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Preface

The investigation of nonlinear systems with a small parameter is attributable
to a lot of modern problems of mechanics, physics, hydrodynamics, electrody-
namics of charge-particle beams, space technology, astrodynamics, and many
others. The key problem in solution of various applied problems is that of the
stability of solutions of systems of equations in various senses. The methods
of the classical stability theory, if appropriately adapted, may be applied to
systems containing a small parameter.

The progress in solving problems of the theory of stability and nonlinear
perturbations is associated with finding ways, around significant difficulties
connected with the growth of the number of variables characterizing the state
of a system, which may include critical variables. In addition, the presence
of critical variables may result in a situation when not only the first ap-
proximation cannot solve a stability problem, but also the further nonlinear
approximations below some order cannot solve it.
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New approaches recently developed for systems with a small parameter
include the following:

A. The development of the direct Lyapunov method for the study of the
boundedness and stability of systems with a finite number of degrees of free-
dom with respect to two different measures.

B. The analysis of stability on the basis of the combination of the con-
cepts of the direct Lyapunov method and the averaging method of nonlinear
mechanics for some classes of linear and nonlinear systems.

C. The generalization of the direct Lyapunov method on the basis of the
concepts of the comparison principle and the averaging method of nonlinear
mechanics.

D. The development of the method of matrix-valued Lyapunov functions
and its application in the study of stability of singularly perturbed systems.

The core subject of investigation in this book is the systems with a small
parameter, including nonlinear systems of weakly connected equations. Here
approaches A —D are applied and developed when solving specifically defined
problems.

The monograph consists of five chapters, and their content is outlined
below.
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The first chapter provides description of the mathematical foundations of
the methods of qualitative analysis of systems with small parameter. Namely,
it contains the necessary information from the theory of integral and differ-
ential inequalities, the comparison technique, and the main theorems of the
direct Lyapunov method. In this chapter, stability definitions for systems with
small parameter are discussed as well as their relationship with the classical
Lyapunov definitions.

The second chapter contains the results of the development of new ap-
proaches to the problem of the boundedness of motion of weakly connected
nonlinear systems. The direct Lyapunov method and the comparison tech-
nique are applied in this chapter to establish the conditions for the bounded-
ness of nonlinear systems with respect to two different measures. The results of
the analysis of the dynamical behavior of an individual subsystem in a complex
system of weakly connected equations are given, which were obtained via the
application of strengthened Lyapunov functions. The uniform boundedness
and the uniform ultimate boundedness are in terms of the vector Lyapunov
function and the theory of M-matrices. The final section of the chapter deals
with the problem of the boundedness of solutions of the Lienard oscillator with
weak damping, the boundedness of solutions of the Lurie-Postnikov system,
and the boundedness of solutions for nonlinear systems with weak nonlinear
constraints.

In the third chapter, the application of the direct Lyapunov method and
the comparison technique is set forth for solving the problem of stability of
solutions of a weakly connected system of differential equations. The anal-
ysis is carried out under different assumptions on the connection functions
of subsystems. The sufficient conditions for asymptotic and uniform asymp-
totic stability were established based on the auxiliary vector function. Also, a
general problem on polystability of motion of a nonlinear system with small
parameter is formulated. In the section dealing with applications, some prob-
lems of the automatic control theory are considered.

The fourth chapter contains the description of one general approach to
the study of stability of solutions for nonlinear systems with small perturbing
forces. This approach is based on the generalization of the direct Lyapunov
method combined with the asymptotic method of nonlinear mechanics. In
addition, generalizations of the main Lyapunov theorems on stability and
Chetayev’s theorem on instability for the class of systems under considera-
tion are given. Due to the difficulties arising in construction of solutions for
a degenerate system, an approach associated with the substitution for its ex-
act solution by the solution of a limiting system is discussed in the chapter.
Systems of weakly connected oscillators are considered as applications.

The fifth chapter gives an account of results of the analysis of systems in
Banach Spaces with weakly connected subsystems on the basis of the gen-
eralization of the direct Lyapunov method. Both vector and matrix-valued
auxiliary functions are applied here.

Thus, this book contains the description of the main approaches to the
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analysis of stability of solutions of systems with a small parameter, which
have been developed for the last four decades. Those approaches do not ex-
haust the given problem, but they may help solve many applied problems
of the modern technique and technologies. In addition, their certain “incom-
pleteness” leaves room for further search of more effective approaches in this
line of investigation.

The Member of the Academy of Sciences Yu.A.Mitropolsky has more
than once drawn the authors’ attention to the necessity of the development of
methods of qualitative analysis of systems with a small parameter that could
be used in engineering. The proposed approaches provide a kind of answer
to this problem in the context of the modern development of the qualitative
theory of equations.

The main results given in this monograph were obtained in the Department
of stability of processes of the Institute of Mechanics of the National Academy
of Sciences of Ukraine in the period of 1978 -2015 in the frame of the depart-
ment’s subject of scientific investigation: the development of qualitative and
analytical methods of the analysis of dynamics and stability of functioning of
complex nonlinear and controllable systems, including systems with structural
and stochastic perturbations, and with aftereffect.

This subject is the extension and further development of some lines of
investigation conducted in the institute by Member of the Academy of Sciences
N.M. Krylov and N.N. Bogolyubov'.

1See the bibliography of the works of N.N.Bogolyubov in nonlinear mechanics in the
article of A. A. Martynyuk, E.F.Mishchenko, A. M. Samoilenko, and A.D.Sukhanov, Aca-
demician N.N. Bogoliubov, Nonlinear Dynamics and Systems Theory, 9(2) (2009) 109-115.
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Chapter 1

Preliminaries

1.1 Introductory Remarks

For the mathematical simulation of many processes of the real world, sys-
tems of nonlinear differential equations are used which contain a small positive
parameter y participting in the determination of the time scale of the process.
In general, the equations have the form

(Cii_i/ :Y(tayaﬂ)a y(t()) = Yo, (111)
where y(t) € R™ is the vector of the state of a system at a point of time ¢t € R,
R=(-00,+), tg € Ry, Y: RxR"x M — R", M = (0,1], p is a small
parameter.

Section 1.2 contains Gronwall-Bihari fundamental inequalities, differential
and integral inequalities applied in the book.

In Section 1.3, theorems on the dependence of solutions of a system of dif-
ferential equations on the parameter p are formulated. Here it is also demon-
strated that the application of a finite majorizing equation instead of a differ-
ential equation essentially improves the estimate of the radius of convergence
of series, which represent a solution of a system in powers of the parameter.
In addition, the well-known theorems of extendability of solutions are quoted,
as well as the Poincare theorem on presentation of solutions in powers of a
small parameter.

In Section 1.4, the original Lyapunov definitions of various types of stability
of motion are given.

Section 1.5 contains the basic theorems of Lyapunov direct method on the
basis of a scalar Lyapunov function.

Section 1.6 contains the basic theorems of the principle of comparison with
the scalar and vector Lyapunov functions.

In the concluding section, the definitions of the main types of u-stability
of solutions of a system with a small parameter are given. The connection
between Lyapunov stability and u-stability is demonstrated with a number of
specific examples.

Thus, Chapter 1 contains a set of known and new results which constitute
the basis for the mathematical analysis of solutions of systems of differential
equations with a small parameter.
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1.2 Fundamental Inequalities
1.2.1 Gronwall type inequalities

To begin with, we take one of the simplest integral inequalities that are
used most often.

Theorem 1.2.1 Let the functions m,v € C(Ry, Ry). Assume that for
some ¢ > 0 the following inequality holds:

m(t) < c+ /v(s)m(s) ds, t>ty>0. (1.2.1)
Then .
m(t) < cexp [/v(s) ds}7 t > to. (1.2.2)

to

Proof Denote the right-hand part of the inequality (1.2.1) by z(¢). Here
z(to) = ¢, m(t) < z(¢), and 2'(t) = v(t)m(t) < v(t)z(t) at all ¢ > to. Since

e (- [ tas) — ntremn - [ o))

0 0

_ %(Z(t) exp ( - /tv(s) ds>>,

to

i(z(t) exp ( - /tv(s) ds)) <o0.

to

then

Integrating this inequality from ¢g to ¢, obtain

2(t) exp ( - /v(s) ds> — 2(to) < 0.

to

Taking into account that z(tg) = ¢ and m(t) < z(t), we obtain the inequality
(1.2.2) at any ¢ > 0. Theorem 1.2.1 is proved.

The above classical proof of Theorem 1.2.1 holds much significance. How-
ever, we can prove this theorem by using a linear differential inequality and
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a formula of variation of constants. For this purpose, consider a more general
case.

Theorem 1.2.2 Let the functions m,v,h € C(Ry, Ry) and

m(t) < h(t) + /v(s)m(s) ds, t>to. (1.2.3)

Then

t

m(t) < h(t) + / [w(s)h(s)] exp ( j o(8) dg)ds, £> 1. (1.2.4)

to
If the function h is differentiable, then

t

m(#) < h(to) exp (/U(s> ds) —&-/th’(s) exp (/v(f) dg) ds, > to.

to

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
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demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
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¢
Proof To prove the inequality (1.2.4), assume that p(t) = [v(s)m(s)ds,
to
so that p(tp) =0 and

p'(t) =v(t)ym(t), t=to.
Since m(t) < h(t) + p(t), then

p'(t) < v(@)p(t) +o(B)h(t), = to.

t
Assuming ¢(t) = p(t) exp ( — Jo(s) ds), we see that ¢(tp) = 0 and

to

whence
q(t) < /h(s)v(s)exp < /v({) df) ds, t>to.
to tO
As a result, obtain the inequality

t t

o) < [ olohis) e ( [ ds) ds, t>to,

to S

which directly implies (1.2.4).
To prove the inequality (1.2.5), denote the right-hand part of the inequality
(1.2.3) by p(t), so that

p'(t) = v(t)m(t) + h'(t), plto) = h(to).

The above expression, in view of (1.2.3), results in the linear differential in-
equality
p'(t) < v(t)p(t) + (1), p(to) = hlto).

Now it is easy to obtain

p(t) < h(ty) exp (jv(s) ds) + jh’(s) exp <ju(§) dg) ds, t>to,

to to
hence the estimate (1.2.5).

At first, the estimates (1.2.4) and (1.2.5) are different. In actual truth,
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they are equivalent. Thus, integrating the second summand in the right-hand
part of the inequality (1.2.5) in parts, obtain

] s)enn / o(€)d€ ) ds = h(e) ~ h(to) exp / ol€)de) +
T / (s )o(s) exp ( / o(€) dg) ds,

which, taking into account the estimate (1.2.5), gives (1.2.4). Thus, it is obvi-
ous that the assumption of the differentiability of the function h(t) does not
give anything new.

If we assume in Theorem 1.2.2 that the function A is positive and nonde-
crescent, then the estimate (1.2.4) can be transformed into

m(t) < h(t) exp (/v(s) ds)7 t > to. (1.2.6)
A . _ m(t) .
ssuming w(t) 0k from (1.2.3) obtain
w(t) <1+ /v(s)w(s) ds, t>to.

¢
Hence, according to Theorem 1.2.1, obtain w(t) < exp (fv(s) ds), which
to
implies (1.2.6).
The estimate (1.2.6) can be obtained from the inequality (1.2.4), since

h(t) +/tv(5)h(s)exp (/tv(g) df)ds

<t [ e [uerae)el
= h(t) (1 - /te'ﬂs) da(s)) = h(t) exp (/tv(g) dg), t>to.

Ezample 1.2.1 Let the function m € C(R4, R4) and
¢
m(t) < /(a +bm(s))ds, t > to,

to
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where ¢ > 0 and b > 0. Then

m(t) < - [exp(b(t —to)) — 1], t > to.

SR

Ezample 1.2.2 Let the function m € C(R4+, Ry) and

m(t) <a+ /(b+cm(s))ds, t > to,

to

where a,b > 0 and ¢ > 0. Then

m(t) < ZE) [exp(c(t —tg)) — 1] + aexp(c(t —to)), t > to.

360°
thinking.

Deloitte.
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Ezample 1.2.3 Let the function m € C(R4, R4) and

¢
m(t) <et —|—b/m(s) ds, t>to

to

at b > 0. Then
m(t) <exp[(b+ 1)t — btg], t > to.

Ezample 1.2.4 Let the function m € C(Ry, Ry) and let for ¢ > ¢y the
following inequality hold:

t

m(t) < mito) exp(—r(t — to)) + / [exp(—r(t — 5)))(am(s) + b) ds,

where r,a,b > 0 and » — a > 0. Then for t > tg

b
m(t) < mfto) exp[—(r — a)(t —to)] + —[1 — exp(=(r — a)(t — t0))]-
Now we will consider integral inequalities with a separable kernel, as they
may also be reduced to linear differential inequalities.

Theorem 1.2.3 Let the functions m,h,q,v € C(Ry, Ry) and the follow-
ing inequality be satisfied:

m(t) < ht) + / dOu(s)m(s)ds, ¢ > to. (1.2.7)
Then
m(t) < h(t) + q(t) /v(s)h(s)exp (/0(5) df) ds, t>to. (1.2.8)

Proof Assume that p(t) = fv(s)m(s) ds, so that p(tg) = 0 and p'(¢) =
w(t)m(t). Since m(t) < h(t) + q(D)p(t), obtain
P'(t) < v(t)q()p(t) + v(t)h(t), t=to,

hence
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Hence follows the inequality (1.2.8).

Corollary 1.2.1 Let the functions m,h,g;,v; € C(Ry,Ry), i = 1,
2,...,n, and

—i—Zgl /z m(s)ds, t>to.

to

Then

m(t) < h(t) + G(t /v exp</v )ds, t> to,

where G(t) = sgpgi(t) and V(t) = évz(t)

SIMPLY CLEVER
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1.2.2 Bihari type inequalities

The theory of Gronwall integral inequalities considered in Subsection 1.2.1
may be applied to a separate type of nonlinear integral inequality known as
Bihari inequalities. In this section you will find some results related to such
inequalities, which correspond to the results obtained in Subsection 1.2.1.

Theorem 1.2.4 Let the functions m,v € C(R4+,R+), g € C((0,00),
(0,00)) and let g(u) be nondecrescent with respect to u. Assume that for

some ¢ >0
t

m(t) <c+ /v(s)g(m(s)) ds, t>typ>0. (1.2.9)

Then the following inequality holds:

m(t) < G! [G’(c) + /tv(s) ds}, to<t<T,

where G(u) — G(ug) = [ 76)’ G~1(u) is the reverse function to G(u) and
ug 9\8

¢
T = sup {t >to: Gle)+ [v(s)ds € domG_l}.
to
Proof Denote the right-hand part of the inequality (1.2.9) by p(t) so that
p(to) = c and p'(t) = v(t)g(m(t)). Since g is nondecrescent with respect to u

and m(t) < p(t), then p’(t) < v(t)g(p(t)), p(to) = c. Integrating this inequality
from tq to ¢, obtain

p(t)

G(p(t)) — G(c) = / %g / o(s) ds

C

and therefore

m(t) < p(t) < G~ {G(c) + /tv(s) ds} to<t<T.

to

The function g € C[R4, R4] is said to be subadditive if g(u 4+ v) < g(u) +
g(v), and superadditive if the above inequality has the opposite sign.

Theorem 1.2.5 Let the functions m,v,h € C(Ry,Ry), g € C((0,00),
(0,00)), let the function g(u) be nondecrescent, and let the following inequality
hold:

m(t) < h(t) + /U(s)g(m(s)) ds, t>to.
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Then:
(a) if the function g(u) is subadditive, then
¢
m(t) < h(t) + G~ [G(c) + /v(s) ds}, to<t<Tp<T, (1.2.10)
to

where G, G™1, and T have the same values as in Theorem 1.2.4, ¢ =
To

J v(s)g(h(s)) ds;

to
(b) if the function h is not increscent, then

t

m(t) < —h(to) +G—1{G[h(t0)] +/u(s) ds}, to<t<T. (1.2.11)

to

¢
Proof Assuming that p(t) = [v(s)g(m(s)) ds and taking into account the
to
properties of g, obtain p(tg) = 0 and

p'(t) < o(t)g(p(t)) + v(t)g(h(t)).

¢

Note that the function o(t) = [v(s)g(h(s))ds is nondecrescent, and hence,
to

assuming ¢ = o(Tp), at some Ty, to < To < T, obtain

p(t) < e+ / o(8)g(p(s))ds, to<t<Tp<T.

to

According to Theorem 1.2.4, the above expression implies the estimate
(1.2.10).

If the function h is not increscent, then the definition of p(¢) implies that
g(m(t)) < g(h(to) + p(t)). Assuming h(to) + p(t) = w(t), obtain

w(t) =p'(t) = v(t)g(m(t)) < v(t)g(w(t)), wlto) = h(to).

From the above equation, according to Theorem 1.2.9, we arrive at the esti-
mate (1.2.11).

The estimate (1.2.10) may also be obtained in the case when in Theorem
1.2.5 the function g(u) is assumed to be nonincrescent and superadditive with
respect to u.

Using Theorem 1.2.2, the following result may be proved.
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Theorem 1.2.6 Let the functions m,h € C(R+,R+), g € C((0,00),
(0,00)) and the function g(u) be nondecrescent with respect to u. Assume
that K € C[R%, Ry, there exists a function K(t,s) which is continuous and
nonnegative, and at t > tg the following inequality holds:

m(t) < h(t) + /K(t,s)g(m(s)) ds.

Then:

(a) if the function g is subadditive, then

m(t) < h(t) +va(t) + G1 {G(c) + /vl(s) ds}, to <t<ty<T,

to

where G, G™' and T have the same values as in Theorem 1.2.4,

To ¢
c:/vl(s)g(vg(s))ds7 v (t) :K(t7t)+/Kt(t, s)ds,

walt) = K(60h(o) + [ Kilt,s)g(h(s)) ds

(b) if the function h is nondecrescent, then

t

m(t) < h(t) — hty) + G [G(h(to)) + /m(s) ds}, lo<t<T.

to

A typical nonlinear integral inequality that can be reduced to Theorem
1.2.4. has the following form.

Theorem 1.2.7 Let the functions m,v € C(Ry,Ry), w € C(R,Ry)
and let the following inequalities hold:

m(t) < c+ /{v(s)m(s) +wls,m(s)]} ds, t>to, (1.2.12)

where ¢ > 0. Assume that

t

oficzen ([rrae)) xturemn( [oas). a2

to
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where A € C(R4,Ry), g € C((0,00),(0,00)) and the function g(u) is decres-
cent with respect to u.
Then

m(t) < G! [G(c) + /tA(s)ds] exp <jv(s) ds>, to<t<T, (1.2.14)

to to
G, G7Y, and T are the same as in Theorem 1.2.4.

Proof Let the right-hand part of the inequality (1.2.12) be equal to
t

p(t) exp (fv(s) ds), so that, using (1.2.12) and (1.2.13), obtain

to

t

[P’ (1) + v(t)p(t)] exp ( / v(s) d8> = v(t)m(t) + w(t, m(t))

< [(Op0) + A m)]exp ( - / ols)ds ) exp ([ ofs)ds).

to
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¢
Since the function ¢ is nondecrescent and m(t) < p(t) exp (f v(s) ds), obtain
to

P'(t) < At)g(p(t), plto) = c.

Hence according to Theorem 1.2.4 obtain
t
p(t) < G! {G(c) +/A(s) ds}, to<t<T,
to

which proves the estimate (1.2.14).

Ezample 1.2.5 Let the functions m,v,h € C(R4, R4), so that at ¢ > 0,
0<p<1

m(t) < c+/v(s)m(s) ds—l—/h(s)(m(s))pds7 t > to.

Then at ¢ > tg

) < { . [soresn o [oerae]ac) " e [oora.

to to to
where g =1 — p.

If the kernel K(¢,s) in Theorem 1.2.6 is such that K(¢,s) < 0, then in
the frame of this theorem one only can obtain a rough estimate. However, the
following theorem provides the possibility to obtain a better estimate.

Theorem 1.2.8 Assume thatm € C(Ry,Ry), g € C((0,0),(0,00)), the
function g(u) is nondecrescent with respect to u, and at some ¢ >0, a >0

m(t) < c+ /e_o‘(t_s)g(m(s))d& t > to. (1.2.15)

to

Then
m(t) < (1 + )\0)0, t > to,

where \g > 0 satisfies the relations

g((L4+Xo)e) —acho =0, g(I1+A)c)—ach >0, Ae€[0,N). (1.2.16)

Proof Let the right-hand part of the inequality (1.2.15) be equal to p(¢),
so that p(tg) = ¢ and

p'(t) = g(m(t)) — a(p(t) — ¢) < g(p(t)) — ap(t) + ac. (1.2.17)
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Transforming p(t) = (1 + 2(t))c and 7 = at, it is easy to reduce (1.2.17) to

the form
dz 0

E<laraa-z o(2) =0

We state that z( ) < Ao, T € [10,00). If this is not so, then one can find

«
*

a 7" < oo such that z(T—) = Ao and z(z) < Xo, T € [10,7*]. From (1.2.17)
« «

1
it is clear that &g((l + A)c) < A for all X € [0, Ag]. Hence

Ao
_/ ds <
o= Ao —S
0

which is a contradiction. Therefore, z(z) < Xo at all T € |19, 00), which in
o)

¢
z

,—\
o

)
ds

acg((L+s)c) —s

S T* — 70,

o

its turn results in the inequality

m(t) <p(t) <1+ Xo)e, > to.
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1.2.3 Differential inequalities

It is known that the theory of differential equations plays a key role in the
study of qualitative behavior of solutions of differential equations of different
types. This theory is helpful when one uses integral and integrodifferential
equations, since in numerous cases their study may be reduced to the study
of differential inequalities.

Consider the differential system

CCZZ—? =g(t,u), u(ty) = uo, (1.2.18)
where g € C(R+ x R"™, R™).

The function g is called quasimonotone nondecrescent, if from the compo-
nent-wise inequality z < y and z; = y; at some ¢, 1 <17 < n, it follows that
gi(t,z) < gi(t,y) at any ¢ > to.

Now we will consider the concept of an extremum solution of the system
(1.2.18).

Let r(t) be a solution of the system (1.2.18), existing on some interval
J = [to,to + a]. Then r(t) is called the maximum solution of the system
(1.2.18), if for each solution wu(t) of the system (1.2.18), existing on J, the
following inequality holds:

u(t) <r(t), teld (1.2.19)

The minimum solution is determined in a similar way, but the sign in the
inequality (1.2.19) is changed to the opposite sign.

Surely, inequalities between vectors are understood componentwise.

For our study, the following known result is required the proof of which
can be found in Walter [1].

Theorem 1.2.9 Let the function g € C(E,R™), where E is an open
set (t,u) in R™*! and g(t,u) is a quasimonotone nondecrescent function with
respect to u for each t.

Then:

(a) if (to,uo) € E, then the system (1.2.18) has an extremum solution which
can be extended to the boundary E;

(b) if J is an interval of existence of the maximum solution r(t) of the
system (1.2.18) on any compact interval [tg, T], then there exists €9 > 0
such that at any 0 < € < g9 solutions u(t, ) of the system

d
d—lt‘ =g(t,u)+e, ulty) =uo+e (1.2.20)

exist on the interval [to, T] and 1111(1) u(t,e) = r(t) uniformly on [to, T].
E—r
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Lemma 1.2.1 Let the functions v,w € C(J, R) and for some fized Dini
derivative Dv(t) < w(t), te€ J\S, where S is a countable subset of J.
Then D_v(t) < w(t) on J.

The following result of comparison in the scalar form contains the key
concept of the inequality theory.

Theorem 1.2.10 Let the function g € C(R4 X R4, R) and let r(t) be the
mazimum solution of the system (1.2.18), which exists on the interval [to, 00).
Assume that m € C(Ry, Ry) and Dm(t) < g(t,m(t)), t > to, where D is any
fixed Dini derivative.

Then the inequality m(ty) < ug implies that m(t) < r(t) at all t > to.

Proof According to Lemma 1.2.1, obtain
D_m(t) < g(t,m(t)), t>to,

where D_m(t) = liminf{[m(t +6) — m(t)]0~1: 0 — 0~ }. Let to < T < oo.

According to Theorem 1.2.9, the solution u(t,e) of the system (1.2.20) exists

on the interval [tog,T] at all sufficiently small ¢ > 0 and liH(l) u(t,e) = r(t)
e—

uniformly on [¢o, T]. Hence it suffices to show that
m(t) < u(t,e), te [to,T). (1.2.21)

If the inequality (1.2.21) does not hold, then there exists such a value t; €
[to, T], that

m(tl) - u(tl,e), m(t) > u(tv E)a te [thtl]'

Hence obtain
D._m(ty) > ' (t1,¢),

which, in its turn, results in the contradiction
g(ti,m(t1)) > Dom(ty) > o/ (t1,€) = g(t1,u(tr,€)) +e.

Therefore the inequality (1.2.21) holds, which completes the proof of the the-
orem.

To avoid the repetition of the proof, we have not considered the lower esti-
mate for m(t), which can be obtained by the change of signs in the inequalities
for opposite signs. To continue the discussion we will need the following the-
orem which contains the lower estimate for m(t).

Theorem 1.2.11 Let the function g € C(R4+ X Ry, R) and let p(t) be
the minimum solution of the system (1.2.18) existing on [to, 00). Assume that
m € C(R4,Ry) and Dm(t) > g(t,m(t)), t > to, where D is any fized Dini
derivative.

Then the inequality m(to) > ug implies that m(t) > p(t) at all t > to.
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The proof of the above theorem is similar to that of Theorem 1.2.10. In-
stead of solutions of the system (1.2.20), here we consider the solutions v(t, ¢)
of the system

v =g(t,v) —e, w(tg) =up—¢
for a sufficiently small € > 0 on an interval [to,T], and lin%) v(t,e) = p(t)
e—

uniformly on [tg, T]. To complete the proof, it is sufficient to see that
m(t) > v(t,e), tE€ [to,T].

When using Theorem 1.2.10, it is necessary that the function g should be
quasimonotone nondecrescent, which is a necessary condition for the existence
of extremum solutions of the system (1.2.18). Thus, we obtain the following
extension of Theorem 1.2.10.

Theorem 1.2.12 Let g € C(Ry x R}, R"™), g(t,u) be a quasimonotone
function, nondecrescent with respect to u for each t, and let r(t) be the maz-
imum solution of the system (1.2.18), existing on [tg,00). Assume that the
inequality Dm(t) < g(t,m(t)), t > to, holds for a fixed Dini derivative.

Then, from the inequality m(to) < wo, it follows that m(t) < r(t) at all
> to.

As noted above, the inequalities in Theorem 1.2.12 are componentwise.

Instead of considering those inequalities between vectors, we will use the
concept of a cone in order to introduce partial ordering on R™ and prove
Theorem 1.2.12 in such a frame. Obviously, such an approach is more general
and used for cone-valued functions. Therefore, the extension of the theory of
differential inequalities is a result corresponding to Theorem 1.2.12 in arbitrary
cones.

The subset K C R" is called a cone if it has the following properties:

MK CK, 2M>0, K+KCK,

_ 0 (1.2.22)

K=K, Kn{-K}={0}, K°#g,

where K is the closure of K, K9 is the interior of the cone K.
Let 0K denote the boundary of the cone K. By the cone K the ordering

relationship in R" is introduced, which is determined by the relations

z <y ifandonlyif y—2z € K,
0 (1.2.23)
r<y ifandonlyif y—ze€ K".

The set K*, defined as K* = {¢ € R™: p(z) > 0 at all z € K}, where
the function ¢(x) denotes the scalar product (¢, z) and is called an adjoint
cone, satisfies the conditions (1.2.22).

Note that K = (K*)*, x € K, if and only if p(z) > 0 at all ¢ € K¢, and
x € 0K, if and only if ¢(x) = 0 at some ¢ € K, where Ko = K \ {0}.
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Now we can give the definition of the property of quasimonotonicity with
respect to the cone K.

The function f € C[R"™, R"] is quasimonotone nondecrescent with respect
to the cone K, if from = < y and p(x —y) = 0 at some ¢ € K it follows that
e (f(2) - () 0.

If the function f is linear, that is, f(z) = Az, where A is an (n X n)-
matrix, then the property of quasimonotonicity of the function f means that
the conditions z > 0 and ¢(z) = 0 at some ¢ € K follow from p(Az) > 0.

If K = R, then the quasimonotonicity of f amounts to the above defini-
tion.

For an ordinary cone Theorem 1.2.9 is true. Note that it is possible to prove
the existence of extremum solutions for differential equations in a Banach
space as well. Now we will prove the result of comparison with respect to the
cone K.
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Theorem 1.2.13 Let the vector function ¢ € C(Ry+ x R™, R") and
g(t,u) be a quasimonotone function, nondecrescent with respect to u relative
to the cone K for eacht € Ry . Let r(t) be the mazimum solution of the system
(1.2.18) with respect to the cone K existing on the interval [tg,0), and for
t >t

D m(t) < g(t, m(t)), (1.2.24)

where m € C(R4, K).
Then the inequality m(ty) < ug implies that

m(t) <r(t), t>to. (1.2.25)

Proof We will follow the proof of Theorem 1.2.10, but the inequalities will
now be considered with respect to the cone K. It suffices to prove that

m(t) <u(t,e), tEe€ [to,T). (1.2.26)
If the inequality (1.2.26) does not hold, then there exists 1 € (o, 7] such that
m(t1) —u(ty,e) € 0K, m(t) —u(t,e) € K, t € [to,t1).
It means that there exists ¢ € K such that

@(m(t1) —u(ti,e)) = 0.

From the quasimonotonicity of the function g it follows that

elglti,m(t1)] — glt1,u(t1, )]} > 0.

Assuming w(t) = p(m(t) —u(t, €)), t € [to, t1], obtain w(t) > 0, t € [to, 1)
and w(t;) = 0. Hence D_w(t1) <0, and as a result, we have

D.w(t1) = p(D-m(t1) — u'(t1,€)) > p{glts, m(t1)] — gt u(ts,e)]} > 0,
which is a contradiction. Theorem 1.2.13 is proved.

It is clear that the quasimonotonicity of g(t,u) with respect to the cone
P does not imply the quasimonotonicity of g(¢,u) with respect to the cone
@, even if P C . However, the ordering relationship with respect to the
cone P assumes the same ordering relationship with respect to Q if P C Q.
The corollary given below is the result of such observations and is effective in
applications.

Corollary 1.2.2 Assume that P,Q are two cones in a space R™, such
that P C @Q. Let the assumptions of Theorem 1.2.13 hold true and K = P.
Then the inequality m(tg) < ug implies that m(t) < r(t) at all £ > ¢o.
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1.2.4 Integral inequalities

Consider a theorem that generalizes Gronwall-Bihari type inequalities.

Theorem 1.2.14 Let g € C(R%, Ry), let g(t,u) be a function nondecres-
cent with respect to u for each t € Ry, and let v(t) be the mazimum solution
of the system

u = g(t,u), u(ty) = uo, (1.2.27)

existing on the interval [tg,00). Assume that the function m € C(R4, Ry)
and satisfies the inequality

m(t) < m(to) + /g(s, m(t))ds, t>to. (1.2.28)

to

Then the condition m(ty) < ug implies the inequality m(t) < r(t) at all
t > 1p.

Proof Assume
¢

m(to) + / o(s,m(t))ds = v(t),

to

so that m(t) < v(t), m(to) = v(to) and v' < g(t,v), proceeding from the fact
that the function g is not decrescent with respect to w. Applying Theorem
1.2.10, obtain v(t) < r(t), t > to, which completes the proof.

Corollary 1.2.3 Let all the assumptions of Theorem 1.2.14 be correct,
expect the inequality (1.2.28) which is replaced by the following:

m(t) <n(t) + /g(s,m(s)) ds, t>to,

where n € C(Ry, Ry).
Then the following inequality holds
m(t) <n(t) +r(t), t>to,

where r(t) is the maximum solution of the equation

u = g(t,n(t) +u), u(ty)=0.
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1.3 Stability in the Sense of Lyapunov

In its classical statement, the second Lyapunov method combines a number
of theorems on stability, asymptotic stability, and instability obtained on the
basis of a scalar Lyapunov function and its full derivatives by virtue of motion
equations considered in the time-invariant neighborhood of a point = 0. In
this section, sufficient conditions for different types of stability of the state
x = 0 are given in terms of existence of Lyapunov functions which have special
properties. Somewhat different versions of those statements were given in the
works of Lyapunov [1], Persidsky [1], Gruji¢, Martynyuk, Ribbens-Pavella [1],
Yoshizawa [2], Rao [1], and others.
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1.3.1 Lyapunov functions

In this subsection we will consider a system of the form

dx
i flt,x), f(t,0)=0 (1.3.1)

in the range of values (¢,z): ¢t > 0, ||z|| < h, wherez € R™ and f: Ry XxR"™ —
R™.

Comparison functions are used as upper or lower estimates of the function
v and its total time derivative. From now on those functions will be denoted by

v, p: Ry — R,.Systematic application of comparison functions is connected
with the work of Hahn [1].

Definition 1.3.1 The function ¢, ¢ : R — Ry, belongs:

(a) to the class KJg q), 0 < o < 400, if it is defined, continuous, and strictly
increscent on [0, &) and ¢(0) = 0;

(b) to the class K, if the conditions of Definition 1.3.1 (a) are satisfied at
a=+00, K = Ko +0);

(¢) tothe class K R, if it belongs to the class K and, in addition, p(§) — 00
at & — +o0;

(d) to the class Ljg, ), if it is defined, continuous, and strictly decrescent on
[0, @) and lim[p(¢): ¢ — oo] = 0;

(e) to the class L, if the conditions of the definition (d) are satisfied at
a=+00, L= Ly 4o0)-

Let ¢~ ! be the inverse function to ¢, ¢~ [o(¢)] = ¢. The following prop-
erties of comparison functions are known.

Proposition 1.3.1 If:
(a) p€ K and ¢ € K, then o(v) € K;

(b) p € K and o € L, then ¢(o) € L;
(
(d
(€) ¢ € Kjo,a), ¥ € Koo and (¢) > ¥(¢) on [0,a], then () > ¢¥(()

on [0, 8], where 8 = ().

Now auxiliary functions will be used, which have the sense of a distance
from the origin of coordinates to the current value of solution and play the core
role in the direct Lyapunov method (see Gruji¢, Martynyuk, Ribbens-Pavella

[1)-

)
)
c) v € Ko and p(a) =&, then ple Kio.¢);
) v € K andlim[p(C) : ¢ — +o0] = &, then ¢~ is not defined on (&, +o0;
)
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Definition 1.3.2 The function v: R"™ — R is said to be:

(1) positive semidefinite, if there exists a time-invariant neighborhood N,
N C R"™, of the point z = 0, such that:

(a) v(x) is continuous on N,
(b) v(z) is nonnegative on N for all x € N,

(¢) v(z) is equal to zero in the point z = 0;

(2) positive semidefinite in the neighborhood S of the point x = 0, if the
conditions of Definition 1.3.2 (1) are satisfied at N = S;

(3) globally positive semidefinite, if the conditions of Definition 1.3.2 (1) are
satisfied at N = R"™;

(4) negative semidefinite (in the neighborhood S of the point 2 = 0 or
in large), if (—v) is positive semidefinite (in the neighborhood S or in
large).

Remark 1.3.1 The function v determined by the expression v(z) = 0 at
all x € R™ is both positive and negative semidefinite. This indefiniteness can
be eliminated by introduction of a strictly positive (negative) semidefinite
function.

Definition 1.3.3 The function v: R™ — R is said to be strictly positive
(negative) semidefinite if it is positive (negative) semidefinite and there exists
y € N such that v(y) >0 (v(y) < 0).

If the matrix H is strictly positive (negative) semidefinite, then the func-
tion v(x) = 27 Hx is strictly positive (negative) semidefinite.

Definition 1.3.4 The function v: R™ — R is said to be:

(a) positive definite if there exists a time-invariant neighborhood N, N C
R"™, of the point = 0 at which it is positive semidefinite and v(z) > 0
at all (z #0) € N;

(b) positive definite in the neighborhood S of the point « = 0, if the condi-
tions of Definition 1.3.4 (a) are satisfied at N = S;

(c) globally positive definite, if the conditions of Definition 1.3.4 (a) are
satisfied at N = R"™;

(d) negative definite (in the neighborhood S of the point = 0 or in large)
if (—v) is positive definite (in the neighborhood S or in large).
The following statement is known (see Hahn [1]).

Proposition 1.3.2 For a function v to be positive definite in a neigh-
borhood N of the point x = 0, it is necessary and sufficient that a function
¢ € Kjo,a), @ =sup{[|z]|: = € N} should exist, such that v(x) € C(N) and
o(|lz]) < v(x) at allz € N.

Definition 1.3.5 The function v: R x R™ — R is said to be:

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS

(1) positive semidefinite, if there exists a time-invariant connected neigh-
borhood N, N C R", of the point z = 0, such that:
(a) v is continuous with respect to (t,z) € Ry X N,
(b) v is nonnegative on N at all (¢,z) € Ry x N,
(¢) v vanishes at z = 0;

(2) positive semidefinite on R4 x S if the conditions (a)—(c) of Definition
1.3.5 (1) are satisfied at N = S

(3) globally positive semidefinite, if the conditions (a)—(c) of Definition
1.3.5 (1) are satisfied at N = R™;

(4) negative semidefinite (globally) if (—v) is positive semidefinite (globally);

(5) strictly positive semidefinite if the conditions (a)—(c) of Definition 1.3.5
(1) are satisfied and for each ¢t € R, there exists an y € N such that
v(t,y) > 0.
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Definition 1.3.6 The function v: R x R™ — R is said to be:

(1) positive definite, if there exists a time-invariant connected neighborhood
N, N C R"™, of the point = = 0, such that v is positive semidefinite and
there exists a positive definite function w on N, w: R™ — R, which
satisfies the inequality

w(z) <wv(t,z) atall (t,z) € Ry x N;
(2) positive definite on Ry x S, if all the conditions of Definition 1.3.6 (1)
are satisfied at N = S;

(3) globally positive definite, if the conditions of Definition 1.3.6 (1) are
satisfied at N = R™;

(4) negative definite (globally), if (—v) is positive definite (globally).

The following result is obtained directly from Proposition 1.3.2 and Defi-
nition 1.3.4.

Proposition 1.3.3 For the function v: Ry X R™ — R to be positive
definite it is necessary and sufficient that there should exist a time-invariant
neighborhood N of the point x = 0, such that:

(a) v(t,x) € C(R4+ x N);
(b) v(t,0) =0 at all t € Ry;
(c) there exists a function o1 € K[ 4], where
a =sup{||z||: =€ N},
which satisfies the estimate

e1(Jz])) <v(t,z) atall (t,x) € Ry X N.

Definition 1.3.7 The function v: R x R™ — R is said to be:

(1) decrescent, if there exist a time-invariant neighborhood N of the point
x = 0 and a positive definite function w, w: R™ — R, such that

v(t,z) <w(x) atall (t,z) € Ry x N;

(2) decrescent on R4 x S, if all the conditions of Definition 1.3.7 (1) are
satisfied at N = S

(3) globally decrescent on R, if all the conditions of Definition 1.3.7 (1)
are satisfied at N = R™.
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Proposition 1.3.2 and Definition 1.3.7 result in the following statement.

Proposition 1.3.4 For the function v: Ry x R™ — R to be decrescent
on Ry x N, where N is a time-invariant neighborhood of the point x = 0,
it is necessary and sufficient that there should exist a comparison function
@2 € Kjg.0), a =sup{||z|: = € N}, such that

v(t,z) < pa(llz|]) at all (t,x) € Ry X N.

Definition 1.3.8 The function v: R x R™ — R is said to be radially
unbounded if at ||z]| = +oo v(t,z) — 400 at all t € R4.

It is not difficult to verify the correctness of the above statement (see Hahn
[1], Krasovsky [1]).

Proposition 1.3.5 For a globally positive definite function v to be radi-
ally unbounded, it is necessary and sufficient that there should exist a function
w3 belonging to the K R-class, such that

v(t,z) > ps(||z|]) atall z€R" and t€ Ry.

1.3.2 Stability theorems

In the frame of the direct Lyapunov method, the following expressions of
full derivative of an auxiliary function v along solutions of the system (1.3.1)
are applied.

Let v be a continuous function, v(t,z) € C(R4+ x N) and let a solution
X(t, to,zo) of the system (1.3.1) exist and be defined on Ry x N. Then for
(t, l’) S R+ X N:

(1) DVo(t,z) = limsup{[v[t + 0, x(t + 6;t,2)] — v(t,z)]0~1: 0 — 0T} is
called the upper right-hand Dini derivative of the function v along the
solution x(t, %0, zo);

(2) Dyv(t,x) =liminf{[v[t+0, x(t+0;t,2)]—v(t,z)]0~ : 6 — 0T} is called
the lower right-hand Dini derivative of the function v along the solution
X(ta th 'TO)v

(3) Dv(t,z) = limsup{[v[t + 0, x(t + 6;t,2)] — v(t,z)]0~ : 6 — 0~} is
called the upper left-hand Dini derivative of the function v along the
solution x(t,to, xo);

(4) D_v(t,x) = limsup{[v[t + 0, x(t + 6;t,2)] — v(t,2)]0"1: 6 — 07} is
called the lower left-hand Dini derivative of the function v along the
solution x(t, %0, zo);
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(5) The function v has a Eulerian derivative

o(t,z) = % v(t, x)

along the solution x(¢,to, xo), if
DYv(t,x) = Dyv(t,r) = D™ v(t,x) = D_v(t,x) = Dv(t,z),

and then
0(t,x) = Dou(t, x).

If v is differentiable with respect to (t,z) € Ry x N, then

b= 00 4 (guacd )1 (1, ),

where

rado— (00 Pv ov)!
& -\ Oz, 0" 02y )

The effective application of the upper right-hand Dini derivative within the
limits of the direct Lyapunov method is based on the following result obtained
by Yoshizawa [2], which secures the evaluation of D*v without direct use of
solutions of the system (1.3.1).
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Theorem 1.3.1 Let the function v be continuous and locally Lipshitz with
respect to x in the product Ry x S and let S be an open set. Then along a
solution x of the system (1.3.1)

D*u(t, x) = limsup { ol +9,2+0/(t,2)] — v(t, 2) D0 — O*}

0

at (t,x) € Ry x S.

Further the symbol D*v will mean that it is admissible to use both D+v
and D+1}.

Theorem 1.3.2 Let the vector function [ in the system (1.3.1) be con-
tinuous on Ry X N. If there exist:

(1) an open time-invariant connected neighborhood S of the point x = 0;
(2) a positive definite function v on S such that

Dto(t,z) <0 atall (t,z) € Ry xS,

then the state x = 0 of the system (1.8.1) is stable.

Proof Since the function v(¢, x) is positive definite, there exists a function
1 belonging to the K-class, such that

er(llzl]) < v(t,z) at all (¢, x) € Ry x B(p),

where B(p) C R™ is an open connected domain in R™. Now, at any 0 < & < p
and to € Ry choose & = §(tg,€) so that the condition ||zg] < ¢ would imply
v(to, o) < ¢i1(e). This is possible, since v(¢,z) is a continuous function and
v(tp,0) = 0. We will show that for any solution x(;t9,z0) = xo at t = to
under the condition ||zg|| < ¢ the inequality ||z(¢;%0,20)|| < € holds at all
t > to. If this is not so, then one can find a t* > tg, for which

lx(t*;to, zo)|| =€ at |zo| < 0.
From condition (2) of the theorem it follows that
v(t, z(t;to, xo) < v(to,xo)) atall ¢ > .
Hence at ¢ = t* obtain
e1(e) = e1(l|lz(t*; to, wo)[]) < v(t", x(t*, to, w0)) < v(to, x0) < p1(e).
From the obtained contradiction it follows that at a point of time t* the

inequality ||z(¢,t0,z0)|| < € holds at ||zg|| < §, which completes the proof of
the theorem.
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Example 1.3.1 Consider the scalar equation

dx
pr = (sinlogt + coslogt — 1,25)x. (1.3.2)

Choose a Lyapunov function in the form
v(t,x) = 2% exp[2(1,25 — sinlog t)t].

This function is positive definite, but nondecrescent. Since DY v(t, x)|(1.5.2) =
0, the zero solution of the equation (1.3.2) is stable.

Theorem 1.3.3 Let the vector function f in the system (1.3.1) be con-
tinuous on Ry x N. If there exist:

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a decrescent positive definite function v on S such that

Dto(t,x) <0 at all (t,z) € Ry x S,

then the condition x = 0 of the system (1.8.1) is uniformly stable.
Proof Since the function v(t, ) is positive definite and decrescent, there
exist functions 1, 2 belonging to the K-class, such that

(llz]l) <ot 2) < @a(flzf]) atall (¢z) € Ry x B(p).

For any 0 < ¢ < p choose 6 = d(¢) > 0 so that v2(d) < ¢1(e). Show that
under the conditions of Theorem 1.3.3 the zero solution of the system (1.3.1)
is uniformly stable, that is, if t* > ¢y and ||z(¢*)|| < 6, then ||z(¢;t*, zo)| < €
at all ¢ > t*. If this is not so, then there exists t > t* such that at t* > to and
lz(t*)|| < d the relation ||x(#;t*, z0)|| = € holds. Like in the proof of Theorem
1.3.2, obtain

p1(e) = ea(llz(@l) < vt 2(E; 17, 20)) < v(t*,2(t7))
< <p2(|| ()N < ¢2(9) < pa(e).

The obtained contradiction shows that ¢ Ry and at ||z(t*)|| < & the estimate
lx(t; t*, x0)|| < e will hold at all ¢ > ¢t*. Theorem 1.3.3 is proved.

Theorem 1.3.4 Let the vector function f in the system (1.3.1) be con-
tinuous on Ry X N and bounded. If there exist:

(1) an open time-invariant connected neighborhood S of the point x = 0;

(2) a function v(t,x) positive definite on S and a function ¢ belonging to
the K-class, such that

D*v(t,x) < —y(||z||) at all (t,z) € Ry x S,
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then the condition x = 0 of the system (1.3.1) is asymptotically stable.

Proof From condition (2) of the theorem it follows that D*v(t,z) < 0 at
all (t,z) € Ry x S, and this condition together with condition (1) secures the
stability of the state £ = 0 of the system (1.3.1), that is, for any 0 < ¢ < p
and tg € Ry there exists § = d(tg,€) > 0 such that the condition ||zo|| < §
implies that [|z(¢; to, zo)|| < € at all £ > .

We will show that the state = 0 of the system (1.3.1) is asymptotically
stable. Let this not be so and let ¢y and xg € S be such that for some 7,
0 < n < g, and a divergent sequence {t,} € Ry the equality ||z(tn; o, z0)|| =1
would hold. Since f is bounded on R4 x N, there exists a constant M > 0 such
that || f(¢,z)|| < M on Ry x N. In this case, for ¢t > ¢, obtain the estimate

|z (t;to, x0) — (tn;to, xo)|| < M|t —t,|, n=1,2,...

9

and then

1 " "
ot > = t tel,=th— 5 tnt 577 |-
lz(t;to, z0) 2 5 at te < 2M 2M>
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Assume that the intervals I,, disjoint, that is, I,,NI,11 =g, n=1,2,..., and
choose t1 > tg + ﬁ From condition (2) of Theorem 1.3.4 it follows that at

1
t >ty and 37 < ||z|| < p there exist constants a and b such that b < v(t, x)

and D*v(t,z) < —a. Hence, at t € {to,t + obtain

2M}

0<b§’t}(t +2M <tn+2LM,t0,.T0)>U(to,l‘o)

n n ann n
< —altp—t — | <—-a— - — < —a—
< a( 0+2M> Wi M< aMnH —00

at n — oo.
The obtained contradiction proves that the state z = 0 of the system
(1.3.1) is asymptotically stable.

Theorem 1.3.5 Let the vector function f in the system (1.3.1) be con-
tinuous on Ry X N. If there exist:

(1) an open time-invariant connected neighborhood S of the point x = 0;
(2) a decrescent positive definite function v on S;
(3) a positive definite function v on S such that

D*u(t,z) < —¢(z) atall (t,z) € Ry xS,

then the state x = 0 of the system (1.3.1) is uniformly asymptotically stable.

Proof Let 0 < e < p be specified. Condition (2) of Theorem 1.3.5 implies
the existence of functions 1, @2 belonging to the K-class, such that

pr(lle]]) <ot z) < @o(flzf]) atall (¢7) € Ry x S.

From condition (3) it follows that D*v(t,z) < 0, then the state z = 0 of
the system (1.3.1) is uniformly stable. Here for any ¢ > 0 there exists a
§ = §(g) > 0 such that for any solution z(t) = x(t; tg, ©o) of the system (1.3.1)
the conditions ||z(t1)]| < 6, t1 > to imply that |z(¢)|| < € at all ¢ > ¢;. From
condition (3) obtain

v(t, z(t)) < v(ty, z(t1)) — /¢(||I(S)||)d5- (1.3.3)

©2(do)

$(6(n))
lz(®)]| < d(n) at all t € [t1,t1 + T, as soon as t1 > to and ||z(t1)| < do.

