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Preface

This volume contains the papers presented at FMICS 2010, the 15th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems, which was
held on September 20-21, 2010, in Antwerp, Belgium. Previous workshops of
the ERCIM working group on Formal Methods for Industrial Critical Systems
were held in Oxford (March 1996), Cesena (July 1997), Amsterdam (May 1998),
Trento (July 1999), Berlin (April 2000), Paris (July 2001), Malaga (July 2002),
Trondheim (June 2003), Linz (September 2004), Lisbon (September 2005), Bonn
(August 2006), Berlin (July 2007), L’Aquila (September 2008), and Eindhoven
(November 2009).

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, these workshops bring together scientists and engineers
who are active in the area of formal methods and are interested in exchanging
their experiences in the industrial usage of these methods. These workshops
also strive to promote research and development for the improvement of formal
methods and tools for industrial applications.

The FMICS 2010 workshop was co-located with ASE 2010, the 25th
IEEE/ACM International Conference on Automated Software Engineering, which
offered a choice of events in the area in addition to the main conference. More in-
formation about ASE 2010 and the co-located events can be found on
http://soft.vub.ac.be/ase2010/.

The topics chosen for FMICS 2010 included, but were not restricted to:

– Design, specification, code generation, and testing based on formal methods;
– Methods, techniques, and tools to support automated analysis, certifica-

tion, debugging, learning, optimization, and transformation of complex, dis-
tributed, real-time systems, and embedded systems;

– Verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability (e.g., scalability and
usability issues);

– Tools for the development of formal design descriptions;
– Case studies and experience reports on industrial applications of formal

methods, focusing on lessons learned or identification of new research
directions;

– Impact of the adoption of formal methods on the development process and
associated costs;

– Application of formal methods in standardization and industrial forums.

In response to the call for papers, 33 contributions were submitted from 16 dif-
ferent countries. The Program Committee selected 14 papers, basing this choice
on their scientific quality, originality, and relevance to the workshop. Each paper
was reviewed by at least four Program Committee members or external referees.



VI Preface

In addition to the regular papers, the workshop included four invited presen-
tations by Aarti Gupta (NEC Labs, USA), Axel Simon (Technical University
of Munich, Germany), Stephan Tobies (European Microsoft Innovation Center,
Aachen, Germany), and Bert van Beek (Technical University of Eindhoven, The
Netherlands).

Following a tradition established over the past few years, the European As-
sociation of Software Science and Technology (EASST) offered an award to the
best FMICS paper. Further information about the FMICS working group and
the next FMICS workshop can be found at: http://www.inrialpes.fr/vasy/fmics.

On behalf of the Program Committee, we would like to express our grati-
tude to all the authors who submitted papers and all external referees for their
careful work in the reviewing process. Special thanks go to Jörg Brauer who
supported the program chairs in many respects, and to Alessandro Fantechi, the
coordinator of the ERCIM Working Group on Formal Methods for Industrial
Critical Systems, for sharing his experiences. We are very grateful to the orga-
nizers of ASE 2010, who worked with enthusiasm in order to make this event
possible. We are also grateful to Andrei Voronkov for making EasyChair available
to us. Finally, we gratefully acknowledge the institutions which sponsored this
event: Fondazione Bruno Kessler, RWTH Aachen University, ERCIM, EASST,
European Microsoft Innovation Center, the research cluster Ultra High Speed
Information and Communication Systems (UMIC), and AXXTEQ GmbH.

September 2010 Stefan Kowalewski
Marco Roveri
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Ángel Herranz Universidad Politécnica de Madrid, Spain
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The Metrô Rio ATP Case Study

Alessio Ferrari1, Daniele Grasso2, Gianluca Magnani2,
Alessandro Fantechi2, and Matteo Tempestini1

1 General Electric Transportation Systems (GETS), Firenze, Italy
2 Universitá di Firenze, DSI, Firenze, Italy

Abstract. This paper reports on the Simulink/Stateflow based devel-
opment of the on-board equipment of the Metrô Rio Automatic Train
Protection system. Particular focus is given to the strategies followed to
address formal weaknesses and certification issues of the adopted tool-
suite. On the development side, constraints on the Simulink/Stateflow
semantics have been introduced and design practices have been adopted
to gradually achieve a formal model of the system. On the verification
side, a two-phase approach based on model based testing and abstract
interpretation has been followed to enforce functional correctness and
runtime error freedom.

Quantitative results are presented to assess the overall strategy: the
effort required by the design activities is balanced by the effectiveness
of the verification tasks enabled by model based development and auto-
matic code generation.

1 Introduction

Industrial applications of formal methods and model based development for rail-
way signaling systems are discussed in many case studies. The Paris Metro [16],
the SACEM system [17], and the San Juan metro [18] are past and recent ex-
amples of successful stories about the usage of these technologies in the railway
domain. In this paper, we offer a further insight into the actual industrial usage
of formal methods, describing the experience of a railway signaling company,
namely the railway signaling division of General Electric Transportation Sys-
tems (GETS), in adopting formal specification and development techniques by
means of Simulink/Stateflow for the development of the Metrô Rio Automatic
Train Protection (ATP) system.

GETS was commissioned for the adaptation of its SSC ATP to Metrô Rio at
the end of 2008. This was a time when the company was finishing its first large
scale development project that made use of formal model based development
with Simulink/Stateflow. Introducing this tool-suite within a safety-critical pro-
cess is not a straightforward step: the lack of a formal semantics of the language
and the absence of a certified code generator require strategies to be defined in
order to have a sound and safe development. SSC - Metrô Rio provided the op-
portunity to improve and assess the process practices experimented in previous
projects to address these issues. Indeed, GETS adopted the Simulink/Stateflow

S. Kowalewski and M. Roveri (Eds.): FMICS 2010, LNCS 6371, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A. Ferrari et al.

platform first for the development of prototypes [9] and afterwards for require-
ments formalization and code generation [2]. Experimentation with the code
generator led to the definition of an internal set of modeling rules in the form of
an extension of the MAAB guidelines [6], a stable and widely accepted standard
developed by automotive companies. With SSC - Metrô Rio, additional rules
have been introduced to constrain the language to a semantically unambiguous
set and a hierarchical derivation approach has been defined in order to grad-
ually achieve a formal model of the system. Concerning verification of models
and generated code, an enhancement of the two-phase approach presented in
[13] has been adopted: control-flow and functional properties have been verified
through model based testing, while static analysis by means of abstract inter-
pretation has been used to check data-flow properties. The model based testing
activity has been performed through a code validation framework that executes
the same test cases both at model level and at code level, automatically verifying
consistency of the test results for each model unit. This idea basically settles the
problem of having a qualified code generator, since certification of conformity
can be ensured each time the code is synthesized from a model.

The successful application of the presented process, witnessed by encouraging
results in terms of cost reduction and safety assurance, has actually open the door
to formal verification and we are currently exploring activities in this direction.

2 SSC Metrô Rio ATP System

The role of a metro signaling system is to protect trains by keeping vehicles
a safe distance apart. Traditionally, the traffic along metro tracks is managed
by dividing each track into segments called block sections or simply blocks, and
ensuring each train not to enter a given block section unless the block is clear
of other trains. Signals are placed at the beginning of each block to inform the
drivers about the status of the section that they are entering. The meaning of
each signal aspect can be broadly represented by three pieces of information (see
Fig. 1):

Authorized speed : the speed that is permitted in the block that is being entered;
Target distance: the maximum distance that the train can move while still being

protected;
Target speed : the maximum speed that the train is permitted to have over the

target distance.

Automatic Train Protection (ATP) systems, such as the SSC Metrô Rio one,
are typically embedded platforms that enforce the rules of signaling systems by
adding an on-board automatic control over the speed limit allowed to trains along
the track, thereby ensuring the safety of movement of the trains and consistent
protection of the line traffic independent of train operator actions.

The SSC Metrô Rio system consists of wayside devices, composed by an en-
coder and a transponder, that respectively encode and transmit a telegram that
contains the data to be processed by the carborne equipment. The wayside de-
vices are positioned close to the actual signals, and the combination of encoder
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Fig. 1. Authorized speed, Target distance and Target speed

and transponder is commonly referred to as an information point. The carborne
equipment receives the telegram data and performs the actual enforcement of
train speed. Information managed by the carborne equipment concerns the ap-
proach speed and distance for signals, but also other information typical for a
metro, such as the distance to the next platform and speed reduction due to par-
ticular conditions of the line. All of this information is managed by the system
as concurrent targets: for each restriction, multiple braking curves are computed
to determine the most restrictive speed. Interaction with the driver is primarily
via a touch-screen panel which displays a speedometer with the current speed
and the active speed limit, and provides a set of buttons and icons to let the
driver control and monitor the system.

3 Process Overview

In this paper we focus on the approach followed for the development of the
carborne equipment of the SSC Metrô Rio. The process adopted represents an
application of model based practices to a V based life-cycle. Four phases are
considered as the core of the system development: architecture, design, module
verification and system integration/verification. Architecture and design activi-
ties concerning the project have been reported in a previous paper [15], while the
verification steps represent an enhancement of the approach presented in [13].

Fig. 2 summarizes the overall process structure. Embedded in gray rounded
boxes are the novel elements that have been introduced for this project. Starting
from system requirements and using domain knowledge, a functional architec-
ture in the form of a UML component diagram has been defined consisting of
independent functional units. According to this decomposition, system require-
ments are partitioned into mutually exclusive sets of unit requirements to be
apportioned to the functions. The UML architecture is then translated into a
Simulink architecture and the unit requirements are formalized in terms of Sta-
teflow finite-state automata. The software of an on-board equipment of an ATP
system, such as the SSC - Metrô Rio product, is characterized by the exten-
sive usage of control modes logic and message analysis algorithms. These are all
features that can be properly represented through state machines, and hence thr-
ough discrete Stateflow models. Due to this reason, in the context of the project,
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Fig. 2. Process Overview

only Stateflow has been adopted as specification language, while Simulink was
only used as a simulation framework to allow interaction among Stateflow charts.
Stateflow models have been designed using a safe subset of the language in or-
der to ensure proper code synthesis. In previous projects already an extension
of the MAAB guidelines was used, aimed at enhancing the readability, main-
tainability and structuring of the code, while with SSC Metrô Rio additional
restrictions have been introduced to further constrain the Stateflow semantics
to an unambiguous set of constructs. Concerning code generation, the company
adopted the more customizable RTW Embedded Coder in place of Stateflow
Coder: the transition was basically painless, since all the modeling rules devel-
oped for the previous tool resulted in being applicable also for the new one. Unit
tests have been defined in the form of scenarios at Stateflow model level, using
an internally developed framework that automatically executes the test suite on
the Stateflow automaton and on the generated code to ensure functional coher-
ence between model and software behaviour. The confidence on the correctness
of the generated code is increased with the PolySpace tool for abstract interpre-
tation, that completes the unit-level verification activities. Finally, system tests
are performed on an ad-hoc train simulator with hardware in the loop.

4 Hierarchical Architecture Definition

When a large requirements set is involved in formal modeling, a well defined
architecture of the model can help in clarifying which are the components of the
system and how they are interconnected, bridging the gap between requirements
definition and component design. When automatic code generation is adopted,
the architecture of the model is reflected in the software: an effort has hence to
be made to create formal models having a structure that makes sense also in
terms of the architecture of the software system.
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Fig. 3. Simplified component diagram

Though being powerful languages, Simulink and Stateflow are not suitable to
represent the high-level architecture of a system and a more abstract approach
was required in order to identify the semantic relationships between the soft-
ware functional units to build up the conceptual architecture of the application.
In the context of the project, we found useful to first represent the high-level
software architecture through a UML component diagram (a simplified version
is represented in Fig. 3). UML component diagrams focus on the interfaces and
dependencies of the functional units. Each component is basically defined by a
set of implemented interfaces, a set of required interfaces and a set of dependen-
cies. In the diagram, the external components represent the software drivers that
interface the system to external devices, such as the tachometer and the braking
command device, while the internal components are the system functions (for a
better insight refer to [15]).

In order to properly formalize this architecture through Simulink/Stateflow,
the chosen strategy was to represent the system through a multiple-level hier-
archical model (see Fig. 4). The different levels are intended for different devel-
opment stages, from a more abstract to a more detailed view. A first level is
defining the context, which means the interfaces with the environment in terms
of input/output data. Starting from the component diagram, this level has been
derived considering the boundary ports and mapping them into signals entering
or exiting the Simulink blocks. This approach allowed us defining the borders
of the software system, which can be treated as a black box completely defined by
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Fig. 4. The multiple level hierarchical model

its input/output signals. As part of this model we introduced other blocks sim-
ulating the actual interfaces (tachometer data, touch-screen buttons, telegram
data, etc.), to perform interactive testing of the model.

A second level represents the internal software architecture in terms of inter-
acting functional units modeled through Stateflow charts. For each one of the
components of the original diagram, a Stateflow chart has been defined having
the same input/output interfaces in terms of variables: each required interface
becomes a set of input variables, while each implemented interface becomes a
set of output variables. Note that no function is implemented through Simulink,
used only as a simulation framework, and no block with continuous dynamics is
used in our approach: any anlaysis problem that might be related to a hybrid
semantics is therefore discarded.

A third level is actually the design level of the single Stateflow charts, each
of them structured into parallel state machines formally modeling the system
functional requirements. In order to derive such a formal model from the system
requirements written in natural language, we first decomposed them into mutu-
ally exclusive sets of unit requirements, to identify the requirements apportioned
to each single Stateflow chart. For example, consider the system functional re-
quirement concerning the control over the unauthorized passing of a red signal
(normally called Train Trip function): When a red signal is passed without au-
thorization, the system shall brake the train and the Train Trip icon (ICO TT)
shall blink on the display until the train come to a standstill.

The requirement is decomposed as reported in Table 1.
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Table 1. Unit requirements decomposition

Requirement Module

1 If an information point with authorized speed equals to zero is received,
the system shall raise the Train Trip (TT) event

Information Point
Manager

2 If the TT event is raised, the TT procedure shall be activated Red Control
3 If the TT procedure is active, it shall remain active until the train is

not standing
Red Control

4 If the TT procedure is active, the brake shall be activated Brake Manager
5 If the TT procedure is active and ICO TT is invisible, ICO TT shall

start blinking
HMI Manager

The first unit requirement is apportioned to the Information Point Manager,
since this component is intended to interpret the telegram data and to forward
events to the other functions. The second and third requirements are apportioned
to the Red Control, which manages authorized and unauthorized passing of
red signals. The fourth requirement is apportioned to the Brake Manager, that
enforces any brake condition, and the fifth requirement is apportioned to the
HMI Manager, controlling the interaction with the driver.

Fig. 5 shows the formal representation of the ICO TT state machine, modeling
the fifth requirement of Table 1, together with the corresponding generated code.

Fig. 5. Example of unit requirement formalization

5 Modeling Guidelines

Stateflow implements a variant of Harel’s hierarchical statecharts [3], normally
called charts according to the Stateflow taxonomy. The complex semantics of
Stateflow is not formally based, though research has been performed to define an
operational semantics [4] and a denotational semantics [5] for a Stateflow subset.
Along with the development of the SSC - Metrô Rio project, in order to achieve
more easily an unambiguous interpretation of Stateflow models, coherent with
the automatically generated code, we further extended the MAAB guidelines
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Table 2. Restricted Stateflow subset compared with the original language

Original set Restricted subset

state s state s
active state sa = �s|s active state sa = �s|s
junction j junction j
path p = �p|s.p path p = �p|s.p
event e �
destination d = p|j �
action a action sequence a = �a|ba.a

declarative action da
basic action ba = da|J

condition c condition c
transition t = (et, c, a, a, d) state transition t = (c, a, p), c �= �, p �= �p

junction transition tj = ((c|a), j)
junction transition list TJ = �TJ |tj.TJ

transition list T = �T |t.T transition list T = �T |t.T
composition composition
C = OR(sa, p, T, SD)|AND(boolean, SD) C = OR(sa, p, T, SD)|AND(boolean, SD)
state definition sd = ((a, a, a), C, Ti, To, J) state definition sd = ((a, a, a), C, Ti, To)

where the conditions of the transitions in To

are mutually exclusive
state definition list state definition list
SD = {s0 : sd0; . . . ; sn : sdn} SD = {s0 : sd0; . . . ; sn : sdn}
junction definition list junction definition list
J = {j0 : T0; . . . ; jn : Tn} J = {j0 : TJ0; . . . ; jn : TJn}

adopted in previous projects with a set of restrictions oriented to restrict the use
of the Stateflow language to a semantically unambiguous subset. With reference
to the Stateflow language notation defined in [4], in Table 2 we represent the
subset of Stateflow adopted for the SSC - Metrô Rio project that has been
identified following the approach shown by Scaife et al. [8] for translating a
subset of Stateflow into the Lustre formal language.

The main restriction concerns the elimination of events from the language,
since, as pointed out in [8], use of events implies generation of recursive code
that might lead to the risk of an infinite recursion call, stack overflow or anyway
to state-space explosion problems. For this reason events are forbidden by the
adopted modeling guidelines and they are simulated through variable assign-
ments as depicted in Fig. 6. In Stateflow every chart is executed according to a
deterministic sequence (State A executes always before State B) and therefore

Fig. 6. Events can be avoided through proper variable assignments
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Fig. 7. State/Junctions transitions can be avoided through proper modeling solutions

any race condition is avoided. This approach preserves the sequential execution
of the code, while allowing logical event implementation (each change on the
variable value corresponds to an event).

Transitions have been distinguished between state transitions t and junction
transition tj: it is not allowed to define transitions between states and junctions.
These are objects that have a different operational semantics: at each simulation
step, states belonging to a single OR composition are mutually exclusive, while
more than one junction can be traversed during the same step. The behavior
discrepancy between the two objects might bring to improper combined usage.
One of the well known possible hazards is backtracking without undo [8], a prob-
lem consisting in the possibility of traversing a path made of junctions, possibly
assigning values to variables, and afterwards backtracking without restoring vari-
able values. Fig. 7 shows how an improper modeling can be correctly translated
into an equivalent, yet safer, representation. The restriction concerning the state
definition object, besides eliminating junction definition lists from states, re-
quires the conditions over outgoing transitions to be mutually exclusive in order
to avoid Stateflow to evaluate firing of transitions according to the clockwise rule
[4]. This rule implies that transitions are ordered by their graphical appearance:
the first transition is the one whose edge starts closest to the upper left corner
of the source state, and the others follow clockwise. This implies that transi-
tions naturally perceived as non-deterministic by the user, and interpreted as
non-deterministic in other formal statechart languages such as Statemate, are
actually deterministic. For this reason we require to make this determinism ex-
plicit by using mutually exclusive condition on guards of transitions outgoing
from the same state.

6 Verification Approach

Traditionally GETS has used, as the main approach to verification of code units,
white-box testing based on path coverage. This approach has revealed to be al-
most unfeasible due to the high structural complexity of the automatically gen-
erated code. A two phase verification process [13] was defined to address this
shortcoming: the first phase implements model based testing to verify the func-
tional requirements coverage, the second phase employs abstract interpretation
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[12] to statically enforce runtime errors detection. For the application to the
Metrô Rio ATP the first phase has been improved to obtain an implicit valida-
tion of the code generator as well. The verification activity is completed by final
system tests with hardware in the loop. In this paper we do not describe this
last step since it is not strictly related to formal modeling.

6.1 Model Based Testing and Code Validation

Products traditionally developed by GETS, like any railway signaling applica-
tion developed for Europe, shall comply with the CENELEC standards [1]. This
is a set of norms and methods to be used while implementing a product having
a determined safety-critical nature. The CENELEC EN 50128 considers two al-
ternative strategies to assure the correctness of the tools that produce code that
is finally embedded in the product, such as compilers or automatic code genera-
tors: the first one requires the code generator to be validated, and the second one
is based on the so called proven in use property. However, both strategies could
not be applied for the adopted code generator: the validation of the generator is
unfeasible, since the source code is proprietary and no information is given about
its development process; the translator could anyway be considered as a proven
in use tool, since it is used by a certain number of industries that operates in
safety critical context. Furthermore, the creation of a specialized tool, and its
validation, is not in line with the company strategy, that contemplates a strong
usage of commercial tools.

The approach used in the context of the Metrô Rio project is inspired by
the one presented in [10], called Translation Validation: this approach is not
focused on the code generator itself, but on the inputs and the outputs of code
generation process and on their comparison. The validation of the generated
code is performed through two phases: the first one consists in running the same
extensive test suite, (defined starting from the modeled requirements, with a
100% requirements coverage), on the models (by simulation) as well as on the
generated code (by dynamic testing). In this phase a functional/black box testing
is performed, where both model and code are stimulated with the same inputs,
and their outputs are compared for equality. If there are differences between
the model outputs and the code outputs, they shall be assessed. A successful
outcome of this phase gives confidence that the model and the generated code
will show the same behaviour in response to the same stimuli.

However it is still necessary to demonstrate that unexpected and unwanted
behaviour has not been introduced during the translation process. The second
phase is carried out to address this question: after the execution of the tests,
the structural coverage percentage is measured on the models as well as on the
code, and the measures are compared. As stated in [10], if the code coverage ob-
tained after test execution is less than the model coverage, then some unwanted
functionality might have been introduced by the translator. In order to perform
this evaluation, it is necessary to use comparable metrics for model and code
coverage [11]. In our case we chose to use decision coverage for the model and
branch coverage for the code. The choice of those metrics is due to the fact that
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Fig. 8. 2M-TVF Test Framework

the CENELEC EN 50128 requires at least statements coverage; furthermore,
since no continuos dynamic Simulink blocks are used in our modelling approach,
the decision for those metrics is appropriate. A framework called 2M-TVF, that
stands for Matlab Model Translation Validation Framework, has been devel-
oped to perform the model based testing and the code validation process. The
framework works under the Simulink environment, and in order to carry out the
validation process, allows for the definition of a validation model that includes
both the Matlab model to be tested and the related generated code, embedded in
a Simulink block. The code is previously instrumented to permit the evaluation
of the coverage after the tests execution, and then it is compiled and linked to
obtain the executable. The definition of the test suite is a manual activity, and
derives the tests from the models and the unit requirements defined during the
design phase of the system development, according to the requirement coverage
criterion. Automatic test generation techniques were not used due to the fact
that they generally requires models with a higher level of abstraction than the
ones we use to generate code. The time needed to devise the tests, by a domain
expert, is of the same order of magnitude than the time needed to model the
system.

2M-TVF is totally automated: starting from the system under test (SUT)
and a reference to the test suites, the framework uses RTW Embedded Coder to
generate the code for the SUT and then it creates the validation model. The tests
are then used as input for the validation model, and a report is visualized after
the execution of every test. The report contains information about the result
of the comparison of the model and code outputs and a detailed section on the
coverage metrics obtained on both model and code. A subsequent analysis of the
report is needed to assess every mismatch between outputs or coverage values.

By implementing the approach on many applications that use the same gen-
erator, it is possible to achieve the proven in use property for the code generator
and, at the same time, to validate the generated code of every single application.

6.2 Abstract Interpretation

Abstract Interpretation is a static analysis method that is able to infer dynamic
properties of the code and to detect runtime errors and faulty states of the pro-
gram without executing the code. The method defines an overapproximation of
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all the program reachable states, in order to check all the possible program runs.
As one can infer from the theory, tools for abstract interpretation may lead to
false positives caused by the analysis of runs possible in the overapproximation,
but which do not belong to the real domain of the code. The tool chosen to
perform abstract interpretation is PolySpace [14]. PolySpace works on C code
and highlights possible runtime errors through the use of chromatic marks on
the code:

– green if the statement can never lead to a runtime error;
– orange if the statement can produce an error;
– red if the statement leads to a runtime error in every analyzed runs;
– grey if the statement is not reachable.

Usually, the critical issue in using PolySpace is the mining of actual code errors
from the high number of orange warnings caused by overapproximation. GETS
has adopted a two step process (see Fig. 9) in order to significantly reduce the
orange checks that have to be manually reviewed. With the first step the code
is quickly verified using a large overapproximation set. In the second step a
finer approximation set is applied using the information obtained from the pre-
vious step. The first step is useful to detect systematic runtime errors (red) and

Fig. 9. Abstract Interpretation phase

unreachable statements (grey). Since no constraints are given in this analysis
step, the set-up time spent is negligible. On the other hand results are not selec-
tive enough about the orange warnings, and, in order to define the constraints
for the subsequent step, each orange has to be associated to the cause that
could have produced it. An analyst with a minimum proficiency with the tool
can easily evaluate the orange marks and quickly define the classes of causes
they belong to, although in this step it is still difficult and time consuming to
identify the oranges which are actually false positives. The identified classes give
information sufficient to suggest input constraints to be given to the tool to
restrict the analyzed abstract domain of the program. Examples of loose input
constraints are related to interleaving of function calls and range of program
variables. The tool generates an automatic call for each interface function of
the module and initializes with full-range values the input parameters. Since the
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tool has not information about the correct order of invocation of the interface
functions, it verifies all the possible interleaving of the generated calls. In Fig. 10
the four orange warnings, highlighted by the arrows, are caused by the function
call generation performed by the tool. The input parameters are initialized with
full-range values and consequently the tool detects that the pointers could be
outside their bounds. The information obtained in the first step are capitalised
to identify the part of the approximation that it is needed to refine. In the case of
the Fig. 10, the definition of the values range for the input parameters initialized
by the tool represents a constraint to add for the execution of the subsequent
step. The second verification step, performed with restrictive settings, allows a
finer approximation of the real domain of the program and a reduction of the
number of false positives. The analyst can quickly check the small number of

Fig. 10. Oranges caused by the automatic initialization of input function parameters

false positives and in the end is able to state that the code is free from runtime
errors. It should be noticed that the use of two verification steps does not pro-
duce a high overhead. Our experience, as shown by the results given in the next
section, confirms that the review performed on the first phase is simplified by the
fact that the generated code is characterized by a limited number of classes of
causes of orange warnings, while the results obtained with the second verification
normally give a low number of warnings.

6.3 Results

The SSC Metrô Rio ATP system consists of 13 Stateflow models for a total
amount of approximately 120K lines of code. For each Stateflow model, unit
test cases have been manually provided according to the functional requirement
coverage. The test suite consists of 238 test-cases that cover 100% of functional
requirements on the model. The test framework provides for executing the test
cases, performed on the model, on the generated code. Table 3 compares the
results of the verification activities on SSC Metrô Rio in terms of bugs found
and time spent to detect and correct the bugs, with the results of these activities
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Table 3. Bug detection and correction costs for comparable projects (modeling cost
of approximately 4 man/months)

Project #Modules LOC #Bugs Man/H

SSC Metro Rio 13 120K 33 16

SSC BL1Plus 12 40K 114 105

on SSC BL1 product, a previous ATP project based on model based development
where only the MAAB guidelines with proper restrictions were used. Although
the new system has considerably increased the number of lines of code, the
guidelines refinement led to a notable reduction of bugs while the well defined
architecture derived from the novel design approach has allowed us to detect the
errors in shorter time.

The first step of the PolySpace verification phase has detected no red errors,
as shown in Fig. 11. Although many oranges have been detected, thanks to

Fig. 11. Results of the first PolySpace verification step

the characteristics of the generated code, it has not been time expensive to
classify these warnings according to the kind of approximation that supposedly
produced them. Indeed, due to the disciplined use of modeling guidelines, the
generated code has an high number of simple structures and has well-defined
module interfaces, which has helped to confine the causes of orange marks to
the two only classes, already mentioned, of wrong interleaving of function calls
and automatic initialization of input function parameters.

The second step of the PolySpace phase has led to only few orange warnings,
and most modules turn out to be entirely green. The results have been compared
with the ones obtained on another previous project where PolySpace was first
applied, but where modeling guidelines were less restrictive. As in the previous
project, the oranges detected in the first step are approximately 15% of the total
number of checks for each module, but the time spent to classify the oranges and
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Table 4. Comparison of costs for classification and constraints definition

Project #Modules Oranges Analyse (hours) Constraints (hours)

SSC Metro Rio 13 2298 38 6

SSC BL3 21 1753 58 14

to determine the constraints for the second step have been considerably reduced
thanks to the well defined structure of the generated code (Table 4).

7 Conclusion

In this paper we presented the formal model based process adopted by a rail-
way signaling manufacturer for the development of the on-board equipment of
the Metrô Rio ATP system. The approach is the result of a long-term effort in
introducing formal methods in the development process of the company. Accord-
ing to our experience, the cost of formal modeling is 30% higher than manual
coding. This workload increase is partly due to the fact that graphic editing is
inherently slower than textual editing, and partly to the training cost required
by the technological shift. Nevertherless, the case study shows that this greater
effort is payed back by the cost reduction of the verification activities (about 70%
in total, with respect to a manual coding based process) and by the increased
confidence on the product safety and quality.

A missing element in the presented process is formal verification: indeed, al-
though experiments have been conducted by means of Simulink Design Verifier,
they have not yet secured a place for formal verification inside the production
development process. The company is currently investigating the optimal strate-
gies to introduce a formal verification phase in the development process, also in
relation to the added value with respect to certification issues: the investigation
will not consider only commercial solutions such as Simulink Design Verifier, but
also open source solutions like NuSMV and SPIN.
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Abstract. Many software companies still seem to be reluctant to use
formal specifications in their development processes. Nevertheless, the
trend towards implementing critical business applications in distributed
environments makes such applications an attractive target for formal
methods. Additionally, the rising complexity also increases the willing-
ness of the development teams to apply formal techniques.

In this paper, we report on our experiences in formally specifying
several core components of one of our commercially available products.
While writing the formal specification, we experienced several issues that
had a noticeable consequences on our work. While most of these issues
can be attributed to the specific method and tools we have used, we do
consider some of the problems as more general, impeding the practical
application of formal methods, especially by non-experts, in large scale
industrial development.

Keywords: ASM, industrial case study, formal specification.

1 Introduction

In this paper, we report on experiences we made with writing a formal speci-
fication for certain aspects of an application that had been designed and built
by one of our product groups. Given the actual time and resource constraints,
we did not attempt to write a full-fledged specification that would allow us to
(semi-)automatically prove system properties, but rather opted for an executable
specification that would help us gaining further insights into the behavior of the
system via proper simulation runs. This both seemed feasible and desirable, es-
pecially since the target application has to operate in a cluster environment
where testing and debugging is notoriously difficult.

Based on the experiences we had made in previous research [4], we decided
to use abstract state machines (ASMs) [7] for our formalization. In more detail,
we created a set of specifications where the refined version could eventually be
executed in CoreASM [13]. Since CoreASM comes with built-in support for literate
specifications (similar to literate programming [15]), we wrote a document that
contained extensive documentation explaining the specification. The final version
of that document accumulated to roughly 130 pages containing approximately
3 200 lines of CoreASM specification (code).
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During the course of writing this specification we stumbled across several
issues that had a noticeable influence on our work in general and the resulting
specification in particular. While most of them can be clearly attributed to the
method and tools we used, some of them seem to show more general problems
that cannot be avoided by simply changing the underlying formal method. In
this sense, we believe that our case study outlines several challenges that need
to be tackled to foster the application of formal software specification methods
in industrial product development environments.

The rest of the paper is organized as follows: In Sec. 2, we start with a short
description of the application that we want to specify followed by an outline
of the approach we have taken to eventually arrive at an executable formal
specification. We then address the issues we have witnessed during the course of
writing the specification in Sec. 3 and, finally, we conclude in Sec. 4.

2 Case Study: Distributed Object Management

In this section, we give an abstract description of the component we have spec-
ified formally. This component is part of an enterprise application that is built
by one of our product development teams. Moreover, we briefly summarize the
requirements that constrained the developers while designing and implementing
the application.

2.1 The Problem: Consistent Distributed Object Management

In its essence, the application under consideration implements an event-condition-
action rule engine [17], where events are represented as object state changes,
conditions are formulated as expressions on object attributes, and actions lead
to further changes in object states. To efficiently compute the actions that need
to be executed on events, the engine uses a modified version of the Rete algo-
rithm [14] that propagates object state deltas through Rete networks. The actual
implementation is multi-threaded, so access and updates to objects need to be
coordinated among a potentially large set of threads running concurrently.

If the engine runs in a non-distributed setting, i. e., a single application in-
stance, optimistic locking provides exclusive read/write access to the differ-
ent objects. The engine, however, may be deployed in a cluster variant, where
multiple application instances are running on different server nodes. In this
case, we need to consistently coordinate object access across these engine
instances.

