for some K, say K = 5 or 10. If the Ljung–Box
test rejects, then we conclude that one or more of ρ(1) = ρ(2) = · · · = ρ(K)
is nonzero.

If, in fact, the autocorrelations 1 to K are all zero, then there is only a 1
in 20 chance of falsely concluding that they are not all zero, assuming a level
0.05 test. In contrast, if the autocorrelations are tested one at at time, then
there is a much higher chance of concluding that one or more is nonzero.

The Ljung–Box test is sometimes called simply the Box test, though the
former name is preferable since the test is based on a joint paper of Ljung
and Box.
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Example 9.3. Inflation rates and changes in the inflation rate—ACF plots
and Ljung–Box test
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Fig. 9.3. Sample ACF plots of the one-month inflation rate (a) and changes in this
rate (b).

We return to the inflation rate data used in Example 9.1. Figure 9.3 con-
tains plots of (a) the sample ACF of the one-month inflation rate and (b) the
sample ACF of changes in the inflation rate. In (a) we see that the sample
ACF decays to zero slowly. This is a sign of either nonstationarity or possibly
of stationarity with long-memory dependence, which is discussed in Section
10.4. In contrast, the sample ACF in (b) decays to zero quickly, indicating
clearly that the differenced series is stationary. Thus, the sample ACF plots
agree with the conclusions reached by examining the time series plots in Fig-
ure 9.1, specifically that the differenced series is stationary and the original
series might not be. In Section 9.10 we will use hypothesis testing to further
address the question of whether or not the original series is stationary.

Several of the autocorrelations of the rate changes series fall outside the
test bounds, which suggests that the series is not white noise. To check, the
Ljung–Box test was implemented using R’s Box.test function. The Ljung–
Box test with K = 10 has an extremely small p-value, 6.665e−13, so the null
hypothesis of white noise is strongly rejected. Other choices of K give similar
results. K is called lag when Box.test is called and df in the output.

¤

Although a stationary process is somewhat parsimonious with parameters,
at least relative to a general nonstationary process, a stationary process is still
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not sufficiently parsimonious for most purposes. The problem is that there are
still an infinite number of parameters, ρ(1), ρ(2), . . . . What we need is a class
of stationary time series models with only a finite, preferably small, number
of parameters. The ARIMA models of this chapter are precisely such a class.
The simplest ARIMA models are autoregressive (AR) models, and we turn to
these first.

9.4 AR(1) Processes

Time series models with correlation can be built out of white noise. The
simplest correlated stationary processes are autoregressive processes, where
Yt is modeled as a weighted average of past observations plus a white noise
“error,” which is also called the “noise” or “disturbance.” We start with AR(1)
processes, the simplest autoregressive processes.

Let ε1, ε2, . . . be WN(0,σ2
ε ). We say that Y1, Y2, . . . is an AR(1) process if

for some constant parameters µ and φ,

Yt − µ = φ(Yt−1 − µ) + εt (9.3)

for all t. The parameter µ is the mean of the process. Think of the term
φ(Yt−1 − µ) as representing “memory” or “feedback” of the past into the
present value of the process. The process {Yt}+∞t=−∞ is correlated because
the deviation of Yt−1 from its mean is fed back into Yt. The parameter φ
determines the amount of feedback, with a larger absolute value of φ resulting
in more feedback and φ = 0 implying that Yt = µ+εt, so that Yt is WN(µ, σ2

ε ).
In applications in finance, one can think of εt as representing the effect of “new
information.” For example, if Yt is the log return on an asset at time t, then εt

represents the effect on the asset’s price of business and economic information
that is revealed at time t. Information that is truly new cannot be anticipated,
so the effects of today’s new information should be independent of the effects
of yesterday’s news. This is why we model new information as white noise.

If Y1, . . . is a weakly stationary process, then |φ| < 1. To see this, note that
stationarity implies that the variances of (Yt − µ) and (Yt−1 − µ) in (9.3) are
equal, say, to σ2

Y . Therefore, σ2
Y = φ2σ2

Y +σ2
ε , which requires that |φ| < 1. The

mean of this process is µ. Simple algebra shows that (9.3) can be rewritten as

Yt = (1− φ)µ + φYt−1 + εt. (9.4)

Recall the linear regression model Yt = β0 + β1Yt + εt from your statistics
courses or peek ahead to Chapter 12 for an introduction to regression analysis.
Equation (9.4) is just a linear regression model with intercept β0 = (1− φ)µ
and slope β1 = φ, since the model can be rewritten as

Yt = (1− φ)µ + φYt−1 + εt.
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The term autoregression refers to the regression of the process on its own past
values.

If |φ| < 1, then repeated use of equation (9.3) shows that

Yt = µ + εt + φεt−1 + φ2εt−2 + · · · = µ +
∞∑

h=0

φhεt−h, (9.5)

and assumes that time parameter t of Yt and εt can be extended to negative
values so that the white noise process is . . . , ε−2, ε−1, ε0, ε1, . . . and (9.3) is true
for all integers t. Equation (9.5) is called the infinite moving average [MA(∞)]
representation of the process. This equation shows that Yt is a weighted av-
erage of all past values of the white noise process. This representation should
be compared to the AR(1) representation that shows Yt as depending only
on Yt−1 and εt. Since |φ| < 1, φh → 0 as the lag h → ∞. Thus, the weights
given to the distant past are small. In fact, they are quite small. For example,
if φ = 0.5, then φ10 = 0.00098, so εt−10 has virtually no effect on Yt. For this
reason, the sum in (9.5) could be truncated at a finite number of terms so
there is no need to assume that the processes existed in the infinite past.

9.4.1 Properties of a stationary AR(1) Process

When an AR(1) process is stationary, which implies that |φ| < 1, then

E(Yt) = µ ∀t, (9.6)

γ(0) = Var(Yt) =
σ2

ε

1− φ2
∀t, (9.7)

γ(h) = Cov(Yt, Yt+h) =
σ2

ε φ|h|

1− φ2
∀t and ∀h, (9.8)

and
ρ(h) = Corr(Yt, Yt+h) = φ|h| ∀t and ∀h. (9.9)

It is important to remember that formulas (9.6) to (9.9) hold only if |φ| < 1
and only for AR(1) processes. Moreover, for Yt to be stationary, Y0 must start
in the stationary distribution so that E(Y0) = µ and Var(Y0) = σ2

ε /(1− φ2).
Otherwise, Yt is not stationary though it eventually converges to stationarity.

These formulas can be proved using (9.5). For example, using (7.11) in
Section 7.3.2,

Var(Yt) = Var

( ∞∑

h=0

φhεt−h

)
= σ2

ε

∞∑

h=0

φ2h =
σ2

ε

1− φ2
, (9.10)

which proves (9.7). In (9.10) the formula for summation of a geometric series
was used. This formula is
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∞∑

i=0

ri =
1

1− r
if |r| < 1. (9.11)

Also, for h > 0,

Cov




∞∑

i=0

εt−iφ
i,
∞∑

j=0

εt+h−jφ
j


 =

σ2
ε φ|h|

1− φ2
, (9.12)

thus verifying (9.8). Then (9.9) follows by dividing (9.8) by (9.7).
Be sure to distinguish between σ2

ε , which is the variance of the white
noise process ε1, ε2, . . ., and γ(0), which is the variance of the AR(1) process
Y1, Y2, . . . . We can see from (9.7) that γ(0) is larger than σ2

ε unless φ = 0, in
which case Yt = µ + εt, so that Yt and εt have the same variance.
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Fig. 9.4. Autocorrelation functions of AR(1) processes with φ equal to 0.95, 0.75,
0.2, and −0.9.

The ACF (autocorrelation function) of an AR(1) process depends upon
only one parameter, φ. This is a remarkable amount of parsimony, but it
comes at a price. The ACF of an AR(1) process has only a limited range
of shapes, as can be seen in Figure 9.4. The magnitude of its ACF decays
geometrically to zero, either slowly as when φ = 0.95, moderately slowly as
when φ = 0.75, or rapidly as when φ = 0.2. If φ < 0, then the sign of the
ACF alternates as its magnitude decays geometrically. If the sample ACF
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of the data does not behave in one of these ways, then an AR(1) model is
unsuitable. The remedy is to use more AR parameters, to switch to another
class of models such as the moving average (MA) or autoregressive moving
average (ARMA) models. We investigate these alternatives in this chapter.

9.4.2 Convergence to the Stationary Distribution

Suppose that Y0 is an arbitrary starting value not chosen from the stationary
distribution and that (9.3) holds for t = 1, . . . . Then the process is not
stationary, but converges to the stationary distribution satisfying (9.6) to
(9.9) as t →∞.3 For example, since Yt − µ = φ(Yt−1 − µ) + εt, E(Y1)− µ =
φ{E(Y0)− µ}, E(Y2)− µ = φ2{E(Y0)− µ}, and so forth, so that

E(Yt) = µ + φt{E(Y0)− µ} for all t > 0. (9.13)

Since |φ| < 1, φt → 0 and E(Yt) → µ as t → ∞. The convergence of Var(Yt)
to σ2

ε /(1−φ2) can be proved in a somewhat similar manner. The convergence
to the stationary distribution can be very rapid when |φ| is not too close to 1.
For example, if φ = 0.5, then φ10 = 0.00097, so by (9.13) E(Y10) is very close
to µ unless E(Y0) was extremely far from µ.

9.4.3 Nonstationary AR(1) Processes

If |φ| ≥ 1, then the AR(1) process is nonstationary, and the mean, variance,
and correlation are not constant.

Random Walk (φ = 1)

If φ = 1, then
Yt = Yt−1 + εt

and the process is not stationary. This is the random walk process we saw in
Chapter 2.

Suppose we start the process at an arbitrary point Y0. It is easy to see
that

Yt = Y0 + ε1 + · · · + εt.

Then E(Yt|Y0) = Y0 for all t, which is constant but depends entirely on the
arbitrary starting point. Moreover, Var(Yt|Y0) = tσ2

ε , which is not stationary
but rather increases linearly with time. The increasing variance makes the
random walk “wander” in that Yt takes increasingly longer excursions away
from its conditional mean of Y0 and therefore is not mean-reverting.
3 However, there is a technical issue here. It must be assumed that Y0 has a finite

mean and variance, since otherwise Yt will not have a finite mean and variance
for any t > 0.
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AR(1) Processes When |φ| > 1

When |φ| > 1, an AR(1) process has explosive behavior. This can be seen
in Figure 9.5. This figure shows simulations of 200 observations from AR(1)
processes with various values of φ. The explosive case where φ = 1.01 clearly
is different from the other cases where |φ| ≤ 1. However, the case where
φ = 1 is not that much different from φ = 0.98 even though the former is
nonstationary while the latter is stationary. Longer time series would help
distinguish between φ = 0.98 and φ = 1.
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Fig. 9.5. Simulations of 200 observations from AR(1) processes with various values
of φ and µ = 0. The white noise process ε1, ε2, . . . , ε200 is the same for all four AR(1)
processes.

9.5 Estimation of AR(1) Processes

R has the function arima for fitting AR and other time series models. arima
and similar functions in other software packages have two estimation meth-
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ods, conditional least-squares and maximum likelihood. The two methods are
explained in Section 9.5.2. They similar and generally give nearly the same
estimates. In this book, we use the default method in R’s arima, which is
the MLE with the conditional least-squares estimate as the starting value for
computing the MLE by nonlinear optimization.

9.5.1 Residuals and Model Checking

Once µ and φ have been estimated, one can estimate the white noise process
ε1, . . . , εn. Rearranging equation (9.3), we have

εt = (Yt − µ)− φ(Yt−1 − µ). (9.14)

In analogy with (9.14), the residuals, ε̂2, ε̂3, . . . , ε̂n, are defined as

ε̂t = (Yt − µ̂)− φ̂(Yt−1 − µ̂), t ≥ 2, (9.15)

and estimate ε2, . . . , εn. The first noise, ε1, cannot be estimated since it is
assumed that the observations start at Y1 so that Y0 is not available. The
residuals can be used to check the assumption that Y1, Y2, . . . , Yn is an AR(1)
process; any autocorrelation in the residuals is evidence against the assump-
tion of an AR(1) process.

To appreciate why residual autocorrelation indicates a possible problem
with the model, suppose that we are fitting an AR(1) model, Yt = µ+φ(Yt−1−
µ) + εt, but the true model is an AR(2) process4 given by

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt.

Since we are fitting the incorrect AR(1) model, there is no hope of estimating
φ2 since it is not in the model. Moreover, φ̂ does not necessarily estimate
φ1 because of bias caused by model misspecification. Let φ∗ be the expected
value of φ̂. For the purpose of illustration, assume that µ̂ ≈ µ and φ̂ ≈ φ∗.
This is a sensible approximation if the sample size n is large enough. Then

ε̂t ≈ (Yt − µ)− φ∗(Yt−1 − µ)
= φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt − φ∗(Yt−1 − µ)
= (φ1 − φ∗)(Yt−1 − µ) + φ2(Yt−2 − µ) + εt.

Thus, the residuals do not estimate the white noise process as they would if
the correct AR(2) model were used. Even if there is no bias in the estimation
of φ1 by φ̂ so that φ1 = φ∗ and the term (φ1 − φ∗)(Yt−1 − µ) drops out, the
presence of φ2(Yt−2 − µ) in the residuals causes them to be autocorrelated.

To check for residual autocorrelation, one can use the test bounds of ACF
plots. Any residual ACF value outside the test bounds is significantly different
4 We discuss higher-order AR models in more detail soon.
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from 0 at the 0.05 level. As discussed earlier, the danger here is that some
sample ACF values will be significant merely by chance, and to guard against
this danger, one can use the Ljung–Box test that simultaneously tests that all
autocorrelations up to a specified lag are zero. When the Ljung–Box test is
applied to residuals, a correction is needed to account for the use of φ̂ in place
of the unknown φ. Some software makes this correction automatically. In R
the correction is not automatic but is done by setting the fitdf parameter in
Box.test to the number of parameters that were estimated, so for an AR(1)
model fitdf should be 1.
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Fig. 9.6. Sample ACF of BMW log returns.

Example 9.4. BMW log returns—ACF plots and AR fit

Figure 9.6 is a sample ACF plot of the BMW log returns in the bmw data set
in R’s evir package. The autocorrelation coefficient at lag 1 is well outside the
test bounds, so the series has some dependence. Also, the Ljung–Box test that
the first df autocorrelations are 0 was performed using R’s Box.test function.
The parameter df specifies the number of autocorrelation coefficients to test
was set equal to 5, though other choices give similar results. The output was

Box-Ljung test
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data: bmw
X-squared = 44.987, df = 5, p-value = 1.460e-08

The p-value is very small, indicating that at least one of the first five autocor-
relations is nonzero. Whether the amount of dependence is on any practical
importance is debatable, but an AR(1) model to model the small amount of
correlation might be appropriate.

Next, an AR(1) model was fit using the arima command in R. A summary
of the results is below. The order parameter will be explained later, but for
an AR(1) process it should be c(1, 0, 0).

Call:
arima(x = bmw, order = c(1, 0, 0))

Coefficients:
ar1 intercept

0.081116 0.000340
s.e. 0.012722 0.000205

sigma^2 estimated as 0.000216260: log-likelihood = 17212.34,
aic = -34418.68

We see that φ̂ = 0.081 and σ̂2 = 0.000216. Although φ̂ is small, it is
statistically highly significant since it is 6.4 times its standard error so its p-
value is near zero. As just mentioned, whether this small, but nonzero, value of
φ̂ is of practical significance is another matter. A positive value of φ means that
there is some information in today’s return that could be used for prediction
of tomorrow’s return, but a small value of φ means that the prediction will
not be very accurate. The potential for profit might be negated by trading
costs.

The sample ACF of the residuals is plotted in Figure 9.7(a). None of the
autocorrelations at low lags is outside the test bounds. A few at higher lags are
outside the bounds, but this type of behavior is expected to occur by chance
or because, with a large sample size, very small but nonzero true correlations
can be detected. The Ljung–Box test was applied, with df equal to 5 and
fitdf=1, to the residuals with these results:

Box-Ljung test

data: residuals(fitAR1)
X-squared = 6.8669, df = 5, p-value = 0.1431

The large p-value indicates that we should accept the null hypothesis that the
residuals are uncorrelated, at least at small lags. This is a sign that the AR(1)
model provides an adequate fit. However, the Ljung–Box test was repeated
with df equal to 10, 15, and 20 and the p-values were 0.041, 0.045, and 0.040,
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respectively. These values are “statistically significant” using the conventional
cutoff of 0.05. The sample size is 6146, so it is not surprising that even a
small amount of autocorrelation can be statistically significant. The practical
significance of this autocorrelation is very doubtful.

We conclude that the AR(1) model is adequate for the BMW daily re-
turns, but at longer lags some slight amount of autocorrelation appears to
remain. However, the normal plot and time series plot of the AR(1) residu-
als in Figure 9.7(b) and (c) show heavy tails and volatility clustering. These
are common features of economic data and will be modeled in subsequent
chapters.
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Fig. 9.7. ACF, normal plot, and time series plot of residuals from an AR(1) fit to
the BMW log returns.
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Example 9.5. Inflation rate—AR(1) fit and checking residuals

This example uses the inflation rate time series used earlier in Example
9.1. Although there is some doubt as to whether this series is stationary, we
will fit an AR(1) model. The ACF of the residuals are shown in Figure 9.8
and there is considerable residual autocorrelation, which indicates that the
AR(1) model is not adequate. A Ljung–Box test confirms this result.

Box-Ljung test

data: fit$resid
X-squared = 46.1752, df = 12, p-value = 3.011e-06

One might try fitting an AR(1) to the changes in the inflation rate, since this
series is clearly stationary. However, the AR(1) model also does not fit the
changes in the inflation rate. We will return to this example when we have a
larger collection of models in our statistics toolbox.
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Fig. 9.8. ACF of the inflation rate time series and residuals from an AR(1) fit.

9.5.2 Maximum Likelihood and Conditional Least-Squares

Estimators for AR processes can be computed automatically by most sta-
tistical software packages, and the user need not know what is “under the
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hood” of the software. Nonetheless, for readers interested in the estimation
methodology, this section has been provided.

To find the likelihood for Y1, . . . , Yn, we use (A.41) and the fact that

fYk|Y1,...,Yk−1(yk|y1, . . . , yk−1) = fYk|Yk−1(yk|yk−1) (9.16)

for k = 2, 3, . . . , n. A stochastic process with property (9.16) is called a Markov
process. By (A.41) and (9.16), we have

fY1,...,Yn(y1, . . . , yn) = fY1(y1)
n∏

i=2

fYi|Yi−1(yi|yi−1). (9.17)

By (9.7) and (9.8), we know that Y1 is N{µ, σ2
ε /(1−φ2)}. Given Yi−1, the only

random component of Yi is εi, so that Yi given Yi−1 is N{µ+φ(Yi−1−µ), σ2
ε }.

It then follows that the likelihood for Y1, . . . , Yn is

(
1√

2πσn
ε

)
exp

{
− (Y1 − µ)2

2σ2
ε (1− φ2)

} n∏

i=2

exp


−

[
Yi −

{
µ + φ(Yi−1 − µ)

}]2

2σ2
ε


 .

(9.18)
The maximum likelihood estimator maximizes the logarithm of (9.18) over
(µ, φ, σε). A somewhat simpler estimator deletes the marginal density of Y1

from the likelihood and maximizes the logarithm of

(
1√

2πσn−1
ε

) n∏

i=2

exp


−

[
Yi −

{
µ + φ(Yi−1 − µ)

}]2

2σ2
ε


 . (9.19)

This estimator is called the conditional least-squares estimator. It is “con-
ditional” because it uses the conditional density of Y2, . . . , Yn given Y1. It is
a least-squares estimator because the estimates of µ and φ minimize

n∑

i=2

[
Yi −

{
µ + φ(Yi−1 − µ)

}]2

. (9.20)

The default method for the function arima in R is to use the conditional
least-squares estimates as starting values for maximum likelihood. The MLE
is returned. The default option is used in the examples in this book.

9.6 AR(p) Models

We have seen that the ACF of an AR(1) process decays geometrically to zero
and also alternates in sign if φ < 0. This is a limited range of behavior and
many time series do not behave in this way. To get a more flexible class of
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Fig. 9.9. ACF of three AR(2) processes. The legend gives the values of φ1 and φ2.

models, but one that still is parsimonious, we can use a model that regresses
the current value of the process on several of the recent past values, not just
the most recent. Thus, we let the last p values of the process, Yt−1, . . . , Yt−p,
feed back into the current value Yt.

Here’s a formal definition. The stochastic process Yt is an AR(p) process
if

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + · · ·+ φp(Yt−p − µ) + εt,

where ε1, . . . , εn is WN(0, σ2
ε ).

This is a multiple linear regression5 model with lagged values of the time
series as the “x-variables.” The model can be reexpressed as

Yt = β0 + φ1Yt−1 + · · · + φpYt−p + εt,

where β0 = {1−(φ1+ · · ·+φp)}µ. The parameter β0 is called the “constant” or
“intercept” as in an AR(1) model. It can be shown that {1−(φ1+ · · ·+φp)} >
0 for a stationary process, so µ = 0 if and only if β0 is zero.

Formulas for the ACFs of AR(p) processes with p > 1 are more complicated
than for an AR(1) process and can be found in the time series textbooks listed
in Section 9.15. However, software is available for computing and plotting the
5 See Chapter 12 for an introduction to multiple regression.
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ACF of any AR processes, as well as for the MA and ARMA processes to be
introduced soon. Figure 9.9 is a plot of the ACFs of three AR(2) process. The
ACFs were computed using R’s ARMAacf function. Notice the wide variety of
ACFs that are possible with two AR parameters.

Most of the concepts we have discussed for AR(1) models generalize eas-
ily to AR(p) models. The conditional least squares or maximum likelihood
estimators can be calculated using software such as R’s arima function. The
residuals are defined by

ε̂t = Yt − {β̂0 + φ̂1Yt−1 + · · · + φ̂t−pYt−p}, t ≥ p + 1.

If the AR(p) model fits the time series well, then the residuals should look
like white noise. Residual autocorrelation can be detected by examining the
sample ACF of the residuals and using the Ljung–Box test. Any significant
residual autocorrelation is a sign that the AR(p) model does not fit well.

One problem with AR models is that they often need a rather large value
of p to fit a data set. The problem is illustrated by the following two examples.

Example 9.6. Changes in the inflation rate—AR(p) models

Figure 9.10 is a plot of AIC and BIC versus p for AR(p) fits to the changes
in the inflation rate. Both criteria suggest that p should be large. AIC de-
creases steadily as p increases from 1 to 19, though there is a local minimum
at 8. Even the conservative BIC criterion indicates that p should be as large
as 6. Thus, AR models are not parsimonious for this example. The remedy is
to use an MA or ARMA model, which are the next topics of the next sections.

Many statistical software packages have functions to automate the search
for the AR model that optimizes AIC or other criteria. The auto.arima func-
tion in R’s forecast package found that p = 8 is the first local minimum of
AIC:

> auto.arima(diff(x),max.p=20,max.q=0,ic="aic")

Series: diff(x)

ARIMA(8,0,0) with zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5

-0.6274 -0.4977 -0.5158 -0.4155 -0.3443

s.e. 0.0456 0.0536 0.0576 0.0606 0.0610

ar6 ar7 ar8

-0.2560 -0.1557 -0.1051

0.0581 0.0543 0.0459

sigma^2 estimated as 8.539: log-likelihood = -1221.2

AIC = 2460.4 AICc = 2460.7 BIC = 2493.96
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Fig. 9.10. Fitting AR(p) models to changes in the one-month inflation rate. AIC
and BIC plotted against p.

The first local minimum of BIC is at 6:

> auto.arima(diff(x),max.p=10,max.q=0,ic="bic")

Series: diff(x)

ARIMA(6,0,0) with zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6

-0.6057 -0.4554 -0.4558 -0.3345 -0.2496 -0.1481

s.e. 0.0454 0.0522 0.0544 0.0546 0.0526 0.0457

sigma^2 estimated as 8.699: log-likelihood = -1225.67

AIC = 2465.33 AICc = 2465.51 BIC = 2490.5

We will see later that a more parsimonious fit can be obtained by going
beyond AR models.

¤

Example 9.7. Inflation rates—AR(p) models

Since it is uncertain whether or not the inflation rates are stationary, one
might fit an AR model to the inflation rates themselves, rather than their
differences. An AR(p) models was fit to the inflation rates with p determined



222 9 Time Series Models: Basics

automatically by auto.arima. The BIC criterion chose p = 2 and AIC selected
p = 7. Here are the results for p = 7.

Series: x

ARIMA(7,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 intercept

0.366 0.129 -0.020 0.099 0.065 0.080 0.119 3.99

s.e. 0.045 0.048 0.048 0.048 0.049 0.048 0.046 0.78

sigma^2 estimated as 8.47: log-likelihood = -1222

AIC = 2462 AICc = 2522 BIC = 2467
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Fig. 9.11. ACF of residuals from an AR(7) fit to the inflation rates.

The ACF of the residuals is shown in Figure 9.11. ¤

9.7 Moving Average (MA) Processes

As we saw in Example 9.6, there is a potential need for large values of p when
fitting AR processes. A remedy for this problem is to add a moving aver-
age component to an AR(p) process. The result is an autoregressive-moving
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average process, often called an ARMA process. Before introducing ARMA
processes, we start with pure moving average (MA) processes.

9.7.1 MA(1) Processes

The idea behind AR processes is to feed past data back into the current value
of the process. This induces correlation between the past and present. The
effect is to have at least some correlation at all lags. Sometimes data show
correlation at only short lags, for example, only at lag 1 or only at lags 1 and
2. See, for example, Figure 9.3(b) where the sample ACF of changes in the
inflation rate is approximately −0.4 at lag 1, but then is approximately 0.1
or less in magnitude after one lag. AR processes do not behave this way and,
as already seen in Example 9.6, do not provide a parsimonious fit. In such
situations, a useful alternative to an AR model is a moving average (MA)
model. A process Yt is a moving average process if Yt can be expressed as
a weighted average (moving average) of the past values of the white noise
process εt.

The MA(1) (moving average of order 1) process is

Yt − µ = εt + θεt−1, (9.21)

where as before the εt are WN(0, σ2
ε ).6

One can show that

E(Yt) = µ,

Var(Yt) = σ2
ε (1 + θ2),

γ(1) = θσ2
ε ,

γ(h) = 0 if |h| > 1,

ρ(1) =
θ

1 + θ2
, (9.22)

ρ(h) = 0 if |h| > 1. (9.23)

Notice the implication of (9.22) and (9.23)—an MA(1) model has zero cor-
relation at all lags except lag 1 (and of course lag 0). It is relatively easy to
derive these formulas and this is left as an exercise for the reader.

9.7.2 General MA Processes

The MA(q) process is

Yt = µ + εt + θ1εt−1 + · · ·+ θqεt−q. (9.24)
6 Some textbooks and some software write MA models with the signs reversed so

that model (9.21) is written as Yt − µ = εt − θεt−1. We have adopted the same
form of MA models as R’s arima function. These remarks apply as well to the
general MA and ARMA models given by equations (9.24) and (9.25).
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One can show that γ(h) = 0 and ρ(h) = 0 if |h| > q. Formulas for γ(h)
and ρ(h) when |h| ≤ q are given in time series textbooks and these functions
can be computed in R by the function armaACF.

Unlike AR(p) models where the “constant” in the model is not the same
as the mean, in an MA(q) model µ, the mean of the process, is the same as β0,
the “constant” in the model. This fact can be appreciated by examining the
right-hand side of equation (9.24), where µ is the “intercept” or “constant”
in the model and is also the mean of Yt because εt, . . . , εt−q have mean zero.

MA(q) models can be fit easily using, for example, the arima function in R.

Example 9.8. Changes in the inflation rate—MA models

MA(q) models were fit to the changes in the inflation rate. Figure 9.12
shows plots of AIC and BIC versus q. BIC suggests that an MA(2) model is
adequate, while AIC suggests an MA(3) model. We fit the MA(3) model. The
Ljung–Box test was applied to the residuals with df equal to 5, 10, 15, and 20
and gave p-values of 0.97, 0.93, 0.54, and 0.15, respectively. The MA(2) also
provided an adequate fit with the p-values from the Ljung–Box test all above
0.07. The output for the MA(3) model was
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Fig. 9.12. Fitting MA(q) models to changes in the one-month inflation rate. AIC
and BIC plotted against q.
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Call:
arima(x = diff(x), order = c(0, 0, 3))

Coefficients:
ma1 ma2 ma3 intercept

-0.632950 -0.102734 -0.108172 -0.000156
s.e. 0.046017 0.051399 0.046985 0.020892

Thus, if an MA model is used, then only two or three MA parameters are
needed. This is a strong contrast with AR models, which require far more
parameters, perhaps as many as six.

9.8 ARMA Processes

Stationary time series with complex autocorrelation behavior often are more
parsimoniously modeled by mixed autoregressive and moving average (ARMA)
processes than by either a pure AR or pure MA process. For example, it is
sometimes the case that a model with one AR and one MA parameter, called
an ARMA(1, 1) model, will provide a more parsimonious fit than a pure AR
or pure MA model. This section introduces ARMA processes.

9.8.1 The Backwards Operator

The backwards operator B is a simple notation with a fancy name. It is useful
for describing ARMA and ARIMA models. The backwards operator is defined
by

B Yt = Yt−1

and, more generally,
Bk Yt = Yt−k.

Thus, B backs up time one unit while Bk does this repeatedly so that time is
backed up k time units. Note that B c = c for any constant c, since a constant
does not change with time. The backwards operator is sometimes called the
lag operator.

9.8.2 The ARMA Model

An ARMA(p, q) model combines both AR and MA terms and is defined by
the equation

(Yt−µ) = φ1(Yt−1−µ)+ · · ·+φp(Yt−p−µ)+εt +θ1εt−1 + · · ·+θqεt−q, (9.25)
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which shows how Yt depends on lagged values of itself and lagged values of
the white noise process. Equation (9.25) can be written more succinctly with
the backwards operator as

(1− φ1 B − · · · − φp Bp)(Yt − µ) = (1 + θ1 B + · · ·+ θq Bq)εt. (9.26)

A white noise process is ARMA(0,0) since if p = q = 0, then (9.26) reduces
to

(Yt − µ) = εt.

9.8.3 ARMA(1,1) Processes

The ARMA(1,1) model is commonly used in practice and is simple enough
to study theoretically. In the section, formulas for its variance and ACF will
be derived. Without loss of generality, one can assume that µ = 0 when
computing the variance and ACF. Multiplying the model

Yt = φYt−1 + θεt−1 + εt (9.27)

by εt and taking expectations, one has

Cov(Yt, εt) = E(Ytεt) = σ2
ε , (9.28)

since εt is independent of εt−1 and Yt−1. From (9.27) and (9.28),

γ(0) = φ2γ(0) + (1 + θ2)σ2
ε + 2φθσ2

ε , (9.29)

and then solving (9.29) for γ(0) gives us the formula

γ(0) =
(1 + θ2 + 2φθ)σ2

ε

1− φ2
. (9.30)

By similar calculations, multiplying (9.27) by Yt−1 and taking expectations
yields a formula for γ(1). Dividing this formula by the right-hand side of (9.29)
gives us

ρ(1) =
(1 + φθ)(φ + θ)
1 + θ2 + 2φθ

. (9.31)

For k ≥ 2, multiplying (9.27) by Yt−k and taking expectations results in
the formula

ρ(k) = φρ(k − 1), k ≥ 2. (9.32)

By (9.32), after one lag the ACF of an ARMA(1,1) process decays in the same
way as the ACF of an AR(1) process with the same φ.
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Table 9.1. AIC and BIC for ARMA models fit to the monthly changes in the risk-
free interest returns. The minimum values of both criteria are shown in boldface. To
improve the appearance of the table, 1290 was added to all AIC and BIC values.

p q AIC BIC

0 0 29.45 37.8
0 1 9.21 21.8
0 2 3.00 19.8
1 0 14.86 27.5
1 1 2.67 19.5
1 2 4.67 25.7
2 0 5.61 22.4
2 1 6.98 28.0
2 2 4.89 30.1

9.8.4 Estimation of ARMA Parameters

The parameters of ARMA models can be estimated by maximum likelihood
or conditional least-squares. These methods were introduced for AR(1) pro-
cesses is Section 9.5. The estimation methods for AR(p) models are very sim-
ilar to those for AR(1) models. For MA and ARMA, because the noise terms
ε1, . . . , εn are unobserved, there are complications that are best left for ad-
vanced time series texts.

Example 9.9. Changes in risk-free returns: ARMA models

This example uses the monthly changes in the risk-free returns shown
in Figure 4.3. In Table 9.1 AIC and BIC are shown for ARMA models with
p, q = 0, 1, 2. We see that AIC and BIC are both minimized by the ARMA(1,1)
model, though the MA(2) model is a very close second. The ARMA(1,1) and
MA(2) fit nearly equally well, and it is difficult to decide between them.

ACF, normal, and time series plots of the residuals from the ARMA(1,1)
model are shown in Figure 9.13. The ACF plot shows no short-term auto-
correlation, which is another sign that the ARMA(1,1) model is satisfactory.
However, the normal plot shows heavy tails and the time series plot shows
volatility clustering. These problems will be addressed in later chapters.

¤

9.8.5 The Differencing Operator

The differencing operator is another useful notation and is defined as ∆ =
1−B, where B is the backwards operator, so that

∆Yt = Yt −B Yt = Yt − Yt−1.
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Fig. 9.13. Residual plots for the ARMA(1, 1) fit to the monthly changes in the
risk-free returns.

For example, if pt = log(Pt) is the log price, then the log return is

rt = ∆pt.

Differencing can be iterated. For example,

∆2Yt = ∆(∆Yt) = ∆(Yt − Yt−1) = (Yt − Yt−1)− (Yt−1 − Yt−2)
= Yt − 2Yt−1 + Yt−2.

∆k is called the kth-order differencing operator.
A general formula for ∆k can be derived from a binomial expansion:

∆kYt = (1−B)kYt =
k∑

`=0

(
k
`

)
(−1)`Yt−`. (9.33)

9.9 ARIMA Processes

Often the first or perhaps second differences of nonstationary time series are
stationary. For example, the first differences of a random walk (nonstationary)
are white noise (stationary). In the section, autoregressive integrated moving
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average (ARIMA) processes are introduced. They include stationary as well
as nonstationary processes.

A time series Yt is said to be an ARIMA(p, d, q) process if ∆dYt is
ARMA(p, q). For example, if log returns on an asset are ARMA(p, q), then the
log prices are ARIMA(p, 1, q). An ARIMA(p, d, q) is stationary only if d = 0.
Otherwise, only its differences of order d or above are stationary.

Notice that an ARIMA(p, 0, q) model is the same as an ARMA(p, q) model.
ARIMA(p, 0, 0), ARMA(p, 0), and AR(p) models are the same. Similarly, ARI-
MA(0, 0, q), ARMA(0, q), and MA(q) models are the same. A random walk is
an ARIMA(0, 1, 0) model.

The inverse of differencing is “integrating.” The integral of a process Yt is
the process wt, where

wt = wt0 + Yt0 + Yt0+1 + · · ·+ Yt. (9.34)

Here t0 is an arbitrary starting time point and wt0 is the starting value of the
wt process. It is easy to check that

∆wt = Yt, (9.35)

so integrating and differencing are inverse processes.7

We will say that a process is I(d) if it is stationary after being differenced
d times. For example, a stationary process is I(0). An ARIMA(p, d, q) process
is I(d). An I(d) process is said to be “integrated to order d.”

Figure 9.14 shows an AR(1) process, its integral, and its second integral,
meaning the integral of its integral. These three processes are I(0), I(1), and
I(2), respectively. The three processes behave in entirely different ways. The
AR(1) process is stationary and varies randomly about its mean, which is 0;
one says that the process reverts to its mean. The integral of this process
behaves much like a random walk in having no fixed level to which it reverts.
The second integral has momentum. Once the process starts moving upward
or downward, it tends to continue in that direction. If data show momentum
like this, then the momentum is an indication that d = 2. The AR(1) process
was generated by the R function arima.sim. This process was integrated twice
with R’s cumsum function.

Example 9.10. Fitting an ARIMA model to CPI data

This example uses the CPI.dat data set in R’s fEcofin package. CPI
is a seasonally adjusted U.S. Consumer Price Index. The data are monthly.
Only data from January 1977 to December 1987 are used in this example.
Figure 9.15 shows time series plots of log(CPI) and the first and second dif-
ferences of this series. The original series shows the type of momentum that
7 An analog is, of course, differentiation and integration in calculus, which are

inverses of each other.
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Fig. 9.14. The top plot is of an AR(1) process with µ = 0 and φ = 0.4. The middle
and bottom plots are, respectively, the integral and second integral of this AR(1)
process. Thus, from top to bottom, the series are I(0), I(1), and I(2), respectively.

is characteristic of an I(2) series. The first differences show no momentum,
but they do not appear to be mean-reverting and so they may be I(1). The
second differences appear to be mean-reverting and therefore seem to be I(0).
ACF plots in Figures 9.16(a), (b), and (c) provide additional evidence that
the log(CPI) is I(2).

Notice that the ACF of ∆2 log(CPI) has large correlations at the first two
lags and then small autocorrelations after that. This suggests using an MA(2)
for ∆2 log(CPI) or, equivalently, an ARIMA(0,2,2) model for log(CPI). The
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Fig. 9.15. (a) log(CPI). (b) First differences of log(CPI). (c) Second differences of
log(CPI).

ACF of the residuals from this fit is shown in Figure 9.16(d). The residual
ACF has small correlations at short lags, which is an indication that the
ARIMA(0,2,2) model fits well. Also, the residuals pass Ljung–Box tests for
various choices of K, for example, with a p-value of 0.17 at K = 15.

¤

Example 9.11. Fitting an ARIMA model to industrial production (IP) data

This example uses the IP.dat data set in R’s fEcofin package. The vari-
able, IP, is a seasonally adjusted U.S. industrial production index. Figure 9.17
panels (a) and (b) show time series plots of IP and ∆ IP and panel (c) has
the ACF of ∆ IP. IP appears to be I(1), implying that we should fit an
ARMA model to ∆ IP. AR(1), AR(2), and ARMA(1,1) each fit ∆ IP rea-
sonably well and the ARMA(1,1) model is selected using the BIC criterion
with R’s auto.arima function. The ACF of the residuals in Figure 9.17(d)
indicates a satisfactory fit to the ARMA(1,1) model since it shows virtually
no short-term autocorrelation. In summary, IP is well fit by an ARIMA(1,1,1)
model.

¤
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Fig. 9.16. ACF of (a) log(CPI), (b) first differences of log(CPI), (c) second differ-
ences of log(CPI), and (d) residuals from an ARIMA(0,2,2) model fit to log(CPI).

9.9.1 Drifts in ARIMA Processes

If a nonstationary process has a constant mean, then the first differences of this
process have mean zero. For this reason, it is often assumed that a differenced
process has mean zero. The arima function in R makes this assumption.

Instead of a constant mean, sometimes a nonstationary process has a mean
with a deterministic linear trend, e.g., E(Yt) = β0 +β1t. Then, β1 is called the
drift of Yt. Note that E(∆Yt) = β1, so if Yt has a nonzero drift then ∆Yt has
a nonzero mean. The R function auto.arima discussed in Section 9.11 allows
a differenced process to have a nonzero mean, which is called the drift in the
output.

These ideas can be extended to higher-degree polynomial trends and
higher-order differencing. If E(Yt) has an mth-degree polynomial trend, then
the mean of E(∆2Yt) has an (m − d)th-degree trend for d ≤ m. For d > m,
E(∆2Yt) = 0.
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Fig. 9.17. (a) Time series plot of IP, (b) time series plot of ∆ IP, (c) ACF plot of
∆ IP, (d) ACF of residual from ARMA(1,1) fit to ∆ IP.

9.10 Unit Root Tests

We have seen that it can be difficult to tell whether a time series is best
modeled as stationary or nonstationary. To help decide between these two
possibilities, it can be helpful to use hypothesis testing.

What is meant by a unit root? Recall that an ARMA(p, q) process can be
written as

(Yt−µ) = φ1(Yt−1−µ)+ · · ·+φp(Yt−p−µ)+εt +θ1εt−1 + · · ·+θqεt−q. (9.36)

The condition for {Yt} to be stationary is that all roots of the polynomial

1− φ1 x− · · · − φk xk (9.37)

have absolute values greater than one. (See Section A.21 for information about
complex roots of polynomials and the absolute value of a complex number.)
For example, when p = 1, then (9.37) is
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1− φx

and has one root, φ−1. We know that the process is stationary if |φ | < 1,
which, of course, is equivalent to |1/φ | > 1.

If there is a unit root, that is, a root with an absolute value equal to 1,
then the ARMA process is nonstationary and behaves much like a random
walk. Not surprisingly, this is called the unit root case. The explosive case is
when a root has an absolute value less than 1.

Example 9.12. Inflation rates

Recall from Examples 9.1 and 9.3 that we have had difficulty deciding
whether the inflation rates are stationary or not.

If we fit stationary ARMA models to the inflation rates, then auto.arima
selects an ARMA(2,1) model and the AR coefficients are φ̂1 = 1.2074 and
φ̂2 = −0.2237. The roots of

1− φ̂1x− φ̂2x
2

can be found easily using R’s polyroot function and are 1.022 and 4.377. Both
roots have absolute values greater than 1, indicating possible stationarity, but
the first is very close to 1 and since the roots are estimated with error, there
is reason to suspect that this series may be nonstationary.

¤

Unit root tests are used to decide if an AR model has an absolute root
equal to 1. One popular unit root test is the augmented Dickey–Fuller test,
often called the ADF test. The null hypothesis is that there is a unit root.
The usual alternative is that the process is stationary but one can instead use
the alternative that the process is explosive.

Another unit root test is the Phillips–Perron test. It is similar to the
Dickey–Fuller test but differs in some details.

A third test is the KPSS test. The null hypothesis for the KPSS test
is stationarity and the alternative is a unit root, just the opposite of the
hypotheses for the Dickey–Fuller and Phillips–Perron tests.

Example 9.13. Inflation rates—Unit root tests

Recall that we were undecided as to whether or not the inflation rate time
series was stationary. The unit root tests might help resolve this issue, but un-
fortunately they do not provide unequivocal evidence in favor of stationarity.
Both the augmented Dickey–Fuller and Phillips–Perron tests, which were im-
plemented in R with the functions adf.test and pp.test, respectively, have
small p-values, 0.016 for the former and less than 0.01 for the latter; see the
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output below. The functions pp.test, adf.test, and kpss.test (used be-
low) are in R’s tseries package. Therefore, at level 0.05 the null hypothesis of
a unit root is rejected by both tests in favor of the alternative of stationarity,
the default alternative hypothesis for both adf.test and pp.test.

> adf.test(x)

Augmented Dickey--Fuller Test

data: x

Dickey-Fuller = -3.87, Lag order = 7, p-value = 0.01576

alternative hypothesis: stationary

> pp.test(x)

Phillips-Perron Unit Root Test

data: x

Dickey-Fuller Z(alpha) = -249, Truncation lag parameter = 5,

p-value = 0.01

alternative hypothesis: stationary

Warning message:

In pp.test(x) : p-value smaller than printed p-value

Although the augmented Dickey–Fuller and Phillips–Perron tests suggest
that the inflation rate series is stationary since the null hypothesis of a unit
root is rejected, the KPSS test leads one to the opposite conclusion. The null
hypothesis for the KPSS is stationarity and it is rejected with a p-value smaller
than 0.01. Here is the R output.

> kpss.test(x)

KPSS Test for Level Stationarity

data: x

KPSS Level = 2.51, Truncation lag parameter = 5, p-value = 0.01

Warning message:

In kpss.test(x) : p-value smaller than printed p-value

Thus, the unit root tests are somewhat contradictory. Perhaps the inflation
rates are stationary with long-term memory. Long-memory processes will be
introduced in Section 10.4.

¤

9.10.1 How Do Unit Root Tests Work?

A full discussion of the theory behind unit root tests is beyond the scope of
this book. Here, only the basic idea will be mentioned. See Section 9.14 for
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more information. The Dickey–Fuller test is based on the AR(1) model

Yt = φYt−1 + εt. (9.38)

The null hypothesis (H0) is that there is a unit root, that is, φ = 1, and the
alternative (H1) is stationarity, which is equivalent to φ < 1, assuming, as
seems reasonable, that φ > −1. Model (9.38) is equivalent to ∆Yt = (φ −
1)Yt−1 + εt, or

∆Yt = πYt−1 + εt, (9.39)

where π = φ − 1. Stated in terms of π, H0 is π = 0 and H1 is π < 0.
The Dickey–Fuller test regresses ∆Yt on Yt−1 and tests H0. Because Yt−1 is
nonstationary under H0, the t-statistic for π has a nonstandard distribution
so special tables need to be developed in order to compute p-values.

The augmented Dickey–Fuller test expands model (9.39) by adding a time
trend and lagged values of ∆Yt. Typically, the time trend is linear so that the
expanded model is

∆Yt = β0 + β1t + πYt−1 +
p∑

j=1

γj∆Yt−j + εt. (9.40)

The hypotheses are still H0: π = 0 and H1: π < 0. There are several meth-
ods for selecting p. The adf.test function has a default value of p equal to
trunc((length(x)-1)^(1/3)), where x is the input series (Yt in our nota-
tion).

9.11 Automatic Selection of an ARIMA Model

It is useful to have an automatic method for selecting an ARIMA model. As
always, an automatically selected model should not be accepted blindly, but
it makes sense to start model selection with something chosen quickly and by
objective criterion.

The R function auto.arima can select all three parameters, p, d, and q, for
an ARIMA model. The differencing parameter d is selected using the KPSS
test. If the null hypothesis of stationarity is accepted when the KPSS is applied
to the original time series, then d = 0. Otherwise, the series is differenced until
the KPSS accepts the null hypothesis. After that, p and q are selected using
either AIC or BIC.

Example 9.14. Inflation rates—Automatic selection of an ARIMA model

In this example, auto.arima is applied to the inflation rates. The ARIMA
(1,1,1) model is selected by auto.arima using either AIC or BIC to select p
and q after d = 1 is selected by the KPSS test.
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Series: x

ARIMA(1,1,1)

Coefficients:

ar1 ma1

0.238 -0.877

s.e. 0.055 0.027

sigma^2 estimated as 8.55: log-likelihood = -1222

AIC = 2449 AICc = 2449 BIC = 2462

This is a very parsimonious model and residual diagnostics (not shown) show
that it fits well.

AICc in auto.arima’s output is the value of the corrected AIC criterion
defined by (5.34). The sample size is 491 so, not surprisingly, corrected AIC
is equal to AIC, at least after rounding to the nearest integer.

¤

9.12 Forecasting

Forecasting means predicting future values of a time series using the current
information set, which is the set of present and past values of the time series.
In some contexts, the information set could include other variables related to
the time series, but in this section the information set contains only the past
and present values of the time series that is being predicted.

ARIMA models are often used for forecasting. Consider forecasting using
an AR(1) process. Suppose that we have data Y1, . . . , Yn and estimates µ̂ and
φ̂. We know that

Yn+1 = µ + φ(Yn − µ) + εn+1. (9.41)

Since εn+1 is independent of the past and present, by Result 14.10.1 in Section
14.10.2 the best predictor of εn+1 is its expected value, which is 0. We know,
of course, that εn+1 is not 0, but 0 is our best guess at its value. On the other
hand, we know or have estimates of all other quantities in (9.41). Therefore,
we predict Yn+1 by

Ŷn+1 = µ̂ + φ̂(Yn − µ̂).

By the same reasoning we forecast Yn+2 by

Ŷn+2 = µ̂ + φ̂(Ŷn+1 − µ̂) = µ̂ + φ̂{φ̂(Yn − µ̂)}, (9.42)

and so forth. Notice that in (9.42) we do not use Yn+1, which is unknown
at time n, but rather the forecast Ŷn+1. Continuing in this way, we find the
general formula for the k-step-ahead forecast:

Ŷn+k = µ̂ + φ̂k(Yn − µ̂). (9.43)
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If |φ̂| < 1, as is true for a stationary series, then as k increases, the forecasts
will converge exponentially fast to µ̂.

Formula (9.43) is valid only for AR(1) processes, but forecasting other
AR(p) processes is similar. For an AR(2) process,

Ŷn+1 = µ̂ + φ̂1(Yn − µ̂) + φ̂2(Yn−1 − µ̂)

and
Ŷn+2 = µ̂ + φ̂1(Ŷn+1 − µ̂) + φ̂2(Yn − µ̂),

and so on.
Forecasting ARMA and ARIMA processes is similar to forecasting AR

processes. Consider the MA(1) process, Yt − µ = εt − θεt−1. Then the next
observation will be

Yn+1 = µ + εn+1 − θεn. (9.44)
In the right-hand side of (9.44) we replace µ and θ by estimates and εn by the
residual ε̂n. Also, since εn+1 is independent of the observed data, it is replaced
by its mean 0. Then the forecast is

Ŷn+1 = µ̂− θ̂ ε̂n.

The two-step-ahead forecast of Yn+2 = µ + εn+2 − θεn+1 is simply Ŷn+2 = µ̂,
since εn+1 and εn+2 are independent of the observed data. Similarly, Ŷn+k = µ̂
for all k > 2.

To forecast the ARMA(1,1) process

Yt − µ = φ(Yt−1 − µ) + εt − θεt−1,

we use
Ŷn+1 = µ̂ + φ̂(Yn − µ̂)− θ̂ ε̂n

as the one-step-ahead forecast and

Ŷn+k = µ̂ + φ̂(Ŷn+k−1 − µ̂), k ≥ 2

for forecasting two or more steps ahead.
As a final example, suppose that Yt is ARIMA(1,1,0), so that ∆Yt is AR(1).

To forecast Yn+k, k ≥ 1, one first fits an AR(1) model to the ∆Yt process and
forecasts ∆Yn+k, k ≥ 1. Let the forecasts be denoted by ∆̂Y n+k, k ≥ 1. Then,
since

Yn+1 = Yn + ∆Yn+1,

the forecast of Yn+1 is
Ŷn+1 = Yn + ∆̂Y n+1,

and similarly

Ŷn+2 = Ŷn+1 + ∆̂Y n+2 = Yn + ∆̂Y n+1 + ∆̂Y n+2,

and so on.
Most time series software packages offer functions to automate forecasting.

R’s predict function forecasts using an “object” returned by the arima fitting
function.
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9.12.1 Forecast Errors and Prediction Intervals

When making forecasts, one would of course like to know the uncertainty of
the predictions. To this end, one first computes the variance of the forecast
error. Then a (1 − α)100% prediction interval is the forecast itself plus or
minus the forecast error’s standard deviation times zα/2 (the normal upper
quantile). The use of zα/2 assume that ε1, . . . is Gaussian white noise. If the
residuals are heavy-tailed, then we might be reluctant to make the Gaussian
assumption. One way to avoid this assumption is discussed in Section 9.12.2.

Computation of the forecast error variance and the prediction interval is
automated by modern statistical software, so we need not present general
formulas for the forecast error variance. However, to gain some understanding
of general principles, we will look at two special cases, one stationary and the
other nonstationary.

Stationary AR(1) Forecast Errors

We will look first at the errors made when forecasting a stationary AR(1)
process. The error in the first prediction is

Yn+1 − Ŷn+1 = {µ + φ(Yn − µ) + εn+1} − {µ̂ + φ(Yn − µ̂)}
= (µ− µ̂) + (φ− φ̂)Yn − (φµ− φ̂µ̂) + εn+1 (9.45)
≈ εn+1. (9.46)

Here (9.45) is the exact error and (9.46) is a “large-sample” approximation.
The basis for (9.46) is that as the sample size increases µ̂ → µ and φ̂ → φ,
so the first three terms in (9.45) converge to 0 but the last term remains
unchanged. The large-sample approximation simplifies formulas and helps us
focus on the main components of the forecast error. Using the large-sample
approximation again, so µ̂ is replaced by µ and φ̂ by φ, the error in the two-
steps-ahead forecast is

Yn+2 − Ŷn+2 = {µ + φ(Yn+1 − µ) + εn+2} − {µ + φ(Ŷn+1 − µ)}
= φ(Yn+1 − Ŷn+1) + εn+1

= φεn+1 + εn+2. (9.47)

Continuing in this manner, we find that the k-step-ahead forecasting error is

Yn+k − Ŷn+k ≈ {µ + φ(Yn+k−1 − µ) + εn+k} − {µ + φ(Ŷn+k−1 − µ)}
= φk−1εn+1 + φk−2εn+2 + · · ·+ φεn+k−1 + εn+k. (9.48)

By the formula for the sum of a finite geometric series, the variance of the
right-hand side of (9.47) is
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{
φ2(k−1) + φ2(k−2) + · · ·+ φ2 + 1

}
σ2

ε =
(

1− φ2k

1− φ2

)
σ2

ε

→ σ2
ε

1− φ2
as k →∞. (9.49)

An important point here is that the variance of the forecast error does not
diverge as k → ∞, but rather the variance converges to γ(0), the marginal
covariance of the AR(1) process given by (9.7). This is an example of the
general principle that for any stationary ARMA process, the variance of the
forecast error converges to the marginal variance.

Forecasting a Random Walk

For the random walk process, Yn+1 = µ + Yn + εn+1, many of the formulas
just derived for the AR(1) process still hold, but with φ = 1. An exception
is that the last result in (9.49) does not hold because the summation formula
for a geometric series does not apply when φ = 1. One result that does still
hold is

Yn+k − Ŷn+k = εn+1 + εn+2 + · · ·+ εn+k−1 + εn+k

so the variance of the k-step-ahead forecast error is kσ2
ε and, unlike for the

stationary AR(1) case, the forecast error variance diverges to ∞ as k →∞.

Forecasting ARIMA Processes

As mentioned before, in practice we do not need general formulas for the
forecast error variance of ARIMA processes, since statistical software can
compute the variance. However, it is worth repeating a general principle: For
stationary ARMA processes, the variance of the k-step-ahead forecast error
variance converges to a finite value as k →∞, but for a nonstationary ARIMA
process this variance converges to ∞. The result of this principle is that for
a nonstationary process, the forecast limits diverge away from each other as
k → ∞, but for a stationary process the forecast limits converge to parallel
horizontal lines.

Example 9.15. Forecasting the one-month inflation rate

We saw in Example 9.8 that an MA(3) model provided a parsimonious
fit to the changes in the one-month inflation rate. This implies that an
ARIMA(0,1,3) model will be a good fit to the inflation rates themselves. The
two models are, of course, equivalent, but they forecast different series. The
first model gives forecasts and confidence limits for the changes in the infla-
tion rate, while the second model provides forecasts and confidence limits for
the inflation rate itself.
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Fig. 9.18. Forecasts of changes in inflation rate.

Figures 9.18 and 9.19 plot forecasts and forecast limits from the two models
out to 100 steps ahead. One can see that the forecast limits diverge for the
the second model and converge to parallel horizontal lines for the first model.
¤

9.12.2 Computing Forecast Limits by Simulation

Simulation can be used to compute forecasts limits. This is done by simulating
random forecasts and finding their α/2-upper and -lower sample quantiles. A
set of random forecasts up to m time units ahead is generated for an ARMA
process by recursion:

Ŷn+t = µ̂ + φ̂1(Ŷn+t−1 − µ̂) + · · ·+ φ̂p(Ŷn+t−p − µ̂)

+ ε̂n+t + θ̂1ε̂n+t−1 + · · ·+ θ̂q ε̂n+t−q, t = 1, . . . , m, (9.50)

where

1. ε̂k is the kth residual if k ≤ n,
2. {ε̂k : k = n + 1, . . . , n + m} is a resample from the residuals.
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Fig. 9.19. Forecasts of inflation rate.

Thus, Ŷn+1 is generated from Yn+1−p, . . . , Yn, ε̂n+1−q, . . . , ε̂n+1, then Ŷn+2

is generated from Yn+2−p, . . . , Yn, Ŷn+1, ε̂n+2−q, . . . , ε̂n+2, then Ŷn+3 is gener-
ated from Yn+3−p, . . . , Yn, Ŷn+1, Ŷn+2, ε̂n+3−q, . . . , ε̂n+3, and so forth.

A large number, call it B, of sets of random forecasts are generated in
this way. They differ because their sets of future noises generated in step 2
are mutually independent. For each t = 1, . . . , m, the α/2-upper and -lower
sample quantiles of the B random values of Ŷn+t are the forecast limits for
Yn+t.

To obtain forecasts, rather than forecast limits, one uses ε̂k = 0, k =
n + 1, . . . , n + m, in step 4. The forecasts are nonrandom, conditional given
the data, and therefore need to be computed only once.

If Yt = ∆Wt for some nonstationary series {W1, . . . , Wn}, then random
forecasts of {Wn+1, . . .} can be obtained as partial sums of {Wn, Ŷn+1, . . .}.
For example,

Ŵn+1 = Wn + Ŷn+1,

Ŵn+2 = Ŵn+1 + Ŷn+2 = Wn + Ŷn+1 + Ŷn+2,

Ŵn+3 = Ŵn+2 + Ŷn+3 = Wn + Ŷn+1 + Ŷn+2 + Ŷn+3,
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and so forth. Then, upper and lower quantiles of the randomly generated
Ŵn+k can be used as forecast limits for Wn+k.
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Fig. 9.20. Five random sets of forecasts of changes in the inflation rate computed
by simulation.

Example 9.16. Forecasting the one-month inflation rate and changes in the
inflation rate by simulation

To illustrate the amount of random variation in the forecasts, a small num-
ber (five) of sets of random forecasts of the changes in the inflation rate were
generated out to 30 months ahead. These are plotted in Figure 9.20. Notice
the substantial random variation between the random forecasts. Because of
this large variation, to calculate forecasts limits a much larger number of ran-
dom forecasts should be used. In this example, B = 50,000 sets of random
forecasts are generated. Figure 9.21 shows the forecast limits, which are the
2.5% upper and lower sample quantiles. For comparison, the forecast limits
generated by R’s function ar are also shown. The two sets of forecast limits
are very similar even though the ar limits assume Gaussian noise but the
residuals are heavy-tailed. Thus, the presence of heavy tails does not invali-
date the Gaussian limits in this example with 95% forecast limits. If a larger
confidence coefficient were used, that is, one very close to 1, then the forecast
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Fig. 9.21. Forecast limits of changes in the inflation rate computed by simulation
(solid), computed by arima (dotted), and the mean of the forecast (dashed). Notice
that the two sets of future limits are very similar and nearly overprint each other,
so they are difficult to distinguish visibly.

intervals based on sampling heavy-tailed residuals would be wider than those
based on a Gaussian assumption.

As described above, forecasts for future inflation rates were obtained by
taking partial sums of random forecasts of changes in the inflation rate and
the forecast limits (upper and lower quantiles) are shown in Figure 9.22. As
expected for a nonstationary process, the forecast limits diverge.

¤

There are two important advantages to using simulation for forecasting.
They are

1. simulation can be used in situations where standard software does not
compute forecast limits, and

2. simulation does not require that the noise series be Gaussian.

The first advantage will be important in some future examples, such as,
multivariate AR processes fit by R’s ar function. The second advantage is less
important if one is generating 90% or 95% forecast limits, but if one wishes
more extreme quantiles, say 99% forecast limits, then the second advantage
could be more important since in most applications the noise series has heavier
than Gaussian tails.
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Fig. 9.22. Forecast limits for the inflation rate computed by simulation.

9.13 Partial Autocorrelation Coefficients

The partial autocorrelation function (PACF) can be useful for identifying the
order of an AR process. The kth partial autocorrelation, denoted by φk,k, for a
stationary process Yt is the correlation between Yt and Yt+k, conditional given
Yt+1, . . . , Yt+k−1. For k = 1, Yt+1, . . . , Yt+k−1 is an empty set, so the partial
autocorrelation coefficient is simply equal to the autocorrelation coefficient,
that is, φ1,1 = ρ(1). Let φ̂k,k denote the estimate of φk,k. φ̂k,k can be calculated
by fitting the regression model

Yt = φ0,k + φ1,kYt−1 + · · ·+ φk,kYt−k + εk,t.

If Yt is an AR(p) process, then φk,k = 0 for k > p. Therefore, a sign that a
time series can be fit by an AR(p) model is that the sample PACF will be
nonzero up to p and then will be nearly zero for larger lags.
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Example 9.17. PACF for BMW log returns

Figure 9.23 is the sample PACF for the BMW log returns. The large value
of φ̂1,1 and the smaller values of φ̂k,k for k = 2, . . . , 9 are a sign that this
time series can be fit by an AR(1) model, in agreement with the results in
Example 9.4. Note that φ̂k,k is outside the test bounds for some values of
k > 9, particularly for k = 19. This is likely to be due to random variation.

¤
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Fig. 9.23. Partial ACF for the BMW returns.

When computing resources were expensive, the standard practice was to
identify a tentative ARMA model using the sample ACF and PACF, fit this
model, and then check the ACF and PACF of the residuals. If the residual
ACF and PACF revealed some lack of fit, then the model could be enlarged.
As computing has become much cheaper and faster and the use of information-
based model selection criteria has become popular, this practice has changed.
Now many data analysts prefer to start with a relatively large set of models
and compare them with selection criteria such as AIC and BIC. This can be
done automatically by auto.arima in R or similar functions in other software
packages.
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Example 9.18. PACF for changes in the inflation rate

Figure 9.24 is the sample PACF for the changes in the inflation rate. The
sample PACF decays slowly to zero, rather than dropping abruptly to zero as
for an AR process. This is an indication that this time series should not be fit
by a pure AR process. An MA or ARMA process would be preferable. In fact,
we saw previously that an MA(2) or MA(3) model provides a parsimonious
fit.
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Fig. 9.24. Sample PACF for changes in the inflation rate.

9.14 Bibliographic Notes

There are many books on time series analysis and only a few will be men-
tioned. Box, Jenkins, and Reinsel (2008) did so much to popularize ARIMA
models that these are often called “Box–Jenkins models.” Hamilton (1994)
is a comprehensive treatment of time series. Brockwell and Davis (1991) is
particularly recommended for those with a strong mathematical preparation
wishing to understand the theory of time series analysis. Brockwell and Davis
(2003) is a gentler introduction to time series and is suited for those wishing
to concentrate on applications. Enders (2004) and Tsay (2005) are time series
textbooks concentrating on economic and financial applications; Tsay (2005)
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is written at a somewhat more advanced level than Enders (2004). Gourieroux
and Jasiak (2001) has a chapter on the applications of univariate time series
in financial econometrics, and Alexander (2001) has a chapter on time series
models. Pfaff (2006) covers both the theory and application of unit root tests.
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9.16 R Lab

9.16.1 T-bill Rates

Run the following code to input the Tbrate data set in the Ecdat package
and plot the three quarterly time series in this data set as well as their auto-
and cross-correlation functions. The last three lines of code run augmented
Dickey–Fuller tests on the three series.

data(Tbrate,package="Ecdat")

library(tseries)

# r = the 91-day treasury bill rate

# y = the log of real GDP

# pi = the inflation rate

plot(Tbrate)

acf(Tbrate)

adf.test(Tbrate[,1])

adf.test(Tbrate[,2])

adf.test(Tbrate[,3])
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Problem 1

(a) Describe the signs of nonstationarity seen in the time series and ACF
plots.

(b) Use the augmented Dickey–Fuller tests to decide which of the series are
nonstationary. Do the tests corroborate the conclusions of the time series
and ACF plots?

Next run the augmented Dickey–Fuller test on the differenced series and
plot the differenced series using the code below. Notice that the pairs func-
tion creates a scatterplot matrix, but the plot function applied to time series
creates time series plots. [The plot function would create a scatterplot ma-
trix if the data were in a data.frame rather than having “class” time series
(ts). Check the class of diff_rate with attr(diff_rate,"class").] Both
types of plots are useful. The former shows cross-sectional associations, while
the time series plots are helpful when deciding whether differencing once is
enough to induce stationarity. You should see that the first-differenced data
look stationary.

diff_rate = diff(Tbrate)

adf.test(diff_rate[,1])

adf.test(diff_rate[,2])

adf.test(diff_rate[,3])

pairs(diff_rate) # scatterplot matrix

plot(diff_rate) # time series plots

Next look at the autocorrelation functions of the differenced series. These
will be on the diagonal of a 3 × 3 matrix of plots. The off-diagonal plots are
cross-correlation functions, which will be discussed in Chapter 10 and can be
ignored for now.

acf(diff_rate) # auto- and cross-correlations

Problem 2

1. Do the differenced series appear stationary according to the augmented
Dickey–Fuller tests?

2. Do you see evidence of autocorrelations in the differenced series? If so,
describe these correlations.

For the remainder of this lab, we will focus on the analysis of the 91-day T-bill
rate. Since the time series are quarterly, it is good to see if the mean depends
on the quarter. One way to check for such effects is to compare boxplots of
the four quarters. The following code does this. Note the use of the cycle
function to obtain the quarterly period of each observation; this information
is embedded in the data and cycle simply extracts it.
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par(mfrow=c(1,1))

boxplot(diff_rate[,1] ~ cycle(diff_rate))

Problem 3 Do you see any seasonal differences in the boxplots? If so, de-
scribe them.

Regardless of whether seasonal variation is present, for now we will look at
nonseasonal models. Seasonal models are introduced in Section 10.1. Next,
use the auto.arima function in the forecast package to find a “best-fitting”
nonseasonal arima model for the T-bill rates. The specifications max.P=0 and
max.Q=0 force the model to be nonseasonal, since max.P and max.Q are the
number of seasonal AR and MA components.

library(forecast)

auto.arima(Tbrate[,1],max.P=0,max.Q=0,ic="aic")

Problem 4

1. What order of differencing is chosen? Does this result agree with your
previous conclusions?

2. What model was chosen by AIC?
3. Which goodness-of-fit criterion is being used here?
4. Change the criterion to BIC. Does the best-fitting model then change?

Finally, refit the best-fitting model with the following code, and check for any
residual autocorrelation. You will need to replace the three question marks by
the appropriate numerical values for the best-fitting model.

fit1 = arima(Tbrate[,1],order=c(?,?,?))

acf(residuals(fit1))

Box.test(residuals(fit1), lag = 10, type="Ljung")

Problem 5 Do you think that there is residual autocorrelation? If so, describe
this autocorrelation and suggest a more appropriate model for the T-bill series.

GARCH effects, that is, volatility clustering, can be detected by looking for
auto-correlation in the mean-centered squared residuals. Another possibility
is that some quarters are more variable than others. This can be detected for
quarterly data by autocorrelation in the squared residuals at time lags that
are a multiple of 4. Run the following code to look at autocorrelation in the
mean-centered squared residuals.

resid2 = residuals(fit1)^2

acf(resid2)

Box.test(resid2, lag = 10, type="Ljung")
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Problem 6 Do you see evidence of GARCH effects?

9.16.2 Forecasting

This example shows how to forecast a time series using R. Run the following
code to fit a nonseasonal ARIMA model to the quarterly inflation rate. The
code also uses the predict function to forecast 36 quarters ahead. The stan-
dard errors of the forecasts are also returned by predict and can be used
to create prediction intervals. Note the use of col to specify colors. Replace
c(?,?,?) by the specification of the ARIMA model that minimizes BIC.

data(Tbrate,package="Ecdat")
# r = the 91-day Treasury bill rate
# y = the log of real GDP
# pi = the inflation rate
# fit the nonseasonal ARIMA model found by auto.arima
auto.arima(pi,max.P=0,max.Q=0,ic="bic")
fit = arima(pi,order=c(?,?,?))
forecasts = predict(fit,36)
plot(pi,xlim=c(1980,2006),ylim=c(-7,12))
lines(seq(from=1997,by=.25,length=36),

forecasts$pred,col="red")
lines(seq(from=1997,by=.25,length=36),

forecasts$pred + 1.96*forecasts$se,
col="blue")

lines(seq(from=1997,by=.25,length=36),
forecasts$pred - 1.96*forecasts$se,
col="blue")

Problem 7 Include the plot with your work.

(a) Why do the prediction intervals (blue curves) widen as one moves farther
into the future?

(b) What causes the the predictions (red) and the prediction intervals to wiggle
initially?

9.17 Exercises

1. This problem and the next use CRSP daily returns. First, get the data
and plot the ACF in two ways:

library(Ecdat)
data(CRSPday)
crsp=CRSPday[,7]
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acf(crsp)
acf(as.numeric(crsp))

(a) Explain what “lag” means in the two ACF plots. Why does lag differ
between the plots?

(b) At what values of lag are there significant autocorrelations in the
CRSP returns? For which of these values do you think the statistical
significance might be due to chance?

2. Next, fit AR(1) and AR(p) models to the CRSP returns:

arima(crsp,order=c(1,0,0))
arima(crsp,order=c(2,0,0))

(a) Would you prefer an AR(1) or an AR(2) model for this time series?
Explain your answer.

(b) Find a 95% confidence interval for φ for the AR(1) model.
3. Consider the AR(1) model

Yt = 5− 0.55Yt−1 + εt

and assume that σ2
ε = 1.2.

(a) Is this process stationary? Why or why not?
(b) What is the mean of this process?
(c) What is the variance of this process?
(d) What is the covariance function of this process?

4. Suppose that Y1, Y2, . . . is an AR(1) process with µ = 0.5, φ = 0.4, and
σ2

ε = 1.2.
(a) What is the variance of Y1?
(b) What are the covariances between Y1 and Y2 and between Y1 and Y3?
(c) What is the variance of (Y1 + Y2 + Y3)/2?

5. An AR(3) model has been fit to a time series. The estimates are µ̂ = 104,
φ̂1 = 0.4, φ̂2 = 0.25, and φ̂3 = 0.1. The last four observations were
Yn−3 = 105, Yn−2 = 102, Yn−1 = 103, and Yn = 99. Forecast Yn+1 and
Yn+2 using these data and estimates.

6. Let Yt be an MA(2) process,

Yt = µ + εt + θ1εt−1 + θ2εt−2.

Find formulas for the autocovariance and autocorrelation functions of Yt.
7. Let Yt be a stationary AR(2) process,

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt.

(a) Show that the ACF of Yt satisfies the equation

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2)
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for all values of k > 0. (These are a special case of the Yule–Walker
equations.)
[Hint : γ(k) = Cov(Yt, Yt−k) = Cov{φ1(Yt−1 − µ) + φ2(Yt−2 − µ) +
εt, Yt−k} and εt and Yt−k are independent if k > 0.]

(b) Use part (a) to show that (φ1, φ2) solves the following system of equa-
tions: (

ρ(1)
ρ(2)

)
=

(
1 ρ(1)

ρ(1) 1

) (
φ1

φ2

)
.

(c) Suppose that ρ(1) = 0.4 and ρ(2) = 0.2. Find φ1, φ2, and ρ(3).
8. Use (9.11) to verify equation (9.12).
9. Show that if wt is defined by (9.34) then (9.35) is true.

10. The time series in the middle and bottom panels of Figure 9.14 are both
nonstationary, but they clearly behave in different manners. The time
series in the bottom panel exhibits “momentum” in the sense that once
it starts moving upward or downward, it often moves consistently in that
direction for a large number of steps. In contrast, the series in the middle
panel does not have this type of momentum and a step in one direction
is quite likely to be followed by a step in the opposite direction. Do you
think the time series model with momentum would be a good model for
the price of a stock? Why or why not?

11. The MA(2) model Yt = µ + εt + θ1εt−1 + θ2εt−2 was fit to data and the
estimates are

Parameter Estimate
µ 45
θ1 0.3
θ2 −0.15

The last two values of the observed time series and residuals are

t Yt ε̂t

n− 1 39.8 −4.3
n 42.7 1.5

Find the forecasts of Yn+1 and Yn+2.
12. The ARMA(1,2) model Yt = µ + φ1Yt−1 + εt + θ1εt−1 + θ2εt−2 was fit to

data and the estimates are

Parameter Estimate
µ 103

φ1 0.2
θ1 0.4
θ2 −0.25

The last two values of the observed time series and residuals are

t Yt ε̂t

n− 1 120.1 −2.3
n 118.3 2.6
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Find the forecasts of Yn+1 and Yn+2.
13. To decide the value of d for an ARIMA(p, d, q) model for a time series y,

plots were created using the R program:

par(mfrow=c(3,2))
plot(y,type="l")
acf(y)
plot(diff(y),type="l")
acf(diff(y))
plot(diff(y,d=2),type="l")
acf(diff(y,d=2))

The output was the following figure:
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What value of d do you recommend? Why?
14. This problem fits an ARIMA model to the logarithms monthly one-month

T-bill rates in the data set Mishkin in the Ecdat package. Run the fol-
lowing code to get the variable:

library(Ecdat)
data(Mishkin)
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tb1 = log(Mishkin[,3])

(a) Use time series and ACF plots to determine the amount of differencing
needed to obtain a stationary series.

(b) Next use auto.arima to determine the best-fitting nonseasonal ARIMA
models. Use both AIC and BIC and compare the results.

(c) Examine the ACF of the residuals for the model you selected. Do you
see any problems?

15. Suppose you just fit an AR(2) model to a time series Yt, t = 1, . . . , n,
and the estimates were µ̂ = 100.1, φ̂1 = 0.5, and φ̂2 = 0.1. The last three
observations were Yn−2 = 101.0, Yn−1 = 99.5, and Yn = 102.3. What are
the forecasts of Yn+1, Yn+2, and Yn+3?

16. In Section 9.9.1, it was stated that “if E(Yt) has an mth-degree polynomial
trend, then the mean of E(∆dYt) has an (m−d)th-degree trend for d ≤ m.
For d > m, E(∆dYt) = 0.” Prove these assertions.
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Time Series Models: Further Topics

10.1 Seasonal ARIMA Models

Economic time series often exhibit strong seasonal variation. For example,
an investor in mortgage-backed securities might be interested in predicting
future housing starts, and these are usually much lower in the winter months
compared to the rest of the year. Figure 10.1(a) is a time series plot of the
logarithms of quarterly urban housing starts in Canada from the first quarter
of 1960 to final quarter of 2001. The data are in the data set Hstarts in R’s
Ecdat package.
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Fig. 10.1. Logarithms of quarterly urban housing starts in Canada. (a) Time series
plot. (b) ACF. (c) Boxplots by quarter.

Figure 10.1 shows one and perhaps two types of nonstationarity: (1) There
is strong seasonality, and (2) it unclear whether the seasonal subseries revert to
a fixed mean and, if not, then this is a second type of nonstationarity because
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the process is integrated. These effects can also be seen in the ACF plot
in Figure 10.1(b). At lags that are a multiples of four, the autocorrelations
are large, and decay slowly to zero. At other lags, the autocorrelations are
smaller but also decay somewhat slowly. The boxplots in Figure 10.1(c) give
us a better picture of the seasonal effects. Housing starts are much lower in
the first quarter than other quarters, jump to a peak in the second quarter,
and then drop off slightly in the last two quarters.

Other time series might have only seasonal nonstationarity. For example,
monthly average temperatures in a city with a temperate climate will show
a strong seasonal effect, but if we plot temperatures for any single month of
the year, say July, we will see mean-reversion.

10.1.1 Seasonal and nonseasonal differencing

Nonseasonal differencing is the type of differencing that we have been using
so far. The series Yt is replaced by ∆Yt = Yt − Yt−1 if the differencing is first
order, and so forth for higher-order differencing. Nonseasonal differencing does
not remove seasonal nonstationarity and does not alone create a stationary
series; see the top row of Figure 10.2.

To remove seasonal nonstationary, one uses seasonal differencing. Let s be
the period. For example, s = 4 for quarterly data and s = 12 for monthly
data. Define ∆s = 1−Bs so that ∆sYt = Yt − Yt−s.

Be careful to distinguish between ∆s = 1−Bs and ∆s = (1−B)s. ∆s = 1−
Bs is the first-order seasonal differencing operator while ∆s = (1−B)s is the
sth-order nonseasonal differencing operator. For example, ∆2Yt = Yt − Yt−2

but ∆2Yt = Yt − 2Yt−1 + Yt−2.
The series ∆sYt is called the seasonally differenced series. See the middle

row of Figure 10.2 for the seasonally differenced logs of housing starts and its
ACF.

One can combine seasonal and nonseasonal differencing by using, for ex-
ample, for first -rder differences

∆(∆sYt) = ∆(Yt − Yt−s) = (Yt − Yt−s)− (Yt−1 − Yt−s−a).

The order in which the seasonal and nonseasonal difference operators are
applied does not matter, since one can show that

∆(∆sYt) = ∆s(∆Yt).

For a seasonal time series, seasonal differencing is necessary, but whether
also to use nonseasonal differencing will depend on the particular time series.
For the housing starts data, the seasonally differenced series appears station-
ary so only seasonal differencing is absolutely needed, but combining seasonal
and nonseasonal differencing might be preferred since it results in a simpler
model.
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Fig. 10.2. Time series (left column) and ACF plots (right column) of the loga-
rithms of quarterly urban housing starts with nonseasonal differencing (top row),
seasonal differencing (middle row), and both seasonal and nonseasonal differencing
(bottom row). Note: In the ACF plots, lag = 1 means a lag of one year, which is
four observations for quarterly data.

10.1.2 Multiplicative ARIMA Models

One of the simplest seasonal models is the ARIMA{(1, 1, 0)×(1, 1, 0)s} model,
which puts together the nonseasonal ARIMA(1,1,0) model

(1− φB)(∆Yt − µ) = εt (10.1)

and a purely seasonal ARIMA(1,1,0)s model

(1− φ∗Bs)(∆sYt − µ) = εt (10.2)

to obtain the multiplicative model
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(1− φB) (1− φ∗Bs) {∆s(∆Yt)− µ} = εt. (10.3)

Model (10.2) is called “purely seasonal” and has a subscript “s” since it uses
only Bs and ∆s; it is obtained from the ARIMA(1,1,0) by replacing B and
∆ by Bs and ∆s. For a monthly time series (s = 12), model (10.2) gives
12 independent processes, one for Januaries, a second for Februaries, and so
forth. Model (10.3) uses the components from (10.1) to tie these 12 series
together.

The ARIMA{(p, d, q)× (ps, ds, qs)s} process is

(1− φ1 B − · · · − φp Bp) {1− φ∗1 Bs − · · · − φ∗ps
(Bs)ps} {∆d(∆ds

s Yt)− µ}
= (1 + θ1 B + . . . + θq Bq) {1 + θ∗1 Bs + . . . + θqs (Bs)qs} εt. (10.4)

This process multiplies together the AR components, the MA components,
and the differencing components of two processes: the nonseasonal ARIMA
(p, d, q) process

(1− φ1 B − · · · − φp Bp) {(∆dYt)− µ} = (1 + θ1 B + . . . + θq Bq) εt

and the seasonal ARIMA(ps, ds, qs)s process

{1−φ∗1 Bs−· · ·−φ∗ps
(Bs)ps} {(∆ds

s Yt)−µ} = {1+θ∗1 Bs + . . .+θqs (Bs)qs} εt.

Example 10.1. ARIMA{(1, 1, 1)× (0, 1, 1)4} model for housing starts

We return to the housing starts data. The first question is whether to dif-
ference only seasonally, or both seasonally and nonseasonally. The seasonally
differenced quarterly series in the middle row of Figure 10.2 is possibly sta-
tionary, so perhaps seasonal differencing is sufficient. However, the ACF of the
seasonally and nonseasonally differenced series in the bottom row has a sim-
pler ACF than the data that are only seasonally differenced. By differencing
both ways, we should be able find a more parsimonious ARMA model.

Two models with seasonal and nonseasonal differencing were tried, ARI-
MA {(1, 1, 1) × (1, 1, 1)4} and ARIMA {(1, 1, 1) × (0, 1, 1)4}. Both provided
good fits and had residuals that passed the Ljung–Box test. The second of the
two models was selected, because it has one fewer parameter than the first,
though the other model would have been a reasonable choice. The results from
fitting the chosen model are

Call:
arima(x = hst, order = c(1, 1, 1), seasonal
= list(order = c(0, 1, 1), period = 4))

Coefficients:
ar1 ma1 sma1
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0.675 -0.890 -0.822
s.e. 0.142 0.105 0.051

sigma^2 estimated as 0.0261: log-likelihood = 62.9,
aic = -118

Thus, the fitted model is

(1− 0.675 B)Y ∗
t = (1− 0.890 B)(1− 0.822 B4) εt

where Y ∗
t = ∆(∆4Yt) and εt is white noise.

Figure 10.3 shows forecasts from this model for the four years following
the end of the time series.
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Fig. 10.3. Forecasting logarithms of quarterly urban housing starts using the
ARIMA{(1, 1, 1) × (0, 1, 1)4} model. The dashed line connects the data, the dotted
line connects the forecasts, and the solid lines are the forecast limits.

When the size of the seasonal oscillations increases, as with the air passen-
ger data in Figure 9.2, some type of preprocessing is needed before differenc-
ing. Often, taking logarithms stabilizes the size of the oscillations. This can be
seen in Figure 10.4. Box, Jenkins, and Reinsol (2008) obtain a parsimonious
fit to the log passengers with an ARIMA(0, 1, 1)× (0, 1, 1)12 model.

For the housing starts series, the data come as logarithms in the Ecdat
package. If they had come untransformed, then we would have needed to apply
some type of transformation.



262 10 Time Series Models: Further Topics

1950 1952 1954 1956 1958 1960

5.
0

5.
5

6.
0

6.
5

year

lo
g(

pa
ss

en
ge

rs
)

Fig. 10.4. Time series plot of the logarithms of the monthly totals of air passengers
(in thousands).

10.2 Box–Cox Transformation for Time Series

As just discussed, it is often desirable to transform a time series to stabilize the
size of the variability, both seasonal and random. Although a transformation
can be selected by trial-and-error, another possibility is automatic selection
by maximum likelihood estimation using the model

(∆dY
(α)
t − µ) = φ1(∆dY

(α)
t−1 − µ) + · · ·+ φp(∆dY

(α)
t−p − µ)

+ εt + θ1εt−1 + · · ·+ θqεt−q, (10.5)

where ε1, ε2, . . . is Gaussian white noise. Model (10.5) states that after a Box–
Cox transformation, Yt follows an ARIMA model with Gaussian noise that
has a constant variance. The transformation parameter α is considered un-
known and is estimated by maximum likelihood along with the AR and MA
parameters and the noise variance. For notational simplicity, (10.5) uses a
nonseasonal model, but a seasonal ARIMA model could just as easily have
been used.

Example 10.2. Selecting a transformation for the housing starts

Figure 10.5 show the profile likelihood for α for the housing starts series
(not the logarithms). The ARIMA model was ARIMA{(1, 1, 1) × (1, 1, 1)4}.
The figure was created by the BoxCox.Arima function in R’s FitAR package.
This function denotes the transformation parameter by λ. The MLE of α
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is 0.34 and the 95% confidence interval is roughly from 0.15 to 0.55. Thus,
the log transformation (α = 0) is somewhat outside the confidence interval,
but the square-root transformation is in the interval. Nonetheless, the log
transformation worked satisfactorily in Example 10.1 and might be retained.

Without further analysis, it is not clear why α = 0.34 achieves a better fit
than the log transformation. Better fit could mean that the ARIMA model
fits better, that the noise variability is more nearly constant, that the noise
is closer to being Gaussian, or some combination of these effects. It would
be interesting to compare forecasts using the log and square-root transforma-
tions to see in what ways, if any, the square-root transformation outperforms
the log transformation for forecasting. The forecasts would need to be back-
transformed to the original scale in order for them to be comparable. One
might use the final year as test data to see how well housing starts in that
year are forecast.
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Fig. 10.5. Profile likelihood for α (called λ in the legend) in the housing start
example. Values of λ with R(λ) (the profile likelihood) above the horizontal line are
in the 95% confidence limit.

Data transformations can stabilize some types of variation in time se-
ries, but not all types. For example, in Figure 9.2 the seasonal oscillations in
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the numbers of air passengers increase as the series itself increases, and we
can see in Figure 10.4 that a log transformation stabilizes these oscillations.
In contrast, the S&P 500 returns in Figure 4.1 exhibit periods of low and
high volatility even though the returns maintain a mean near 0. Transforma-
tions cannot remove this type of volatility clustering. Instead, the changes of
volatility should be modeled by a GARCH process; this topic is pursued in
Chapter 18.

10.3 Multivariate Time Series

Suppose that for each t, Y t = (Y1,t, . . . , Yd,t) is a d-dimensional random vec-
tor representing quantities that were measured at time t, e.g., returns on d
equities. Then Y 1, Y2 . . . is called a d-dimensional multivariate time series.

The definition of stationarity for multivariate time series is the same as
given before for univariate time series. A multivariate time series said to be
stationary if for every n and m, Y1, . . . , Yn and Y 1+m, . . . , Yn+m have the
same distributions.

10.3.1 The cross-correlation function

Suppose that Yj and Yj′ are the two component series of a stationary multi-
variate time series. The cross-correlation function (CCF) between Yj and Yj′

is defined as
ρYj ,Yj′ (k) = Corr{Yj(t), Yj′(t− k)} (10.6)

and is the correlation between Yj at a time t and Yj′ at k time units earlier.
As with autocorrelation, k is called the lag. However, unlike the ACF, the
CCF is not symmetric in the lag variable k, that is, ρYj ,Yj′ (k) 6= ρYj ,Yj′ (−k).
Instead, as a direct consequence of definition (10.6), we have that ρYj ,Yj′ (k) =
ρYj′ ,Yj (−k).

The CCF can be defined for multivariate time series that are not stationary
but only weakly stationary. A multivariate time series Y 1, . . . is said to be
weakly stationary if the mean and covariance matrix of Y t do not depend on
t and if the right-hand side of (10.6) is independent of t for all j, j′, and k.

Cross-correlations can suggest how the component series might be influ-
encing each other or might be influenced by a common factor. Like all corre-
lations, cross-correlations only show statistical association, not causation, but
causal relationship might be deduced from other knowledge.

Example 10.3. Cross-correlation between changes in CPI (Consumer Price In-
dex) and IP (industrial production)

The cross-correlation function between changes in CPI and changes in IP
is plotted in Figure 10.6, which was created by the ccf function in R. The
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largest absolute cross-correlations are at positive lags and these correlations
are negative. This means that an above-average (below-average) change in
CPI predicts a future change in IP that is below (above) average. As just em-
phasized, correlation does not imply causation, so we cannot say that changes
in CPI cause opposite changes in future IP, but the two series behave as if
this were happening. Correlation does imply predictive ability. Therefore, if
we observe an above-average change in CPI, then we should predict future
changes in IP that will be below average. In practice, we should use the cur-
rently observed changes in both CPI and IP, not just CPI, to predict future
changes in IP. We will discuss prediction using two or more related time series
in Section 10.3.4.
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Fig. 10.6. CCF for ∆CPI and ∆IP. Note the negative correlation at negative lags,
that is, between the CPI and future values of IP.

10.3.2 Multivariate White Noise

A d-dimensional multivariate time series ε1, ε2, . . . is a weak WN(µ, Σ) process
if

1. E(εt) = µ for all t,
2. COV(εt) = Σ for all t, and
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3. for all t 6= t′, all components of εt are uncorrelated with all components
of εt′ .

Notice that if Σ is not diagonal, then there is cross-correlation between
the components of εt because Corr(εj,t, εj′,t) = Σj,j′ ; in other words, there
may be nonzero contemporaneous correlations. However, for all 1 ≤ j, j′ ≤ d,
Corr(εj,t, εj′,t′) = 0 if t 6= t′.

Furthermore, ε1, ε2, . . . is an i.i.d. WN(µ, Σ) process if, in addition to
conditions 1–3, ε1, ε2, . . . are independent and identically distributed. If
ε1, ε2, . . . are also multivariate normally distributed, then they are a Gaus-
sian WN(µ,Σ) process.

10.3.3 Multivariate ARMA processes

A d-dimensional multivariate time series Y 1, . . . is a multivariate ARMA(p, q)
process with mean µ if for p× p matrices Φ1, . . . , Φp and Θ1, . . . , Θq,

Y t −µ = Φ1(Y t−1 −µ) + · · ·+ Φp(Y t−p −µ) + Θ1εt−1 + · · ·+ Θqεt−q + εt,
(10.7)

where ε1, . . . , εn is a multivariate WN(0, Σ) process. Multivariate AR pro-
cesses (the case q = 0) are also called vector AR or VAR processes and are
widely used in practice.

As an example, a bivariate AR(1) process can be written as
(

Y1,t − µ1

Y2,t − µ2

)
=

(
φ1,1 φ1,2

φ2,1 φ2,2

)(
Y1,t−1 − µ1

Y2,t−1 − µ2

)
+

(
ε1,t

ε2,t

)
,

where

Φ = Φ1 =
(

φ1,1 φ1,2

φ2,1 φ2,2

)
.

Therefore,

Y1,t = µ1 + φ1,1(Y1,t−1 − µ1) + φ1,2(Y2,t−1 − µ2) + ε1,t

and
Y2,t = µ2 + φ2,1(Y1,t−1 − µ1) + φ2,2(Y2,t−1 − µ2) + ε2,t,

so that φi,j is the amount of “influence” of Yj,t−1 on Yi,t. Similarly, for a
bivariate AR(p) process, φk

i,j (the i, jth component of Φk) is the influence of
Yj,t−k on Yi,t, k = 1, . . . , p.

For a d-dimensional AR(1), it follows from (10.7) with p = 1 and Φ = Φ1

that
E(Y t|Y t−1) = µ + Φ(Y t−1 − µ). (10.8)

How does E(Y t) depend on the more distant past, say on Y t−2? To answer
this question, we can generalize (10.8). To keep notation simple, assume that
the mean has been subtracted from Y t so that µ = 0. Then
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Y t = ΦY t−1 + εt = Φ{ΦY t−1 + εt−1}+ εt

and, because E(εt−1|Y t−2) = 0 and E(εt|Y t−2) = 0,

E(Y t|Y t−2) = Φ2Y t−2.

By similar calculations,

E(Y t|Y t−k) = ΦkY t−k, for all k > 0. (10.9)

It can be shown using (10.9), that the mean will explode if any of the
eigenvectors of Φ are greater than 1 in magnitude. In fact, an AR(1) process
is stationary if and only if all of the eigenvalues of Φ are less than 1 in absolute
value. The eigen function in R can be used to find the eigenvalues.