Assume that this is not so. Then there exists a ¢ € [t1,t1 + T for which
lz(@)] = 6(n). (1.3.4)

Let 0 < n < p be specified, choose §y = d(p) and T'(n) = . Show that
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From the conditions (1.3.3), (1.3.4) at ¢ € [t1,t; + T'] obtain

o(t,z(t)) <ot z1) —P(0(n)(E —t1) < @2(do) — P (8(n)(t —t1).
Hence for t = t; + T obtain

0 <@i(6(n) < vty +T,2(tr +T)) < 2(do) = (6(n))T(n) = 0.
This contradicts the inequality (1.3.4) and therefore there exists ¢; < to <
t1 + T, for which ||z(t2;t1, z1)| < 8(n).
Thus, from the uniform stability of the state z = 0 it follows that ||z (t)| <
n at all t > tq, in particular at ¢ > ¢ > t; + T. Consequently, ||z(t)|]] < 7
at all t > ¢; + T, as soon as t1 > to and ||x(t1)]| < do. This proves that the
state © = 0 of the system (1.3.1) is uniformly asymptotically stable, since T
depends on 7 only.
Example 1.3.2 Consider the scalar equation
d
d—f = (tsint — 20)z, =(to) = =o. (1.3.5)
Take a Lyapunov function in the form

t

o(t, ) = 22 exp U(zu _ usinu) du} .
!

This function is positive definite, but nondecrescent. A simple calculation
results in the estimate

Dt o(t,z)|135 < —aw(t,z) atall ¢>a>0.

Therefore, the zero solution of the equation (1.3.5) is asymptotically stable,
however not uniformly.

The property of exponential stability of the zero solution of the generating
system (1.3.1) is determined by the following statement.

Definition 1.3.9 The state z = 0 of the system (1.3.1) is said to be
exponentially stable, if for any solution x(t) of this system in the domain
t > to, v € B(p) the following inequlity holds:

[ (t; o, o) || < allzol| exp(=A(t —t0)),
where @ > 0, A > 0, tg > 0. The constants ¢ and A may depend on B.

Definition 1.3.10 The comparison functions ¢1, @2 belonging to the K-
class have the same order of growth, if there exist constants «y, 5;, i = 1,2,
such that

O[igDi(’I") < (pJ(T) < 51‘801‘(7”)’ Za] = 132

Theorem 1.3.6 Let the vector function f in the system (1.3.1) be con-
tinuous on Ry X N and let there exist:
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(1) a time-invariant neighborhood S of the state x = 0;

(2) a function v(t,x) locally Lipshitz with respect to x, comparison functions
Y1, @2 belonging to the K-class, having the same order of growth, and
constants a > 0, r1 > 0 such that

allz|[ < vt z) < @u(]l2]])
at all (t,z) € Ry x S;
(3) atall (t,z) € Ry xS the following estimate holds D*v(t,x) < —p2(||z]]).

Then the state x = 0 of the system (1.3.1) is exponentially stable.

Proof Taking into account that the comparison functions 1 and @9 have
the same order of growth, it is possible to indicate constants oy, 81 > 0 such
that

a1p1(r) < p2(r) < Brpa(r).

Therefore, condition (3) of the theorem is reducible to the form

D*v(t,x) < —aqv(t,z) atall (t,z) € Ry x S.
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Hence obtain
v(t, z(t)) < wv(to,zo) exp(—az(t —tg)) atall ¢ > tp.

From the above estimate and condition (2) of the theorem it follows that
“1/ry A7 o
Ja(t:to, zo)l| < @™/ 1/ (o exp (= Tt — o)) (13.6)

at all ¢ > .
Denote A = “*. Then the estimate (1.3.6) is equivalent to the determina-

1
tion of the exponential stability of the state z = 0 of the system (1.3.1). In
addition, for any € > 0 it is possible to choose §(g) = ¢;*(ae™) so that as
soon as ||zg|| < d(g), to > 0, then

lz(t; to, xo)|| < cexp(=A(t —tp)) at all ¢t >0.

The theorem is proved.

Theorem 1.3.7 Let the vector function f in the system (1.3.1) be contin-
uwous on Ry x N. If there exist a function v(t,x) locally Lipshitz with respect
to x and comparison functions s, 1 belonging to the K-class, such that:

(1) at all (t,x) € Ry x B(p) the estimate |v(t, x)| < pa(||z|)holds;

(2) for any § > 0 and any to > 0 there exists xo, ||xo|| < § such that
u(t,z) < 0;

(3) at all (t,z) € Ry x B(p) the following estimate holds D*v(t,xz) <
=(ll=l)),

then the state x = 0 of the system (1.3.1) is unstable.

Proof Let 0 < € < p be specified. Assume that the state x = 0 of the
system (1.3.1) is stable. Then for any e > 0 there exists 6 = d(¢) > 0 such
that the condition ||z(to)|| < ¢ implies the estimate ||z(t)|| < € at all ¢t > ¢o.
Choose z( so that [|zo]| < ¢ and v(tp,zo) < 0. According to the assumption,
at ||zo]| < ¢ the inequality ||z(¢)]] < € holds at all ¢ > tg. Condition (1) of the
theorem implies that

lo(t, 2(1)] < pa([lz@)]]) < pa(e) at any &> to.
From condition (3) of the theorem it follows that the function v(t,z(t)) is
decrescent along any solution z(t) of the system (1.3.1); therefore, for any

t > to the following estimate holds:

v(t, z(t)) < wv(to,z) < 0.
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Hence, follows that |v(t, z(t))| > |v(to, z(to))|. Condition (3) of Theorem 1.3.7
implies that

v(t, z(t)) < v(to, o) — /dJ(III(S)lI)dS- (1.3.7)

According to condition (1) of the theorem, we obtain ||x(t)|| > ¢35 (Jv(to, 0)]);
therefore, ¥(||z(2)]]) > ¥(p; ' ([v(to, 20)|)). Taking this inequality into account,
transform (1.3.7) to the form

v(t,z(t)) < v(to, z0) — (3 ([u(to, 0)]))(t — to).
Hence it follows that tlim v(t,x(t)) = —oo, which contradicts the condition
—00

[u(t, z(t))| < p2(e) at all £ > to. This proves the instability of the state z =0
of the system (1.3.1).

The universality of stability theorems is determined by the respective con-
verse theorems. One of the first theorems in this line of research is Persidsky’s
theorem [1] on the existence of a Lyapunov function in case of stability of
the state © = 0 of the system (1.3.1). The works of Krasovsky [1], Hahn [1],
Zubov [2], and others contain results concerned with the inversion of Lya-
punov theorems. Note that the known proofs of converse theorems are based
on functions that contain an estimate of solution of a differential equation
which is unknown as a rule. Among these functions are:

(1) v(t,z) = (1 4+ e H|y(to;t,7)|? in the domain t > to, ||z] < p < +oc.
Here y(t; 0, yo) is a solution of the system
dy
7 = Y (&y), Y(ty) = ft,2)e(),
1 at [lyll < p;
0 at [lyll > p;

where ¢(y) = {

(2) v(t, @) =sup |zt + 73t 2)|;
>0

(3) v(t,x) =sup||z(t + 7;t,z)| exp(aqr), where a > 0, ¢ € (0,1);
>0

1
(4) vt z) = sup G(|la(t + 03, 7))
>0 1+

U, where G(r) is a scalar function
o
with the properties G(0) = 0, G'(0) = 0, G'(0) > 0, G"(r) > 0 and
a > 1;

(5) v(t,z) =supp(||z(t + o;t,x)|), where ¢ belongs to K-class.
o>0

It is clear that functions of the form (1)—(5) have no practical use, but they
show that under a certain type of stability of the state = 0 of the system
(1.3.1) there exists a Lyapunov function with the respective properties.
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1.4 Comparison Principle

The theorems of the comparison method given in this section are based on
the scalar Lyapunov function for a generating system and the theory of differ-
ential inequalities. For their further application it is sufficient to consider the
case of continuous solutions both in the initial system and in the comparison
system.

Consider the system of differential equations

%c = f(t,z), x(to) = xo, (1.4.1)
wherexz € R", t € Ry, f € C(R+xR", R"). Together with the system (1.4.1)
we consider the Lyapunov function v(t,z) and its full derivative D*v(¢,x)
along solutions of the system (1.4.1).

Formulate the main theorems of the comparison method.
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Theorem 1.4.1 Let the function v € C(R4 X R™, R) be locally Lipschitz
with respect to x. Assume that the function DT v(t,x) satisfies the inequality

Dt o(t,z)|(1.a1) < g(t,v(t,x) atall (t,z) € Ry x R", (1.4.2)

where g € C(R%,R). Let r(t) = r(t,to,uo) be the mazimum solution of the
scalar differential equation

du

i g(t,u), u(ty) = uo, (1.4.3)

existing at all t > tg.
Then the inequality v(to,xo) < ug implies the estimate

v(t,x(t)) <r(t) atall t>to, (1.4.4)
where x(t) = x(t, to,xo) is any solution of the system (1.4.1), which exists at
t>to.

Proof Let x(t) be any solution of the system (1.4.1), existing at t > to,
such that v(to, o) < ug. Define the function m(t) = v(t, z(t)). For any h > 0
obtain

m(t+h) —m(t) =v(t + h,z(t + h)) —v(t + h,z(t) + hf(t, z(t)))
ot +h,x(t) + hf(t,z(t)) — o(t, x(t)).

Since the function v(t,z) is locally Lipschitz with respect to x, obtain the
differential inequality

D mit) < g(t,m(t)),  mlto) < uo, (1.4.5)
and now, in view of Theorem 1.2.10, arrive at the desired result: the estimate
(1.4.4).

Corollary 1.4.1 If in Theorem 1.4.1 we assume that g(¢,u) = 0, then the
function v(t, x(t)) is not increscent with respect to t and v(t, 2(t)) < v(to, xo)
at all £ > t.

The next theorem is important at application of several Lyapunov func-
tions.

Theorem 1.4.2 Let the vector function v € C(Ry x R", R™), m < n, be
locally Lipschitz with respect to x. Assume that

Dtou(t,z) < g(t,v(t,x)), (t,x) € Ry x R",

where g € C(Ry x R, R™) and g(t,u) is a function quasimonotone nonde-
crescent with respect to uw. Let r(t) = r(t,to,uo) be the mazimum solution of
the system

d
dit‘ = g(t,u), u(ty) =ug >0, (1.4.6)
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existing at t > to, and let x(t) = x(t,to, o) be any solution of the system
(1.4.1), existing at t > to.
Then the inequality v(to,xo) < ug implies the estimate

o(t,z(t)) <r(t) atall t>t. (1.4.7)

Recall that the inequalities between vectors in (1.4.7) are understood com-
ponentwise.

Theorem 1.4.2 is a special case of the next theorem connected with cone-
valued Lyapunov functions.

Theorem 1.4.3 Assume that v € C(Ry X R™, K), the function v(t,z)
is locally Lipschitz with respect to x relative to the cone K C R™ and at
(t,z) € Ry X R™ the following inequality is true:

DT u(t, x) IS( g(t,v(t, z)).

Let g € C(R4 x K, R™), here the function g(t,u) is not quasimonoton decres-
cent with respect to u with respect to K and r(t) = r(t,to, up) is the maximum
solution of the equation (1.4.6), which exists at t > to.

Then any solution z(t) = z(t,to,x0) of the system (1.4.1), existing at
t > to, satisfies the estimate

o(t,a(t)) S r(t) atall t>t

provided that v(tg, o) IS( ug.

Proof Following the proof of Theorem 1.4.1, upon necessary changes one
can easily obtain the differential inequality

D*m(t) = g(t,m(t)), m(to) = uo, t>to.

Now, using Theorem 1.2.13, complete the proof of Theorem 1.4.3.

The next theorem, which is an alternate version of Theorem 1.4.3, is more
accessible for applications. Its proof follows from Corollary 1.2.2.

Theorem 1.4.4 Let P and Q be two cones in R™ such that P C Q.
Assume that v € C(Ry x R™, Q) and the function v(t,z) satisfies the local
Lipschitz condition with respect to x relative to the cone P and

DYu(t,z) 5 g(t,v(t,x)), (t,x) € Ry x R™

Now assume that g € C(Ry x Q,R™), the function g(t,u) is quasimonotone
nondecrescent with respect to u relative to the cone P and x(t) = x(t,to, zo) is
any solution of the system (1.3.3), existing at t > to, such that v(to, zo) ISD Ug-

Then
v(t,x(t)) Z7(t) at all t>to, (1.4.8)

DIN
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where () = r(t,to,uo) is the mazimum solution of the equation (1.4.6) with

respect to the cone P.

In particular, if Q = R, then the inequality (1.4.8) implies the compo-

nentwise estimate v(t,x(t)) < r(t), t > to.

Remark 1.4.1 In all of the above comparison theorems the derivative
DT u(t, z) was estimated by the functions g(¢, v(t, )) only. However, in certain
cases it is more natural to estimate the derivative DT (¢, ) by the functions
g(t,z,v(t,z)). Obviously, in this case the statements of the theorems would

be more complicated.

1.5 Stability of Systems with a Small Parameter

Consider the system of differential equations with a small parameter

dy _

=Y(t tg) =
dt ( 7yvﬂ’)7 y( 0) Yo

(1.5.1)
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It is assumed that the right-hand part of the system (1.5.1) has the continuity
property and satisfies the conditions of the existence and uniqueness of
solutions. In addition, assume that Y (¢,0,u) Z0at allt € Ry, p € M. Denote
p = z and consider the system extended to (1.5.1)

dy
@ Y(t,y,2), y(to) = yo,
(1.5.2)
=
dt

It is not difficult to show that from the properties of solutions of the system
(1.5.2) one can obtain the conclusion about the stability of the system (1.5.1).

Ezample 1.5.1 (see Duboshin [2]) Let the following system of equations

be specified:
dx
g = ey pd-p),
oy (1.5.3)
Y — (1 —
g =Ly = p),

where p € (0, 1), and let a problem of the stability of the zero solution of the

system

dx

- =Y,

dt

1.5.4

" (154

dt
be considered, which is obtained from the system (1.5.3) at u = 0. Assuming
i = z, for the system (1.5.3) obtain

z,

o ari s

dt_y z—xz+ 27,

d

d% O ) (1.5.5)
dz

— =0.

dt

For the system (1.5.5) the full derivative of the function
v(x,y,2) = (x— 2)° + (y+ 2)* + 22 (1.5.6)
along solutions of the system (1.5.5) has the form
Du(t,z,2)|(1.5.5 = —2z[(x — 2)* + (y + 2)°]. (1.5.7)
By implication of the problem z € (0, 1) and therefore (1.5.7) is a negative

function with a fixed sign. Since the function (1.5.6) is positive definite, the
solution = y = 0 of the system (1.5.4) is stable for a parameter p € (0, 1).
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It is easy to show that for any € > 0 it is sufficient to choose § = d(¢) = 2ase,
2-vV3
2

1/2
where a = ( ) and p < ae, so that at

|xo] < 2ae, |yo| <2ae, p<ae
for any t > 0 the following estimates should hold:

Ix(tat07x0)| <e and |y(t’t0a x0)| <eE.

1.5.1 States of equilibrium

For the system (1.5.1) introduce the following definition (cf. Gruijic, Mar-
tynyuk, Ribbens-Pavella [1]).

Definition 1.5.1 The state y* of the system (1.5.1) is the state of equi-
librium if
y(tito,y™ ) =y* atall te Ry, t>0, (u#0)eM, (1.5.8)

where y(t;to,y*, ) is the motion of the system (1.4.1) at a point of time
t € Ry, if and only if y(to; to, y™, 1) = yo-

Proposition 1.5.1 Fory* € R™ to be the equilibrium of the system (1.5.1)
it is necessary and sufficient that at (u # 0) € M:

(1) for any to > 0 the solution y(t;to,yg, 1) of the system (1.5.1) should be
unique, determined for allt € Ry;

(2) Y(to,y*,,u) = 0; te R+7 to > 0.

Proof. The necessity. Conditions (1) and (2) are necessary in view of Def-
inition 1.5.1 [the relation (1.5.8)].

The sufficiency. If y* € R™ satisfies condition (2), then y(¢, u) = y* at all
te Ry, atalltg > 0and (u#0) € M so that

V(6w =0=Y(ty" ) =Yty ), n) (1.5.9)

atallt € Ry, to >0, (u#0) e M.

Hence y(t; to, y*, ) = y* is a solution of the system (1.5.1) at (¢, y*, u),
which is unique at all ¢ > 0 and (u # 0) € M. Consequently, the relation
(1.5.8) is correct.

Let y(t;to, yo, 1), y(to;to, Yo, ) = xo, be the motion of the system (1.5.1)
and let y,(t;t0, yo, 1) be a nonperturbed motion.

From the physical point of view, it is a nonperturbed motion that should
be realized in the system; from the mathematical point of view, this means
that the functions describing the nonperturbed motion are the solution of the
system (1.5.1), that is,

d
g ¥r(tito,yo, 1) = Y (9, (), ). (1.5.10)
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1.5.2 Definitions of stability
Definition 1.5.2 The equilibrium y* of the system (1.5.1):

(1) is p-stable, if and only if for any tg > 0 and every € > 0 there exist
0 = 0(to,e) > 0 and p1(tg,e) > 0 such that at |jyo — y*|| < 0 the
following inequality would hold

ly(t;to, yo, ) —y*|| <e atall t>ty and p < pi;

(2) is uniformly u-stable, if and only if the conditions of the Definition 1.5.2
(1) are satisfied and at every € > 0 the respective maximum value of §
in Definition 1.5.2 (1) does not depend on .

Definition 1.5.3 The equilibrium y* of the system (1.5.1) is p-attracting,
if and only if for any ¢y > 0 there exists A(tg) > 0 and for any p € (0, +0c0)
there exist 7(¢o, yo,p) € [0, +00) and ua(to, p) > 0 such that at [|yo — y*| <
A(to) |ly(t;to, yo, ) — y*|| < p holds at all t > ¢g 4+ 7 and p < po.

Calculate the value pg = min(p1, p2). On the basis of the definitions of p-
stability and p-attraction, the definitions of asymptotic p-stability are stated
as follows.
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Definition 1.5.4 The state of equilibrium y* of the system (1.5.1) at
w < o is:

(1) asymptotically p-stable, if and only if it is p-stable and p-attracting;

(2) uniformly asymptotically p-stable, if and only if it is uniformly p-stable
and uniformly p-attracting.

The above definitions and terminology are similar to the known systems of
definitions used in the literature (see Hahn [1], Yoshizawa [2], etc.). However,
one should bear in mind that the system (1.5.1), generally speaking, may
have no zero solution, and therefore, unlike classical definitions characterizing
a specific solution of a system of differential equations under consideration,
the property of p-stability characterizes the local behavior of a one-parameter
family of systems of the form (1.5.1) depending on the numeric parameter .

1.6 Comments and References

Differential equations containing a small parameter as models of real pro-
cesses and phenomena in the engineering and technological areas have been
applied for a long time (see Poincaré [2], Krylov, Bogolyubov [2], Bogolyubov,
Mitropolsky [1], Stocker [1], Hayashi [1], Nayfeh, Mook [1] et al.).

Among the examples where systems of this kind have been of use, one
should note the problem of the loss of stability by a thin-shelled structure un-
der the action of wind and the dead load; the study of collapse of a star; the
destruction of a crystal lattice; the description of self-organization and decay
processes in biological systems; the simulation of turbulence; the analysis of
chaotic movements in simple deterministic models; and many others. In all
of the above listed examples, a slow change in system parameters, which is
characterized by the presence of a small parameter in a system of differential
equations, results in a change of the process quality. Sometimes such change
may occur abruptly. To study the dynamics processes in such systems in their
natural behavior, it is necessary to use adequate approaches to the qualita-
tive analysis of solutions of the respective systems of equations with a small
parameter.

This chapter contains some results from the theory of differential and in-
tegral inequalities and the theory of stability of motion which form the basis
for the approaches developed in the book and are intended for the study of
dynamic properties of solutions of systems with a small parameter. From the
numerous methods of nonlinear mechanics that have been developed recently,
the methods of perturbations and averaging are actively used in this book
(cf. Bogolyubov, Mitropolsky [1], Mitropolsky [1], Grebennikov [1], Volosov,
Morgunov [1] and others).
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Below readers will find more detailed bibliographic references that do not
pretend to be exhaustive but provide an opportunity for an interested reader
to approach the border beyond which a new area of research is awaiting.

1.2. Theorem 1.2.1 is a fundamental linear integral inequality known as
the Gronwall or the Gronwall-Bellman inequality (see Bellman [1], Beesack
[1]). In the process of formulating Theorems 1.2.2, 1.2.3, and 1.2.5 we follow
the monograph by Lakshmikantham, Leela, Martynyuk [1]. Theorem 1.2.4 is
stated as per Bihari [1]. Theorems 1.2.7 and 1.2.8 are available in the mono-
graph by Martynyuk, Gutovsky [1]. Theorems 1.2.9-1.2.13 are taken from the
monograph by Lakshmikantham , Leela, Martynyuk [1] (see Walter [1] and
others).

1.8, 1.4. In the statement of the results of these sections, some results of
the works of Krasovsky [1], Lyapunov [1], Lakshmikantham, Leela, Martynyuk
[1], Rao [1], and Persidsky [1] were used. Many of the results related to the
development of the comparison method can be found in the works of Conti
[1], Corduneanu [2], Matrosov [2], and other authors.

1.5. The formulations of definitions of the p-stability are given according
to the article by Martynyuk [5] and the monograph by Martynyuk [16].

The works of Lagrange [1], Poincare [1], and Euler [1] were the basis for the
creation and development of the current methods of the analysis of solutions
of nonlinear systems with a small parameter.
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Chapter 2

Analysis of the Boundedness of
Motion

2.1 Introductory Remarks

The problem of the boundedness of motion of mechanical systems simu-
lated by ordinary differential equations has been considered by many authors.
Here we will only mention some works directly related to the investigation
carried out in this chapter. In the work of Yoshizawa [1] the problem of the
boundedness of solutions is considered in the context with the method of Lya-
punov functions. In the work of Lakshmikantham and Leela [1] it was noted
that the application of a perturbed Lyapunov function in the problem of the
boundedness of motion results in the reduction of requirements to auxiliary
functions in the study of nonuniform properties of motion. The extension of
the conditions to perturbations of a Lyapunov function proposed in the ar-
ticle of Burton [1] provides an opportunity to consider the problem of the
boundedness of motion of nonlinear weakly connected systems under wider
assumptions on dynamical properties of subsystems.

Section 2.2 contains the statement of the problem and the main definitions
of the p-boundedness of motion with respect to two measures.

In Section 2.3, the general approach to the study of the p-boundedness
with respect to two measures is described. This approach is based on the
application of the direct Lyapunov method and an auxiliary vector function.

In Section 2.4, the conditions for u-boundedness are discussed, which were
obtained by using the comparison technique. A scalar function constructed on
the basis of the vector Lyapunov function is applied therein.

Section 2.5 contains the necessary and sufficient conditions for u-
boundedness of motion with respect to a part of variables of a weakly con-
nected system.

Section 2.6 provides the criteria for different types of py-boundedness of
motion constructed via direct application of the vector Lyapunov function.

In Section 2.7, applications of certain results of this chapter are discussed.
In particular, the Lienard oscillator, Lurie-Postnikov systems of connected
equations, and nonlinear systems with weak linear connections between sub-
systems are discussed.
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2.2 Statement of the Problem

A nonlinear system of ordinary differential equations that describes a
weakly connected mechanical (or other) system with a finite number of degrees
of freedom has the form

dx
= fs(t, s t
dt fé( 7x67,ugs( 7$7M))7 (221)
xs(to) = x50, s$=1,2,...,m.

Here z; € R™, fs € C(Ry X R™ xM x R™*, R™), gs € C(Ry X R"x M, R"),
ny+ne+...+n, =n, M =(0,1], x> 0is a small parameter.

In a particular case when the connections of subsystems are included ad-
ditively, the system (2.2.1) is transformable to the following:

dx
dt

- fs(t7xs) +Mgs(t7x17"'7x'rn)7 xs(to) :x307 (222)

s=1,2,...,m,

where z; € R"s, f, € C(RyxXR™,R")and gs € C(RyXR™ X...XxR"™  R™).
If the vector functions fs are linear at all s =1,2,...,m, then the system
(2.2.2) can be simplified yet more:

dx
dt

:As(t)xs+N’gs(t7x17"'axm)axs<t0) = Ts0, (223)

s=1,2,...,m.

Here A; € C(R4, R" x R™), As(t), s=1,2,...,m, are matrices (ns X ng)-
continuous and bounded at all t € R..

If the vector functions gs = 0 at all s = 1,2,...,m or g = 0, then the
system (2.2.2) consists of the independent subsystems

dug
dt

= fs(t7x5)7 Cﬂs(to) = Zs0,

s=1,2,...,m.

(2.2.4)

To formulate definitions required for further analysis, we will characterize
the dynamics of the k-th subsystem in the collection (2.2.2) by the two differ-
ent measures pi(t, ) and pg, (¢, zx), which take on values from the sets (cf.
Movchan [1], Lakshmikantham and Salvadori [1])

M = {p(t,z) € C(Ry x R", Ry) : infp(t,z) = 0},

My ={p(t,x) € M: %ené p(t,xz) =0 for any t € R}.
CERT

Here p(t,z) = oL j(t,z), T = (01,...,0m) and the vector measure p(t,z) =
p1(t, 1),y pm(t, )T, 05 =const >0 at all s =1,2,...,m.
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Formulate the following definition.

Definition 2.2.1 The motion z(t, 1) = (21 (t;t0,20), - - -, Zm (L t0, 20)) T
of the system (2.2.2) is said to be:

(1) (po, p)u-equibounded, if at any values of @ > 0 and to € R, there exists
a positive function 8 = B(tp,a) continuous with respect to to at all a
and a value of p* = p*(to,a) > 0 such that

p(t,x(t,p)) < B atall ¢>t,

as soon as
po(to, o) <a and p < p’(to,a);

(2) uniformly (pg, p)u-bounded, if 8 and p* in definition (1) do not depend
on tp;

(3) uniformly ultimately (po,p)u-bounded, if it is uniformly (pg,p)p-
bounded and for any a > 0 and ¢ty € Ry there exist positive numbers
€ (0,1], 8* > 0 and 7 = 7(to,a) such that p(t,z(t,n)) < f* at all

t >ty + 7, as soon as po(to, o) < a and p < p*.
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Remark 2.2.1 Depending on the considered type of the boundedness of
motion, the measures py and p may be chosen by different methods. Here are
some of the measures applied:

(1)

(4)

in the study of the boundedness of motion in the sense of definitions
from the monographs of Reissig et al. [1] and Yoshizawa [1], the measures
po(t,x) = p(t,z) = ||z|| are applied where || - || is the Euclidean norm of
the vector z;

in the study of the boundedness of the prescribed motion x*(¢) the
measures po(t, z) = p(t,z) = ||z — 2*(t)|| are applied;

in the study of the boundedness of motion with respect to a part of
variables the measures po(t, z) = ||| and p(t,z) = ||zk||, 1 < k < m are
applied;

in the study of the boundedness of motion with respect to a set A the
measures po(t,xz) = p(t,x) = d(x, A) are applied, where d(z, A) is the
distance from the point = to the set A C R™.

Thus, the conditions for the boundedness of motion of the system (2.2.2)
under different assumptions on the dynamic properties of the subsystems
(2.2.4) with respect to two different measures are generalized in relation to
other conditions determined earlier, when measures (1)—(4) were used.

2.3

1-Boundedness with Respect to Two Measures

In this section we will apply the functions of comparison of the classes K,
L (see Definition 1.3.1) and:

CK ={be C(R%,Ry): b(t,s) € K at every t},
KL={y€C(R%,Ry): y(t,s) € K for every s and
~(t,s) € L for every t},
KR={ce K: lim c(u) = oco}.
uU—00

Note that the comparison functions from the above classes are widely used
in works on the theory of stability of motion.

Below we will show some relations between the measures pg(t,z) and
p(t, ).

Definition 2.3.1 Let the measures pg,, pr € M at all k = 1,2,...,m.
We say that
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(1) the measure p(t,z) = pr(t, ) is continuous with respect to the

k

Il
-

m
measure po(t,z) = > pi,(t, k), if there exists a constant A > 0 and a
k=1

comparison function b € CK-class, such that p(t,z) < b(t, po(t,z)), as
soon as po(t, ) < A;

(2) the measure p is uniformly continuous with respect to the measure py,
if in definition (1) the comparison function b does not depend on ;

(3) the measure p is asymptotically continuous with respect to the measure
po, if there exists a constant A; > 0 and a comparison function ¢ € K L-
class, such that po(t,z) < (¢, po(t,x)), as soon as pg(t,z) < Aj.

For the independent subsystems (2.2.4) construct auxiliary functions
vs(t,xs), s =1,2,...,m. Let vy € C(Ry x R™,Ry) at all s = 1,2,...,m.
For any function vs € C(R4+ x R"™, R} ) determine the function

1
DY (t,xs) = 01—i>%l+ sup g [vs(t+ 0,25 + 0fs(t,x5)) — vs(t, x5)]

at all s =1,2,...,m for the values (t,zs) € Ry X R"s.
In order to note that the full derivative of the function vs (¢, x5 ) is calculated
along the solutions of a certain subsystem (*), we will denote this as follows:

D+vs(t,xs)|(*), s=1,2,...,m.

Definition 2.3.2 A function

m

v(t,x, @) = Z[vs(tws) + ws(t, x5, 1), (2.3.1)

s=1

where v € C(Ry x R™ x M, Ry), v(t,x, ) is locally Lipshitz with respect to
x, is said to be strengthened if v(¢, x, 1) has a certain type of sign definiteness
with respect to the measure p, while the functions vs(t, zs) are constantly
positive at all s =1,2,...,m and

|ws(t7:[57lu)| < CS(ILL)7 S 1?27 ? l?
Cre I OCS(,U/)

Definition 2.3.3 Let the function v(¢, z, ) be constructed by the formula
(2.3.1). We say that the strengthened function v(t, x, p):

(1) is p-positive definite, if there exist constants d; > 0, p* > 0, and a
comparison function a € K-class, such that

a(p(t, z)) < o(t, =, p),

as soon as p(t,x) < 01 and p < p*;
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(2) is p-decrescent, if there exist constants d2 > 0, fi > 0, and a function
w € K-class such that

olt,z, 1) < w(p(t,))
as soon as p(t,r) < d and pu < fi.
Now pass on to the formulation and proof of statements on the bounded-
ness of motion of the system (2.2.2) with respect to two different measures.
Theorem 2.3.1 Assume that:

(1) for the independent subsystems (2.2.2) the measures pok,pr € M are
specified, and the measure p(t,x) is continuous with respect to the mea-
sure po(t,x);

(2) there exist constantly positive functions vy, € C(Ry x R™ Ry) and
functions w, € C(Ry x R™ x M,Ry) at all k = 1,2,...,m such that
the strengthened function v(t,z,u) [see the formula (2.8.1)] is locally
Lipshitz with respect to x and satisfies the estimates

a(p(t, {E)) < U(t»maﬂ) < T(t,po(t,l‘)) (2'3'2)

at all (t,z) € Ry x R"™, where a(y) — 0o at v — 0o and r € C(R4 X
Ry, R.);
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(3) there exists a value of u* € (0, 1], at which the following inequality holds:

D+U(t7$7ﬂ)|(2_2_2) <0 atall (t,z)€ Ry XxR"™ andat p<p*.

Then the motion x(t, ) of the weakly connected system (2.2.2) is (po, p)p-
bounded.

Proof Let a > 0, to € Ry be specified and let z(t,u) = x(t;to, xo, 1)
be the motion of the system (2.2.2) with its initial conditions satisfying the
inequality

po(to,zo) = Zpok(th Zor) < a.
=1

From condition (1) of Theorem 2.3.1 it follows that there exists a function b
belonging to the C'K-class, such that

Choose 5 = B(t9,a) > 0 so that
B > max{b(ty,a),r  (to,a)}. (2.3.3)

From the estimate (2.3.2) at the chosen value of 3, it is clear that p(to, z0) < 5.
To prove the theorem, it suffices to show that

p(t,x(t,p)) <p atal t>ty and p<p™ (2.3.4)

Let the inequality (2.3.4) be satisfied not at all ¢ > to. Then at a fixed p*
there should exist t; > to such that p(t1,z(t1, ) = 8 at u < p*. Since the
function v(t,x, 1) is nonincrescent, from conditions (2) and (3) of Theorem
2.3.1 it follows that

a(B) < v(tr, z(tr, p), 1) < v(to, xo, p) < r(to,a) at p<p’

This contradicts the choice of 8 by the formula (2.3.3). Consequently, the
motion z(t,u) of the weakly connected system (2.2.2) is (po, p) u-bounded.

Theorem 2.3.1 has a number of corollaries.

Corollary 2.3.1 Let the measures py and p be defined as follows:

m
po(t, @1, ... ) = Zpko(t7$k)7
k=1

!
p(t,z) = p(t,z1,...,21) = Zpk(t, zE), 1<li<m,
k=1

and let all the conditions of Theorem 2.3.1 be satisfied.
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Then the motion of the weakly connected system (2.2.2) is (po,p)u-
bounded, that is, bounded with respect to a part of variables z1, ..., z;.

Corollary 2.3.2 Let in the system (2.2.2) y = 0 and let conditions (2)
and (3) of Theorem 2.3.1 be satisfied with the function

v(t,x, 1) = vo(t,x) = ka(t,xk).

k=1

Then the motion of the independent subsystems (2.2.4) is (po, p)u-
bounded.

Corollary 2.3.3 Let in the system (2.2.2) p =0, m = 1 and let all the
conditions of Theorem 2.3.1 be satisfied with the measures

po(t,z) = pio(t,x1) € M,
p(t,x) =pi(t,z1) € M

and the function
U(ta €T, ,LL) =1 (ta Il)'

Then the motion of the system

d:l?l

P fit,z1),  z1(to) = 210 (2.3.5)

is (p10, p1)-bounded.
Corollary 2.3.4 Let in the system (2.2.2) p = 0, m = 1, the function
r = 0 and let all the conditions of Theorem 2.3.1 be satisfied with the measures
pro(t, 1) = pi(t, 1) = |||
and the function
U(t7 xz, ,LL) =1 (t7 m1)~
Then the motion of the system (2.3.5) is bounded.

Later we will consider the domains

Sk(p,0) = {zp € R™: pi(t, o) <0}, k=1,2,...,m,

and their contradomain Sg(p, ). Let S(p,A) = |J Sk(p,d) and S(p,A) be
k=1
a contradomain of S(p, A).

Theorem 2.3.2 Assume that:

(1) for the subsystems (2.2.2) the measures pok,pr € M are specified, and
the measure p(t,x) is uniformly continuous with respect to the measure

po(t, I);

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS ANALYSIS OF THE BOUNDEDNESS OF MOTION

(2) there exist functions
vp € C(Si(p,0),Ry) and wy € C(SE(p,d) x M, R)

at all k=1,2,...,m, a comparison function a from the K-class and a
function ¢ € C(Ry, Ry) such that the strengthened function v(t,x, ) is
locally Lipschitz with respect to x and

a(p(t,z)) < v(t,z, p) < q(po(t,x))
at all (t,x) € S¢(p, A), where a(y) — oo at vy — oo;
(3) there exists pu* € (0,1], at which the following inequality holds

DFo(t,z, )| (2.20) <0 at all (t,x) € S°(p,A) and p < p*.

Then the motion x(t, ) of the weakly connected system (2.2.2) is uniformly
(po, p)p-bounded.
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Proof From condition (1) of Theorem 2.3.2 it follows that there exists a
function ¢ from the K-class such that

(,O(t, x) < SO(PO(ty 'T)) (2~3-6)

For an arbitrary a > 0 choose 8 = 8(a) > 0 so that

a(B) > max{q(a), q(A),a™ (¢(a)),a™" (p(A))}. (2.3.7)

Now let to € Ry and po(to,zo) < a. Assume that for the motion x(¢, u) =
(w1 (t;t0, Tos 1), - - - T (t5 o, T, 1)) T of the system (2.2.2) there exists t* such
that

Pt (", 1)) > 5. (2.3.8)
Then there exist values t1,t2: tg < t1 < to < t*, for which

po(tla‘r(tlwu')) :max{a, A}, p(tz,x(tz,,u,)) :ﬁv

(t,z(t, 1)) € S(p, B) N S(po, max{a, A}), t€ [t1,ta). (2:3.9)
From condition (2) of Theorem 2.3.2 it follows that
o(tr,2(tr 1), 1) < alpoltr a(tr, 1) = max{q(a), ¢(A)} (2.3.10)
and
o(ta, 2tz 1), 1) > alp(ta, w(t2, 1) = a(B). (2.3.11)

According to condition (3) of Theorem 2.3.2, there exists p* € (0,1] and the
following estimate holds:

v(ta, 2(ta, ), 1) < v(tr, o(te, p),p) at p<p (2.3.12)

Taking into account (2.3.10) and (2.3.11), from (2.3.12) obtain

a(B) < max{q(a), ¢(A)}- (2.3.13)

This contradicts the selection of a(83) by the formula (2.3.7) and proves The-
orem 2.3.2.

Theorem 2.3.2 has some corollaries, too.

Corollary 2.3.5 Let the measures pg, p € M and be chosen as specified in
Corollary 2.3.1. If all the conditions of Theorem 2.3.2 are satisfied, the motion
of the weakly connected system (2.3.2) is uniformly (po, p)pu-bounded.

Corollary 2.3.6 Let in the system (2.2.2) p = 0 and let conditions (2)
and (3) of Theorem 2.3.2 be satisfied with the function v(¢, x, 1) indicated in
Corollary 2.3.2.

Then the motion of the independent subsystems (2.2.4) is uniformly (pg, p)-
bounded.
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Corollary 2.3.7 Let in the system (2.2.2) g4 = 0, m = 1 and let the
conditions of Theorem 2.3.2 be satisfied with the measures p19,p1 € M and
the function v(t,z, u) = v1(t, z1), indicated in Corollary 2.3.3.

Then the motion of the systems (2.3.14) is uniformly (p10, p1)-bounded.

Corollary 2.3.8 Let in the system (2.2.2) y = 0 and m = 1. If here all the
conditions of Theorem 2.3.2 with the measures p1o(t,21) = p1(t,z1) = ||1]]
are satisfied, and the function v(t,z, u) = v1(t,x1), then the motion of the
system (2.2.14) is uniformly bounded.

Theorem 2.3.3 Assume that:
(1) conditions (1) and (2) of Theorem 2.5.2 are satisfied;

(2) there exists u* € (0,1] and a comparison function ¢ from the K-class
such that

D+U(ta €L, /J)|(2.2.2) < —C(po(t, 'T))
at all (t,x) € S%(po, A) and p < p*.

Then the motion of the weakly connected system (2.2.2) is uniformly ulti-
mately (po, p)p-bounded.

Proof Under the conditions of Theorem 2.3.3 all the conditions of Theorem
2.3.2 are satisfied and therefore the motion of the system (2.2.2) is uniformly
(po, p, )-bounded. This means that there exists 5* > 0 such that

plt,x(t,pw)) < p* atall t>to,

as soon as po(to, o) <y and pu < p*.

Consider the motion x(t, 1) of the system (2.2.2) with the initial conditions
po(to, zg) < a, where a is an arbitrary number such that a > . Then there
exists a positive number 5 = B(a) > 0 such that

p(t,x(t,p)) <p atal t>ty and p < p.
Show that there exists ¢t* € [to, to + 7], where

q(a) +1

cv)

)

such that po(t*, z(t*, 1)) < v at p < pe. If this is not correct, then
po(t,x(t,u)) >~ atall telto,to+7] and p< ps.
In this case, condition (2) of Theorem 2.3.3 implies the estimate
v(to +7,2(to + 7, ), 1) < w(to, To, 1) — (V)7
which, together with the estimate

a(p(t, ) <v(t,z, 1) < qlpo(t,x)) atall (t,z) € 5%p,A)
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results in the inequality

q(a) +1

() <0

0 <q(a) —c(v)

The obtained contradiction proves that under the conditions pg(to, zo) < a
and p < p* = min{p1, po} the estimate p(t, z(¢, u)) < f* holds at all t > to+7
and p < p*. The theorem is proved.

Like Theorems 2.3.1 and 2.3.2, Theorem 2.3.3 has a number of corollaries.

Corollary 2.3.9 Let the measures pg,p € M be chosen as indicated
in Corollary 2.3.1. If all the conditions of Theorem 2.3.3 are satisfied, then
the motion of the weakly connected system (2.2.2) is uniformly ultimately
(po, p)u-bounded.

Corollary 2.3.10 Let in the system (2.2.2) 1 = 0 and let conditions (2)
and (3) of Theorem 2.3.3 be satisfied with the function indicated in Corollary
2.3.2.

Then the motion of independent systems (2.2.4) is uniformly ultimately
(po, p)-bounded.
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Corollary 2.3.11 Let in the system (2.2.2) 4 = 0, m = 1 and all the
conditions of Theorem 2.3.3 be satisfied with the measures p19, p1 € M and the
function v(t,z, u) = v1(t,x1), indicated in Corollary 2.3.3. Then the motion
of the system (2.2.14) is uniformly ultimately (p10, p1)-bounded.

Corollary 2.3.12 Let in the system (2.2.2) yp = 0 and m = 1. If all the
conditions of Theorem 2.3.3 with the measures p1o(t,z1) = p1(t,21) = ||21]|
and the function v(t,z, ) = v1(t,x1) are satisfied, then the motion of the
system (2.2.14) is uniformly ultimately bounded.

The general theorems 2.3.1-2.3.3 on the boundedness of motion with re-
spect to two different measures pg, p may provide the basis for the construction
of different sufficient conditions for the boundedness of motion of the nonlinear
weakly connected systems (2.2.2). At specifically chosen measures pg,p € M
and functions vi and wy at k = 1,2,...,m the sufficient conditions for the
boundedness of motion coincide in particular cases with those obtained both
for second-order systems (see Reissig et al. [1]) and for a system of n ordinary
differential equations (see Yoshizawa [2]).

2.4 Boundedness and the Comparison Technique

The comparison technique allows us to simplify the investigation of the
boundedness of motion of the weakly connected system (2.2.2) by substituting
it with the analysis of solutions of a nonlinear scalar comparison equation.
This fruitful approach is based on theorems on differential inequalities (see
Chapter 1).

2.4.1 Auxiliary results
Consider the scalar differential equation
du
dt
Here g € C(Ry+ X Rx M, R), g(t,u,pu) =0 at all t > tg, if and only if u = 0.

= g(t,u,p), u(to) = uo > 0. (2.4.1)

Definition 2.4.1 Let (¢, 1) be a solution of the comparison equation
(2.4.1), existing on the interval J = [tg,to + a), 0 < a < +o0, pu € M. The
solution (¢, i) is said to be the p-maximum solution for the equation (2.4.1),
if for any other solution u(t, u) = u(¢; to, ug, ) of the equation (2.4.1), existing
on J, the following inequality holds:

u(t,p) <~(t,p) atall ted, p<ugp. (2.4.2)
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The p-minimum solution is obtained in a similar way, the sign in the
inequality (2.4.2) is substituted with the opposite one.

Lemma 2.4.1 Let the function g € (R4 X R x M,R) and let y(t,pn) =
~v(t, to, uo, ) be the mazimum solution of the equation (2.4.1), defined on the
interval J. Assume that the function m € C(Ry, Ry) and

Dm(t) < g(t,m(t),pn), teJ, (2.4.3)

where D is a fized Dini derivative.
Then
m(t) <(t,p), teJ,

as soon as m(tg) < ug.

Lemma 2.4.2 Let the function g € C(R4+ x R x M, R) and let r(t,pu) =
r(t;to, uo, 1) be the minimum solution of the equation (2.4.1), defined on J.
Assume that the function n € C(Ry, Ry) and

Dn(t) > g(t,nt). ), te ..

Then

as soon as n(tg) > ug.

Lemma 2.4.3 Let the function v € C(Ry x R™, Ry) and, in addition,
v(t,z) let it be locally Lipschitz with respect to x at every t € Ry. Assume
that the function DV v(t,z) satisfies the inequality

DYou(t,z) < g(t,v(t,x),n), (t,r) € Ry x R™, (2.4.4)

where g € C(Ry X Ry X M, R).

Let y(t, p) = v(t; to, uo, 1) be the mazimum solution of the equation (2.4.1)
existing on Jy.

Then for any solution z(t) = x(t,tg,xo) of the system

dx

= o), alte) =, (2:4.5)

existing on Ja, the following estimate holds
v(t,x(t)) <~v(t,pu) atall teJiNJa, u< po, (2.4.6)
as soon as

U(to, (E()) S uQ-.

The proofs of Lemmas 2.4.1-2.4.3 are given in the monograph by Laksh-
mikantham, Leela, and Martynyuk [1].
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2.4.2 Conditions for the boundedness of motion

We will set out one variant of sufficient conditions for the boundedness of
motion of the weakly connected system (2.2.2), which is based on the com-
parison technique.

The motion of the system (2.2.2) will be considered in the space R =
R™ x R™ x ...x R™ . Let E C R", and let the sets E, E¢, and OF be the
closure, the complement, and the boundary of E. For an arbitrary H > 0,
define an open ball

S(H) = {w € R": ||o| < HY,

where || -] is the Euclidean norm of the state vector z(t) of the system (2.2.2).
Introduce the following assumptions:

(1) the dynamics of the subsystem (2.2.2) are characterized by the functions
vs € C(R4+ x E°, R,), the functions vs > 0 at all s = 1,2,...,m are
locally Lipschitz with respect to x;

(2) the estimate of the influence of the connection functions ugs(t,z), s =
1,2,...,m, in the system (2.2.2) is taken into account in the functions
ws(t, z, 1) which are defined at all (¢,x, 1) € Ry X S¢ X M;

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

Prof. Dr. Nick HM. van Dam

21st Century Corporate
Learning & Development

Trends and Best Fractices

Download free eBooks at bookboon.com Click on the ad to read more

59



http://s.bookboon.com/Download_Free

(3) the functions
w(t,z) =n"V(t.x), neRY,

where V(t,z) = (vi(t,21),...,vm(t,2,))T, and
wo(t7 J;7 u) = nTW(t’ 1:’ ILL)7

where W (t,x, 1) = (wi(t,z, 1), ..., wn(t,z,1))T, satisfy special condi-
tions.

Theorem 2.4.1 Assume that:

(1) the set E C R™ is compact and for the subsystem (2.2.2) there exist
functions vs(t,xs) > 0, s = 1,2,...,m, such that the function vy(t,x)
is locally Lipschitz with respect to x at every t € R, the comparison
functions a,b € K-class, a(r) — oo at r — oo, and the function ® €
C(R4 X Ry, R) are such that

(a) a(flzl[| < vo(t,z) < b(||=]]) at all (t,x) € Ry x EF,
(b) Dtug(t,z)](2.2.2) < ®(t,vo(t, ), 1) at all (t,z) € Ry x E°, where
b(t,u,pu) =0 at u=0;

(2) there exist functions wy(t,z, 1), s = 1,2,...,m, such that the function
wo(t, x, 1) is locally Lipschitz with respect to x at every t € Ry and the
following estimates hold:

(a) |wolt,z, )] < c(p) at (t,2, 1) € Ry x S°(H) x M;

(b) Drug(t,z)|(2.2.2) + DT wo(t, z, p)|(2.2.2) < ¥(t, vo(t,z) +
wo(t, z, p), 1), where c(u) is a nondecrescent function p, lir% e(p) =
=

0 and ¥ € C(Ry x R x M, R);

(3) the solution of the comparison equation

d
d_,l; = (P(t’ U7M)a ’U,(to) = Uo Z 0’ (247)
is p-bounded;

(4) the solution of the comparison equation

dw

v U(t,w,p), w(ty) =wo >0, (2.4.8)

is uniformly p-bounded.

Then the motion x(t, u) of the system (2.2.2) is p-bounded.

Proof In view of the fact that E is compact, there exists Hy > 0 such that
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S(Hy) D S(E, H) for some H > 0. Here S(E,H) = {x € R™: d(z,F) < H},
d(z, E) = ing |z — y||. Assume that ¢y € Ry and a > Hy. Let
ye
a1 = aq(tog,a) = max{ag,a”}, (2.4.9)

where ag = max(vo(to,z0): zo € S(a)NE®) and a* > vo(t,z) at (t,z) €
R+ x OF.