Although the overall cluster size may be fixed, the system exhibits dynamic
behavior in that application instances may start or stop during the overall life-
time of the cluster. Thus, we need mechanisms to deal with variations in the
cluster topology, especially in the case of unexpected changes due to application
or cluster node failures.
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2.2 The Solution: Object Ownership and Cluster Failover
Management

The implemented system does not use a distributed locking protocol, but rather
tries to coordinate object access among different instances by maintaining meta
information, called object ownership, in a shared data structure.

The solution needs to guarantee exclusive object ownership, i. e., at most one
application instance may work with an object at any point in time. Thus, any
application instance that wants to access or modify an object needs to success-
fully acquire ownership for that object from its current owner. As scalability is
an important property of the overall system, the data structure that keeps track
of ownership information is not maintained by a central instance, but managed
in a distributed manner: Each application instance is responsible for managing
ownership information for a fixed subset of all objects and is called authoritative
indexer1 for this set of objects. Fig. 1a illustrates a scenario with three appli-
cation instances A, B, and C: instance A is authoritative indexer for objects 1
and 2, B for objects 3 and 4, and C for objects 5 and 6. Objects do not need to
be owned by their authoritative indexer. In our example, object 1 is owned by
instance B, object 6 by instance A, while all other objects are unused.

(a) Instance A is authoritative indexer
for object 1 and 2, instance B for 3 and
4, and instance C for 5 and 6. Object
1 is owned by instance B, object 6 by
instance A, while all other objects are
unused.

(b) After instance C has left, instance A
and B agree on a cluster of size 2, with A
being authoritative indexer for objects 1 to
3, and instance B for objects 4 to 6. In-
stance B is informed that object 6 is owned
by instance A.

Fig. 1. An example of a cluster distributed over several application instances

If an instance wants to acquire ownership for an object, it does so by always
contacting the authoritative indexer of that object, not the current owner (if
there is any). This approach has two advantages: first, the protocol requires at
most two message exchanges; one from the requesting instance to the author-
itative indexer and one from the authoritative indexer to the current owner. And

1 Indexer refers to the fact that objects have unique identifiers that serve as an index
into this data structure.
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second, each cluster instance is able to compute all authoritative indexer by itself
once it has learned the cluster topology after a successful join of the cluster.

If cluster topology changes, ownership and authoritative indexer information
needs to be redistributed among all cluster members. Ownership information
is propagated via a restructuring protocol that, upon successful completion, is
supposed to ensure two (mutually independent) properties:

1. all participating instances will agree on the same view (i. e., size and topol-
ogy) of the cluster, which allows each instance to locally compute the same
authoritative indexer for any object.

2. each instance will know current ownership for its authoritative set of objects.

To illustrate this, recall our example in Fig. 1a. If instance C leaves the cluster,
instance A and B will eventually agree on a new cluster of size 2, with A being
authoritative indexer for objects 1, 2, and 3, and instance B for objects 4, 5,
and 6. Furthermore, instance B has to be informed that object 6 is owned by
instance A. So far, that information had been maintained by the leaving instance
C. Fig. 1b illustrates the resulting cluster topology.

While each instance maintains its local view of the cluster, there is one dedi-
cated master instance providing the current view of the cluster to new instances
joining the cluster. Using a dedicated master avoids (cluster) discovery protocols,
but requires explicit means for master election, including recovery mechanisms
in case the current master instance may leave the cluster unexpectedly due to
an application or server node failure. In those cases, the remaining instances will
compete against each other regarding mastership and the failing parties will try
to join the cluster in the usual way.

2.3 Additional Implementation Constraints

Application development, especially in large software companies, rarely happens
in isolation. Overall, it has to obey various requirements and boundary conditions
imposed by application frameworks and platforms and programming models that
are already used. These constraints often have a noticeable effect on the resulting
solution architecture. In this section, we briefly review those aspects that also
had a significant impact on our formal specification work.

Avoid additional functionality by reusing existing frameworks. Rather
than building dedicated functionality into the runtime environment, the devel-
opment team was urged to implement functionality by reuse existing software
frameworks and components as much as possible. While it is, e. g., desirable to
have a central facility for storing cluster meta data, like information on the cur-
rent cluster topology or on the current master instance, much like [11], the given
cluster implementation does not foresee such mechanisms. Therefore, the team
opted for named communication channels implemented using the Java Naming
and Directory Interface (JNDI).
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Minimize Central Knowledge while Avoiding Redundancy. Centralized
knowledge requires additional synchronization among the cluster participants
and increases the communication overhead among them. Furthermore, any form
of centralized knowledge introduces bottlenecks and threatens system availability
should the central instance stop working properly. A common practice to increase
system availability is redundancy (e. g., via replication [12]), but such a feature
is not part of the underlying runtime platform. Therefore the decision was made
to solely rely on local meta information (i. e., object ownership) per instance
which needs to be synchronized whenever the cluster topology changes (which
is expected to happen rarely).

Global Synchronization via Locks. Whenever an operation requires syn-
chronization among the instances in a cluster, the initiating party needs to en-
force that by acquiring a global lock maintained by a central lock server (i. e.,
a central infrastructure component). Master election is an example for such an
operation. In fact, there is no real election going on and no elaborated agreement
protocol is used; instead, being able to become the master is just bound to the
ability to acquire a global, exclusive master lock from the central lock server.

Synchronous Mode of Operation. Although the platform provides different
means of communication for application instances running on a cluster, any
protocol-related communication is implemented as synchronous remote method
invocation (RMI) calls since that required less changes in the code base when
moving from a stand-alone to a cluster-enabled version.

Continuous Operation during Restructuring. Obviously, the restructur-
ing protocol for updating meta information on object ownership is one of the
most critical parts of the overall solution. A defensive approach would proba-
bly try to block any other interfering operations (like object requests) during
cluster restructuring until the system has reached a stable state again. But over-
all performance had been given higher priority leading to a significantly more
complicated restructuring protocol.

2.4 Formal Specification

Ideally, we would have started with that formal specification, proven its correct-
ness, and then iteratively refined it into executable code. Unfortunately, the real
project settings were different and the development team had already designed
and implemented a first version. Given that, we opted for a rather practical ap-
proach: our goal was to reverse-engineer the implementation into an executable
specification that would allow us to simulate the system behavior in enough
detail to detect any discrepancies between the desired and the implemented
behavior. The initial plan was to focus on robustness of the protocol against
communication failures. During our work, we followed a two-staged approach:
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Table 1. An overview of the modules of the ASM specification

Module Lines Rules Functions

Control ASM States 50 0 1
Cluster Master 161 12 10
Protocol Messages 138 0 25
Cluster Membership and Object Management 1 796 114 159
Object Requests 128 10 3
Cluster Environment (Notification) 328 19 31
Lock Management 141 7 19
Message Passing 362 12 56
Control Flow 88 10 5
Control State Handling 63 5 9

Total 3 255 189 318

1. We started with a high-level abstract specification on paper to capture the
essence of the functional features. This abstract specification was used as our
primary communication and discussion medium with the development team
to clarify our understanding of the overall system architecture and behavior
and to discuss remaining open issues.

2. Once that abstract specification had reached a critical mass, we began to
manually refine it towards an executable specification. After that, we up-
dated both versions in parallel while trying to keep the overall structure and
naming conventions aligned. Although this does by no means replace any
sort of formal proof of the correctness of our refinement, it eventually helped
us correcting errors in the abstract specification that surfaced through sim-
ulation runs of the executable specification.

Given the dynamic nature of the application, we decided to model the system
as an asynchronous multi-agent ASM . With this, we came fairly close to the
implementation where the parallelism induced by multiple Java threads was
mapped to a set of agents with dedicated functionality. As a positive side-effect,
this also led to a more modular specification.

Within a time-period of six months, we spent 80 person days to write a multi-
agent CoreASM specification that eventually consists of ten modules. Tab. 1
provides some details on the complexity of those modules. Out of these ten
modules, the first four resemble the basic functionality outlined in Sec. 2.2. The
fifth module, Object Requests, has been added to trigger random object access
requests and thus simulate updates on ownership information. The next three
modules provide functionality available via application frameworks (see Sec. 2.3),
while the last two have been introduced to provide “syntactical sugar” when it
comes to specifying complex control state machines. As the numbers show, we
ended up with roughly 20% additional effort not providing core functionality,
but is required to realistically model the implemented system behavior.
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Table 2. The different agents per node and their number of control states

Agent Control States

Object Requester 8
Object Request Processor 5
Node Failure Handling 22
Meta Data Management 15
Joining a Cluster 22
Leaving a Cluster 24

For each cluster node, we have six agents performing different tasks in the
overall protocol and each agent is modeled as a control state ASM (see Tab. 2).
Since some of the control states are shared between these agents, the overall
number of distinct states is 79.

Specification 1.1 presents invariants (in CoreASM notation) which must hold
whenever a cluster is considered in a stable state, i. e., no nodes are in the process
of joining or leaving the cluster: As the names imply, we want to assert that, at
any point in time, object ownership information is “in sync” and “valid” across
the cluster. Synchronized information requires that, for each object, its author-
itative indexer and its current owner share that view. Ownership information is
considered valid if the current owner is still a member of the current cluster.

derived IndicesInSync =
forall node in RunningNodes () holds IndexInSync (node )

derived IndicesAreValid =
forall node in RunningNodes () holds IndexIsValid (node )

derived IndexInSync (node ) =
forall oid in [1.. OID_MAX] holds SlotInSync (node , oid)

derived SlotInSync (node , oid) =
node = authIndexer (oid , node ) implies

OWNER(OWNER(node , oid), oid) = OWNER(node , oid)

derived IndexIsValid (node ) =
forall oid in [1.. OID_MAX] holds SlotIsValid (node , oid)

derived SlotIsValid (node , oid) =
node = authIndexer (oid , node ) implies

OWNER(node , oid) memberof RunningNodes ()

Specification 1.1. Cluster Protocol Invariants
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2.5 Simulation Results

Given the specification above, a rough estimate shows that the state space re-
quired by a explicit state model checker is the range of 1050. Thus, we rather went
for simulating dedicated scenarios, instead explicit brute-force model checking.

As with any other distributed coordination protocol, it soon became clear that
we needed to simulate protocol runs for exceptional cases, especially situations
where nodes leave the cluster unintentionally. When we started our work, we
thought we would need to spend most of our efforts into simulating message
transmission errors. But after several talks with the development team it turned
out that the system takes a fairly defensive approach for dealing with such errors:
most of the time, a message transmission failure will lead to a node restart. Thus,
we decided to focus on exploring the alternative paths with regard to cluster
topology changes and failover handling.

As it turned out, the modularity of the specification came in very handy
and we were able to factor out parts of the overall protocol complexity, like,
e. g., object request handling. With this simplifications, we eventually ended
up with a streamlined simulation scenario that revealed a bug in the initial
implementation, not yet discovered by any standard testing procedures: While
investigating the failover handling during changes of the cluster topology, we
realized that the original failover protocol was based upon a faulty assumption,
namely that notifications in the case of failure would be sent immediately after
a node failure. As this notification is sent by the runtime environment and, thus,
not controlled by the application, one can easily think of scenarios where this is
not true. Just assume that the notification is delayed while a new node is starting
up in parallel during that delay. Then, that node will become the master of a
new cluster that would just consist of that one node. If the delayed notification
is then passed on to the remaining nodes from the old cluster, they will try to
become master, will all fail, and thus do nothing, assuming that the (unknown)
winner will perform the outstanding restructuring. Since the new master is not
aware of the old cluster, no repair will happen and we will end up with two
independent clusters operating in parallel.

This undesired behavior can be reliably reproduced with the following abbre-
viated simulation scenario.2 We start by setting up a cluster with two nodes.
Furthermore, we specify a distinct id for a third node that will be started at a
later stage and will become the new master of the new cluster.

if (scenarioPhase = 0) then {
nodeList = [" N1", "N2"]
newMasterNode = "N3"

scenarioPhase = 1
}

2 We have omitted some variable and rule declarations. The overall simulation script
is 89 lines long.
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Once these nodes are running, we know that the cluster has reached a stable
state. We now disable node failure detection, by suspending the corresponding
agents.

if (scenarioPhase = 1) then {
if (AllNodesRunning ()) then {

SuspendNodeFailureHandlers()
scenarioPhase := 2
clusterIsStable := true

}
}

After failure detection has been disabled, we forcefully shutdown the current
master node.

if (scenarioPhase = 2) then {
killedMaster := MasterNode ()
remove NodeID( MasterNode ()) from nodeList
SignalNodeShutdown (MasterNode (), true)
scenarioPhase := 3
clusterIsStable := false

}

As soon as the old master node is down, we start up the third node. Failure
detection is still disabled, i. e., the remaining node in the old cluster is still not
informed about the fact that the old master has left the cluster.

if (scenarioPhase = 3) then {
if (NodeIsDown ( killedMaster )) then {

AddNode ()
add newMasterID to nodeList
scenarioPhase := 4

}
}

Once the new master has joined the cluster and there is a (new) master in
that cluster, we resume the agents that will handle node failures.

if (scenarioPhase = 4) then {
if (MasterNode () != undef

and HasJoinedCluster (newMasterID )) then {
ResumeElemLossHandlers()
scenarioPhase := 5

}
}

As a result of the previous step, the one remaining node of the old cluster
will try to become master, but will fail (since the new node has taken over mas-
tership). Assuming that another node from the old cluster has become master,
it will do nothing. Once the remaining and the new master node have resumed
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normal operation, we declare the cluster as stable again. But now the invariant
IndicesInSync does not hold anymore3.

if (scenarioPhase = 5) then {
if (AllNodesRunning ()) then {

clusterIsStable := true
scenarioPhase := 6

}
}

3 Lessons Learned

Although we have ultimately reached our goal, it turned out to be more difficult
than we expected. Some of the issues we have faced can clearly be attributed to
the method we have used, while other seem to reveal more general problems.

3.1 Method-Related Issues

Notation and Execution Semantics. As noted above, all protocol-related
communication is implemented as synchronous RMI calls, which means that
the calling thread will block until the answer has been received from the callee.
Translating this blocking behavior into ASM turned out to be difficult. At the
abstract level, we finally ended up with extending the standard semantics by
introducing an await construct (see [2] for details) and, moreover, provided
additional control state diagrams for further explanation.

Alas, this approach could not be taken for the executable specification since
that would have required substantial changes in the existing CoreASM runtime.
Instead, we transformed the corresponding rules and state diagrams from the
abstract specification into proper control state ASMs. To increase readability,
we ultimately developed a set of ASM macros that allowed us to use a more
concise notation, as the following example shows:

rule JoinCluster = {
StepInto (@PrepareJoin , {startingUp , registerAtMaster })
StepInto (@Rearrange , {arrangeCall })
StepInto (@Commit , {rearrangeCompleted })

}

Here, the StepInto macro has the following semantics: If the control state
of the agent is a member of the state set specified in the second argument,
the program of that agent shall be overridden by the rule element specified in
3 In the implementation, an authoritative indexer claims ownership for all unassigned

objects within its range. In our scenario, the new master—as the sole member of the
new cluster—will claim membership for all objects, which conflicts with ownership
information maintained by the old node.
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the first argument. In other words, the first line in the example states that the
agent should “step into” PrepareJoin if its control state is either startingUp
or registerAtMaster.

Missing Scope for Locations. Although the ASM method provides a detailed
classification scheme for functions and locations [7], we missed a way to restrict
the scope or visibility of a location to an individual agent or a well-defined subset
of agents. This feature would have allowed us to make constraints that exist in
the implementation already visible (and checkable) at the specification level.

In Sec. 2.2, we outlined that the system requires “shared” information to op-
erate correctly, but that implies that each application instance maintains its
local copy of that information and any changes need to be propagated among
the instances via proper message exchanges. Without having a way to attribute
information as being “private” to an instance (similar to private fields in object-
oriented languages), one could easily introduce errors in the specification by
accidentally accessing such private information in other contexts.

Missing Tool Support for Refinements. As the name suggests, abstract
specifications should provide a high-level view capturing the essential function-
ality of a system. We took the freedom to “abstract away” implementation related
issues during the initial phase of our work. Compared to that, the executable
specification had to spell out all the details that we had left out in the abstract
specification. That constitutes a large refinement and should have probably been
broken up into several steps. Unfortunately, none of the tool sets that were avail-
able to us does provide any support for controlled refinements.

Faced with that problem, we again took a rather pragmatic approach: we
tried to establish a strong linkage on the syntactical level by staying as close
as possible to the naming conventions and signatures introduced in the abstract
specification although we could have used a more concise notation in some cases.
There are, e. g., abstract rules which are parametrized with a node referring
to the application server node which will process a request. In the executable
specification, we do have functions that establish a unique relationship between
an agent and such a server node. Given that relationship, the node parameter
in the CoreASM rule signature is redundant, but has been retained to keep the
rule signatures synchronized.

Reusable Specification Modules. When writing our specification, we of-
ten encountered situations in which we needed to specify common concepts
(e. g., asynchronous communication channels) that, with respect to our target,
we would classify as “infrastructure.” Based on our experiences with program-
ming languages that are equipped with large, thoroughly tested libraries of com-
mon data structures and algorithms, we often felt the need for similar libraries
of well-proven, generic specifications of common software engineering artifacts.
Consequently, we tried to make our specification as re-usable as possible; still, we
cannot claim that our specification can be easily reused in other contexts than
our own. We believe that is partially due to our own lack of experience in writing
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modular ASM specification and partially due to the lack of generic modules in
ASM. Finally, while systems like Isabelle [18] or Coq [6] provide a large vari-
ety of re-usable libraries formalizing mathematical concepts, we still see a lack
of similar libraries for data-structures, algorithms, and high-level components
(e. g., of-the-shelf middleware components). Besides being the basis for further
formalization work, such libraries of standard components and algorithms could
also serve as means for learning how to write good specifications. Thus, we would
especially encourage initiatives collecting and maintaining formal specifications
for software artifacts, similar to “The Archive of Formal Proofs” (http://afp.
sourceforge.net) for Isabelle.

3.2 Tool- and Process-Related Issues

While the topics above can be attributed to the specific method we have chosen,
we also see deficits when it comes to development tools and processes used and
established in industrial environments.

Insufficient Support for Literate Specifications. Within our work, we have
experimented with the literate specification feature in CoreASM: We embedded
the executable specification into a document written in OpenOffice.org (http://
www.openoffice.org) which should allow us to use the full power of a modern
desktop publishing system to improve the comprehensiveness of the formal part
with diagrams, cross-references, etc. The CoreASM runtime engine is able to
extract the specification part from such a document and directly execute it.

While this loose coupling seems flexible and elegant at first sight, it has proven
inferior in both usability and efficiency: On one hand, an editing environment that
is unaware of the specification language syntax lacks many of the sophisticated fea-
tures, like syntax highlighting, auto-completion, etc., found in modern, integrated
development environments, such as Eclipse (http://www.eclipse.org). On the
other hand, having no real feedback loopbetween the editing front-end and the run-
time back-end unnecessarily prolongs the round trip for error corrections in com-
parison to state-of-the-art development tools. In hindsight, we would prefer a tight
integration into existing tool environments over such loosely coupled tool chains.

Although there are first examples of tools that strive for better integration into
existing environments, e. g., the Rodin platform (http://www.event-b.org/
platform.html) for Event-B [1], support for literate specifications still seems
to be lacking behind. We still see a tendency to follow the tradition to treat a
formal specification as part of an (academic) publication. In Rodin, e. g., there
is no easy way to export a machine specification other than exporting it to
LATEX (via a separate plug-in). But for large-scale application development, we
need a way to make a formal specification a living document within the overall
development life-cycle.

Debugging Support. When writing specifications one often has to cope with
situations similar to programming. Like programs, specifications may have bugs,
and finding these bugs may require a deeper inspection of what is going on. While
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simulation support primarily asks for ways to steer execution runs and have a
way to observe the externally visible state changes, debugging support would
extend this towards the possibility to fully explore the state of the specification
execution.4 Such a fine-grained specification animation helps, on the one hand,
in convincing oneself (and, in our case, also the developers) that the formal
specification captures the informal requirements and, on the other hand, it allows
for finding the inconsistencies (“bugs”) in the specification in an early stage.

For example, we envision support for executing deterministically specified
traces within the animation environment while being able to set breakpoints for
examining the system state (e. g., variables, messages sent). As a first step in that
direction, our experiences in simulating ASM runs in CoreASM resulted in the
development of a scripting language for CoreASM that is discussed elsewhere [3].
Overall, this scripting language allows for deterministically provoking the bug
described in Sec. 2.5 by performing the following steps automatically:

1. Start a cluster with two nodes and wait until it has reached a stable state.
2. Disable node failure notification.
3. Stop the master node.
4. Once the master node is done, start a new node.
5. Once that new node has finished building the new cluster, enable node failure

notification.

In our experience, such “scripted” traces are also very helpful in communicating
with the developer of the analyzed product.

Combining Formal and Semi-formal Development Processes. Whereas
formal methods are far from being deeply integrated into our software develop-
ment process, semi-formal methods, e. g., in the form of UML or BPMN are used
routinely. Therefore, these already existing, semi-formal specifications should be
reused in a tool-supported way. This could be done either by providing formal
methods tool for these languages and integrating them into model-driven devel-
opment processes (e. g., similar to [9,8]) or by generating specifications in the
formal language of choice. Such generated specifications could describe, on the
one hand, the environment, and on the other could serve as the basis for a formal
high-level system specification.

Lack of Commercially Applicable Tools. While being a completely non-
technical issue, we experience amazingly often the situation in which the soft-
ware license of a tool prevented its use—even for case-studies. Either, while being
available for download, the tools did not have any licensing information (which,
at the end, forbids their use) or because the use in a commercial environment
is excluded explicitly in the license terms (and, furthermore, no option for ob-
taining a commercial license is provided). Thus we would like to encourage tool
4 Lacking that feature in CoreASM, we fell back to the “traditional” way of debugging

by augmenting the specification with logging statements. In the final version, roughly
10% of the whole specification are dedicated to produce meaningful execution traces.
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developers to state their intended license terms clearly. In our experience, this
is especially important to advertise the use of formal methods in environments
that are not able (either due to a lack of resources or expertise) to develop their
own tools. For example, today’s (rare) use of formal methods at SAP is too
diverse to suggest a concrete formal toolchain (and specification language) to
our product groups. Thus, we would like to use formal tools from external ven-
dors, similar to our uses of development tools (e. g., for Java development) from
external vendors. Consequently, we see a higher chance to educate our product
groups in using SAT or SMT solvers5 for specific problems than writing formal
specification of whole software components.

4 Conclusion

Fully automated tools, that apply formal methods without the need for an ex-
plicit specification (neither of the underlying software system or of the proper-
ties to be analyzed), e. g., Polyspace (http://www.mathworks.com/products/
polyspace/) or Coverty (http://www.coverty.com/), can be used by non-
experts in formal methods [19]. Similar experiences are reported for automated
tools that only require light-weight specifications (e. g., based on pre-, postcon-
ditions and invariants) on the level of source code annotations that enjoy a deep
integration into the development life-cycle, e. g., [5].

In our experience, the use of formal specifications, within an industrial soft-
ware development process for business software, using languages like ASM [7],
B [1], or Z [20], is still a challenge. While we do not see a fundamental problem
in requiring an expert for the (potential) interactive analysis (e. g., verifying sys-
tem properties), non-experts should be able to document, write, type-check, and
animate (execute) formal specifications and the system properties that should
be verified during an analysis. Overall, to achieve this goal, the specification and
animation environment needs to be integrated into modern software develop-
ment tool chains used in industry. Moreover, as software is usually developed
in, potentially distributed teams, support for a collaborative writing of speci-
fications seems to be a necessity. This is in particular true if existing software
development teams work closely together with formal methods experts.

Overall, we see in particular four areas for future research: First, the inte-
gration of collaboration techniques, e. g., wikis6, into environments for writing
specifications would allow for turning formal specifications from nicely format-
ted (academic) papers into living documents. While there are first experiments
in integrating interactive theorem provers into a semantic wiki for generating
formally checked pages [16], we still see this only as a first step. Collaborative
5 At SAP, using SAT solvers, at least for prototypes, seems to be an accepted devel-

opment approach. Nevertheless, due to technological and licensing issues it is still
unclear if a solution based on a SAT solver will make its way into shipped products
or if, during production, they might be replaced by a customized analysis algorithm.

6 There is another interesting aspect to this: wikis have successfully proven that a
simplified notation can significantly extend the user base.
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scenarios with distributed teams (of developers and formal method experts) may
require sophisticated life-cycle and versioning support that would allow teams
to develop, refine and test several specification variants in parallel.

Second, software changes over time and the same should be true for its ac-
companying documentation and formal specification. Therefore, a tool-supported
process that (automatically) ensures consistency and traceability among all de-
pendent artifacts is, in our opinion, a central cornerstone of the successful ap-
plication of formal specifications in the mainstream software industry.

Third, we would like to stress once again the importance of a library mecha-
nism allowing for both the structuring of specifications and, more importantly,
the reuse of already analyzed specifications. Similar to the component libraries
available for programming language, such libraries need to be easily available
within the regular tool chain (e. g., similar to the handling of Java libraries in
Eclipse), reusable, covering a wide application area (ranging from data struc-
tures, over algorithms and protocols, to high-level specifications of large compo-
nents, e. g., middleware), and, last but not least, available to the public.

Finally, we see a potential for integrating test case generation techniques (e. g.,
similar to [10]) into specification and animation environments. This would allow
for both the generation of test cases on the level of the specification and the
generation of test cases on the specification level. While the former allow for
validating that the implementation–including the environment it is executed
in—is a refinement of the specification, the latter can be used for guiding the
animation of the specification.
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Abstract. The use of business process models has gone far beyond doc-
umentation purposes. In the development of business applications, they
can play the role of an artifact on which high level properties can be
verified and design errors can be revealed in an effort to reduce overhead
at later software development and diagnosis stages. This paper demon-
strates how formal verification may add value to the specification, de-
sign and development of business process models in an industrial setting.
The analysis of these models is achieved via an algorithmic translation
from the de-facto standard business process modeling language BPMN
to Event-B, a widely used formal language supported by the Rodin plat-
form which offers a range of simulation and verification technologies.

Keywords: business process modelling, verification, BPMN, Event-B.

1 Introduction

Complex, large-scale business information systems are critical to the successful
operation of many businesses, and SAP is a leading provider of such systems.
Business process modeling has become increasingly important to the develop-
ment of enterprise software applications [13]. Nowadays, business applications
are usually built by integrating a broad range of highly configurable software
components and services, which can be rapidly tailored to satisfy different and
constantly changing business needs. Business process models are used to de-
scribe such integration scenarios and their work flows, facilitating an intuitive
common understanding of the business logic between customers and develop-
ers. In addition to their use as documentation, business process models can also
be simulated, analyzed and verified to reveal design errors at an early stage in
software development. This promises to enhance the efficiency of reaching high-
quality software solutions and can save substantial implementation and diagnosis
costs which would otherwise be incurred at later development phases.

We wish to use formal methods to improve the quality of business process
models within a software design process, and also aim to reduce the extra bur-
den that formal methods induce on designers and developers. Within the context
of the DEPLOY project1, we choose the Event-B modeling formalism [1] and the
1 www.deploy-project.eu
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Rodin platform [2] in our pursuit of these goals. The choice is also encouraged
by our past successful experiences of using Event-B for describing and analyz-
ing business applications [5,6]. Event-B offers many indispensable features for
analyzing business process models such as the ability to model data. The Rodin
platform is empowered by a large number of plug-ins providing various analysis
capabilities like specialized provers, model checking, and simulation.

This paper examines our recent work on the formal analysis of business pro-
cess models using Event-B and Rodin, and discusses the impact of the analysis
results on software design and development. We also investigate the potential to
largely automate these analyses in order to pave the way for future industrial
deployment. We designed an algorithmic translation from BPMN, the de-facto
standard business process modeling language, to Event-B. The translation cov-
ers most of the commonly used BPMN features, also including features newly
introduced in the proposed draft of the second version of the language [15]. We
also make the Event-B translation structurally faithful to the original BPMN
model, which not only improves readability, but also enhances provability and
analyzability.

Outline. In Section 2 we briefly introduce BPMN and Event-B, and in Section 3
sketch our translation from BPMN to Event-B. Sections 4 and 5 describe two
case studies to illustrate how formal analysis is performed on the Event-B trans-
lations of BPMN models, and also discuss the possibility of automating these
analysis procedures. Related work is discussed in Section 6, before we conclude
in Section 7 with a discussion of our next steps. Due to space constraints, we
have moved some of the Event-B code and discussion into appendices.

2 Background

BPMN. We introduce the Business Process Modeling Notation (BPNM) ele-
ments we use in this paper. We only show syntactic compositions here. The
semantics of syntactic elements will be discussed later when we explain how
they are translated.

A typical BPMN model consists of one or more pools, each representing a col-
laboration partner (such as FACTORY and WORKER in Figure 1). Each pool usually
contains a top process. A process contains flow objects and the connections be-
tween them. Flow objects include events, gateways and activities. Events either
throw or catch triggers and are represented as circles containing a marker indi-
cating the kind of trigger. Gateways converge or diverge control flows and are
represented as diamonds. An activity can be either an atomic task or a composite
sub-process that contains an inner process. An activity can be a loop. Activities
are graphically represented as rounded rectangles. A process may contain data
items as process instance attributes. There are also data stores that are process-
independent and globally accessible.

Two pools communicate with each other mainly by exchanging messages,
which may carry data fields. Message flows are represented as directed dotted
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lines connecting two pools. BPMN does not dictate how the message exchange
mechanism works. In this paper, we assume that messages may not be lost,
duplicated, or altered but may arrive in any order. Furthermore, BPMN provides
the concept of correlation to identify the proper recipient of a message.

An important concept of BPMN is activity compensation that usually hap-
pens when the effect of an activity is no longer desired and needs to be reversed.
We will discuss compensation in greater length in Section 3.6. A complete de-
scription of all BPMN features can be found in [15].

Event-B and Rodin. An Event-B model consists of contexts and machines. The
contexts describe the static elements of the model, whereas the machines specify
the dynamic behavior of the model. Each machine may contain variables that
model persistent state data, invariants that restrict the valid content of vari-
ables, and guarded events that describe functionality of the machine in terms of
actions defined over the state variables. Typically, a model consists of a chain of
Event-B machines, each of which (apart from the first) is linked to its predeces-
sor by a refinement relation expressed in terms of a gluing invariant between the
two machines. In a refinement relation, we refer to the successor machine and its
components as concrete and the predecessor and its components as abstract. A
concrete event refines an abstract event if the guards of the concrete event imply
the guards of the abstract event and the abstract actions simulate the concrete
ones with respect to the gluing invariant. Machines and refinement steps give
rise to proof obligations that ensure internal consistency of individual machines
(e.g. well-definedness and feasibility of events) and behavior preservation across
refinement steps. A typical Event-B model has an extremely simple initial ma-
chine, with detail added in a controlled way through refinement steps. These
steps are usually small to reduce the size and complexity of the generated proof
obligations and the associated burden on the automatic provers. We make sub-
stantial use of refinement in our translation from BPMN to Event-B. A detailed
account of the Event-B language can be found in [1].

Rodin is an open, extensible toolset for modelling and verification of Event-B
models. A model editing interface is provided for constructing Event-B machines
and refinement steps. Proof obligations are automatically generated and dis-
charged (as far as possible automatically) by proof tools built into the platform.
In the event of an obligation not being automatically discharged, an interface
for manual proof guidance can used.

3 Translating BPMN to Event-B

BPMN is specified using natural and graphic languages, and comes with no
rigorous semantics defined. Therefore, there are a lot of ambiguities in BPMN
that had to be clarified when we designed the translation into Event-B. These
clarifications are according to the specific needs of our use cases, so by no means
do they offer the only proper solutions – other semantic variants can be chosen.

The translation covers most of the commonly used BPMN features including
comprehensive modeling of control flows, data modeling, compensation, message
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based communication, error and exception handling, sub-processes, looping and
multi-instance activities. The uncovered BPMN features are most notably chore-
ography and conversations as well as some types of flow objects, including call
activities, transactions, conditional events and complex gateways. Some of these
missing features are rarely used in practice and add significant complexity to the
model. Other missing features such as transactions have very vague descriptions
in the official BPMN specification and are difficult to interpret.

Our translation was guided by three principles. First, the Event-B translation
should be structurally faithful to the original BPMN model so that anyone
with knowledge of the original model can easily understand the translation.
Also, any analysis result that we may obtain from the Event-B translation can
be easily mapped back to the original model. Second, the translation should be
designed to improve provability, i.e. it should result in the automatic discharge
of as many proof obligations as possible. Finally, we are interested in verifying
properties for systems that allow multiple instances of same processes.