Example 10.4. A bivariate AR model for ∆CPI and ∆IP

This example uses the CPI and IP data sets discussed in earlier examples.
Bivariate AR processes were fit to (∆ CPI, ∆ IP) using R’s function ar. AIC
as a function of p is shown below. The two best-fitting models are AR(1) and
AR(5), with the latter being slightly better by AIC. Although BIC is not part
of ar’s output, it can be calculated easily since BIC = AIC + {log(n)− 2}p.
Because {log(n)−2} = 2.9 in this example, it is clear that BIC is much smaller
for the AR(1) model than for the AR(5) model. For this reason and because
the AR(1) model is so much simpler to analyze, we will use the AR(1) model.

p 0 1 2 3 4
AIC 127.99 0.17 1.29 5.05 3.40

5 6 7 8 9 10
0.00 6.87 9.33 10.83 13.19 14.11

The results of fitting the AR(1) model are

Φ̂ =
(

0.767 0.0112
−0.330 0.3014

)

and

Σ̂ =
(

5.68e− 06 3.33e− 06
3.33e− 06 6.73e− 05

)
. (10.10)

ar does not estimate µ, but µ can be estimated by the sample mean, which
is is (0.00173, 0.00591).

It is useful to look at the two off-diagonals of Φ̂. Since Φ1,2 = 0.01 ≈ 0,
Y2,t−1 (lagged IP) has little influence on Y1,t (CPI), and since Φ2,1 = −0.330,
Y1,t−1 (lagged CPI) has a substantial negative effect on Y2,t (IP). It should



268 10 Time Series Models: Further Topics

be emphasized that “effect” means statistical association, not necessarily cau-
sation. This agrees with what we found when looking at the CCF for these
series in Example 10.3.

How does IP depend on CPI further back in time? To answer this question
we look at the (1,2) elements of the following powers of Φ:

Φ̂
2

=
(

0.58 0.012
−0.35 0.087

)
, Φ̂

3
=

(
0.44 0.010
−0.30 0.022

)
,

Φ̂
4

=
(

0.34 0.0081
−0.24 0.0034

)
, and Φ̂

5
=

(
0.26 0.0062
−0.18 −0.0017

)
.

What is interesting here is that the (1,2) elements, that is, −0.35, −0.30,
−0.24, and −0.18, decay to zero slowly, much like the CCF. This helps ex-
plain why the AR(1) model fits the data well. This behavior where the cross-
correlations are all negative and decay only slowly to zero is quite different
from the behavior of the ACF of a univariate AR(1) process. For the later,
the correlations either are all positive or else alternate in sign, and in either
case, unless the lag-1 correlation is nearly equal to 1, the correlations decay
rapidly to 0.

In contrast to these negative correlations between ∆ CPI and future ∆ IP,
it follows from (10.10) that the white noise series has a positive, albeit small,
correlation of 3.33/

√
(5.68)(67.3) = 0.17. The white noise series represents

unpredictable changes in the ∆ CPI and ∆ IP series, so we see that the un-
predictable changes have positive correlation. In contrast, the negative corre-
lations between ∆ CPI and future ∆ IP concern predictable changes.

Figure 10.7 shows the ACF of the ∆ CPI and ∆ IP residuals and the CCF
of these residuals. There is little auto- or cross-correlation in the residuals at
nonzero lags, indicating that the AR(1) has a satisfactory fit.

Figure 10.7 was produced by the acf function in R. When applied to a mul-
tivariate time series, acf creates a matrix of plots. The univariate ACFs are
on the main diagonal, the ccf’s at positive lags are above the main diagonal,
and the CCFs at negative values of lag below the main diagonal.

¤

10.3.4 Prediction Using Multivariate AR Models

Forecasting with multivariate AR processes is much like forecasting with
univariate AR processes. Given a multivariate AR(p) time series Y 1, . . . , Y n,
the forecast of Y n+1 is

Ŷ n+1 = µ̂ + Φ̂1(Y n − µ̂) + · · ·+ Φ̂p(Y n+1−p − µ̂),

the forecast of Y n+2 is
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Fig. 10.7. The ACF and CCF for the residuals when fitting a bivariate AR(1)
model to (∆CPI, ∆ IP). Top left: The ACF of ∆CPI residuals. Top right: The CCF
of ∆CPI and ∆IP residuals with positive values of lag. Bottom left: The CCF of
∆CPI and ∆IP residuals with negative values of lag. Bottom right: The ACF of
∆IP residuals.

Ŷ n+2 = µ̂ + Φ̂1(Ŷ n+1 − µ̂) + · · ·+ Φ̂p(Y n+2−p − µ̂),

and so forth, so that for all k,

Ŷ n+k = µ̂ + Φ̂1(Ŷ n+k−1 − µ̂) + · · ·+ Φ̂p(Ŷ n+k−p − µ̂), (10.11)

where we use the convention that Ŷ t = Y t if t ≤ n. For an AR(1) model,
repeated application of (10.11) shows that

Ŷ n+k = µ̂ + Φ̂
k

1(Y n − µ̂). (10.12)

Example 10.5. Using a bivariate AR(1) model to predict CPI and IP

The ∆CPI and ∆IP series were forecast using (10.12) with estimates found
in Example 10.4. Figure 10.8 shows forecasts up to 10 months ahead for both
CPI and IP. Figure 10.9 show forecast limits computed by simulation using
the techniques described in Section 9.12.2 generalized to a multivariate time
series.

¤
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Fig. 10.8. Forecasts of changes in CPI (solid) and changes in IP (dashed) using
a bivariate AR(1) model. The number of time units ahead is k. At k = 0, the last
observed values of the time series are plotted. The two horizontal lines are at the
means of the series, and the forecasts will asymptote to these lines as k →∞.

10.4 Long-Memory Processes

10.4.1 The Need for Long-Memory Stationary Models

In Chapter 9, ARMA processes were used to model stationary time series.
Stationary ARMA processes have only short memories in that their auto-
correlation functions decay to zero exponentially fast. That is, there exist a
D > 0 and r < 1 such that

ρ(k) < D|r|k

for all k. In contrast, many financial time series appear to have long memory
since their ACFs decay at a (slow) polynomial rather than a (fast) exponential
rate, that is,

ρ(k) ∼ Dk−α

for some D and α > 0. A polynomial rate of decay is sometimes called a hy-
perbolic rate. In this section, we will introduce the fractional ARIMA models,
which include stationary processes with long memory.

10.4.2 Fractional Differencing

The most widely used models for stationary, long-memory processes use frac-
tional differencing. For integer values of d we have
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Fig. 10.9. Forecast limits (dashed) for changes in CPI and IP computed by simu-
lation and forecasts (solid). At lag = 0, the last observed changes are plotted so the
widths of the forecast intervals are zero.

∆d = (1−B)d =
d∑

k=0

(
d
k

)
(−B)k. (10.13)

In this subsection, the definition of ∆d will be extended to noninteger values
of d. The only restriction on d will be that d > −1.

Let Γ (t) =
∫∞
0

xt−1e−xdx, for any t > 0, be the gamma function previ-
ously defined by (5.13). Integration by parts shows that

Γ (t) = (t− 1)Γ (t− 1) (10.14)

and simple integration shows that Γ (1) = 1. It follows that for any integer
t, we have Γ (t + 1) = t!. Therefore, the definition of t! can be extended to
all t > 0 if t! is defined as Γ (t + 1) whenever t > 0. Moreover, (10.14) allows
the definition of Γ (t) to be extended to all t except nonnegative integers. For
example, Γ (1/2) = −(1/2) Γ (−1/2), so we can define Γ (−1/2) as −2 Γ (1/2).
However, this device does not work if t is 0 or a negative integer. For example,
Γ (1) = 0Γ (0) does not give us a way to define Γ (0). In summary, Γ (t) can be
defined for all real t except 0,−1,−2, . . . and therefore t! can be defined for
all real values of t except the negative integers.

We can now define (
d
k

)
=

d!
k!(d− k)!

(10.15)

for any d except negative integers and any integer k ≥ 0, except if d is an
integer and k > d, in which case d− k is a negative integer and (d− k)! is not
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defined. In the latter case, we define
(

d
k

)
to be 0, so

(
d
k

)
is defined for all

d except negative integers and for all integer k ≥ 0. Only values of d greater
than −1 are needed for modeling long-memory processes, so we will restrict
attention to this case.

The function f(x) = (1− x)d has an infinite Taylor series expansion

(1− x)d =
∞∑

k=0

(
d
k

)
(−x)k. (10.16)

Since
(

d
k

)
= 0 if k > 0 and d > −1 is integer, when d is an integer we have

(1− x)d =
∞∑

k=0

(
d
k

)
(−x)k =

d∑

k=0

(
d
k

)
(−x)k. (10.17)

The right-hand side of (10.17) is the usual finite binomial expansion for d a
nonnegative integer, so (10.16) extends the binomial expansion to all d > −1.
Since (1− x)d is defined for all d > −1, we can define ∆d = (1−B)d for any
d > −1. In summary, if d > −1, then

∆dYt =
∞∑

k=0

(
d
k

)
(−1)kYt−k. (10.18)

10.4.3 FARIMA Processes

Yt is a fractional ARIMA(p, d, q) process, also called an ARFIMA or FARIMA
(p, d, q) process, if ∆dYt is an ARMA(p, q) process. We say that Yt is a fraction-
ally integrated process of order d or, simply, I(d) process. This is, of course,
the previous definition of an ARIMA process extended to noninteger values
of d. Usually, d ≥ 0, with d = 0 being the ordinary ARMA case, but d could
be negative. If −1/2 < d < 1/2, then the process is stationary. If 0 < d < 1/2,
then it is a long-memory stationary processes.

If d > 1
2 , then Yt can be differenced an integer number of times to become

a stationary process, though perhaps with long-memory. For example, if 1
2 <

d < 1 1
2 , then ∆Yt is fractionally integrated of order d− 1 ∈ (−1

2 , 1
2 ) and ∆Yt.

has long-memory if 1 < d < 11
2 so that d− 1 ∈ (0, 1

2 ).
Figure 10.10 shows time series plots and sample ACFs for simulated

FARIMA(0, d, 0) processes with n = 2500 and d = −0.35, 0.35, and 0.7. The
last case is nonstationary. The R function simARMA0 in the longmemo package
was used to simulate the stationary series. For the case d = 0.7, simARMA0
was used to simulate an FARIMA(0,−0.3, 0) series and this was integrated to
create a FARIMA(0, d, 0) with d = −0.3 + 1 = 0.7. As explained in Section
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Fig. 10.10. Time series plots (left) and sample ACFs (right) for simulated
FARIMA(0, d, 0). The top series is stationary with short-term memory. The middle
series is stationary with long-term memory. The bottom series is nonstationary.

9.9, integration is implemented by taking partial sums, and this was done with
R’s function cumsum.

The FARIMA(0, 0.35, 0) process has a sample ACF with drops below 0.5
almost immediately but then persists well beyond 30 lags. This behavior is
typical of stationary processes with long memory. A short-memory stationary
process would not have autocorrelations persisting that long, and a nonsta-
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tionary processes would not have a sample ACF that dropped below 0.5 so
quickly.

Note that the case d = −0.35 in Figure 10.10 has an ACF with a negative
lag-1 autocorrelation and little additional autocorrelation. This type of ACF
is often found when a time series is differenced once. After differencing, an
MA term is needed to accommodate the negative lag-1 autocorrelated. A more
parsimonious model can sometimes be used if the differencing is fractional.
For example, consider the third series in Figure 10.10. If it is differenced once,
then a series with d = −0.3 is the result. However, if it is differenced with
d = 0.7, then white noise is the result. This can be seen in the ACF plots in
Figure 10.11.
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Fig. 10.11. ACF plots for the simulated FARIMA(0, 0.7, 0) series in Figure 10.10
after differencing using d = 0.7 and 1.

Example 10.6. Inflation rates—FARIMA modeling

This example used the inflation rates that have been studied already in
Chapter 9. From the analysis in that chapter it was unclear whether to model
the series as I(0) or I(1). Maybe it would be better to have a compromise
between these alternatives. Now, with the new tool of fractional integration,
we can try differencing with d between 0 and 1. There is some reason to believe
that fractional differencing is suitable for this example, since the ACF plot in
Figure 9.3 is similar to that of the d = 0.35 plot in Figure 10.10.

The function fracdiff in R’s fracdiff package will fit a FARIMA (p, d, q)
process. The values of p, d, and q must be input; I am not aware of any R
function that will chose p, d, and q automatically in the way this can be
done for an ARIMA process (that is, with d restricted to be an integer) using
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auto.arima. First, a trial value of d was chosen by using fracdiff with
p = q = 0, the default values. The estimate was d̂ = 0.378. Then, the inflation
rates were fractionally differenced using this value of d and auto.arima was
applied to the fractionally differenced series. The result was that BIC selected
p = q = d = 0. The value d = 0 means that no further differencing is applied
to the already fractionally differenced series. Fractional differencing was done
with the diffseries function in R’s fracdiff package.
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Fig. 10.12. ACF plots for the inflation rates series with differencing using d = 0,
0.4, and 1.

Figure 10.12 has ACF plots of the original series and the series differenced
with d = 0, 0.4 (from rounding 0.378), and 1. The first series has a slowly
decaying ACF typical of a long-memory process, the second series looks like
white noise, and the third series has negative autocorrelation at lag-1 which
indicates overdifferencing.

The conclusion is that a white noise process seems to be a suitable model
for the fractionally differenced series and the original series can be model as
FARIMA(0,0.378,0), or, perhaps, more simply as FARIMA(0,0.4,0).

Differencing a stationary process creates another stationary process, but
the differenced process often has more complex autocorrelation structure com-
pared to the original process. Therefore, one should not overdifference a time
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series. However, if d is restricted to integer values, then often, as in this ex-
ample, overdifferencing cannot be avoided.

¤

10.5 Bootstrapping Time Series

The resampling methods introduced in Chapter 6 are designed for i.i.d. uni-
variate data but are easily extended to multivariate data. As discussed in
Section 7.11, if Y1, . . . , Yn is a sample of vectors, then one resamples the Y i

themselves, not their components, to maintain the covariance structure of the
data in the resamples.

It is not immediately obvious whether one can resample a time series
Y1, Y2, . . . , Yn. A time series is essentially a sample of size 1 from a stochastic
process. Resampling a sample of size 1 in the usual way is a futile exercise—
each resample is the original sample, so one learns nothing by resampling.
Therefore, resampling of a time series requires new ideas.

Model-based resampling is easily adapted to time series. The resamples
are obtained by simulating the time series model. For example, if the model
is ARIMA(p, 1, q), then the resamples start with simulated samples of an
ARMA(p, q) model with MLEs (from the differenced series) of the autoregres-
sive and moving average coefficients and the noise variance. The resamples are
the sequences of partial sums of the simulated ARMA(p, q) process.

Model-free resampling of a time series is accomplished by block resampling,
also called the block bootstrap, which can be implemented using the tsboot
function in R’s boot package. The idea is to break the time series into roughly
equal-length blocks of consecutive observations, to resample the blocks with
replacment, and then to paste the blocks together. For example, if the time
series is of length 200 and one uses 10 blocks of length 20, then the blocks
are the first 20 observations, the next 20, and so forth. A possible resample
is the fourth block (observations 61 to 80), then the last block (observations
181 to 200), then the second block (observations 21 to 40), then the fourth
block again, and so on until there are 10 blocks in the resample.

A major issue is how best to select the block length. The correlations in
the original sample are preserved only within blocks, so a large block size is
desirable. However, the number of possible resamples depends on the number
of blocks, so a large number of blocks is also desirable. Obviously, there must
be a tradeoff between the block size and the number of blocks. A full discussion
of block bootstraping is beyond the scope of this book, but see Section 10.6
for further reading.
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10.6 Bibliographic Notes

Beran (1994) is a standard reference for long-memory processes, and Beran
(1992) is a good introduction to this topic. Most of the time series textbooks
listed in Section 9.15 discuss seasonal ARIMA models. Enders (2004) has a
section of bootstrapping time series and a chapter on multivariate time series.
Reinsel (2003) is an in-depth treatment of multivariate time series; see also
Hamilton (1994) for this topic. Transfer function models are another method
for analyzing multivariate time series; see Box, Jenkins, and Reinsel (2008).
Davison and Hinkley (1997) discuss both model-based and block resampling
of time series and other types of dependent data. Lahiri (2003) provides an
advanced and comprehensive account of block resampling. Bühlmann (2002)
is a review article about bootstrapping time series.
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10.8 R Lab

10.8.1 Seasonal ARIMA Models

This section uses seasonally nonadjusted quarterly data on income and con-
sumption in the UK. Run the following code to load the data and plot the
variable consumption.
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library("Ecdat")
data(IncomeUK)
consumption = IncomeUK[,2]
plot(consumption)

Problem 1 Describe the behavior of consumption. What types of differenc-
ing, seasonal, nonseasonal, or both, would you recommend? Do you recom-
mend fitting a seasonal ARIMA model to the data with or without a log trans-
formation? Consider also using ACF plots to help answer these questions.

Problem 2 Regardless of your answers to Problem 1, find an ARIMA model
that provides a good fit to log(consumption). What order model did you
select? (Give the orders of the nonseasonal and seasonal components.)

Problem 3 Check the ACF of the residuals from the model you selected in
Problem 2. Do you see any residual autocorrelation?

Problem 4 Apply auto.arima to log(consumption) using BIC. What model
is selected?

Problem 5 Forecast log(consumption) for the next eight quarters using the
models you found in Problems 2 and 4. Plot the two sets of forecasts in side-by-
side plots with the same limits on the x- and y-axes. Describe any differences
between the two sets of forecasts.

Note: To predict an arima object (an object returned by the arima func-
tion), use the predict function. To learn how the predict function works
on an arima object, use ?predict.Arima. To forecast an object returned by
auto.arima, use the forecast function in the forecast package. For ex-
ample, the following code will forecast eight quarters ahead using the object
returned by auto.arima and then plot the forecasts.

fitAutoArima = auto.arima(logConsumption,ic="bic")
foreAutoArima = forecast(fitAutoArima,h=8)
plot(foreAutoArima,xlim=c(1985.5,1987.5),ylim=c(10.86,11))

10.8.2 VAR Models

This section uses data on the 91-day Treasury bill, the real GDP, and the
inflation rate. Run the following R code to read the data, find the best-fitting
multivariate AR to changes in the three series, and check the residual corre-
lations.
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data(Tbrate,package="Ecdat")
# r = the 91-day Treasury bill rate
# y = the log of real GDP
# pi = the inflation rate
del_dat = diff(Tbrate)
var1 = ar(del_dat,order.max=4,aic=T)
var1
acf(var1$resid[-1,])

Problem 6 For this problem, use the notation of equation (10.7) with q = 0.

(a) What is p and what are the estimates Φ1, . . . , Φp?
(b) What is the estimated covariance matrix of εt?
(c) If the model fits adequately, then there should be no residual auto- or

cross-correlation. Do you believe that the model does fit adequately?

Problem 7 The last three changes in r, y, and pi are given next. What are
the predicted values of the next set of changes in these series?

r y pi
-1.41 -0.019420 2.31
-0.48 0.015147 -1.01
0.66 0.003303 0.31

10.8.3 Long-Memory Processes

This section uses changes in the square root of the Consumer Price Index.
The following code creates this time series.

data(Mishkin,package="Ecdat")
cpi = as.vector(Mishkin[,5])
DiffSqrtCpi = diff(sqrt(cpi))

Problem 8 Plot DiffSqrtCpi and its ACF. Do you see any signs of long
memory? If so, describe them.

Run the following code to estimate the amount of fractional differencing,
fractionally difference DiffSqrtCpi appropriately, and check the ACF of the
fractionally differenced series.

library("fracdiff")
fit.frac = fracdiff(DiffSqrtCpi,nar=0,nma=0)
fit.frac$d
fdiff = diffseries(DiffSqrtCpi,fit.frac$d)
acf(fdiff)
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Problem 9 Do you see any short- or long-term autocorrelation in the frac-
tionally differenced series?

Problem 10 Fit an ARIMA model to the fractionally differenced series using
auto.arima. Compare the models selected using AIC and BIC.

10.8.4 Model-Based Bootstrapping of an ARIMA Process

This example uses the price of frozen orange juice. Run the following code to
fit an ARIMA model.

library(AER)
library(forecast)
data("FrozenJuice")
price = FrozenJuice[,1]
plot(price)
auto.arima(price,ic="bic")

The output from auto.arima, which is needed for model-based bootstrapping,
is

Series: price
ARIMA(2,1,0)

Coefficients:
ar1 ar2

0.2825 0.0570
s.e. 0.0407 0.0408

sigma^2 estimated as 9.989: log likelihood = -1570.11
AIC = 3146.23 AICc = 3146.27 BIC = 3159.47

Next, we will use the model-based bootstrap to investigate how well BIC
selects the “correct” model, which is ARIMA(2,0,0). Since we will be looking
at the output of each fitted model, only a small number of resamples will be
used. Despite the small number of resamples, we will get some sense of how
well BIC works in this context. To simulate 10 model-based resamples from
the ARIMA(2,0,0) model, run

n=length(price)
sink("priceBootstrap.txt")
set.seed(1998852)
for (iter in 1:10)
{
eps = rnorm(n+20)
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y = rep(0,n+20)
for (t in 3:(n+20))
{
y[t] = .2825 *y[t-1] + 0.0570*y[t-2] + eps[t] }
y = y[101:n+20]
y = cumsum(y)
y = ts(y,frequency=12)
fit=auto.arima(y,d=1,D=0,ic="bic")
print(fit)
}
sink()

The results will be sent to the file priceBootstrap.txt. The first two values
of y are independent and are used to initialize the process. A burn-in period
of 20 is used to remove the effect of initialization. Note the use of cumsum to
integrate the simulated AR(2) process and the use of ts to convert a vector
to a monthly time series.

Problem 11 How often is the “correct” AR(2) model selected?

Now we will perform a bootstrap where the correct model AR(2) is known
and study the accuracy of the estimators. Since the correct model is known, it
can be fit by arima. The estimates will be stored in a matrix called estimates.
In contrast to earlier when model-selection was investigated by resampling,
now a large number of bootstrap samples can be used, since arima is fast and
only the estimates are stored. Run the following:

set.seed(1998852)
niter=250
estimates=matrix(0,nrow=niter,ncol=2)
for (iter in 1:niter)
{
eps = rnorm(n+20)
y = rep(0,n+20)
for (t in 3:(n+20))
{
y[t] = .2825 *y[t-1] + 0.0570*y[t-2] + eps[t] }
y = y[101:n+20]
y = cumsum(y)
y = ts(y,frequency=12)
fit=arima(y,order=c(2,1,0))
estimates[iter,]=fit$coef
}

Problem 12 Find the biases, standard deviations, and MSEs of the estima-
tors of the two coefficients.
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10.9 Exercises
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Fig. 10.13. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

1. Figure 10.13 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?
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Fig. 10.14. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

2. Figure 10.14 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?
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Fig. 10.15. ACF plots of quarterly data with no differencing, nonseasonal differ-
encing, seasonal differencing, and both seasonal and nonseasonal differencing.

3. Figure 10.15 contains ACF plots of 40 years of quarterly data, with all
possible combinations of first-order seasonal and nonseasonal differencing.
Which combination do you recommend in order to achieve stationarity?

4. In example 10.4, a bivariate AR(1) model was fit to (∆CPI, ∆IP) and

Φ̂ =
(

0.767 0.0112
−0.330 0.3014

)
.

The mean of (∆CPI, ∆IP) is (0.00518, 0.00215) and the last observation
of (∆ CPI, ∆ IP) is (0.00173, 0.00591). Forecast the next two values of
∆ IP. (The forecasts are shown in Figure 10.8, but you should compute
numerical values.)

5. Fit an ARIMA model to income, which is in the first column of the
IncomeUK data set in the Ecdat package. Explain why you selected the
model you did. Does you model exhibit any residual correlation?

6. (a) Find an ARIMA model that provides a good fit to the variable unemp
in the USMacroG data set in the AER package.

(b) Now perform a small model-based bootstrap to see how well auto.
arima can select the true model. To do this, simulate eight data sets
from the ARIMA model selected in part (a) of this problem. Apply
auto.arima with BIC to each of these data sets. How often is the
“correct” amount of differencing selected, that is, d and D are correctly
selected? How often is the “correct” model selected? “Correct” means
in agreement with the simulation model. “Correct model” means both
the correct amount of differencing and the correct orders for all the
seasonal and nonseasonal AR and MA components.

7. This exercise uses the Tbrate data set in the Ecdat package. In Section
9.16.1, nonseasonal models were fit. Now use auto.arima to find a seasonal
model. Which seasonal model is selected by AIC and by BIC? Do you feel
that a seasonal model is needed, or is a nonseasonal model sufficient?
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Portfolio Theory

11.1 Trading Off Expected Return and Risk

How should we invest our wealth? Portfolio theory provides an answer to this
question based upon two principles:

• we want to maximize the expected return; and
• we want to minimize the risk, which we define in this chapter to be the

standard deviation of the return, though we may ultimately be concerned
with the probabilities of large losses.

These goals are somewhat at odds because riskier assets generally have a
higher expected return, since investors demand a reward for bearing risk. The
difference between the expected return of a risky asset and the risk-free rate
of return is called the risk premium. Without risk premiums, few investors
would invest in risky assets.

Nonetheless, there are optimal compromises between expected return and
risk. In this chapter we show how to maximize expected return subject to an
upper bound on the risk, or to minimize the risk subject to a lower bound on
the expected return. One key concept that we discuss is reduction of risk by
diversifying the portfolio.

11.2 One Risky Asset and One Risk-Free Asset

We start with a simple example with one risky asset, which could be a portfo-
lio, for example, a mutual fund. Assume that the expected return is 0.15 and
the standard deviation of the return is 0.25. Assume that there is a risk-free
asset, such as, a 90-day T-bill, and the risk-free rate is 6%, so the return on
the risk-free asset is 6%, or 0.06. The standard deviation of the return on the
risk-free asset is 0 by definition of “risk-free.” The rates and returns here are
annual, though all that is necessary is that they be in the same time units.

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
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We are faced with the problem of constructing an investment portfolio that
we will hold for one time period, which is called the holding period and which
could be a day, a month, a quarter, a year, 10 years, and so forth. At the end
of the holding period we might want to readjust the portfolio, so for now we
are only looking at returns over one time period. Suppose that a fraction w
of our wealth is invested in the risky asset and the remaining fraction 1 − w
is invested in the risk-free asset. Then the expected return is

E(R) = w(0.15) + (1− w)(0.06) = 0.06 + 0.09w, (11.1)

the variance of the return is

σ2
R = w2 (0.25)2 + (1− w)2 (0)2 = w2(0.25)2,

and the standard deviation of the return is

σR = 0.25 w. (11.2)

To decide what proportion w of one’s wealth to invest in the risky asset,
one chooses either the expected return E(R) one wants or the amount of risk
σR with which one is willing to live. Once either E(R) or σR is chosen, w can
be determined.

Although σ is a measure of risk, a more direct measure of risk is actual
monetary loss. In the next example, w is chosen to control the maximum size
of the loss.

Example 11.1. Finding w to achieved a targeted value-at-risk

Suppose that a firm is planning to invest $1,000,000 and has capital re-
serves that could cover a loss of $150,000 but no more. Therefore, the firm
would like to be certain that, if there is a loss, then it is no more than 15%,
that is, that R is greater than −0.15. Suppose that R is normally distributed.
Then the only way to guarantee that R is greater than −0.15 with probability
equal to 1 is to invest entirely in the risk-free asset. The firm might instead
be more modest and require only that P (R < −0.15) be small, for example,
0.01. Therefore, the firm should find the value of w such that

P (R < −0.15) = Φ

(−0.15− (0.06 + 0.09 w)
0.25 w

)
= 0.01.

The solution is
w =

−0.21
0.25 Φ−1(0.01) + 0.9

= 0.4264.

In Chapter 19, $150,000 is called the value-at-risk (= VaR) and 1−0.01 =
0.99 is called the confidence coefficient. What was done in this example is to
find the portfolio that has a VaR of $150,000 with 0.99 confidence.

¤
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More generally, if the expected returns on the risky and risk-free assets
are µ1 and µf and if the standard deviation of the risky asset is σ1, then
the expected return on the portfolio is wµ1 + (1 − w)µf while the standard
deviation of the portfolio’s return is |w|σ1.

This model is simple but not as useless as it might seem at first. As dis-
cussed later, finding an optimal portfolio can be achieved in two steps:

1. finding the “optimal” portfolio of risky assets, called the “tangency port-
folio,” and

2. finding the appropriate mix of the risk-free asset and the tangency port-
folio.

So we now know how to do the second step. What we still need to learn
is how find the tangency portfolio.

11.2.1 Estimating E(R) and σR

The value of the risk-free rate, µf , will be known since Treasury bill rates are
published in sources providing financial information.

What should we use as the values of E(R) and σR? If returns on the asset
are assumed to be stationary, then we can take a time series of past returns
and use the sample mean and standard deviation. Whether the stationarity
assumption is realistic is always debatable. If we think that E(R) and σR

will be different from the past, we could subjectively adjust these estimates
upward or downward according to our opinions, but we must live with the
consequences if our opinions prove to be incorrect.

Another question is how long a time series to use, that is, how far back in
time one should gather data. A long series, say 10 or 20 years, will give much
less variable estimates. However, if the series is not stationary but rather has
slowly drifting parameters, then a shorter series (maybe 1 or 2 years) will be
more representative of the future. Almost every time series of returns is nearly
stationary over short enough time periods.

11.3 Two Risky Assets

11.3.1 Risk Versus Expected Return

The mathematics of mixing risky assets is most easily understood when there
are only two risky assets. This is where we start.

Suppose the two risky assets have returns R1 and R2 and that we mix
them in proportions w and 1 − w, respectively. The return on the portfolio
is Rp = wR1 + (1 − w)R2. The expected return on the portfolio is E(RP ) =
wµ1 + (1 − w)µ2. Let ρ12 be the correlation between the returns on the two
risky assets. The variance of the return on the portfolio is
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σ2
R = w2σ2

1 + (1− w)2σ2
2 + 2w(1− w)ρ12 σ1σ2. (11.3)

Note that σR1,R2 = ρ12σ1σ2.

Example 11.2. The expectation and variance of the return on a portfolio with
two risky assets

If µ1 = 0.14, µ2 = 0.08, σ1 = 0.2, σ2 = 0.15, and ρ12 = 0, then

E(RP ) = 0.08 + 0.06w.

Also, because ρ12 = 0 in this example,

σ2
RP

= (0.2)2 w2 + (0.15)2 (1− w)2.

Using differential calculus, one can easily show that the portfolio with the
minimum risk is w = 0.045/0.125 = 0.36. For this portfolio E(RP ) = 0.08 +
(0.06)(0.36) = 0.1016 and σRP

=
√

(0.2)2(0.36)2 + (0.15)2(0.64)2 = 0.12.
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Fig. 11.1. Expected return versus risk for Example 11.2. F = risk-free asset. T =
tangency portfolio. R1 is the first risky asset. R2 is the second risky asset.

The somewhat parabolic curve1 in Figure 11.1 is the locus of values of
(σR, E(R)) when 0 ≤ w ≤ 1. The leftmost point on this locus achieves the
minimum value of the risk and is called the minimum variance portfolio. The
1 In fact, the curve would be parabolic if σ2

R were plotted on the x-axis instead of
σR.
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points on this locus that have an expected return at least as large as the min-
imum variance portfolio are called the efficient frontier. Portfolios on the ef-
ficient frontier are called efficient portfolios or, more precisely, mean-variance
efficient portfolios.2 The points labeled R1 and R2 correspond to w = 1 and
w = 0, respectively. The other features of this figure are explained in Sec-
tion 11.4. ¤

In practice, the mean and standard deviations of the returns can be es-
timated as discussed in Section 11.2.1 and the correlation coefficient can be
estimated by the sample correlation coefficient. Alternatively, in Chapter 17
factor models are used to estimate expected returns and the covariance matrix
of returns.

11.4 Combining Two Risky Assets with a Risk-Free
Asset

Our ultimate goal is to find optimal portfolios combining many risky assets
with a risk-free asset. However, many of the concepts needed for this task can
be first understood most easily when there are only two risky assets.

11.4.1 Tangency Portfolio with Two Risky Assets

As mentioned in Section 11.3.1, each point on the efficient frontier in Fig-
ure 11.1 is (σRP

, E(Rp)) for some value of w between 0 and 1. If we fix w,
then we have a fixed portfolio of the two risky assets. Now let us mix that
portfolio of risky assets with the risk-free asset. The point F in Figure 11.1
gives (σRP , E(R)) for the risk-free asset; of course, σRP = 0 at F. The possible
values of (σRP

, E(Rp)) for a portfolio consisting of the fixed portfolio of two
risky assets and the risk-free asset is a line connecting the point F with a
point on the efficient frontier, for example, the dashed line. The dotted line
connecting F with R2 mixes the risk-free asset with the second risky asset.

Notice that the dashed and dotted line connecting F with the point labeled
T lies above the dashed line connecting F and the typical portfolio. This means
that for any value of σRP

, the dashed and dotted line gives a higher expected
return than the dashed line. The slope of each line is called its Sharpe’s ratio,
named after William Sharpe, whom we will meet again in Chapter 16. If
E(RP ) and σRP are the expected return and standard deviation of the return
on a portfolio and µf is the risk-free rate, then

E(RP )− µf

σRP

(11.4)

2 When a risk-free asset is available, then the efficient portfolios are no longer those
on the efficient frontier but rather are characterized by Result 11.4.1 ahead.
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is Sharpe’s ratio of the portfolio. Sharpe’s ratio can be thought of as a “reward-
to-risk” ratio. It is the ratio of the reward quantified by the “excess expected
return” to the risk as measured by the standard deviation.

A line with a larger slope gives a higher expected return for a given level
of risk, so the larger Sharpe’s ratio, the better regardless of what level of risk
one is willing to accept. The point T on the parabola represents the portfolio
with the highest Sharpe’s ratio. It is the optimal portfolio for the purpose of
mixing with the risk-free asset. This portfolio is called the tangency portfolio
since its line is tangent to the efficient frontier.

Result 11.4.1 The optimal or efficient portfolios mix the tangency portfolio
with the risk-free asset. Each efficient portfolio has two properties:

• it has a higher expected return than any other portfolio with the same or
smaller risk, and

• it has a smaller risk than any other portfolio with the same or higher
expected return.

Thus we can only improve (reduce) the risk of an efficient portfolio by accept-
ing a worse (smaller) expected return, and we can only improve (increase) the
expected return of an efficient portfolio by accepting worse (higher) risk.

Note that all efficient portfolios use the same mix of the two risky assets,
namely, the tangency portfolio. Only the proportion allocated to the tangency
portfolio and the proportion allocated to the risk-free asset vary.

Given the importance of the tangency portfolio, you may be wondering
“how do we find it?” Again, let µ1, µ2, and µf be the expected returns on the
two risky assets and the return on the risk-free asset. Let σ1 and σ2 be the
standard deviations of the returns on the two risky assets and let ρ12 be the
correlation between the returns on the risky assets.

Define V1 = µ1 − µf and V2 = µ2 − µf , the excess expected returns. Then
the tangency portfolio uses weight

wT =
V1σ

2
2 − V2ρ12 σ1σ2

V1σ2
2 + V2σ2

1 − (V1 + V2)ρ12 σ1σ2
(11.5)

for the first risky asset and weight (1− wT ) for the second.
Let RT , E(RT ), and σT be the return, expected return, and standard

deviation of the return on the tangency portfolio. Then E(RT ) and σT can
be found by first finding wT using (11.5) and then using the formulas

E(RT ) = wT µ1 + (1− wT )µ2

and
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σT =
√

w2
T σ2

1 + (1− wT )2σ2
2 + 2wT (1− wT )ρ12σ1σ2 .

Example 11.3. The tangency portfolio with two risky assets

Suppose as before that µ1 = 0.14, µ2 = 0.08, σ1 = 0.2, σ2 = 0.15, and
ρ12 = 0. Suppose as well that µf = 0.06. Then V1 = 0.14 − 0.06 = 0.08 and
V2 = 0.08 − 0.06 = 0.02. Plugging these values into formula (11.5), we get
wT = 0.693 and 1− wt = 0.307. Therefore,

E(RT ) = (0.693)(0.14) + (0.307)(0.08) = 0.122,

and
σT =

√
(0.693)2(0.2)2 + (0.307)2(0.15)2 = 0.146.

¤

11.4.2 Combining the Tangency Portfolio with the Risk-Free Asset

Let Rp be the return on the portfolio that allocates a fraction ω of the in-
vestment to the tangency portfolio and 1 − ω to the risk-free asset. Then
Rp = ωRT + (1− ω)µf = µf + ω(RT −Rf ), so that

E(Rp) = µf + ω{E(RT )− µf} and σRp = ωσT .

Example 11.4. (Continuation of Example 11.2)

What is the optimal investment with σRp = 0.05?

Answer: The maximum expected return with σRp = 0.05 mixes the tangency
portfolio and the risk-free asset such that σRp = 0.05. Since σT = 0.146, we
have that 0.05 = σRp = ω σT = 0.146 ω, so that ω = 0.05/0.146 = 0.343 and
1− ω = 0.657.

So 65.7% of the portfolio should be in the risk-free asset, and 34.3% should
be in the tangency portfolio. Thus (0.343)(69.3%) = 23.7% should be in the
first risky asset and (0.343)(30.7%) = 10.5% should be in the second risky
asset. The total is not quite 100% because of rounding. The allocation is
summarized in Table 11.1. ¤

Example 11.5. (Continuation of Example 11.2)

Now suppose that you want a 10% expected return. Compare

• the best portfolio of only risky assets, and
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Table 11.1. Optimal allocation to two risky assets and the risk-free asset to achieve
σR = 0.05.

Asset Allocation (%)

risk-free 65.7
risky 1 23.7
risky 2 10.5

Total 99.9

• The best portfolio of the risky assets and the risk-free asset.

Answer: The best portfolio of only risky assets uses w solving 0.1 = w(0.14)+
(1− w)(0.08), which implies that w = 1/3. This is the only portfolio of risky
assets with E(Rp) = 0.1, so by default it is best. Then

σRP
=

√
w2(0.2)2 + (1− w)2(0.15)2 =

√
(1/9)(0.2)2 + 4/9(0.15)2 = 0.120.

The best portfolio of the two risky assets and the risk-free asset can be found
as follows. First, 0.1 = E(R) = µf + ω{E(RT ) − µf} = 0.06 + 0.062 ω =
0.06 + 0.425 σR, since σRP

= ω σT or ω = σRP
/σT = σRP

/0.146. This implies
that σRP = 0.04/0.425 = 0.094 and ω = 0.04/0.062 = 0.645. So combining
the risk-free asset with the two risky assets reduces σRP from 0.120 to 0.094
while maintaining E(Rp) at 0.1. The reduction in risk is (0.120 − 0.094)/0.094
= 28%, which is substantial. ¤

Table 11.2. Minimum value of σR as a function of the available assets. In all cases,
the expected return is 0.1. When only the risk-free asset and the second risky asset
are available, then a return of 0.1 is achievable only if buying on margin is permitted.

Available Assets Minimum σR

first risky, risk-free 0.1
2nd risky, risk-free 0.3
Both riskies 0.12
All three 0.094

11.4.3 Effect of ρ12

Positive correlation between the two risky assets increases risk. With positive
correlation, the two assets tend to move together which increases the volatility
of the portfolio. Conversely, negative correlation is beneficial since decreases
risk. If the assets are negatively correlated, a negative return of one tends
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Fig. 11.2. Efficient frontier and tangency portfolio when µ1 = 0.14, µ2 = 0.09,
σ1 = 0.2, σ2 = 0.15, and µf = 0.03. The value of ρ12 is varied from 0.7 to −0.7.

to occur with a positive return of the other so the volatility of the portfolio
decreases. Figure 11.2 shows the efficient frontier and tangency portfolio when
µ1 = 0.14, µ2 = 0.09, σ1 = 0.2, σ2 = 0.15, and µf = 0.03. The value of ρ12 is
varied from 0.7 to −0.7. Notice that Sharpe’s ratio of the tangency portfolio
returns increases as ρ12 decreases. This means that when ρ12 is small, then
efficient portfolios have less risk for a given expected return compared to when
ρ12 is large.

11.5 Selling Short

Often some of the weights in an efficient portfolio are negative. A negative
weight on an asset means that this asset is sold short. Selling short is a way
to profit if a stock price goes down. To sell a stock short, one sells the stock
without owning it. The stock must be borrowed from a broker or another
customer of the broker. At a later point in time, one buys the stock and gives
it back to the lender. This closes the short position.

Suppose a stock is selling at $25/share and you sell 100 shares short. This
gives you $2500. If the stock goes down to $17/share, you can buy the 100
shares for $1700 and close out your short position. You made a profit of $800
(ignoring transaction costs) because the stock went down 8 points. If the stock
had gone up, then you would have had a loss.

Suppose now that you have $100 and there are two risky assets. With your
money you could buy $150 worth of risky asset 1 and sell $50 short of risky
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asset 2. The net cost would be exactly $100. If R1 and R2 are the returns on
risky assets 1 and 2, then the return on your portfolio would be

3
2
R1 +

(
−1

2

)
R2.

Your portfolio weights are w1 = 3/2 and w2 = −1/2. Thus, you hope that
risky asset 1 rises in price and risky asset 2 falls in price. Here, again, we have
ignored transaction costs.

If one sells a stock short, one is said to have a short position in that stock,
and owning the stock is called a long position.

11.6 Risk-Efficient Portfolios with N Risky Assets

In this section, we use quadratic programming to find efficient portfolios with
an arbitrary number of assets. An advantage of quadratic programming is
that it allows one to impose constraints such as limiting short sales.

Assume that we have N risky assets and that the return on the ith risky
asset is Ri and has expected value µi. Define

R =




R1
...

RN




to be the random vector of returns,

E(R) = µ =




µ1
...

µN


 ,

and Σ to be the covariance matrix of R.
Let

w =




w1
...

wN




be a vector of portfolio weights so that w1 + · · ·+ wN = 1Tω = 1, where

1 =




1
...
1




is a column of N ones. The expected return on the portfolio is

N∑

i=1

ωiµi = ωTµ. (11.6)
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Suppose there is a target value, µP , of the expected return on the portfolio.
When N = 2, the target expected returns is achieved by only one portfolio
and its w1-value solves µP = w1µ1 + w2µ2 = µ2 + w1(µ1 − µ2). For N ≥ 3,
there will be an infinite number of portfolios achieving the target µP . The
one with the smallest variance is called the “efficient” portfolio. Our goal is
to find the efficient portfolio.

The variance of the return on the portfolio with weights w is

wTΣw. (11.7)

Thus, given a target µP , the efficient portfolio minimizes (11.7) subject to

wTµ = µP (11.8)

and
wT1 = 1. (11.9)

Quadratic programming is used to minimize a quadratic objective function
subject to linear constraints. In applications to portfolio optimization, the ob-
jective function is the variance of the portfolio return. The objective function
is a function of N variables, such as, the weights of N assets, that are denoted
by an N × 1 vector x. Suppose that the quadratic objective function to be
minimized is

1
2
xTDx− dTx, (11.10)

where D is an N ×N matrix and d is an N × 1 vector. The factor of 1/2 is
not essential but is used here to keep our notation consistent with R. There
are two types of linear constraints on x, inequality and equality constraints.
The linear inequality constraints are

AT
neqx ≥ bneq, (11.11)

where Aneq is an m×N matrix, bneq is an m×1 vector, and m is the number
of inequality constraints. The equality constraints are

AT
eqx = beq, (11.12)

where Aeq is an n×N matrix, beq is an n× 1 vector, and n is the number of
equality constraints. Quadratic programming minimizes the quadratic objec-
tive function (11.10) subject to linear inequality constraints (11.11) and linear
equality constraints (11.12).

To apply quadratic programming to find an efficient portfolio, we use x =
w, D = 2Σ, and d equal to an N×1 vector of zeros so that (11.10) is wTΣw,
the return variance of the portfolio. There are two equality constraints, one
that the weights sum to 1 and the other that the portfolio return is a specified
target µP . Therefore, we define

AT
eq =

(
1T

µT

)
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and

beq =
(

1
µP

)
,

so that (11.12) becomes
(

1Tw
µTw

)
=

(
1

µP

)
,

which is the same as constraints (11.8) and (11.9).
Investors often wish to impose additional inequality constraints. If an in-

vestor cannot or does not wish to sell short, then the constraints

w ≥ 0

can be used. Here 0 is a vector of zeros. In this case Aneq is the N×N identical
matrix and bneq = 0.

To avoid concentrating the portfolio in just one or a few stocks, an investor
may wish to constrain the portfolio so that no wi exceeds a bound λ, for
example, λ = 1/4 means that no more than 1/4 of the portfolio can be in any
single stock. In this case, w ≤ λ1 or equivalently −w ≥ −λ1, so that Aneq

is minus the N ×N identity matrix and bneq = −λ1. One can combine these
constraints with those that prohibit short selling.

To find the efficient frontier, one uses a grid of values of µP and finds
the corresponding efficient portfolios. For each portfolio, σ2

P , which is the
minimized value of the objective function, can be calculated. Then one can
find the minimum variance portfolio by finding the portfolio with the smallest
value of the σ2

P . The efficient frontier is the set of efficient portfolios with
expected return above the expected return of the minimum variance portfolio.
One can also compute Sharpe’s ratio for each portfolio on the efficient frontier
and the tangency portfolio is the one maximizing Sharpe’s ratio.

Example 11.6. Finding the efficient frontier, tangency portfolio, and minimum
variance portfolio using quadratic programming

The following R program uses the returns on three stocks, GE, IBM, and
Mobil, in the CRSPday data set in the Ecdat package. The function solve.QP
in the quadprog package is used for quadratic programming. solve.QP com-
bines AT

eq and AT
neq into a single matrix Amat by stacking AT

eq on top of AT
neq.

The parameter meq is the number of rows of AT
eq. beq and bneq are handled

analogously. In this example, there are no inequality constraints, so AT
neq and

bneq are not needed, but they are used in the next example.
The efficient portfolio is found for each of 300 target values of µP between

0.05 and 0.14. For each portfolio, Sharpe’s ratio is found and the logical vector
ind indicates which portfolio is the tangency portfolio maximizing Sharpe’s
ratio. Similarly, ind2 indicates the minimum variance portfolio. It is assumed
that the risk-free rate is 1.3%/year.
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library(Ecdat)

library(quadprog)

data(CRSPday)

R = 100*CRSPday[,4:6]

mean_vect = apply(R,2,mean)

cov_mat = cov(R)

sd_vect = sqrt(diag(cov_mat))

Amat = cbind(rep(1,3),mean_vect) # set the constraints matrix

muP = seq(.05,.14,length=300) # set of 300 possible target values

# for the expect portfolio return

sdP = muP # set up storage for std dev’s of portfolio returns

weights = matrix(0,nrow=300,ncol=3) # storage for portfolio weights

for (i in 1:length(muP)) # find the optimal portfolios for

# each target expected return

{

bvec = c(1,muP[i]) # constraint vector

result =

solve.QP(Dmat=2*cov_mat,dvec=rep(0,3),Amat=Amat,bvec=bvec,meq=2)

sdP[i] = sqrt(result$value)

weights[i,] = result$solution

}

postscript("quad_prog_plot.ps",width=6,height=5)

plot(sdP,muP,type="l",xlim=c(0,2.5),ylim=c(0,.15),lty=3) # plot

# the efficient frontier (and inefficient portfolios

# below the min var portfolio)

mufree = 1.3/253 # input value of risk-free interest rate

points(0,mufree,cex=4,pch="*") # show risk-free asset

sharpe =( muP-mufree)/sdP # compute Sharpe’s ratios

ind = (sharpe == max(sharpe)) # Find maximum Sharpe’s ratio

options(digits=3)

weights[ind,] # print the weights of the tangency portfolio

lines(c(0,2),mufree+c(0,2)*(muP[ind]-mufree)/sdP[ind],lwd=4,lty=2)

# show line of optimal portfolios

points(sdP[ind],muP[ind],cex=4,pch="*") # show tangency portfolio

ind2 = (sdP == min(sdP)) # find the minimum variance portfolio

points(sdP[ind2],muP[ind2],cex=2,pch="+") # show min var portfolio

ind3 = (muP > muP[ind2])

lines(sdP[ind3],muP[ind3],type="l",xlim=c(0,.25),

ylim=c(0,.3),lwd=2) # plot the efficient frontier

text(sd_vect[1],mean_vect[1],"GE",cex=1.5)

text(sd_vect[2],mean_vect[2],"IBM",cex=1.5)

text(sd_vect[3],mean_vect[3],"Mobil",cex=1.5)

graphics.off()

The plot produced by this program is Figure 11.3. The program prints the
weights of the tangency portfolio, which are
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Fig. 11.3. Efficient frontier (solid), line of efficient portfolios (dashed) connecting
the risk-free asset and tangency portfolio (asterisks), and the minimum variance
portfolio (plus) with three stocks (GE, IBM, and Mobil). The three stocks are also
shown on reward-risk space.

> weights[ind,] # Find tangency portfolio

[1] 0.5512 0.0844 0.3645

¤

Example 11.7. Finding the efficient frontier, tangency portfolio, and minimum
variance portfolio with no short selling using quadratic programming

In this example, Example 11.6 is modified so that short sales are not
allowed. Only three lines of code need to be changed. When short sales are
prohibited, the target expected return on the portfolio must lie between the
smallest and largest expected returns on the stocks. This is enforced by the
following change:

muP = seq(min(mean_vect)+.0001,max(mean_vect)-.0001,length=300)

To enforce no short sales, an Aneq matrix is needed and is set equal to a 3×3
identity matrix:

Amat = cbind(rep(1,3),mean_vect,diag(1,nrow=3))

# set the constraints matrix
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Also, bneq is set equal to a three-dimensional vector of zeros:

bvec = c(1,muP[i],rep(0,3))
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Fig. 11.4. Efficient frontier (solid), line of efficient portfolios (dashed) connecting
the risk-free asset and tangency portfolio (asterisks), and the minimum variance
portfolio (plus) with three stocks (GE, IBM, and Mobil) with short sales prohibited.

The new plot is shown in Figure 11.4. Since the tangency portfolio in Ex-
ample 11.6 had all weights positive, the tangency portfolio is unchanged by
the prohibition of short sales. The efficient frontier is changed since without
short sales, it is impossible to have expected returns greater than the expected
return of GE, the stock with the highest expected return. In contrast, when
short sales are allowed, there is no upper bound on the expected return (or
on the risk).

¤

11.7 Resampling and Efficient Portfolios

When N is small, the theory of portfolio optimization can be applied using
sample means and the sample covariance matrix as in the previous examples.
However, the effects of estimation error, especially with larger values of N , can
result in portfolios that only appear efficient. This problem will be investigated
in this section.
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Example 11.8. The global asset allocation problem

One application of optimal portfolio selection is allocation of capital to dif-
ferent market segments. For example, Michaud (1998) discusses a global asset
allocation problem where capital must be allocated to “U.S. stocks and govern-
ment/corporate bonds, euros, and the Canadian, French, German, Japanese,
and U.K. equity markets.” Here we look at a similar example where we allo-
cate capital to the equity markets of 10 different countries. Monthly returns for
these markets were calculated from MSCI Hong Kong, MSCI Singapore, MSCI
Brazil, MSCI Argentina, MSCI UK, MSCI Germany, MSCI Canada, MSCI
France, MSCI Japan, and the S&P 500. “MSCI” means “Morgan Stanley
Capital Index.” The data are from January 1988 to January 2002, inclusive,
so there are 169 months of data.

Assume that we want to find the tangency portfolio that maximizes
Sharpe’s ratio. The tangency portfolio was estimated using sample means and
the sample covariance as in Example 11.6, and its Sharpe’s ratio is estimated
to be 0.3681. However, we should suspect that 0.3681 must be an overestimate
since this portfolio only maximizes Sharpe’s ratio using estimated parameters,
not the true means and covariance matrix. To evaluate the possible amount of
overestimation, one can use the bootstrap. As discussed in Chapter 6, in the
bootstrap simulation experiment, the sample is the “true population” so that
the sample mean and covariance matrix are the “true parameters,” and the
resamples mimic the sampling process. Actual Sharpe’s ratios are calculated
with the sample means and covariance matrix, while estimated Sharpe’s ratio
use the means and covariance matrix of the resamples.

First, 250 resamples were taken and for each the tangency portfolio was
estimated. Resampling was done by sampling rows of the data matrix as dis-
cussed in Section 7.11. For each of the 250 tangency portfolios estimated from
the resamples, the actual and estimated Sharpe’s ratios were calculated. Box-
plots of the 250 actual and 250 estimated Sharpe’s ratios are in Figure 11.5(a).
In this figure, there is a dashed horizontal line at height 0.3681, the actual
Sharpe’s ratio of the true tangency portfolio. One can see that all 250 es-
timated tangency portfolios have actual Sharpe’s ratios below this value, as
they must since the actual Sharpe’s ratio is maximized by the true tangency
portfolio, not the estimated tangency portfolios.

From the boxplot on the right-hand side of (a), one can see that the esti-
mated Sharpe’s ratios overestimate not only the actual Sharpe’s ratios of the
estimated tangency portfolios but also the somewhat larger (and unattain-
able) actual Sharpe’s ratio of the true (but unknowable) tangency portfolio.

¤

There are several ways to alleviate the problems caused by estimation
error when attempting to find a tangency portfolio. One can try to find more
accurate estimators; the factor models of Chapter 17 and Bayes estimators of
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Fig. 11.5. Bootstrapping estimation of the tangency portfolio and its Sharpe’s ratio.
(a) Short sales allowed. The left-hand boxplot is of the actual Sharpe’s ratios of the
estimated tangency portfolios for 250 resamples. The right-hand boxplot contains the
estimated Sharpe’s ratios for these portfolios. The horizontal dashed line indicates
Sharpe’s ratio of the true tangency portfolio. (b) Same as (a) but with short sales
not allowed.

Chapter 20 (see especially Example 20.12) do this. Another possibility is to
restrict short sales.

Portfolios with short sales aggressively attempt to maximize Sharpe’s ra-
tio by selling short those stocks with the smallest estimated mean returns
and having large long positions in those stocks with the highest estimated
mean returns. The weakness with this approach is that it is particularly sen-
sitive to estimation error. Unfortunately, expected returns are estimated with
relatively large uncertainty. This problem can be seen in Figure 11.6, which
contains KDEs of the bootstrap distributions of the mean returns, and Ta-
ble 11.3, which has 95% confidence intervals for the mean returns. The per-
centile method is used for the confidence intervals, so the endpoints are the
2.5 and 97.5 bootstrap percentiles. Notice for Singapore and Japan, the con-
fidence intervals include both positive and negative values. In the figure and
the table, the returns are expressed as percentage returns.

Example 11.9. The global asset allocation problem: short sales prohibited

This example repeats the bootstrap experimentation of Example 11.8 with
short sales prohibited by using inequality constraints such as in Example 11.7.
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Fig. 11.6. Kernel density estimates of the bootstrap distribution of the sample mean
return for global asset allocation problem. Returns are expressed as percentages.

With short sales not allowed, the actual Sharpe’s ratio of the true tangency
portfolio is 0.3503, which is only slightly less than when short sales are allowed.

Boxplots of actual and apparent Sharpe’s ratios are in Figure 11.5(b).
Comparing Figures 11.5(a) and (b), one sees that prohibiting short sales has
two beneficial effects—Sharpe’s ratios actually achieved are slightly higher
with no short sales allowed compared to having no constraints on short sales.
In fact, the mean of the 250 actual Sharpe’s ratios is 0.3060 with short sales
allowed and 0.3169 with short sales prohibited. Moreover, the overestimation
of Sharpe’s ratio is reduced by prohibiting short sales—the mean apparent
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Table 11.3. 95% percentile-method bootstrap confidence intervals for the mean re-
turns of the 10 countries.

Country 2.5% 97.5%

Hong Kong 0.186 2.709
Singapore −0.229 2.003
Brazil 0.232 5.136
Argentina 0.196 6.548
UK 0.071 1.530
Germany 0.120 1.769
Canada 0.062 1.580
France 0.243 2.028
Japan −0.884 0.874
U.S. 0.636 1.690

Sharpe’s ratio is 0.4524 [with estimation error (0.4524−0.3681) = 0.0843] with
short sales allowed by only 0.4038 [with estimation error (0.4038− 0.3503) =
0.0535] with short sales prohibited. However, these effects, though positive,
are only modest and do not entirely solve the problem of overestimation of
Sharpe’s ratio.

¤

Example 11.10. The global asset allocation problem: Shrinkage estimation and
short sales prohibited

In Example 11.9, we saw that shrinkage estimation can increase Sharpe’s
ratio of the estimated tangency portfolio, but the improvement is only modest.
Further improvement requires more accurate estimation of the mean vector
or the covariance matrix of the returns.

This example investigates possible improvements from shrinking the 10
estimated means toward each other. Specifically, if Y i is the sample mean of
the ith country, Y = (

∑10
i=1 Y i)/10 is the grand mean (mean of the means),

and α is a tuning parameter between 0 and 1, then the estimated mean return
for the ith country is

µ̂i = αY i + (1− α)Y . (11.13)

The purpose of shrinkage is to reduce the variance of the estimator, though
the reduced variance comes at the expense of some bias. Since it is the mean of
10 means, Y is much less variable than any of Y 1, . . . , Y 10. Therefore, Var(µ̂i)
decreases as α is decreased toward 0. However,

E(µ̂i) = αµi +
1− α

10

10∑

i=1

µi (11.14)
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so that, for any α 6= 1, µ̂i is biased, except under the very likely circumstance
that µ1 = · · · = µ10. The parameter α controls the bias–variance tradeoff. In
this example, α = 1/2 will be used for illustration and short sales will not be
allowed.
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Fig. 11.7. Bootstrapping estimation of the tangency portfolio and its Sharpe’s ra-
tio. Short sales not allowed. (a) No shrinkage. The left-hand boxplot is of the actual
Sharpe’s ratios of the estimated tangency portfolios for 250 resamples. The right-
hand boxplot contains the estimated Sharpe’s ratios for these portfolios. The hori-
zontal dashed line indicates Sharpe’s ratio of the true tangency portfolio. (b) Same
as (a) but with shrinkage.

Figure 11.7 compares the performance of shrinkage versus no shrinkage.
Panel (a) contains the boxplots that we saw in panel (b) of Figure 11.5 where
α = 1. Panel (b) has the boxplots when the tangency portfolio is estimated
using α = 1/2. Compared to panel (a), in panel (b) the actual Sharpe’s ratios
are somewhat closer to the dashed line indicating Sharpe’s ratio of the true
tangency portfolio. Moreover, the estimated Sharpe’s ratios in (b) are smaller
and closer to the true Sharpe’s ratios, so there is less overoptimization—
shrinkage has helped in two ways.

The next step might be selection of α to optimize performance of shrinkage
estimation. Doing this need not be difficult, since different values of α can be
compared by bootstrapping.

¤
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There are other methods for improving the estimation of the mean vector
and estimation of the covariance matrix can be improved as well, for example,
by using the factor models in Chapter 17 or Bayesian estimation as in Chap-
ter 20. Moreover, one need not focus on the tangency portfolio but could,
for example, estimate the minimum variance portfolio. Whatever the focus
of estimation, the bootstrap can be used to compare various strategies for
improving the estimation of the optimal portfolio.

11.8 Bibliographic Notes

Markowitz (1952) was the original paper on portfolio theory and was ex-
panded into the book Markowitz (1959). Bodie and Merton (2000) provide
an elementary introduction to portfolio selection theory. Bodie, Kane, and
Marcus (1999) and Sharpe, Alexander, and Bailey (1999) give a more com-
prehensive treatment. See also Merton (1972). Formula (11.5) is derived in
Example 5.10 of Ruppert (2004).

Jobson and Korkie (1980) and Britten-Jones (1999) discuss the statistical
issue of estimating the efficient frontier; see the latter for additional recent
references. Britten-Jones (1999) shows that the tangency portfolio can be
estimated by regression analysis and hypotheses about the tangency portfolio
can be tested by regression F -tests. Jagannathan and Ma (2003) discuss how
imposing constraints such as no short sales can reduce risk.
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11.10 R Lab

11.10.1 Efficient Equity Portfolios

This section uses daily stock prices in the data set Stock FX Bond.csv that
is posted on the book’s website and in which any variable whose name ends
with “AC” is an adjusted closing price. As the name suggests, these prices
have been adjusted for dividends and stock splits, so that returns can be
calculated without further adjustments. Run the following code which will
read the data, compute the returns for six stocks, create a scatterplot matrix
of these returns, and compute the mean vector, covariance matrix, and vector
of standard deviations of the returns. Note that returns will be percentages.

dat = read.csv("Stock_FX_Bond.csv",header=T)
prices = cbind(dat$GM_AC,dat$F_AC,dat$CAT_AC,dat$UTX_AC,

dat$MRK_AC,dat$IBM_AC)
n = dim(prices)[1]
returns = 100*(prices[2:n,]/prices[1:(n-1),] - 1)
pairs(returns)
mean_vect = apply(returns,2,mean)
cov_mat = cov(returns)
sd_vect = sqrt(diag(cov_mat))

Problem 1 Write an R program to find the efficient frontier, the tangency
portfolio, and the minimum variance portfolio, and plot on “reward-risk
space” the location of each of the six stocks, the efficient frontier, the tan-
gency portfolio, and the line of efficient portfolios. Use the constraints that
−0.1 ≤ wj ≤ 0.5 for each stock. The first constraint limits short sales but
does not rule them out completely. The second constraint prohibits more than
50% of the investment in any single stock. Assume that the annual risk-free
rate is 3% and convert this to a daily rate by dividing by 365, since interest
is earned on trading as well as nontrading days.

Problem 2 If an investor wants an efficient portfolio with an expected daily
return of 0.07%, how should the investor allocate his or her capital to the six
stocks and to the risk-free asset? Assume that the investor wishes to use the
tangency portfolio computed with the constraints −0.1 ≤ wj ≤ 0.5, not the
unconstrained tangency portfolio.



11.11 Exercises 307

Problem 3 Does this data set include Black Monday?

11.11 Exercises

1. Suppose that there are two risky assets, A and B, with expected returns
equal to 2.3% and 4.5%, respectively. Suppose that the standard devia-
tions of the returns are

√
6% and

√
11% and that the returns on the assets

have a correlation of 0.17.
(a) What portfolio of A and B achieves a 3% rate of expected return?
(b) What portfolios of A and B achieve a

√
5.5% standard deviation of

return? Among these, which has the largest expected return?
2. Suppose there are two risky assets, C and D, the tangency portfolio is

65% C and 35% D, and the expected return and standard deviation of the
return on the tangency portfolio are 5% and 7%, respectively. Suppose also
that the risk-free rate of return is 1.5%. If you want the standard deviation
of your return to be 5%, what proportions of your capital should be in
the risk-free asset, asset C, and asset D?

3. (a) Suppose that stock A shares sell at $75 and stock B shares at $115.
A portfolio has 300 shares of stock A and 100 of stock B. What are
the weights w and 1− w of stocks A and B in this portfolio?

(b) More generally, if a portfolio has N stocks, if the price per share of
the jth stock is Pj , and if the portfolio has nj shares of stock j, then
find a formula for wj as a function of n1, . . . , nN and P1, . . . , PN .

4. Let RP be a return of some type on a portfolio and let R1, . . . ,RN be
the same type of returns on the assets in this portfolio. Is

RP = w1R1 + · · ·+ wNRN

true if RP is a net return? Is this equation true if RP is a gross return?
Is it true if RP is a log return? Justify your answers.

5. Suppose one has a sample of monthly log returns on two stocks with
sample means of 0.0032 and 0.0074, sample variances of 0.017 and 0.025,
and a sample covariance of 0.0059. For purposes of resampling, consider
these to be the “true population values.” A bootstrap resample has sample
means of 0.0047 and 0.0065, sample variances of 0.0125 and 0.023, and a
sample covariance of 0.0058.
(a) Using the resample, estimate the efficient portfolio of these two stocks

that has an expected return of 0.005; that is, give the two portfolio
weights.

(b) What is the estimated variance of the return of the portfolio in part
(a) using the resample variances and covariances?

(c) What are the actual expected return and variance of return for the
portfolio in (a) when calculated with the true population values (e.g.,
with using the original sample means, variances, and covariance)?
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6. Stocks 1 and 2 are selling for $100 and $125, respectively. You own 200
shares of stock 1 and 100 shares of stock 2. The weekly returns on these
stocks have means of 0.001 and 0.0015, respectively, and standard devia-
tions of 0.03 and 0.04, respectively. Their weekly returns have a correlation
of 0.35. Find the covariance matrix of the weekly returns on the two stocks,
the mean and standard deviation of the weekly returns on the portfolio,
and the one-week VaR(0.05) for your portfolio.
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Regression: Basics

12.1 Introduction

Regression is one of the most widely used of all statistical methods. For uni-
variate regression, the available data are one response variable and p predictor
variables, all measured on each of n observations. We let Y denote the response
variable and X1, . . . , Xp be the predictor variables. Also, Yi and Xi,1, . . . , Xi,p

are the values of these variables for the ith observation. The goals of regres-
sion modeling include the investigation of how Y is related to X1, . . . , Xp,
estimation of the conditional expectation of Y given X1, . . . , Xp, and pre-
diction of future Y values when the corresponding values of X1, . . . , Xp are
already available. These goals are closely connected.

The multiple linear regression model relating Y to the predictor or regres-
sor variables is

Yi = β0 + β1Xi,1 + · · ·+ βpXi,p + εi, (12.1)

where εi is called the noise, disturbances, or errors. The adjective “multiple”
refers to the predictor variables. Multivariate regression, which has more than
one response variable, is covered in Chapter 17. The εi are often called “errors”
because they are the prediction errors when Yi is predicted by β0 + β1Xi,1 +
· · ·+ βpXi,p. It is assumed that

E(εi|Xi,1, . . . , Xi,p) = 0, (12.2)

which, with (12.1), implies that

E(Yi|Xi,1, . . . , Xi,p) = β0 + β1Xi,1 + · · ·+ βpXi,p.

The parameter β0 is the intercept. The regression coefficients β1, . . . , βp

are the slopes. More precisely, βj is the partial derivative of the expected
response with respect to the jth predictor:

βj =
∂ E(Yi|Xi,1, . . . , Xi,p)

∂ Xi,j
.
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Therefore, βj is the change in the expected value of Yi when Xi,j changes one
unit. It is assumed that the noise is i.i.d. white so that

ε1, . . . , εn are i.i.d. with mean 0 and variance σ2
ε . (12.3)

Often the εis are assumed to be normally distributed, which with (12.3) im-
plies Gaussian white noise.

For the reader’s convenience, the assumptions of the linear regression
model will be summarized:

1. linearity of the conditional expectation: E(Yi|Xi,1, . . . , Xi,p) = β0 +
β1Xi,1 + · · ·+ βpXi,p;

2. independent noise: ε1, . . . , εn are independent;
3. constant variance: Var(εi) = σ2

ε for all i;
4. Gaussian noise: εi is normally distributed for all i.

This chapter and, especially, the next two chapters discuss methods for check-
ing these assumptions, the consequences of their violations, and possible reme-
dies when they do not hold.

12.2 Straight-Line Regression

Straight-line regression is linear regression with only one predictor variable.
The model is

Yi = β0 + β1Xi + εi,

where β0 and β1 are the unknown intercept and slope of the line.

12.2.1 Least-Squares Estimation

The regression coefficients can be estimated by the method of least squares.
The least-squares estimates are the values of β̂0 and β̂1 that minimize

n∑

i=1

{
Yi − (β̂0 + β̂1Xi)

}2

. (12.4)

Geometrically, we are minimizing the sum of the squared lengths of the vertical
lines in Figure 12.1. The data points are shown as asterisks. The vertical lines
connect the data points and the predictions using the linear equation. The
predictions themselves are called the fitted values or “y-hats” and shown as
open circles. The differences between the Y -values and the fitted values are
called the residuals. Using calculus to minimize (12.4), one can show that

β̂1 =
∑n

i=1(Yi − Y )(Xi −X)∑n
i=1(Xi −X)2

=
∑n

i=1 Yi(Xi −X)∑n
i=1(Xi −X)2

. (12.5)
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Fig. 12.1. Least-squares estimation. The vertical lines connected the data (*) and
the fitted values (o) represent the residuals. The least-squares line is defined as the
line making the sum of the squared residuals as small as possible.

and
β̂0 = Y − β̂1X. (12.6)

The least-squares line is

Ŷ = β̂0 + β̂1X = Y + β̂1(X −X)

= Y +
{∑n

i=1(Yi − Y )(Xi −X)∑n
i=1(Xi −X)2

}
(X −X)

= Y +
sXY

s2
X

(X −X),

where sXY = (n−1)−1
∑n

i=1(Yi−Y )(Xi−X) is the sample covariance between
X and Y and s2

X is the sample variance of X.

Example 12.1. Weekly interest rates — least-squares estimates

Weekly interest rates from February 16, 1977, to December 31, 1993, were
obtained from the Federal Reserve Bank of Chicago. Figure 12.2 is a plot of
changes in the 10-year Treasury constant maturity rate and changes in the
Moody’s seasoned corporate AAA bond yield. The plot looks linear, so we try
linear regression using R’s lm function. Here is the output.
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Fig. 12.2. Changes in Moody’s seasoned corporate AAA bond yields plotted against
changes in 10-year Treasury constant maturity rate. Data from Federal Reserve Sta-
tistical Release H.15 and were taken from the Chicago Federal Bank’s website.

Call:

lm(formula = aaa_dif ~ cm10_dif)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.000109 0.002221 -0.05 0.96

cm10_dif 0.615762 0.012117 50.82 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.066 on 878 degrees of freedom

Multiple R-Squared: 0.746, Adjusted R-squared: 0.746

F-statistic: 2.58e+03 on 1 and 878 DF, p-value: <2e-16

From the output we see that the least-squares estimates of the intercept and
slope are −0.000109 and 0.616. The Residual standard error is 0.066; this
is what we call σ̂ε or s, the estimate of σε; see Section 12.3. The remaining
items of the output are explained shortly.

¤



12.2 Straight-Line Regression 313

−0.2 −0.1 0.0 0.1

−0
.2

−0
.1

0.
0

0.
1

0.
2

Market excess return

Fo
od

 in
du

st
ry

 e
xc

es
s 

re
tu

rn

Fig. 12.3. Plot of excess returns on the food industry versus excess returns on the
market. Data from the data set Capm in R’s Ecdat package.

Example 12.2. Excess returns on the food sector and the market portfolio

The excess return on a security or market index is the return minus the
risk-free interest rate. An important application of linear regression in finance
is the regression of the excess return of an asset or market sector on the excess
return of the entire market. This type of application will be discussed much
more fully in Chapter 16. In this example, we will regress the excess monthly
return of the food sector (rfood) on the excess monthly return of the market
portfolio (rmrf). The data are in R’s Capm data set in the Ecdat package and
are plotted in Figure 12.3. The returns are expressed as percentages in the
data set but have been converted to fractions in this example. The output
from lm is

Call:

lm(formula = rfood ~ rmrf)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.00339 0.00128 2.66 0.0081 **

rmrf 0.78342 0.02835 27.63 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0289 on 514 degrees of freedom

Multiple R-Squared: 0.598, Adjusted R-squared: 0.597

F-statistic: 763 on 1 and 514 DF, p-value: <2e-16
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Thus, the fitted regression equation is

rfood = 0.00339 + 0.78342 rmrf + ε,

and σ̂ε = 0.0289.
¤

12.2.2 Variance of β̂1

It is useful to have a formula for the variance of an estimator to show how
the estimator’s precision depends on various aspects of the data such as the
sample size and the values of the predictor variables. Fortunately, it is easy
to derive a formula for the variance of β̂1. By (12.5), we can write β̂1 as a
weighted average of the responses

β̂1 =
n∑

i=1

wiYi,

where wi is the weight given by

wi =
Xi −X∑n

i=1(Xi −X)2
.

We consider X1, . . . , Xn as fixed, so if they are random we are conditioning
upon their values. From the assumptions of the regression model, it follows
that Var(Yi|X1, . . . , Xn) = σ2

ε and Y1, . . . , Yn are conditionally uncorrelated.
Therefore,

Var(β̂1|X1, . . . , Xn) = σ2
ε

n∑

i=1

w2
i =

σ2
ε∑n

i=1(Xi −X)2
=

σ2
ε

(n− 1)s2
X

. (12.7)

It is worth taking some time to examine this formula. First, the numerator
σ2

ε is simply the variance of the εi. This is not surprising. More variability in
the noise means more variable estimators. The denominator shows us that the
variance of β̂1 is inversely proportional to (n− 1) and to s2

X . So the precision
of β̂1 increases as σ2

ε is reduced, n is increased, or s2
X is increased. Why does

increasing s2
X decrease Var(β̂1|X1, . . . , Xn)? The reason is that increasing s2

X

means that the Xi are spread farther apart, which makes the slope of the line
easier to estimate.

Example 12.3. Optimal sampling frequencies for regression

Here is an important application of (12.7). Suppose that we have two
stationary time series, Xt and Yt, and we wish to regress Yt on Xt. We have
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just seen examples of this. A significant practical question is whether one
should use daily or weekly data, or perhaps even monthly or quarterly data.
Does it matter which sampling frequency we use? The answer is “yes” and
the highest possible sampling frequency gives the most precise estimate of
the slope. To understand why this is so, we compare daily and weekly data.
Assume that the Xt and Yt are white noise sequences. Since a weekly log
return is simply the sum of the five daily log returns within a week, σ2

ε and
s2

X will each increase by a factor of five if we change from daily to weekly
log returns, so the ratio σ2

ε /s2
X will not change. However, by changing from

daily to weekly log returns, (n − 1) is reduced by approximately a factor of
five. The result is that Var(β̂1|X1, . . . , Xn) is approximately five times smaller
using daily rather than weekly log returns. Similarly, Var(β̂1|X1, . . . , Xn) is
about four times larger using monthly rather than weekly returns.

The obvious conclusion is that one should use the highest sampling fre-
quency available, which is often daily returns. We have assumed that the Xt

and Yt are white noises in order to simplify the calculations, but this conclu-
sion still holds if they are stationary but autocorrelated. ¤

12.3 Multiple Linear Regression

The multiple linear regression model is

Yi = β0 + β1Xi,1 + · · ·+ βpXi,p + εi.

The least-squares estimates are the values β̂0, β̂1, . . . , β̂p that minimize

n∑

i=1

{
Yi − (β̂0 + β̂1Xi,1 + · · ·+ β̂pXi,p)

}2

. (12.8)

Calculation of the least-squares estimates is discussed in Section 14.2. For
applications, the technical details are not important, since software for least-
squares estimation is readily available.

The ith fitted value is

Ŷi = β̂0 + β̂1Xi,1 + · · ·+ β̂pXi,p (12.9)

and estimates E(Yi|Xi,1, . . . , Xi,p). The ith residual is

ε̂i = Yi − Ŷi = Yi − (β̂0 + β̂1Xi,1 + · · ·+ β̂pXi,p) (12.10)

and estimates εi. It is worth noting that (12.10) can be re-expressed as

Yi = Ŷi + ε̂i. (12.11)

An unbiased estimate of σ2
ε is
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σ̂2
ε =

∑n
i=1 ε̂2i

n− 1− p
. (12.12)

The denominator in (12.12) is the sample size minus the number of regression
coefficients that are estimated.

Example 12.4. Multiple linear regression with interest rates

As an example, we continue the analysis of the weekly interest-rate data
but now with changes in 30-year Treasury rate (cm30 dif) and changes in the
Federal funds rate (ff dif) as additional predictors. Thus p = 3. Figure 12.4 is
a scatterplot matrix of the four time series. There is a strong linear relationship
between all pairs of aaa dif, cm10 dif, and cm30 dif, but ff dif is not
strongly related to the other series.

aaa_dif
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Fig. 12.4. Scatterplot matrix of the changes in four weekly interest rates. The vari-
able aaa dif is the response in Example 12.4.

The lm output for this regression is

Call:

lm(formula = aaa_dif ~ cm10_dif + cm30_dif + ff_dif)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.07e-05 2.18e-03 -0.04 0.97

cm10_dif 3.55e-01 4.51e-02 7.86 1.1e-14 ***

cm30_dif 3.00e-01 5.00e-02 6.00 2.9e-09 ***

ff_dif 4.12e-03 5.28e-03 0.78 0.44

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0646 on 876 degrees of freedom

Multiple R-Squared: 0.756, Adjusted R-squared: 0.755

F-statistic: 906 on 3 and 876 DF, p-value: <2e-16

We see that β̂0 = −9.07× 10−05, β̂1 = 0.355, β̂2 = 0.300, and β̂3 = 0.00412.
¤

A commonly used special case of multiple regression is the polynomial re-
gression model which uses powers of the predictors as well as the predictors
themselves. For example, when there is one X-variable, the p-degree polyno-
mial regression model is

Yi = β0 + β1Xi + · · ·+ βpX
p
i + εi.

As another example, the quadratic regression model with two predictors is

Yi = β0 + β1Xi,1 + β2X
2
i,2 + β3Xi,1Xi,2 + β4Xi,2 + β5X

2
i,2 + εi.

12.3.1 Standard Errors, t-Values, and p-Values

In this section we explain the use of several statistics included in regression
output. We use the output in Example 12.4 as an illustration.

As noted before, the estimated coefficients are β̂0 = −9.07 × 10−05, β̂1 =
0.355, β̂2 = 0.300, and β̂3 = 0.00412. Each of these coefficients has three other
statistics associated with it.

• the standard error (SE), which is the estimated standard deviation of the
least-squares estimator and tells us the precision of the estimator.

• the t-value, which is the t-statistic for testing that the coefficient is 0. The
t-value is the ratio of the estimate to its standard error. For example, for
cm10 dif, the t-value is 7.86 = 0.355/0.0451.

• the p-value (Pr > |t| in the lm output) for testing the null hypothesis
that the coefficient is 0 versus the alternative that it is not 0. If a p-value
for a slope parameter is small, as it is here for β1, then this is evidence
that the corresponding coefficient is not 0, which means that the predictor
has a linear relationship with the response.
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It is important to keep in mind that the p-value only tells us if there is a
linear relationship. The existence of a linear relationship between Yi and Xi,j

means only that the linear predictor of Yi has a nonzero slope on Xi,j , or,
equivalently, that Corr(Xi,j , Yi) 6= 0. When the p-value is small (so a linear
relationship exists), there could also be a strong nonlinear deviation from the
linear relationship as in Figure A.4(g). Moreover, when the p-value is large
(so no linear relationship exists), there could still be a strong nonlinear rela-
tionship in Figure A.4(f). Because of the potential for nonlinear relationships
to go undetected in a linear regression analysis, graphical analysis of the data
(e.g., Figure 12.4) and residual analysis (see Chapter 13) are essential.

The p-values for β1 and β2 are very small, so we can conclude that these
slopes are not 0. The p-value is large (0.97) for β0, so we would not reject the
hypothesis that the intercept is 0.

Similarly, we would not reject the null hypothesis that β3 is zero. Stated
differently, we can accept the null hypothesis that, conditional on cm10 dif
and cm30 dif, aaa dif and ff dif are not linearly related. This result should
not be interpreted as stating that aaa dif and ff dif are unrelated, but
only that ff dif is not useful for predicting aaa dif when cm10 dif and
cm30 dif are included in the regression model. (In fact, aaa dif and ff dif
have a correlation of 0.25 and the linear regression of aaa dif on ff dif
alone is highly significant; the p-value for testing that the slope is zero is
5.158× 10−14.)

Since the Federal Funds rate is a short-term (overnight) rate, it is not sur-
prising that ff dif is less useful than changes in the 10- and 30-year Treasury
rates for predicting aaa dif.

For regression with one predictor variable, by (12.7) the standard error of

β̂1 is σ̂ε/
√∑n

i=1(Xi −X)2. When there are more than two predictor variables,
formulas of standard errors are more complex and are facilitated by the use
of matrix notation. Because standard errors can be computed with standard
software such as lm, the formulas are not needed for applications and so are
postponed to Section 14.2.

12.4 Analysis of Variance, Sums of Squares, and R2

12.4.1 AOV Table

Certain results of a regression fit are often displayed in an analysis of variance
table, also called the AOV or ANOVA table. The idea behind the AOV table
is to describe how much of the variation in Y is predictable if one knows
X1, . . . , Xp.

Here is the AOV table for the model in Example 12.4.

> anova(lm(aaa_dif~cm10_dif+cm30_dif+ff_dif))

Analysis of Variance Table
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Response: aaa_dif

Df Sum Sq Mean Sq F value Pr(>F)

cm10_dif 1 11.21 11.21 2682.61 < 2e-16 ***

cm30_dif 1 0.15 0.15 35.46 3.8e-09 ***

ff_dif 1 0.0025 0.0025 0.61 0.44

Residuals 876 3.66 0.0042

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The total variation in Y can be partitioned into two parts: the variation
that can be predicted by X1, . . . , Xp and the variation that cannot be pre-
dicted. The variation that can be predicted is measured by the regression sum
of squares, which is

regression SS =
n∑

i=1

(Ŷi − Y )2.

The regression sum of squares for the model that uses only cm10 dif is in the
first row of the ANOVA table and is 11.21. The entry, 0.15, in the second row
is the increase in the regression sum of squares when cm30 dif is added to
the model. Similarly, 0.0025 is the increase in the regression sum of squares
when ff dif is added. Thus, rounding to two decimal places, 11.36 = 11.21
+ 0.15 + 0.00 is the regression sum of squares with all three predictors in the
model.

The amount of variation in Y that cannot be predicted by a linear function
of X1, . . . , Xp is measured by the residual error sum of squares, which is the
sum of the squared residuals; i.e.,

residual error SS =
n∑

i=1

(Yi − Ŷi)2.

In the ANOVA table, the residual error sum of squares is in the last row and
is 3.66. The total variation is measured by the total sum of squares (total SS),
which is the sum of the squared deviations of Y from its mean; that is,

total SS =
n∑

i=1

(Yi − Y )2. (12.13)

It can be shown algebraically that

total SS = regression SS + residual error SS. (12.14)

Therefore, in Example 12.4, the total SS is 11.36 + 3.66 = 15.02.
R-squared, denoted by R2, is

R2 =
regression SS

total SS
= 1− residual error SS

total SS
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and measures the proportion of the total variation in Y that can be linearly
predicted by X. In the example, R2 is 0.746 = 11.21/15.02 if only cm10 dif is
the model and is 11.36/15.02 = 0.756 if all three predictors are in the model.
This value can be found in the output displayed in Example 12.4.

When there is only a single X variable, then R2 = r2
XY = r2bY Y

, where rXY

and rbY Y are the sample correlations between Y and X and between Y and
the predicted values, respectively. Put differently, R2 is the squared correla-
tion between Y and X and also between Y and Ŷ . When there are multiple
predictors, then we still have R2 = r2bY Y

. Since Ŷ is a linear combination of
the X variables, R can be viewed as the “multiple” correlation between Y
and many Xs. The residual error sum of squares is also called the error sum
of squares or sum of squared errors and is denoted by SSE.

It is important to understand that sums of squares in an AOV table depend
upon the order of the predictor variables in the regression, because the sum of
squares for any variable is the increase in the regression sum of squares when
that variable is added to the predictors already in the model.

The table below has the same variables as before, but the order of the
predictor variables is reversed. Now that ff dif is the first predictor, its sum
of squares is much larger than before and its p-value is highly significant;
before it was nonsignificant, only 0.44. The sum of squares for cm30 dif is
now much larger than that of cm10 dif, the reverse of what we saw earlier,
since cm10 dif and cm30 dif are highly correlated and the first of them in
the list of predictors will have the larger sum of squares.

> anova(lm(aaa_dif~ff_dif+cm30_dif+cm10_dif))

Analysis of Variance Table

Response: aaa_dif

Df Sum Sq Mean Sq F value Pr(>F)

ff_dif 1 0.94 0.94 224.8 < 2e-16 ***

cm30_dif 1 10.16 10.16 2432.1 < 2e-16 ***

cm10_dif 1 0.26 0.26 61.8 1.1e-14 ***

Residuals 876 3.66 0.0042

The lesson here is that an AOV table is most useful for assessing the effects
of adding predictors in some natural order. Since AAA bonds have maturities
closer to 10 than to 30 years, and since the Federal Funds rate is an overnight
rate, it made sense to order the predictors as cm10 dif, cm30 dif, and ff dif
as done initially.

12.4.2 Degrees of Freedom (DF)

There are degrees of freedom (DF) associated with each of these sources of
variation. The degrees of freedom for regression is p, which is the number of
predictor variables. The total degrees of freedom is n− 1. The residual error
degrees of freedom is n− p− 1. Here is a way to think of degrees of freedom.
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Initially, there are n degrees of freedom, one for each observation. Then one
degree of freedom is allocated to estimation of the intercept. This leaves a
total of n− 1 degrees of freedom for estimating the effects of the X variables
and σ2

ε . Each regression parameter uses one degree of freedom for estimation.
Thus, there are (n − 1) − p degrees of freedom remaining for estimation of
σ2

ε using the residuals. There is an elegant geometrical theory of regression
where the responses are viewed as lying in an n-dimensional vector space and
degrees of freedom are the dimensions of various subspaces. However, there is
not sufficient space to pursue this subject here.

12.4.3 Mean Sums of Squares (MS) and F -Tests

As just discussed, every sum of squares in an ANOVA table has an associated
degrees of freedom. The ratio of the sum of squares to the degrees of freedom
is the mean sum of squares:

mean sum of squares =
sum of squares

degrees of freedom
.

The residual mean sum of squares is the unbiased estimate σ2
ε given by

(12.12); that is,

σ̂2
ε =

∑n
i=1(Yi − Ŷi)2

n− 1− p
(12.15)

= residual mean sum of squares

=
residual error SS

residual degrees of freedom
.

Other mean sums of squares are used in testing. Suppose we have two
models, I and II, and the predictor variables in model I are a subset of those
in model II, so that model I is a submodel of II. A common null hypothesis is
that the data are generated by model I. Equivalently, in model II the slopes
are zero for variables not also in model I. To test this hypothesis, we use the
excess regression sum of squares of model II relative to model I:

SS(II | I) = regression SS for model II− regression SS for model I
= residual SS for model I− residual SS for model II. (12.16)

Equality (12.16) holds because (12.14) is true for all models and, in particular,
for both model I and model II. The degrees of freedom for SS(II | I) is the
number of extra predictor variables in model II compared to model I. The
mean square is denoted as MS(II | I). Stated differently, if p I and p II are the
number of parameters in models I and II, respectively, then df II| I = p II − p I

and MS(II | I) = SS(II | I)/df II| I. The F -statistic for testing the null hypothesis
is
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F =
MS(II|I)

σ̂2
ε

,

where σ̂2
ε is the mean residual sum of squares for model II. Under the null

hypothesis, the F -statistic has an F -distribution with df II| I and n − p II − 1
degrees of freedom and the null hypothesis is rejected if the F -statistic exceeds
the α-upper quantile of this F -distribution.

Example 12.5. Weekly interest rates—Testing the one-predictor versus three-
predictor model

In this example, the null hypothesis is that, in the three-predictor model,
the slopes for cm30 dif and ff dif are zero. The F -test can be computed
using R’s anova function. The output is

Analysis of Variance Table

Model 1: aaa_dif ~ cm10_dif

Model 2: aaa_dif ~ cm10_dif + cm30_dif + ff_dif

Res.Df RSS Df Sum of Sq F Pr(>F)

1 878 3.81

2 876 3.66 2 0.15 18.0 2.1e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

In the last row, the entry 2 in the “Df” column is the difference between the
two models in the number of parameters and 0.15 in the “Sum of Sq” column
is the difference between the residual sum of squares (RSS) for the two models.
The very small p-value (2.1× 10−8) leads us to reject the null hypothesis.

¤

Example 12.6. Weekly interest rates—Testing a two-predictor versus three-
predictor model

In this example, the null hypothesis is that, in the three predictor model,
the slope ff dif is zero. The F -test is again computed using R’s anova func-
tion with output:

Analysis of Variance Table

Model 1: aaa_dif ~ cm10_dif + cm30_dif

Model 2: aaa_dif ~ cm10_dif + cm30_dif + ff_dif

Res.Df RSS Df Sum of Sq F Pr(>F)

1 877 3.66

2 876 3.66 1 0.0025 0.61 0.44

The large p-value (0.44) leads us to accept the null hypothesis.
¤
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12.4.4 Adjusted R2

R2 is biased in favor of large models, because R2 is always increased by adding
more predictors to the model, even if they are independent of the response.
Recall that

R2 = 1− residual error SS
total SS

= 1− n−1residual error SS
n−1total SS

.

The bias in R2 can be removed by using the following “adjustment,” which
replaces both occurrences of n by the appropriate degrees of freedom:

adjusted R2 = 1− (n− p− 1)−1residual error SS
(n− 1)−1total SS

= 1− residual error MS
total MS

.

The presence of p in the adjusted R2 penalizes the criterion for the number
of predictor variables, so adjusted R2 can either increase or decrease when
predictor variables are added to the model. Adjusted R2 increases if the added
variables decrease the residual sum of squares enough to compensate for the
increase in p.

12.5 Model Selection

When there are many potential predictor variables, often we wish to find a
subset of them that provides a parsimonious regression model. F -tests are
not very suitable for model selection. One problem is that there are many
possible F -tests and the joint statistical behavior of all of them is not known.
For model selection, it is more appropriate to use a model selection criterion
such as AIC or BIC. For linear regression models, AIC is

AIC = n log(σ̂2) + 2(1 + p),

where 1+p is the number of parameters in a model with p predictor variables;
the intercept gives us the final parameter. BIC replaces 2(1 + p) in AIC by
log(n)(1+p). The first term, n log(σ̂2), is −2 times the log-likelihood evaluated
at the MLE, assuming that the noise is Gaussian.

In addition to AIC and BIC, there are two model selection criteria special-
ized for regression. One is adjusted R2, which we have seen before. Another is
Cp. Cp is related to AIC and usually Cp and AIC are minimized by the same
model. The primary reason for using Cp instead of AIC is that some regression
software computes only Cp, not AIC—this is true of the regsubsets function
in R’s leaps package which will be used in the following example.

To define Cp, suppose there are M predictor variables. Let σ̂2
ε,M be the

estimate of σ2
ε using all of them, and let SSE(p) be the sum of squares for

residual error for a model with some subset of only p ≤ M of the predictors.
As usual, n is the sample size. Then Cp is
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Cp =
SSE(p)

σ̂2
ε,M

− n + 2(p + 1). (12.17)

Of course, Cp will depend on which particular model is used among all of
those with p predictors, so the notation “Cp” may not be ideal.

With Cp, AIC, and BIC, smaller values are better, but for adjusted R2,
larger values are better.