Since all solutions of the equation (2.4.7) are u-bounded, for a specified
to € R4 and a; > 0 there exists Sy = Bo(to,a1) and py = p1(a1) such that

u(t, to, uo, pb) < Pfo at all > to, (2.4.10)

as soon as ug < a1 and g < p1. From condition (4) of Theorem 2.4.1 it follows
that at a specified as > 0 there exists 81(az2) and p2(az) such that

w(t; to, wo, u) < Pr(az) atall t> 1o, (2.4.11)

as soon as wy < ag and p < pe. Let ug = vo(to, o) and as = b(a) 4+ Bo. Since
a(r) — oo at 7 — oo, it is possible to choose 5 = S(tg, a) so that

a(B) > Bi(a). (2.4.12)

Now show that if zy € S(a), then the solution x(t, u) of the system (2.2.2)
satisfies the inclusion z(t, ) € S(5) at all t > to and p < po. If this is not
correct, then one can find a solution (¢, ) such that for some t* > ¢, at
p < p° the relation ||z(t*, )| = B would hold. Since S(E, H) C S(Hp), it is
necessary to consider two cases:

(a) the inclusion x(t, 1) € E€ is true at all t € [t,t*] and p < pu°;

(b) there exists > to such that x(f, u) € OF and z(t, u) € E° at t € [t,t*]
and p < po.

First, consider case (a). For the inclusion (a) one can find ¢; > tg such
that
2(t,p) € DS(H),
x(tx, ) € 9S(B), (2.4.13)
z(t,p) € SO(H)  at te€[tr,t+], 1 < po.

Denoting m(t, u) = v(t, z) + |w(t, z, )|, where m € C(Ry x M, Ry), obtain
the inequality

Drm(t, p) < WU (t,m(t,p),p), tE [to,t] (2.4.14)
and the estimate

m(t, u) < wt(t;t,uo,p), tE€ [to,tx], (2.4.15)
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* is the maximum solution of the equation

where w (t1;t1,u0, ) = ug, w
(2.4.8). Thus,

m(t*, 1) < w (¢t mltr, ). (2.4.16)

Similarly, using the inequality from condition (1b) of Theorem 2.4.1 and
the comparison equation (2.4.7), obtain

(tl, l’(tl, M)) < u+(t1; to, ’U(to7 l’(to, /L))) (2417)

at all t € [to,t1], where u* is the maximum solution of the equation (2.4.7). It
is obvious that if we choose

ug = vo(to, zo) < a,
then, in compliance with (2.4.10), we will obtain
u+(t1;t07’00(t07$0)) § ﬁo. (2418)

Now take a puz € M from the formula uz = ¢~ (By). Then, in view of
condition (2a) of Theorem 2.4.1, obtain

fwolt, . )| < e(p2) = e (Bo)) = Bo. (24.19)
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Hence

wo = vo(t1, x(t1;t0,70)) + [wolts, x(t1;to, v0), p)| < bla) + fo = az
at  p < ps.
From the estimate (2.4.15) obtain

vo(t1, z(t1;to, o)) + |wo(t1, z(t1;t0, o), )]
<w*(t1,to, wo, ) < Pr(az) at p < ps.

Hence, taking into account (2.4.12), it follows that

a(ﬂ) + ﬂo < 51(@2) < a(ﬂ) at  p < ps. (2420)

The obtained contradiction (2.4.20) shows that z(t,u) € S(B8) at all t > g
and p < p” = min(p1, po, p13).

Let case (b) be realized. Here, like before, we obtain the inequality (2.4.15),
where t; > ¢ satisfies the inclusion (2.4.13). For the function wvg(¢,2) the
following estimate holds:

UO(th I’(tl; to, I’o)) < u+(t; t~7 Uo(tN, {Z?(tN, to, I’o))

In case (b) we have z(t;to, 20, 1) € OF and vo(t, x(f;to, w0, 1)) < a* < ay.
Therefore, the reasoning is similar to the above results in the contradic-
tion (2.4.20). Hence it follows that if xo € S(a) and a > H, u < u°, then
lz(t; to, xz0, )| < B at all t > to. At a < H we assume that S(tp,a) =
Bo(to, H).

Theorem 2.4.1 is proved.

Condition (la) from Theorem 2.4.1 is essential for the proof of the p-
boundedness of motion of the system (2.2.2). If a(r) does not tend to 400 at
r — +00, then the function vg(t, x) is not radially unbounded, and therefore
its application in the study of the p-boundedness of the system (2.2.2) is
impossible.

Show the method of application of a function vg(¢, z) that does not satisfy
property (1a).

Definition 2.4.2 (cf. Burton [1]). The function vy (¢, z), vo: Ry X R™ —
R, is strengthened by the function w: R™ x M — R, if the function

vo(t, x) + u(z, @) (2.4.21)

is radially unbounded, and the following conditions are satisfied:

(1) there exist disjoint open sets Si,..., Sk in R"™ and continuous functions
UL, ..., Uk, Ui S; X M — Ry which have continuous partial derivatives
in S;, and

(@ ) = wi(x,pu), if x€S8; for some i,
= 0, if xe (US)s
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(2) there exist positive constants L1, ..., Ly such that for every i at 0 <
L} < L; there exists such a constant D > 0 that if z € S; and v (t, z) <
Lx;, then u;(z, pn) < D.

Note that if the function (2.4.2) is radially unbounded for every L > 0,
then there exists a constant H > 0 such that if

vo(t,z) <L and |z| > h, (2.4.22)

then x € S; for some 3.
Like in Theorem 2.4.1, the function vy (¢, x) is determined by the formula

m
vo(t,x) = Z asvs(t, zs),
s=1

and the functions v;(z, 1) and hence the function u(x, 1) are constructed with
consideration for the connection functions ugs(t, z1, .. ., ;) between the sub-
systems.

Theorem 2.4.2 Assume that the motion equations (2.2.2) are such that:

(1) for the subsystems (2.2.4) there exist auziliary functions vs(t,zs) such
that for the function vo(t, x) the following conditions are satisfied:

(a) vs: Ry X R"™ — Ry, vs have continuous partial derivatives on
Ry x R",
(b) there exists a nonnegative constant M such that in the domain
Ry x S¢(M) the following inequality holds:
dvo(t, x)

<0
dt

(2.2.2)

9

(¢) if M > 0, then there exist positive constants K and P, P > M,
such that at all t > 0

vo(t,z) < K at |z||=M

and
vo(t,x) > K at || =P;

(2) there exists a function u(x,p), which strengthens the function vy (t,x),
and for every x € |JS; there exists u° € M such that the inequality
i

du(z, p) <0

dt 900

holds at all t > 0 and pu < p°.
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Then the motion x(t, p) of the system (2.2.2) is p-bounded.

Proof If z € |JS;, then for some i the motion = € S;. By assumption the
sets S; are open so that there exists gradu(z, u) = gradu;(z, p).

If Theorem 2.4.2 is incorrect, then there exists a motion of the system
(2.2.2) for which the vector function (¢, i) = (21 (t, 1), - . ., T (t, 1)), defined
on the maximum right-hand interval [to,T), at u < p°, is y-unbounded. In
this case there exists an increscent sequence {7,}: to < 7, < T such that
||lz(Tn)|| = oo at n — oo.

From conditions (1b) and (1c) of Theorem 2.4.2 it follows that ||z(t, u)|| >
M, and the condition

dvg (ta .’E) <0
dt (g0

results in the estimate

volt 2t 1)) < volto,(to, 1)) = L.

This means that there exists H > 0 such that the condition |x(t,u)|| > H
implies x(t, u) € S; for some i. Consequently, for all sufficiently large n a so-
lution z(7,, u) belongs to some S;. From the sequence {,,} one can choose a
subsequence {7} so that x(75, u) € S; for some fixed ¢ and ||z(7;, u)|| > H.
As soon as vo(7), (7, 1)) < L and the function vg(t, z) + u(x, n) is radi-
ally unbounded, the fact that ||z(7}, u)|| — oo, means that u(x(7), u), p) =
wi(x(7, 1), 1) — oo. Here we should consider the following two cases:
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(a) there exists t1 € [to,T') such that

x(t,p) €S; on [t1,T);

(b) there exists a sequence {t,,}: t, < 7, < tp4+1 such that

I’(t,ﬂ) S S@ on (tn7tn+1) and ||I(tmﬂ)|| = H

For the verification of the above two cases, note that the functions u;(z, u)
are continuous on S;, ||x(7,)|| > H and the motion x(t, ;1) is continuous. Since
S; are open and do not overlap in view of the condition (2.4.22), there exists
a sequence {t,} such that ||z(t,, p)|| = H and ||z(t, p)|| > H on [tn, Tn]. The
continuous function z(¢, u) cannot leave S; at t < 7,, if only ||z(¢, u)|| does
not reach H at some point in time t = ¢,,.

Let case (a) be true. Then

dui($7 ,LL)

<
dt 0

(2.2.2)
and hence
wi((t, p), 1) < wi(a(ty, 1), p)

on the interval [t1,T), which contradicts the possible unboundedness of the
function w;(x(t, 1), p).

Let the case (b) be true. Then |[z(t,,u)|| = H and there exists a subse-
quence {x(ty, , )} with some limit y € S;. Hence w;(x(tn, 1), p) — u;i(y, p) at
t, — +o0. The condition

du;(, 1) <0
dt Jo09)

on [tn,, Tn,] for sufficiently large k results in the estimate

wi (2 (7o 1)y 1) < wi(y, p) + 1,

which in its turn contradicts the possible unboundedness of the functions
ui(x(Tru M)7 /J).

The theorem is proved.

Definition 2.4.3 The function v(¢,z,u), v: Ry x R™ x M — R4, is
a strengthened Lyapunov function if vg(t, ) is strengthened by the function
u(x, 1) indicated in Definition 2.4.2; and

m
(1) for the function wo(t,x) = > asvs(t,x) the following conditions are
s=1

satisfied:

(a) vs: Ry x R™ — Ry, vs have continuous first-order partial deriva-
tives,
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(b) there exists a nonnegative constant M such that in the domain
Ry x S¢(M) the following inequality holds

dvo(t, x)

<0
dt

(2.2.2)

7

(¢) if M > 0, then there exist positive constants K and P (P > M)
such that at all ¢ > 0 the following inequalities hold:

vo(t,x) < K at ||| =M

and

vo(t,x) > K at ||| =P;

(2) for every i and every L > L, there exists a positive constant J and
continuous functions ®: (0,L — L;) — R4+ and H: [J,00) — R4, for
which

L—Li o0
/ qi‘; <o and /H(s) ds = oo, (2.4.23)
0+ J

while the conditions w;(z,u) > J and L > v(t, x, i) > L; imply

dvo(t, x, 1)

p < —®(v(t,a, p) — L) H(ui(x, 1))

(2.2.2) (2.4.24)
x [lgrad wi(z, ) (f(t, ) + pg(t, z1, ... 2w

Now consider the following statement.
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Theorem 2.4.3 Let the motion equations (2.2.2) be such that:

(1) there exists a strengthening function u(x,p) such that v(t,z,u) is a
strengthened Lyapunov function in accordance with Definition 2.4.3;

(2) for every i there exists u° € M such that if u;(z, p) > J and vo(t, z, ) =
L;, then
dvo(t, x, 1)

a7 l2.2.2) <0 at p< 1.

Then the motion x(t, p) of the system (2.1.2) is p-bounded.
The proof of this theorem is similar to that of Theorem 2.4.2.
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2.5 Boundedness with Respect to a Part of Variables

Continue the study of the p-boundedness of motion of the system (2.2.2)
under the following assumptions:

(a) the right-hand parts of the system (2.2.2) are continuous and satisfy the
conditions for the existence of the unique solution x(t, u) = x(¢; to, xo, 1)
in the domain

m
t>0, Jal =) |zl <+o0, peM,
s=1

here fs(¢,0) # 0 and ¢4(¢t,0,...,0) # 0 for at least one s =1,2,...,m;

(b) any solution x(t; g, zo, ) of the system (2.2.2) is defined at all t > ¢
and p € M° C M.

Taking into account Definition 2.2.1 and condition (3) from Remark 2.2.1,
formulate some definitions of p-boundedness of motion of the system (2.2.2)
with respect to variables of a part of subsystems.

Represent the vector z = (x7,...,25)T with subvectors x,, s =
1,2,...,m, as follows:
z=(y"2")",
where
y' = (21, ...,zp)" and 2= (24q,...,20)"

Now we will give the following definitions.

Definition 2.5.1 The motion

m(t7 M) = (xrlr(u th Zo, :u’)7 sy 373@(7&7 th Zo, :u’))T
of the system (2.2.2) is said to be:

(1) p-bounded with respect to the subvector of variables y = (z],...,2})T,
if for any tg > 0 and 9 = (27,...,2%,)" one can find N(tg,zo) > 0
and po € M such that

ly(t;to, zo,p)|| < N atall t>ty and p< pu% (2.5.1)

(2) p-bounded uniformly with respect to ¢y with respect to the subvector of
variables y = (z],..., 2} )T, if in Definition 2.5.1 (1) for any z one can
choose N(zg) > 0 independent of ¢o;

(3) p-bounded uniformly with respect to z¢ with respect to the subvector of
variables y = (27, ...,a})7T, if for any to > 0 and a compact set E C R"
one can find N(tg, E) > 0 and u° € M such that zy € E would imply
the estimate (2.5.1);

Download free eBooks at bookboon.com



(4) p-bounded uniformly with respect to (tg, o), if in Definition 2.5.1 (3)
for any compact set E one can choose N(E) > 0 independent of t.

Now for the system (2.2.2) consider the function (2.4.21), that is, the
function v (¢, z) strengthened by the function w(z, u).

Theorem 2.5.1 Assume that the motion equations (2.2.2) are such that:
(1) the strengthened function

vo(t, o) +u(z,p), p<p" €M, (2.5.2)
in the range of values (t,x) € Ry x R™ satisfies the condition

a(llyll) < vo(t,x) + u(x,u), a(r) =00 at r— o0; (2.5.3)

(2) there exists p* € M such that for any motion x(t;to, xo, 1) the function
vo(t, z(t; to, xo, 1)) + u(x(t; to, o, 1), 1) is not increscent at all t > tg
and at p < p*.

Then the motion xz(t,pn) of the system is p-bounded with respect to the
subvector of variables y = (7 ,...,z})T.

Proof. Sufficiency According to condition (1) of Theorem 2.5.1, at any
t > top and zg € R™ for the number n = wvg(to,zo) + u(xo, p) at p < p*
one can choose N(n) = N(tg,z9) > 0 so that if ||y|| > N, then a(|y|) <
vo(to, o) + u(zo, 1) at p < p*.

Condition (2) of Theorem 2.5.1 implies that at p < p*

a(lly(t, ) < volt, z(t; to, wo, p) + u(x(t; to, xo, 1), ) < n < a(N).

Hence ||y(t,p)|]| < N at all t > tg and p < p*.

Necessity From the fact that the motion x (¢, u) of the system (2.2.2) is

p-bounded with respect to the subvector y = (7, ... ,xg)T it follows that in

the domain R4 x R™ for the function vo(¢, ) + u(x, p) there exists

sup [ly(t + 736, 2, )l = vo(t, 2) + (@, ). (2.5.4)
720

It is clear that there exists pu* € M at which vo (¢, z) +u(zx, 1) > ||y, if p < p*.
For the values t1 < ty obtain

vo(t1, z(t1;to, To, i) + u(x(ty; to, xo, 1), 1)
= sup [|y(t1 + 75t, 2, p)|| > sup [ly(t2 + 73 t0, To)||
7>0 7>0
= vo(t7x0(t2;t07x07/’[/)) +U(x(t2;to7$07u),/,b))~

This means that the function wvo(¢, z(¢;to, xo, 1)) + u(x(¢; to, o, ), 1) is not
increscent.
Theorem 2.5.1 is proved.

Theorem 2.5.2 Assume that the motion equations (2.2.2) are such that:
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(1) the strengthened function vo(t, z)+u(x, p) in the range of values (t,z) €
Ry x R™ satisfies the condition (2.5.8) and, in addition,

vo(t, z) +u(z, p) <w(x) at p<p’, (2.5.5)
where w(x) is a function finite at each point x € R™;

(2) there exists u* € M such that for any motion x(t; to, g, 1) of the system
(2.2.2) the function

UO(tv I(t, o, o, /’L)) + U(I(t, o, Zo, ,U’)7 /’L)
s not increscent at all t > to and p < p*.

Then the motion x(t, u) of the system (2.2.2) is p-bounded uniformly with
respect to to with respect to the subvector y = (zT,. .. ,:cE)T.

Proof. Sufficiency For any xg € R™ choose a value N(zg) > 0 so that at
llyll > N(zo) the inequality a(||y||) > w(xo) would hold.
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According to conditions (1) and (2) of Theorem 2.5.2, obtain

a([ly(t, w)l) < vo(t, z(t;to, w0, 1)) + u(z(t;to, 2o, ), 1)
< wo(to, o) + u(@o, 1) < w(wo) < a(N)

at all t >t and p < p*. Hence ||y(t, p)|| < N(zo) at all ¢ > to and p < p*.
Necessity If the motion z(t, ) of the system (2.2.2) is u-bounded uni-

formly with respect to to with respect to the subvector y = (zT,... ,xE)T

then the function (2.5.4) is defined in the domain R, x R™. In addition,

)

vo(t,x) +u(z,u) < N(z)=w(z) at p<p’.

This function is not increscent along solutions of the system (2.2.2) at all
t>tpand p < p*.
Thus, Theorem 2.5.2 is proved.

Theorem 2.5.3 Assume that the motion equations (2.2.2) are such that:

(1) the strengthened function vo(t, z)+u(x, 1) in the range of values (t,x) €
Ry x R™ satisfies the condition (2.5.3) and for any compact set E C R"
there exists a function Ag(t) such that

vo(t, @) +u(z,p) <Ap(t) at x€E, t>0, p<p* € M;
(2) there exists p* € M such that for any motion x(t;to, xo, 1) the function
Uo(tv $(ta th Zo, /’[’)) + U($(t, th Zo, :U/)v /’(’)
1s not increscent at all t > to and p < p*.

Then the motion x(t, u) of the system (2.2.2) is u-bounded with respect to
xo with respect to the subvector y = (a1 ,...,a})7T.

Proof. Sufficiency According to the condition (2.5.3) for any tg > 0 and a
compact set E there exists N(tg, E) > 0 and u € M such that:

(a) at ||y|| > N(to, E) the following inequality holds:
a(llyll) > ¢r(to);
(b) at xo € E, t > to and p < p* the following estimates hold:

G(Hy(t, to, X0, :u’) H) < U()(t, ZL’(t; to, %o, /1’)) + ’LL(.’E(t, to, Zo, :u’)v /”L)
< wo(to, zo) + u(@o, p) < Ag(to) < a(N).
Hence find ||y(;to, xo, p)|| < N at t > to and p < p*.
Necessity The function v (t, x)+u(z, ) determined by the formula (2.5.4)

satisfies the estimate

vo(t,z) +ul(z,u) < N(t, E) = pp(t), p<uy’,
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and is not increscent along the solutions (¢; o, zo, 1) of the system (2.2.2).
Theorem 2.5.3 is proved.

Theorem 2.5.4 Assume that the motion equations (2.2.2) are such that:

(1) the strengthened function vo(t, ) +u(x, 1) in the range of values (t,x) €
Ry x R™ satisfies the condition (2.5.3) and, in addition, there exists a
function b: b(r) — 400 at r — +o0 such that

vo(t, ) + u(@, ) < b(||z[]);

(2) there exists u* € M such that for any motion x(t; to, o, 1) of the system
(2.2.2) the function
Uo(t7 l’(t, to, Zo, /'l’)) + U(i[](t, to, Zo, ,LL)7 ﬂ)
1s not increscent at all t > to and p < p*.

Then the motion x(t, u) of the system (2.2.2) is u-bounded uniformly with
respect to (to, zo) with respect to the subvector y = (z1,...,2%)T.

Proof. Sufficiency For any compact set £ C R™ calculate the value
bg = supfvo(t,x) + u(z,p): t >0,z € E] <sup[b(||z|]): = € E] < +o0.

From conditions (1) and (2) of Theorem 2.5.4 it follows that there exists
N(E) > 0 and p* € M such that:

(a) at |ly|]| > N(E) the inequality holds true:
a(llyll) > be;
(b) at p < p*, to > 0 and xg € E the following estimate holds:

a(”y(t;tmme)H) < Uo(t,x(t;t07.%'o7/1,)) + U(m(ﬁtmxmﬂ)aﬂ)
< vo(to, zo) + u(zo, 1) < bp < a(N).

Hence, ||y(t; to, o, )| < N for all t > ¢o and p < p*.
Necessity If the motion x(t, u) of the system (2.2.2) is u-bounded uniformly
with respect to {to, zo} with respect to the subvector

y=(z1,...,x)"

9

then there exists a function vg (¢, x)+u(z, ) determined by the formula (2.5.4).
For compact sets E use the balls ||z|| = r, r € [0,00), and for the values
(t,z) € Ry x R™ obtain

vo(t, ) +u(z, p) < N(E) = N(r)
at p<up*, ECR" rel0,00).
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The function N(r) — 400 at r — +00; therefore, one can assume b(||z||) =
N(||z]|). The function vo(t,x) + u(x, u) determined by the formula (2.5.4) is
not increscent along solutions of the system (2.2.2).

Theorem 2.5.4 is proved.

Remark 2.5.1 If the strengthened function

vo(t, @) +u(e,p), p<p’,

has continuous first-order partial derivatives, then the condition for the non-
increase of the function

'U()(t, ZE(t, o, o, ,U')) + U(.’E(t, to, o, ,U’)v /’L)

along solutions of the system (2.2.2) can be substituted by the condition

d
%(Uo(ta z) +u(w, p))|2.2.2) <0

in the range of values (t,z) € Ry x R™ at p < p*.

Remark 2.5.2 1f in the system (2.2.2) we assume that 4 =0, ;s =2 € R"
and s = 1, then Theorems 2.5.1-2.5.4 imply the statements of Theorem 39.1
from the monograph by Rumiantsev and Oziraner [1].

Ijoined MITAS because et
I wanted real responsibility www.discovermitas.com

L T T'5

e e BB s L
e “* T = -..-'.

Month 16

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen

& solve problems

Download free eBooks at bookboon.com

Click on the ad to read more

74



http://s.bookboon.com/mitas

2.6

Algebraic Conditions of y-Boundedness

Now for the study of p-boundedness of motion of the system (2.2.2),
construct the algebraic necessary conditions, using the functions vg(¢,zs),
s =1,2,...,m only, which were constructed for the independent subsystems
(2.2.4). Those conditions will be based on the following assumption on the
independent subsystems.

Assumption 2.6.1 There exist:

(4)

continuously differentiable functions v, (¢, zs), vs: Ry X R™ — Ry, s =
1,2,...,m;

comparison functions 51, ¥s2, Y¥s3 from the K R-class, s =1,2,...,m;
constants o0, € R, s =1,2,...,m, such that
(@) Ysi(llzsl) < vs(t, ms) < Ysa(fl2s])

dvs(t, zg
(b) % < osss(llas|)
(2.2.4)

at all t € Ry and all ||zs|| > rs (rs may be sufficiently large);

dvg

dt 1(2.2.4)
on the sets Ry X S(rg), s=1,2,...,m.

the functions vs(t, z5) and at all s =1,2,...,m are bounded

Theorem 2.6.1 Let the motion equations (2.2.1) with the decomposition
(2.2.2) be such that:

(1)
(2)

(3)

all the conditions of Assumption 2.6.1 are satisfied;

at the specified functions vs: Ry X R™ — Ry and 3 from the KR-
class there exist constants as; € R such that

Ovs(t, xs) T -
(255)) o) < Wl D2 3 sl D2
S ]:1
at allzs € R™, z; € R", s=1,2,...,m andt € Ry;

at the specified constants o5 € R there exists a value of the parameter
pu* € M and an m-vector a* = (a1, ..., an) such that the matriz S(u) =
[si; ()] with the elements

as(o—s+ﬂass)7 S:ja

Sij(w) =491 .
(k) §M(ajasj +ajajs), s #j,

is negative semidefinite (definite) at p € (0, u*] and at p — 0.
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Then the motion x(t, u) of the system (2.2.2) is uniformly p-bounded (uni-
formly ultimately p-bounded).

Proof Using the functions v (t,zs) and the vector a = (a1,...,a;,)" con-

struct the scalar function
v(t,x,a) = Zasvs(t7xs). (2.6.1)
s=1

According to condition (3a) from Assumption 2.6.1, for the function (2.6.1)
the following estimates hold:

i(llzl) < olt,z,a) < Pa(l]]), (2.6.2)

where 11,19 € KR-class. In addition, condition (3b) and condition (2) of
Theorem 2.6.1 at all ¢ € R imply the estimate

> ME)  <atwslia), (263

s (2.2.2)

where Ay (1) < 0, as soon as @ € R™ \ (S1(r1) X ... X Sp(rm)). Here the
comparison function 13 € K R-class.

Now we will consider the situation where ||z;|| > r; for i = 1,2,...,1,
Il <mand ||z;]] <r; at i =1+ 1,...,m. For the function (2.6.1) consider the
estimates
l m
Zasd)sl(”xs”) + Z asvs(t, xs) < v(t, @ a) <
s=1 s=Il+1
l - (2.6.4)
< Zaswsl(ll%Il) + Z asvs(t, xs).
s=1 s=Il+1

The fact that vs(t, xs) are continuous on R4 x R™ and bounded on R X
Ss(rs), s = 1,2,...,1, implies the existence of comparison functions ¢1, @2
from the K R-class, such that

e1(llzl) < v(t 2, a) < wa([|z]]) (2.6.5)
at allt € Ry and all z € R™, while ||zs|| <75, s =141,...,m, and the values
||zs|| are sufficiently large for s = 1,2,...,1.
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For the function

dv(t,z,a)
dt

along solutions of the system (2.2.2) obtain

dv(t,z,a) ‘ ia {[dvs (t, sr:s)]
dt (2.2.2) ® (2.2.4)

1

At z)\ "
+(%) Mgs(taxha m)}

i dvg(t, x) Ovs(t, xs) T
+ Z a’s{ dt (2'2.4)—’_ ( 8(175 ,Ltgs(t, L1yeeey xm)
s=l+1
l

l l
< acotballzsl) + > adtalzsDZ e agls ()]
s=1 =1

s=1
1 1
+ > astss(lzsDZi Y asi[es(lla;])])2
s=1 Jj=l+1
= dvug(t, x)
+ Z s dt (2.2.4)
s=l+1
“ l 1
+ > asas(flas])] Zuzasg EEADIE
s=I+1
“ l 1
+ Y astss(z)]? e Z IR EADIER
s=Il+1 Jj=l+1
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For all ||zs|| < rs, s =14 1,...,m, there exist constants K, K1, Ko, K3,
Kys, s=1+1,...,m, such that

> lassllws(llas1))7 < K, (2.6.7)
j=Il+1
> aifis(|zil))])? < Ko, (2.6.8)
i=l+1
m ) 1 )
> astbas(za))? Y aswis(llz;)))> < Ks, (2.6.9)
s=l+1 j=1
duett. 2.) <Ky, s=1+1,...,m. (2.6.10)
dt (2.2.2)

Let w = (Y13(]|z1]]), - - -, ¥is(||z]]))T and let P = [p;;] be an [ x l-matrix

with the elements
a;(0; + pag), =7,
Pz‘j(#)Z{ (o + pa) 7
Ha;ag;, B

Denote S = (P + PT). Then the estimate of the expression (2.6.6), taking
into account the inequalities (2.6.7) —(2.6.10), has the form

dv(t,z,a) ‘

l
g <w 8w+ k1 Y auta(o])]E

(2.2.2) =

l

1
£ 0t 1k Y fas gl ] + K
s=Il+1 j=1

According to condition (3) of Theorem 2.6.1, there exists u* € M such
that the matrix S(u) is negative semidefinite (definite) at p < p*. Therefore,

A (S) < 0 and then

dv(t,z,a)

l s
dt ’<2.2.2> < Aum(S) g%uwn e szzjlaswssumn)]é

- l (2.6.11)
1
+ Y asKas + pKa Y las[ta(llz;]D)? + pKs.
s=Il+1 7=l

Since Apr(S(p)) < 0, at any value of ||z4||, s = 1,2,...,1, one can find

v(t, z,a)

d
w* € M such that the sign of ‘ will be determined by the
dt (2.2.2)

expression

!
AM(S)Z¢i3(||$i||)
=l
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at p < p**. Thus, at g < p® = min(u*, u**) the function v(t,x,a) is positive
definite and decrescent and its full derivative (2.6.11) is negative definite.
According to Theorems 10.4 and 10.5 from the monograph of Yoshizawa [2],
the state * = 0 of the system (2.2.2) is uniformly p-bounded (uniformly
ultimately p-bounded).

Theorem 2.6.1 is proved.

Remark 2.6.1 Along with the use of the function (2.6.1) for the analysis of
p-boundedness of motion of the system (2.2.2) it is possible to use the vector
function

o(t,x) = (v1(t,z1), .. v (t, )T

and the theory of M-matrices.

Recall some definitions, following the monographs of Michel and Miller [1]
and Siljak [1].

Definition 2.6.1 A real (m x m)-matrix D = [d,] is called an M-matrix
if ds; < 0, s # j (ie., all off-diagonal elements of the matrix D are not
positive) and all principal minors of the matrix D are positive.

Definition 2.6.2 The real (m x m)-matrix A = [a,;] is called a matrix
with the dominant main diagonal, if there exist positive numbers d;, j =
1,2,...,s, such that

m
ds|ass| > Z djlasj] forall s=1,2,...,m
J=1,j#s

or
m
dj|ajj|> Z d8|a3j| forall 7=1,2,...,m.
s=1,5#]
Consider the following statement.

Theorem 2.6.2 Let the motion equations (2.2.1) with the decomposition
(2.2.2) be such that:

(1) all the conditions of Assumption 2.6.1 are satisfied;

(2) condition (2) of Theorem 2.6.1 is satisfied with the constants as; > 0 at
s 7 J

(3) at the specified constants o5 € R there exists a value of the parameter

w* € M such that all the main diagonal minors of the matriz D(u) =
[ds; ()] are positive at u < p*, where

d (NJ) _ 7(0—8 +,u‘a88)a S :ja
* —HaAsj, § 7&]
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Then the motion x(t, u) of the system (2.2.2) is uniformly p-bounded (uni-
formly ultimately p-bounded).

The proof of Theorem 2.6.2 is similar to that of Theorem 2.6.1 and there-
fore is not given here.

2.7 Applications

2.7.1 Lienard oscillator

The Lienard equation is one of the important differential equations widely
used in mechanics and electrical engineering (see Cesari [1], Burton [2], Reissig
et al. [1], and others). The study of solutions of this equation is still the focus of
attention for a lot of specialists, which is witnessed by numerous publications
in academic periodicals.
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Study the p-boundedness of solutions of the equation
&+ f(t,z,z, p)e + g(x) =0, (2.7.1)
where f: Ry X RX Rx M — R4, g: R — R, the functions f and g are

continuous, f(t,x,y,u) > 0, if y # 0 and p € M® C M, and xg(z) > 0, if
x # 0. The equation (2.7.1) is equivalent to the system

T =y,

g =—f(tz,y,my — g(x). e
Choose the function
o(e,) = W)+ 507,
where W(z) = fg(s) ds. Then obtain
0
Dv(z,y)|(2.7.2) = —ft,z,y,p)y” <0 (2.7.3)

at all (¢,z,y,u) € Ry x R x R x M°,
Assume that W (—o0) and W (4o00) are finite quantities and determine the
sets

S1={(z,y): >0},
So = {(z,y): x <0}.

Take the strengthening functions w;(x,y, 1), ¢ = 1,2, in the form

ul(zay7u) = ux,

2.74
UQ(Ia%N) = THT, MEMO, ( )

and assume that J = 1. Let X = (x,5)" and denote the right-hand part of
the system (2.7.2) by F(t, X,pn) = (y, —f(t,z,y, 1)y — g(z))*. Take Ly and
Lo in the form L; = ®(+00) and L = &(—o00). Note that

|gradui(zay7u)F(t7X7 H)‘ = ‘y|a

o(t, X) — Ly = W () — W(400) + %y%

1
v(t,X)— Ly =W(z) — W(—00) + 3 y2
Then if u;(x,y, u) > J, then v(t,x) — L; < %yQ.
If the function ®: (0,L — L;) — R4 from Definition 2.4.3 is taken in the
form ®(s) = (2s)'/2, then at u;(z,y, ) > J and v(t, z,y) > L; obtain

O(v(t,x,y) —L;) <|y| at i=1,2.

7
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Now, let L > Ly and a function h(z) such that [ h(s)ds = +oo be speci-
J

fied. If L > v(t,z,y) > L1 and uy(z,y, 1) > J, then, choosing u € M' C M,
one can obtain

flt,z,y, ) > h(x) >0 and /h(s) ds = 4o0. (2.7.5)
7

Similarly, for a specified L > Lo, if L > v(t,z,y) > Lo and ua(t,y, u) > J,
then, choosing 1 € M? C M, one can obtain

—o0
flt,zyy, ) > h(x) >0 and / h(s)ds = —o0. (2.7.6)
—-J
Under the conditions (2.7.5) and (2.7.6) for J < w,(x,y,p), @ = 1,2, and
L > v(t,z,y) > L; obtain
Dv(t7x7y)|(2.7‘2) < ¢(U(t7$7y) - LL))h(uL(x7y7 M))|Dun($vy7 :U’)|(2‘7.2) (277)

at u € M° = M'n M?2.
Thus, all the conditions of Theorem 2.4.3 are satisfied and solutions of the
system (2.7.2) are p-bounded.

Remark 2.7.1 It f(t,x,y,u) = h(z) at all (t,z,y,u) € Ry X RX Rx M,
then the conditions (2.7.5) and (2.7.6) are necessary and sufficient for the
boundedness of solutions of the system (2.7.2) according to the results of the
article of Burton [2].

2.7.2 Connected systems of Lurie—Postnikov equations

Consider an indirect control system

dx

d—tl = Az + b1 f(0),

d

% = Agzo + b2 f(0), (2.7.8)
do
= pelar + pefa — (o),

where 1 € R™, x5 € R™, A; is an (n1 X nq)-matrix, As is an (ng X ng)-
matrix, by € R™, bos € R™, ¢c1 € R™, co € R™, n1+ny=n, f: R— R,
cf(o) >0,if 0 #0, fis a continuous function, € M.

Define the conditions for the p-boundedness of motion of the system (2.7.8)
on the basis of Theorem 2.4.3. For this purpose, consider the two functions

Vi(x1,0) = ] Bixy + W (o), (2.7.9)
Va(29,0) = x5 Baxy + W (o), (2.7.10)
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where W (o) = [ f(o)do, By and Bs are positive definite matrices of the
0

dimensions 17 X n1 and ny X ng, respectively. For the function
Vo(z1, 22,0) = Vi(21,0) + Va(xa,0) (2.7.11)

obtain

dVo(z1, x2,0)

dt = 7’13’11‘D1’131 — ngQxQ

(2.7.8)
+ f(o) [QbrlfBl + ,uclT]atl
+ f(0)[2b3 Bs + pey |x2 — 2rf (o).

(2.7.12)

The function dVj(z1,22,0)/dt|(2.7.8) will be negative definite if

D, = *(A?Bl + B1Ay),

" (2.7.13)
Dy = —(A2 By + BQAQ)

and
r>min{ry,r},  p® = min{u?, xS}, (2.7.14)

where
1 > (Biby + per/2) "Dy (Biby + per/2), < pf € M,
r2 > (Boba + pe2/2)" Dyt (Baba + pe2/2),  p < py € M.
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Let M = 0 (see condition (b) in Theorem 2.4.2) and let W (£o0) # oo.
Here the function Vp(z1,22,0) is not radially unbounded and therefore its
application for the analysis of the p-boundedness of the system (2.7.8) is
impossible.

Now assume that W (oo) = W (—o00) and choose Ly = Ly = W (00). Define
the surfaces S1,...,S54 as follows:

S1 ={(z1,0): 0 >0}, S2={(x1,0): 0 <0},

2.7.15
Sz = {(z2,0): 0 >0}, Si={(z2,0): 0 <0} ( )
Choose the strenghthening function on the basis of the conditions
ui(z1,0) =0, wus(r1,0)=—0, (2.7.16)
'113(1'270'):0'7 U4((E2,U) = —0.

Under (2.7.14), from the negative definiteness of the function 2%(z1.22:9) | (

dt 2.7.8)

it follows that there exists a constant m > 0 such that

d%($1,$270)

y7 < —m(z]z1 + 23 32 + f3(0)). (2.7.17)

(2.7.8)
Now

Vo(x1,22,0) — W(o0) = ¥ By + 23 Baxy + W (o) — W(o0)
<zl Bizy + x3 Boxy < Q(z] 21 + 3 2)

for some @ > 0.
In addition,

0’| = et s + pesxz —rf(0)| < Plu(ef a1 + x3w2) + f2(0)]'/?

for p < p* € M and some P > 0.
Assuming h(s) = m/uPQ'/?, obtain

d%($17$270)

e < —(m/pPQY)[Vo(z1, 22, ) — W (00)] /2 Jis| (2.7.18)

(2.7.11)

at p < p* and i =1,2,3,4.
According to Theorem 2.4.3, every motion of the weakly connected system
(2.7.8) is p-bounded.

2.7.3 A nonlinear system with weak linear connections
Consider the linear system with weak linear connections

d
7;; = fl(t,xl) + ,Uclzxz,
(2.7.19)

dx
7; = fo(t, 2) + pCor1,
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where z; € R™, ¢ = 1,2, f;: Ry x R", C;; are matrices, p is a small
parameter. At u = 0 the system (2.7.19) falls into two independent nonlinear
subsystems

dIl

a fit,x1),  @1(to) = 210, (2.7.20)
d
% = fa(t,m2), x2(to) = T20. (2.7.21)

Introduce the following assumption for the systems (2.7.20) and (2.7.21).

Assumption 2.7.1 For the independent subsystems (2.7.20) and (2.7.21)
there exist:

(1) functions vy (t,x1) and va(t, 22), continuous and continuously differen-
tiable on Ry x R™, 1 =1,2;

(2) constants c¢11,...,c15 and ca1, . .., ca5 such that
(a) —cuf|z1]]? < vi(t, 1) < —crafz]?,

d’Ul
b) — 2<—
(b) —cul|z1||* < g

< —cs|z1 %,
(2.7.20)

0
(c) Hai:ji(t,m)H < —cslla |?
at allt € Ry and z; € R™;

(a') carllzal® < valt, x2) < coallzall?,

d’UQ
/ RN
)

< 2
(2.7.21) — caslz=2]*,

0
@) || gt 22| < exsllaa]?
at all t € Ry and z9 € R™.

Taking into account that

81)1 T 81}1 T
(a—zl(t,m)) gi(t,z) = (8—1:1(t’$1)> Cra, (27.22)
Ov B v '
(52 tan)) mt0) = (F2000) Camn (27.23)
find the estimates
v\ " o
H<a> Crows S\ax IC12 ] l2ll < c1s)|Cuzll |zl 121l
s\ " 9
H(a> Corn S‘ax ICor | llz1]l < easl|Car | [zl 2
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in the domain x; € R™, x5 € R™2.
According to condition (3) of Theorem 2.6.1, elements of the matrix S(u)
have the form

S11 = —ai1€13, S22 = —Q2023,
s12 = s21 = 1/2[p(arcis]|Crz|| + sacas]|Car|))]-

Choose a vector a = (ay,az)T > 0 with the components

1 1
@g=— a3=——"
POl TP easl|Ca]
and assume that the function
V(t,z) = a1 Vi(t, x1) + a2Val(t, 22) (2.7.24)

satisfies condition (2) of Theorem 2.6.1.
The matrix S(u) from condition (3) of the theorem has the form

___ a8
S(u) = | csllCre|
L

I
C23

~ ca5[Cn|
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If the conditions

C13 C13C23
—— =<0, |Cia[|Cnl < —=
C15||C'12|| C15C25

are satisfied at all p € (0, u*], where
 _ C13C23 Yz
c15¢25]|Crzl| | Car ||

)

then the matrix S(u) at u € (0, u*] is negative definite. Now Corollary 2.3.12 of
Theorem 2.3.3 according to which the motion of the weakly connected system
(2.7.19) is uniformly ultimately p-bounded can be applied to the function
(2.7.24) and the estimate

d
% < uTS(p)u, (2.7.25)

where u = (||z1]|, ||lz=2)?-

2.8 Comments and References

2.2. The statement of the problem of the boundedness of motion of sys-
tems with a small parameter is formulated, taking into account the known
results (see Cesari [1], Yoshizawa [1, 2], Pliss [1], Lakshmikantham, Leela, and
Martynyuk [1]).

2.3. Theorems 2.3.1-2.3.3 are new. To obtain them, strengthened Lya-
punov functions (see Burton [1]) and two measures (see Lakshmikantham and
Salvadori [1], Movchan [1]) are applied. Under some special assumptions, the
obtained results imply the known results obtained for systems that do not
contain a small parameter (cf. Reissig, Sansone, and Conti [1], Yoshizawa [2],
Lakshmikantham and Liu [1]).

2.4. The comparison technique is applied, the basic ideas were stated in
the monograph by Lakshmikantham, Leela, and Martynyuk [1] (see Lem-
mas 2.4.1-2.4.3). Theorem 2.4.1 is taken from the work of Mitropolsky and
V.A. Martynyuk [1]. Theorems 2.4.2 and 2.4.3 are new.

2.5. For the investigation of the boundedness of weakly connected equa-
tions with respect to a part of variables, it is proposed to apply a strengthened
Lyapunov function and Lyapunov method. Theorems 2.5.1-2.5.4 are new. To
obtain them, the approach to the analysis of the boundedness of solutions
of systems of ordinary differential equations described in the monograph of
Rumiantsev and Oziraner [1] was used.

2.6. The sufficient conditions for the different types of the u-boundedness
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of motion are given under certain assumptions on the dynamic properties of
subsystems and limitations on their connection functions. Here some results
from the monographs of Michel and Miller [1] and Yoshizawa [2] and from the
article of Mitropolsky and V.A. Martynyuk [1] are used.

2.7. Applied problems on the boundedness of solutions of nonlinear engi-
neering systems have been considered in many publications (see Krylov and
Bogolyubov [1], Letov [1], Lefschetz [1], Lurie [1], Stocker [1] and the bibli-
ography therein). We only kept to the analysis of some systems of such kind.
The results obtained in this section are new and published for the first time.

Different sufficient conditions for the boundedness of solutions of linear
and nonlinear systems of ordinary differential equations are available in the
works of Burdina [1], Bourland and Haberman [1], Vinograd [1], Gusarova
[1], Demidovich [1], Zubov [3], Liu and Shaw [1], Rozo [1], Yakubovich [1],
Yakubovich and Starzhinskii [2], and others.

An extensive bibliography of works where questions of the boundedness
of motion are studied is available in the monographs of Cesari [1], Reissig,
Sansone, and Conti [1], and others.
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Chapter 3

Analysis of the Stability of Motion

3.1 Introductory Remarks

The analysis of the stability of solutions of nonlinear weakly connected
equations is of interest for a number of physical systems, for example, Toda’s
chains (see Bourland and Haberman [1] and others), as well as systems of
weakly connected oscillators (see Goisa and Martynyuk [1] and others).

The application of methods of nonlinear mechanics provides an opportu-
nity to construct asymptotic solutions of such systems and analyze them.

The purpose of this chapter is to determine new sufficient conditions for the
p-stability (u-instability) of motion of nonlinear weakly connected systems.
Those conditions are based on the ideas of the method of comparison with a
scalar or vector Lyapunov function.

In Section 3.2, the objectives of the study are formulated and their con-
nection with the problem of stability under continuous perturbations in its
classical statement is discussed (see Duboshin [1], Malkin [1]).

In Section 3.3, the direct Lyapunov method and the vector function are
applied to obtain sufficient conditions for the stability of a weakly connected
system with respect to two measures under the four types of connection func-
tions:

(A1) bounded at each point of time,

(A2) asymptotically vanishing at t — 400,

(A3) bounded in the mean, and

(A4) developing at t — +o0.

In Section 3.4, the conditions for the stability of the system (3.2.1) are
obtained by application of a perturbed Lyapunov function and a scalar com-
parison equation.

In Section 3.5, the conditions for u-stability and p-instability of the equi-
librium state of an individual subsystem interacting with other subsystems
are found.

In Section 3.6, the algebraic conditions for the uniform asymptotic p-
stability (in the large) and the exponential u-stability under type A; con-
nections are obtained. Here the conditions for p-instability and complete p-
instability of the equilibrium state of the system (3.2.1) are given.
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In Section 3.7, the p-polystability of the motion of a weakly connected
system consisting of two subsystems is discussed.

In Section 3.8, the conditions for the stability of a longitudinal motion of
an aeroplane are given, as well as the conditions for the stability of an indirect
control system with small linearity and an unstable free subsystem.

3.2 Statement of the Problem

Consider the equations of perturbed motion of a nonlinear weakly con-
nected system in the form

dzg
= St7 S St’ PR | m)s
g~ fbms) Fugstan. . om) (3.2.1)
zs(to) = xs0, s=1,2,...,m,

where z, € R, f, € C(Ry x R™,R™), gs € C(Ry x R™ x ... x R, R"),
w € (0, "] is a small parameter. At p = 0 the system (3.2.1) reduces to the
set of unrelated subsystems

dt = fs(ta'rs)7 ,Is(to) =Ts0, S= 1527 sy M (322)

Apply the two measures ps (¢, z;) and pso(t, xs) from the class of functions
M:

M = {/05 € C(R+ X RnSaR+)7 tlnf ps(t7xs) = Oa s = 1725 cee 7m}'

In addition, for the measures
p(t, ) = asps(t,zs) (3.2.3)
s=1

and

m
po(t,x) = Zaspso(t, xs), as = const, (3.2.4)
s=1
it is assumed that the inequality

plt,) < plpolt, o) (3.2.5)

holds provided that
po(t,z) <o, >0, (3.2.6)

where the function ¢ belongs to the K-class.
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For the estimation of the impact of the vector connection function

g(t71') = (gl(t71'17...,$m),...,gm(t7$17...7$m))T

the Euclidean norm of the vector g(t, ) is applied:

m 1/2
lg(t.2)]| = (Z ||gs<t,x1,...,xm>||) |

The connection functions gs(t,z1,...,Tm), s = 1,2,...,m, in the system
(3.2.1) will be considered under certain assumptions:

A;. The connection functions g € C(Ry X R™ X ... x R"™ R") at

m 1/2

all s = 1,2,..,m and [lg(t,2)l| = (3 lgs(tor, . wm)l]) axe
s=1

bounded uniformly with respect to ¢ > ¢tg > 0.

As. The connection functions g; € C(Ry x R™ X ... x R" R"s) at all
s=1,2,...,m and tlim llg(t, z)|| = 0 unifomly with respect to x € R™.
—00

Ag. The connection functions g; € C(Ry x R™ x ... x R™ R") at all

s=1,2,...,m and there exists an integrable function ¢(t) for which
to+T
lota)ll < et [ (s <a
to

for some T' > 0 and A > 0.

A,. The connection functions g, € V(R x R™ x ... x R, R") at all
s =1,2,...,m are bounded together with the partial derivatives %7

dgs
J: , s=1,2,..
affj

..m, 7 =1,2,...,ng, and are such that:

(a) gs(to,z1,-..,2m) = 0 at to € Ry and 1 # 0,...,2,, # 0, s =
1,2,...,m;

(b) gs(t,x1,...,zm) #0at t >ty, s=1,2,...,m.

Definition 3.2.1 The system (3.2.1) is said to be (po, p) pu-stable under
small bounded interactions of subsystems if for specified ¢ > 0 and ¢y € R
there exist two numbers d1,d2 and a value of the parameter p* € (0, 1] such
that as soon as

e}

po(to,xo) < 01 (327)

and
lg(t, )| <d2 at (t,z) € S(p,H), (3.2.8)
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then p(t, x(t;to, zo, ) < e at all ¢ > 0 and u < p*. Here S(p, H) = {(t,z) €
Ry x R": p(t,x) < H}, n=n1 +n2+ ...+ ny, H = const > 0.

Remark 8.2.1 The condition (3.2.8) resembles the one applied in the study
of the stability under continuous perturbations (see Malkin [1]). However, in
this problem the functions g(¢, z) are specified as a part of the system (3.2.1)
and ¢(t,0) = 0 at all ¢ > 0, and this, as is known, is not assumed in the
problem of the stability under continuous perturbations.
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3.3 Stability with Respect to Two Measures

Now connect the auxiliary functions vy, € C(Ry x R™,Ri), s =
1,2,...,m, vs(t,0) = 0 at all ¢ > 0, with the free subsystems (3.2.2).
The function

(t,x, B) =Y Bavs(t,zs), Bs = const # 0, (3.3.1)
s=1

is assumed to be p-positive definite and p-decrescent, that is, for this function
there exist comparison functions a, b that belong to the K-class and constants
A1 and Ay such that

a(p(t,z)) <wv(t,xz,B), assoonas p(t,x) <Ay,

v(t,z,8) < b(po(t,x)), assoonas po(t,x) <Ay (3.3.2)

respectively.
Let us prove the following statement.