We are unable to give a detailed description of how each BPMN element is
translated. We therefore select a few important BPMN features and explain the
intuition of their translation.

3.1 The Structure of the Translation

We take the model in Figure 1 as an example to show how its Event-B translation
is structured (Figure 2). This model describes the management of shift work
within a factory: A worker assigned to a shift becomes unavailable, and the
manager has to find a replacement from the pool of available workers. The status
of each worker is maintained in a database. In this scenario, an attempt is made
to automatically choose a replacement. A request is sent to an available worker,
who has a fixed length of time to reply. If he accepts, he is assigned to the shift
and the database is updated. Otherwise, the process may be repeated up to a
maximum of five times. If, after five attempts, a replacement has not been found,
a manager steps in to allocate a worker to the shift directly.

The contexts in the Event-B translation contain common definitions such as
process life cycle states as well as abstract constants and carrier sets that repre-
sent process instances, message instances, data types, and so on. The translations
of processes and their communication are gradually added to a series of refining
machines: The machine at the first level contains nothing but the control flow
information of the Factory process. In particular, it has neither data informa-
tion nor the internal detail of the sub-process schedule. The machine at the
second level preserves or refines all information in the first machine, and adds
also the data flow information of Factory. Details of schedule and WORKER are
added similarly into later refinements. In the end, the communication between
the two top processes is added into the last machine.

The above structure preserves the hierarchical structure of the original model
through refinements: the information of a sub-process (e.g., schedule) is always
added into machines at higher refinement levels than that of the container process
(e.g., FACTORY). Our structure also achieves separation of concerns, which is very
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Fig. 1. The shift worker scheduling model

Fig. 2. The structure of the Event-B translation of Figure 1

beneficial for automated provers: A property about the control flow of process
Factory can be expressed and proved at the first refinement level since it needs
no information from later levels. This means a smaller hypothesis space for
automated provers to search.

3.2 Processes

We allow multiple instances of a process. We use an abstract carrier set to
represent all possible instances of each process (e.g. PROC FACTORY INSTANCES)
in contexts. The machines contain variables recording existing process instances
(e.g. instances Factory); recording the life cycle state of each existing instance
(e.g. state Factory) and, in case of a sub-process, recording the parent of each
sub-process instance (e.g. parent inner schedule); and recording which activ-
ity instance (outer instance) results in the creation of a sub-process instance
(e.g. outer inner schedule).
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Control flow. Our interpretation of sequential and parallel executions of flow
objects uses tokens. For each sequence flow, we define a function that maps each
process instance to the number of tokens in this particular process instance.
Tokens are initialized when a new process instance is created by a start event:
all outgoing sequence flows from the start event receive a certain number of
tokens (usually 1), and all other flows receive no tokens. Each flow object is
guarded by a condition stipulating how many tokens it needs to start execution.

Control flow convergence. With a few exceptions like join gateways, a flow ob-
ject with multiple incoming flows needs only one of the incoming flows to carry
enough tokens to start execution. In this case, we use as many Event-B events
to represent the flow object as the number of incoming flows: each event de-
scribes the situation in which the tokens on the corresponding incoming flow are
consumed. This is because otherwise we must express disjunctive choices and
updates of tokens in the guard and action of the Event-B event representing the
flow object. Automated provers often struggle to deal with disjunctions because
they lead to case splitting and a potential explosion in the size of the proof tree.
A example of the translation of control flow convergence can be found in Ap-
pendix A. On the contrary, a join gateway requires all incoming flows to carry
enough tokens to start execution. Then, it is enough to have one Event-B event
to represent the gateway, which consumes tokens from all incoming flows.

Data. There are three kinds of data: process attributes, data stores, and activity
inputs/outputs. For each process attribute, we define a function that maps each
process instance to the runtime value of the attribute in that particular instance.
A data store is globally accessible and does not belong to a particular process.
Therefore, unlike process attributes, the data structure representing the data
store involves no process information. Finally, activities may have input and
output parameters. BPMN allows activities to have multiple sets of inputs or
outputs. However in our translation we stipulate that any flow object or sub-
process has at most one input set and one output set. We also do not explicitly
represent inputs and outputs, since the runtime values of inputs/outputs are
decided by process attributes or data stores.

3.3 Events Triggers

An event either throws or catches a certain kind of triggers. The BPMN speci-
fication provides no information of trigger structures and how triggers are pro-
cessed, stored, and discarded. In our understanding, each kind of triggers has its
specific processing mechanism. For instance, the trigger of a message receiving
event occurs when a desired message becomes available, and it persists until the
message is consumed. On the contrary, the trigger of a conditional event occurs
when a certain condition is fulfilled. However, if the conditional event is not
ready to be triggered, e.g, it has no incoming tokens, then the trigger immedi-
ately disappears. Based on the above discussion, we have no explicit and unified
representation for all kinds of triggers. Instead, we model the trigger behavior
implicitly in their executional contexts.
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3.4 Messages

Message buffers are implemented simply as sets since message order information
is absent. For each type of message, we introduce two variables to record (1)
the set of already sent messages of the type and (2) the set of messages still in
the buffer (i.e., not yet received). Note that the buffer is shared by all process
instances that may send or receive this type of messages. Sending a message
is simply to add the message into both the buffer and the set of already sent
messages, while receiving a message is to remove it from the buffer. Message
fields are defined as functions that map each message instance to the concrete
value of the corresponding field in that message.

Some message fields may contain correlation information that identifies the
intended receiver which contains matching correlation information. In the model
in Figure 1, session identifiers (sid) are used as correlation information. Each
response message contains an sid field, which can be received only by a process
instance with a matching sid as its process attribute. A request message is
used to create a new WORKER instance. Therefore, a new request message should
contain a new sid. Further detail on the translation of correlation-based message
exchanges is available in [7].

3.5 Sub-processes

In BPMN, a sub-process can be either collapsed or expanded, with the inter-
nal structure of the sub-process either hidden or revealed respectively. These
two appearances find their analogies in the refinement hierarchy of the Event-
B translation: The sub-process is first specified without internal detail when
the control flow of its containing process is added. The internal detail of the
sub-process is specified at later refinement levels.

For a looping sub-process, each execution creates a single outer instance, which
acts as a container for multiple inner instances. The execution of an inner
instance corresponds to a single loop iteration. Further detail on the translation
of the “collapsed view” of the loop sub-process in the FACTORY process in Figure
1 can be found in [7].

The translation of the “expanded view” is shown below. At this level we
add the outer instance attribute loop counter, and also introduce an auxiliary
variable next to control the creation of the next inner instance. In our example,
the loop condition is tested before each iteration, and therefore we initialize next
to false to enforce the checking of the loop condition before any inner instance
is created. Note that in the following code we leave out all guards and actions
inherited from abstract events.

MACHINE Level 03 Sub schedule CF
VARIABLES

......
at outer schedule loopcounter
au outer schedule next

......
EVENTS
Event act Factory schedule activate =̂
refines act Factory schedule activate
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any
pid
child

where
... : ......

then
... : ......
act5 : au outer schedule next(child) := FALSE
act6 : at outer schedule loopcounter(child) := 0

end
Event act Factory schedule complete =̂
refines act Factory schedule complete

any
pid
child
inners

where
... : ......
grd6 : inners = dom(outer inner schedule � {child})
grd7 : ran(inners � state inner schedule) ⊆ {completed}
grd8 : at outer schedule loopcounter(child) ≥ max retry

then
act1 : state outer schedule(child) := completed
act2 : tk Factory schedule gate(pid) := tk Factory schedule gate(pid) + 1

end
Event act Factory schedule next =̂

any
pid
child
inners

where
... : ......
grd6 : inners = dom(outer inner schedule � {child})
grd7 : ran(inners � state inner schedule) ⊆ {completed}
grd8 : at outer schedule loopcounter(child) < max retry

then
act1 : au outer schedule next(child) := TRUE

end
Event evt schedule start =̂

any
pid
parent
outer

where
... : ......
grd8 : au outer schedule next(outer) = TRUE

then
... : ......
act10 : au outer schedule next(outer) := FALSE
act11 : at outer schedule loopcounter(outer) :=at outer schedule loopcounter(outer)+1

end
END

3.6 Compensation

Compensation starts with the execution of a compensation throwing event. Each
throw event has a scope, and only activities within this scope can be compen-
sated. An activity is within the scope of a compensation throw event if (1) the
activity is contained in the same process as the event; or (2) the event is con-
tained in a compensation event sub-process of the process that contains the
activity.

Usually, a compensation throw event contains a reference to the activity to be
compensated. However, it is left open in the official BPMN document whether
all completed instances of the activity inside the scope will be compensated, or
only the last instance is to be compensated. In our translation, all completed
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instances are compensated. An activity can be compensated only after being
completed. If a compensation trigger is thrown when an activity instance is still
active, the compensation handler of the activity instance is not triggered and,
in this translation, will never be triggered unless another compensation trigger
is thrown again in the future.

The following code shows how the shipping activity in Figure 3 is compen-
sated. au Retailer shipcomp insts records the activity instances which need
to be compensated, and au Retailer shipcomp sync is used to wait for the
completion of the involved compensations before passing tokens to outgoing
flows.

MACHINE Level 04 Retailer Data
VARIABLES

......

au Retailer shipcomp sync

au Retailer shipcomp insts

......
EVENTS
Event evt Retailer shipcomp activate =̂
extends evt Retailer shipcomp activate

any
pid
to comp

where
grd1 : pid ∈ instances Retailer
grd2 : state Retailer(pid) = active
grd3 : tk Retailer gate shipcomp(pid) > 0
grd4 : au Retailer shipcomp sync(pid) = FALSE
grd5 : to comp ⊆ instances ship
grd6 : to comp = dom(parent ship � {pid}) ∩ dom(state ship � {completed})

then
act1 : tk Retailer gate shipcomp(pid) := tk Retailer gate shipcomp(pid) − 1
act2 : au Retailer shipcomp sync(pid) := TRUE
act3 : au Retailer shipcomp insts(pid) := to comp

end
Event evt Retailer shipcomp complete =̂
extends evt Retailer shipcomp complete

any
pid

where
grd1 : pid ∈ instances Retailer
grd2 : state Retailer(pid) = active
grd3 : au Retailer shipcomp sync(pid) = TRUE
grd4 : ran(au Retailer shipcomp insts(pid) � state ship) ⊆ {compensated}

then
act1 : au Retailer shipcomp sync(pid) := FALSE
act2 : tk Retailer shipcomp chargecomp(pid):=tk Retailer shipcomp chargecomp(pid)+1
act3 : au Retailer shipcomp insts(pid) := ∅

end
Event act Retailer shipcomp =̂
refines act Retailer shipcomp

any
pid
child

where
grd1 : pid ∈ instances Retailer
grd2 : child ∈ instances ship
grd3 : state ship(child) = completed
grd4 : parent ship(child) = pid
grd5 : child ∈ au Retailer shipcomp insts(pid)

then
act1 : state ship(child) := compensated
act2 : db order status(at Retailer order(pid)) := returned

end
END
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Fig. 3. A BPMN model for an online retailer

4 Consistency of Business Processes

We can use the Rodin toolset to examine the generated Event-B models for
properties such as deadlock and livelock. In this section we show how we may gain
further confidence in the correctness of the BPMN model by stating and proving
application-level properties as invariants within the Event-B model. We use the
online retailer model in Figure 3 as an example. The BPMN contains two extra
annotations in the top right corner. These are extra application-level consistency
conditions on the BPMN model. We anticipate these conditions to be defined
by the developer and treated by the implementor as further constraints on the
model. We show how we take account of them within the Event-B translation.

The online retailer model starts with the buyer, at which point a new instance
of the process is generated. The buyer sends a purchase order to the retailer,
which contains order and buyer information. The retailer ships the requested
item, and the buyer is then charged. If, within a specified time period, the
buyer asks to return the item, and the retailer chooses to accept the return,
then both the shipping and charging activities must be compensated – shipping
by the return of the item and charging by sending a refund to the buyer. The
consistency of the information maintained about the order status and the buyer
account must be maintained by this process.

The BPMN compensation event passes control to an associated compensating
activity (Return item and Refund in our example.) The purpose of the compensat-
ing activity is to “undo” an earlier part of the workflow. A precise specification
of the behaviour of this activity is usually left to a later stage in the development
process.

The text annotations we investigate here, such as (1) and (2) in Figure 3, give
the BPMN developer the opportunity to provide a more precise specification of
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required properties of this subsequent development. Text annotation (1) in states
that the order status is refunded if and only if the compensation paid is equal to
the price of the item. Translating annotation (1) extends the Event-B refinement
hierarchy with a new machine containing a new variable compensation and an
additional invariant. The variable records the compensation paid in each instance
of the retailer process. The consistency invariant introduced is formalized as

∀pid · pid ∈ instances Retailer⇒
(db order status(at Retailer order(pid)) = refunded ⇔
(compensation(pid) = price(at Retailer order(pid))))

where the order is marked as refunded only when the compensation paid is equal
to the price of the goods ordered. The event generated from the refund activity
is also extended to record the compensation paid on that order. The new event
is shown below with act4 as the additional action.

Event act Retailer chargecomp =̂
extends act Retailer chargecomp

any
pid
child

where
grd1 : pid ∈ instances Retailer
grd2 : child ∈ instances charge
grd3 : state charge(child) = completed
grd4 : parent charge(child) = pid
grd5 : child ∈ au Retailer chargecomp insts(pid)

then
act1 : state charge(child) := compensated
act2 : db buyer account(at Retailer buyer(pid)) := db buyer account(at Retailer buyer(pid))+

price(at Retailer order(pid))
act3 : db order status(at Retailer order(pid)) := refunded
act4 : compensation(pid) := price(at Retailer order(pid))

end

The second annotation in Figure 3 is a property over all instances of processes.
The value in the account of any buyer should be the initial value of the account
less any purchased items. Translating annotation (2) again adds a new machine
to the model, which includes the invariant

∀b · (b ∈ BUY ERS ⇒
(db buyer account(b) = initial buyer account(b) −
Sum(ran(dom(at Buyer buyer � {b}) � at Buyer order)

∩
dom(db order status � {charged, returned}))))

in which the clause ran(dom(at Buyer buyer�{b})�at Buyer order) identifies
all orders placed by buyer b. This is restricted to orders with status charged
or returned by the clause dom(db order status � {charged, returned}). Order
status returned identifies those orders which have been returned but not yet
refunded, and therefore still need to be included in our invariant.

Proofs. The first property results in 28 proof obligations, of which 16 are auto-
matically discharged. The other proof obligations require expert human interven-
tion. The second property is considerably more complex and therefore results in
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582 proof obligations, of which 300 are automatically discharged. The proving of
both properties requires the discovery and use of auxiliary invariants as lemmas.
For the second property, a total number of 88 additional invariants are added.
Currently, we need to manually discover these lemmas. However, we observe
that 30 lemmas express relations between token quantities on different sequence
flows, e.g., if the incoming flow of Charging buyer has tokens then the incom-
ing flow of Shipping cannot have tokens. Such information can be obtained by
an automated static analysis on the control flow of the model. Therefore, it is
possible to automatically discover these 30 lemmas. In future work we will also
investigate the possibility of discovering other kinds of lemmas. Furthermore,
we observe a highly repeated pattern in the proofs that involves case splitting
to distinguish process instances. Such patterns can be implemented as proof
strategies customized for proving a certain class of invariants.

5 Enhancement of Processes Models Using Patterns

When a property is violated by a model, it is possible that the model contains
undesired behavior which can be removed by further constraining the model via
refinement steps. We may directly perform such steps on the Event-B translation
of the model in order to verify whether such refinement steps are valid, before
making changes to the original model. Moreover, refinements in Event-B can be
done automatically using patterns.

Event-B patterns [3,11,12,8] are a means of expressing reusable modeling
structures and managing effort by promoting proof re-use. In this example, we
use the type of pattern presented in [11], which provides a controlled way of
extending an Event-B development with a pre-validated refinement step. Since
the refinement step between the abstract and the concrete pattern machines has
been proved in advance, any application of the pattern results in a new, fully-
proved, refinement step. The approach is automated as a plug-in for the Rodin
platform ([10]). In the example we present below, a pattern is used to correct a
previously discovered omission in a specification.

We use the shift worker scheduling process in Figure 1 as an example. The
process depicted in Figure 1 contains a timing-related fault2, which can lead to
an inconsistency in the data maintained by the business process. It is caused by
the use of the timeout at the point where worker responses are received. It arises
when a request is sent to a potential worker but no reply is received within the
allotted time. Another request is therefore sent to another available candidate.
He may accept and be assigned to the shift, after which an accept message is
received from the first worker. Now the first worker thinks he is the replacement,
but in fact the second has been chosen. We discovered this error using the Rodin
model checker ProB : we added an invariant expressing the property that at
most one worker accepts the shift at any given time. ProB found an erroneous
execution within a short time.
2 Note that the shift worker scheduling process is a simplified version of a BPMN

workflow proposal, and not a part of any real world system.
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Fig. 4. Structure of the timed error recovery pattern

When translated into Event-B, the flaw present in the described scenario can
be corrected using the timed error recovery pattern, shown in Figure 4 and
presented in full in [6]. It is designed to be applied to any model in which late
messages are not properly processed. When applied, a further refinement level
is added to the Event-B development. This new level contains the error recovery
behavior which ensures adequate processing of any late messages.

The concrete machine in the pattern separates normal and recovery behav-
ior by distinguishing the receipt of messages before and after the deadline and
handling these two cases separately. Late responses are followed with a com-
pensation event, which may be further refined depending on the way in which
recovery is implemented.

Applying the pattern requires the identification of the activities in the work-
flow where the timer is set and the (on time or late) replies are received. These
activities are then matched with the sending and receiving events in the pat-
tern abstract machine (snd and rcv in the abstract machine in Figure 4). The
pattern variables must also be matched to the appropriate variables within the
development.

In the Shift Worker Scheduling model in Figure 1, the timer is set at the task
Select an available worker. The Receive response action is the point at
which messages are received. The application of the pattern introduces a new
event corresponding to rcv bad (the arrival of late replies) and given below.

Event act schedule response late =̂
any

pat m
where

grd1 : pat m ∈ q rcv
grd2 : tt(pat m) < now

then
act1 : q rcv := q rcv \ {pat m}
act2 : q comp := q comp ∪ {pat m}
act3 : timercvd := timercvd ∪ {pat m �→ now}

end

In this event, pat m is the message and q rcv and q comp are the messages
queued for reception and compensation respectively. The second guard requires
that the current time (now) is later that the target arrival time of the message
(tt(pat m)). On arrival, the message moves to the queue for compensation and
the time at which it is received is recorded.

The recover event refines the rcv event. As well as retaining all the function-
ality of rcv, it places the compensated message in the database of consistent
messages. The precise nature of the compensation activity required will vary
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according to the particular activity it is compensating, so the recover event acts
as a placeholder for a fuller description of compensation within the workflow,
which may be added (perhaps by the application of a more specific pattern) in
further refinements.

The ability to automatically add pre-validated refinement steps to generated
Event-B models can be used to support BPMN development. In our example,
the refinement step made to the Event-B translation can be re-constructed in
the original model by introducing a parallel thread to detect and react to late
messages. Such reconstruction can be achieved either through a reverse transla-
tion procedure from Event-B back to BPMN, or by building up a repository of
BPMN refinement patterns corresponding to Event-B patterns. We will explore
both possibilities in future work.

6 Related Work

Unlike our work presented in this paper, existing work in this area is largely con-
centrated on an examination of BPMN control flow, and does not consider data
modeling. Most of them also consider only a small fraction of the BPMN lan-
guage, and put many restrictions on models that can be analyzed. [9] uses Petri
nets to formalize and analyze BPMN control flows while abstracting from data
information. The approach requires 1-safeness (i.e., having at most one token
on any sequence flow) in order to analyze exception handling for sub-processes.
On the contrary, we wish to be able to model multiple processes instances. [17]
also uses Petri nets to treat transactions and compensations, and also limits
his treatment to pure control-flow aspects of models. [20] focuses on the control
flow aspects of BPMN in a mapping to the formal workflow language YAWL.
[18] formalizes a subset of BPMN in CSP but does not consider features such
as compensations and correlation. It is also unclear how data is modeled. The
recent work to be published in [4] gives a precise and well-structured semantics
of BPMN using Abstract State Machines. This is, to our knowledge, the largest
coverage of BPMN besides ours. In [16] a subset of BPMN is translated into
the process algebra COWS in order to exploit the stochastic extensions to per-
form quantitative reasoning on BPMN processes. In [19] the authors present a
relative timed semantics for BPMN using CSP. This approach concentrates on
the correctness of control flow. In [14] the authors outline a framework for the
verification of business processes suggesting the use of TLA+ as well as Petri
nets.

7 Conclusions and Further Work

We have presented our work on the formal analysis of business process mod-
els through a translation into Event-B. The translation can be fully automated
and covers a large set of BPMN features. In particular, we consider the modeling
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of both control flow and data flow. We showed how properties can be verified
by the help of automated provers in the Rodin platform, and also showed how
Event-B patterns can be used to support the correction of design errors.

Subsequent work on this topic will be driven by our long-term goal: to allow
the BPMN developer to benefit from the improved analytic power of formal
methods (and in particular Event-B) while adding minimal extra complexity to
the design process. As an initial step, we expect to implement the presented
translation as a plug-in to the Rodin toolkit.

The two proofs of possibility presented in Sections 4 and 5 point to two dif-
ferent enhancements to the BPMN development method which we could aim to
support. The first, of adding annotations to BPMN, will require a definition of
the annotation language and a formalization and implementation of the rules to
translate these annotations to Event-B. The second, of using patterns to trans-
form the generated Event-B models, would benefit from the definition of the
inverse translation from Event-B to BPMN. Note that this is not the same as a
general Event-B to BPMN translation, as we would be able to impose relatively
strong conditions on the structure (and indeed syntax) of source Event-B models
in this translation. We could also develop a library of BPMN transformations
together with their Event B patterns, and offer developers a choice from this
library in response to identified problems.

Both these approaches suffer from the high number of proof obligations which
must be manually discharged. We will therefore work on the automatic discovery
of auxiliary lemmas to assist in the proof task. Furthermore, we plan to design
and implement various proof strategies tailored for specific classes of proof obli-
gations in order to increase the number of automatically discharged proofs.

Finally, we expect to explore the use of model-checking as a means of providing
rapid feedback to the developer on the reason for a failed proof. The challenge
here is to provide feedback in a way meaningful to the developer.
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A Translation of Control Flows

The following shows how the end event3 in the FACTORY process in Figure 1 are
translated. This end event has two incoming flows. Every tk Factory xx xx is a
token function that maps each Factory instance to the number of tokens on the
respective flow. The end event can be executed only if the containing Factory
instance is still active. This is reflected by the guard grd2 in each Event-B event.

MACHINE Level 01 Factory CF
SEES Data Types, Processes
VARIABLES

......
tk Factory schedule gate
tk Factory gate assign
tk Factory gate end
tk Factory assign end
......

INVARIANTS
... : ......
inv4 : tk Factory schedule gate ∈ instances Factory → N

... : ......
EVENTS
Event evt Factory end in1 =̂

any
pid

where
grd1 : pid ∈ instances Factory
grd2 : state Factory(pid) = active
grd3 : tk Factory assign end(pid) > 0

then
act1 : tk Factory assign end(pid) := tk Factory assign end(pid) − 1

end
Event evt Factory end in2 =̂

any
pid

where
grd1 : pid ∈ instances Factory
grd2 : state Factory(pid) = active
grd3 : tk Factory gate end(pid) > 0

then
act1 : tk Factory gate end(pid) := tk Factory gate end(pid) − 1

end
... ...

END

3 An end event is a sink for tokens, i.e., it only consumes tokens without generating
any. Reaching an end event does not necessarily imply the completion of process
execution.
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Abstract. To ensure dependability of on-board satellite systems, the
designers should, in particular, guarantee correct implementation of the
mode transition scheme, i.e., ensure that the states of the system compo-
nents are consistent with the global system mode. However, there is still
a lack of scalable approaches to formal verification of correctness of com-
plex mode transitions. In this paper we present a formal development of
an Attitude and Orbit Control System (AOCS) undertaken within the
ICT DEPLOY project. AOCS is a complex mode-rich system, which has
an intricate mode-transition scheme. We show that refinement in Event
B provides the engineers with a scalable formal technique that enables
both development of mode-rich systems and proof-based verification of
their mode consistency.

1 Introduction

Currently the use of formal methods in the industrial practice is getting a new
momentum. For instance, in the EU FP7 Integrated Project Deploy [13] the
project partners work on advancing methods and tools for refinement based-
development and verification. The goal of the project is to enable deployment of
these techniques in the industrial practice. Recently, Space Systems Finland in
cooperation with the academic partners has undertaken a formal development of
the Attitude and Orbit Control System within the Event B framework. In this
paper we present this development and discuss the lessons learnt.

The Attitude and Orbit Control System (AOCS) [6] is a generic component of
satellite onboard software. The main purpose of AOCS is to achieve and main-
tain optimal attitude of a satellite. While achieving it, the system components
and the overall system correspondingly go through several stages, called opera-
tional modes . These modes are mutually exclusive sets of the system behaviour
[9,14], and form a useful structuring concept that facilitates design of dependable
systems in various domains. AOCS is a typical example of a mode-rich system
with a complex mode transition scheme. There are two distinctive characteris-
tics that make AOCS development and verification challenging. The first one is

S. Kowalewski and M. Roveri (Eds.): FMICS 2010, LNCS 6371, pp. 50–66, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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long running (i.e., non-instantaneous) mode transitions that are caused by slow
dynamics of the involved electro-mechanical components. The second character-
istic is an integration of error recovery with mode transition scheme, i.e., error
recovery is implemented as rollbacking to certain degraded modes. Together,
these two features may lead to cascading mode transitions, i.e., the situations
when a system transition to one mode is preempted by a transition to another
(degraded) mode due to failure occurrence(s). It has been noted that testing and
model checking of the systems with such cascading mode transitions is difficult
and suffers from poor scalability [18].

In this paper we demonstrate how to employ a correct-by-construction de-
velopment approach to circumvent this problem. We use the Event B frame-
work [2,16] (extended with modularisation capabilities [11]) as our modelling
language. The Rodin platform [20] and its modularisation plug-in [17] provide us
with an automated modelling and verification environment. We define a generic
module interface for mode-rich components and demonstrate how to create dif-
ferent mode-managing AOCS components by instantiating the generic module.
We develop the system in a layered fashion, i.e., by gradually unfolding sys-
tem architectural layers while proving consistency between mode transitions on
adjacent layers. This approach allows us to cope with complexity of AOCS.

We argue that the AOCS development presented in this paper is a successful
experiment in formal refinement-based development of a complex industrial size
system. Hence we believe that Event B extended with modularisation facilities
shows good potential for the use in the industrial practice.

2 Event B

We start by briefly describing our development framework. The Event B formal-
ism [2,16] is an extension of the B Method [1], a state-based formal approach that
promotes the correct-by-construction development paradigm and formal verifi-
cation by theorem proving. Event B enables modelling of event-based (reactive)
systems by incorporating the ideas of the Action Systems formalism [3] into the
B Method. Event B is actively used within the FP7 ICT project DEPLOY to
develop dependable systems from various domains.

2.1 Modelling and Refinement in Event B

The Event B development starts from creating a formal system specification.
A simple Event B specification has the following general form:
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Such a specification encapsulates a local state (program variables) and provides
operations on the state. The operations (called events) can be defined as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), the guard g is a state
predicate, and the action S is a statement (assignment). In case when vl is
empty, the event syntax becomes WHEN g THEN S END. If g is always true,
the syntax can be further simplified to BEGIN S END. The guard g defines the
conditions for the statement to be executed, i.e., when the event is enabled.

The statement S can be either a deterministic assignment to the variables or
a non-deterministic assignment from a given set or according to a given post-
condition. One way to denote a non-deterministic assignment is v :∈ Set, where
Set is an non-empty set (or type) of possible values that can be assigned to v.

The INVARIANT clause contains the properties of the system (expressed as
state predicates) that should be preserved during system execution. The data
types and constants needed for modelling the system are defined in a separate
component called Context.

To check consistency of an Event B machine, we should verify two properties:
event feasibility and invariant preservation. Formally, for each event e,

Inv(v) ∧ ge(v) ⇒ ∃v′. BAe(v, v′)

Inv(v) ∧ ge(v) ∧ BAe(v, v′) ⇒ Inv(v′)
where BAe is a before-after predicate relating the variable values before and
after the event e. The semantic for each concrete B statement is given in the
form of a predefined before-after predicate.

The main development methodology of Event B is refinement – the pro-
cess of transforming an abstract specification by gradually introducing imple-
mentation details while preserving correctness. Refinement allows us to reduce
non-determinism present in an abstract model. It can also introduce new vari-
ables and events. The connection between the newly introduced variables and
the abstract variables that they replace is formally defined in the invariant of
the refined model. For a refinement step to be valid, every possible execution of
the refined machine must correspond to some execution of the abstract machine.

The consistency of Event B models as well as correctness of refinement steps
should be formally demonstrated by discharging proof obligations. The Rodin
platform [20], a tool supporting Event B, automatically generates the required
proof obligations and attempts to automatically prove them. Sometimes it re-
quires user assistance by invoking its interactive prover. However, in general the
tool achieves high level of automation (usually over 80%) in proving.

2.2 Modelling Modular Systems in Event B

Recently the Event B language and tool support have been extended with a
possibility to define modules [11,17] – components containing groups of callable
operations. Modules can have their own (external and internal) state and the
invariant properties. The important characteristic of modules is that they can
be developed separately and, when needed, composed with the main system.
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A module description consists of two parts – module interface and module
body. Let M be a module. A module interface MI is a separate Event B compo-
nent. It allows the user of module M to invoke its operations and observe the
external variables of M without having to inspect the module implementation
details. MI consists of external module variables w, constants c, and sets s, the
external module invariant M Inv(c, s, w), and a collection of module operations,
characterised by their pre- and postconditions, as shown below.

INTERFACE MI =
SEES MI Context
VARIABLES w
INVARIANT M Inv(c, s, w)
OPERATIONS

res ← op1 =
ANY par
PRE M Guard1(c, s, par, w)
POST M Post1(c, s, par, w, w’, res’)
END

... END

Fig. 1. Interface Component

The primed variables in the operation postcondition stand for the final variable
values after operation execution. If some primed variables are not mentioned, this
means that the corresponding variables are unchanged by an operation.

A module development always starts with the design of an interface. After
an interface is defined, it cannot be altered in any manner. This ensures correct
relationships between a module interface and its body. A module body is an
Event B machine, which implements each interface operation by a separate group
of Event B events. Additional proof obligations guarantee that each event group
faithfully implement the corresponding pre- and postconditions.

When the module M is ”included” into another Event B machine, the includ-
ing machine can invoke the operations of M and read the external variables of M.
To make a specification of a module generic, in MI Context we can define some
constants and sets (types) as parameters. The properties over these sets and
constants define the constraints to be verified when the module is instantiated.

Module instantiation allows us to create several instances of the same mod-
ule. Different instances of a module operate on disjoint state spaces. Via different
instantiation of generic parameters the designers can easily accommodate the re-
quired variations when developing components with similar functionality. Hence
module instantiation provides us with a powerful mechanism for reuse.

In the next section we demonstrate the use of Event B extended with modu-
larisation capabilities in the development of AOCS.

3 Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) is a generic component of satel-
lite onboard software, the main function of which is to control the attitude and
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Fig. 2. AOCS Development Hierachy

the orbit of a satellite. Due to a tendency of a satellite to change its orientation
because of disturbances of the environment, the attitude needs to be continu-
ously monitored and adjusted. An optimal attitude is required to support the
needs of payload instruments and to fulfill the mission of the satellite.

In general, the behaviour of AOCS is cyclic. At each iteration the sensors pro-
vide the control algorithms with various measurements. They are used to gener-
ate the commands to the actuators that adjust the positioning of the spacecraft
to ensure correct pointing of the payload instrument. AOCS consists of seven
physical units: four sensors, two actuators and the payload instrument.

We formally develop the AOCS system as follows. Our initial specification
models the overall system in an abstract way. The following refinements intro-
duce implementation details in a structured manner, by unfolding system compo-
nents and gradually delegating part of system functionality to them. Moreover,
we identify a generic template for such components in the form of a generic
module interface. Actual components will be introduced by instantiating this
template, thus formally decomposing the overall system in a structured and
well-defined way. The general development structure is presented in Figure 2.