One should not use model selection criteria blindly. Model choice should be
guided by economic theory and practical considerations, as well as by model
selection criteria. It is important that the final model makes sense to the
user. Subject-matter expertise might lead to adoption of a model not optimal
according to the criterion being used but, instead, to a model slightly below
optimal but more parsimonious or with a better economic rationale.
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Fig. 12.5. Changes in weekly interest rates. Plots for model selection.

Example 12.7. Weekly interest rates—Model selection by AIC and BIC

Figure 12.5 contains plots of the number of predictors in the model versus
the optimized value of a selection criterion. By “optimized value,” we mean
the best value among all models with the given number of predictor variables.
“Best” means smallest for BIC and Cp and largest for adjusted R2. There are
three plots, one for each of BIC, Cp, and adjusted R2. All three criteria are
optimized by two predictor variables.

There are three models with two of the three predictors. The one that
optimized the criteria1 is the model with cm10 dif and cm30 dif, as can be
1 When comparing models with the same number of parameters, all three criteria

are optimized by the same model.
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seen in the following output from regsubsets. Here "*" indicates a variable
in the model and " " indicates a variable not in the model, so the three rows
of the table indicate that the best one-variable model is cm10 dif and the
best two-variable model is cm10 dif and cm30 dif—the third row does not
contain any real information since, with only three variables, there is only one
possible three -ariable model.

Selection Algorithm: exhaustive

cm10_dif cm30_dif ff_dif

1 ( 1 ) "*" " " " "

2 ( 1 ) "*" "*" " "

3 ( 1 ) "*" "*" "*"

¤

12.6 Collinearity and Variance Inflation

If two or more predictor variables are highly correlated with each other, then
it is difficult to estimate their separate effects on the response. For exam-
ple, cm10 dif and cm30 dif have a correlation of 0.96 and the scatterplot in
Figure 12.4 shows that they are highly related to each other. If we regress
aaa dif on cm10 dif, then the adjusted R2 is 0.7460, but adjusted R2 only
increases to 0.7556 if we add cm30 dif as a second predictor. This suggests
that cm30 dif might not be related to aaa dif, but this is not the case. In
fact, the adjusted R2 is 0.7376 when cm30 dif is the only predictor, which
indicates that cm30 dif is a good predictor of aaa dif, nearly as good as
cm10 dif.

Another effect of the high correlation between the predictor variables is
that the regression coefficient for each variable is very sensitive to whether
the other variable is in the model. For example, the coefficient of cm10 dif is
0.616 when cm10 dif is the sole predictor variable but only 0.360 if cm30 dif
is also included.

The problem here is that cm10 dif and cm30 dif provide redundant in-
formation because of their high correlation. This problem is called collinearity
or, in the case of more than two predictors, multicollinearity. Collinearity in-
creases standard errors. The standard error of the β of cm10 dif is 0.01212
when only cm10 dif is in the model, but increases to 0.0451, a 372% increase,
if cm30 dif is added to the model.

The variance inflation factor (VIF ) of a variable tells us how much the
squared standard error, i.e., the variance of β̂, of that variable is increased by
having the other predictor variables in the model. For example, if a variable
has a VIF of 4, then the variance of its β̂ is four times larger than it would
be if the other predictors were either deleted or were not correlated with it.
The standard error is increased by a factor of 2.
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Suppose we have predictor variables X1, . . . , Xp. Then the VIF of Xj is
found by regressing Xj on the p− 1 other predictors. Let R2

j be the R2-value
of this regression, so that R2

j measures how well Xj can be predicted from the
other Xs. Then the VIF of Xj is

VIFj =
1

1−R2
j

.

A value of R2
j close to 1 implies a large VIF. In other words, the more ac-

curately that Xj can be predicted from the other Xs, the more redundant it
is and the higher its VIF. The minimum value of VIFj is 1 and occurs when
R2

j is 0. There is, unfortunately, no upper bound to VIFj . Variance inflation
becomes infinite as R2

j approaches 1.
When interpreting VIFs, it is important to keep in mind that VIFj tells

us nothing about the relationship between the response and jth predictor.
Rather, it tells us only how correlated the jth predictor is with the other
predictors. In fact, the VIFs can be computed without knowing the values of
the response variable.

The usual remedy to collinearity is to reduce the number of predictor
variables by using one of the model selection criteria discussed in Section 12.5.

Example 12.8. Variance inflation factors for the weekly interest-rate example.

The function vif in R’s faraway library returned the following VIF values
for the changes in weekly interest rates:

cm10_dif cm30_dif ff_dif

14.4 14.1 1.1

cm10 dif and cm30 dif have large VIFs due to their high correlation with
each other. The predictor ff dif is not highly correlated with cm10 dif and
cm30 dif and has a lower VIF.

VIF values give us information about linear relationships between the pre-
dictor variables, but not about their relationships with the response. In this
example, ff dif has a small VIF value but is not an important predictor be-
cause of its low correlation with the response. Despite their high VIF values,
cm10 dif and cm30 dif are important predictors. The high VIF values tell us
only that the regression coefficients for cm10 dif and cm30 dif are impossible
to estimate with high precision.

The question is whether VIF values of 14.4 and 14.1 are so large that
the number of predictor variables should be reduced. The answer is “probably
no” because the model with both cm10 dif and cm30 dif minimizes BIC. BIC
generally selects a parsimonious model because of the high penalty BIC places
on the number of predictor variables. Therefore, a model that minimizes BIC
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is unlikely to need further deletion of predictor variables simply to reduce VIF
values.

¤

Example 12.9. Nelson–Plosser macroeconomic variables

To illustrate model selection, we now turn to an example with more pre-
dictors. We will start with six predictors but will find that a model with only
two predictors fits rather well.

This example uses a subset of the well-known Nelson–Plosser data set of
U.S. yearly macroeconomic time series. These data are available as part of R’s
fEcofin package. The variables we will use are:

1. sp-Stock Prices, [Index; 1941-43 = 100], [1871–1970].
2. gnp.r-Real GNP, [Billions of 1958 Dollars], [1909–1970],
3. gnp.pc-Real Per Capita GNP, [1958 Dollars], [1909–1970],
4. ip-Industrial Production Index, [1967 = 100], [1860–1970],
5. cpi-Consumer Price Index, [1967 = 100], [1860–1970],
6. emp-Total Employment, [Thousands], [1890–1970],
7. bnd-Basic Yields 30-year Corporate Bonds, [% pa], [1900–1970].

Since two of the time series start in 1909, we use only the data from
1909 until the end of the series in 1970, a total of 62 years. The response
will be the differences of log(sp), the log returns on the stock prices. The
regressors will be the differences of variables 2 through 7, with variables 4
and 5 log-transformed before differencing. A differenced log-series contains
the approximate relative changes in the original variable, in the same way
that a log return approximates a return that is the relative change in price.

How does one decide whether to difference the original series, the log-
transformed series, or some other function of the series? Usually the aim is to
stabilize the fluctuations in the differenced series. The top row of Figure 12.6
has time series plots of changes in gnp.r, log(gnp.r), and sqrt(gnp.r) and
the bottom row has similar plots for ip. For ip the fluctuations in the differ-
enced series increase steadily over time, but this is less true if one uses the
square roots or logs of the series. This is the reason why diff(log(ip)) is
used here as a regressor. For gnp.r, the fluctuations in changes are more sta-
ble and we used diff(gnp.r) rather than diff(log(gnp.r)) as a regressor.
In this analysis, we did not consider using square-root transformations, since
changes in the square roots are less interpretable than changes in the original
variable or its logarithm. However, the changes in the square roots of both
series are reasonably stable, so square-root transformations might be consid-
ered. Another possibility would be to use the transformation that gives the
best-fitting model. One could, for example, put all three variables, diff(ip),
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Fig. 12.6. Differences in gnp.r and ip with and without transformations.

diff(log(ip)), and diff(sqrt(ip)), into the model and use model selec-
tion to decide which gives the best fit. The same could be done with gnp.r
and the other regressors.

Notice that the variables are transformed first and then differenced. Dif-
ferencing first and then taking logarithms or square roots would result in
complex-valued variables, which would be difficult to interpret, to say the
least.

There are additional variables in this data set that could be tried in the
model. The analysis presented here is only an illustration and much more
exploration is certainly possible with this rich data set.

Time series and normal plots of all eight differenced series did not reveal
any outliers. The normal plots were only used to check for outliers, not to check
for normal distributions. There is no assumption in a regression analysis that
the regressors are normally distributed or that the response has a marginal
normal distribution. It is only the conditional distribution of the response
given the regressors that is assumed to be normal, and even that assumption
can be weakened.

A linear regression with all of the regressors shows that only two, diff(
log(ip)) and diff(bnd), are statistically significant at the 0.05 level and
some have very large p-values:
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Call:

lm(formula = diff(log(sp)) ~ diff(gnp.r) + diff(gnp.pc)

+ diff(log(ip)) + diff(log(cpi))

+ diff(emp) + diff(bnd), data = new_np)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.766e-02 3.135e-02 -0.882 0.3815

diff(gnp.r) 8.384e-03 4.605e-03 1.821 0.0742

diff(gnp.pc) -9.752e-04 9.490e-04 -1.028 0.3087

diff(log(ip)) 6.245e-01 2.996e-01 2.085 0.0418

diff(log(cpi)) 4.935e-01 4.017e-01 1.229 0.2246

diff(emp) -9.591e-06 3.347e-05 -0.287 0.7756

diff(bnd) -2.030e-01 7.394e-02 -2.745 0.0082

A likely problem here is multicollinearity, so variance inflation factors were
computed:

diff(gnp.r) diff(gnp.pc) diff(log(ip)) diff(log(cpi))

16.0 31.8 3.3 1.3

diff(emp) diff(bnd)

10.9 1.5

We see that diff(gnp.r) and diff(gnp.pc) have high VIF values, which
is not surprising since they are expected to be highly correlated. In fact, their
correlation is 0.96.

Next, we search for a more parsimonious model using stepAIC, a variable
selection procedure in R that starts with a user-specified model and adds or
deletes variables sequentially. At each step it either makes the addition or
deletion that most improves AIC. It this example, stepAIC will start with all
six predictors.

Here is the first step:

Start: AIC=-224.92

diff(log(sp)) ~ diff(gnp.r) + diff(gnp.pc) + diff(log(ip)) +

diff(log(cpi)) + diff(emp) + diff(bnd)

Df Sum of Sq RSS AIC

- diff(emp) 1 0.002 1.216 -226.826

- diff(gnp.pc) 1 0.024 1.238 -225.737

- diff(log(cpi)) 1 0.034 1.248 -225.237

<none> 1.214 -224.918

- diff(gnp.r) 1 0.075 1.289 -223.284

- diff(log(ip)) 1 0.098 1.312 -222.196

- diff(bnd) 1 0.169 1.384 -218.949

The listed models have either zero or one variables removed from the
starting model with all regressors. The models are listed in order of their
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AIC values. The first model, which has diff(emp) removed (the minus sign
indicates a variable that has been removed), has the best (smallest) AIC.
Therefore, in the first step, diff(emp) is removed. Notice that the fourth-
best model has no variables removed.

The second step starts with the model without diff(emp) and exam-
ines the effect on AIC of removing additional variables. The removal of
diff(log(cpi)) leads to the largest improvement in AIC, so in the second
step this variable is removed:

Step: AIC=-226.83

diff(log(sp)) ~ diff(gnp.r) + diff(gnp.pc) + diff(log(ip)) +

diff(log(cpi)) + diff(bnd)

Df Sum of Sq RSS AIC

- diff(log(cpi)) 1 0.032 1.248 -227.236

<none> 1.216 -226.826

- diff(gnp.pc) 1 0.057 1.273 -226.025

- diff(gnp.r) 1 0.084 1.301 -224.730

- diff(log(ip)) 1 0.096 1.312 -224.179

- diff(bnd) 1 0.189 1.405 -220.032

On the third step no variables are removed and the process stops:

Step: AIC=-227.24

diff(log(sp)) ~ diff(gnp.r) + diff(gnp.pc) + diff(log(ip)) +

diff(bnd)

Df Sum of Sq RSS AIC

<none> 1.248 -227.236

- diff(gnp.pc) 1 0.047 1.295 -227.001

- diff(gnp.r) 1 0.069 1.318 -225.942

- diff(log(ip)) 1 0.122 1.371 -223.534

- diff(bnd) 1 0.157 1.405 -222.001

Notice that the removal of diff(gnp.pc) would cause only a very small in-
crease in AIC. We should investigate whether this variable might be removed.
The new model was refit to the data.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.018664 0.028723 -0.65 0.518

diff(gnp.r) 0.007743 0.004393 1.76 0.083

diff(gnp.pc) -0.001029 0.000712 -1.45 0.154

diff(log(ip)) 0.672924 0.287276 2.34 0.023

diff(bnd) -0.177490 0.066840 -2.66 0.010

Residual standard error: 0.15 on 56 degrees of freedom

Multiple R-squared: 0.347, Adjusted R-squared: 0.3

F-statistic: 7.44 on 4 and 56 DF, p-value: 7.06e-05
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Now three of the four variables are statistically significant at 0.1, though
diff(gnp.pc) has a rather large p-value, and it seems to be worth exploring
other possible models.

The R function leaps in the leaps package will compute Cp for all pos-
sible models. To reduce the amount of output, only the nbest models with
k regressors [for each k = 1, . . . , dim(β)] are printed. The value of nbest is
selected by the user and in this analysis nbest was set at 1, so only the best
model is given for each value of k. The following table gives the value of Cp

(last column) for the best k-variable models, for k = 1, . . . , 6 (k is in the first
column). The remaining columns indicate with a “1” which variables are in
the models. All predictors have been differenced, but to save space “diff”
has been omitted from the variable names heading the columns.

gnp.r gnp.pc log(ip) log(cpi) emp bnd Cp

1 0 0 1 0 0 0 6.3

2 0 0 1 0 0 1 3.8

3 1 0 1 0 0 1 4.6

4 1 1 1 0 0 1 4.5

5 1 1 1 1 0 1 5.1

6 1 1 1 1 1 1 7.0

We see that stepAIC stopping at the four-variable model was perhaps pre-
mature. The model selection process was stopped at the four-variable model
because the three-variable model had a slightly larger Cp-value. However, if
one continues to the best two-variable model, the minimum of Cp is obtained.
Here is the fit to the best two-variable model:

Call:

lm(formula = diff(log(sp)) ~ +diff(log(ip)) + diff(bnd),

data = new_np)

Residuals:

Min 1Q Median 3Q Max

-0.44254 -0.09786 0.00377 0.10525 0.28136

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0166 0.0210 0.79 0.43332

diff(log(ip)) 0.6975 0.1683 4.14 0.00011

diff(bnd) -0.1322 0.0623 -2.12 0.03792

Residual standard error: 0.15 on 58 degrees of freedom

Multiple R-squared: 0.309, Adjusted R-squared: 0.285

F-statistic: 12.9 on 2 and 58 DF, p-value: 2.24e-05

All variables are significant at 0.05. However, it is not crucial that all regressors
be significant at 0.05 or at any other predetermined level. Other models could
be used, especially if there were good economic reasons for doing so. One
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cannot say that the two-variable model is best, except in the narrow sense of
minimizing Cp, and choosing instead the best three- or four-predictor model
would not increase Cp by much. Also, which model is best depends on the
criterion used. The best four-predictor model has a better adjusted R2 than
the best two-predictor model.

¤

12.7 Partial Residual Plots

A partial residual plot is used to visualize the effect of a predictor on the re-
sponse while removing the effects of the other predictors. The partial residual
for the jth predictor variable is

Yi −

β̂0 +

∑

j′ 6=j

Xi,j′ β̂j′


 = Ŷi + ε̂i −


β̂0 +

∑

j′ 6=j

Xi,j′ β̂j′


 = Xi,j β̂j + ε̂i,

(12.18)
where the first equality uses (12.11) and the second uses (12.9). Notice that
the left-hand side of (12.18) shows that the partial residual is the response
with the effects of all predictors but the jth subtracted off. The right-hand
side of (12.18) shows that the partial residual is also equal to the residual with
the effect of the jth variable added back. The partial residual plot is simply
the plot of the response against these partial residual.

Example 12.10. Partial residual plots for the weekly interest-rate example

Partial residual plots for the weekly interest-rate example are shown in Fig-
ures 12.7(a) and (b). For comparison, scatterplots of cm10 dif and cm30 dif
versus aaa dif with the corresponding one-variable fitted lines are shown in
panels (c) and (d). The main conclusion from examining the plots is that the
slopes in (a) and (b) are shallower than the slopes in (c) and (d). What does
this tell us? It says that, due to collinearity, the effect of cm10 dif on aaa dif
when cm30 dif is in the model [panel (a)] is less than when cm30 dif is not in
the model [panel (c)], and similarly when the roles of cm10 dif and cm30 dif
are reversed.

The same conclusion can be reached by looking at the estimated regression
coefficients. From Examples 12.1 and 12.4, we can see that the coefficient of
cm10 dif is 0.615 when cm10 dif is the only variable in the model, but the
coefficient drops to 0.355 when cm30 dif is also in the model. There is a
similar decrease in the coefficient for cm30 dif when cm10 dif is added to
the model.

¤



12.7 Partial Residual Plots 333

−1.0 −0.5 0.0 0.5

−0
.4

0.
0

0.
4

(a)

cm10_dif

C
om

po
ne

nt
+R

es
id

ua
l(a

aa
_d

if)

−0.5 0.0 0.5

−0
.4

0.
0

(b)

cm30_dif

C
om

po
ne

nt
+R

es
id

ua
l(a

aa
_d

if)

−1.0 −0.5 0.0 0.5

−0
.6

0.
0

0.
6

(c)

cm10_dif

aa
a_

di
f

−0.5 0.0 0.5

−0
.6

0.
0

0.
6

(d)

cm30_dif

aa
a_

di
f

Fig. 12.7. Partial residual plots for the weekly interest rates [panels (a) and (b)]
and scatterplots of the predictors and the response [panels (c) and (d)].

Example 12.11. Nelson–Plosser macroeconomic variables—Partial residual
Plots

This example continues the analysis of the Nelson–Plosser macroeco-
nomic variables. Partial residual plots for the four-variable model selected
by stepAIC in Example 12.9 are shown in Figure 12.8. One can see that all
four variables have explanatory power, since the the partial residuals have
linear trends in the variables.

One puzzling aspect of this model is that the slope for gnp.pc is negative.
However, the p-value for this regressor is large and the minimum Cp model
does not contain either gnp.r or gnp.pc. Often, a regressor that is highly cor-
related with other regressors has an estimated slope that is counterintuitive.
If used alone in the model, both gnp.r and gnp.pc have positive slopes. The
slope of gnp.pc is negative only when gnp.r is in the model.

¤
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Fig. 12.8. Partial residual plots for the Nelson–Plosser U.S. economic time series.

12.8 Centering the Predictors

Centering or, more precisely, mean-centering a variable means expressing it
as a deviation from its mean. Thus, if X1,k, . . . , Xn,k are the values of the kth
predictor and Xk is their mean, then (X1,k−Xk), . . . , (Xn,k−Xk) are values
of the centered predictor.

Centering is useful for two reasons:

• centering can reduce collinearity in polynomial regression;
• if all predictors are centered, then β0 is the expected value of Y when all

of the predictors are equal to their mean. This gives β0 an interpretable
meaning. In contrast, if the variables are not centered, then β0 is the
expected value of Y when all of the predictors are equal to 0. Frequently,
0 is outside the range of some predictors, making the interpretation of β0

of little real interest unless the variables are centered.

12.9 Orthogonal Polynomials

As just mentioned, centering can reduce collinearity in polynomial regression
because, for example, if X is positive, then X and X2 will be highly correlated
but X −X and (X −X)2 will be less correlated.
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Orthogonal polynomials can eliminate correlation entirely, since they are
defined in a way so that they are uncorrelated. This is done using the Gram–
Schmidt orthogonalization procedure discussed in textbooks on linear algebra.
Orthogonal polynomials can be created easily in most software packages, for
instance, by using the poly function in R. Orthogonal polynomials are partic-
ularly useful for polynomial regression of degree higher than 2 where centering
is less successful at reducing collinearity. However, the use of polynomial mod-
els of degree 4 and higher is discouraged and nonparametric regression (see
Chapter 21) is recommended instead. Even cubic regression can be problem-
atic because cubic polynomials have only a limited range of shapes.

12.10 Bibliographic Notes

Harrell (2001), Ryan (1997), Neter, Kutner, Nachtsheim, and Wasserman
(1996) and Draper and Smith (1998) are four of the many good introduc-
tions to regression. Faraway (2005) is an excellent modern treatment of linear
regression with R. See Nelson and Plosser (1982) for information about their
data set.
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12.12 R Lab

12.12.1 U.S. Macroeconomic Variables

This section uses the data set USMacroG in R’s AER package. This data set
contains quarterly times series on 12 U.S. macroeconomic variables for the
period 1950–2000. We will use the variables consumption = real consump-
tion expenditures, dpi = real disposable personal income, government = real
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government expenditures, and unemp = unemployment rate. Our goal is to
predict changes in consumption from changes in the other variables.

Run the following R code to load the data, difference the data (since we
wish to work with changes in these variables), and create a scatterplot matrix.

library(AER)
data("USMacroG")
MacroDiff= apply(USMacroG,2,diff)
pairs(cbind(consumption,dpi,cpi,government,unemp))

Problem 1 Describe any interesting features, such as, outliers, seen in the
scatterplot matrix. Keep in mind that the goal is to predict changes in
consumption. Which variables seem best suited for that purpose? Do you think
there will be collinearity problems?

Next, run the code below to fit a multiple linear regression model to consump-
tion using the other four variables as predictors.

fitLm1 = lm(consumption~dpi+cpi+government+unemp)
summary(fitLm1)
confint(fitLm1)

Problem 2 From the summary, which variables seem useful for predicting
changes in consumption?

Next, print an AOV table.

anova(fitLm1)

Problem 3 For the purpose of variable selection, does the AOV table provide
any useful information not already in the summary?

Upon examination of the p-values, we might be tempted to drop several vari-
ables from the regression model, but we will not do that since variables should
be removed from a model one at a time. The reason is that, due to correla-
tion between the predictors, when one is removed then the significance of
the others changes. To remove variables sequentially, we will use the function
stepAIC in the MASS package.

library(MASS)
fitLm2 = stepAIC(fitLm1)
summary(fitLm2)

Problem 4 Which variables are removed from the model, and in what order?
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Now compare the initial and final models by AIC.

AIC(fitLm1)
AIC(fitLm2)
AIC(fitLm1)-AIC(fitLm2)

Problem 5 How much of an improvement in AIC was achieved by removing
variables? Was the improvement huge? Is so, can you suggest why? If not,
why not?

The function vif in the car package will compute variance inflation factors.
A similar function with the same name is in the faraway package. Run

library(car)
vif(fitLm1)
vif(fitLm2)

Problem 6 Was there much collinearity in the original four-variable model?
Was the collinearity reduced much by dropping two variables?

Partial residual plots, which are also called component plus residual or cr
plots, can be constructed using the function cr.plot in the car package. Run

par(mfrow=c(2,2))
sp = 0.8
cr.plot(fitLm1,dpi,span=sp,col="black")
cr.plot(fitLm1,cpi,span=sp,col="black")
cr.plot(fitLm1,government,span=sp,col="black")
cr.plot(fitLm1,unemp,span=sp,col="black")

Besides dashed least-squares lines, the partial residual plots have solid
lowess smooths through them unless this feature is turned off by specifying
smooth=F, as was done in Figure 12.8. Lowess is an earlier version of loess.
The smoothness of the lowess curves is determined by the parameter span,
with larger values of span giving smoother plots. The default is span = 0.5. In
the code above, span is 0.8 but can be changed for all four plots by changing
the variable sp. Lowess, loess, and span are described in Section 21.2.1. A
substantial deviation of the lowess curve from the least-squares line is an
indication that the effect of the predictor is nonlinear. The default color of
the cr.plot figure is red, but this can be changed as in the code above.

Problem 7 What conclusions can you draw from the partial residual plots?
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12.13 Exercises

1. Suppose that Yi = β0 + β1Xi + εi, where εi is N(0, 0.3), β0 = 1.4, and
β1 = 1.7.
(a) What are the conditional mean and standard deviation of Yi given

that Xi = 1? What is P (Yi ≤ 3|Xi = 1)?
(b) A regression model is a model for the conditional distribution of Yi

given Xi. However, if we also have a model for the marginal distribu-
tion of Xi, then we can find the marginal distribution of Yi. Assume
that Xi is N(1, 0.7). What is the marginal distribution of Yi? What
is P (Yi ≤ 3)?

2. Show that if ε1, . . . , εn are i.i.d. N(0, σ2
ε ), then in straight-line regression

the least-squares estimates of β0 and β1 are also the maximum likelihood
estimates.
Hint: This problem is similar to the example in Section 5.9. The only
difference is that in that section, Y1, . . . , Yn are independent N(µ, σ2),
while in this exercise Y1, . . . , Yn are independent N(β0 + β1Xi, σ

2
ε ).

3. Use (7.11), (12.3), and (12.2) to show that (12.7) holds.
4. It was stated in Section 12.8 that centering reduces collinearity. As an il-

lustration, consider the example of quadratic polynomial regression where
X takes 30 equally spaced values between 1 and 15.
(a) What is the correlation between X and X2? What are the VIFs of X

and X2?
(b) Now suppose that we center X before squaring. What is the correlation

between (X −X) and (X −X)2? What are the VIFs of (X −X) and
(X −X)2?

5. A linear regression model with three predictor variables was fit to a data
set with 40 observations. The correlation between Y and Ŷ was 0.65. The
total sum of squares was 100.
(a) What is the value of R2?
(b) What is the value of the residual error SS?
(c) What is the value of the regression SS?
(d) What is the value of s2?

6. A data set has 66 observations and five predictor variables. Three models
are being considered. One has all five predictors and the others are smaller.
Below is residual error SS for all three models. The total SS was 48.
Compute Cp and R2 for all three models. Which model should be used
based on this information?

Number Residual
of predictors error SS

3 12.2
4 10.1
5 10.0
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7. The quadratic polynomial regression model

Yi = β0 + β1Xi + β2X
2
i + εi

was fit to data. The p-value for β1 was 0.67 and for β2 was 0.84. Can we
accept the hypothesis that β1 and β2 are both 0? Discuss.

8. Sometimes it is believed that β0 is 0 because we think that E(Y |X = 0) =
0. Then the appropriate model is

yi = β1Xi + εi.

This model is usually called “regression through the origin” since the
regression line is forced through the origin. The least-squares estimator of
β1 minimizes

n∑

i=1

{Yi − β1Xi}2.

Find a formula that gives β̂1 as a function of the Yis and the Xis.
9. Complete the following ANOVA table for the model Yi = β0 + β1Xi,1 +

β2Xi,2 + εi:

Source df SS MS F P
Regression ? ? ? ? 0.04
Error ? 5.66 ?
Total 15 ?

R-sq = ?

10. Pairs of random variables (Xi, Yi) were observed. They were assumed to
follow a linear regression with E(Yi|Xi) = θ1+θ2Xi but with t-distributed
noise, rather than the usual normally distributed noise. More specifically,
the assumed model was that conditionally, given Xi, Yi is t-distributed
with mean θ1 + θ2Xi, standard deviation θ3, and degrees of freedom
θ4. Also, the pairs (X1, Y1), . . . , (Xn, Yn) are mutually independent. The
model could also be expressed as

Yi = θ1 + θ2Xi + εi

where ε1, . . . , εn are i.i.d. t with mean 0 and standard deviation θ3 and
degrees of freedom θ4. The model was fit by maximum likelihood. The R
code and output are

#(code to input x and y)

library(fGarch)

start = c(lmfit$coef,sd(lmfit$resid),4)

loglik = function(theta)

{
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-sum(log(dstd(y,mean=theta[1]+theta[2]*x,sd=theta[3],

nu=theta[4])))

}

mle = optim(start, loglik, hessian=T)

FishInfo = solve(mle$hessian)

mle$par

mle$value

mle$convergence

sqrt(diag(FishInfo))

qnorm(.975)

> mle$par

[1] 0.511 1.042 0.152 4.133

> mle$value

[1] -188

> mle$convergence

[1] 0

> sqrt(diag(FishInfo))

[1] 0.00697 0.11522 0.01209 0.93492

>

> qnorm(.975)

[1] 1.96

>

(a) What is the MLE of the slope of Yi on Xi?
(b) What is the standard error of the MLE of the degrees-of-freedom

parameter?
(c) Find a 95% confidence interval for the standard deviation of the noise.
(d) Did optim converge? Why or why not?
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Regression: Troubleshooting

13.1 Regression Diagnostics

Many things can, and often do, go wrong when data are analyzed. There may
be data that were entered incorrectly, one might not be analyzing the data set
one thinks, the variables may have been mislabeled, and so forth. In Example
13.5, presented shortly, one of the weekly time series of interest rates began
with 371 weeks of zeros, indicating missing data. However, I was unaware of
this problem when I first analyzed the data. The lesson here is that I should
have plotted each of the data series first before starting to analyze them, but
I hadn’t. Fortunately, the diagnostics presented in this section showed quickly
that there was some type of serious problem, and then after plotting each of
the time series I easily discovered the nature of the problem.

Besides problems with the data, the assumed model may not be a good ap-
proximation to reality. The usual estimation methods, such as least squares in
regression, are highly nonrobust and therefore particularly sensitive to prob-
lems with the data or the model.

Experienced data analysts know that they should always look at the raw
data. Graphical analysis often reveals any problems that exist, especially the
types of gross errors that can seriously degrade the analysis. However, some
problems are only revealed by fitting a regression model and examining resid-
uals.

Example 13.1. High-leverage points and residual outliers—Simulated data ex-
ample

Figure 13.1 uses data simulated to illustrate some of the problems that can
arise in regression. There are 11 observations. The predictor variable takes on
values 1, . . . , 10 and 50, and Y = 1 + X + ε, where ε ∼ N(0, 1). The last
observation is clearly an extreme value in X. Such a point is said to have high
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Fig. 13.1. (a) Linear regression with a high-leverage point that is not a residual
outlier (solid circle). (b) Linear regression with a high-leverage point that is a residual
outlier (solid circle). (c) Linear regression with a low-leverage point that is a residual
outlier (solid circle). Least-squares fits are shown as solid lines.

leverage. However, a high-leverage point is not necessarily a problem, only a
potential problem. In panel (a), the data have been recorded correctly so that
Y is linearly related to X and the extreme X-value is, in fact, helpful as it
increases the precision of the estimated slope. In panel (b), the value of Y
for the high-leverage point has been misrecorded as 5.254 rather than 50.254.
This data point is called a residual outlier. As can be seen by comparing
the least-squares lines in (a) and (b), the high-leverage point has an extreme
influence on the estimated slope. In panel (c), X has been misrecorded for the
high-leverage point as 5.5 instead of 50. Thus, this point is no longer high-
leverage, but now it is a residual outlier. Its effect now is to bias the estimated
intercept.

One should also look at the residuals after the model has been fit, because
the residuals may indicate problems not visible in plots of the raw data. How-
ever, there are several types of residuals and, as explained soon, one type,
called the externally studentized residual or rstudent, is best for diagnosing
problems. Ordinary (or raw) residuals are not necessarily useful for diagnosing
problems. For example, in Figure 13.1(b), none of the raw residuals is large,
not even the one associated with the residual outlier. The problem is that the
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raw residuals are too sensitive to the outliers, particularly at high-leverage
points, and problems can remain hidden when raw residuals are plotted.

¤

Three important tools will be discussed for diagnosing problems with the
model or the data:

• leverages;
• externally studentized residuals; and
• Cook’s D, which quantifies the overall influence of each observation on the

fitted values.

13.1.1 Leverages

The leverage of the ith observation, denoted by Hii, measures how much
influence Yi has on its own fitted value Ŷi. We will not go into the algebraic
details until Section 14.2. An important result in that section is that there
are weights Hij depending on the values of the predictor variables but not on
Y1, . . . , Yn such that

Ŷi =
n∑

j=1

HijYj .

In particular, Hii is the weight of Yi in the determination of Ŷi. It is a potential
problem if Hii is large since then Ŷi is determined too much by Yi itself and
not enough by the other data. The result is that the residual ε̂i = Yi − Ŷi

will be small and not a good estimate of εi. Also, the standard error of Ŷi is
σε

√
Hii, so a high value of Hii means a fitted value with low accuracy.
The leverage value Hii is large when the predictor variables for the ith

case are atypical of those values in the data, for example, because one of the
predictor variables for that case is extremely outlying. It can be shown by
some elegant algebra that the average of H11, . . . , Hnn is (p + 1)/n, where
p + 1 is the number of parameters (one intercept and p slopes) and that
0 < Hii < 1. A value of Hii exceeding 2(p + 1)/n, that is, over twice the
average value, is generally considered to be too large and therefore a cause for
concern (Belsley, Kuh, and Welsch, 1980). The Hii are sometimes called the
hat diagonals.

Example 13.2. Leverages in Example 13.1

Figure 13.2 plots the leverages for the three cases in Figure 13.1. Because
the leverages depend only on the X-values, the leverages are the same in panels
(a) and (b). In both panels, the high-leverage point has a leverage equal to
0.960. In these examples, the rule-of-thumb cutoff point for high leverage is
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Fig. 13.2. (a)–(c) Leverages plotted again case number (index) for the data sets in
Figure 13.1. Panels (a) and (b) are identical because leverages do not depend on the
response values. Panel (d) plots the leverages in (c) against Xi.

only 2(p + 1)/n = 2 ∗ 2/11 = 0.364, so 0.960 is a huge leverage and close to
the maximum possible value of 1. In panel (c), none of the leverages is greater
than 0.364.

In the special case p = 1, there is a simple formula for the leverages:

Hii =
1
n

+
(Xi −X)2∑n
i=1(Xi −X)2

, (13.1)

It is easy to check that in this case, H11 + · · · + Hnn = p + 1 = 2, so the
average of the hat diagonals is, indeed, (p + 1)/n. Formula (13.1) shows
that Hii ≥ 1/n, Hii is equal 1/n if and only if Xi = X, and Hii increases
quadratically with the distance between Xi and X. This behavior can be seen
in Figure 13.2(d).

¤

13.1.2 Residuals

The raw residual is ε̂i = Yi − Ŷi. Under ideal circumstances such as a reason-
ably large sample and no outliers or high-leverage points, the raw residuals
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are approximately N(0, σ2
ε ), so absolute values greater than 2σ̂2

ε are outly-
ing and greater than 3σ̂2

ε are extremely outlying. However, circumstances are
often not ideal. When residual outliers occur at high-leverage points, they
can so distort the least-squares fit that they are not seen to be outlying. The
problem in these cases is that ε̂i is not close to εi because of the bias in the
least-squares fit. The bias is due to residual outliers themselves. This problem
can be seen in Figure 13.1(b).

The standard error of ε̂i is σ̂ε

√
1−Hii, so the raw residuals do not have

a constant variance, and those raw residuals with large leverages close to 1
are much less variable than the others. To fix the problem of nonconstant
variance, one can use the standardized residual, sometimes called the inter-
nally studentized residual,1 which is ε̂i divided by its standard error, that is,
ε̂i/(σ̂ε

√
1−Hii).

There is still another problem with standardized residuals. An extreme
residual outlier can inflate σ̂ε, causing the standardized residual for the out-
lying point to appear too small. The solution is to redefine the ith studen-
tized residual with an estimate of σε that does not use the ith data point.
Thus, the externally studentized residual, often called rstudent, is defined to
be ε̂i/{σ̂ε,(−i)

√
1−Hii}, where σ̂ε,(−i) is the estimate of σε computed by fit-

ting the model to the data with the ith observation deleted.2 For diagnostics,
rstudent is considered the best type of residual to plot and is the type of
residual used in this book.

Warning: The terms “standardized residual” and “studentized residual”
do not have the same definitions in all textbooks and software packages. The
definitions used here agree with R’s influence.measures function. Other soft-
ware, such as, SAS uses different definitions.

Example 13.3. Externally studentized and raw residuals in Example 13.1

The top row of Figure 13.3 shows the externally studentized residuals in
each of the three cases of simulated data in Figure 13.1. Case #11 is correctly
identified as a residual outlier in data sets (b) and (c) and also correctly
identified in data set (a) as not being a residual outlier. The bottom row of
Figure 13.3 shows the raw residuals, rather than the externally studentized
residuals. It is not apparent from the raw residuals that in data set (b), case
#11 is a residual outlier. This shows the inappropriateness of raw residuals
for the detection of outliers, especially when there are high-leverage points.

¤

1 Studentization means dividing a statistic by its standard error.
2 The notation (−i) signifies the deletion of the ith observation.
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Fig. 13.3. Top row: Externally studentized residuals for the data sets in Fig-
ure 13.1; data set (a) is the data set in panel (a) of Figure 13.1, and so forth. Case
#11 is an outlier in data sets (b) and (c) but not in data set (a). Bottom row:
Raw residuals for the same three data sets as in the top row. For data set (b), the
raw residual does not reveal that case #11 is outlying.

13.1.3 Cook’s D

A high-leverage value or a large absolute externally studentized residual in-
dicates only a potential problem with a data point. Neither tells how much
influence the data point actually has on the estimates. For that informa-
tion, we can use Cook’s distance, often called Cook’s D, which measures how
much the fitted values change if the ith observation is deleted. We say that
Cook’s D measures influence, and any case with a large Cook’s D is called a
high-influence case. Leverage and rstudent alone do not measure influence.

Let Ŷj(−i) be the jth fitted value using estimates of the β̂s obtained with
the ith observation deleted. Then Cook’s D for the ith observation is

∑n
j=1{Ŷj − Ŷj(−i)}2

(p + 1)s2
. (13.2)

The numerator in (13.2) is the sum of squared changes in the fitted values
when the ith observation is deleted. The denominator standardizes this sum
by dividing by the number of estimated parameters and an estimate of σ2

ε .
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One way to use Cook’s D is to plot the values of Cook’s D against case
number and look for unusually large values. However, it can be difficult to
decide which, if any. values of Cook’s D are outlying. Of course, some Cook’s D
values will be larger than others, but are any so large as to be worrisome?
To answer this question, a half-normal plot of values of Cook’s D, or perhaps
of their square roots, can be useful. Neither Cook’s D nor its square root is
normally distributed, so one does not check for linearity. Instead, one looks
for values that are “detached” from the rest.

Example 13.4. Cook’s D for simulated data in Example 13.1

The three columns of Figure 13.4 show the values of square roots of
Cook’s D for the three simulated data examples in Figure 13.1. In the top
row, the square roots of Cook’s D values are plotted versus case number (in-
dex). The bottom row contains half-normal plots of the square roots of the
Cook’s D values. In all panels, case #11 has the largest Cook’s D, indicating
that one should examine this case to see if there is a problem. In data set (a),
case #11 is a high-leverage point and has high influence despite not being a
residual outlier. In data set (b), where case #11 is both a high-leverage point
and a residual outlier, the value of Cook’s D for this case is very large, larger
than in data set (a). In data set(c,) where case #11 has low leverage, all 11
Cook’s D values are reasonably small, at least in comparison with data sets
(a) and (b), but case #11 is still somewhat outlying.

¤

Example 13.5. Weekly interest data with missing value recorded as zeros

It was mentioned earlier that there were missing values of cm30 at the be-
ginning of the data set that were coded as zeros. In fact, there were 371 weeks
of missing data for cm30. I started to analyze the data without realizing this
problem. This created a huge outlying value of cm30 dif (the first differences)
at observation number 372 when cm30 jumps from 0 to the first nonmissing
value. Fortunately, plots of rstudent, leverages, and Cook’s D all reveal a se-
rious problem somewhere between the 300th and 400th observations, and by
zooming into this range of case numbers the problem was located in case
#372; see Figure 13.5. The nature of the problem is not evident from these
plots, only its existence, so I plotted each of the series aaa, cm10, and cm30.
After seeing the initial zero values of the latter series, the problem was obvi-
ous. Please remember this lesson: ALWAYS look at the data. Another lesson
is that it is best to use nonnumeric values for missing values. For example, R
uses “NA” for “not available.”

¤
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Fig. 13.4. Top row: Square roots of Cook’s D for the simulated data plotted against
case number. Bottom row: Half-normal plots of square roots of Cook’s D. Data
set (a): Case #11 has high leverage. It is not a residual outlier but has high influence
nonetheless. Data set (b): Case #11 has high leverage and is a residual outlier. It
has higher influence (as measured by Cook’s D) than in data set (a). Data set (c):
Case #11 has low leverage but is a residual outlier. It has much lower influence than
in data sets (a) and (b). Note: In the top row, the vertical scale is kept constant to
emphasize differences among the three cases.

13.2 Checking Model Assumptions

Because the ith residual ε̂i estimates the “noise” εi, the residuals can be
used to check the assumptions behind regression. Residual analysis generally
consists of various plots of the residuals, each plot being designed to check
one or more of the regression assumptions. Regression software will output the
several types of residuals discussed in Section 13.1.2. Externally studentized
residuals (rstudent) are recommended, for reasons given in that section.

Problems to look for include

1. nonnormality of the errors,
2. nonconstant variance of the errors,
3. correlation of the errors, and
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Fig. 13.5. Weekly interest data. Regression of aaa dif on cm10 dif and cm30 dif.
Full data set including the first 371 weeks of data where cm30 was missing and
assigned a value of 0. This caused severe problems at case number 372, which are
detected by the leverages in (a), rstudent in (b), and Cook’s D in (c). Panel (d)
zooms in on the outlier case to identify the case number as 372.

4. nonlinearity of the effects of the predictor variables on the response.

13.2.1 Nonnormality

Nonnormality of the errors (noise) can be detected by a normal probability
plot, boxplot, and histogram of the residuals. Not all three are needed, but
looking at a normal plot is highly recommended. Moreover, inexperienced data
analysts have trouble with the interpretation of normal plots. Looking at side-
by-side normal plots and histograms (or KDEs) is helpful when learning to
interpret normal probability plots.

The residuals often appear nonnormal because there is an excess of outliers
relative to the normal distribution. We have defined a value of rstudent to be
outlying if its absolute value exceeds 2 and extremely outlying if it exceeds
3. Of course, these cutoffs of 2 and 3 are arbitrary and only intended to give
rough guidelines.

It is the presence of outliers, particularly extreme outliers, that is a concern
when we have nonnormality. A deficiency of outliers relative to the normal
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distribution is less of a problem, if it is a problem at all. Sometimes outliers
are due to errors, such as mistakes in the entry of the data or, as in Example
13.5, misinterpreting a zero as a true data value rather than the indicator of
a missing value. If possible, outliers due to mistakes should be corrected, of
course. However, in financial time series, outliers are often “good observations”
due, inter alia, to excess volatility in the markets on certain days.

Another possible reason for an excess of both positive and negative out-
lying residuals is nonconstant residual variance, a problem that is explained
shortly. Normal probability plots assume that all observations come from the
same distribution, in particular, that they have the same variance. The pur-
pose of that plot is to determine if the common distribution is normal or not.
If there is no common distribution, for example, because of nonconstant vari-
ance, then the normal plot is not readily interpretable. Therefore, one should
check for a constant variance before making an extended effort to interpret a
normal plot.

Outliers can be a problem because they have an unduly large influence on
the estimation results. As discussed in Section 4.6, a common solution to the
problem of outliers is transformation of the response. Data transformation can
be very effective at handling outliers, but it does not work in all situations.
Moreover, transformations can induce outliers. For example, if a log transfor-
mation is applied to positive data, values very close to 0 could be transformed
to outlying negative values since log(x) → −∞ as x ↓ 0.

It is always wise to check whether outliers are due to erroneous data,
for example, typing errors or other mistakes in data collection and entry. Of
course, erroneous data should be corrected if possible and otherwise removed.
Removal of outliers that are not known to be erroneous is dangerous and not
recommended as routine statistical practice. However, reanalyzing the data
with outliers removed is a sound practice. If the analysis changes drastically
when the outliers are deleted, then one knows there is something about which
to worry. On the other hand, if deletion of the outliers does not change the
conclusions of the analysis, then there is less reason to be concerned with
whether the outliers were erroneous data.

A certain amount of nonnormality of the errors is not necessarily a prob-
lem. Least-squares estimators are unbiased even without normality. Standard
errors for regression coefficients are also correct and confidence intervals are
nearly correct because the least-squares estimators obey a central limit theo-
rem—they are nearly normally distributed even if the errors are not normally
distributed. Nonetheless, outliers caused by highly skewed or heavy-tailed er-
ror distributions can cause the least-squares estimator to be highly variable
and therefore inaccurate. Transformations of Y are commonly used when the
errors have skewed distributions, especially when they also have a nonconstant
variance. A common solution to heavy-tailed error distributions is robust re-
gression; see Section 14.9.
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13.2.2 Nonconstant Variance

Nonconstant residual variance means that the conditional variance of the re-
sponse given the predictor variables is not constant as assumed by standard
regression models. Nonconstant variance is also called heteroskedasticity. Non-
constant variance can be detected by an absolute residual plot, that is, by
plotting the absolute residuals against the predicted values (Ŷi) and, perhaps,
also against the predictor variables. If the absolute residuals show a system-
atic trend, then this is an indication of nonconstant variance. Economic data
often have the property that larger responses are more variable. A more tech-
nical way of stating this is that the conditional variance of the response (given
the predictor variables) is an increasing function of the conditional mean of
the response. This type of behavior can be detected by plotting the absolute
residuals versus the predicted values and looking for an increasing trend.

Often, trends are difficult to detect just by looking at the plotted points
and adding a so-called scatterplot smoother is very helpful. A catterplot
smoother fits a smooth curve to a scatterplot. Nonparametric regression es-
timators such as loess and smoothing splines are commonly used scatterplot
smoothers available in statistical software packages. These are discussed more
fully in Chapter 21.

A potentially serious problem caused by nonconstant variance is ineffi-
ciency, that is, too-variable estimates, if ordinary (that is, unweighted) least
squares is used. Weighted least squares estimates β efficiently by minimizing

n∑

i=1

wi{Yi − f(Xi; β̂)}2. (13.3)

Here wi an estimate of the inverse (that is, reciprocal) conditional variance
of Yi given Xi, so that the more variable observations are given less weight.
Estimation of the conditional variance function to determine the wis is dis-
cussed in the more advanced textbooks mentioned in Section 13.3. Weighted
least-squares for regression with GARCH errors is discussed in Section 18.12.

Another serious problem caused by heteroskedasticity is that standard
errors and confidence intervals assume a constant variance and can be seriously
wrong if there is substantial nonconstant variance.

Transformation of the response is a common solution to the problem of
nonconstant variance; see Section 14.5. If the response can be transformed to
constant variance, then unweighted least-squares will be efficient and standard
errors and confidence intervals will be valid.

13.2.3 Nonlinearity

If a plot of the residuals versus a predictor variable shows a systematic non-
linear trend, then this is an indication that the effect of that predictor on the
response is nonlinear. Nonlinearity causes biased estimates and a model that
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may predict poorly. Confidence intervals, which assume unbiasedness, can be
seriously in error if there is nonlinearity. The value 100(1− α)% is called the
nominal value of the coverage probability of a confidence interval and is guar-
anteed to be the actual coverage probability only if all modeling assumptions
are met.

Response transformation, polynomial regression, and nonparametric re-
gression (e.g., splines and loess—see Chapter 21) are common solutions to the
problem of nonlinearity.

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

x1

y

0.65 0.75 0.85 0.95

10
20

30
40

x2

y

Fig. 13.6. Simulated data. Responses plotted against the two predictor variables.

Example 13.6. Detecting nonlinearity: A simulated data example

Data were simulated to illustrate some of the techniques for diagnosing
problems. In the example there are two predictor variables, X1 and X2. The
assumed model is multiple linear regression, Yi = β0 + β1Xi,1 + β2Xi,2 + εi.

Figure 13.6, which shows the responses plotted against each of the predic-
tors, suggests that the errors are heteroskedastic because there is more vertical
scatter on the right sides of the plots. Otherwise, it is not clear whether there
are other problems with the data or the model. The point here is that plots
of the raw data often fail to reveal all problems. Rather, it is plots of the
residuals that can more reliably detect heteroskedasticity, nonnormality, and
other difficulties.
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Fig. 13.7. Simulated data. Normal plot and histogram of the studentized residuals.
Right skewness is evident and perhaps a square root or log transformation of Y would
be helpful.

Figure 13.7 contains a normal plot and a histogram of the residuals—the
externally standardized residuals (rstudents) are used in all examples of this
chapter. Notice the right skewness which suggests that a response transforma-
tion to remove right skewness, such as, a square-root or log transformation,
should be investigated.

Figure 13.8(a) is a plot of the residuals versus X1. The residuals appear
to have a nonlinear trend. This is better revealed by adding a loess curve
to the residuals. The curvature of the loess fit is evident and indicates that
Y is not linear in X1. A possible remedy is to add X2

1 as a third predictor.
Figure 13.8 (a), a plot of the residuals against X2, shows somewhat random
scatter, indicating that Y appears to be linear in X2. The concentration of
the X2-values near the right side is not a problem. This pattern only shows
that the distribution of X2 is left-skewed, but the regression model makes no
assumptions about the distributions of the predictors.

Before doing any more plotting, the model was augmented by adding X2
1

as a predictor, so the model is now

Yi = β0 + β1Xi,1 + β2X
2
i,2 + β3Xi,2 + εi. (13.4)

Figure 13.8(c) is a plot of the absolute residuals versus the predicted values
for model (13.4). Note that the absolute residuals are largest where the fitted
values are also largest, which is a clear sign of heteroskedasticity. A loess
smooth has been added to make the heteroskedasticity clearer.
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Fig. 13.8. Simulated data. (a) Plot of externally studentized residuals versus X1.
This plot suggests that Y is not linearly related to X1 and perhaps a model quadratic
in X1 is needed. (b) Plot of the residuals versus X2 with a loess smooth. This plot
suggests that Y is linearly related to X2 so that the component of the model relating
Y to X2 is satisfactory. (c) Plot of the absolute residuals versus the predicted values
using a model that is quadratic in X1. This plot reveals heteroskedasticity. A loess
smooth has been added to each plot.

To remedy the problem of heteroskedasticity, Yi was transformed to
log(Yi), so the model is now

log(Yi) = β0 + β1Xi,1 + β2X
2
i,2 + β3Xi,2 + εi. (13.5)

Figure 13.9 shows residual plots for model (13.5). The plots in panels (a)
and (b) of residuals versus X1 and X2 show no patterns, indicating that the
model that is quadratic in X1 fits well. The plot in panel (c) of absolute
residuals versus fitted values shows less heteroskedasticity than before, which
shows the benefit of the log transformation. The normal plot of the residuals
shown in panel (d) shows much less skewness than earlier, which is another
benefit of the log transformation.

¤

13.2.4 Residual Correlation and Spurious Regressions

If the data {(Xi, Yi), i = 1, . . . , n} are a multivariate time series, then it is
likely that the noise is correlated, a problem we will call residual correlation.

Residual correlation causes standard errors and confidence intervals (which
incorrectly assume uncorrelated noise) to be incorrect. In particular, the cov-
erage probability of confidence intervals can be much lower than the nominal
value. A solution to this problem is to model the noise as an ARMA process,
assuming that the residuals are stationary; see Section 14.1.
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Fig. 13.9. Simulated data. Residual plots for fit of log(Y ) to X1, X2
1 , and X2.

In the extreme case where the residuals are an integrated process, the
least-squares estimator is inconsistent, meaning that it will not converge to
the true parameter as the sample size converges to ∞. If an I(1) process is
regressed on another I(1) process and the two processes are independent (so
that the regression coefficient is 0), it is quite possible to obtain a highly
significant result, that is, to strongly reject the true null hypothesis that the
regression coefficient is 0. This is called a spurious regression. The problem,
of course, is that the test is based on the incorrect assumption of independent
error.

The problem of correlated noise can be detected by looking at the sam-
ple ACF of the residuals. Sometimes the presence of residual correlation is
obvious. In other cases, one is not so sure and a statistical test is desirable.
The Durbin–Watson test can be used to test the null hypothesis of no resid-
ual autocorrelation. More precisely, the null hypothesis of the Durbin–Watson
test is that the first p autocorrelation coefficients are all 0, where p can be
selected by the user. The p-value for a Durbin–Watson test is not trivial to
compute, and different implementations use different computational methods.
In the R function durbin.watson in the car package, p is called max.lag and
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has a default value of 1. The p-value is computed by durbin.watson using
bootstrapping. The lmtest package of R has another function, dwtest, that
computes the Durbin–Watson test, but only with p = 1. dwtest uses either a
normal approximation (default) or an exact algorithm to calculate the p-value.

Example 13.7. Residual plots for weekly interest changes

Figure 13.10 contains residual plots for the regression of aaa dif on
cm10 dif and cm30 dif. The normal plot in panel (a) shows heavy tails. A t-
distribution was fit to the residuals, and the estimated degrees of freedom was
2.99, again indicating heavy tails. Panel (b) shows a QQ plot of the residuals
and the quantiles of the fitted t-distribution with a 45o reference line. There
is excellent agreement between the data and the t-distribution.
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Fig. 13.10. Residual plots for the regression of aaa dif on cm10 dif and cm30 dif.

Panel (c) is a plot of the ACF of the residuals. There is some evidence
of autocorrelation. The Durbin–Watson test was performed three times with
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R’s durbin.watson using max.lag =1 and gave p-values of 0.006, 0.004, and
0.012. This shows the substantial random variation due to bootstrapping with
the default of B = 1000 resamples. Using a larger number of resamples will
compute the p-value with more accuracy. For example, when the number of
resamples was increased to 10,000, three p-values were 0.0112, 0.0096, and
0.0106. Using dwtest, the approximate p-value was 0.01089 and the exact
p-value could not be computed. Despite some uncertainty about the p-value,
it is clear that the p-value is small, so there is at least some residual autocor-
relation.

To further investigate autocorrelation, ARMA models were fit to the resid-
uals using the auto.arima function in R to automatically select the order.
Using BIC, the selected model is ARIMA(0,0,0), that is, white noise. Using
AIC, the selected model is ARIMA(2,0,2) with estimates:

> auto.arima(resid,ic="aic")
Series: resid
ARIMA(2,0,2) with zero mean

Coefficients:
ar1 ar2 ma1 ma2
0.54 -0.34 -0.63 0.47

s.e. 0.22 0.19 0.21 0.18

sigma^2 estimated as 0.00408: log-likelihood = 1172
AIC = -2335 AICc = -2335 BIC = -2316

Several of the coefficients are large relative to their standard errors. There is
evidence of some autocorrelation, but not a great deal and the BIC-selected
model does not have any autocorrelation. The sample size is 890, so there are
enough data to detect small autocorrelations. The autocorrelation that was
found seems of little practical significance and could be ignored.

The plot of residuals versus fitted values in panel (d) shows no sign of
heteroskedasticity.

¤

Example 13.8. Residual plots for weekly interest rates without differencing

The reader may have noticed that differenced time series have been used
in the examples. There is a good reason for this. Many, if not most, finan-
cial time series are nonstationary or, at least, have very high and long-term
autocorrelation. When one nonstationary series is regressed upon another, it
happens frequently that the residuals are nonstationary. This is a substantial
violation of the assumption of uncorrelated noise and can lead to serious prob-
lems. An estimator is said to be consistent if it converges to the true value of
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Fig. 13.11. Time series plot and ACF plot of residuals when aaa is regressed on
cm10 and cm30. The plots indicate that the residuals are nonstationary.

the parameter as the sample size increases to ∞. The least-squares estimator
is not consistent when the errors are an integrated process.

As an example, we regressed aaa on cm10 and cm30. These are the weekly
time series of AAA, 10-year Treasury, and 30-year Treasury interest rates,
which, when differenced, gave us aaa dif, cm10 dif, and cm30 dif used in
previous examples. Figure 13.11 contains time series and ACF plots of the
residuals. The residuals are very highly correlated and perhaps are nonsta-
tionary. Unit root tests provide more evidence that the residuals are non-
stationary. The p-values of augmented Dickey–Fuller tests are on one side of
0.05 or the other, depending on the order. With the default lag order in R’s
adf.test function, the p-value is 0.12, so one would not reject the null hy-
pothesis of nonstationarity at level 0.05 or even level 0.1. The KPSS test does
reject the null hypothesis of stationarity.

Let’s compare the estimates from regression with the original series with
the estimates from the differenced series. First, what should we expect when
we make this comparison? Suppose that Xt and Yt are time series following
the regression model

Yt = α + β0t + β1Xi + εt. (13.6)

Note the linear time trend β0t. Then, upon differencing, we have

∆Yt = β0 + β1∆Xi + ∆εt, (13.7)

so the original intercept α is removed, and the time trend’s slope β0 in (13.6)
becomes an intercept in (13.7). The time trend could be omitted in (13.6)
if the intercept in (13.7) is not significant, as happens in this example. The
slope β1 in (13.6) remains unchanged in (13.7). However, if εt is I(1), then
the regression of Yt on Xt will not provide a consistent estimate of β1, but
the regression of ∆Yt on ∆Xi will consistently estimate β1, so the estimates
from the two regressions could be very different. This is what happens with
this example.
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The results from regression with the original series without the time trend
are

Call:
lm(formula = aaa ~ cm10 + cm30)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9803 0.0700 14.00 < 2e-16 ***
cm10 0.3183 0.0445 7.15 1.9e-12 ***
cm30 0.6504 0.0498 13.05 < 2e-16 ***

The results with the differenced series are

Call:
lm(formula = aaa_dif ~ cm10_dif + cm30_dif)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.38e-05 2.18e-03 -0.04 0.97
cm10_dif 3.60e-01 4.45e-02 8.09 2.0e-15 ***
cm30_dif 2.97e-01 4.98e-02 5.96 3.7e-09 ***

The estimated slopes for cm10 and cm10 dif, 0.3183 and 0.360, are some-
what similar. However, the estimated slopes for cm30 and cm30 dif, 0.650
and 0.297, are quite dissimilar relative to their standard errors. This is to be
expected if the estimators using the undifferenced series are not consistent;
also, their standard errors are not valid because they are based on the as-
sumption of uncorrelated noise. In the analysis with the differenced data, the
p-value for the intercept is 0.97, so we can accept the null hypothesis that the
intercept is zero; this justifies the omission of the time trend when using the
undifferenced series.

¤

Example 13.9. Simulated independent AR processes

To illustrate further the problems caused by regressing nonstationary se-
ries, or even stationary series with high correlation, we simulated two inde-
pendent AR process, both of length 200 with φ = 0.99. These processes are
stationary but near the borderline of being nonstationary. After simulating
these processes, one process was regressed on the other. We did this four
times. Since the processes are independent, the true slope is 0. In each case,
the estimated slope was far from the true value of 0 and was statistically
significant according to the (incorrect) p-value. The results are
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.3149 0.28923 -28.748 1.35e-72
x -0.1081 0.03801 -2.844 4.92e-03

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.4763 0.20287 22.065 2.953e-55
x 0.3634 0.03957 9.184 5.671e-17

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.6991 0.3566 -13.176 7.053e-29
x -0.4528 0.0897 -5.047 1.013e-06

Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.4714 0.22455 55.54 1.074e-122
x 0.5568 0.03386 16.44 7.120e-39

Notice how the estimated intercepts and slope randomly vary between the
four simulations. The standard errors and p-values are based on the invalid
assumption of independent errors and are erroneous and very misleading, a
problem that is called spurious regression. Fortunately, the violation of the
independence assumption would be easy to detect by plotting the residuals.

We also regressed the differenced series and obtained completely different
results:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.08173 0.06949 1.1762 0.2409
diff(x) -0.02337 0.06788 -0.3442 0.7310

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02653 0.06446 -0.4116 0.6811
diff(x) -0.02067 0.06258 -0.3303 0.7415

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01498 0.07082 -0.2116 0.8326
diff(x) -0.02206 0.07586 -0.2908 0.7715

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02479 0.07660 -0.3236 0.7465
diff(x) 0.02187 0.07794 0.2806 0.7793

Notice that now the estimated slopes are all near the true value of 0. All the
p-values are large and lead one to the correct conclusion that the true slope
is 0.

When the noise process is stationary, an alternative to differencing is to
use an ARMA model for the noise process; see Section 14.1.

¤
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13.3 Bibliographic Notes

Graphical methods for detecting nonconstant variance, transform-both-sides
regression, and weighting are discussed in Carroll and Ruppert (1988). The
idea of using half-normal plots to detect usual values of Cook’s D was borrowed
from Faraway (2005).

Comprehensive treatments of regression diagnostics can be found in Bel-
sley, Kuh, and Welsch (1980) and in Cook and Weisberg (1982). Although
variance inflation factors detect collinearity, they do not indicate what corre-
lations are causing the problem. For this purpose, one should use collinearity
diagnostics. These are also discussed in Belsley, Kuh, and Welsch (1980).
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13.5 R Lab

13.5.1 Current Population Survey Data

This section uses the CPS1988 data set from the March 1988 Current Popu-
lation Survey by the U.S. Census Bureau and available in the AER package.
These are cross-sectional data, meaning that the U.S. population was surveyed
at a single time point. Cross-sectional data should be distinguished from lon-
gitudinal data where individuals are followed over time. Data collected and
analyzed along two dimensions, that is, cross-sectionally and longitudinally,
are called panel data by econometricians.

In this section, we will investigate how the variable wage (in dollars/week)
depends on education (in years), experience (years of potential work expe-
rience), and ethnicity (Caucasian = “caus” or African-American = “afam”).
Potential experience was (age − education − 6), the number of years of po-
tential work experience assuming that education begins at age 6. Potential
experience was used as a proxy for actual work experience, which was not
available. The variable ethnicity is coded 0–1 for “cauc” and “afam,” so its
regression coefficient is the difference in the expected values of wage between
an African-American and a Caucasian with the same values of education and
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experience. Run the code below to load the data and run a multiple linear
regression.

library(AER)
data(CPS1988)
attach(CPS1988)
fitLm1 = lm(wage~education+experience+ethnicity)

Next, create residual plots with the following code. In some of these plots,
the y-axis limits are set so as to eliminate outliers. This was done to focus
attention on the bulk of the data. This is a very large data set with 28,155
observations, so scatterplots are very dense with data and almost solid black
in places. Therefore, lowess smooths were added as thick, red lines so that they
can be seen clearly. Also, thick blue reference lines were added as appropriate.

par(mfrow=c(3,2))
resid1 = rstudent(fitLm1)
plot(fitLm1$fit,resid1,
ylim=c(-1500,1500),main="(a)")

lines(lowess(fitLm1$fit,resid1,f=.2),lwd=5,col="red")
abline(h=0,col="blue",lwd=5)

plot(fitLm1$fit,abs(resid1),
ylim=c(0,1500),main="(b)")

lines(lowess(fitLm1$fit,abs(resid1),f=.2),lwd=5,col="red")
abline(h=mean(abs(resid1)),col="blue",lwd=5)

qqnorm(resid1,datax=F,main="(c)")
qqline(resid1,datax=F,lwd=5,col="blue")

plot(education,resid1,ylim=c(-1000,1500),main="(d)")
lines(lowess(education,resid1),lwd=5,col="red")
abline(h=0,col="blue",lwd=5)

plot(experience,resid1,ylim=c(-1000,1500),main="(e)")
lines(lowess(experience,resid1),lwd=5,col="red")
abline(h=0,col="blue",lwd=5)
graphics.off()

Problem 1 For each of the panels (a)–(e) in the figure you have just created,
describe what is being plotted and any conclusions that should be drawn from
the plot. Describe any problems and discuss how they might be remedied.

Problem 2 Now fit a new model where the log of wage is regressed on
education and experience. Create residual plots as done above for the first
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model. Describe differences between the residual plots for the two models. What
do you suggest should be tried next?

Problem 3 Implement whatever you suggested to try next in Problem 2. De-
scribe how well it worked. Are you satisfied with your model? If not, try further
enhancements of the model until arriving at a model that you feel is satisfac-
tory. What is your final model?

Problem 4 Use your final model to describe the effects of education, exper-
ience, and ethnicity on the wage. Use graphs where appropriate.

Check the data and your final model for possible problems or unusual features
by examining the hat diagonals and Cook’s D with the following code. Replace
fitLm4 by the name of the lm object for your final model.

library(faraway) # required for halfnorm
par(mfrow=c(1,3))
plot(hatvalues(fitLm4))
plot(sqrt(cooks.distance(fitLm4)))
halfnorm(sqrt(cooks.distance(fitLm4)))

Problem 5 Do you see any high-leverage points or points with very high val-
ues of Cook’s D? If you do, what is unusual about them?
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13.6 Exercises

1. Residual plots and other diagnostics are shown in Figure 13.12 for a re-
gression of Y on X. Describe any problems that you see and possible
remedies.
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Fig. 13.12. Residual plots and diagnostics for regression of Y on X in Problem
1. The residuals are rstudent values. (a) Plot of residuals versus x. (b) Plot of
absolute residuals versus fitted values. (c) Normal QQ plot of residuals. (d) ACF
plot of residuals. (e) Plot of the square root of Cook’s D versus index (= observation
number). (f) Half-normal plot of square root of Cook’s D.
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2. Residual plots and other diagnostics are shown in Figure 13.13 for a re-
gression of Y on X. Describe any problems that you see and possible
remedies.
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Fig. 13.13. Residual plots and diagnostics for regression of Y on X in Problem
2. The residuals are rstudent values. (a) Plot of residual versus x. (b) Plot of ab-
solute residuals versus fitted values. (c) Normal QQ plot of residuals. (d) ACF plot
of residuals. (e) Plot of the square root of Cook’s D versus index (= observation
number). (f) Half-normal plot of square root of Cook’s D.
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3. Residual plots and other diagnostics are shown in Figure 13.14 for a re-
gression of Y on X. Describe any problems that you see and possible
remedies.
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Fig. 13.14. Residual plots and diagnostics for regression of Y on X in Problem
3. The residuals are rstudent values. (a) Plot of residual versus x. (b) Plot of ab-
solute residuals versus fitted values. (c) Normal QQ plot of residuals. (d) ACF plot
of residuals. (e) Plot of the square root of Cook’s D versus index (= observation
number). (f) Half-normal plot of square root of Cook’s D.
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4. Residual plots and other diagnostics are shown in Figure 13.15 for a re-
gression of Y on X. Describe any problems that you see and possible
remedies.
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Fig. 13.15. Residual plots and diagnostics for regression of Y on X in Problem
4. The residuals are rstudent values. (a) Plot of residual versus x. (b) Plot of ab-
solute residuals versus fitted values. (c) Normal QQ plot of residuals. (d) ACF plot
of residuals. (e) Plot of the square root of Cook’s D versus index (= observation
number). (f) Half-normal plot of square root of Cook’s D.

5. It was noticed that a certain observation had a large leverage (hat diago-
nal) but a small Cook’s D. How could this happen?
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Regression: Advanced Topics

14.1 Linear Regression with ARMA Errors

When residual analysis shows that the residuals are correlated, then one of
the key assumptions of the linear model does not hold, and tests and confi-
dence intervals based on this assumption are invalid and cannot be trusted.
Fortunately, there is a solution to this problem: Replace the assumption of
independent noise by the weaker assumption that the noise process is station-
ary but possibly correlated. One could, for example, assume that the noise is
an ARMA process. This is the strategy we will discuss in this section.

The linear regression model with ARMA errors combines the linear regres-
sion model (12.1) and the ARMA model (9.26) for the noise, so that

Yi = β0 + β1Xi,1 + · · ·+ βpXi,p + εi, (14.1)

where

(1− φ1 B − · · · − φp Bp) εt = (1 + θ1 B + · · ·+ θq Bq)ut, (14.2)

and u1, . . . , un is white noise.

Example 14.1. Demand for ice cream

This example uses the data set Icecream in R’s Ecdat package. The data
are four-weekly observations from March 18, 1951, to July 11, 1953 on four
variables, cons = U.S. consumption of ice cream per head in pints; income =
average family income per week (in U.S. Dollars); price = price of ice cream
(per pint); and temp = average temperature (in Fahrenheit). There is a total
of 30 observations. Since there are 13 four-week periods per year, there are
slightly over two years of data.

First, a linear model was fit with cons as the response and income, price,
and temp as the predictor variables. One can see that income and temp are
significant, especially temp (not surprisingly).

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_14, © Springer Science+Business Media, LLC 2011 

369



370 14 Regression: Advanced Topics

Call:

lm(formula = cons ~ income + price + temp, data = Icecream)

Residuals:

Min 1Q Median 3Q Max

-0.06530 -0.01187 0.00274 0.01595 0.07899

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.197315 0.270216 0.73 0.472

income 0.003308 0.001171 2.82 0.009 **

price -1.044414 0.834357 -1.25 0.222

temp 0.003458 0.000446 7.76 3.1e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0368 on 26 degrees of freedom

Multiple R-squared: 0.719, Adjusted R-squared: 0.687

F-statistic: 22.2 on 3 and 26 DF, p-value: 2.45e-07

A Durbin–Watson test has a very small p-value, so we can reject the null
hypothesis that the noise is uncorrelated.

> durbin.watson(fit_ic_lm)

lag Autocorrelation D-W Statistic p-value

1 0.33 1.02 0

Alternative hypothesis: rho != 0

Next, the linear regression model with AR(1) errors was fit and the AR(1)
coefficient was over three times its standard error, indicating statistical signif-
icance. This was done using R’s arima function, which specifies the regression
model with the xreg argument. It is interesting to note that the coefficient of
income is now nearly equal to 0 and no longer significant. The effect of temp is
similar to that of the linear model fit, though its standard error is now larger.

Call:

arima(x = cons, order = c(1, 0, 0), xreg = cbind(income,

price, temp))

Coefficients:

ar1 intercept income price temp

0.732 0.538 0.000 -1.086 0.003

s.e. 0.237 0.325 0.003 0.734 0.001

sigma^2 estimated as 0.00091: log likelihood = 62.1, aic = -112

Finally, the linear regression model with MA(1) errors was fit and the MA(1)
coefficient was also over three times its standard error, again indicating statis-
tical significance. The model with AR(1) errors has a slightly better (smaller)
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AIC value than the model with MA(1), but there isn’t much of a difference
between the models in terms of AIC. However, the two models imply rather
different types of noise autocorrelation. The MA(1) model has no correlation
beyond lag 1. The AR(1) model with coefficient 0.730 has autocorrelation
persisting much longer. For example, the autocorrelation is 0.7302 = 0.533 at
lag 2, 0.7303 = 0.373 at lag 3, and still 0.7304 = 0.279 at lag 4.

Call:

arima(x=cons, order=c(0, 0, 1), xreg=cbind(income, price, temp))

Coefficients:

ma1 intercept income price temp

0.503 0.332 0.003 -1.398 0.003

s.e. 0.160 0.270 0.001 0.798 0.001

sigma^2 estimated as 0.000957: log likelihood = 61.6, aic = -111

Interestingly, the estimated effect of income is large and significant, much like
its effect as estimated by the linear model with independent errors but unlike
the result for the linear model with AR(1) errors.
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Fig. 14.1. Ice cream consumption example. Residual ACF plots for the linear model
with independent noise, the linear model with AR(1) noise, and the linear model with
MA(1) noise.

The ACFs of the residuals from the linear model and from the linear mod-
els with AR(1) and MA(1) errors are shown in Figure 14.1. The residuals from
the linear model estimate ε1, . . . , εn in (14.1) and show some autocorrelation.
The residuals from the linear models with AR(1) or MA(1) errors estimate
u1, . . . , un in (14.2) show little autocorrelation. One concludes that the linear
model with either AR(1) or MA(1) errors fits well and either an AR(1) or
MA(1) term is needed.
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Fig. 14.2. Time series plots for the ice cream consumption example and the variables
used to predict consumption.

Why is the effect of income large and significant if the noise is assumed
to be either independent or MA(1) but small and insignificant if the noise
is AR(1)? To attempt an answer, time series plots of the four variables were
examined. The plots are shown in Figure 14.2. The strong seasonal trend in
temp is obvious and cons follows this trend. There is a slightly increasing
trend in cons, which appears to have two possible explanations. The trend
might be explained by the increasing trend in income. However, with the
strong residual autocorrelation implied by the AR(1) model, the trend in
cons could also be explained by noise autocorrelation. One problem here is
that we have a small sample size, only 30 observations. With more data it
might be possible to separate the effects on ice cream consumption of income
and noise autocorrelation.

In summary, there is a strong seasonal component to ice cream consump-
tion, with consumption increasing, as would be expected, with warmer tem-
peratures. Ice cream consumption does not depend much, if at all, on price,
though it should be noted that price has not varied much in this study; see
Figure 14.2. Greater variation in price might cause cons to depend more on
price. Finally, it is uncertain whether ice cream consumption increases with
family income.

¤
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14.2 The Theory Behind Linear Regression

This section provides some theoretical results about linear least-squares esti-
mation. The study of linear regression is facilitated by the use of matrices.
Equation (12.1) can be written more succinctly as

Yi = xT
i β + εi, i = 1, . . . , n (14.3)

where xi = (1 Xi,1 · · · Xi,p)T and β = (β0 β1 · · · βp)T. Let

Y =




Y1

...
Yn


 , X =




x1

...
xn


 , and ε =




ε1
...

εn


 .

Then, the n equations in (14.3) can be expressed as

Y︸︷︷︸
n×1

= X︸︷︷︸
n×(p+1)

β︸︷︷︸
(p+1)×1

+ ε︸︷︷︸
n×1

, (14.4)

with the matrix dimensions indicated by underbraces.
The least-squares estimate of β minimizes

‖Y −Xβ‖2 = (Y −Xβ)T(Y −Xβ) = Y TY −2βTXTY +βTXTXβ. (14.5)

By setting the derivatives of (14.5) with respect to β0, . . . , βp equal to 0 and
simplifying the resulting equations, one finds that the least-squares estimator
is

β̂ = (XTX)−1XTY . (14.6)

Using (7.9), one can find the covariance matrix of β̂:

COV(β̂|x1, . . . , xn) = (XTX)−1XTCOV(Y |x1, . . . , xn)X(XTX)−1

= (XTX)−1XT(σ2
ε I)X(XTX)−1

= σ2
ε (XTX)−1,

since COV(Y |x1, . . . , xn) = COV(ε) = σ2
ε I, where I is the n × n identity

matrix. Therefore, the standard error of β̂j is the square root of the jth
diagonal element of σ2

ε (XTX)−1.
The vector of fitted values is

Ŷ = Xβ̂ = {X(XTX)−1XT}Y = HY ,

where H = X(XTX)−1XT is the hat matrix. The leverage of the ith obser-
vation is Hii, the ith diagonal element of H.
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14.2.1 The Effect of Correlated Noise and Heteroskedasticity

If COV(ε) 6= σ2
ε I but rather COV(ε) = Σε for some matrix Σε, then

COV(β̂|x1, . . . , xn) = (XTX)−1XTCOV(Y |x1, . . . , xn)X(XTX)−1

= (XTX)−1XTΣεX(XTX)−1. (14.7)

This result lets us see the effect of correlation or nonconstant variance among
ε1, . . . , εn.

Example 14.2. Regression with AR(1) errors

Suppose that ε1, . . . , εn is a stationary AR(1) process so that εt = φεt−1 +
ut, where |φ| < 1 and u1, . . . is WN(0, σ2

u). Then

Σε = σ2
ε




1 φ φ2 · · · φp−1

φ 1 φ · · · φp−2

...
...

...
. . .

...
φp−1 φp−2 φp−3 · · · 1


 . (14.8)

As an example, suppose that n = 21, X1, . . . , Xn are equally spaced be-
tween −10 and 10, and σ2

ε = 1. Substituting (14.8) into (14.7) gives the
covariance matrix of the estimator (β̂0, β̂1), and taking the square roots
of the diagonal elements gives the standard errors. This was done with
φ = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75.

Figure 14.3 plots the ratios of standard errors for the independent case
(φ = 0) to the standard errors for the true value of φ. These ratios are the
factors by which the standard errors are miscalculated if we assume that
φ = 0, but it is not. Notice that negative values of φ result in a conservative
(too large) standard error, but positive values of φ give a standard error that
is too small. In the case of φ = 0.75, assuming independence gives standard
errors that are only about half as large as they should be. As discussed in
Section 14.1, this problem can be fixed by assuming (correctly) that the noise
process is AR(1).

¤

14.2.2 Maximum Likelihood Estimation for Regression

In this section, we assume a linear regression model with noise that may not
be normally distributed and independent.

For example, consider the special case of i.i.d. errors. It is useful to put
the scale parameter explicitly into the regression model, so we assume that

Yi = xT
i β + σεi,
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Fig. 14.3. Factor by which the standard error is changed when φ deviates from 0
for intercept (solid) and slope (dashed).

where {εi} are i.i.d. with a known density f that has variance equal to 1
and σ is the unknown noise standard deviation. For example, f could be a
standardized t-density. Then the likelihood of Y1, . . . , Yn is

n∏

i=1

1
σ

f

{
Yi − xT

i β

σ

}
.

The maximum likelihood estimator maximizes the log-likelihood

L(β, σ) = n log(σ) +
n∑

i=1

log
[
f

{
Yi − xT

i β

σ

}]
.

For normally distributed errors, log{f(x)} = − 1
2x2 − 1

2 log(2π), and for the
purpose of maximization, the constant − 1

2 log(2π) can be ignored. Therefore,
the log-likelihood is

LGAUSS(β, σ) = n log(σ)− 1
2

n∑

i=1

(
Yi − xT

i β

σ

)2

.

It should be obvious that the least-squares estimator is the MLE of β. Also,
maximizing LGAUSS(β̂, σ) in σ, where β has been replaced by the least-squares
estimate, is a standard calculus exercise and the result is
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σ̂2
MLE = n−1

n∑

i=1

(Yi − xT
i β̂)2.

In can be shown that σ̂2
MLE is biased but that the bias is eliminated if n−1 is

replaced by {n − (p + 1)}−1 where p + 1 is the dimension of β. This give us
the estimator (12.15).

Now assume that ε has a covariance matrix Σ and, for some function f ,
density

|Σ|−1/2f{(Y −Xβ)TΣ−1(Y −Xβ)}.
Then the log-likelihood is

−1
2

log |Σ|+ log
[
f{(Y −Xβ)TΣ−1(Y −Xβ)}] .

In the important special case where ε has a mean-zero multivariate normal
distribution, the density of ε is

[
1

|Σ|1/2(2π)p/2

]
exp

{
−1

2
εTΣ−1ε

}
, (14.9)

If Σ is known, then the MLE of β minimizes

(Y −Xβ)TΣ−1(Y −Xβ)

and is called the generalized least-squares estimator (GLS estimator). If
ε1, . . . , εn are uncorrelated but with possibly different variances, then Σ is
the diagonal matrix of these variances and the generalized least-squares esti-
mator is the weighted least-squares estimator (13.3).

The GLS estimator is

β̂GLS = (XTΣ−1X)−1XTΣ−1Y . (14.10)

Typically, Σ is unknown and must be replaced by an estimate, for example,
from an ARMA model for the errors.

14.3 Nonlinear Regression

Often we can derive a theoretical model relating predictor variables and a
response, but the model we derive is not linear. In particular, models derived
from economic theory are commonly used in finance and many are not linear.

The nonlinear regression model is

Yi = f(Xi; β) + εi, (14.11)

where Yi is the response measured on the ith observation, Xi is a vector
of observed predictor variables for the ith observation, f(· ; ·) is a known
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function, β is an unknown parameter vector, and ε1, . . . , εn are i.i.d. with
mean 0 and variance σ2

ε . The least-squares estimate β̂ minimizes
n∑

i=1

{Yi − f(Xi; β)}2 .

The predicted values are Ŷi = f(Xi; β̂) and the residuals are ε̂i = Yi − Ŷi.
Since the model is nonlinear, finding the least-squares estimate requires

nonlinear optimization. Because of the importance of nonlinear regression,
almost every statistical software package will have routines for nonlinear least-
squares estimation. This means that most of the difficult programming has
already been done for us. However, we do need to write an equation that
specifies the model we are using.1 In contrast, when using linear regression
only the predictor variables need to be specified.

Example 14.3. Simulated bond prices

Consider prices of par $1000 zero-coupon bonds issued by a particular
borrower, perhaps the Federal government or a corporation. Suppose that
there are several times to maturity, the ith being denoted by Ti. Suppose also
that the yield to maturity is a constant, say r. The assumption that YT = r
for all T is not realistic and is used only to keep this example simple. In
Section 14.4 more realistic models will be used.

The rate r is determined by the market and can be estimated from prices.
Under the assumption of a constant value of r, the present price of a bond
with maturity Ti is

Pi = 1000 exp(−rTi). (14.12)

There is some random variation in the observed prices. One reason is that
the price of a bond can only be determined by the sale of the bond, so the
observed prices have not been determined simultaneously. Prices that may
no longer reflect current market values are called stale. Each bond’s price was
determined at the time of the last trade of a bond of that maturity, and r may
have had a different value then. It is only as a function of time to maturity that
r is assumed constant, so r may vary with calendar time. Thus, we augment
model (14.12) by including a noise term to obtain the regression model

Pi = 1000 exp(−rTi) + εi. (14.13)

An estimate of r can be determined by least squares, that is, by minimizing
over r the sum of squares:

n∑

i=1

{
Pi − 1,000 exp(−rTi)

}2

.

1 Even this work can sometimes be avoided, since some nonlinear regression soft-
ware has many standard models already programmed.
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The least-squares estimator is denoted by r̂.
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Fig. 14.4. Plot of bond prices against maturities with the predicted price from the
nonlinear least-squares fit.

Since it is unlikely that market data will have a constant r, this example
uses simulated data. The data were generated with r fixed at 0.06 and plotted
in Figure 14.4. The nonlinear least-squares estimate of r was found using R’s
nls function:

Formula: price ~ 1000 * exp(-r * maturity)

Parameters:

Estimate Std. Error t value Pr(>|t|)

r 0.05850 0.00149 39.3 1.9e-10 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 20 on 8 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 5.53e-08

Notice that r̂ = 0.0585 and the standard error of this estimate is 0.00149. The
predicted price curve using nonlinear regression is shown in Figure 14.4.

¤
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As mentioned, in nonlinear regression, the form of the regression function
is nonlinear but known up to a few unknown parameters. For example, the
regression function has an exponential form in model (14.13). For this reason,
nonlinear regression would best be called nonlinear parametric regression to
distinguish it from nonparametric regression, where the regression function is
also nonlinear but not of a known parametric form. Nonparametric regression
is discussed in Chapter 21.

Polynomial regression may appear to be nonlinear since polynomials are
nonlinear functions. For example, the quadratic regression model

Yi = β0 + β1Xi + β2X
2
i + εi (14.14)

is nonlinear in Xi. However, by defining X2
i as a second predictor variable,

this model is linear in (Xi, X
2
i ) and therefore is an example of multiple linear

regression. What makes model (14.14) linear is that the right-hand side is a
linear function of the parameters β0, β1, and β2, and therefore can be inter-
preted as a linear regression with the appropriate definition of the variables.
In contrast, the exponential model

Yi = β0e
β1Xi + εi

is nonlinear in the parameter β1, so it cannot be made into a linear model by
redefining the predictor variable.

Example 14.4. Estimating default probabilities

This example illustrates both nonlinear regression and the detection of
heteroskedasticity by residual plotting.

Credit risk is the risk to a lender that a borrower will default on con-
tractual obligations, for example, that a loan will not be repaid in full. A
key parameter in the determination of credit risk is the probability of de-
fault. Bluhm, Overbeck, and Wagner (2003) illustrate how one can calibrate
Moody’s credit rating to estimate default probabilities. These authors use ob-
served default frequencies for bonds in each of 16 Moody’s ratings from Aaa
(best credit rating) to B3 (worse rating). They convert the credit ratings to
a 1 to 16 scale (Aaa = 1, . . . , B3 = 16). Figure 14.5(a) shows default fre-
quencies (as fractions, not percentages) plotted against the ratings. The data
are from Bluhm, Overbeck, and Wagner (2003). The relationship is clearly
nonlinear. Not surprisingly, Bluhm, Overbeck, and Wagner used a nonlinear
model, specifically

Pr{default|rating} = exp{β0 + β1rating}. (14.15)

To use this model they fit a linear function to the logarithms of the default
frequencies. One difficulty with doing this is that six of the default frequencies
are zero giving a log transformation of −∞.
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Fig. 14.5. (a) Default frequencies with an exponential fit. “Rating” is a conversion
of the Moody’s rating to a 1 to 16-point scale as follows: 1 = Aaa, 2 = Aa1, 3 = Aa3,
4 = A1, . . . , 16 = B3. (b) Estimation of default probabilities by Bluhm, Overbeck,
and Wagner’s (2003) linear regression with ratings removed that have no observed
defaults (BOW) and by nonlinear regression with all data (nonlinear). Because some
default frequencies are zero, when plotting the data on a semilog plot,10−6 was added
to the default frequencies. This constant was not added when estimating default
frequencies, only for plotting the raw data. The six observations along the bottom
of the plot are the ones removed by Bluhm, Overbeck, and Wagner. “TBS” is the
transform-both-sides estimate, which will be discussed soon.

Bluhm, Overbeck, and Wagner (2003) address this issue by labeling default
frequencies equal to zero as “unobserved” and not using them in the estima-
tion process. The problem with their technique is that they have deleted the
data with the lowest observed default frequencies. This biases their estimates
of default probabilities in an upward direction. As will be seen, the bias is
sizable. Bluhm, Overbeck, and Wagner argue that an observed default fre-
quency of zero does not imply that the true default probability is zero. This is
certainly true. However, the default frequencies, even when they are zero, are
unbiased estimates of the true default probabilities. There is no intent here
to be critical of their book, which is well-written and useful. However, one
can avoid the bias of their method by using nonlinear regression with model
(14.15). The advantage of fitting (14.15) by nonlinear regression is that it
avoids the use of a logarithm transformation thus allowing the use of all the
data, even data with a default frequency of zero. The fits by the Bluhm, Over-
beck, and Wagner method and by nonlinear regression using model (14.15)
are shown in Figure 14.5(b) with a log scale on the vertical axis so that the
fitted functions are linear. Notice that at good credit ratings the estimated
default probabilities are lower using nonlinear regression compared to Bluhm,
Overbeck, and Wagner’s biased method. The differences between the two sets
of estimated default probabilities can be substantial. Bluhm, Overbeck, and
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Wagner estimate the default probability of an Aaa bond as 0.005%. In con-
trast, the unbiased estimate by nonlinear regression is only 40% of that figure,
specifically, 0.0020%. Thus, the bias in the Bluhm, Overbeck, and Wagner es-
timate leads to a substantial overestimate of the credit risk of Aaa bonds and
similar overestimation at other good credit ratings.
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Fig. 14.6. (a) Residuals for estimation of default probabilities by nonlinear regres-
sion. Absolute studentized residuals plotted against fitted values with a loess smooth.
Substantial heteroskedasticity is indicated because the data on the left side are less
scattered than elsewhere. (b) Normal probability plot of the residuals. Notice the
outliers caused by the nonconstant variance.

A plot of the absolute residuals versus the fitted values in Figure 14.6(a)
gives a clear indication of heteroskedasticity. Heteroskedasticity does not cause
bias but it does cause inefficient estimates. In Section 14.5, this problem is
fixed by a variance-stabilizing transformation. Figure 14.6(b) is a normal prob-
ability plot of the residuals. Outliers with both negative and positive values
can be seen. These are due to the nonconstant variance and are not necessarily
a sign of nonnormality. This plot illustrates the danger of attempting to in-
terpret a normal plot when the data have a nonconstant variance. One should
apply a variance-stabilizing transformation first before checking for normality.

¤

14.4 Estimating Forward Rates from Zero-Coupon Bond
Prices

In practice, the forward-rate function r(t) is unknown. Only bond prices are
known. If the prices P (Ti) of zero-coupon bonds are available on a relatively
fine grid of values of T1 < T2 < · · · < Tn, then using (3.24) we can estimate
the forward-rate curve at Ti with
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−∆ log{P (Ti)}
∆Ti

= − log{P (Ti)} − log{P (Ti−1)}
Ti − Ti−1

. (14.16)

We will call these the empirical forward-rate estimates. Figure 14.7 shows
prices and empirical forward-rate estimates from data to be described soon
in Example 14.5. As can be seen in the plot, the empirical forward-rate esti-
mates can be rather noisy when the denominators in (14.16) are small because
the maturities are spaced closely together. If the maturities were more widely
spaced, then bias rather than variance would be the major problem. Despite
these difficulties, the empirical forward-rate estimates give a general impres-
sion of the forward-rate curve and are useful for comparing with estimates
from parametric models, which are discussed next.
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Fig. 14.7. (a) U.S. STRIPS prices. (b) Empirical forward-rate estimates from the
prices.

We can estimate r(t) from the bond prices using nonlinear regression.
An example of estimating r(t) was given in Section 14.3 assuming that r(t)
was constant and using as data the prices of zero-coupon bonds of different
maturities. In this section, we estimate r(t) without assuming it is constant.

Parametric estimation of the forward-rate curves starts with a parametric
family r(t; θ) of forward rates and the correspond yield curves

yT (θ) = T−1

∫ T

0

r(t; θ) dt

and model for the price of a par-$1 bond:

PT (θ) = exp{−TyT (θ)} = exp

(
−

∫ T

0

r(t;θ) dt

)
.

For example, suppose that r(t;θ) is a pth-degree polynomial, so that
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r(t;θ) = θ0 + θ1t + · · ·+ θpt
p

for some unknown parameters θ0, . . . , θp. Then

∫ T

0

r(t; θ) dt = θ0T + θ1
T 2

2
+ · · ·+ θp

T p+1

p
,

and the yield curve is

yT = T−1

∫ T

0

r(t;θ)dt = θ0 + θ1
T

2
+ · · ·+ θp

T p

p
.

A popular model is the Nelson–Siegel family with forward-rate and yield
curves

r(t; θ) = θ0 + (θ1 + θ2t) exp(−θ3t),

yt(θ) = θ0 +
(

θ1 +
θ2

θ3

)
1− exp(−θ3t)

θ3t
− θ2

θ3
exp(−θ3t).

The six-parameter Svensson model extends the Nelson–Siegel model by adding
the term θ4t exp(−θ5t) to the forward rate.