Theorem 3.3.1 Assume that the equations of perturbed motion (3.2.1)
are such that:

(1) the state of the subsystems is characterized by the measures ps(t, xs) and
pso(t, xs) which take on values from the set M;

m
(2) the measure p(t,z) = > asps(t, xs) is uniformly continuous with respect
s=1

m
to the measure po(t,x) = > aspso(t, zs);

s=1

(3) there exist functions vs € C(Ry x R", Ry), s=1,2,....,m, and a
function v(t, x, B) determined by the formula (3.3.1) is locally Lipschitz
with respect to x, p-positive definite and po-decrescent;

(4) along solutions of the independent subsystems (3.2.2) the estimate
DT o(t, z, B)|(3.2.9) < —w(po(t,x)) (3.3.3)
holds at all (t,x) € S(p,H), w from the K-class;

(5) the connection functions gs(t,1,...,Zm), s = 1,2,...,m, satisfy the
conditions Aj.

Then the system (3.2.1) is (po, p) u-stable under small bounded interactions
of the subsystems.

Proof The fact that the function v(¢,x, ) is p-positive definite and po-
decrescent implies the existence of constants Ay > 0 and As > 0 such that

a(p(t,z)) <wv(t,z,B), if pt,z) <A,
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and
v(t,x, B) < bpo(t,z)), if polt,z) < As.
Let € € (0,Ap), where Ag = min(A1, Az). Choose §; € (0,A¢) so that the
inequality
b(01) < a(e) and p(t,z) <e, (3.3.4)
should hold as soon as
po(t7$0) < d7. (335)

The inequality (3.3.4) is possible in view of conditions (1) and (2) of Theo-
rem 3.3.1.

Now construct the function (3.3.1) and calculate DT v(t, z, 3) along solu-
tions of the system (3.2.1), taking into account the estimate (3.3.3):

Dtu(t,z, B)|3.2.1) < —w(po(t,z)) + pL|g(t, z)| (3.3.6)

at all (t,x) € S(p,H), L > 0 is the Lipschitz constant for the function

u(t, z, B).
Choose p* € (0,1] and denote k = p/p*, p < p*. Taking into account
condition (5) of Theorem 3.3.1, choose

w(dy)

0o = .
2=

Under the condition (3.3.6) and at the chosen d5 > 0 all the conditions of
Definition 2.2.1 are satisfied, that is, the system (3.2.1) is (po, p) p-stable. Let
us show this.

Consider the solution x(t, ) = z(t;to, o, 1) of the system (3.2.1), begin-
ning in the range of values (¢, zg), for which po(to,zo) < 01 and p < p*. Let
there exist to > t1 > to such that at (¢,2) € S(p, H) N S(po, 1)

po(te,x(ty, p)) =01, p(ta, sta, pn)) = H (3.3.7)
and
llg(t, z(t, )| < d2 atall ¢e [t1,t2). (3.3.8)
From the estimate (3.3.6) under the conditions (3.2.7) and (3.2.8) obtain

DFo(t,z, B)|(3.2.1) < —w(po(ts, z(ty, 1))

o wlpo(ty, a(ty, 1)) (3.3.9)

+ e i = (k‘ — 1)71]((51) <0

at all t; <t <ty and p < p*. Hence obtain the sequence of inequalities

a(p(tz, x(t2, pn))) < v(tz, z(te, 1), B)
<w(ty, z(ts, 1), B) < b(po(ts, (i, 1))

and taking into account (3.3.4) and (3.3.7), obtain

(l(f:') < U(tan(tQau)vﬁ) < U(tlvx(tlvu)’ﬂ) < CL(E).
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The obtained contradiction invalidates the assumption that there exists
ta > to such that the solution x(t;to,zo,u) of the system (3.2.1) at pu < p*
reaches the bound of the domain S(p, H) at a point of time ¢ = to. Hence the
system (3.2.1) is (po, p) p-stable under small bounded interactions of subsys-
tems.

Definition 3.3.1 The system (3.2.1) is said to be asymptotically (po, p) i
stable under asymptotically decrescent interactions if it is (po, p) u-stable and
for the specified ¢y € Ry there exist constants dg = do(to) > 0 and p* € (0, 1]
such that tllglo p(t,z(t, 1)) =0, as soon as po(to, o) < do and p < p*.

The following statement contains conditions sufficient for the system
(3.2.1) to be asymptotically (pg, p) p-stable under asymptotically decrescent
interactions.

Theorem 3.3.2 Assume that:
(1) conditions (1)-(4) of Theorem 8.5.1 are satisfied;

(2) the connection functions gs(t,x1,...,Zm), s = 1,2,...,m, are asymp-
totically decrescent, that is, there exists a constant o > 0 at which the
limit relations

lim gs(t,z1,...,2m) =0, s=1,2,...,m,
t—o0
are satisfied uniformly with respect to x1, ..., Ty, as soon as p(t,z) < o.
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Then the system (3.2.1) is asymptotically (po, p) p-stable under asymptot-
ically decrescent interactions.

Proof Tt is clear that under conditions (1) and (2) of Theorem 3.3.2 the
system (3.2.1) is (po, p) p-stable, that is, for e = min{Ay, o} there exist con-
stants d19 > 0 and do9 > 0 such that

plt,x(t,p)) <og atall t>ty, p<p’,
as soon as
po(to, xo) < d10 and |[[g(t, )| < d20

at (t,x) € S(p,00).
Further, for n € (0,00) choose 61 = §1(n) and d2 = d2(n) as specified by
Definition 3.3.1. According to condition (2) of Theorem 3.3.2 for the quantity

. ) w(d
53 = min {52, M(*z) } (3.3.10)

there exists 71 = 71 (to, o) > 0 such that
lg(t, x(t, w)l| < &5 (3.3.11)

at all t > tg +m and p < p*.

The asymptotic (po, p) p-stability of the system (3.2.1) will be proved if we
specify such 7 = 7(tg, zo) > 0, that for some t* € [tg, to + 7] the inequalities

po(t”, ‘T(t*7 ) < o1
and
lg(t, z(t, )|l < &3, t =1t
will hold. For p* € (0,1] such that k = p/pu* < 1/2, choose
- Ablpolto + 71, 2(to + 71, 1))
w(éy)

Then for the values to + 7 < t < to + 7 such that (t,z(¢t,u)) € S(p,00) N
S¢(po, d1), from (3.3.6), (3.3.10), and (3.3.11) obtain the estimate

+71, p<pt.

1
D+’U(t71'7ﬁ)|(3_2_1) S —iw(61)7 t]_ + T1 S t S t() + T. (3312)

Taking into account that the function v(¢,x,3) is po-decrescent, from the
estimate (3.3.12) obtain the inequality

v(to+7, z(to+7, 1), B) < b(Po(to—&-Thx(to—i—ﬁ)))—%w(él)(T—n) <0 (3.3.13)

at the chosen 7. But the function v(t, x, 8) is p-positive definite and therefore
the obtained contradiction proves the existence of 7, that is, the system (3.2.1)
is asymptotically (po, p) p-stable at asymptotic decreases of the connection
functions.

Now consider the system (3.2.1) under the conditions of the assumption
As on the connection functions gs(t,z1,...,&m), s=1,2,...,m.
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Definition 3.3.2 The system (3.2.1) is said to be (po, p) pu-stable under
small in the mean interactions of subsystems if for the specified ¢ > 0, tg € R
and T > 0 there exist two positive numbers d; = d1(g), d2 = d2(e) and a value
w* € (0,1] such that

pt,z(t,n) <e atall t>ty, p<p’,
as soon as
pO(thZO) < 51) ||g(t,x1,...,xm)|| < (P(t) at p(t,x) <g, (3314)

where
t+T

/ o(s) ds < .

t
The following statement contains sufficient conditions for (pg, p) u-stability
in the sense of Definition 3.3.2.

Theorem 3.3.3 Assume that:
(1) conditions (1) and (2) of Theorem 3.3.1 are satisfied;

(2) there exist continuous functions vs € C(Ry x R™,Ry), s =1,2,...,m,
and a function v(t,x, ) determined by the formula (3.3.1)
(a) is p-positive definite,
(b) is po-decrescent,

(c) satisfies the Lipschitz condition with respect to x with a constant
L>0
|v(t,x,ﬁ) - v(t,x’,ﬁ)| < LH.%‘ - xlll

at (t,x),(t,a’) € S(p, H), H = const > 0;
(3) there exists a function ¢ from the K-class such that
D+v(t,x,6)|(3.2‘2) < —c(v(t,x, B)) (3.3.15)
at all (t,x) € S(p, H);

(4) the connection functions gs(t,x1,...,Tm), s = 1,2,...,m, satisfy the
condition As.

Then the system (3.2.1) is (po, p) p-stable under small in the mean inter-
actions of subsystems.

Proof Since the function v(t, z, u) is p-positive definite and p-decrescent,
for the specified € > 0, choose §; = d1(¢) > 0 so that the following inequality
would hold:

b(01) < a(e). (3.3.16)
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Let po(to,x(to, ) < 01 and m(t,p) = v(t, z(t, ), 8) at p < p*. Under
the inequality (3.3.16) obtain m(to, ) < b(d1) < a(e) at p < p*. Show that
m(t,p) < a(e) at all t > tg and p < p*. Let this statement be incorrect. Then
there exists t; > to such that m(ti, ) = a(e) and m(t, pu) < a(e) at ¢ < t;.
The inequality

alp(t, 2(t, 1)) < v(t, 2(t, 1), B) < alz)

at tg <t <ty implies the estimate

pt,x(t,p) <e < H, to<t<t. (3.3.17)

Let t1 —to =T and

for some § > 0 and G~!(u) is the inverse of the function G (u).
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Taking into account conditions (2c) and (3) of Theorem 3.3.3, obtain
DYou(t, z, Bls.2.1) < —c(v(t,x, B)) + pLllg(t, z1,. .., 2m)|| (3.3.18)
at t € [to,t1]. To transform the inequality (3.3.18), introduce the notation
At p) = vt 2(t, 1), B) —v(t, p), (3.3.19)

where

At 1) = uL / lg(s, 2105, 1), -, (5, 1)) .

to

For the Dini derivative of the function A(¢, ) obtain the inequality
DTt 1) < —c(A(t, ), (3.3.20)

since the function c¢ is monotone increscent and therefore the inequality

v(t,z, ) < A(t, p) implies c(v(t, z, B)) < c(A(t, p)).
Applying Bihari’s lemma to the inequality (3.3.20), obtain

Aty p) < G’l[G(v(tmxo,ﬁ)) — (t—to)], tE€ to,t1]. (3.3.21)
Now revert to (3.3.21) and note that
o(t,a(t, 1), B) < G G(w(to,20,8)) — (t — to)] +7(t ). (33.22)
Choose

0o = 0a(e) < {a(s) - G_l[G(bl(él)) - T]}7

ku*L
where k£ < 1.

Taking into account that p(t,z(t,pn)) < e at all top < t < to + T,
'U(t(),l'o,ﬁ) < b(61)7 ||g(t,.’L'1, e ame S @(t) and

to+T
/ p(s)ds < da,

to
from the inequality (3.3.22) obtain the following inequality at ¢ = to + T*:
a(p(to +T, x(to +T, N’))) < 'U(t() +T, l’(to +1T, /u')v ﬂ)
< GTHG(b1(61)) — T) + pLés,
or
a(e) < v(to+T,x(to+T, ), ) +GHG(1(81)) = T)+ puLdz < a(e). (3.3.23)

The obtained contradiction proves that m(t, ) < a(e) at all t > to. Conse-
quently, the system (3.2.1) is (po, p) p-stable at small in the mean connection
functions gs(t, 1, ..., Tm), $=1,2,...,m.
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Now consider the system (3.2.1) at connection functions g4(¢,x1,...,Zm),
s = 1,2,...,m, indicated in the assumption A4. Such connections are said
to be developing (see Martynyuk [6]). In the work the instability of the k-th
interacting subsystem in the Lyapunov sense was studied.

Definition 3.3.3 The system (3.2.1) is said to be (po, p) u-stable under
developing connections of subsystems if for specified ¢ > 0 and ty € R4,
0 < e < H, there exists a number §; > 0 and a value p* € (0,1] of the
parameter u such that

p(t,x(t,p)) <e atall t>1t and p<u®,

as soon as the connection functions gs(t, z1,...,Zm), s = 1,2,...,m, satisfy
the conditions of the assumption A4 and p(tg, zo) < d1.

It is necessary to find the conditions for (pg, p) u-stability of the system
(3.2.1) under developing connections gs(t,x1,...,%m), s = 1,2,...,m. The
solution of this problem is similar to the proof of Theorem 2.2.1 by using the
derivative auxiliary function v(¢, z, 8) of an order higher than the first one.

Theorem 3.3.4 Assume that:
(1) conditions (1) and (2) of Theorem 8.5.1 are satisfied;

(2) for subsystems (3.2.2) there exist functions vs € C>? (R, x R™ R,),
s =1,2,...,m, and the function v(t,z, ), determined by the formula
(3.8.1) is p-positive definite and po-decrescent;

(3) in the domain (t,x) € S(p,H) at t =t

5+ (eradv(t,z, B)T F(t,2) <0,
where f(t,z) = (fi(t,21), ..., fm(t,2m))T and outside an arbitrarily
small neighborhood S(p, H) at t > to

o
00 (arad i) (£ (1) + gt 0)) < 0
(4) in the domain (t,x) € S(p, H) there exist constants M > 0 and N > 0
such that Y
0
—||<N
J52] = 152] =
and the connection functions gs(t,z1,...,Tm), s = 1,2,...,m, satisfy

the conditions of the assumption Ay.

Then the system (3.2.1) is (po, p) pu-stable under developing connections
gs(t7x17"'7xm)7 s = 172,...,77’7,

Proof For the specified € > 0 and tg € R4 choose §; > 0 like it was set
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out in the proof of Theorem 3.3.1. Assume that the inequalities (3.3.4) and
(3.3.5) hold. From the Lyapunov relation

t

o2, B) = bt 2, B)|ese + / (s, (s), B) ds (3.3.24)

to

under condition (3) of Theorem 3.3.4 obtain

[0(t, 2(t, 1), B)l(3.2.1) = [0(t, z(t,m), B)](3.2.1)lt=to

t

+/ [W + (grad o(t, =, B) T [f(t, ) + pg(t,z1,. .., xm)) | dt.

to

Since gs(t,x1,...,2m) =0at t =t9, s =1,2,...,m, then

0,2t 1), Dl 2 plemta = o+ (aradvlt, 7, ) £, 2).
Therefore,

O(t,z(t, 1), B)|(3.2.1)lt=to <0 at (t,x) € S(p, H). (3.3.25)
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Hence
v(t, x(t, p), B) < v(to,xo,B8) atall t>t. (3.3.26)

Show that if p(tg, xo) < 01, then
plt,z(t,p) <e, t>ty at (t,z) € S(p, H) (3.3.27)

and g < p*. Let this not be so, then there should exist a motion of the
system (3.2.1) with the initial values (¢o,z0): p(to,z0) < 01 and points of
time to > t1 > tg such that

po(ti,x(t1,pn)) =61, pltz,z(ta,p)) =€

and
p(t, z(t, pn) € S(p, ) N S(p,01) (3.3.28)

at t € [t1,t2). From the relations (3.3.26) and (3.3.4) find

a(e) < w(tz, z(te, 1), B) < v(tr, z(ts, p), ) < b(d1) < afe).

The obtained contradiction proves that (3.3.27) holds at all ¢ > #g, that is,
the system (3.2.1) is (po, p) p-stable under developing connections.

In Theorems 3.3.1—-3.3.4 the connection functions gs(¢,21,...,Tm), § =
1,2,...,m, were treated as a factor destabilizing the motion of the system
(3.2.1) under certain limitations on the dynamic properties of the subsystems
(3.2.2) and the connection function the (pg, p) p-stability of the system (3.2.1)
may occur due to the fact that connection functions stabilize the motion of
the system (3.2.1). This situation is reflected in the following statement.

Theorem 3.3.5 Assume that:
(1) conditions (1) and (2) of Theorem 8.5.1 are satisfied;

(2) there exist functions vy € CVV(Ry x R, Ry), s=1,2,...,m, and a
function v(t, z, B), determined by the formula (3.3.1), p-positive definite
and po-decrescent;

(3) at (t,x) € S(p, H) the following inequality holds:

m a )
Zas[;t + (gradvs (t, 25)) T fs(t, )| <0, s=1,2,...,m;

s=1

(4) the connection functions gs(t,x1,...,2%m), s =1,2,...,m, are such that
there exist integrable functions l(t), ..., L, (t) for which

Z Qs [(gradvs(t, ) gs(t, 21, .., zm)]
s=1

< (L(t) + () + - - + L (t))v(t, 2, B)
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and
[2)

exp [ (009 + o)+ + 1) 5| < o)
ty
N(u) >0 at all p < p*.
Then the system (3.2.1) is uniformly (po, p) p-stable.
Proof For the measures po(t, z) and p(t,z) determined according to con-
dition (1) of Theorem 3.3.5 and the function v(t,x,a) = Y asvs(t, xs) there
s=1
exist functions a, b from the K-class and constants A; and Ay > 0 such that
v(t,z,a) < blpo(t,z)) at po(t,z) < Ag
and
(p(ta I)) < v(t,x,a) at p(t7l‘) < Alv
where Ay € (0, H).
For ¢ € (0,As) by choosing d; € (0,A;) secure the satisfaction of the
inequality
N§(61) <ale) if p(t,x) <e and po(t,z) < d1. (3.3.29)

Let tg € Ry and let x(¢, to, xo, i) be a solution of the system (3.2.1) with the
initial conditions (tg,zg) for which

po(to, .To) < 0. (3330)

Along this solution, according to conditions (3) and (4) of Theorem 2.2.5
obtain

du(t, z, o) m
T o) Zas[ gradvs) fs(tvx)
s s=1
+MZO¢5 gradve) Y gs(t, z1, ..., ) (3.3.31)
s=1
pu(la () + I (t))v(t, 7, )

V(t,aL')ES(p7 H) and u<,u*€M.

Show that under the conditions (3.3.30) and (3.3.31) the system (3.2.1) is
uniformly (po, p) u-stable. Let this not be so, that is, at (3.3.30) for the solution
x(t, p) there exist values of time ty > t1 > to such that po(ti,z(t1,p)) < 6
and p(ta, z(tz, p)) =€ and p(t, z(t, u)) € S(p,e) N S(po,d1) at all t € [t1,t2).
From the inequality (3.3.31) under (3.3.29) obtain

2]

a(e) < v(ta, 2ltz, 1), B) < vty o(t1, 1), B) exp [u [+

ty

ol (9)ds| S N(u)b(d) <ale) atall p<p®
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The obtained contradiction proves Theorem 3.3.5.

Remark 3.3.1 Condition (3) of Theorem 3.3.5 is impossible within the
limits of the Malkin [1] theorem of stability under continuous perturbations.

3.4 Equistability Via Scalar Comparison Equations

Continue the study of the stability of the nonlinear system (3.2.1) under
some additional assumptions.

Let the system (3.2.1) be defined in the domain Ry x D, D C R™, and
have the unique equilibrium state 1 = 29 = ... = x,, = 0, i.e. f5(t,0) =0
and g4(t,0,...,0) =0at all s =1,2,...,m. Choose the measures (3.3.3) and
(3.2.4) in the form

m 1/2
plt,2) = o] = (Z ||xs||2> ,
s=1
m 1/2
polt, @) = o] = (Z ||xso||2> ,
s=1

where || - || is the Euclidean norm of the vector x.
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Definition 3.4.1 The state of equilibrium (x =0) € R™ X ... ... x R"m
of the system (3.2.1) is equistable, if for the specified ¢ty € R4 and € > 0 one
can find 6(tg,e) > 0 and p*(e) < 1 such that

llx(t, p)|| <e atall t>to,

as soon as ||zgl| < d(to,e) and pu < p*(e).

Remark 3.4.1 The term “equi” emphasizes the dependence of the property
of stability of solutions of the system (3.2.1) on the parameter u (the condition

< p*(e)).

Similarly to the study of the py-boundedness, here the dynamic behavior of
the subsystems (3.2.2) is characterized by the functions vs € C(R4 x Ds, Ry)
assumed to be locally Lipschitz with respect to x5 € Ds, Dy C R™, s =
1,2,....,m.

The impact of the connection functions pugs(t,x1,...,2m), s=1,2,...,m,
in the system (3.2.1) upon its state is characterized by the functions ws(t, x,
defined in the domain Ry x D N S°(n) x M at some n > 0, S(n) = {z €
R ]| <n}.

Using the functions vs(t, zs) and ws (¢, x, 1), s =1,2,...,m, we construct
the scalar functions

vo(t,x,a) = avv(t,z), ac R,
where v(t, z) = (v1(t, ), ..., vm(t,z,))", and
wo(taiﬁalhﬁ) = BT’lU(t7.’177/j/), B S Rm7

where w(t, z, 1) = (w1 (t, 2, 1), ..., wm(t, o, 1)), which will be applied for the
determination of the conditions for the u-stability of the state x = 0 of the
system (3.2.1).

Theorem 3.4.1 Assume that the system of equations of perturbed motion
(3.2.1) is such that:

(1) for the subsystems (3.2.2) there exist functions vs € C(R4+ X R™ R.),
vs(t,xs) >0 at all s=1,2,...,m, vs(t,0) =0 at all t € Ry, and some
vector a € R, a >0, such that

(a) a(|z|]) < volt,z,a) <b(||z|]) at all (t,2) € Ry x S(H), where the
functions a,b belong to Hahn’s K -class,

(b) Dtug(t,z,a)|(3.2.1) < go(t,v(t,x,a),u) at all (t,z) € Ry x S(H),
where go € C(Ry x Ry x M, R), go(t,0,u) =0 at all t € Ry;

(2) for any n > 0 there exist functions ws(t,x, 1) estimating the impact
of the connection functions, such that wo(t,z,u, ) € C(Ry x S(H)N
S¢(n) x M x R™, R) and
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(a) there exists a nondecrescent function c(i), lir% c(p) = 0, such that
—
|wo(t, z, p, B)| < c(p) at all t € R and n < ||z|| <e < H,
(b) at all (t,xz, 1) € Ry x S(H) N S(n) x M the inequality

Dt ug(t,,a)|3.2.1) + DY wolt, z, 1, B)](3.2.1)
< g(ta ’Uo(t, z, Cl) + ’I,U()(t, Z, W, 5)7 ,LL),
is satisfied where g(t,0,u) =0 at allt € Ry, up€ M° C M;

(3) the zero solution of the scalar equation

du
E = gO(t, uvﬁb)a U(to) = Uo 2 07 (341)
is p-stable;

(4) the zero solution of the scalar equation

dw

E = g(ta w, ,LL)7 w(tO) = Wo > 07 (342)

s uniformly p-stable.

Then the state of equilibrium x = 0 of the system (3.2.1) is equistable.

Proof Let tg € Ry and 0 < € < H be specified. Under conditions (2) and
(4) of Theorem 3.4.1 for the function a(e) > 0 at any to € R4 one can choose
bo = 50(5) > 0 and n1 € My C M so that

w(t;to, wo, u) < ale) at all ¢ > to,

as soon as
m m

wo = Z&svs(towso) + Z |Bs||ws (to, zo, 1)| < do
s=1 s=1

and p < pg.
Since the function b belongs to the K-class and is monotone increscent,
then for a fixed dyp > 0 one can choose §; = d1(¢) > 0 so that

1
b(51)<§5o(5) at 0<e<H.

According to condition (3) of Theorem 3.4.1, the zero solution of the equation
(3.4.1) is p-stable. Therefore, at fixed 5(50(5) > 0 an ty € R4 one can choose
values 03 = d2(tg,€) > 0 and ps € My C M so that

1
u(t; to, UO,ILL) < 550 at all t>tg (343)

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS ANALYSIS OF THE STABILITY OF MOTION

provided that p < po and
0 < wug < ds. (344)

Note that the inequality (3.4.3) is satisfied for any solution of the equation
(3.4.1) with the initial conditions (3.4.4), including the maximum solution,
1
that is, u™ (t;to, uo, 1) < 5 0o at all t > to.
Let

m
uy = g asvs(to, Ts0), s = const > 0.
s=1

According to condition (1) of Theorem 3.4.1, the functions vs(¢,zs), s =
1,2,...,m, are continuous, nonnegative, and vanishing at =z, = 0, s =
1,2,...,m. Therefore, for the specified é3 > 0 one can choose a value of
63 > 0 so that the inequalities

m

ol <85 and > as(to, zs0) < 52

s=1

will be satisfied simultaneously.
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Now choose 6 = min(ds,d1) and show that if |zo| < §, |lzol =

m 1/2
( > ||m50||2) , then the solution (¢, u) of the system (3.2.1) will satisty
s=1

the estimate
llx(t, p)| <e atall t>tg (3.4.5)

and p < p*, where p* € M, that is, it will be equistable in the sense of
Definition 3.4.1.

1
Let ug = ¢! (5 60). Then, according to condition (2a) of Theorem 3.3.1,

obtain the estimate
L 1 1
|Bs||ws(to, w0, )] < clec (=60 ) ) =200 at n<|z|<e (3.4.6)
2 2
s=1

Let the motion z(¢, 1) of the system begin in the point (o, zg) for which
to € Ry and ||xo|| < 0, and the inequality (3.4.5) does not hold at all ¢ > ¢o.
Since the motion is continuous, for a solution z(¢, 1) there should exist values
t1,ty > tg such that:

(A) z(t1;to, To, 1) € 05(61);
(B) l’(tg;tml’o,,u) S 85(6),
(C) J’J(t;to,l‘o,u) S S(E) N 5(61), te [tl,tz].

Let in condition (2) of Theorem 3.4.1 the quantity 7 = ¢;. Then conditions
(2a) and (2b) of Theorem 3.4.1 for the function

m m
m(ta ;U') = Zasvs(t, (Es) +Zﬁsw5(tvm7#)a te [tlatQ]a
s=1 s=1

result in the differential inequality
DFm(t,p) < g(t,m(t, p),p), € [tr,1a]. (3.4.7)

From the inequality (3.4.7) and the equality (3.4.2) according to Theorem
1.2.10 is obtained the estimate

m(tQa /u') < w+(t27t17m(t1a /u')v//’)a

where w (t2,-) is the maximum solution of the comparison equation (3.4.2)
at the initial values (¢1, wo). Along with the inequality (3.4.7), for the function
vo(t, z(t, ), ) we obtain the estimate

UO(tlvm(tlvﬂ’)a Ck) é U+(t1,t0, UO(th Zo, a))v

and, according to the condition (3.4.3), obtain

1
Uo(tl, l‘(tl, /,L), Oé) < 5 do. (348)
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The condition (3.4.8) is the condition for the applicability of Theorem 1.2.10
to the comparison equation (3.4.1).

Taking into account the estimates (3.4.6) and (1a) from Theorem 3.4.1,
for the value t = t5 obtain

a(e) + Z |Bs|lws (t2, 2, )| < w (t2;t1, w0, 1) < afle)

s=1

or a(e) + %50 <af(e) at p < p*, p* = min{py, po, p3l}.

The obtained contradiction proves that the assumption of the existence of
the value to > to for which the solution z(t, ) reaches the boundary of the
domain S(g), that is, the inclusion (B) holds, is incorrect. Thus, ||z(t, p)|| < €
at all t > tp and p < p*.

Theorem 3.4.1 is proved.

Corollary 3.4.1 If in the conditions of Theorem 3.4.1 the majorizing
function go(¢, v, u) = 0 and all the remaining conditions of Theorem 3.4.1 are
satisfied, then the state of equilibrium = = 0 of the system (3.2.1) is equistable.

Corollary 3.4.2 If in the conditions of Theorem 3.4.1 the majorizing
function ¢(t, v, #) = 0 and all the remaining conditions of Theorem 3.4.1 are
satisfied, then the state of equilibrium = = 0 of the system (3.2.1) is equistable.

Corollary 3.4.3 If in condition (1b)

Dt y(t, a)’ <0

(3.2.2) =

and all the remaining conditions of Theorem 3.4.1 are satisfied, then the state
of equilibrium z = 0 of the system (3.2.1) is equistable.

Corollary 3.4.4 If in condition (2b)

D+U0(t7l‘7a)|(3'2.2) +D+w0(t7x7/~1'aﬁ)| S 0

(3.2.2)

and all the remaining conditions of Theorem 3.4.1 are satisfied, then the state
of equilibrium z = 0 of the system (3.2.1) is equistable.

Note that condition (1a) and the conditions of Corollary 2.1.3 at u = 0
are sufficient for the uniform stability of the state = 0 of the subsystems
(3.2.2).

3.5 Dynamic Behavior of an Individual Subsystem

The study of the dynamics of an interacting subsystem in the set of systems
(3.2.1) is of certain interest, since the subsystems may be unstable or, on
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the contrary, strongly (e.g., exponentially) stable in themselves (i.e., when
isolated).
The purpose of this section is the formulation of conditions sufficient for
the p-stability or u-instability of the k-th subsystem from the set (3.2.1).
Consider the k-th interacting subsystem of the system (3.2.1)

dl‘k

E :fk(t,l'k)+Hgk(t,x1,...,$m), (351)

where zp(t) € R™ is the state vector of the subsystem, fr € C(Ry X
R R") g € C(Ry x R™ x ... x R™ R™). The state of equilibrium
of the system (3.5.1) and the free subsystem

dIk

ar = fk(t,xk) (3.5.2)

is the state z, =0 at all t € R4.

Definition 3.5.1 The state of equilibrium z; = 0 of the k-th interacting
subsystem (3.5.1) is said to be p-stable, if for any € > 0 and ¢ty € Ry one can
find § = 0(e,t0) > 0 and p* > 0 such that

lxk(t, to, xo, )| < e atall &> to, (3.5.3)

as soon as |lzo| <& and p < p*, where 2o = (23, ..., 25 )T.
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Remark 3.5.1 Definition 3.5.1 develops the definition of stability with
respect to a part of variables (see Lyapunov [1], Rumiantsev [1], and others)
in the sense that, unlike the separation of all the system variables into two
groups (in the stability theory with respect to a part of variables), here the
k-th vector of state of the system (3.2.1) is considered under various dynamic
properties of solutions of the remaining m — 1 subsystems.

Theorem 3.5.1 Assume that the equations of perturbed motion of the
k-th interacting subsystem (3.5.1) are such that:

(1)

there exists a function vy, € C(R4y x R™  R.), vk(t, zk) locally Lipschitz
with respect to xy, vi(t,0) =0 at all t € Ry, satisfying the inequalities

(@) a(llzll) < ve(t,zx) < b([|zkll) for all (t,2r) € Ry x S(Hy);

(b) D wk(t, xk)|(3.5.2) < gok(t, vk (t, x), 1), where gor, € C(R4 x R™ X
( )
M, R), gor(t,0,u) =0 for allt € R;

the impact of the connections gi(t,x1,...,Tm) is estimated by the func-
tion

wy € C(Ry x S(H1)NS(m) X ... x S(Hp) N S(nm), R),

wi(t, x1, ..., Tm, p) is locally Lipschitz with respect to the wvariables
T1,...,Tm, 0<ns < Hs, for which

(a) there exists a nondecrescent function c(p), li_>m e(u) = 0 and
H—>00
lwi(t, 1, -y T, 1) < c(p) fort € Ry and 0 < ||z]| < e < H;
(b) at all (t,z,pn) € Ry x S(H)NS%(n) x M

DFvp(t, zi)|(3.5.2) + DT we(t, z1, ... T, 1) (3.2.1)
S glk(ta ’l)k(t,ﬁk) + wk(ta T1y--ny .TthJ), ,LL)7

where g11(t,0,u) =0 at allt € Ry, p€ M° C M;

the zero solution of the equation

% = gok(t, uk, 1),  uk(to) = ugo >0,
is p-stable;
the zero solution of the equation

% = gk(t, ug, pt), vk(to) = vko >0,

is uniformly p-stable.
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Then the state of equilibrium x, = 0 of the k-th interacting subsystem
(3.5.1) is p-stable.

The proof of this theorem is similar to that of Theorem 3.4.1 and therefore
is not given here.

Note that the influence of the remaining subsystems on the k-th subsystem
is estimated by the function wy, since it contains all variables z1, ..., z.,, and
by the expression of the derivative DT wy(t,z1,..., Zm,pt)|(3.2.1) in view of
the whole system (3.2.1).

Now consider the subsystem (3.5.1) and determine the conditions for the
instability of the equilibrium state xj, = 0. Following the works of Chetaev [1]
and Martynyuk [15], formulate some definitions.

Definition 3.5.2 The state of equilibrium x; = 0 of the k-th interacting
subsystem (3.5.1) is said to be p-unstable if there exist ¢ > 0 and ¢ty € Ry
such that for any arbitrarily small § > 0 one can find «§: ||z5|| <9, p* € M
and ¢* > to for which ||z (t*;to, 2§, p)|| > € at p < p*.

According to the above definition, the p-instability of the k-th subsystem
(3.5.1) will be determined if we only note one path reaching the boundary of
the domain ||zx|| = Hy at arbitrarily small ||z]|.

The subsystem (3.5.1) will be considered in the domain

t Z Oa ||.’17k;|| S Hk:u

3.5.4
lerll & o ko] + sl 4. + ] < oo, (3:34)

where Hj, = const > 0.
For the subsystem (3.5.2) we construct a function v (¢, ;) and give the
following definitions.

Definition 3.5.3 A set of points (¢, xj) from the domain (3.5.4), for which
vg(t,2x) > 0, is called the domain v > 0.

Definition 3.5.4 The function ®(¢,x) is called positive definite in the
domain vy, > 0, if for any € > 0, however small it may be, there exists d(¢) > 0
such that for any point (¢,z) from the domain (3.5.4) satisfying the condition
vg(t, xx) > € the inequality ®(¢,x) > § would hold.

Let v=: L — Ty, t — v~ (t;to,vo, t) be the minimum solution of the
equation
dv
i g(t,v, ), w(te) > vo, (3.5.5)
passing through the point (t,vg) at all u € M° C M.
Theorem 3.5.2 Assume that the equations of perturbed motion of the
k-th interacting subsystem (3.5.1) are such that:

(1) there exists a function vg(t, xy), locally Lipschitz with respect to xy, and
in the domain (3.5.4) the set of points (to, xko) for which vk (to, xro) > 0;
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(2) for all (t,x) € Ry x {v, > 0} the following estimates hold:
(a) ve(t,zr) < b(||zk|]), where b belongs to the K-class,

(b) DFuk(t, z1)|(3.5.2) > 0;
(3) there exists a function wy € C(Ry X RN x M, R), N =n1 + ...+ ny,
wi(t, T1, ..., Tm, p) locally Lipschitz with respect to x1, . .., Ty, such that

(a‘) |wk(ta$17 cee 7xMa/1’)| < X(,Uz), lim X(M) = 07
pn—0
(b) D+Uk(t, xk)|(3.5.1) +D+wk(ta L1y Tm, /l’)|(3.2.1) > g(ta Uk(ta .'Ek)+
wk(taxla .- '7xmau)nu’)a where g€ C(R+ XRXM& R)7 g(ta 07“) =0
at all t > to;
(4) the zero solution of the equation (3.5.5) is p-unstable.

Then the state of equilibrium xp = 0 of the k-th interacting subsystem

(3.5.1) is p-unstable.
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Proof Conditions (1) and (2) of Theorem 3.5.2 implies that the state
x, = 0 of the free subsystem (3.5.2) is unstable in the sense of Lyapunov. From
condition (4) of Theorem 3.5.2 it follows that for the solution v (¢, tg, vo, i) of
the equation (3.5.5) there exist €*, 1 such that for an arbitrarily small 6* one
can find vg: 0 < vy < 0" and 7 > tg € R, for which

(T, to,vo, pp) > ¥ at t>T. (3.5.6)
For the specified § > 0 choose £* so that

(V’Uoi 0<vyy < (5*)(33’:0 ||.Z‘o|| < (5),

(3.5.7)
vo < vk (to, Tko) + wi(to, T10, - - -, Tmo, 11)-

Now choose g = x ! (% 6*) and according to condition (3a) of Theorem 3.5.2
obtain )
|w;€(t,x1,...,wm7u)|<§6* at p<preM (3.5.8)

at all (t,x) € Ry x R™.
Choose ¢ mentioned in Definition 3.5.2 so that

1
b(e) + 3 5 <e*. (3.5.9)

Let J(to, o) denote the interval of existence of a solution of the system
(3.5.1). Let vg: 0 <wy < d* and 7 >ty be fixed so that the inequality (3.5.7)
holds. If the vector xg is chosen so that ||zo|| < § and 7 € J (o, zo), then the
instability x(t, u) is determined, as the solution cannot cease to exist without
leaving the domain S(g).

Now assume that 7 € J(to, o), the vector xo: ||zo|| < J, and the inequality
(3.5.7) holds. Show that the motion z(t,to, Tok, ) of the subsystem (3.5.1)
at t = 7 does not belong to the domain S(g). Let this not be so, that is,
lxk (t, to, ok, )| < € at t = 7. Assume

TL(t, /u‘) = Uk(ta 'Tk) + |wk(ta Liye-ey IM7PJ)|
at t € [to, 7]. According to condition (3b), obtain the differential inequality
DFn(t, p) > g(t,n(t, 1), 1) (3.5.10)

Applying the comparison technique to the inequality (3.5.10) and the equation
(3.5.5), obtain

’Uk(T, l’k(T7 t07.’170k, ,LL)) + |wk(T7 .’171(7-, th T10 < M)u sy

~ (3.5.11)
xm(TatOMTMOMU’)HU‘” >v (T7t071}07:u’)'

Here v~ (7, -) is the minimum solution of the equation (3.5.5) with the initial
conditions (3.5.7).
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Taking into account (3.5.6), (3.5.8), and (3.5.9), from (3.5.11) obtain the
sequence of inequalities

1 1
vk (T, (7, to, Ty, 1)) + 3 0" > v (7,0, v, ) > " > be) + 3 5. (3.5.12)
The inequality (3.5.12) results in a contradiction. It means that

i (7, to, Tho, b) € Int S(e) at t=r.

Consequently, choosing p* = min(u1, 2), find that the state of equilibrium
2 = 0 of the subsystem (3.5.1) is p-unstable.
Theorem 3.5.2 is proved.

Remark 3.5.2 In contrast to the conditions of Theorem 19.1 from the
monograph of Martynyuk [6], here the perturbed Lyapunov function is used,
and it is with the help of the perturbations wy(t, z1, ..., Tm, p) that the in-
fluence of the connection functions ug(t, 1, ..., Zm,) between the subsystem
(3.5.1) and the remaining m — 1 subsystems is estimated.

3.6 Asymptotic Behavior

To characterize the dynamic properties of the system (3.2.1) and the free
subsystems (3.2.2) we will use the vector function and the Euclidean norm of
the state vector of the system.

3.6.1 Uniform asymptotic stability

The system (3.2.1) will be considered under the condition (A;) about the
interconnection functions g;(¢, 1, ...,Tm), t =1,2,...,m.

Assuming po(t,z) = p(t,z;) = ||zill, ¢ = 1,2,...,m, formulate the def-
inition of the uniform asymptotic p-stability, taking into account Definition
2.2.1.

Definition 3.6.1 The state of equilibrium & = 0 of the system (3.2.1)
is said to be uniformly asymptotically p-stable if it is uniformly p-stable and
quasiuniformly asymptotically p-stable.

Following Yoshizawa [2, p. 28], formulate the following definition for the
system (3.2.1)

Definition 3.6.2 The state of equilibrium x = 0 of the system (3.2.1) is
said to be quasiuniformly asymptotically p-stable if for a specified £ > 0 there
exists dp(e) > 0, T'(¢) > 0 and p* € (0, 1] such that if ||xg|| < Jp and p < p*,
then ||x(t, to, zo, p)|| < e at all t > tg + T'(e).
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Remark 3.6.1 Definition 3.6.2 in the above-mentioned monograph was
formulated for the system (3.2.1) at p =0 and s = 1.

Assumption 3.6.1 There exist:

(1) open connected time-invariant neighborhoods N; C R™, ¢ =1,2,...,m,
of the equilibrium states x; = 0 of the subsystems (3.2.2);

(2) continuously differentiable functions v;: Rx N; — R4, comparison func-
tions ¥;1, V2, W3 from K-class, constants o; € R such that

(@) Yir(llzill) < vilt 2i) < aa(l2il),

(b) dvi(t,xz;)/dt|(3.2.2) < oi%is(||zs|) in the range of values (t,z;) €
RixNi, i=1,2,...,m;

(3) constants a;; = a;;(p) € R such that

(grad v (t, z:)) Y pg(t, 21, ... 2m)

< il lD]? D sy () [ty (s )]

j=1

at all (¢,2;) € R x N;.
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Theorem 3.6.1 Let the equations of perturbed motion of the weakly con-
nected system (3.2.1) be such that:

(1) all the conditions of Assumption 3.6.1 are satisfied;

(2) at specified a;, i = 1,2,...,m, there exists a vector a = (a1, ..., am)" >
0 and a value p* € M such that a matriz S = [s;;(n)] with the elements

) olzi(0¢+an(u)), i=J
Sij =
T S + ajas), i

is negative definite at all p < p*.

Then the state of equilibrium x = 0 of the system (8.2.1) is uniformly
asymptotically p-stable.

Proof On the basis of the function v;(t,x;), i = 1,2,...,m, construct a
function

v(t,z, ) = Zaivi(t7xi)7 (3.6.1)
i=1

for which, according to condition (2a) from Assumption 3.6.1, the estimates
S apin (i) < ot 7,0) < 3 apinfzi])
=1 =1

hold at all (¢t,z) € Ry X N1 X ... X Np,. The fact that the functions 1,1,

12 belong to the K-class implies the existence of functions 1, ¥ from the
K-class such that

Grllall) <D aalllzll),  a(llz]) =Y aia(lal]).

i=1 =1

Hence
Yi([lz]]) < olt 2, ) < Pa(llzf]), (3.6.2)

and therefore the function v(t, x, «) is positive definite and decrescent.
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Taking into account conditions (2b) and (3) from Assumption 3.6.1, obtain

— i {ai P’ig; i) (8Ui8(:imi)>Tfi(t7mi)}
T

du(t, )
dt

(3.2.1) i=1

aK&’(;x) ugi(t,xl,...,xm)”

-2 {o[5]

(3.6.3)

|—|Q3

(3.2.2)

o (42) e

<§3wwmmm+mmumnWZ)u )[tbis ([l [1)]) /3.

=1 Jj=1

Introduce the notations: w = {[13([a1])]7,. .., Wms(lzm])]}" and R =
[15;] is a matrix with the elements

b Jailoi taa(p)]l, 1=,
T | as (), i#34,(6,5)=1,2,...,m
From (3.6.3) obtain

dv(t, )
dt

<w'Rw=w" (1 R+ RT})w =whS(pu)w.
(3.2.1) 2
According to condition (2) of Theorem 3.6.1, there exists p* € M such that
the matrix S(u) at pu < p* is negative definite. Then A\ps(S(p)) < 0 at p < p*
and
du(t, )

T < A (S(p)wtw = Anr(S(u)) Z¢i3(||xi||)~

(3.2.1)
Since ;3 belongs to the K-class, there exists a function ¥3 € K such that

m

e Z (EADE

that is,
d
WD o Swaiel). (5w <0 at <
(3.2.1)

in the range of values (¢,2) € Ry x N1 X ... X Np,.
Hence it follows that the state © = 0 of the system (3.2.1) is uniformly
asymptotically stable.

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS ANALYSIS OF THE STABILITY OF MOTION

Remark 3.6.2 If the constants a;; in condition (3) of Assumption 3.6.1 do
not depend on pu, then for the elements s;; of the matrix S(u) we obtain the
expressions

aailoi + paiil, i=J
Sij =

1 L,
§:U/(aia'ij +aja’ji)7 ? #L

and Theorem 3.5.1 survives.
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3.6.2 The global uniform asymptotic stability

At first formulate the following assumption.

Assumption 3.6.2 For the subsystems (3.2.2):

(1) conditions (1) and (2) of Assumption 3.6.1 with the functions ;1, 12
from the K R-class are satisfied;

(2) at specified v; and ;3 there exist functions a;;: Ry x R™ — R such
that

T
(T
axi > g’L( y L1, 7$m)

< Wus(llzalD? Y i (¢, 2) s ([l )]

=1

at all (t,z) € Ry x R™.

For Theorem 3.6.1 formulate a generalization in the following form.

Theorem 3.6.2 Let the equations of perturbed motions of the weakly
connected system (3.2.1) be such that:

(1) all the conditions of Assumption 3.6.2 are satisfied;

(2) there exists a vector a¥ = (a1,...,q,) > 0, a constant € > 0, and a
value p* € M such that the matriz S(t, x, p) + € E is negative definite at
all (t,z,pn) € Ry x R™ x M*, M* C M; here, the elements s;;(t,x, 1)
of the matriz S(t,x,u) are defined by the formula

oo + pay(t, )], 1= 7,
sij(t, o, pu) = Q1 o
gilaiai(t,2) + aja5(t,2)), i # j,

where E is a unit (m X m)-matriz.

Then the state of equilibrium x = 0 of the system (8.2.1) is globally uni-
formly asymptotically p-stable.

Proof The function (3.6.1) is positive definite and decrescent. Let
R(t,x, u) = [rij(t, z, n)] denote an (m x m)-matrix with the elements

ailoi + pag(t,x)], =7,
pogagg(t, x), i 7.

rij(t7x7ﬂ) = {
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Using (3.5.19) and the conditions of Assumption 3.6.2, for p < p* obtain the
estimate

dv(t, x)

o <w R(t,x, p)w

(3.2.1)

=w" (; [R(t,z, 1) + RY(t, , u)]) w (3.6.4)

= w"S(tx, p)w < —eww =~ iz ([l

i=1
at all (¢,2) € Ry x R™. Since ;3 belongs to the K-class, there exists 13 from
the K-class, such that

m

3(Jla]) Z (lls1)-

Therefore, from (3.6.4) obtain

dv(t, z, o)

dt < —cuslail) at p<p

(3.2.1)

Thus, the equilibrium state = 0 of the system (3.2.1) is globally uniformly
asymptotically u-stable.

3.6.3 Exponential stability
Further we will use the following notions.

Definition 3.6.3 The state of equilibrium x = 0 of the system (3.2.1) is
called to be exponentially p-stable if in an open connected neighborhood N
of the state x = 0 one can find constants rq,...,r, >0, a > 0and A > 0
such that at ¢t > tg

w1 (t, to, zo, )[[** + .. + 2w (t, to, 20, )| < allzo]| exp[=A(t — to)].

The constants @ and A may depend on N.

Definition 3.6.4 The comparison functions 1, o from the K R-class
have the value of the same order if there exist constants «ay, 3;, ¢ = 1,2, such
that

o toi(r) < @i(r) < B Neilr), i# g, dj=1,2.

Assumption 3.6.3 There exist:

(1) open time-invariant connected neighborhoods N; C R™, i =1,2,...,m,
of the equilibrium states x; = 0 of the subsystems (3.2.2);
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(2) continuously differentiable functions v;: Ry X N; — R, comparison func-
tions ¢;1, @i2, which have the values of the same order, ¢;2 from the
K-class, and constants o; € R such that

(a) uTAu <w(t,z,a) < uT Bu, where u = (||z1]|™, ... ... w7,
T1,...,Tm > 0, A, B are constant (m X m)-matrices,

(b) d'ui(t,:zi)/dt|(3_2.2) < oipia(]|zi]]) in the range of values (¢,z;) €
Ry X N;, i=1,2,...,m;

(3) constants a;; = a;;(u) € R such that
(gradvi(t’ xl))T/U‘gl(ta Tyy.-- 7:Em)

< lpiz(llil)]* Zaz’j(u)[saiz(llfmII)]I/2

at all (t,z;) € Ry x Nj.
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Theorem 3.6.3 Let the equations of perturbed motion of the system
(3.2.1) be such that:

(1) all the conditions of Assumption 3.6.3 are satisfied;

(2) at specified o;, i = 1,2,...,m, there exists an m-vector ot =
(a,...,am) > 0 and p* € M such that the matriz S(n) = [si;(p)]
with the elements

ailoq + agi(p)], i=7J,

07 Losa ) + oyl i

is negative definite at p < p*;

(3) the matrices A and B in the estimate (2a) of Assumption 3.6.3 are
positive definite.

Then the equilibrium state x = 0 of the system (3.2.1) is exponentially
w-stable.