On the architectural level, such a refinement strategy corresponds to gradual
unfolding of system layers. The control logic of the system components residing
on different layers is expressed in the terms of operational modes and their
transitions. One of the main objectives of the AOCS formal development is
ensure mode consistency of different layer components. The case study presented
below is based on our previous work on formalisation of mode-rich systems [12].
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3.1 Abstract Model

The purpose of the system is to position a satellite so that scientific instruments
are oriented towards a particular region of Earth. At the most abstract level, we
capture this as a succession of two atomic steps: the preparation step, orienting
the satellite, and the activation step, initiating the instrument operation. Each
step is associated with a boolean flag. The system is in the preparation stage
when pr = FALSE, is in the activation stage when pr = TRUE ∧ act = FALSE

and, finally, it has activated the instrument when act = TRUE.
Whenever a non-recoverable error occurs (err = TRUE), the system enters

a permanently disabled state (until the underlying hardware platform is reset).
It is possible for the preparation step to be interrupted by a recoverable error.
In such a situation, the preparation is restarted. In this abstract model this is
depicted by a non-deterministic assignment pr :∈ BOOL.

machine aocs
variables pr, act, err
invariant

pr ∈ BOOL ∧ act ∈ BOOL ∧ err ∈ BOOL
pr = FALSE ⇒ act = FALSE
err = TRUE ⇒ pr = FALSE ∧ act = FALSE

initialisation
pr, act, err := FALSE, FALSE,FALSE

events
preparation = when err = FALSE ∧ pr = FALSE then pr :∈ BOOL end
activation = when

err = FALSE ∧ pr = TRUE ∧ act = FALSE
then

act := TRUE
end

recovery = when err = FALSE then pr, act := FALSE,FALSE end
error = begin err, pr, act := TRUE,FALSE,FALSE end

end

The model at this stage is just a simple state transition system. This is done
to portray the high-level properties of the system in clear and concise terms.

At some point, the AOCS development is decomposed into two independent
strands. One focuses on unfolding of the functionality abstracted by the prepa-
ration event. The other deals with activation of the scientific instruments by
expanding the activity event of the abstract model. To obtain two independent
developments, we show how to refine a machine into the composition of a refined
machine and a module. The composition with a module, while being a part of
the refinement process, is also a formal proof of a model decomposition. As a
result, we decompose the overall AOCS specification into a top level component
(a refinement of the aocs machine) and a subsystem in charge of the initialisa-
tion and control of the positioning hardware. The subsystem is responsible for
the positioning of the satellite and the execution of necessary corrective actions.

3.2 Modal Component

To single out the preparation subsystem into a separate development, we start
by defining a module interface specifying the contract between the subsystem



56 A. Iliasov et al.

interface ModalComponent
variables last, prev, next, error
sees ModalContext
invariant

inv1 : last ∈ MODE ∧ next ∈ MODE ∧ prev ∈ MODE ∧ error ∈ ERROR
inv2 : next = prev =⇒ next = last
inv3 : next �= prev ⇒ next �→ prev ∈ ORDER ∨ prev �→ next ∈ ORDER
inv4 : {last �→ prev, last �→ next} ⊆ ORDER ∪ORDER−1

initialisation
last, prev, next := InitMode, InitMode, InitMode
error := NoError

operations
r ← ToMode = any m pre

error = NoError ∧m ∈ MODE
m �= next ∧m �→ next ∈ ORDER ∪ORDER−1

post
r′ = last ∧ prev′ = next ∧ next′ = m

end
r ← ResetError = pre error �= NoError post r′ = last ∧ error′ = NoError end
r ← Mode Advance = pre

next = prev ∧ error = NoError
post

r′ = last ∧ error′ ∈ ERROR ∧ prev �→ next′ ∈ ORDER
end

r ← Continuation = pre
next �= prev ∧ error = NoError

post
r′ = last′ ∧ error′ ∈ ERROR ∧
last′ �→ next ∈ ORDER ∪ORDER−1∧
((last′ �= next ∧ prev′ = prev) ∨ (last′ = next ∧ prev′ = last′))

end
end

Fig. 3. Generic Modal Component Interface

and the environment. Let us note that derivations of this generic interface will
be used several times to structure the development into subsystems.

Our structuring strategy is to identify subsystems that are components of a
cyclic control system. As any control system, it observes environment changes
and controls the actuators. The control logic, though, is fragmented. Each such
fragment deals with a specific class of environment and subsystem conditions.
In our previous research, we have proposed to apply the notion of operational
modes in the formal development of such systems [12]. The essential idea is that
a mode-rich control system evolves in two dimensions: as a conventional control
system and as a mode transition system.

A mode can be seen as an encapsulation of a piece of the control logic. Hence,
a mode transition is a change in the set of control laws. In such class of systems, it
is typical to have a mode comparing relation such that a ’better’ mode satisfies
stronger constraints. While attending to its sensor/control/actuator duties, a
mode-rich control system also tries to progress towards a more advanced mode.
In the process of this it may encounter adverse environment conditions and
switch to a more basic (i.e., degraded) mode.

In this section we give the definition of a generic module interface (see
Figure 3) for mode-rich control systems. It is essentially a template that we will



Developing Mode-Rich Satellite Software by Refinement in Event B 57

use several times in our development. The interface declares four variables. The
detected component errors are modelled by the variable error. The remaining
three variables characterize the mode transitioning part of the component:

– last signifies the last successfully reached mode;
– next signifies the target mode a component is currently in transition to;
– prev signifies the previous mode that a component was in transition to

(though it has not necessarily reached it).

These variables describe the actual mode of a component and also the mode
transition dynamics. Based on their values, an environment is able to tell whether
the component has settled in a stable mode (last = prev∧next = prev), is working
towards a more advanced mode (last = prev ∧ prev �→ next ∈ ORDER), or is
degrading its mode due to error recovery (prev �→ next ∈ ORDER−1).

The operation ToMode can be called by an upper layer component to set
a new target mode. The operation ResetError is to clear the raised error flag
when the detected error is being handled. Finally, the operations Preparation
and Continuation model the component behaviour when it receives the control
while being correspondingly in a stable or a mode transitional state.

The interface constants MODE, InitMode, ORDER, ERROR, NoError, which
are defined in a separate context component, contribute to abstract character-
ization of the mode logic. MODE is a set of possible modes of a component,
ORDER is a relation containing all the allowed mode transitions, InitMode is a
predefined initial mode, ERROR is a set of component errors, and NoError is a
special value denoting the absence of errors.

context ModalContext
constants MODE, InitMode,ORDER,ERROR,NoError
axioms

axm1 : InitMode ∈ MODE
axm2 : ORDER ∈ MODE↔MODE
axm3 : id ⊆ ORDER

axm4 : ORDER ∩ORDER−1 ⊆ id
axm5 : ORDER;ORDER ⊆ ORDER
axm6 : NoError ∈ ERROR
axm7 : ERROR \NoError �= �

end

where id is an identity relation and ”;” stands for relational composition.
The relation ORDER also defines a partial order on modes (axm3, axm4, and

axm5 express, correspondingly, the reflexivity, antisymmetry and transitivity
properties). For any two modes, it states whether the modes are comparable
and, if they are, which one of them is closer to the top mode.

3.3 Mode Manager Interface

The new subsystem introduced in the development is called Mode Manager. It
is a control system with its own set of modes and an internal mode transition
scenario. The Mode Manager interface is the product of extending (instantiating)
the generic module interface.
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interface ModeManager extends ModalComponent
sees ModeManagerContext

More specifically, the set of modes and the mode ordering relation are given
concrete definitions at the interface level. The following is the definition of the
Mode Manager context.

context ModeManagerContext
. . .
axioms

iaxm1 : MODE = {OFF, STANDBY, SAFE,NOMINAL,PREPARATION, SCIENCE}
iaxm2 : Scenario = {OFF �→ STANDBY, STANDBY �→ SAFE, SAFE �→ NOMINAL,

NOMINAL �→ PREPARATION,PREPARATION �→ SCIENCE}
iaxm3 : ORDER = closure(Scenario)
iaxm4 : OFF = InitMode
iaxm5 : partition(ERROR,RecovErrors,UnrecovErrors, {NoError}}
iaxm6 : RecovErrors �= � ∧UnrecovErrors �= �

In the above, Scenario defines the sequence of steps needed to bring the
system to the mode where the scientific payload instrument is ready to perform
its tasks. This sequence consists of the following modes: OFF - the satellite is in
this mode right after system (re)booting; STANDBY - this mode is maintained
until the separation from the launcher; SAFE - a stable attitude is acquired,
which allows the coarse pointing control; NOMINAL - the satellite is trying to
reach the fine pointing control, which is needed to use the payload instrument;
PREPARATION - the payload instrument is getting ready; SCIENCE - the
payload instrument is ready to perform its tasks. The mission goal is to reach
this mode and stay in it as long as it is needed.

Let us note that Scenario is merely a helper construct used to constrain
the ORDER relation. Specifically, ORDER is defined as relational closure of
Scenario. Moreover, the abstract set ERROR is now partitioned into the disjoint
parts RecovErrors, UnrecovErrors, and the predefined constant NoError.

First Refinement. To integrate Mode Manager with the main development,
the (instantiated) Mode Manager interface is included into a refinement of the
abstract aocs machine. The refined machine aocs1 imports the module
ModeManager and thus has the read access to the module interface variables.
The first step in decomposition refinement is to link the aocs1 state with that
of the imported module. In our case, the link is quite strong. In fact, we are able
to replace the abstract variable pr with an expression on the module variables.

refinement aocs1
refines aocs
uses ModeManager
invariant

inv1 : error /∈ UnrecovErrors ⇒ err = FALSE
inv2 : pr = TRUE ⇔ (next = last ∧ last = SCIENCE)

. . .
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In the model fragment above, inv1 expresses the connection between global
and local errors. Intuitively, it means that the Mode Manager component is
currently the only source of errors (though some errors may be tolerated). inv2
expresses a connection between the mode logic of Mode Manager and the state
of preparedness of the abstract model. Here we simply state that the preparation
is complete once Mode Manager has reached the SCIENCE mode.

The second step of decomposition is the integration of the Mode Manager
operations into the functionality of the top-level component. The abstract event
preparation is refined into a pair of events.

mode advance ref preparation = when
error = NoError ∧ last �= SCIENCE
last = prev

then
Mode Advance

end
intermediate ref preparation = when

error = NoError ∧ last �= SCIENCE
last �= prev

then
Continuation

end

Here Mode Advance and Continuation use a shortcut notation for an operation
call where the return value is ignored. Both events refine preparation and use
subsystem operations to advance the model state. The events try to accomplish
the same goal – reach the mode SCIENCE. The first one is enabled when Mode
Manager is in a stable mode, while the second addresses the case when a mode
transition is on its way. These events do not assign to the aocs variables and thus
this part of the system functionality is completely delegated to Mode Manager.

The other group of events deals with error conditions. Mode Manager dis-
tinguishes unrecoverable and recoverable errors. Sometimes, the system would
simply remove an error, treating it as recoverable one. This is an abstraction
of the error handling activity at this level. In other cases, to recover from an
error, it may be necessary to reconfigure Mode Manager. This happens when
there is a malfunction in some hardware unit and, as a result, the unit must be
switched off to put the system into a healthy state. Since the failed unit is no
longer available, the Mode Manager mode is downgraded to the one where the
system does not need the failed unit. Since the system is cyclic, once the error is
cleared, the preparation would restart and attempt to switch on the failed unit.

recovery = any m where
m �→ next ∈ ORDER−1

error ∈ RecovErrors
then

ResetError
ToMode(m)
act := FALSE

end
error = when error ∈ UnrecovErrors then err, act := TRUE,FALSE end
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3.4 Mode Manager

Let us now consider the Mode Manager development. It starts with an Event B
machine implementing the Mode Manager interface. For each interface operation,
there is one event group realising the operation. Some groups events are final
designating the group exit point – the terminal events returning the control to
the calling environment. An event that is not final must pass control to another
event in the same event group. The following is an excerpt from the abstract
machine of the Mode Manager development.

machine MMBody
implements ModeManager
. . .
group Continuation begin

final adv skip = when next �= prev then error :∈ ERROR end
final adv partial = any m where

next �= prev
m ∈ MODE ∧m �= next
m �→ next ∈ ORDER ∪ORDER−1

then
last := m ‖ error :∈ ERROR

end
final adv comp = when

next �= prev
then

error :∈ ERROR ‖ last := next ‖ prev := next
end

... end

The Continuation operation is realised by a group containing three events. The
event adv skip models the behaviour when no mode change happens during the
call. This is needed to model mode transitions that take substantial time and thus
are spread over several control cycles. A transition to some intermediate mode is
modelled by adv partial. Intermediate modes are observed when a component is
progressing to some mode that is not reachable directly from the current mode.
Finally, adv comp specifies when the system successfully reached the target mode
(and thus arrived to a stable state).

Mode Manager does not directly control the satellite hardware. Instead it
relies on a special subsystem, called Unit Manager. The purpose of Unit Manager
is to abstract the specifics of a hardware configuration and provide a simple
common control interface to the hardware. We approach Unit Manager design
as another instance of a mode-rich control system.

Unit Manager Interface. The Unit Manager interface is a specialisation of
the generic interface defined in Figure 3. Like Mode Manager, it defines its own
set of modes and a mode transition scenario.

interface UnitManager extends ModalComponent
sees UnitManagerContext
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The Unit Manager modes define the positioning algorithms and are closely re-
lated to the set of hardware units involved in computing the positioning com-
mands. The modes NAV EARTH and NAV SUN use crude algorithms based on
the input from the Earth and Sun sensors. NAV ADV and NAV FINE use the
GPS unit to compute the satellite position in respect to the Earth surface. The
mode NAV INSTR is the final target mode meaning that the scientific instru-
ment hardware is enabled.

context UnitManagerContext
. . .
axioms

uaxm1 : MODE = {OFF,NAV EARTH,NAV SUN,NAV ADV,
NAV FINE,NAV INSTR}

uaxm2 : Scenario = {OFF �→ NAV EARTH,OFF �→ NAV SUN,
NAV EARTH �→ NAV ADV,NAV SUN �→ NAV ADV,
NAV ADV �→ NAV FINE,NAV FINE �→ NAV INSTR}

end

Unit Manager Integration. After a number of refinement steps, the Mode
Manager development is decomposed to separate the Unit Manager development.
The link between the two developments is quite tight. Mode Manager relies on
Unit Manager in most of its operations as Mode Manager does not have a direct
access to the controlled hardware. The required mode consistency between these
components is defined as a a relation linking the modes of Mode Manager and
Unit Manager. Moreover, the added invariant properties (in the Mode Manager
model) guarantee that the modes of two components are always in agreement
with each other. A model excerpt specifying this is given in Figure 4.

The mode mapping relation is defined as the constant um mode under the
USES clause. To avoid name clashes, the Unit Manager module is instantiated
with the prefix um. Consequently, all the names imported from the module
appear with the prefix.

The gluing invariants, gi1, ..., g4, define the correspondence between the Mode
Manager and Unit Manager modes and errors. All the events of Mode Manager
must maintain this correspondence. As a result, an update of the Unit Manager
mode often necessitates an update of the Mode Manager mode.

The Unit Manager development, in its turn, is split into the main control
part and a number of subsystems modelling individual hardware units. Each
such subsystem follows the same modelling pattern and starts with a version
of the generic Modal Component interface. However, unlike Mode Manager and
Unit Manager, the hardware units are not a part of the control logic we are
developing. Collectively, the units define the environment of the system and
thus are only characterised by their interfaces.

3.5 Unit Interface

The hardware unit subsystems differ by their set of modes and mode transition
rules. Each one also define its own set of error conditions. Instead of defining
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machine MMBody3
. . .
uses um : UnitManager

constants um mode
axioms

um mode = {OFF �→ um InitMode, STANDBY �→ um InitMode,
SAFE �→ um NAV EARTH, SAFE �→ um NAV SUN,
NOMINAL �→ um NAV ADV,PREPARATION �→ um NAV FINE,
SCIENCE �→ um NAV INSTR}

. . .
invariant

. . .
gi1 : next = prev ⇒ last �→ um last ∈ um mode
gi2 : next = prev ⇒ next �→ um next ∈ um mode
gi3 : next = prev ⇒ prev �→ um prev ∈ um mode
gi4 : async = FALSE ∧ um error �= um NoError =⇒ error �= NoError

. . .
end

Fig. 4. Unit Manager Integration

an extended interface for each individual unit we use a single parameterised
interface. Consequently, unit modes and mode transitions are specified at the
point of module integration.

interface UnitComponent extends ModalComponent
parameters MODE, InitMode,ORDER,ERROR,NoError

In the specific hardware configuration that we are modelling there are six hard-
ware units. To construct a faithful model close to the executable program, we
explicitly introduce each unit subsystem by importing the (correspondingly in-
stantiated) generic module interface.

4 Lessons Learnt

The AOCS system described here is a modified (due to confidentiality reasons)
version of a realistic AOCS. The real system was developed by Space Systems
Finland some time ago using traditional development approaches. The company
has observed that verification of the AOCS mode transitions via testing was quite
difficult and time consuming. This has prompted the idea of experimenting with
a formal AOCS development to ensure correctness of mode transitions.

The initial attempt [21] to formally develop a system was rather unsuccess-
ful. This modelling was significantly influenced by the code that was developed
for the real AOCS. It started from modelling the overall control cycle that con-
sisted of a sequence of events abstractly modelling the entire system structure
and functionality – the mode manager, the unit manager and fault tolerance
mechanisms. Then, in the further refinement steps, we had to introduce a large
number of variables and events (modelling program counters and procedure calls)
to continue representing interdependencies between the system components and
functions. Moreover, at the time of this development, Event B was still lacking
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modularisation support. As a result, fairly soon the developed monolithic model
became unreadable for the developers and unmanageable for the Rodin platform.
We concluded that further development would be quite problematic.

Apart from some technical issues that had to be resolved in the Rodin plat-
form, we have learnt the following main lessons:

– Extensive support for modularisation is absolutely necessary to enable scal-
able formal development of complex industrial systems in Event B;

– The development should support architectural-level modelling and allow us
to express logical interdependencies between different level components;

– It is important to maintain readability of models.

This second development attempt [10] was preceded by a preparatory work that
aimed at alleviating discovered problems. We have developed a modularisation
plug-in [17] implementing the modularisation extension for Event B that we have
proposed previously [11]. Moreover, while formalizing reasoning about mode-rich
systems [12], we developed a pattern for specifying mode-managing components.
However, probably most importantly, before starting the development as such,
we drafted a refinement strategy. Our strategy was to build the system model in
a hierarchical layered fashion via instantiation of generic modules. This approach
indeed demonstrated its viability.

The second development attempt – the one which is described in this paper
– achieved the desired goal. We succeeded in building a detailed AOCS model
and verified (by proofs) that it correctly implements the desired mode transition
scheme. The development was performed in a structured way, where the levels of
abstraction corresponded to the architectural layers. While performing a refine-
ment step, we unfolded the architectural layers and established the consistency
of mode transitions between adjacent layers as a part of refinement verification.
The specifications of components were produced as a result of instantiating the
generic module interface that is common for mode managing components on
different layers of abstractions.

Refinement by instantiating the generic components significantly simplified
the development and proof activity. As a result, we have alleviated the prob-
lem of manipulating large monolithic models. The produced models of modules
(components) are much smaller. They are also easier to understand and verify.
The overall system model is also rather compact and can be easily maintained
because it includes only references to the components visible state and interface.

In our development we have made a smooth transition from the architectural
modelling to modelling the detailed behaviour of each particular component. The
properties of generic module parameters determine the constraints on concrete
data structures that should be proved during module instantiation. Our mecha-
nism of module instantiation and then subsequent development (refinement) of
a module ensures that these constraints are satisfied by module implementation.

The layered development has also facilitated modelling and verification of the
system fault tolerance mechanisms. The hierarchical architecture allowed us to
distribute the responsibilities of error handling across the different layers, which
resulted in a well-structured implementation of the fault tolerance mechanisms.
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The main lessons that we have learnt from this development are the following

– It is important to have a strategy of the development - a certain refinement
plan that is drafted before the real development commences;

– It is beneficial to refrain from modelling major design decisions in the initial
specification since it can significantly complicate the later development;

– Modularisation support is paramount in modelling large scale systems;
– Without a mature tool support a formal development of industrial systems

is infeasible.

5 Related Work

Formal validation of the mode logic and, in particular, fault tolerance mecha-
nisms of satellite software has been undertaken by Rugina et al [18]. They have
investigated different combinations of simulation and model checking. In gen-
eral, simulation does not allow the designers to check all execution paths, while
model checking often runs into the state explosion problem. To cope with these
problems, the authors had to experiment with combination of these techniques
as well as heavily rely on abstractions. Our approach is free from these problems.
First, it allows the developers to systematically design the system and formally
check mode consistency within the same framework. Second, it enables exhaus-
tive check of the system behaviour, yet avoiding the state explosion problem.

The mode-rich systems have been studied to investigate the problem of mode
confusion and automation surprises. These studies conducted retrospective anal-
ysis of mode-rich systems to spot the discrepancies between the actual system
mode logic and the user mental picture of the mode logic. Most of the approaches
relied on model-checking [4,9,19], while [5] relied on theorem proving in PVS.
Our approach focuses on designing fully automatic systems and ensuring their
mode consistency. Unlike [9], in our approach we also emphasize the complex
relationships between system fault tolerance and the mode logic.

In our previous work [7], we have studied a problem of specifying mode-rich
systems from the contract-based rely-guarantee perspective. These ideas have
been further applied for fault tolerance modes [15]. According to this approach,
a mode-centric specification of the system neither defines how the system oper-
ates in some specific mode nor how mode transitions occur. It rather imposes
restrictions on concrete implementations. In this paper we have demonstrated
how to combine reasoning about the system mode logic and its functioning.

6 Conclusions

In this paper we described formal development of the AOCS system by re-
finement in Event B. The attempted case study has shown that the Event B
framework and the supporting RODIN platform have promising scalability. Our
approach facilitated creating a clean system architecture and also allowed us to
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make a smooth transition from the architectural-level system modelling to spec-
ification and refinement of each particular component. Moreover, refinement-
based development techniques coped well with modelling the complex mode
transition scheme and verification of its correctness.

Verification of all possible mode transitions (including complex cascading ef-
fects) was done by proofs and did not require any simplifications. Currently that
level of assurance cannot be delivered neither by model-checking, simulation or
testing alone nor by combination of these techniques. The proposed modularisa-
tion and stepwise development style allowed us to keep manual proof efforts at a
reasonable level (about 17 percent of proofs had to be carried out interactively).
Hence formal verification by theorem proving has become more accessible for
industry practitioners.

In the presented work we aimed at not merely experimenting with modelling
a particular industrial-size system in Event B, but rather at creating a generic
solution facilitating development of AOCS-like systems. Indeed, our approach
to modelling mode-rich components using generic instantiation supports both
reuse and composition. Such reuse is safe, since while developing a component
by refinement we formally ensure its conformance to the instantiated specifica-
tion of its interface. Moreover, it becomes manageable to verify composition of
components whose state and behaviour are succinctly and formally modelled.

Our work can be seen as a step towards creating a formal approaches for
model-driven development and establishing the reference architecture for the
space sector – the two recent initiatives of European Space Agency [8]. As a
future work it would be interesting to connect our approach to the languages
specifically dedicated to architectural modelling. Moreover, it would be useful to
continue experimenting with formal modelling of various types of architectures of
mode-rich systems as well as address the problem of ensuring mode consistency
in the presence of dynamic reconfiguration.
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Abstract. We present a technique for automatically detecting and cor-
recting software bugs. The programmer is required to define a catalog of
hotspots, syntactic constructs she considered to be error prone (e.g. i <

N), together with suitable alternatives (e.g. i < (N + 1) and i < (N -

1)). Given a faulty program, search techniques are then applied to find
a combination of alternatives yielding a correct program. The technique
is implemented on top of the Java Pathfinder Framework.

1 Introduction

It has been estimated that 50% to 75% of the cost of software development is
spent on debugging [8]. While many tools for detecting bugs and reporting error
traces exist, the problem of automatically localizing and fixing the bug is far less
understood, and constitutes an active research field.

When debugging, programmers often look for “hotspots” in the program
where bugs are likely to occur, and check if a change in the code may correct
the bug. A typical example of hotspots are comparisons of integer expressions,
which are likely to lead to “off-by-one” errors, like typing x < 0 instead of x <=
0, or for (int i = 0; i < N; i++) instead of for (int i = 0; i < N+1;
i++). We propose to automatize this approach. Instead of manually searching
for hotspots, programmers just define a catalog of syntactic constructs, like for
instance EXPRESSION1 < EXPRESSION2, and for each of them a set of possible al-
ternatives, like, for instance, EXPRESSION1 <= EXPRESSION2. Furthermore, they
specify a set of test inputs, for instance by fixing the range of input variables. A
tool can then in principle generate all possible variants of the program generated
by the alternatives, and test each of them on the test inputs, until some variant
passes all the tests. However, realizing such a tool and making it efficient is a
challenging task, and the subject of this paper.

A naive way of testing all variants on all test inputs is to sequentially test
each variant on all inputs. However, this approach is highly inefficient. The first
contribution of the paper is a better algorithm: given a program P , we first
generate a meta-program Pm that can simulate all the variants of P obtained
by independently selecting alternatives at the hotspots, and then run Pm in a
certain way on the set of test inputs, excluding variants along the way. The
second contribution is an implementation of this approach on top of the Java
� The author was supported by the DFG Graduiertenkolleg 1480 (PUMA).

S. Kowalewski and M. Roveri (Eds.): FMICS 2010, LNCS 6371, pp. 67–81, 2010.
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Pathfinder (JPF) model checker. In fact, the state exploration algorithm of JPF
turns out to exactly meet the needs of our technique.

Related Work. Bug localization (sometimes called bug interpretation) and bug
fixing have been intensely studied in the last years. Several proposals for bug
localization are based on the idea of capturing differences between error traces
and successful traces of a program. Cleve and Zeller [4] compare the intermedi-
ate program states of error and successful traces, apply Delta Debugging [15] to
find a minimal set of variables transforming a successful run into a failing run,
and search for a program transition responsible for this transformation. Ball et
al. [1] search for transitions occurring in multiple error traces but no successful
trace. Their approach is implemented in the SLAM Toolkit [2], and similar tech-
niques [7] have also found its way into the Java Pathfinder [12] model checker.
Groce et al. [6] propose a notion of distance between traces, generate a closest
pair containing a successful and an error trace using CBMC [3], and localize
the bug using the differences between them. Tarantula [10] visualizes differences
between successful and error traces: program statements are colored according
to the ratio between how often they are visited by successful traces, and how
often by failure traces.

Further proposals for bug localization only use information from error traces.
Wang et al. [13] determine a causality-chain inducing the error by applying an
algorithm for computing preconditions to an error trace. Griesmayer et al. [5]
consider systems with several components, and propose an iterative procedure
that considers one error trace at a time, and uses it to narrow down the set of
components that can be responsible for the fault.

A common advantage of all these approaches with respect to our proposal is
the absence of assumptions about the cause of the bug, compared to our assump-
tion that bugs are located at hotspots. However, the absence of assumptions also
makes automatic repair problematic, and in fact none of the approaches above
explicitly studies it.

The two approaches closest to our work present proposals for automatically
localizing and fixing bugs. Weimer et. al [14] assume the bug can be fixed by
deleting, inserting or swapping instructions in the source code. They use genetic
algorithms to generate program variants, which are then sequentially tested.
Instead of applying genetic algorithms, we generate one single meta-program
embedding all variants, and explore it using search techniques. We suspect that
this approach is more adequate for bugs requiring to change the code at several
places; however, a detailed comparison is problematic, because genetic algo-
rithms can be tuned according to a wide range of parameters, and is beyond the
scope of this paper. Jobstman et al. [9,11] reduce program repair to finding a
winning strategy in a game, and present impressive benchmarks, albeit mostly in
the hardware area. Our approach can be seen as a special case of their technique
that can be implemented on top of JPF with reasonable effort, allowing to profit
from all the algorithmic expertise embodied in it.
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Structure. The paper is structured as follows. Section 2 shows how to identify
hotspots and propose alternatives. Section 3 describes our search technique; more
precisely, Section 3.1, briefly introduces the Java Pathfinder model checker; Sec-
tion 3.2 describes the metaprogram; Section 3.3 introduces the search strategy;
and Section 3.4 describes an efficient data structure especially designed for the
strategy. Finally, Section 4 presents experimental results, and Section 5 contains
conclusions.

2 Selecting Hotspots and Alternatives

We use syntactic analysis to search for hotspots, code locations where a bug
could have been injected. Formally, a hotspot is just a subtree in the parse
tree of the program. Our implementation is based on the Java Compiler API1.
We explain our approach by means of an example. Listing 1.1 shows part of a
sorting algorithm in Java. The heuristic in this example extracts all binary ex-
pressions combined with the less-then comparator; i.e. all expressions of the form
EXPRESSION1 < EXPRESSION2. For these two lines of code, three expressions of
this form are found ( 1©- 3©).

1

1©
2© 3©

hotspots[...]
2 while (i < j)
3 {
4 while (a[++i] < a[l] && i < r

)
5 [...]

Listing 1.1. Heuristically selected hotspots

For each hotspot a changeset entry collects a set of possible alternatives, plus
the original code. A changeset collects all changeset entries for a program.

CS = { 1© → { i < j, i > j }, 2© → { a[++i] < a[l], a[++i] > a[l] }
3© → { i < r, i > r }}

Fig. 1. Example changeset

For instance, for the hotspots in Listing 1.1, we consider a heuristic that suggests
EXPRESSION1 > EXPRESSION2 as alternative to EXPRESSION1 < EXPRESSION2.
This results in the changeset displayed in Figure 1, i.e., a set containing a change-
set entry for each hotspot.

We extract a templated program with one template for each hotspot, see
Listing 1.2. A program variant is the result of replacing each template by one of
the elements in its corresponding changeset entry.
1 http://java.sun.com/javase/6/docs/jdk/api/javac/tree/index.html
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1 [...]
2 while ( 1©)
3 {
4 while ( 2© && 3©);
5 [...]

Listing 1.2. Templated program

2.1 Conflicting Hotspots

Two hotspots are conflicting if one of them is a subtree of the other. For instance,
in Listing 1.3, hotspots 1© and 3© are conflicting, but 1© and 4© are not.
When heuristics produce conflicting hotspots, we use Algorithm 1 to generate
a changeset entry for the outermost hotspot, and use it for producing program
variants.

1

1© 2©3© 4©
[...]

2 int m = (a + b) < (c + (d + a))
3 [...]

Listing 1.3. Conflicting heuristics

CSc = { 1© → { a + b, a - b }, 2© → { c + (d + a), c - (d + a) },
3© → { (a + b) < (c + (d + a)), (a + b) > (c + (d + a)) },

4© → { d + a, d - a }}

CS1 = { 1© → { a + b, a - b },
2© → { c + (d + a), c - (d + a), c + (d - a), c - (d - a) },
3© → { (a + b) < (c + (d + a)), (a + b) > (c + (d + a)) }}

Fig. 2. Top: conflicting hotspots, Bottom: first resolution step

The algorithm constructs a forest F with hotspots as nodes. If b© is a subtree
of a© in the parse tree of the program, we add to F the edge ( a©, b©), and
remove all transitive edges from the graph. We then generate a new changeset
entry for each root of the forest by means of an iterative procedure. Given an
edge (v1, v2) and elements e1, e2 of the changeset entries of v1 and v2, we denote
by e1[e2] the result of substituting e2 for the code of v2 in e1. The procedure
picks an edge (v1, v2) such that v2 is a leaf, and replaces v1’s changeset entry
by Merge(v1, v2) := {e1[e2] | e1 ∈ Che1 , e2 ∈ Che2 }, where Che1 ,Che2 are the
changeset entries of v1 and v2, respectively; then the procedure removes v2 from
the graph, removes the changeset entry of v2 from the changeset, and iterates.

Consider for example the source code part in Listing 1.3 with the change-
set of Figure 2/Top. The algorithm constructs the conflict graph G = (V, E)
with the set of edges E = {( 3©, 1©), ( 3©, 2©), ( 2©, 4©)} and the set of vertices
V = [ 1©− 4©]. Changeset entry 4© is a leaf, and so its changeset entry is merged
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with the changeset entry of 2©. The result is shown in Figure 2/Bottom. After
repeating this procedure as long as possible, we get a merged changeset entry
for program location 3©.