The nonlinear regression model for estimating the forward-rate curve
states that the price of the ith bond in the sample with maturity Ti expressed
as a fraction of par value is

Pi = D(Ti) + εi = exp

(
−

∫ Ti

0

r(t; θ) dt

)
+ εi, (14.17)

where D is the discount function and εi is an “error” due to problems such as
prices being somewhat stale and the bid–ask spread.2

Example 14.5. Estimating forward rates from STRIPS prices

We now look at an example using data on U.S. STRIPS, a type of zero-
coupon bond. STRIPS is an acronym for “Separate Trading of Registered
Interest and Principal of Securities.” The interest and principal on Trea-
sury bills, notes, and bonds are traded separately through the Federal Re-
serve’s book-entry system, in effect creating zero-coupon bonds by repackaging
coupon bonds.3

The data are from December 31, 1995. The prices are given as a percentage
of par value. Price is plotted against maturity in years in Figure 14.7 (a).

2 A bond dealer buys bonds at the bid price and sells them at the ask price, which
is slightly higher than the bid price. The difference is called the bid–ask spread
and covers the trader’s administrative costs and profit.

3 Jarrow (2002, p. 15).
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There are 117 prices and the maturities are nearly equally spaced from 0 to
30 years. We can see that the price drops smoothly with maturity and that
there is not much noise in the price data. The empirical forward-rate estimates
in Figure 14.7(b) are much noisier than the prices.

Three models for the forward curve were fit: quadratic polynomial, cubic
polynomial, and quadratic polynomial spline with a knot at T = 15. The
latter splices two quadratic functions together at T = 15 so that the resulting
curve is continuous and with a continuous first derivative. The spline’s second
derivative jumps at T = 15. One way to write the spline is

r(t) = β0 + β1t + β2t
2 + β3(t− 15)2+, (14.18)

where the positive-part function is x+ = x if x ≥ 0 and x+ = 0 if x < 0.
Also, x2

+ means (x+)2, that is, take the positive part first. See Chapter 21 for
further information about splines. From (14.18), one obtains

∫ T

0

r(t) dt = β0T + β1
T 2

2
+ β2

T 3

3
+ β3

(T − 15)3+
3

, (14.19)

and therefore the yield curve is

yT = β0 + β1
T

2
+ β2

T 2

3
+ β3

(T − 15)3+
3T

. (14.20)

From (14.19), the model for a bond price (as a percentage of par) is

100 exp
{
−

(
β0T + β1

T 2

2
+ β2

T 3

3
+ β3

(T − 15)3+
3

)}
. (14.21)

R code to fit the quadratic spline and plot its forward-rate estimate is

fitSpline = nls(price~100*exp(-beta0*T

- (beta1*T^2)/2 - (beta2*T^3)/3

- (T>15)*(beta3*(T-15)^3)/3 ),data=dat,

start=list(beta0=.03,beta1=0,beta2=0,beta3=0) )

coefSpline = summary(fitSpline)$coef[,1]

forwardSpline = coefSpline[1] + (coefSpline[2]*t) +

(coefSpline[3]*t^2) + (t>15)*(coefSpline[4]*(t-15)^2)

plot(t,forwardSpline,lty=2,lwd=2)

Only slight changes in the code are needed to fit the quadratic or cubic poly-
nomial models.

Figure 14.8 contains all three estimates of the forward rate and the empir-
ical forward rates. The cubic polynomial and quadratic spline models follow
the empirical forward rates much more closely than the quadratic polynomial
model. The cubic polynomial and quadratic spline fits both use four param-
eters and are similar to each other, though the spline has a slightly smaller
residual sum of squares. The summary of the spline model’s fit is
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Fig. 14.8. Polynomial and spline estimates of forward rates of U.S. Treasury bonds.
The empirical forward rates are also shown.

> summary(fitSpline)

Formula: price ~ 100 * exp(-beta0 * T - (beta1 * T^2)/2

- (beta2 * T^3)/3 - (T > 15) * (beta3 * (T - 15)^3)/3)

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta0 4.947e-02 9.221e-05 536.52 <2e-16 ***

beta1 1.605e-03 3.116e-05 51.51 <2e-16 ***

beta2 -2.478e-05 1.820e-06 -13.62 <2e-16 ***

beta3 -1.763e-04 5.755e-06 -30.64 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0667 on 113 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 1.181e-07

Notice that all coefficients have very small p-values. The small p-value of
beta3 is further evidence that the spline model fits better than the quadratic
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polynomial model, since the two models differ only in that beta3 is 0 for the
quadratic model.

R’s nls function could not find the least-squares estimator for the Nelson–
Siegel model, but the least-squares estimator was found using the optim non-
linear optimization function with the sum of squares as the objective function.
The fit of the Nelson–Siegel model was noticeably inferior to that of the cubic
polynomial and quadratic spline models. In fact, the Nelson–Siegel model did
not fit even as well as the quadratic polynomial model.

The Svensson model is likely to fit better than the Nelson–Siegel model,
but the four-parameter cubic polynomial and quadratic spline models fit suffi-
ciently well that it did not seem worthwhile to try the six-parameter Svensson
model.

¤

14.5 Transform-Both-Sides Regression

Suppose we have a theoretical model that states that in the absence of any
noise,

Yi = f(Xi;β). (14.22)

Model (14.22) is identical to the model

h{Yi} = h{f(Xi;β)}, (14.23)

where h is any one-to-one function, such as, a strictly increasing function. In
the absence of noise, one choice of h is as good as any other and one might as
well stick with model (14.22), but when noise exists, this is no longer true.

When we have noisy data, equation (14.23) can be converted to the non-
linear regression model

h{Yi} = h{f(Xi; β)}+ εi. (14.24)

Model (14.24) is called the transform-both-sides (TBS) regression model be-
cause both sides of equation (14.23) have been transformed by the same func-
tion h. Typically, h will be one of the Box–Cox transformations and h is chosen
to stabilize the variation and to induce nearly normally distributed errors. To
estimate β for a fixed h, one minimizes

n∑

i=1

[
h{Yi} − h

{
f(Xi; β̂)

}]2

. (14.25)

Various choices of h can be compared by residual plots. The h that gives
approximately normally distributed residuals with a constant variance is used
for the final analysis.
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Fig. 14.9. (a) Transform-both-sides regression (TBS) with h(y) =
√

y. Absolute
studentized residuals plotted against fitted values with a loess smooth. (b) Normal
plot of the studentized residuals.

Example 14.6. TBS regression for the default frequency data

TBS regression was applied to the default frequency data. The Box–Cox
transformation h(y) = y(α) was tried with various positive values of α. It was
found that α = 1/2 gave residuals that appeared normally distributed with a
constant variance, so the square-root transformation was used for estimation;
see Figure 14.9. With this transformation, β is estimated by minimizing

n∑

i=1

[√
Yi − exp{β0/2 + (β1/2)Xi}

]2

, (14.26)

where Yi is the ith default frequency and Xi is the ith rating. The square-root
transformation of the model is accomplished by dividing β0 and β1 by 2. Using
TBS regression, the estimated default probability of Aaa bonds is 0.0008%,
only 16% of the estimate given by Bluhm, Overbeck, and Wagner (2003) and
only 40% of the estimate given by nonlinear regression without a transfor-
mation. Of course, a reduction in estimated risk by 84% is a huge change.
This shows how proper statistical modeling—e.g., using all the data and an
appropriate transformation—can have a major impact on financial risk anal-
ysis. TBS allows one to use all the data (for unbiasedness) and, as described
next, to effectively weight the data by the reciprocals of their variances for
high efficiency.

¤
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14.5.1 How TBS Works

TBS in effect weights the data. To appreciation this, we use a Taylor series
linearization4 to obtain

n∑

i=1

[
h(Yi)− h

{
f(Xi; β̂)

}]2

=
n∑

i=1

[
h(1)

{
f(Xi; β̂)

}]2 {
Yi − f(Xi; β̂)

}2

.

The weight of the ith observation is
[
h(1){f(Xi; β̂)}

]2

. Since the best weights
are inverse variances, the most appropriate transformation h solves

Var(Yi|Xi) ∝
[
h(1){f(Xi; β̂)}

]−2

. (14.27)

For example, if h(y) = log(y), then h(1)(y) = 1/y and (14.27) becomes

Var(Yi|Xi) ∝ {f(Xi; β̂)}2, (14.28)

so that the conditional standard deviation of the response is proportional to
its conditional mean. This occurs frequently. For example, if the response is
exponentially distributed then (14.28) must hold. Equation (14.28) holds also
if the response is lognormally distributed and the log-variance is constant. In
this case, it is not surprising that the log transformation is best since the log
transforms to i.i.d. normal noise.

The coefficient of variation of a random variable is the ratio of its stan-
dard deviation to its expected value. When (14.28) holds, the response has a
constant coefficient of variation.

A transformation that causes that conditional variance to be constant is
called the variance-stabilizing transformation. We have just shown that when
the coefficient of variation is constant, then the variance-stabilizing transfor-
mation is the logarithm.

Example 14.7. Poisson responses

Assume Yi|Xi is Poisson distributed with mean f(Xi; β), as might, for
example, happen if Yi were of the number of companies declaring bankruptcy
in a year, with f(Xi;β) modeling how that expected number depends on
macroeconomic variables in Xi. The variance equals the mean for the Poisson
distribution, so

Var(Yi|Xi) = f(Xi;β).

Using the same type of reasoning as in the previous example, it follows that one
should use α = 1/2; the square-root transformation is the variance-stabilizing
transformation for Poisson-distributed responses.

¤
4 A Taylor series linearization of the function h about the point x is h(y) ≈ h(x) +

h(1)(x)(y − x), where h(1) is the first derivative of h. See any calculus textbook
for further discussion of Taylor series.
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14.6 Transforming Only the Response

The so-called Box–Cox transformation model is

Y
(α)
i = β0 + Xi,1β1 + · · ·+ Xi,pβp + εi, (14.29)

where ε1, . . . , εn are i.i.d. N(0, σ2
ε ) for some σε. In contrast to the TBS model,

only the response is transformed. The goal of transforming the response is to
achieve three objectives:

1. a simple model: Y
(α)
i is linear in predictors Xi,1, . . . , Xi,p and in the pa-

rameters β1, . . . , βp;
2. constant residual variance; and
3. Gaussian noise.

In contrast, 2 and 3 but not 1 are the goals of the TBS model.
Model (14.29) was introduced by Box and Cox (1964) who suggested esti-

mation of α by maximum likelihood. The function boxcox in R’s MASS package
will compute the profile log-likelihood for α along with a confidence interval.
Usually, α̂ is taken to be some round number, e.g., −1, −1/2, 0, 1/2, or 1,
in the confidence interval. The reason for selecting one of these numbers is
that then the transformation is readily interpretable, that is, it is the square
root, log, inverse, or some other familiar function. Of course, one can use the
value of α that maximizes the profile log-likelihood if one is not concerned
with having a familiar transformation. After α̂ has been selected in this way,
β0, . . . , βp and σ2

ε can be estimated by regressing Y
(bα)
i on Xi,1, . . . , Xi,p.

Example 14.8. Simulated data—Box Cox transformation

This example uses the simulated data introduced in Example 13.6. The
model is

Y
(α)
i = β0 + β1Xi,1 + β2X

2
i,1 + β3Xi,2 + εi. (14.30)

The profile likelihood for α was produced by the boxcox function in R and
is plotted in Figure 14.10. We see that the MLE is near −1 and −1 is well
within the confidence interval; these results suggest that we use −1/Yi as the
response.

Residual plots with response −1/Yi are shown in Figure 14.11. We see in
panel (a) that there is no sign of heteroskedasticity, since the vertical scatter
of the residuals does not change from left to right. In panels (b) and (c) we
see uniform vertical scatter which shows that the model that is quadratic in
X1 and linear in X2 fits −1/Yi well. Finally, in panel (d), we see that the
residuals appear normally distributed.

¤
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Fig. 14.10. Profile likelihood for the Box–Cox model applied to the simulated data.

14.7 Binary Regression

A binary response Y can take only two values, 0 or 1, which code two possible
outcomes, for example, that a company goes into default on its loans or that
it does not default. Binary regression models the conditional probability that
a binary response is 1, given the values of the predictors Xi,1, . . . , Xi,p. Since
a probability is constrained to lie between 0 and 1, a linear model is not
appropriate for a binary response. However, linear models are so convenient
that one would like a model that has many of the features of a linear model.
This has motivated the development of generalized linear models, often called
GLMs.

Generalized linear models for binary responses are of the form

P (Yi = 1|Xi,1, . . . , Xi,p) = H(β0 + β1Xi,1 + · · ·+ βpXi,p) = H(xT
i β),

where H(x) is a function that increases from 0 to 1 as x increases from −∞
to ∞, that is, H(x) is a CDF, and the last expression uses the vector notation
of (14.3). The most common GLMs for binary responses are probit regression,
where H(x) = Φ(x), the N(0, 1) CDF, and logistic regression, where H(x) is
logistic CDF, which is H(x) = 1/{1+ exp(−x)}. The parameter vector β can
be estimated by maximum likelihood. Assume that conditional on x1, . . . , xn

the binary responses Y1, . . . , Yn are mutually independent. Then, using (A.8),
the likelihood (conditional on x1, . . . , xn) is

n∏

i=1

H
(
xT

i β
)Yi

{
1−H(xT

i β)
}1−Yi

. (14.31)
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Fig. 14.11. Residuals for the Box–Cox model applied to the simulated data.

The MLEs can be found by standard software, e.g., the function glm in R.

Example 14.9. Who gets a credit card?

In this example, we will analyze the data in the CreditCard data set in
R’s AER package. The following variables are included in the data set:

1. card = Was the application for a credit card accepted?
2. reports = Number of major derogatory reports
3. income = Yearly income (in USD 10,000)
4. age = Age in years plus 12ths of a year
5. owner = Does the individual own his or her home?
6. dependents = Number of dependents
7. months = Months living at current address
8. share = Ratio of monthly credit card expenditure to yearly income
9. selfemp = Is the individual self-employed?

10. majorcards = Number of major credit cards held
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11. active = Number of active credit accounts
12. expenditure = Average monthly credit card expenditure
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Fig. 14.12. Histograms of variables for potential use in a model to predict whether
a credit card application will be accepted.

The first variable, card, is binary and will be the response. Variables 2–
8 will be used as predictors. The goal of the analysis is to discover which of
the predictors influences the probability that an application is accepted. R’s
documentation mentions that there are some values of the variable age under
one year. These cases must be in error and they were deleted from the analy-
sis. Figure 14.12 contains histograms of the predictors. The variable share is
highly right-skewed, so log(share) will be used in the analysis. The variable
reports is also extremely right-skewed; most values of reports are 0 or 1 but
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the maximum value is 14. To reduce the skewness, log(reports+1) will be
used instead of reports. The “1” is added to avoid taking the logarithm of 0.
There are no assumptions in regression about the distributions of the predic-
tors, so skewed predictor variables can, in principle, be used. However, highly
skewed predictors have high-leverage points and are less likely to be linearly
related to the response. It is a good idea at least to consider transformation of
highly skewed predictors. In fact, the logistic model was also fit with reports
and share untransformed, but this increased AIC by more than 3 compared
to using the transformed predictors.

First, a logistic regression model is fit with all seven predictors.

Call:

glm(formula = card ~ log(reports + 1) + income + log(share) +

age + owner + dependents + months, family = "binomial",

data = CreditCard_clean)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 21.473930 3.674325 5.844 5.09e-09 ***

log(reports + 1) -2.908644 1.097604 -2.650 0.00805 **

income 0.903315 0.189754 4.760 1.93e-06 ***

log(share) 3.422980 0.530499 6.452 1.10e-10 ***

age 0.022682 0.021895 1.036 0.30024

owneryes 0.705171 0.533070 1.323 0.18589

dependents -0.664933 0.267404 -2.487 0.01290 *

months -0.005723 0.003988 -1.435 0.15130

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1398.53 on 1311 degrees of freedom

Residual deviance: 139.79 on 1304 degrees of freedom

AIC: 155.79

Number of Fisher Scoring iterations: 11

Several of the regressors have large p-values, so stepAIC was used to find a
more parsimonious model. The final step where no more variables were deleted
is

Step: AIC=154.22

card ~ log(reports + 1) + income + log(share) + dependents

Df Deviance AIC

<none> 144.22 154.22

- dependents 1 150.28 158.28

- log(reports + 1) 1 164.18 172.18

- income 1 173.62 181.62

- log(share) 1 1079.61 1087.61
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Below is the fit using the model selected by stepAIC. For convenience later,
each of the regressors was mean-centered; “_c” appended to a variable name
indicates centering.

glm(formula = card ~ log_reports_c + income_c + log_share_c +

dependents_c, family = "binomial", data = CreditCard_clean)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.5238 1.7213 5.533 3.15e-08 ***

log_reports_c -2.8953 1.0866 -2.664 0.00771 **

income_c 0.8717 0.1724 5.056 4.28e-07 ***

log_share_c 3.3102 0.4942 6.698 2.11e-11 ***

dependents_c -0.5506 0.2505 -2.198 0.02793 *

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1398.53 on 1311 degrees of freedom

Residual deviance: 144.22 on 1307 degrees of freedom

AIC: 154.22

Number of Fisher Scoring iterations: 11

It is important to understand what the logistic regression model is telling
us about the probability of an application being accepted. Qualitatively, we see
that the probability of having an application accepted increases with income
and share and decreases with reports and dependents. To understand these
effects quantitatively, first consider the intercept. Since the predictors have
been mean-centered, the probability of an application being accepted when
all variables are at their mean is simply H(9.5238) = 0.999927. Since reports
and dependents are integer-valued and cannot exactly equal their means,
this probability only provides an idea of what the intercept 9.5238 signifies.
Figure 14.13 plots the probability that a credit card application is accepted as
functions of reports, income, log(share), and dependents. In each plot, the
other variables are fixed at their means. Clearly, the variable with the largest
effect is share, the ratio of monthly credit card expenditure to yearly income.
We see that applicants who spend little of their income through credit cards
are unlikely to have their applications accepted.

In Figure 14.14, panel (a) is a plot of card, which takes value 0 if an
application is rejected and 1 if it is accepted, versus log(share). It should
be emphasized that panel (a) is a plot of the data, not a fit from the model.
We see that an application is always accepted if log(share) exceeds −6,
which translates into share exceeding 0.0025. Thus, in this data set, among
the group of applicants whose average monthly credit card expenses exceeded
0.25% of yearly income, all credit card applications were accepted. How do
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Fig. 14.13. Plots of probabilities of a credit card application being accepted as
functions of single predictors with other predictors fixed at their means. The variables
vary over their ranges in the data.

these applicants look on the other variables? Panels (b)–(d) plot reports,
income, and majorcards versus log(share). The variable majorcards was
not used in the logistic regression analysis but is included here.

An odd feature in Figure 14.14(c) is a group of points following a smooth
curve. This is a group of 316 applications who had the product of share times
income exactly equal to 0.0012, the minimum value of this product. Oddly,
share is never 0. Perhaps because of some coding artifact, these 316 had 0
credit card expenditures rather than the reported values. Another interesting
feature of the data is that among these 316 applications, only 21 were accepted.
Among the remaining 996 applications, all were accepted.

Besides illustrating logistic regression, this example demonstrates that
real-world data often contain errors, or perhaps we should call them idiosyn-
cracies, and that a thorough graphical analysis of the data is always a good
thing.

¤
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Fig. 14.14. Plots of log(share) versus other variables.

14.8 Linearizing a Nonlinear Model

Sometimes a nonlinear model can be linearized by applying a transformation
to both the model and the response. In such cases, should one use a linearizing
transformation or, instead, apply nonlinear regression to the original model?
The answer is that linearization can sometimes be a good thing, but not
always. Fortunately, residual analysis can help us decide whether a linearizing
transformation should be used.

For example, consider the model

Yi = β1 exp(β2Xi). (14.32)

This model is “equivalent” to the linear model

log(Yi) = α + β2Xi, (14.33)

where α = log(β1). “Equivalent” is in quotes, because the two models are no
longer equivalent when noise is present.
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Suppose (14.32) has i.i.d. additive noise, so that

Yi = β1 exp(β2Xi) + εi, (14.34)

where ε1, . . . , εn are i.i.d. Then applying the log transformation to (14.33)
gives us the model

log(Yi) = log {β1 exp(β2Xi) + εi} (14.35)

with nonadditive noise. Because the noise is not additive, the variation of
log(Yi) about the model log {β1 exp(β2Xi)} will have nonconstant variation
and skewness, even if ε1, . . . , εn are i.i.d. Gaussian.

Example 14.10. Linearizing transformation—Simulated data

Figure 14.15(a) shows a simulated sample from model (14.32) with β1 = 1,
β2 = −1, and σε = 0.02. The Xi are equally spaced from −1 to 2.5 by incre-
ments of 0.025. Panel (b) shows log(Yi) plotted against Xi. One can see that
the transformation has linearized the relationship between the variables but
has introduced nonconstant residual variation. Panels (c) and (d) show resid-
ual plots using the linearized model. Notice the severe nonconstant variance
and the nonlinear normal plot.

¤

Linearizing is not always a bad thing. Suppose the noise is multiplicative
and lognormal so that (14.32) becomes

Yi = β1 exp(β2Xi) exp(εi) = β1 exp(β2Xi + εi), (14.36)

where ε1, . . . , εn are i.i.d. Gaussian. Then the log transformation converts
(14.36) to

log(Yi) = α + β2Xi + εi, (14.37)

which is a linear model satisfying all of the usual assumptions.
In summary, a linearizing transformation may or may not cause the data

to better follow the assumptions of regression analysis. Residual analysis can
help one decide whether a transformation is appropriate.

14.9 Robust Regression

A robust regression estimator should be relatively immune to two types of
outliers. The first are bad data, meaning contaminants that are not part of
the population, for example, due to undetected recording errors. The second
are outliers due to the noise distribution having heavy tails. There are a large
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Fig. 14.15. Example where the log transformation linearizes a model but induces
substantial heteroskedasticity and skewness. (a) Raw data. (b) Data after log trans-
formation of the response. (c) Normal plot of residuals after linearization. (d) Ab-
solute residual plot after linearization.

number of robust regression estimators, and their sheer number has been an
impediment to their use. Many data analysts are confused as to which robust
estimator is best and consequently are reluctant to use any. Rather than
describe many of these estimators, which might contribute to this problem,
we mention just one, the least-trimmed sum of squares estimator, often called
the LTS.

Recall the trimmed mean, a robust estimator of location for a univariate
sample. The trimmed mean is simply the mean of the sample after a certain
percentage of the largest observations and the same percentage of the smallest
observations have been removed. This trimming removes some non-outliers,
which, under the ideal conditions of no outliers, causes some loss of precision,
but not an unacceptable amount. The trimming also removes outliers, and
this causes the estimator to be robust. Trimming is easy for a univariate
sample because we know which observations to trim, the very largest and
the very smallest. This is not the case in regression. Consider the data in
Figure 14.16. There are 26 observations that fall closely along a line plus two
residual outliers that are far from this line. Notice that the residual outliers
have neither extreme X-values nor extreme Y -values. They are outlying only
relative to the linear regression fit to the other data.
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The residual outliers are obvious in Figure 14.16 because there is only a
single predictor. When there are many predictors, outliers can only be iden-
tified when we have a model and good estimates of the parameters in that
model. The difficulty, then, is that estimation of the parameters requires the
identification of the outliers, and vice versa. One can see from the figure that
the least-squares line is changed by including the residual outliers in the data
used for estimation. In some cases, e.g., Figure 13.1(b), the effect of a residual
outlier can be so severe that it totally changes the least-squares estimates.
This is likely to happen if the residual outlier occurs at a high-leverage point.

The LTS estimator simultaneously identifies residual outliers and estimates
robustly the parameters of a model. Let 0 < α ≤ 1/2 be the trimming propor-
tion and let k equal nα rounded to an integer. The trimmed sum of squares
about a set of values of the regression parameters is defined as follows: Form
the residuals from these parameters, square the residuals, then order the
squared residuals and remove the k largest, and finally sum the remaining
squared residuals. The LTS estimates are the set of parameter values that
minimize the trimmed sum of squares. The LTS estimator can be computed
using the ltsReg function in R’s robust package.

If the noise distribution is heavy-tailed, then an alternative to a robust
regression analysis is to use a heavy-tailed distribution as a model for the noise
and then to estimate the parameters by maximum likelihood. For example,
one could assume that the noise has a double-exponential or t-distribution. In
the latter case, one could either estimate the degrees of freedom or simply fix
the degrees of freedom at a low value, which implies heavier tails; see Lange,
Little, and Taylor (1989). This strategy is called robust modeling rather than
robust estimation. The distinction is that in robust estimation one assumes
a fairly restrictive model such as a normal noise distribution, but finds a
robust alternative to maximum likelihood. In robust modeling, one uses a
more flexible model so that maximum likelihood estimation is itself robust.

Another possibility is that residual outliers are due to nonconstant stan-
dard deviations, with the outliers mainly in the data with a higher noise
standard deviation. The remedy to this problem is to apply a variance stabi-
lization transformation or to model the nonconstant standard deviation, say
by one of the GARCH models discussed in Chapter 18.

Example 14.11. Simulated data in Example 13.1—Robust regression

Figure 14.17 compares least-squares and LTS fits for the simulated data
in Example 13.1. In panel (a) with no residuals outliers, the two fits coincide.
In panels (b) and (c), the LTS fits are not affected by the residual outliers
and fit the nonoutlying data very well.

¤
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14.10 Regression and Best Linear Prediction

14.10.1 Best Linear Prediction

Often we observe a random variable X and we want to predict an unobserved
random variable Y that is related to X. For example, Y could be the future
price of an asset and X might be the most recent change in that asset’s price.
Prediction has many practical uses, and it is also important in theoretical
studies.

The predictor of Y that minimizes the expected squared prediction error is
E(Y |X) (see Section A.19), but E(Y |X) is often a nonlinear function of X and
difficult to compute. A common solution to this difficulty it to consider only
linear functions of X as possible predictors. This is called linear prediction.
In this section, we will show that linear prediction is closely related to linear
regression.

A linear predictor of Y based on X is a function β0 + β1X where β0 and
β1 are parameters that we can choose. Best linear prediction means finding
β0 and β1 so that expected squared prediction error, which is given by

E{Y − (β0 + β1X)}2, (14.38)

is minimized. Doing this makes the predictor as close as possible, on average,
to Y . The expected squared prediction error can be rewritten as

E{Y − (β0 + β1X)}2

= E(Y 2)− 2β0E(Y )− 2β1E(XY ) + β2
0 + 2β0β1E(X) + β2

1E(X2).

To find the minimizers, we set the partial derivatives of this expression to zero
to obtain

0 = −E(Y ) + β0 + β1E(X), (14.39)
0 = −E(XY ) + β0E(X) + β1E(X2). (14.40)

After some algebra we find that

β1 = σXY /σ2
X (14.41)

and
β0 = E(Y )− β1E(X) = E(Y )− σXY /σ2

X E(X). (14.42)

One can check that the matrix of second derivatives of (14.38) is positive
definite so that the solution (β0, β1) to (14.39) and (14.40) minimizes (14.38).
Thus, the best linear predictor of Y is
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Ŷ Lin(X) = β0 + β1X = E(Y ) +
σXY

σ2
X

{X − E(X)}. (14.43)

In practice, (14.43) cannot be used directly unless E(X), E(Y ), σXY , and σ2
X

are known, which is often not the case. Linear regression analysis is essentially
the use of (14.43) with these unknown parameters replaced by least-squares
estimates—see Section 14.10.3.

14.10.2 Prediction Error in Best Linear Prediction

In this section, assume that Ŷ is the best linear predictor of Y . The prediction
error is Y − Ŷ . It is easy to show that E{Y − Ŷ } = 0 so that the prediction
is unbiased. With a little algebra we can show that the expected squared
prediction error is

E{Y − Ŷ }2 = σ2
Y −

σ2
XY

σ2
X

= σ2
Y (1− ρ2

XY ). (14.44)

How much does X help us predict Y ? To answer this question, notice first
that if we do not observe X, then we must predict Y using a constant, which
we denote by c. It is easy to show that the best predictor has c equal to E(Y ).
Notice first that the expected squared prediction error is E(Y − c)2. Some
algebra shows that

E(Y − c)2 = Var(Y ) + {c− E(Y )}2, (14.45)

which, since Var(Y ) does not depend on c, shows that the expected squared
prediction error is minimized by c = E(Y ). Thus, when X is unobserved, the
best predictor of Y is E(Y ) and the expected squared prediction error is σ2

Y ,
but when X is observed, then the expected squared prediction error is smaller,
σ2

Y (1− ρ2
XY ). Therefore, ρ2

XY is the fraction by which the prediction error is
reduced when X is known. This is an important fact that we will see again.

Result 14.10.1 Prediction when Y is independent of all available informa-
tion:

If Y is independent of all presently available information, that is, Y is
independent of all random variables that have been observed, then the best
predictor of Y is E(Y ) and the expected value of the squared prediction error
is σ2

Y . We say that Y “cannot be predicted” when there exists no predictor
better than its expected value.

14.10.3 Regression Is Empirical Best Linear Prediction

For the case of a single predictor, note the similarity between the best linear
predicto,
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Ŷ = E(Y ) +
σXY

σ2
X

{X − E(X)},

and the least-squares line,

Ŷ = Y +
sXY

s2
X

(X −X).

The least-squares line is a sample version of the best linear predictor. Also,
ρ2

XY , the squared correlation between X and Y , is the fraction of variation in
Y that can be predicted using the linear predictor, and the sample version of
ρ2

XY is R2 = r2
XY = r2bY Y

.

14.10.4 Multivariate Linear Prediction

So far we have assumed that there is only a single random variable, X, avail-
able to predict Y . More commonly, Y is predicted using a set of observed
random variables, X1, . . . , Xn.

Let Y and X by p × 1 and q × 1 random vectors. As before in Section
7.3.1, define

ΣY,X = E{Y − E(Y )}{X − E(X)}T,

so that the i, jth element of ΣY,X is the covariance between Yi and Xj . Then
the best linear predictor of Y given X is

Ŷ = E(Y ) + ΣY,XΣ−1
X {X − E(X)}. (14.46)

Note the similarity between (14.43) and (14.46), the best linear predictors in
the univariate and multivariate cases.

The sample analog of multivariate linear prediction is multiple regression.

14.11 Regression Hedging

An interesting application of regression is determining the optimal hedge of
a bond position. Market makers buy securities at a bid price and make a
profit by selling them at a higher ask price. Suppose a market maker has just
purchased a bond from a pension fund. Ideally, the market maker would sell
the bond immediately after purchasing it. However, many bonds are illiquid,
so it may take some time before the bond can be sold. During the period that
a market maker is holding a bond, the market maker is at risk that the bond
price could drop due to a change in interest rates. The change could wipe out
the profit due to the small bid–ask spread. The market maker would prefer to
hedge this risk by assuming another risk which is likely to be in the opposite
direction. To hedge the interest-rate risk of the bond being held, the market
maker can sell other, more liquid, bonds short. Suppose that the market maker
decides to sell short a 30-year Treasury bond, which is more liquid.
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Regression hedging determines the optimal amount of the 30-year Treasury
to sell short to hedge the risk of the bond just purchased. The goal is that
the price of the portfolio long in the first bond and short in the Treasury
bond changes as little as possible as yields change. Suppose the first bond has
a maturity of 25 years. One can determine the sensitivity of price to yield
changes using results from Section 3.8. Let y30 be the yield on 30-year bonds,
let P30 be the price of $1 in face amount of 30-year bonds, and let DUR30 be
the duration. The change in price, ∆P30, and the change in yield, ∆y30, are
related by

∆P30 ≈ −P30 DUR30 ∆y30

for small values of ∆y30. A similar result holds for 25-year bonds.
Consider a portfolio that holds face amount F25 in 25-year bonds and is

short face amount F30 in 30-year bonds. The value of the portfolio is

F25P25 − F30P30.

If ∆y25 and ∆y30 are the changes in the yields, then the change in value of
the portfolio is approximately

{F30P30 DUR30 ∆y30 − F25P25 DUR25 ∆y25}. (14.47)

Suppose that the regression of ∆y30 on ∆y25 is

∆y30 = β̂0 + β̂1∆y25 (14.48)

and β̂0 ≈ 0, as is usually the case for regression of changes in interest rates,
as in Example 12.1. Substituting (14.48) into (14.47), the change in price of
the portfolio is approximately

{F30P30 DUR30β̂1 − F25P25 DUR25}∆y25. (14.49)

This change is approximately zero for all values of ∆y25 if

F30 = F25
P25 DUR25

P30 DUR30β̂1

. (14.50)

Equation (14.50) tells us how much face value of the 30-year bond to sell short
in order to hedge F25 face value of the 25-year bond. All quantities on the
right-hand side of (14.50) are known or readily calculated: F25 is the current
position in the 25-year bond, P25 and P30 are known bond prices, calculation
of DUR25 and DUR30 is discussed in Chapter 3, and β̂1 is the slope of the
regression of ∆y30 on ∆y25.

The higher the R2 of the regression, the better the hedge works. Hedging
with two or more liquid bonds, say a 30-year and a 10-year, can be done by
multiple regression and might produce a better hedge.
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14.12 Bibliographic Notes

Atkinson (1985) has nice coverage of transformations and residual plotting and
many good examples. For more information on nonlinear regression, see Bates
and Watts (1988) and Seber and Wild (1989). Graphical methods for detect-
ing a nonconstant variance, transform-both-sides regression, and weighting
are discussed in Carroll and Ruppert (1988). Hosmer and Lemeshow (2000)
is an in-depth treatment of logistic regression. Faraway (2006) covers general-
ized linear models including logistic regression. See Tuckman (2002) for more
discussion of regression hedging.

The Nelson–Siegel and Svensson models are from Nelson and Siegel (1985)
and Svensson (1994).
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14.14 R Lab

14.14.1 Regression with ARMA Noise

This section uses the USMacroG data set used earlier in Section 12.12.1. In the
earlier section, we did not investigate residual correlation, but now we will.
The model will be the regression of changes in unemp = unemployment rate
on changes in government = real government expenditures and changes in
invest = real investment by the private sector. Run the following R code to
read the data, compute differences, and then fit a linear regression model with
AR(1) errors.

library(AER)
data("USMacroG")
MacroDiff= as.data.frame(apply(USMacroG,2,diff))
attach(MacroDiff)
fit1 = arima(unemp,order=c(1,0,0),

xreg=cbind(invest,government))

Problem 1 Fit a linear regression model using lm, which assumes uncorre-
lated errors. Compare the two models by AIC and residual ACF plots. Which
model fits better?

Problem 2 What are the values of BIC for the model with uncorrelated errors
and for the model with AR(1) errors? Does the conclusion in Problem 1 about
which model fits better change if one uses BIC instead of AIC?

Problem 3 Does the model with AR(2) noise or the model with ARMA(1,1)
noise offer a better fit than the model with AR(1) noise?

14.14.2 Nonlinear Regression

In this section, you will be fitting short-rate models. Let rt be the short rate
(the risk-free rate for short-term borrowing) at time t. It is assumed that the
short rate satisfies the stochastic differential equation

drt = µ(t, rt) dt + σ(t, rt) dWt, (14.51)

where µ(t, rt) is a drift function, σ(t, rt) is a volatility function, and Wt is a
standard Brownian motion. We will use a discrete approximation to (14.51):

(rt − rt−1) = µ(t− 1, rt−1) + σ(t− 1, rt−1) εt−1 (14.52)

where ε1, . . . , εn−1 are i.i.d. N(0, 1).
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We will start with the Chan, Karolyi, Longstaff, and Sanders (1992)
(CKLS) model, which assumes that

µ(t, r) = µ(r) = a (θ − r) (14.53)

for some unknown parameters a and θ, and

σ(t, r) = σrγ (14.54)

for some σ and γ. Be careful to distinguish between the volatility function
σ(t, r) and the constant volatility parameter σ.

We will use the Irates data set in the Ecdat package. This data set has
interests rates for maturities from 1 to 120 months. We will use the first
column, which has the one-month maturity rates, since we want the short
rate.

Run the following code to input the data, compute the lagged and differ-
enced short-rate series, and construct some basic plots.

library(Ecdat)
data(Irates)
r1 = Irates[,1]
n = length(r1)
lag_r1 = lag(r1)[-n]
delta_r1 = diff(r1)
n = length(lag_r1)
par(mfrow=c(3,2))
plot(r1,main="(a)")
plot(delta_r1,main="(b)")
plot(delta_r1^2,main="(c)")
plot(lag_r1,delta_r1,main="(d)")
plot(lag_r1,delta_r1^2,main="(e)")

Problem 4 What is the maturity of the interest rates in the first column?
What is the sampling frequency of this data set—daily, weekly, monthly, or
quarterly? What country are the data from? Are the rates expressed as per-
centages or fractions (decimals)?

In the plot you have just created, panels (a), (b), and (c) show how the
short rate, changes in the short rate, and squared changes in the short rate
depend on time. The plots of changes in the short rate are useful for choosing
the drift µ(t− 1, rt−1) while squared changes in the short rate are helpful for
selecting the volatility σ(t− 1, rt−1).

Problem 5 Model (14.53) states that µ(t, r) = µ(r), that is, that the drift
does not depend on t. Use your plots to discuss whether this assumption seems
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valid. Assuming for the moment that this assumption is valid, any trend in
the plot in panel (d) would give us information about the form of µ(r). Do
you see any trend?

Now run the following code to fit model (14.53) and fill in the first two panels
of a figure. This figure will be continued next.

# CKLS (Chan, Karolyi, Longstaff, Sanders)

nlmod_CKLS = nls(delta_r1 ~ a * (theta-lag_r1),
start=list(theta = 5, a=.01),
control=list(maxiter=200))

param = summary(nlmod_CKLS)$parameters[,1]
par(mfrow=c(2,2))
t = seq(from=1946,to =1991+2/12,length=n)
plot(lag_r1,ylim=c(0,16),ylab="rate and theta",

main="(a)",type="l")
abline(h=param[1],lwd=2,col="red")

Problem 6 What are the estimates of a and θ and their 95% confidence
intervals?

Note that the nonlinear regression analysis estimates σ2(r), not σ(r), since
the response variable is the squared residual. Here A = σ2 and B = 2γ.

res_sq = residuals(nlmod_CKLS)^2
nlmod_CKLS_res <- nls(res_sq ~ A*lag_r1^B,

start=list(A=.2,B=1/2) )
param2 = summary(nlmod_CKLS_res)$parameters[,1]
plot(lag_r1,sqrt(res_sq),pch=5,ylim=c(0,6),

main="(b)")
attach(as.list(param2))
curve(sqrt(A*x^B),add=T,col="red",lwd=3)

Problem 7 What are the estimates of σ and γ and their 95% confidence
intervals?

Finally, refit model (14.53) using weighted least squares.

nlmod_CKLS_wt = nls(delta_r1 ~ a * (theta-lag_r1),
start=list(theta = 5, a=.01),
control=list(maxiter=200),
weights=1/fitted(nlmod_CKLS_res))
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plot(lag_r1,ylim=c(0,16),ylab="rate and theta",
main="(c)",type="l")

param3 = summary(nlmod_CKLS_wt)$parameters[,1]
abline(h=param3[1],lwd=2,col="red")

Problem 8 How do the unweighted estimate of θ shown in panel (a) and
the weighted estimate plotted in panel (d) differ? Why do they differ in this
manner?

14.14.3 Response Transformations

This section uses the HousePrices data set in the AER package. This is a
cross-sectional data set on house prices and other features, e.g., the number
of bedrooms, of houses in Windsor, Ontario. The data were gathered during
the summer of 1987. Accurate modeling of house prices is important for the
mortgage industry. Run the code below to read the data and regress price on
the other variables; the period on the right-hand side of the formula “price~.”
specifies that the predictors should include all variables except, of course, the
response.

library(AER)
data(HousePrices)
fit1 = lm(price~.,data=HousePrices)
summary(fit1)

Next construct a profile log-likelihood plot for the transformation parameter
α in model (14.29)

library(MASS)
fit2=boxcox(fit1,xlab=expression(alpha))

Problem 9 What is the MLE of α? (Hint: Type ?boxcox to learn what is
returned by this function.)

Next, fit a linear model with price transformed by α̂ (the MLE). Here the
function box.cox computes a Box–Cox transformation for a given value of
α and must be distinguished from boxcox, which computes the profile log-
likelihood for α.

library(car)
fit3=lm(box.cox(price,alpha)~.,data=HousePrices)
summary(fit3)
AIC(fit1)
AIC(fit3)
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Problem 10 Does the Box–Cox transformation offer a substantial improve-
ment in fit compared to the regression with no transformation of price?

Problem 11 Would it be worthwhile to check the residuals for correlation?

14.14.4 Binary Regression: Who Owns an Air Conditioner?

This section uses the HousePrices data set used in Section 14.14.3. The goal
here is to investigate how the presence or absence of air conditioning is related
to the other variables. The code below fits a logistic regression model to all
potential predictor variables and then uses stepAIC to find a parsimonious
model.

library(AER)
data(HousePrices)
fit1 = glm(aircon~.,family="binomial",data=HousePrices)
summary(fit1)
library(MASS)
fit2 = stepAIC(fit1)
summary(fit2)

Problem 12 Which variables are most useful for predicting whether a home
has air conditioning? Describe qualitatively the relationships between these
variables and the variable aircon. Are there any variables in the model selected
by stepAIC that you think might be dropped?

Problem 13 Estimate the probability that a house will have air conditioning
if it has the following characteristics:

price lotsize bedrooms bathrooms stories driveway recreation
42000 5850 3 1 2 yes no
fullbase gasheat garage prefer
yes no 1 no

(Hint: The R function plogis computes the logistic function.)

14.15 Exercises

1. When we were finding the best linear predictor of Y given X, we derived
the equations

0 = −E(Y ) + β0 + β1E(X)
0 = −E(XY ) + β0E(X) + β1E(X2).
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Show that their solution is
β1 =

σXY

σ2
X

and
β0 = E(Y )− β1E(X) = E(Y )− σXY

σ2
X

E(X).

2. Suppose one has a long position of F20 face value in 20-year Treasury
bonds and wants to hedge this with short positions in both 10- and 30-
year Treasury bonds. The prices and durations of 10-, 20-, and 30-year
Treasury bonds are P10, DUR10, P20, DUR20, P30, and DUR30 and are
assumed to be known. A regression of changes in the 20-year yield on
changes in the 10- and 30-year yields is ∆y20 = β̂0 + β̂1∆y10 + β̂2∆y30.
The p-value of β̂0 is large and it is assumed that β0 is close enough to
zero to be ignored. What face amounts F10 and F30 of 10- and 30-year
Treasury bonds should be shorted to hedge the long position in 20-year
Treasury bonds? (Express F10 and F30 in terms of the known quantities
P10, P20, P30, DUR10, DUR20, DUR30, β̂1, β̂2, and F20.)

3. The maturities (T ) in years and prices in dollars of zero-coupon bonds are
in file ZeroPrices.txt on the book’s website. The prices are expressed
as percentages of par. A popular model is the Nelson–Siegel family with
forward rate

r(T ; θ1, θ2, θ3, θ4) = θ1 + (θ2 + θ3T ) exp(−θ4T ).

Fit this forward rate to the prices by nonlinear regression using R’s optim
function.
(a) What are your estimates of θ1, θ2, θ3, and θ4?
(b) Plot the estimated forward rate and estimated yield curve on the same

figure. Include the figure with your work.
4. Least-squares estimators are unbiased in linear models, but in nonlinear

models they can be biased. Simulation studies (including bootstrap re-
sampling) can be used to estimate the amount of bias. In Example 14.3,
the data were simulated with r = 0.06 and r̂ = 0.0585. Do you think this
is a sign of bias or simply due to random variability? Justify your answer.
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Cointegration

15.1 Introduction

Cointegration analysis is a technique that is frequently applied in economet-
rics. In finance it can be used to find trading strategies based on mean-
reversion.

Suppose one could find a stock whose price (or log-price) series was sta-
tionary and therefore mean-reverting. This would be a wonderful investment
opportunity. Whenever the price was below the mean, one could buy the stock
and realize a profit when the price returned to the mean. Similarly, one could
realize profits by selling short whenever the price was above the mean. Alas,
returns are stationary but not prices. We have seen that log-prices are inte-
grated. However, not all is lost. Sometimes one can find two or more assets
with prices so closely connected that a linear combination of their prices is
stationary. Then, a portfolio using as portfolio weights the cointegrating vec-
tor, which is the vector of coefficients of this linear combination, will have a
stationary price. Cointegration analysis is a means for finding cointegration
vectors.

Two time series, Y1,t and Y2,t, are cointegrated if each is I(1) but if there
exists a λ such that Y1,t−λY2,t is stationary. For example, the common trends
model is that

Y1,t = β1Wt + ε1,t,

Y2,t = β2Wt + ε2,t,

where β1 and β2 are nonzero, the trend Wt common to both series is I(1),
and the noise processes ε1,t and ε2,t are I(0). Because of the common trend,
Y1,t and Y2,t are nonstationary but there is a linear combination of these two
series that is free of the trend so they are cointegrated. To see this, note that
if λ = β1/β2, then

β2(Y1,t − λY2,t) = β2Y1,t − β1Y2,t = β2ε1,t − β1ε2,t (15.1)

is free of the trend Wt and therefore is I(0).

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_15, © Springer Science+Business Media, LLC 2011 
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The definition of cointegration extends to more than two time series. A d-
dimensional multivariate time series is cointegrated of order r if the component
series are I(1) but r independent linear combinations of the components are
I(0) for some r, 0 < r ≤ d. Somewhat different definitions of cointegration
exist, but this one is best for our purposes.

In Section 13.2.4 we saw the danger of spurious regression when the resid-
uals are integrated. This problem should make one cautious about regression
with nonstationary time series. However, if Yt is regressed on Xt and the two
series are cointegrated, then the residuals will be I(0) so that least-squares
estimator will be consistent.

The Phillips–Ouliaris cointegration test regresses one integrated series on
others and applies the Phillips–Perron unit root test to the residuals. The
null hypothesis is that the residuals are unit root nonstationary, which implies
that the series are not cointegrated. Therefore, a small p-value implies that
the series are cointegrated and therefore suitable for regression analysis. The
residuals will still be correlated and so they should be modeled as such; see
Section 14.1.
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Fig. 15.1. Time series plots of the five yields and the residuals from a regression of
the 1-year yields on the other four yields. Also, a ACF plot of the residuals.

Example 15.1. Phillips–Ouliaris test on bond yields

This example uses three-month, six-month, one-year, two-year, and three-
year bond yields recorded daily from January 2, 1990 to October 31, 2008, for a
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total of 4714 observations. The five yields series are plotted in Figure 15.1, and
one can see that they track each other somewhat closely. This suggests that the
five series may be cointegrated. The one-year yields were regressed on the four
others and the residuals and their ACF are also plotted in Figure 15.1. The
two residual plots are ambiguous about whether the residuals are stationary,
so a test of cointegration would be helpful.

Next, the Phillips–Ouliaris test was run using the R function po.test in
the tseries package.

Phillips-Ouliaris Cointegration Test

data: dat[, c(3, 1, 2, 4, 5)]

Phillips-Ouliaris demeaned = -323.546, Truncation lag

parameter = 47, p-value = 0.01

Warning message:

In po.test(dat[, c(3, 1, 2, 4, 5)]) : p-value smaller

than printed p-value

The p-value is computed by interpolation if it is within the range of a
table in Phillips and Ouliaris (1990). In this example, the p-value is outside
the range and we know only that it is below 0.01, the lower limit of the table.
The small p-value leads to the conclusion that the residuals are stationary
and so the five series are cointegrated.

Though stationary, the residuals have a large amount of autocorrelation
and may have long-term memory. They take a long time to revert to their
mean of zero. Devising a profitable trading strategy from these yields seems
problematic.

¤

15.2 Vector Error Correction Models

The regression approach to cointegration is somewhat unsatisfactory, since
one series must be chosen as the dependent variable, and this choice must be
somewhat arbitrary. In Example 15.1, the middle yield, ordered by maturity,
was used but for no compelling reason. Moreover, regression will find only one
cointegration vector, but there could be more than one.

An alternative approach to cointegration that treats the series symmet-
rically uses a vector error correction model (VECM). In these models, the
deviation from the mean is called the “error” and whenever the stationary
linear combination deviates from its mean, then it is pushed back toward its
mean (the error is “corrected”).

The idea behind error correction is simplest when there are only two series,
Y1,t and Y2,t. In this case, the error correction model is
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∆Y1,t = φ1(Y1,t−1 − λY2,t−1) + ε1,t, (15.2)
∆Y2,t = φ2(Y1,t−1 − λY2,t−1) + ε2,t, (15.3)

where ε1,t and ε2,t are white noises. Subtracting λ times (15.3) from (15.2)
gives

∆(Y1,t − λY2,t) = (φ1 − λφ2)(Y1,t−1 − λY2,t−1) + (ε1,t − λε2,t). (15.4)

Let Ft denote the information set at time t. If (φ1 − λφ2) < 0, then
E {∆(Y1,t − λY2,t)|Ft} is opposite in sign to Y1,t−1 − λY2,t−1. This causes
error correction because whenever Y1,t−1 − λY2,t−1 is positive, its expected
change is negative and vice versa.

A rearrangement of (15.4) shows that Y1,t−1−λY2,t−1 is an AR(1) process
with coefficient 1+φ1−λφ2. Therefore, the series Y1,t−λY2,t is I(0), unit-root
nonstationary, or an explosive series in the cases where |1 + φ1 − λφ2| is less
than 1, equal to 1, and greater than 1, respectively.

If φ1 − λφ2 > 0, then 1 + φ1 − λφ2 > 1 and Y1,t − λY2,t is explosive. If
φ1 − λφ2 = 0, then 1 + φ1 − λφ2 = 1 and Y1,t − λY2,t is a random walk. If
φ1 − λφ2 < 0, then 1 + φ1 − λφ2 < 1 and Y1,t − λY2,t is stationary, unless
φ1 − λφ2 < −2 so that 1 + φ1 − λφ2 ≤ −1.

The case φ1 − λφ2 ≤ −2 is “over-correction.” The change in Y1,t − λY2,t

is in the correct direction but too large, so the series oscillates in sign but
diverges to ∞ in magnitude.

Example 15.2. Simulation of error correction model

Model (15.2)–(15.3) was simulated with φ1 = 0.5, φ2 = 0.55, and λ = 1.
A total of 5000 observations was simulated, but, for visual clarity, only every
10th observation is plotted in Figure 15.2. Neither Y1,t nor Y2,t is stationary,
but Y1,t−λY2,t is stationary. Notice how closely Y1,t and Y2,t track each other.

¤

To see how to generalize error correction to more than two series, it is useful
to rewrite equations (15.2) and 15.3) in vector form. Let Y t = (Y1,t, Y2,t)T

and εt = (ε1,t, ε2,t)T. Then

∆Y t = αβTY t−1 + εt, (15.5)

where

α =
(

φ1

φ2

)
and β =

(
1
−λ

)
, (15.6)

so that β is the cointegration vector and α specifies the speed of mean-
reversion and is called the loading matrix or adjustment matrix .
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Fig. 15.2. Simulation of an error correction model. 5000 observations were simu-
lated but only every 10th is plotted.

Model (15.5) also applies when there are d series so that Y t and εt d-
dimensional. In this case β and α are each full-rank d× r matrices for some
r ≤ d which is the number of linearly independent cointegration vectors. The
columns of β are the cointegration vectors.

Model (15.5) is a vector AR(1) [that is, VAR(1)] model but, for added
flexibility, can be extended to a VAR(p) model, and there are several ways to
do this. We will use the notation and the second of two forms of the VECM
from the function ca.jo in R’s urca package. This VECM is

∆Y t = Γ 1∆Y t−1 + · · ·+ Γ p−1∆Y t−p+1 + Π Y t−1 + µ + ΦDt + εt, (15.7)

where µ is a mean vector, Dt is a vector of nonstochastic regressors, and

Π = αβT. (15.8)

As before, β and α are each full-rank d×r matrices and α is called the loading
matrix.

It is easy to show that the columns of β are the cointegration vectors.
Since Y t is I(1), ∆Y t on the left-hand side of (15.7) is I(0) and therefore
Π Y t−1 = αβT Y t−1 on the right-hand side of (15.7) is also I(0). It follows
that each of the r components of βT Y t−1 is I(0).

Example 15.3. VECM test on bond yields

A VECM was fit to the bond yields using R’s ca.jo function. The output is
below. The eigenvalues are used to test null hypotheses of the form H0: r ≤ r0.
The values of the test statistics and critical values (for 1%, 5%, and 10%
level tests) are listed below the eigenvalues. The null hypothesis is rejected
when the test statistic exceeds the critical level. In this case, regardless of
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whether one uses a 1%, 5%, or 10% level test, one accepts that r is less than
or equal to 3 but rejects that r is less than or equal to 2, so one concludes
that r = 3. Although five cointegration vectors are printed, only the first three
would be meaningful. The cointegration vectors are the columns of the matrix
labeled “Eigenvectors, normalised to first column.” The cointegration vectors
are determined only up to multiplication by a nonzero scalar and so can be
normalized so that their first element is 1.

######################

# Johansen-Procedure #

######################

Test type: maximal eigenvalue statistic (lambda max),

with linear trend

Eigenvalues (lambda):

[1] 0.03436 0.02377 0.01470 0.00140 0.00055

Values of test statistic and critical values of test:

test 10pct 5pct 1pct

r <= 4 | 2.59 6.5 8.18 11.6

r <= 3 | 6.62 12.9 14.90 19.2

r <= 2 | 69.77 18.9 21.07 25.8

r <= 1 | 113.36 24.8 27.14 32.1

r = 0 | 164.75 30.8 33.32 38.8

Eigenvectors, normalised to first column:

(These are the cointegration relations)

X3mo.l2 X6mo.l2 X1yr.l2 X2yr.l2 X3yr.l2

X3mo.l2 1.000 1.00 1.00 1.0000 1.000

X6mo.l2 -1.951 2.46 1.07 0.0592 0.897

X1yr.l2 1.056 14.25 -3.95 -2.5433 -1.585

X2yr.l2 0.304 -46.53 3.51 -3.4774 -0.118

X3yr.l2 -0.412 30.12 -1.71 5.2322 1.938

Weights W:

(This is the loading matrix)

X3mo.l2 X6mo.l2 X1yr.l2 X2yr.l2 X3yr.l2

X3mo.d -0.03441 -0.002440 -0.011528 -0.000178 -0.000104

X6mo.d 0.01596 -0.002090 -0.007066 0.000267 -0.000170

X1yr.d -0.00585 -0.001661 -0.001255 0.000358 -0.000289

X2yr.d 0.00585 -0.000579 -0.003673 -0.000072 -0.000412

X3yr.d 0.01208 -0.000985 -0.000217 -0.000431 -0.000407

¤
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15.3 Trading Strategies

As discussed previously, price series that are cointegrated can be used in
statistical arbitrage. Unlike pure arbitrage, statistical arbitrage means an op-
portunity where a profit is only likely, not guaranteed. Pairs trading uses pairs
of cointegrated asset prices and has been a popular statistical arbitrage tech-
nique. Pairs trading requires the trader to find cointegrated pairs of assets,
to select from these the pairs that can be traded profitably after accounting
for transaction costs, and finally to design the trading strategy which includes
the buy and sell signals. A full discussion of statistical arbitrage is outside the
scope of this book, but see Section 15.4 for further reading.

Although many firms have been very successful using statistical arbitrage,
one should be mindful of the risks. One is model risk; the error-correction
model may be incorrect. Even if the model is correct, one must use estimates
based on past data and the parameters might change, perhaps rapidly. If sta-
tistical arbitrage opportunities exist, then it is possible that other traders have
discovered them and their trading activity is one reason to expect parameters
to change. Another risk is that one can go bankrupt before a stationary pro-
cess reverts to its mean. This risk is especially large because firms engaging
in statistical arbitrage are likely to be heavily leveraged. High leverage will
magnify a small loss caused when a process diverges even farther from its
mean before reverting. See Sections 2.5.2 and 15.6.3.

15.4 Bibliographic Notes

Alexander (2001), Enders (2004), and Hamilton (1994) contain useful discus-
sions of cointegration. Pfaff (2006) is a good introduction to the analysis of
cointegrated time series using R.

The MLEs and likelihood ratio tests of the parameters in (15.7) were
developed by Johansen (1991, 1995) and Johansen and Juselius (1990).

The applications of cointegration theory in statistical arbitrage are dis-
cussed by Vidyamurthy (2004) and Alexander, Giblin, and Weddington (2001).
Pole (2007) is a less technical introduction to statistical arbitrage.
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15.6 R Lab

15.6.1 Cointegration Analysis of Midcap Prices

The data set midcapD.ts in the fEcofin package has daily returns on 20
midcap stocks in columns 2–21. Columns 1 and 22 contain the date and market
returns, respectively. In this section, we will use returns on the first 10 stocks.
To find the stock prices from the returns, we use the relationship

Pt = P0 exp(r1 + · · ·+ rt),

where Pt and rt are the price and log return at time t. The returns will be used
as approximations to the log returns. The prices at time 0 are unknown, so we
will use P0 = 1 for each stock. This means that the price series we use will be
off by multiplicative factors. This does not affect the number of cointegration
vectors. If we find that there are cointegration relationships, then it would be
necessary to get the price data to investigate trading strategies.

Johansen’s cointegration analysis will be applied to the prices with the
ca.jo function in the urca package. Run

library(fEcofin)
library(urca)
x = midcapD.ts[,2:11]
prices= exp(apply(x,2,cumsum))
options(digits=3)
summary(ca.jo(prices))

Problem 1 How many cointegration vectors were found?



15.6 R Lab 421

15.6.2 Cointegration Analysis of Yields

This example is similar to Example 15.3 but uses different yield data. The data
are in the mk.zero2 data set in the fEcofin package. There are 55 maturities
and they are in the vector mk.maturity. We will use only the first 10 yields.
Run

library("fEcofin")
library(urca)
mk.maturity[2:11,]
summary(ca.jo(mk.zero2[,2:11]))

Problem 2 What maturities are being used? Are they short-, medium-, or
long-term, or a mixture of short- and long-term maturities?

Problem 3 How many cointegration vectors were found? Use 1% level tests.

15.6.3 Simulation

In this section, you will run simulations similar to those in Section 2.5.2. The
difference is that now the price process is mean-reverting.

Suppose a hedge fund owns a $1,000,000 position in a portfolio and used
$50,000 of its own capital and $950,000 in borrowed money for the purchase.
If the value of the portfolio falls below $950,000 at the end of any trading day,
then the hedge fund must liquidate and repay the loan.

The portfolio was selected by cointegration analysis and its price is an
AR(1) process,

(Pt − µ) = φ(Pt−1 − µ) + εt,

where Pt is the price of the portfolio at the end of trading day t, µ =
$1,030,000, φ = 0.99, and the standard deviation of εt is $5000. The hedge
fund knows that the price will eventually revert to $1,030,000 (assuming that
the model is correct and, of course, this is a big assumption). It has decided
to liquidate its position on day t if Pt ≥ $1,020,000. This will yield a profit
of at least $20,000. However, if the price falls below $950,000, then it must
liquidate and lose its entire $50,000 investment plus the difference between
$950,000 and the price at liquidation.

In summary, the hedge fund will liquidate at the end of the first day such
that the price is either above $1,020,000 or below $950,000. In the first case,
it will achieve a profit of at least $20,000 and in the second case it will suffer
a loss of at least $50,000. Presumably, the probability of a loss is small, and
we will see how small by simulation.

Run a simulation experiment similar to the one in Section 2.5.2 to answer
the following questions. Use 10,000 simulations.
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Problem 4 What is the expected profit?

Problem 5 What is the probability that the hedge fund will need to liquidate
for a loss?

Problem 6 What is the expected waiting time until the portfolio is liquidated?

Problem 7 What is the expected yearly return on the $50,000 investment?

15.7 Exercises

1. Show that (15.4) implies that Y1,t−1 − λY2,t−1 is an AR(1) process with
coefficient 1 + φ1 − λφ2.

2. In (15.2) and (15.3) there are no constants, so that Y1,t − λY2,t is a sta-
tionary process with mean zero. Introduce constants into (15.2) and (15.3)
and show how they determine the mean of Y1,t − λY2,t.

3. Verify that in Example 15.2 Y1,t − λY2,t is stationary.
4. Suppose that Y t = (Y1,t, Y2,t)T is the bivariate AR(1) process in Example

15.2. Is Y t stationary? (Hint: See Section 10.3.3.)
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The Capital Asset Pricing Model

16.1 Introduction to the CAPM

The CAPM (capital asset pricing model) has a variety of uses. It provides
a theoretical justification for the widespread practice of passive investing by
holding index funds.1 The CAPM can provide estimates of expected rates of
return on individual investments and can establish “fair” rates of return on
invested capital in regulated firms or in firms working on a cost-plus basis.2

The CAPM starts with the question, what would be the risk premiums on
securities if the following assumptions were true?

1. The market prices are “in equilibrium.” In particular, for each asset, sup-
ply equals demand.

2. Everyone has the same forecasts of expected returns and risks.
3. All investors choose portfolios optimally according to the principles of

efficient diversification discussed in Chapter 11. This implies that everyone
holds a tangency portfolio of risky assets as well as the risk-free asset.

4. The market rewards people for assuming unavoidable risk, but there is no
reward for needless risks due to inefficient portfolio selection. Therefore,
the risk premium on a single security is not due to its “standalone” risk,
but rather to its contribution to the risk of the tangency portfolio. The
various components of risk are discussed in Section 16.4.

Assumption 3 implies that the market portfolio is equal to the tangency port-
folio. Therefore, a broad index fund that mimics the market portfolio can be
used as an approximation to the tangency portfolio.

The validity of the CAPM can only be guaranteed if all of these assump-
tions are true, and certainly no one believes that any of them are exactly true.
1 An index fund holds the same portfolio as some index. For example, an S&P 500

index fund holds all 500 stocks on the S&P 500 in the same proportions as in the
index. Some funds do not replicate an index exactly, but are designed to track
the index, for instance, by being cointegrated with the index.

2 See Bodie and Merton (2000).
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Assumption 3 is at best an idealization. Moreover, some of the conclusions of
the CAPM are contradicted by the behavior of financial markets; see Section
17.4.1 for an example. Despite its shortcomings, the CAPM is widely used in
finance and it is essential for a student of finance to understand the CAPM.
Many of its concepts such as the beta of an asset and systematic and diversi-
fiable risks are of great importance, and the CAPM has been generalized to
the widely used factor models in Chapter 17.

16.2 The Capital Market Line (CML)

The capital market line (CML) relates the excess expected return on an effi-
cient portfolio to its risk. Excess expected return is the expected return minus
the risk-free rate and is also called the risk premium. The CML is

µR = µf +
µM − µf

σM
σR, (16.1)

where R is the return on a given efficient portfolio (mixture of the market
portfolio [= tangency portfolio] and the risk-free asset), µR = E(R), µf is the
risk-free rate, RM is the return on the market portfolio, µM = E(RM ), σM

is the standard deviation of RM , and σR is the standard deviation of R. The
risk premium of R is µR − µf and the risk premium of the market portfolio
is µM − µf .

In (16.1) µf , µM , and σM are constant. What varies are σR and µR. These
vary as we change the efficient portfolio R. Think of the CML as showing how
µR depends on σR.

The slope of the CML is, of course,

µM − µf

σM
,

which can be interpreted as the ratio of the risk premium to the standard devi-
ation of the market portfolio. This is Sharpe’s “reward-to-risk ratio.” Equation
(16.1) can be rewritten as

µR − µf

σR
=

µM − µf

σM
,

which says that the reward-to-risk ratio for any efficient portfolio equals that
ratio for the market portfolio.

Example 16.1. The CML

Suppose that the risk-free rate of interest is µf = 0.06, the expected return
on the market portfolio is µM = 0.15, and the risk of the market portfolio
is σM = 0.22. Then the slope of the CML is (0.15 − 0.06)/0.22 = 9/22. The
CML of this example is illustrated in Figure 16.1.
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Fig. 16.1. CML when µf = 0.06, µM = 0.15, and σM = 0.22. All efficient portfolios
are on the line connecting the risk-free asset (F) and the market portfolio (M).
Therefore, the reward-to-risk ratio is the same for all efficient portfolios, including
the market portfolio. This fact is illustrated by the thick lines, whose lengths are the
risk and reward for a typical efficient portfolio.
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The CML is easy to derive. Consider an efficient portfolio that allocates a
proportion w of its assets to the market portfolio and (1−w) to the risk-free
asset. Then

R = wRM + (1− w)µf = µf + w(RM − µf ). (16.2)

Therefore, taking expectations in (16.2),

µR = µf + w(µM − µf ). (16.3)

Also, from (16.2),
σR = wσM , (16.4)

or
w =

σR

σM
. (16.5)

Substituting (16.5) into (16.3) gives the CML.
The CAPM says that the optimal way to invest is to

1. decide on the risk σR that you can tolerate, 0 ≤ σR ≤ σM
3;

2. calculate w = σR/σM ;
3. invest w proportion of your investment in an index fund, that is, a fund

that tracks the market as a whole;
3 In fact, σR > σM is possible by borrowing money to buy risky assets on margin.



426 16 The Capital Asset Pricing Model

4. invest 1 − w proportion of your investment in risk-free Treasury bills, or
a money-market fund.

Alternatively,

1. choose the reward µR − µf that you want; the only constraint is that
µf ≤ µR ≤ µM so that 0 ≤ w ≤ 14;

2. calculate
w =

µR − µf

µM − µf
;

3. do steps 3 and 4 as above.

Instead of specifying the expected return or standard deviation of return,
as in Example 11.1 one can find the portfolio with the highest expected return
subject to a guarantee that with confidence 1−α the maximum loss is below
a prescribed bound M determined, say, by a firm’s capital reserves. If the firm
invests an amount C, then for the loss to be greater than M the return must
be less than −M/C. If we assume that the return is normally distributed,
then by (A.11), (16.3), and (16.4),

P

(
R < −M

C

)
= Φ

(−M/C − {µf + w(µM − µf )}
wσM

)
. (16.6)

Thus, we solve the following equation for w:

Φ−1(α) =
−M/C − {µf + w(µM − µf )}

wσM
.

One can view w = σR/σM as an index of the risk aversion of the investor.
The smaller the value of w the more risk-averse the investor. If an investor
has w equal to 0, then that investor is 100% in risk-free assets. Similarly,
an investor with w = 1 is totally invested in the tangency portfolio of risky
assets.5

16.3 Betas and the Security Market Line

The security market line (SML) relates the excess return on an asset to the
slope of its regression on the market portfolio. The SML differs from the CML
in that the SML applies to all assets while the CML applies only to efficient
portfolios.

Suppose that there are many securities indexed by j. Define

σjM = covariance between the returns on the jth security
and the market portfolio.

4 This constraint can be relaxed if one is permitted to buy assets on margin.
5 An investor with w > 1 is buying the market portfolio on margin, that is, bor-

rowing money to buy the market portfolio.
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Also, define
βj =

σjM

σ2
M

. (16.7)

It follows from the theory of best linear prediction in Section 14.10.1 that
βj is the slope of the best linear predictor of the jth security’s returns using
returns of the market portfolio as the predictor variable. This fact follows from
equation (14.41) for the slope of a best linear prediction equation. In fact, the
best linear predictor of Rj based on RM is

R̂j = β0,j + βjRM , (16.8)

where βj in (16.8) is the same as in (16.7).
Another way to appreciate the significance of βj uses linear regression.

As discussed in Section 14.10, linear regression is a method for estimating
the coefficients of the best linear predictor based upon data. To apply linear
regression, suppose that we have a bivariate time series (Rj,t, RM,t)n

t=1 of
returns on the jth asset and the market portfolio. Then, the estimated slope
of the linear regression regression of Rj,t on RM,t is

β̂j =
∑n

t=1(Rj,t −Rj)(RM,t −RM )∑n
t=1(RM,t −RM )2

, (16.9)

which, after multiplying the numerator and denominator by the same factor
n−1, becomes an estimate of σjM divided by an estimate of σ2

M and therefore
by (16.7) an estimate of βj .

Let µj be the expected return on the jth security. Then µj − µf is the
risk premium (or reward for risk or excess expected return) for that security.
Using the CAPM, it can be shown that

µj − µf = βj(µM − µf ). (16.10)

This equation, which is called the security market line (SML), is derived in
Section 16.5.2. In (16.10) βj is a variable in the linear equation, not the slope;
more precisely, µj is a linear function of βj with slope µM − µf . This point is
worth remembering. Otherwise, there could be some confusion since βj was
defined earlier as a slope of a regression model. In other words, βj is a slope
in one context but is the independent variable in the SML. One can estimate
βj using (16.9) and then plug this estimate into (16.10).

The SML says that the risk premium of the jth asset is the product of its
beta (βj) and the risk premium of the market portfolio (µM −µf ). Therefore,
βj measures both the riskiness of the jth asset and the reward for assuming
that riskiness. Consequently, βj is a measure of how “aggressive” the jth
asset is. By definition, the beta for the market portfolio is 1; i.e., βM = 1.
This suggest the rules-of-thumb

βj > 1 ⇒ “aggressive,”
βj = 1 ⇒ “average risk,”
βj < 1 ⇒ “not aggressive.”
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Fig. 16.2. Security market line (SML) showing that the risk premium of an asset is
a linear function of the asset’s beta. J is a security not on the line and a contradiction
to the CAPM. Theory predicts that the price of J decreases until J is on the SML.
The vertical dotted line separates the nonaggressive and aggressive regions.

Figure 16.2 illustrates the SML and an asset J that is not on the SML.
This asset contradicts the CAPM, because according to the CAPM all assets
are on the SML so no such asset exists.

Consider what would happen if an asset like J did exist. Investors would
not want to buy it because, since it is below the SML, its risk premium is too
low for the risk given by its beta. They would invest less in J and more in
other securities. Therefore, the price of J would decline and after this decline
its expected return would increase. After that increase, the asset J would be
on the SML, or so the theory predicts.

16.3.1 Examples of Betas

Table 16.1 has some “five-year betas” taken from the Salomon, Smith, Barney
website between February 27 and March 5, 2001. The beta for the S&P 500
is given as 1.00; why?

16.3.2 Comparison of the CML with the SML

The CML applies only to the return R of an efficient portfolio. It can be
arranged so as to relate the excess expected return of that portfolio to the
excess expected return of the market portfolio:
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Table 16.1. Selected stocks and in which industries they are. Betas are given for
each stock (Stock’s β) and its industry (Ind’s β). Betas taken from the Salomon,
Smith, Barney website between February 27 and March 5, 2001.

Stock (symbol) Industry Stock’s β Ind’s β

Celanese (CZ) Synthetics 0.13 0.86
General Mills (GIS) Food—major diversif 0.29 0.39
Kellogg (K) Food—major, diversif 0.30 0.39
Proctor & Gamble (PG) Cleaning prod 0.35 0.40
Exxon-Mobil (XOM) Oil/gas 0.39 0.56
7-Eleven (SE) Grocery stores 0.55 0.38
Merck (Mrk) Major drug manuf 0.56 0.62
McDonalds (MCD) Restaurants 0.71 0.63
McGraw-Hill (MHP) Pub—books 0.87 0.77
Ford (F) Auto 0.89 1.00
Aetna (AET) Health care plans 1.11 0.98
General Motors (GM) Major auto manuf 1.11 1.09
AT&T (T) Long dist carrier 1.19 1.34
General Electric (GE) Conglomerates 1.22 0.99
Genentech (DNA) Biotech 1.43 0.69
Microsoft (MSFT) Software applic. 1.77 1.72
Cree (Cree) Semicond equip 2.16 2.30
Amazon (AMZN) Net soft & serv 2.99 2.46
Doubleclick (Dclk) Net soft & serv 4.06 2.46

µR − µf =
(

σR

σM

)
(µM − µf ). (16.11)

The SML applies to any asset and like the CML relates its excess expected
return to the excess expected return of the market portfolio:

µj − µf = βj(µM − µf ). (16.12)

If we take an efficient portfolio and consider it as an asset, then µR and µj

both denote the expected return on that portfolio/asset. Both (16.11) and
(16.12) hold so that

σR

σM
= βR.

16.4 The Security Characteristic Line

Let Rjt be the return at time t on the jth asset. Similarly, let RM,t and µf,t

be the return on the market portfolio and the risk-free return at time t. The
security characteristic line (sometimes shortened to the characteristic line) is
a regression model:

Rj,t = µf,t + βj(RM,t − µf,t) + εj,t, (16.13)
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where εj,t is N(0, σ2
ε,j). It is often assumed that the εj,ts are uncorrelated

across assets, that is, that εj,t is uncorrelated with εj′,t for j 6= j′. This
assumption has important ramifications for risk reduction by diversification;
see Section 16.4.1.

Let µj,t = E(Rj,t) and µM,t = E(RM,t). Taking expectations in (16.13)
we get,

µj,t = µf,t + βj(µM,t − µf,t),

which is equation (16.10), the SML, though in (16.10) it is not shown explicitly
that the expected returns can depend on t. The SML gives us information
about expected returns, but not about the variance of the returns. For the
latter we need the characteristic line. The characteristic line is said to be a
return-generating process since it gives us a probability model of the returns,
not just a model of their expected values.

An analogy to the distinction between the SML and characteristic line is
this. The regression line E(Y |X) = β0 + β1X gives the expected value of Y
given X but not the conditional probability distribution of Y given X. The
regression model

Yt = β0 + β1Xt + εt and εt ∼ N(0, σ2)

does give us this conditional probability distribution.
The characteristic line implies that

σ2
j = β2

j σ2
M + σ2

ε,j ,

that
σjj′ = βjβj′σ

2
M

for j 6= j′, and that
σMj = βjσ

2
M .

The total risk of the jth asset is

σj =
√

β2
j σ2

M + σ2
ε,j .

The squared risk has two components: β2
j σ2

M is called the market or systematic
component of risk and σ2

ε,j is called the unique, nonmarket, or unsystematic
component of risk.

16.4.1 Reducing Unique Risk by Diversification

The market component cannot be reduced by diversification, but the unique
component can be reduced or even eliminated by sufficient diversification.

Suppose that there are N assets with returns R1,t, . . . , RN,t for holding
period t. If we form a portfolio with weights w1, . . . , wN , then the return of
the portfolio is
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RP,t = w1R1,t + · · ·+ wNRN,t.

Let RM,t be the return on the market portfolio. According to the characteristic
line model Rj,t = µf,t + βj(RM,t − µf,t) + εj,t, so that

RP,t = µf,t +




N∑

j=1

βjwj


 (RM,t − µf,t) +

N∑

j=1

wjεj,t.

Therefore, the portfolio beta is

βP =
N∑

j=1

wjβj ,

and the “epsilon” for the portfolio is

εP,t =
N∑

j=1

wjεj,t.

We now assume that ε1,t, . . . , εN,t are uncorrelated. Therefore, by equation
(7.11),

σ2
ε,P =

N∑

j=1

w2
j σ2

ε,j .

Example 16.2. Reduction in risk by diversification

Suppose the assets in the portfolio are equally weighted; that is, wj = 1/N
for all j. Then

βP =

∑N
j=1 βj

N
,

and

σ2
ε,P =

N−1
∑N

j=1 σ2
ε,j

N
=

σ2
ε

N
,

where σ2
ε is the average of the σ2

ε,j .
If σ2

ε,j is a constant, say σ2
ε , for all j, then

σε,P =
σε√
N

. (16.14)

For example, suppose that σε is 5%. If N = 20, then by (16.14) σε,P is 1.12%.
If N = 100, then σε,P is 0.5%. There are approximately 1600 stocks on the
NYSE; if N = 1600, then σε,P = 0.125%. ¤
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16.4.2 Are the Assumptions Sensible?

A key assumption that allows nonmarket risk to be removed by diversification
is that ε1,t, . . . , εN,t are uncorrelated. This assumption implies that all corre-
lation among the cross-section6 of asset returns is due to a single cause and
that cause is measured by the market index. For this reason, the characteristic
line is a “single-factor” or “single-index” model with RM,t being the “factor.”

This assumption of uncorrelated εjt would not be valid if, for example,
two energy stocks are correlated over and beyond their correlation due to the
market index. In this case, unique risk could not be eliminated by holding a
large portfolio of all energy stocks. However, if there are many market sectors
and the sectors are uncorrelated, then one could eliminate nonmarket risk
by diversifying across all sectors. All that is needed is to treat the sectors
themselves as the underlying assets and then apply the CAPM theory.

Correlation among the stocks in a market sector can be modeled using a
factor model; see Chapter 17.

16.5 Some More Portfolio Theory

In this section we use portfolio theory to show that σj,M quantifies the con-
tribution of the jth asset to the risk of the market portfolio. Also, we derive
the SML.

16.5.1 Contributions to the Market Portfolio’s Risk

Suppose that the market consists of N risky assets and that w1,M , . . . , wN,M

are the weights of these assets in the market portfolio. Then

RM,t =
N∑

i=1

wi,MRi,t,

which implies that the covariance between the return on the jth asset and the
return on the market portfolio is

σj,M = Cov

(
Rj,t,

N∑

i=1

wi,MRi,t

)
=

N∑

i=1

wi,Mσi,j . (16.15)

Therefore,

σ2
M =

N∑

j=1

N∑

i=1

wj,Mwi,Mσi,j =
N∑

j=1

wj,M

(
N∑

i=1

wi,Mσi,j

)
=

N∑

j=1

wj,Mσj,M .

(16.16)
6 “Cross-section” of returns means returns across assets within a single holding

period.
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Equation (16.16) shows that the contribution of the jth asset to the risk of
the market portfolio is wj,Mσj,M , where wj,M is the weight of the jth asset
in the market portfolio and σj,M is the covariance between the return on the
jth asset and the return on the market portfolio.

16.5.2 Derivation of the SML

The derivation of the SML is a nice application of portfolio theory, calculus,
and geometric reasoning. It is based on a clever idea of putting together a
portfolio with two assets, the market portfolio and the ith risky asset, and
then looking at the locus in reward-risk space as the portfolio weight assigned
to the ith risky asset varies.

Consider a portfolio P with weight wi given to the ith risky asset and
weight (1− wi) given to the market portfolio. The return on this portfolio is

RP,t = wiRi,t + (1− wi)RM,t.

The expected return is

µP = wiµi + (1− wi)µM , (16.17)

and the risk is

σP =
√

w2
i σ2

i + (1− wi)2σ2
M + 2wi(1− wi)σi,M . (16.18)

As we vary wi, we get the locus of points on (σ, µ) space that is shown as a
dashed curve in Figure 16.3.

It is easy to see geometrically that the derivative of this locus of points
evaluated at the tangency portfolio (which is the point where wi = 0) is equal
to the slope of the CML. We can calculate this derivative and equate it to the
slope of the CML to see what we get. The result is the SML.

We have from (16.17)
dµP

dwi
= µi − µM ,

and from (16.18) that

d σP

d wi
=

1
2
σ−1

P

{
2wiσ

2
i − 2(1− wi)σ2

M + 2(1− 2wi)σi,M

}
.

Therefore,

dµP

d σP
=

dµP /dwi

d σP /d wi
=

(µi − µM )σP

wiσ2
i − σ2

M + wiσ2
M + σi,M − 2wiσi,M

.

Next,



434 16 The Capital Asset Pricing Model

0.25 0.3 0.35 0.4 0.45 0.5
0.06

0.07

0.08

0.09

0.1

0.11

0.12

σ
P

µ P
CML
 *

 
tangency portfolio
 

efficient frontier
 

portfolios of T and i
 

Fig. 16.3. Derivation of the SML. The market portfolio and the tangency portfolio
are equal according to the CAPM. The dashed curve is the locus of portfolios combin-
ing asset i and the market portfolio. The dashed curve is to the right of the efficient
frontier and intersects the efficient frontier at the tangency portfolio. Therefore, the
derivative of the dashed curve at the tangency portfolio is equal to the slope of the
CML, since this curve is tangent to the CML at the tangency portfolio.

dµP

d σP

∣∣∣
wi=0

=
(µi − µM )σM

σi,M − σ2
M

.

Recall that wi = 0 is the tangency portfolio, the point in Figure 16.3 where
the dashed locus is tangent to the CML. Therefore,

dµP

d σP

∣∣∣
wi=0

must equal the slope of the CML, which is (µM − µf )/σM . Therefore,

(µi − µM )σM

σi,M − σ2
M

=
µM − µf

σM
,

which, after some algebra, gives us

µi − µf =
σi,M

σ2
M

(µM − µf ) = βi(µM − µf ),

which is the SML given in equation (16.10).

16.6 Estimation of Beta and Testing the CAPM

16.6.1 Estimation Using Regression

Recall the security characteristic line
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Rj,t = µf,t + βj(RM,t − µf,t) + εj,t. (16.19)

Let R∗j,t = Rj,t−µf,t be the excess return on the jth security and let R∗M,t =
RM,t − µf,t, be the excess return on the market portfolio. Then (16.19) can
be written as

R∗j,t = βjR
∗
M,t + εj,t. (16.20)

Equation (16.20) is a regression model without an intercept and with βj as
the slope. A more elaborate model is

R∗j,t = αj + βjR
∗
M,t + εj,t, (16.21)

which includes an intercept. The CAPM says that αj = 0 but by allowing
αj 6= 0, we recognize the possibility of mispricing.

Given time series Rj,t, RM,t, and µf,t for t = 1, . . . , n, we can calculate R∗j,t
and R∗M,t and regress R∗j,t on R∗M,t to estimate αj , βj , and σ2

ε,j . By testing the
null hypothesis that αj = 0, we are testing whether the jth asset is mispriced
according to the CAPM.

As discussed in Section 12.2.2, when fitting model (16.20) or (16.21) one
should use daily data if available, rather than weekly or monthly data. A more
difficult question to answer is how long a time series to use. Longer time series
give more data, of course, but models (16.20) and (16.21) assume that βj is
constant and this might not be true over a long time period.

Example 16.3. Estimation of α and β for Microsoft

As an example, daily closing prices on Microsoft and the S&P 500 index
from November 1, 1993, to April 3, 2003, were used. The S&P 500 was taken as
the market price. Three-month T-bill rates were used as the risk-free returns.7

The excess returns are the returns minus the T-bill rates.

Call:

lm(formula = EX_R_msft ~ EX_R_sp500)

Residuals:

Min 1Q Median 3Q Max

-0.152863 -0.011146 -0.000764 0.010887 0.151599

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.000914 0.000409 2.23 0.026 *

EX_R_sp500 1.247978 0.035425 35.23 <2e-16 ***

---

7 Interest rates are return rates. Thus, we use the T-bill rates themselves as the
risk-free returns. One does not take logs and difference the T-bill rates as if they
were prices. However, the T-bill rates were divided by 100 to convert from a
percentage and then by 253 to convert to a daily rate.
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0199 on 2360 degrees of freedom

Multiple R-squared: 0.345, Adjusted R-squared: 0.344

F-statistic: 1.24e+03 on 1 and 2360 DF, p-value: <2e-16

For Microsoft, we find that β̂ = 1.25 and α̂ = 0.0009. The estimate of α
is very small and, although the p-value for α is 0.026, we can conclude that
for practical purposes, α is essentially 0. The estimate of σε is the root MSE
which equals 0.0199.

Notice that the R2 (R-sq) value for the regression is 34.5%. The interpre-
tation of R2 is the percent of the variance in the excess returns on Microsoft
that is due to excess returns on the market. In other words, 34.5% of the risk
is due to systematic or market risk (β2

j σ2
M ). The remaining 65.5% is due to

unique or nonmarket risk (σ2
ε ).

If we assume that α = 0, then we can refit the model using a no-intercept
model.

Call:

lm(formula = EX_R_msft ~ EX_R_sp500 - 1)

Residuals:

Min 1Q Median 3Q Max

-0.151945 -0.010231 0.000148 0.011803 0.152476

Coefficients:

Estimate Std. Error t value Pr(>|t|)

EX_R_sp500 1.2491 0.0355 35.2 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0199 on 2361 degrees of freedom

Multiple R-squared: 0.345, Adjusted R-squared: 0.344

F-statistic: 1.24e+03 on 1 and 2361 DF, p-value: <2e-16

With no intercept β̂, σ̂ε and R2 are nearly the same as before—forcing a nearly
zero intercept to be exactly zero has little effect. ¤

16.6.2 Testing the CAPM

Testing that α equals 0 tests only one of the conclusions of the CAPM. Ac-
cepting this null hypothesis only means that the CAPM has passed one test,
not that we should now accept it as true.8 To fully test the CAPM, its other
conclusions should also be tested. The factor models in Section 17.3 have
been used to test the CAPM and fairly strong evidence against the CAPM
8 In fact, acceptance of a null hypothesis should never be interpreted as proof that

the null hypothesis is true.
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has been found. Fortunately, these factor models do provide a generalization
of the CAPM that is likely to be useful for financial decision making.

Often, as an alternative to regression using excess returns, the returns on
the asset are regressed on the returns on the market. When this is done, an
intercept model should be used. In the Microsoft data when using returns
instead of excess returns, the estimate of beta changed hardly at all.

16.6.3 Interpretation of Alpha

If α is nonzero, then the security is mispriced, at least according to the CAPM.
If α > 0 then the security is underpriced; the returns are too large on average.
This is an indication of an asset worth purchasing. Of course, one must be
careful. If we reject the null hypothesis that α = 0, all we have done is to show
that the security was mispriced in the past. Since for the Microsoft data we
accepted the null hypothesis that α is zero, there is no evidence that Microsoft
was mispriced.

Warning: If we use returns rather than excess returns, then the intercept
of the regression equation does not estimate α, so one cannot test whether α
is zero by testing the intercept.

16.7 Using the CAPM in Portfolio Analysis

Suppose we have estimated beta and σ2
ε for each asset in a portfolio and also

estimated σ2
M and µM for the market. Then, since µf is also known, we can

compute the expectations, variances, and covariances of all asset returns by
the formulas

µj = µf + βj(µM − µf ),
σ2

j = β2
j σ2

M + σ2
εj ,

σjj′ = βjβj′σ
2
M for j 6= j′.

There is a serious danger here: These estimates depend heavily on the validity
of the CAPM assumptions. Any or all of the quantities beta, σ2

ε , σ2
M , µM , and

µf could depend on time t. However, it is generally assumed that the betas
and σ2

ε s of the assets as well as σ2
M and µM of the market are independent of

t so that these parameters can be estimated assuming stationarity of the time
series of returns.

16.8 Bibliographic Notes

The CAPM was developed by Sharpe (1964), Lintner (1965a,b), and Mossin
(1966). Introductions to the CAPM can be found in Bodie, Kane, and Marcus
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(1999), Bodie and Merton (2000), and Sharpe, Alexander, and Bailey (1999).
I first learned about the CAPM from these three textbooks. Campbell, Lo,
and MacKinlay (1997) discuss empirical testing of the CAPM. The derivation
of the SML in Section 16.5.2 was adapted from Sharpe, Alexander, and Bai-
ley (1999). Discussion of factor models can be found in Sharpe, Alexander,
and Bailey (1999), Bodie, Kane, and Marcus (1999), and Campbell, Lo, and
MacKinlay (1997).
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16.10 R Lab

In this lab, you will fit model (16.19). The S&P 500 index will be a proxy for
the market portfolio and the 90-day Treasury rate will serve as the risk-free
rate.

This lab uses the data set Stock_FX_Bond_2004_to_2006.csv, which is
available on the book’s website. This data set contains a subset of the data in
the data set Stock_FX_Bond.csv used elsewhere.

The R commands needed to fit model (16.19) will be given in small groups
so that they can be explained better. First run the following commands to
read the data, extract the prices, and find the number of observations:

dat = read.csv("Stock_FX_Bond_2004_to_2006.csv",header=T)
prices = dat[,c(5,7,9,11,13,15,17,24)]
n = dim(prices)[1]
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Next, run these commands to convert the risk-free rate to a daily rate, compute
net returns, extract the Treasury rate, and compute excess returns for the
market and for seven stocks. The risk-free rate is given as a percentage so the
returns are also computed as percentages.

dat2 = as.matrix(cbind(dat[(2:n),3]/365,
100*(prices[2:n,]/prices[1:(n-1),] - 1)))

names(dat2)[1] = "treasury"
risk_free = dat2[,1]
ExRet = dat2[,2:9] - risk_free
market = ExRet[,8]
stockExRet = ExRet[,1:7]

Now fit model (16.19) to each stock, compute the residuals, look at a scatter-
plot matrix of the residuals, and extract the estimated betas.

fit_reg = lm(stockExRet~market)
summary(fit_reg)
res = residuals(fit_reg)
pairs(res)
options(digits=3)
betas=fit_reg$coeff[2,]

Problem 1 Would you reject the null hypothesis that alpha is zero for any
of the seven stocks? Why or why not?

Problem 2 Use model (16.19) to estimate the expected excess return for all
seven stocks. Compare these results to using the sample means of the excess re-
turns to estimate these parameters. Assume for the remainder of this lab that
all alphas are zero. (Note: Because of this assumption, one might consider
reestimating the betas and the residuals with a no-intercept model. However,
since the estimated alphas were close to zero, forcing the alphas to be ex-
actly zero will not change the estimates of the betas or the residuals by much.
Therefore, for simplicity, do not reestimate.)

Problem 3 Compute the correlation matrix of the residuals. Do any of the
residual correlations seem large? Could you suggest a reason why the large
correlations might be large? (Information about the companies in this data set
is available at Yahoo Finance and other Internet sites.)

Problem 4 Use model (16.19) to estimate the covariance matrix of the excess
returns for the seven companies.
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Problem 5 What percentage of the excess return variance for UTX is due to
the market?

Problem 6 An analyst predicts that the expected excess return on the market
next year will be 4%. Assume that the betas estimated here using data from
2004–2006 are suitable as estimates of next year’s betas. Estimate the expected
excess returns for the seven stocks for next year.

16.11 Exercises

1. What is the beta of a portfolio if E(RP ) = 16%, µf = 5.5%, and E(RM ) =
11%?

2. Suppose that the risk-free rate of interest is 0.03 and the expected rate
of return on the market portfolio is 0.14. The standard deviation of the
market portfolio is 0.12.
(a) According to the CAPM, what is the efficient way to invest with an

expected rate of return of 0.11?
(b) What is the risk (standard deviation) of the portfolio in part (a)?

3. Suppose that the risk-free interest rate is 0.023, that the expected return
on the market portfolio is µM = 0.10, and that the volatility of the market
portfolio is σM = 0.12.
(a) What is the expected return on an efficient portfolio with σR = 0.05?
(b) Stock A returns have a covariance of 0.004 with market returns. What

is the beta of Stock A?
(c) Stock B has beta equal to 1.5 and σε = 0.08. Stock C has beta equal

to 1.8 and σε = 0.10.
i. What is the expected return of a portfolio that is one-half Stock B

and one-half Stock C?
ii. What is the volatility of a portfolio that is one-half Stock B and

one-half Stock C? Assume that the εs of Stocks B and C are in-
dependent.