Proof For the function v(t,z,a) = aTv(t,x) where v(t,z) = (v1(t, z1,. ..,
vm(t, mm))T, according to condition (3) of Theorem 3.6.3, obtain

An(A)uTu < o(t, z,a) < Ay (B)uTu. (3.6.5)

Since ;1 belongs to the K-class, there exists a comparison function ¢
from the K-class, such that uTu < ¢;(||z||) and therefore (3.6.5) takes on the
form

An(A)uTu < v(t,7,0) < Ay (B)gr (). (3.6.6)

Using (3.6.3), conditions (2b) and (3) of Theorem 3.6.3, obtain

dv(t,x, o)
dt

<A (S() Y pialllll) (3.6.7)
(3.2.1) i=1

at all (t,z;) € Ry X Ny, ¢ = 1,2,...,m. Since ;o belongs to the K-class,
there exists @9 from the K-class, such that

m

> wilzil) < e2(lz]).

i=1

Taking into account the last estimate, the inequality (3.6.7) will take on the

form
dv(t,x, o)

dt (3.2.1)
Under the hypothesis of Theorem 3.6.3 there exists u* € M such that

< Am(S()ea(llz]])- (3.6.8)

A (S(p) <0 atall p<p (3.6.9)
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Since the functions ¢1 and ¢9 are the values of the same order, there exist
constants (31, B2 such that

Brloi(r) < a(r) < By ten(r). (3.6.10)
Taking into account (3.6.8) and (3.6.9), for (3.6.7) obtain

dv(t,z, -
OB (S8 N (B)ett, . 0).
(3.2.1)
whence
An (S(p))
t,x(t <o(t —=(t -t t > to. 3.6.11
ot 2(1),0) < vlto, 0, ) exp | FEZFR(— )], 1200 @B61)
Taking into account the inequality
el + o w2 < (™ ™) (a7 ™)
(3.6.12)

and the estimates (3.6.6) and (3.6.11), obtain
71 (¢, to, 20) |2 + .. + ||l (t, to, o) |7

<A A (B)er (1zlo) exp [ m(S(p))

W (t—to)}, t> to.

Assuming

A (S (1))

Bidm(B)’

from the estimate (3.6.13) obtain the inequality involved in Definition 3.6.3.
Theorem 3.6.3 is proved.

a=\ Ay (B) and A=

Assumption 3.6.4 There exist:

(1) continuously differentiable functions v;: R4 x R™ — R, constant (m X
m)-matrices A and B, constants r1,... ... ,Tm > 0 such that

(a) uTAu < w(t,z,a) < wi Bw, where

wr = (enllzall? - crmllom]*)T,

u= (o™ llml™)

(b) dov;(t, ;) /dt| .22
R 1=1,2,.

) < oi||lz;||* in the range of values (t,7;) € Ry x
m

(2) at specified 0;, i =1,2,...,m, there exist constants a;; € R such that
m
(gradv;(t,2)) gi(t, 1, wm) < il D @il

atall z; € R, z; € R, i,7=1,2,...,m
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Theorem 3.6.4 Let the equations of perturbed motion of the weakly con-
nected system (3.2.1) be such that:

(1) all the conditions of Assumption 3.6.4 are satisfied;
(2) at specified o;, © = 1,2,...,m, there exists p* € (0,1] such that the
matriz S(u) = [si; ()] with the elements
B a;(o; + paii), i =],
) = %ﬂ(az‘aij +ajag), i #J,
is negative definite at p < p*;

(3) the matrices A and B in the estimate (1a) of Assumption 3.6.4 are
positive definite.

Then the equilibrium state x = 0 of the system (8.2.1) is globally exponen-
tially p-stable.
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Proof From the conditions of Assumption 3.6.4 it follows that the com-
parison functions ¢1;, p2; have the form

ea(lzll) = cuillzll? allzll) = ol i=1,2,...,m.

It is clear that those function have the value of the same order. In addition,
the function v(¢, z, ) is positive definite, decrescent, and radially unbounded.
The function dv(t, z, ) /dt along solutions of the system (3.2.1) is negative
definite in view of condition (1) of Theorem 3.6.4. Hence the state x = 0 of
the system (3.2.1) is globally exponentially p-stable.
Theorem 3.6.4 is proved.

3.6.4 Instability and full instability

In Section 3.5 the conditions for the p-instability of an individual subsys-
tem in the system (3.2.1) were determined. Here we will consider the complete
system (3.2.1) under the following conditions.

Assumption 3.6.5 There exist:

(1) open connected time-invariant neighborhoods N; C R™ of the equilib-
rium states x; = 0 of the subsystems (3.2.2);

(2) continuously differentiable functions v;: Ry x N; — R, comparison
functions v;1, Y2, ;3 from the K-class, constants d;1,0;2,0 € R such
that

(@) dinvir([[asl]) < it @) < intia(f|@il]),
b) dv;(t,z;)/dt < 03¥i3(||z;]|) in the range of values (¢,z;) €
(3.2.2)
Ry x N, i=1,2,...,m;

(3) constants a;; € R and a value p* € (0, 1] such that

grad vi(t, @) ugi(t, @1, ., 2m) < Was(llas)]Y2 Y as sl D]

j=1

at all (t,z;,2;) € Ry X N; X Nj and p < p*.

Remark 3.6.3 1If §;1 = §;2 = —1, then it is said that the subsystems (3.2.2)
have the property C, and if §;7 = d;2» = 1 they have the property A.

Remark 3.6.4 From conditions (1) and (2) of Assumption 3.6.4 it follows
that if the subsystems (3.2.2) have the property C and o; < 0 at all i =
1,2,...,m, then the equilibrium state x; = 0 of the subsystems (3.2.2) is
quite unstable, that is, all the subsystems (3.2.2) are unstable in the sense of
the Lyapunov definition [1].
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If the subsystems (3.2.2) have the property A and o; < 0 at all ¢ =
1,2,...,m, then all the subsystems (3.2.2) are uniformly asymptotically sta-
ble.

Let L = {1,2,...,m} be the set of all subsystems in the complex system
(3.2.1). Let N # & denote a set of subsystems that have the property C,
N C L.

Theorem 3.6.5 Let the equations of perturbed motion (3.2.1) be such
that:

(1) all the conditions of Assumption 3.6.5 are satisfied;

(2) at specified o; there exists a vector ot = (ay,... ... ,am) > 0 and
value p* € M such that the matriz S(u) = [si;(p)] with the elements

5o () = Olli[0i+aii(,u)], i=7j,
T Sl () + agazu)l, i A

is negative definite at p < p*.
Then:

(a) if N # L, then the equilibrium state x = 0 of the system (3.2.1) is
w-unstable;

(b) if N = L, then the equilibrium state x = 0 of the system (3.2.1) is

completely p-unstable.

Proof Like in Theorem 3.6.1, for the function
v(t, x, o) Zasvs (t,zs) (3.6.14)

its negative definiteness and decrease are determined. Similarly to (3.6.4) ob-
tain the estimate

dv(t,x, o)

d Zwls (e (3.6.15)

(321)

at all (t,2) € Ry x Ny X ... X Ny, i@ € L. According to condition (2) of
Theorem 3.6.5 at p < p* A\, (S(1)) < 0, and therefore dv(t,x,a)/dt|(3‘2_1) is
negative definite.

Now consider the set D = {(t,z) € Ry x R™: z; € B;(r) at i € N and
x; =0, as soon as i ¢ N}. Here r = minr;, for which ¢ € N. For the function

(3.6.14) obtain the estimate

*Z%ﬁ%l(”xz”) v(t,z,a) < Zazd’ﬂ l|i])-

€N iEN
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Hence it follows that in any neighborhood of the state = 0 there exists at
least one point z* # 0 in which v(¢,z*, ) < 0 at all t € R4. In addition, over
the set D the function v(t, 2, a) is bounded below. Thus, all the conditions of
the Lyapunov theorem [1] on instability at u < p* are satisfied. This proves
statement (a) of the theorem if N # L. If N = L, all the subsystems (3.2.2)
are unstable, and the connections do not change that dynamical state, that
is, the system (3.2.1) is completely p-unstable.
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3.7 Polystability of Motion

The polystability of motion of dynamic systems is some extension of the
concept of stability with respect to a part of variables.

The purpose of this section is the study of the u-polystability of the system
(3.2.1) at m = 2.

3.7.1 General problem of polystability
Consider the nonlinear system of equations of perturbed motion

d

T
d_tz = fi(t7xi) + ,U/gi(t,l‘h e 7x7ﬂ)7

Z‘i(to):l‘io, i:1,2,...,m,

(3.7.1)

where x; € R™, t € Ry, to € R;, Ri C R, fi: Ry xR — R™, g;: R4 X
R™ x R"™ X ... X R™ — R™ and assume that f;(¢,0) = ¢;(¢,0,...,0) =0
forall te Ry, pe(0,1).

Definition 3.7.1 The system (3.7.1) is said to be u-polystable (on R ) if
and only if its solution (z = 0) € R™ is p-stable (on Ry) and p-attracting (on
R, ) with respect to a group of variables {x;}T, i =1,2,...,m (with respect
to a set of groups of variables {z{,...,z]'}, I <m).

Remark 3.7.1 1If the p-polystability of the equilibrium state x = 0 is
considered with respect to all subvectors {z;}T, i =1,2,...,m, of the system
(3.7.1), then the system (3.7.1) is considered in the domain

R+ X Bl(p) X Bg(p) X ... X Bz(p), Bz(p) = {.’I}il ||$1|| < Hi}7
H;,=const >0, i=1,2,...,m,

or in R", as usual.

Remark 3.7.2 1If the u-polystability of the equilibrium state £ = 0 of the
system (3.7.1) is considered with respect to the set of subvectors (z7,...,z}),
I < m, then the system (3.7.1) is considered in the domain

Bi(p) = {xi: |(a1,..., 2/ )T || < H"}, H* = const >0,
Dy={xp: 0<|(z}iy,..,20)T|| < +oo}, k=1+1,...,m.

Here the motion x(t, zg, 1) of the system (3.7.1) should be defined at all ¢t €
R, for which ||(zT,...,o)7T| < H*.

This condition is satisfied in all applied problems (see Rumiantsev and
Oziraner [1]), since it means that none of the coordinates of the subvectors
z}(t), k=1+1,...,m, of the state of the subsystems (3.7.1) reaches infinity
in a finite period of time.
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3.7.2 Polystability of the system with two subsystems

Assume that for the independent subsystems

dx i
dt

= fi(t,x;), xi(to) = xi0, i=1,2, (3.7.2)

the functions v;: Ry x R™ — R, i = 1,2, are constructed, as well as the
function

v(t,x, ) = aqvi(t, x1) + agua(t, 22), a1, = const. (3.7.3)
See the following definitions.
Definition 3.7.2 The function v(t,z,a): Ry x R® x R — R, is

(1) positive semidefinite on R, if there exists a time-invariant neighborhood
N of the state x = 0, such that

(a) v(t,z,q) is continuous with respect to (t,z) € Ry X N;
(b) v(t,z,«) is nonnegative on N, that is,

v(t,z,a) >0 VY(t,x) € Ry X N;

(¢) v(t,z,a) =0,ifz=0at allt € Ry ;

(2) zf-positive definite on Ry, if in the domain Ry x B;(p) x Dj, i # j,
i,7 = 1,2, the following conditions are satisfied:
(a) v(t,z, o) is continuous with respect to (¢,z) € Ry x Bi(p) x Dj;

(b) there exists a function w(z}) such that the inequality
w(z!) <w(t,x,a) Y(tx,a)€ Ry x Bi(p) x D;j
holds for one of the values 1 = 1, 2;
(¢) v(t,z1,22,) =0,if 1 =0, xo #0, or 21 #0, 23 =0;

(3) zf-decrescent on Ry, i = 1,2, if in the domain Ry x B;(p) x Dj, i # j,
i,j = 1,2, condition (2a) is satisfied and there exists a function w(z})
such that

o(t,z,0) <w(zl), i=1,2.

i

The system (3.7.1) at s = 2 is further considered in the domain R, x
Bl(Hl) X BQ(H2)

Definition 3.7.3 The system (3.7.1) at s = 2 is said to be p-polystable
(on Ry), if its equilibrium state z = 0 is

(a) uniformly p-stable on Ry with respect to (z1,z3),
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(b) uniformly asymptotically u-stable on R, with respect to 3.

Theorem 3.7.1 Let the equations of perturbed motion (3.7.1) at s = 2
be such that:

(1) there exist differentiable functions v;(t,z;): Ry X R™ — R, i = 1,2,
for which the function v(t, z,a) is
(a) positive definite on N C R™, n = nq + na,
(b) decrescent on N (on Ry x N);

(2) there exists u* € M such that the function dv(t,x, a)/dt’(gll) is

(a) negative semidefinite on Ry X N at p < p*,
(b) x3 -negative definite on Ry x N at ju < p*.

Then the system (8.7.1) is p-polystable in the sense of Definition 3.7.5.

Proof From conditions (1a), (1b), and (2a), it follows that the state (z =
0) € R™, n = ny + no, is uniformly u-stable on Ry. If in addition condition
(2b) is satisfied, then the uniform asymptotic p-stability on Ry occurs with
respect to 3 .
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Now consider the system (3.7.1) at s = 2 in the domain
R+ X Bl(Hl) X DQ, Dy = {1‘22 0< ||Z‘2|| < +OO}
Extend Theorem 4.2 from the monograph by Rumiantsev and Oziraner [1]
to the systems (3.7.1) at s = 2.

Theorem 3.7.2 Let the equations of perturbed motion (3.7.1) at s = 2
be such that:

(1) there exist differentiable functions v;(t,z;): Ry x R" — Ry, i =1,2,
for which the function v(t, z,a) is
(a) o -positive definite on Ry x By(Hip) X D3,
(b) decrescent on Ry x B1(Hy) X Da,
(c) T -decrescent on Ry x By(Hy) X Da;

(2) the function dv(t,x,a)/dt|(3‘7.1) is

(a) negative semidefinite on Ry X By(Hy) X Do,
(b) zT -negative definite on Ry x By(Hy) x Da,
(¢c) negative definite on Ry x Bi(Hy) x Ds.

Then, respectively,

a) conditions (1a) and (2a) are sufficient for the xT — p-stability of the
1
state (x =0) € R™ on Ry ;

(b) conditions (1b) and (2b) are sufficient for the uniform x1 — p-stability
of the state (x =0) € R™ on Ry ;

(¢) conditions (1c) and (2¢c) are sufficient for the asymptotic xT — u-stability
of the state (x =0) € R™ on R4.

The proof of this theorem lies in the verification of the satisfaction of the
conditions of Theorems 5.1, 5.2, and 6.1 from the above-mentioned monograph
under the conditions of Theorem 3.7.2.

In connection with Theorem 3.7.1 the question that has to be answered
is what general form the system (3.7.1) should have for its motion to be pu-
polystable in the sense of Definition 3.7.3. The answer resides in the following
assumption.

Assumption 3.7.1 There exist:

1) continuously differentiable functions v;: Ry x R™ — — Ry, i = 1,2,
+ +
(2 x 2)-constant matrices A; and By and the comparison function
from the K-class, such that
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(a) uTAju < ov(t,z,a) <uTBiu at all (t,2) € Ry x B1(Hy) x Ba(Ha),
where u = ([|z1]], [|22)),

(b) 8U1/8t + (8U1(t,$1)/8$k)Tf1(t,£L'1) < 03 k= 1327 ceey N,
(c) Dua/Ot+(Ova(t, x2)/0x1)" folt,21) < —onp(22ll), 1 =1,2,...,n2;

(2) there exist constants k1, ke > 0 such that
|Ov1(t, 21)/0xk| < k1 and  |Ova(t, x2)/0x;| < ko,
k=1,2,...,n1, 7=1,2,...,n9;
(3) the connection functions of the subsystems g;(t,z1,x2) satisfy the con-

ditions

gl<taxlax2) = (t7x2)7

1
92(t7 T1, 1‘2) = 07
and, in addition, ||g1(¢,z2)|| < ¥ (]|z2]|), where 9 belongs to the K-class.

It is easy to show that under all conditions of Assumption 3.7.1 the system

d
—dxl = fi(t,z1) + pgi(t, 2),
t
(3.7.4)
W2y ty)
dt 2\ Uy, L2

is p-polystable in the sense of Definition 3.7.3.
From conditions (1b) and (1c) it follows that the subsystem

dl‘l

R t

dt fi(t,z1)
is neutrally stable and the subsystem

dl‘g

e t

dt fQ( 9 .’L'Q)

is uniformly asymptotically stable. Hence, at u < p* the function pg (¢, x2)
has a stabilizing impact in the system (3.7.4).

3.8 Applications

In this section, some typical systems of the theory of automatic control
are considered on the basis of the general approach developed in this chapter.
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3.8.1 Analysis of longitudinal motion of an aeroplane

The controllable longitudinal motion of an aeroplane may be described by
the equations (see Letov [1] and others)

d
% = —prTK + o, k= 17273»47

o 4 (3.8.1)
5 = "o~ f(o) + Y B,

k=1

where p, > 0, » > 0, p > 0, B are constants, u is a small parameter, z; € R,
o € R, the function f: R — R has the following properties:

(a) f is continuous on R;
(b) f(g) =0, if and only if o = 0;
(c) of(o) >0atall o #0.

The function f with the properties (a)—(c) is called the admissible non-
linearity for the system (3.8.1) (see Aizerman and Gantmacher [1]). If the
equilibrium state

xT = (.’El,$2,$3,$4,0’) =0 (382)

of the system (3.8.1) is globally asymptotically stable at all admissible non-
linearities of f, then the system (3.8.1) is absolutely stable.
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At p =0 from the system (3.8.1) obtain two isolated subsystems

d
ﬂ = —PkTk, k= 172a3747 (383)
dt

d

d_(; = —rpo — f(0). (3.8.4)

Represent the system (3.8.1) in the form
L= filz)+p Y, Cyz, i=12 (3.8.5)

where the matrices C’1T2 and C91 are such
Ciy=[1,1,1,1] and Ca = [B1, B2, B3, Bal. (3.8.6)

Now assume that

p1 < p2 < p3 < py, (3.8.7)

and denote z{ = (x1,...,74), 22 = 0.
With the subsystems (3.8.3) and (3.8.4) connect the functions

vi(z1) = clzile, va(22) = 6223, (3.8.8)

where c¢q,co > 0 are constants.
It is easy to verify that the following estimates hold:

dvi(z
1d(t ) < —2¢1p1z1]% (3.8.9)
(3.8.3)
d
va(z2) < —2rpea| 2%, (3.8.10)
dt (3.8.4)
llerad vy (z1)|| < 2¢1||21]], (3.8.11)
llerad va(z2)|| < 2¢2||22|| (3.8.12)

at all z; € R*, 2 € R. The norms of matrices (3.8.6), concordant with the
Euclidean norm of vectors, are

4 1/2
jenl =2 lenl = (L 6t) (38.13)
i=1

For further treatment we will use a corollary of Theorem 3.6.3.

Download free eBooks at bookboon.com



Corollary 3.8.1 Let the equations of perturbed motion (3.8.3) and (3.8.4)
be such that:

(1) for each subsystem (3.8.3) and (3.8.4) there exist functions vy (z1) and
va(2z2) such that

cinllzill? < wiz) < cinll2il) s

d’Ui (Zz)
dt

(3.8.3),
(3.8.4);

(2) for the specified functions v;(z;), ¢ = 1,2, there exist positive constants
¢;3 for which

< oz2  where mz{
()

llgradv;(z;)]] < cisllz:|| at all z; € R™;

(3) at specified oy, i = 1,2, there exist a vector a = (ay,az)" and a value
w* € M such that the matrix S(u) = [s;;(1)] with the elements

( ) Q;0; at 7+ = j, ( )
i) =1 - 3.8.14
’ §H[aicz‘3||0ij|| +ajcsl|Chill]  at i # j,

is negative definite at all p < p*.
Then the equilibrium state (3.8.2) of the system (3.8.1) is globally p-stable.

Taking into account (3.8.9) - (3.8.12), for the elements s;; (1) of the matrix
S(p) obtain the expressions according to (3.8.14):

s11 = —2aic1p1, S22 = —2QeTpCa,
4 1/2
S12 = S21 = 21 uC1 +O(2,UCQ(251-2> .
i=1
Now choose
1 1
aq=—, 9= —-———.
4 1 1/2
“ 202( > 55)
i=1
Here
_ _ rp _ _
811——§P1, S22 = 1 12 S12 = S21 = M.
(2 a)
i=1
Therefore, the matrix S(u) has the form
1
2 P1 H
S(p) = ™"
(1) o 1 ) 2
(2 a)
i=1
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The matrix S(u) is negative definite if at u < p* the following inequalities
hold:

1 1
—p <0, <_p1) SR S— iy )
2 2 4 5 1/2

(5%)

Since p; > 0, the first inequality holds automatically. From the second

inequality obtain
4 /2y
2 2
. = 3.8.15
1 <;_1 f&) < TPPL ( )

at p < p*.
The condition (3.8.15) is sufficient for the global exponential p-stability of
the motion of the system (3.8.1).
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3.8.2 Indirect control of systems

Among the problems of automatic control, an important place is held by
the problem of indirect control (see Lefshets [1] and others). Consider the
equations of perturbed motion of such a system with small nonlinearities

X — Ao+ ubf(o),
o (3.8.16)
& = —po —rf(0) +pata,

where x € R", 0 € R, A is a stable (n x n)-matrix (Re\; < 0), b € R",
p>0,a€eR" pe(0,1] and f: R— R and has the following properties:

(a) f(o) =0if and only if 0 = 0;
(b) f(o) is continuous on R;
(¢) 0 < af(o) <ko? at all o # 0, where k = const > 0.
At p =0 from the system (3.8.16) obtain the independent subsystems
fl—f = Az, (3.8.17)
Ccll_j = —po —rf(o). (3.8.18)

The connection functions have the form
g1(z,0,p) = pbf(o),
ga(x, p) = pa’ .
For the subsystems (3.8.17) and (3.8.18) construct the Lyapunov functions
vy (z) = 2" Bz, (3.8.19)
where ATB + BA = —C, C is some positive definite matrix, and

va(o) = %0’2. (3.8.20)

For the function v;(+), i = 1,2, the following estimates hold:

ezl < vi(x) < erallz?,

d
v;h(fx) l(3.8.17) < —ci3|@]|?,
leradun (2)]) < ensllz] atall « e R
dva(0) 9
) < —
i |(5‘8.18) < —plol%,

lgradva(0)|| < |o| atall o€ R.
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For the connection functions ¢g; and g, the following estimates hold:

191 (2, 0, )| < pk|bll|]],
g2z, )l < plallo].

Choose the values

1 C14
=-— and ay=-—— (3.8.21)
k[b] lal

and construct a matrix S(u) with the elements

aq

) ;0 at 1 =7, ( )
sii(p) = o 3.8.22
Y 5 [aicislleill + ajesllell]  at i # 4,

where [|c;; || = pkl[b|, |lcji| = plal.

Taking into account (3.8.21) and the estimates for the functions v (x) and
va(0), it is not difficult to find expressions for the matrix

C13

- C14
kb
S(u)= |~k cup |- (3.8.23)
C14 -
plal
The matrix (3.8.23) is negative definite if
2 PC13 * *
at  p < ut, € (0,1]. 3.8.24
cralall p<p, pre(0,1] ( )

Due to the presence of a small parameter in the inequality (3.8.24), the range
of values of the parameters of the system (3.8.16) may be extended.
Thus, since the function

v(z,0) = a1v1(x) + agva(o)

is positive definite and decrescent, under the inequality (3.8.24) the equi-
librium state (zT,0) = 0 of the indirect control system (3.8.16) is globally
asymptotically u-stable.

3.8.3 Control system with an unstable free subsystem

Continue the study of the system (3.8.16). Using a nonsingular linear trans-
formation (see Michel and Miller [1]) the system (3.8.16) can be reduced to
the form

dx

d_tl = Arz1 + pby (o),

d

=2 = Ao + ubaf(0), (3.8.25)
do
& = —ro—rflo)+ pai zy + pay s,
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where 1 € R™ | x9 € R™2, A; is a constant (n1 X n)-matrix, As is a constant
(ng X ng)-matrix, by € R™, by € R™, a3 € R™, as € R™, p € (0,1],
ny + ng =n.

At =0 from the system (3.8.25) obtain three subsystems

dx1

d{'::Alxl’ (3.8.26)
d

;; = Aoys, (3.8.27)
do

— = . 8.2
o = —rorf(o) (3.8.28)

The connection functions have the form

gl(xla x2,0, ,LL) = Mblf(o-)v
92(171, x2,0, lu) = p’b2f(0—)7

g3(w1, 2,0, 1) = pai w1 + pay s.

Make the following assumptions about the subsystems (3.8.26) and
(3.8.27):

(a) all eigenvalues of the matrix A; have positive real parts;

(b) the matrix A, is stable, that is, Re\;(A2) <0, j=1,2,...,nq.
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In addition, there exist functions v;: R™ — R and vy: R™ — R, positive
constants ¢;;, i=1,2, j =1,2,3,4, such that

—cp1]|z1))? < viwr) < —crafl@2|?,

M’
dt
lerad vy (z1)]] < c1allz1]],

< —cz||z2|?,
(3.8.26)

(3.8.29)
ot [|w2l” < va(w2) < coollwa]?,
dUQ(.Z’Q) ’ 2
A < _
dt 13827~ cas|zal",
[grad va(z2)|| < coalz2]|
at all z;1 € R™ and zo € R™2.
For the subsystem (3.8.28) take the function vs(o) in the form
1
v3(o) = 5 o2,
For this function obtain
)| S el
dt  1(3.8.28) (3.8.30)

lgradvz(o)| < o

at all 0 € R.
The constants a;; from condition (3) of Assumption 3.6.5 for the system
(3.8.25) have the form

a13 = 014,uk||b1||, a3 = C24,Uk||b2||a asr = /14”0’1”7

(3.8.31)
azz = pllaz|, a2 =az =a; =az =azz =0.

Now apply Theorem 3.6.5 on pu-instability. Taking into account the con-
ditions (3.8.29)—(3.8.31), for the elements of the matrix S(u) obtain the ex-
pression

C13 0 —cyapk||br |
S(p) = 0 co3 —caapklba] | . (3.8.32)
—pllax]l —pllaz|| p

The matrix (3.8.32) is positive definite at p < p*, if and only if

C13C23P

2
k<
H cazciallar|||b1]] + crzcaallaz]l||ba]|’

w* e (0,1]. (3.8.33)

Thus, Theorem 3.6.5 implies that the equilibrium state (21,23 ,0) = 0 of
the system (3.8.25) is p-unstable at all admissible nonlinearities of f, if the
inequality (3.8.33) holds.
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3.9 Comments and References

The dynamic analysis of nonlinear weakly connected systems is conducted
in this chapter on the basis of one variant of the comparison technique that
was substantiated in Chapter 1. As is known, the advantage of such approach
lies in the fact that it allows us to make a conclusion about the stability
(instability) of solutions of the initial system via the analysis of the properties
of solutions of a scalar equation and the properties of auxiliary functions used
for the transformation of the initial equations.

3.2. The statement of the problem on the stability of nonlinear weakly
connected systems in terms of two different measures for four types of con-
nection functions between the subsystems is discussed. The similarity and the
difference between the statement and the problem of stability under continu-
ous perturbations are described (see Gorshin [1], Duboshin [1, 2], Malkin [1],
Martynyuk [12, 13]).

3.8. Theorems 3.3.1-3.3.5 are new. To obtain them, some of the results
of the monographs of Lyapunov [1], Malkin [2], and Lakshmikantham, Leela,
and Martynyuk [1] were used.

8.4. Theorem 3.4.1 is new. It was obtained through the application of
the perturbed Lyapunov function and the scalar variant of the comparison
principle. Note that starting from the work of Corduneanu [2] the principle of
comparison with the scalar and vector Lyapunov functions has been applied
in many lines of investigation (see Matrosov [2], Rouche, Habets, and Laloy
[1], Rao [1], and others).

3.5. Theorems 3.5.1 and 3.5.2 are new. The idea of the dynamic analysis of
an individual subsystem in a complex system was proposed in the monograph
of Martynyuk [6]. In this section, the perturbed Lyapunov function and the
technique of comparison with the perturbed Lyapunov function are applied
(cf. Lakshmikantham and Leela [1]).

3.6. The results have been obtained on the basis of specific assumptions
on the dynamic properties of independent subsystems and the functions of
connection between them. The sufficient conditions for the respective types of
stability are formulated in terms of sign definiteness of special matrices. All
the results are new for the system (3.2.1). They were obtained by using some
results of the monograph of Michel and Miller [1]. The results of the analysis
of stability of large-scale systems that do not contain a small parameter can
be found in many journals.

3.7. The polystability of motion presents a new line of investigation in the
nonlinear dynamics of systems (see Aminov and Sirazetdinov [1], Martynyuk
[11, 15]). This section is based on the article of V.A. Martynyuk [1]. This
problem is related to the problem of stability with respect to a part of variables
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(see Rumiantsev [1], Vorotnikov [1], Corduneanu [3], Martynyuk [14], Peiffer
and Rouche [1], Hatvani [1]).

3.8. Some applications of the general results are described. Here the sys-
tems of automatic control are studied whose motion equations are given in
the monographs of Aizerman and Gantmacher [1], Lefschetz [1], and Lurie [1]
(see Chapter 2). The sufficient conditions for the u-stability were obtained in
algebraic form (cf. Michel and Miller [1]). The results of this section have not
been published before.
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Chapter 4

Stability of Weakly Perturbed
Systems

4.1 Introductory Remarks

As far as in 19th century Delaunay and Hill noticed that averaging along
the solution of a degenerate system in celestial mechanics problems provided
results that corresponded to real phenomena. The contribution to Delaunay’s
theory made by Tissarand formed the conceptual background of the new meth-
ods of celestial mechanics developed by Poincaré.

The investigation of the stability of systems with a small parameter which
was started in Chapter 3 is continued here. In contrast to Chapter 3, here
the ideas of the method of averaging of the nonlinear mechanics are added to
the direct Lyapunov method. In some instances such an approach makes it
possible to study classes of systems with a small parameter under new wider
assumptions on the properties of solutions of generating equations.

In Section 4.2, the stable-like properties of solutions of a weakly perturbed
nonlinear system are investigated. Analogues of the main theorems of the
direct Lyapunov method for the given class of systems are cited.

In Section 4.3, the investigation of the same class of systems is continued,
but on a finite time interval. The estimate of the interval on which the solution
does not leave the e-neighborhood of the stationary point is shown.

Section 4.4 contains the theorems on the stability of a weakly perturbed
system by Lyapunov and the stability on a finite time interval when a special
mean is calculated along solutions of a limiting system corresponding to the
generating system.

Section 4.5 contains the results of the analysis of stability of weakly con-
nected large-scale systems with nonasymptotically stable subsystems.

Section 4.6 contains the generalization of one of the theorems of Section
4.2 for the case of stability with respect to a part of variables.

Section 4.7 contains some applications of the general results to the analysis
of oscillatory systems.

Section 4.8 contains comments and a bibliography.
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4.2 Averaging and Stability
4.2.1 Problem and auxiliary results

Consider the system of differential equations

Cji—f = f(t,z) + pg(t,z), =x(to) = xo, (4.2.1)
where x € R", the vector functions f(¢t,z) and g¢(¢,z) are defined and con-
tinuous in the domain Q = {x € R", t € J: ||z|| < H, H = const > 0}.
It is assumed that at (tp, ) € int Q a solution of the system exists and is
unique on the interval J = [tg, 00). In addition, the vector function f(¢,x) in
the domain €2 satisfies the Lipschitz condition with respect to x

| f(t,2") — f(t,2")]| < L||a" — 2"||, L = const > 0. (4.2.2)

It is assumed that the degenerate system

% = f(t,x), x(to) = xo (4.2.3)
has the state of equilibrium = = 0 (f(¢,0) = 0) which is stable uniformly with
respect to to and for it the general solution Z(t) = T(t, to, zo), T(to) = o,
(to, o) € int Q2 is known.

For the study of the system (4.2.1) we will use the mean of the scalar
product of the gradient of the Lyapunov function wvg(t,z) of the degenerate
system and the perturbation vector ¢(¢,x), calculated along solutions of the
system (4.2.3),

to+T

. 1 _
Oulto,z0) = lim 7. [ plt,a(t) d, (4.2.4)
to

where p(t, ) = (81}0/81‘)Tg(t, r) exists in the domain €.
Now we will need the following auxiliary statements.

Lemma 4.2.1 Let the function u(t) be continuous and nonnegative on
the interval [, B] and satisfy the inequality

ult) < / a(rYu(r) dr + f (1),

where a(T) is a function nonnegative and integrable on [a, 5] and f(t) is a
function bounded on [a, f].

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS STABILITY OF WEAKLY PERTURBED SYSTEMS

Then the following inequality holds:

t

u(t) < s 1f(0)]exp ( / a(7) dT>.

This estimate is a minor generalization of the Bellman—Gronwall theorem.

Lemma 4.2.2 Let the vector function f(t,z) satisfy the Lipschitz con-
dition with respect to x and let there exist a summable function M(t) and
a constant My such that in the domain Q on any finite interval [t1,t2] the
following inequalities hold:

llg(t, )| < M(t /M t)dt < Mo(ts — ty). (4.2.5)

Then for the norm of difference of the solutions x(t,to, o) of the system
(4.2.1) and T(t,to, o) of the system (4.2.3) at all t € [to,to + 1] the following
inequality holds:

() — Z(B)]| < uMol exp(L1). (4.2.6)
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The estimate (4.2.6) is obtained through direct application of the Bellman
lemma to the integral equation obtained from the equation (4.2.1).

Lemma 4.2.3 Assume that the vector functions f(t,z) and g(t,x) satisfy
the Lipschitz condition with respect to x with a constant L, and in addition,
g(t,0) = 0. Then for the solutions x(t,to,xo) and ZT(t,to,x0) of the systems
(4.2.1) and (4.2.3) the following inequalities hold:

(@) fl=(t, w)ll < llzoll exp[L(1 + p)(t —to)] < [[x0]|Qu(t —to),
(b) [IZ@ < llzoll exp[L(t —to)] = [[xo[|Qz(t — to),
(e) Mt p) =Tl < pllzoll{exp[L(t —to)] — 1}

x exp[L(p + 1)(t = to)] < pllzol| Q( — to)-

(4.2.7)

Here the obvious notation is introduced, and in the functions Q. (t — o)
and Q(t — to) it is assumed that p = p*.

Proof From the equations (4.2.1) and (4.2.3), using the conditions of
Lemma 4.2.3, obtain

t
[t to, zo)[| < [lzoll + /L(u+ Dlx(t, to, zo)|l dt,

to
t

17, to, zo)|l < [lzoll +/L||f(t7t07$0)||dt~
to

Hence, using Lemma 4.2.1, obtain inequalities (a) and (b) from (4.2.7).
Inequality (c) from (4.2.7) follows from

[ (t, 1) =2 (@) < /[Ilf(tvw(t)) — f(&, 7)) + pllg(t, x(t))

gt T dt + / gt 7(t))]| dt

t t

< [ L+ wleo) -zl + [ Lio)]as

< [ B4 e O+ ol espl )] - 1)

to

The lemma is proved.
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Recall some notation. The distance from a point z to a set M will be
denoted as follows:

p(z, M) = inf(||x — 2’|, 2’ € M).

We will use continuously differentiable Lyapunov functions v(t,z) defined
in a domain 2. Let v*(z) denote a nonpositive function defined and continuous
in a domain D. The set of points 2 € D for which v* () = 0 will be denoted by
E(v* = 0). Similarly, introduce the notation of a nonnegative function w*(z)
and a set E(w* = 0).

4.2.2 Conditions for stability

The conditions for the stability of solutions of the system (4.2.1) were
obtained in the case of “neutrality” of the shortened system (4.2.3) on the
basis of the mean (4.2.4).

The main requirement ensuring the stability of a trivial solution is the
negativeness of the mean outside an arbitrarily small neighborhood of the
point x = 0.

Here we will obtain the conditions for the p-stability under weaker limita-
tions on the mean (4.2.4).

Definition 4.2.1 The mean Og(tp, o) is less than zero in the set
E(v* = 0), if for any numbers n and €, 0 < n < € < H, there exist positive
numbers 7(n,e) and §(n,e) such that Og(to, o) < —d(n,e) at n < ||zo] < ¢,
p(zo, E(v* =0)) < r(n,e) for all ¢y € J.

Theorem 4.2.1 Let the following conditions be satisfied:

(1) in the domain ) there exists a positive definite decrescent function v(t, x)
such that

v (ov\"
b (%) f(t.2) <" (@) < 0;

(2) there exist summable functions M(t), F(t), N(t), constants My, Fy, and
No, and a function x(8) € R such that the following inequalities hold:

ot 7) < N(b), /N@ﬁg%m—m (4.2.8)
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atx € D\ E(w*=0), teJ and

gt ) < M(2), / M(t) dt < Mo(ta — 1),

o, ) = ot )l < x([l2" = 2" [)F (), (4.2.9)

F(t)dt < Fy(ts — 1)

t1
at (t,x) € Q on any finite interval [ty, t2];
(3) uniformly with respect to (to,xo) € € there exists a mean O (to, xo);
(4) the mean Oq(to, o) is less than zero in the set E(v* = 0).

Then the solution © = 0 of the system (4.2.3) is p-stable.
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Proof Let € € (0,H) and tp € R4+ be specified. We will show the method
used for choosing 7(e) and (), which do not depend on ty. Assume that the
conditions of Theorem 4.2.1 are satisfied. For the positive definite decrescent
function v(t, x) there exist functions a(r) and b(r) from the K class, such that
in the domain €2 the following condition is satisfied:

allle]) < v(t,z) < b(]l]). (4.2.10)

In view of (4.2.10) all points of the moving surface v(¢, x) = a(e/2) will satisfy
the condition
b (a(e/2)) < ||z|| < &/2 (4.2.11)

for all t € R,. Assume that n(c) = b~ (a(e/2)).

Consider the solution z(t, 1) of the system (4.2.1) with the initial condi-
tions ||zo|| < n(e). Assume that it left the domain ||z|| < n(¢) and at a point
of time ¢ = ¢ crossed the surface v(¢,x) = a(e/2) in a point xf. For this point
the inequality (4.2.11) holds and therefore, in view of condition (4) of the
theorem for £/2 and 7(e), there exist numbers 7(n,e/2) > 0 and 6(n,e/2) >0
such that one of the following conditions is satisfied:

p(.’L‘B,E(U* = O)) > 7“(’% 5/2)’ @(%71‘6) < _6(7775/2>'

Consider some properties of the solution x(t, u):

(a) Let the following conditions be satisfied at a point of time 7:

(T, (7)) = ale/2),  p(a(7), E(v" = 0)) > r(n,2/2).

Study the behavior of the function v(t, z) along the solution z(t, ) of the
system (4.2.1). Integrating the expression of the full derivative of the function
v(t, x), taking into account the system (4.2.1), for ¢t > 7 obtain

t t

v(t,z(t)) < v(r,z(r)) + /v*(z(t)) dt + u/ga(t,x(t)) dt. (4.2.12)

T T

In this situation there exists a positive number v = ing |v*(z)|, where
rEe

P={w: pla, B =0)> /2, < |z <e/2).
Choosing p1 < p, = 7v/2Ny and using the inequalities (4.2.8) for all ¢t > 7, for

which the conditions ||z(7)|| > n and p(z(t), E(v* = 0)) > r/2 are satisfied,
from the inequality (4.2.12) obtain

v(t, 2(t) < a(e/2) — %(t — 7). (4.2.13)

It implies that at p < py, the function v(¢, 2(¢)) is not increscent, which means
that the solution x(t, 7, (7)) in view of the inequality (4.2.11) will not leave
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the domain ||z|| < /2, at least until the inequality p(z(t), E(v* = 0)) > r/2
is violated.

(b) Let the following conditions be satisfied at a point 7:

v(r, (7)) = ale/2),  p(a(r), E(v" = 0)) <r(n,2/2).

In this event, as a result of condition (4) of Theorem 4.2.1, the following
inequality holds:
Oo(7,z(1)) < 0(n,€/2). (4.2.14)

Therefore, we will estimate the change of the function v(¢, z) along the solution
x(t, p). The first integral in the inequality (4.2.12) will be neglected, and the
second one will be represented in the form

t t t

/ ot (1)) dt = / lo(t, 2(t)) — (7)) dt + / ot T(1)dt. (4.2.15)

T T T

Here Z(t) is a solution of the system (4.2.3).
Condition (3) of the theorem implies that there exists a function »(¢) such
that tlim #(t) = 0, and the last integral in (4.2.15) can be represented in the
— 00

form
t

/ ot T(1)) dt = (t — 1) [B(r, 2(r)) + (D). (4.2.16)

T

Choose the time interval [ so large that for ¢ > 7 + [ the condition
[5¢(t)] < 6(n,e/2)/4 (4.2.17)
will be satisfied, and construct estimates on the interval [r, 7 4 2]. Choosing
p = s H(0/4Fy) /2Mol exp(2L1)
and using Lemma 4.2.2 for ;1 < pq and ¢ € [7,7 + 2I], obtain
() - T < x~A(3/4Fp). (4.2.18)

From the inequality (4.2.9) and the estimate (4.2.18) it follows that

/|<p(t, x(t)) — p(t, T(t))| dt < g(t —7) (4.2.19)

for all t € [r,7 + 2I] and p < p1. Choose s so that at p < p2 on the interval
[, 7 4 2[] the solution z(¢, ) would not leave the domain ||z|| < e. For this
purpose, taking into account that ||Z(¢, u)|| < /2, it is sufficient to demand
that ||z(¢, u) — T(t, u)|| < €/2. Then from the inequality (4.2.6) obtain

9

12 = Mylexp(2L)

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS STABILITY OF WEAKLY PERTURBED SYSTEMS

Choose pf = min(u1, p2), then at p < pg for t € [r,7 + 21| the condition
[lx(t, u)|| < e and the estimate (4.2.19) will hold. Substituting (4.2.16) and
(4.2.19) into (4.2.11) and using the inequalities (4.2.14) and (4.2.17), for ¢ €
[T+ 1,7+ 2l] and p < pg obtain

t

/w(tw(t)) dt < —g(t - 7). (4.2.20)

T

As is obvious from (4.2.20), the last integral in the expression (4.2.12), at
least starting from the point t = 7 + [, becomes negative, which means that
the solution z(¢, 1), having left v(¢,xz) = a(e/2), due to the chosen u < py,
will remain at ¢ € [7, 7+ 2[] in the domain ||z|| < & and at some point of time
t* € [r,7 + 2l] return to the domain bounded by the surface v(t, z) = a(e/2).

Choose o = min(ug, p1g). At a point of time t{ for the solution (¢, u) of
the system (4.2.1) one of the above conditions (a) or (b) is satisfied. Choosing
a time interval depending on what case holds, we can show that the solution
of the system (4.2.1) in the finite point of the interval lies within the domain
bounded by the surface v(t,z) = a(e/2). Continuing this solution until the
intersection with the above-mentioned surface, we obtain the initial point of
the next interval, in which case (a) or case (b) will hold again. Since in both
cases the estimates are uniform with respect to 7 and z(7), on all the following
intervals either (4.2.13) or (4.2.20) will hold, which means that z(t, ) for all
t > to will remain in the domain ||z|| < e. The numbers 7, po were chosen
without regard to ty. Theorem 4.2.1 is proved.
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FEzample 4.2.1 Study the equilibrium state z = 0 of the system of equations

dx
d—tl = —x1 + 2o + p(zd — axd),
(4.2.21)
d(EQ - 3 3 -
v pla(zy + z2) cost + (7 — axy)], a = const > 0.
The derivative of the function v(z) = 23 + (21 — x2)? in view of the
shortened system
dCEl dxg
— =— — =0 4.2.22
a e g (4.2.22)

d
has the form d_:(m) = —2(x1 — 22)%? = v*(x) < 0.
Having calculated the mean (4.2.4) along the solutions Ty = x99, T1 =
T20 + (T10 — T20) exp|[—(t — tg)] of the system (4.2.22), obtain

Oo(xo) = 2x3,(1 — a). (4.2.23)

It is clear that the mean ©g(zg) is less than zero in the set E(v* = 0) =
{z: ;1 =x2} at a > 1.

Thus, at a > 1 the solution = 0 of the system (4.2.21) is p-stable. Note
that the mean (4.2.23) vanishes over the set x50 = 0 in the neighborhood of
the point # = 0, and the derivative of the function v(z) = 23 + (21 — 22)? in
view of the system (4.2.21) is an alternating function in this case.

4.2.3 Conditions of instability

The instability of solutions of the system (4.2.1) can be studied on the
basis of Gorshin’s theorem [1] on the instability under continuous perturba-
tions, in which the instability of the equilibrium state of a shortened system is
required. In the monograph by Khapaev [3] the cases were investigated when
a shortened system is “neutral”. An essential condition was the condition for
the positiveness of the mean (4.2.3) in the domain v > 0.

In this subsection the conditions for the instability of the Chetaev theorem
type were obtained under wider assumptions on the properties of solutions of
the generating system.

Recall that a domain v > 0 is a neighborhood of the point x = 0 (z € D),
where the function v(¢,z) takes on positive values. It is assumed that this
domain is bounded by the surface v = 0 and exists for all t € R, at arbitrarily
small x.

The mean Oq(tg,zo) is above zero in the sets F;(©¢ = 0) of the domain
v > 0, if for any positive A, however small it may be, there exist positive
numbers §(A) and x(A) such that at tx € Ry and z¢ € D satisfying the
conditions v(tg,zo) > A, ¥(to,x0) < x(A) the inequality ©¢(to, o) > d(N)
holds.

Let {v; > 0} denote the intersection between the domain v > 0 and the
plane t = 7.
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Theorem 4.2.2 Let there exist a function v(t,z) bounded in the domain
v > 0, and, in addition,

(1) in the domain v > 0 the inequality v(t,x) > 0 holds;

(2) there exist summable functions M(t), N(t), F(t), constants My, No, Fo,
and a function x(B) € K, such that

ot 2)l| < M(2), / M(t) dt < Mo(ts — 1),
lo(t,2') — o(t,2")]| < F()x(la’ — "), (4.2.24)

ta

/F(t) dt < Folts — 1)

t1

in the domain v > 0 and

[2)
ot ) > —N(b), / N(t) dt < Nolts — 1) (4.2.25)
t1
at x € {v>0}\ (Ex(v =0)Nn{v > 0}), t € J on any finite interval
[tla t2]7
(3) uniformly with respect to to, xo in the domain v > 0 there exists a mean
Oo(to, z0);
(4) the mean Oq(to,xo) is above zero in the sets Ey(v = 0) in the domain
v > 0.

Then the solution x = 0 of the system (4.2.1) is p-unstable.

Proof Specify € € (0, H) and ty € Ry. Prove that however small zy may
be chosen, one can always find an arbitrarily small number g > 0 such that
for the solution z(t, i) of the system (4.2.1) at u < po at some point of time
t* > to the condition ||z(t*, u)|| = € will be satisfied.

For a function v(¢, z) bounded in the domain v > 0 one can find a constant
w such that at ||z|| < € the following inequality would hold:

v(t,x) < w. (4.2.26)

We will choose the value zy as small as we please, provided that the point zg
belongs to the domain v > 0. Then there will exist such a positive number «,
that the following condition will be satisfied:

v(to, o) > a (4.2.27)
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Under hypoghesis (4) of Theorem 4.2.2, for a > 0 there exist positive numbers
0(a) and x(«) such that one of the following inequalities holds:

Oo(to, z0) > 6(a), v(to,z0) > &(a).

Consider some properties of the solution z(¢, ) of the system (4.2.1).

(a) Let the following conditions be satisfied at a point 7:

v(r,z(1)) > a, 0(1,2(7)) > ().

Consider the behavior of the function v(t,z) along the solution x(t, ).
Integrating the expression of full derivative of the function v(t, z), along solu-
tions of the system (4.2.1) obtain

t

v(t,z(t)) = v(r,z(1)) + /’u(t,x(t)) dt + M/go(t,m(t)) dt. (4.2.28)

T

Using the inequalities (4.2.25), at u < pg = &(a)/2Np from the expression
(4.2.28) find the estimate

v(t,x(t)) > o+ g(t -7) (4.2.29)

for those t at which for the solution x(¢, ) the condition v(t, z(t)) > &(«) is
satisfied, that is, the inequality v(¢, z(t)) > « for those points of time will not
be violated.

/
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For the solution x(t, u) the following conditions cannot be satisfied:
v(t,z(t) > (@), [zt pll <e (4.2.30)

within the time interval T = 2(Q2 — «) /(). Assume that those conditions are
satisfied. Then from the inequality (4.2.29) for the point of time 7+7 we obtain
v(t+T,z(r+T)) > Q, which contradicts the condition for the boundedness
of the function v(t, ). The contradiction implies that there exists a point of
time from the interval (7,7 + T), at which one of the inequalities (4.2.30)
is violated. The violation of the second inequality from (4.2.30) means the
instability. Assume that the first inequality of (4.2.30) is violated.

(b) Let the conditions v(7,z(7)) > «, 0(7,2(7)) < x(a) be satisfied at a
point of time 7. In this case, in view of condition (4) of Theorem 4.2.2 the
following inequality will hold:

Oo(r, z(7)) > 8(a). (4.2.31)

Now we will estimate the change of the function v(¢,x) along the solution
x(t, p), using the mean Og(7, z(7)).