Algorithm 1. ConflictResolution
input : Set of conflicting hotspots Hc

output: Resolved set of changeset entries R
begin

V ←− Hc

E ←− ∅
Directed Graph G = (V, E)
for v1 ∈ V do

for v2 ∈ V do
if ProgramLocation(v1) ⊂ ProgramLocation(v2) then

E ←− E ∪ (v1, v2)

RemoveAllT ransitiveEdges(G)
while ∃ (v1, v2) ∈ E with v2 has no outgoing edges do

v1←−Merge(v1, v2)
E ←− E \ {(v1, v2)}
V ←− V \ v2

return changeset entries of remaining vertices V
end

3 Search

We have described heuristics for identifying “error prone” program locations
(hotspots) in a faulty program and suggesting alternatives. The heuristics re-
turn a changeset containing a changeset entry (a set of alternatives) for each
hotspot. Now we show how to use the changeset to derive a corrected program.
We generate test inputs, search the space of program variants obtained by a
combination of changeset code replacements, and select those variants satisfying
the specification for all test inputs. The correctness of this set of variants can
then be further examined using some model checker. Since our implementation
is based on the Java Pathfinder (JPF) model checker, we first discuss its search
strategy.

3.1 Java Pathfinder

The JPF model checker is an explicit state model checker. Conceptually, JPF
is a virtual machine that can simulate all possible runs of a program. Its input
is a program P in Java Bytecode. Various techniques, e.g., state compression
and partial order reduction, are applied to keep the state space small. The state
space of P is exhaustively explored using various search techniques. In this work,
we focus on JPF’s depth-first search, shown in Algorithms 2 and 3.
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Algorithm 2. Java Pathfinder
input : Program P
output: Is P correct?
begin

s ←− new choice point stack
while true do

/* Program is executed until non-det. choice is possible or an

end state is reached */

executeProgram(P )
if endState then

if endState is errorState then return false
else if !Backtrack(s) then return true

else /* Non-deterministic point in execution */
choice point ←− new choice point

choice point.doNextChoice()
s.push(choice point)

end

Non-determinism is introduced either indirectly, e.g., when selecting the next
thread that executes an action, or directly, as statements in the source code
under test. The program is executed until a non-deterministic choice is possible
or the execution terminates. For each non-deterministic point in the execution, a
choice point is created on top of the choice point stack, storing the different
possibilities to continue the execution, those that have already been explored,
and the current program state. The execution is continued using depth-first
search, i.e., the first choice not marked as explored is executed and marked as
explored. If an error state is reached, a program failure and an error trace is
returned. If an end state is reached without errors, the search backtracks to
the first choice_point in the choice point stack having at least one unexplored
choice. The program state of this choice point is restored, and the execution
continues with the unexplored choice. If no backtracking is possible, the program
is declared correct.

3.2 Searchable Meta Program

We construct a meta-program Pm. Given Pm as input, JPF explores each pro-
gram variant of P for a given changeset on each test input. Observe that all
the steps described next for modifying the original source code are carried out
automatically.

Test inputs are introduced with help of non-deterministic choices in the source
code under test. Consider for instance the code in Listing 1.4, where the method
Verify.getInt(a,b) returns a value in the range [a, b], chosen non-determinis-
tically. When the JPF model checker runs on this code, it creates choice points
and explores all possible arrays a[] of size 1-5 and values array entries 0-50 (a
reasonable range of test inputs for sorting algorithms).
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Algorithm 3. Backtrack
input : A reference to choice point stack s.
output: Was backtracking possible?
begin

while true do
if s.empty() then

return false
choice point ←− s.pop()
if choice point has more choices then

restore state(choice point)
choice point.doNextChoice()
s.push(choice point)
return true

end

Program variants are explored in a similar way. Recall that a changeset is
a set of changeset entries, each of them consisting of a set of alternatives for
a single program code location. We force JPF to explore each alternative in
its depth-first search procedure. For that, we introduce an additional function
Explore.getChoice(size, ident) that also returns a value. This function is
very similar to the one used for generating test inputs. JPF explores the values
within the range [0, size−1]. However, during the execution of the program
under test, a choice_point is only created when no choice_point with the
identifier ident exists in the choice point stack, i.e., only the first time this
function gets called in a path of the execution with this identifier. In all sub-
sequent calls, the current choice of the already existing choice_point in the
choice point stack is looked up and returned.

1 int[] a = new int[Verify.getInt (1,5)];
2 for(int i=0; i!=a.length; ++i)
3 a[i] = Verify.getInt (0 ,50);

Listing 1.4. Test input generator

For each changeset entry, we create an Explore function at its associated pro-
gram location with an unique identifier ident, and set the parameter size to the
number of alternatives of the changeset entry. The value returned by Explore
determines the program alternative of the changeset entry to be executed next.
This is the motivation for only allowing one choice_point for each identifier,
created in one run of the program. Otherwise, e.g., because of recursive calls, all
variants of a changeset entry could be exhaustively explored again. We use the
“?:” operator2 to execute the specific program variant. Its simplified syntax is:

CONDITION ? EXPRESSION : EXPRESSION
2 http://java.sun.com/docs/books/jls/third edition/html/expressions.html#

15.25
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If CONDITION evaluates to true (resp. false), the first (resp. second) expression is
evaluated and its result is returned. This conditional operator is applied recur-
sively. Consider for example the expression

j==1 ? EXPR_1 : j==2 ? EXPR_2 : j==3 ? EXPR_3 : EXPR_0.

If variable j has value n with n ∈ [0−3], then EXPR_<n> gets evaluated. For every
changeset entry, we replace the expression at the respective program location by
such a conditional expression. We use the return value of the Explore function
as choice for a code alternative of each program variant. Listing 1.5 shows the
code segment we obtain for the example in Listing 1.1 and the changeset in
Figure 1.

1 [...]
2 while ( Explore.getChoice(2, id1) == 1 ?
3 i < j : i > j )
4 {
5 while ( Explore.getChoice(2, id2) == 1 ?
6 a[++i] < a[l] : a[++i] > a[l] &&
7 Explore.getChoice(2, id3) == 1 ?
8 i < r : i > r )
9 [...]

Listing 1.5. Searchable meta program

Observe that in this approach alternatives and hotspots must necessarily be Java
Expressions.

In summary, using Explore and Verify we transform the original program
into a metaprogram Pm. On input Pm, the JPF model checker explores the be-
haviour of each program variant derivable from the changeset on each generated
test input.

3.3 Search Strategy

We discuss how to efficiently search for a correct program using the meta program
Pm introduced in the last section. We modify JPF’s depth-first search strategy
so that it backtracks instead of terminating when it finds an error, thus forcing
a complete exploration of all test inputs and program variants.

We use a search tree to visualize the depth-first search (see Figure 3). Nodes
are either choice points, on which we branch, or end states, where we start to
backtrack. There are two different types of choice point nodes: those generating
test inputs (TC-points, displayed as dashed nodes — “ ”), and those where
we choose different program variants (PC-points, displayed as dotted nodes —
“ ”). Each program execution path ends up in a leaf (gray node). Two possible
end states are possible: “�”— the execution terminated without an error and
“�”— the execution terminated with an error. An error is induced by one of the
following events:
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Fig. 3. Search tree

– An uncaught exception occurs.
– The execution takes too long — this is necessary, because infinite executions

are possible and JPF cannot detect them. We therefore restrict the amount
of instructions for each path of the execution.

– The specification is violated.
– The program exits, but the defined end state of the program has not been

reached.

A program decision is a tuple 〈PC-point, choice〉, like for example 〈id1, 2〉. A
decision trace is a set of program decisions where each PC-point occurs at most
once. The size of a trace is the number of tuples it contains. Each (partial)
path in the search yields such a decision trace. A complete decision trace Tc

contains a program decision for every defined PC-point, i.e., a decision for each
changeset entry. It characterizes a simulated program variant P (Tc) within the
meta-program Pm. We search for a complete trace Tc such that P (Tc) satisfies
the specification on every test input.

Assume an end state is reached by depth-first search. If it is an error state,
then its decision trace cannot be a subset of any complete trace T 1

c such that
P (T 1

c ) is the correct program, because P (T 1
c ) fails at least on one test input. If

it is a success state, then its decision trace is a candidate trace: it could be a
subset of a complete trace T 2

c such that P (T 2
c ) is a correct program on all test

inputs. This motivates storing two sets of decision traces during the search: a set
containing the candidate traces (good traces), and another one containing the
traces reaching an error state (bad traces).

Whenever an end state is reached during the depth-first search, Algorithm 4
is executed. If the end state is a success state and its decision trace does not
contain a bad trace as subset, we add it to the set of good traces. If the end
state is an error state, the extracted error trace can be shortened if there exists
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a PC-point in the search path towards the error, such that every successor of this
node leads to an error state. This information is made available when a PC-point
was completely explored. Therefore, whenever we hit an error state that is an
end state, we do not add its trace to the set of bad traces, instead we mark the
actual choice of the above PC-point as bad. When a PC-point was completely
visited, we check if all its choices are marked as bad. If this is the case, we again
mark the current choice of the PC-point above as bad. If there exists no such
node above, we cannot find a correction. If not all choices are marked as bad,
the decision traces of successors that induce an error state are stored as bad
traces. This procedure is shown in Algorithm 5.

Algorithm 4. FinalStateReached
input: Final state f , reference to a set of good traces g, reference to a set

of bad traces b.
begin

if f is errorState then
BackTrackToProgramChoicePoint()
choice point.markCurrentChoiceBad()

else
dc ←− extractDecisionTrace()
if ∀ db ∈ b: db does not contradict dc then

g.add(dc)

end

Consider for example the search in Figure 3. The path <A,1>-<id1,2>-
<id2,1>-<id3,1> reaches an error state, and choice 1 in id3 is marked as bad.
<A,1>-<id1,2>-<id2,1>-<id3,2> also reaches an error state, so now the choices
1 and 2 in id3 are marked as bad. When backtracking, since all choices of id3
are bad, we propagate this to id2, marking its choice 1 as bad. After id2 is
completely explored, not all its choices are marked as bad, and so we add the
decision trace {<id1,2>,<id2,1>} to the set of bad decision traces.

After a bad decision trace is added, the set of good traces is updated, so
that all decision traces containing the new bad decision trace are removed. If all
successor choices are marked bad and we have completely explored all choices
of the top-most PC-point, no correct candidate decision trace for a test input is
found, therefore, we cannot derive a correct program and return failure.

During the search, the set of bad traces is used to prune the search space.
Whenever we are about to visit a path whose decision trace contains as subset a
decision trace from the set of bad traces, we skip this path, because we cannot
find a good decision trace in it.

Consider again the search in Figure 3. Since the path <A,1>-<id1,1> is er-
roneous, the decision trace Te1 ={<id1,1>} is added to the set of bad traces
after backtracking. When we explore <A,2>-<id2,2>, we observe that its de-
cision trace, {<id2,2>,<id1,1>}, contains Te1 as subset, and so we skip this
path.
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The search returns a set of candidate decision traces that may not be complete:
for some hotspot the candidates may not indicate which changeset entry should
be chosen. In this case, for each such hotspot we retain the original program
expression. Each decision trace is thus extended into a complete trace. We then
select one complete trace such that the number of hotspots at which the selected
alternative differs from the original one is minimal. Before presenting the so
obtained patch to the user, the patch is checked again for correctness, using
some more sophisticated testing method.

Algorithm 5. PCPointExplored
input: Program choice point p, reference to a set of good traces g, reference

to a set of bad traces b.
begin

if All choices of p are marked bad then
if ∃ prevProgramChoicePoint(p) then

p prev ←− prevProgramChoicePoint(p)
p prev.markCurrentChoiceBad()

else
exit search - no solution found

else
forall c ∈ choices marked as bad in p do

db ←− getDecisionTrace(c)
if � t ∈ b with t ⊆ db then

b.add(db)
g.removeContradictingDecisionTraces(b)

end

3.4 Efficient Data Structure for Decision Traces

We present an efficient data structure for storing sets of decision traces. A deci-
sion trace is a set of elements, so this data structure holds sets of sets of elements.
In Set Theory, sets of sets are usually referred as families of sets. We will stick to
this notation. Assume F is a family of sets and S is a set of elements. Following
operations are implemented efficiently:

– Add/remove S to/from F. (F is a family of decision traces, S is added.)
– Extract all sets of elements from F that contain S as subset. (F is a family of

good decision traces, S is a new bad decision trace. We remove all decision
traces from F containing S.)

– Check if F contains S as subset. (S is a new good decision trace, if it does
not contain any bad decision trace, i.e., a set in F as subset.)

Figure 4 shows the representation of a family of three sets S1-S3. We store sets
in their original representation together with their sizes (Figure 4/Left). Addi-
tionally, we store each element in a reverse lookup map, mapping set elements
to set references, stating in which sets this element occurs (Figure 4/Right).
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S1 ( A B C D / 4 )

S2 ( A F E / 3 )

S3 ( A E / 2 )

A {S1, S2, S3}

C {S1}

E {S2, S3}

B {S1}

D {S1}

F {S2}

Fig. 4. Data structure for family of decision traces

Adding/removing a set of elements is not expensive. We have to iterate once
over the new set for adding/removing the respective map entries.

To find all sets in F that contain S as subset, we derive the cut set of the reverse
lookup entries of the elements contained in S. The references in the cut set are
the references to the searched sets. For the example, assume S = {A, F, E}. The
cut set of the three reference sets contains only one element: S2, so S ⊆ S2.

For checking if S contains a set from F as subset, we create an empty map M ,
mapping set references to a counter. For each element in S, we get the reference
set of it using the reverse lookup map. For each reference r in this set, we look up
if there exists an entry for it in map M . If there exists an entry, we increase the
counter of r in M by one. If there exists no entry, we insert a new entry, with the
counter set to one. After all elements from S are processed, we iterate through
the entries in the map M . If for any map entry 〈r′, c〉, the value of counter c is
equal to the size of the set referenced by r′, S contains at least one set from F
as subset, the set referenced by r′. For the example, assume S = {A, C, D, E}.
We apply the procedure, and we get the map M = {S1 → 3, S2 → 2, S3 → 2}
as interim result. The counter of S3 matches the size of S3, so S3 ⊆ S.

The depth-first search iteratively adds/removes (due backtracking and for-
ward search) elements to/from a set of elements (decision trace) S, which has
to be checked every time for the inclusion in some set from F as subset. As dis-
cussed, this allows us to efficiently prune the search. Since this check is performed
very often, it must be implemented efficiently, and so our implementation of the
procedure discussed above is iterative: whenever one element of S is modified,
the map M is adjusted by increasing/decreasing the respective counters.

4 Experiments

We demonstrate the feasibility of our approach by means of an experiment using
Quicksort implementations. The implementations were obtained automatically
from the web using Google Code Search

TM
, a search engine for source code that

supports searching for different programming languages and for regular expres-
sions. We searched for Java implementations and typical Quicksort signatures.
The relevant Quicksort methods, together with all dependencies, were fetched
from the obtained implementations. An specification and an adapter were gener-
ated to supply an unique interface for executing the different sorting algorithms.
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Duplicates were removed, and the compilable implementations were checked au-
tomatically for correctness, which partitioned them into two categories: correct
and defective. We obtained a total number of 174 source files; 88 of them were
parse- and compilable, and the Quicksort method extractable with all its de-
pendencies. Of these 88 source files, 76 were correct and 12 were defective. A
closer look at the defective implementatiosn showed that two contained an empty
Quicksort method, leaving 10 defective implementations for our experiments.

For the search of hotspots, we focused on off-by-one errors, in which the
bounds of a loop are wrong by one unit, or a <= instead of a < comparison is
used. So our changeset C was created as follows:

– For each program location EXPRESSION1 < EXPRESSION2, we create the change-
set entry X© → { EXPRESSION1 < EXPRESSION, EXPRESSION1 <= EXPRESSION2,
EXPRESSION1 > EXPRESSION2, EXPRESSION1 >= EXPRESSION2}, so that each com-
parison operator is tried as replacement. The same is applied for all other possible
comparison operators.

– For each program location EXPRESSION1 - EXPRESSION2, we create the changeset
entry X© → { EXPRESSION1 - EXPRESSION2, EXPRESSION1 }. The same is applied
for the + operator.

We apply our search strategy to changeset C on 84 test inputs (all arrays of
length three or less with entries between 0 and 3). We return a minimal patch
when it exists.

Table 1 shows our results. For each implementation, Domain denotes the
domain it was fetched from, LOC denotes the lines of code of the extracted
algorithm, GT and BT denote the number of good and bad decision traces that
have been stored when the search terminates; PC-points denotes the number
of choice points that were introduced, Patch Size denotes the number of code
changes in the patch, and Time denotes the runtime of the search algorithm in
seconds. Quicksort algorithms #2 and #5 are very similar, but not identical.
Four out of ten Quicksort algorithms were fixed fully automatically. All exper-
iments were performed on an Intel Core 2 Duo 2.26GHz

TM
system with 3GB

physical memory.

Table 1. Experimental results on Quicksort algorithms

Domain LOC GT BT PC-points Patch Size Time

1 framwork.googlecode.com 29 - - 7 no fix 2
2 www.cs.iastate.edu 32 24 261 10 1 524
3 geo.jm-art.cz 29 8 36 11 6 79
4 raider.muc.edu 24 - - 7 no fix 5
5 archive.godatabase.org 27 24 261 10 1 442
6 www.jeckle.de 22 - - 8 no fix 158
7 www.cs.indiana.edu 35 30 162 9 3 440
8 www.cse.buffalo.edu 50 - - 16 no fix 4
9 gwt-greflect.googlecode.com 32 - - 11 no fix 4
10 downloads.sourceforge.net 35 - - 11 no fix 3
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5 Conclusions

We have presented an approach for automatic bug fixing of Java programs that
uses search techniques to explore the behaviour of program variants (candidates
for a fix) on test inputs. The approach has been implemented on top of Java
Pathfinder (JPF), which allows to encapsulate all program variants into one
single meta-program, and use the JPF model checker to search all variants on all
inputs. We have designed an efficient search strategy for early pruning unsuitable
variants, and we have provided an efficient implementation with a suitable data
structure.

We have tested the approachon implementations ofQuicksort obtained through
an automatic web search. Under the assumption that the bug was caused by “off-
by-one” errors, four out of ten faulty implementations could be automatically re-
paired.

While the idea of exploring a set of program variants using some kind of sys-
tematic search is not new, we think that our particular design choices have two
strong points. First, our search strategy makes the approach very suitable for
finding fixes requiring multiple changes in different points of the code. Second,
our approach fits very well the functionality offered by JPF, which greatly re-
duces the implementation effort and allows profiting from a very mature tool.
On the other side, we require the programmer to specify the syntactic constructs
where to look for bugs, and the alternative constructs that can be tried for a fix,
which can be too restrictive in important cases.
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Abstract. Bitwise instructions, loops and indirect data access pose dif-
ficult challenges to the verification of microcontroller programs. In par-
ticular, it is necessary to show that an indirect write does not mutate
registers, which are indirectly addressable. To prove this property, among
others, this paper presents a relational binary-code semantics and details
how this can be used to compute program invariants in terms of bit-level
congruences. Moreover, it demonstrates how congruences can be com-
bined with intervals to derive accurate ranges, as well as information
about strided indirect memory accesses.

1 Introduction

Microcontroller assembly code1 presents different challenges to verification than
those posed by programs written in high-level languages. Microcontroller code
typically consists of a loop in which input ports are read. Data is then stored
and processed – often using bitwise operations – before values are written to
output ports. Bitwise operations and control logic formulated in terms of status
flags necessitate reasoning at the granularity of bits. This presents one problem.

On hardware such as the ATMEL ATmega16 [1], any verification argument
must also pay special attention to the targets of indirect writes2. An indirect
write is a store operation in which the contents of one register are stored at a
target address that is held in another register. On the ATmega family of mi-
crocontrollers, registers are reserved locations in the same address space as the
SRAM. Thus, it is possible to mutate a register, such as the stack pointer, if the
target coincides with the address of the register. One approach to microcontroller
verification is to assume that indirect writes never mutate registers [20]. Though
appealing in its simplicity, this assumption is dubious for handcrafted assem-
bly code, and it is not unknown for compilation itself to introduce errors [12].
The problem of reasoning about targets is compounded by the fact that indirect
writes often arise in loops that are, for example, responsible for data initialisa-
tion. Then the same store operation may write to a number of different targets.
Another problem is therefore showing that all targets are within range [5].
1 We often refer to assembly code, although our implementation operates on a disas-

sembled binary, and thus, does not rely on correctness of assemblers and linkers.
2 We illustrate our method for the ATmega16 platform, but the techniques are easily

transferable to other platforms as well as high-level languages.
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0x50: LDI R17 0

0x51: LDI R26 96

0x52: LDI R27 0

0x53: LDI R30 66

0x54: LDI R31 0

0x55: RJUMP 2

0x56: LPMPI R0 Z

0x57: STPI X R0

0x58: CPI R26 99

0x59: CPC R27 R17

0x5A: BRNE -5

0x5B: RET

0x50

0x51

0x52

0x53

0x54

0x55

0x58

0x59

0x5A 0x56

0x57

0x5B

Fig. 1. An initialisation loop for the ATMEL ATmega16

1.1 Illustrative Example

This paper addresses the problem of statically analysing the targets of indirect
writes, whilst simultaneously modelling data at the bit-level. Since the set of
possible targets cannot be exactly determined statically, we employ abstract
interpretation techniques [8] to compute a range of addresses that includes all
possible targets. If the enclosing range is suitably tight, it is possible to verify that
the registers are not overwritten. Figure 1 illustrates some ATmega16 assembly
code. The instructions at locations 0x50 - 0x54 assign 8-bit registers to (decimal)
constants. The relative jump passes control to location 0x58. The LPMPI R0 Z
instruction first loads R0 with the contents of the byte at the address in program
memory stored in the 16-bit Z register, then Z is incremented. Z is obtained by
concatenating the 8-bit registers R30 and R31. Likewise, the 8-bit registers R26
and R27 constitute the 16-bit X register. STPI X R0 stores the contents of R0
into the byte at address X and then increments X.

The ATmega has a Harvard architecture, and hence, program memory is
separate from SRAM. Location 98, for instance, in program memory is different
from location 98 in SRAM. Thus, program memory is accessed with special
instructions such as LPMPI. Therefore, detecting self-modifying code, which we do
not consider, is trivial. The instructions CPI R26 99 and CPC R27 R17 compare
X against 99, setting the zero flag if X equals 99. Control loops back to location
0x56 iff the zero flag is cleared, that is, if X is not equal to 99. The net effect of
the code is to copy the contents of three locations in program memory starting
at 66 into the SRAM locations 96− 98. This initialises three global variables to
constant values.

A non-relational interval analysis as described in [5] can derive that X ∈ [96, 99]
in program location 0x5A. The interval analyser derives the bound on X based
on the combination of CPI/CPC instructions followed by BRNE. However, it fails
to discover that Z ∈ [66, 69] and has to assume that the loop body could be
entered with values X ∈ [96, 98] ∧ Z ∈ [66, 69], X ∈ [96, 98] ∧ Z ∈ [66, 70], and so
forth, which eventually yields Z ∈ [0, 65535]. If the CPI/CPC instructions were
to restrict Z instead of X, then the value of X were unbounded. This is in fact
a well-known drawback of non-relational interval analysis. To resolve this type
of imprecision, we combine the results of a relational analysis for equalities with
a computationally cheap interval analysis, with the goal of deriving that X is
incremented only in combination with Z, and consequently that X ∈ [96, 98]∧Z ∈
[66, 68] when the indirect loads/stores are executed.
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1.2 Approach

In microcontroller code for the ATmega16 platform, a memory region typically
is statically reserved rather than dynamically allocated. Thus, the address of the
start of a region that is used as an array is fully determined. Hence, when veri-
fying such code, it is not necessary to use a symbolic name to refer to a memory
region: an address will suffice. The force of this is that there is no need to adopt
a memory model in which regions with different symbolic names are assumed
to be non-interfering. Symbolic memory models are often employed when the
position of a region is unknown, as with dynamically allocated memory in C,
but this nevertheless compromises soundness [3]. Furthermore, when analysing
statically reserved regions, it is even possible to infer a relationship between each
address of a region, and the contents of that address.

To represent such relations, we turn to linear congruences [2, 18]. In this
classical abstract domain [13], the relationships between variables are described
as systems of linear equations of the form

∑n−1
i=0 cixi mod m = d, denoted by

∑n−1
i=0 cixi ≡m d, where ci ∈ Z are integer coefficients, xi are variables, m ∈ N is

a modulus, and d ∈ Z is an integer constant. Such a system may have none, one
or many solutions, where a solution is an assignment to the values of the n vari-
ables x0, . . . , xn−1 that satisfies each of the equations. For example, the system
u+2v ≡256 3 and v+w ≡256 1 has solutions {〈1+256k1+2k3, 1+256k2−k3, k3〉 ∈
[0, 255]3} where k1, k2, k3 ∈ Z. Such relationships arise between program vari-
ables, or memory locations in the case of microcontroller code, because of the
modular nature of computer arithmetic. It is therefore natural to consider mod-
uli corresponding to the size of a machine word [18]. Such systems can only
represent linear relationships, but not ranges, and therefore, we adopt a more
expressive class of congruences based on decomposing variables into their con-
sistent bits [15].

For instance, suppose u is represented by an unsigned byte whose bits are
〈u0, . . . , u7〉 where ui ∈ {0, 1} and the value of u is

∑7
i=0 2iui. Suppose too that

v and w are likewise represented by 〈v0, . . . , v7〉 and 〈w0, . . . , w7〉. Then the above
system can be expressed as

∑7
i=0 2i(ui + 2vi) ≡256 3,

∑7
i=0 2i(vi + wi) ≡256 1

without any loss of information. It has been shown how such systems can be
applied to verify bit-twiddling algorithms [15, 16].

1.3 Contributions

In this paper, we make the following contributions. (1) We deploy congruence
systems to derive program invariants for assembly code at the level of bits.
(2) Further, we combine intervals [5] and congruence relations to derive accurate
ranges. To do so, we present a new algorithm for refining the precision of abstract
descriptions in both domains. (3) We show how a contiguous range, such as [0, 6],
can be refined to a set of non-contiguous values, such as {0, 2, 4, 6}, by applying
congruences to ranges. (4) To summarise, this paper shows by that it is possible
to infer accurate ranges using congruences and intervals, and thereby verify the
correctness of microcontroller assembly code.
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2 Abstract Domains

This section briefly reviews results on the abstract domains our work builds on,
namely intervals and congruences. In the following, let m = 2w where w = 8 is
the word-length of the microcontroller, Zm = {i ∈ N | 0 ≤ i ≤ m − 1}, and let
V = {v0, . . . , vn−1} be a set of variables for some n ∈ N. Further, let P denote
the set of program locations (or instructions, equivalently).

2.1 Intervals

The interval abstract domain, probably the most widely used numerical domain,
is used to over-approximate the value-sets of memory cells. In case of the 8-bit
ATmega16, a memory location can hold a contiguous subset of values in Zm

defined through its bounds. Denote the domain Int. A partial order on intervals
is induced by the subset relation over the concrete value-sets. Then, (Int,⊆)
forms a complete lattice with ⊥ = ∅ and � = Zm. Define auxiliary functions fst :
Int → Zm and snd : Int → Zm that map intervals to their bounds. Abstraction
αInt : 2Zm → Int and concretisation γInt : Int → 2Zm are defined as

αInt(v) =

{
∅ : ⊥
[min(v),max(v)] : otherw.

γInt(i) = {z ∈ Zm | fst(i) ≤ z ≤ snd(i)}

for i ∈ Int and v ⊆ Zm. An abstract interpretation framework for deriving non-
relational interval abstractions of microcontroller code has been described in [5],
however, space constraints prevent us from repeating these results here. We
assume that for each program location p ∈ P and each memory location v ∈ V ,
an interval abstraction has been computed, given through a map I : V×P → Int.

2.2 Congruences

Additionally, our analysis is based on representing Boolean functions as con-
gruence systems. To explain this idea, let sol(f) denote the set of solutions of
a Boolean function f over n propositional variables. Our method relies on the
computation of the so-called congruent closure, which yields a congruence sys-
tem c over n bitwise variables such that sol(f) ⊆ sol(c) ∩ B

n with B = {0, 1}
holds. For example, given a function f = x1 ∧ (x2 ∨ x3), we have sol(f) =
{〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}. Congruent closure, with a fixed modulo of 4, then
computes c = (x1 ≡4 1). The solutions of this congruence equation are sol(c) ∩
B

3 = {〈1, x2, x3〉 | x2, x3 ∈ B}. Note that sol(c) \ sol(f) = {〈1, 0, 0〉}.
Definition 1. The operator cong : 2B

nw → 2B
nw

is defined:

cong(S) =
{

x ∈ B
nw

∣
∣
∣
∣
{y0, . . . ,yk−1} ⊆ S ∧ {λ0, . . . , λk−1} ⊆ Z ∧
∑j<k

j=0 λj ≡2w 1 ∧ x ≡2w

∑j<k
j=0 λjyj

}
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An algorithm for deriving optimal congruent abstractions of Boolean formulae
was described by King and Søndergaard [16]. Given a formula ϕ, the key idea of
their method is to derive a congruent abstraction αCong(ϕ) through successive
calls to a SAT solver. Therefore, their algorithm is similar in spirit to the sym-
bolic implementation of a best transformer as described by Reps et al. [21]. In
the following, let Cong denote the domain of bit-level congruences over V .

3 Worked Examples

We illustrate the power of bit-level reasoning using the congruence domain for
some illustrative sequences of ATmega16 assembly. The key idea of our approach
is to derive a template transfer function for each instruction using SAT solving
up-front, and then instantiate the transfer functions to infer program invari-
ants. The invariants are then strengthened with intervals, yielding more precise
representations of congruences as well as intervals.

3.1 Reasoning about Bit-Wise Operations

Consider the instruction EOR R0 R1, which computes the exclusive-or of regis-
ters R0 and R1 and stores the result in R0. First, a template abstraction of this
instruction that does not depend on the concrete registers R0 and R1 is synthe-
sised from a Boolean encoding. To express the semantics of EOR r s, introduce
bit-vectors r[i] and s[i] for the inputs as well as r′[i] and s′[i] for the outputs
(with 0 ≤ i ≤ 7). Then, EOR r s is encoded symbolically as

�EOR r s� =
∧7

i=0 (r′[i] ↔ r[i] ⊕ s[i] ∧ s′[i] ↔ s[i])

where ⊕ denotes the Boolean exclusive-or. By computing the congruent closure
of �EOR r s� with a modulus of 256, denoted αCong, we obtain:

αCong(�EOR r s�) =
{∧7

i=0 (128 · r′[i] ≡256 128 · r[i] + 128 · s[i])∧
∧7

i=0 s′[i] ≡256 s[i]

Note that sol(αCong(�EOR r s�)) = sol(�EOR r s�), and thus, this congruent
transfer function is just as accurate as its Boolean counterpart.

3.2 Relational Composition without Ranges

In the previous example, we have seen how a template abstraction of a single
instruction is derived. Here, we consider the program fragment EOR R0 R1; EOR
R1 R0; EOR R0 R1 and the instantiation of templates. In [15], it was shown
that best transformers for blocks (sequences of instructions) can be obtained by
encoding the sequence propositionally as a whole. Since our goal is to derive range
information for different program locations that may be located in the middle
of a block, we deviate from following this approach, and combine the obtained
transfer functions using relational composition ◦ : Cong × Cong → Cong.
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A template transfer function c, derived analogously to the first example, is in-
stantiated with the corresponding variables r0, r1, r0′, and r1′, which amounts
to renaming variables in the template. This gives c1 = c(r0, r1, r0′, r1′), c2 =
c(r1, r0, r1′, r0′), and c3 = c(r0, r1, r0′, r1′), for instance:

c1 =
∧7

i=0 (128 · r0′[i] ≡256 128 · r0[i] + 128 · r1[i]) ∧ ∧7
i=0 (r1′[i] ≡256 r1[i])

To combine the effects of c1 and c2, introduce additional disjoint bit-vectors r0′′

and r1′′, and put c′1 = c1 ∧ (∧7
i=0r0′′[i] ≡256 r0[i]′

) ∧ (∧7
i=0r1′′[i] ≡256 r1[i]′

)

and c′2 = c2 ∧ (∧7
i=0r0′′[i] ≡256 r0[i]

) ∧ (∧7
i=0r1′′[i] ≡256 r1[i]

)
. The net effect

of this construction is to relate the outputs of c1 to the inputs of c2. Then,
define c1 ◦ c2 = ∃r0′′,r1′′(∃r0′,r1′(c′1) ∧ ∃r0,r1(c′2)) where the operation ∃X(f)
eliminates the variables X from f using projection. Observe that projection
can be implemented by computing upper triangular form after reordering the
variables in the system [18,15]. As a result, we obtain:

c1 ◦ c2 =
∧7

i=0 (r1′[i] ≡256 r0[i]) ∧ ∧7
i=0 (128 · r0′[i] ≡256 128 · (r0[i] + r1[i]))

That is, after the second instruction, register R1 holds the original value of R0.
Further, by computing c1 ◦ c2 ◦ c3 analogously, we derive:

c1 ◦ c2 ◦ c3 =
∧7

i=0 (r0′[i] ≡256 r1[i]) ∧ ∧7
i=0 (r1′[i] ≡256 r0[i])

This congruent representation reveals that the sequence of instructions performs
an in-place swapping of R0 and R1 using consecutive exclusive-or operations.