4. Show that equation (16.15) follows from equation (7.8).
5. True or false: The CAPM implies that investors demand a higher return

to hold more volatile securities. Explain your answer.
6. Suppose that the riskless rate of return is 4% and the expected market

return is 12%. The standard deviation of the market return is 11%. Sup-
pose as well that the covariance of the return on Stock A with the market
return is 165%2.9

(a) What is the beta of Stock A?
(b) What is the expected return on Stock A?

9 If returns are expressed in units of percent, then the units of variances and co-
variances are percent-squared. A variance of 165%2 equals 165/10,000.
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(c) If the variance of the return on Stock A is 220%2, what percentage of
this variance is due to market risk?

7. Suppose there are three risky assets with the following betas and σ2
εj

.

j βj σ2
εj

1 0.9 0.010
2 1.1 0.015
3 0.6 0.011

Suppose also that the variance of RMt − µft is 0.014.
(a) What is the beta of an equally weighted portfolio of these three assets?
(b) What is the variance of the excess return on the equally weighted

portfolio?
(c) What proportion of the total risk of asset 1 is due to market risk?

8. Suppose there are two risky assets, call them C and D. The tangency
portfolio is 60% C and 40% D. The expected yearly returns are 4% and
6% for assets C and D. The standard deviations of the yearly returns are
10% and 18% for C and D and the correlation between the returns on C
and D is 0.5. The risk-free yearly rate is 1.2%.
(a) What is the expected yearly return on the tangency portfolio?
(b) What is the standard deviation of the yearly return on the tangency

portfolio?
(c) If you want an efficient portfolio with a standard deviation of the

yearly return equal to 3%, what proportion of your equity should
be in the risk-free asset? If there is more than one solution, use the
portfolio with the higher expected yearly return.

(d) If you want an efficient portfolio with an expected yearly return equal
to 7%, what proportions of your equity should be in asset C, asset D,
and the risk-free asset?

9. What is the beta of a portfolio if the expected return on the portfolio is
E(RP ) = 15%, the risk-free rate is µf = 6%, and the expected return
on the market is E(RM ) = 12%? Make the usual CAPM assumptions
including that the portfolio alpha is zero.

10. Suppose that the risk-free rate of interest is 0.07 and the expected rate
of return on the market portfolio is 0.14. The standard deviation of the
market portfolio is 0.12.
(a) According to the CAPM, what is the efficient way to invest with an

expected rate of return of 0.11?
(b) What is the risk (standard deviation) of the portfolio in part (a)?

11. Suppose there are three risky assets with the following betas and σ2
εj

when
regressed on the market portfolio.

j βj σ2
εj

1 0.7 0.010
2 0.8 0.025
3 0.6 0.012
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Assume ε1, ε2, and ε3 are uncorrelated. Suppose also that the variance of
RM − µf is 0.02.
(a) What is the beta of an equally weighted portfolio of these three assets?
(b) What is the variance of the excess return on the equally weighted

portfolio?
(c) What proportion of the total risk of asset 1 is due to market risk?
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Factor Models and Principal Components

17.1 Dimension Reduction

High-dimensional data can be challenging to analyze. They are difficult to vi-
sualize, need extensive computer resources, and often require special statistical
methodology. Fortunately, in many practical applications, high-dimensional
data have most of their variation in a lower-dimensional space that can be
found using dimension reduction techniques. There are many methods de-
signed for dimension reduction, and in this chapter we will study two closely
related techniques, factor analysis and principal components analysis, often
called PCA.

PCA finds structure in the covariance or correlation matrix and uses this
structure to locate low-dimensional subspaces containing most of the variation
in the data.

Factor analysis explains returns with a smaller number of fundamental
variables called factors or risk factors. Factor analysis models can be classified
by the types of variables used as factors, macroeconomic or fundamental, and
by the estimation technique, time series regression, cross-sectional regression,
or statistical factor analysis.

17.2 Principal Components Analysis

PCA starts with a sample Y i = (Yi,1, . . . , Yi,d), i = 1, . . . , n, of d-dimensional
random vectors with mean vector µ and covariance matrix Σ. One goal of
PCA is finding “structure” in Σ.

We will start with a simple example that illustrates the main idea. Suppose
that Y i = µ + Wio, where W1, . . . , Wn are i.i.d. mean-zero random variables
and o is some fixed vector, which can be taken to have norm 1. The Y i lie on
the line that passes through µ and is in the direction given by o, so that all
variation among the mean-centered vectors Y i − µ is in the one-dimensional
space spanned by o. Also, the covariance matrix of Y i is

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_17, © Springer Science+Business Media, LLC 2011 
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Σ = E{W 2
i ooT} = σ2

W ooT.

The vector o is called the first principal axis of Σ and is the only eigenvector of
Σ with a nonzero eigenvalue, so o can be estimated by an eigen-decomposition
(Section A.20) of the estimated covariance matrix.

A slightly more realistic situation is where Y i = µ+Wio+εi, where εi is a
random vector uncorrelated with Wi and having a “small” covariance matrix.
Then most of the variation among the Y i−µ vectors is in the space spanned
by o, but there is small variation in other directions due to εi. Having looked
at some simple special cases, we now turn to the general case.

PCA can be applied to either the sample covariance matrix or the corre-
lation matrix. We will use Σ to represent whichever matrix is chosen. The
correlation matrix is, of course, the covariance matrix of the standardized
variables, so the choice between the two matrices is really a decision whether
or not to standardize the variables before PCA. This issue will be addressed
later. Even if the data have not been standardized, to keep notation simple,
we assume that the mean Y has been subtracted from each Y i. By (A.47),

Σ = O diag(λ1, . . . , λd) OT, (17.1)

where O is an orthogonal matrix whose columns o1, . . . , od are the eigenvec-
tors of Σ and λ1 > . . . > λd are the corresponding eigenvalues. The columns
of O have been arranged so that the eigenvalues are ordered from largest to
smallest. This is not essential, but it is convenient. We also assume no ties
among the eigenvalues, which almost certainly will be true in actual applica-
tions.

A normed linear combination of Y i (either standardized or not) is of the
form αTY i =

∑p
j=1 αjYi,j , where ‖α‖ =

∑p
j=1 α2

i = 1. The first principal
component is the normed linear combination with the greatest variance. The
variation in the direction α, where α is any fixed vector with norm 1, is

Var(αTY i) = αTΣα. (17.2)

The first principal component maximizes (17.2). The maximizer is α = o1,
the eigenvector corresponding to the largest eigenvalue, and is called the first
principal axis. The projections oT

1 Y i, i = 1, . . . , n, onto this vector are called
the first principal component. Requiring that the norm of α be fixed is essen-
tial, because otherwise (17.2) is unbounded and there is no maximizer.

After the first principal component has been found, one searches for the
direction of maximum variation perpendicular to the first principal axis (eigen-
vector). This means maximizing (17.2) subject to ‖α‖ = 1 and αTo1 = 0.
The maximizer, called the second principal axis, is o2, and the second prin-
cipal component is the set of projections oT

2 Y i, i = 1, . . . , n, onto this axis.
The reader can probably see where we are going. The third principal compo-
nent maximizes (17.2) subject to ‖α‖ = 1, αTo1 = 0, and αTo2 = 0 and is
oT

3 Y i, and so forth, so that o1, . . . , od are the principal axes and the set of
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projections oT
j Y i, i = 1, . . . , n, onto the jth eigenvector is the jth principal

component. Moreover,
λi = oT

i Σoi

is the variance of the ith principal component, λi/(λ1+ · · ·+λd) is the propor-
tion of the variance due to this principal component, and (λ1 + · · ·+λi)/(λ1 +
· · ·+ λd) is the proportion of the variance due to the first i principal compo-
nents. The principal components are mutually uncorrelated since for j 6= k
we have

Cov(oT
j Y i,o

T
kY i) = oT

j Σok = 0

by (A.49).
Let

Y =




Y T
1
...

Y T
n




be the original data and let

S =




oT
1 Y 1 · · · oT

d Y 1

...
. . .

...
oT

1 Y n · · · oT
d Y n




be the matrix of principal components. Then

S = Y O.

Postmultiplication of Y by O to obtain S is an orthogonal rotation of the
data. For this reason, the eigenvectors are sometimes called the rotations, e.g.,
in output from R’s pca function.

In many applications, the first few principal components, such as, the first
three to five, have almost all of the variation, and, for most purposes, one can
work solely with these principal components and discard the rest. This can
be a sizable reduction in dimension. See Example 17.2 for an illustration.

So far, we have left unanswered the question of how one should decide
between working with the original or the standardized variables. If the com-
ponents of Y i are comparable, e.g., are all daily returns on equities or all
are yields on bonds, then working with the original variables should cause no
problems. However, if the variables are not comparable, e.g., one is an unem-
ployment rate and another is the GDP in dollars, then some variables may
be many orders of magnitude larger than the others. In such cases, the large
variables could completely dominate the PCA, so that the first principal com-
ponent is in the direction of the variable with the largest standard deviation.
To eliminate this problem, one should standardize the variables.
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Example 17.1. PCA with unstandardized and standardized variables

As a simple illustration of the difference between using standardized and
unstandardized variables, suppose there are two variables (d = 2) with a
correlation of 0.9. Then the correlation matrix is

(
1 0.9

0.9 1

)

with eigenvectors (0.71, 0.71) and (−0.71, 0.71) [or 0.71, 0.71)] and eigenvalues
1.9 and 0.1. Most of the variation is in the direction (1, 1), which is consistent
with the high correlation between the two variables.

However, suppose that the first variable has variance 1,000,000 and the
second has variance 1. The covariance matrix is

(
1, 000, 000 900

900 1

)
,

which has eigenvectors, after rounding, equal to (1.0000,0.0009) and (−0.0009,
1) and eigenvalues 1,000,000 and 0.19. The first variable dominates the princi-
pal components analysis based on the covariance matrix. This principal com-
ponents analysis does correctly show that almost all of the variation is in the
first variable, but this is true only with the original units. Suppose that vari-
able 1 had been in dollars and is now converted to millions of dollars. Then its
variance is equal to 10−6, so that the principal components analysis using the
covariance matrix will now show most of the variation to be due to variable
2. In contrast, principal components analysis based on the correlation matrix
does not change as the variables’ units change.

¤

Example 17.2. Principal components analysis of yield curves

This example uses yields on Treasury bonds at 11 maturities, T = 1, 3, and
6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years. Daily yields were taken from
a U.S. Treasury website for the time period January 2, 1990, to October 31,
2008, A subset of these data was used in Example 15.1. The yield curves are
shown in Figure 17.1(a) for three different dates. Notice that the yield curves
can have a variety of shapes. In this example, we will use PCA to study how
the curves change from day to day.

To analyze daily changes in yields, all 11 time series were differenced. Daily
yields were missing from some values of T because, for example to quote the
website, “Treasury discontinued the 20-year constant maturity series at the
end of calendar year 1986 and reinstated that series on October 1, 1993.” Dif-
ferencing caused a few additional days to have missing values. In the analysis,



17.2 Principal Components Analysis 447

0 5 10 15 20 25 30

0
1

2
3

4
5

6
(a)

T

Y
ie

ld

07/31/01
07/02/07
10/31/08

(b)

V
ar

ia
nc

es

0.
00

0.
02

0.
04

0 5 10 15 20 25 30

−0
.5

0.
0

0.
5

(c)

T

P
C

PC 1
PC 2
PC 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0
.5

0.
0

0.
5

(d)

T

P
C

PC 1
PC 2
PC 3

Fig. 17.1. (a) Treasury yields on three dates. (b) Scree plot for the changes in
Treasury yields. Note that the first three principal components have most of the
variation, and the first five have virtually all of it. (c) The first three eigenvectors
for changes in the Treasury yields. (d) The first three eigenvectors for changes in
the Treasury yields in the range 0 ≤ T ≤ 3.

all days with missing values of the differenced data were omitted. This left
819 days of data starting on July 31, 2001, when the one-month series started
and ending on October 31, 2008, with the exclusion of the period February
19, 2002 to February 2, 2006 when the 30-year Treasury was discontinued.
One could use much longer series by not including the one-month and 30-year
series.

The covariance matrix, not the correlation matrix, was used, because in
this example the variables are comparable and in the same units.

First, we will look at the 11 eigenvalues. The results from R’s function
prcomp are
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Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 0.21 0.14 0.071 0.045 0.033 0.0173
Proportion of Variance 0.62 0.25 0.070 0.028 0.015 0.0041
Cumulative Proportion 0.62 0.88 0.946 0.974 0.989 0.9932

PC7 PC8 PC9 PC10 PC11
0.0140 0.0108 0.0092 0.00789 0.00610
0.0027 0.0016 0.0012 0.00085 0.00051
0.9959 0.9975 0.9986 0.99949 1.00000

The first row gives the values of
√

λi, the second row the values of λi/(λ1+
· · · + λd), and the third row the values of (λ1 + · · · + λi)/(λ1 + · · · + λd) for
i = 1, . . . , 11. One can see, for example, that the standard deviation of the
first principal component is 0.21 and represents 62% of the total variance.
Also, the first three principal components have 94.6% of the variation, and
this increases to 97.4% for the first four principal components and to 98.9%
for the first five. The variances (the squares of the first row) are plotted in
Figure 17.1(b). This type of plot is called a “scree plot” since it looks like
scree, fallen rocks that have accumulated at the base of a mountain.

We will concentrate on the first three principal components since approxi-
mately 95% of the variation in the changes in yields is in the space they span.
The eigenvectors, labeled “PC,” are plotted in Figures 17.1(c) and (d), the
latter showing detail in the range T ≤ 3. The eigenvectors have interesting
interpretations. The first, o1, has all positive values.1 A change in this di-
rection either increases all yields or decreases all yields, and by roughly the
same amounts. One could call such changes “parallel shifts” of the yield curve,
though they are only approximately parallel. These shifts are shown in Fig-
ure 17.2 (a), where the mean yield curve is shown as a heavy, solid line, the
mean plus o1 is a dashed line, and the mean minus o1 is a dotted line. Only
the range T ≤ 7 is shown, since the curves change less after this point. Since
the standard deviation of the first principal component is only 0.21, a ±1 shift
in a single day is huge and is used only for better graphical presentation.

The graph of o2 is decreasing and changes in this direction either increase
or decrease the slope of the yield curve. The result is that a graph of the mean
plus or minus PC2 will cross the graph of the mean curve at approximately
T = 1, where o2 equals zero; see Figure 17.2(b).

The graph of o3 is first decreasing and then increasing, and the changes
in this direction either increase or decrease the convexity of the yield curve.
The result is that a graph of the mean plus or minus PC3 will cross the graph
1 The eigenvectors are determined only up to a sign reversal, since multiplication

by −1 would not change the spanned space or the norm. Thus, we could in-
stead say the eigenvector has only negative values, but this would not change the
interpretation.
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Fig. 17.2. (a) The mean yield curve plus and minus the first eigenvector. (b)
The mean yield curve plus and minus the second eigenvector. (c) The mean yield
curve plus and minus the third eigenvector. (d) The fourth and fifth eigenvectors for
changes in the Treasury yields.

of the mean curve twice; see Figure 17.2(c). It is worth repeating a point
just made in connection with PC1, since it is even more important here. The
standard deviations in the directions of PC2 and PC3 are only 0.14 and 0.071,
respectively, so observed changes in these directions will be much smaller than
those shown in Figures 17.2(b) and (c). Moreover, parallel shifts will be larger
than changes in slope, which will be larger than changes in convexity.

Figure 17.2(d) plots the fourth and fifth eigenvectors. The patterns in
their graphs are complex and do not have easy interpretations. Fortunately,
the variation in the space they span is too small to be of much importance.

A bond portfolio manager would be interested in the behavior of the yield
changes over time. Time series analysis based on the changes in the 11 yields
could be useful, but a better approach would be to use the first three principal
components. Their time series and auto- and cross-correlation plots are shown
in Figures 17.3 and 17.4, respectively. The latter shows moderate short-term
auto-correlations which could be modeled with an ARMA process, though
the correlation is small enough that it might be ignored. Notice that the lag-0
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Fig. 17.3. Time series plots of the first three principal components of the Treasury
yields. There are 819 days of data, but they are not consecutive because of missing
data; see text.
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Fig. 17.4. Sample auto- and cross-correlations of the first three principal compo-
nents of the Treasury yields.
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cross-correlations are zero; this is not a coincidence but rather is due to the
way the principal components are defined. They are defined to be uncorrelated
with each other, so their lag-0 correlations are exactly zero. Cross-correlations
at nonzero lags are not zero, but in this example they are small. In practical
implication is that parallel shifts, changes in slopes, and changes in convexity
are nearly uncorrelated and could be analyzed separately. The time series
plots show substantial volatility clustering which could be modeled using the
GARCH models of Chapter 18.

¤

Example 17.3. Principal components analysis of equity funds

This example uses the data set equityFunds in R’s fEcofin package. The
variables are daily returns from January 1, 2002 to May 31, 2007 on eight eq-
uity funds: EASTEU, LATAM, CHINA, INDIA, ENERGY, MINING, GOLD,
and WATER. The eigenvalues are shown ahead. The results here are different
than those for the changes in yields, because in this example the variation is
less concentrated in the first few principal components. For example, the first
three principal components have only 75% of the variance, compared to 95%
for the yield changes. For the equity funds, one needs six principal components
to get 95%. A scree plot is shown in Figure 17.5(a).
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Fig. 17.5. (a) Scree plot for the Equity Funds example. (b) The first three eigen-
vectors for the Equity Funds example.
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Importance of components:
PC1 PC2 PC3 PC4 PC5

Standard deviation 0.026 0.016 0.013 0.012 0.0097
Proportion of Variance 0.467 0.168 0.117 0.097 0.0627
Cumulative Proportion 0.467 0.635 0.751 0.848 0.9107

PC6 PC7 PC8
0.0079 0.0065 0.0055
0.0413 0.0280 0.0201
0.9520 0.9799 1.0000

The first three eigenvectors are plotted in Figure 17.5(b). The first eigen-
vector has only positive values, and returns in this direction are either positive
for all of the funds or negative for all of them. The second eigenvector is neg-
ative for mining and gold (funds 6 and 7) and positive for the other funds.
Variation along this eigenvector has mining and gold moving in the opposite
direction of the other funds. Gold and mining moving counter to the rest of the
stock market is a common occurrence, so it is not surprising that the second
principal component has 17% of the variation. The third principal component
is less easy to interpret, but its loading on India (fund 4) is higher than on
the other funds, which might indicate that there is something different about
Indian equities.

¤

Example 17.4. Principal components analysis of the Dow Jones 30

As a further example, we will use returns on the 30 stocks on the Dow
Jones average. The data are in the data set DowJone30 in R’s fEcofin package
and cover the period from January 2, 1991 to January 2, 2002 The first five
principal components have over 97% of the variation:

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 88.53 24.967 13.44 10.602 8.2165

Proportion of Variance 0.87 0.069 0.02 0.012 0.0075

Cumulative Proportion 0.87 0.934 0.95 0.967 0.9743

In contrast to the analysis of the equity funds where six principal compo-
nents were needed to obtain 95% of the variance, here the first three principal
components have over 95% of the variance. Why are the Dow Jones stocks
behaving differently compared to the equity funds? The Dow Jones stocks are
similar to each other since they are all large companies in the United States.
Thus, we can expect that their returns will be highly correlated with each
other and a few principal components will explain most of the variation.

¤
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17.3 Factor Models

A factor model for excess equity returns is

Rj,t = β0,j + β1,jF1,t + · · ·+ βp,jFp,t + εj,t, (17.3)

where Rj,t is either the return or the excess return on the jth asset at time
t, F1,t, . . . , Fp,t are variables, called factors or risk factors, that represent the
“state of the financial markets and world economy” at time t, and ε1,t, . . . , εn,t

are uncorrelated, mean-zero random variables called the unique risks of the
individual stocks. The assumption that unique risks are uncorrelated means
that all cross-correlation between the returns is due to the factors. Notice
that the factors do not depend on j since they are common to all returns. The
parameter βi,j is called a factor loading and specifies the sensitivity of the jth
return to the ith factor. Depending on the type of factor model, either the
loadings, the factors, or both the factors and the loadings are unknown and
must be estimated.

The CAPM is a factor model where p = 1 and F1,t is the excess return on
the market portfolio. In the CAPM, the market risk factor is the only source of
risk besides the unique risk of each asset. Because the market risk factor is the
only risk that any two assets share, it is the sole source of correlation between
asset returns. Factor models generalize the CAPM by allowing more factors
than simply the market risk and the unique risk of each asset. A factor can
be any variable thought to affect asset returns. Examples of factors include:

1. returns on the market portfolio;
2. growth rate of the GDP;
3. interest rate on short term Treasury bills or changes in this rate;
4. inflation rate or changes in this rate;
5. interest rate spreads, for example, the difference between long-term Trea-

sury bonds and long-term corporate bonds;
6. return on some portfolio of stocks, for example, all U.S. stocks or all stocks

with a high ratio of book equity to market equity — this ratio is called
BE/ME in Fama and French (1992, 1995, 1996);

7. the difference between the returns on two portfolios, for example, the
difference between returns on stocks with high BE/ME values and stocks
with low BE/ME values.

With enough factors, most, and perhaps all, commonalities between assets
should be accounted for in the model. Then the εj,t should represent factors
truly unique to the individual assets and therefore should be uncorrelated
across j (across assets), as is being assumed.

Factor models that use macroeconomic variables such as 1–5 as factors
are called macroeconomic factor models. Fundamental factor models use ob-
servable asset characteristics (fundamentals) such as 6 and 7 as factors. Both
types of factor models can be fit by time series regression, the topic of the
next section. Fundamental factor models can also be fit by cross-sectional
regression, as explained in Section 17.5.
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17.4 Fitting Factor Models by Time Series Regression

Equation (17.3) is a regression model. If j is fixed, then it is a univariate
multiple regression model, “univariate” because there is one response (the
return on the jth asset) and “multiple” since there can be several predictor
variables (the factors). If we combine these models across j, then we have
a multivariate regression model, that is, a regression model with more than
one response. Multivariate regression is used when fitting a set of returns to
factors.

As discussed in Section 16.6, when fitting time series regression models,
one should use data at the highest sampling frequency available, which is
often daily or weekly, though only monthly data were available for the next
example.

Example 17.5. A macroeconomic factor model

The efficient market hypothesis implies that stock prices change because
of new information. Although there is considerable debate about the extent
to which markets are efficient, one still can expect that stock returns will be
influenced by unpredictable changes in macroeconomic variables. Accordingly,
the factors in a macroeconomic model are not the macroeconomic variables
themselves, but rather the residuals when changes in the macroeconomic vari-
ables are predicted by a time series model, such as, a multivariate AR model.

In this example, we look at a subset of a case study that has been presented
by other authors; see the bibliographical notes in Section 17.7. The macroe-
conomic variables in this example are changes in the logs of CPI (Consumer
Price Index) and IP (Industrial Production). The changes in these series have
been analyzed before in Examples 9.10, 9.11, and 10.4 and in that last example
a bivariate AR model was fit. It was found that the AR(5) model minimized
AIC, but the AR(1) had an AIC value nearly as small as the AR(5) model.

In this example, we will use the residuals from the AR(5) model as the fac-
tors. Monthly returns on nine stocks were taken from the berndtInvest data
set in R’s fEcofin package. The returns are from January 1978 to December
1987. The CPI and IP series from July 1977 to December 1987 were used, but
the month of July 1977 was lost through differencing. This left enough data
(the five months August 1977 to December 1977) for forecasting CPI and IP
beginning January 1978 when the return series started.
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Fig. 17.6. R2 and slopes of regressions of stock returns on CPI residuals and IP
residuals.

R2 and the slopes for the regressions of the stock returns on the CPI
residuals and the IP residuals are plotted in Figure 17.6 for each of the 9 stocks.
Note that the R2-values are very small, so the macroeconomic factors have
little explanatory power. The problem of low explanatory power is common
with macroeconomic factor models and has been noticed by other authors. For
this reason, fundamental factor models are more widely used macroeconomic
models. ¤

17.4.1 Fama and French Three-Factor Model

Fama and French (1995) have developed a fundamental factor model with
three risk factors, the first being the excess return of the market portfolio,
which is the sole factor in the CAPM. The second risk factor, which is called
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small minus large (SML), is the difference in returns on a portfolio of small
stocks and a portfolio of large stock. Here “small” and “large” refer to the
size of the market value, which is the share price times the number of shares
outstanding. The third factor, HML (high minus low), is the difference in
returns on a portfolio of high book-to-market value (BE/ME) stocks and
a portfolio of low BE/ME stocks. Book value is the net worth of the firm
according to its accounting balance sheet. Fama and French argue that most
pricing anomalies that are inconsistent with the CAPM disappear in the three-
factor model. Their model of the return on the jth asset for the tth holding
period is

Rj,t − µf,t = β0,j + β1,j(RM,t − µf,t) + β2,jSMLt + β3,jHMLt + εj,t,

where SMLt and HMLt are the values of SML and HML and µf,t is the
risk-free rate for the tth holding period. Returns on portfolios have little au-
tocorrelation, so the returns themselves, rather than residuals from a time
series model, can be used.

Notice that this model does not use the size or the BE/ME ratio of the
jth asset to explain returns. The coefficients β2,j and β3,j are the loading
of the jth asset on SML and HML. These loadings may, but need not, be
related to the size and to the BE/ME ratio of the jth asset. In any event, the
loadings are estimated by regression, not by measuring the size or BE/ME of
the jth asset. If the loading β2,j of the jth asset on SML is high, that might
be because the jth asset is small or it might be because that asset is large
but, in terms of returns, behaves similarly to small assets.

For emphasis, it is mentioned again that the factors SMLt and HMLt

do not depend on j since they are differences between returns on two fixed
portfolios, not variables that are measured on the jth asset. This is true in
general of the factors and loadings in model (17.3), not just the Fama–French
model—only the loadings, that is, the parameters βk,j , depend on the asset
j. The factors are macroeconomic variables, linear combinations of returns on
portfolios, or other variables that depend only on the financial markets and
the economy as a whole.

There are many reasons why book and market values may differ. Book
value is determined by accounting methods that do not necessarily reflect
market values. Also, a stock might have a low book-to-market value because
investors expect a high return on equity, which increases its market value rela-
tive to its book value. Conversely, a high book-to-market value could indicate
a firm that is in trouble, which decreases its market value. A low market value
relative to the book value is an indication of a stock’s “cheapness,” and stocks
with a high market-to-book value are considered growth stocks for which in-
vestors are willing to pay a premium because of the promise of higher future
earnings. Stocks with a low market-to-book value are called value stocks and
investing in them is called value investing.
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SML and HML are the returns on portfolio that are long on one portfolio
and short on another. Such portfolios are called hedge portfolios since they are
hedged, though perhaps not perfectly, against changes in the overall market.

Example 17.6. Fitting the Fama–French model to GE, IBM, and Mobil

This example uses two data sets. The first is CRSPmon in R’s Ecdat package.
This is similar to the CRSPday data set used in previous examples except that
the returns are now monthly rather than daily. There are returns on three
equities, GE, IBM, and Mobil, as well as on the CRSP average, though we
will not use the last one here. The returns are from January 1969 to December
1998. The second data set is the Fama–French factors and was taken from the
website of Prof. Kenneth French.

Figure 17.7 is a scatterplot matrix of the GE, IBM, and Mobil excess
returns and the factors. Focusing on GE, we see that, as would be expected,
GE excess returns are highly correlated with the excess market returns. The
GE returns are negatively related with the factor HML which would indicate
that GE behaves as a value stock. However, this is a false impression caused
by the lack of adjustment for associations between GE excess returns and the
other factors. Regression analysis will be used soon to address this problem.
The two Fama–French factors are not quite hedge portfolios since SMB is
positively and HML negatively related to the excess market return. However,
these associations are far weaker than that between the excess returns on the
stocks and the market excess returns. Moreover, SMB and HML have little
association between each other, so multicollinearity is not a problem.

The three excess equity returns were regressed on the three factors using
the lm function in R. The estimated coefficients are

Call:
lm(formula = cbind(ge, ibm, mobil) ~ Mkt.RF + SMB + HML)

Coefficients:
ge ibm mobil

(Intercept) 0.3443 0.1460 0.1635
Mkt.RF 1.1407 0.8114 0.9867
SMB -0.3719 -0.3125 -0.3753
HML 0.0095 -0.2983 0.3725

Notice that GE now has a positive relationship with HML, not the neg-
ative relationship seen in Figure 17.7. All three equity returns have negative
relationships with SMB, so, not surprisingly, they behave like large stocks.

Recall that one important assumption of the factor model is that the
εj,t in (17.3) are uncorrelated. Violation of this assumption, that is, cross-
correlations between εj,t and εj′,t, j 6= j′, will create biases when the factor
model is used to estimate correlations between the equity returns, a topic
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Fig. 17.7. Scatterplot matrix of the excess returns on GE, IBM, and Mobil and the
three factors in the Fama–French model.

explained in the next section. Lack of cross-correlation is not an assumption
of the multivariate regression model and does not cause bias in the estimation
of the regression coefficients or the variances of the εj,t. The biases arise only
when estimating covariances between the equity returns.

To check for cross-correlations, we will use the residuals from the multi-
variate regression. Their sample correlation matrix is

ge ibm mobil
ge 1.000000 0.070824 -0.25401
ibm 0.070824 1.000000 -0.10153
mobil -0.254012 -0.101532 1.00000
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Fig. 17.8. Scatterplot matrix of the residuals for GE, IBM, and Mobil from the
Fama–French model.

The correlation between GE and Mobil is rather far from zero and is worth
checking. A 95% confidence interval for the residual correlations between GE
excess returns and Mobil excess returns does not include 0, so a test would
reject the null hypotheses that the true correlation is 0. The other correlations
are not significantly different from 0. Because of the large negative GE–Mobil
correlation, we should be careful about using the Fama–French model for es-
timation of the covariance matrix of the equity returns. As always, it is good
practice to look at scatterplot matrices as well as correlations, since scat-
terplots may be outliers or nonlinear relationships affecting the correlations.
Figure 17.8 contains a scatterplot matrix of the residuals. One sees that there
are few outliers. Though none of the outliers is really extreme, it seems worth-
while to compute robust correlations estimates and to compare them with the
ordinary sample correlation matrix. Robust estimates were found using the
function covRob in R’s robust package. What was found is that the robust
estimates are all closer to zero than the nonrobust estimates, but the robust
correlation estimate for GE and Mobil is still a large negative value.

Call:
covRob(data = fit$residuals, corr = T)

Robust Estimate of Correlation:
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ge ibm mobil
ge 1.000000 0.035966 -0.247884
ibm 0.035966 1.000000 -0.068716
mobil -0.247884 -0.068716 1.000000

This example is atypical of real applications because, for illustration pur-
poses, the number of returns has been kept low, only three, whereas in port-
folio management the number of returns will be larger and might be in the
hundreds.

¤

17.4.2 Estimating Expectations and Covariances of Asset Returns

Section 16.7 discussed how the CAPM can simplify the estimation of expec-
tations and covariances of asset returns. However, using the CAPM for this
purpose can be dangerous since the estimates depend on the validity of the
CAPM. Fortunately, it is also possible to estimate return expectations and
covariances using a more realistic factor model instead of the CAPM.

We start with two factors for simplicity. From (17.3), now with p = 2, we
have

Rj,t = β0,j + β1,jF1,t + β2,jF2,t + εj,t. (17.4)

It follows from (17.4) that

E(Rj,t) = β0,j + β1,jE(F1,t) + β2,jE(F2,t) (17.5)

and

Var(Rj,t) = β2
1,jVar(F1) + β2

2,jVar(F2) + 2β1,jβ2,jCov(F1, F2) + σ2
ε,j .

Also, because Rj,t and Rj′,t are two linear combinations of the risk factors, it
follows from (7.8) that for any j 6= j′,

Cov(Rj,t, Rj′,t) = β1,jβ1,j′Var(F1) + β2,jβ2,j′Var(F2)
+ (β1,jβ2,j′ + β1,j′β2,j)Cov(F1, F2). (17.6)

More generally, let
F T

t = (F1,t, . . . , Fp,t) (17.7)

be the vector of p factors at time t and suppose that ΣF is the p×p covariance
matrix of F t. Define the vector of intercepts

βT
0 = (β0,1, . . . , β0,n)

and the matrix of loadings

β =




β1,1 · · · β1,j · · · β1,n

...
. . .

...
. . .

...
βp,1 · · · βp,j · · · βp,n


 .
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Also, define
εT = (ε1,t, . . . , εn,t) (17.8)

and let Σε be the n× n diagonal covariance matrix of ε:

Σε =




σ2
ε,1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · σ2
ε,j · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · σ2

ε,n




.

Finally, let
RT

t = (R1,t . . . , Rn,t) (17.9)

be the vector of all returns at time t. Model (17.3) then can be reexpressed
in matrix notation as

Rt = β0 + βTF t + εt. (17.10)

Therefore, the n× n covariance matrix of Rt is

ΣR = βTΣF β + Σε. (17.11)

In particular, if βj = (β1,j · · · βp,j )T is the jth column of β, then the
variance of the jth return is

Var(Rj) = βT
j ΣF βj + σ2

εj
, (17.12)

and the covariance between the jth and j′th returns is

Cov(Rj , R
′
j) = βT

j ΣF βj′ . (17.13)

To use (17.11), (17.12) or (17.13), one needs estimates of β, ΣF , and Σε.
The regression coefficients are used to estimate β, the sample covariance of
the factors can be used to estimate ΣF , and Σ̂ε can be the diagonal matrix
of the mean residual sum of squared errors from the regressions; see equation
(12.12).

Why estimate ΣR via a factor model instead of simply using the sample
covariance matrix? One reason is estimation accuracy. This is another example
of bias–variance tradeoff. The sample covariance matrix is unbiased, but it
contains n(n + 1)/2 estimates, one for each covariance and each variance.
Each of these parameters is estimated with error and when this many errors
accumulate, the result can be a sizable loss of precision. In contrast, the factor
model requires estimates of n× p parameters in β, p2 parameters in ΣF , and
n parameters in the diagonal matrix Σε, for a total of np+n+p2 parameters.
Typically, n, the number of returns, is large but p, the number of factors, is
much smaller, so np + n + p2 is much smaller than n(n + 1)/2. For example,
suppose there are 200 returns and 5 factors. Then n(n + 1)/2 = 20,100 but
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np + n + p2 is only 1,225. The downside of the factor model is that there will
be bias in the estimate of ΣR if the factor model is misspecified, especially if
Σε is not diagonal as the factor model assumes.

Another advantage of the factor model is expediency. Having fewer param-
eters to estimate is one convenience and another is ease of updating. Suppose
a portfolio manager has implemented a factor model for n equities and now
needs to add another equity. If the manager uses the sample covariance ma-
trix, then the n sample covariances between the new return time series and
the old ones must be computed. This requires that all n of the old time series
be available. In comparison, with a factor model, the portfolio manager needs
only to regress the new return time series on the factors. Only the p factor
time series need to be available.

Example 17.7. Estimating the covariance matrix of GE, IBM, and Mobil ex-
cess returns

This example continues Example 17.6. Recall that the number of returns
has been kept artificially low, since with more returns it would not have been
possible to display the results. Therefore, this example merely illustrates the
calculations and is not a typical application of factor modeling.

The estimate of ΣF is the sample covariance matrix of the factors:

Mkt.RF SMB HML
Mkt.RF 21.1507 4.2326 -5.1045
SMB 4.2326 8.1811 -1.0760
HML -5.1045 -1.0760 7.1797

The estimate of β is the matrix of regression coefficients (without the inter-
cepts):

Mkt.RF SMB HML
ge 1.14071 -0.37193 0.009503
ibm 0.81145 -0.31250 -0.298302
mobil 0.98672 -0.37530 0.372520

The estimate of Σε is the diagonal matrix of residual error MS values:

[,1] [,2] [,3]
[1,] 16.077 0.000 0.000
[2,] 0.000 31.263 0.000
[3,] 0.000 0.000 27.432

Therefore, the estimate of βTΣF β is

ge ibm mobil
ge 24.960 19.303 19.544
ibm 19.303 15.488 14.467
mobil 19.544 14.467 16.155
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and the estimate of βTΣF β + Σε is

ge ibm mobil
ge 41.036 19.303 19.544
ibm 19.303 46.752 14.467
mobil 19.544 14.467 43.587

For comparison, the sample covariance matrix of the equity returns is

ge ibm mobil
ge 40.902 20.878 14.255
ibm 20.878 46.491 11.518
mobil 14.255 11.518 43.357

The largest difference between the estimate of βTΣF β + Σε and the sample
covariance matrix is in the covariance between the excess returns on GE and
Mobil. The reason for this large discrepancy is that the factor model assumes
a zero residual correlation between these two variables, but the data show a
negative correlation of −0.25.

¤

17.5 Cross-Sectional Factor Models

Models of the form (17.3) are time series factor models. They use time series
data, one single asset at a time, to estimate the loadings.

As just discussed, time series factor models do not make use of variables
such as dividend yields, book-to-market value, or other variables specific to the
jth firm. An alternative is a cross-sectional factor model, which is a regression
model using data from many assets but from only a single holding period. For
example, suppose that Rj , (B/M)j , and Dj are the return, book-to-market
value, and dividend yield for the jth asset for some fixed time t. Since t is fixed,
it will not be made explicit in the notation. Then a possible cross-sectional
factor model is

Rj = β0 + β1(B/M)j + β2Dj + εj .

The parameters β1 and β2 are unknown values at time t of a book-to-market
value risk factor and a dividend yield risk factor. These values are estimated
by regression.

There are two fundamental differences between time series factor models
and cross-sectional factor models. The first is that with a time series factor
model one estimates parameters, one asset at a time, using multiple holding
periods, while in a cross-sectional model one estimates parameters, one single
holding period at a time, using multiple assets. The other major difference
is that in a time series factor model, the factors are directly measured and
the loadings are the unknown parameters to be estimated by regression. In
a cross-sectional factor model the opposite is true; the loadings are directly
measured and the factor values are estimated by regression.
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Example 17.8. An industry cross-sectional factor model

This example uses the berndtInvest data set in R’s fEcofin package.
This data set has monthly returns on 15 stocks over 10 years, 1978 to 1987.
The 15 stocks were classified into three industries,“Tech,” “Oil,” and “Other,”
as follows:

tech oil other
CITCRP 0 0 1
CONED 0 0 1
CONTIL 0 1 0
DATGEN 1 0 0
DEC 1 0 0
DELTA 0 1 0
GENMIL 0 0 1
GERBER 0 0 1
IBM 1 0 0
MOBIL 0 1 0
PANAM 0 1 0
PSNH 0 0 1
TANDY 1 0 0
TEXACO 0 1 0
WEYER 0 0 1

We used the indicator variables of “tech” and “oil” as loadings and fit the
model

Rj = β0 + β1techj + β2oilj + εj , (17.14)

where Rj is the return on the jth stock, techj equals 1 if the jth stock is a
technology stock and equals 0 otherwise, and oilj is defined similarly. Model
(17.14) was fit separately for each of the 120 months. The estimates β̂0, β̂1,
and β̂3 for a month were the values of the three factors for that month. The
loadings were the known values of techj and oilj .

Factor 1, the values of β̂0, can be viewed as an overall market factor, since
it affects all 15 returns. Factors 2 and 3 are the technology and oil factors.
For example, if the value of factor 2 is positive in any given month, then Tech
stocks have better-than-market returns that month. Figure 17.9 contains time
series plots of the three factor series, and Figure 17.10 shows their auto- and
cross-correlation functions. The largest cross-correlation is between the tech
and oil factors at lag 0, which indicates that above- (below-) market returns
for technology stocks are associated with above (below) market returns for oil
stocks.
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Fig. 17.9. Time series plots of the estimated values of the three factors in the
cross-sectional factor model.
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Fig. 17.10. Auto- and cross-correlation plots of the estimated three factors in the
cross-sectional factor model. Series 1–3 are the market, tech, and oil factors, respec-
tively.
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The standard deviations of the three factors are

market tech oil
0.04924626 0.06856372 0.05334319

There are other ways of defining the factors. For example, Zivot and Wang
(2006) use the model

Rj = β1techj + β2oilj + β3otherj + εj , (17.15)

with no intercept but with otherJ as a third variable. With this model, there
is no market factor but instead factors for all three industries.

¤

Cross-sectional factor models are sometimes called BARRA models af-
ter BARRA, Inc., a company that has been developing cross-sectional factor
models and marketing the output of their models to financial managers.

17.6 Statistical Factor Models

In a statistical factor model, neither the factor values nor the loadings are di-
rectly observable. All that is available is the sample Y 1, . . . , Y n or, perhaps,
only the sample covariance matrix. This is the same type of data available
for PCA and we will see that statistical factor analysis and PCA have some
common characteristics. As with PCA, one can work with either the stan-
dardized or unstandardized variables. R’s factanal function automatically
standardizes the variables.

We start with the multifactor model in matrix notation (17.10) and the
return covariance matrix (17.11) which for convenience will be repeated as

Rt = β0 + βTF t + εt. (17.16)

and
ΣR = βTΣF β + Σε. (17.17)

The only component of (17.17) that can be estimated directly from the data is
ΣR. One can use this estimate to find estimates of β, ΣF , and Σε. However,
it is too much to ask that all three of these matrices be identified from ΣR

alone. Here is the problem: Let A be any p × p invertible matrix. Then the
returns vector Rt in (17.16) is unchanged if βT is replaced by βTA−1 and F t

is replaced by AF t. Therefore, the returns only determine β and F t up to
a nonsingular linear transformation, and consequently a set of constraints is
needed to identify the parameters. The usual constraints are the factors are
uncorrelated and standardized, so that

ΣF = I, (17.18)
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where I is the p×p identity matrix. With these constraints, (17.17) simplifies
to the statistical factor model

ΣR = βTβ + Σε. (17.19)

However, even with this simplification, β is only determined up to a rotation,
that is, by multiplication by an orthogonal matrix. To appreciate why this
is so, let P be any orthogonal matrix, so that P T = P−1. Then (17.19) is
unchanged if β is replaced by Pβ since

(Pβ)T(Pβ) = βTP TPβ = βTP−1Pβ = βTβ.

Therefore, to determine β a further set of constraints is needed. One set of
constraints in common usage, that is, by the function factanal in R, is that
βΣ−1

ε βT is diagonal.

Example 17.9. Factor analysis of equity funds

This example continues the analysis of the equity funds data set that was
used in Example 17.3 to illustrate PCA. The results from fitting a 4-factor
model (p = 4) using factanal are

> factanal(equityFunds[,2:9],4,rotation="none")

Call:
factanal(x = equityFunds[, 2:9], factors = 4,

rotation = "none")

Uniquenesses:
EASTEU LATAM CHINA INDIA ENERGY MINING GOLD WATER
0.735 0.368 0.683 0.015 0.005 0.129 0.005 0.778

Loadings:
Factor1 Factor2 Factor3 Factor4

EASTEU 0.387 0.169 0.293
LATAM 0.511 0.167 0.579
CHINA 0.310 0.298 0.362
INDIA 0.281 0.951
ENERGY 0.784 0.614
MINING 0.786 0.425 -0.258
GOLD 0.798 -0.596
WATER 0.340 0.298 0.109

Factor1 Factor2 Factor3 Factor4
SS loadings 2.57 1.07 0.82 0.82
Proportion Var 0.32 0.13 0.10 0.10
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Cumulative Var 0.32 0.46 0.56 0.66

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 17 on 2 degrees of freedom.
The p-value is 2e-04

The “loadings” are the estimates β̂. By convention, any loading with an
absolute value less than the parameter cutoff is not printed, and the default
value of cutoff is 0.1. Because all its loadings have the same sign, the first
factor is an overall index of the eight funds. The second factor has large
loadings on the four regional funds (EASTEU, LATAM, CHINA, INDIA)
and small loadings on the four industry section funds (ENERGY, MINING,
GOLD, WATER). The four regions are all emerging markets, so the second
factor might be interpreted as an emerging markets factor. The fourth factor
is a contrast of MINING and GOLD with ENERGY and WATER, and mimics
a hedge portfolio that is long on ENERGY and WATER and short on GOLD
and MINING. The third factor is less interpretable. The uniquenesses are the
diagonal elements of the estimate Σ̂ε.

The output gives a p-value for testing the null hypothesis that there are
at most four factors. The p-value is small, indicating that the null hypothesis
should be rejected. However, four is that maximum number of factors that can
be used by factanal when there are only eight returns. Should we be con-
cerned that we are not using enough factors? Recall the important distinction
between statistical and practical significance that has been emphasized else-
where in this book. One way to assess practical significance is to see how well
the factor model can reproduce the sample correlation matrix. Since factanal
standardizes the variables, the factor model estimate of the correlation matrix
is the estimate of the covariance matrix, that is,

β̂
T
β̂ + Σ̂ε. (17.20)

The difference between this estimate and the sample correlation matrix is a
8 × 8 matrix. We would like all of its entries to be close to 0. Unfortunately,
they are not as small as we would like. There are various ways to check if a
matrix this size is “small.” The smallest entry is −0.063 and the largest is
0.03. These are reasonably large discrepancies between correlation matrices.
Also, the eigenvalues of the difference are

-7.5e-02 -6.0e-03 -3.4e-15 -2.0e-15
-1.3e-15 3.0e-15 7.7e-03 7.3e-02

Another way to check for smallness of the difference between the two estimates
is to look at the estimates of the variance of an equally weighted portfolio (of
the standardized returns), which is

wTΣRw,
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where wT = (1/8, . . . , 1/8). These estimates are 0.37 and 0.47 using the factor
model and the sample correlation matrix, respectively. The absolute difference,
0.07, is relatively large compared to either of the estimates. The conclusion is
that the lack of fit to the factor model might be of real importance.

¤

17.6.1 Varimax Rotation of the Factors

As discussed earlier, the estimate of the covariance matrix is unchanged if the
loadings β are rotated by multiplication by an orthogonal matrix. Rotation
might increase the interpretability of the loadings. In some applications, it is
desirable for each loading to be either close to 0 or large, so that a variable
will load only on a few factors, or even on only one factor. Varimax rotation
attempts to make each loading either small or large by maximizing the sum
of the variances of the squared loadings. Varimax rotation is the default with
R’s factanal function, but this can be changed. In Example 17.9, no rotation
was used. In finance, having variables loading on only one or a few factors is
not that important, and may even be undesirable, so varimax rotation may
not advantageous.

We repeat again for emphasis that the estimate of Σε is not changed by
rotation. The uniquenesses are also unchanged. Only the loadings change.

Example 17.10. Factor analysis of equity funds: Varimax rotation

The statistical factor analysis in Example 17.9 is repeated here but now
with varimax rotation.

Call:
factanal(x = equityFunds[, 2:9], factors = 4,

rotation = "varimax")

Uniquenesses:
EASTEU LATAM CHINA INDIA ENERGY MINING GOLD WATER
0.735 0.368 0.683 0.015 0.005 0.129 0.005 0.778

Loadings:
Factor1 Factor2 Factor3 Factor4

EASTEU 0.436 0.175 0.148 0.148
LATAM 0.748 0.174 0.180
CHINA 0.494 0.247
INDIA 0.243 0.959
ENERGY 0.327 0.118 0.934
MINING 0.655 0.637 0.168
GOLD 0.202 0.971
WATER 0.418 0.188
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Factor1 Factor2 Factor3 Factor4
SS loadings 1.80 1.45 1.03 1.00
Proportion Var 0.23 0.18 0.13 0.12
Cumulative Var 0.23 0.41 0.54 0.66

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 17 on 2 degrees of freedom.
The p-value is 2e-04

The most notable change compared to the nonrotated loadings is that
now all loadings with an absolute value above 0.1 are positive. Therefore, the
factors all represent long positions, whereas before some were more like hedge
portfolios. However, the rotated factors seem less interpretable compared to
the unrotated factors, so a financial analyst might prefer the unrotated factors.

¤

17.7 Bibliographic Notes

The Fama–French three-factor model was introduced by Fama and French
(1993) and discussed further in Fama and French (1995, 1996). Connor (1995)
compares the three types of factor models and finds that macroeconomic factor
models have less explanatory power than other factor models. Example 17.5
was adopted from Zivot and Wang (2006). Sharpe, Alexander, and Bailey
(1999) has a brief description of the BARRA, Inc. factor model.
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17.9 R Lab

17.9.1 PCA

In the first section of this lab, you will do a principal components analysis
of daily yield data in the file yields.txt. R has functions, which we will use
later, that automate PCA, but it is easy to do PCA “from scratch” and it
is instructive to do this. First load the data and, to get a feel for what yield
curves look like, plot the yield curves on days 1, 101, 201, 301, . . ., 1101. There
are 1352 yield curves in the data, so you will see a representative sample of
them. The yield curves change slowly, which is why one should look at yield
curves that are spaced rather far (100 days) apart.

yieldDat = read.table("yields.txt",header=T)
maturity = c((0:5),5.5,6.5,7.5,8.5,9.5)
pairs(yieldDat)
par(mfrow=c(4,3))
for (i in 0:11)
{
plot(maturity,yieldDat[100*i+1,],type="b")
}

Next compute the eigenvalues and eigenvectors of the sample covariance ma-
trix, print the results, and plot the eigenvalues as a scree plot.

eig = eigen(cov(yieldDat))
eig$values
eig$vectors
par(mfrow=c(1,1))
barplot(eig$values)

The following R code plots the first four eigenvectors.

par(mfrow=c(2,2))

plot(eig$vector[,1],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,2],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,3],ylim=c(-.7,.7),type="b")

abline(h=0)

plot(eig$vector[,4],ylim=c(-.7,.7),type="b")

abline(h=0)

Problem 1 It is generally recommended that PCA be applied to time series
that are stationary. Plot the first column of yieldDat. (You can look at other
columns as well. You will see that they are fairly similar.) Does the plot appear
stationary? Why or why not? Include your plot with your work.
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Another way to check for stationarity is to run the augmented Dickey–Fuller
test. You can do that with the following code:

library("tseries")

adf.test(yieldDat[,1])

Problem 2 Based on the augmented Dickey–Fuller test, do you think the first
column of yieldDat is stationary? Why or why not?

Run the following code to compute changes in the yield curves. Notice the use
of [-1,] to delete the first row and similarly the use of [-n,].

n=dim(yieldDat)[1]
delta_yield = yieldDat[-1,] - yieldDat[-n,]

Plot the first column of delta_yield and run the augmented Dickey–Fuller
test to check for stationarity.

Problem 3 Do you think the first column of delta yield is stationary? Why
or why not?

Run the following code to perform a PCA using the function princomp. By
default,princomp does a PCA on the covariance matrix, though there is an
option to use the correlation matrix instead. We will use the covariance matrix.
The second line of the code will print the names of the components in the
object that is returned by princomp. As you can see, the names function
can be useful for learning just what is being returned. You can also get this
information by typing ?princomp.

pca_del = princomp(delta_yield)
names(pca_del)
summary(pca_del)
plot(pca_del)

Problem 4 (a) The output from names includes the following:

[1] "sdev" "loadings" "center" "scores"

Describe each of these components in mathematical terms. To answer this
part of the question, you can print and plot the components to see what
they contain and use R’s help for further information.

(b) What are the first two eigenvalues of the covariance matrix?
(c) What is the eigenvector corresponding to the largest eigenvalue?
(d) Suppose you wish to “explain” at least 95% of the variation in the changes

in the yield curves. Then how many principal components should you use?
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17.9.2 Fitting Factor Models by Time Series Regression

In this section, we will start with the one-factor CAPM model of Chapter 16
and then extend this model to the three-factor Fama–French model. We will
use the data set Stock_FX_Bond_2004_to_2005.csv on the book’s website,
which contains stock prices and other financial time series for the years 2004
and 2005. Data on the Fama–French factors are available at Prof. Kenneth
French’s website

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html#Research

where RF is the risk-free rate and Mkt.RF, SMB, and HML are the Fama–French
factors.

Go to Prof. French’s website and get the daily values of RF, Mkt.RF, SMB,
and HML for the years 2004–2005. It is assumed here that you’ve put the data
in a text file FamaFrenchDaily.txt. Returns on this website are expressed as
percentages.

Now fit the CAPM to the four stocks using the lm command. This code
fits a linear regression model separately to the four responses. In each case,
the independent variable is Mkt.RF.

# Uses daily data 2004-2005

stocks = read.csv("Stock_FX_Bond_2004_to_2005.csv",header=T)
stocks_subset=as.data.frame(cbind(GM_AC,F_AC,UTX_AC,MRK_AC))
stocks_diff = as.data.frame(100*apply(log(stocks_subset),

2,diff) - FF_data$RF)
names(stocks_diff) = c("GM","Ford","UTX","Merck")

FF_data = read.table("FamaFrenchDaily.txt",header=T)
FF_data = FF_data[-1,] # delete first row since stocks_diff

# lost a row due to differencing

fit1 = lm(as.matrix(stocks_diff)~FF_data$Mkt.RF)
summary(fit1)

Problem 5 The CAPM predicts that all four intercepts will be zero. For each
stock, using α = 0.025, can you accept the null hypothesis that its intercept is
zero? Why or why not? Include the p-values with your work.

Problem 6 The CAPM also predicts that the four sets of residuals will be
uncorrelated. What is the correlation matrix of the residuals? Give a 95% con-
fidence interval for each of the six correlations. Can you accept the hypothesis
that all six correlations are zero?



474 17 Factor Models and Principal Components

Problem 7 Regardless of your answer to Problem 6, assume for now that
the residuals are uncorrelated. Then use the CAPM to estimate the covariance
matrix of the excess returns on the four stocks. Compare this estimate with
the sample covariance matrix of the excess returns. Do you see any large
discrepancies between the two estimates of the covariance matrix?

Next, you will fit the Fama–French three-factor model. Run the following
R code, which is much like the previous code except that the regression model
has two additional predictor variables, SMB and HML.

fit2 = lm(as.matrix(stocks_diff)~FF_data$Mkt.RF +
FF_data$SMB + FF_data$HML)

summary(fit2)

Problem 8 The CAPM predicts that for each stock, the slope (beta) for SMB
and HML will be zero. Explain why the CAPM makes this prediction. Do you
accept this null hypothesis? Why or why not?

Problem 9 If the Fama–French model explains all covariances between the
returns, then the correlation matrix of the residuals should be diagonal. What
is the estimated correlations matrix? Would you accept the hypothesis that the
correlations are all zero?

Problem 10 Which model, CAPM or Fama–French, has the smaller value
of AIC? Which has the smaller value of BIC? What do you conclude from
this?

Problem 11 What is the covariance matrix of the three Fama–French fac-
tors?

Problem 12 In this problem, Stocks 1 and 2 are two stocks, not necessarily
in the Stock_FX_Bond_2004_to_2005.csv data set. Suppose that Stock 1 has
betas of 0.5, 0.4, and −0.1 with respect to the three factors in the Fama–French
model and a residual variance of 23.0. Suppose also that Stock 2 has betas of
0.6, 0.15, and 0.7 with respect to the three factors and a residual variance
of 37.0. Regardless of your answer to Problem 9, when doing this problem,
assume that the three factors do account for all covariances.

(a) Use the Fama–French model to estimate the variance of the excess return
on Stock 1.

(b) Use the Fama–French model to estimate the variance of the excess return
on Stock 2.
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(c) Use the Fama–French model to estimate the covariance between the excess
returns on Stock 1 and Stock 2.

17.9.3 Statistical Factor Models

This section applies statistical factor analysis to the log returns of 10 stocks
in the data set Stock_FX_Bond.csv. The data set contains adjusted costing
(AC) prices of the stocks, as well as daily volumes and other information that
we will not use here.

The following R code will read the data, compute the log returns, and fit a
two-factor model. Note that factanal works with the correlation matrix or,
equivalently, with standardized variables.

dat = read.csv("Stock_FX_Bond.csv")
stocks_ac = dat[,c(3,5,7,9,11,13,15,17)]
n = length(stocks_ac[,1])
stocks_returns = log(stocks_ac[-1,] / stocks_ac[-n,])
fact = factanal(stocks_returns,factors=2,,rotation="none")
print(fact)

Loadings less than the parameter cutoff are not printed. The default value
of cutoff is 0.1, but you can change it as in “print(fact,cutoff=.01)” or
“print(fact,cutoff=0)”.

Problem 13 What are the factor loadings? What are the variances of the
unique risks for Ford and General Motors?

Problem 14 Does the likelihood ratio test suggest that two factors are enough?
If not, what is the minimum number of factors that seems sufficient?

The following code will extract the loadings and uniquenesses.

loadings = matrix(as.numeric(loadings(fact)),ncol=2)
unique = as.numeric(fact$unique)

Problem 15 Regardless of your answer to Problem 6, use the two-factor
model to estimate the correlation of the log returns for Ford and IBM.

17.10 Exercises

1. The file yields2009.csv on this book’s website contains daily Treasury
yields for 2009. Perform a principal components analysis on changes in
the yields. Describe your findings. How many principal components are
needed to capture 98% of the variability?
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2. Perform a statistical factor analysis of the returns in the data set mid-
capD.ts in the fEcofin package. How many factors did you select? Use
(17.20) to estimate the covariance matrix of the returns.

3. Verify equation (17.6).
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GARCH Models

18.1 Introduction

As seen in earlier chapters, financial markets data often exhibit volatility
clustering, where time series show periods of high volatility and periods of low
volatility; see, for example, Figure 18.1. In fact, with economic and financial
data, time-varying volatility is more common than constant volatility, and
accurate modeling of time-varying volatility is of great importance in financial
engineering.

As we saw in Chapter 9, ARMA models are used to model the conditional
expectation of a process given the past, but in an ARMA model the con-
ditional variance given the past is constant. What does this mean for, say,
modeling stock returns? Suppose we have noticed that recent daily returns
have been unusually volatile. We might expect that tomorrow’s return is also
more variable than usual. However, an ARMA model cannot capture this
type of behavior because its conditional variance is constant. So we need bet-
ter time series models if we want to model the nonconstant volatility. In this
chapter we look at GARCH time series models that are becoming widely used
in econometrics and finance because they have randomly varying volatility.

ARCH is an acronym meaning AutoRegressive Conditional Heteroscedas-
ticity. In ARCH models the conditional variance has a structure very similar
to the structure of the conditional expectation in an AR model. We first study
the ARCH(1) model, which is the simplest GARCH model and similar to an
AR(1) model. Then we look at ARCH(p) models that are analogous to AR(p)
models. Finally, we look at GARCH (Generalized ARCH) models that model
conditional variances much as the conditional expectation is modeled by an
ARMA model.

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
DOI 10.1007/978-1-4419-7787-8_18, © Springer Science+Business Media, LLC 2011 
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Fig. 18.1. Examples of financial markets and economic data with time-varying
volatility: (a) absolute values of S&P 500 log returns; (b) absolute values of changes
in the BP/dollar exchange rate; (c) absolute values of changes in the log of the risk-
free interest rate; (d) absolute deviations of the inflation rate from its mean. Loess
(see Section 21.2) smooths have been added.

18.2 Estimating Conditional Means and Variances

Before looking at GARCH models, we study some general principles about
modeling nonconstant conditional variance.

Consider regression modeling with a constant conditional variance, Var(Yt|
X1,t, . . . , Xp,t) = σ2. Then the general form for the regression of Yt on
X1.t, . . . , Xp,t is

Yt = f(X1,t, . . . , Xp,t) + εt, (18.1)

where εt is independent of X1,t, . . . , Xp,t and has expectation equal to 0 and a
constant conditional variance σ2

ε . The function f is the conditional expectation
of Yt given X1,t, . . . , Xp,t. Moreover, the conditional variance of Yt is σ2

ε .
Equation (18.1) can be modified to allow conditional heteroskedasticity.

Let σ2(X1,t, . . . , Xp,t) be the conditional variance of Yt given X1,t, . . . , Xp,t.
Then the model

Yt = f(X1,t, . . . , Xp,t) + σ(X1,t, . . . , Xp,t) εt, (18.2)

where εt has conditional (given X1,t, . . . , Xp,t) mean equal to 0 and conditional
variance equal to 1, gives the correct conditional mean and variance of Yt.
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The function σ(X1,t, . . . , Xp,t) should be nonnegative since it is a stan-
dard deviation. If the function σ(·) is linear, then its coefficients must be
constrained to ensure nonnegativity. Such constraints are cumbersome to im-
plement, so nonlinear nonnegative functions are usually used instead. Mod-
els for conditional variances are often called variance function models. The
GARCH models of this chapter are an important class of variance function
models.

18.3 ARCH(1) Processes

Suppose for now that ε1, ε2, . . . is Gaussian white noise with unit variance.
Later we will allow the noise to be independent white noise with a possibly
nonnormal distribution, such as, a standardized t-distribution. Then

E(εt|εt−1, . . .) = 0,

and
Var(εt|εt−1, . . .) = 1. (18.3)

Property (18.3) is called conditional homoskedasticity.
The process at is an ARCH(1) process under the model

at =
√

ω + α1a2
t−1εt, (18.4)

which is a special case of (18.2) with f equal to 0 and σ equal to
√

ω + α1a2
t−1.

We require that ω > 0 and α1 ≥ 0 so that α0 +α1a
2
t−1 > 0. It is also required

that α1 < 1 in order for at to be stationary with a finite variance. Equation
(18.4) can be written as

a2
t = (ω + α1a

2
t−1) ε2t ,

which is very much like an AR(1) but in a2
t , not at, and with multiplicative

noise with a mean of 1 rather than additive noise with a mean of 0. In fact,
the ARCH(1) model induces an ACF for a2

t that is the same as an AR(1)’s
ACF.

Define
σ2

t = Var(at|at−1, . . .)

to be the conditional variance of at given past values. Since εt is independent
of at−1 and E(ε2t ) = Var(εt) = 1,

E(at|at−1, . . .) = 0, (18.5)

and
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σ2
t = E

{
(ω + α1a

2
t−1) ε2t |at−1, at−2, . . .

}

= (ω + α1a
2
t−1)E

{
ε2t |at−1, at−2, . . .

}

= α0 + α1a
2
t−1. (18.6)

Equation (18.6) is crucial to understanding how GARCH processes work.
If at−1 has an unusually large absolute value, then σt is larger than usual and
so at is also expected to have an unusually large magnitude. This volatility
propagates since when at has a large deviation that makes σ2

t+1 large so that
at+1 tends to be large and so on. Similarly, if a2

t−1 is unusually small, then
σ2

t is small, and a2
t is also expected to be small, and so forth. Because of this

behavior, unusual volatility in at tends to persist, though not forever. The
conditional variance tends to revert to the unconditional variance provided
that α1 < 1, so that the process is stationary with a finite variance.

The unconditional, that is, marginal, variance of at denoted by γa(0) is
obtained by taking expectations in (18.6), which give us

γa(0) = ω + α1γa(0).

This equation has a positive solution if α1 < 1:

γa(0) = ω/(1− α1).

If α1 = 1, then γa(0) is infinite, but at is stationary nonetheless and is called
an integrated GARCH model (I-GARCH) process.

Straightforward calculations using (18.5) show that the ACF of at is

ρa(h) = 0 if h 6= 0.

In fact, any process such that the conditional expectation of the present ob-
servation given the past is constant is an uncorrelated process.

In introductory statistics courses, it is often mentioned that independence
implies zero correlation but not vice versa. A process, such as the GARCH
processes, where the conditional mean is constant but the conditional variance
is nonconstant is an example of an uncorrelated but dependent process. The
dependence of the conditional variance on the past causes the process to be
dependent. The independence of the conditional mean on the past is the reason
that the process is uncorrelated.

Although at is uncorrelated, the process a2
t has a more interesting ACF:

if α1 < 1, then
ρa2(h) = α

|h|
1 , ∀ h.

If α1 ≥ 1, then a2
t either is nonstationary or has an infinite variance, so it

does not have an ACF.
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Example 18.1. A simulated ARCH(1) process

A simulated ARCH(1) process is shown in Figure 18.2. Panel (a) shows the

i.i.d. white noise process, εt, (b) shows σt =
√

1 + 0.95a2
t−1, the conditional

standard deviation process, (c) shows at = σtεt, the ARCH(1) process. As
discussed in the next section, an ARCH(1) process can be used as the noise
term of an AR(1) process. This process is shown in panel (d). The AR(1)
parameters are µ = 0.1 and φ = 0.8. The variance of at is γa(0) = 1/(1 −
0.95) = 20, so the standard deviation is

√
20 = 4.47. Panels (e)–(h) are ACF

plots of the ARCH and AR/ARCH processes and squared processes. Notice
that for the ARCH process, the process is uncorrelated but the squared process
has correlation. The processes were all started at 0 and simulated for 100
observations. The first 10 observations were treated as a burn-in period and
discarded.
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Fig. 18.2. Simulation of 100 observations from an ARCH( 1) process and an
AR( 1)/ARCH( 1) process. The parameters are ω = 1, α1 = 0.95, µ = 0.1, and
φ = 0.8.

¤

18.4 The AR(1)/ARCH(1) Model

As we have seen, an AR(1) process has a nonconstant conditional mean but a
constant conditional variance, while an ARCH(1) process is just the opposite.
If both the conditional mean and variance of the data depend on the past,
then we can combine the two models. In fact, we can combine any ARMA
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model with any of the GARCH models in Section 18.6. In this section we
combine an AR(1) model with an ARCH(1) model.

Let at be an ARCH(1) process so that at =
√

ω + α1a2
t−1εt, where εt is

i.i.d. N(0, 1), and suppose that

ut − µ = φ(ut−1 − µ) + at.

The process ut is an AR(1) process, except that the noise term (at) is not
i.i.d. white noise but rather an ARCH(1) process which is only weak white
noise.

Because at is an uncorrelated process, at has the same ACF as independent
white noise and therefore ut has the same ACF as an AR(1) process with
independent white noise:

ρu(h) = φ|h| ∀ h.

Moreover, a2
t has the ARCH(1) ACF:

ρa2(h) = α
|h|
1 ∀ h.

We need to assume that both |φ| < 1 and α1 < 1 in order for u to be stationary
with a finite variance. Of course, ω > 0 and α1 ≥ 0 are also assumed.

The process ut is such that its conditional mean and variance, given the
past, are both nonconstan, so a wide variety of time series can be modeled.

Example 18.2. Simulated AR(1)/ARCH(1) process

A simulation of an AR(1)/ARCH(1) process is shown in panel (d) of Fig-
ure 18.2 and the ACFs of the process and the squared process are in panels
(g) and (h). Notice that both ACFs show autocorrelation.

¤

18.5 ARCH(p) Models

As before, let εt be Gaussian white noise with unit variance. Then at is an
ARCH(q) process if

at = σtεt,

where

σt =

√√√√ω +
p∑

i=1

αia2
t−i

is the conditional standard deviation of at given the past values at−1, at−2, . . .
of this process. Like an ARCH(1) process, an ARCH(q) process is uncorrelated
and has a constant mean (both conditional and unconditional) and a constant
unconditional variance, but its conditional variance is nonconstant. In fact,
the ACF of a2

t is the same as the ACF of an AR(q) process; see Section 18.9.
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18.6 ARIMA(pA, d, qA)/GARCH(pG, qG) Models

A deficiency of ARCH(q) models is that the conditional standard deviation
process has high-frequency oscillations with high volatility coming in short
bursts. This behavior can be seen in Figure 18.2(b). GARCH models per-
mit a wider range of behavior, in particular, more persistent volatility. The
GARCH(p, q) model is

at = σtεt,

where

σt =

√√√√ω +
p∑

i=1

αia2
t−i +

q∑

i=1

βiσ2
t−i . (18.7)

Because past values of the σt process are fed back into the present value, the
conditional standard deviation can exhibit more persistent periods of high or
low volatility than seen in an ARCH process. The process at is uncorrelated
with a stationary mean and variance and a2

t has an ACF like an ARMA process
(see Section 18.9). GARCH models include ARCH models as a special case,
and we use the term “GARCH” to refer to both ARCH and GARCH models.

A very general time series model lets at be GARCH(pG, qG) and uses at

as the noise term in an ARIMA(pA, d, qA) model. The subscripts on p and q
distinguish between the GARCH (G) and ARIMA (A) parameters. We will
call such a model an ARIMA(pA, d, qA)/GARCH(pG, qG) model.
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Fig. 18.3. Simulation of GARCH( 1, 1) and AR( 1)/GARCH( 1, 1) processes. The
parameters are ω = 1, α1 = 0.08, β1 = 0.9, and φ = 0.8.
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Figure 18.3 is a simulation of 100 observations from a GARCH(1,1) process
and from a AR(1)/GARCH(1,1) process. The GARCH parameters are ω =
1, α1 = 0.08, and β1 = 0.9. The large value of β1 causes σt to be highly
correlated with σt−1 and gives the conditional standard deviation process a
relatively long-term persistence, at least compared to its behavior under an
ARCH model. In particular, notice that the conditional standard deviation is
less “bursty” than for the ARCH(1) process in Figure 18.2.

18.6.1 Residuals for ARIMA(pA, d, qA)/GARCH(pG, qG) Models

When one fits an ARIMA(pA, d, qA)/GARCH(pG, qG) model to a time series
Yt, there are two types of residuals. The ordinary residual, denoted ât, is the
difference between Yt and its conditional expectation. As the notation implies,
ât estimates at. A standardized residual, denoted ε̂t, is an ordinary residual
divided by its conditional standard deviation, σ̂t. A standardized residual
estimates εt. The standardized residuals should be used for model checking.
If the model fits well, then neither ε̂t nor ε̂ 2

t should exhibit serial correlation.
Moreover, if εt has been assumed to have a normal distribution, then this
assumption can be checked by a normal plot of the standardized residuals.

The ât are the residuals of the ARIMA process and are used when fore-
casting by the methods in Section 9.12.

18.7 GARCH Processes Have Heavy Tails

Researchers have long noticed that stock returns have “heavy-tailed” or
“outlier-prone” probability distributions, and we have seen this ourselves in
earlier chapters. One reason for outliers may be that the conditional variance
is not constant, and the outliers occur when the variance is large, as in the nor-
mal mixture example of Section 5.5. In fact, GARCH processes exhibit heavy
tails even if {εt} is Gaussian. Therefore, when we use GARCH models, we can
model both the conditional heteroskedasticity and the heavy-tailed distribu-
tions of financial markets data. Nonetheless, many financial time series have
tails that are heavier than implied by a GARCH process with Gaussian {εt}.
To handle such data, one can assume that, instead of being Gaussian white
noise, {εt} is an i.i.d. white noise process with a heavy-tailed distribution.

18.8 Fitting ARMA/GARCH Models

Example 18.3. AR(1)/GARCH(1,1) model fit to BMW returns

This example uses the BMW daily log returns. An AR(1)/GARCH(1,1)
model was fit to these returns using R’s garchFit function in the fGarch
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package. Although garchFit allows the white noise to have a nonGaussian
distribution, in this example we specified Gaussian white noise (the default).
The results include

Call: garchFit(formula = ~arma(1, 0) + garch(1, 1), data = bmw,

cond.dist = "norm")

Mean and Variance Equation:

data ~ arma(1, 0) + garch(1, 1)

[data = bmw]

Conditional Distribution: norm

Coefficient(s):

mu ar1 omega alpha1 beta1

4.0092e-04 9.8596e-02 8.9043e-06 1.0210e-01 8.5944e-01

Std. Errors: based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 4.009e-04 1.579e-04 2.539 0.0111 *

ar1 9.860e-02 1.431e-02 6.888 5.65e-12 ***

omega 8.904e-06 1.449e-06 6.145 7.97e-10 ***

alpha1 1.021e-01 1.135e-02 8.994 < 2e-16 ***

beta1 8.594e-01 1.581e-02 54.348 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood: 17757 normalized: 2.89

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.78 -5.77 -5.78 -5.77

In the output, φ is denoted by ar1, the mean is mean, and ω is called omega.
Note that φ̂ = 0.0986 and is statistically significant, implying that this is a
small amount of positive autocorrelation. Both α1 and β1 are highly significant
and β̂1 = 0.859, which implies rather persistent volatility clustering. There
are two additional information criteria reported, SIC (Schwarz’s information
criterion) and HQIC (Hannan–Quinn information criterion). These are less
widely used compared to AIC and BIC and will not be discussed here.1

1 To make matters even more confusing, some authors use SIC as a synonym for
BIC, since BIC is due to Schwarz. Also, the term SBIC (Schwarz’s Bayesian in-
formation criterion) is used in the literature, sometimes as a synonym for BIC
and SIC and sometimes as a third criterion. Moreover, BIC does not mean the
same thing to all authors. We will not step any further into this quagmire. For-
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In the output from garchFit, the normalized log-likelihood is the log-
likelihood divided by n. The AIC and BIC values have also been normalized
by dividing by n, so these values should be multiplied by n = 6146 to have
their usual values. In particular, AIC and BIC will not be so close to each
other after multiplication by 6146.

The output also included the following tests applied to the standardized
residuals and squared residuals:

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 11378 0

Ljung-Box Test R Q(10) 15.2 0.126

Ljung-Box Test R Q(15) 20.1 0.168

Ljung-Box Test R Q(20) 30.5 0.0614

Ljung-Box Test R^2 Q(10) 5.03 0.889

Ljung-Box Test R^2 Q(15) 7.54 0.94

Ljung-Box Test R^2 Q(20) 9.28 0.98

LM Arch Test R TR^2 6.03 0.914
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Fig. 18.4. QQ plots of standardized residuals from an AR(1)/GARCH(1,1) fit to
daily BMW log returns. The reference lines go through the first and third quartiles.

The Jarque–Bera test of normality strongly rejects the null hypothesis that
the white noise innovation process {εt} is Gaussian. Figure 18.4 shows two
QQ plots of the standardized residuals, a normal plot and a t-plot with 4 df.

tunately, the various versions of BIC, SIC, and SBIC are similar. In this book,
BIC is always defined by (5.30) and garchFit uses this definition of BIC as well.
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The latter plot is nearly a straight line except for four outliers in the left tail.
The sample size is 6146, so the outliers are a very small fraction of the data.
Thus, it seems like a t-model would be suitable for the white noise.

The Ljung–Box tests with an R in the second column are applied to the
residuals (here R = residuals, not the R software), while the Ljung–Box tests
with R^2 are applied to the squared residuals. None of the tests is significant,
which indicates that the model fits the data well, except for the nonnormality
of the {εt} noted earlier. The nonsignificant LM Arch Test indicates the same.

A t-distribution was fit to the standardized residuals by maximum likeli-
hood using R’s fitdistr function. The MLE of the degrees-of-freedom param-
eter was 4.1. This confirms the good fit by this distribution seen in Figure 18.4.
The AR(1)/GARCH(1,1) model was refit assuming t-distributed errors, so
cond.dist = "std", with the following results:

Call:

garchFit(formula = ~arma(1, 1) + garch(1, 1), data = bmw,

cond.dist = "std")

Mean and Variance Equation:

data ~ arma(1, 1) + garch(1, 1) [data = bmw]

Conditional Distribution: std

Coefficient(s):

mu ar1 ma1 omega alpha1

1.7358e-04 -2.9869e-01 3.6896e-01 6.0525e-06 9.2924e-02

beta1 shape

8.8688e-01 4.0461e+00

Std. Errors: based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 1.736e-04 1.855e-04 0.936 0.34929

ar1 -2.987e-01 1.370e-01 -2.180 0.02924 *

ma1 3.690e-01 1.345e-01 2.743 0.00608 **

omega 6.052e-06 1.344e-06 4.502 6.72e-06 ***

alpha1 9.292e-02 1.312e-02 7.080 1.44e-12 ***

beta1 8.869e-01 1.542e-02 57.529 < 2e-16 ***

shape 4.046e+00 2.315e-01 17.480 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

18159 normalized: 2.9547

Standardised Residuals Tests:

Statistic p-Value
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Jarque-Bera Test R Chi^2 13355 0

Shapiro-Wilk Test R W NA NA

Ljung-Box Test R Q(10) 21.933 0.015452

Ljung-Box Test R Q(15) 26.501 0.033077

Ljung-Box Test R Q(20) 36.79 0.012400

Ljung-Box Test R^2 Q(10) 5.8285 0.82946

Ljung-Box Test R^2 Q(15) 8.0907 0.9201

Ljung-Box Test R^2 Q(20) 10.733 0.95285

LM Arch Test R TR^2 7.009 0.85701

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.9071 -5.8994 -5.9071 -5.9044

The Ljung–Box tests for the residuals have small p-values. These are due to
small autocorrelations that should not be of practical importance. The sample
size here is 6146 so, not surprisingly, small autocorrelations are statistically
significant.

¤

18.9 GARCH Models as ARMA Models

The similarities seen in this chapter between GARCH and ARMA models are
not a coincidence. If at is a GARCH process, then a2

t is an ARMA process but
with weak white noise, not i.i.d. white noise. To show this, we will start with
the GARCH(1,1) model, where at = σtεt. Here εt is i.i.d. white noise and

Et−1(a2
t ) = σ2

t = ω + α1a
2
t−1 + β1σ

2
t−1, (18.8)

where Et−1 is the conditional expectation given the information set at time
t−1. Define ηt = a2

t −σ2
t . Since Et−1(ηt) = Et−1(a2

t )−σ2
t = 0, by (A.33) ηt is

an uncorrelated process, that is, a weak white noise process. The conditional
heteroskedasticity of at is inherited by ηt, so ηt is not i.i.d. white noise.

Simple algebra shows that

σ2
t = ω + (α1 + β1)a2

t−1 − β1ηt−1 (18.9)

and therefore

a2
t = σ2

t + ηt = ω + (α1 + β1)a2
t−1 − β1ηt−1 + ηt. (18.10)

Assume that α1 + β1 < 1. If µ = ω/{1− (α1 + β1)}, then

a2
t − µ = (α1 + β1)(a2

t−1 − µ) + β1ηt−1 + ηt. (18.11)
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From (18.11) one sees that a2
t is an ARMA(1,1) process with mean µ. Using

the notation of (9.25), the AR(1) coefficient is φ1 = α1 + β1 and the MA(1)
coefficient is θ1 = −β1.

For the general case, assume that σt follows (18.7) so that

σ2
t = ω +

p∑

i=1

αia
2
t−i +

q∑

i=1

βiσ
2
t−i . (18.12)

Assume also that p ≤ q—this assumption causes no loss of generality because,
if q > p, then we can increase p to equal q by defining αi = 0 for i = p+1, . . . , q.
Define µ = ω/{1 − ∑p

i=1(αi + βi)}. Straightforward algebra similar to the
GARCH(1,1) case shows that

a2
t − µ =

p∑

i=1

(αi + βi)(a2
t−i − µ)−

q∑

i=1

βiηt−i + ηt, (18.13)

so that a2
t is an ARMA(p, q) process with mean µ. As a byproduct of these

calculations, we obtain a necessary condition for at to be stationary:

p∑

i=1

(αi + βi) < 1. (18.14)

18.10 GARCH(1,1) Processes

The GARCH(1,1) is the most widely used GARCH process, so it is worthwhile
to study it in some detail. If at is GARCH(1,1), then as we have just seen,
a2

t is ARMA(1,1). Therefore, the ACF of a2
t can be obtained from formulas

(9.31) and (9.32). After some algebra, one finds that

ρa2(1) =
α1(1− α1β1 − β2

1)
1− 2α1β1 − β2

1

(18.15)

and
ρa2(k) = (α1 + β1)k−1ρa2(1), k ≥ 2. (18.16)

By (18.15), there are infinitely many values of (α1, β1) with the same value
of ρa2(1). By (18.16), a higher value of α1 + β1 means a slower decay of ρa2

after the first lag. This behavior is illustrated in Figure 18.5, which contains
the ACF of a2

t for three GARCH(1,1) processes with a lag-1 autocorrelation
of 0.5. The solid curve has the highest value of α1 + β1 and the ACF decays
very slowly. The dotted curve is a pure AR(1) process and has the most rapid
decay.
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Fig. 18.6. ACF of the squared residuals from an AR(1) fit to the BMW log returns.
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In Example 18.3, an AR(1)/GARCH(1,1) model was fit to the BMW daily
log returns. The GARCH parameters were estimated to be α̂1 = 0.10 and
β̂1 = 0.86. By (18.15) the ρ̂a2(1) = 0.197 for this process and the high value
of β̂1 suggests slow decay. The sample ACF of the squared residuals [from
an AR(1) model] is plotted in Figure 18.6. In that figure, we see the lag-1
autocorrelation is slightly below 0.2 and after one lag the ACF decays slowly,
exactly as expected.

The capability of the GARCH(1,1) model to fit the lag-1 autocorrelation
and the subsequent rate of decay separately is important in practice. It appears
to be the main reason that the GARCH(1,1) model fits so many financial time
series.

18.11 APARCH Models

In some financial time series, large negative returns appear to increase volatil-
ity more than do positive returns of the same magnitude. This is called the
leverage effect. Standard GARCH models, that is, the models given by (18.7),
cannot model the leverage effect because they model σt as a function of past
values of a2

t —whether the past values of at are positive or negative is not
taken into account. The problem here is that the square function x2 is sym-
metric in x. The solution is to replace the square function with a flexible class
of nonnegative functions that include asymmetric functions. The APARCH
(asymmetric power ARCH) models do this. They also offer more flexibility
than GARCH models by modeling σδ

t , where δ > 0 is another parameter.
The APARCH(p, q) model for the conditional standard deviation is

σδ
t = ω +

p∑

i=1

αi(|at−1| − γiat−1)δ +
q∑

j=1

βjσ
δ
t−j , (18.17)

where δ > 0 and −1 < γj < 1, j = 1, . . . , p. Note that δ = 2 and γ1 = · · · =
γp = 0 give a standard GARCH model.

The effect of at−i upon σt is through the function gγi , where gγ(x) =
|x|−γx. Figure 18.7 shows gγ(x) for several values of γ. When γ > 0, gγ(−x) >
gγ(x)) for any x > 0, so there is a leverage effect. If γ < 0, then there is a
leverage effect in the opposite direction to what is expected—positive past
values of at increase volatility more than negative past values of the same
magnitude.

Example 18.4. AR(1)/APARCH(1,1) fit to BMW returns

In this example, an AR(1)/APARCH(1,1) model with t-distributed errors
is fit to the BMW log returns. The output from garchFit is below. The
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Fig. 18.7. Plots of gγ(x) for various values of γ.

estimate of δ is 1.46 with a standard error of 0.14, so there is strong evidence
that δ is not 2, the value under a standard GARCH model. Also, γ̂1 is 0.12
with a standard error of 0.0045, so there is a statistically significant leverage
effect, since we reject the null hypothesis that γ1 = 0. However, the leverage
effect is small, as can be seen in the plot in Figure 18.7 with γ = 0.12. The
leverage might not be of practical importance.

Call:

garchFit(formula = ~arma(1, 0) + aparch(1, 1), data = bmw,

cond.dist = "std", include.delta = T)

Mean and Variance Equation:

data ~ arma(1, 0) + aparch(1, 1)

[data = bmw]

Conditional Distribution:

std

Coefficient(s):

mu ar1 omega alpha1 gamma1

4.1696e-05 6.3761e-02 5.4746e-05 1.0050e-01 1.1998e-01

beta1 delta shape

8.9817e-011.4585e+00 4.0665e+00
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Std. Errors:

based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 4.170e-05 1.377e-04 0.303 0.76208

ar1 6.376e-02 1.237e-02 5.155 2.53e-07 ***

omega 5.475e-05 1.230e-05 4.452 8.50e-06 ***

alpha1 1.005e-01 1.275e-02 7.881 3.33e-15 ***

gamma1 1.200e-01 4.498e-02 2.668 0.00764 **

beta1 8.982e-01 1.357e-02 66.171 < 2e-16 ***

delta 1.459e+00 1.434e-01 10.169 < 2e-16 ***

shape 4.066e+00 2.344e-01 17.348 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

18166 normalized: 2.9557

Description:

Sat Dec 06 09:11:54 2008 by user: DavidR

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 10267 0

Shapiro-Wilk Test R W NA NA

Ljung-Box Test R Q(10) 24.076 0.0074015

Ljung-Box Test R Q(15) 28.868 0.016726

Ljung-Box Test R Q(20) 38.111 0.0085838

Ljung-Box Test R^2 Q(10) 8.083 0.62072

Ljung-Box Test R^2 Q(15) 9.8609 0.8284

Ljung-Box Test R^2 Q(20) 13.061 0.87474

LM Arch Test R TR^2 9.8951 0.62516

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.9088 -5.9001 -5.9088 -5.9058

As mentioned earlier, in the output from garchFit, the normalized log-
likelihood is the log-likelihood divided by n. The AIC and BIC values have
also been normalized by dividing by n, though this is not noted in the output.

The normalized BIC for this model (−5.9001) is very nearly the same as the
normalized BIC for the GARCH model with t-distributed errors (−5.8994),
but after multiplying by n = 6146, the difference in the BIC values is 4.30.
The difference between the two normalized AIC values, −5.9088 and −5.9071,
is even larger, 10.4, after multiplication by n. Therefore, AIC and BIC support
using the APARCH model instead of the GARCH model.



494 18 GARCH Models

ACF plots (not shown) for the standardized residuals and their squares
showed little correlation, so the AR(1) model for the conditional mean and
the APARCH(1,1) model for the conditional variance fit well.

shape is the estimated degrees of freedom of the t-distribution and is
4.07 with a small standard error, so there is very strong evidence that the
conditional distribution is heavy-tailed.

¤

18.12 Regression with ARMA/GARCH Errors

When using time series regression, one often observes autocorrelated residuals.
For this reason, linear regression with ARMA disturbances was introduced in
Section 14.1. The model there was

Yi = β0 + β1Xi,1 + · · ·+ βpXi,p + εi, (18.18)

where

(1− φ1 B − · · · − φp Bp)(εt − µ) = (1 + θ1 B + . . . + θq Bq)ut, (18.19)

and {ut} is i.i.d. white noise. This model is good as far as it goes, but it does
not accommodate volatility clustering, which is often found in the residuals.
Therefore, we will now assume that, instead of being i.i.d. white noise, {ut}
is a GARCH process so that

ut = σtvt, (18.20)

where

σt =

√√√√ω +
p∑

i=1

αiu2
t−i +

q∑

i=1

βiσ2
t−i, (18.21)

and {vt} is i.i.d. white noise. The model given by (18.18)–(18.21) is a linear
regression model with ARMA/GARCH disturbances.

Some software can fit the linear regression model with ARMA/GARCH
disturbances in one step. If such software is not available, then a three-step
estimation method is the following:

1. estimate the parameters in (18.18) by ordinary least-squares;
2. fit model (18.19)–(18.21) to the ordinary least-squares residuals;
3. reestimate the parameters in (18.18) by weighted least-squares with

weights equal to the reciprocals of the conditional variances from step
2.
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Fig. 18.8. (a) ACF of the externally studentized residuals from a linear model and
(b) their squared values. (c) ACF of the residuals from an MA(1)/ARCH(1) fit to
the regression residuals and (d) their squared values.

Example 18.5. Regression analysis with ARMA/GARCH errors of the Nelson–
Plosser data

In Example 12.9, we saw that a parsimonious model for the yearly log
returns on the stock index used diff(log(ip)) and diff(bnd) as predictors.
Figure 18.8 contains ACF plots of the residuals [panel (a)] and squared resid-
uals [panel (b)]. Externally studentized residuals were used, but the plots for
the raw residuals are similar. There is some autocorrelation in the residuals
and certainly a GARCH effect. R’s auto.arima selected an ARIMA(0,0,1)
model for the residuals.

Next an MA(1)/ARCH(1) model was fit to the regression model’s raw
residuals with the following results:

Call:

garchFit(formula = ~arma(0, 1) + garch(1, 0),

data = residuals(fit_lm2))

Mean and Variance Equation:

data ~ arma(0, 1) + garch(1, 0)

[data = residuals(fit_lm2)]
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Conditional Distribution: norm

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu -2.527e-17 2.685e-02 -9.41e-16 1.00000

ma1 3.280e-01 1.602e-01 2.048 0.04059 *

omega 1.400e-02 4.403e-03 3.180 0.00147 **

alpha1 2.457e-01 2.317e-01 1.060 0.28897

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

36 normalized: 0.59

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 0.72 0.7

Shapiro-Wilk Test R W 0.99 0.89

Ljung-Box Test R Q(10) 14 0.18

Ljung-Box Test R Q(15) 25 0.054

Ljung-Box Test R Q(20) 28 0.12

Ljung-Box Test R^2 Q(10) 11 0.35

Ljung-Box Test R^2 Q(15) 18 0.26

Ljung-Box Test R^2 Q(20) 25 0.21

LM Arch Test R TR^2 11 0.5

Information Criterion Statistics:

AIC BIC SIC HQIC

-1.0 -0.9 -1.1 -1.0

ACF plots of the standardized residuals from the MA(1)/ARCH(1) model
are in Figure 18.8(c) and (d). One sees essentially no short-term autocorrela-
tion in the ARMA/GARCH standardized residuals or squared standardized
residuals, which indicates that the ARMA/GARCH model fits the regression
residuals satisfactorily. A normal plot showed that the standardized residu-
als are close to normally distributed, which is not unexpected for yearly log
returns.

Next, the linear model was refit with the reciprocals of the conditional
variances as weights. The estimated regression coefficients are given below
along with their standard errors and p-values.

Call:

lm(formula = diff(log(sp)) ~ diff(log(ip)) + diff(bnd),

data = new_np, weights = 1/nelploss.garch@sigma.t^2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0281 0.0202 1.39 0.1685

diff(log(ip)) 0.5785 0.1672 3.46 0.0010 **

mailto:@sigma.t
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diff(bnd) -0.1172 0.0580 -2.02 0.0480 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.1 on 58 degrees of freedom

Multiple R-squared: 0.246, Adjusted R-squared: 0.22

F-statistic: 9.46 on 2 and 58 DF, p-value: 0.000278

There are no striking differences between these results and the unweighted
fit in Example 12.9. The main reason for using the GARCH model for the
residuals would be in providing more accurate prediction intervals if the model
were to be used for forecasting; see Section 18.13.

¤

18.13 Forecasting ARMA/GARCH Processes

Forecasting ARMA/GARCH processes is in one way similar to forecasting
ARMA processes—the forecasts are the same because a GARCH process
is weak white noise. What differs between forecasting ARMA/GARCH and
ARMA processes is the behavior of the prediction intervals. In times of high
volatility, prediction intervals using a ARMA/GARCH model will widen to
take into account the higher amount of uncertainty. Similarly, the prediction
intervals will narrow in times of lower volatility. Prediction intervals using
an ARMA model without conditional heteroskedasticity cannot adapt in this
way.