In the expression (4.2.28) neglect the first integral and represent the second
one in the form

t t t

[ettatinie= [lota) - ettana+ [otawna, @232

T T T

where Z(t) = Z(t, 7,2(7)) is a solution of the system (4.2.3).
Represent the last integral from (4.2.32) in the form

t

/ ot (1)) dt = (t — )00 (7, 2(r)) + 5(1)]. (4.2.33)

T

In view of condition (3) of the theorem, the function s(t) is such that
tlim #(t) = 0. Estimate the summands in the relation (4.2.32) on the in-
—00

terval [1,7 + 20 4+ T], where [ will be chosen so large that for t > 7 + [ the
following condition would be satisfied:

|2(¢)] < §(a)/4. (4.2.34)
According to Lemma 4.2.2 for t € [r,7 + 2] + T] find
lz(t) —Z(t)|| < pMo(2l +T)exp[(2l + T)L]. (4.2.35)
Choose

xRy
Mo (2l + T)exp|(2l + T)L]

M1
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Using the inequality (4.2.35) for p < py and ¢ € [7,7 4 (21 + T')], obtain

t

/ lo(t, 2(8)) — o(t, ()] dt < @(t ey (4.2.36)

T

Using (4.2.33), (4.2.34), and (4.2.36), for the integral (4.2.32) at a point of
time ¢ € [T + 2I,7 4 21 + T obtain the inequality

t

/(p(t, x(t)) dt > 6.

T

Since all the requirements of Theorem 4.2.2 are satisfied in the domain
v > 0, it is necessary to ensure that the solution x(¢,7,2(7)) on the interval
[7,7 + 21 + T] will not cross the surface v = 0 and will not leave the domain
v > 0. For this purpose, impose another limitation on p. Choose s so that
at t € [1,7 + 21 4+ T the following condition would be satisfied:

t

!
o [ ottty < 5.
Using the expression (4.2.32) and the inequality (4.2.36), this condition can

be written as follows:

ug{/w(t,z(t))dt+ @(t <

T

«
2

at allt € [r,7+ 2l +T], 7 € J. Then at p < py = min(pu1, 42) on the interval
[7,7 + 20 + T the solution z(¢, 7,2(7)) will not leave the domain v > 0, and
at the point ¢ € [T + 21,7 + 2] 4+ T the following condition will be satisfied:

v(t,z(t)) > o+ pdl > a. (4.2.37)

Choose o = min(ug, pg) and consider the sequence of points of time
t; =to+i(2l+T), i =1,2,.... At the initial point of time t( condition (a) or
(b) will be satisfied. If condition (1) is satisfied, then according to the proved
property at u < po on the solution of the system (4.2.1) (¢, to, zo) at some
point of time ¢, from the interval (to,to + T') the conditions v(t;, z(t;)) >
Oo(th, z(ty)) > 6(a) will be satisfied. Then, according to property (b), for
the point of time t; = tg 4+ 2] + T the estimate (4.2.37) will hold. If at the
initial point of time condition (b) is satisfied, then at the point ¢; we will also
obtain the estimate (4.2.37). On all further intervals [¢;,¢;+1] we will obtain
similar cases, that is, on each interval the function v(¢, z(t)) increases at least
by 16l >0 (p € (0, p10)). Let k be the smallest integer satisfying the condition
k> (w—a)/udl.
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Assume that at ¢ € [to, tx], where ¢, = to + k(20 + T), the solution x(t, )
lies in the domain ||z|| < e. Taking into account the above, for a point of time
ti obtain v(tg,x(tx)) > €, which contradicts the condition for the bound-
edness of the function v(¢,x). The obtained contradiction implies that there
exists a point of time ¢* from the interval (to,tx), at which the condition
lz(t*, to, o)|| = € is satisfied.

The theorem is proved.

4.2.4 Conditions for asymptotic stability

Assume that for the vector functions f(¢,z) and g(¢,z) from the system
(4.2.1) the conditions of Lemma 4.2.3 are satisfied, that is, the functions f (¢, x)
and g(t,z) in the domain 2 satisfy the Lipshitz condition with respect to z
with a constant L and f(¢,0) = g(¢,0) = 0.

Denote

t

1 _

%(t, to, xo) = m (p(t, x(t, to, Io)) dt — 60(150, Io).
to
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Theorem 4.2.3 For the system (4.2.1) let the following conditions be
satisfied:

(1)

(2)

there exists a positive definite decrescent function v(t,z) such that

O(t, 7)|(4.2.3) S v (z) <05

the function (t,z) is differentiable with respect to x and there exist
constants M > 0 and d > 1 such that the following inequalities hold:

lot,2)| < Mllz]|%, [Vl < M|

uniformly with respect to (to,zo) there exists a mean Og(to,zo) and
the following condition is satisfied:

max[p(zo, E(v* = 0)), (=Oo(to, w0))] > c1(l[xoll), ci(r) € K

there exists a constant k > 0 such that for xy € Q) the following condition
is satisfied:
p(zo, E(v* = 0)) < cr(l|zol]),

and for ty € J the following inequality holds:

kOo(to, o) < —|zol|%

there exist a constant p1 > 0 and a function co(r) € K such that at x
satisfying the condition p(z, E(v* =0)) > c1(||z|]), and p < p1, t € J

0(t, )| (4.2.3) + pp(t, z) < —ca(llz]));

there exists a constant | > 0 such that at t —tg > [, t9g € Ry,
p(xo, E(v* = 0)) < c1(||xol|) the function k(t,to,zo) satisfies the es-
timate

|%(t,t071'0)| S |@0(t071'0)|/4.

Then the solution © = 0 of the system (4.2.1) is asymptotically p-stable.

Proof Let € € (0,H), tg € Ry, and a € (0,¢) be specified. Show that
there exist numbers n(e) > 0, uo(e) > 0, T(u,a,e) > 0, not depending on
to, such that for the perturbed motion z(t, 1) of the system (4.2.1) under the
condition ||zo| < n the following inequalities hold: ||z(t, u)|| < e for all ¢ > ¢
and ||z(t, p)|| < a for t >t + T(u, @, €).

For the function v(¢, ) indicated in condition (1) of Theorem 4.2.3 the
following inequality holds:

a([lz]) < v(t, z) <b([l«]), (4.2.38)

where a(r) € K and b(r) € K.
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Choose n(g) = b~1(a(e/2)). In view of the inequality (4.2.38) for all points
of the moving surface v(t,x) = a(e/2) the condition

n(e) <zl <e/2
is satisfied, and all points of the surface v(t, z) = a(«/2) satisfy the inequality
b~ (a(a/2)) < ||z < a/2

forallt € R..
Consider some properties of the perturbed motion z(t, 1) at ||zo|| < n(e)
and tp € R4.

(a) Let at a point of time 7 the following conditions be satisfied:
lz(7)ll = b~ (a(/2)),  v(r,2(7)) < a(e/2),
pla(r), E(v" = 0)) > ei((|z(7)]])-

Estimate the change of the function v(¢, z) along the perturbed motion z(t) =
x(t, 7,2(7)). In this case, in view of condition (5) of Theorem 4.2.3, as long as
the condition

o(t) € U= {a: b7 (a(a/2)) < ||z < /2, p(a(t), E@" =0)) > er([l=(t)])}

is satisfied, the full derivative of the function v(¢,x) in view of the system
(4.2.1) at p < pq satisfies the inequality

O(t,2)|(a21) < —c2(b (a(a/2))). (4.2.39)

The function v(¢, x(t)) is not increscent, which means that the integral curve
x(t, 7, z(7)) will not cross the surface

v(t,x) = ale/2)
and will not leave the domain ||z|| < e/2, at least until the condition
p(a(t), E(v" = 0)) > ci((|lz(8)]]).

is violated.
The perturbed motion z(t) cannot permanently stay in the set U within
a time interval equal to

I = b(e/2)ea(b™" (a(/2))).

Indeed, assuming that within a time interval equal to I, z(t) € U, from the
inequality (4.2.39) for t = 7 + [; obtain

v(t,z(t)) <ov(r,z(r)) — cz(b_l(a(a/Q)))l < 0.

This contradicts the condition of positive definiteness of the function
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v(t,z). The contradiction implies the existence of a point of time from the
interval (7,7 4 {1), at which one of the following conditions will be violated:

bL(ale/2) < llzll,  pla, B =0)) > er(llz]). (4.2.40)
(b) Let the following conditions be satisfied at a point 7:
lz(r)] = 07 (a(e/2)), v(r,2(r)) < ale/2),
p(a(7), E(v" = 0)) < cr(flz(n)])-
By condition (4) of Theorem 4.2.3, in this event
Bo(r,2(7)) < —c1(||z(7)]) < —e1 (b7 (a(@/2))). (4.2.41)

Estimate the change of the function v(t, ) along the perturbed motion z(¢, u).
On the basis of Lemma 4.2.3 the inequalities (4.2.7) hold for the solutions
x(t, ;) and x(t) of systems (4.2.1) and (4.2.3). Using condition (2) of the
theorem and the inequalities (4.2.7), obtain

lp(t, 2(1)) = (t, T(1))| < max |[Voll||z(t) —z(#)]|

< Mla(r)|*(Qa(t — 7) + Qzlt — 7)™ ullz(1)|Q(t — 7)
= plla(7)|1*B(t — 7).
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Using condition (4) of the theorem, obtain
[ (t 2(6)) — p(t,T(1)] < phB(t — 7)[7(r, 2(7))]. (12.42)

Determine uo from the inequalities

/,LQkB(Ql + ll) < -, /,LQQ(2Z + ll) < 1. (4243)

> =

The second inequality of (4.2.43) means that the perturbed motion z(t, u) will
not leave the domain ||z|| < € at u < ug at least on the interval (21 + I;).

Using the inequality (4.2.42) and the existence of the mean O¢(r, z(7)),
obtain an estimate for v(¢, z, (7)):

t

v(t,x(t)) <v(rz(r)) + /ukB(t —7)|v(r,z(7))|dt

T

+ u(t — 7)[Oo (1, 2(7)) + 2(t, 7, 2(7))].

Taking into account the existence of the interval [ [condition (6) of Theorem
4.2.3] and the inequalities (4.2.5) and (4.2.7), at u < pz, t € [T+2l, 7+ 20+ 14]
obtain

v(t,z(t)) < vt 2(1)) — pley (b~ Ha(a/2))). (4.2.44)

The perturbed motion z(t, ) may leave the domain bounded by the surface
v(t,x) = a(e/2), but due to the choice p < pg it will remain in the domain
lz]| < e within a time interval 2] 4+ I; and, as it is clear from the inequality
(4.2.43), at some point of time from the interval (7,7 + 21) it will return to
the domain v(t, z) < a(e/2).

Properties (a) and (b) imply that if 4 < po = min(py, u2), ||zol < 7
and to € R4, then the perturbed motion z(¢, ) will not leave the domain
|zl < e at all ¢ > to. The number 7(e) was chosen without regard to tg. Prove
that at some point of time the perturbed motion will get into the domain
ol < b (a(a/2).

Consider the sequence of points of time t; = tg + (2l + 1), ¢ = 1,2,....
On each interval [t;,t;41] the function v(¢,2(t)) in view of properties (a)
and (b) decreases along the perturbed motion at least by ulci (b~ (a(a/2))),
€ (0, 1o). Indeed, if condition (a) holds at the initial point of the interval,
then on the time interval [; there exists a point of time when one of the in-
equalities (4.2.40) is violated. Assume that the second inequality is violated.
Then, taking that point of time as the initial one, using property (b), obtain
the estimate (4.2.44) in the finite point of the interval. If property (b) holds in
the initial point of the interval, we immediately obtain the estimate (4.2.44)
for the finite point of the interval.

Let n be the smallest integer satisfying the condition

n > b(e/2)/pler (b~ (a(a/2))).
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Assume that on the interval [to, t,], tn = to+n(2l+11), the perturbed motion
is in the domain ||z|| > b~(a(a/2)). Then at a point of time ¢,

V(tn, z(tn)) < v(to, zo) — nuley (b (a(a/2))) <0

holds, which contradicts the condition of the positive definiteness of the
function v(t,x). The contradiction implies the existence of a point of time
t1 € (to,to + n(20 + 1)) at which the condition |z(t1,u)| < b~1(a(a/2)) is
satisfied.

In the same way as it was proved that the perturbed motion z(t, u) re-
mained in the domain ||z|| < € at ||zo|] < n(e) and ¢ > to, it is possible to show
that the perturbed motion x(t,¢;.2(¢1)) will remain in the domain ||z < «
at all £ > ¢; and p < po.

This proves that at all ¢ > ty + T, where

T =n[2l + b(e/2)/ca(b" (a(a/2)))],

the condition ||z(t, to, o)|| < « is satisfied. The number T" was chosen without
regard to tg.
Theorem 4.2.3 is proved.

4.3 Stability on a Finite Time Interval

Let the trivial solution of the system (4.2.3) be stable, which is determined
by the existence of a positive definite continuously differentiable Lyapunov
function vy (t, z), whose derivative in view of the equations (4.2.3) is identically
zero, that is, this is a critical case.

In this section the systems (4.2.1) are considered, whose mean (4.2.4) is
alternating in any arbitrarily small neighborhood of zero.

Introduce the notation

Eg(to) = {(to,on) e 0: @0(t0,x0) > 0}7
Eé(to) = {(to,on) € 0: @0(t0,x0) < 0}7 (431)
Eg(to) = {(to,on) e N: @0(t0,x0) < —(5}
and show the conditions for the p-stability on a finite interval.
Consider the following result.

Theorem 4.3.1 Let the following conditions be satisfied:

(1) there exists a positive definite Lyapunov function vo(t,z) of the system
(4.2.3), decrescent in the domain €;

(2) the full derivative of the function vo(t,x) along the paths of the system
(4.2.8) is identically zero in the domain ;
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(3) for any e,p > 0, p < ¢, there exists pg > 0, o = const, such that
lo(t, )| < o at allt € J, as soon as p < ||z|| < e.

Then one can show o(c), n(e), T = o(pou)~! such that all solutions that

satisfy the inequality ||xo|| < 1 at the initial point of time, for allt € [to, to+T]
do not leave the domain ||z| < €.

The next theorem enables us to improve the estimate of the time interval
on which ||z| < e, if it is known that for a specified ¢ the value zy belongs
to Eg (to), where Eg (ty) is determined by the expression (4.3.1).

Theorem 4.3.2 Let the following conditions be satisfied:

(1) there exists a positive definite Lyapunov function vo(t,z) of the system
(4.2.8), decrescent in the domain €,

the full derivative of the function vo(t,x) along the paths of the system
2) the full derivati f the f ) l h hs of th
(4.2.3) is identically zero in the domain

(3) uniformly with respect to (to,xo) € § there exists a mean ©Og(to, zo)
alternating in the domain Q and at a specified ty and all v >0, n > 0,
v < n < H, the following condition is satisfied:

(By \ By) N Eg (to) # 2,
By =A{z: [zl <n}, By = {a: [lz] <7}
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(4) there exist a summable function F(t), constants Fy, vo(€), wo(€), and
My, and a nondecrescent function x(«), lin%) x(a) = 0 such that in the
a—

domain

lo(t,2") = o(t,2")] < x(ll2" — 2" [N F(2),

/F(t)dtSFo(tQ—tl) at all T <ty < tg < 00,
ty

lg(t, )| < Mo;

at all p > 0, € >0, p < < g, |pt,z) < ¢oE) at all t € J,
p <] <e,

lo(t, )| < wo(e) at all < |z| <e.

Then for any € > 0 and € < € one can find n, we, we, po, I, T = 2l +
16[00(E)] 71 + (we — we)[upo(e)] ! such that for all t € [to,to +T] ||x(t)]| < e
holds, if only this path begins in the domain where the mean ©¢(tg, o) < 0
and ||zl < 7.

Proof Let e > 0 (¢ < H) be specified. Specify £ > 0, € = const, so that
€ < e. According to condition (1), there exists a positive definite function
w(x) such that

vo(t,z) > w(x) atall ()€ Q. (4.3.2)

Introduce ws so that the surface Sz = {z € Q: w(z) = ws} would lie
within the g-neighborhood of the origin of coordinates. The moving surface
Sy(t) = {x € Q: vo(t,x) = we} in view of (4.3.2) lies inside the surface Sz,
hence S,(t) C Bs.

Since vg(t, x) is decrescent in the domain 2, one can find 1 > 0 such that
B, would lie inside the moving surface S, (t). Since O (to, xo) < 0, then there
exists & > 0: ©g(to, o) < —0. According to condition (3) of the theorem,
the values § and v > 0 may be chosen so that zo € (B, \ B,) N E&(to).
Denote ¢ = vo(tg, o). Obviously, ¢ < ws. Let the point (to,zo) lie on the
moving surface S, (t) = {z € Q: vo(t,z) = c¢}. This surface is located inside
the surface S, (t).

Consider the behavior of the function vy(¢,x) along the solution x =
x(t;to, xo) of the system (4.2.1). It is easy to show that one can find suffi-
ciently large [ and small p such that at p < po on the interval ¢t € [tg, to + 2{]
the solution xz(t) belongs to B. and at t € [tg + [,tp + 2l] the estimate
vo(t, ) < ¢ — (t — to)ud/2 holds.

Assuming ¢ = tg + 21, x1 = z(t), obtain vg(t1,21) < ¢ — pld. Here the
point z; lies inside the surface S/ (¢). Denote ¢; = vg(t1, 1) and construct a
surface SJ/(t) = {x € Q: wvo(t,z) = c1}.

The moving surface S (¢) lies inside a fixed surface Sz. Consider the be-
havior of vy(t, ) along a portion of the path of the system (4.2.1), beginning
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in the point (¢1,1). In view of the system (4.2.1) dvo/dt = pe(t, x), hence,
integrating from the point ¢;, obtain

t1+T
vo(t1 +T,x) =c1 + / p(t,x)dt < c— uld + ppoT < ws — pld + ppoT.

ty

For the path z = z(t) to remain within Bz on the time interval t € [t1, 1 +
T1], it suffices that the equality wz— puld + ppo(2)Th = ws should hold, whence
Ty = 18]po(2)] . Here, when estimating the function ¢(¢,x)j it is taken into
account that x belongs to Bs.

Introduce the quantity w. so that the surface S. = {z € Q: w(z) = w.}
should lie inside the e-neighborhood of the origin of coordinates, S. C B..
The path = z(¢,u) may only leave the e-neighborhood of the origin of
coordinates after crossing the moving surface S/ (t) = {z € Q: vo(t,z) = w.},
which lies inside the surface S.. Therefore, for the path z = (¢, 1) to remain
within the bounds of B, on the interval ¢t € [t1 411, t1 + 71+ T5), it suffices that
the equality we + T2 = w. should hold, whence Ty = (w. — wg)[ppo(e)] L.
Here the function ¢(t,z) is estimated at p < ||z|| < e.

Thus, on the whole interval [tg, to + T'], where

1o We — Wz

T=t, 4T +Tp =21+ —— + ,
©o(8)  ppole)

the solution z(¢, 1) with the initial value zg € EQ(t9) N B, will not leave the
e-neighborhood of the stationary point.
The theorem is proved.

The next theorem allows us to essentially improve the estimate from The-
orem 4.3.2 due to fuller information on the change of weak perturbations in
the neighborhood of the equilibrium.

Theorem 4.3.3 Let the following conditions be satisfied:

(1) there exists a positive definite Lyapunov function vo(t,x) of the system
(4.2.3), decrescent in the domain €;

(2) the full derivative of the function vo(t,x) along the paths of the system
(4.2.3) is identically zero in the domain €;

(3) for any e, p such that 0 < p < € < H, in the domain p < |z|| < €
the function @(t,x) is defined and on the interval (p,e) there exists a
nondecrescent function ¥(C) such that |o(t,z)| < ¥(¢) at p < ||z < ¢.

Then on the interval (p, e) there exists a nondecrescent continuous function

#(C) and for any eo € (p, ) one can findn(eg) such that all solutions satisfying
the inequality ||xo|| < n at the initial point of time do not leave the domain
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llz|| < e for all t € [to,to+ T, where

1 [d(Q)
- i) o (4.3.3)

Proof Let e > 0 (¢ < H) be specified. Specify €9 > 0, &9 = const, so
that p < g9 < e. Divide the interval [eg,¢] by the points €;, g9 < &1 < ... <
ex—1 < €r = ¢, and introduce the system of nested neighborhoods {B;},
B; ={z: ||z|| <e&i}.

According to condition (1), there exists a positive definite function w(x)
such that

vo(t,x) > w(z) atal (t,z)e€Q. (4.3.4)

On the interval [gg, €] introduce a continuous nondecrescent function s(()
so that at any ¢ € [gg, ] the surface {x € Q: w(z) = 5({)} would lie in the
neighborhood Be, and construct the system of surfaces S; = {z € Q: w(z) =
»(g;)} C B;,1=0,1,2,..., k. Since the function w(x) is continuous and (()
nondecrescent, all the surfaces S; are closed and the surface S; lies inside
the surface S;;1. Consider the system of moving surfaces {S;}, S; = {z €
Q: vo(t,r) = 5(e;)}. In view of the inequality (4.3.4) the surface S; lies
inside the surface S;. The continuity of vg(t,z) implies that the surfaces S;
are closed; in addition, the surface S; lies inside the surface S;;1. Therefore,
the solution may only leave the neighborhood B; after crossing S;.
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Since vg(t, x) is decrescent in the domain €, one can find 1 > 0 such that
the n-neighborhood B, of the point x = 0 for all ¢ > 0 lies within the moving
surface Sp.

Let the integral curve z(t;tg, o) leave the neighborhood B, and assume
that at a point of time ¢ = ¢ it crossed the surface Sg. Let ¢; denote the point
of time when the curve crosses the surfaceS;, and let ; denote the respective
value of x: x; = x(t;;to, xo).

Differentiate vg (¢, z) in view of the equations (4.2.1). Taking into account
conditions (2) and (3) of Theorem 4.3.3, obtain

=2 — up(t, z). (4.3.5)

Consider the behavior of the function wvg(t,2) along the portion of the
path, beginning at the point (¢;,x;). Integrating (4.3.5) from the point ¢ = ¢;,
in view of condition (3) and the definition of ¢; obtain

tit1

vo(tig1, Tig1) = vo(ti, zi) + p / o(t,x)dt < vo(ti,x;) + pap(eip1) (tivr — ti).

t;
The last inequality, taking into account that v (t;, z;) = s(e;), implies

#(gir1) — (&)

fisg —ty > 28 T ED g k-1,
e 1 (Eit1)
and
b s 1 kil (gi41) — (&)
k—lo = — —_— .
pi o vlEin)

In view of the definition of the function s(¢) and the arbitrariness of the
division of the interval [eg, €], the sum in the right-hand part is integral one.
Passing to the limit at max(e; — ;1) — 0, obtain

1 [ d(Q)
p ©
€0
The theorem is proved.

For solutions beginning in the domain where ©¢(tg, zo) < 0, the following
theorem is correct.

Theorem 4.3.4 Let:

(1) all the conditions of Theorem 4.3.2 be satisfied;
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(2) uniformly with respect to (to,xo) € § there exists a mean ©¢(to, xo),
which is alternating sign in the domain 2, besides at the specified ty and
at ally >0, n>0, vy<n<H, the following condition is satisfied:

(By\ By) N Eg(to) # 2,
By ={z: ||z <n}, By={z: |zl <~}

(3) there exists a summable function F(t), constants Fy, My, and a nonde-
crescent function x(a), lirrb x(a) =0, such that in the domain
a—r

lo(t,2") = o(t, ") < x(ll2" — 2" INF (), llg(t, )l < Mo,

ta
/F(t)dtSFo(tQ—tl) at all T <t1 <ty < oo.

ty

Then for any € > 0 and p < € < € on the interval [p, €] there exists a
nondecrescent continuous function () and one can find n(€), po, 1, €0 <&,

L[
T2+ [T (4.3.6)

€0

such that for all t € [to,to + T ||z(t)|| < € holds, if only this path begins in
the domain where the mean ©¢(to,z0) < 0 and ||zol| <.

Proof Let ¢ > 0 (¢ < H) be specified. Specify € > 0, € = const so that
€ < e. Repeating the reasoning from the proof of Theorem 4.3.3, introduce
a continuous and nondecrescent function s(¢) on the interval [p,e]. In view
of condition (1) of the theorem, S. = {x € Q: vo(t,x) = #(£)} lies in the
neighborhood Bs.

Since vy (t, x) is decrescent in the domain €, one can find 1 > 0 such that
B, lies inside the moving surface Sz. Like in the proof of Theorem 4.3.2, verify
that one can find sufficiently large [ and small pg such that at p < po the
solution x(t), leaving the point zg € (B, \ By) N EY(ty) at a point of time
to, on the interval ¢ € [tg,to + 2{] does not leave B, and at t = t; = tg + 21
vo(t1, 1) < vo(to, zo) — ldp holds, where 1 = z(t1) and vo(to, zo) < ().

Let ¢ be a root of the equation »(gg) = »(g) —du. Construct the surfaces
Seo = {7 € Q: vo(t,2) = (o)} and S. = {x € Q: vo(t,2) = x#(¢)}. By
the definition of the function »(¢) the surfaces S., and S. are closed and
Sey C Bey, S: C Be. Since the point z; is located inside the moving surface
Se,, an integral curve emanating from it may only leave B, after sequential
crossing of the surfaces S, and S..

Assume that the integral curve crossed the surface S, at a point of time
t =t > t1. Repeating the reasoning of the proof of Theorem 4.3.3, verify that
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the solution will not leave the domain ||z|| < € for all ¢ € [t2, 2 + T1], where

€
1 [ dx»(C)
T=- [
Y (©)
€0
Thus, on the whole interval [tg, to + T, where
1 [d
T=t1+T1 —tg =21+ — ﬂ,
pwtow(Q)
0

the solution z(¢) with the initial value zo € €& (o) N B, will not leave the
e-neighborhood of the point x = 0.
The theorem is proved.
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4.4 Methods of Application of Auxiliary Systems

The results of the previous section are based on the known general so-
lution of the shortened system (4.2.3), which essentially confines the area of
application of such approach in the study of stability or instability of motion.
We will show that instead of solutions of the system (4.2.3) it is possible to
use solutions of some limiting system, which may turn out to be simpler.

4.4.1 Development of limiting system method

Consider the systems (4.2.1) and (4.2.3) under the same assumptions with
regard to the right-hand part.
Let for some system

dr = fo%t,z), x(to) = o, (4.4.1)
dt

connected with the system (4.2.3), the general solution 2°(¢) = 2°(¢, to, z) €
Dy is known at (tg,xo) € intQ and t > to. The vector function fO(t,z) is
continuous and satisfies the Lipschitz condition with respect to x with the
constant L in the domain R4 x D;.

Instead of the mean Og(to,zp) we will use an integral calculated along
solutions of the system (4.4.1).

Denote

0 0
(¢, ) v (81}

T
441) T g (93;) fOt, @),
to+T

GO(T, to, o) = / (.20t to, o)) dt.

to

Theorem 4.4.1 Let for the system (4.2.1) the following conditions be
satisfied:

(1) there exists a positive definite decrescent function v(t,z) and

O(t, )| (4.2.3) < 0;

(2) for any number £ € (0, H) uniformly with respect to x € {z: |z| < &}
there exists a limit

tli)rgo ||f(t7£L') - fo(ta‘r)” = 0;
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(3) there exist a x(B) € K, summable functions M (t) and F(t) such that on
any finite interval [t1,ts], t1,t2 € Ry, the following inequalities hold:

lg(t, ) < M(t), lo(t, ") — o(t, 2")| < F(t)x([l2" — ")

and
to to
/M(t)dtho(tg—tl), /F(t)dtgf*_b(tg—tl)7
t1 t1

My, Fy = const;

(4) for any numbers a, 8, 0 < a < B < H, there exist positive quantities
', 8, 1 such that for the values t', ', t' € Ry, a < ||2'|] < B8, one of
the following conditions is satisfied:

(a) O(t',a")| 4 oq +pe(t'2") <O at p <y,
(b) GY(T,t',2") < —6T at T > 1.
Then the solution x = 0 of the system (4.2.1) is p-stable.

Proof Let € € (0,H) be satisfied. In view of condition (1) of Theorem
4.4.1, all points of the moving surface v(t,z) = a(e/2) satisfy the inequality
(4.2.11) for all t € R, . Under condition (4) for the numbers b~*(a(e/2)) and
€/2, there exist positive constants § and I. It can be shown that for

A =min [y ' (6/4F,)/2lexp(2IL), e/4l exp(2IL)]

there exists a point of time 7y such that at 7 > 79 and ¢ € [r,7 + 2] for
the solutions Z(¢, 7, z,) and 2°(¢, 7, 2,) of the systems (4.2.3) and (4.4.1) the
following inequality holds:

|Z(t, 7, 2;) — 2°(t, 7, 2,)|| < min [x"'(6/4F), £/2] (4.4.2)

at =, satisfying the condition v(7, z;) = a(e/2). Indeed, condition (2) implies
that for \ one can find a point 7y such that

||f(t,$) - fo(tax)” <A

at t > 79, ||z]| < e. From the equations (4.2.3) and (4.4.1) for 7 > 79 and
t € [1,7 + 2I] obtain

Hﬂtt%&-fﬁﬁwﬁﬂSﬁﬁ@f@ﬂxﬁ—f%tﬂtﬂﬂmdt
t T
+/mewﬁm»—ﬁwwwnmmﬁ

t
< [ Lip ) -7l di
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Using Lemma 4.2.1, obtain the estimate (4.4.2). From the equation (4.2.1),
taking into account condition (3) and the Lipschitz condition for f(¢,x), obtain

t t
[l (t, to, o) || < [lzoll +/||f(t7$(tvt07900))||dt+M/M(t) dt
to to

t
< Jlwoll + Mot — to) + / Lt to, o) | dt.

to

Now, applying Lemma 4.2.1, for any t; € [0,71] and ¢ € [tg, 71] (let 70 < 71 <
00) obtain the estimate

|2(t, to, zo)|| < [llzoll + uMoTo] exp(LT1). (4.4.3)
Choose

= b (a(e/2))/2Mory exp(LT1), n=b""(a(c/2))/2exp(LT).
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Then the estimate (4.4.3) implies the estimate
(¢, to, o)l < b7 (a(e/2))

at ||xol <, to € [0,71], t € [to, T1]. Therefore, to prove the theorem it suffices
to show that ||z(t,ty, z)|| < € at tj > 7 and ||z)|| < b~ (a(e/2)) at t > ¢;.
Consider the solution (¢, 1) and assume that it has left the domain ||z| <
b~!(a(e/2)) and at some point of time ¢t = 7 the condition v(7,z(7)) = a(e/2)
is satisfied. At a point z(7) the inequality (4.2.11) will hold and one of the
conditions (4a) or (4b) will be satisfied.

1. Let condition (4a) be satisfied at a point of time 7, that is, for the
numbers b~ !(a(e/2)) and /2 there exists p/ such that the full derivative of
the Lyapunov function in view of the system (4.2.1) at that point is nonpositive
at p < p', which means that the solution z(¢) at the point 7 cannot cross the
surface

(7, 2(7)) = ale/2).
2. Let condition (4b) be satisfied at the point 7, that is, for the numbers
b=!(a(e/2)) and £/2 there exist § and [ such that

GUT,r,x(1)) < =T (4.4.4)

at T' > [. Integrating the expression of full derivative of the Lyapunov function
in view of the system (4.2.1), for ¢ > 7 obtain

ot o(t, 7, 2(7))) < v(r, 2(7)) + p / ot 2(t, 7 (7)) dt. (4.4.5)

Represent the last integral in the form

/ p(tx(t)) dt = / [p(t, (1)) — (b, 7(1))] dt
T o t (4.4.6)
+ / (6, T(8) — plt, 2°(8))] dt + / o(t,2° (1)) dt

Here x(t) = z(t,7,2(7)), T(t) = z(t,7,2(7))), 2°(t) = 2°(¢,7,2(7)). On the
basis of Lemma 4.2.2 for the norm of difference of solutions z(t) and Z(t) at
t € [7,7 + 2] the following estimate is true:

lx(t) — Z(t)|| < uMol exp(2(L). (4.4.7)
Choose
B €
~ 4Mylexp(2IL) "
Then at p < pg from the inequality (4.4.7) obtain ||z(t) — Z(¢)|| < £/2 at all

2
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t € [r,7 + 2l]. In view of condition (1) of Theorem 4.4.1 and the inequality
|Z()]| < e/2 obtain ||z(t)|| < e at t € [r,7 + 2l]. Estimate the first integral in
the right-hand part of the expression (4.4.6). Choose

pz = X" (6/4Fp)/2Mol exp(2lL).

Using condition (3) and the inequality (4.4.7), for p < min(uz,ps3) and t €
[, T + 2I] obtain

/ (2 (t) — ot 7(1))| dt < / FOx(l2() -7 dt < 3(t—7)/4. (4.4.8)

From the inequality (4.4.2) it is clear that the solution z°(¢, 1) on the inter-
val [1, 7 4 2] will not leave the e-neighborhood and, respectively, the domain
Q; therefore, for the estimation of the second integral from the expression
(4.4.6) it is possible to use condition (2) of the theorem. Taking into account
the inequality (4.4.2), for ¢ € [r, 7 + 2I] obtain the estimate

t

¢
/lw(t@(t)) —p(t,2° (1)l dt < /F(t)x(llf(t) —a%()]) dt < ot —)/4.

(4.4.9)
The expression (4.4.6) and the inequalities (4.4.4), (4.4.8), and (4.4.9) at u <
min(pe, pg) and t € [T+ 1,7 + 21| imply the estimate

t

/ ot (1)) dt < 8(t — 7)/4.

T

Thus, the integral in the inequality (4.4.5) becomes negative at least from
the point ¢ = 7 + [, which means that the solution x(¢, ), having left the
surface v(r,2(7)) = a(g/2), due to the choice of 1 will remain in the domain
lz]| < e at t € [, 74 2] and at some point of time from the interval [r, 7 + 2I]
will return to the domain bounded by the surface v(r, z(7)) = a(e/2).

From the considered cases 1 and 2 and the choice of 7, it is clear that the
solution z(t, p) at to € Ry, |l@oll <, p < po = min(p1, p2, 13, 1') will not
leave the domain ||z|| < ¢ at all ¢ > 4.

The theorem is proved.

Let us use a simple example to illustrate Theorem 4.4.1.

FEzample 4.4.1 Study the equilibrium state x = 0 of the system

dl‘l

W+ 1 POl + e — 0,
dirs (4.4.10)
o = p(t)(z1 — x2) + pla(xy + z2) cost + (mg — ax?)].
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Here a = const > 1, p(t) is a continuous function, 0 < p(¢) < m = const,
li =0.
A p) =0

The derivative of the Lyapunov function

v = [af + (21— 22)%]/2
along solutions of the system (4.4.10) at p = 0 has the form
0 =—(1+p)(x1 —29)* <0.
The integral GO(T, ¢y, xo) calculated along the solutions

27 = 290 + (w10 — T20) exp[—(t — to)],
Ty = 290
of the limiting system @1 = —x1 + x2, @2 = 0, will satisfy condition (4b) of

Theorem 4.4.1 at to > 0 and zg € E = {I(): |I20| < 2|CL‘10|, |I10| < 2|CL‘20|},
since there exists a mean

1
lim ?GO(T, to, x0) = zao(1 — a),

T— o0

negative at a > 1 and at the values ty5 > 0 and zg € F.
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In the remaining part of the neighborhood of zero, in view of the nega-
tiveness of v(¢, ), condition (4a) will be satisfied. Thus, the stability of the
equilibrium state = 0 of the system (4.4.10) holds in the following sense:
for any ¢ there exists n(¢) > 0 and p(e) > 0 such that ||z(¢,t9, zo)|| < € at all
t > 19, as soon as ||zo] <n, to > 0.

Similarly, it is possible to show that the theorem of instability is correct.
We will give its statement without proof.

Theorem 4.4.2 Let for some 7 € Ry in the domain [T,00) X D:

(1) there exists a domain v > 0, in which the function v(t,z) is bounded,
and '
) > i 0 >0
O(t, @)|(4.2.3) > 0, Jim Op(t,z) > 0;

(2) in the domain v > 0, conditions (2) and (3) of Theorem 4.4.1 be satis-
fied;

(3) for an arbitrarily small number o > 0 there exist positive numbers p', v
and §, | such that for each value t', &', satisfying the inequality v(t', z) >
o’ one of the following conditions is satisfied:

(a) o(t',2")|(a.2.3) + o', ") >~y at p <y,
(b) GUT,¢',2') > 6T at T > 1.

Then the solution © = 0 of the system (4.2.1) is p-unstable.

Note that the derived Lyapunov function in view of the system (4.2.1)
may be alternating in the domain v > 0 in contrast to the limitations on the
function v in Chetaev’s instability theorem [1].

4.4.2 Stability on time-dependent sets

Let P be the set of all subsets of the set R™. The mapping S: R — P is a
set-valued function. The set of its values at ¢t € R is a time-varying set S(t).
Let N = {(t,z): t € R, x € N(t)}, N(t) be a time-varying neighborhood of
the point x = 0. If S(t) is substituted with N(t), then S is substituted with N.

Now consider the system of the form

X f(t) +gltw), alto) = 0. (44.11)
Along with the shortened system
Ccll_j = f(t,x), x(to) = =g
consider the limiting system
s, 126.0=0 (14.12)
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Here it is assumed that at all z € S(¢) there exists a limit

tli_r)%||f(t,x)—f0(6,m)||:07 0<p<T.

Remark 4.4.1 If B = 400 and the approach to the limit is uniform with
respect to x € {z: ||z|| < H}, then the limiting system (4.4.12) coincides with
the one considered in Section 4.4.1.

Assume that the nonperturbed motion = 0 of the system (4.4.12) is
nonasymptotically stable and for it there exists a function v(t,2) with the
respective properties.

Theorem 4.4.3 Let the vector function f° be continuous at (t,z) € N
and let N(t) be a continuous neighborhood of the point © = 0 at each t € R,
which may be time-invariant or time-variable and the following conditions are
satisfied:

(1) for the system (4.4.12) there exist a function v(t,z) and functions a, b
belonging to the K-class, such that at any (t,z) € S

(a) a(llzl]) < v(t z) < b(l|=]),
(b) dv/dt < 0

(2) at any p, 0 < p < H < 400, in the domain {z: p < |z < H} C
N(t) the function ¢(t,z) = (0v/0x)Tg(t,x) is defined and there exist a
function ¢ from the K-class and a continuous nonnegative function s(t)
at all t € J such that |p(t, z)| < c(||z|])»(t);

(3) there exist a function w from the K-class and a continuous nonnegative
function A(t) such that

|(00/02) (f = fOl S w([lzlDA(E)  at all (t,2) €.

Then for any eg > p there exists n(gg) such that any motion of the system
(4.4.11), which begins at t = to in the domain ||zo|| < n(eo), will not leave the
set Be ={z: ||z|| < {(t)} on the interval of existence of a positive solution of
the differential equation

ac _

w(C) c(¢)
a + (1)

MO o) Q)

((to) =e0 >0, (4.4.13)

such that ¢(t) < H.
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Proof Let g9 € (p, H). For the function () with the value ¢ € [go, H]
at t € T = [to,to + 7) (7 is a finite number or +oo0) consider a time-
varying set B, = {z: ||z|| < ((t)} and a moving surface S, = 0V,(t),
Ve(t) = {z: v(t,z) < a({(t))}. From the continuity of v(¢,z) it follows that
the surface S¢ is closed. According to condition (1a) obtain S¢ C B¢. Indeed,
for ||z|| = ¢(t) at all ¢t € J; C T we have v(t,z) > a(¢(t)), and in view of
the monotonicity of the function a(-) the equality v(¢,z) = a(¢) will hold at
the points x € B¢. Hence it follows that S; C B¢ and at any (i, (2 such that
€0 < (1 < (2 < H, the surface S¢, is embedded in S¢,. Therefore, at any
¢ € (g0, H) the solution z(t; to, o) may only leave the set B¢ after crossing
all surfaces S¢, when ( takes on values from the interval [gg, €].

Let 7 = b~ '(a(eg)). According to condition (1a) of Theorem 4.4.3, B, C
Seo U Ve, (t). Let the solution x(t;to, zo), beginning in the set B, at a point of
time ¢ = tg, cross the surface S¢, at a point of time ¢t* > #g. Let ¢ denote the
point of time when the solution x(t¢; o, o) reaches the surface S.. Consider
the behavior of the function v(t,z) along the interval of the path x(¢;to, o)
with its origin at the point (t¢,z¢) and the end at the point (t¢ydac, Zeydc),
located on the surface S¢yqc. From the expression of the full derivative of the
function v(¢, z) in view of the system (4.4.11) obtain

tetdc tetdc

v(teydes Terde) < v(te, x¢) + / |(9vo/0z) " (f — f°)|dt / oy, x)| dt.
te te
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Taking into account the definition of the surface S¢, under conditions (2) and
(3) of Theorem 4.4.3 obtain

a(¢ +d¢) — a(C) = d'(¢)d¢ < AMt)w(C)dt + s(t)c(C)dt.
Since a(-) is a strictly monotone increscent function, a’(¢) > 0 and

W d w0
@ = v T g

Keeping the same notation for the variables and passing on to the equation
(4.4.13) from the inequality (4.4.14), we see that at all values of ¢ for which
((t) is positive and satisfies the equation (4.4.13) the solution x(t;to, xo) will
remain in the time-varying set S¢ UV C Be.

Theorem 4.4.3 is proved.

Remark 4.4.2 If fO(t,x) = f(t, ), then the nonlinear equation (4.4.13)
takes the form

+ (1)

(4.4.14)

@K el
a ="
Hence obtain .
SO [
E/ ol / (t) dt. (4.4.15)

If in condition (2) of Theorem 4.4.3 we assume |o(t,x)| < pc(]|z|]), that is,
»#(t) = 1, then (4.4.15) implies the estimate T from Theorem 4.3.3.

Corollary 4.4.1 Let the following assumptions be taken into account in
conditions (1a), (2), and (3):

allz||™ < wv(t,x) < bllz||™,
lg(t, )| < sa(t)||]I"™,
I1f(t,2) = £OB8, @) | < Au(t) |||

Then the equation (4.4.13) takes the form

dC — T3 T2
=2 =AM + (1), (4.4.16)
o) = (2) ™ ol (1417)

where the functions A(¢) and s(t) are determined from the inequalities

‘(aU/ax)T(f B f0)| < arl)\(t)||:v||”+r3_17
lp(t, )| < arys(t)||z) T,

and the solution z(¢; to, xo) remains in the set B. at all values of ¢, for which
the Cauchy problem (4.4.16) and (4.4.17) has a positive solution ((;to, (o).
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The proof is made by direct substitution of the considered functions into
the equation (4.4.13) taking into account that a(¢) = a- (™.
Now consider some particular cases of the problem (4.4.16) and (4.4.17).

Case A. The right-hand parts of the limiting system (4.4.12) and the short-
ened system coincide. Here A(t) = 0 and the equation (4.4.16) takes the form

8
2 = () 4.4.18
=0, (1.4.15)
the value ((to) is determined by the expression (4.4.17). Hence at ro = 1
obtain
b\ 7t /
o0 = (1) lallexo [ #tyas),
to
and at ro # 1

t

o0 = |(2) "ol + 0 [ 40 dsf, i=1-72

to
The value of 7 in the estimate [tg, to + 7) is determined by the expression

T=sup{t € J: ((t) € (0,H)}. (4.4.19)

Remark 4.4.3 The result similar to the obtained one holds if in the system
(4.4.11) g(t,z) =0 or ro = r3.

Case B. The shortened system is linear, that is, f(¢,x) = A(t)z, where
A(t) is an (n x n)-matrix with its elements continuous and bounded on .J.
Here fO(t,x) = A%(t)z, r3 = 1, and the equation (4.4.16) takes the form

a _

= MO+ ()¢ (4.4.20)

By the substitution ( = nﬁ the equation (4.4.20) is reducible to a linear
equation and integrable by quadratures. Obtain

0 =] [(g)ﬂmonr o / () E(gs) ds};, (1.4.21)

to
where
¢
E(t) = exp [//\(s)ds}, g=1-—rs.
to

The value of 7 in the estimate of the interval on which ||z(t)|| < ((¢), that
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is, x(t; to, xo) € B, is estimated by the formula (4.4.19), taking into account
(4.4.21).

Remark 4.4.4 Since the shortened system is linear, the Lyapunov function
v(t,x) is chosen in the quadratic form and therefore ro = 2.

Example 4.4.2 Consider the system

dx
d—tl = a(é — 1)1’1 + wxa,

drz
dt

(4.4.22)

= —Wwr1 + pw cos? vt - xy,

where 1 is a small parameter, «, 8, w, v are positive constants, and ¢ > 0. For
the shortened system (let p = 0)

d
o a(é — 1)1’1 + wxa,

dt (4.4.23)
d$2
— = —wz
dt !
the full derivative of the Lyapunov function v = 2% + 2% is nonnegative;

therefore, Theorem 4.3.3 cannot be applied to the system (4.4.22).
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Taking into account that
g
49 — 1im oz(tl wl _ 0 w
0 —w 0

and the state £1 = 22 = 0 of the respective limiting system is stable (not
asymptotically), Theorem 4.4.3 is applicable to it.

Choosing the norm of vector z € R? in the form ||z|| = max{|z1|,|z2|},
for the constants obtain the values r1 = 2, ro =r3 =1,a =1, b = 2. The
functions »(t) and A(¢) have the form

#(t) = %uw(l +cos2t), At)= a(f - 1).

Applying Theorem 4.4.3 in Case A, obtain ||z(t)|| < ((¢) at all ¢ € [to,to + 7),
to > 0, where

C(t) = V2ol <;>aﬁ exp K; o — a) (t —to) + iuw(sin 9 — sin2to)}

and 7 is determined by the formula (4.4.19).

Remark 4.4.5 The interval of the stay of motion on a time-varying set is
determined by the inverse transformation of the function ((t).

4.5 Systems with Nonasymptotically Stable Subsystems
Consider a system of the form

drs
dt

= fs(t,xs) + pgs(t, 21, .-y xm), s=1,...,m, (4.5.1)

) m

where (21,...,20)T =2, 2, € R, 3 ngs=n, fs(t,0) = gs(t,0,...,0) = 0.
=1

s=
A peculiar property of the system (4.5.1) is that at g = 0 it falls into m
independent subsystems

dxs
;t = fs(t,zs), s=1,...,m. (4.5.2)
The vector functions fq(t,zs) and gs(t,z), s = 1,...,m, in the domain

Q satisfy the condition of the existence and uniqueness of the solution of the
Cauchy problem for the systems (4.5.1) and (4.5.2), in addition, fs(t,zs),
s =1,...,m, satisfy the Lipschitz condition with respect to x5, s =1,...,m,
with the constant L.
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Assume that the solution z; = 0 of the systems (4.5.2) is stable uniformly
with respect to ¢y (nonasymptotically) and the general solution is known
fs(t) = fs(t,to,l‘so), s=1,...,m, (to, l‘o) € int Q.

Assume that for each subsystem (4.5.2) a continuously differentiable Lya-
punov function v, (¢, xs) is known, which has the respective properties.

Let the vectors x5, s = 1,...,m, be numbered in an order convenient for
the study, let a5, s = 1,...,m, be some sequence for which a; = 1, and let
each subsequent term ag, k = 2,...,m, be equal either to the previous term

or to the index k. Denote

Ot @1,y T) = Ovs Tg (t, X1,y Tm)
s 9 9 sy bm axs s\t ) sdm )y
o v, \ " (4.5.3)
O (b Tasy ey Tm) = (8%) 9s(t,0,...,0,Za -\ Tm),
s=1,...,m.
Consider the sequence of means
to+T
1
s = lim = s (t, T, T
O (0,20 tne) = Jim o [ 00T O TN
to
s=1,...,m.

Let v¥(z5) denote nonpositive functions and let w*(z) denote nonnegative
functions defined and continuous in the domains Dy = {xs: |jzs|| < H},
s=1,2,....,m.

The mean $5° is less than zero in the set E(v: = 0), if for any numbers
ns and g4, 0 < ns < €5 < H, one can find positive quantities r4(ns, ;) and
ds(ns,€s) such that ©% (to, Ta.0,- .-, Tmo) < —0s(1s,€s) at Ns < ||xso] < €5,
plxso, E(vE = 0)) < rs(ns,es) for all to € Ry, a0 € Di, k = as,...,5 —
1,s+1,...,m.

Consider the following statement.

Theorem 4.5.1 Let the following conditions be satisfied for the system
(4.5.1):

(1) there exist positive definite decrescent functions vs(t,xs), s=1,...,m,
and the following inequalities hold:
ov ovs\ " X
ats (é)x:) fs(tyzs) <vi(zs) <0, s=1,...,m;

(2) there exist summable functions My(t) and Fs(t), constants Mgy, Flso,
and functions xs(8) € K such that on any finite interval the following
inequalities will hold:

m
G0 (sl — ()] < Fsa)xs(Zm —af )
k=1

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS STABILITY OF WEAKLY PERTURBED SYSTEMS

ta
/Fs(t)dt < Fuolts — 1),

t1

to
”gs(taxla cee 7xm) < Ms(t)a /Ms(t)dt < MSO(tQ - tl)v
t1

s=1,...,m;
(3) uniformly with respect to to, Te,0,---,Tmo there exist means
0% (to, a0y« -+, Tmo), S=1,...,m;
(4) the mean O%* is less than zero in the set E(vi =0), s=1,...,m.