3.3 Reasoning about Ranges Using Invariants

Recall again the example program from Fig. 1, which copies three values from
program memory into SRAM. The interval analysis infers a map I : V×P → Int,
which states that before instruction 0x5A is executed, the registers X and Z hold
the values I(X, 0x5A) = [96, 99] and I(Z, 0x5A) = [0, 65535].

To derive program invariants, we express the behaviour of the program frag-
ment in terms of a flowchart program 〈P ,V , p0, T 〉, where P is the set of program
locations, V is the set of program variables, p0 ∈ P is the initial program loca-
tion and T ⊆ P ×P defines the possible transitions between the instructions as
given by the control flow graph. Consequently, we have P = {0x50, . . . , 0x5A},
V = {R17, R26, R27, R30, R31} and p0 = 0x50. The semantics of the program can
be stated as the least fixed point of a system of equations, given through:

– inv(p0) =
∧

v∈V
(∧7

i=0 v′[i] ≡256 v[i]
)

for the initial program location p0.
– inv(pj) =

⊔
(pi,pj)∈T (inv(pi) ◦ ci,j), where ci,j denotes the instantiated con-

gruent transfer function connecting pi ∈ P and pj ∈ P .

Here,
⊔

denotes the least upper bound operator over congruences as defined
in [15]. Applying the first equation inv(p0x51) = inv(p0) ◦ c0x50 then gives

inv(p0x51) =

⎧
⎨

⎩

∧7
i=0 (r17′[i] ≡256 0) ∧

∧7
i=0 (r26′[i] ≡256 r26[i]) ∧ ∧7

i=0 (r27′[i] ≡256 r27[i])∧
∧7

i=0 (r30′[i] ≡256 r30[i]) ∧ ∧7
i=0 (r31′[i] ≡256 r31[i])
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and thereafter, the invariant is stable. To express the program invariant inv(p0x5A),
let 〈〈x〉〉 =

∑7
i=0 2ix[i]. Proceeding with the computations eventually yields:

inv(p0x5A) =
{

(〈〈r26′〉〉 − 〈〈r30′〉〉 ≡256 30)∧
∧7

i=0 (r17′[i] ≡256 0 ∧ r27′[i] ≡256 0 ∧ r31′[i] ≡256 0)

From inv(p0x5A) and I(X, 0x5A) = [96, 99], we can now derive I(Z, 0x5A) = [66, 69].
In the following, we will first see how program invariants of this kind are derived
for arbitrary assembly programs, and then describe a systematic way of refining
congruences and intervals in parallel. This operation amounts to triangularisa-
tion and checking satisfiability in order to strengthen the descriptions in both
domains. Formally speaking, we will derive an operator reduce : Int × Cong →
Int × Cong such that reduce(i, c) � (i, c) for (i, c) ∈ Int × Cong (cf. Sect. 6).

4 Relational Semantics for Assembly Code

In his seminal paper on congruence analysis, Granger [13] lamented the difficulty
of handcrafting transformers for the congruence domain. However, since each of
the 131 instructions on the ATmega16 has a well-defined semantics on the level
of bits, we synthesise templates of transfer functions, based on a propositional
encoding of the instructions and the computation of congruent closure to rem-
edy this difficulty. When modelling the effects of instructions, no abstraction is
applied, such that the formulae define the concrete semantics of the instructions.

Instructions for the ATmega platform have either zero, one, or two operands.
Here, we present a relational encoding �·� for a representative subset of the
instruction-set. The semantics for other instructions can be derived analogously
from the instruction set manual [1]. Given a set of memory locations accessed by
an instruction, its encoding is given over disjoint bit-vectors for representing each
accessed memory location, where the outputs are primed. Formally speaking,
given a set of program variables V , the Boolean formulae �·� are defined over
BV∪V′ , where V = {v[i] | v ∈ V , 0 ≤ i ≤ 7}, V′ = {v′[i] | v ∈ V , 0 ≤ i ≤ 7},
and BY defines the class of Boolean formulae over propositional variables Y .
Additionally, we require V ∩ V′ = ∅.

4.1 Copy and Load Instructions

The instruction MOV r s copies a register s into r. Similarly, given c ∈ Zm, the
instruction LDI r c loads the constant value c into r. To express, introduce a
bit-vector c ∈ B

8 with 〈〈c〉〉 = c. The semantics of these instructions can be
encoded relationally over bit-vectors r, s, r′ and s′ as:

�MOV r s� =
∧7

i=0(r
′[i] ↔ s[i]) ∧ ∧7

i=0(s
′[i] ↔ s[i])

�LDI r c� =
∧7

i=0(r
′[i] ↔ c[i])

Computing the congruent closure of �MOV r s�, e.g., yields:

αCong(�MOV r s�) =
∧7

i=0 (r′[i] ≡256 s[i]) ∧ ∧7
i=0 (s′[i] ≡256 s[i])



Range Analysis of Microcontroller Code Using Bit-Level Congruences 89

Observe that for these instructions, a modulus of 2 would suffice, but this is not
always so. However, choosing the modulus to match the register-length is safe.
Moreover, note that the status register (called SREG in case of the ATmega16)
is not affected by these instructions, which is different for logical or arithmetic
instructions. Overall, the status register contains 8 different flags that can be
affected by instructions: carry flag C, zero flag Z, negative flag N , overflow flag
O, sign flag S, half-carry flag H, transfer flag T , and interrupt flag I. The exact
way these bits are set or cleared, however, depends on the concrete instruction.

4.2 Bitwise Instructions

As bitwise operations, the ATmega16 supports bitwise-and (AND), bitwise-and
with a constant value (ANDI), bitwise negation (COM), exclusive-or (EOR), bitwise-
or (OR), and bitwise-or with a constant (ORI). The effects of these operations on
the destination register, denoted θ(op), are bit-blasted as follows:

θ(AND r s) =
∧7

i=0 (r′[i] ↔ r[i] ∧ s[i]) ∧ ∧7
i=0 (s′[i] ↔ s[i])

θ(COM r) =
∧7

i=0 (r′[i] ↔ ¬r[i])
θ(EOR r s) =

∧7
i=0 (r′[i] ↔ r[i] ⊕ s[i]) ∧ ∧7

i=0 (s′[i] ↔ s[i])
θ(OR r s) =

∧7
i=0 (r′[i] ↔ r[i] ∨ s[i]) ∧ ∧7

i=0 (s′[i] ↔ s[i])

The encodings for ANDI r c and ORI r c are derived by replacing s[i] in the
respective formulae with c[i] defined as above. As an example, consider the
abstraction of COM r, which flips all bits in r:

αCong(θ(COM r)) =
∧7

i=0 (128 · r′[i] ≡256 128 · r[i] + 128)

Bitwise instructions also alter status flags. These effects are encoded in formulae
ψ(op), leading to an encoding �op� = θ(op) ∧ ψ(op). AND r s, for instance,
behaves as follows with respect to the status flags: It clears the overflow flag,
sets the negative flag iff r′[7] is set, sets the sign flag to N ′ ⊕ O′, and sets the
zero flag iff all bits in r′ are cleared. The other flags remained unchanged. To
express, let id(x) = x′ ↔ x. Then:

ψ(AND r s) =
{¬O′ ∧ Z ′ ↔ (

∧7
i=0 ¬r′[i]) ∧ id(T ) ∧ N ′ ↔ r′[7] ∧

id(C) ∧ S′ ↔ N ′ ⊕ O′ ∧ id(H) ∧ id(I)

Encodings ψ(op) for ANDI, EOR, OR, and ORI are equal to this case. COM differs
in that it always sets the carry flag. Observe that the congruence domain is too
weak to express the relationship on Z ′, but it can represent the other ones.

4.3 Shifts

In terms of shifts, the ATmega16 supports arithmetic shift right (ASR), logi-
cal shift left (LSL), logical shift right (LSR), rotate left through carry (ROL), and
rotate right through carry (ROR). All these operations shift the value of the source
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register by a single position, shifts by a higher or variable number of positions
are not supported. ASR r shifts all bits in r to the right, the most significant
(MSB) bit is held constant, and the least significant bit (LSB) is shifted into
the carry. Thus, the instruction divides a signed r by two without changing its
sign. LSR r behaves analogously for an unsigned value. LSL r multiplies r by
two, shifting the MSB into the carry and clearing the LSB. ROL r and ROR r
are used to multiply and divide multi-byte signed and unsigned values by two,
by shifting the carry flag into the LSB/MSB of r and shifting the value of the
MSB/LSB bit into the carry. Expressed in propositional logic, this gives:

θ(ASR r) =
∧6

i=0 (r′[i] ↔ r[i+ 1]) ∧ r′[7] ↔ r[7] ∧ C ′ ↔ r[0]
θ(LSL r) =

∧6
i=0 (r′[i+ 1] ↔ r[i]) ∧ ¬r′[0] ∧ C ′ ↔ r[7]

θ(ROR r) =
∧6

i=0 (r′[i] ↔ r[i+ 1]) ∧ r′[7] ↔ C ∧ C′ ↔ r[0]

Encodings for LSR and ROL are specified similarly. The updates of the status
flags are then expressed analogously to before with �op� = θ(op) ∧ ψ(op) and
ψ(op) = ϕ(op) ∧ ξ(op), where

ϕ(op) =
{

N ′ ↔ r′[7] ∧ Z ′ ↔ ∧7
i=0 ¬r′[i] ∧ id(T ) ∧ id(I) ∧

O′ ↔ N ′ ⊕ C ′ ∧ S′ ↔ N ′ ⊕ O′ ∧ id(H)

is the same among all shift instructions, whereas ξ(op) = C′ ↔ r[0] for op ∈
{ASR, LSR, ROR} and ξ(op) = C′ ↔ r[7] otherwise.

4.4 Arithmetic Instructions

Let us consider encodings for two arithmetic instructions, in this case for sum-
ming up two registers (ADD) and incrementing a register by 1 (INC). Here, ADD
r s is expressed using a cascade of full-adders using additional carry bits c:

θ(ADD r s) =
(∧7

i=0 r′[i] ↔ r[i] ⊕ s[i] ⊕ c[i]
)
∧ ¬c[0]∧

(∧6
i=0 c[i+ 1] ↔ (r[i] ∧ s[i]) ∨ (r[i] ∧ c[i]) ∨ (s[i] ∧ c[i])

)

θ(INC r) =
∧7

i=0(r
′[i] ↔ r[i] ⊕ ∧i−1

j=0 r[j])

Bit-wise encodings for other arithmetic instructions such as computation of the
two’s complement (NEG) or subtraction (SUB) are derived accordingly. The effects
ψ(op) on the status register can be derived analogously to the previous examples
to obtain �op� = ψ(op) ∧ θ(op). Abstracting the increment using congruences
then gives:

αCong(θ(INC r)) = (〈〈r〉〉′ ≡256 〈〈r〉〉 + 1)

Using the same approach, Boolean encodings for the complete instruction set
of the ATmega16 and the corresponding congruent abstractions are computed.
For instance, branching instructions such as BRNE do not alter the status of the
addressable memory, but only the program counter, which is implicitly encoded
in the control flow graph. Compare instructions such as CP, CPC, or CPI subtract
two values, but they only alter the status flags accordingly and do not store the
result at a memory location.
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5 A Discussion of Soundness

As stated in Sect. 3.3 already, defining a program analysis over congruences
amounts to the application of four operations: instantiating template functions,
relational composition ◦, join �, and checking entailment |=. Since congruences
satisfy the finite ascending chain condition, no widening is needed [18]. We make
no contributions in this regard. However, two open issues warrant discussion: the
effect of indirect stores on the validity of invariants and relationships between
addresses of a region and the contents of that address.

In Sect. 3.3, we have not modelled the effects of indirect stores on memory loca-
tions 96–98 in SRAM. Thus, no relational constraints are put onto these memory
locations. However, suppose that a value is copied from s into a target register r
using a direct access, which generates an equality constraint

∧7
i=0 r[i] ≡256 s[i],

and later r is overwritten using an indirect store. Following the approachdescribed
so far, the equality constraint remains in the program invariant, which is unsound.
The strength of using a concrete memory model, where each cell is represented by
an integer address, is that the intervals provide an upper-approximation of the tar-
gets of indirect stores. Hence, we can simply modify the ◦ operator such that all
constraints on targets of indirect writes are eliminated when ◦ is applied. This is
achieved by removing all equalities that involve the target register from the invari-
ant. This strategy recovers soundness. As a matter of fact, this method typically
yields the same results as if the constraints on the targets were joined (since indi-
rect stores are modelled as weak updates).

Even though it is not possible to derive relationships on the targets of indi-
rect stores using weak updates, it is possible to derive a relationship between
indirectly written locations and their contents. To illustrate, suppose we have an
indirect store operation ST X R0, and a program invariant is generated. Then, if
the invariant exhibits a relationship between X and R0, it follows that if a target
memory location is written (which cannot be guaranteed), the target address is
congruently related to the source register R0 as described by the invariant.

6 Reducing Abstract Descriptions

Thus far we have derived bit-level invariants, which are systems of linear con-
gruences. In this section, we show how congruences and intervals are combined
to derive more precise abstractions in both domains. Finally, strides – that is,
sets of values that are separated by a constant k ∈ N – are extracted from the
refined ranges.

6.1 A Reduce Operator

Given S1, S2 ⊆ B
nw, where S1 represents the models of the interval abstraction

and S2 represents the models of the congruent invariant, we construct S1 ∩ S2

formally. To represent the models of intervals, let �i,ui ∈ B
w denote bitwise

encodings of the extremal values of vi ∈ V for a fixed p ∈ P as defined through
the map I : V × P → Int. Then:
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Definition 2. The operator cube : 2B
nw → 2B

nw

is defined:

cube(S) =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ B
nw

∣
∣
∣
∣
∣
∣
∣
∣

∀i ∈ [0, n− 1] : �i,ui ∈ S ∧
	′i = 〈〈〈�i[0], . . . , �i[w − 1]〉〉〉 ∧
u′i = 〈〈〈ui[0], . . . ,ui[w − 1]〉〉〉 ∧
	′i ≤ 〈〈〈x[iw], . . . ,x[iw + w − 1]〉〉〉 ≤ u′i

⎫
⎪⎪⎬

⎪⎪⎭

It is straightforward to show that cube : 2B
nw → 2B

nw

and cong : 2B
nw → 2B

nw

are closure operators, that is, extensive, increasing and idempotent. Further,
suppose S1, S2, . . . ⊆ B

nw. If cube(Si) = Si for all i ∈ N then cube(∩i∈NSi) =
∩i∈NSim, and if cong(Si) = Si for all i ∈ N then cong(∩i∈NSi) = ∩i∈NSi. To
derive Galois connections, and accordingly safety of our computations, we define
abstraction and concretisation as follows:

Definition 3. The abstraction and concretisation maps are defined as:

αcube(S) = ∩{S′ ⊆ B
nw | S ⊆ S′ ∧ S′ = cube(S′)} γcube(S) = S

αcong(S) = ∩{S′ ⊆ B
nw | S ⊆ S′ ∧ S′ = cong(S′)} γcong(S) = S

Then, any subset of B
nw (or equivalently Zm) closed under affine combination

can be represented congruently. A similar observation holds for the cube of S.
Further, we have cube(S) = S iff there exists 	′0, . . . , 	

′
n−1 ∈ [−2w−1, 2w−1 − 1]

and u′0, . . . , u′n−1 ∈ [−2w−1, 2w−1 − 1] such that:

S =
{
x ∈ B

nw
∣
∣∀i ∈ [0, n− 1] : 	′i ≤ 〈〈〈x[iw], . . . ,x[iw + w − 1]〉〉〉 ≤ u′i

}

For congruences, it is cong(S) = S iff there exists a matrix [A | b] ∈ Z
k,nw+1

such that S = {x ∈ B
nw | Ax ≡2w b}.

Finally, we present a constructive approach to computing the affine inter-
section between S1 and S2. This construction is based on strengthening S2 us-
ing constraints from S1 (or I, respectively). The key idea in this construction
is introduce fresh equalities to express the non-negativity of 〈〈vi〉〉 − 〈〈�i〉〉 and
〈〈ui〉〉 − 〈〈vi〉〉 in order to enforce 〈〈�i〉〉 ≤ 〈〈vi〉〉 ≤ 〈〈ui〉〉. This is achieved by im-
posing a zero-constraint on the MSB of the difference, which corresponds to the
sign bit. This construction is followed by putting the resulting system into upper
triangular form.

Proposition 1. Suppose 	′0, . . . , 	
′
n−1, u

′
0, . . . , u

′
n−1 ∈ [0, 2w−1] and let [A | b] ∈

Z
k,nw+1. Define

S1 =
{
x ∈ B

nw
∣
∣ ∀i ∈ [0, n− 1] : 	′i ≤ 〈〈〈x[iw], . . . ,x[iw + w − 1]〉〉〉 ≤ u′i

}

S2 = {x ∈ B
nw | Ax ≡2w b}

Let e, f ∈ B
w such that e = 〈0, 0, · · · , 0, 1〉 and f = 〈1, 2, · · · , 2w−2, 2w−1〉.

Moreover, let A′ ∈ Z
k+4n,3nw, E ∈ Z

n,nw and F ∈ Z
n,nw defined by:

A′ =

⎡

⎢
⎢
⎢
⎢
⎣

E 0 0
0 E 0
0 −F F
F 0 −F
0 0 A

⎤

⎥
⎥
⎥
⎥
⎦

E =

⎡

⎢
⎢
⎢
⎣

e 0 · · · 0
0 e · · · 0
...

...
...

...
0 0 · · · e

⎤

⎥
⎥
⎥
⎦

F =

⎡

⎢
⎢
⎢
⎣

f 0 · · · 0
0 f · · · 0
...

...
...

...
0 0 · · · f

⎤

⎥
⎥
⎥
⎦
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Additionally, let l ∈ Z
n, u ∈ Z

n, b′ ∈ Z
k+4n where

l =

⎡

⎢
⎢
⎢
⎣

	′0
	′1
...

	′n−1

⎤

⎥
⎥
⎥
⎦

u =

⎡

⎢
⎢
⎢
⎣

u′0
u′1
...

u′n−1

⎤

⎥
⎥
⎥
⎦

b′ =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
l
u
b

⎤

⎥
⎥
⎥
⎥
⎦

x′ =

⎡

⎣
z
y
x

⎤

⎦

Then S1 ∩ S2 = {x ∈ B
nw | A′x′ ≡2w b′}.

Refining intervals follows a method for maximising values in Boolean formulae
described by Codish et al. [6] using successive calls to a decision procedure. The
key idea is to maximise single bits – starting from the MSB – and checking satis-
fiability of a system of linear 0/1 constraints using SAT [15]. We use SAT solving
because triangularisation only provides an incomplete decision procedure for 0/1
variables. In the following definition, the symbol : denotes the concatenation of
bit-vectors.

Definition 4. Definemax(A, b, i)=extr(A, b, i, w, 0, 1)whereextr(A, b, i, j, v1, v2):

– ε if j = 0.

– 〈v1〉 : extr(
[
ei

A

]

,

[
v1
b

]

, i− 1, j − 1, v2, v2) if
[
ei

A

]

x ≡2w

[
v1
b

]

is satisfiable.

– 〈¬v1〉 : extr(
[
ei

A

]

,

[¬v1
b

]

, i− 1, j − 1, v2, v2) otherwise.

Conversely define min(A, b, i) = extr(A, b, i, w, 1, 0). Finally, reduce follows from
the combination of min, max, and ∩:

Corollary 1. Let S1 ∩ S2 = Ax ≡2w b. Then reduce(S1, S2) = (I ′, Ax ≡2w b)
where I ′ = 〈[min(A, b, 0),max(A, b, 0)], . . . , [min(A, b, n− 1),max(A, b, n− 1)]〉.

Example 1. Suppose w = 4, n = 2 and S2 = {x ∈ B
8 | Ax ≡24 b} where

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

b =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎦

To interpret [A | b], let u = 〈x[0],x[1],x[2],x[3]〉 and v = 〈x[4],x[5],x[6],x[7]〉.
Then the system Ax ≡24 b implies that 〈〈u〉〉 ≡2w 〈〈v〉〉 and 〈〈v〉〉 ≡2 0. Now let

S1 = {x ∈ B
8 | 4 ≤ 〈〈u〉〉 ≤ 15 ∧ 0 ≤ 〈〈v〉〉 ≤ 7}
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and consider S1 ∩ S2 as characterised by [A′ | b′] which is:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 1 2 4 8 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 1 2 4 8 0
1 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 15
0 0 0 0 1 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Putting this into a triangular form, we achieve:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 15
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 7
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 1 2 4 8 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1−2−4−8 0 0 0 0 1 2 4 8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0−1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, rows 3 and 4 impose the constraint 〈〈v〉〉 ≤ 7 by requiring 7 − 〈〈v〉〉 ≥ 0.
The constraints can be projected from S1 ∩ S2, which yields u[3] ≡2w 0, and
thus, 〈〈u〉〉 ≤ 7. With u[0] ≡2w 0, applying SAT yields 4 ≤ 〈〈u〉〉 ≤ 6. Note,
however, that more precise congruences could be extracted by encoding the
equation system in propositional logic and recomputing congruent closure.

6.2 Refinement for Strides

For p ∈ P , the respective invariant inv(p), and a variable v ∈ V , let i ∈ N be the
maximum index of bit-vector v such that inv(p) contains relations v[j] ≡256 kj

for all 0 ≤ j ≤ i and kj ∈ {0, 1}. The size of the stride is then defined by
2i+1, and the set of possible values constrained by the invariant is given through
Z = {(∑i

j=0 2jv[j])+k ·2i+1 | k ∈ N}. Thus, the resulting value-set is I(v, p)∩Z.
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Table 1. Optimality of synthesised transfer functions

Class Instructions sol(α(�c�)) = sol(�c�) ?

load & copy LDI, MOV yes

shift ASR, LSL, LSR, ROL, ROR yes

logical COM, EOR, SWAP yes

logical AND, ANDI, OR, ORI no

arithmetic ADC, ADD, DEC, INC, NEG, SBC, SUB, SUBI yes

arithmetic MUL, MULS, MULSU no

compare CP, CPC, CPI no

branching BRBC, BRBS, ... no

7 Experiments

We have integrated the ideas and algorithms described in this paper into the
[mc]square verification platform for microcontroller binary code. In this sec-
tion, we discuss our experiences with respect to optimality and the runtime re-
quirements. All experiments were performed on a MacBook Pro, equipped with
a 2.4 Ghz dual-core processor and 4 GB of RAM.

7.1 Optimality

Let αCong(�f�) denote a transfer function synthesised from a Boolean encoding
�f�. The congruence domain is optimal for abstracting f iff sol(αCong(�f�)) =
sol(�f�). Considering the classes of instructions that were described Sect. 4, opti-
mality results given in Tab. 1 are obtained (ignoring the effects of arithmetic and
logical instructions on the status register). Observe that compare and branching
instructions, which are required to handle conditional branches and loop condi-
tions, sometimes cannot be modelled precisely (recall the congruent abstraction
of Z ′ ↔ ∧7

i=0(¬r′[i])). This drawback, however, is remedied through the interval
analysis, which constrains the ranges through branching conditions.

7.2 Runtime

Synthesing transfer functions up-front requires less than 1s for each instruction.
Abstracting INC r, e.g., requires 17 SAT instances over 32 propositional vari-
ables to be solved with an overall runtime of 0.18s using Sat4J. Composing
congruences is implemented using triangularisation, as is �. For the initialisa-
tion loop in Sect. 3.3, the loop invariant stabilised after 2 iterations, which led
to 18 applications of ◦ and 2 applications of �, which required 0.3s overall. The
runtime for operations on matrices is very susceptible to the number of variables
in the system, and hence, r17, r26, r27, r30, and r31 were eliminated prior
to range-refinement as they are unrelated to the invariant. Since the runtime
grows polynomially with the number of bits, computing invariants for complete
programs is not tractable. Instead, an invariant generator should detect program
fragments where the interval analyser loses precision.
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Computing reduce to derive refined ranges requires 16 SAT instances to be
solved which amounts to 0.25s. That is, two instances for each bit are required,
whereas deriving strides is linear in the number of congruence relations.

8 Related Work

Defining and computing transformers for relational domains has been an ac-
tive topic in abstract interpretation for decades, and numerous techniques for
expressing relational constraints have been described [11, 17]. Most existing ap-
proaches, however, operate on unbounded integers, with the additional duty to
verify that no overflow can occur [10]. The technique from [22] suggests to revise
the truncation map to reflect overflows for polyhedral analysis.

In assembly code for 8-bit architectures, overflows can be observed commonly
due to the limited bit-width. Therefore, it is natural to deploy congruence rela-
tions [18,13] where the modulus is 256. Instead of expressing ranges in a domain
that handles wraps, our approach combines relational invariants with computa-
tionally inexpensive intervals [5]. The idea of reducing two abstract descriptions
in parallel was already formalised by Cousot and Cousot [9]. Later, Codish et
al. [7] have applied a similar technique to pair and set-sharing analysis.

The difficulty of designing optimal transfer functions was already discussed
in [11]. However, it took several decades until it was observed that optimal
transformers can be derived for any abstract domain that satisfies the ascending
chain condition [21]. Our work builds on this to remedy both the difficulty and
the workload of handcrafting transfer functions for the complete instruction
set of the microcontroller as in [4]. Contemporaneously to [21], Regehr et al.
[20] observed that optimal transfer functions for interval analysis of ATmega16
assembly can be derived using BDDs. However, the time needed for computing
best transformers is considerably longer due to the use of BDD-based encodings
without abstraction.

9 Conclusion and Future Work

We have shown that bit-level congruences provide a suitable means for deriving
invariants for assembly code. We have detailed techniques for verifying, infer-
ring, and refining ranges in presence of indirect reads and writes. The work
calls for further research into the handling of indirect stores in order to derive
strong updates instead of weak updates. Existing work on lifting abstract in-
terpreters to quantified domains [14] could serve as a basis for this. Another
interesting application is model checking, where congruences could be used to
reduce the over-approximation introduced through abstractions [19] similar to
the refinement described in Sect. 6, leading to smaller state spaces and fewer
false alarms.
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Abstract. Workflows have proven to be a useful conceptualization for
the automation of business processes. While formal verification methods
(e.g., model checking) can help ensure the reliability of workflow systems,
the industrial uptake of such methods has been slow largely due to the
effort involved in modeling and the memory required to verify complex
systems. Incorporation of time constraints in such systems exacerbates
the latter problem. We present an automated translator, YAWL2DVE-
t, which takes as input a time constrained workflow model built with
the graphical modeling tool YAWL, and outputs the model in DVE,
the system specification language for the distributed LTL model checker
DiVinE. The automated translator, together with the graphical editor
and the distributed model checker, provides a method for rapid design,
verification and refactoring of time constrained workflow systems. We
present a realistic case study developed through collaboration with the
local health authority.

Keywords: Workflow Systems, Modeling, Time, Automated Transla-
tion, Distributed Model Checking.

1 Introduction

Workflow Management Systems (WfMSs) improve business processes by iden-
tifying needs, reducing waste and duplication of work, ensuring completion of
projects on time and in accordance with plans, improving efficiency, facilitating
documentation, and creating solutions based on the analyzed process require-
ments. WfMSs such as Staffware, WebSphere MQ Workflow, FLOWer, SAP
Workflow, YAWL are adopted widely in the industry because they facilitate
the visualization and analysis of a business process. Many of today’s workflows
are complex requiring a high degree of flexibility, massive data and knowledge
management, and complex timing [1]. However, the resulting implementations of
unverified large and complex workflow models are at risk of undesirable runtime
executions. Current WfMSs facilitate the enactment of workflows with some de-
gree of fault-tolerance, e.g., exception handling, but formal verification capacity
is limited.
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Model checking is an automatic analysis method, which explores all possible
states of a modeled system to verify whether the system satisfies a formally
specified property. It is widely used in industrial applications, e.g., computer
hardware and software, and has great potential for verifying models of com-
plex and distributed business processes. Un-timed model checkers like SPIN and
SMV can generally only represent and verify the qualitative temporal relations
between events, which constrains their use for verifying real-time systems. Timed
model checking, the method to formally verify real-time systems, is attracting
increasing attention from both the model checking community and the real-time
community. An extensive survey of formal methods for the specification and
verification of timed systems in [2] contains references of over 200 publications.
Despite the intensity of research dedicated to the specification and validation of
real-time requirements, relatively little work has been done on formally modeling
time-constrained workflows and their verification. When time becomes a factor
in the activities running concurrently, the notion of time is required to precisely
model in the workflow. Quantified time notions, including time instance and
duration must be taken into account for timed model checking. For example
in a safety critical application such as in an emergency department, after an
emergency case arrives at the hospital, standard model checking can only verify
whether “The patient receives a certain treatment”, but to save the patient’s life,
it should be verified whether “The patient receives a certain treatment within half
an hour”.

There are different approaches for modeling and verifying time constraints for
workflow systems. Marjanovic et al. [3] provides a conceptual model to specify
and verify timing aspects of production workflow; however, a production work-
flow lacks the notion of delay time between two consecutive tasks. Moreover,
the verification is with respect to a chosen execution sequence. Many formalisms
with time extensions have been presented as the basis for timed model check-
ers. Two popular ones, due to their simple graphical representations and solid
mathematical formalisms, are: (1) timed automata [4], which is an extension of
finite-state automata with a set of clock variables to keep track of time (which
is under certain circumstances decidable); (2) time Petri Nets [5], which is an
extension of Petri Nets with timing constraints on the firing of transitions. The
later should be distinguished from timed Petri Nets which can store information
on both arcs and tokens and are undecidable. A validation method for workflow
specifications using UPPAAL (a timed automata based model checker) is pre-
sented in [6]. Models in a timed automata based model checker can not represent
at which time instant a transition is executed within a time region; such model
checkers can only deal with a specification involving a time region or a pre-
specified time instant and cannot store the exact time instant at which a tran-
sition is executed. However, the stop-watch automata [7], an extension of timed
automata, is proposed to tackle this; unfortunately, as Krcál and Yi discussed
in [8], since the reachability problem for this class of automata is undecidable,
there is no guarantee for termination in the general case. An approach for time
constrained workflow verification using time Petri Nets can also be found in [9].
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Time Petri Net tools such as Romeo [10] (which can verify a subset of Timed
CTL), TINA [11] (which can verify LTL) can also be used for time constrained
workflow verification.

The state explosion problem often limits the applicability of the above tools
for real world workflow models. Distributed model checkers exploit the power
of distributed computing facilities so that much larger memory is available to
accommodate the state space of the system model; parallel processing of the
states can, moreover, reduce the verification time [12]. For these reasons, we are
particularly interested in the distributed LTL model checker DiVinE [13].

Previously, we manually translated a number of workflow patterns [14] into
DVE, the modeling language of DiVinE. These patterns, defined in [15], are
well accepted as the basic building blocks for the design and development of
workflow models. Building a model, using these patterns, is tedious and error-
prone; so this approach is not feasible for large and complex models. The tool
YAWL2DVE which can automatically convert a YAWL model into DVE was
presented in [16] but it was unable to handle time constraints.

Here, we present YAWL2DVE-t, which can automatically translate a graphical
time constrained YAWL workflow model into DVE, thus reducing the difficulty
of representing a time constrained workflow system in the input language of
a model checking tool. Use of DiVinE enables us to handle the huge memory
requirement for real world complex models. This approach enhances the “push
button technology” of verification to a further step, allowing the users to model
the system in a graphical language, such as YAWL, input a temporal property
(with or without time constraints) and immediately do the model checking.
Users with little expertise modeling with the model checking language can easily
use it.

The remainder of this paper is as follows: Section 2 presents some background
topics; Section 3 describes the modeling and verification method of time con-
strained workflow; Section 4 presentes a case study and Section 5 concludes the
paper and offers some directions for future work.