To illustrate, we will compare the prediction of a Gaussian white noise pro-
cess and the prediction of a GARCH(1,1) process with Gaussian innovations.
Both have an ARMA(0,0) model for the conditional mean so their forecasts
are equal to the marginal mean, which will be called µ. For Gaussian white
noise, the prediction limits are µ±zα/2σ, where σ is the marginal standard de-
viation. For a GARCH(1,1) process {Yt}, the prediction limits at time origin
n for k-steps ahead forecasting are µ± zα/2σn+k|n where σn+k|n is the condi-
tional standard deviation of Yn+k given the information available at time n.
As k increases, σn+k|n converges to σ, so for long lead times the prediction
intervals for the two models are similar. For shorter lead times, however, the
prediction limits can be quite different.

Example 18.6. Forecasting BMW log returns

In this example, we will return to the BMW log returns used in several
earlier examples. We have seen in Example 18.3 that an AR(1)/GARCH(1,1)
model fits the returns well. Also, the estimated AR(1) coefficient is small,
less than 0.1. Therefore, it is reasonable to use a GARCH(1,1) model for
forecasting.
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Fig. 18.9. Prediction limits for forecasting BMW log returns at two time origins.

Figure 18.9 plots the returns from 1986 until 1992. Forecast limits are also
shown for two time origins, November 15, 1987 and September 18, 1988. At
the first time origin, which is soon after Black Monday, the markets were very
volatile. The forecast limits are wide initially but narrow as the conditional
standard deviation converges downward to the marginal standard deviation.
At the second time origin, the markets were less volatile than usual and the
prediction intervals are narrow initially but then widen. In theory, both sets
of prediction limits should converge to the same values, µ± zα/2σ where σ is
the marginal standard deviation. In this example, they do not quite converge
to each other because the estimates of σ differ between the two time origins.

¤

18.14 Bibliographic Notes

Modeling nonconstant conditional variances in regression is treated in depth
in the book by Carroll and Ruppert (1988).

There is a vast literature on GARCH processes beginning with En-
gle (1982), where ARCH models were introduced. Hamilton (1994), Enders
(2004), Pindyck and Rubinfeld (1998), Gourieroux and Jasiak (2001), Alexan-
der (2001), and Tsay (2005) have chapters on GARCH models. There are
many review articles, including Bollerslev (1986), Bera and Higgins (1993),
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Bollerslev, Engle, and Nelson (1994), and Bollerslev, Chou, and Kroner (1992).
Jarrow (1998) and Rossi (1996) contain a number of papers on volatility in fi-
nancial markets. Duan (1995), Ritchken and Trevor (1999), Heston and Nandi
(2000), Hsieh and Ritchken (2000), Duan and Simonato (2001), and many
other authors study the effects of GARCH errors on options pricing, and
Bollerslev, Engle, and Wooldridge (1988) use GARCH models in the CAPM.
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18.16 R Lab

18.16.1 Fitting GARCH Models

Run the following code to load the data set Tbrate, which has three variables:
the 91-day T-bill rate, the log of real GDP, and the inflation rate. In this lab
you will use only the T-bill rate.

data(Tbrate,package="Ecdat")

library(tseries)

library(fGarch)

# r = the 91-day treasury bill rate

# y = the log of real GDP

# pi = the inflation rate

Tbill = Tbrate[,1]

Del.Tbill = diff(Tbill)

Problem 1 Plot both Tbill and Del.Tbill. Use both time series and ACF
plots. Also, perform ADF and KPSS tests on both series. Which series do you
think are stationary? Why? What types of heteroskedasticity can you see in
the Del.Tbill series?

In the following code, the variable Tbill can be used if you believe that series
is stationary. Otherwise, replace Tbill by Del.Tbill. This code will fit an
ARMA/GARCH model to the series.

garch.model.Tbill = garchFit(formula= ~arma(1,0) + garch(1,0),Tbill)

summary(garch.model.Tbill)

garch.model.Tbill@fit$matcoef
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Problem 2 (a) Which ARMA/GARCH model is being fit? Write down the
model using the same parameter names as in the R output.

(b) What are the estimates of each of the parameters in the model?

Next, plot the residuals (ordinary or raw) and standardized residuals in various
ways using the code below. The standardized residuals are best for checking
the model, but the residuals are useful to see if there are GARCH effects in
the series.

res = residuals(garch.model.Tbill)
res_std = res / garch.model.Tbill@sigma.t
par(mfrow=c(2,3))
plot(res)
acf(res)
acf(res^2)
plot(res_std)
acf(res_std)
acf(res_std^2)

Problem 3 (a) Describe what is plotted by acf(res). What, if anything,
does the plot tell you about the fit of the model?

(b) Describe what is plotted by acf(res^2). What, if anything, does the plot
tell you about the fit of the model?

(c) Describe what is plotted by acf(res_std^2). What, if anything, does the
plot tell you about the fit of the model?

(d) What is contained in the the variable garch.model.Tbill@sigma.t?
(e) Is there anything noteworthy in the plot produced by the code plot(res

_std)?

Problem 4 Now find an ARMA/GARCH model for the series del.log.-
tbill, which we will define as diff(log(Tbill)). Do you see any advantages
of working with the differences of the logarithms of the T-bill rate, rather than
with the difference of Tbill as was done earlier?

18.17 Exercises

1. Let Z have an N(0, 1) distribution. Show that

E(|Z|) =
∫ ∞

−∞

1√
2π
|z|e−z2/2dz = 2

∫ ∞

0

1√
2π

ze−z2/2dz =

√
2
π

.

Hint : d
dz e−z2/2 = −ze−z2/2.

mailto:@sigma.t
mailto:@sigma.t?


502 18 GARCH Models

2. Suppose that fX(x) = 1/4 if |x| < 1 and fX(x) = 1/(4x2) if |x| ≥ 1. Show
that ∫ ∞

−∞
fX(x)dx = 1,

so that fX really is a density, but that
∫ 0

−∞
xfX(x)dx = −∞

and ∫ ∞

0

xfX(x)dx = ∞,

so that a random variable with this density does not have an expected
value.

3. Suppose that εt is a WN(0, 1) process, that

at = εt

√
1 + 0.35a2

t−1,

and that
ut = 3 + 0.72ut−1 + at.

(a) Find the mean of ut.
(b) Find the variance of ut.
(c) Find the autocorrelation function of ut.
(d) Find the autocorrelation function of a2

t .
4. Let ut be the AR(1)/ARCH(1) model

at = εt

√
ω + α1 a2

t−1,

(ut − µ) = φ(ut−1 − µ) + at,

where εt is WN(0,1). Suppose that µ = 0.4, φ = 0.45, ω = 1, and α1 = 0.3.
(a) Find E(u2|u1 = 1, u0 = 0.2).
(b) Find Var(u2|u1 = 1, u0 = 0.2).

5. Suppose that εt is white noise with mean 0 and variance 1, that at =
εt

√
7 + a2

t−1/2, and that Yt = 2 + 0.67Yt−1 + at.
(a) What is the mean of Yt?
(b) What is the ACF of Yt?
(c) What is the ACF of at?
(d) What is the ACF of a2

t ?
6. Let Yt be a stock’s return in time period t and let Xt be the inflation rate

during this time period. Assume the model

Yt = β0 + β1Xt + δσt + at, (18.22)

where
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at = εt

√
1 + 0.5a2

t−1. (18.23)

Here the εt are independent N(0, 1) random variables. Model (18.22)–
(18.23) is called a GARCH-in-mean model or a GARCH-M model.
Assume that β0 = 0.06, β1 = 0.35, and δ = 0.22.
(a) What is E(Yt|Xt = 0.1 and at−1 = 0.6)?
(b) What is Var(Yt|Xt = 0.1 and at−1 = 0.6)?
(c) Is the conditional distribution of Yt given Xt and at−1 normal? Why

or why not?
(d) Is the marginal distribution of Yt normal? Why or why not?

7. Suppose that ε1, ε2, . . . is a Gaussian white noise process with mean 0 and
variance 1, and at and ut are stationary processes such that

at = σtεt where σ2
t = 2 + 0.3a2

t−1,

and
ut = 2 + 0.6ut−1 + at.

(a) What type of process is at?
(b) What type of process is ut?
(c) Is at Gaussian? If not, does it have heavy or lighter tails than a Gaus-

sian distribution?
(d) What is the ACF of at?
(e) What is the ACF of a2

t ?
(f) What is the ACF of ut?

8. On Black Monday, the return on the S&P 500 was −22.8%. Ouch! This
exercise attempts to answer the question, “what was the conditional prob-
ability of a return this small or smaller on Black Monday?” “Conditional”
means given the information available the previous trading day. Run the
following R code:

library(Ecdat)

library(fGarch)

data(SP500,package="Ecdat")

returnBlMon = SP500$r500[1805]

x = SP500$r500[(1804-2*253+1):1804]

plot(c(x,returnBlMon))

results = garchFit(~arma(1,0)+garch(1,1),data=x,cond.dist="std")

dfhat = as.numeric(results@fit$par[6])

forecast = predict(results,n.ahead=1)

The S&P 500 returns are in the data set SP500 in the Ecdat package.
The returns are the variable r500. (This is the only variable in this data
set.) Black Monday is the 1805th return in this data set. This code fits
an AR(1)/GARCH(1,1) model to the last two years of data before Black
Monday, assuming 253 trading days/year. The conditional distribution
of the white noise is the t-distribution (called “std” in garchFit). The
code also plots the returns during these two years and on Black Monday.
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From the plot you can see that Black Monday was highly unusual. The
parameter estimates are in results@fit$par and the sixth parameter is
the degrees of freedom of the t-distribution. The predict function is used
to predict one-step ahead, that is, to predict the return on Black Monday;
the input variable n.ahead specifies how many days ahead to forecast, so
n.ahead=5 would forecast the next five days. The object forecast will
contain meanForecast, which is the conditional expected return on Black
Monday, meanError, which you should ignore, and standardDeviation,
which is the conditional standard deviation of the return on Black Monday.
(a) Use the information above to calculate the conditional probability of

a return less than or equal to −0.228 on Black Monday.
(b) Compute and plot the standardized residuals. Also plot the ACF

of the standardized residuals and their squares. Include all three
plots with your work. Do the standardized residuals indicate that the
AR(1)/GARCH(1,1) model fits adequately?

(c) Would an AR(1)/ARCH(1) model provide an adequate fit? (Warning:
If you apply the function summary to an fGarch object, the AIC value
reported has been normalized by division by the sample size. You need
to multiply by the sample size to get AIC.)

(d) Does an AR(1) model with a Gaussian conditional distribution provide
an adequate fit? Use the arima function to fit the AR(1) model. This
function only allows a Gaussian conditional distribution.

9. This problem uses monthly observations of the two-month yield, that is,
YT with T equal to two months, in the data set Irates in the Ecdat
package. The rates are log-transformed to stabilize the variance. To fit a
GARCH model to the changes in the log rates, run the following R code.

library(fGarch)

library(Ecdat)

data(Irates)

r = as.numeric(log(Irates[,2]))

n = length(r)

lagr = r[1:(n-1)]

diffr = r[2:n] - lagr

garchFit(~arma(1,0)+garch(1,1),data=diffr, cond.dist = "std")

(a) What model is being fit to the changes in r? Describe the model in
detail.

(b) What are the estimates of the parameters of the model?
(c) What is the estimated ACF of ∆rt?
(d) What is the estimated ACF of at?
(e) What is the estimated ACF of a2

t ?
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Risk Management

19.1 The Need for Risk Management

The financial world has always been risky, and financial innovations such as
the development of derivatives markets and the packaging of mortgages have
now made risk management more important than ever but also more difficult.

There are many different types of risk. Market risk is due to changes in
prices. Credit risk is the danger that a counterparty does not meet contractual
obligations, for example, that interest or principal on a bond is not paid.
Liquidity risk is the potential extra cost of liquidating a position because
buyers are difficult to locate. Operational risk is due to fraud, mismanagement,
human errors, and similar problems.

Early attempts to measure risk such as duration analysis, discussed in
Section 3.8.1 and used to estimate the market risk of fixed income securities,
were somewhat primitive and of only limited applicability. In contrast, value-
at-risk (VaR) and expected shortfall (ES) are widely used because they can
be applied to all types of risks and securities, including complex portfolios.

VaR uses two parameters, the time horizon and the confidence level, which
are denoted by T and 1 − α, respectively. Given these, the VaR is a bound
such that the loss over the horizon is less than this bound with probability
equal to the confidence coefficient. For example, if the horizon is one week,
the confidence coefficient is 99% (so α = 0.01), and the VaR is $5 million,
then there is only a 1% chance of a loss exceeding $5 million over the next
week. We sometimes use the notation VaR(α) or Var(α, T ) to indicate the
dependence of VaR on α or on both α and the horizon T . Usually, VaR(α) is
used with T being understood.

If L is the loss over the holding period T , then VaR(α) is the αth upper
quantile of L. Equivalently, if R = −L is the revenue, then VaR(α) is minus
the αth quantile of R. For continuous loss distributions, VaR(α) solves

P{L > VaR(α)} = P{L ≥ VaR(α)} = α, (19.1)

and for any loss distribution, continuous or not,

D. Ruppert, Statistics and Data Analysis for Financial Engineering, Springer Texts in Statistics,  
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VaR(α) = inf{x : P (L > x) ≤ α}. (19.2)

As will be discussed later, VaR has a serious deficiency—it discourages
diversification—and for this reason it is being replaced by newer risk measures.
One of these newer risk measures is the expected loss given that the loss
exceeds VaR, which is called by a variety of names: expected shortfall, the
expected loss given a tail event, tail loss, and shortfall. The name expected
shortfall and the abbreviation ES will be used here.

For any loss distribution, continuous or not,

ES(α) =

∫ α

0
VaR(u) du

α
, (19.3)

which is the average of VaR(u) over all u that are less than or equal to α. If
L has a continuous distribution,

ES(α) = E
{
L

∣∣∣L > VaR(α)
}

= E
{
L

∣∣∣L ≥ VaR(α)
}

. (19.4)

Example 19.1. VaR with a normally distributed loss

Suppose that the yearly return on a stock is normally distributed with
mean 0.04 and standard deviation 0.18. If one purchases $100,000 worth of
this stock, what is the VaR with T equal to one year?

To answer this question, we use the fact that the loss distribution is normal
with mean −4000 and standard deviation 18,000, with all units in dollars.
Therefore, VaR is

−4000 + 18,000zα,

where zα is the α-upper quantile of the standard normal distribution. VaR(α)
is plotted as a function of α in Figure 19.1. VaR depends heavily on α and in
this figure ranges from 46,527 when α is 0.025 to 8,226 when α is 0.25.

¤

In applications, risk measures will rarely, if ever, be known exactly as in
these simple examples. Instead, risk measures are estimated, and estimation
error is another source of uncertainty. This uncertainty can be quantified using
a confidence interval for the risk measure. We turn next to these topics.

19.2 Estimating VaR and ES with One Asset

To illustrate the techniques for estimating VaR and ES, we begin with the
simple case of a single asset. In this section, these risk measures are estimated
using historic data to estimate the distribution of returns. We make the as-
sumption that returns are stationary, at least over the historic period we use.
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Fig. 19.1. VaR(α) for 0.025 < α < 0.25 when the loss distribution is normally
distributed with mean −4000 and standard deviation 18,000.

This is usually a reasonable assumption. We will also assume that the returns
are independent. Independence is a much less reasonable assumption because
of volatility clustering, and later we will remove this assumption by using
GARCH models.

Two cases are considered, first without and then with the assumption of
a parametric model for the return distribution.

19.2.1 Nonparametric Estimation of VaR and ES

We start with nonparametric estimates of VaR and ES, meaning that the loss
distribution is not assumed to be in a parametric family such as the normal
or t-distributions.

Suppose that we want a confidence coefficient of 1−α for the risk measures.
Therefore, we estimate the α-quantile of the return distribution, which is the
α-upper quantile of the loss distribution. In the nonparametric method, this
quantile is estimated as the α-quantile of a sample of historic returns, which
we will call q̂(α). If S is the size of the current position, then the nonparametric
estimate of VaR is

V̂aR
np

(α) = −S × q̂(α),

with the minus sign converting revenue (return times initial investment) to
a loss. In this chapter, superscripts and subscripts will sometimes be placed
on VaR and ES to provide information. Here, the superscript “np” means
“nonparametrically estimated.”
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To estimate ES, let R1, . . . , Rn be the historic returns and define Li =
−S ×Ri. Then

ÊS
np

(α) =
∑n

i=1 Li I{Li > V̂aR(α)}∑n
i=1 I{Li > V̂aR(α)}

= −S×
∑n

i=1 Ri I{Ri < q̂(α)}∑n
i=1 I{Ri < q̂(α)} , (19.5)

which is the average of all Li exceeding V̂aR
np

(α). Here I{Li > V̂aR
np

(α)} is
the indicator that Li exceeds V̂aR

np
(α) and similarly for I{Ri < q̂(α)}.

Example 19.2. Nonparametric VaR and ES for a position in an S&P 500 index
fund

As a simple example, suppose that you hold a $20,000 position in an S&P
500 index fund, so your returns are those of this index, and that you want
a 24-hour VaR. We estimate this VaR using the 1000 daily returns on the
S&P 500 for the period ending in April 1991. These log returns are a subset
of the data set SP500 in R’s Ecdat package. The full time series is plotted
in Figure 4.1. Black Monday, with a log return of −0.23, occurs near the
beginning of the shortened time series used in this example.

Suppose you want 95% confidence. The 0.05 quantile of the returns com-
puted by R’s quantile function is −0.0169. In other words, a daily return
of −0.0169 or less occurred only 5% of the time in the historic data, so we
estimate that there is a 5% chance of a return of that size occurring during the
next 24 hours. A return of −0.0169 on a $20,000 investment yields a revenue
of −$337.43, and therefore the estimated V̂aR(0.05, 24 hours) is $337.43.

ES(0.05) is obtained by averaging all returns below −0.0169 and multiply-
ing this average by −20,000. The result is ÊS

np
(0.05) = $619.3.

¤

19.2.2 Parametric Estimation of VaR and ES

Parametric estimation of VaR and ES has a number of advantages. For ex-
ample, parametric estimation allows the use of GARCH models to adapt the
risk measures to the current estimate of volatility. Also, risk measures can be
easily computed for a portfolio of stocks if we assume that their returns have
a joint parametric distribution such as a multivariate t-distribution. Nonpara-
metric estimation using sample quantiles works best when the sample size and
α are reasonably large. With smaller sample sizes or smaller values of α, it is
preferable to use parametric estimation. In this section, we look at parametric
estimation of VaR and ES when there is a single asset.
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Let F (y|θ) be a parametric family of distributions used to model the return
distribution and suppose that θ̂ is an estimate of θ, such as, the MLE com-
puted from historic returns. Then F−1(α|θ̂) is an estimate of the α-quantile
of the return distribution and

V̂aR
par

(α) = −S × F−1(α|θ̂) (19.6)

is a parametric estimate of VaR(α). As before, S is the size of the current
position.

Let f(y|θ) be the density of F (y|θ). Then the estimate of expected shortfall
is

ÊS
par

(α) = −S

α
×

∫ F−1(α|θθθ)

−∞
xf(x|θ̂) dx. (19.7)

The superscript “par” denotes “parametrically estimated.” Computing this
integral is not always easy, but in the important cases of normal and t-
distributions there are convenient formulas.

Suppose the return has a t-distribution with mean equal to µ, scale param-
eter equal to λ, and ν degrees of freedom. Let fν and Fν be, respectively, the
t-density and t-distribution function with ν degrees of freedom. The expected
shortfall is

ÊS
t
(α) = S ×

{
−µ + λ

(
fν{F−1

ν (α)}
α

[
ν + {F−1

ν (α)}2
ν − 1

])}
. (19.8)

The formula for normal loss distributions is obtained by a direct calculation
or letting ν →∞ in (19.8). The result is

ESnorm(α) = S ×
{
−µ + σ

(
φ{Φ−1(α)}

α

)}
, (19.9)

where µ and σ are the mean and standard deviation of the returns and φ
and Φ are the standard normal density and CDF. The superscripts “t” and
“norm” denote estimates assuming a normal return and t-distributed return,
respectively.

Parametric estimation with one asset is illustrated in the next example.

Example 19.3. Parametric VaR and ES for a position in an S&P 500 index
fund

This example uses the same data set as in Example 19.2 so that paramet-
ric and nonparametric estimates can be compared. We will assume that the
returns are i.i.d. with a t-distribution. Under this assumption, VaR is

V̂aR
t
(α) = −S × {µ̂ + qα,t(ν̂)λ̂}, (19.10)
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where µ̂, λ̂, and ν̂ are the estimated mean, scale parameter, and degrees
of freedom of a sample of returns. Also, qα,t(ν̂) is the α-quantile of the t-
distribution with ν̂ degrees of freedom, so that {µ̂ + qα,t(ν̂)λ̂} is the αth
quantile of the fitted distribution.

The t-distribution was fit using R’s fitdistr function and the estimates
were µ̂ = 0.000689, λ̂ = 0.007164, and ν̂ = 2.984. For later reference, the
estimated standard deviation is σ̂ = λ̂

√
ν̂/(ν̂ − 2) = 0.01248.

The 0.05-quantile of the t-distribution with 2.984 degrees of freedom is
−2.3586. Therefore, by (19.6),

V̂aR
t
(0.05) = −20000× {0.000689− (2.3586)(0.007164)} = $323.42.

Notice that the nonparametric estimate, V̂aR
np

(0.05) = $337.55, is similar to
but somewhat larger than the parametric estimate, $323.42.
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Fig. 19.2. t-plot of the S&P 500 returns used in Examples 19.2 and 19.3. The
deviations from linearity in the tails, especially the left tail, indicate that the t-
distribution does not fit the data in the extreme tails. The reference line goes through
the first and third quartiles. The t-quantiles use 2.9837 degrees of freedom, the MLE.
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The parametric estimate of ESt(0.05) is $543.81 and is found by substi-
tuting S = 20,000, α = 0.05, µ̂ = 0.000689, λ̂ = 0.007164, and ν̂ = 2.984 into
(19.8). The parametric estimate of ESt(0.05) is noticeably shorter than the
nonparametric. The reason the two estimates differ is that the extreme left
tail of the returns, roughly the smallest 10 of 1000 returns, is heavier than
the tail of a t-distribution with 2.984 degrees of freedom; see the t-plot in
Figure 19.2.

¤

19.3 Confidence Intervals for VaR and ES Using the
Bootstrap

The estimates of VaR and ES are precisely that, just estimates. If we had
used a different sample of historic data, then we would have gotten different
estimates of these risk measures. We just calculated VaR and ES values to
five significant digits, but do we really have that much precision? The reader
has probably guessed (correctly) that we do not, but how much precision do
we have? How can we learn the true precision of the estimates? Fortunately, a
confidence interval for VaR or ES is rather easily obtained by bootstrapping.
Any of the confidence interval procedures in Section 6.3 can be used. We will
see that even with 1000 returns to estimate VaR and ES, these risk measures
are estimated with considerable uncertainty.

For now, we will assume an i.i.d. sample of historic returns and use model-
free resampling. In Section 19.4 we will allow for dependencies, for instance,
GARCH effects, in the data and we will use model-based resampling.

Suppose we have a large number, B, of resamples of the returns data.
Then a VaR(α) or ES(α) estimate is computed from each resample and for the
original sample. The confidence interval can be based upon either a parametric
or nonparametric estimator of VaR(α) or ES(α). Suppose that we want the
confidence coefficient of the interval to be 1 − γ. The interval’s confidence
coefficient should not be confused with the confidence coefficient of VaR, which
we denote by 1 − α. The γ/2-lower and -upper quantiles of the bootstrap
estimates of VaR(α) and ES(α) are the limits of the basic percentile method
confidence intervals.

It is worthwhile to restate the meanings of α and γ, since it is easy to
confuse these two confidence coefficients, but they need to be distinguished
since they have rather different interpretations. VaR(α) is defined so that the
probability of a loss being greater than VaR(α) is α. On the other hand, γ is
the confidence coefficient for the confidence interval for VaR(α) and ES(α). If
many confidence intervals are constructed, then approximately γ of them do
not contain the true risk measure. Thus, α is about the loss from the invest-
ment while γ is about the confidence interval being correct. An alternative way
to view the difference between α and γ is that VaR(α) and ES(α) are measur-
ing risk due to uncertainty about future losses, assuming perfect knowledge
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of the loss distribution, while the confidence intervals tell us the uncertainty
of these risk measures due to imperfect knowledge of the loss distribution.

Example 19.4. Bootstrap confidence intervals for VaR and ES for a position
in an S&P 500 index fund

In this example, we continue Examples 19.2 and 19.3 and find a confidence
interval for VaR(α) and ES(α). We use α = 0.05 as before and γ = 0.1. B =
5,000 resamples were taken.

The basic percentile confidence intervals for VaR(0.05) were (297, 352)
and (301, 346) using nonparametric and parametric estimators of VaR(0.05),
respectively. For ES(0.05), the corresponding basic percentile confidence in-
tervals were (487, 803) and (433, 605). We see that there is considerable un-
certainty in the risk measures, especially for ES(0.05) and especially using
nonparametric estimation.

The bootstrap computation took 33.3 minutes using an R program and a
2.13 GHz PentiumTM processor running under WindowsTM. The computa-
tions took this long because the optimization step to find the MLE for para-
metric estimation is moderately expensive in computational time, at least if
it is repeated 5000 times.

Waiting over a half an hour for the confidence interval may not be an
attractive proposition. However, a reasonable measure of precision can be ob-
tained with far fewer bootstrap repetitions. One might use only 50 repetitions,
which would take less than a minute. This is not enough resamples to use basic
percentile bootstrap confidence intervals, but instead one can use the normal
approximation bootstrap confidence interval, (6.4). As an example, the normal
approximation interval for the nonparametric estimate of VaR(0.05) is (301,
361) using only the first 50 bootstrap resamples. This interval gives the same
general impression of accuracy as the above basic percentile method interval,
(297, 352), that uses all 5000 resamples.

The normal approximation interval assumes that V̂aR(0.05) is approxi-
mately normally distributed. This assumption is justified by the central limit
theorem for sample quantiles (Section 4.3.1) and the fact that V̂aR(0.05) is
a multiple of a sample quantile. The normal approximation does not require
that the returns are normally distributed. In fact, we are modeling them as
t-distributed when computing the parametric estimates.

¤

19.4 Estimating VaR and ES Using ARMA/GARCH
Models

As we have seen in Chapters 9 and 18, daily equity returns typically have a
small amount of autocorrelation and a greater amount of volatility clustering.
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When calculating risk measures, the autocorrelation can be ignored if it is
small enough, but the volatility clustering is less ignorable. In this section, we
use ARMA/GARCH models so that VaR(α) and ES(α) can adjust to periods
of high or low volatility.

Assume that we have n returns, R1, . . . , Rn and we need to estimate VaR
and ES for the next return Rn+1. Let µ̂n+1|n and σ̂n+1|n be the estimated
conditional mean and variance of tomorrow’s return Rn+1 conditional on the
current information set, which in this context is simply {R1, . . . , Rn}. We
will also assume that Rn+1 has a conditional t-distribution with ν degrees
of freedom. After fitting an ARMA/GARCH model, we have estimates of ν̂,
µ̂n+1|n, and σ̂n+1|n. The estimated conditional scale parameter is

λ̂n+1|n =
√

(ν̂ − 2)/ν̂ σ̂n+1|n. (19.11)

VaR and ES are estimated as in Section 19.2.2 but with µ̂ and λ̂ replaced by
µ̂n+1|n and λ̂n+1|n.

Example 19.5. VaR and ES for a position in an S&P 500 index fund using a
GARCH(1,1) model

An AR(1)/GARCH(1,1) model was fit to the log returns on the S&P 500.
The AR(1) coefficient was small and not significantly different from 0, so a
GARCH(1,1) was used for estimation of VaR and ES. The GARCH(1,1) fit is

Call: garchFit(formula = ~garch(1, 1), data = SPreturn,

cond.dist = "std")

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 7.147e-04 2.643e-04 2.704 0.00685 **

omega 2.833e-06 9.820e-07 2.885 0.00392 **

alpha1 3.287e-02 1.164e-02 2.824 0.00474 **

beta1 9.384e-01 1.628e-02 57.633 < 2e-16 ***

shape 4.406e+00 6.072e-01 7.256 4e-13 ***

The conditional mean and standard deviation of the next return were es-
timated to be 0.00071 and 0.00950. For the estimation of VaR and ES, the
next return was assumed to have a t-distribution with these values for the
mean and standard deviation and 4.406 degrees of freedom. The estimate of
VaR was $277.21 and the estimate of ES was $414.61. The VaR and ES esti-
mates using the GARCH model are considerably smaller than the parametric
estimates in Example 19.2 ($323.42 and $543.81), because the conditional
standard deviation used here (0.00950) is smaller than the marginal standard
deviation (0.01248) used in Example 19.2; see Figure 19.3, where the dashed
horizontal line’s height is the marginal standard deviation and the conditional
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Fig. 19.3. Conditional standard deviation of the S&P 500 returns based on a
GARCH(1, 1) model. The asterisk is at the conditional standard deviation of the
next day’s return after the end of the series, and the height of the horizontal line is
the marginal standard deviation.

standard deviation of the next day’s return is indicated by a large asterisk.
The marginal standard deviation is inflated by periods of higher volatility such
as in October 1987 (near Black Monday) on the left-hand side of Figure 19.3.

¤

19.5 Estimating VaR and ES for a Portfolio of Assets

When VaR is estimated for a portfolio of assets rather than a single asset,
parametric estimation based on the assumption of multivariate normal or t-
distributed returns is very convenient, because the portfolio’s return will have
a univariate normal or t-distributed return. The portfolio theory and factor
models developed in Chapters 11 and 17 can be used to estimate the mean
and variance of the portfolio’s return.

Estimating VaR becomes complex when the portfolio contains stocks,
bonds, options, foreign exchange positions, and other assets. However, when
a portfolio contains only stocks, then VaR is relatively straightforward to
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estimate, and we will restrict attention to this case—see Section 19.10 for
discussion of the literature covering more complex cases.

With a portfolio of stocks, means, variances, and covariances of returns
could be estimated directly from a sample of returns as discussed in Chapter
11 or using a factor model as discussed in Section 17.4.2. Once these estimates
are available, they can be plugged into equations (11.6) and (11.7) to obtain
estimates of the expected value and variance of the return on the portfolio,
which are denoted by µ̂P and σ̂2

P . Then, analogous to (19.10), VaR can be
estimated, assuming normally distributed returns on the portfolio (denoted
with a subscript “P”), by

V̂aR
norm

P (α) = −S × {µ̂P + Φ−1(α)σ̂P }, (19.12)

where S is the initial value of the portfolio. Moreover, using (19.9), the esti-
mated expected shortfall is

ÊS
norm

P (α) = S ×
{
−µ̂P + σ̂P

(
φ{Φ−1(α)}

α

)}
. (19.13)

If the stock returns have a joint t-distribution, then the returns on the
portfolio have a univariate t-distribution with the same degrees of freedom,
and VaR and ES for the portfolio can be calculated using formulas in Section
19.2.2. If the returns on the portfolio have a t-distribution with mean µP ,
scale parameter λP , and degrees of freedom ν, then the estimated VaR is

V̂aR
t

P (α) = −S{µ̂P + F−1
ν (α)λ̂P }, (19.14)

and the estimated expected shortfall is

ÊS
t

P (α) = S ×
{
−µ̂P + λ̂P

(
fbν{F−1bν (α)}

α

[
ν̂ + {F−1bν (α)}2

ν̂ − 1

])}
. (19.15)

Example 19.6. VaR and ES for portfolios of the three stocks in the CRSPday
data set

This example uses the data set CRSPday used earlier in Examples 7.1 and
7.4. There are four variables—returns on GE, IBM, Mobil, and the CRSP
index and we found in Example 7.4 that their returns can be modeled as having
a multivariate t-distribution with 5.94 degrees of freedom. In this example, we
will only the returns on the three stocks. The t-distribution parameters were
reestimated without the CRSP index and ν̂ changed slightly to 5.81.

The estimated mean was

µ̂ = ( 0.0008584 0.0003249 0.0006162 )T
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and the estimated covariance matrix was

Σ̂ =




1.273e− 04 5.039e− 05 3.565e− 05
5.039e− 05 1.812e− 04 2.400e− 05
3.565e− 05 2.400e− 05 1.149e− 04


 .

For an equally weighted portfolio with w = ( 1/3 1/3 1/3 )T, the mean
return for the portfolio is estimated to be

µ̂P = µ̂Tw = 0.0005998

and the standard deviation of the portfolio’s return is estimated as

σ̂P =
√

wTΣ̂w = 0.008455.

The return on the portfolio has a t-distribution with this mean and standard
deviation and the same degrees of freedom as the multivariate t-distribution
of the three stock returns. The scale parameter, using ν̂ = 5.81, is

λ̂P =
√

(ν̂ − 2)/ν̂ × 0.008455 = 0.006847.

Therefore,

V̂aR
t
(0.05) = −S {µ̂P + λ̂P q̂0.05,t(ν̂)} = S × 0.01278,

so, for example, with S = $20,000, V̂aR
t
(0.05) = $256.

The estimated ES using (19.8) and S = $20,000 is

ÊS
t
(0.05) = S ×

{
−µ̂P + λ̂P

(
fbν{q̂0.05,t(ν̂)}

α

[
ν̂ + {q̂0.05,t(ν̂)}2

ν̂ − 1

])}
= $363.

¤

19.6 Estimation of VaR Assuming Polynomial Tails

There is an interesting compromise between using a totally nonparametric es-
timator of VaR as in Section 19.2.1 and a parametric estimator as in Section
19.2.2. The nonparametric estimator is feasible for large α, but not for small
α. For example, if the sample had 1000 returns, then reasonably accurate
estimation of the 0.05-quantile is feasible, but not estimation of the 0.0005-
quantile. Parametric estimation can estimate VaR for any value of α but is
sensitive to misspecification of the tail when α is small. Therefore, a method-
ology intermediary between totally nonparametric and parametric estimation
is attractive.

The approach used in this section assumes that the return density has a
polynomial left tail, or equivalently that the loss density has a polynomial right
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tail. Under this assumption, it is possible to use a nonparametric estimate of
VaR(α0) for a large value of α0 to obtain estimates of VaR(α1) for small
values of α1. It is assumed here that VaR(α1) and VaR(α0) have the same
horizon T .

Because the return density is assumed to have a polynomial left tail, the
return density f satisfies

f(y) ∼ Ay−(a+1), as y → −∞, (19.16)

where A > 0 is a constant and a > 0 is the tail index. Therefore,

P (R ≤ y) ∼
∫ y

−∞
f(u) du =

A

a
y−a, as y → −∞, (19.17)

and if y1 > 0 and y2 > 0, then

P (R < −y1)
P (R < −y2)

≈
(

y1

y2

)−a

. (19.18)

Now suppose that y1 = VaR(α1) and y2 = VaR(α0), where 0 < α1 < α0.
Then (19.18) becomes

α1

α0
=

P{R < −VaR(α1)}
P{R < −VaR(α0)} ≈

(
VaR(α1)
VaR(α0)

)−a

(19.19)

or
VaR(α1)
VaR(α0)

≈
(

α0

α1

)1/a

,

so, now dropping the subscript “1” of α1 and writing the approximate equality
as exact, we have

VaR(α) = VaR(α0)
(α0

α

)1/a

. (19.20)

Equation (19.20) becomes an estimate of VaR(α) when VaR(α0) is replaced
by a nonparametric estimate and the tail index a is replaced by one of the es-
timates discussed soon in Section 19.6.1. Notice another advantage of (19.20),
that it provides an estimate of VaR(α) not just for a single value of α but for
all values. This is useful if one wants to compute and compare VaR(α) for a
variety of values of α, as is illustrated in Example 19.7 ahead. The value of α0

must be large enough that VaR(α0) can be accurately estimated, but α can
be any value less than α0.

A model combining parametric and nonparametric components is called
semiparametric, so estimator (19.20) is semiparametric because the tail index
is specified by a parameter, but otherwise the distribution is unspecified.

To find a formula for ES, we will assume further that for some c < 0, the
returns density satisfies

f(y) = A|y|−(a+1), y ≤ c, (19.21)
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so that we have equality in (19.16) for y ≤ c. Then, for any d ≤ c,

P (R ≤ d) =
∫ d

−∞
A|y|−(a+1) dy =

A

a
|d|−a, (19.22)

and the conditional density of R given that R ≤ d is

f(y|R ≤ d) =
Ay−(a+1)

P (R ≤ d)
= a|d|a|y|−(a+1). (19.23)

It follows from (19.23) that for a > 1,

E
(
|R|

∣∣ R ≤ d
)

= a|d|a
∫ d

−∞
|y|−ady =

a

a− 1
|d|. (19.24)

(For a ≤ 1, this expectation is +∞.) If we let d = −VaR(α), then we see that

ES(α) =
a

a− 1
VaR(α) =

1
1− a−1

VaR(α), if a > 1. (19.25)

Formula (19.25) enables one to estimate ES(α) using an estimate of VaR(α)
and an estimate of a.

19.6.1 Estimating the Tail Index

In this section, we estimate the tail index assuming a polynomial left tail. Two
estimators will be introduced, the regression estimator and the Hill estimator.

Regression Estimator of the Tail Index

It follows from (19.17) that

log{P (R ≤ −y)} = log(L)− a log(y), (19.26)

where L = A/a.
If R(1), . . . , R(n) are the order statistics of the returns, then the number

of observed returns less than or equal to R(k) is k, so we estimate log{P (R ≤
R(k))} to be log(k/n). Then, from (19.26), we have

log(k/n) ≈ log(L)− a log(−R(k)) (19.27)

or, rearranging (19.27),

log(−R(k)) ≈ (1/a) log(L)− (1/a) log(k/n). (19.28)

The approximation (19.28) is expected to be accurate only if −R(k) is
large, which means k is small, perhaps only 5%, 10%, or 20% of the sample
size n. If we plot the points

[{log(k/n), log(−R(k))}
]m

k=1
for m equal to a small

percentage of n, say 10%, then we should see these points fall on roughly
a straight line. Moreover, if we fit the straight-line model (19.28) to these
points by least squares, then the estimated slope, call it β̂1, estimates −1/a.
Therefore, we will call −1/β̂1 the regression estimator of the tail index.
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Hill Estimator

The Hill estimator of the left tail index a of the return density f uses all data
less than a constant c, where c is sufficiently small that

f(y) = A|y|−(a+1) (19.29)

is assumed to be true for y < c. The choice of c is crucial and will be discussed
below. Let Y(1), . . . , Y(n) be order statistics of the returns and n(c) be the
number of Y1 less than or equal to c. By (19.23), the conditional density of Yi

given that Yi ≤ c is
a|c|a|y|−(a+1). (19.30)

Therefore, the likelihood for Y(1), . . . , Y(n(c)) is

L(a) =
(

a|c|a
|Y1|a+1

) (
a|c|a
|Y2|a+1

)
· · ·

(
a|c|a

|Yn(c)|a+1

)
,

and the log-likelihood is

log{L(a)} =
n(c)∑

i=1

{log(a) + a log(|c|)− (a + 1) log(|Y(i)|)}. (19.31)

Differentiating the right-hand side of (19.31) with respect to a and setting the
derivative equal to 0 gives the equation

n(c)
a

=
n(c)∑

i=1

log
(
Y(i)/c

)
.

Therefore, the MLE of a, which is called the Hill estimator, is

âHill(c) =
n(c)∑n(c)

i=1 log
(
Y(i)/c

) . (19.32)

Note that Y(i) ≤ c < 0, so that Y(i)/c is positive.
How should c be chosen? Usually c is equal to one of Y1, . . . , Yn so that

c = Y(n(c)), and therefore choosing c means choosing n(c). The choice involves
a bias–variance tradeoff. If n(c) is too large, then f(y) = A|y|−(a+1) will not
hold for all values of y ≤ c, causing bias. If n(c) is too small, then there will
be too few Yi below c and âHill(c) will be highly variable and unstable because
it uses too few data. However, we can hope that there is a range of values of
n(c) where âHill(c) is reasonably constant because it is neither too biased nor
too variable.

A Hill plot is a plot of âHill(c) versus n(c) and is used to find this range of
values of n(c). In a Hill plot, one looks for a range of n(c) where the estimator
is nearly constant and then chooses n(c) in this range.
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Fig. 19.4. Plots for estimating the left tail index of the S&P 500 returns by regres-
sion. “Slope” is the least-squares slope estimate and “a” is −1/slope.

Example 19.7. Estimating the left tail index of the S&P 500 returns

This example uses the 1000 daily S&P 500 returns used in Examples 19.2
and 19.3. First, the regression estimator of the tail index was calculated. The
values

[{log(k/n), log(−R(k))}
]m

k=1
were plotted for m = 50, 100, 200, and

300 to find the largest value of m giving a roughly linear plot and m = 100
was selected. The plotted points and the least-squares lines can be seen in
Figure 19.4. The slope of the line with m = 100 was −0.506, so a was
estimated to be 1/0.506 = 1.975.

Suppose we have invested $20,000 in an S&P 500 index fund. We will
use α0 = 0.1. VaR(0.1, 24 hours) is estimated to be −$20,000 times the 0.1-
quantile of the 1000 returns. The sample quantile is −0.0117, so V̂aR

np
(0.1,

24 hours) = $234. Using (19.20) and a = 1.975 (1/a = 0.506), we have

V̂aR(α) = 234
(

0.1
α

)0.506

. (19.33)

The solid curve in Figure 19.5 is a plot of V̂aR(α) for 0.0025 ≤ α ≤ 0.25
using (19.33) and the regression estimator of a. The curve with short dashes
is the same plot but with the Hill estimator of a, which is 2.2—see below. The
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Fig. 19.5. Estimation of VaR(α) using formula (19.33) and the regression estimator
of the tail index (solid), using formula (19.33) and the Hill estimator of the tail index
(short dashes), assuming t-distributed returns (long dashes), and assuming normally
distributed returns (dotted). Note the log-scale on the x-axis.

curve with long dashes is VaR(α) estimated assuming t-distributed returns
as discussed in Section 19.2.2, and the dotted curve is estimated assuming
normally distributed returns. The return distribution has much heavier tails
than a normal distribution, and the latter curve is included only to show
the effect of model misspecification. The parametric estimates based on the
t-distribution are similar to the estimates assuming a polynomial tail except
when α is very small. The difference between the two estimates for small α
(α < 0.01) is to be expected because the polynomial tail with tail index 1.975
or 2.2 is heavier than the tail of the t-distribution with ν = a = 2.984. If α is
in the range 0.01 to 0.2, then V̂aR(α) is relatively insensitive to the choice of
model, except for the poorly fitting normal model. This is a good reason for
preferring α ≥ 0.01.

It follows from (19.25) using the regression estimate â = 1.975 that

ÊS(α) =
1.975
0.975

V̂aR(α) = 2.026 V̂aR(α). (19.34)

The Hill estimator of a was also implemented. Figure 19.6 contains Hill
plots, that is, plots of the Hill estimate âHill(c) versus n(c). In panel (a), n(c)
ranges from 25 to 250. There seems to be a region of stability when n(c) is
between 25 and 120, which is shown in panel (b). In panel (b), we see a region
of even greater stability when n(c) is between 60 and 100. Panel (c) zooms in



522 19 Risk Management

50 150 250

1.
2

1.
6

2.
0

(a)

nc

H
ill

 e
st

im
at

or

40 80 120

2.
0

2.
2

2.
4

(b)

nc
H

ill
 e

st
im

at
or

60 80 100

2.
0

2.
2

2.
4

(c)

nc

H
ill

 e
st

im
at

or

Fig. 19.6. Estimation of tail index by applying a Hill plot to the daily returns on the
S&P 500 for 1000 consecutive trading days ending on March 4, 2003. (a) Full range
of nc. (b) Zoom in to nc between 25 and 120. (c) Zoom in further to nc between 60
and 100.

on this region. We see in panel (c) that the Hill estimator is close to 2.2 when
n(c) is between 60 and 100, and we will take 2.2 as the Hill estimate. Thus,
the Hill estimate is similar to the regression estimate (1.975) of the tail index.

The advantage of the regression estimate is that one can use the linearity
of the plots of {(log(k/n),−R(k))}m

k=1 for different m to guide the choice of
m, which is analogous to n(c). A linear plot indicates a polynomial tail. In
contrast, the Hill plot checks for the stability of the estimator and does not
give a direct assessment whether or not the tail is polynomial.

¤

19.7 Pareto Distributions

The Pareto distribution with location parameter c > 0 and shape parameter
a > 0 has density

f(y; a, c) =
{

aca y−(a+1), y > c,
0, otherwise.

(19.35)

The expectation is ac/(a− 1) if a > 1 and +∞ otherwise. The Pareto distri-
bution has a polynomial tail and, in fact, a polynomial tail is often called a
Pareto tail.

Equation (19.30) states that the loss, conditional on being above |c|, has a
Pareto distribution. A property of the Pareto distribution that was exploited
before [see (19.23)] is that if Y has a Pareto distribution with parameters a
and c and if d > c, then the conditional distribution of Y , given that Y > d,
is Pareto with parameters a and d.
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19.8 Choosing the Horizon and Confidence Level

The choice of horizon and confidence coefficient are somewhat interdependent
and depend on the eventual use of the VaR estimate. For shorter horizons
such as one day, a large α (small confidence coefficient = 1− α) would result
in frequent losses exceeding VaR. For example, α = 0.05 would result in a loss
exceeding VaR approximately once per month since there are slightly more
than 20 trading days in a month. Therefore, we might wish to uses smaller
values of α with a shorter horizon.

One should be wary, however, of using extremely small values of α, such
as, values less than 0.01. When α is very small, then VaR and, especially, ES
are impossible to estimate accurately and are very sensitive to assumptions
about the left tail of the return distribution. As we have seen, it is useful to
create bootstrap confidence intervals to indicate the amount of precision in
the VaR and ES estimates. It is also important to compare estimates based
on different tail assumptions as in Figure 19.5, for example, where the three
estimates of VaR are increasingly dissimilar as α decreases below 0.01.

There is, of course, no need to restrict attention to only one horizon or
confidence coefficient. When VaR is estimated parametrically and i.i.d. nor-
mally distributed returns are assumed, then it is easy to reestimate VaR with
different horizons. Suppose that µ̂1day

P and σ̂1day
P are the estimated mean and

standard deviation of the return for one day. Assuming only that returns are
i.i.d., the mean and standard deviation for M days are

µ̂M days
P = Mµ̂1 day

P (19.36)

and
σ̂M days

P =
√

Mσ̂1 day
P . (19.37)

Therefore, if one assumes further that the returns are normally distributed,
then the VaR for M days is

VaRM days
P = −S ×

{
Mµ̂1 day

P +
√

MΦ−1(α)σ̂1 day
P

}
, (19.38)

where S is the size of the initial investment. The power of equation (19.38)
is, for example, that it allows one to change from a daily to a weekly horizon
without reestimating the mean and standard deviation with weekly instead
of daily returns. Instead, one simply uses (19.38) with M = 5. The danger in
using (19.38) is that it assumes normally distributed returns and no autocor-
relation or GARCH effects (volatility clustering) of the daily returns. If there
is positive autocorrelation, then (19.38) underestimates the M -day VaR. If
there are GARCH effects, then (19.38) gives VaR based on the marginal dis-
tribution, but one should be using VaR based on the conditional distribution
given the current information set.

If the returns are not normally distributed, then there is no simple analog
to (19.38). For example, if the daily returns are i.i.d., t-distributed then one
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cannot simply replace the normal quantile Φ−1(α) in (19.38) by a t-quantile.
The problem is that the sum of i.i.d. t-distributed random variables is not
itself t-distributed. Therefore, if the daily returns are t-distributed then the
sum M daily returns is not t-distributed. However, for large values of M and
i.i.d. returns, the sum of M independent returns will be close to normally
distributed by the central limit theorem, so (19.38) could be used for large M
even if the returns are not normally distributed.

19.9 VaR and Diversification

A serious problem with VaR is that it may discourage diversification. This
problem was studied by Artzner, Delbaen, Eber, and Heath (1997, 1999),
who ask the question, what properties can reasonably be required of a risk
measure? They list four properties that any risk measure should have, and
they call a risk measure coherent if it has all of them.

One property among the four that is very desirable is subadditivity. Let
R(P ) be a risk measure of a portfolio P , for example, VaR or ES. Then R
is said to be subadditive, if for any two portfolios P1 and P2, R(P1 + P2) ≤
R(P1) + R(P2). Subadditivity says that the risk for the combination of two
portfolios is at most the sum of their individual risks, which implies that
diversification reduces risk or at least does not increase risk. For example, if
a bank has two traders, then the risk of them combined is less than or equal
to the sum of their individual risks if a subadditive risk measure is used.
Subadditivity extends to more than two portfolios, so if R is subadditive,
then for m portfolios, P1, . . . , Pm,

R(P1 + · · ·+ Pm) ≤ R(P1) + · · ·+ R(Pm).

Suppose a firm has 100 traders and monitors the risk of each trader’s portfolio.
If the firm uses a subadditive risk measure, then it can be sure that the total
risk of the 100 traders is at most the sum of the 100 individual risks. Whenever
this sum is acceptable, there is no need to compute the risk measure for the
entire firm. If the risk measure used by the firm is not subadditive, then there
is no such guarantee.

Unfortunately, as the following example shows, VaR is not subadditive
and therefore is incoherent. ES is subadditive, which is a strong reason for
preferring ES to VaR.

Example 19.8. An example where VaR is not subadditive

This simple example has been designed to illustrate that VaR is not sub-
additive and can discourage diversification. A company is selling par $1000
bonds with a maturity of one year that pay a simple interest of 5% so that
the bond pays $50 at the end of one year if the company does not default. If
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the bank defaults, then the entire $1000 is lost. The probability of no default
is 0.96. To make the loss distribution continuous, we will assume that the loss
is N(−50, 1) with probability 0.96 and N(1000, 1) with probability 0.04. The
main purpose of making the loss distribution continuous is to simplify calcu-
lations. However, the loss would be continuous, for example, if the portfolio
contained both the bond and some stocks. Suppose that there is a second
company selling bonds with exactly the same loss distribution and that the
two companies are independent.

Consider two portfolios. Portfolio 1 buys two bonds from the first company
and portfolio 2 buys one bond from each of the two companies. Both portfolios
have the same expected loss, but the second is more diversified. Let Φ(x; µ, σ2)
be the normal CDF with mean µ and variance σ2. For portfolio 1, the loss
CDF is

0.96 Φ(x; 2000, 4) + 0.04 Φ(x;−100, 4),

while for portfolio 2, by independence of the two companies, the loss distri-
bution CDF is

0.962 Φ(x; 2000, 2) + 2(0.96)(0.04)Φ(x; 950, 2) + 0.042 Φ(x;−100, 2).
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Fig. 19.7. Example where VaR discourages diversification. Plots of the CDF of
the loss distribution. VaR(0.05) is the loss at which the CDF crosses the horizontal
dashed line at 0.95.

We should expect the second portfolio to seem less risky, but VaR(0.05)
indicates the opposite. Specifically, VaR(0.05) is −95.38 and 949.53 for port-
folios 1 and 2, respectively. Notice that a negative VaR means a negative loss
(positive revenue). Therefore, portfolio 1 is much less risky than portfolio 2,



526 19 Risk Management

at least as measured by VaR(0.05). For each portfolio, VaR(0.05) is shown in
Figure 19.7 as the loss at which the CDF crosses the horizontal dashed line
at 0.95.

Notice as well that which portfolio has the highest value of VaR(α) depends
heavily on the values of α. When α is below the default probability, 0.04,
portfolio 1 is more risky than portfolio 2.

¤

Although VaR is often considered the industry standard for risk manage-
ment, Artzner, Delbaen, Eber, and Heath (1997) make an interesting observa-
tion. They note that when setting margin requirements, an exchange should
use a subadditive risk measure so that the aggregate risk due to all customers
is guaranteed to be smaller than the sum of the individual risks. Apparently,
no organized exchanges use quantiles of loss distributions to set margin re-
quirements. Thus, exchanges may be aware of the shortcomings of VaR, and
VaR is not the standard for measuring risk within exchanges.

19.10 Bibliographic Notes

Risk management is an enormous subject and we have only touched upon
a few aspects, focusing on statistical methods for estimating risk. We have
not considered portfolios with bonds, foreign exchange positions, interest rate
derivatives, or credit derivatives. We also have not considered risks other than
market risk or how VaR and ES can be used for risk management. To cover
risk management thoroughly requires at least a book-length treatment of that
subject. Fortunately, excellent books exist, for example, Dowd (1998), Crouhy,
Galai, and Mark (2001), Jorion (2001), and McNeil, Frey, and Embrechts
(2005). The last has a strong emphasis on statistical techniques, and is rec-
ommended for further reading along the lines of this chapter. Generalized
Pareto distributions were not covered here but are discussed in McNeil, Frey,
and Embrechts.

Alexander (2001), Hull (2003), and Gourieroux and Jasiak (2001) have
chapters on VaR and risk management. The semiparametric method of esti-
mation based on the assumption of a polynomial tail and equation (19.20) are
from Gourieroux and Jasiak (2001). Drees, de Haan, and Resnick (2000) and
Resnick (2001) are good introductions to Hill plots.
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19.12 R Lab

19.12.1 VaR Using a Multivariate-t Model

Run the following code to create a data set of returns on two stocks, DATGEN
and DEC.

library("fEcofin")
library(mnormt)
Berndt = berndtInvest[,5:6]
names(Berndt)

Problem 1 Fit a multivariate-t model to Berndt; see Section 7.14.3 for an
example of fitting such a model. What are the estimates of the mean vector,
DF, and scale matrix? Include your R program with your work. Include your
R code and output with your work.

Problem 2

(a) What is the distribution of the return on a $100,000 portfolio that is 30%
invested in DATGEN and 70% invested in DEC? Include your R code and
output with your work.

(b) Find VaRt(0.05) and ESt(0.05) for this portfolio.

Problem 3 Use the model-free bootstrap to find a basic percentile bootstrap
confidence interval for VaR(0.05) for this portfolio. Use a 90% confidence co-
efficient for the confidence interval. Use 250 bootstrap resamples. This amount
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of resampling is not enough for a highly accurate confidence interval, but
will give a reasonably good indication of the uncertainty in the estimate of
VaR(0.05), which is all that is really needed.

Also, plot kernel density estimates of the bootstrap distribution of DF and
VaRt(0.05). Do the densities appear Gaussian or skewed? Use a normality
test to check if they are Gaussian.

Include your R code, plots, and output with your work.

Problem 4 This problem uses the variable DEC. Estimate the left tail index
using the Hill estimator. Use a Hill plot to select nc. What is your choice of
nc? Include your R code and plot with your work.

19.13 Exercies

1. This exercise uses daily BMW returns in the bmwRet data set in the
fEcofin package. Assume that the returns are i.i.d., even though there
may be some autocorrelation and volatility clustering is likely.
(a) Compute nonparametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours).
(b) Compute parametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours) assuming that the returns are normally distributed.
(c) Compute parametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours) assuming that the returns are t-distributed.
(d) Compare the estimates in (a), (b), and (c). Which do you feel are most

realistic?
2. Assume that the loss distribution has a polynomial tail and an estimate

of a is 3.1. If VaR(0.05) = $252, what is VaR(0.005)?
3. Find a source of stock price data on the Internet and obtain daily prices

for a stock of your choice over the last 1000 days.
(a) Assuming that the loss distribution is t, find the parametric estimate

of VaR(0.025, 24 hours).
(b) Find the nonparametric estimate of VaR(0.025, 24 hours).
(c) Use a t-plot to decide if the normality assumption is reasonable.
(d) Estimate the tail index assuming a polynomial tail and then use the es-

timate of VaR(0.025, 24 hours) from part (a) to estimate VaR(0.0025,
24 hours).

4. This exercise uses daily data in the msft.dat data set in the fEcofin
package. Use the closing prices to compute daily returns. Assume that
the returns are i.i.d., even though there may be some autocorrelation and
volatility clustering is likely. Use the model-free bootstrap to find 95%
confidence intervals for parametric estimates of VaR(0.005, 24 hours) and
ES(0.005, 24 hours) assuming that the returns are t-distributed.
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5. Suppose the risk measure R is VaR(α) for some α. Let P1 and P2 be
two portfolios whose returns have a joint normal distribution with means
µ1 and µ2, standard deviations σ1 and σ2, and correlation ρ. Suppose the
initial investments are S1 and S2. Show that R(P1+P2) ≤ R(P1)+R(P2).1

6. The problem uses daily stock price data in the file Stock_FX_Bond.csv
on the book’s website. In this exercise, use only the first 500 prices on
each stock. The following R code reads the data and extracts the first
500 prices for five stocks. “AC” in the variables’ names means “adjusted
closing” price.

dat = read.csv("Stock_FX_Bond.csv",header=T)

prices = as.matrix(dat[1:500,c(3,5,7,9,11)])

(a) What are the sample mean vector and sample covariance matrix of
the 499 returns on these stocks?

(b) How many shares of each stock should one buy to invest $50 million in
an equally weighted portfolio? Use the prices at the end of the series,
e.g., prices[,500].

(c) What is the one-day VaR(0.1) for this equally weighted portfolio? Use
a parametric VaR assuming normality.

(d) What is the five-day Var(0.1) for this portfolio? Use a parametric
VaR assuming normality. You can assume that the daily returns are
uncorrelated.

1 This result shows that VaR is subadditive on a set of portfolios whose returns have
a joint normal distribution, as might be true for portfolios containing only stocks.
However, portfolios containing derivatives or bonds with nonzero probabilities of
default generally do not have normally distributed returns.
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Bayesian Data Analysis and MCMC

20.1 Introduction

Bayesian statistics is based up a philosophy different from that of other meth-
ods of statistical inference. In Bayesian statistics all unknowns, and in par-
ticular unknown parameters, are considered to be random variables and their
probability distributions specify our beliefs about their likely values. Esti-
mation, model selection, and uncertainty analysis are implemented by using
Bayes’s theorem to update our beliefs as new data are observed.

Non-Bayesians distinguish between two types of unknowns, parameters
and latent variables. To a non-Bayesian, parameters are fixed quantities with-
out probability distributions while latent variables are random unknowns with
probability distributions. For example, to a non-Bayesian, the mean µ, the
moving average coefficients θ1, . . . , θq, and the white noise variance σ2

ε of an
MA(q) process are fixed parameters while the unobserved white noise process
itself consists of latent variables. In contrast, to a Bayesian, the parameters
and the white noise process are both unknown random quantities. Since this
chapter takes a Bayesian perspective, there is no need to distinguish between
the parameters and latent variables, since they can now be treated in the same
way. Instead, we will let θ denote the vector of all unknowns and call it the
“parameter vector.” In the context of time series forecasting, for example, θ
could include both the unobserved white noise and the future values of the
series being forecast.

A hallmark of Bayesian statistics is that one must start by specifying
prior beliefs about the values of the parameters. Many statisticians have been
reluctant to use Bayesian analysis since the need to start with prior beliefs
seems too subjective. Consequently, there have been heated debates between
Bayesian and non-Bayesian statisticians over the philosophical basis of statis-
tics. However, much of mainstream statistical thought now supports the more
pragmatic notion that we should use whatever works satisfactorily.

If one has little prior knowledge about a parameter, this lack of knowledge
can be accommodated by using a so-called noninformative prior that provides
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very little information about the parameter relative to the information sup-
plied by the data. In practice, Bayesian and non-Bayesian analyses of data
usually arrive at similar conclusions when the Bayesian analysis uses only weak
prior information so that knowledge of the parameters comes predominately
from the data.

Moreover, in finance and many other areas of application, analysts often
have substantial prior information and are willing to use it. In business and
finance, there is no imperative to strive for objectivity as there is in scientific
study. The need to specify a prior can be viewed as a strength, not a weakness,
of the Bayesian view of statistics, since it forces the analyst to think carefully
about how much and what kind of prior knowledge is available.

There has been a tremendous increase in the use of Bayesian statistics
over the past few decades, because the Bayesian philosophy is becoming more
widely accepted and because Bayesian estimators have become much easier
to compute. In fact, Bayesian techniques often are the most satisfactory way
to compute estimates for complex models.

For an overview of this chapter, assume we are interested in a parameter
vector θ. A Bayesian analysis starts with a prior probability distribution
for θ that summarizes all prior knowledge about θ; “prior” means before
the data are observed. The likelihood is defined in the same way in a non-
Bayesian analysis, but in Bayesian statistics the likelihood has a different
interpretation—the likelihood is the conditional distribution of the data given
θ. The key step in Bayesian inference is the use of Bayes’s theorem to combine
the prior knowledge about θ with the information in the data. This is done by
computing the conditional distribution of θ given the data. This distribution
is called the posterior distribution. In many, if not most, practical problems, it
is impossible to compute the posterior analytically and numerical methods are
used instead. A very successful class of numerical Bayesian methods is Markov
chain Monte Carlo (MCMC), which simulates a Markov chain in such a way
that the stationary distribution of the chain in the posterior distribution of
the parameters. The simulated data from the chain are used to compute Bayes
estimates and perform uncertainty analysis.

20.2 Bayes’s Theorem

Bayes’s theorem applies to both discrete events and to continuously dis-
tributed random variables. We will start with the case of discrete events.
The continuous case is covered in Section 20.3.

Suppose that B1, . . . , BK is a partition of the sample space S (the set of
all possible outcomes). By “partition” is meant that Bi ∩Bj = ∅ if i 6= j and
B1 ∪B2 ∪ · · · ∪BK = S. For any set A, we have that

A = (A ∩B1) ∪ · · · ∪ (A ∩BK),

and therefore, since B1, . . . , BK are disjoint,
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P (A) = P (A ∩B1) + · · ·+ P (A ∩BK). (20.1)

It follows from (20.1) and the definition of conditional probability that

P (Bj |A) =
P (A|Bj)P (Bj)

P (A)
=

P (A|Bj)P (Bj)
P (A|B1)P (B1) + · · ·+ P (A|BK)P (BK)

.

(20.2)
Equation (20.2) is called Bayes’s theorem, and is also known as Bayes’s rule or
Bayes’s law. Bayes’s theorem is a simple, almost trivial, mathematical result,
but its implications are profound. The importance of Bayes’s theorem comes
from its use for updating probabilities. Here is an example, one that is far too
simple to be realistic but that illustrates how Bayes’s theorem can be applied.

Example 20.1. Bayes’s theorem in a discrete case

Suppose that our prior knowledge about a stock indicates that the prob-
ability θ that the price will rise on any given day is either 0.4 or 0.6. Based
upon past data, say from similar stocks, we believe that θ is equally likely to
be 0.4 or 0.6. Thus, we have the prior probabilities

P (θ = 0.4) = 0.5 and P (θ = 0.6) = 0.5.

We observe the stock for five consecutive days and its price rises on all five
days. Assume that the price changes are independent across days, so that the
probability that the price rises on each of five consecutive days is θ5. Given this
information, we may suspect that θ is 0.6, not 0.4. Therefore, the probability
that θ is 0.6, given five consecutive price increases, should be greater than the
prior probability of 0.5, but how much greater? As notation, let A be the event
that the prices rises on five consecutive days. Then, using Bayes’s theorem,
we have

P (θ = 0.6|A) =
P (A|θ = 0.6)P (θ = 0.6)

P (A|θ = 0.6)P (θ = 0.6) + P (A|θ = 0.4)P (θ = 0.4)

=
(0.6)5(0.5)

(0.6)5(0.5) + (0.4)5(0.5)

=
(0.6)5

(0.6)5 + (0.4)5
=

0.07776
0.07776 + 0.01024

= 0.8836.

Thus, our probability that θ is 0.6 was 0.5 before we observed five consecutive
price increases but is 0.8836 after observing this event. Probabilities before
observing data are called the prior probabilities and the probabilities con-
ditional on observed data are called the posterior probabilities, so the prior
probability that θ equals 0.6 is 0.5 and the posterior probability is 0.8836.

¤
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Bayes’s theorem is extremely important because it tells us exactly how to
update our beliefs in light of new information. Revising beliefs after receiving
additional information is something that humans do poorly without the help
of mathematics.1 There is a human tendency to put either too little or too
much emphasis on new information, but this problem can be mitigated by
using Bayes’s theorem for guidance.

20.3 Prior and Posterior Distributions

We now assume that θ is a continuously distributed parameter vector. The
prior distribution with density π(θ) expresses our beliefs about θ prior to ob-
serving data. The likelihood function is interpreted as the conditional density
of the data Y given θ and written as f(y|θ). Using equation (A.19), the joint
density of θ and Y is the product of the prior and the likelihood; that is,

f(y, θ) = π(θ)f(y|θ). (20.3)

The marginal density of Y is found by integrating θ out of the joint density
so that

f(y) =
∫

π(θ)f(y|θ)dθ, (20.4)

and the conditional density of θ given Y is

π(θ|Y ) =
π(θ)f(Y |θ)

f(y)
=

π(θ)f(Y |θ)∫
π(θ)f(Y |θ)dθ

. (20.5)

Equation (20.5) is another form of Bayes’s theorem. The density on the left-
hand side of (20.5) is called the posterior density and gives the probability
distribution of θ after observing the data Y .

Notice the use of π to denote densities of θ, so that π(θ) is the prior density
and π(θ|Y ) is the posterior density. In contrast, f is used to denote densities
of the data, so that f(y) is the marginal density of the data and f(y|θ) is the
conditional density given θ.

Bayesian estimation and uncertainty analysis are based upon the poste-
rior. The most common Bayes estimators are the mode and the mean of the
posterior density. The mode is called the maximum a posteriori estimator, or
MAP estimator. The mean of the posterior is

E(θ|Y ) =
∫

θπ(θ|Y )dθ =
∫

θ π(θ)f(Y |θ)dθ∫
π(θ)f(Y |θ)dθ

(20.6)

and is also called the posterior expectation.
1 See Edwards (1982).
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Example 20.2. Updating the prior beliefs about the probability that a stock price
will increase

We continue Example 20.1 but change the simple, but unrealistic, prior
that said that θ was either 0.4 or 0.6 to a more plausible prior where θ could
be any value in the interval [0, 1], but with values near 1/2 more likely.
Specifically, we use a Beta(2,2) prior so that

π(θ) = 6θ(1− θ), 0 < θ < 1.

Let Y be the number of times the stock price increases on five consecutive
days. Then Y is Binomial(n, θ) and the density of Y is

f(y|θ) =
(

5
y

)
θy(1− θ)5−y, y = 0, 1, . . . , 5.

Since we observed that Y = 5, f(Y |θ) = f(5|θ) = θ5 and the posterior density
is

π(θ|5) =
6 θ(1− θ)θ5

∫
6 θ(1− θ)θ5dθ

= 56 θ6(1− θ).
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Fig. 20.1. Prior and posterior densities in Example 20.2. The dashed vertical lines
are at the lower and upper 0.05-quantiles of the posterior, so they mark off a 90%
equal-tailed posterior interval. The dotted vertical line shows the location of the pos-
terior mode at θ = 6/7 = 0.857.
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The prior and posterior densities are shown in Figure 20.1. The posterior
density is shifted toward the right compared to the prior because five con-
secutive days saw increased prices. The 0.05 lower and upper quantiles of the
posterior distribution are 0.529 and 0.953, respectively, and are shown on the
plot. Thus, there is 90% posterior probability that θ is between 0.529 and
0.953. For this reason, the interval [0.529, 0.953] is called a 90% posterior
interval and provides us with the set of likely values of θ. Posterior intervals
are Bayesian analogs of confidence intervals and are discussed further in the
Section 20.6.

The posterior expectation is
∫ 1

0

θπ(θ|5)dθ =
∫ 1

0

56 θ7(1− θ)dθ =
56
72

= 0.778. (20.7)

The MAP estimate is 6/7 and its location is shown by a dotted vertical line
in Figure 20.1.

The posterior CDF is

F (θ|Y = 5) =
∫ θ

0

π(x|t)dx =
∫ θ

0

56x6(1−x)dx = 56
(

θ7

7
− θ8

8

)
, 0 ≤ θ ≤ 1.

¤

20.4 Conjugate Priors

In Example 20.2, the prior and the posterior were both beta distributions.
This is an example of a family of conjugate priors. A family of distributions
is called a conjugate prior family for a statistical model (or, equivalently, for
the likelihood) if the posterior is in this family whenever the prior is in the
family. Conjugate families are convenient because they make calculation of
the posterior straightforward. All one needs to do is to update the parameters
in the prior. To see how this is done, we will generalize Example 20.2.

Example 20.3. Computing the posterior density of the probability that a stock
price will increase—General case of a conjugate prior

Suppose now that the prior for θ is Beta(α, β) so that the prior density is

π(θ) = K1θ
α−1(1− θ)β−1, (20.8)

where K1 is a constant. As we will see, knowing the exact value of K1 is not
important, but from (A.14) we know that K1 = Γ (α+β)

Γ (α)Γ (β) . The parameters in
a prior density must be known, so here α and β are chosen by the data analyst
in accordance with the prior knowledge about the value of θ. The choice of
these parameters will be discussed later.
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Suppose that the stock price is observed on n days and increases on Y
days (and does not increase on n− Y days). Then the likelihood is

f(y|θ) = K2θ
y(1− θ)n−y, (20.9)

where K2 =
(

n
y

)
is another constant. The joint density of θ and Y is

π(θ)f(Y |θ) = K3θ
α+Y−1(1− θ)β+n−Y−1, (20.10)

where K3 = K1K2. Then, the posterior density is

π(θ|Y ) =
π(θ)f(Y |θ)∫ 1

0
π(θ)f(Y |θ)dθ

= K4θ
α+Y−1(1− θ)β+n−Y−1. (20.11)

where
K4 =

1∫ 1

0
θα+Y−1(1− θ)β+n−Y−1dθ

. (20.12)

The posterior distribution is Beta(α + Y, β + n− Y ).
We did not need to keep track of the values of K1, . . . , K4. Since (20.11)

is proportional to a Beta(α + Y, β + n − Y ) density and since all densities
integrate to 1, we can deduce that the constant of proportionality is 1 and the
posterior is Beta(α + Y, β + n− Y ). It follows from (A.14) that

K4 =
Γ (α + β + n)

Γ (α + Y )Γ (β + n− Y )
.

It is worth noticing how easily the posterior can be found. One simply
updates the prior parameters α and β to α + Y and β + n− Y , respectively.

Using the results in Section A.9.7 about the mean and variance of beta
distributions, the mean of the posterior is

E(θ|Y ) =
α + Y

α + β + n
(20.13)

and the posterior variance is

var(θ|Y ) =
(α + Y )(β + n− Y )

(α + β + n)2(α + β + n + 1)

=
E(θ|Y ){1− E(θ|Y )}

(α + β + n + 1)
. (20.14)

For values of α and β that are small relative to Y and n, E(θ|Y ) is ap-
proximately equal to the MLE, which is Y/n. If we had little prior knowledge
of θ, we might take both α and β close to 0. However, since θ is the prob-
ability of a positive daily return on a stock, we might be reasonably certain
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Fig. 20.2. Examples of beta probability densities with α = β.

that θ is close to 1/2. In that case, choosing α = β and both fairly large (so
that the prior precision is large) makes sense. One could plot several beta
densities with α = β and decide which seem reasonable choices of the prior.
For example, Figure 20.2 contains plots of beta densities with α = β = 3, 20,
and 500. When 500 is the common value of α and β, then the prior is quite
concentrated about 1/2. This prior could be used by someone who is rather
sure that θ is close to 1/2. Someone with less certainty might instead prefer to
use α = β = 20, which has almost all of the prior probability between 0.3 and
0.6. The choice α = β = 3 leads to a very diffuse prior and would be chosen
if one had very little prior knowledge of θ and wanted to “let the data speak
for themselves.”

The posterior mean in (20.13) has an interesting interpretation. Suppose
that we had prior information from a previous sample of size α+β and in that
sample the stock price increased α times. If we combined the two samples,
then the total sample size would be α+β+n, the number of days with a price
increase would be α+Y , and the MLE of θ would be (α+Y )/(α+β +n), the
posterior mean given by (20.13). We can think of the prior as having as much
information as would be given by a prior sample of size α + β and α/(α + β)
can be interpreted as the MLE of θ from that sample. Therefore, the three
priors in Figure 20.2 can be viewed as having as much information as samples
of sizes 6, 40, and 1000. For a fixed value of E(θ|Y ), we see from (20.14) that
the posterior variance of θ becomes smaller as α, β, or n increases; this makes
sense since n is the sample size and α+β quantifies the amount of information
in the prior.
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Since it is not necessary to keep track of constants, we could have omitted
them from the previous calculations and, for example, written (20.8) as

π(θ) ∝ θα−1(1− θ)β−1. (20.15)

In the following examples, we will omit constants in this manner.
¤

Example 20.4. Posterior distribution when estimating the mean of a normal
population with known variance

Suppose Y1, . . . , Yn are i.i.d. N(µ, σ2) and σ2 is known. The unrealistic
assumption that σ2 is known is made so that we can start simple and will be
removed later.

The conjugate prior for µ is the family of normal distributions. To show
this, assume that the prior on µ is N(µ0, σ

2
0) for known values of µ0 and σ2

0 .
We learned in Example 20.3 that it is not necessary to keep track of quantities
that do not depend on the unknown parameters (but could depend on the data
or known parameters), so we will keep track only of terms that depend on µ.

Simple algebra shows that the likelihood is

f(Y1, . . . , Yn|µ) =
n∏

i=1

[
1√
2πσ

exp
{
− 1

2σ2
(Yi − µ)2

}]

∝ exp
{
− 1

2σ2

(−2nY µ + nµ2
)}

. (20.16)

The prior density is

π(µ) =
1√

2πσ0

exp
{
− 1

2σ2
0

(µ− µ0)2
}
∝ exp

{
− 1

2σ2
0

(−2µµ0 + µ2)
}

.

(20.17)
A precision is the reciprocal of a variance, and we let τ = 1/σ2 denote the
population precision. Multiplying (20.16) and (20.17), we can see that the
posterior density is

π(µ|Y1, . . . , Yn) ∝ exp
{(

nY

σ2
+

µ0

σ2
0

)
µ−

(
n

2σ2
+

1
2σ2

0

)
µ2

}

= exp
{

(τY Y + τ0µ0)µ− 1
2
(τY + τ0)µ2

}
, (20.18)

where τY = nτ = n/σ2 and τ0 = 1/σ2
0 , so that τY is the precision of Y and

τ0 is the precision of the prior distribution.
One can see that log{π(µ|Y1, . . . , Yn)} is a quadratic function of µ, so

π(µ|Y1, . . . , Yn) is a normal density. Therefore, to find the posterior distribu-
tion we need only compute the posterior mean and variance. The posterior
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mean is the value of µ that maximizes the posterior density, that is, the pos-
terior mode, so to calculate the posterior mean, we solve

0 =
∂

∂ µ
log{π(µ|Y1, . . . , Yn)} (20.19)

and find that the mean is

E(µ|Y1, . . . , Yn) =
τY Y + τ0µ0

τY + τ0
=

nY
σ2 + µ0

σ2
0

n
σ2 + 1

σ2
0

. (20.20)

We can see from (A.10) that the precision of a normal density f(y) is −2
times the coefficient of y2 in log{f(y)}. Therefore, the posterior precision is
−2 times the coefficient of µ2 in (20.18). Consequently, the posterior precision
is τY + τ0 = n/σ2 + 1/σ2

0 , and the posterior variance is

Var(µ|Y1 . . . , Yn) =
1

n
σ2 + 1

σ2
0

. (20.21)

In summary, the posterior distribution is

N




nY
σ2 + µ0

σ2
0

n
σ2 + 1

σ2
0

,
1

n
σ2 + 1

σ2
0


 = N

(
τY Y + τ0µ0

τY + τ0
,

1
τY + τ0

)
. (20.22)

We can see that the posterior precision (τY +τ0) is the sum of the precision of
Y and the precision of the prior; this makes sense since the posterior combines
the information in the data with the information in the prior.

Notice that as n →∞, the posterior precision τY converges to ∞ and the
posterior distribution is approximately

N(Y , σ2/n). (20.23)

What this result tells us is that as the amount of data increases, the effect of
the prior becomes negligible. The posterior density also converges to (20.23)
as σ0 →∞ with n fixed, that is, as the prior becomes negligible because the
prior precision decreases to zero.

A common Bayes estimator is the posterior mean given by the right-hand
side of (20.20). Many statisticians are neither committed Bayesians nor com-
mitted non-Bayesians and like to look at estimators from both perspectives.
A non-Bayesian would analyze the posterior mean by examining its bias, vari-
ance, and mean-squared error. We will see that, in general, the Bayes estima-
tor is biased but is less variable than Y , and the tradeoff between bias and
variance is controlled by the choice of the prior.

To simplify notation, let µ̂ denote the posterior mean. Then

µ̂ = δY + (1− δ)µ0, (20.24)
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where δ = τY /(τY + τ0), and E(µ̂|µ) = δµ + (1 − δ)µ0, so the bias of µ̂ is
{E(µ̂|µ) − µ} = (δ − 1)(µ − µ0) and µ̂ is biased unless δ = 1 or µ0 = µ. We
will have δ = 1 only in the limit as the prior precision τ0 converges to 0 and
µ0 = µ means that the prior mean is exactly equal to the true parameter, but
of course this beneficial situation cannot be arranged since µ is not known.

The variance of µ̂ is

Var(µ̂|µ) =
δ2σ2

n
,

which is less than Var(Y ) = σ2/n, except in the extreme case where δ = 1.
We see that smaller values of δ lead to more bias but smaller variance. The
best bias–variance tradeoff minimizes the mean square error of µ̂, which is

MSE(µ̂) = BIAS2(µ̂) + Var(µ̂) = (δ − 1)2(µ− µ0)2 +
δ2σ2

n
. (20.25)

It is best, of course, to have µ0 = µ, but this is not possible since µ is unknown.
What is known is δ = τY /(τY + τ0) and δ can be controlled by the choice of
τ0.
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Fig. 20.3. MSE versus δ for three values of “prior bias” = µ−µ0 when σ2/n = 1/2.
The horizontal line represents the MSE of the maximum likelihood estimator (Y ).

Figure 20.3 shows the MSE as a function of δ ∈ (0, 1) for three values of
µ − µ0, which is called the “prior bias” since it is the difference between the
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true value of the parameter and the prior estimate. In this figure σ2/n = 1/2.
For each of the two larger values of the prior bias, there is a range of values
of δ where the Bayes estimator has a smaller MSE than Y , but if δ is below
this range, then the Bayes estimator has a larger MSE than Y and the range
of “good” δ-values decreases as the prior bias increases. If the prior bias is
large and δ is too small, then the MSE of the Bayes estimator can be quite
large since it converges to the squared prior bias as δ → 0; see (20.25) or
Figure 20.3. This result shows the need either to have a good prior guess of
µ or to keep the prior precision small so that δ is large. However, when δ is
large, then the Bayes estimator cannot improve much over Y and, in fact,
converges to Y as δ → 1.

In summary, it can be challenging to choose a prior that offers a substan-
tial improvement over Y . One way to do this is to combine several related
estimation problems using a hierarchical prior; see Section 20.8. When it is
not possible to combine related problems and there is no other way to get
information about µ, then the prudent data analyst will forgo the attempt
to improve upon the MLE and instead will choose a small value for the prior
precision τ0.

¤

Example 20.5. Posterior distribution when estimating a normal precision

Now suppose that Y1, . . . , Yn are i.i.d. with a known mean µ and an un-
known variance σ2 and precision τ = 1/σ2. We will show that the conjugate
priors for τ are the gamma distributions and we will find the posterior distri-
bution of τ . Define s2 = n−1

∑n
i=1(Yi − µ)2, which is the MLE of σ2.

Simple algebra shows that the likelihood is

f(Y1, . . . , Yn|τ) ∝ exp
(
−1

2
nτs2

)
τn/2. (20.26)

Let the prior distribution be the gamma distribution with shape parameter α
and scale parameter b which has density

π(τ) =
τα−1

Γ (α)bα
exp(−τ/b) ∝ τα−1 exp(−τ/b). (20.27)

Multiplying (20.26) and (20.27), we see that the posterior density for τ is

π(τ |Y1, . . . , Yn) ∝ τn/2+α−1 exp{−(ns2/2 + b−1)τ}, (20.28)

which shows that the posterior distribution is gamma with shape parameter
n/2 + α and scale parameter

(
ns2/2 + b−1

)−1; that is,

π(τ |Y1, . . . , Yn) = Gamma
{

n/2 + α,
(
ns2/2 + b−1

)−1
}

. (20.29)

The expected value of a gamma distribution is the product of the shape
and scale parameters, so the posterior mean of τ is
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E(τ |Y1, . . . , Yn) =
n
2 + α

ns2

2 + b−1
.

Notice that E(τ |Y1, . . . , Yn) converges to s−2 as n →∞, which is not surpris-
ing since the MLE of σ2 is s2, so that the MLE of τ is s−2.

¤

20.5 Central Limit Theorem for the Posterior

For large sample sizes, the posterior distribution obeys a central limit theorem
that can be roughly stated as follows:

Theorem 20.6. Under suitable assumptions and for large enough sample
sizes, the posterior distribution of θ is approximately normal with mean equal
to the true value of θ and with variance equal to the inverse of the Fisher
information.

This result is also known as the Bernstein–von Mises Theorem. See Section
20.11 for references to a precise statement of the theorem.

This theorem is an important result for several reasons. First, a comparison
with Theorem 5.2 shows that the Bayes estimator and the MLE have the same
large-sample distributions. In particular, we see that for large sample sizes, the
effect of the prior becomes negligible, because the asymptotic distribution does
not depend on the prior. Moreover, the theorem shows a connection between
confidence and posterior intervals that is discussed in the next section.

One of the assumptions of this theorem is that the prior remains fixed
as the sample size increases, so that eventually nearly all of the information
comes from the data. The more informative the prior, the larger the sample
size needed for the posterior distribution to approach its asymptotic limit.

20.6 Posterior Intervals

Bayesian posterior intervals were mentioned in Example 20.2 and will now be
discussed in more depth.

Posterior intervals have a different probabilistic interpretation than con-
fidence intervals. The theory of confidence intervals views the parameter as
fixed and the interval as random because it is based on a random sample.
Thus, when we say “the probability that the confidence interval will include
the true parameter is . . .,” it is the probability distribution of the interval, not
the parameter, that is being considered. Moreover, the probability expresses
the likelihood before the data are collected about what will happen after the
data are collected. For example, if we use 95% confidence, then the probabil-
ity is 0.95 that we will obtain a sample whose interval covers the parameter.
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After the data have been collected and the interval is known, a non-Bayesian
will say that either the interval covers the parameter or it does not, so the
probability that the interval covers the parameter is either 1 or 0, though, of
course, we do not know which value is the actual probability.

In the Bayesian theory of posterior intervals, the opposite is true. The
sample is considered fixed since we use posterior probabilities, that is, proba-
bilities conditional on the data. Therefore, the posterior interval is considered
a fixed quantity. But in Bayesian statistics, parameters are treated as random.
Therefore, when a Bayesian says “the probability that the posterior interval
will include the true parameter is . . .,” the probability distribution being con-
sidered is the posterior distribution of the parameter. The random quantity is
the parameter, the interval is fixed, and the probability is after the data have
been collected.

Despite these substantial philosophical differences between confidence and
posterior intervals, in many examples where both a confidence interval and
a posterior interval have been constructed, one finds that they are nearly
equal. This is especially common when the prior is relatively noninformative
compared to the data, for example, in Example 20.3 if α + β is much smaller
than n.

There are solid theoretical reasons based on central limit theorems why
confidence and posterior intervals are nearly equal for large sample sizes. By
Theorem 20.6 (the central limit theorem for the posterior), a large-sample
posterior interval for the ith component of θ is

E(θi|Y )± zα/2

√
var(θi|Y ). (20.30)

By Theorems 5.2 and 7.6 (the univariate and multivariate central limit theo-
rems for the MLE), the large-sample confidence interval (5.20) based on the
MLE and the large-sample posterior interval (20.30) will approach each other
as the sample size increases. Therefore, practically minded non-Bayesian data
analysts are often happy to use a posterior interval and interpret it as a large-
sample approximation to a confidence interval. Except in simple problems, all
confidence intervals are based on large-sample approximations. This is true
for confidence intervals that use profile likelihood, the central limit theorem
for the MLE and Fisher information, or the bootstrap, in other words, for all
of the major methods for constructing confidence intervals.

There are two major types of posterior intervals, highest probability and
equal-tails. Let ψ = ψ(θ) be a scalar function of the parameter vector θ and
let π(ψ|Y ) be the posterior density of ψ. A highest-probability interval is of
the form {ψ : π(ψ|Y ) > k} for some constant k. As k increases from 0 to
∞, the posterior probability of this interval decreases from 1 to 0, and k is
chosen so that the probability is 1 − α. If π(ψ|Y ) has multiple modes, then
the set {ψ : π(ψ|Y ) > k} might not be an interval and in that case it should
be called a posterior set or posterior region rather than a posterior interval.
In any case, this region has the interpretation of being the smallest set with
1−α posterior probability. When the highest-posterior region is an interval, it
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can be found by computing all intervals that range from the α1-lower quantile
of π(ψ|Y ) to the α2-upper quantile of π(ψ|Y ), where α1 + α2 = α, and the
using the shortest of these intervals.

The equal-tails posterior interval has lower and upper limits equal to the
lower and upper α/2-quantiles of π(ψ|Y ). The two types of intervals coincide
when π(ψ|Y ) is symmetric and unimodal, which will be at least approximately
true for large samples by the central limit theorem for the posterior.

Posterior intervals are easy to compute when using the Monte Carlo meth-
ods; see Section 20.7.3.

Example 20.7. Posterior interval for a normal mean when the variance is
known

This example continues Example 20.4. By (20.20) and (20.21), a (1 −
α)100% posterior interval for µ is

τY Y + τ0µ0

τY + τ0
± zα/2

√
1

n
σ2 + 1

σ2
0

, (20.31)

where zα/2 is the α/2-upper quantile of the standard normal distribution.
If either n → ∞ or σ0 → ∞, then the information in the prior becomes

negligible relative to the information in the data because τY /τ0 → ∞, and
the posterior interval converges to

Y ± zα/2
σ√
n

,

which is the usual non-Bayesian confidence interval.
¤

20.7 Markov Chain Monte Carlo

Although the Bayesian calculations in the simple examples of the last few sec-
tions were straightforward, this is generally not true for problems of practical
interest. Frequently, the integral in the denominator of posterior density (20.5)
is impossible to calculate analytically. The same is true of the integral in the
numerator of the posterior mean given by (20.6). Because of computational
difficulties, until recently Bayesian data analysis was much less widely used
than now. Fortunately, Monte Carlo simulation methods for approximating
posterior densities and expectations have been developed. They have been a
tremendous advance and not only have they made Bayesian methods practi-
cal, but also they have led to the solution of applied problems that heretofore
could not be tackled.

The most widely applicable Monte Carlo method for Bayesian inference
simulates a Markov chain whose stationary distribution is the posterior. The



546 20 Bayesian Data Analysis and MCMC

sample from this chain is used for Bayesian inference. This technique is called
Markov chain Monte Carlo, or MCMC. The freeware package WinBUGS im-
plements MCMC and is relatively easy to use.

This section is an introduction to MCMC and WinBUGS. First, we dis-
cuss Gibbs sampling, the simplest type of MCMC. Gibbs sampling works well
when it is applicable, but it is applicable only to limited set of problems.
Next, the Metropolis–Hastings algorithm is discussed. Metropolis–Hastings is
applicable to nearly every type of Bayesian analysis. WinBUGS is a sophisti-
cated program that is able to select an MCMC algorithm that is suitable for
a particular model.

20.7.1 Gibbs Sampling

Suppose that the parameter vector θ can be partitioned into M subvectors so
that

θ =




θ1

...
θM


 .

Let [θj |Y , θk, k 6= j] be the conditional distribution distribution of θj given
the data Y and the values of the other subvectors; [θj |Y , θk, k 6= j] is called
the full conditional distribution of θj . Gibbs sampling is feasible if one can
sample from each of the full conditionals.

Gibbs sampling creates a Markov chain that repeatedly samples the sub-
vectors θ1, . . . , θM in the following manner. The chain starts with an arbi-
trary starting value θ(0) for the parameter vector θ. Then the subvector θ

(1)
1

is sampled from the full conditional [θ1|Y , θk, k 6= 1] with each of the remain-
ing subvectors θk, k 6= 1, set at its current value which is θ

(0)
k . Next θ

(1)
2 is

sampled from [θ2|Y ,θk, k 6= 2] with θk, k 6= 2, set at its current value, which
is θ

(1)
k for k = 1 and θ

(0)
k for k ≥ 2. One continues it this way until each of

θ1, . . . , θM has been updated and one has θ(1).
Then θ(2) is found starting at θ(1) in the same way that θ(1) was obtained

starting at θ(0). Continuing in this way, we obtain the sequence θ(1), . . . , θ(N)

that is a Markov chain with the remarkable property that its stationary distri-
bution is the posterior distribution of θ. Moreover, regardless of the starting
value θ(0), the chain will converge to the stationary distribution. After conver-
gence to the stationary distribution, the Markov chain samples the posterior
distribution and the MCMC sample is used to compute posterior expectations,
quantiles, and other characteristics of the posterior distribution.

Since the Gibbs sample does not start in the stationary distribution, the
first N0 iterations are discarded as a burn-in period for an appropriately cho-
sen value of N0. We will assume that this has been done and θ(1), . . . , θ(N) is
the sample from the chain after the burn-in period. In Section 20.7.5, methods
for choosing N0 are discussed.
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Example 20.8. Gibbs sampling for a normal mean and precision

In Example 20.7, we found the posterior for a normal mean when the pre-
cision is known, and in Example 20.5, we found the posterior for a normal
precision when the mean is known. These two results specify the two full con-
ditionals and allow one to apply Gibbs sampling to the problem of estimating
a normal mean and precision when both are unknown. The idea is simple. A
starting value τ (0) for τ is selected. The starting value might be the MLE, for
example. However, there are advantages to using multiple chains with random
starting values that are overdispersed, meaning that their probability distri-
bution is more scattered than that posterior distribution; see Section 20.7.5.
Then, treating τ as known and equal to τ (0), µ(1) is drawn randomly from
its Gaussian full conditional posterior distribution given in (20.22). Note: The
starting value τ (0) for the population precision τ should not be confused with
the precision τ0 in the prior for µ; τ (0) is used only once, to start the Gibbs
sampling algorithm; after burn-in, the Gibbs sample will not depend on the
actual value of τ (0). In contrast, τ0 is fixed and is part of the posterior so the
Gibbs sample should and will depend on τ0.