Then the solution x = 0 of the system (4.5.1) is p-stable.

Proof Let e € (0, H) and tg € Ry be specified. We will show that for e it
is possible to find positive numbers () and po(e), not depending on tg, such
that any solution x4(t,to,x0), s =1,...,m, of the system (4.5.1) will satisfy
the condition

m
3 st to, z0)ll < &
s=1

for all t > tg at > ||zsol| < n(e) and p € (0, uo).
s=1

360°
thinking
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Choose €y, = ¢/m. In view of condition (1) of the theorem, for the function
U (t, Tm) there exist functions an,(||zm||) € K and by, (||zm||) € K such that

am([2ml]) < vm(t, 2m) < bn((lzm])- (4.5.5)

Let nm(em) = b, (am(em/2)). Then all points of the moving surface
U (t, ) = alen,/2) for all t € Ry will satisfy the inequality 7, < ||| <
€m /2. For the numbers 7, and &,,/2 according to condition (4), there exists
a value Opm(Mm,em/2).

Determine the number

X;zl(dm/4Fm0) c )

Em—1 = Inin < 2(am — 1)

For vy, —1(t, ©ym—1) there exist functions am,—1(||zm-1]|) and byp—1(||Tm—1]|)
from the K-class such that a relation similar to (4.5.5) will hold. Determine
the number

Nm—1(Em—1) = b;zl—l(am—l (em-1/2)).

Under condition (4) for n,,—1 and €,,—1/2 it is possible to determine the
quantity 8y, —1(Mm—1,m—1/2). Assume that

X1 (6m—1/4Fn_10) .
2am1—1) ")

Em—2 = min (

Continuing this process, for each function vs(t,z5), s =m —2,...,1, de-
termine the respective functions as(||zs||), bs(||zs||) and numbers

- (x;¢1<6s+1/4Fs+m) ) 1)
s 2(as+1 — 1) ) Cs+ )

ns(es) = bs_l(a8(55/2))7 d5(ns,€5/2).

Considering the components (¢, tg, xo) in increscent order of the index s,
s = 1,...,m, show that each of them satisfies the condition ||zs(t)| < e
at p < ps for all t > to at ||zrol| < mx, k = 1,...,m. The proofs of this
statement for each component are similar; therefore, we will give proof for

x5(t), assuming that for z1(t),...,xs_1(t) it has been proved already and
the components x;(t), i = s+ 1,...,m, at t > t; remain in the domain
D;,i=s41,...,m. Assume that the component x(t, o, o) left the domain

llzs]| < ns and at a point of time ¢ = ¢, crossed the surface vs(t, zs) = as(e,/2)
in a point ;. For this point, in view of condition (4), one of the following
inequalities will hold:

(a0, E(v = 0)) < r4(ns,€5/2),
@?s (t6a z/a507 R Igno) < _55(775’ 65/2)'

/ /
Here z}, = 2 (t), to, z0), k = s, ..., m.

Download free eBooks at bookboon.com



Consider some properties of the solutions (¢, to, o).
(a) Let the following conditions be satisfied at a point of time 7

Us(T,25(7)) = as(es/2),
p(as(7), E(vg = 0)) =2 rs(ns,€5/2).

Taking into account the equality g4(¢,0,...0) = 0, from condition (2) of the
theorem obtain
|2t (ty 21,y -y 2m)| < esF (1)

at (t,z) € Q, where ¢, is some constant. Choosing
p< py =v/2¢Fs0, ~v= inf [v](zs)],
zs€Ps
P, ={z: pxs, Ei =0)) >1s/2, ns <|as| <es},
for all ¢ > 7, at which the conditions

[zs(Ol = ns,  plas(t), E(vg =0)) >15/2
are satisfied, obtain
vs(t, 25 (1)) < vs(T,25(7)) + /v;"(:vs(t)) dt + ,u/cp?l(t, x1(t), ..., zm () dt
< vy(7, 24(7)) — %(t — 7).

(4.5.6)
The function vs(t, z(t) is not increscent and, respectively, x4 (¢, 7, z(7)) will
not leave the domain bounded by the surface vs(t,zs) = as(es/2), which
means that for it the inequality will not be violated at least as long as the
condition

pls(£), E(v" = 0)) > 7,/2
holds.
(b) Let the following conditions be satisfied at a point of time 7:

vs(T,25(7)) = as(e5/2),
p(zs(7), E(vgy = 0)) <rs(ns,€5/2).
In view of condition (4) of Theorem 4.5.1
O (T, 20 (T)y .y 2m(T)) < —05(ns,€5/2). (4.5.7)
Taking this into account, estimate the change of the function vs(t, zs). Rep-
resent the last integral in the inequality (4.5.6) in the form
t t

/ﬁ%mwwmeﬂ=ﬂﬁ%m@~me

T T

(4.5.8)

t

=05 (6 Ta (1), T (1))] dE £ /@?“(t, T, (1), ... zm(t)) dt,

T
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where Ty (t) = Ti (¢, 7, 21 (7)), k = s, ..., m. Estimate the last integral in the
expression (4.5.8), using the estimate of the mean ©%« (7, x4, (7),...,Zm (7))

in the inequality (4.5.7) and choosing the time interval l; so large that at
t > 7 4 5 the following condition will be satisfied:

t

/cp?s (b T (B)s - T (1)) dt < —Z 5ot — 7). (4.5.9)

T

Choose ! so small that on the interval 7,7 + 2I5] at p < pZ the following
inequalities will hold:

lzs(t) — Ts(t)]| < = Z |z — x| <X G /4Fso)

k=as

(4.5.10)

Using Lemma 4.2.2, determine p”:

" : Es -1 -
= s/4Fs) /4l 2L1, My ).
! mm( X /AR Al exp2LL) Y )

k=as

The first inequality of (4.5.10) means that xz,(t,u) at p < p will not leave
the domain ||zs|| < € at least on the time interval 2.
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Now estimate the second integral in the expression (4.5.8), using condition
(2) of the theorem, the second inequality of (4.5.10), and the choice of numbers
gi, i=1,...,as— 1. For t € [1,7 + 2ls] and pu < p”/ = min(p?, pa,—1) obtain

t

/ 62 (1, 2(8)) — 2 (£, T, (1)s . T (1))

ags—1 m

< [Rox( X ln0l+ 3 lnw-mol)a @51
- i=1 k=ao

< / Fu(t)xs (x2 (0 /4F0)) dt < 54(t — 7)/4.

T

Substituting the estimates (4.5.9) and (4.5.11) into (4.5.8), for ¢t € [T +
ls, 7+ 2ls] and p < p? obtain

t

/cpfjl(t,x(t))dt < —%(t — 7).

T

Thus, in the inequality (4.5.6) the last integral becomes negative at least
from the point of time ¢ = 7 + l,. Therefore, the component x(¢, 1), having
left the domain bounded by the surface vs(t,zs) = as(e5/2), in view of the
chosen i, will remain in the domain ||zs|| < €5 and at some point of time from
the interval (7,7 + 2l) will return into the domain bounded by the surface
vs(t, 1) = as(es/2).

Choose ps = min(p, 1?). Then at 1 < ps properties (a) and (b) imply that
for all ¢ > to the component x4(t, to, ) will remain in the domain ||z,]| < 5.

Thus, considering the components (¢, ) of the solution in increscent

order of the index s, s = 1,...,m, we see that each of them satisfies the
condition ||zs(t)|| < €s at ||zrol| < Mk, & = 1,...,m, and ¢ > ty. Choosing
to = min(ps), n(e) = min(ns), s = 1,...,m, and taking into account the
chosen numbers €4, s =1,...,m, obtain

m m

Z les(t, )|l <e atall t>ty assoon as, Z lzsoll < 7.
s=1

s=1

Here the quantities n(e) and puo(e) were chosen irrespective of ¢g.
Theorem 4.5.1 is proved.

If we consider the functions gs(t,x1,...,Zm), s =1,...,m, as weak con-
nections such that ¢,(¢,0,...,0) =0, s =1,...,m, then for the correctness of
Theorem 4.5.1 one should additionally require the correctness of the following
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inequalities on any finite interval [t1, t2]
12
QD?I (t,xl, ey ZZZm) S Ns(t), /Ns(t) dt S NS[)(tQ — tl)
t1

att € Ry, x5 € Dy \ E(vf =0), x € Dy, Ny is a constant, s =1,...,m,
k=1,....s—1,s+1,....,m.
Here are some applications of Theorem 4.5.1.

Ezxample 4.5.1 Consider the system

d:vl 2
P —x1 + x5 + preys, z1(to) = 10,
dz .
d_t2 = /l,(l’gyz —T1x2 +x12 + IL’? smt), mz(t()) = 20,
dy
d_tl = —y1 + Y2 + pas, y1(to) = Y10, (4.5.12)
dy
d_t2 = pl—23y22 — y1y2 + (Y1 + y2) cost], ya(to) = Y20,
dz 3 2 2
pri w(—z° 4+ y1y2 — a7z + 2° cost), z(to) = 2o,

which falls into three subsystems at p = 0:

dry g dxy
dt = CE1+IL’2, dt 70’
dy1 dy2
LR AR 4.5.13
dt A0 +yQa dt ) ( )
dz
— =0.
dt

Write the solution of the subsystems (4.5.13) in the form

T1(t) = @30 + (w10 — 239) exp[—(t —to)], Ta(t) = 20,
71(t) = y20 + (Y10 — y20) exp[—(t —t0)],  Fa(t) = y20,
E(t) = 20-

Start the investigation of the p-stability of the system (4.5.12) from the
second subsystem. Choose the Lyapunov function vi(y) = y2 + (y1 — v2)?,
whose derivative in view of the second subsystem of (4.5.13) satisfies the re-
lation 91(y) = —2(y1 — y2)? = vi(y) < 0. Calculating the mean for that
subsystem, obtain ©1(yo, z0,70) = —2y5 — 2y320T30za. Obviously, the mean
©1 is less than zero in the set E(vi = 0) = {y: y1 = y2} at any xgg and zo.

For the third subsystem take the Lyapunov function vo(z) = 22. Its deriva-
tive in view of the third subsystem of (4.5.13) is zero. Assuming y; = 0 and
y2 = 0, calculate the mean for that subsystem ©3(zg,z0) = —2(2§ + z823,)-
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The mean @2 is negative definite with respect to zo at any x99 and therefore
it satisfies condition (4) of Theorem 4.5.1.

Now for the first subsystem choose the function vs(z) = 23 + (v1 — 22)?,
whose full derivative satisfies the relation v3(x) = —2(z1 — 23)? = v3(x) < 0.
At y; =0, y2 =0, z =0 obtain O3(zg) = —2z3,.

The conditions of Theorem 4.5.1 are satisfied; therefore, the solution y = 0,
z =0, x =0 of the sytem (4.5.12) is p-stable.

Now we will need the following definition.

The mean % (tg, Xa,0,-- -, Lmo) > 0 in the set E(w* = 0) of the domain
vg > 0, if for any positive A, however small it may have been chosen, there exist
positive numbers d5(A) and r4(\) such that at tg € Ry and x40 € D, satisfying
the condition vs(tg, o) > A, p(xs0, E(w* = 0)) < r5(N), the inequality

@?S (th L0+ -y Tmo > 55(>\)

will hold at all zxp € Dy, k=as,...,s—1,s+1,...,m.
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Theorem 4.5.2 Let the following conditions be satisfied for the system
(4.5.1):

(1) for the s-th subsystem there exists a function vs(t,xs) which has a do-
main vs(t,xs) > 0 and is bounded therein;

(2) in the domain vs > 0

dvs (f%s

T
— > >0
at ax§> fs(tﬂ‘rs) fws 707

(3) there exist summable functions Ms(t), Fs(t), constants Mo, Fso, and a
function xs(B8) € K such that on any finite interval [t1,t2] the following
inequalities will hold:

lgs(t, 21, )| < Ma(t /M Yt < Motz — 1),

t1

O (vl — P (12 2l < B (ank—xk )
ta

/Fs(t) dt < Fso(ta —t1)

t1
at t,xs from the domain vs > 0 and z, € D,, n =1,...,8s—1, s+
1,...,m;
(4) wuniformly with respect to (to, xs0) from the domain vs > 0 and X0 € Dy,
n=as,...,s—1,s+1,...,m, there exists a mean O (to, a.0,- - -, Tmo;

(5) the mean O%* is above zero in the set E(vi = 0) of the domain vs > 0;

(6) for each i-th subsystem (i = 1,...,s—1) the conditions of Theorem 4.5.1
are satisfied.

Then the solution © = 0 of the system (4.5.1) is p-unstable.

Proof Let g5 € (0,H) and ty € R4 be specified. We will show that it is
possible to find an arbitrarily small 2o such that the solution z(¢, to, xg) of the

system (4.5.1) at some point of time will leave the domain ||z|| = Z lzk] < e.

k=
Choose the value of x4y as small as we please and such that at the spemﬁed to
that value would belong to the domain vg > 0. Then there will exist a number
a > 0 such that vs(tg, zs0) > a. Under condition (5) of the theorem, for o > 0
there exist positive numbers d,(«) and rq(c) such that one of the following
inequalities holds:

p(s0, E(vg = 0)) = rs(e)
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6?8 (th Ta 055 Tm0 > 63(04)-

Determine the number

€s—1 < min (

X;1(58/4E€ )
O )

For the positive definite function wvs_1(t,x5-1) there exist functions
as—1(||zs—1]|) and bs—1(||zs—1]]) from the class K such that the following in-
equality would hold:

as—l(”xs—lH) < Us—l(taxs—l) < bs—1(||xs—1||)~

Choose 151 = b;ll(as,l(ss,l/Q)). For the numbers 75_1 and €5_1/2, accord-
ing to condition (4), there exists a value ds_1(ns—1,€s—1/2). Thus, for each
subsystem sequentially determine

. (in1(5k+1/4Fk+10) )
€, = min y €k+1 |,
2(ag+1 — 1)

the functions ag(||zxl]) € K and bg(||zx|]) € K, the numbers 7, =
b;l(ak(sk/Z)) and o (Nk,e1/2), k=s—2,...,1.

In the proof of Theorem 4.5.1 it was shown that for |zl < 7;, xjo0 are
any arbitrarily small, ¢ = 1,...,s — 1, j = s+ 1,...,m, each component
x;(t,to, 10, - - - , Tmo) Will satisfy the condition ||x;|| < &; at p < py, at least
until any of the components z; (¢, to, zo), j = s, 5+1,...,m, leaves the domain
llz;l| < H, j =s,...,m. Show that for (¢, o, o) at some point of time the
condition ||zs|| = €5 will be satisfied.

Consider some properties of the solution x4 (¢, to, o).

(a) Let the following conditions be satisfied at a point of time 7
vs(T,25(7)) >, p(as(7), E(ws =0)) > rs(a).

Estimate the change of the function wvs(t, z4(t)). From condition (3) of the
theorem obtain |¢%1 (¢, x1,...,om)| < csFs(t) at (¢, ) € Q, where ¢, is some
constant. Choose

< pls =7vs/2¢sFs0, s = inf v(x),
rsEP,

Py ={zs: plas, E(wg =0)) 2 rs/2,
vs(t,zs) >, te€ Ry, |zs] <es}

Then for all ¢ > 7, at which the conditions
zs €U =A{as: plas, E(w; =0)) 2 rs/2, |lzs| <es}
are satisfied, obtain

vs(t, s () = wi(@s(t) + pepd (G wa(t), - xm () = %

(4.5.14)
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The function wvs(t,z5(t)) is not decrescent; therefore, the solution
xs(t, 7,2(7)) will not leave the domain v, > 0 and the inequality vs > « will
not be violated. Taking into account that in the domain v, > 0 at ||zs|| < €5
in view of condition (1) of the theorem |(vs(t,zs)| < w, where w is some con-
stant, show that z(¢, 1) cannot permanently remain in the domain U within
the time interval T = 2(w — a)/7s. Indeed, if we assume the contrary, then
from the inequality (4.5.14) at a point 7 we will obtain

vs(t, xs(t)) > vs(,2(7)) + %(t —-7) > w.
This inequality contradicts the condition of the boundedness of the function
vs(t, @)

The contradiction proves that there exists a point of time from the interval
7+ T, when one of the inequalities is violated:

r

plas, B(w] =0)) = 3,

: or |las|| < es.

The violation of the second inequality means the instability. Assume that the
first inequality is violated.
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(b) Let the following conditions be satisfied at a point of time 7:
vs(r,2(7)) >, p(zs(7), E(wi =0)) > ry().
Taking into account condition (5) of the theorem, obtain
O (T, (T), -, T (T)) > 0s(a). (4.5.15)

Estimate the change of the function vs(t, 25(¢)). For ¢ > 7 the following con-
dition is satisfied:

ults (1) 2 ra(r)) + [ 2 (n(0) de > va(7,2.(7)
[ 165 (talt) - 9 (., O @) (45.16)

+,u/<p25(tjas(t)7...jm(t))dt.

T

Estimate the last integral in (4.5.16), using the existence of the mean
@Yo (1,2a, (), ..., 2m (7)), the inequality (4.5.15), and choosing the time in-
terval [ so large that at ¢ > 7 4 [, the following inequality would hold:

t

/gos (6, Za, (£), o T () d > gas(t—T). (4.5.17)

T

Choose p! so that on the interval [7,7 + 2ls + T at u < p! the following
condition would be satisfied:

0s/4Fy
Z o — 7)) < X Xs ' (0s/4F30) / o) (4.5.18)
k=as
This can be done by using Lemma 4.2.2:

X;1(53/4F30)
220+ T)exp(2ls +T) Y. Mo

k=as

"o__
Mg =

From condition (3) of the theorem, taking into account the inequality (4.5.18)
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and the chosen numbers ¢;, t =1,...,as — 1, obtain

/ 6 (£, 2(8)) — 2 (6, Fer, (1) . T (1))

t as—1 m 4.5.

< [Rox( X o1+ 3 o -mol)a
p i=1 k=ag

S

at t € [r,7+2l5 + T).

Choose i’ so that the solution x4 (¢, 7, z(7)) on the interval [, 7+ 25+ T
would not leave the domain v, > 0. For this purpose, p! should satisfy the
inequality

¢

u;”[/w?s(t,fas(t),...,Em(t))dtJr%(tT) <

T

| R

at t € [,7 + 2ls + T]. Then at
o < ] = min(j, )

and t € |1+ 2l5, 7+ 215+ T] from the inequality (4.5.16), taking into account
(4.5.17) and (4.5.19), obtain

vs(t,x5(t)) > vs(r, 2(T)) + u%(t —7)> . (4.5.20)

Therefore, due to the chosen pu(, the solution x4(¢, 7, z(7)) will not leave
the domain vs; > 0 on the interval [r,7 4+ 2I; + T] and at any point ¢ €
[T+ 25,7 + 215 + T the estimate (4.5.20) holds.

Choose pp = min(p, p1y) and consider the sequence of points of time

ti:to+z’(2l5+T), 1=1,2,....

At an initial point of time to the conditions of one of the cases (a) or (b)
are satisfied. The function vs(t, z4(¢)) will increase on each interval [¢;,¢;41]
at least by the value pdsls at u € (0, po). Assuming that (¢, to, xg) on an
interval [to, t,], where n is the smallest integer satisfying the condition

n > (w—a)/udsls,
is in the domain ||z4|| < &5, for a point of time ¢,, obtain
Us(tn; xs(tn)) Z Us(tO; 3780) + nM5515

This inequality contradicts the condition of the boundedness of the function
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vs(t, zs) in the domain vs > 0. The contradiction means that there exists a
point of time t; € (to,to + n(2ls + T')) at which the condition ||z(¢1, p)|| >
lzs(t1, to, xo)|| = €5 is satisfied.

The theorem is proved.

If we consider gs(t,z1,...,Zm), $ = 1,...,m, as weak connections for
which g4(¢,0,...,0) # 0, then for the correctness of Theorem 4.5.2 additional
limitations on @9 (¢, x1, ..., T, ) are required, like it was done earlier.

4.6 Stability with Respect to a Part of Variables
Represent the system of equations (4.2.1) in the form

d

PR

di (4.6.1)
E = Z(t, Y, Z) + /LQ(ta Y, Z)a

where y € R™, 2 € RP, Y € C(Ry x R™ x RP,R™), G € C(Ry x R™ x
RP.R™), Z€ C(Ry xR™xRP,RP), Q€ C(RyxR™xRP RP) ie. f(t,x)=
(YT (t,y,2), 27 (ty, )T, = = (y",20)7, |yl = T9)'/2, ||zl = (272)/2,
and [|lz]| = (ly]|* + [[2]*)"/>.

& PUSINEsSs
w> sehool

- STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE umeumppomumms
THAT THE CAP(TAL OF SPAIN'OFFERS .
Av. Experience: 1 YEAR
. PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUI i e
PROFESSIONALGOALS andvase

- STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN"WITH THE BEYOND BORDERS Format: GHSSNE
EXPERIENCE Intakes: SEPT | FEB

Length: 10 MONTHS®

MASTER IN MANAGEMENT
PERSONALIZE YOUR PROCRAM B

IN CLASS

5 SPECIALIZATIONS #10 WORLDWIDE | 55 NATIONALITIES

www.ie.edu/master-management | mim.admissions@ieedu 1  €) € @ Follow us on IE MIM Experience

Download free eBooks at bookboon.com Click on the ad to read more

198



http://s.bookboon.com/MIMEnglish

The vector functions Y (¢,y, z) and G(¢,y, 2) in the domain
P={te Ry, yeD,={y: [yl <H}, 0<]z| <oc} (4.6.2)

satisfy the conditions for the existence and uniqueness of the solution of the
Cauchy problem for the system (4.6.1). In addition, Y (¢,y, z) in the domain
(4.6.2) satisfies the Lipschitz condition with respect to the variables y, z with
a constant L and Y (¢,0, z) = 0, that is, the system (4.6.1) has the equilibrium
y=0at u=0.

For the system (4.6.1) assume that any solution z(t, 1) of this system is
determined at all ¢ > 0 for which ||z(¢, p)|| < H, H = const > 0, that is, the
solution x(t, i) is z-continuable.

Together with the generating system

dy
i Y(t,y,2), y(to) = vo,
(4.6.3)
%:Z(t z), z(to) ==z
dt 5 Y, ) 0 0,

we will consider the auxiliary function v(t,z), x = (y*,2T)7T, defined in the
domain (4.6.2). Recall the following definitions.

Definition 4.6.1 The function v(t,y, z) is positive definite with respect
to y in the domain (4.6.2) if and only if there exists a function a from the
K-class, such that

a(llyl) <v(t,y,z) atall (ty,2) € P.

Definition 4.6.2 The function v(¢,y, z) is decrescent with respect to y
in the domain P, if and only if there exists a function b from the K-class such
that

v(t,y,z) <b(Jly|]|) atall (t,y,z)€ P.

Definition 4.6.3 The state of equilibrium x = 0 of the system (4.6.1) is
(y, u)-stable, if for any € > 0, to € R4 there exists n(e) > 0 and po(e) > 0, not
depending on tg, such that for an arbitrary solution (¢, tg, zo) of the system
(4.6.1) the condition ||y(t,to,x0)| < € is satisfied at all ¢ > to as soon as
l[oll <mand p < po.

The mean O (to, Yo, z0) is less than zero in the set E(v* = 0) with respect to
the variables y, if for any numbers n and €, 0 < < ¢ < H, there exist positive
numbers r(n,e) and d§(n,e) such that O(to,yo,20) < —J at n < ||yl < ¢,
p(yo, E(v* =0)) <r(n,e), 0 < z0] < oo. Here the continuous function v*(y)
is determined at y € D,,.

The following statement is correct.

Theorem 4.6.1 Let the following conditions be satisfied in the domain

(4.6.2):
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(1) there exists a y-positive definite function v(t,x), decrescent with respect
to y and such that

Dou(t, x)|a.6.3) <v*(y) <0;

(2) there exist summable functions M(t), F(t), N(t), constants My, Fy, and
Ny, and a function x(B) € K, such that the following inequalities hold:

to
@(t,x) S N(t), /N(t) dt S No(tg — tl)
t1
aty € Dy \ E(v* =0), 0<|z]| < o0, teJ, and

|Gt 2] < M(2), / M) dt < Mo(ts — 1),

lo(t, 2') = o(t, 2") < x(lla” = 2" [ F (1),

to

/F(t) dt < Fo(t2 — t1)

t1
in the domain (4.6.2) on any finite interval [t1,ta];
(3) wniformly with respect to to, xo there exists a mean ©(to,yo, 20);

(4) the mean O(to, Yo, 20) is less than zero in the set E(v* = 0) with respect
to variables y.

Then the solution © = 0 of the system (4.6.3) is (y, u)-stable.

Proof Let € € (0, H) and to € Ry be specified. Assume that the conditions
of Theorem 4.6.1 are satisfied. For the function v(t, ) in view of condition (1)
there exist functions @ € K and b € K such that in the domain (4.6.2) the
following inequality holds:

alllyll) < v(t, ) < b([lyl])- (4.6.4)

For all points of the moving surface v(t, z) = a(e/2) in view of the inequality
(4.6.4) obtain
b~ (a(e/2)) < |lyll < e/2 (4.6.5)

for all t € Ry. Let n(e) = b=*(a(¢/2)) and consider the solution z(¢, ¢y, zo) of
the system (4.6.1) at ||zo]| < n(g). Assume that it left the domain ||y|| < n(e)
and at some point of time ¢, crossed the surface v(t,z) = a(e/2) in a point ;.
For this point the inequality (4.6.5) is correct, and in view of condition (4) of
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the theorem there exists r(n,e/2) and §(n,c/2) such that one of the following
conditions is satisfied:

p(yo, E(v" = 0)) > r(n,6/2),  O(to, Yo, 20) < —0(n,€/2).

Consider the following properties of the solution z(t, tg, xo).

(a) Let the following conditions be satisfied at a point 7

(T x(r)) = ale/2),  py(r), E(v* =0)) = r(n,2/2).
Consider the behavior of the function wv(t,z) along the solution
x(t, T, x(1)) = (y(t, 7, 2(7)), 2(t, 7, 2(7))):
v(t, z(t)) < v(rz(r)) + /v*(y(t)) dt—|—u/<p(t,m(t)) dt. (4.6.6)
In this case, at p < pg = 7/2No (v = zirelglv*(y)L Q= {y: ply,E(v* =

0)) > r/2, n < |ly|| < e/2}) for all t > 7, for which the following conditions
are satisfied:

ly@I =n,  ply(t), E(v" = 0)) >r/2,

obtain

ot 2(t) < a(e)2) — %(t — 7). (4.6.7)
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The function v(t, (t)) is not increscent at p < pf,, which means that for the
solution z(¢,7,2(7)) in view of the inequality (4.6.5) the condition [|y(t)| <
£/2 will be satisfied, at least until the inequality

ply(t), E(v* = 0)) >r/2

is violated.
(b) Let the following conditions be satisfied at a point 7:

o(rx(r)) = ale/2),  ply(r), E(v* =0)) <r(n,e/2).

In this case, under condition (4) of the theorem, O(7,y(7), 2(7)) < —4. Ne-
glect the first integral in the inequality (4.6.6) and estimate the last one. For
this purpose, choose a time interval [ and the values pu; and pe so that at
i < pe on the interval [r,7 + 2I] for the solution z(¢,7,2(7)) the condition
ly(t, 7, z(7))|| < e will be satisfied. Choosing p < p§ = min(pq, pz2), for the
second integral from the inequality (4.6.6) at ¢ > 7 + [ obtain the estimate

t

/‘P(tvﬂﬂ(t)) dt < —g(t — 7).

T

This integral, at least from the point of time 7 + [, becomes negative, which
means that the solution x(t,7,z(7)) will return into the domain bounded by
the surface v(t, ) = a(g/2).

As is clear from properties (a) and (b), for the solution z(¢,%g, zo) of the
system (4.6.1) the condition |ly(t, %o, x0)|| < € will hold for all ¢ > t,, which
proves the theorem.

Obviously, for the study of stability with respect to a part of variables it
is also possible to use the perturbed Lyapunov function

v(t,x, 1) = vo(t, z) + u(t, z, ),

where the perturbation u at small values of p may be sufficiently small.

4.7 Applications
4.7.1 Analysis of two weakly connected oscillators

Consider the system of two weakly connected oscillators

T1 = X2, Xo= —wfz:l + uw%zlzgu cosv1t, (4.7.1)
T3 = T4, Tg4= —OJ%(Eg + ,uw%xlxgxg cos Vot
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The degenerate system corresponding to (4.7.1) is stable, which is determined
by the existence of the Lyapunov function

2,.2 2 2,.2 2
Vo = wWiT] + T5 + wir3 + Ty,

whose derivative in view of the degenerate system is identically zero. Hence it
follows that the properties of stability or instability of the system (4.7.1) are
determined by the sign of the mean ©¢(tg, zo). The mean ©¢(to,zo) for the
system (4.7.1) is determined by the expression

O (to, x0) = @él)(to, xo) + @(()2)(t0, xo),
where

, 1 .
O (to, z0) = Jim — / ) (¢, 7(t))dt,
olto,z0) = lim — ' (t,Z(t)) (472)
to
(p(i) (t, f(t)) = 2w?flfgfgf4 cos vt

and T;, i = 1,2,3,4, is a solution of the degenerate system corresponding to
(4.7.1) under the initial condition z;(0) = z?.
Denoting @ = 29(w129) 7!, B = 2§ (we2?) ™! and performing the necessary

transformations, obtain

to+T
) 1 1
©4(to, o) = QW1W2w; 2492,,92 lim T / {[4aB + (o —1)(B> — 1)]
T— o0
to
X [cos(y1 — vit) + cos(y1 + vit)] (4.7.3)

+ [ — (@ = 1)(5* - 1)
+2[8(e® ~ 1) - a(8* — 1)
+2[8(a® — 1)+ a(8* - 1)

where Y= 2(0)1 N WQ)(t — to), Yo = 2(0)1 + WQ) t— to).

The mean G)((f)(to, Zo) is not identically zero in an arbitrarily small neigh-
borhood of the point x = 0, except for the singular point, when v; = 2|w; —ws]
or v; = 2(wy + wa).

Consider the first case in more detail. Let v; = 2|w; — ws|, assuming
that w1 # we, so that v; # 0. Denoting 2(w; — w2)ty = 7, reduce the mean

@(l) (to, 170) to the form

[cos(y2 — vit) + cos(y2 + v4t)]
[sin(y1 — vit) + sin(y1 + vit)]
[

(

]

] )

] [sin(ye — vit) + sin(vye + v;t)] hdt,
(

, 1 1
©g(to, o) = §w1w2w23€(1)2$g2 cosy[a(ﬁ cosy —siny —1) +

+ B(siny + 1) + cos ] x
X [a(Bcosy —siny+ 1)+ B(siny — 1) 4 cos~].

The mean Og(to, o) is nonzero when 6(()1)(260, x0) # 0, or 6(()2)(1‘0, xg) # 0,
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or @(()1)(150, xo) # 0 and @éz)(to, xo) # 0 simultaneously. It is easy to see that
in all cases the mean ©(tg, zo) is alternating in an arbitrary indefinitely small
neighborhood of the stationary point.

Under the specific choice of v;, the system (4.7.1) satisfies the conditions
of Theorem 4.2.2 on the instability of the equilibrium. To the system (4.7.1)
Theorem 4.3.1 is applicable. Determine the quantities included into the state-
ment of the theorem. For simplicity of calculations we assume that the norm
of vector € R" is specified by the expression ||z| = mfmx{|azl|}

Then, since
o(t, x) = 21022324 (W3 COS V1T + W3 cOS at), (4.7.4)

for the values of z, contained in the ring domain p < ||z|| < &, where p > 0
and € > 0 (p < €) are arbitrary constants, t € I, one can assume that
po(e) = 26 (wi +w3), ¢o(8) = 28" (wf +w3).
Estimate the difference p(t,2’) — p(t,2"), 2’,2" € B, t € I:
lo(t, ') — @(t,2")| = |(2)ahaha, — xfxlxlx])2(w? cosvit + w3 cosvt)
< (| — @y)wpabal| + o7 (a5 — 2h)xha)
+ [l (2 — af)al| + |2 whay (2] — 2])]) - 20w cos it + w] cos vyt

< 4ed||a’ — 2”|| - 2|w? cos vyt + w3 cos vat|.
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Taking into account condition (4) of Theorem 4.3.1, obtain
x(a) =4’a,  Fy = 2(wi + wi). (4.7.5)

For (t,x) € J x B. ||g(t,z)|| = max{w?|x12374 cosirt|, w3|r1m223 COSVat|}
holds, hence it follows that My = &3 max{w?, w3}.

Specify a number £ > 0 and introduce a number € > 0 so that the condition
£ < ¢ would be satisfied. Consider the surface of the level of the Lyapunov
function vo(z) = wiz? + 23 + wiz? + 23 = we.

For this surface to lie inside the e-neighborhood of the origin of coordinates,
it is obviously sufficient to choose

ws = B2 min{1,w?, wi}. (4.7.6)
Similarly,
we = e2min{l,w?, wi}. (4.7.7)

Determine 7 as the radius of the n-neighborhood of the stationary point,
nested in the surface vo(z) = we. For the point & € B, obtain vo(z) <
732 + w? + w3) = E2 min{1,w?, w3}, whence

min{1, w? w3}

n==¢ .
\/2+w%+w§

Estimate the function s(t) in the relation

(4.7.8)

t

/ (6, F(1))dt = O(to, x0) + (1),

to

1
t—to

when v; do not satisfy the resonance conditions, and in the event when the
resonance conditions are satisfied.

In the first case @él)(to,zo) = 0. Hence, taking into account (4.7.3), it
follows that

t
1
|5 ()] = — ‘/2%-2:1:19329:3:1:4 cos v;tdt
0 J
1
< L W12 w?;z:(l)Qozgz(OzQ + 1)(ﬂ2 + 1)d;
t—to 4
1 w?
< gt 1+ wd)d,,
t*to 4(4)1(4)277 ( +W2) t
where
d; = L + L
¢ |2(W1 — wg) — Vi| |2(w1 — CL)Q) + l/i|
1 1

+ + .
|2(W1 —+ WQ) — I/i| 2(W1 —+ WQ) + V;
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If the value v; is resonance, then @f)l)(to, xo) # 0 and obtain a similar esti-
mate for s(t), but the expression for d; does not contain a summand whose
denominator is zero at the specified value of v;.
Thus, at ¢t € [tg + I,to + 2I] the condition |»(t)| < 6/4 will be satisfied,
when [ is determined by the inequality
7t (1+wi)(1 +wi)

> T T (2 2d,). 4.7.
25 w10 (wid1 + wida) (4.7.9)

Find p; by the formula
= (e —2) [ My - 21e*™N] (4.7.10)

where N = max{w?,w3}. Choose pa so small that the inequality x(uaMy -
21e?"M)Fy < §/4 would hold. From the last expression, taking into account
(4.7.5), obtain

0

~ 16e3Fy

Now determine po = min{p1, po}.
Applying Theorem 4.3.1 to the system (4.7.1), one can formulate the fol-
lowing statement.

fh2 [My - 21e*N]~1 (4.7.11)

Corollary 4.7.1 Let at a specified number € > 0 and some g, 0 < € < ¢,
the quantities @o(¢), @o(%), we, we, 1, I, po be determined by the expressions
(4.7.4)—(4.7.11). Then at ;1 < po the solution x(¢;tg, zo) of the system (4.7.1),
which began at a point zg € Eg (to) N By, will not leave the domain ||z|| < e
on the time interval ¢t € [to,to + T], where T = 2l + 1§[po(8)] ! + (we —
wz)[ppo(e)] 1 and the quantity § at the specified tg, 2o is determined by the
inequality 0 < § < —Oq(to, o).

Let in the system (4.7.1) w1 = 1, wa = 2, 11 = Vo = 2|w; — wo| = 2. Having
determined oo (), ©o (%), we, wz, 1, I, o from the expressions (4.7.4) — (4.7.11),
we arrive at the following statement.

Corollary 4.7.2 The solution of the system (4.7.1), satisfying the con-
dition zg € Eg (to) at the initial point, with ||z < L, at p < po will not

V14

leave the e-neighborhood of the point £ = 0 on an interval ¢t € [to,to + T,
where

216 1 1) e 8
T=2+"04_—— =min{ (2 - V2)e, — b
T 5ea T gpezy Mo TR {( V2% g5 } 1613
S
784 6
and the quantity 0 is determined from the above relations.

In the event when neither of the resonance conditions is satisfied in the
system (4.7.1), the mean Oq (o, o) is identically zero, and it is necessary to use
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the perturbed Lyapunov function v(t,z, 1) to solve the question of stability
of the system (4.7.1). Let

o(t,@, 1) = volt, @) + pon (¢, 2).

Differentiate the perturbed Lyapunov function in view of the equations of the
system (4.7.1) (here it is taken into account that a nonperturbed system is
neutrally stable)

dv ovy  Oun 90Uy
i M(E + %f(tﬁ) + @(tal’)) +p %g(t,x)-
Determine v1(t,z) as a solution of the linear equation in first-order partial
derivatives 5 9
V1 U1
- = = — . 4.7.12

Since the characteristics of the equation (4.7.12) are the integral curves of the
nonperturbed system (4.2.3), by integrating the equation (4.7.12) with the
initial conditions v1(0,x0) = 0 obtain the function vy (t,«) which is equal to
zero on the initial set ¢t = 0, z¢:
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For the system (4.7.1) the equation (4.7.12) takes the form

8’01 81)1 9 8U1 8U1 2 81)1
R To—— — [ _ — = —(t
or TP, TWitig -t aag - - wats g o(t, @),

whence
t

vi(t,x) = =2 /51@5354@1% COS 1T + w3 cos voT) drT.
0
The system (4.7.1) with the constructed perturbed Lyapunov function
v(t,x, u) = vo(x) + povy(t, x) satisfies the conditions of theorems from Sec-
tion 4.2 on the stability and instability of a stationary point. Therefore, the
stability of the system is determined by the sign of the mean ©1(to, ) =
@gl)(tm 1’0) —+ @(12) (t(), 13())7 where

to+T 5
() ~ im & 2001
©; ' (to, zo) ngoT / w16I2$1$3$4COSV1tdt7
to
to+T 5
1
®§2)(to7xo):Tli$Of / wga—:jzflfgfgcosygtdt.

to
The final form of the function and the means is not given here due to their
awkwardness.

Like in the treatment of the mean ©(to, o), in the case under consider-
ation it turns out that in an arbitrary indefinitely small neighborhood of the
point z = 0 the mean O1(tg,xo) is alternating. In the same manner as for
the mean Og (o, zo), obtain that the solution of the system (4.7.1) is unstable
at those values of v; and va, at which ©1(tg, zo) # 0, that is, the resonance
occurs. Here the resonance values will be those of wy, we, v1, and vs, for which
the following relations hold:

w1 = 2wz, 2w =ws2, V1 =wi, V2=uws, V1 =2ws,
ve = 2wy, V1 =wi+ 2w, v =]|wi—2wa|, va=2w+ws,
vo = [2w1 —wa|, vi+ve=2wi, vi+re=2w, [V —1r|=2w,
lv1 —vo| = 2w, 11 v =dwi, vi+re=4ws, [y —1a| = dw,
|I/1 — I/2| = 4LU2, vV — Vg = :t2w1 + 4WQ, VvV — Vg = :|:4W1 + 2(,;)27

e |2w1 i4w2|7 v1 +ve = |4W1i2(,<J2|.

4.7.2 System of n oscillators
In the space R?™ consider a system n of weakly connected oscillators
Tgi—1 = T2,
2n
4.7.13
:bgz-:fwfz:lJruwfcosyit H z;, 1=12,...,n. ( )
J=1,j#2i
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In a similar manner as was done for the system (4.7.1), determine that the
degenerate system corresponding to (4.7.13) is stable, since the derivative, in
view of the degenerate system of the Lyapunov function

n

vo = Z(%‘Ql"giq + z3;),

i=1

is identically zero. Therefore, the properties of stability or instability of the
system (4.7.13) are determined by the sign of the mean Og(to,z¢), which is
specified by the expression

n

o(to, o) Z oy (to, z0),

where
to+T 2n
22
@ (to, Io) B Tl H T cosv;t dt
b k=1
and T;, i1 = 1,2,...,2n, is a solution of the degenerate system corresponding

to (4.7.13) at the initial condition 7;(0) = z¥.
After necessary transformations, transform the last expression as follows:

2 n 2,.02 02
Oft.su) - oy [T Bt o2
0\ on—1 w

k=1 k
1 to+T h
x lim / kl_[lsin[ka(t—to)+¢k]cosuitdt
to =

0 0
WkLop 1Tk
02 02
—WiTHE_y + 25}
Let P denote an integer n-vector whose components p; take on the values
+1, Q= (wl,wg,.. )ER" (1/}1,...,1/}71)6}%" (P7Q>:p1w1+...+

Pnwn. Upon necessary transformations, for © )(to7 xo) obtain the expression

where tg vy = 2

02
(4) 02 Lok
Oy (to, o) = an 1 H <wkl’2k—1 + o ) X
to+T

legréof / Zsm (P, Q)(t — to) + (Py, ¥ £ v;t)] dt.

The limit in the right-hand part is not zero if and only if at least for one value
of k
2P, M| =vi, i=1,2,...,n. (4.7.14)
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Here Géi)(to, xg) takes the form

202
6()(130,900 22n T H <wkx2k 1+ jk> Zsm Py, U — 20t0)), (4.7.15)

where the summation is applied to those indices k' for which (4.7.14) holds.
It is obvious that 6(()2)(750, xo) determined in such manner is alternating in an
arbitrary indefinitely small neighborhood of the point x = 0.

It is easy to show that in view of the degenerate system, the following
relation holds:

d ¢y, —
ae)g)(lt,gu)zo.

Therefore, on the solutions of the degenerate system corresponding to (4.7.13),
the mean remains constant

O (t,Z(t: to, 20)) = O (to, m0).

Thus, the system (4.7.13) satisfies the conditions of Theorem 4.2.2, and at res-
onance values v; determined by the relation (4.7.14) the origin of coordinates
is an unstable equilibrium. In particular, at n = 1 the resonance value will be
v=2w;atn=2—v; = 2w +w), v; = 2lwy — ws|; at n = 3 we obtain
four resonance values v;: 2(wy + wa + w3), 2|wi + wa — w3|, 2|w1 — wa + ws|,
2| — w1 + wo + wsl.
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Let us use Theorem 4.3.1 to estimate the time interval on which the solu-
tion x(¢;to, zo) will not leave the e-neighborhood of the point z = 0. For this
purpose it is necessary to estimate (¢, z) and determine the values g, o, and
7 contained in the statement of the theorem. As it was done before, determine
the norm of vector € R™ by the expression ||z| = max;{|x;|}. Then for the
values of x contained in the ring area p < ||z|| < e, where p,e = const > 0,

obtain
2n n n
lp(t,z)| = 2‘ (Hxl> wa cosyit| < 22" wa
i=1 i=1 i=1

n
Thus, one can assume that g = 22" 3 w?.
i=1
To determine o(e) and n(e), consider the surface of the level of the Lya-
punov function

n

vo(z) =Y (Wia3,_, +a3;) = wo. (4.7.16)

=1

Obviously, the surface (4.7.16) will lie inside the e-neighborhood of the point
x = 0 if we assume that
wo = e?min{1, w?}. (4.7.17)

Determine () by the inequality o(e) < wog, assuming that
o(e) = (1= )w = (1 = M) min{l, w?}, 0< A< 1.
K
Determine the constant 7(e) as the radius of the n-neighborhood of the point
x = 0 lying inside the surface vo(z) = wo — 0. For the point = € B,, obtain

n

vo(z) = Z(w%%l LT3 <n Z w?+1) = A\%? mm{l w?},

i=1

whence
Amin{l, w?}
1

n(e) e —
n+ > w?
\/ i=1

Thus, we arrive at the following statement.

(4.7.18)

Corollary 4.7.3 Solutions of the system (4.7.13) which at the initial point
to satisfy the inequality ||zo|| < 1, where 7 is determined by the expression
(4.7.18), for all t € [to,to + T] will not leave the domain ||z|| < ¢, if T is
determined by the expression

n -1
T =(1—M)min{1, w?} (2u52”_2 Zw?) . (4.7.19)

i=1
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Since in the system (4.7.13) the mean is alternating in sign in an arbitrary
indefinitely small neighborhood of the origin of coordinates, we can apply to
it Theorem 4.3.2 on the stability on a finite interval for solutions beginning in
the domain Eg (to) = {0 € By: Oo(to,z0) < 0}. In the same manner as was
done for the system of two oscillators, obtain

n
M= ), (@) = 2o, Ry=2Y
1 .
n _
a=min{l, w;}, w.=¢e%? w:=7%% n= Ea(n + wa) ,
T .
n
N = mlax{l, wi2}7 900(6) = 2€2n szga @O(E) = 25271 szga

i=1
2n n 2 n
7 H 14 wj Z 2
12 S i . — wids

: - g 2N\ -1
MO:mln{E—& m}.(Moale )

(4.7.20)
where

1 1
d; = — + — .
§(|2<Pkﬂ9>_yi| |2<Pk7Q>+Vi|>

If the value of v; satisfies the resonance conditions (4.7.14), then the expression
for d; does not contain a summand whose denominator is equal to zero at the
specified value of v;.

Applying Theorem 4.3.2 to the system (4.7.13), one can formulate the
following statement.
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Corollary 4.7.4 Let at the specified number € > 0 and some €,0 < € < ¢,
the values of we, wz, I, 1o, ©o, and 7 be determined by the expressions (4.7.20).
Then at ;1 < po the solution x = x(¢; ¢, zo) of the system (4.7.13), emanating
from the point xg € Eg(t) such that |zo|| < 1, will not leave the domain
lz]| < € on the time interval ¢ € [to,to + T, where

n -1

-1 n
T=2+16 (252" Z wf) +a(e? — &%) <2u52" wa) ,
i=1

i=1

and the value § at the specified ¢y and x( is determined from the inequality
0<d< *@o(t(),l‘o).

Now revert to Corollary 4.7.3. Let T denote the point of time at which the
solution reaches the surface S(¢) = {z: |z|| = ¢}. Excluding A from (4.7.18)
and (4.7.19), for T* obtain the estimate

e2min{1,w?} —n? (n + > w?)
¢ i=1

n
2n 2
2ue E . w;
i=

T*>T = : (4.7.21)

vu---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers

"' N S

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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whence it follows that at a constant € with a decrease of the n-neighborhood
of the origin of coordinates the value of T" approaches the limit

min{1,w?}
7= —"——.
222 3" w?
i=1

If at a constant 7 € is unlimitedly increased, then at n # 1 T vanishes.

Thus, the expression (4.7.21) gives a substantially low value of T, since it
would be natural to expect that in the first case T will unboundedly increase,
and in the second case it would at least not decrease. This shortcoming is
eliminated by the application of Theorem 4.3.3, which more completely takes
into account the information on the change of perturbations ¢(¢,z) in the
e-neighborhood of the origin of coordinates.

Since for the system (4.7.13)

2n n
o(t,z) =2 H X Z w? cos vit,
i=1 =1

then
P(Q) =20 Wi (4.7.22)
i=1

For the function s((), in view of (4.7.17), obtain the expression
#(¢) = ¢ min{1,w7}. (4.7.23)

Determine the constant n(e) as the radius of the n-neighborhood of the point
2 = 0 lying inside the surface Sp. Assuming that g = e, 0 < A < 1, for n(e)
obtain the expression

1
2

n(e) = Ae miin{l,wi}<n+ ilw2> . (4.7.24)

Substituting (4.7.22) and (4.7.23) into (4.3.3) and integrating, we arrive
at the following statement.

Corollary 4.7.5 Solutions of the system (4.7.13), which at the initial
point of time ¢ satisfy the inequality ||zo|| < 1, where the value is determined
by the expression (4.7.24), for all t € [tg,to + T] will not leave the domain
lz|| < eif at n # 1 T is determined by the expression

m,in{la wzz} 1
T = d — ( - 1) (4.7.25)
w;

A\2n—2
2(n — 1pe2n=2 3"

i=1
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andatn =1
min{l,w?} = 1

T= In —
D

piw?
where 0 < A < 1.
Excluding A from (4.7.25), using (4.7.24), at n # 1 obtain

min{1, w2} ( min{1,w?" %) 1)
K3 K3
b

T = n n n—1 5271—2
2(n — Dy Y- w7 nz”‘z(n + X W?)
i=1 i=1

whence it follows that at a constant € at a decrease in the n-neighborhood of
the origin of coordinates the value T' — oo, and at an unlimited increase of €
and a constant 7 the value of T approaches the limit

min{1,w?}

TH = n n n—1"
2(n— D> 3w (n+ 3. w?)
i=1 i=1

Thus, Corollary 4.7.5 gives a much better estimate of T" than Corollary 4.7.3.