2 Preliminaries

This section provides background information about the tools used in this work.
We begin by describing workflows and the workflow management system YAWL.
Then we describe the DiVinE model checking tool and its modeling language.

2.1 Workflow and YAWL

For control purposes, workflow may be viewed as an abstraction of the real
work under a chosen aspect that serves as virtual representation of the actual
work. Therefore, a workflow is a collection of activities and the dependencies
among those activities. The activities correspond to individual tasks in a business
process. Dependencies determine the execution sequence of the activities and the
data flow among these activities.
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YAWL is a workflow management system, based on a concise and powerful
modeling language. YAWL handles complex data, transformations, integration
with organizational resources, and Web Service integration. YAWL uses a Petri
net-based formalism extended with additional features to facilitate the modeling
of complex workflows. A workflow specification in YAWL is a set of extended
workflow nets (EWF-nets) which are made up of tasks, conditions and flow
relations between them. A task (activity) is a description of a unit of work that
may need to be performed as part of a workflow. The transfer of work between
two tasks is done through a flow relation, which is depicted as unidirectional
arrows in a YAWL model. In a YAWL model, every task must lie on a path from
the start condition to the end condition. By default, a YAWL task can only have
one outgoing flow and one incoming flow. When we need more outgoing flows
from a task or incoming flows to a task, we have to use one of three kinds of split
(for outgoing flows) and three corresponding kinds of join (for incoming flows);
OR, XOR, and AND. The OR-Split is used to trigger some, but not necessarily all
outgoing flows to other tasks. The XOR-Split is used to trigger only one outgoing
flow. The AND-Split is used to start a number of task instances simultaneously.
Corresponding XOR-Joins, OR-Joins, and AND-Joins are used to combine the
incoming flows of a task. Tasks are either atomic or composite. Graphically in
YAWL, an atomic task is represented by a rectangular box and a composite
task is represented by a double rectangular box. Each task (either composite or
atomic) can have multiple instances. Each atomic task can be assigned a timer
called Task Timeout. It is also possible to set an activation type and an expiry
value (Time units are Second, Minute, and Hour) for the timer. The timer can
be activated either when a task is enabled or when it starts. A more detailed
description of YAWL can be found in [17].

2.2 The DiVinE Model Checker and Its Modeling Language

DiVinE [18] is a distributed-memory explicit-state model checker, which em-
ploys the aggregate power of network-interconnected clusters to verify systems
using distributed algorithms. DVE, the modeling language of DiVinE, is rich
enough to describe systems made of synchronous and asynchronous processes
communicating via shared memory and buffered or unbuffered channels. Like in
Promela (the modeling language of SPIN), a model described in DVE consists of
processes, message channels and variables. Each process, identified by a unique
name, consists of a list of local variable declarations, process state declarations,
initial state declaration and a list of transitions which start using the keyword
trans. Variables can be global (declared at the beginning of DVE source code)
or local (declared at the beginning of a process), they can be of byte or int
type. A transition transfers a process from stateid1 to stateid2, the transition
may contain a guard (which decides whether the transition can be executed),
a synchronization (for communications between processes) and effects (which
assign new values to local or global variables). Therefore, we have:
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Transition ::= stateid1 -> stateid2 {Guard Sync Effect};
The Guard contains the keyword guard followed by a Boolean expression and the
Effect contains the keyword effect followed by a list of assignments. The Sync
follows the denotation for communication in the Communicating Sequential Pro-
cesses (CSP) language, ‘!’ for sending and ‘?’ for receiving. The synchronization
can be either asynchronous or rendezvous. Value(s) can be transferred in a chan-
nel identified by chanid. Declarations of channels follow declarations of global
variables. Therefore, we have:

Sync ::= sync chanid ! SyncValue | chanid ? SyncVariable ;

Linear Temporal Logic (LTL) is a temporal logic which allows the specification
of qualitative relationships between events. LTL has the following syntax given
in Backus Naur form:

φ ::= p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|(X φ)|(F φ)|(G φ)|(ψ U φ)

where φ, ψ are formulas, and p is an atomic formula; X φ says that φ holds
next time, F φ says that φ holds eventually, G φ says that φ holds globally, and
ψ U φ says that ψ holds until φ holds.

In DiVinE, both the system model and the LTL formula are represented by
automata. Then the model checking problem is reduced to detecting in the com-
bined automaton graph whether or not there is an accepting cycle. If there is an
accepting cycle, a counter example is produced. The model specification in DVE
code is stored in a .dve file and the LTL properties are written in an .ltl file.
DiVinE automatically generates a corresponding property process from the LTL
formula, combines that process with the DVE code of the model, and produces a
.mdve file. DiVinE uses identifiers to designate atomic formulas. For the simple
clinical workflow in Fig. 1, let us assume we want to verify “In all cases a patient
is released within 10 hours”. Recalling that LTL formulas are built from propo-
sitional formulas using X, F, G, and U, we write, G (start reception − > F (fin-
ish patientRelease ∧ timeRequiredToReleasePatient)). We define timeRequired-
ToReleasePatient as timeDifference <= 10, where 10 means ten hours, timeD-
ifference is a variable in the DVE code which stores the time difference between
the start time of Reception and the finish time of Patient Release. In section 3.3,
we show how to store the start time and the finish time of a task.

3 Modeling and Verification of Time Constrained
Workflow

In our approach, first a workflow is modeled with YAWL, and then the model
is translated into the DVE model specification by YAWL2DVE-t. Combining
an LTL property with the DVE model specification, the DiVinE model checker
determines whether the LTL property holds or not. If the property does not
hold, DiVinE gives a counter example.
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3.1 Timing Constraints and Their Representation in YAWL

When we talk about activities (or tasks) and the dependencies among them, time
plays an important role. Several explicit time constraints have been identified
for time management of an activity [19]. Duration is the time span required
to finish a task. Forced start time prohibits executing some tasks before that
certain time. Deadline is a time based scheduling constraint which requires that
a certain activity be completed by a certain time [20]. A constraint, which forces
an activity to be executed only on a certain fixed date, is referred to as a fixed
date constraint. Delay is the time duration between two subsequent activities.
Besides these explicit time constraints, some time constraints follow implicitly
from the control dependencies and activity durations of a workflow model. They
arise from the fact that an activity can start only when its predecessor activities
have finished. Such constraints are called the structural time constraints since
they abide by the control structure of the workflow [19]. The concept of relative
constraint which limits the time distance (duration) between the starting/ending
instants of two non-consecutive workflow activities can also be found in [21]. Yet
another kind of constraint is a periodic constraint, which represents a periodic
time interval, during which an activity can be started, for example, a task can
be executed between Monday and Saturday of every week [22].

The YAWL execution engine supports only the duration and deadline con-
straints. However, we are using YAWL’s graphical tool to model workflow for
verifying properties. In modeling, we can assign a delay constraint in the con-
trol flow arc label between two consecutive tasks. Consequently we can model
both duration and delay constraints which together are capable of modeling the
timing aspects of almost any workflow [23]. Duration and delay are expressed
in some basic time units and by integer value following the Gregorian calendar
i.e., year, month, week, day, hour, and minute.

Fig. 1. Simple Clinical Workflow

In Fig. 1, durations and delays are shown in a simple clinical model designed
by YAWL. Each task has a duration assigned to it. For example, Patient Release
should be completed within fifteen minutes. Note that the duration assigned to
each task is an integer value, thus constant. In real world, identifying a fixed
duration for a particular task is unfeasible. Though we are assigning a constant
value as duration of a task, the task can finish non-deterministically between



An Translator for Model Checking Time Constrained Workflow Systems 105

any time from zero to duration. So it suffices to identify the maximum possible
duration for any task.

Delay time in the labels of the connector of two tasks means that the later
task should wait until the delay time is elapsed after completing the earlier task.
For example, after admission, patients have to wait three hours to get a Con-
sultation. No delay time in the label indicates that a task initiates immediately
after completing its preceding task(s). Initial Diagnosis should be performed
without any delay after Reception. Neither duration nor delay is a mandatory
attribute of a task.

3.2 Modeling Time in DVE

DiVinE is an un-timed model checker which generally can not verify timed sys-
tems. Lamport [24] advocated explicit-time description methods using a general
model construct, e.g., global integer variables or synchronization between pro-
cesses commonly found in standard un-timed model checkers, to realize timed
model checking. He presented an explicit-time description method, which we re-
fer to as LEDM, using a clock-ticking process (Tick) to simulate the passage
of time, and a pair of global variables to store the lower and upper bounds of
the time for each modeled system process. The method has been implemented
with popular model checkers SPIN and SMV. Explicit-time description methods
have three advantages: (1) they do not need specialized languages or tools for
time description. Therefore, they can be applied in standard un-timed model
checkers; (2) they enable the accessing and storing of the current time [25], a
useful feature for the preemptive scheduling problems; and (3) they enable the
use of large-scale distributed model checkers ( e.g., DiVinE) for the timed model
checking. Recently, Van den Berg et al. [26] successfully applied LEDM to ver-
ify the safety of the railway inter-locking for one of Australia’s largest railway
companies.

process Tick {
state tick;

init tick;

trans

tick -> tick { guard (all durationi && all delayi) > 0 &&

(atleast one durationi || atleast one delayi) != INFINITY;

effect now = now + 1,
decrements all active durationi,

decrements all active delayi; } ;

}

Fig. 2. Tick process in DVE

In LEDM [24], the current time is represented by a global variable now that
is incremented by an added Tick process (See Fig. 2). As mentioned earlier,
standard model checkers can deal with only integer variables, and a real-time
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system can be modeled in discrete-time using an explicit-time description. So
the Tick process increments now by 1. Note that in explicit-time description
methods for standard model checkers, the real-valued time variables must be
replaced by integer-valued ones. Therefore, these methods in general do not
preserve continuous-time semantics; otherwise, an inherently infinite-state spec-
ification is produced and the verification is undecidable. However, these methods
are sound for a commonly used class of real-time systems and their properties
[27]. We believe workflow systems are ideally suited to this kind of analysis.

By assigning duration to a task and delay between two consecutive tasks as
timing constraints, we can model time in a workflow system. A duration timing
constraint forces the process, once initiated, to be finished within that time span.
A delay constraint prohibits a task from being started, until the delay time
has elapsed, counting the time from which the previous task has finished. Each
system process Pi has two count-down timers, denoted as the global variable
durationi and delayi. A large enough integer constant, denoted as INFINITY, is
initially assigned to the all durationi and delayi variables. Duration and delay
timers with the value of INFINITY are not active and the Tick process will not
decrement them. As now is incremented by 1, each non-INFINITY durationi

and delayi is decremented by 1. Every model specification has a Tick process to
simulates the time.

We observe that the value of now is limited by the size of type integer
and careless incrementation can cause overflow error. This can be avoided by
incrementing now using modular arithmetic, i.e., setting now = (now + 1) mod
MAXIMAL (MAXIMAL is the maximal integer value supported by the model checker).
The limit of the maximum can be increased by linking several integers, i.e., when
(int1+1) mod MAXIMAL becomes zero, int2 increments by 1, and so on.

3.3 Workflow Tasks in DVE

In this paper, we map a task (either composite or atomic) in YAWL to a DVE
process; multiple instances of a task are mapped to multiple instances of the same
process. Control flow paths are mapped to DVE channels and messages between
processes are represented, without loss of granularity, by integers, in DVE. A
task is enabled after the completion of its preceding task(s). The split and join
structures of YAWL, introduced in section 2.1, are identified in the translation
process and handled using different algorithms. Details of these algorithms can
be found in our previous work [16]. In Fig. 3, we present a DVE process for a
YAWL task.

Initially, all processes are in the idle state which indicates that tasks are not
ready to start (In Fig. 3 process Pi is in idle state). An incoming message,
through channel ChanPrevProcess, from a previous task activates the process
Pi. A transition from the idle state to the waiting state represents that the task
is initialized and a delay is assigned for the task as an effect. If the delay time
for the task is zero then it can commit another transition where the duration of
a task is assigned as effect. If the delay time for the task is not zero then the task
has to wait until the delay time becomes zero. The passing of time is simulated
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process Pi {
state ..., idle,waiting, working;

init idle;

trans

idle − > waiting { sync ChanPrevProcess?;

effect set delayi, set start Pi to now;},
waiting − > working { guard delayi==0; effect set durationi;},

... − > ... ,

working − > idle { sync ChanNextProcess! ;

effect set durationi to INFINITY,

set delayi to INFINITY ,

set finish Pi to now; };
}

Fig. 3. System process Pi in DVE

by the tick process (See Fig. 2). The task can be finished anytime within the
duration. The transition from the working state to the idle state indicates that
the task is finished. A message is sent through channel ChanNextProcess to
activate the next process. As an effect of the transition the duration and delay
time is set to INFINITY for that process. If any of the duration and delay timers
is equal to zero, the transition in the Tick process is disabled. This forces the
transition from the working state to the idle state for that process, if it is the only
transition possible at this time. In this way, the duration and delay constraints
are realized. To verify timed properties, we have to store the start time and finish
time of all the processes. In this regard, for each process there are two global
variables that store the start and end time. In Fig. 3, start Pi stores the start
time and finish Pi stores the end time of process Pi.

3.4 YAWL2DVE-t: An Automated Translator

YAWL2DVE-t is an automated translator developed using Java, which can trans-
late any workflow modeled using YAWL. It takes a YAWL (in XML) file as input
and generates a mdve file as output; the mdve file can be combined with an ltl
property file (may contain more than one property) and produce dve output
file(s) (one for each property) which can be used for verification. The following
steps are used in the translation by YAWL2DVE-t :

1. Parse XML and construct workflow components with timing information
2. Create links and channel numbers
3. Process multiple tasks
4. Generate DVE code from root net decomposition

For each task in the workflow model, YAWL2DVE-t will produce DVE code as
described in section 3.3 . A part of the XML file for the simple clinical workflow
in Fig. 1 is given in Fig. 4. The task ID’s in the XML file are unique. An index
and these ID’s are used to generate unique channels for communication. In the
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....

<task id="Consultation_7">

<name>Consultation</name>

<flowsInto>

<nextElementRef id="Diagnosis_242" />

</flowsInto>

<join code="xor" />

<split code="and" />

<timer>

<trigger>OnEnabled</trigger>

<duration>PT5H</duration>

</timer>

....

Fig. 4. Segment of XML File for Simple Clinical Workflow

DVE translation of the simple clinical workflow of Fig. 1, YAWL2DVE-t will
create nine processes, one each for the start and end conditions, and seven for
the tasks in between. The processes for the start and end conditions do not have
any delay and duration, thus those processes are instantaneous. The InputCon-
dition 1 process (for start condition) will send a synchronization signal through
the channel ’chan InputCondition 1 0 ’. The Reception process will be activated
after receiving that signal and after completing its work (after the assigned du-
ration) it will send a synchronization signal to the Initial Diagnosis process
through the channel ’chan Reception 1 ’. The Initial Diagnosis process has an
XOR-Split structure and can choose any of the channels non-deterministically
to send a synchronization signal to the Admit Patient process or the Decline
Patient process and the flow continues. The duration is stored in a duration
tag in the XML file (Consultation task is assigned 5 hours as duration, see Fig.
4). The processes will be executed according to the workflow order, the next
task reference is stored in a nextElementRef tag in the XML file. For each Net
Decomposition (Composite task) of the workflow, a NetDecomposition instance
will be created which contains one InputCondition, one EndCondition, and one
or more task and condition instances.

A more detailed description (with algorithms) of step 1-4 can be found in our
previous work [16].

4 Case Study and Property Verification

In this section we will examine how the above method can be useful for the veri-
fication of a workflow model with timing information. We study a Hospice Pallia-
tive Care workflow, which we are developing for the local health authority, the
Guysborough Antigonish Strait Health Authority (GASHA), following the na-
tional Hospice Palliative Care model [28]. A number of sample specification prop-
erties are verified on the workflow model and a top level graphical view of the
model, built with the YAWL modeling tool, is given in Fig. 5. Tabs across the
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top refer to composite tasks each of which give rise to a subnet. Subnets may also
contains composite tasks. See the appendix for a more detailed view of the model.

4.1 A Hospice Palliative Care Workflow

Palliative Care refers to the medical or comfort care that reduces the severity of a
disease or slows its progress rather than providing a cure. For incurable diseases,
in cases where the cure is not recommended due to other health concerns, and
when the patient does not wish to pursue a cure, palliative care becomes the
focus of treatment. For example, if surgery cannot be performed to remove a
tumor, radiation treatment might be tried to reduce its rate of growth, and
pain management could help the patient manage physical symptoms. The term
“Hospice Palliative Care” was coined to recognize the convergence of hospice
and palliative care into one movement that has the same principles and norms
of practice [28].

Fig. 5. Hospice Palliative Care Workflow Model for GASHA

The national model was developed to guide both the process of providing care
to the patients and their families, and the development and function of hospice
palliative care organizations. The model provides guidelines which they refer to
as “norms of care” for quality of service, such as, “Requests for initial evaluation
and ongoing follow-up are responded to within acceptable time frames”. Based on
this norm, an organization will develop a more specific standard of practice that
will establish the minimum requirements to be met at all times [28], such as:

– “Requests for initial evaluation are responded to within 48 hours.”
– “Requests for ongoing follow-up are responded to within 12 hours.”
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The timing information in this model is for illustration purpose, so it does not
reflect the actual time in the real world. We are working with GASHA to greatly
refine the details of the process of care and include information on time, access
control and other process specific information. A pilot study is underway to
transform the documentation from a paper based format to an electronic version;
details gleaned from this pilot will substantially enhance the model.

The Hospice Palliative Care process involves six essential and several basic
steps that guide the interaction between care givers, and the patient and family.
After the patient referral is received, it is determined whether the patient is
eligible for Hospice Palliative Care. If the patient is not eligible, the workflow
will end with proper explanation. Otherwise the patient is sent for the next set
of care tasks. A consultant will collect the medical information from the patient,
identify his priorities, and determine whether the patient requires a consultation
with physician(s). This completes the registration process and a profile is created
and the patient enters into a iterative process called a therapeutic encounter. The
next six tasks are essential and must be completed during each encounter. Each
of them is represented as a composite task and has tasks (atomic or composite)
in its ‘Net-Decomposition’.

This model produces 144 processes with more than two thousands lines of code
in DVE. Once the LTL properties are identified, they can be verified against the
model (in DVE). If a property does not hold, the DiVinE model checker will
produce a counter example. This approach greatly reduces the effort for model-
ing and rapid refactoring of a system model for verification. All we have to do
is make a graphical representation of the workflow in YAWL, use the translator
to get the DVE model for distributed verification and run DiVinE.

Property verification: Some properties of the Palliative Care model have
been checked by the DVE model. The properties are Categorized into three
groups: safety properties, liveness properties, and time properties. A Safety prop-
erty states that the property must be true for all paths, informally, “Some bad
thing never happens”. A Liveness property ensures the progress of the workflow,
informally, “Some good thing will eventually happen”. Time properties refer to
the properties that are related to time constraints. In the following, we artic-
ulate some norms described in [28] and their corresponding LTL formulas, the
first two properties are safety properties and liveness properties respectively, the
last four properties are time properties ; 3 and 6 involve duration constraints, 4
and 5 involve both delay and duration constraints.

1. Limits of confidentiality are defined by the patient before information is
shared.
G !(confidentiality not defined ∧ information shared)

2. End state is reached in all paths
G F c end
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3. Any errors in therapy delivery are reported to supervisors immediately. The
standard acceptable time allowed for such reports is two hours.
G (start error in therapy − > F (finish report to supervisor ∧
timeRequiredToFinish2Hours)

4. Requests for initial evaluation are responded to within 48 hours.
G (start initial evaluation request − > F (finish initial evaluation respond
∧ timeRequiredToFinish48Hours)

5. Care planning should not take more then 1 day in each therapeutic en-
counter.
G (start care planning − > F (finish care planning ∧
timeRequiredToFinish1Day)

6. Interview with the family member should be done within 1 hour.
G (start interview − > F (finish interview ∧ timeRequiredToFinish1Hour)

In the verification process, we are simulating the time by a Tick process which
increments the now variable. Therefore, to identify a relative time distance be-
tween two non-consecutive tasks we have to store the start time of the preceding
task and the end time of the subsequent task in the DVE model; the method is
described in section 3.3.

Some requirements of the Palliative Care model norms cannot be represented
due to the limitations of the modeling language and LTL. For example, an LTL
property cannot represent that “the information is as accurate as possible”.
We are studying different methods to extend the language and the specification
logic so that we can accurately specify and verify properties corresponding to
real world requirements.

In our method, we are simulating time as states. Delay and duration can be
expressed in time units, such as second, minute, hour, etc. While translating
the YAWL model to the DVE code, we convert all the time units to the lowest
one, which might blow up the state space to the workflow models where the
time units of delay and duration vary substantially. To address this issue, we are
incorporating the efficient EDM we proposed in [25], in which the Tick process
may leap multiple time units in a tick.

Table 1. Experimental Results

Property True/False OWCTY/MAP Time (s) # of States Memory (MB)

1 True OWCTY 216.3 166914735 65062.6

2 True OWCTY 1104.8 223439236 86953.3

3 False MAP 6.7 957694 16262.5

4 True OWCTY 303.9 217528767 80829.6

5 False MAP 12.9 1557694 21246.3

6 True OWCTY 312.4 218428214 81013.7

Table 1 gives the experimental results which shows that properties 1, 2, 4 and
6 holds in the model and properties 3 and 5 do not hold. The counter exam-
ple for property 3 enables us to determine that the assigned duration for the
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task Report to supervisor is not at an acceptable level. The counter example for
property 5 helps us to find an execution sequence for which the Care Planning
takes more then 1 day, refactor the model and redo the model checking. All
experiments are executed on the Mahone2 cluster of ACEnet [29], the high per-
formance computing consortium for universities in Atlantic Canada. The cluster
is a Parallel Sun x4100 AMD Opteron (dualcore) cluster equipped with Myri-
10G interconnection. Parallel jobs are assigned using the Open MPI library. We
have used 32 CPUs and 5G memory per CPU for all these experiments. In the
cluster, there are 139 nodes, each containing 16G of memory. Future models will
be larger and will require more resources. Current model utilizes approximately
30% of the resources of the cluster.

Two model checking algorithms in DiVinE 0.8.3 are used, namely, One Way
to Catch Them Young (OWCTY) and Maximal Accepting Predecessors (MAP). If
the property of a model is expected to hold and the state space can fit completely
into the (distributed) memory,OWCTYis preferable as it is three times faster than
MAP to explore the whole state space. On the other hand, MAP can generally find
a counterexample (if it exists) much more quickly as it works on-the-fly. For each
property, we only show the better result of these two algorithms.

5 Conclusion and Future Work

This research is a part of an ambitious research and development project, Build-
ing Decision-support through Dynamic Workflow Systems for Health Care [30]
among researchers at StFX in a collaboration with the local health authority
GASHA and an industrial partner, Palomino System Innovations INC. In prior
work, Miller and MacCaull [31] developed a prototype tableau-based model
checker based on timed BDICTL logic, Hao and MacCaull [25,32] developed
several new Explicit-time Description Methods. These efforts facilitate the ver-
ification of properties written in an extended specification language involving
information such as real time and agents’ beliefs, goals and intentions, in large
workflow models.

In this paper, we described an automated translator that translates time con-
strained workflow models into DVE code. Using an automated translator will
greatly reduce the cost and time for the verification and will make the verifica-
tion of real world models possible. We are developing a translator to the input
language of SMV and other model checkers for CTL model checking. Other en-
hancements for model checking, like data aware verification techniques, reduction
technique for the state space of the model and verification of compensable trans-
actions for workflow systems are also in progress. Real world workflow processes
can be highly dynamic and complex in a health care setting. Verification that
the system meets its specifications is essential for such a safety critical process
and can save time, money, or even lives.
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22. Combi, C., Gozzi, M., Juárez, J.M., Oliboni, B., Pozzi, G.: Conceptual modeling
of temporal clinical workflows. In: TIME, pp. 70–81. IEEE Computer Society,
Los Alamitos (2007)

23. Li, H., Yang, Y.: Verification of temporal constraints for concurrent workflows. In:
Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp.
804–813. Springer, Heidelberg (2004)

24. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

25. Wang, H., MacCaull, W.: An efficient explicit-time description method for timed
model checking. In: 8th International Workshop on Parallel and Distributed Meth-
ods in verifiCation (PDMC 09), Eindhoven, The Netherlands, EPTCS, vol. 14, pp.
77–91 (2009)

26. Berg, L.V.D., Strooper, P.A., Winter, K.: Introducing time in an industrial ap-
plication of model-checking. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 56–67. Springer, Heidelberg (2008)

27. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

28. Ferris, F.D., Balfour, H.M., Bowen, K., Farley, J., Hardwick, M., Lamontagne, C.,
Lundy, M., Syme, A., West, P.: A model to guide hospice palliative care: Based
on national principles and norms of practice. Canadian Hospice Palliative Care
Association, Ottawa (2002)

29. Atlantic Computational Excellence Network (ACEnet),
http://www.ace-net.ca/ (last accessed, June 2010)

30. Centre for Logic and Information. St. Francis Xavier University,
http://logic.stfx.ca/ (last accessed, June 2010)

31. Miller, K., MacCaull, W.: Verification of careflow management systems with timed
BDICTL logic. In: 3rd International Workshop on Process-oriented Information
Systems in Healthcare (ProHealth’09), in Conjunction with BPM’09. LNBIP,
vol. 43, pp. 623–634. Springer, Heidelberg (2010)

32. Wang, H., MacCaull, W.: Verifying real-time systems using explicit-time descrip-
tion methods. In: Workshop on Quantitative Formal Methods: Theory and Appli-
cations, Eindhoven, The Netherlands, EPTCS, vol. 13, pp. 67–79 (2009)



Correctness of Sensor Network Applications by

Software Bounded Model Checking

Frank Werner and David Faragó
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Abstract. We investigate the application of the software bounded
model checking tool CBMC to the domain of wireless sensor networks
(WSNs). We automatically generate a software behavior model from a
network protocol (ESAWN) implementation in a WSN development and
deployment platform (TinyOS), which is used to rigorously verify the
protocol. Our work is a proof of concept that automatic verification of
programs of practical size (≈ 21 000 LoC) and complexity is possible with
CBMC and can be integrated into TinyOS. The developer can automat-
ically check for pointer dereference and array index out of bound errors.
She can also check additional, e.g., functional, properties that she pro-
vides by assume- and assert-statements. This experience paper shows
that our approach is in general feasible since we managed to verify about
half of the properties. We made the verification process scalable in the
size of the code by abstraction (eg, from hardware) and by simplification
heuristics. The latter also achieved scalability in data type complexity
for the properties that were verifiable. The others require technical ad-
vancements for complex data types within CBMC’s core.

Keywords: Software Bounded Model Checking, CBMC, automatic pro-
tocol verification, embedded software, Wireless Sensor Networks, TinyOS,
abstraction, simplification heuristics.

1 Introduction

We strongly rely on embedded systems, which arewidely used in highly distributed
as well as safety-critical systems, such as structural monitoring of bridges [22],
intrusion detection [12], and many industrial use cases, e.g., using SureCross from
Banner Engineering Corp. [19] or Smart Wireless from Emerson Electric Co [10].
Hence they must become more dependable and secure.

The application of formal methods to embedded systems could be the key
to solve this. Although embedded devices carry only some hundred kilobytes
of memory, their verification is neither simple nor easily automated (cf. related
work below) because they run complex algorithms for the underlying protocols,
distributed data management, and wireless communication. In the special do-
main of wireless sensor networks (WSNs), these techniques are all combined in
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a single product, making it a challenging candidate for the application of formal
methods. In this domain, powerful and extensible development and deployment
frameworks are used, e.g., TinyOS [20]. By integrating formal methods seam-
lessly, i.e., fully automated, into such a framework, their usage by developers is
most likely. This implies automatic generation of the model (cf. Section 4.2) for
our verification process, which solves further problems:
– The development of manual artifacts is costly since the model is only required

for verification.
– Since the verification model and the implementation must stay in confor-

mance, the model must rapidly change, especially during the design phase.
Hence additional work is required.

– There is a high danger to abstract from fault-prone details, e.g., due to
missing constructs in the modeling language.

In this paper, we investigate a concast protocol [5] implementation called ESAWN
[2] (Extended Secure Aggregation for Wireless sensor Networks). It is from the
domain of WSNs and uses the development and deployment platform TinyOS.
From this implementation, we automatically generate a software behavior model
that fully comprises the protocol behavior of the sensor node. Then the model is
used to rigorously verify the protocol using the software bounded model check-
ing tool CBMC (C Bounded Model Checking) [6]. We used version 2.9, the most
recent when we started, and implemented several heuristic simplifications and slic-
ing rules (on a side branch of CBMC’s repository) to make verification possible.

Related Work. Most approaches for protocol verification in WSNs use either
a heavy abstraction from the actual implementation or only consider parts of
the model behavior. The presented work is the first, as far as we know, to use
software bounded model checking (SBMC) for verification.

The authors of [3] and [4] considers the application of verification techniques
to software written in TinyOS, or more precisely, in the TosThreads C API.
Instead on analyzing an integrative model with an operating system part and a
protocol implementation, low level services are modeled and statistically verified
against safety specifications. The verification tool employed was SATABS, which
performs predicate abstraction using SAT and can handle ANSI-C and C++
programs. In this work the overall model size checked is at most 440 LoC. In
our approach, we apply our abstraction to a more complex security protocol
consisting of 21 000 LoC and obtain a model with about 4 400 LoC, which we
subsequently check.

The T-Check tool [14] builds on TOSSIM and provides state space explo-
ration and early detection of software bugs. The authors use a combination of
model checking, random walks, and heuristics, to combat the complexity of non-
deterministic branching. Also the results show the applicability of the tool and
the fact that actual violated properties are found, this random search is not
exhaustive and purely depends on the implemented heuristics [13] for finding
liveness bugs, and the user’s experience.

The Anquiro tool [15] is used for the verification of WSN software written for
the Contiki OS using different levels of abstraction, which the user can select
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from. In comparison, our abstraction only eliminates direct function calls to the
hardware and assembler constructs. Thereby, our abstraction is even able to
detect erroneous packet fragmentations and reassembling errors. This is closer
to the actual implementation - at the cost of complexity. In addition, since we
use CBMC and its transformation mechanisms, we are able to directly point to
the violating line of code.

The work in [3] considers the application of verification techniques to software
written in TinyOS, or more precisely, in the TosThreads C API. Instead of
analyzing an integrative model consisting of the operating system part and the
protocol implementation, services are modeled and verified individually. The
verification tool employed was SATABS, which performs predicate abstraction
using SAT and can handle ANSI-C and C++ programs. In this work the overall
model size checked is at most 440 LoC. In our approach, we apply our abstraction
to a more complex protocol consisting of 21 000 LoC and obtain a model with
about 4 400 LoC, which we subsequently check.

Insense [18] is a composition-based modeling language which translated mod-
els in a concurrent high-level language to Promela, to enable verification of WSN
software by Spin. A complete model of the protocol under investigation has to
be created, though, even if an implementation, e.g., in TinyOS, already exists.
This is very time intensive and error prone. Though Spin is very well capa-
ble of analyzing concurrent and distributed settings, we experienced problems
with state space explosion when checking a high-level behavior model in small
topologies [21].

Structure of this paper. In Section 2, we introduce SBMC: in general, the SBMC
tool CBMC, its capability to use nondeterminism, and the complexity of SBMC.
Then we describe the heuristic improvements we contributed to make CBMC
cope with our protocol. Section 3 explains the ESAWN protocol. Section 4 in-
troduces the TinyOS platform in general and then the abstract behavior model
we generate from its NULL platform. In Section 5, we specify the additional
properties that we checked on the ESAWN protocol. The verification results are
given in Section 6. Section 7 concludes this paper.

2 Bounded Program Verification

2.1 Software Bounded Model Checking

CBMC [6] is one of the most popular SBMC implementations for C programs.
Before CBMC is described in detail, we will first review the technique SBMC.
SBMC computes a solution to the following problem: For a program P , a bound
k and a property f , does a path p within the bound k exist that violates the
property f?

A program state can be characterized by the content of the heap, stack, all
registers and a program counter. A path is a sequence of program states where a
transition between states is triggered by the C statement at the program counter.
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One interpretation of the length of a path in a program is the number of state-
ments in a program. Properties declare some error states, or invalid sequences
of program states, that shall never occur in any execution, e.g., certain values
assigned to a variable.