After µ(1) has been sampled, µ is treated as known and equal to µ(1) and
τ (1) is drawn from the full conditional (20.29). Gibbs sampling continues in
this way, alternatively between sampling µ and τ from their full conditionals.

¤

20.7.2 Other Monte Carlo Samplers

It is often difficult or impossible to sample directly from the full conditionals
of the posterior and then Gibbs sampling is infeasible. Fortunately, there is
a large variety of other sampling algorithms that can be used when Gibbs
sampling cannot be used. These are discussed in the references mentioned
in Section 20.11. Programming a Gibbs sampler or other Monte Carlo algo-
rithms “from scratch” is beyond the scope of this book but is explained in
these references. The WinBUGS program discussed in Section 20.7.4 allows ana-
lysts to use MCMC without the time-consuming and error-prone process of
programming the details. However, WinBUGS cannot handle all models or all
priors so it is sometimes necessary to program the MCMC. Therefore, in this
section the very widely applicable Metropolis–Hastings MCMC algorithm is
described briefly.

Instead of sampling directly from the posterior, the Metropolis–Hastings
algorithm samples from a so-called proposal density, which is another density
chosen to be easy to sample. Of course, the goal is to sample the posterior,
not the proposal density. Therefore, as will be discussed next, the Metropolis–
Hastings algorithm makes a clever adjustment so that its stationary distribu-
tion is the posterior.

At the tth step of the algorithm, let Jt(·|θ(t−1)) be the proposal density,
which depends on the current value θ(t−1), is drawn from this density. Con-
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ditional on θ, the proposal is accepted with probability min(r, 1), where

r =
π(θ∗|Y )

π(θ(t−1)|Y )

Jt(θ(t−1)|θ∗)
Jt(θ∗|θ(t−1))

. (20.32)

If the proposal is accepted, then θ(t) = θ∗ and otherwise θ(t) = θ(t−1). The
acceptance probability min(r, 1) has been chosen so that the stationary distri-
bution of the chain is the posterior; this is the “clever adjustment” mentioned
above.

Often Jt is chosen to be symmetric in its arguments so that Jt(θ|θ′) =
Jt(θ′|θ) for all values of θ and θ′. Then r simplifies to

r =
π(θ∗|Y )

π(θ(t−1)|Y )
(20.33)

and the Metropolis–Hastings algorithm is easier to understand. When π(θ∗|Y )
≥ π(θ(t−1)|Y ), then min(1, r) = 1 and the proposal is accepted for certain;
thus, the proposal is always accepted if it moves to a value of θ with a greater
posterior probability than the current value. When π(θ∗|Y ) < π(θ(t−1)|Y ),
then the proposal is not certain to be accepted and is unlikely to be accepted
when π(θ∗|Y ) is considerably smaller than π(θ(t)|Y ). Thus, the algorithm is
attracted to the high-posterior density region. However, the algorithm does
not get stuck in the high-posterior density region but instead can visit any
region with positive posterior density, as it must if it is to sample the en-
tire posterior. The Gaussian and t-densities are commonly used examples of
symmetric proposal densities.

Tuning a Metropolis–Hastings algorithm means choosing the parameters
of the proposal density. For example, the so-called random walk Metropolis–
Hastings algorithm uses as the proposal density a normal or other symmetric
density with mean equal to the current value θ(t−1) of θ and tuning means
choosing the covariance matrix of the proposal density. The covariance matrix
might be proportional to the inverse Fisher information matrix and then the
only tuning parameter is the constant of proportionality. Tuning is a complex
topic and will not be discussed here because WinBUGS and similar Bayesian
software do automatic tuning. Tuning is discussed in the references cited in
Section 20.11.

20.7.3 Analysis of MCMC Output

The analysis of MCMC output typically examines scalar-valued functions of
the parameter vector θ. The analysis should be performed on each scalar
quantity of interest. Let ψ = ψ(θ) be one such function. Suppose θ1, . . . , θN

is an MCMC sample from the posterior distribution of θ, either from a single
Markov chain or from combining multiple chains, and define ψi = ψ(θi). We
will assume that the burn-in period and the chain lengths are sufficient so
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that ψ1, . . . , ψN is a representative sample from the posterior distribution of
ψ. Methods for diagnosing convergence and adequacy of the Monte Carlo
sample size are explained in Section 20.7.5.

The MCMC sample mean ψ = N−1
∑N

i=1 ψi estimates the posterior ex-
pectation E(ψ|Y ), which is the most common Bayes estimator. The MCMC

sample standard deviation sψ =
{

(N − 1)−1
∑N

i=1(ψi − ψ)2
}1/2

estimates
the posterior standard deviation of ψ and will be called the Bayesian standard
error . If the sample size of the data is sufficiently large, then the posterior dis-
tribution will be approximately normal by Theorem 20.6 and an approximate
(1− α) posterior interval for ψ is

ψ ± zα/2 sψ. (20.34)

Interval (20.34) is an MCMC approximation to (20.30).
However, one need not use this normal approximation to find posterior

intervals. If L(α1) is the α1-lower sample quantile and U(α2) is the α2-upper
sample quantile of ψ1, . . . , ψN , then (L(α1), U(α2)) is a 1−(α1 +α2) posterior
interval. For an equal-tailed posterior interval, one uses α1 = α2 = α/2. For a
highest-posterior density interval, one chooses α1 and α2 on a fine grid such
that α1 +α2 = α and U(α2)−L(α1) is minimized. One should check that the
posterior density of ψ is unimodal using a kernel density estimate. If there
are several modes and sufficiently deep troughs between them, then highest-
posterior density posterior region could be a union of intervals, not a single
interval. However, even in this somewhat unusual case, (L(α1), U(α2)) might
still be used as the shortest 1− α posterior interval.

Kernel density estimates can be used to visualize the shapes of the pos-
terior densities. As an example, see Figure 20.4 discussed in Example 20.9
ahead. Most automatic bandwidth selectors for kernel density estimation are
based on the sample of an independent sample. When applied to MCMC out-
put, they might undersmooth. If the density function in R is used, one might
correct this undersmoothing by using a value of the adjust parameter greater
than the default value of 1. However, Figure 20.4 uses the default value and
the amount of smoothing seems adequate; this could be due to the large Monte
Carlo sample size, 10,000.

20.7.4 WinBUGS

WinBUGS is a Windows implementation of the BUGS (Bayesian analysis Using
Gibbs Sampling) program. WinBUGS can be used as a standalone program or
it can be called from within R using the bugs function of the R2WinBUGS
package. Documentation for WinBUGS and R2WinBUGS can be found online; see
also the references discussed in Section 20.11.
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Fig. 20.4. Kernel density estimates of the marginal posterior densities in Example
20.9.

Example 20.9. WinBUGS with a sample from a t-distribution

Below is a WinBUGS program to sample from the posterior when Y1, . . . , Yn

are i.i.d. from a t-distribution. This program contains a description of the
model and a specification of the prior. The data used here are a simulated
sample of size 500 from a t-distribution with mean 3, scale 2, and 5 degrees of
freedom. Simulated data were used so that we can compare the true parameter
values with the Bayes estimates.

model{

for(i in 1:N){

y[i] ~ dt(mu,tau,df)

}

mu ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.1,0.01)

df ~ dunif(2,50)

lambda <- sqrt(1/tau)

}

This program was run from inside R using the bugs function, and bugs
returned an objected named univt.sim which is printed below. In WinBUGS,
dnorm(mu,tau) is the normal distribution with mean equal to mu and precision
equal to tau. Also, dt(mu,tau,df) is the t-distribution with mean equal to mu,
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degrees of freedom equal to df and inverse scale parameter equal to the square
root of tau (so tau is proportional to, rather than equal to, the variance). In
the WinBUGS program, the for loop specifies the likelihood and the next three
lines specify the priors for mu, tau, and df. The code lambda <- sqrt(1/tau)
computes the scale parameter from tau and is included in the bugs program
so that a sample from the posterior distribution of the scale parameter is
available.

> print(univt.sim,digits=2)
Inference for Bugs model at "univt.bug", fit using WinBUGS,
5 chains, each with 3000 iterations (first 1000 discarded)
n.sims = 10,000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mu 3.07 0.10 2.86 3.00 3.07 3.13 3.27 1.00 2700
tau 0.26 0.03 0.20 0.24 0.26 0.28 0.32 1.01 280
df 4.86 1.20 3.19 4.02 4.64 5.44 7.98 1.02 230
lambda 1.98 0.11 1.76 1.90 1.98 2.05 2.21 1.01 280
deviance 2328.43 2.76 2325.00 2326.00 2328.00 2330.00 2336.00 1.00 1000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 3.2 and DIC = 2331.6
DIC is an estimate of expected predictive error (lower deviance is better).

Posterior means (Bayes estimates), standard deviations (Bayesian stan-
dard errors), and quantiles are available for parameters where monitoring is
specified when WinBUGS is called from R. The Monte Carlo estimates of the
posterior mean and standard deviation of µ are 3.07 and 0.10, respectively.
The 0.025 and 0.975 posterior quantiles for µ are 2.86 and 3.27, so a 95%
equal-tailed posterior interval for µ is (2.86, 3.27), which does include the
true mean of 3.

deviance is the deviance evaluated at the current values of the parameters.
Rhat, n.eff, DIC, and pD will be explained in the following sections.

Figure 20.4 contains kernel density estimates of the marginal posterior
densities of mu, sigma, df, and lambda. These were produced by the density
function in R. Except for df, the densities are symmetric and close to Gaus-
sian, as might be expected from the central limit theorem for the posterior
because the data sample size, 500, is large. (The sample size in the central limit
theorem is of the data, not the MCMC sample, though the MCMC sample
size should be large as well.)

¤

WinBUGS runs only under Windows, but the somewhat similar JAGS (Just
Another Gibbs Sampler) software runs under Windows, Mac Os, Linux, and
Unix. Like WinBUGS and R, JAGS is freeware.

20.7.5 Monitoring MCMC Convergence and Mixing

The length N0 of the burn-in period must be sufficiently large that the Markov
chain has converged to the stationary distribution by the end burn-in. The
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length N of the chain must be large enough that moments, quantiles, and
other quantities computed from the MCMC sample are accurate estimates of
the corresponding characteristics of posterior. Markov chains are dependent
sequences and the chains used in MCMC typically have positive autocorre-
lation. Because of the autocorrelation, to achieve accurate estimates Markov
chain samples must be larger, often far larger, than with independent sam-
ples. A chain that moves about the posterior slowly is said to mix poorly. The
worse the mixing of the chain, the larger the necessary sample size needed for
accurate estimation.

In principle, one long Markov chain is all that is needed to sample the
posterior. However, if several chains are generated, then one can compare them
to decide if the burn-in period N0 and chain length N are sufficiently large. If
the amount of between-chain variation in the chain means is large relative to
the within-chain variation, then the chains are mixing poorly. Consequently,
diagnostics for convergence and mixing can be based on between- and within-
chain variation.

Between-chain variability will be artificially low if the chains have similar
starting values. For this reason, it is recommended that the starting values
be randomly sampled from a distribution with greater dispersion than the
posterior. For example, one might use a Gaussian or t-distribution with mean
equal to the MLE and covariance matrix equal to k times the inverse Fisher
information for some k > 1.

Example 20.10. Good mixing and poor mixing

Excellent and poor mixing are contrasted in Figure 20.5. The model is
linear regression with two predictor variables and i.i.d. Gaussian noise. There
are two simulated data sets. In panel (a) the predictors are highly correlated
(sample correlation = 0.996), while in panel (b) they are independent. Except
for this difference in the amount of collinearity, the two data sets have the same
distributions. In both of these cases, there are three chains and for each chain
there is a burn-in period of N0 = 100 iterations and then 1000 iterations that
are retained. Time series plots, which in MCMC analysis are usually called
trace plots, are shown for the first regression coefficient.

In each case the three chains were started at randomly chosen initial values.
The probability distribution was centered at the least-squares and “overdis-
persed” relative to the posterior distribution. Specifically, the regression coeffi-
cients have a Gaussian starting value distribution centered at the least-squares
estimate and with covariance matrix 1.5 times the covariance matrix of the
least-squares estimator. The noise variance had a starting distribution that
was uniformly distributed between 0.25 and 4 times the least-squares estimate
[e.g., σ̂2

ε in (12.15)] of the noise variance. By using overdispersed starting val-
ues, one can discover how quickly the chains move from their starting values
to the stationary distribution. They move very quickly in case (b) but slowly
in case (a).
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Fig. 20.5. MCMC analysis of a linear regression model with two predictor vari-
ables. Simulated data. Trace plots of the first regression coefficient (β1) for three
chains. The true value of β1 is 1. (a) The burn-in period was 100 and the chain
lengths are 1000. The two predictors are highly correlated and the strong collinearity
is causing poor mixing. Notice that the chains have not converged to the stationary
distribution and that the between-chain variation is large relative to the within-chain
variations. (b) The burn-in period was 100 and the chain lengths are 1000 as in (a).
The two predictors are independent and there is very good mixing because there is no
collinearity. Notice that the chains have converged to the stationary distribution and
there is little between-chain variation. (c) Same data set as (a) but with a burn-in
period of 5000 and chain lengths of 30,000. The chains have been thinned so that
only every 10th iteration is retained.

One solution to poor mixing is to increase the burn-in period and the chain
lengths. Panel (c) has the same data set as (a) but with a longer burn-in (5000
iterations) and longer chains (30,000 iterations). The chains have been thinned
so that only every 10th iteration is retained. Thinning can speed calculations
by reducing the Monte Carlo sample size and can improve the appearance
of trace plots—a trace plot of 3 chains of 30,000 iterations each would be
almost solid black. The chains appear to have converged to the stationary
distribution by the end of the burn-in and to mix reasonably well over 30,000
iterations (3000 after thinning).

¤

Suppose one samples M chains, each of length N after burn-in. Let θi,j

be the ith iterate from the jth chain and let ψi,j = ψ(θi,j) for some scalar-
valued function ψ. For example, to extract the kth parameter, one would use
ψ(x) = xk, or ψ might compute the standard deviation or the variance from
the precision. We also use ψ to denote the estimand ψ(θ).

Let

ψ·,j = N−1
N∑

i=1

ψi,j (20.35)
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be the mean of the jth chain and let

ψ·,· = M−1
M∑

j=1

ψ·,j . (20.36)

ψ is the average of the chain means and is the Monte Carlo approximation to
E(ψ|Y ). Then define

B =
N

M − 1

M∑

j=1

(
ψ·,j − ψ·,·

)2
. (20.37)

B/N is the sample variance of the chain means. Define

s2
j = (N − 1)−1

N∑

i=1

(
ψi,j − ψ·,j

)2
, (20.38)

the variance of the jth chain, and define

W = M−1
M∑

j=1

s2
j . (20.39)

W is the pooled within-chain variance. The two variances, B and W , are
combined into

v̂ar+(ψ|Y ) =
N − 1

N
W +

1
N

B, (20.40)

where, as before, Y is the data.
To assess convergence, one can use

R̂ =

√
v̂ar+(ψ|Y )

W
. (20.41)

When the chains have not yet reached the stationary distribution, the numera-
tor v̂ar+(ψ|Y ) inside the radical is an upward-biased estimate of var(ψ|Y ) and
the denominator W is a downward-biased estimator of this quantity. Both bi-
ases converge to 0 as the burn-in period and Monte Carlo sample size increase.
Therefore, larger values of R̂ indicate nonconvergence. If R̂ is approximately
equal to 1, say at most 1.1, then the chains are considered to have converged
to the stationary distribution and v̂ar+(ψ|Y ) can be used as an estimate of
var(ψ|Y ). A larger value of R̂ is an indication that a longer burn-in period is
needed.

One measure of the effective sample size of the chain is

Neff = MN
v̂ar+(ψ|Y )

B
. (20.42)
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The interpretation of Neff is that the Markov chain can estimate the posterior
expectation of ψ with approximately the same precision as would be obtained
from an independent sample from the posterior of size Neff . (Of course, it is
usually impossible to actually obtain an independent sample, which is why
MCMC is used.)

Neff is derived by comparing the Monte Carlo variance of ψ·,· from Markov
chain sampling with the same variance under hypothetical independent sam-
pling. Since ψ·,· is the average of the means of M independent chains and
since B/N is the sample variance of these M chain means,

M−1 B

N
(20.43)

estimates the Monte Carlo variance of ψ·,·. Suppose instead of sampling M
chains, each of length N , one could take an independent sample of size N∗

from the posterior. The Monte Carlo variance of the mean of this sample
would be

var(ψ|Y )
N∗ ,

which can be estimated by
v̂ar+(ψ|Y )

N∗ . (20.44)

By definition Neff is the value of N∗ that makes (20.43) equal to (20.44)
and therefore N∗ is given by (20.42). Because B/N is the sample variance of
M chains and because M is typically quite small, often between 2 and 5, B
has considerable Monte Carlo variability. Therefore, Neff is at best a crude
estimate of the effective sample size.

WinBUGS computes R̂ and Neff for each parameter that is monitored, as
can be seen in the output in Section 20.7.4.

How large should Neff be? Of course, larger means better Monte Carlo
accuracy, but larger values of Neff require more or longer chains, so we do not
want Neff to be unnecessarily large. The effect of Neff on estimation error can
be seen by decomposing the estimation error ψ − ψ·,· into two parts, which
will be called E1 and E2:

ψ − ψ·,· = {ψ − E(ψ|Y )}+
{
E(ψ|Y )− ψ·,·

}
= E1 + E2. (20.45)

If E{ψ|Y } could be computed exactly so that it, not ψ·,·, would be the es-
timator of ψ, then E1 would be the only error. E2 is the error due to the
Monte Carlo approximation of E{ψ|Y } by ψ·,·. The two errors E1 and E2 are
uncorrelated, so

var{(ψ − ψ·,·)|Y } = var(E1|Y ) + var(E2|Y )

= var(ψ|Y ) +
var(ψ|Y )

Neff

= var(ψ|Y )
(

1 +
1

Neff

)
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by the definitions of var(ψ|Y ) and Neff and using the approximation v̂ar+(ψ|Y )
≈ var(ψ|Y ). Using the Taylor series approximation

√
1 + δ ≈ 1+δ/2 for small

values of δ, we see that
√

var{(ψ − ψ·,·)|Y } ≈
√

var(ψ|Y )
(

1 +
1

2Neff

)
. (20.46)

Recall that
√

var{(ψ − ψ·,·)|Y } is the “Bayesian standard error.” If Neff ≥ 50,
then we see from (20.46) that the standard error is inflated by Monte Carlo
error by at most 1%. Thus, one might use the rule-of-thumb that Neff should
be at least 50. Remember, however, that Neff is estimated only crudely because
the number of chains is small. Thus, we might want to have Neff at least 100
to provide some leeway for error in the estimation of Neff .

The value of Neff can vary greatly between different choices of ψ. In Ex-
ample 20.9, Neff is as small as 230 for df and as large as 2700 for mu. Since
even the smallest value of Neff is well above 100, the number and lengths of
the chains are adequate, at least according to our rule-of-thumb. One can also
see in Example 20.9 that R̂ is less than 1.1 for all of the parameters that were
monitored, which is another indication that the amount of MCMC sampling
was sufficient.

20.7.6 DIC and pD for Model Comparisons

DIC is a Bayesian analog of AIC and pD is a Bayesian analog to the number
of parameters in the model.

Recall from Section 5.12 that the deviance, denoted now by D(Y ,θ), is
minus twice the log-likelihood, and AIC defined by (5.29) is

AIC = D(Y ,θML) + 2p, (20.47)

where θ̂ML is the MLE and p is the dimension of θ. A Bayesian analog of the
MLE is the posterior mean, the usual Bayes estimator, which will be estimated
by MCMC.

We need a Bayesian analog of p, the number of parameters. It may seem
strange at first that we do not simply use p itself as in a non-Bayesian analysis.
After all, the number of parameters has not changed just because we now have
a prior and are using Bayesian estimation. However, the prior information
used in a Bayesian analysis somewhat constrains the estimated parameters,
which makes the effective number of parameters less than p. To appreciate
why this is true, consider an example where there are d returns on equities
that are believed to be similar. Assume the returns have a multivariate normal
distribution. Let’s focus on the d expected returns, call them µ1, . . . , µd. To a
non-Bayesian, there are two ways to model µ1, . . . , µd. The first is to assume
that they are all equal, say to µ, and then there is only one parameter (plus
parameters for the variances and correlations). The other possibility is to
assume that the expected returns are not equal so that there are d parameters.
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A Bayesian can achieve a compromise between these two extreme by spec-
ifying a prior such that µ1, . . . , µd are similar but not identical. For example,
we could assume that they are i.i.d. N(µ, σ2

µ), and σ2
µ would specify the degree

of similarity. The result of using such prior information is that the effective
number of parameters to specify µ1, . . . , µd is greater than 1 but less than d.

The effective number of parameters is defined as

pD = D̂avg −D(Y ,θ), (20.48)

where

θ = (NM)−1
M∑

j=1

N∑

i=1

θi,j

is the average of the MCMC sample of θi,j and

D̂avg = (NM)−1
M∑

j=1

N∑

i=1

D(Y , θi,j)

is an MCMC estimate of

Davg = E{D(Y , θ)|Y }. (20.49)

In analogy with (20.47), DIC is defined as

DIC = D(Y ,θ) + 2pD.

As the following example illustrates, pD is primarily a measure of the
posterior variability of θ, which increases as p increases or the amount of
prior information about θ decreases relative to the information in the sample.

Example 20.11. pD when estimating a normal mean with known precision

Suppose that Y = (Y1, . . . , Yn) are i.i.d. N(µ, 1), so θ = µ in this example.
Then the log-likelihood is

log{L(µ)} = −1
2

n∑

i=1

(Yi − µ)2 − n

2
log(2π)

= −1
2

{
n∑

i=1

(Yi − Y )2 + n(Y − µ)2
}
− n

2
log(2π),

and so

D(Y , µ) =
n∑

i=1

(Yi − Y )2 + n(Y − µ)2 + n log(2π). (20.50)
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When pD is computed, quantities not depending on µ cancel with the sub-
traction in (20.48). Therefore, for the purpose of computing pD, we can use

D(Y , µ) = n(Y − µ)2. (20.51)

Then
D{Y , E(µ|Y )} = {Y − E(µ|Y )}2, (20.52)

and

Davg = nE{(Y − µ)2|Y }
= n

(
{Y − E(µ|Y )}2 + E

[{E(µ|Y )− µ}2|Y ])

= n
[
{Y − E(µ|Y )}2 + Var(µ|Y )

]

= D{Y , E(µ|Y )}+ nVar(µ|Y ), (20.53)

because {Y −E(µ|Y )} and {E(µ|Y )−µ} are conditionally uncorrelated given
Y . Therefore,

pD = D̂avg −D{Y , E(µ|Y )}
≈ Davg −D{Y , E(µ|Y )} = nVar(µ|Y ) =

n

n + τ0
, (20.54)

where the last equality uses (20.21) and τ0 is the prior precision for µ. The
approximation (“≈”) in (20.54) becomes equality as the Monte Carlo sample
size N increases to ∞.

As τ0 → 0, the amount of prior information becomes negligible and the
right-hand side of (20.54) converges to p = 1. Conversely, as τ0 → ∞, the
amount of prior information increases without bound and the right-hand side
of (20.54) converges to 0. This is an example of a general phenomenon—more
prior information means less effective parameters.

¤

Generally, pD ≈ p when p is small and there is little prior information. In
other cases, such as, when d means are modeled as coming from a common
normal distribution, pD could be considerably less than 1—see Example 20.12.

When comparing models using DIC, smaller is better, though, like AIC and
BIC, DIC should never be used blindly. Often subject-matter considerations
or model simplicity will lead an analyst to select a model other than the one
minimizing DIC. WinBUGS computes both DIC and pD,as can be seen in
Section 20.7.4.

20.8 Hierarchical Priors

A common situation is having a number of parameters that are believed to
have similar, but not identical, values. For example, the expected returns on
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several equities might be thought similar. In such cases, it can be useful to
pool information about the parameters to improve the specification of the
prior, because the use of good prior information will improve the accuracy of
the estimation. A effective method for pooling information is a Bayesian anal-
ysis with a hierarchical prior that allows one to shrink the estimates toward
each other or toward some other target. An example of the latter would be
shrinking the sample covariance matrix of returns toward an estimate from
the CAPM or another factor model. This type of shrinkage would achieve a
tradeoff between the high variability of the sample covariance matrix and the
bias of the covariance matrix estimator from a factor model.

As before, let the likelihood be f(y|θ). The likelihood is the first layer (or
stage) in the hierarchy. So far in this chapter, the prior density of θ, which is
the second layer, has been π(θ|γ), where the parameter vector γ in the prior
has a known value, say γ0. For example, in Example 20.3 the prior had a beta
distribution with both parameters fixed.

In a hierarchical or multistage prior, γ is unknown and has its own prior
π(γ|δ) (the third layer). Typically, δ has a known value, though one can add
further layers to the hierarchy by making δ unknown with its own prior, and
so forth.

It is probably easiest to understand hierarchical prior using examples.

Example 20.12. Estimating expected returns on midcap stocks

This example uses the midcapD.ts data set in R’s fEcofin package. This
data set contains 500 daily returns on 20 midcap stocks and the daily returns
on the market and was used in Example 5.3.

The data set will be divided into the “training data,” which contains the
first 100 days of returns and the “test” data containing the last 400 days of
returns. Only the training data will be used for estimation. The test data will
be used to compare the estimates from the training data. Since the test data
sample size is relatively large, we will consider the mean returns from the test
data as the “true” expected returns on the 20 stocks, though, of course, this is
only an approximation. The “true” expected returns will be estimated using
the training data.

We will compare three possible estimators of the true expected returns.

(a) sample means (the 20 mean returns on the midcap stocks for the first 100
days);

(b) pooled estimation (total shrinkage where every expected return has the
same estimate);

(c) Bayes estimation with a hierarchical prior (shrinkage).

Method (a) is the “usual” non-Bayesian estimator where each expected
return is estimated by the sample mean of that stock. In method (b), every
expected return has the same estimate, which is the “mean of means,” that is,
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the average of the 20 means from (a). Bayes shrinkage, which will be explained
in this example, shrinks the 20 individual means toward the mean of means
using a hierarchical prior. Bayesian shrinkage is a compromise between (a)
and (b). Shrinkage was also used in Example 11.10 though in that example
the amount of shrinkage was chosen arbitrarily because Bayesian methods had
not yet been introduced.

Let Ri,t be the tth daily return on i stock expressed as a percentage. For
Bayesian shrinkage, the first layer will be the simple model

Ri,t = µi + εi,t,

where εi,t are i.i.d. N(0, σ2
ε ). This model has several unrealistic aspects: (a)

the assumption that the standard deviation of εi,t does not depend on i; (b)
the assumption that εi,t and εi′,t are independent (we know that there will
be cross-sectional correlations); (c) the assumption that there are no GARCH
effects; (d) the assumption that the εi,t are normally distributed rather than
having heavy tails. Nonetheless, for the purpose of estimating expected re-
turns, this model should be adequate. Remember, “all models are wrong but
some models are useful,” and, of course, what is “useful” develops on the
objectives of the analysis.

The hierarchy prior has second layer

µi ∼ i.i.d. N(α, σ2
µ).

The assumption here is that the expected returns for the 20 midcap stocks
have been sampled from a larger population of expected returns, perhaps of
all midcap stocks or even a larger population. The mean of that population
is α and the standard deviation is σµ.

If we used a non-hierarchical prior, then we would need to specify values
of α and σµ. This is exactly what was done in Example 20.4, except in that
example σ2

ε was known. We probably have a rough idea of the values of α
and σµ, but it is unlikely that we have precise information about them, and
we saw in Example 20.4 that a rather accurate specification of the prior is
needed for the Bayes estimator to improve upon the sample means. In fact,
the Bayes estimator can easily be inferior to the sample means if the prior is
poorly chosen.

The third layer will be a prior on α and σµ and let us use the data to
estimate these parameters. It is important to appreciate why we can estimate
α and σµ in this example, but they could not be estimated in Example 20.4.
The reason is that we now have 20 expected returns (the µi) that are dis-
tributed with the same mean α and standard deviation σµ. In contrast, in
Example 20.4 there is only a single µ and it not possible to estimate the mean
and variance of the population from which this µ was sampled.

Because there is now a substantial amount of information in the data about
α, σ2

ε , and σ2
µ, we could use fairly noninformative priors for them to “let the

data speak for themselves.”
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Fig. 20.6. Estimation of the average returns for 20 midcap stocks. “Target” is the
quantity being estimated, specifically the average return over 400 days of test data.
“Estimate” is an estimate based on the 100 previous days of training data. On the
left, the estimates are the 20 individual sample means. On the right, the estimates are
the sample means shrunk toward their mean. In each panel, the estimate and target
for each stock are connected by a line. On the left, the sample means of the training
data are so variable that the stocks with smaller (larger) means in the training data
often have larger (smaller) means in the test data. The Bayes estimates on the right
are much closer to the targets.

The posterior means of σµ and σε are 0.146% and 4.309%, respectively
(the returns are as percentages). If we look at precisions instead of standard
deviations, then we find that the posterior means of τµ and τε are 78.6 and
0.054. Using the notation of (20.24), in the present example τY is 100τε = 5.4
and τ0 = τµ = 78.6. Therefore, δ in (20.24) is 5.4/(5.4 + 78.6) = 0.064. Recall
that δ close to 0 (far from 1) results in substantial shrinkage, so δ equal to
0.064 causes a great amount of shrinkage of the sample means toward the
mean of means, as can be seen in Figure 20.6.

To compare the estimators, we use the sum of squared errors (SSE) defined
as

SSE =
20∑

i=1

(µ̂i − µi)2,

where µi is the ith “true” mean from the test data and µ̂i is an estimate from
the training data. The values of the SSE are found in Table 20.12. The SSE
for the sample means is about 11 (1.9/0.17) times larger than for the Bayes
estimate. Clearly, shrinkage is very successful in this example.
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Interestingly, complete shrinkage to the pooled mean is even better than
Bayesian shrinkage. Bayesian shrinkage attempts to estimate the optimal
amount of shrinkage, but, of course, it cannot do this perfectly. Although
complete shrinkage is better than Bayesian shrinkage in this example, com-
plete shrinkage is, in general, dangerous since it will have a large SSE in
examples where the true means differ more than in this case. If one has a
strong prior belief that the true means are very similar, one should use this
belief when specifying a prior for σµ. Instead of using a noninformative prior
as in this example, one would use a prior more concentrated near 0.

Estimate SSE

(a) sample means 1.9
(b) pooled mean 0.12
(c) Bayes 0.17

Table 20.1. Sum of squared errors (SSE) for three estimators of the expected
returns of 20 midcap stocks.

¤

20.9 Bayesian Estimation of a Covariance Matrix

In this section, we assume that Y 1, . . . , Y n is an i.i.d. sample from a d-
dimensional N(µ, Σ) distribution or a d-dimensional tν(µ,Λ) distribution.
We will focus on estimation of the covariance matrix Σ or the scale ma-
trix Λ. The precision matrix is defined as Σ−1 or Λ−1 for the Gaussian and
t-distributions, respectively. This definition is analogous to the univariate case
where the precision is defined as the reciprocal of the variance.

We will start with Gaussian distributions.

20.9.1 Estimating a Multivariate Gaussian Covariance Matrix

In the multivariate Gaussian case, the conjugate prior for the precision ma-
trix Σ−1 is the Wishart distribution. The Wishart distribution, denoted by
Wishart(ν,A), has a univariate parameter ν called the degrees of freedom and
a matrix parameter A that can be any nonsingular covariance matrix. There
is a simple definition of the Wishart(ν, A) distribution when ν is an integer.
Let Zi, . . . , Zn be i.i.d. N(µ,A). In this case, the distribution of

n∑

I=1

(Zi − µ)(Zi − µ)T

is Wishart(n,A). Also, the distribution of
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n∑

i=1

(Zi −Z)(Zi −Z)T (20.55)

is Wishart(n − 1,A). Because the sum in (20.55) is n − 1 times the sample
covariance matrix, the Wishart distribution is important for inference about
the covariance matrix of a Gaussian distribution.

The density of a Wishart(ν, A) distribution for any positive value of ν is

f(W ) = C(ν, d) |A|−ν/2 |W |(ν−d−1)/2 exp
{
−1

2
tr(A−1W )

}
(20.56)

with normalizing constant

C(ν, d) =

{
2νd/2 πd(d−1)/4

d∏

i=1

Γ

(
ν + 1− i

2

)}−1

.

The argument W is a nonsingular covariance matrix. The expected value is
E(W ) = νA. In the univariate case (d = 1), the Wishart distribution is a
gamma distribution.

If W is Wishart(ν, A) distributed, then the distribution of W−1 is called
the inverse Wishart distribution with parameters ν and A−1 and denoted
Inv-Wishart(ν,A−1).

Let Y = (Y 1, . . . , Y n) denote the data. To derive the full conditional for
the precision matrix Σ−1, assume that µ is known. We know from (7.15) that
the likelihood is

f(Y |Σ−1) =
n∏

i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(Y i − µ)TΣ−1(Y i − µ)

}]
.

After some simplification,

f(Y |Σ−1) ∝ |Σ−1|n/2 exp

{
−1

2

n∑

i=1

(Y i − µ)TΣ−1(Y i − µ)

}
.

Define

S =
n∑

i=1

(Y i − µ)(Y i − µ)T.

Next

n∑

i=1

(Y i −µ)TΣ−1(Y i −µ) = tr

{
n∑

i=1

(Y i − µ)TΣ−1(Y i − µ)

}
= tr(Σ−1S).

(20.57)
The first equality in (20.57) is the trivial result that a scalar is also a 1× 1
matrix and equal to its trace. The second equality uses the result that
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tr(AB) = tr(BA) for any matrices B and A such that the product BA
is defined and square. If follows that

f(Y |Σ−1) ∝ |Σ−1|n/2 exp
{
−1

2
tr(Σ−1S)

}
. (20.58)

Suppose that the prior on the precision matrix Σ−1 is Wishart(ν0, Σ
−1
0 ).

Then the prior density is

π(Σ−1) ∝ |Σ−1|(ν0−d−1)/2 exp
{
−1

2
tr(Σ−1Σ0)

}
. (20.59)

Since the posterior density is proportional to the product of the prior den-
sity and the likelihood, it follows from (20.58) and (20.59) that the posterior
density is

π(Σ−1|Y ) ∝ |Σ−1|(n+ν0−d−1)/2 exp
[
−1

2
tr

{
Σ−1(S + Σ0)

}]
. (20.60)

Therefore, the posterior distribution of Σ−1 is Wishart
{
n + ν0, (S + Σ0)−1

}
.

The posterior expectation is

E(Σ−1|Y ) = (n + ν0)
{
(S + Σ0)−1

}
. (20.61)

If ν0 and Σ0 are both small, then

E(Σ−1|Y ) ≈ nS−1 (20.62)

The MLE of Σ is n−1S, so the MLE of Σ−1 is nS−1. Therefore, for small
values of ν0 and Σ0, the Bayesian estimator of Σ−1 is close to the MLE.

The full conditional for Σ−1 can be combined with a model for µ to
estimate both parameters. For application to asset returns, a hierarchical prior
for µ such as in Example 20.12 might be used.

20.9.2 Estimating a multivariate-t Scale Matrix

The Wishart distribution is not a conjugate prior for the scale matrix of a
multivariate t-distribution, but it can be used as the prior nonetheless, since
MCMC does not require the use of conjugate priors.

Example 20.13. Estimating the correlation matrix of the CRSPday data

In Example 7.4, the correlation matrix of the CRSPday returns data was
estimated by maximum likelihood. In this example, the MLE will be compared
to a Bayes estimate and the two estimates will be found to be very similar.
The BUGS program used in this example is
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model{
for(i in 1:N)
{
y[i,1:m] ~ dmt(mu[],tau[,],df_likelihood)
}
mu[1:m] ~ dmt(mu0[],Prec_mu[,],df_prior)
tau[1:m,1:m] ~ dwish(Prec_tau[,],df_wishart)
lambda[1:m,1:m] <- inverse(tau[,])
}

In the BUGS program, mu is the mean vector, tau is the precision matrix,
lambda is the scale matrix of the returns. Also, dmt is the multivariate-t
distribution, and dwish is the Wishart distribution.

The data input to the BUGS program contains y, which is the matrix of
returns, and df_likelihood, which is the degrees of the t-distribution in the
likelihood. Ideally, the degrees of freedom should be an unknown parameter,
but WinBUGS does not allow this parameter to be estimated. Instead, we fix
it at the MLE (rounded to 6) computed in Example 7.4. The need to fix
this parameter at the MLE is due to limitations of WinBUGS and could, with
considerable more effort, be circumvented by programming the MCMC in R
or another language rather than using WinBUGS.

The data contain mu0, which is a vector of zeros and used as the prior
mean for mu. The data also contain df_prior and df_wishart, which are the
degrees of freedom in the normal prior on mu and the Wishart prior on tau.
These are fixed at 4 (the number of variables) and 3, respectively.

The initial values of mu were sampled from a normal distribution with
mean mu0 and precision matrix 0.01 times the identity. The initial values of
tau were sampled from a Wishart distribution with 4 degrees of freedom and
parameter matrix 0.01 times the identity.

There were five chains, each of length 1000 after a burn-in of 200. The
convergence to the stationary distribution and mixing were both quite rapid.
Neff was at least 1300 and R̂ at most 1.004 for all parameters, which indicate
adequate burn-in and chain lengths.

The Bayes estimate of the covariance matrix was converted to a correlation
matrix, which is

[,1] [,2] [,3] [,4]
[1,] 1.0000 0.3192 0.2843 0.6760
[2,] 0.3192 1.0000 0.1584 0.4695
[3,] 0.2843 0.1584 1.0000 0.4295
[4,] 0.6760 0.4695 0.4295 1.0000

In Example 7.4, the MLE of the correlation matrix was found to be

[,1] [,2] [,3] [,4]
[1,] 1.0000 0.3192 0.2843 0.6760
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[2,] 0.3192 1.0000 0.1584 0.4695
[3,] 0.2843 0.1584 1.0000 0.4295
[4,] 0.6760 0.4695 0.4295 1.0000

Notice the similarity between the Bayes estimate and the MLE.
¤

20.9.3 Non-conjugate Priors for the Covariate Matrix

We saw in in Example 20.13 that a conjugate prior with noninformative
choices of the prior parameters more or less replicates maximum likelihood
estimation. Often, however, one wishes to shrink the covariance matrix toward
some target, perhaps a estimate from a factor model. Doing this requires the
use of nonconjugate priors, which is difficult or impossible in WinBUGS and,
thus, is an advanced topic beyond the scope of this book. See the reference in
Section 20.11 for further reading.

20.10 Sampling a Stationary Process

This section provides the theory behind the statistics B, W , and v̂ar+(ψ|Y )
used in Section 20.7.5 to monitor MCMC convergence and mixing.

Suppose that Y1, Y2, . . . , Yn is a sample from a stationary process with
mean µ and autocovariance function γ(h). Let Y = n−1

∑n
i=1 Yi be the sample

mean. Then

var(Y ) = n−2
n∑

i=1

n∑

j=1

Cov(Yi, Yj)

= n−2
n∑

i=1

n∑

j=1

γ(i− j)

= n−2

{
nγ(0) + 2

n−1∑

h=1

γ(h)(n− h)

}

=
γ(0)
n

Rn, (20.63)

where Rn =
{

1 + 2
∑n−1

h=1 ρ(h)
(
1− h

n

)}
. If Y1, Y2, . . . , Yn is an uncorrelated

process (white noise), then Rn = 1 and (20.63) agrees with (7.13).
Most stationary processes generated by MCMC have ρ(h) ≥ 0 for all h

so that Rn is inflated by the autocorrelation. The inflation can be severe.
Consider the case of a stationary AR(1) process, Yn = φYn1 + εi. AR(1)
processes often are reasonably good approximations to MCMC processes. For
an AR(1) process we can approximate Rn:
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Rn ≈
{

1 + 2
∞∑

h=1

ρ(h)

}
=

{
2
∞∑

h=0

φh − 1

}
=

(
2

1− φ
− 1

)
=

1 + φ

1− φ
, (20.64)

where we have used summation formula for geometric series (3.4) with T = ∞.
Notice that the right-hand side of (20.64) increases without bound as φ → 1.

From the identity

n∑

i=1

(Yi − µ)2 =
n∑

i=1

(Yi − Y )2 + n(Y − µ)2,

we obtain

E

{
n∑

i=1

(Yi − Y )2
}

= γ(0)(n−Rn) (20.65)

since γ(0) = E
{
(Yi − µ)2

}
and γ(0)Rn = E

{
n(Y − µ)2

}
by definitions.

Therefore, an unbiased estimate of the process variance γ(0) is

γ̂(0) =
∑n

i=1(Yi − Y )2

n−Rn
. (20.66)

When the process is uncorrelated so that Rn = 1, the right-hand side of (20.66)
is the sample variance (A.7). For positively autocorrelated processes, Rn > 1
and the sample variance (which uses 1 in place of Rn) is biased downward.

To obtain an unbiased estimate of γ(0), one can use

∑n
i=1(Yi − Y )2 + γ̂(0)Rn

n
, (20.67)

where γ̂(0)Rn is an unbiased estimator of γ(0)Rn. There are several methods
for estimating γ(0)Rn. The simplest uses several independent realizations of
the process. Let Y 1, . . . , Y M be the means of M independent realizations of
the process and let Y = M−1

∑m
j=1 Y j . Then

γ̂(0)Rn =

∑M
j=1(Y j − Y )2

M − 1
(20.68)

is an unbiased estimator of γ(0)Rn. The statistic v̂ar+(ψ|Y ) used in Section
20.7.5 for MCMC monitoring is a special case of (20.66) and (20.68).

20.11 Bibliographic Notes

There are many excellent books on Bayesian statistics. Gelman, Carlin, Stern,
and Rubin (2004) and Carlin and Louis (2008) are introductions to Bayesian
statistics written at about the same mathematical level as this book. Box and
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Tiao (1973) is a classic work on Bayesian statistics with a wealth of examples
and still worth reading despite its age. Berger (1985) is a standard reference on
Bayesian analysis and decision theory. Bernardo and Smith (1994) and Robert
(2007) are more recent books on Bayesian theory. Rachev, Hsu, Bagasheva,
and Fabozzi (2008) covers many applications of Bayesian statistics to finance.

Albert (2007) is an excellent introduction to Bayesian computations in R.
Chib and Greenberg (1995) explain how the Metropolis–Hastings algorithm
works and why its stationary distribution is the posterior. Congdon (2001,
2003) covers the more recent developments in Bayesian computing with an
emphasis on WinBUGS software. There are other Bayesian Monte Carlo sam-
plers besides MCMC, for example, importance sampling. Robert and Casella
(2005) discuss these as well as MCMC. Gelman, Carlin, Stern, and Rubin
(2004) have examples of Bayesian computations in R and WinBUGS in an ap-
pendix. Lunn, Thomas, Best, and Spiegelhalter (2000) describe the design of
WinBUGS.

The diagnostics R̂ and Neff are due to Gelman and Rubin (1992) though
Section 20.7.5 uses the somewhat different notation of Gelman, Carlin, Stern,
and Rubin (2004). Spiegelhalter, Best, Carlin, and van der Linde (2002) pro-
posed DIC and pD.

Bayesian modeling of yield curves models is discussed by Chib and Er-
gashev. Bayesian time series are discussed by Albert and Chib (1993), Chib
and Greenberg (1994), and Kim, Shephard, and Chib (1998); the first two pa-
pers cover ARMA process and the last covers ARCH and stochastic volatility
models. There is a vast literature on the important and difficult problem of
Bayesian estimation of covariance matrices with nonconjugate priors. Daniels
and Kass (1999) review some of the literature in addition to providing their
own suggestions.

We have not discussed empirical Bayes inference, but Carlin and Louis
(2000) can be consulted for an introduction to that literature. Empirical Bayes
inference uses a hierarchical prior but estimates the parameters in the lower
level in a non-Bayesian manner and then, treating those parameter as known
and fixed, performs a Bayesian analysis. The result is shrinkage estimation
much like that achieved by a Bayesian analysis. The advantage of an empir-
ical Bayes analysis is that it can be somewhat simpler than a fully Bayesian
analysis. The disadvantage is that it underestimates uncertainty because es-
timated parameters in the prior are treated as if they were known. There are
shrinkage estimators that are not exactly Bayesian or even empirical Bayes
procedures. Ledoit and Wolf (2003) propose a shrinkage estimator for the co-
variance matrix of stock returns. Their shrinkage target is an estimate from
a factor model, for example, the CAPM. Shrinkage estimation goes back at
least to Stein (1956) and is often called Stein estimation.

The central limit theorem for the posterior is discussed by Gelman, Car-
lin, Stern, and Rubin (2004), Lehmann (1983), and van der Vaart (1998), in
increasing order of technical level.
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20.13 R Lab

20.13.1 Fitting a t-Distribution by MCMC

In this section of the lab, you will fit the t-distribution to monthly returns
on IBM using WinBUGS to estimate the posterior distribution by MCMC
sampling. Although WinBUGS can be used as a standalone program, in this
lab WinBUGS will be called from R using the R2WinBUGS package. To run
WinBUGS this way, you must not only have WinBUGS installed on your
computer, but the R package R2WinBUGS must be installed as well. WinBUGS
can be downloaded from

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

You can also find WinBUGS documentation at this site. The WinBUGS man-
ual is found at

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf

To run WinBUGS you need to get the “key” from the website and install it
on your computer. Directions for doing this are on the website.

Run the following R code to load R2WinBUGS, input the data, and prepare
the data for use by WinBUGS. The variable ibm has class ts which would
cause problems with its use in WinBUGS. Therefore, the variable y is created;
it has the same numerical values as ibm but is stripped of month and year
information. Print both variables to see how they differ.
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library(R2WinBUGS)
data(CRSPmon,package="Ecdat")
ibm = CRSPmon[,2]
y = as.numeric(ibm)
N = length(y)
ibm_data=list("y","N")

Next, put the following WinBUGS code in a text file. I will assume that you
name this file Tbrate_t.bug, though you can use another name provided
you make appropriate changes in the R code that follows. WinBUGS code is
somewhat similar to, but not the same as, R code. For example, in R “dt” is
the t-density, but in WinBUGS it is the t-distribution.

model{
for(i in 1:N){
y[i] ~ dt(mu,tau,nu)
}
mu ~ dnorm(0.0,1.0E-6)
tau ~ dgamma(0.1,0.01)
sigma <- 1/sqrt(tau)
nu ~ dunif(2,50)
}

WinBUGS programs are difficult to debug, so be careful to enter the code
exactly as it appears here. It has been tested and runs as written, but any
error will cause problems.

When you write your own WinBUGS programs, it is best to debug the
program in WinBUGS itself, not while calling the program with R2WinBUGS.
To debug a program in WinBUGS, open WinBUGS, go to the “file” menu, and
open a new file. Copy your program into the window, go to the “Model” menu,
open the “specification tool” and click on “check model.” It is good news if
you see “the model is syntactically correct” at the bottom of the WinBUGS
window. Otherwise, we will see an error message and a dotted vertical line
where the error occurred. (The dotted vertical line may be very faint and
difficult to see.) You can edit the program in WinBUGS, and, after it has been
debugged, you can copy the error-free program into the file. Unfortunately,
there is no guarantee that a syntactically correct program will run under R
or produce what you want because, for example, there could be errors when
you call WinBUGS from R or the WinBUGS program might be syntactically
correct but not specify the model you intended.

The WinBUGS code above provides a description of the statistical model
and specifies the prior distributions. The model states that the data are i.i.d.
from a t-distribution. The ~ symbol assigns a distribution to a random vari-
able so y[i] ~ dt(mu,tau,k) gives the likelihood of the data. Here mu, tau,
and k are the mean, precision, and degrees of freedom, respectively, of the
t-distribution. For a t-distribution, the precision is τ = 1/λ2 where λ is the



572 20 Bayesian Data Analysis and MCMC

scale parameter. Also, mu ~ dnorm(0.0,1.0E-6) specifies the prior for the
mean mu to be normal with mean 0 and precision 1.0E-6. The precision of a
normal distribution is the reciprocal of its variance, so here the prior variance
of µ is 1.0E6.

The symbol <- is used to assign a value (rather than a distribution) to a
variable. Thus, sigma <- 1/sqrt(tau) makes sigma the scale parameter of
the t-distribution of the data. In R, “=” can often be used in place of “<-”
for assigning a value to a variable, but this is not true in WinBUGS. The
parameter sigma is not needed, but, by defining this variable in the WinBUGS
program, we generate a sample from its posterior distribution.

Next, run the following R code that defines a function inits. This function
is used to generate random starting values for the chains.

inits=function(){ list(mu=rnorm(1,0,.3),tau=runif(1,1,10),
nu=runif(1,1,30)) }

The next code includes the call to WinBUGS and uses the bugs function
in the R2WinBUGS package. Notice that the arguments specify the data, the
function to create initial values of the chains, the file containing the WinBUGS
program, the parameters to be monitored and returned, the number of chains,
the number of iterations per chain, the number of iterations to discard as
burn-in, the amount of thinning (here, none), and the location of WinBUGS
on your hard drive. The seed that WinBUGS uses can be set, and doing this
will give you the same results each time you run the code. (“set.seed” in R
does not affect the seed in WinBUGS.)

univt.mcmc = bugs(ibm_data,inits,
model.file="Tbrate_t.bug",
parameters=c("mu","tau","nu","sigma"),
n.chains = 3,n.iter=2600,n.burnin=100,
n.thin=1,
bugs.directory="c:/Program Files/WinBUGS14/",
codaPkg=F,bugs.seed=5640)

Next, print and plot the results.

print(univt.mcmc,digits=4)
plot(univt.mcmc)

Problem 1

(a) Which parameter mixes best according to Rhat and n.eff in the output?
(b) Which parameter mixes worst according to Rhat and n.eff in the output?
(c) Give a 95% posterior interval for the degrees-of-freedom parameter.

The chains are returned in sims.array, which is three-dimensional. The
first coordinate specifies the iteration within a chain, the second specifies
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the chain, and the third coordinate specifies the parameters. The parameters
are ordered as in parameters=c("mu","tau", "k","sigma")}. Thus, for ex-
ample, univt.mcmc$sims.array[,2,4] contains the entire second chain of
simulations of sigma.

The following R code combines the results from the three chains.

mu = matrix(univt.mcmc$sims.array[,,1],ncol=1)
tau = matrix(univt.mcmc$sims.array[,,2],ncol=1)
nu = matrix(univt.mcmc$sims.array[,,3],ncol=1)
sigma = matrix(univt.mcmc$sims.array[,,4],ncol=1)

Next, plot the results to check for stationarity. Note that a new chain starts
at iteration 2500 and iteration 5000, so you might see some funny behavior at
these two points. This is not a problem to worry about.

par(mfrow=c(2,2))
ts.plot(mu,xlab="iteration",ylab="",main="mu")
ts.plot(sigma,xlab="iteration",ylab="",main="sigma")
ts.plot(nu,xlab="iteration",ylab="",main="df")

Plotting the ACFs gives much insight into how well the chains are mixing.
The less autocorrelation, the better.

par(mfrow=c(2,2))
acf(mu,main="mu")
acf(sigma,main="sigma")
acf(nu,main="df")

Problem 2

(a) Which parameter mixes best and which mixes worse according to the time
series plots? Explain your answers.

(b) Which parameter mixes best and which mixes worse according to the ACF
plots? Explain your answers.

(c) Find the posterior skewness and kurtosis of the degrees of freedom param-
eter.

Plotting histograms gives us estimates of the marginal posterior densities of
the parameters.

par(mfrow=c(2,2))
hist(mu,main="mu")
hist(sigma,main="sigma")
hist(nu,main="df")

Another way to estimate the marginal posterior densities is to use kernel
density estimates implemented with the function density.
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par(mfrow=c(2,2))
plot(density(mu),main="mu")
plot(density(sigma),main="sigma")
plot(density(nu),main="df")

Problem 3 Which posterior densities are most skewed? Include the plot of
the kernel density estimates with your work.

The kurtosis of a t-distribution is 3(ν−2)/(ν−4) if ν > 4 and is +∞ if ν ≤ 4.
Variables in R can have infinite values: Inf is +∞ and -Inf is −∞, so R can
handle infinite values of kurtosis.

Problem 4 Write R code to compute 7500 MCMC values of the kurtosis.
Include your code with your work.

(a) Find the 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99 quantiles of the pos-
terior distribution of the kurtosis of IBM returns. (Some of these may be
infinite.)

(b) Estimate the posterior probability that the kurtosis of the distribution of
IBM returns is finite.

(c) Compute the 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99 quantiles of the
bootstrap distribution of the sample kurtosis of IBM. Take 1000 resamples
using both a model-free and a model-based bootstrap. Compare the two sets
of bootstrap quantiles with the posterior quantiles in (a).

(d) Compare 90% bootstrap basic percentile confidence intervals for the kurto-
sis with the 90% posterior interval. Which interval is shortest? Why might
it be shortest?

20.13.2 AR Models

In this component of the lab, you will fit an AR(1) model to the changes in the
log of GDP. First, run the following code to process the data. Notice that the
log-GDP time series is differenced and then mean-centered in R before fitting.
The data are also converted from class ts to class numeric for compatibility
with WinBUGS.

library(R2WinBUGS)

data(Tbrate,package="Ecdat")

# r = the 91-day treasury bill rate

# y = the log of real GDP

# pi = the inflation rate

del_dat = diff(Tbrate)

y = as.numeric(del_dat[,2])

y=y-mean(y)

N = length(y)

GDP_data=list("y","N")
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Next create a file called ar1.bug containing the following WinBUGS code.

model{

for(i in 2:N){

y[i] ~ dnorm(mu[i],tau)

mu[i] <- y[i-1]*phi

}

phi ~ dnorm(0,.00001)

tau ~ dgamma(0.1,0.0001)

sigma <- 1/sqrt(tau)

}

Finally, run the following code to fit an AR(1) model using WinBUGS and
also using R’s arima function to compute the MLE, which will be compared
with the Bayes estimator.

###### AR 1, GDP data #######

inits=function(){ list(phi=rnorm(1,0,.3),tau=runif(1,1,10)) }

ar1.mcmc = bugs(GDP_data,inits,model.file="ar1.bug",

parameters=c("phi","sigma"),n.chains = 3,n.iter=2600,

n.burnin=100,n.thin=1,

bugs.directory="c:/Program Files/WinBUGS14/",codaPkg=F,

bugs.seed=5460)

print(ar1.mcmc,digits=3)

plot(ar1.mcmc)

arima(y,order=c(1,0,0))

Problem 5 Construct time series and ACF plots of the parameters phi and
sigma. Include your plots and the R output with your work.

(a) Do you believe that the MCMC sample size of 3 chains, each with 2500
iterations after a burn-in of 100 iterations, is adequate? Why or why not?
Is the burn-in of 100 iterations adequate? Why or why not? If you feel
that either the number of iterations or the length of the burn-in period is
inadequate, then rerun with a larger burn-in period and/or MCMC sample
size.

(b) How closely do the Bayes and ML estimates agree? Could you explain any
possible disagreement?

(c) The model in the WinBUGS program does not assume that the time series
is in its stationary distribution. In fact, the model does not even assume
that there is a stationary distribution. Explain why.

(d) Modify the WinBUGS program to utilize the marginal distribution of y1,
assuming that the process starts in its stationary distribution.

20.13.3 MA Models

Next you will fit an MA(1) to simulated data. The function arima.sim is used
to create the data.
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###### MA 1, simulated data #######

set.seed(5640)

N=600

y = arima.sim(n = N, list(ma = -.5), sd = .4)

y = as.numeric(y)

q=5

ma.sim_data=list("y","N","q")

Put the following WinBUGS program in the file ma1.bug. This program not
only fits the MA(1) model but also predicts q steps ahead; q is an input
parameter chosen by the user and, from the viewpoint of WinBUGS, q is part
of the data and is set equal to 5 in the code above.

The WinBUGS program does not actually fit the MA(1) model but instead
it fits a slight variant:

yi = wi + θwi−1 + εi,

where εi is measurement error with a very small variance (very large precision).
The reason for adding the measurement error is that doing this makes the
model easier to program in WinBUGS.

By making the measurement error variance very small, the model is, for all
intents and purposes, the same as the model without measurement error. The
need for the measurement error trick is due to idiosyncracies of WinBUGS and
is not inherent to Bayesian modeling or MCMC. One could avoid introducing
measurement error in the model by programming the MCMC in R (or another
language) instead of using WinBUGS, but this would require more work. The
predicted values will be included in the output and called ypred. Here is
ma1.bug:

model{

for (i in 1:(N+q)){ w[i] ~ dnorm(0,tau) }

mu[1] <- w[1] + M

for(i in 2:N){

mu[i] <- w[i] + theta*w[i-1]

}

for (i in 1:N){

y[i] ~ dnorm(mu[i],10000)

}

theta ~ dnorm(0,0.00001)

tau ~ dgamma(0.01,0.01)

sigma <- 1/sqrt(tau)

M ~ dnorm(0,0.001)

for (i in 1:q){ypred[i] <- w[N+i] + theta*w[N+i-1]

}

}

Now run this R code.

inits.ma=function(){ list(theta=rnorm(1,-.5,.1),tau=runif(1,5,8)) }

ma1.mcmc = bugs(ma.sim_data,inits.ma,model.file="ma1.bug",
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parameters=c("theta","sigma","ypred"),n.chains = 3,

n.iter=3000,n.burnin=500,n.thin=1,

bugs.directory="c:/Program Files/WinBUGS14/",codaPkg=F,bugs.seed=5460

)

print(ma1.mcmc,digits=3)

plot(ma1.mcmc)

Problem 6

(a) Do you believe that the MCMC sample size of 3 chains, each with 2500
iterations after a burn-in of 500 iterations, is adequate? Why or why not?
If you feel it is inadequate, than rerun WinBUGS with a larger MCMC
sample size. If you use a larger MCMC sample size, then you may wish to
use a value of n.thin greater than 1. Is the length of the burn-in periods
adequate?

(b) Explain the purpose of the lines mu[1] <- w[1] + M and M ~ dnorm(0,
0.001) in the WinBUGS program.

(c) Construct time series and ACF plots of the parameters theta, sigma,
ypred[1], and ypred[2]. What do the plots tell us about MCMC mixing
and convergence? Include your plots and the R output with your work.

(d) Find a 90% posterior interval for the next observation after the observed
data.

20.13.4 ARMA Models

Create a simulated sample from an ARMA(1,1) process with the following R
code.

set.seed(5640)

N=600

y = arima.sim(n = N, list(ar = .9, ma = -.5), sd = .4)

y = as.numeric(y)

Problem 7 Create WinBUGS and R code to fit the ARMA(1,1) model to the
simulated data. Monitor the result to make certain that the MCMC sample
size is large enough. Include your WinBUGS and R code with your work, as
well as any printout or plots that are relevant.

(a) Discuss how well the chains mix and whether the Monte Carlo sample size
is adequate.

(b) Find 99% posterior intervals for the AR and MA parameters.

20.14 Exercises

1. Show in Example 20.2 that the MAP estimator is 6/7.



578 20 Bayesian Data Analysis and MCMC

2. Verify (20.26).
3. In the derivation of (20.53), it was stated that “{Y − E(µ|Y )} and
{E(µ|Y )− µ} are conditionally uncorrelated given Y .” Verify this state-
ment.
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Nonparametric Regression and Splines

21.1 Introduction

As discussed in Chapter 12, regression analysis estimates the conditional ex-
pectation of a response given predictor variables. The conditional expectation
is called the regression function and is the best predictor of the response based
upon the predictor variables, because it minimizes the expected squared pre-
diction error.

There are three types of regression, linear, nonlinear parametric, and non-
parametric. Linear regression assumes that the regression function is a linear
function of the parameters and estimates the intercept and slopes (regression
coefficients). Nonlinear parametric regression, which was discussed in Sec-
tion 14.3, does not assume linearity but does assume that the regression func-
tion is of a known parametric form, for example, an exponential function.
In this chapter, we study nonparametric regression, where the form of the re-
gression function is also nonlinear but, unlike nonlinear parametric regression,
not specified by a model but rather determined from the data. Nonparametric
regression is used when we know, or suspect, that the regression function is
curved, but we do not have a model for the curve.

There are many techniques for nonparametric regression, but local poly-
nomial regression and splines are the most widely used, and only these will be
discussed here. Local polynomial regression and splines generally work well
and, since they usually give similar estimates, it is difficult to recommend
one over the over. Local polynomial estimation might be somewhat simpler
to understand. Splines are used in many areas of mathematics, such as, for
interpolation, and so it is worthwhile to be familiar with them. Also, splines
are useful as components in complex models. The R lab at the end of this
chapter gives an example.

Models for the evolution of short-term interest rates are important in fi-
nance, for example, because they are needed for the pricing of interest rate
derivatives. Figure 21.1 contains plots of the monthly risk-free returns in the
Capm data set in R’s Ecdat package. This data set has been used for various
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Fig. 21.1. Risk-free monthly returns. The returns are 1/12th the yearly rate. (a)
Time series plot of the returns. (b) Time series plot of the changes in the returns. (c)
Plot of changes in returns against lagged returns and a local linear estimate of the
drift. (d) Plot of squared residuals against lagged returns and a local linear estimate
of the squared diffusion coefficient.

purposes in several previous chapters. Here we will use it to illustrate non-
parametric regression. Panels (a) and (b) are time series plots of the returns
and the changes in the returns.

A common model for changes in short-term interest rates is

∆rt = µ(rt−1) + σ(rt−1)εt, (21.1)

where ∆rt = rt−rt−1, µ(·) is the drift function, σ(·) is the volatility function,
also called the diffusion function, and εt is N(0, 1) noise. Many different para-
metric models have been proposed for µ(·) and σ(·), for example, by Merton
(1973), Vasicek (1977), Cox, Ingersoll, and Ross (1985), Yau and Kohn (2003),
and Chan et al. (1992). The simplest model, due to Merton (1973), is that
µ(·) and σ(·) are constant. Chan et al. (1992) assume that µ(r) = β(r − α)
and σ(r) = θrγ , where α > 0, β < 0, θ > 0, and γ are unknown parameters—
this process reverts to a mean equal to α. Chan et al.’s model was used as
an example of nonlinear regression in Section 14.14.2. The approach of Yau
and Kohn (2001) that is used here is to model both µ(·) and σ(·) nonpara-
metrically. Doing this allows one to check which parametric models, if any, fit
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the data and to have a nonparametric alternative if none of the parametric
models fits well.

The solid curves in Figure 21.1(c) and (d) are estimates of µ(·) and σ2(·)
by a nonparametric regression method local linear regression, a special case
of local polynomial regression. By (21.1), E(∆rt) = µ(rt−1) and Var(∆rt) =
σ2(rt−1), so µ̂(·) is obtained by regressing ∆rt on rt−1 and σ̂2(·) by regressing
{∆rt − µ̂(rt−1)}2 on rt−1. The latter is an example of estimating a conditional
variance; see Section 18.2.

21.2 Local Polynomial Regression

Local polynomial regression is based on the principle that a smooth function
can be approximated locally by a low-degree polynomial. Suppose we have a
sample (Xi, Yi), i = 1, . . . , n, and E(Y |X = x) = µ(x) for a smooth function
µ. The function µ will be estimated on a grid of x-values, x1, . . . , xM . These
could, but need not, be the same values X1, . . . , Xn as, where we observe Y .

The estimation is done at one point at a time on the grid x1, . . . , xM . To
estimate µ at x`, one fits a pth-degree polynomial using only (Xi, Yi) with Xi

near x`. This is done using weights determined by a kernel function K. K is a
probability density function symmetric about 0 and such that K(x) decreases
as |x| increases, for instance, a normal density with mean 0. We have seen
kernels used for density estimation in Section 4.2.

The regression function at x` is estimated by kernel-weighted least squares,
which minimizes

n∑

i=1

[
Yi −

{
β0 + β1(Xi − x`) + · · ·+ βp(Xi − x`)p

}]2

K{(Xi − x`)/h} (21.2)

and then µ̂(x) = β̂0 since the regression model β0+β1(x−x`)+· · ·+βp(x−x`)p

equals β0 at x = x`. The weights K{(Xi − x`)/h} decrease as |Xi − x`|
increases, so only the data near x` are used. The parameter h is called the
bandwidth and determines how much data are used for estimation; the larger
the value of h, the more data used.

Local linear estimation, where p = 1, is illustrated in Figure 21.2. The
kernel functions are shown as dashed curves at two points, x25 = 0.32 and
x75 = 0.72. Above each kernel, the local linear fit is shown and the large “+”
is placed at {x, µ̂(x)}. The curve µ̂ is obtained by finding local fits on a grid of
75 x`-values and plotting {x`, µ̂(x`)} for all x` on this grid. For example, the
curve in Figure 21.2 used the R function locpoly in R’s KernSmooth package
and has a grid of 401 equally spaced x-values (the default). Often the grid is
simply the observed X-values, X1, . . . , Xn.

The bandwidth h is called a “smoothing parameter” because it determines
the smoothness of µ̂. A larger value of h gives a smoother curve. The choice
of h is important. If h is too large, then the polynomial approximation may
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Fig. 21.2. Local linear fit (solid curve) to 75 data points (asterisks) with bandwidth
chosen by the direct plug-in method. The regression function µ is estimated at each
of the 75 points and the estimates are connected to create the solid curve. Estimation
at x25 = 0.32 and x55 = 0.72 is illustrated by the kernels (dashed curves), the linear
fits (solid lines), and the fitted points (large + ).

be poor and the estimate of µ(x) will be badly biased. Conversely, if h is too
small, then too few data are used and the estimate of µ will be too variable.
A good choice of the bandwidth minimizes the mean squared error of the
estimator, which is the variance plus the squared bias. Both the squared bias
and variance of the estimator are unknown and must be estimated, or at
least their sum must be estimated. Automatic bandwidth selection, which
either directly or indirectly estimates and minimizes the mean-squared error,
has been an area of intense research and a number of data-based bandwidth
selectors are available. The curve in Figure 21.2 used the bandwidth chosen
by the popular direct plug-in (dpi) bandwidth selector of Ruppert, Sheather
and Wand (1995). The dpi selector estimates the mean integrated squared
error (MISE) of µ̂, which is

E

[∫ max(Xi)

min(Xi)

{µ(x)− µ̂(x)}2 dx

]
, (21.3)

and finds the bandwidth that minimizes the estimated MISE.
Nonparametric regression estimators are also called smoothers because

they smooth out the noise in the data. Using a bandwidth that is too small
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causes overfitting, which is undersmoothing. Conversely, a bandwidth that is
too large will result in underfitting, which is oversmoothing—see Section 4.2
for further discussion of under- and oversmoothing in the context of kernel
density estimation.
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Fig. 21.3. Local linear estimators with three bandwidths: dpi (direct plug-in), which
gives an appropriate amount of smoothing; three times the dpi, which oversmooths
(underfits); and one-third the dpi, which undersmooths (overfits). Simulated data.

Figure 21.3 illustrates the effect of varying the bandwidth. The thick,
solid curve uses the dpi bandwidth, the dashed curve uses three times the dpi
bandwidth, and the thin, solid curve uses one-third the dpi bandwidth. The
dashed curve is too smooth to follow the data closely, that is, it underfits,
while the thin, solid curve is wiggly because it is tracking random noise in
the data, that is, it overfits. In this example, the data were simulated, so the
true regression function, µ(x) = 3.6 + 0.1x + sin(5 x1.5), is known and it is
possible to calculate the average squared error,

∑n
i=1{µ̂(Xi) − µ(Xi)}2, for

each bandwidth. The average squared errors are 1.34 and 2.27 times larger
using 3*dpi and dpi/3, respectively, compared to using dpi.
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Besides the dpi bandwidth selector, the bandwidth can also be chosen by
minimizing either the AIC or GCV (generalized cross-validation) criterion.
The definition of AIC for a parametric model uses the number of parameters
in the model, but local polynomial estimation is not parametric, so one cannot
count parameters. Nonetheless, it is possible to define the “effective number
of parameters” and this is done in Section 21.3.1. GCV is defined in Section
21.3.2.

21.2.1 Lowess and Loess

Loess and its earlier version lowess are local polynomial smoothers with
spatially varying bandwidths controlled by a parameter called span. Span
is the fraction of the data used for estimation at each point. The band-
width, call it h(x, span), for estimation at a point x is adjusted, so that
K{(Xi − x)/h(x, span)} is nonzero for span × 100% of the Xi.

If span = 1, then all of the data are used for estimation at each point, but
the data farthest from Xi get small weights. Because of these small weights,
for small data sets, a lowess (or loess) smooth with a span of 1 might not be
smooth enough. To solve this problem, span is defined for values greater than
1 by

h(x, span) = span× h(x, 1).

As span increases beyond 1, the weights K{(Xi−x)/h(x, span)} become more
and more equal. As span →∞, the weights converge to a constant, K(0), and
the lowess (or loess) fit converges to a polynomial regression fit.

21.3 Linear Smoothers

Local polynomial regression as well as penalized spline regression—to be cov-
ered soon—are examples of linear smoothers. A linear smoother has an n× n
smoother matrix H, which does not depend on Y , such that

Ŷ = HY , (21.4)

where Y = (Y1, . . . , Yn)T is the vector of responses and Ŷ = (Ŷ1, . . . , Ŷn)T is
the vector of fitted values. Equation (21.4) can be written as

Ŷi =
n∑

j=1

HijYj , i = 1, . . . , n. (21.5)

The hat matrix will depend on a smoothing parameter, which for local
polynomial regression is the bandwidth. We will let λ denote the smoothing
parameter and denote the smoother matrix by H(λ). The smoother matrix
is an analog of the hat matrix of linear regression and is, itself, often called a
hat matrix.
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21.3.1 The Smoother Matrix and the Effective Degrees of Freedom

In a parametric model, the number of parameters quantifies the ability of
the model to fit the data. In nonparametric estimation, the potential to fit
(and overfit) can be quantified by the effective number of parameters or the
effective degrees of freedom of the fit. Conceptually, the effective number of
parameters is similar to the Bayesian pD in Section 20.7.6.

By (21.5), the hat diagonal H(λ)ii gives the leverage or self-influence of the
Yi since it is the weight given to Yi when calculating Ŷi. A large value of H(λ)ii

means a high potential for overfitting. The effective number of parameters is
the sum of the leverages:

peff =
n∑

i=1

H(λ)ii = tr{H(λ)}. (21.6)

If peff is too small (too large), then the data are underfit (overfit).
The residual mean sum of squares is

n∑

i=1

(Yi − Ŷi)2 = ‖Y − Ŷ ‖2 = ‖{I −H(λ)}Y ‖2, (21.7)

where I is the n× n identity matrix. The noise variance is estimated by

σ̂(λ)2 =
‖{I −H(λ)}Y ‖2

n− peff
, (21.8)

which is a direct analog of (12.15).

21.3.2 AIC and GCV

For linear regression models, AIC is

AIC = n log(σ̂2) + 2(1 + p),

where 1+p is the number of parameters (intercept plus p slopes). For a linear
smoother, AIC uses peff in place of p + 1, so that

AIC(λ) = n log{σ̂2(λ)}+ 2 peff .

We can then select λ by minimizing AIC.
The generalized cross-validation statistic (GCV) is

GCV(λ) =
‖Y − Ŷ (λ)‖2

(n− peff)2
. (21.9)

Minimizing GCV is another way to choose λ.
AIC and GCV can both be computed very quickly and usually give essen-

tially the same amount of smoothing. In fact, it has been shown theoretically
that both criteria should give similar estimates. Therefore, it does not matter
much which is used, but GCV is more commonly used than AIC in nonpara-
metric regression.
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21.4 Polynomial Splines

The use of polynomial splines in nonparametric regression, as well as many
other areas of mathematics, is based on the same principle as local polynomial
regression—a smooth function can be accurately approximated locally by a
low-degree polynomial. A pth-degree polynomial spline is constructed by piec-
ing together pth-degree polynomials, so that they join together at specified
locations called knots. The polynomials are spliced together, so that the spline
has p− 1 continuous derivatives. The pth derivative of the spline is constant
between knots and can jump at the knots.

21.4.1 Linear Splines with One Knot
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Fig. 21.4. (a) Example of a linear spline with a knot at 2. (b) The linear plus
function (x− 1)+ with a knot at 1 and its first derivative.

We start simple, a linear spline with one knot. Figure 21.4(a) illustrates
such a spline. This spline is defined as

f(x) =
{

0.5 + 0.2x, x < 2,
−0.5 + 0.7x, x ≥ 2.

Because 0.5 + 0.2x = 0.9 = −0.5 + 0.7x when x = 2, the two linear compo-
nents are equal at the point x = 2, so that they join together there.

The point x = 2 where the spline switches from one linear function to
the other is called a knot. A linear spline with a knot at the point t can be
constructed as follows. The spline is defined to be s(x) = a + bx for x < t
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and s(x) = c + dx for x > t. The parameters a, b, c, and d can be chosen
arbitrarily except that they must satisfy the equality constraint

a + bt = c + dt, (21.10)

which assures us that the two lines join together at x = t. Solving for c in
(21.10), we get c = a + (b − d)t. Substituting this expression for c into the
definition of s(x) and doing some rearranging, we have

s(x) =
{

a + bx, x < t,
a + bx + (d− b)(x− t), x ≥ t.

(21.11)

Recall the definition that for any number y,

(y)+ =
{

0, y < 0,
y, y ≥ 0.

By this definition,

(x− t)+ =
{

0, x < t,
x− t, x ≥ t.

We call (x − t)+ a linear plus function with a knot at t. It is also called a
truncated line, though we will stick with “plus function.” The spline s(x) in
(21.11) can be written using this plus function:

s(x) = a + bx + (d− b)(x− t)+.

The plus function simplifies the problem of keeping the spline continuous at t.
Figure 21.4(b) illustrates a linear plus function with a knot at 1 and its first
derivative. Notice that

d

dx
(x− t)+ =

{
0, x < t,
1, x ≥ t.

21.4.2 Linear Splines with Many Knots

Plus functions are very convenient when defining linear splines with more
than one knot because plus functions automatically join the component linear
functions together, so that the spline is continuous. For example, suppose we
want a linear spline to have K knots, t1 < · · · < tK , for the spline to equal
s(x) = β0 +β1x for x < t1, and for the first derivative of the spline to jump by
the amount bk at knot tk, for k = 1, . . . ,K. Then the spline can be constructed
from linear plus functions, one for each knot:

s(x) = β0 + β1x + b1(x− t1)+ + b2(x− t2)+ + · · ·+ bK(x− tK)+.

Because the plus functions are continuous, the spline is the sum of continuous
functions and is therefore continuous itself.
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Fig. 21.5. (a) Quadratic spline with a knot at 1. The dotted vertical line marks the
knot’s location. (b) The quadratic plus function (x − 1)2+ with a knot at 1 and its
first and second derivatives.

21.4.3 Quadratic Splines

A linear spline is continuous but has “kinks” at its knots, where its first
derivative jumps. If we want a function without these kinks, we cannot use
a linear spline. A quadratic spline is a function obtained by piecing together
quadratic polynomials. More precisely, s(x) is a quadratic spline with knots
t1 < · · · < tK if s(x) equals one quadratic polynomial to the left of t1
and equals a second quadratic polynomial between t1 and t2, and so on.
The quadratic polynomials are pieced together, so that the spline is con-
tinuous and, to guarantee no kinks, its first derivative is also continuous.
Figure 21.5 (a) shows a quadratic spline with a knot at 1. Notice that the
function does not have a kink at the knot but changes from convex to concave
there.

As with linear splines, continuity can be enforced by using plus functions.
Define the quadratic plus function

(x− t)2+ =
{

0, x < t,
(x− t)2, x ≥ t.

Notice that (x− t)2+ equals {(x− t)+}2, not {(x− t)2}+ = (x− t)2.
Figure 21.5(b) shows a quadratic plus function and its first and second

derivatives. One can see that

d

dx
(x− t)2+ = 2(x− t)+

and



21.5 Penalized Splines 589

d2

dx2
(x− t)2+ = 2(x− t)0+,

where (x− t)0+ = {(x− t)+}0, so that (x− t)0+ is the 0th-degree plus function

(x− t)0+ =
{

0, x < t,
1, x ≥ t.

Therefore, the second derivative of (x− t)2+ jumps from 0 to 2 at the knot t.
A quadratic spline with knots t1 < · · · < tK can be written as

s(x) = β0 + β1x + β2x
2 + b1(x− t1)2+ + b2(x− t2)2+ + · · ·+ bK(x− tK)2+.

The second derivative of s jumps by the amount 2bk at knot tk for k =
1, . . . , K.

21.4.4 pth Degree Splines

The way to define a general pth-degree spline with knots t1 < · · · < tK should
now be obvious:

s(x) = β0 + β1x + · · ·+ βpx
p + b1(x− t1)

p
+ + · · ·+ bK(x− tK)p

+, (21.12)

where, as we have seen for the specific case of p = 2, (x−t)p
+ equals {(x−t)+}p.

The first p− 1 derivatives of s are continuous while the pth derivative takes a
jump equal to p! bk at the kth knot.

21.4.5 Other Spline Bases

Given a degree p and knots κ1, . . . , κK , the polynomials 1, x, . . . , xp and plus
functions (x − κ1)

p
+, . . . , (x − κK)p

+ form a spline basis. What this means is
that any pth degree spline with knots κ1, . . . , κK is a linear combination of
these basis functions. The basis of polynomials and plus functions is simple to
understand, but is known to be numerically unstable if the number of knots is
large. For this reason, other bases are often used for numerical computations.
The B-spline basis is particular popular. It is assumed here that the reader
will not be programming spline estimators from scratch but rather will be
using spline software. Therefore, B-splines and other bases will not be covered
here, but see Section 21.6 for further reading.

21.5 Penalized Splines

Because a pth degree spline with K knots has 1 + p + K parameters, an
ordinary least-squares fit will usually overfit the data unless both p and K are
kept small, for instance, 1 + p + K ≤ 6. (There is nothing especial about the
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number 6 and it is just being used as a rule of thumb. Any number between
5 and 10 would be equally good.) An example is the quadratic spline with
one knot (so 1 + p + K = 4) used as a forward-rate curve in Example 14.5.
However, a spline with p and K both small is essentially a parametric model.
To have the flexibility of a nonparametric model, that is, a wide range of
potential values of peff , we need to have K large and find another way to
avoid overfitting. Penalized least-squares estimation does this.

Let µ(x; β) = B(x)Tβ be a spline, where β is a vector of coefficients
and B(x) = (B1(x), . . . , B1+p+K(x))T is a spline basis. For example, B(x) =
(1, x, . . . , xp, (x − κ1)

p
+, . . . , (x − κK)p

+) if we use model (21.12). A penalized
least-squares estimator minimizes over β the penalized sum of squares

n∑

i=1

{Yi − µ(Xi; β)}2 + λ βTDβ, (21.13)

where D is a positive semidefinite matrix and λ > 0 is a penalty parameter.
A common choice of D has the i, jth element equal to

∫ b

a

B
(2)
i (x)B(2)

j (x)dx (21.14)

for some a < b, such as, a = min(Xi) and b = max(Xi). Here B
(2)
i (x) is the

second derivative of Bi(x). With this D,

λ βTDβ =
∫ b

a

{
µ(2)(x; β)

}2

dx, (21.15)

Since µ(2)(x) is the amount of curvature of µ at x, this choice of D penalizes
wiggly functions and, if λ is chosen appropriately, prevents overfitting. If λ =
0, then there is no penalization and the effective number of parameters is
1 + p + K. With this D, in the limit as λ →∞, any curvature at all receives
an infinite penalty, so the estimator converges to a linear polynomial fit and
the effective number of parameters converges to 2. Any value of peff between
2 and 1 + p + K is achievable by the some value of λ between the extremes of
0 and ∞.

Let X be the n × (1 + p + K) matrix with i, jth element Bj(Xi) and let
Y = (Y1, . . . , Yn)T. The penalized least-squares estimate is

β̂(λ) =
(
XTX + λD

)−1

XTY , (21.16)

which is obtained by setting the gradient of (21.13) equal to zero and solving.
The fitted values are

Ŷ (λ) = Xβ̂(λ) =
{

X(XTX + λD)−1XT
}

Y = H(λ) Y , (21.17)

where H(λ) =
{

X(XTX + λD)−1XT
}

is the smoother matrix.
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21.5.1 Selecting the Amount of Penalization

The penalty parameter λ determines the amount of smoothing and can be
chosen by AIC or GCV. Another popular method for choosing λ is REML
(restricted maximum likelihood). REML is based on a so-called mixed model,
where some of the spline coefficients are random variables. A description of
mixed models and REML is beyond the scope of this book, but the interested
reader may consult the references in Section 21.6.

Example 21.1. Estimating the drift and volatility for the evolution of the risk-
free returns

In this example, we return to estimating the drift and squared volatility
functions for the evolution of the risk-free returns. Three estimators will be
used: local linear, local quadratic, and a penalized spline.

The first estimator, local linear, is computed using the function locpoly
in R’s KernSmooth package. The dpi plug-in bandwidth selector is computed
using the function dpill in this package.1

In the following R code, the changes in the risk-free returns (diffrf) are
regressed on the lagged returns (rf_lag) to estimate the drift. The local linear
estimator is computed on an equally-spaced grid, and to compute residuals
the function spline is used to interpolate the fit to the observed values of
rf_lag. Finally, the squared residuals (epsilon_sqr) are regressed on the
lagged returns to estimate the squared volatility function. The estimated drift
function is in the object ll_mu and the estimated squared volatility function
is in ll_sig.

ll_mu <- locpoly(rf_lag,diffrf, bandwidth = dpill(rf_lag,diffrf) )

muhat = spline(ll_mu$x,ll_mu$y,xout=rf_lag)$y

epsilon_sqr = (diffrf-muhat)^2

ll_sig <- locpoly(rf_lag,epsilon_sqr,

bandwidth = dpill(rf_lag,epsilon_sqr) )

The local quadratic estimator is computed with the function locfit in R’s
locfit package. Spline interpolation is not necessary here, since with locfit
the fitted values can be computed with the fitted function.

locfit_mu = locfit(diffrf~rf_lag)

epsilon_sqr = (diffrf - fitted(locfit_mu))^2

locfit_sig = locfit(epsilon_sqr~rf_lag)

The penalized spline estimator is computed by the gam function in the mgcv
package. The specification bs="cr" requests a cubic spline fit with penalty
(21.15). The REML method is used to select the amount of smoothing.

1 “dpill” means “direct plug-in, local linear.”
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gam_mu = gam(diffrf~s(rf_lag,bs="cr"),method="REML")

epsilon_sqr = (diffrf-gam_mu$fit)^2

gam_sig = gam(epsilon_sqr~s(rf_lag,bs="cr"),method="REML")
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Fig. 21.6. Risk-free monthly returns. (a) Estimates of the drift function. (b) Esti-
mates of the squared volatility function.

All three estimated drift functions are shown in Figure 21.6(a) and the
squared volatility function estimates are in Figure 21.6(b).

The drift functions have a general decreasing trend and are negative to the
right of 0.51 (approximately), except that the estimates have humps around
0.9–1.0 and the spline and local linear estimates are slightly positive at this
hump. It is likely that the hump is due to random variation, which increases
as one moves from left to right (see Figure 21.1). If we use the local quadratic
fit, then the estimated drift is positive to the left of 0.51 and negative to the
right of 0.51. The drift will cause reversion to a mean of 0.51, which is an
annual rate of 6.12% = (12)(0.51)%. The Chan et al. (1992) drift function,
µ(r) = β(r − α), is also mean-reverting, but linear. In contrast, the local
quadratic estimated drift function in Figure 21.6 is nonlinear and shows much
faster reversion to the mean when the rate is high.

The squared volatility estimates show that volatility increases with the
rate, at least to a point. For very high rates, the estimated volatility function
becomes decreasing. There is not enough data with extremely high rates to
tell if this phenomenon is “real” or due to random estimation error. The
extremely high rates occurred only for the brief period in the early 1980s; see
Figure 21.1(a).
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Fig. 21.7. Risk-free monthly returns. Residual analysis. (a) Time series plot of
standardized residuals. (b) ACF of standardized residuals. (c) ACF of squared stan-
dardized residuals.

The standardized residuals {∆rt − µ̂(rt−1)}/σ̂(rt−1) show negative serial
correlation and GARCH-type volatility clustering; see Figure 21.7. Neither of
these is surprising. Negative lag-1 autocorrelation is common in a differenced
series and volatility clustering is certainly to be expected in any financial
time series. This case study could be continued by fitting an ARMA/GARCH
model to the standardized residuals.

¤

21.6 Bibliographic Notes

Ruppert, Wand, and Carroll (2003) and Wood (2006) offer comprehensive in-
troductions to nonparametric and semiparametric modeling and their appli-
cations. Wand and Jones (1995) and Fan and Gijbels (1996) are good sources
of information about local polynomial regression. REML is discussed in detail
by Ruppert, Wand, and Carroll (2003) and Wood (2006). Wasserman (2006)
is an interesting modern synthesis of nonparametric estimation.

21.7 References

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992)
An empirical comparison of alternative models of the short-term interest
rate. Journal of Finance, 47, 1209–1227.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985) A theory of the term
structure of interest rates. Econometrica, 53, 385–407.

Fan, J., and Gijbels, I. (1996) Local Polynomial Modelling and Its Applica-
tions, Chapman & Hall, London.



594 21 Nonparametric Regression and Splines

Merton, R. C. (1973) Theory of rational option pricing. Bell Journal of Eco-
nomics and Management Science, 4 , 141–183.

Ruppert, D., Sheather, S., and Wand, M. P. (1995) An effective bandwidth
selector for local least squares kernel regression, Journal of the American
Statistical Association, 90, 1257–1270.

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003) Semiparametric Regres-
sion, Cambridge University Press, Cambridge.

Vasicek, O. A. (1977) An equilibrium characterization of the term structure.
Journal of Financial Economics, 5, 177–188.

Wand, M. P., and Jones, M. C. (1995) Kernel Smoothing, Chapman & Hall,
London.

Wasserman, L. (2006) All of Nonparametric Statistics, Springer, New York.
Wood, S. (2006) Generalized Additive Models: An Introduction with R, Chap-

man & Hall, Boca Raton, FL.
Yau, P., and Kohn, R. (2003) Estimation and variable selection in nonpara-

metric heteroskedastic regression. Statistics and Computing, 13, 191–208.

21.8 R Lab

21.8.1 Additive Model for Wages, Education, and Experience

This section uses the Current Population Survey data in the CPS1988 data
set introduced in Section 13.5.1. We will fit spline effects for both predictors,
education and experience. This is easily done with the gam function in the
mgcv package. The model being fit is

log(wage) = β0 + s1(education) + s2(experience) + β1ethnicity + εi,

where β0 is the intercept, s1 and s2 are splines, ethnicity is 0 for Caucasians
and 1 for African Americans, and εi is white noise. To fit this model, print its
summary, and plot the estimates of s1 and s2, run:

library(AER)

library(mgcv)

data(CPS1988)

attach(CPS1988)

fitGam = gam(log(wage)~s(education)+s(experience)+ethnicity)

summary(fitGam)

par(mfrow=c(1,2))

plot(fitGam)

Problem 1 What are the estimates of β0 and β1?

Problem 2 Describe the shapes of s1 and s2.
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21.8.2 An Extended CKLS model for the Short Rate

In this section, we use splines to extend the CKLS model in Section 14.14 by
letting the drift parameters a and θ vary with time so that

µ(t, r) = a(t) {θ(t)− r}. (21.18)

One could also let the volatility parameters σ and γ vary as well with t, but,
for simplicity, we will not do that here. We will fit this model with a(t) being
linear in time and θ(t) being a piecewise linear spline. [Letting both a(t) and
θ(t) be splines can lead to unstable estimates, so we will restrict a(t) to be
linear.] First, read in the data, and then create the knots and the truncated
line basis functions.

# CKLS, extended

library(Ecdat)

data(Irates)

r1 = Irates[,1]

n = length(r1)

lag_r1 = lag(r1)[-n]

delta_r1 = diff(r1)

n = length(lag_r1)

knots = seq(from=1950,to=1985,length=10)

t = seq(from=1946,to =1991+2/12,length=n)

X1 = outer(t,knots,FUN="-")

X2 = X1 * (X1>0)

X3 = cbind(rep(1,n), (t - 1946),X2)

m2 = dim(X3)[2]

m = m2 - 1

Problem 3 How many knots are being used here? What does the outer func-
tion do here? What is done by the statement X2 = X1 * (X1>0)? Describe
what is in the variable X3.

Now fit the CKLS model with time-varying drift.

nlmod_CKLS_ext = nls(delta_r1 ~ X3[,1:2]%*%a *

(X3%*%theta-lag_r1),

start=list(theta = c(10,rep(0,m)),

a=c(.01,0)),control=list(maxiter=200))

AIC(nlmod_CKLS_ext)

param4 = summary(nlmod_CKLS_ext)$parameters[,1]

par(mfrow=c(1,3))

plot(t,X3%*%param4[1:m2],ylim=c(0,16),ylab="rate",

main="(a)",col="red",type="l",lwd=2)

lines(t,lag_r1)

legend("topleft",c("theta(t)","lagged rate"),lwd=c(2,1),

col=c("red","black"))
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plot(t,X3[,1:2]%*%param4[(m2+1):(m2+2)],ylab="a(t)",

col="red",type="l",lwd=2,main="(b)")

res_sq = residuals(nlmod_CKLS_ext)^2

nlmod_CKLS_ext_res <- nls(res_sq ~ A*lag_r1^B,

start=list(A=.2,B=1/2) )

plot(lag_r1,sqrt(res_sq),pch=5,ylim=c(0,6),ylab="",main="(c)")

lines(lag_r1,sqrt(fitted(nlmod_CKLS_ext_res)),

lw=3,col="red",type="l")

legend("topleft",c("abs res","volatility fn"),lty=c(NA,1),

pch=c(5,NA),col=c("black","red"),lwd=1:2)

Problem 4 Explain why X3[,1:2]%*%a is a linear function but X3%*%theta is a
spline.

Problem 5 What is the interpretation of a time-varying θ? Note that in panel (a),
θ seems to track the interest rate. Does this make sense? Why or why not?