Since in the system (4.7.13) the mean Og(to, o) is alternating in an ar-
bitrarily small neighborhood of the origin of coordinates, we can apply to
it Theorem 4.3.4 on the stability on a finite interval for solutions beginning
in the domain Eg(to N B,,). Here the values n(€), uo, [, and the functions
¥(¢) and »(¢) contained in the statement of the theorem are determined by
the expressions (4.7.20), (4.7.22), and (4.7.23), respectively. Find ¢ from the

relation .
1op 2
=(z22- —2 ) . 4.7.2
& G nmmﬁﬁ (4.7.26)

Applying Theorem 4.3.4, obtain the following statement.

Corollary 4.7.6 Let at the specified € > 0 and some g, 0 < € < ¢, the
values 7(g), o, [ be determined by the expressions (4.7.20), and the functions
¥(C), »#(¢), and gg by the expressions (4.7.22), (4.7.23), and (4.7.26), respec-
tively. Then at p < po the solution = x(t;tg,zg) of the system (4.7.13),
emanating from the point zg € Eg(to) such that ||zo| < n, will not leave the
domain ||z|| < e on the time interval t € [to,to + T, where

min{1,w?}
T =21+ : ( : : )

2(n — ) 22;1 wiz 2n—2 ~ _2n-2

€o
and the value of § at specified tg, x¢ is determined from the inequality 0 <
o< —@o(to,xo).

In conclusion we note that Theorem 4.3.3, like the theorem of the averaging
method, gives the estimate of closeness of solutions on a time interval of the
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order 1/u. On the other hand, this theorem is close to theorems on stability
on a finite interval, which may be obtained on the basis of the comparison
principle. An advantage of Theorem 4.3.3 is the simplicity of definition of the
functions ¥(¢) and ».

4.8 Comments and References

The application of the averaging technique in the investigation of real-
world processes dates back to the works of Euler [1], Lagrange [1], Poincaré [2],
and other founders of the mathematical science. In the study of stability of so-
lutions of nonautonomous systems, the averaging technique is applied in many
works (see, e.g., Bogolyubov and Mitropolsky [1], Starzhinsky [1], Roso [1],
Martynyuk [4], Sanders and Verhulst [1], and others).

This chapter contains some results of the analysis of stability of nonlinear
systems with a small parameter on the basis of the combination of the ideas
of the method of Lyapunov functions and the averaging principle of nonlinear
mechanics).
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4.2. This section is based on the results of the articles of Martynyuk and
Kosolapov [1] and Kosolapov [3].

4.3. Here the results of the article of Chernetskaya [2] were used. The cited
results adjoin the investigation of Khapaev [1] (Theorem 4.3.1) and the results
obtained by other authors using a similar technique of analysis (see Anashkin
[1, 2]).

4.4. Here some results obtained by Karimzhanov [1], Karimzhanov and
Kosolapov [1], Martynyuk and Karimzhanov [1, 2], and Martynyuk and Cher-
netskaya [1] are used.

4.5. In the works of Martynyuk [1-3], it was for the first time shown
that a method of estimating the stability of motion of large-scale systems
could be applied, which used special means of the derivative of an auxiliary
function along solutions of independent subsystems. This approach was devel-
oped in the works of Kosolapov [1, 2, 4] and others (see, e.g., Karimzhanov
and Kosolapov [1] and others). In this section, the articles of Martynyuk and
Kosolapov [1, 2] were used.

4.6. This section is based on the results obtained by Kosolapov (see [1, 3]).

4.7. This section is based on the results obtained by Chernetskaya (see
1, 2]).
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Chapter 5

Stability of Systems in Banach Spaces

5.1 Introductory Remarks

In this chapter the results of the analysis of p-stability and boundedness
of solutions of equations in Banach spaces are given. Those equations describe
the class of hybrid systems with weakly interacting subsystems.

Section 5.2 contains some results from the theory of semigroups, which are
required for further treatment.

In Section 5.3, the problem of stability of systems in Banach spaces with
weakly interacting subsystems is formulated.

Section 5.4 contains the description of the general method of solution of
the posed problem. The application of the matrix-valued Lyapunov function is
discussed and the main theorems of that method are formulated for equations
in a Banach space.

In Section 5.5, the vector Lyapunov function is applied and the results of
the analysis of stability of a system in Banach spaces are given.

In Section 5.6, a matrix-valued function is applied to the analysis of u-
stability of a two-component hybrid system. The case of nonasymptotic sta-
bility of isolated subsystems is considered.

The concluding section contains bibliographic data and some remarks on
further investigation in this line.

5.2 Preliminary Results

Let X or Z denote a Banach space, and let a linear operator A be defined
in the domain D(A) C X with its rank in Z, that is, A: D(A) — Z. Assume
that D(A) is a dense linear subspace X. The operator A is closed if its graph
Gr(A) = {(z,Ax) € X x Z: x € D(A)} is a closed subset in the product
X x Z. For the specified linear mapping A: D(A) — Z, D(A) C X, its norm
is determined by the expression

[A]l = sup{|[Az|: ||lz[| = 1},
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and p(A) is a resolvent set of the operator A.
Assume that some physical process is described by the linear differential
equation

dz
o = Ax. (5.2.1)
x(0) =9 € D(A) (5.2.2)

at all ¢t € Ry. The abstract Cauchy problem (5.2.1) and (5.2.2) is defined
correctly if p(A) # @ and for any zo € D(A) there exists a unique solution
x: [0,00) = D(A) in the space C'*([0, 00), X).

The family (Q(%))t>0 of bounded linear operators acting in a Banach
space X is a strictly continuous semigroup of bounded linear operators (Cp-
semigroup) if the following conditions are satisfied:

(a) Q(0) =1, I is an identical operator on X;

(b) Q)Q(s) =Q(t+s) at all t,s > 0;

(c) ltiﬁ)l |IQ(t)r —x|| =0 at all z € X.

The infinitisemal generator of the semigroup (Q()):>0 is a linear operator
A with the domain of definition

D(A) = {x eX: ltlg)l %(Q(t)x —x) exists}

in the form

Az = ltlﬁ)l %(Q(t)x —z), x€DA).

Along with the problem (5.2.1) and (5.2.2) consider the nonlinear abstract
Cauchy problem

dx
e A(z(t)), (5.2.3)
x(0) = 29 € D(A), (5.2.4)

where A: D(A) — X is a nonlinear mapping. Assume that the solution z(t)
of this problem is determined correctly and exists on Ry = [0, 00).

Let C be a subset of the Banach space X. The family (Q(¢)):>0 of oper-
ators mapping C into C is a nonlinear subgroup on C if the mapping Q(t)x
is continuous with respect to (t,z) on the product Ry x C, Q(0)z = x and
Q(t+ s)r = Q(t) x Q(s)z for any fixed z € C at (t,s) € Ry.

A nonlinear semigroup Q(¢) is quasicontracting if there exists a number
w € R such that ||Q(t)x — Q(t)y| < e¥t||lz —y|| at all t € Ry and all z,y € C.
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5.3 Statement of the Problem

Assume that for the equation (5.2.3) a linear (or nonlinear) semigroup Q(%)
is defined on a subspace C € X. Let the point 0 € intC and Q(¢) permit the
trivial solution Q(¢t)x =0 at all ¢ € Ry and x = 0.

Definition 5.3.1 The trivial solution Q(¢)x = 0 of the equation (5.2.3)
is stable if for any € > 0 there exists 6 = d(g) > 0 such that |Q(¢)z| < € at
all t € R4, as soon as ||z|| < ¢ at € C.

Definitions of other types of stability of the trivial solution Q(t)x = 0 of
the equation (5.2.3) are introduced in the same way as it was done for the
finite-dimensional case in view of Definition 5.3.1.

Now consider the nonlinear equations

dx i
dt

= fi(z;), i=1,2,...,m, (5.3.1)

and assume that the corresponding abstract Cauchy problem is correctly de-
fined. Let the semigroup Q;(t) be defined on C; C Z; and the point 0 € int C;
at any ¢« = 1,2,...,m. The domain D(f;) is assumed to be dense in C; and
the functions f; are generators of the semigroups Q;(t).

Using the operators g;(x,u), i = 1,2,...,m (u € M = (0,1] is a small
positive parameter) defined on D(g;) x M C X and having the rank in Z;,
combine the equations (5.3.1) into the system

dx i
dt

In particular, the operators g;(x, ;) may have the form
(A) gi(z,p) = > p*Gis(x1,.. . ), 1=1,2,...,m,
s=1

N-1

B) gi(z,u) = >, wGis(z1,...,xm), 1=1,2,...,m,
s=1

(©C) gi(z,n) = uGi(z1,...,2m), 1=1,2,...,m.

The operators G5 are assumed to be defined on D(G;5) C X (on D(G;) C X)
and having the rank in Z;. Here z; € Z; and the hypervector 2T = (1, Tm)
is a point in the product of spaces
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m

with the norm ||z|| = > ||#i||;. The system of equations (5.3.2) is equivalent
=1

to the equation

dz A
2(0) = g € D(f + g(z, 1)),
where f1(z) = (fi(21),- -, fn(@m)), 9" (2, 10) = (g1 (2, 1), - - s g (@, ).

The system (5.3.2) is a hybrid system with weakly interacting subsystems
(5.3.1). Note that

D(f + g(z,p)) = D(f) N D(g(x, p)) =
=D(f) N D(g1(1)) N D(g2(1)) N ... N D(gm(12))-

In addition, it is assumed that the equation (5.3.3) is correctly defined, the
vector function f(z)+ g(z, p) generates the semigroup Q(t), and the domain

Do =D(f(x) + g(z,n)) N D(fs) ND(f(x) + g(x, p))s is dense in X.
Our objective is to find the method for the analysis of p-stability of the zero
solution of the system (5.3.2) on the basis of the generalized direct Lyapunov

method.
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5.4 Generalized Direct Lyapunov Method
Along with the system (5.3.2) consider the two-index system of functions
U(z) = [uj(z)], 4,j=12,...,s, s<m, (5.4.1)

with the elements w;;: Z; — Ry and w;;: Z; x Z; — R at all ¢ # j. Let
0 € R%, 0; > 0, and the function

v(z,0) = 0TU(x)0 (5.4.2)
satisfy the conditions:

(1) there exists a neighborhood W € X of the point 0 € intC, such that
v: W —= Ry,

(2) the function v(x, #) is continuous with respect to x € W and v(z, 0) = 0,
if and only if z = 0;

(3) there exists a limit

lim sup 2(@M:0) — v(z.0)

t—0+ t

= Du(z(t),0)

along the path z(t) = Q(t)xo of the system (5.3.3).

The function (5.4.2) will be called the Lyapunov function for the system
(5.3.2) in Banach space, if it satisfies conditions (1) —(3) and solves the prob-
lem of stability (instability) of the zero solution Q(¢)x = 0 of the system
(5.3.2).

Note that the elements u;;(x), i = 1,2, ..., s, of the matrix function (5.4.1)
are constructed on the basis of the equations (5.3.1) or their linear approxima-
tion, and the elements w;;(x;, ;) at (i # j) € [1, s] are constructed in view of
the connection operators g;(x, 1) or on the basis of consideration of the pairs
of subsystems

at fz(xz)a
d .
L

at (i # j) € [1, s]. Generally, this approach simplifies the problem of construc-
tion of an appropriate Lyapunov function (functional) for the system (5.3.2)
in Banach space.

Let us cite the main theorems of the generalized direct Lyapunov method
for the system (5.3.2).

Download free eBooks at bookboon.com



Theorem 5.4.1 If at some natural s < m the function v(z,0), 6 € R,
is a Lyapunov function and there exists a comparison function @1 belonging
to K-class, such that v(z,0) > p1(||z]]) in the neighborhood W of the point
0 € intC, and if Dv(x,0)|5.33) <0 at allz € W and p < p* € M, then the
trivial solution Q(t)x =0 of the system (5.3.2) is p-stable.

Theorem 5.4.2 If at some natural s < m for the function v(x,0), 0 €
RS, there ewist three comparison functions @1, 2,03 of class K, such that
e1(llzl) < v(z,8) < wa(||z]|) in the neighborhood W of the point 0 € intC,
and Dv(x,0)|5.3.3) < —w3(||z]]) at all v € W and p < p* € M, then the
trivial solution Q(t)x = 0 of the system (5.3.2) is uniformly asymptotically
w-stable.

Theorem 5.4.3 If in the conditions of Theorem 5.4.2 W = C = X
and the comparison function @y belongs to K R-class, then the trivial solution
Q(t)x = 0 of the system (5.3.2) is globally uniformly asymptotically p-stable.

Theorem 5.4.4 If in the conditions of Theorem 5.4.2 the comparison
functions po, p3 belong to K-class and have the same order of growth, there
exists a positive constant A1 and an integer p such that

Adllz]]” < vz, 0) < @2(ll2])),

then the trivial solution Q(t)x = 0 of the system (5.3.2) is exponentially -
stable.

Theorem 5.4.5 If in the conditions of Theorem 5.4.2 W =C =X and
in the conditions of Theorem 5.4.4 the comparison functions s, s belong to
K R-class and have the same order of growth, then the trivial solution Q(t)x =
0 of the system (5.3.2) is globally exponentially u-stable.

Theorem 5.4.6 Let at some natural s < m for the function v(zx,0),
0 € RS, there exist a comparison function ¢ from K-class, such that
—Dv(x,0)|5.3.3) > @(||z]|]) in the neighborhood W C C of the point 0 € int C
at any pu € M. If in any neighborhood N C C of the point 0 € int C there exists
at least a single point xo € N at which v(xg,0) < 0, then the trivial solution
Q(t)x =0 of the system (5.3.2) is p-unstable.

Theorem 5.4.7 Let C =X and S = {x € X: ||z|| > r}, where r may be
sufficiently large. If at some natural s < m for the function v(z,0): S — Ry,
0 € R, there exist two comparison functions 1,2 from K R-class, such that

pr(llz]]) < vz, 0) < @2(l|2]))

at all x € S, and if Dv(x,0)|5.3.3 <0 at allx € S and p < p* € M, then
the path Q(t)zo of the system (5.3.2) is uniformly p-bounded.

Theorem 5.4.8 Let the conditions of Theorem 5.4.7 be satisfied and let
there exist a comparison function 3 from K-class, such that Dv(x, 0)|5.3.3) <
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—3(||z]|) at all x € S and p < p* € M. Then the path Q(t)xo of the system
(5.8.2) is uniformly ultimately p-bounded.

The constructive application of Theorems 5.4.1-5.4.8 is connected with
the solution of the problem of construction of the function (5.4.2) with prop-
erties (1) and (2) and the calculation of its full derivative Duv(x, ) along the
path z(t) = Q(t)zo of the system (5.3.3). In a general case, the second prob-
lem is quite intricate. In some cases its solution may be simplified. Precisely,
if the semigroup Q(¢) is a Cy-semigroup or a quasicontracting semigroup on
a Hilbert space or a uniformly convex Banach space, then the infinitesimal
generator A of the semigroup Q(t) exists on a set D(A;) which is dense in C.
In such a case, the calculation of Dv(x,0)|(5.3.3) is simplified.

The pair (Q(t),v) is permissible for the problem (5.2.2), if v is a Lyapunov
function, the infinitesimal generator A, of the semigroup Q(t) is defined on
the set Dy C D(As) dense in C, and, in addition, there exists a function Vv
defined on (W N Dy) x X, with its values in R, such that

(a) v(y) —v(z) < Vo(z,y —z) +o(ly —z|) atall =z,y€Dy and

(b) at each fixed x the operator Vu(x, 6, h) is bounded and linear with re-
spect to h € X.
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Theorem 5.4.9 (see Michel and Miller [1, pp. 143-144]) Let for the system
(5.8.3) there exist a permissible pair (Q(t),v) and a comparison function
belonging to K -class, such that Vu(z,0, Asz) < —o(||z||]) at all z € Do NW.
Then Dv(x,0)|5.3.3) < —w(||z]]) at all z € W.

Proof Let x € Dy N W. Then, according to the definition of the function
Du(zx,8), obtain

v(p(t)z,0) — v(x,0)

Dv(z,0) = limsup

t—0+ t

< lim sup Vo(z,Q(t)x — x, 0) + o(||Q(t)x — z||)
t—0+t t

= limsup Vv (3:, (Q(t)x — x)/t, 9)
t—0+

= Vo(z, Asr,0) < —p(||z]]).

Now assume that « € Dy N W. Choose a sequence {x,} in Dy so that
Ty, — T at n — +o00. Since any element x, belongs to Dy, at all t € R

t

0(Q(t)n, 0) — 2(n, 0) < — / (11Q()zall) ds.

0

The continuity of all functions contained in the above inequality implies that

v(Q(t)z,0) — x(x,0) < —/w(llQ(S)xll)dS-
0

Hence, obtain

t—0+ t t—0t

timsup LA =D < g (= 2 [ (@l ds = —o(lo]).
0

Thus, at all x € W obtain the estimate Dv(z,0) < < —¢(||z]]).
Theorem 5.4.9 is proved.

Note that along with the function (5.4.2) in some cases it makes sense to
apply the vector function

V(x,B,0) = BU(x)f, 6¢€R:, (5.4.3)

where B is an (s x s)-constant matrix. The vector function V(z, B,#) has
the scalar functions v;(x, B,0), i = 1,2,...,s, as its components. If in the
expression (5.4.1) u;;(-) = 0 at all (¢ # j) € [1,s], then U(x) is a vector
function, that is, U(x) = diag [u11(z), ..., uss(z))].
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5.5 p-Stability of Motion of Weakly Connected Systems

In this section we will consider the system (5.3.2) with the subsystems
(5.3.1). The dynamic properties of the zero solution Q;(t)x; = 0 of the
subsystem (5.3.1) will be characterized as follows.

Let for each subsystem from the collection (5.3.1) there exist a semigroup
Q:(t) and a scalar function v;(x;) such that the pair (Q;(t),v;) is permissible.

Assumption 5.5.1 An isolated subsystem from the collection (5.3.1) per-
mits the property A, if for the pair (Q;(t), v;) there exist functions ¥;1, V2, ;3
from K-class and constants A; > 0 and 3; such that:

(1) Ya(l|lzil) <wvi(z;) < ¥ia(||zi]|) at all x; € Z;, such that ||z;|| < A;, and
(2) Vvi(xi,sfi(xi)) < Bzsz(szH) at all z; € D(sfi) such that ||$z|| < A;.
Here °f; is an infinitesimal generator of the semigroup Q;(t).

Assumption 5.5.2 An isolated subsystem from the collection (5.3.1)
permits the property B, if it has the property A at A; = 400 and comparison
functions ;1, Yo from K R-class.

Assumption 5.5.3 The operator of connection g;(x, 1) between the sub-
systems (5.3.1) satisfies the property C, if at the specified permissible pair
(Qi(t),v;) there exist comparison functions ;3 from K-class and constants
bij (1), 1,7 =1,2,...,m, such that

Vi, gi(2, 10) < 02 (laall) S b ()32l ) (5.5.1)
Jj=1

at all 2% = (z1,...,2m) € D(f + g(z, ) and ||z;]| < Aiy i =1,2,...,m

For the class of systems in Banach space with the subsystems (5.3.1) and
operators of connection between subsystems g;(z, i), satisfying the properties
A and C, respectively, the following statement is correct.

Theorem 5.5.1 Assume that for each subsystem of the system (5.5.2) in
Banach space there exists a semigroup Q;(t) and a function v;(x;), composing
the permissible pair (Q;(t),v;), and

(1) the isolated subsystems from the collection (5.3.1) permit the property
A.

)

(2) the operators of connection g;(x, n) between the subsystems (5.3.1) per-
mit the property C,
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(3) there exist constants 8; > 0,1 =1,2,...,m, and a value of the parameter
w* € M such that the matriz A(p) = [a;; ()] with the elements

as; (1) = 0;(Bi + bii()) at i=j,
K L (0ibiy (1) + 05bji (1)) at i j

is negative definite at p < p*.

Then the trivial solution of the system (5.3.2) is uniformly asymptotically
w-stable.

Proof Over the set I1 = {27 = (z1,...,2,): ||zl < Ajati=1,2,...,m}
consider the function

v(z,0) = U*(2)0, 60€RT, (5.5.2)

where U*(x) = diag[u11(z1),- ., Umm(2m)]. According to the conditions of
the theorem, the functions w;;(x;) = v;(x;) together with the semigroup Q;(t)
form a permisible pair for the i-th subsystem from the collection (5.3.1). It is
obvious that v(z,0) is a continuous function and v(0,6) = 0. Since v;(x;, 0)
satisfies condition (1), then

YO (llail) < v(w,8) < idhia(||il))

=1 i=1

at all z € II.

(]
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For the functions v;1, ¥;2 from K-class one can find comparison functions
11,192 belonging to the K-class, such that

Yi(llz]l) < v(z, 0) < Pa(||2]]) (5.5.3)
at all x € II, where

(lzl) < Y Ot ()
i=1

and

o([[z]) > Z9i¢i2(||$i||)~

For the values of x € Wy C X calculate the difference

v(z + h,0) — Ze{wﬂuh) vi(xi)}

i=1

< Z;&{Vvi(a:i, hi) +o([|hill)} = Z;@ivvi(%hi) + o([[Al]).

Hence it follows that Vu(z,0,h) = Z 0;Vvi(x;, h;). From the fact that

Voi(zi, h;) are continuous and hnear Wlth respect to h;, it follows that
Vu(x,0,h) at each fixed z € II is continuous and linear with respect to h.
In view of the above and Assumption 5.5.3, obtain

Vo(z, 0, f(z) + g(x, 1) Zew v, f(@) + g, 1))

,P“ﬁs

s
Il
s

BiVvi(zi, f(x)) + Z B:Vvi(wi, g(x, 1))

i=1

[Bzwz?,(nmn)w”? laall) S by (2 ||mg||>}
j=1

Ms

Il
s

7

= u" A(p)u,

where the elements a;;(1) of the matrix A(u) = [a;;(p)] are the same as in
condition (3) of Theorem 5.5.1, and the vector u is determined as follows:

uT = [ 2z, -2 ()]

Since at u < p* € M the matrix A(u) is negative definite, then

Vu(z, 0, f(z) + gz, 1)) < ut Alp)u < Mg (A)l|ull?,
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where Apr(A) < 0 at p < p*. The fact that

lull* = Z%s lil]) = ¥s(ll=]])

for some function 13 from K-class implies the estimate

Vo(z,0, f(x) + g(z, ) < A (A)s((]])

at all x € II N Wy. Hence, according to Theorem 5.4.9, obtain the estimate

Du(x,0)](5.3.3) < Anr(A)s([|]]), (5.5.4)

which in view of Theorem 5.4.2 secures the uniform asymptotic p-stability of
the zero solution Q(¢)x = 0 of the system (5.3.2).

Theorem 5.5.2 Assume that for each subsystem of the system (5.5.2)
in Banach space there exists a semigroup Q;(t) and a function v;(x;), which
form a permissible pair (Q;(t),v;), and

(1) the isolated subsystems from the collection (5.5.1) permit the property B;

(2) under the specified functions v;(x;) and the comparison functions ;3
from K-class there exist constants bs; (1), 4,5 = 1,2,...,m, such that
the estimates

Vs (@i, i(w, 1)) < ¥ (|zi])) Zb D32 (151

hold at all x € D(f + g(x, ), where 2T = (z1,...,2,) € X;

(3) there exist constants 0; > 0,1 =1,2,...,m, and a value of the parameter
w* € M such that the matriz A(p) = [a;; ()] with the elements

aij(p) = {911-(& i) ot Z:: j:’
3 (03 (1) + 005, (w))  at i
is negative definite at p < p*.
Then the trivial solution of the system (5.3.2) is globally uniformly asymp-
totically p-stable.

Proof Under condition (1) of Theorem 5.5.2 the function (5.5.2) is esti-
mated by the comparison functions ¢4 (||z||) and ¥z (]|z||) belonging to K R-

class, and the estimate (5.5.3) holds at all z € X = [] X;. Under condition
i=1
(2) of Theorem 5.5.2, the estimate (5.5.4) takes the form

Du(x,0)|(5.3.3) < A (A)Ys(l|=]]),
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m
where vs([l2])) < 3 $ss(llz]) at all z € X,
j=1

According to Theorem 5.4.3, the zero solution z; = Q;(t)zip = 0 of the
system (5.3.2) is globally uniformly asymptotically p-stable.

For the analysis of the exponential p-stability of the system (5.3.2) we will
need some assumptions on the functions v;(x;) for the subsystems (5.3.1).

Assumption 5.5.4 An isolated subsystem from the collection (5.3.1)
permits the property A*, if for the pair (Q;(t),v;) there exist comparison
functions 2, ¥;3 from K-class of the same order of growth, constants a;, 7,
A; and arbitrary constants (3; such that:

(1) ail|lz:]|™ < wvi(xs) < pe(||lz]]) at all x; € Z; such that ||a;|| < A;, and
(2) V’l}i(l‘i,sfi) < ,821/)13(”1‘1”) at all x; € D(sz) such that ||.T)1|| < Az
Assumption 5.5.5 An isolated subsystem from the collection (5.3.1)

permits the property B* if it has the property A* at A; = oo and at comparison
functions of the same order of growth 1;2,1;3, belonging to K R-class.

Now prove the following statement.
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Theorem 5.5.3 Assume that for each subsystem of the system (5.3.2) a
semigroup Q;(t) and a function v;(x;) are constructed which form a permis-
sible pair, and

(1) isolated subsystems from the collection (5.3.1) permit property A*;
(2) the operators of connection g;(x, ) between the subsystems (5.3.1) sat-
isfy property C;

(3) there exist constants 0; > 0,i=1,2,...,m, and a value of the parameter
w* € M such that the matriz A(p) = [ai;(0)], 4,5 = 1,2,...,m, from
condition (8) of Theorem 5.5.1 is negative definite at pn < p*.

Then the trivial solution of the system (5.3.2) is uniformly exponentially
wu-stable.

Proof Like in the proof of Theorem 5.5.1, apply the function (5.5.2). Under
condition (1) of Assumption 5.5.4 obtain the estimate for the function v(z, 6):

min(6;a;) Dol < o(w,0) < allz]), (5.5.5)

i=1

where o (||z]]) > > 0;¢52(]|z;]]), 12 belongs to K-class and has an inverse
j=1

function 5 ' (]|z]]).
Under conditions (2) and (3) of Theorem 5.5.3 obtain

Du(x,0)|(5.5.2) < Anr (A)s([|]]), (5.5.6)

where ¥s(||z|)) < > ¥is(lill), Am(4) < 0 at p < p*. Taking into account
i=1

that the comparison functions o (||z||) and ¥3(||x||) have the same order of
growth at all z € I1 = {aT = (21,...,2m): |lzi|| < A; atall i =1,2,...,m},
transform the estimates (5.5.5) and (5.5.6). There exist constants ky and ko >
0 such that

ko ([l2l)) < ¢s(ll]]) < katpa(ll2])) (5.5.7)
at all x € II.
Denote a = min(6;a;), ||z]|” = > |lz:||™, and let ky = —Apr(A). Then the

i=1
estimates (5.5.5) and (5.5.6) take the form

allz][" < v(x,0) < ¢2(ll2]]),
Du(x,0)|y < —kiv(z,0)

at all z € II. Hence obtain

v(x(t),0) < v(xo, ) exp[—ki(t —to)], t > to.
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Taking into account the inequality in the left-hand part of (5.5.7), obtain

w@n<avw¥mmep}%u—mﬂ (5.58)

at all ¢ > tg.
k
Denote A = — and at any 0 < e < H choose d(c) = ¢~ '(ac”). Then at
r
lzo|| < é(e) the estimate (5.5.8) implies that
lz@)] < eexp[=Alt —to)], &= to.

Theorem 5.5.3 is proved.

Theorem 5.5.4 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Q;(t) and a function v;(x;), which form a permissible
pair, and

(1) isolated subsystems from the collection (5.3.1) permit the property B*;
(2) conditions (2) and (3) of Theorem 5.5.2 are satisfied.

Then the trivial solution of the system (5.3.2) is globally exponentially -
stable.

Proof Under the conditions of Assumption 5.5.5 for the function v(z,6)
obtain the estimate

i=1

" <o, 0) < Po(ll2l), (5.5.9)

where b; > 0, r; > 0 and ¢2(]|z||) is a function from K R-class, which has an
m

inverse Yo (||z||) > > 0;4i2(||2:]|). For the function Du(z, ) obtain
j=1

Du(z,0)|(5.3.2) < Anr(A)Ys([|z])),

m
where ¢s([|lz]]) < >0 dis(llail]), An(A) <Ot p < p*
j=1

Similarly to the proof of Theorem 5.5.3 it is easy to obtain the estimate

r k
el <0} (ol exp |22t~ t0)] ¢ 0

For any a > 0 calculate K(a) = bil/’"z/)é/T(a). Here as soon as ||zg] < a,
then ||lz(t)|| < K(a)exp [-A(t —to)], t > to, at any 2T = (z1,...,7,,) € X.
Theorem 5.5.4 is proved.

Now we will give the conditions for the p-stability of the system (5.3.2)
on the basis of the function (5.5.2) in which § = (1,1,...,1) € R}, and the
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constants b;; > 0 at all ¢ # j and p < p* € M. For this purpose, instead of

the matrix A(u) with the elements a;;(u), 4,5 = 1,2,...,m, consider a matrix
S(p) with the elements
—(Bi + bii t =,
() = P T b)) b i =g (5.5.10)
_sz (/’[/) at ¢ 7& Js

where j; are constants from condition (2) of Assumption 5.5.1 and b;;(u) are
constants from the estimate (5.5.1). Note that in further consideration of the
properties of global stability in the expressions s;; of the matrix S*(u) we will
use the constants b}; () > 0 at all i # j and p < p* € M.

Consider the following statement.

Theorem 5.5.5 Assume that for each subsystem of the system (5.5.2)
there exist a semigroup Q;(t) and a function v;(x;), which form a permissible
pair (Qi(t),v;), and, in addition:

(1) conditions (1) and (2) of Theorem 5.5.1 with the constants b;;(p) > 0
ati # j and all p < p* € M are satisfied. If the main diagonal minors
of the matriz S(u) are positive at all p < p*, then the trivial solution of
the system (5.3.2) is uniformly asymptotically p-stable;
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(2) conditions (1) and (2) of Theorem 5.5.2 with the constants b; () > 0
ati # j and all p < p* € M are satisfied. If the main diagonal minors
of the matriz S*(u) are positive at all p < p*, then the trivial solution
of the system (5.3.2) is globally uniformly asymptotically u-stable;

(3) conditions (1) and (2) of Theorem 5.5.8 with the constants b;;(p) > 0
ati # j and all p < p* € M are satisfied. If the main diagonal minors
of the matriz S(u) are positive at all p < p*, then the trivial solution of
the system (5.8.2) is exponentially p-stable;

(4) conditions (1) and (2) of Theorem 5.5.4 with the constants bf; (1) > 0
ati# j and all p < pu* € M are satisfied. If the main diagonal minors
of the matriz S*(u) are positive at all p < p*, then the trivial solution
of the system (5.8.2) is globally exponentially p-stable.

Proof Prove statement (1). For the function v(z, #) in the form (5.5.2) it
is not difficult to obtain the estimates (5.5.3) at all 2 € II. In addition,

1
Du(z,0)|(5.3.2) < *§UT (0S (1) + ST (1)) u, (5.5.11)
T _ (,1/2 1/2 . ) R
where u (V15" (1)) - - - ¥pis (lzm ), S(k) is an (mxm)-matrix with the

elements (5.5.10), and 6 = diag [61, .. ., 0,]. It is known that the conditions for
the positiveness of the main diagonal minors of the matrix S(u) are equivalent
to the existence of a diagonal matrix 6 with positive elements, such that the
matrix (65(p) + ST (1)0) is positive definite at all p < p* € M. In this case
0; = 1,4 =1,2,...,m, and this condition is satisfied. Thus, the estimate
(5.5.11) takes the form

Du(,0)|(5.3.2) < A (S)¢s([|]) (5.5.12)

at all z € II and A\pr(S) < 0 at p < p*. The estimate (5.5.12) and Theorem
5.4.2 imply statement (1) of Theorem 5.5.5.
Statements (2)—(4) of this theorem are proved in a similar manner.

Now we turn our attention to the conditions for the p-instability of the
trivial solution of the system (5.3.2).

Assumption 5.5.6 An isolated subsystem from the collection (5.3.1)
permits the property D, if there exists a semigroup Q;(¢) and a function v;(x;)
which form a permissible pair (Q;(t),v;), comparison functions ¥;1, V2, ;3
from K-class, and real constants 3; and A; such that

(@) Yar(lzill) < vilzi) < dia(llzi),

(b) Voui(xi,5fi(x:)) > Bivis(||x;]]) at all z; € D(5f;), where D(%f;) denotes
the domain of definition of the infinitesimal generator of the semigroup
Qi(t) at =i < A;.
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Assumption 5.5.7 The operator of connection between the subsystems
(5.3.1) satisfies the property E, if at a specified permissible pair (Q;(t), v;)
there exist comparison functions ;3 from K-class and constants ¢;;(u), 4,7 =
1,2,...,m, such that

m

Voi(wi, gi(z, 1) = 02 (lal) > i (g > (lll)
j=1

at all 2% = (z1,...,2m) € D(f + g(z, 1)) and ||z;]| < Aiy i =1,2,...,m.

Note that if in condition (b) of Assumption 5.5.6 the quantities 8; > 0,
1 =1,2,...,m, then the trivial solution of all independent subsystems (5.3.1)
is unstable.

Consider the following statement.

Theorem 5.5.6 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Q;(t) and a function v;(x;) which form a permissible
pair (Q;(t),v;), and, in addition:

(1) isolated subsystems from the collection (5.53.1) permit property D;

(2) the operators of connection g;(x,u) between the subsystems of (5.3.1)
permit property F;

(3) there exist constants 6; > 0,1 =1,2,...,m, and a value of the parameter
w* € M such that the matriz C(u) with the elements

0B + cii(p)) at i =j,

Cij (/’6) =951 . .

3(0icij () + 0ci(p) at i j

is positive definite at all p < p*.

Then the trivial solution of the system (5.3.2) is p-unstable.

Proof For the function (5.5.2) under the conditions of Theorem 5.5.6 it is
easy to obtain the estimates

illzl) < volz,0) < da(llz]) (5.5.13)

at all z € II and
Dv(x, 9)|(5_3.2) Z )\77L(C),(/J3(||x||) (5514)

at all € TI, where A, (C) > 0 is the minimum eigenvalue of the matrix C(p)
at p < p*. The estimates (5.5.13) and (5.5.14) and Theorem 5.4.6 imply that
the trivial solution of the system (5.3.2) is p-unstable.

Let us turn now to the properties of the p-boundedness of the motion of
the system (5.3.2).

Assumption 5.5.8 An isolated subsystem from the collection (5.3.1)
permits the property F, if there exist a semigroup Q;(¢) and a function v;(x;)
which form a permissible pair (Q;(t),v;), comparison functions 1, %2, Pi3
from K R-class, and real constants 8, such that:

Download free eBooks at bookboon.com



STABILITY OF WEAKLY CONNECTED
NONLINEAR SYSTEMS STABILITY OF SYSTEMS IN BANACH SPACES

(1) ir(llll) < vilzs) < ia([lil)),
(2) Vui(xi,*fi(xi)) < Bfbis(||2s]]) at all z; € D(f;) and
(a) at all |z;|| > Af,
(b) if |vi ()| < my, |Voi(zi,5fi(xs))] < my at ||zi]| < AF, where m; >0

is const.

Assumption 5.5.9 The operators of connection g;(x,u) between the
subsystems of (5.3.1) satisfy property G, if at a specified permissible pair
(Qi(t), v;) there exist real constants b;;(p), 4,5 = 1,2,...,m, such that

Vi, gi(z, 1) < 0 () S i (w)wis? ()

Jj=1

m

at all 2% = (z1,...,2m) € D(f + g(z, 1)).

Consider the following statement.
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Theorem 5.5.7 Assume that for each subsystem of the system (5.3.2)
there exists a semigroup Q;(t) and a function v;(x;) which form a permissible
pair, and, in addition:

(1) idsolated subsystems from the collection (5.5.1) permit property F;

(2) the operators of connection g;(x,u) between the subsystems of (5.3.1)
permit property G

(3) there exist constants 0; > 0,i=1,2,...,m, and a value of the parameter
w* € M such that the matriz B(u) = [bi; ()] with the elements

0:(B; + bii (1)) at i=j,
o {%(eibij () + bji()8;) at i#j

is negative definite at all p < p*.
Then the motion of the system (5.3.2) is uniformly ultimately p-bounded.

Proof Consider the function (5.5.2). Under the conditions of Assumptions
5.5.8 and 5.5.9 for the functions v(x, ) and Dv(z, ), obtain the estimates

Dr(ll]l) < v(z,0) < o(]l]]) (5:5.15)

and
Dv(z,0)|(5.3.2) < An(B)s(||z]]) (5.5.16)

at all # € X — [[ Si(m;), where S;(m;) = {z; € Z;: ||z;|| < my}.
i=1
Consider the estimates (5.5.15) and (5.5.16) in two cases.
Case 1. Let o; € Z; and ||z;]| > m; at i =1,2,...,p

Case 2. For the values i = p+1,...,m x; € Z; and |lz;|| < m; at

2t = (z1,...,2m) € D(f + g(z, u)).

The estimates (5.5.15) are transformable to the following:
P m
Zelzpﬂ || + Z 0;vi(z;) < v(, 0) Z Wan(lzl) + Y Oivi(w:)
i=p+1 i=1 i=p+1

in Case 1 and

P m m
D bballlal) = Y bimi < o(x,6) < 291%2 lzill) + > Oimg
i=1

i=p+1 i=p+1

in Case 2.
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For the expression Vou(z, f(x) + g(z, 1)) obtain the estimate

Vola, () + gl ) < W B* (u w+ZezW2 ||xz||[2bw W )}

Jj=p+1
P
+Z€ml+ Z 00y (mi) > by ()37 (i)
i=p+1 Jj=1
i Z 11111/2 Z ¢1/2
i=p+1 =p+1
(5.5.17)
where B*(1) = [by(n)] at 1,5 = 1,2,....p and w = @H2(lal),
1/2 1/2
257 (l2ll). - sl )
It is easy to reduce the estimate (5.5.17) to the form
Vo(z, f(z) + g(z, 1) < w'B*(p)w + w' Py + Py, (5.5.18)

where Py € RP and P; > 0 is some constant.

Now, since the matrix B(u) is negative definite, the submatrix B*(u) will
also be negative definite at pu < p*. Then the estimate (5.5.18) will take the
form

Vu(z, f(z) + g(@, 1)) < A (B)||lw]|* +w' Py + Py

IN

1 1 P
ikzvz(B*)llwll2 = 5/\M(B*) Z¢i3(||xi||)

< JauE (Sl ),

i=1

(5.5.19)

A

where 1% belongs to the K R-class. Since A\p(B*) < 0, the estimate (5.5.19)
implies that Dv(z,0) < 0 at all 217 = (z1,...,2,) € D(f + g(z, 1)), 0 < p <
p* and at |lz;]| > r* for i = 1,2,...,p, and |jz;]| <m; fori=p+1,...,m.
According to Theorem 5.4.8, the motion of the system (5.3.2) is uniformly
ultimately p-bounded.

5.6 Stability Analysis of a Two-Component System

Consider a physical process described by the system of equations

= Hw )+ [ )y
(5.6.1)
W = alas(t,y) — Ha(w2(t.y)) + pha(y)c 21 (t)
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with the boundary

z2(t,y) =0 atall (t,y) € Ry x 0G (5.6.2)

and the initial

21(0) = 210, 22(0,y) =¢(y) at yeG (5.6.3)

conditions. Here f(z): R™ — R"™, b, ¢ are specified n-dimensional vectors, «
and L are specified positive constants, A is a Laplace operator in the space
R™, G is an open subset in R™ with a smooth boundary G, and € M is a
small positive parameter. The functions H; and Hy are specified and satisfy
the conditions

(a) Hi(y,0)=0atally € G,
(b) H2(0) =0 and |Hi(y, z) — H1(y,2*)| < |h1(y)|]|z — z*| at all y € G, and

(c) z,2* € R and |Ha(u) — Ho(u*)] < L|ju — u*|| at all u,u* € R and
h; € LQ(G), 1 =1,2.

Under the above conditions the problem (5.6.1) — (5.6.3) is correctly defined
and its solution (w1 (t), z2(t,y))T exists at all ¢ € R.
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The isolated subsystems of the system (5.6.1) have the form

dx
d_tl = fl(ﬁbl), (564)
dxs(t,
% = aAxs(t,y) — Ha(y) = fo(wa). (5.6.5)
The operators of connection g;(z, u), i = 1,2, are as follows:
i (@1, 22) = pb / Hy(y.2(t,v)) dy, (5.6.6)
pg2(21, x2) = Mhz( )tz (t). (5.6.7)
For the system (5.6.1) it is assumed that Z; = R", Zys = Lo(G), and X =
R™ x Lo(G). The norms in R™ and on Ly(G) will be denoted by || - || and

Il - || o, respectively.
Assumption 5.6.1 There exist:

(1) functions vi1(x1) € C(R™,R4) and wvaa(x2) € C(L2(G),R4) in open
connected neighborhoods of the points 1 = 0, 2 = 0, comparison
functions o, (||z1||) and ¥;(||z2]|L,) from K-class, and positive constants
.., @, 1 = 1,2, such that

119

1z 103 (1)),
22(7 22¢2(||$2||L2)

(2) functions vi2(z1,22) = va1(x1,22) € C(R™ X Lo(G),R) and arbitrary
constants a4, @21 such that

Qll@%(Hle)

<w 1) <o
22277/’%(”952”@) <w 2) <

a1 ([|z1])v2(l|2el 2,) < via(wr, 22) < @rape(l|21])Y2(l|22]lL,)

in the range of values z1 € D(f1) and z2 € D(f2).

Lemma 5.6.1 If all the conditions of Assumption 5.6.1 are satisfied and
the matrices

o o
_ [ =11 =12 —
A = ( )7 Q9 = Qg1,

Qo1 Qg

Q11 Qa2 — —
A= _ Q19 = &
2 Ao Qo ) 12 21

are positive definite, then the function v(z,0) = 07U (2)0, 6 € R%, U(z) =
[wij ()], 4,5 = 1,2, is positive definite and decreasing.

Assumption 5.6.2 For the specified functions vyi(x1), vea(x2), and
v12(21, z2) there exist constants Bk, i = 1,2, k = 1,2,...,8, comparison
functions & (||z1]]) and & (]|z2||L,) from K-class, such that:
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(a) Voi(zr, fi(21)) <0;

(b) Vuii(z1,g1(x, 1) < Bra&i ([zall) + Brsé&u (|l [)é2(llw2 L. )s
(¢) Vouaa(ws, fa(w2)) <0;

(d) Vuza (w2, g2(2, 1)) < B22€3 (I|z2ll L) + Bas&a (|21 [)€2(llz2lz.);
(€) Vviz(w1, 22, fi(w1)) < Bua€i(z1]l) + Bis&a(lza €2l 22|, ):
() Voia(a1, 22, fa(x2)) < Baaé (21l + Bas&a (|1 )é2(llw2 . )s

() Voia(x1, w2, 91(x, 1)) < Bre&i([|21]]) + Brr&a (a2 22]lL,) +
51853(”562 z,);

(h) Vuia(w1, 2, g2(x, 1) < Bas€i (|21 ]) + Bor&a(lza (|22l z,) +
Bas&3 (|| z2lLy)-

Consider the matrix C(u) in the form

C(u) = (Cll 012> ,  C12 = C21,

C21  C22
with the elements
c11 = 03B + 20102(B1a + pbis + 115a6),
a0 = 051132 + 26102(Bay + pBis + pBas),

1
12 =3 (031Brs + 03 11B23) + 0102(B15 + Bas + bt + pfar).

Taking into account the condition of Assumption 5.6.2, for the function
v(x,0) we obtain the following estimate of the derivative:

Vv(:v79)|(5_6_1) <uC(p)u, (5.6.8)

where vt = (& ([|z1])), &2(l|22l ), 1 € (0, o).

Theorem 5.6.1 If the two-component system (5.6.1)—(5.6.3) is such
that all the conditions of Lemmas 5.6.1 is satisfied and there exists po € (0, p)
such that the matriz C(u) is negative definite at € (0, o), then its state of
equilibrium x1 = 0, zo = 0 is uniformly asymptotically p-stable.

The proof of the theorem follows from the conditions satisfied by the func-
tion v(z, d) and its derivative (5.6.8).
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5.7 Comments and References

Hybrid dynamical systems, being systems consisting of two or more dif-
ferent subsystems connected with each other, are widely spread models of
real processes and phenomena (see Haddad, Chellaboina, and Nersesov [1]
and bibliography therein). Initially the class of hybrid systems included those
whose dynamics were described by systems of ordinary differential equations
on R, and systems of difference equations on Z. Examples of such systems are
systems with impulse effects (see Bainov and Simeonov [1], Samoilenko and
Perestyuk [1], and others), switched systems (see Branicky [1], Peleties and De
Carlo [1]), systems with variable structure (see Utkin [1]), and other systems.
The concept of generalized time (see Michel [1]) made it possible to unify a
lot of results obtained in this line of investigation by way of consideration of
a generalized hybrid system in a metric space (see Michel, Wang, and Hu [1],
Martynyuk [18, 22]).

A more general class is the class of hybrid systems consisting of different
subsystems connected by operators (see Matrosov [1], Matrosov and Vassiliev
[1], and others). In this chapter, in compliance with the concept of this book,
hybrid systems with weakly connected subsystems described by equations in
a Banach space are considered.
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5.2. The proofs of the statements given in this section are available in the
monographs of Hille and Phillips [1] and Krein [1]; see also Crandall [1], Brezis
[1], and Kurtz [1].

5.3. In the statement of the problem on pu-stability of solutions of a hybrid
system, the results of the articles of Martynyuk [8, 10] were considered. Note
that a similar problem was considered in the monograph of Michel and Miller
[1] and others.

5.4. Originally, a two-index system of functions as an environment suit-
able for construction of a Lyapunov function was considered in the works of
Djordjevié¢ [1], Martynyuk and Gutovsky [1], and Martynyuk [7, 9] for systems
of ordinary differential equations. For equations in a Banach space, a matrix
function was applied in the work of Martynyuk [8]. Theorems 5.4.1-5.4.8
are analogues of the classical theorems of the general theory of stability and
new for this class of hybrid systems. In the works of Lakshmikantham [1, 2],
Massera [1], and Zubov [1], one can find some approaches to the analysis of the
stability of solutions of equations in Banach spaces, which may be generalized
for hybrid systems.

5.5. All the results of this section are new for the class of systems of
(5.3.2) type. Theorems 5.5.3 and 5.5.4 on the exponential p-stability of a
hybrid system are formulated and proved in view of the results of the works
of He and Wang [1] and Martynyuk [14, 15].

5.6. The results of this section are new for the system (5.6.1). Some of
the results were taken from the work of Martynyuk [9]. A system of the type
(5.6.1) at f(x1) = Azy and p = 1 was studied in the monograph by Michel
and Miller [1] on the basis of a vector Lyapunov function. The assumption on
the asymptotic stability of the zero solution of the independent subsystems
(5.6.4) and (5.6.5) makes it possible to apply the vector Lyapunov function,
but the connection operators g;(x), ¢ = 1,2 are considered as factors that
destabilize the trivial solution of the system under consideration.
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Abstract Cauchy problem, 220
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der of growth, 32
Comparison principle, 36
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asymptotically stable, 30
exponentially stable, 32, 33
uniformly asymptotically stable,
31
uniformly stable, 29
unstable, 34
Cone, 17
Cone-valued Lyapunov function, 38

Derivative Eulerian, 27
Dini derivative of the function v, 26
Domain v > 0, 112
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p-attracting, 42
p-stable, 42
x =0 (y, p)-stable, 199
asymptotically p-stable, 43
uniformly p-stable, 42
uniformly asymptotically u-stable,
43
Equilibrium state
completely p-unstable, 127
equistable, 105, 106
exponentially u-stable, 121, 123
globally exponentially u-stable,
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globally uniformly asymptotically
p-stable ; 120
uniformly asymptotically u-stable,
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Equilibrium state xx = 0
p-stable, 110, 112
p-unstable, 113
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x}-decrescent, 130
x}-positive definite, 130
decrescent, 25

on Ry x 5,25
with respect to y, 199
globally

decrescent on Ry, 25
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negative definite, 23, 25
negative semidefinite

in the neighborhood S, 23
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with respect to y, 199
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