Problem 6 Would you accept or reject the null hypothesis that a(t) is constant,
that is, that the slope of the linear function a(t) is zero? Justify your answer.

21.9 Exercises

1. A linear spline s(t) has knots at 1, 2, and 3. Also, s(0) = 1, s(1) = 1.3, s(2) = 5.5,
s(4) = 6, and s(5) = 6.
(a) What is s(0.5)?
(b) What is s(3)?
(c) What is

R 4

2
s(t) dt?

2. Suppose that (21.1) holds with µ(r) = 0.1(0.035− r) and σ(r) = 2.3r.
(a) What is the expected value of rt given that rt−1 = 0.04?
(b) What is the variance of rt given that rt−1 = 0.02?

3. Let the spline s(x) be defined as

s(x) = (x)+ − 3(x− 1)+ + (x− 2)+.

(a) Is s(x) either a probability density function (pdf) or a cumulative distribu-
tion function (cdf)? Explain your answer.

(b) If X is a random variable and s is its pdf or cdf [whichever is the correct
answer in (a)], then what is the 90th percentile of X?

4. Let s be the spline

s(x) = 1 + 0.65x + x2 + (x− 1)2+ + 0.6(x− 2)2+.

(a) What are s(1.5) and s′(1.5)?
(b) What is s′′(2.2)?
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Facts from Probability, Statistics, and Algebra

A.1 Introduction

It is assumed that the reader is already familiar with the basics of probability,
statistics, matrix algebra, and other mathematical topics needed in this book, and
so the goal of this appendix is merely to provide a quick review and cover some more
advanced topics that may not be familiar.

A.2 Probability Distributions

A.2.1 Cumulative Distribution Functions

The cumulative distribution function (CDF) of Y is defined as

FY (y) = P{Y ≤ y}.
If Y has a PDF fY , then

FY (y) =

Z y

−∞
fY (u) du.

Many CDFs and PDFs can be calculated by computer software packages, for in-
stance, pnorm, pt, and pbinom in R calculate, respectively, the CDF of a normal, t,
and binomial random variable. Similiarly, dnorm, dt, and dbinom calculate the PDFs
of these distributions.

A.2.2 Quantiles and Percentiles

If the CDF F (y) of a random variable Y is continuous and strictly increasing, then
it has an inverse function F−1. For each q between 0 and 1, F−1(q) is called the
q-quantile or 100qth percentile.

The median is the 50% percentile or 0.5-quantile. The 25% and 75% percentiles
(0.25- and 0.75-quantiles) are called the first and third quartiles and the median is
the second quartile. The three quartiles divide the range of a continuous random
variable into four groups of equal probability. Similarly, the 20%, 40%, 60%, and
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80% percentiles are called quintiles and the 10%, 20%, . . . , 90% percentiles are
called deciles.

For any CDF F , invertible or not, the pseudo-inverse is defined as

F−(x) = inf(y : F (y) ≥ x).

Here “inf” is the infinum or greatest lower bound of a set; see Section A.5. For any
q between 0 and 1, the qth quantile will defined as F−(q). If F is invertible, then
F−1 = F−, so this definition of quantile agree with the one for invertible CDFs. F−

is often called the quantile function.
Sometimes a (1 − α)-quantile is called an α-upper quantile, to emphasize the

amount of probability above the quantile. In analogy, a quantile might also be re-
ferred to as lower quantile.

Quantiles are said to “respect transformations” in the following sense. If Y is
a random variable whose q-quantile equals yq, if g is a strictly increasing function,
and if X = g(Y ), then g(yq) is the q-quantile of X; see (A.5).

A.2.3 Symmetry and Modes

A probability density function (PDF) f is said to be symmetric about µ if f(µ−y) =
f(µ + y) for all y. A mode of a PDF is a local maximum, that is a value y such
that for some ε > 0, f(y) > f(x) if y − ε < x < y or y < x < y + ε. A PDF with
one mode is called unimodal , with two modes bimodal , and with two or more modes
multimodal .

A.2.4 Support of a Distribution

The support of a discrete distribution is the set of all y that have a positive proba-
bility. More generally, a point y is in the support of a distribution if, for every ε > 0,
the interval (y − ε, y + ε) has positive probability. For example, the support of a
normal distribution is (−∞,∞), the support of a gamma or lognormal distribution
is [0,∞), and the support of a binomial(n, p) distribution is {0, 1, 2, . . . , n} provided
p 6= 0, 1.1

A.3 When Do Expected Values and Variances Exist?

The expected value of a random variable could be infinite or not exist at all. Also,
a random variable need not have a well-defined and finite variance. To appreciate
these facts, let Y be a random variable with density fY . The expectation of Y isZ ∞

−∞
yfY (y)dy

provided that this integral is defined. If

1 It is assumed that most readers are already familiar with the normal, gamma, log-
normal, and binomial distributions. However, these distributions will be discussed
in some detail later.
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−∞
yfY (y)dy = −∞ and

Z ∞

0

yfY (y)dy = ∞, (A.1)

then the expectation is, formally, −∞+∞, which is not defined, so the expectation
does not exist. If integrals in (A.1) are both finite, then E(Y ) exists and equals the
sum of these two integrals. The expectation can exist but be infinite, because ifZ 0

−∞
yfY (y)dy = −∞ and

Z ∞

0

yfY (y)dy < ∞,

then E(Y ) = −∞, and ifZ 0

−∞
yfY (y)dy > −∞ and

Z ∞

0

yfY (y)dy = ∞,

then E(Y ) = ∞.
If E(Y ) is not defined or is infinite, then the variance that involves E(Y ) cannot

be defined either. If E(Y ) is defined and finite, then the variance is also defined.
The variance is finite if E(Y 2) < ∞; otherwise the variance is infinite.

The nonexistence of finite expected values and variances is of importance for
modeling financial markets data, because, for example, the popular GARCH models
discussed in Chapter 18 need not have finite expected values and variances. Also,
t-distributions that, as demonstrated in Chapter 5, can provide good fits to equity
returns may have nonexistent means or variances.

One could argue that any variable Y derived from financial markets will be
bounded, that is, that there is a constant M < ∞ such that P (|Y | ≤ M) = 1. In
this case, the integrals in (A.1) are both finite, in fact at most M , and E(Y ) exists
and is finite. Also, E(Y 2) ≤ M2, so the variance of Y is finite. So should we worry
at all about the mathematically niceties of whether expected values and variances
exist and are finite? The answer is that we should. A random variable might be
bounded in absolute value by a very large constant M and yet, if M is large enough,
behave much like a random variable that does not have an expected value or has an
expected value that is infinite or has a finite expected value but an infinite variance.
This can be seen in the simulations of GARCH processes. Results from computer
simulations are bounded by the maximum size of a number in the computer. Yet
these simulations behave as if the variance were infinite.

A.4 Monotonic Functions

The function g is increasing if g(x1) ≤ g(x2) whenever x1 < x2 and strictly increasing
if g(x1) < g(x2) whenever x1 < x2. Decreasing and strictly decreasing are defined
similarly, and g is (strictly) monotonic if it is either (strictly) increasing or (strictly)
decreasing.

A.5 The Minimum, Maximum, Infinum, and Supremum
of a Set

The minimum and maximum of a set are its smallest and largest values, if these
exists. For example, if A = {x : 0 ≤ x ≤ 1}, then the minimum and maximum of
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A are 0 and 1. However, not all sets have a minimum or a maximum, for example,
B = {x : 0 < x < 1} has neither a minimum nor a maximum. Every set as an
infinum (or inf) and a supremum (or sup). The inf of a set C is the largest number
that is less than or equal to all elements of C. Similarly, the sup of C is the smallest
number that is greater than or equal to every element of C. The set B just defined
has an inf of 0 and a sup of 1. The following notation is standard: min(C) and
max(C) are the minimum and maximum of C, if these exist, and inf(C) and sup(C)
are the infinum and supremum.

A.6 Functions of Random Variables

Suppose that X is a random variable with PDF fX(x) and Y = g(X) for g a strictly
increasing function. Since g is strictly increasing, it has an inverse, which we denote
by h. Then Y is also a random variable and its CDF is

FY (y) = P (Y ≤ y) = P{g(X) ≤ y} = P{X ≤ h(y)} = FX{h(y)}. (A.2)

Differentiating (A.2), we find the PDF of Y :

fY (y) = fX{h(y)}h′(y). (A.3)

Applying a similar argument to the case, where g is strictly decreasing, one can
show that whenever g is strictly monotonic, then

fY (y) = fX{h(y)}|h′(y)|. (A.4)

Also from (A.2), when g is strictly increasing, then

F−1
Y (p) = g{F−1

X (p)}, (A.5)

so that the pth quantile of Y is found by applying g to the pth quantile of X. When
g is strictly decreasing, then it maps the pth quantile of X to the (1− p)th quantile
of Y .

Result A.6.1 Suppose that Y = a + bX for some constants a and b 6= 0. Let
g(x) = a + bx, so that the inverse of g is h(y) = (y − a)/b and h′(y) = 1/b. Then

FY (y) = FX{b−1(y − a)}, b > 0,

= 1− FX{b−1(y − a)}, b < 0,

fY (y) = |b|−1fX{b−1(y − a)},

and

F−1
Y (p) = a + bF−1

X (p), b > 0

= a + bF−1
X (1− p), b < 0.
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A.7 Random Samples

We say that {Y1, . . . , Yn} is a random sample from a probability distribution if they
each have that probability distribution and if they are independent. In this case,
we also say that they are independent and identically distributed or simply i.i.d.
The probability distribution is often called the population and its expected value,
variance, CDF, and quantiles are called the population mean, population variance,
population CDF, and population quantiles. It is worth mentioning that the popula-
tion is, in effect, infinite. There is a statistical theory of sampling, usually without
replacement, from finite populations, but sampling of this type will not concern us
here. Even in cases where the population is finite, such as, when sampling house
prices, the population is usually large enough, so that it can be treated as infinite.

If Y1, . . . , Yn is a sample from an unknown probability distribution, then the
population mean can be estimated by the sample mean

Y = n−1
nX

i=1

Yi, (A.6)

and the population variance can be estimated by the sample variance

s2
Y =

Pn
i=1(Yi − Y )2

n− 1
. (A.7)

The reason for the denominator of n − 1 rather than n is discussed in Section 5.9.
The sample standard deviation is sY , the square root of s2

Y .

A.8 The Binomial Distribution

Suppose that we conduct n experiments for some fixed (nonrandom) integer n. On
each experiment there are two possible outcomes called “success” and “failure”;
the probability of a success is p, and the probability of a failure is q = 1 − p. It
is assumed that p and q are the same for all n experiments. Let Y be the total
number of successes, so that Y will equal 0, 1, 2, . . . , or n. If the experiments are
independent, then

P (Y = k) =

�
n
k

�
pkqn−k for k = 0, 1, 2, . . . , n,

where �
n
k

�
=

n!

k!(n− k)!
.

The distribution of Y is called the binomial distribution and denoted Binomi-
al(n, p). The expected value of Y is np and its variance is npq. The Binomial(1, p)
distribution is also called the Bernoulli distribution and its density is

P (Y = y) = py(1− p)1−y, y = 0, 1. (A.8)

Notice that py is equal to either p (when y = 1) or 1 (when y = 0), and similarly
for (1− p)1−y.
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A.9 Some Common Continuous Distributions

A.9.1 Uniform Distributions

The uniform distribution on the interval (a, b) is denoted by Uniform(a, b) and has
PDF equal to 1/(b − a) on (a, b) and equal to 0 outside this interval. It is easy to
check that if Y is Uniform(a, b), then its expectation is

E(Y ) =
1

b− a

Z b

a

Y dY =
a + b

2
,

which is the midpoint of the interval. Also,

E(Y 2) =
1

b− a

Z b

a

Y 2 dY =
Y 3|ba

3(b− a)
=

b2 + ab + a2

3
.

Therefore,

σ2
Y = E(Y 2)− {E(Y )}2 =

b2 + ab + a2

3
−
�

a + b

2

�2

=
(b− a)2

12
.

Reparameterization means replacing the parameters of a distribution by an equiv-
alent set. The uniform distribution can be reparameterized by using µ = (a + b)/2
and σ = (b − a)/

√
12 as the parameters. Then µ is a location parameter and σ is

the scale parameter. Which parameterization of a distribution is used depends upon
which aspects of the distribution one wishes to emphasize. The parameterization
(a, b) of the uniform specifies its endpoints while the parameterization (µ, σ) gives
the mean and standard deviation. One is free to move back and forth between two
or more parameterizations, using whichever is most useful in a given context. The
uniform distribution does not have a shape parameter since the shape of its density
is always rectangular.

A.9.2 Transformation by the CDF and Inverse CDF

If Y has a continuous CDF F , then F (Y ) has a Uniform(0,1) distribution. F (Y )
is often called the probability transformation of Y . This fact is easy to see if F is
strictly increasing, since then F−1 exists, so that

P{F (Y ) ≤ y} = P{Y ≤ F−1(y)} = F{F−1(y)} = y. (A.9)

The result holds even if F is not strictly increasing, but the proof is slightly more
complicated. It is only necessary that F be continuous.

If U is Uniform(0,1) and F is a CDF, then Y = F−(U) has F as its CDF. Here
F− is the pseudo-inverse of F . This can be proved easily when F is continuous and
strictly increasing, since then F−1 = F− and

P (Y ≤ y) = P{F−1(U) ≤ y} = P{Y ≤ F (y)} = F (y).

In fact, the result holds for any CDF F , but it is more difficult to prove in the
general case. F−(U) is often called the quantile transformation since F− is the
quantile function.
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A.9.3 Normal Distributions

The standard normal distribution has density

φ(y) =
1√
2π

exp
�−y2/2

�
, −∞ < y < ∞.

The standard normal has mean 0 and variance 1. If Z is standard normal, then the
distribution of µ + σZ is called the normal distribution with mean µ and variance
σ2 and denoted by N(µ, σ2). By Result A.6.1, the N(µ, σ2) density is

1

σ
φ
�y − µ

σ

�
=

1√
2πσ

exp

�
− (y − µ)2

2σ2

�
. (A.10)

The parameter µ is a location parameter and σ is a scale parameter. The normal
distribution does not have a shape parameter since its density is always the same
bell-shaped curve.2 The standard normal CDF is

Φ(y) =

Z y

−∞
φ(u)du.

Φ can be evaluated using software such as R’s pnorm function. If Y is N(µ, σ2), then
since Y = µ + σZ, where Z is standard normal, by Result A.6.1,

FY (y) = Φ{(y − µ)/σ}. (A.11)

Normal distribution are also called Gaussian distributions after the great German
mathematician Carl Friedrich Gauss.

Normal Quantiles

The q-quantile of the N(0, 1) distribution is Φ−1(q) and, more generally, the q-
quantile of an N(µ, σ2) distribution is µ+σΦ−1(q). The α-upper quantile of Φ, that
is, Φ−1(1 − α), is denoted by zα. As shown later, zα is widely used for confidence
intervals.

A.9.4 The Lognormal Distribution

If Z is distributed N(µ, σ2), then Y = exp(Z) is said to have a Lognormal(µ, σ2)
distribution. In other words, Y is lognormal if its logarithm is normally distributed.
We will call µ the log-mean and σ the log-standard deviation. Also, σ2 will be called
the log-variance.

2 In contrast, a t-density is also a bell curve, but the exact shape of the bell depends
on a shape parameter, the degrees of freedom.
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Fig. A.1. Examples of lognormal probability densities. Here µ and σ are the log-
mean and log-standard deviation, that is, the mean and standard deviation of the
logarithm of the lognormal random variable.

The median of Y is exp(µ) and the expected value of Y is exp(µ + σ2/2).3 The
expectation is larger than the median because the lognormal distribution is right
skewed, and the skewness is more extreme with larger values of σ. Skewness is dis-
cussed further in Section 5.4. The probability density functions of several lognormal
distributions are shown in Figure A.1.

The log-mean µ is a scale parameter and the log-standard deviation σ is a shape
parameter. The lognormal distribution does not have a location parameter since its
support is fixed to start at 0.

A.9.5 Exponential and Double-Exponential Distributions

The exponential distribution with scale parameter θ > 0, which we denote by
Exponential(θ), has CDF

F (y) = 1− e−y/θ, y > 0.

The Exponential(θ) distribution has PDF

f(y) =
e−y/θ

θ
, (A.12)

expected value θ, and standard deviation θ. The inverse CDF is

3 It is important to remember that if Y is lognormal(µ, σ), then µ is the expected
value of log(Y ), not of Y .
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Fig. A.2. Examples of gamma probability densities with differing shape parameters.
In each case, the scale parameter has been chosen so that the expectation is 1.

F−1(y) = −θ log(1− y), 0 < y < 1.

The double-exponential or Laplace distribution with mean µ and scale parameter
θ has PDF

f(y) =
e−|y−µ|/θ

2θ
. (A.13)

If Y has a double-exponential distribution with mean µ, then |Y − µ| has an expo-
nential distribution. A double-exponential distribution has a standard deviation of√

2θ. The mean µ is a location parameter and θ is a scale parameter.

A.9.6 Gamma and Inverse-Gamma Distributions

The gamma distribution with scale parameter b > 0 and shape parameter α > 0 has
density

yα−1

Γ (α)bα
exp(−y/b),

where Γ is the gamma function defined in Section 5.5.2. The mean, variance, and
skewness coefficient of this distribution are bα, b2α, and 2α−1/2, respectively. Fig-
ure A.2 shows gamma densities with shape parameters equal to 0.75, 3/2, and 7/2
and each with a mean equal to 1.

The gamma distribution is often parameterized using β = 1/b, so that the density
is

βαyα−1

Γ (α)
exp(−βy).
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Fig. A.3. Examples of beta probability densities with differing shape parameters.

With this form of the parameterization, β is an inverse-scale parameter and the
mean and variance are α/β and α/β2.

If X has a gamma distribution with inverse-scale parameter β and shape pa-
rameter α, then we say that 1/X has an inverse-gamma distribution with scale
parameter β and shape parameter α. The mean of this distribution is β/(α − 1)
provided α > 1 and the variance is β2/{(α− 1)2(α− 2)} provided that α > 2.

A.9.7 Beta Distributions

The beta distribution with shape parameters α > 0 and β > 0 has density

Γ (α + β)

Γ (α)Γ (β)
yα−1(1− y)β−1, 0 < y < 1. (A.14)

The mean and variance are α/(α+β) and (αβ)/{(α+β)2(α+β +1)}, and if α > 1
and β > 1, then the mode is (α− 1)/(α + β − 2).

Figure A.3 shows beta densities for several choices of shape parameters. A beta
density is right-skewed, symmetric about 1/2, or left-skewed depending on whether
α < β, α = β, or α > β.

A.9.8 Pareto Distributions

A random variable X has a Pareto distribution, named after the Swiss economics
professor Vilfredo Pareto (1848–1923), if its CDF for some a > 0
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F (x) = 1−
� c

x

�a

, x > c, (A.15)

where c > 0 is the minimum possible value of X.
The PDF of the distribution in (A.15) is

f(x) =
aca

xa+1
, x > c, (A.16)

so a Pareto distribution has polynomial tails and a is the tail index. It is also called
the Pareto constant.

A.10 Sampling a Normal Distribution

A common situation is that we have a random sample from a normal distribution and
we wish to have confidence intervals for the mean and variance or test hypotheses
about these parameters. Then, the following distributions are very important, since
they are the basis for many commonly used confidence intervals and tests.

A.10.1 Chi-Squared Distributions

Suppose that Z1, . . . , Zn are i.i.d. N(0, 1). Then, the distribution of Z2
1 + · · ·+Z2

n is
called the chi-squared distribution with n degrees of freedom. This distribution has an
expected value of n and a variance of 2n. The α-upper quantile of this distribution
is denoted by χ2

α,n and is used in tests and confidence intervals about variances;
see Section A.10.1 for the latter. Also, as discussed in Section 5.11, χ2

α,n is used in
likelihood ratio testing.

So far, the degrees-of-freedom parameter has been an integer-valued, but this
can be generalized. The chi-squared distribution with ν degrees of freedom is equal
to the gamma distribution with scale parameter equal to 2 and shape parameter
equal to ν/2. Thus, since the shape parameter of a gamma distribution can be any
positive value, the chi-squared distribution can be defined for any positive value of
ν as the gamma distribution with scale and shape parameters equal to 2 and ν/2,
respectively.

A.10.2 F -distributions

If U and W are independent and chi-squared-distributed with n1 and n2 degrees of
freedom, respectively, then the distribution of

U/n1

W/n2

is called the F -distribution with n1 and n2 degrees of freedom. The α-upper quantile
of this distribution is denoted by Fα,n1,n2 . Fα,n1,n2 is used as a critical value for
F -tests in regression.

The degrees-of-freedom parameters of the chi-square, t-, and F -distributions are
shape parameters.
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A.11 Law of Large Numbers and the Central Limit
Theorem for the Sample Mean

Suppose that Y n is the mean of an i.i.d. sample Y1, . . . , Yn. We assume that their
common expected value E(Y1) exists and is finite and call it µ. The law of large
numbers states that

P (Y n → µ as n →∞) = 1.

Thus, the sample mean will be close to the population mean for large enough sample
sizes. However, even more is true. The famous central limit theorem (CLT) states
that if the common variance σ2 of Y1, . . . , Yn is finite, then the probability distribu-
tion of Y n gets closer to a normal distribution as n converges to ∞. More precisely,
the CLT states that

P{√n(Y n − µ) ≤ y} → Φ(y/σ) as n →∞ for all y. (A.17)

Stated differently, for large n, Y is approximately N(µ, σ2/n).
Students often misremember or misunderstand the CLT. A common misconcep-

tion is that a large population is approximately normally distributed. The CLT says
nothing about the distribution of a population; it is only a statement about the
distribution of a sample mean. Also, the CLT does not assume that the population
is large; it is the size of the sample that is converging to infinity. Assuming that
the sampling is with replacement, the population could be quite small, in fact, with
only two elements.

When the variance of Y1, . . . , Yn is infinite, then the limit distribution of Y n may
still exist but will be a nonnormal stable distribution.

Although the CLT was first discovered for the sample mean, other estimators are
now known to also have approximate normal distributions for large sample sizes. In
particular, there are central limit theorems for the maximum likelihood estimators
of Section 5.9 and the least-squares estimators discussed in Chapter 12. This is very
important, since most estimators we use will be maximum likelihood estimators or
least-squares estimators. So, if we have a reasonably large sample, we can assume
that these estimators have an approximately normal distribution and the normal
distribution can be used for testing and constructing confidence intervals.

A.12 Bivariate Distributions

Let fY1,Y2(y1, y2) be the joint density of a pair of random variables (Y1, Y2). Then,
the marginal density of Y1 is obtained by “integrating out” Y2:

fY1(y1) =

Z
fY1,Y2(y1, y2) dy2,

and similarly fY2(y2) =
R

fY1,Y2(y1, y) dy1.
The conditional density of Y2 given Y1 is

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
. (A.18)

Equation (A.18) can be rearranged to give the joint density of Y1 and Y2 as the
product of a marginal density and a conditional density:



A.13 Correlation and Covariance 609

fY1,Y2(y1, y2) = fY1(y1)fY2|Y1(y2|y1) = fY2(y2)fY1|Y2(y1|y2). (A.19)

The conditional expectation of Y2 given Y1 is just the expectation calculated using
fY2|Y1(y2|y1):

E(Y2|Y1 = y1) =

Z
y2fY2|Y1(y2|y1)dy2,

which is, of course, a function of y1. The conditional variance of Y2 given Y1 is

Var(Y2|Y1 = y1) =

Z
{y2 − E(Y2|Y1 = y1)}2fY2|Y1(y2|y1) dy2.

A formula that is important elsewhere in this book is

fY1,...,Yn(y1, . . . , yn) = fY1(y1)fY2|Y1(y2|y1) · · · fYn|Y1,...,Yn−1(yn|y1, . . . , yn−1),
(A.20)

which follows from repeated use of (A.19).
The marginal mean and variance are related to the conditional mean and vari-

ance by
E(Y ) = E{E(Y |X)} (A.21)

and
Var(Y ) = E{Var(Y |X)}+ Var{E(Y |X)}. (A.22)

Result (A.21) has various names, especially the law of iterated expectations and the
tower rule.

Another useful formula is that if Z is a function of X, then

E(ZY |X) = ZE(Y |X). (A.23)

The idea here is that, given X, Z is constant and can be factored outside the
conditional expectation.

A.13 Correlation and Covariance

Expectations and variances summarize the individual behavior of random variables.
If we have two random variables, X and Y , then it is convenient to have some way
to summarize their joint behavior—correlation and covariance do this.

The covariance between two random variables X and Y is

Cov(X, Y ) = σXY = E

�
{X − E(X)}{Y − E(Y )}

�
.

The two notations Cov(X, Y ) and σXY will be used interchangeably. If (X, Y ) is
continuously distributed, then using (A.36), we have

σXY =

Z
{x− E(X)}{y − E(Y )}fXY (x, y) dx dy.

The following are useful formulas:
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σXY = E(XY )− E(X)E(Y ), (A.24)

σXY = E[{X − E(X)}Y ], (A.25)

σXY = E[{Y − E(Y )}X], (A.26)

σXY = E(XY ) if E(X) = 0 or E(Y ) = 0. (A.27)

The covariance between two variables measures the linear association between
them, but it is also affected by their variability; all else equal, random variables with
larger standard deviations have a larger covariance. Correlation is covariance after
this size effect has been removed, so that correlation is a pure measure of how closely
two random variables are related, or more precisely, linearly related. The Pearson
correlation coefficient between X and Y is

Corr(X, Y ) = ρXY = σXY /σX σY . (A.28)

The Pearson correlation coefficient is sometimes called simply the correlation coef-
ficient, though there are other types of correlation coefficients; see Section 8.5.

Given a bivariate sample {(Xi, Yi)}n
i=1, the sample covariance, denoted by sXY

or bσXY , is

sXY = bσXY = (n− 1)−1
nX

i=1

(Xi −X)(Yi − Y ), (A.29)

where X and Y are the sample means. Often the factor (n − 1)−1 is replaced by
n−1, but this change has little effect relative to the random variation in bσXY . The
sample correlation is bρXY = rXY =

sXY

sXsY
, (A.30)

where sX and sY are the sample standard deviations.
To provide the reader with a sense of what particular values of a correlation coef-

ficient imply about the relationship between two random variables, Figure A.4 shows
scatterplots and the sample correlation coefficients for nine bivariate random sam-
ples. A scatterplot is just a plot of a bivariate sample, {(Xi, Yi)}n

i=1. Each plot also
contain the linear least-squares fit (Chapter 12) to illustrate the linear relationship
between y and x. Notice that

• an absolute correlation of 0.25 or less is weak—see panels (a) and (b);
• an absolute correlation of 0.5 is only moderately strong—see (c);
• an absolute correlation of 0.9 is strong—see (d);
• an absolute correlation of 1 implies an exact linear relationship—see (e) and (h);
• a strong nonlinear relationship may or may not imply a high correlation—see

(f) and (g);
• positive correlations imply an increasing relationship (as X increases, Y increases

on average)—see (b)–(e) and (g);
• negative correlations imply a decreasing relationship (as X increases, Y decreases

on average)—see (h) and (i).

If the correlation between two random variables is equal to 0, then we say that they
are uncorrelated.
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Fig. A.4. Sample correlation coefficients for nine random samples. Each plot also
contains the linear regression line of y on x.

If X and Y are independent, then for all functions g and h,

E{g(X)h(Y )} = E{g(X)}E{h(Y )}. (A.31)

This fact can be used to prove that if X and Y are independent, then σXY = 0,
so the variables are uncorrelated. The opposite is not true. For example, if X is
uniformly distributed on [−1, 1] and Y = X2, then a simple calculation shows that
σXY = 0, but the two random variables are not independent. The key point here is
that Y is related to X, in fact, completely determined by X, but the relationship is
highly nonlinear and correlation measures linear association.

Another example of random variables that are uncorrelated but dependent is the
bivariate t-distribution. For this distribution, the two variates are dependent even
when their correlation is 0; see Section 7.6.

If E(Y |X) = 0, then Y and X are uncorrelated, since

E(Y ) = E{E(Y |X)} = 0 (A.32)
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by the law of iterated expectations, and then

Cov(Y, X) = E(Y X) = E{E(Y X|X)} = E{XE(Y |X)} = 0 (A.33)

by (A.27), a second application of the law of iterated expectations, (A.23) with
Z = X, and (A.32).

Result (A.22) has an important interpretation. If X is known and one needs
to predict Y , then E(Y |X) is the best predictor in that it minimizes the expected
squared prediction error. If the best predictor is used, then the prediction error is
Y −E(Y |X) and E{Y −E(Y |X)}2 is the expected squared prediction error. From
the law of iterated expectations, that latter is

E{Y − E(Y |X)}2 = E

�
E
h
{Y − E(Y |X)}2|X

i�
= E{Var(Y |X)}, (A.34)

the first summand on the right-hand side of (A.22). Also, Var{E(Y |X)}, the second
summand there, is the variability of the best predictor and a measure of how well
E(Y |X) can track Y —the more E(Y |X) can vary, the better it can track Y . There-
fore, the sum of the tracking ability and the expected squared prediction error is
the constant Var(Y )—increasing the tracking ability decreases the expected squared
prediction error.

Some insight can be gained by looking at the worst and best cases. The worst
case is when X is independent of Y . Then, E(Y |X) = E(X), the tracking ability
is Var{E(Y |X)} = 0, and the expected squared prediction takes on its maximum
value, Var(Y ). The best case is when Y is a function of X, say y = g(X) for some
g. Then, E(Y |X) = g(X) = Y , the prediction error is 0, and the tracking ability is
Var(Y ), its maximum possible value.

A.13.1 Normal Distributions: Conditional Expectations and
Variance

The calculation of conditional expectations and variances can be difficult for some
probability distributions, but it is quite easy for a pair (Y1, Y2) that has a bivariate
normal distribution.

For a bivariate normal pair, the conditional expectation of Y2 given Y1 equals
the best linear predictor4 of Y2 given Y1:

E(Y2|Y1 = y1) = E(Y2) +
σY1,Y2

σ2
Y1

{y1 − E(Y1)}.

Therefore, for normal random variables, best linear prediction is the same as best
prediction. Also, the conditional variance of Y2 given Y1 is the expected squared
prediction error:

Var(Y2|Y1 = y1) = σ2
Y2(1− ρ2

Y1,Y2). (A.35)

In general, Var(Y2|Y1 = y1) is a function of y1 but we see in (A.35) that for the
special case of a bivariate normal distribution, Var(Y2|Y1 = y1) is constant, that is,
independent of y1.

4 See Section 14.10.
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A.14 Multivariate Distributions

Multivariate distributions generalized the bivariate distributions of Section A.12. A
random vector is a vector whose elements are random variable. A random vector
of continuously distributed random variables, Y = (Y1, . . . , Yd), has a multivariate
probability density function fY1,...,Yd(y1, . . . , yd) if

P{(Y1, . . . , Yd) ∈ A} =

Z Z
A

fY1,...,Yd(y1, . . . , yd) dy1 · · · dyd

for all sets A ⊂ <p.
The PDF of Yj is obtained by integrating the other variates out of fY1,...,Yd :

fYj (yj)

=

Z
y1

· · ·
Z

yj−1

Z
yj+1

· · ·
Z

yd

fY1,...,Yd(y1, . . . , yd) dy1 · · · dyj−1dyj+1 · · · dyd.

Similarly, the PDF of any subset of (Y1, . . . , Yd) is obtained by integrating the other
variables out of fY1,...,Yd(y1, . . . , yd).

The expectation of a function g of Y1, . . . , Yd is given by the formula

E{g(Y1, . . . , Yd)} =

Z
y1

· · ·
Z

yd

g(y1, . . . , yd)fY1,...,Yd(y1, . . . , yd) dy1 · · · dyd. (A.36)

If Y1, . . . , Yd are discrete, then their joint probability distribution specifies
P{Y1 = x1, . . . , Yd = yd} for all values of y1, . . . , yd. If Y1, . . . , Yd are discrete and
independent, then

P{Y1 = y1, . . . , Yd = yd} = P{Y1 = y1} · · ·P{Yd = yd}. (A.37)

The joint CDF of Y1, . . . , Yd, whether they are continuous or discrete, is

FY1,...,Yd(x1, . . . , yd) = P (Y1 ≤ y1, . . . , Yd ≤ yd).

Suppose there is a sample of size n of d-dimensional random vectors, {Y i =
(Yi,1, . . . , Yi,d) : i = 1, . . . , n}. Then the empirical CDF is

Fn(y1, . . . , yd) =

Pn
i=1 I{Yi,j ≤ yj , for j = 1, . . . , d}

n
. (A.38)

A.14.1 Conditional Densities

The conditional density of Y1, . . . , Yq given Yq+1 . . . , Yd, where 1 ≤ q < d, is

fY1,...,Yq |Yq+1...,Yd
(y1, . . . , yq | yq+1 . . . , yd) =

fY1,...,Yd(y1, . . . , yd)

fYq+1...,Yd(yq+1 . . . , yd)
. (A.39)

Since Y1, . . . , Yd can be arranged in any order that is convenient, (A.39) provides a
formula for the conditional density of any subset of the variables, given the other
variables. Also, (A.39) can be rearranged to give the multiplicative formula

fY1,...,Yd(y1, . . . , yd)
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= fY1,...,Yq |Yq+1...,Yd
(y1, . . . , yq | yq+1 . . . , yd)fYq+1...,Yd(yq+1 . . . , yd). (A.40)

Repeated use of (A.40) gives a formula that will be useful later for calculating
likelihoods for dependent data

fY1,...,Yd(y1, . . . , yd)

= fY1(y1) fY2|Y1(y2|y1) fY3|Y1,Y2(y3|y1, y2) · · · fYd|Y1,...,Yd−1(yd|y1, . . . , yd−1).
(A.41)

If Y1, . . . , Yd are independent, then

fY1,...,Yd(y1, . . . , yd) = fY1(y1) · · · fYd(yd). (A.42)

A.15 Stochastic Processes

A discrete-time stochastic process is a sequence of random variables {Y1, Y2, Y3, . . .}.
The distribution of Yn is called its marginal distribution. The process is said to be
Markov, or Markovian, if the conditional distribution of Yn+1 given {Y1, Y2, . . . , Yn}
equals the conditional distribution of Yn+1 given Yn, so Yn+1 depends only on the
previous value of the process. The AR(1) process in Section 9.4 is a simple example
of a Markov process. A process generated by computer simulation will be Markov if
only Yn and random numbers independent of {Y1, Y2, . . . , Yn−1} are used to generate
Yn+1. An important example is Markov chain Monte Carlo, the topic of Section 20.7.

A distribution π is a stationary distribution for a Markov process if, for all n,
Yn+1 has distribution π whenever Yn has distribution π.

Stochastic processes can also have a continuous-time parameter. Examples are
Brownian motion and geometric Brownian motion, which are used, inter alia, to
model the log-prices and prices of equities, respectively, in continuous time.

A.16 Estimation

A.16.1 Introduction

One of the major areas of statistical inference is estimation of unknown parameters,
such as a population mean, from data. An estimator is defined as any function of
the observed data. The key question is which of many possible estimators should be
used. If θ is an unknown parameter and bθ is an estimator, then E(bθ)−θ is called the

bias and E{bθ − θ}2 is called the mean-squared error (MSE). One seeks estimators
that are efficient, that is, having the smallest possible value of the MSE (or of some
other measure of inaccuracy). It can be shown from simple algebra that the MSE is
the squared bias plus the variance, that is,

E{bθ − θ}2 = {E(bθ)− θ}2 + Var(bθ), (A.43)

so an efficient estimator will have both a small bias and a small variance. An es-
timator with a zero bias is called unbiased. However, it is not necessary to use an
unbiased estimator—we only want the bias to be small, not necessarily exactly zero.
One should be willing to accept a small bias if this leads to a significant reduction
in variance.

The most popular methods of estimation are least squares (Section 12.2.1), max-
imum likelihood (Sections 5.9 and 5.14), and Bayes estimation (Chapter 20).



A.17 Confidence Intervals 615

A.16.2 Standard Errors

When a estimator is calculated from a random sample, it is a random variable,
but this fact is often not appreciated by beginning students. When first exposed
to statistical estimation, students tend not to think of estimators such as a sample
mean as random. If we have only a single sample, then the sample mean does not
appear random. However, if we realize that the observed sample is only one of many
possible samples that could have been drawn, and that each sample has a different
sample mean, then we see that the mean is in fact random.

Since an estimator is a random variable, it has an expectation and a standard
deviation. We have already seen that the difference between its expectation and the
parameter is called the bias. The standard deviation of an estimator is called its
standard error. If there are unknown parameters in the formula for this standard
deviation, then they can be replaced by estimates. If bθ is an estimator of θ, then sbθ
will denote its standard error with any unknown parameters replaced by estimates.

Example A.1. The standard error of the mean

Suppose that Y1, . . . , Yn are i.i.d. with mean µ and variance σ2. Then, it follows
from (7.13) that the standard deviation of Y is σ/

√
n. Thus, σ/

√
n, or when σ is

unknown sY /
√

n, is called the standard error of the sample mean. That is, sY is
σ/
√

n or sY /
√

n depending on whether or not σ is known.
¤

A.17 Confidence Intervals

Instead of estimating an unknown parameter by a single number, it is often better
to provide a range of numbers that gives a sense of the uncertainty of the estimate.
Such ranges are called interval estimates. One type of interval estimate, the Bayesian
credible interval, is introduced in Chapter 20. Another type of interval estimate is
the confidence interval. A confidence interval is defined by the requirement that
the probability that the interval will include the true parameter is a specified value
called the confidence coefficient,, so, for example, if a large number of independent
90% intervals are constructed, then approximately 90% of them will contain the
parameter.

A.17.1 Confidence Interval for the Mean

If Y is the mean of a sample from a normal population, then

Y ± tα/2,n−1 sY (A.44)

is a confidence interval with (1 − α) confidence. This confidence interval is derived
in Section 6.3.2. If α = 0.05 (0.95 or 95% confidence) and if n is reasonably large,
then tα/2,n−1 is approximately 2, so Y ± 2 sY is often used as an approximate 95%
confidence interval. Since sY = sY /

√
n, the confidence can also be written as Y ±

2 sY /
√

n. When n is reasonably large, say 20 or more, then Y will be approximately
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normally distributed by the central limit theorem, and the assumption that the
population itself is normal can be dropped.

Example A.2. Confidence interval for a normal mean

Suppose we have a sample of size 25 from a normal distribution, s2
Y = 2.7,

Y = 16.1, and we want a 99% confidence interval for µ. We need t0.005,24. This
quantile can be found, for example, using the R function qt and t0.005,24 = 2.797.
Then, the 99% confidence interval for µ is

16.1± (2.797)
√

2.7√
25

= 16.1± 0.919 = [15.18, 17.02].

Since n = 25 is reasonably large, this interval should have approximately 99% confi-
dence even if the population is not normally distributed. The exception would be if
the population was extremely heavily skewed or had very heavy tails; in such cases
a sample size larger than 25 might be necessary for this confidence interval to have
near 99% coverage.

Just how large a sample is needed for Y to be nearly normally distributed de-
pends on the population. If the population is symmetric and the tails are not ex-
tremely heavy, then approximate normality is often achieved with n around 10.
For skewed populations, 30 observations may be needed, and even more in extreme
cases. If the data appear to come from a highly skewed or heavy-tailed population,
it might be better to assume a parametric model and compute the MLE as discussed
in Chapter 5 and perhaps to use the bootstrap (Chapter 6) for finding the confidence
interval.

¤

A.17.2 Confidence Intervals for the Variance and Standard
Deviation

A (1− α) confidence interval for the variance of a normal distribution is given by"
(n− 1)s2

Y

χ2
α/2,n−1

,
(n− 1)s2

Y

χ2
1−α/2,n−1

#
,

where n is the sample size, s2
Y is the sample variance given by equation (A.7), and, as

defined in Section A.10.1, χ2
γ,n−1 is the (1−γ)-quantile of the chi-square distribution

with n− 1 degrees of freedom.

Example A.3. Confidence interval for a normal standard deviation

Suppose we have a sample of size 25 from a normal distribution, s2
Y = 2.7, and

we want a 90% confidence interval for σ2. The quantiles we need for constructing
the interval are χ2

0.95,24 = 13.848 and χ2
0.05,24 = 36.415. These values can be found

using software such as qchisq in R. The 90% confidence interval for σ2 is�
(2.7)(24)

36.415
,

(2.7)(24)

13.848

�
= [1.78, 4.68].
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Taking square roots of both endpoints, we get 1.33 < σ < 2.16 as a 90% confidence
interval for the standard deviation.

¤

Unfortunately, the assumption that the population is normally distributed can-
not be dispensed with, even if the sample size is large. If a normal probability plot
or test of normality (see Section 4.4) suggests that the population might be non-
normally distributed, then one might instead construct a confidence interval for σ
using the bootstrap; see Chapter 6. Another possibility is to assume a nonnormal
parametric model such as the t-model if the data are symmetric and heavy-tailed;
see Example 5.4.

A.17.3 Confidence Intervals Based on Standard Errors

Many estimators are approximately unbiased and approximately normally dis-
tributed. Then, an approximate 95% confidence interval is the estimator plus or
minus twice its standard error; that is,bθ ± 2 sbθ
is an approximate 95% confidence interval for θ.

A.18 Hypothesis Testing

A.18.1 Hypotheses, Types of Errors, and Rejection Regions

Statistical hypothesis testing uses data to decide whether a certain statement called
the null hypothesis is true. The negation of the null hypothesis is called the alter-
native hypothesis. For example, suppose that Y1, . . . , Yn are i.i.d. N(µ, 1) and µ is
unknown. The null hypothesis could be that µ is 1. Then, we write H0: µ = 1 and
H1: µ 6= 1 to denote the null and alternative hypotheses.

There are two types of errors that we hope to avoid. If the null hypothesis is true
but we reject it, then we are making a type I error. Conversely, if the null hypothesis
is false and we accept it, then we are making a type II error.

The rejection region is the set of possible samples that lead us to reject H0. For
example, suppose that µ0 is a hypothesized value of µ and the null hypothesis is
H0: µ = µ0 and the alternative is H1: µ 6= µ0. One rejects H0 if |Y − µ0| exceeds
an appropriately chosen cutoff value c called a critical value. The rejection region
is chosen to keep the probability of a type I error below a prespecified small value
called the level and often denoted by α. Typical values of α used in practice are
0.01, 0.05, or 0.1. As α is made smaller, the rejection region must be made smaller.
In the example, since we reject the null hypothesis when |Y − µ0| exceeds c, the
critical value c gets larger as the α gets smaller. The value of c is easy to determine.
Assuming that σ is known, c is zα/2 σ/

√
n, where, as defined in Section A.9.3, zα/2

is the α/2-upper quantile of the standard normal distribution. If σ is unknown, then
σ is replaced by sX and zα/2 is replaced by tα/2,n−1, where, as defined in Section
5.5.2, tα/2,n−1 is the α/2-upper quantile of the t-distribution with n− 1 degrees of
freedom. The test using the t-quantile is called the one-sample t-test.
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A.18.2 p-Values

Rather than specifying α and deciding whether to accept or reject the null hypothesis
at that α, we might ask “for what values of α do we reject the null hypothesis?”
The p-value for a sample is defined as the smallest value of α for which the null
hypothesis is rejected. Stated differently, to perform the test using a given sample,
we first find the p-value of that sample, and then H0 is rejected if we decide to use
α larger than the p-value and H0 is accepted if we use α smaller than the p-value.
Thus,

• a small p-value is evidence against the null hypothesis

while

• a large p-value shows that the data are consistent with the null hypothesis.

Example A.4. Interpreting p-values

If the p-value of a sample is 0.033, then we reject H0 if we use α equal to 0.05
or 0.1, but we accept H0 if we use α = 0.01.

¤

The p-value not only tells us whether the null hypothesis should be accepted or
rejected, but it also tells us whether or not the decision to accept or reject H0 is a
close call. For example, if we are using α = 0.05 and the p-value were 0.047, then
we would reject H0 but we would know the decision was close. If instead the p-value
were 0.001, then we would know the decision was not so close.

When performing hypothesis tests, statistical software routinely calculates p-
values. Doing this is much more convenient than asking the user to specify α, and
then reporting whether the null hypothesis is accepted or rejected for that α.

A.18.3 Two-Sample t-Tests

Two-sample t-tests are used to test hypotheses about the difference between two
population means. The independent-samples t-test is used when we sample inde-
pendently from the two populations. Let µi, Y i, si, and ni be the population mean,
sample mean, sample standard deviation, and sample size for the ith sample, i = 1, 2,
respectively. Let ∆0 be a hypothesized value of µ1 − µ2. We assume that the two
populations have the same standard deviation and estimate this parameter by the
pooled standard deviation, which is

spool =

�
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

�1/2

. (A.45)

The independent-samples t-statistic is

t =
Y 1 − Y 2 −∆0

spool

q
1

n1
+ 1

n2

.
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If the hypotheses are H0: µ1 − µ2 = ∆0 and H1: µ1 − µ2 6= ∆0, then H0 is rejected
if |t| > tα/2|n1+n2−2. If the hypotheses are H0: µ1−µ2 ≤ ∆0 and H1: µ1−µ2 > ∆0,
then H0 is rejected if t > tα |n1+n2−2 and if they are H0: µ1 − µ2 ≥ ∆0 and H1:
µ1 − µ2 < ∆0, then H0 is rejected if t < −tα|n1+n2−2.

Sometimes the samples are paired rather than independent. For example, sup-
pose we wish to compare returns on small-cap versus large-cap5 stocks and for each
of n years we have the returns on a portfolio of small-cap stocks and on a portfolio of
large-cap stocks. For any year, the returns on the two portfolios will be correlated,
so an independent-samples test is not valid. Let di = Xi,1 −Xi,2 be the difference
between the observations from populations 1 and 2 for the ith pair, and let d and
sd be the sample mean and standard deviation of d1, . . . , dn. The paired-sample
t-statistics is

t =
d−∆0

sd/
√

n
. (A.46)

The rejection regions are the same as for the independent-samples t-tests except that
the degrees-of-freedom parameter for the t-quantiles is n−1 rather than n1 +n2−2.

The power of a test is the probability of correctly rejecting H0 when H1 is true.
Paired samples are often used to obtain more power. In the example of comparing
small- and large-cap stocks, the returns on both portfolios will have high year-to-
year variation, but the di will be free of this variation, so that sd should be relatively
small compared to s1 and s2. A small variation in the data means that µ1 − µ2 can
be more accurately estimated and deviations of this parameter from ∆0 are more
likely to be detected.

Since d = Y 1−Y 2, the numerators in (A.45) and (A.46) are equal. What differs
are the denominators. The denominator in (A.46) will be smaller than in (A.45)
when the correlation between observations (Yi,2, Yi,2) in a pair is positive. It is the
smallness of the denominator in (A.46) that gives the paired t-test increased power.

Suppose someone had a paired sample but incorrectly used the independent-
samples t-test. If the correlation between Yi,1 and Yi,2 is zero, then the paired sam-
ples behave the same as independent samples and the effect of using the incorrect
test would be small. Suppose that this correlation is positive. The result of using
the incorrect test would be that if H0 is false, then the true p-value would be overes-
timated and one would be less likely to reject H0 than if the paired-sample test had
been used. However, if the p-value is small, then one can be confident in rejecting H0

because the p-value for the paired-sample test would be even smaller.6 Unfortunately,
statistical methods are often used by researchers without a solid understanding of
the underlying theory, and this can lead to misapplications. The hypothetical use
just described of an incorrect test is often a reality, and it is sometimes necessary to
evaluate whether the results that are reported can be trusted.

5 The market capitalization of a stock is the product of the share price and the
number of shares outstanding. If stocks are ranked based on market capitalization,
then all stocks below some specified quantile would be small-cap stocks and all
above another specified quantile would be large-cap.

6 An exception would be the rare situation, where Yi,1 and Yi,2 are negatively
correlated.
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A.18.4 Statistical Versus Practical Significance

When we reject a null hypothesis, we often say there is a statistically significant
effect. In this context, the word “significant” is easily misconstrued. It does not
mean that there is an effect of practical importance. For example, suppose we were
testing the null hypothesis that the means of two populations are equal versus the
alternative that they are unequal. Statistical significance simply means that the
two sample means are sufficiently different that this difference cannot reasonably be
attributed to mere chance. Statistical significance does not mean that the population
means are so dissimilar that their difference is of any practical importance. When
large samples are used, small and unimportant effects are likely to be statistically
significant.

When determining practical significance, confidence intervals are more useful
than tests. In the case of the comparison between two population means, it is im-
portant to construct a confidence interval and to conclude that there is an effect of
practical significance only if all differences in that interval are large enough to be
of practical importance. How large is “large enough” is not a statistical question
but rather must be answered by a subject-matter expert. For an example, suppose
a difference between the two population means that exceeds 0.2 is considered im-
portant, at least for the purpose under consideration. If a 95% confidence interval
were [0.23, 0.26], then with 95% confidence we could conclude that there is an im-
portant difference. If instead the interval were [0.13, 0.16], then we could conclude
with 95% confidence that there is no important difference. If the confidence interval
were [0.1, 0.3], then we could not state with 95% confidence whether the difference
is important or not.

A.19 Prediction

Suppose that Y is a random variable that is unknown at the present time, for
example, a future change in an interest rate or stock price. Let X be a known
random vector that is useful for predicting Y . For example, if Y is a future change
in a stock price or a macroeconomic variable, X might be the vector of recent
changes in that stock price or macroeconomic variable.

We want to find a function of X, which we will call bY (X), that best predicts Y .

By this we mean that the mean-squared error E[{Y − bY (X)}2] is made as small as

possible. The function bY (X) that minimizes the mean-squared error will be called

the best predictor of Y based on X. Note that bY (X) can be any function of X, not
necessarily a linear function as in Section 14.10.1. The best predictor is theoretically
simple—it is the conditional expectation of Y given X. That is, E(Y |X) is the

best predictor of Y in the sense of minimizing E[{Y − bY (X)}2] among all possible

choices of bY (X) that are arbitrary functions of X.
If Y and X are independent, then E(Y |X) = E(Y ). If X were unobserved,

then E(Y ) would be used to predict Y . Thus, when Y and X are independent,
the best predictor of Y is the same as if X were unknown, because X contains no
information that is useful for prediction of Y .

In practice, using E(Y |X) for prediction is not trivial. The problem is that
E(Y |X) may be difficult to estimate whereas the best linear predictor can be esti-
mated by linear regression as described in Chapter 12. However, the newer technique
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of nonparametric regression can be used to estimate E(Y |X). Nonparametric regres-
sion is discussed in Chapter 21.

A.20 Facts About Vectors and Matrices

The norm of the vector x = (x1, . . . , xp)T is ‖x‖ = (
Pp

i=1 x2
i )

1/2.
A square matrix A is diagonal if Ai,j = 0 for all i 6= j. We use the notation

diag(d1, . . . , dp) for a p× p diagonal matrix A such that Ai,i = di.
A matrix O is orthogonal if OT = O−1. This implies that the columns of O are

mutually orthogonal (perpendicular) and that their norms are all equal to 1.
Any symmetric matrix Σ has an eigenvalue-eigenvector decomposition, eigen-

decomposition for short, which is

Σ = O diag(λi) OT, (A.47)

where O is an orthogonal matrix whose columns are the eigenvectors of Σ and
λ1, . . . , λp are the eigenvalues of Σ. Also, if all of λ1, . . . , λp are nonzero, then Σ is
nonsingular and

Σ−1 = O diag(1/λi) OT.

Let o1, . . . , op be the columns of O. Then, since O is orthogonal,

oT
j ok = 0 (A.48)

for any j 6= k. Moreover,
oT

j Σok = 0 (A.49)

for j 6= k. To see this, let ej be the jth unit vector, that is, the vector with a one
in the jth coordinate and zeros elsewhere. Then, oT

j O = eT
j and OoT

k = ek, so that
for j 6= k,

oT
j Σok = oT

j

n
O diag(λi) OT

o
ok = λjλkeT

j ek = 0.

The eigenvalue-eigenvector decomposition of a covariance matrix is used in Sec-
tion 7.8 to find the orientation of elliptically contoured densities. This decomposition
can be important even if the density is not elliptically contoured and is the basis of
principal components analysis (PCA).

A.21 Roots of Polynomials and Complex Numbers

The roots of polynomials play an important role in the study of ARMA processes.
Let p(x) = b0 + b1x + · · · bpxp, with bp 6= 0, be a pth-degree polynomial. The
fundamental theorem of algebra states that p(x) can be factored as

bp(x− r1)(x− r2) · · · (x− rp),

where r1, . . . , rp are the roots of p(x), that is, the solutions to p(x) = 0. The roots
need not be distinct and they can be complex numbers. In R, the roots of a polyno-
mial can be found using the function polyroot.
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A complex number can be written as a + b ı, where ı =
√−1. The absolute

value or magnitude of a + b ı is
√

a2 + b2. The complex plane is the set of all two-
dimensional vectors (a, b), where (a, b) represents the complex number a + b ı. The
unit circle is the set of all complex number with magnitude 1. A complex number is
inside or outside the unit circle depending on whether its magnitude is less than or
greater than 1.

A.22 Bibliographic Notes

Casella and Berger (2002) covers in greater detail most of the statistical theory in
this chapter and elsewhere in the book. Wasserman (2004) is a modern introduction
to statistical theory and is also recommended for further study. Alexander (2001)
is a recent introduction to financial econometrics and has a chapter on covariance
matrices; her technical appendices cover maximum likelihood estimation, confidence
intervals, and hypothesis testing, including likelihood ratio tests. Evans, Hastings,
and Peacock (1993) provides a concise reference for the basic facts about com-
monly used distributions in statistics. Johnson, Kotz, and Kemp (1993) discusses
most of the common discrete distributions, including the binomial. Johnson, Kotz,
and Balakrishnan (1994, 1995) contain a wealth of information and extensive refer-
ences about the normal, lognormal, chi-square, exponential, uniform, t, F , Pareto,
and many other continuous distributions. Together, these works by Johnson, Kotz,
Kemp, and Balakrishnan are essentially an encyclopedia of statistical distributions.
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∩, xxi
∪, xxi
ı, 622
ρXY , xxi, 60, 610
σXY , xxi, 609
∼, xxii
x+, 37

bias–variance tradeoff, 304
package in R, 594

A-C skewed distributions, 97, 113, 114
Abramson, I., 73
absolute residual plot, 351, 381
absolute value

of a complex number, 622
ACF, see autocorrelation function
acf function in R, 268
ADF test, 234
adf.test function in R, 234, 236
adjust parameter, 549
adjustment matrix (of a VECM), 416
AER package in R, 73, 283, 335, 361, 391
AIC, 103, 109, 187, 246, 323, 585

corrected, 105, 122, 237
theory behind, 122
underlying statistical theory, 122

Alexander, C., 248, 419, 498, 526, 622
Alexander, G., 10, 33, 438
alpha, 435, 437
analysis of variance table, 318, 321
Anderson, D. R., 122
Anderson–Darling test, 60

ANOVA table, see analysis of variance
table

AOV table, see analysis of variance
table

APARCH, 491

ar function in R, 244, 267

AR process, 218

multivariate, 266

potential need for many parameters,
220

AR(1) process, 208

checking assumptions, 213

nonstationary, 211

AR(1)/ARCH(1) process, 481

AR(p) process, 219, 224

ARCH process, 477

ARCH(1) process, 479

ARCH(p) process, 482

ARFIMA, 272

arima function in R, 212, 218, 220, 232,
243, 370

ARIMA model

automatic selection, 236

ARIMA process, 98, 225, 238

arima.sim function in R, 229

ARMA process, 223, 225, 238, 477

multivariate, 266

ARMAacf function in R, 220

Artzner, P., 524

ask price, 383, 403

asymmetric power ARCH, see APARCH

asymmetry

of a distribution, 81
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Atkinson, A., 73, 404
attach function in R, 12
auto.arima function in R, 220, 222, 231,

232, 234, 236, 246, 278, 357
autocorrelation function, 202

of a GARCH process, 480
of an ARCH(1) process, 479
sample, 206

autocovariance function, 202
sample, 206

autoregressive process, see AR(1)
process and AR(p) process

Azzalini–Capitanio skewed dis-
tributions, see A-C skewed
distributions

B (MCMC diagnostic), 554
Bühlmann, P., 277
back-testing, 106
backwards operator, 225, 227
bad data, 397
Bagasheva, B. S., 568
Bailey, J., 10, 33, 438
Balakrishnan, N., 622
bandwidth, 45

automatic selection, 46
BARRA Inc., 466
Bates, D., 404
Bayes estimator, 534
Bayes’s rule or law, see Bayes’s theorem
Bayes’s theorem, 532, 533
Bayesian calculations

simulation methods, 545
Bayesian statistics, 531
Belsley, D., 361
BE/ME, see book-equity-to-market-

equity
Bera, A., 498
Beran, J, 277
Berger, J. O., 568
Berger, R., 622
Bernardo, J., 568
Bernoulli distribution, 601
Bernstein–von Mises Theorem, 543
Best, N. G., 568
beta, 427, 428

estimation of, 434
portfolio, 431

beta distribution, 536–538, 606

bias, 133, 614
bootstrap estimate of, 133

bias–variance tradeoff, 3, 46, 80, 104,
461, 559

BIC, 103, 109, 246, 323, 326
bid price, 383, 403
bid–ask spread, 383, 403
bimodal, 598
binary regression, 390
binary response, 390
binomial distribution, 601

kurtosis of, 83
skewness of, 82

Binomial(n, p), 601
Black Monday, 3, 43

unlikely under a t model, 58
Black–Scholes formula, 10
block resampling, 276, 277
Bluhm, C., 379–381, 387
Bodie, Z., 33, 305, 438
Bolance, C., 73
Bollerslev, T., 498, 499
book value, 456
book-equity-to-market-equity, 453
book-to-market value, 456
boot package in R, 144, 276
bootstrap, 131, 133, 356, 511

block, 276
multivariate data, 167
origin of name, 131

bootstrap approximation, 132
bootstrap confidence interval

ABC, 141
basic, 139
BCa, 141
bootstrap-t interval, 137–139
normal approximation, 136
percentile, 140, 141

bootstrap package in R, 141, 144
Box test, 206
Box, G., 3, 122, 247, 277, 389, 567
Box–Cox power transformation, 63, 64
Box–Cox transformation model, 389
Box–Jenkins model, 247
box.cox function in R, 409
Box.test function in R, 214
boxcox function in R, 389, 409
BoxCox.Arima function in R, 262
boxplot, 61, 62
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boxplot function in R, 61
Britten-Jones, M., 305
Brockwell, P., 247
Brownian motion, 614

geometric, 9
Burg, D., 10
Burnham, K. P., 122
buying on margin, see margin, buying

on

ca.jo function in R, 417, 420
calibration

of Gaussian copula, 189
of t-copula, 190

Campbell, J., 10, 33, 438
capital asset pricing model, see CAPM
capital market line, see CML
CAPM, 2, 151, 423, 425, 427, 428, 434,

437, 453
testing, 434, 435

car package in R, 337, 355
Carlin, B. P., 567, 568
Carlin, J., 567, 568
Carroll, R., 73, 361, 404, 498, 593
Casella, G., 568, 622
CCF, see cross-correlation function
ccf function in R, 264
CDF, 597

calculating in R, 597
population, 601

center
of a distribution, 81

centering
variables, 334

central limit theorem, 83, 608, 616
for least-squares estimator, 350
for sample quantiles, 49, 73, 512
for the maximum likelihood estima-

tor, 99, 101, 122, 133, 136, 169,
544

for the posterior, 543, 544, 568
infinite variance, 608
multivariate for the maximum

likelihood estimator, 167, 544
Chan, K., 580, 592
Change Dir function in R, 11
change-of-variables formula, 71
characteristic line, see security

characteristic line

Chernick, M., 144
chi-squared distribution, 607
χ2

α,n, 607
Chib, S., 568
Chou, R., 499
CKLS model, 406

extended, 595
Clayton copula, see copula, Clayton
CML (capital market line), 424, 425,

434
comparison with SML (security

market line), 428
coefficient of tail dependence

co-monotonicity copula, 187
Gaussian copula, 186
independence copula, 187
lower, 185
t-copula, 186
upper, 186

coefficient of variation, 388
coherent risk measure, see risk measure,

coherent
cointegrating vector, 413, 417
cointegration, 413
collinearity, 325
collinearity diagnostics, 361
co-monotonicity copula, see copula,

co-monotonicity
components

of a mixture distribution, 90
compounding

continuous, 29
concordant pair, 183
conditional least-squares estimator, 218
confidence coefficient, 132, 615
confidence interval, 132, 511, 512, 615

accuracy of, 136
for determining practical significance,

620
for mean using t-distribution, 137,

616
for mean using bootstrap, 138
for variance of a normal distribution,

616
profile likelihood, 116

confidence level
of VaR, 505

Congdon, P., 568
conjugate prior, 536
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consistent estimator, 357
contaminant, 86, 397
Cook, R. D., 361
Cook’s D, 343
Cook’s D, 346, 347
copula, 175, 182

Archimedean, 178
Clayton, 180, 181, 187, 192
co-monotonicity, 177, 180, 181, 200
counter-monotonicity, 177, 179–181
Frank, 178, 180
Gaussian, 186, 189, 192
Gumbel, 181, 187, 192
independence, 177
nonexchangeable Archimedean, 195
t, 186, 190

copula package in R, 197, 199
cor function in R, 12
CORR, xxi
correlation, xxi, 609

effect on efficient portfolio, 292
correlation coefficient, 154, 610

interpretation, 610
Kendall’s tau, 183
Pearson, 60, 182, 610
rank, 182
sample, 610, 611
sample Kendall’s tau, 184
sample Spearman’s, 185
Spearman’s, 183, 185

correlation matrix, xxi, 149
Kendall’s tau, 184
sample, 150
sample Spearman’s, 185
Spearman’s, 185

Corr(X, Y ), xxi
counter-monotonicity copula, see

copula, counter-monotonicity
coupon bond, 19, 23
coupon rate, 21
COV, xxi
covariance, xxi, 60, 152, 609

sample, 311, 610
covariance matrix, xxi, 149, 152

between two random vectors, 154
of standardized variables, 150
sample, 150

coverage probability
actual, 136

nominal, 136
covRob, 459
Cov(X, Y ), xxi, 609
Cox, D., 389
Cox, D. R., 122
Cox, J., 580
Cp, 323
Cramér–von Mises test, 60
credible interval, 615
credit risk, 505
critical value, 617

exact, 102
cross-correlation, 457
cross-correlation function, 264, 265
cross-correlations

of principal components, 451
cross-sectional data, 361
cross-validation, 105

K-fold, 105
leave-one-out, 105

Crouhy, M., 526
cumsum function in R, 229
cumulative distribution function, 597,

see CDF
current yield, 21
CV, see cross-validation

Daniel, M. J., 568
data sets

air passengers, 204, 261
Berndt’s monthly equity returns, 454,

464
BMW log returns, 214–216, 246, 484,

486, 487, 491, 497
CPI, 264, 267, 269, 454
CPS1988, 361, 594
Credit Cards, 391, 394, 395
CRSP daily returns, 150, 155,

159–161, 164–166, 168, 515, 564
CRSP monthly returns, 457, 462
daily midcap returns, 104, 105, 160,

420, 476, 559, 562
default frequencies, 379, 381, 387
DM/dollar exchange rate, 42, 55, 58,

60
Dow Jones, 452
Earnings, 71, 72
Equity funds, 451, 452, 467, 469
EuStockMarkets, 74, 125



Index 627

excess returns on the food industry
and the market, 313, 314

Fama–French factors, 457, 462
Flows in pipelines, 64, 113, 114, 116,

191
HousePrices, 409
housing starts, 257, 258, 260, 261
ice cream consumption, 369, 371
Industrial Production (IP), 231, 264,

267, 269, 454
inflation rate, 203, 204, 207, 217, 220,

221, 223, 224, 234, 236, 240, 247,
274

mk.maturity, 36
Nelson–Plosser U.S. Economic Time

Series, 327, 333, 495
risk-free interest returns, 42, 58,

60–63, 69, 106–112, 119, 227, 579
S&P 500 daily log returns, 42, 43, 58,

60, 62, 508, 509, 520
Treasury yield curves, 415, 446, 448,

449
USMacroG, 283, 335, 405
weekly interest rates, 311, 316, 318,

320, 322, 324–326, 332
data transformation, 62, 64, 66
Davis, R., 247
Davison, A., 144, 277
decile, 49, 598
decreasing function, 599
default probability

estimation, 379–381
degrees of freedom, 320

of a t-distribution, 57
residual, 320

Delbaen, F., 524
∆, see differencing operator and Delta,

of an option price
density

bimodal, 136
trimodal, 54
unimodal, 136

determinant, xxii
deviance, 103, 105
df, see degrees of freedom
dged function in R, 94
diag(d1, . . . , dp), xxi, 621
Dickey–Fuller test, 236

augmented, 234, 236

differencing operator, 227
kth-order, 228

diffseries function in R, 275
diffusion function, 580
dimension reduction, 443, 445
discordant pair, 184
discount bond, see zero-coupon bond
discount function, 30, 32

relationship with yield to maturity,
31

dispersion, 118
distribution

full conditional, 546, 547
meta-Gaussian, 192
symmetric, 82, 83

disturbances
in regression, 309

diversification, 423, 430
dividends, 7
double-exponential distribution, 605

kurtosis of, 84
Dowd, K., 526
Draper, N., 335
drift

of a random walk, 8
of an ARIMA process, 232

dstd function in R, 94
Dt, 7
Duan, J.-C., 499
DUR, see duration
duration, 32, 33
duration analysis, 505
Durbin–Watson test, 355, 356
durbin.watson function in R, 355
dwtest function in R, 356

Eber, J-M., 524
Ecdat package in R, 120
Ecdat package in R, 42–44, 47, 54, 72,

134, 150, 203, 257, 313, 314, 457
EDF, see sample CDF
Edwards, W., 534
effective number of parameters, 556,

585
efficient frontier, 289, 293
efficient portfolio, 289, 290
Efron, B., 144
eigen function in R, 162, 164, 267
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eigenvalue-eigenvector decomposition,
162, 621

ellipse, 162
elliptically contoured density, 162, 163
empirical CDF, see sample CDF
empirical copula, 189, 193
empirical distribution, 139
Enders, W., 247, 419
Engle, R., 498, 499
equi-correlation model, 189
Ergashev, B., 568
ES, see expected shortfall
estimation

interval, 615
estimator, 614

efficient, 614
unbiased, 614

Evans, M., 622
excess expected return, 424, 428
excess return, 313, 435
exchangeable, 178
expectation

conditional, 579, 609
normal distribution, 612

expectation vector, 149
expected loss given a tail event, see

expected shortfall
expected shortfall, 1, 60, 506–509, 511,

512
expected value

nonexistent, 598
exponential distribution, 604

kurtosis of, 84
skewness of, 84

exponential random walk, see geometric
random walk

exponential tail, 88, 93

F -distribution, 607
F -test, 305, 607
F-N skewed distributions, 96, 128
Fabozzi, F. J., 568
face value, see par value
factanal function in R, 466, 467
factor, 443, 453
factor model, 432, 453, 456

BARRA, 466
cross-sectional, 463
fundamental, 453, 455

macroeconomic, 453, 454

of Fama and French, 455, 456

time series, 463

Fα,n1,n2 , 607

Fama, E., 453, 455, 470

Fan, J., 593

faraway package in R, 326, 337

FARIMA, 272

fdHess function in R, 167

fEcofin package in R, 36, 104, 160, 229,
231, 327, 420, 421, 451, 452, 454,
476, 559

Federal Reserve Bank of Chicago, 311

Fernandez–Steel skewed distributions,
see F-S skewed distributions

fGarch package in R, 94–96, 128, 485

f std
ged (y|µ, σ2, ν), 94

Fisher information, 98

observed, 100, 107

Fisher information matrix, 100, 166

fit of model

checking by fitting a more complex
model, 112

FitAR package in R, 262

fitMvdc function in R, 199

fitted values, 310, 315

standard error of, 343

fixed-income security, 17

forecast function in R, 278

forecast package in R, 220, 278

forecasting, 237, 238

AR(1) process, 237

AR(2) process, 238

MA(1) process, 238

forward rate, 26, 27, 30–32

continuous, 30

estimation of, 381

fracdiff package in R, 274

fractionally integrated, 272

Frank copula, see copula, Frank

French, K., 453, 455, 470

f std
ged (y,

nu)93

full conditional, see distribution, full
conditional

fundamental factor model, see factor
model, fundamental

fundamental theorem of algebra, 621
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Galai, D., 526
gam function in R, 594
gamma distribution, 605

inverse, 606
gamma function, 88, 605
γ(h), 205bγ(h), 206
GARCH model, 399
GARCH process, 92, 98, 477–484

as an ARMA process, 488
fitting to data, 484
heavy tails, 484
integrated, 480

GARCH(p, q) process, 483
GARCH(1,1), 489
GARCH-in-mean model, 503
garchFit function in R, 491
Gauss, Carl Friedrich, 603
Gaussian distribution, 603
GCV, 585
GED, see generalized error distribution
Gelman, A., 567, 568
generalized cross-validation, see GCV
generalized error distribution, 93, 108

skewed, 108
generalized linear models, 390
generalized Pareto distribution, 526
generator

Clayton copula, 180
Frank copula, 178
Gumbel copula, 181
nonstrict of an Archimedean copula,

193
strict of an Archimedean copula, 178

geometric Brownian motion, 614
geometric random walk, 9

lognormal, 9
geometric series, 210

summation formula, 21
Gibbs sampling, 546
Giblin, I., 419
Gijbels, I., 593
GLM, see generalized linear model
glm function in R, 391
Gourieroux, C., 248, 498, 526
Gram–Schmidt orthogonalization

procedure, 335
Greenberg, E., 568
growth stock, 456

Guillén, R., 73
Gumbel copula, see copula, Gumbel

half-normal plot, 347
Hamilton, J. D., 247, 277, 419, 498
Harrell, F. E., Jr., 335
Hastings, N., 622
hat diagonals, 343
hat matrix, 373, 584
Heath, D., 524
heavy tails, 53, 350
heavy-tailed distribution, 87, 484
hedge portfolio, 457
hedging, 403
Hessian matrix, 100, 166

computation by finite differences, 167
Heston, S., 499
heteroskedasticity, 351, 381, 477

conditional, 63, 478
hierarchical prior, 559
Higgins, M., 498
high-leverage point, 342
Hill estimator, 518, 519, 521, 522
Hill plot, 519, 521, 522
Hinkley, D., 144, 277
histogram, 43, 44
HML (high minus low), 456
Hoaglin, D., 73
holding period, 5, 286
homoskedasticity

conditional, 479
horizon

of VaR, 505
Hosmer, D., 404
Hsieh, K., 499
Hsu, J. S. J., 568
Hull, J., 526
hyperbolic decay, 270
hypothesis

alternative, 617
null, 617

hypothesis testing, 131, 617

I, xxi
I(0), 229
I(1), 229
I(2), 229
I(d), 229
i.i.d., 601
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Ieno, E., 10
illiquid, 403
importance sampling, 568
increasing function, 599
independence

of random variables, 152, 154
relationship with correlation, 611

index fund, 423, 508
indicator function, xxii, 48
inf, see infinum
infinum, 598, 600
influence.measures function in R, 345
information set, 237
Ingersoll, J., 580
integrating

as inverse of differencing, 229
interest-rate risk, 32
interest-rate spread, 453
interquartile range, 61, 97
intersection

of sets, xxi
interval estimate, 615
inverse Wishart distribution, 563
IQR, 61

James, J., 33
Jarque–Bera test, 60, 86
Jarrow, R., 33, 499
Jasiak, J., 248, 498, 526
Jenkins, G., 247, 277
Jobson, J., 305
Johnson, N., 622
Jones, M. C., 73, 593
Jorion, P., 526

Kane, A., 33, 305, 438
Karolyi, G., 580, 592
Kass, R. E., 568
KDE, see kernel density estimator
Kemp, A., 622
Kendall’s tau, see correlation coefficient,

Kendall’s tau, 184
kernel density estimator, 44–47

two-dimensional, 199
with transformation, 70

KernSmooth package in R, 581
Kim, S., 568
Kleiber, C., 73
knot, 586, 587

of a spline, 586
Kohn, R., 580
Kolmogorov–Smirnov test, 60
Korkie, B., 305
Kotz, S., 622
kpss function in R, 235
KPSS test, 234
Kroner, K., 499
Kuh, E., 361
kurtosis, 81, 83, 84

binomial distribution, 83
excess, 85
sample, 85
sensitivity to outliers, 86

Kutner, M., 335

lag, 202
for cross-correlation, 264

lag operator, 225
Lahiri, S. N., 277
Lange, N., 399
Laplace distribution, see double

exponential distribution
large-cap stock, 619
large-sample approximation

ARMA forecast errors, 239
law of iterated expectations, 609
law of large numbers, 608
leaps function in R, 331
leaps package in R, 323, 331
least-squares estimator, 310, 312, 608

generalized, 376
weighted, 351, 494

least-squares line, 311, 402
least-trimmed sum of squares estimator,

see LTS estimator
Ledoit, O., 568
Lehmann, E., 73, 568
Lemeshow, S, 404
level

of a test, 617
leverage, 12

in estimation, 585
in regression, 343

leverage effect, 491
Liang, K., 102
likelihood function, 98
likelihood ratio test, 101, 102, 607
linear combination, 157
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Lintner, J., 437
liquidity risk, 505
Little, R., 399
Ljung–Box test, 206, 214, 231
lm function in R, 317, 318, 457
lmtest package in R, 356
Lo, A., 10, 33, 438
loading

in a factor model, 456
loading matrix (of a VECM), 416, 417
location parameter, 80, 81, 83, 602, 603

quantile based, 97
locpoly function in R, 581
loess, 337, 351, 352, 584
log, xxi
log10, xxi
log-mean, 603
log price, 7
log return, see return, log
log-standard deviation, 603
log-variance, 603
Lognormal(µ, σ), 603
lognormal distribution, 603

skewness of, 85
long position, 294
longitudinal data, 361
Longstaff, F., 580, 592
Louis, T. A., 567, 568
lower quantile, see quantile, lower
lowess, 337, 584
LTS estimator, 398, 399
ltsReg in R, 399
Lunn, D. J., 568

MA(1) process, 223
MA(q) process, 223, 224
MacKinlay, A., 10, 33, 438
macroeconomic factor model, see factor

model, macroeconomic
MAD, 46, 51, 62, 81, 118
magnitude

of a complex number, see absolute
value, of a complex number

MAP estimator, 534, 536
Marcus, A., 33, 305, 438
margin

buying on, 292, 425, 426
marginal distribution, 43
marginal distribution function, 43

Mark, R., 526
market capitalization, 619
market equity, 456
market maker, 403
market risk, 505
Markov chain Monte Carlo, see MCMC
Markov process, 218, 614
Markowitz, H., 305
Marron, J. S., 73
MASS package in R, 336, 389
matrix

diagonal, 621
orthogonal, 621
positive definite, 153
positive semidefinite, 153

maximum likelihood estimator, 79, 98,
101, 218, 338, 608

not robust, 118
standard error, 99

MCMC, 131
mean

population, 601
sample, 601

as a random variable, 131, 615
mean-reversion, 203, 413
mean-squared error, 614
mean sum of squares, 321
mean-squared error, 133

bootstrap estimate of, 133
mean-variance efficient portfolio, see

efficient portfolio
median, 49, 597
median absolute deviation, see MAD
Meesters, E., 10
Merton, R., 305, 438, 580
meta-Gaussian distribution, 177
Metropolis–Hastings algorithm, 547,

548
mfcol function in R, 12
mfrow function in R, 12
Michaud, R., 300
mixed model, 591
mixing

of an MCMC sample, 552
mixing distribution, 93
mixture distribution

normal scale, 92
mixture model, 90

continuous, 92, 113
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continuous scale, 93
finite, 93

MLE, see maximum likelihood
estimator

mode, 96, 598
model

parametric, 79
semiparametric, 517

model averaging, 122
model complexity

penalties of, 103
model selection, 323
moment, 86

absolute, 86
central, 86

momentum
in a time series, 229

monotonic function, 599
Morgan Stanley Capital Index, 300
Mossin, J., 437
Mosteller, 73
moving average process, see MA(1) and

MA(q) processes
moving average representation, 209
MSCI, see Morgan Stanley Capital

Index
MSE, see mean-squared error
multicollinearity, see collinearity
multimodal, 598
multiple correlation, 320
multiplicative formula

for densities, 613

Neff , 555
N(µ, σ2), 603
Nachtsheim, C., 335
Nandi, S., 499
Nelson, C. R., 335, 404
Nelson, D., 499
Nelson–Siegel model, 383, 386
net present value, 23
Neter, J., 335
Nielsen, J. P., 73
nlme package in R, 167
nominal value

of a coverage probability, 352
nonconstant variance

problems caused by, 351
nonlinearity

of effects of predictor variables, 351
nonparametric, 507
nonrobustness, 66
nonstationarity, 480
norm

of a vector, 621
normal distribution, 603

bivariate, 612
kurtosis of, 84
multivariate, 156, 157
skewness of, 84
standard, 603

normal mixture distribution, 90
normal probability plot, 50, 92, 381

learning to use, 349
normality

tests of, 59, 60

operational risk, 505
optim function in R, 111, 172, 198
order statistic, 48, 49, 507
orthogonal polynomials, 334
outlier, 349

extreme, 349
problems caused by, 350
rules of thumb for determining, 349

outlier-prone, 53
outlier-prone distribution, see heavy-

tailed distribution
Overbeck, L., 379–381, 387
overdifferencing, 275
overdispersed, 547
overfit

density function, 46
overfitting, 103, 583
overparameterization, 112
oversmoothing, 46, 583

pD, 557
p-value, 60, 317, 618
PACF, see partial autocorrelation

function
pairs trading, 419
panel data, 361
par function in R, 12
par value, 18–20
Pareto, Vilfredo, 606
Pareto constant, see tail index
Pareto distribution, 522, 606
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Pareto tail, see polynomial tail, 522
parsimony, 2, 80, 201, 202, 206, 208,

210, 219
partial autocorrelation function,

245–247
PCA, see principal components analysis
pca function in R, 445
Peacock, B., 622
Pearson correlation coefficient, see

correlation coefficient, Pearson
percentile, 49, 597
Pfaff, B., 248, 419
Phillips–Ouliaris test, 414, 415
Phillips–Perron test, 234
φ(x), 603
Φ(y), 603
Pindyck, R., 498
plogis function in R, 410
Plosser, C., 335
plus function, 587

linear, 587
quadratic, 588
0th-degree, 589

pnorm function in R, 14
po.test function in R, 415
Poisson distribution, 388
Pole, A., 419
polynomial regression, see regression,

polynomial
polynomial tail, 88, 93
polynomials

roots of, 621
polyroot function in R, 234, 621
pooled standard deviation, 618
portfolio, 151

efficient, 290, 293, 295, 424
market, 424, 427, 432, 434
minimum variance, 288

positive part function, 37
posterior CDF, 536
posterior distribution, 532
posterior interval, 536, 543
posterior probability, 533
power

of a test, 619
power transformations, 63
pp.test function in R, 234
practical significance, 620
precision, 539, 562

precision matrix, 562
prediction, 401

best, 612, 620
best linear, 401, 427, 612

relationship with regression, 402
error, 402, 612

unbiased, 402
linear, 401
multivariate linear, 403

price
stale, 383

pricing anomaly, 456
principal axis, 444
principal components analysis, 443, 445,

447, 449, 451, 452, 621
prior

noninformative, 531
prior distribution, 532
prior probability, 533
probability density function

conditional, 608
elliptically contoured, 157
marginal, 608
multivariate, 613

probability distribution
multivariate, 149

probability transformation, 186, 602
profile likelihood, 115
profile log-likelihood, 115
proposal density, 547
pseudo-inverse

of a CDF, 598, 602
pseudo-maximum likelihood

for copulas, 188
parametric for copulas, 189
semiparametric for copulas, 189

Pt, 5
pt, 7

qchisq function in R, 616
QQ plot, see quantile–quantile plot
qqnorm function in R, 50
qqplot function in R, 58
quadratic programming, 295
quantile, 49, 50, 597

lower, 598
population, 601
respects transformation, 598
upper, 102, 598
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quantile function, 598, 602
quantile function in R, 49
quantile transformation, 602
quantile–quantile plot, 57, 58
quartile, 49, 597
quintile, 49, 598

<, xxi
R-squared, 319, 402
R2 adjusted, 323
R2, see R-squared
Rachev, S. T., 568
rally

bond, 17
random sample, 601
random variables

linear function of, 151
random vector, 149, 613
random walk, 8, 211

normal, 8
random walk hypothesis, 1
rank, 183
rank correlation, 183
read.csv function in R, 11
regime, 111
regression, 579

ARMA disturbances, 369
ARMA/GARCH disturbances, 494
cubic, 335
geometrical viewpoint, 321
linear, 579
local linear, 581
local polynomial, 581
logistic, 390, 410
multiple linear, 219, 309, 316, 403
multivariate, 454
no-intercept model, 436
nonlinear, 376, 378, 379, 382, 404
nonlinear parametric, 379, 579
nonparametric, 352, 379, 579, 621
polynomial, 317, 334, 338, 339, 352,

379
is a linear model, 379

probit, 390
spurious, 360
straight-line, 310
transform-both-sides, 386
with high-degree polynomials, 335

regression diagnostics, 343

regression hedging, 403, 404
regsubsets function in R, 323
Reinsel, G., 247, 277
rejection region, 617
REML, 591
reparameterization, 602
resampling, 50, 131, 132, 138, 511

block, 276
model-based, 132

for time series, 276, 277
model-free, 132, 511
multivariate data, 167
time series, 276

residual error MS, 462
residual error SS, 319
residual mean sum of squares, 321, 585
residual outlier, 342
residuals, 213, 310, 348, 379

correlation, 349, 354
effect on confidence intervals and

standard errors, 354
externally studentized, 345, 348
externally studentized (rstudent), 342
internally studentized, 345
nonconstant variance, 348, 350
nonnormality, 348, 349
raw, 344, 348

return
adjustment for dividends, 7
continuously compounded, 6, see

return, log
log, 6, 7
multiperiod, 7
net, 1, 5
simple gross, 6

return-generating process, 430
reversion

to the mean, 229bR, 555
ρ(h), 202bρ(h), 206
ρXY , 60, 610bρXY , 610
risk, 1

market or systematic component, 430
unique, nonmarket, or unsystematic

component, 430, 432, 436
risk aversion

index of, 426
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risk factor, 443, 453, 463
risk management, 505
risk measure

coherent, 524
risk premium, 285, 423, 424, 427
risk-free asset, 285, 287, 423
Ritchken, P., 499
rnorm function in R, 13
Robert, C. P, 568
robust estimation, 399
robust estimator, 47
robust estimator of dispersion, 118
robust modeling, 399
robust package in R, 399, 459
root finder

nonlinear, 35
Ross, S., 580
Rossi, P., 499
<p, xxi
rstudent, 342, 343, 345
Rt, 5
rt, 7
Rubin, D., 567, 568
Rubinfeld, D., 498
rug, 45
Ruppert, D., 10, 73, 361, 404, 498, 593
rXY , 610
Ryan, T. P., 335

S&P 500 index, 435
sample CDF, 48
sample median

as a trimmed mean, 118
sample quantile, 48–50
Sanders, A., 580, 592
scale matrix

of a multivariate t-distribution, 158
scale parameter, 80, 81, 602–604

t-distribution, 89
inverse, 80, 606
quantile based, 97

scatterplot, 610
scatterplot matrix, 155
scatterplot smoother, 351
scree plot, 448
Seber, G., 404
security characteristic line, 429–432,

434
security market line, see SML

Self, S., 102
self-influence, 585
selling short, see short selling
Serling, R., 73
shape parameter, 80, 93, 602, 603, 607
Shapiro–Wilk test, 60, 77
shapiro.test function in R, 60
Sharpe, W., 10, 33, 289, 437
Sharpe’s ratio, 289, 290, 293, 424
Shephard, N., 568
short position, 294
short rate, 406
short selling, 92, 293, 403
shoulder

of a distribution, 81
shrinkage estimation, 303, 568
Siegel, A. F., 404
σXY , 60, 609bσXY , 610
sign function, 184
Silverman, B., 73
Simonato, J., 499
simulation, 131
simultaneous test, 206
single-factor model, 432
single-index model, see single-factor

model
skewed-t distribution, 54
skewness, 81, 82, 84, 350

lognormal distribution, 85
negative or left, 82
positive or right, 82
reduction by data transformation, 62
sample, 85
sensitivity to outliers, 86

skewness parameter
quantile-based, 97

Sklar’s theorem, 176
small-cap stock, 619
Smith, A., 568
Smith, H., 335
SML (security market line), 427, 428

comparison with CML (capital
market line), 428

SML (small minus large), 456
smoother, 582
smoother matrix, 584

for a penalized spline, 590
sn package in R, 96, 164
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source function in R, 11
sourcing a file, 11
span

tuning parameter in lowess and loess,
337, 584

Spearman’s rho, see correlation
coefficient, Spearman’s rho

Spiegelhalter, D. J., 568
spline, 352

general degree, 589
linear, 586, 587
penalized, see penalized spline
quadratic, 588
smoothing, 351

spot rate, 23, 25
spurious regression, 355, 414
stable distribution, 608
stale price, 377
standard deviation

sample, 601
standard error, 317, 615

Bayesian, 549, 556
bootstrap estimate of, 133
of the sample mean, 615

standardization, 150
standardized variables, 150
stationarity, 42, 201, 264

strict, 202
weak, 202, 264

stationary distribution, 614
stationary process, 201
statistical arbitrage, 419

risks, 419
statistical factor analysis, 466
statistical model, 201

parsimonious, 201, 202
statistical significance, 620
Stein estimation, 568
Stein, C., 568
stepAIC function in R, 329, 336, 393,

410
Stern, H., 567, 568
sbθ, 615
stochastic process, 201, 614
stochastic volatility model, 500
STRIPS, 383
studentization, 345
subadditivity, 524
sum of squares

regression, 319, 321
residual, 319
total, 319

support
of a distribution, 95

supremum, 600
Svensson model, 383, 386
Svensson, L. E., 404
sXY , 610
s2

Y , 601
symmetry, 598

t-test
independent samples, 618
one-sample, 617
paired samples, 619
two-sample, 618

t-distribution, 53, 57, 88, 89, 108, 137
A-C skewed, 113
classical, 89
F-S skewed, 107
kurtosis of, 84
multivariate, 157
multivariate skewed, 164
skewed, 109
standardized, 89

t-meta distribution, 178
t-statistic, 137, 317
tail

of a distribution, 51
tail dependence, 156, 158
tail independence, 156
tail index, 88, 607

estimation of, 518, 520
limits on practical value, 113
regression estimate of, 518
t-distribution, 90

tail loss, see expected shortfall
tail parameter

quantile-based, 97, 141–143
tα,ν , 88
tangency portfolio, 287, 290, 291, 305,

423
Taylor, J., 399
TBS regression, see regression,

transform-both-sides
term structure, 18, 24, 25, 30
test bounds

for the sample ACF, 206, 213
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test data, 104
Thomas, A., 568
Tiao, G., 567
Tibshirani, R., 144
time series, 42, 98, 477

multivariate, 264
univariate, 201

time series plot, 42, 202, 203
tν [ µ, {(ν − 2)/ν}σ2], 89
total SS, see sum of squares, total
tower rule, 609
trace, xxii
trace plot, 552
training data, 104
transfer function models, 277
transform-both-sides regression,

386–388
transformation

variance-stabilizing, 69, 388
transformation kernel density estimator,

71
Treasury bill, 287
Trevor, R., 499
trimmed mean, 118
trimodal, 56
true model, 2
truncated line, 587
Tsay, R., 247, 498
tsboot function in R, 276
tseries package in R, 235, 415
Tuckman, B., 33, 404
Tukey, J., 73
tuning

Metropolis–Hastings algorithm, 548
type I error, 617
type II error, 617

uncorrelated, 154, 610
underfit

density function, 46
underfitting, 583
undersmoothed, 46
undersmoothing, 583
uniform distribution, 602
uniform-transformed variables, 189
Uniform(a, b), 602
unimodal, 545, 598
union

of sets, xxi

unique risks, 453
uniquenesses, 468, 469
uniroot function in R, 35
unit circle, 622
unit root tests, 233–235
upper quantile, see quantile, upper
urca package in R, 417, 420

validation data, 104
value investing, 456
value stock, 456
value-at-risk, see VaR
van der Linde, A., 568
van der Vaart, A., 73, 568
VaR, 1, 60, 286, 505, 506, 508, 511, 512,

514, 523, 524
confidence interval for, 511
estimation of, 520
incoherent, 524
nonparametric estimation of, 507
not subadditive, 524
parametric estimation of, 521
semiparametric estimation of, 516,

517
single-asset, 506, 507

VAR process, see AR process,
multivariate

VaR(α), 506
VaR(α, T ), 506
variance, xxi

conditional, 478, 480, 609, 612
normal distribution, 612

infinite, 598
practical importance, 599

marginal, 480
population, 601
sample, 311, 601

variance function model, 479
variance inflation factor, 325, 326, 329
varimax, 469, 470cvar+(ψ | Y ), 554
Vasicek, O., 580
VECM, see vector error correction

model
vector error correction model, 415–417
Vidyamurthy, G., 419
VIF, see variance inflation factor
vif function in R, 326, 337
volatility, 1, 8
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volatility clustering, 10, 42, 477
volatility function, 580

W (MCMC diagnostic), 554
Wagner, C., 379–381, 387
Wand, M. P., 73, 593
Wasserman, L., 122, 593, 622
Wasserman, W., 335
Watts, D., 404
weak stationarity, 202
Webber, N., 33
Weddington III, W., 419
Weisberg, S., 361
Welsch, R., 361
white noise, 205, 226

Gaussian, 205
i.i.d., 205, 482
t, 205
weak, 205, 482

Wild, C., 404
WinBUGS, 546, 549, 568

Wishart distribution, 562
WN(µ, σ), 205
Wolf, M., 568
Wolldridge, J., 499
Wood, S., 593

y-hats, see fitted values
Yau, P., 580
Y , 601
yield, see yield to maturity
yield curve, 568
yield to maturity, 21–24, 27, 31

coupon bond, 24
Yule–Walker equations, 253

zα, 603
Zeileis, A., 73
zero-coupon bond, 18, 23, 27, 30, 32,

377
Zuur, A., 10
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