A SBMC problem has three possible results [7]:

1. The property f holds for all paths.
2. The property f does not hold for at least one path p′.
3. The bound k is too small for at least one path p′.

In the two latter cases, a counter-example path p′ is computed – a path having
the form of a concrete program execution. For a program that contains a finite
set of finite paths, k can always be set large enough such that a sound and
complete verification of the property f can be achieved. If the bound is chosen
too small, it can iteratively be increased.

Embedded systems (e.g., those following the MISRA C standard [1]) com-
monly use reactive systems that consist of an infinite outer loop, but within that
loop, all possible paths are bounded.

We can usually show ultimate correctness for typical properties even when
only considering these inner, finite functions (without the infinite loop around
them), such that case 3 from above does not occur. This finitization might require
underspecification (see Section 2.3 and 4.2).

2.2 CBMC

CBMC implements SBMC for C programs. Properties have to be specified by
assert(f) statements. The semantics of such a statement is that whenever a
program execution reaches the statement, the condition f must evaluate to true.
CBMC also offers assume(f) statements, which we do not need. In CBMC,
the positive integer bound denotes the maximum number of allowed loop body
executions on a path and the maximum recursive depth. The recursive depth of
a path is the number of stack frames it contains. For a given program, the bound
limits the number of statements on any path. In CBMC the bound can be set
individually for each loop occurring in the program.

The software behavior is encoded into a satisfiability (SAT) instance that is
checked using a SAT solver (Minisat2 [9] in the case of CBMC). If the SAT
problem is satisfiable, CBMC generates a concrete counter-example from the
satisfying assignment produced by the solver. If the SAT problem is not satis-
fiable, the property holds for all program executions and the program always
terminates.

2.3 Nondeterminism

In CBMC, we can set variables and return values of functions nondeterministi-
cally. Thus the model can subsume all possible behaviors of the implementation
in a simple way. It usually contains even more behaviors than the implemen-
tation, i.e., the model is over-approximated, also known as underspecified. Then
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the verification can have false negatives, i.e., false error reports. But a successful
verification implies a correct implementation, i.e., we do not have false positives.

2.4 Complexities

Covering all program states within the bound means that many values of the
heap, stack, registers and program counter need to be considered (especially
when nondeterminism is used). This leads to a combinatorial explosion of ex-
ponential size, called the state space explosion. The SAT problem encoding the
SBMC problem has at least as many variables as the number of bits poten-
tially addressed in the C program. Though the SAT problem is NP-complete,
real world instances of SAT problems can be solved surprisingly fast. We found
that the generated SAT instances of the investigated protocol posed a problem to
Minisat2 simply because of their size. The problems were solved rather efficiently
when we used preprocessing before calling Minisat2. For this, we engineered the
following heuristic improvements into CBMC.

2.5 Extending CBMC Optimization Heuristics

Even for simple execution scenarios of our large scale program, e.g., one message
shall be correctly processed, the size of the propositional formula that CBMC
generates surpasses 4 GB. Therefore we extended CBMC with optimization
heuristics, which respect non-simple types as arrays, pointers and structures
and use slicing rules (enabled by the option -slice) and with simplifications
that stem from the domain of compiler optimizations (enabled by the option
-use-sd). They strongly reduce the problem size and complexity and are applied
after the code is transformed into a more rudimentary, intermediate language
(see below), but before it gets encoded into a SAT problem. The simplifications
use the following steps, detailed in the following paragraphs:

– Constant propagation for arrays, pointers and structures, which can be com-
puted efficiently in an unwound program.

– Expression simplification that uses the additional information generated by
the constant propagation.

– Simplifying guards for statements by early satisfiability detection, using the
above expression simplification.

SSA Encodings in CBMC. In order to solve the bounded software model
checking problem, CBMC facilitates inlining (resp. unwinding of function calls
and loops) up to an upper bound. CBMC also introduces single static assign-
ments (SSA, see for example [17]) in the transformed program: Every assignment
is replaced by a versioned assignment such that each identifier is assigned at most
once. In order to transform a sequence of n assignments to a symbol, n new iden-
tifiers are introduced by appending a version number to the original identifier.
Read accesses are replaced by read accesses to the currently active version. At
program points where two control-flows join, e.g., the end of an IF block, a new
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int x = 0; x0 = 0;

if (x==0) if (x0==0)

x = x + 2; becomes x1 = x0 + 2;

assert(x==0); // phi:

x2 = (x0==0) ? x1 : x0;

assert(x2==0);

Fig. 1. Exemplary SSA translation

phi assignment is introduced that determines which version should be used for
the consecutive read accesses (cf. Figure 1).

In SSA form, use-definition chains are easily computed, which will in the
following be used for constant propagation. In CBMC, the SSA statements have
guards, i.e., necessary and sufficient conditions for the statements to be executed.

Field- and Array-Sensitive Constant Propagation. Many implementa-
tions (like the ESAWN protocol) rely on heavy use of arrays, pointers and struc-
tures. CBMC already contains many optimizations, but does not yet facilitate
constant propagation for non-simple data types before the generation of the SAT
problem: Hence sequences as a[0] = 0; if (a[0] == 0) are not simplified. In
contrast to the built-in approach, we have implemented the propagation on the
level of the SSA representation of the program by flattening these complex data
types.

Expression Simplifier. Using the additional information generated by the
constant propagation, we have added an expression simplifier. Any expression
that can be simplified by one of the three following rules is replaced by its
simplified expression. It has to be noted that all expressions are side-effect free
at this level of encoding:

– Boolean expressions with Boolean operands: If an expression has Boolean
type and any Boolean operand must evaluate to a constant true or false,
the expression is simplified, e.g., expr && false becomes false and false?
expr1:expr2 becomes expr2. Additional cases where more than one operand
evaluates to a constant are also simplified.

– Boolean comparisons: Cases where Boolean operands have non-Boolean type
operands are also simplified, e.g., c <= c becomes true, with c being a
constant or versioned identifier.

– Integer expressions with constant integer or Boolean operands: Arithmetic
expressions +,-,*,/,<<,>>where all operands are constants are simplified
according to their C semantics.

The last rule can be extended to float and double type variables. As the
ESAWN implementation does not use such types, they are not yet implemented.
As we will show later, the above rules provide necessary simplifications for the
verification of the ESAWN implementation.
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Early Satisfiability Detection. The above simplifier can be effectively used to
simplify guards for statements. If a guard always evaluates to false, a statement
can be removed from the encoding as it cannot be executed anyway. If a reachable
guard evaluates to true and the statement expresses an assert statement that
evaluates to false, the program cannot be verified. The heuristic can often
detect the reachability and stops further encoding with an according message.
If the assert statement is always true it can be removed.

The effectiveness of early satisfiability detection lies in the fact that the un-
winding bounds for loops are unknown and can only be determined by many
runs of CBMC. For loops that are executed a fixed number of times, i.e., most of
the ESAWN loops, the heuristic detects that loop bounds are chosen too small.
Hence the overall process of finding the correct loop bounds is greatly improved.

We have 32 loops in total. For one loop, we were able to infer the required
unwindings: It belongs to a memset function, which has to be iterated very
often when duplicating memory locations. Consequently, we set the required
unwindings to a sufficiently high and safe value of 20. The unwindings for the
other loops were determined iteratively by automatically running the unwind-
ing check provided by CBMC, and incrementing the unwinding setting if the
unwinding-assertion failed.

3 The ESAWN Protocol

The protocol under investigation is called ESAWN [2]. It offers means to handle
the transportation and aggregation of messages in sensor networks from many
senders to one receiver, so called concasts. By using an end-to-end authenticity,
the transport of sensible data is possible even in the presence of multiple ma-
licious nodes under the control of an adverse acting entity. The protocol runs
in two phases: First an initialization is necessary, before the actual probabilistic
concast can be performed in the second phase.

We first consider the second phase, in which the actual sensor data is passed
around and aggregated all along the way to the sink, the root node. In this
phase, packets of type ESAWN are used. Since the packets are relayed down the
aggregation tree via intermediate nodes, their entries are encrypted such that
only the destination can decode its contents (see Section 5.2).

For the concast with probability, each node checks the authenticity of each
received aggregate only with a fixed probability p. Otherwise it just assumes
that the aggregate is authentic. Since authentication is costly, this is a trade-off
between low energy consumption (low p) and high probability of authenticity
(high p).

To be able to check for authenticity, a node sends its information to a fixed
number w of additional child nodes, called witnesses. The employed concast saves
additional energy by buffering packets and sending them all together later on
using an aggregation function fagg.

An example setup is given in Figure 2 where 5 nodes are used. The leaf node
n0 triggers the probabilistic concast by sending a packet (with its data value D0)



122 F. Werner and D. Faragó

to its successor on the aggregation path n1. Since this node could be cheating,
additional packets are sent to node n2 and n3, which act as witnesses to assure
the proper behavior of node n1. The nodes ni (i ∈ {1, ..3}) are collecting all
incoming packets, then check authenticity with probability p and finally, if all
incoming packets were authentic, send out packet aggi = fagg(aggi−1, Di) (with
Di being the new data value from ni and agg0 := D0). The root node n4 finally
collects all data. It is located at the base station and accessible by the user.

n0 n1 n2 n3 n4

leaf node

root node

D0

D0

D0

D1, agg1

D1, agg1

D1, agg1

D2, agg2

D2, agg2

D3, agg3

Fig. 2. ESAWN scenario of an aggregation tree with w = 2 witnesses

In the initialization phase, the parameter settings and the aggregation tree are
made known to all nodes in the network. For this task, the ESAWN protocol uses
STATUS packets, which are also encrypted (see Section 5.1). So the number of
nodes (num nodes), probability p and the number of witnesses w are sent around
in the network using SET packets. In addition, the aggregation tree is spread using
packets of type SETAGG which contain the parent ids for each node. Finally, a
packet of type GO triggers the second phase of the protocol. The GO packet con-
tains a value specifying the frequency at which nodes send their data (0 means only
one concast). Further packet types exist, which we do not consider since they play
only a minor role for the verification of relevant global properties.

4 TinyOS Platform and Model Abstraction

4.1 The TinyOS Platform

TinyOS is an open source operating software for embedded devices and widely
used for programming embedded devices. Its component based architecture and
event driven execution model make it very suitable for resource constrained hard-
ware systems with respect to memory, computation power and energy shortness.

TinyOS is an operating system and a software development platform that of-
fers means to deploy the implementation on various hardware platforms through
a modular design. So once a protocol, e.g., ESAWN, is implemented, it can be
deployed automatically to the desired sensor type. With many possible combi-
nations of interacting components, automatic verification within TinyOS is the
solution for checking that the resulting composition behaves as expected.
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In more detail, software in TinyOS is initially written in nesC, a C dialect hav-
ing special constructs for embedded devices. Before the software can be deployed
on sensor nodes, it is firstly translated from the modular description in nesC into
an intermediate ANSI C representation, which includes specific constructs for
interaction with the hardware. The C code could theoretically be used as model
for the verification process already. But an abstraction is required when con-
sidering the size and complexity of the C code: Essentially, the hardware part,
which includes register assignments and interrupt handling, would inhibit a suc-
cessful verification process because of state space explosion. Due to this reasons
another approach – described in the following section – is required. It abstracts
appropriately from the hardware part by generating an abstract behavior model.

4.2 A Behavior Model Abstraction

The NULL Platform. The NULL platform is a hardware model included in
the TinyOS environment. It can be used to generate a hardware independent
software behavior model. In particular the platform can be understood as a
skeletal structure containing only the functionality of the protocol plus some
overhead in form of the scheduling functions for jobs and the job queue. But
all hardware specific functions (e.g., for the UART and LEDs) are removed, i.e.,
empty function bodies are generated. Since this abstraction exactly comprises the
pure protocol behavior under investigation, it is safe. Besides strongly reducing
complexity, this abstraction has the major advantage that we do not have to
take hardware platforms into account when specifying properties.

Abstract behavior model. We made four modifications to the NULL plat-
form for our verification: instrumentation with assert() statements, a so-called
autostart function, rudimentary packet transportation functionality and a task
loop finitization:

The autostart function imitates some of the omitted hardware functionality,
most of all the input from the environment. The function makes parameters
known to a node by inserting them in its receive queue. Tasks can be enqueued
to the task queue to let the node perform certain actions like sleep, start the
processing of packets, etc. Essentially the autostart function brings us in the
favorable position to bring the nodes in any state.

Since the NULL platform is hardware independent, also functionality that
transports packets to the transceiver chip is lost. Since all protocols for WSNs
depend excessively on packet sending and receiving, our generation rudimentarily
inserts this into the function bodies of the sending and receiving functions that
are empty in the NULL platform.

Task loop finitization changes the scheduler which periodically executes the
task loop: The protocol usually does not terminate because of its controller-like
nature: As long as the sensor nodes are active, new packets are generated and
processed. The original task loop is hence infinite. By limiting the execution
number of the task loop, a bounded model is obtained that is well suited for
verification since its complexity is limited. In consequence, the model will run
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either until all tasks from the task queue are processed or an upper bound is
reached, which we compute with injected code and check via assertions. If fin-
ished, it simply stops the node. In the course of this finitization, we are also able
to further reduce the scheduler’s complexity by replacing the complex functions
for initializing the scheduler queue and the assignment of the empty task element
by the necessary core functionality in the autostart function. With the help of
nondeterminism for our correctness proofs, it is sufficient to show that individual
packets are transported and processed in accordance with the protocol. Hence
regarding the finite task loop is sufficient. Having only finitely many terminating
paths, CBMC’s verification is sound and complete. An overview of the generated
model is depicted in Figure 3.

Fig. 3. Abstraction from TinyOS

Sensors are also not present in the NULL platform. But the implementation of
the ESAWN protocol was using the node’s IDs as sensor data to be transmitted,
anyways, for clarity reasons. Since the IDs are unique, this approach also reduces
the verification complexity.

We modified the NULL platform with manual intervention, but the modifica-
tions for the task loop finitization and packet transportation can be automated
straightforwardly, e.g., by introducing a verification platform into TinyOS. The
autostart function cannot be completely automated, since the initialization de-
pends on the protocol and contains the configuration we want to consider.

With these modifications to the NULL platform, we get our abstract behavior
model. From originally 21 000 lines of C code, as in the example of a real hardware
platform (MicaZ nodes), the abstract behavior model only contains 4 400 lines
of C code and CBMC statements.

Simulation. Besides verification, the abstract behavior model can also be used
for simulation: We enriched the abstract behavior model with debugging state-
ments and executed it. A few internal variables of TinyOS that were set nondeter-
ministically in the model were now set to various specific values. This simulation
can be strengthened by setting these variables automatically (e.g., randomly) until
a desired coverage is reached, to even better complement the verification process.
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5 Specification

After acquiring the abstraction in Section 4.2, we start specifying properties.
These properties need to be local, since we only have a limited scope of a single
node since the original code is intended for deployment. This means we cannot
specify properties that include two or more nodes, only the behavior of one node
at a time can be verified. Correctness is shown with local properties by non-
deterministically setting the network into all relevant states using our powerful
autostart function and then checking the according desired behavior at a single
node (cf. the exemplary REQ4 below). This is achieved using assert() state-
ments incorporated into the sources, to be able to check additional properties,
i.e., monitor the behavior and stop the execution in case of an error. In Section
5.3 we will show a solution for global properties. We formulate the desired func-
tional behavior as requirements (REQ), which are all translated into properties
that are verifiable by CBMC using CBMC’s assert functions. These assertions
check whether the corresponding variables (e.g., a node’s locally stored param-
eter w or outgoing packet queue) are set correctly. The assertions are either
located after a node’s computation or within the alarm function that is built
into the protocol. This instrumented function is then able to indicate wrong
behavior of the protocol, potential attacks and also erroneous packets.

5.1 STATUS Packets

The entries of the STATUS packets are encrypted with an RC5 cipher. To
avoid state space explosion, the encryption procedure was automatically removed
for the abstract behavior model without changing the underlying protocol, i.e.,
nodes send their data as plain text.

For the autostart function, we chose an initialization of the network as de-
scribed in Section 3 (cf. Figure 2), so w = 2 and num nodes = 5. p was set to
1, so we check with the strictest possible authentication and can fully avoid the
complexity caused by probability, i.e., the random variables and the function
computing the seed. Whether the values are set correctly by the autostart func-
tion is checked via the assertions for the following three requirements, which are
categorized by packet type.

The first requirement covers packets of type SET , which are sent initially
by the base station to make protocol parameters known to the network. The
following property states that a node processes this type of packet correctly:

SET (num nodes, w, p) sets variables correctly (REQ1)

The second requirement considers packets that make the aggregation tree public
using SETAGG packets. For this reason each node is informed about its succes-
sor nodes that it will send packets to. The SETAGG packets contain the fields
node id and parent id and must be sent to every node in the network.

SETAGG(node id, parent id) sets variables correctly (REQ2)
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The following requirement is about protocol conform behavior after receiving a
GO packet: Only leaf nodes initiate concasts and the frequency value f in the
GO packet (cf. page 122) must be respected.

correct action upon reception of GO(f) (REQ3)

We omit the trivial requirements for the packet type RESET , which causes a
hard reset of the node, and ALARM , which is simply forwarded.

5.2 ESAWN Packets

Entries of ESAWN packets are encrypted using symmetric keys (cf. SKEY [23]).
Again, we consider unencrypted packets instead. Similarly to STATUS packets,
we also split the correct handling of ESAWN packets into several requirements.

Firstly, we require that ESAWN packets are correctly transported. This also
implies that packets have been correctly aggregated and are correctly forwarded
(e.g., correct computation of the relay count). As aggregation function fagg the
sum is used (fagg(a, b) = a+int b). We check this requirement exemplary for the
packet P that contains D1, agg1 sent to n2:

correct reception of packet P (REQ4)

Secondly, we require that ESAWN packets are correctly authenticated (which
also implies correct aggregation). For this, a node ni has to alarm if any of the
last w aggregates is incorrect (n0 to nw can only check fewer aggregates):

(∃j ∈ {1, .., w} : aggi−j − Di−j �= aggi−j−1) ⇐⇒ alarmi (REQ5)

Finally, we must also check that this alarmi, a certain alarm function built into
ni, behaves correctly, i.e., issues an ALARM packet to be sent. We do this by
checking whether ALARM packets are put in the outgoing packet queue outni

of ni:
alarmi =⇒ ALARM packets in outni (REQ6)

5.3 Global Properties

Global properties can achieve stronger and more comfortable formulations, for
instance: if some node alarms, then eventually the sink will receive
an ALARM packet. Since we are verifying the derived code that can be deployed
on a sensor node, the verification process cannot handle multiple nodes so far,
i.e., it does not consider distributed settings where messages are interchanged.
To imitate this, we implemented simple multitasking between nodes: When the
current node sends out a packet, a switch between nodes takes place. For this, we
modified TinyOS’ send routine: The local variables of the current node are saved
and the local variables of the destination node are loaded. The packet being sent
is enqueued into the receive queue. With this, a distributed network behavior
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can be imitated to some degree, with packets being sent to their destination
without delay.

The trade-off of using global properties is an increased complexity. Therefore,
we successfully verified only very simple ones and will use more powerful global
properties only in future work after local properties no longer cause problems
(cf. next section).

6 Verification Results

For the verifications, we used CBMC version 2.9 with our additional heuristics
(cf. Section 2.5), some bug fixes related to complex data types and compiled for
64bit processors because some verifications required a lot of memory (see below).

Table 1. Verification results for STATUS packets for a valid loop unwinding of 4

SET packets SETAGG packets GO packets

check passes |claims|
REQ1 yes 6
unwinding yes 37
bounds yes 60
pointer no 181

check passes |claims|
REQ2 no 4
unwinding yes 37
bounds yes 60
pointer no 177

check passes # |claims|
REQ3 yes 4
unwinding yes 37
bounds yes 59
pointer no 175

As described in the previous section, the generated code is manually instru-
mented with the assertions that specify REQ1 to REQ6. All other assertions
are inserted automatically by CBMC. The first verification step is finding the
required number of loop unwindings using the according assertions to be sure
the verification of the other properties is complete.

Table 1 displays the performed verifications for the STATUS messages, their
results and number of required claims, which are CBMC’s internal assertions.
For the verification, we fixed node n2, which exhibits all the behavior relevant to
our verification. An unwinding depth of 4 is sufficient. The properties for code
safety detect array index out of bounds and bad pointer dereferences. All checks
had to be performed for each REQ since the autostart function was adjusted to
each REQ. The pointer checks failed for every packet type. Debugging the source
code of CBMC showed that this is not a failure of the protocol, but CBMC does
not find correct symbols during its pointer-analysis.

For REQ1 and REQ3, all other checks are successful. The assertions for REQ2
are violated: The cause seems to be that CBMC is unable to handle arrays of
structures, which are heavily used for the queues. This is one example where
CBMC does not scale related to data type complexity.

Besides verifying these properties, we raised our confidence in the correctness
of ESAWN by successful simulation (cf. 4.2) and fault injections in the code and
in the assertions, all of which CBMC found.

Unfortunately, we were not able to verify REQ4 to REQ6 because the un-
winding checks were problematic: At first we had difficulties setting the loop
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unwindings just as high as necessary, which is crucial. For instance, when we
set the unwindings to 11 for all loops, CBMC requires 30GB of RAM (and over
3 hours) to detect that not enough unwindings were made. For 12 unwindings,
CBMC gives segmentation faults because 32GB are exceeded. We solved the dif-
ficulty of finding the smallest possible unwinding value for each loop by searching
automatically. But as the search is very time consuming, it is important to start
with sensible values. When we used --unwind 6 --unwindset 1:20, i.e., un-
windings 20 for the first loop (memset, which needs to be able to copy values
sufficiently often) and unwindings 6 for all others, verification came much fur-
ther with much less memory: With 2.5GB, CBMC reached the stage passing
to decision procedure. Unfortunately, CBMC then halts with the error mes-
sage unexpected array expression: typecast. Because CBMC aborted with
a typecast exception, we tested whether the unwindings might be sufficient by
injecting a fault into one of our assertions for REQ4 to REQ6. But these verifi-
cations also caused typecast exceptions. This shows again that CBMC does not
scale with data type complexity.

CBMC offers two possibilities when enough unwindings cannot be reached
efficiently: Firstly, paths with more unwindings can simply be ignored. But this
leads to a bad testing coverage: In our case, a lot of packets in the queue need
to be processed for initialization. Thus the processing of the ESAWN packets –
and therefore their bugs – would not be reached. Secondly, we could have used
nondeterminism at points where the maximum unwindings are reached, and
possibly over-approximate (cf. Section 2.3). In our case, we would need to gen-
erate packets nondeterministically. Because of CBMCs difficulties with complex
data types, it cannot create them nondeterministically. Hence the only solution
would be the cumbersome manual implementation of nondeterministically gen-
erating a protocol-conform sequence of packets whenever maximum unwindings
are reached. But that would counteract our intent of a fully automatic verifi-
cation process. We also tried the current CBMC version 3.6. Since it does not
include our heuristics (cf. Section 2.5), we encountered segmentation faults, e.g.,
when passing the problem to propositional reduction, already with 4 unwindings.
We alternatively tried VCC [8], a SBMC tool similar to CBMC and currently
developed at Microsoft Research. We experienced similar problems as in the first
steps with CBMC: Pointer constructs present in the generated model could not
be handled correctly and resulted in a syntax error while parsing. This shows
that handling complex data types in SBMC tools is currently problematic, but
a necessary improvement for verifying realistically complex programs.

7 Conclusion

7.1 Summary

We have described a proof of concept for an automatic verification process for
realistically large and complex sensor network applications that can be integrated
into the software design process. To be able to handle such large scale programs,
the process must be automatic and requires the abstractions and heuristics we
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provided. It generates an abstract behavior model that is then verified by CBMC.
We were able to prove correctness for the SET and GO packets, but not for
the SETAGG and ESAWN packets, due to technical difficulties in CBMC, e.g.,
unsupported arrays of structures, pointer bugs and typecast exceptions. It shows
that, in our case, CBMC does not scale well with the complexity of data types.
Since we learned from our case study that this is very important for the successful
verification of programs of practical size, CBMC (and VCC) can improve by not
only supporting flat C data types, such as a single struct or array, but also their
closure, i.e., nested types. A different solution is using a simpler intermediate
language, e.g., LLVM (see Section 7.2).

Many of the technical difficulties in CBMC were caused by large function
parameters (≈ 500 byte) in the source code of ESAWN. In some cases, this
can be considered a design flaw in ESAWN since frequent, unnecessary copying
(because of C’s call-by-value evaluation) is inefficient. We have informed the
developer of ESAWN about this.

Our heuristics (cf. Section 2.5) improved the scalability in data type com-
plexity, and even more the scalability in the size of the code: Without them,
state space explosion prevents verification of even the simplest instances for the
ESAWN protocol. A general lesson learned is that recent advances in compiler
optimizations for the generation of runtime code can also improve static analysis
mechanisms in real world settings, which is another argument for LLVM.

Our abstractions (cf. Section 4.2) also improve scalability in the size of the
code and additionally allow hardware independence. Using our heuristics and
abstractions, we have seen that, in general, CBMC is powerful enough to be
employed in the verification process for large scale programs.

7.2 Future Work

As further SBMC tools emerge and improve, we can use our case study as bench-
mark for them, e.g., for NEC’s VeriSol via F-Soft [11]. We can also consider
unbounded model checking tools, e.g., use our generation of the abstract behav-
ior model and apply SATABS afterwards, in the line of the recently published
paper [3]. If this approach is infeasible, a combination of SBMC and predicate
abstractions (cf. [16]) might be able to cope with our large protocol. At our
institute, we are currently developing a new SBMC tool which will be based on
the LLVM compiler toolkit. We expect that with this new tool, many of the
technical difficulties can be avoided, and also better scalability can be achieved.

Promising enhancements in our abstract behavior model are: Firstly, improv-
ing multitasking between nodes for verifying global properties. We can reduce
the large memory requirement by not storing the local variables (e.g., w, p and
the whole aggregation tree) of all simulated nodes independently, but compactly
or even only once. We can also implement a more general multitasking that al-
lows several leaf nodes and delayed transmission of packets. This is achieved by
using one extended scheduling function that comprises all jobs of all simulated
nodes. With these improvements, all distributed properties we have verified with
the tool Spin in [21] using hand-written models will be verifiable automatically.



130 F. Werner and D. Faragó

Secondly, we can use an alternative to setting p = 1: By settling for a quantita-
tive instead of a qualitative inspections, i.e., by using CBMC’s nondeterminism
instead of probabilistic choices, we are able to avoid the complexity of using
probability and still investigate all possibilities of the probabilistic concast. The
trade-off in this approach is the loss of quantitative results and the additional
complexity that nondeterminism might cause.

Thoroughly investigating the protocol’s robustness is another important re-
search direction, made possible by the powerful autostart function. Since it
can set all state variables to arbitrary values, also hazardous situations can be
constructed.

Incorporating our generation scheme (simulation features inclusive) as a veri-
fication platform into TinyOS will enable many developers of WSN protocols to
easily check correctness of their implementations.
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Abstract. The FlexRay standard, developed by a cooperation of lea-
ding companies in the automotive industry, is a robust communication
protocol for distributed components in modern vehicles. In this paper,
we present the first timed automata model of its physical layer protocol,
and we use automatic verification to prove fault tolerance under several
error models and hardware assumptions.

The key challenge in the analysis is that the correctness of the protocol
relies on the interplay of the bit-clock alignment mechanism with the
precise timing behavior of the underlying asynchronous hardware. We
give a general hardware model that is parameterized in low-level timing
details such as hold times and propagation delays. Instantiating this
model for a realistic design from the Nangate Open Cell Library, and
verifying the resulting model using the real-time model checker Uppaal,
we show that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

1 Introduction

The safety-critical functionality of modern cars is increasingly implemented in
distributed embedded components that connect through a robust communication
system. Since delays or communication errors in such X-by-wire applications can
cause serious harm, fault tolerance is a key consideration in the design of the
communication protocols.

In this paper, we study the physical layer of the FlexRay protocol [7]. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry.

The role of the physical layer is to compensate for low-level communication
errors such as glitches, i.e., incorrect transmissions due to electromagnetic inter-
ference and similar effects, and jitter, resulting from clock drift between asyn-
chronous components. For this purpose, the protocol includes a complicated
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voting and bit-clock alignment mechanism, which analyzes a stream of samples,
identifies the boundaries of the individual bit transmissions, and computes the
correct value of the bits.

How robust is the resulting protocol? The FlexRay standard states, somewhat
vaguely, that “the decoding function attempts to enable tolerance of the physical
layer against presence of one glitch in a bit cell when the length of the glitch is less
than or equal to one channel sample clock period,” adding in a footnote that
“there are specific cases where a single glitch cannot be tolerated and others
where two glitches can be tolerated” [7, Sect. 3.2.7]. Clearly, a more precise
characterization of the fault tolerance is desirable. The challenge is, however, that
the correctness of the protocol relies on the interplay of the bit-clock alignment
mechanism with the timing behavior of the asynchronous hardware. A careful
analysis of the fault tolerance must therefore include a detailed timing model of
the underlying hardware.

Previous efforts [4,13,12,9,1] to analyze FlexRay have been based on manual
or semi-automatic verification methods, which make it very difficult to determine
the robustness of the protocol under different error models and hardware config-
urations. We present a new formalization of the FlexRay physical layer protocol,
parameterized in several low-level timing details such as hold times and propa-
gation delays, that is based on timed automata. Because timed automata can be
analyzed fully automatically using model checkers such as Uppaal [3], we can
quickly analyze the model for different settings and track the dependence of the
protocol on hardware and design parameters.

Our analysis provides a detailed picture of the robustness of the FlexRay
physical layer protocol. We show that, for typical hardware parameters, such as
those of a realistic design from the Nangate Open Cell Library [11], FlexRay
tolerates one glitch every four samples. In fact, this tolerance is robust under
variations of the hardware. For example, the protocol tolerates a clock drift
of up to 0.46%, which significantly exceeds the limit of 0.15% described in the
FlexRay standard. While fault tolerance thus holds for a wide range of hardware
configurations, it strongly depends on design parameters like the size of the
voting window: for example, the voting window of five samples, specified in the
standard, allows for up to one glitch every four samples, while an alternative
voting window of three samples would allow for one glitch every three samples.

In the following sections, we give a detailed presentation of the model and the
results of our analysis.

2 Overview

We present a model of the physical layer protocol of the FlexRay co-
ding/decoding unit (CODEC). As illustrated in Fig. 1, our model is structured
into a model of the protocol and a model of the underlying hardware. The pro-
tocol model, which is given in Sect. 3, consists of a sender and a receiver.

We regard the message frames, which are obtained from the next-higher
FlexRay layer and contain data to be transferred as well as protocol related
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Fig. 1. The structure of the model

information, as simple byte strings independent of their format and content
and call these messages in the following. The sender embeds the message in a
structured bit stream. To introduce redundancy, every bit of this stream is sent
as a bit cell in which the bit value is held for eigth clock cycles.

The receiver in turn reads one value in every clock cycle from the bus (the
so-called samples), removes the redudancy and transmits the message received
to the next-higher layer of the FlexRay protocol. If the received message is not
the same as the message sent, the receiver goes into a designated error state.

The hardware model, which will be described in Sect. 4, describes the underly-
ing hardware, including the communication bus and the error model describing
the effects of glitches and jitter.

The scenario considered in our model is the reception of a message from
a sending CODEC of a FlexRay controller that is directly connected to the
receiving CODEC. It is sufficient to consider the scenario of one sending and
one receiving controller, as the number of receiving controllers does not influence
the message transfer process. According to the FlexRay standard [7, Chap. 5],
FlexRay uses a time division multiple access (TDMA) scheme, which excludes
collisions [1]. The correctness of higher protocol levels and the ability of FlexRay
to deal with errors outside the error model are beyond the scope of this work.

2.1 The Error Model

In our model, we consider two types of erroneous behavior: glitches induced by
influences from the environment, and jitter induced by the asynchronous nature
of physical layer protocols.

Glitches. Environmental interferences can always disturb electronic commu-
nication, but smaller disturbances should be compensated in a fault-tolerant
physical layer protocol. A sample taken from the bus might have been replaced
by an arbitrary value. Simply said, it is possible that something different from
the bit that has been sent is received. We model this by nondeterministically
flipping samples in the receiver process. Such a flip is called a glitch [7, Sect.
3.2.2]. If too many glitches occur, the message might be compromised. However,
the FlexRay physical layer protocol compensates for infrequent glitches. Our
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error model is parameterized in the error distance, which gives a lower bound
on the number of correct samples between any pair of samples affected by
glitches.

Jitter. In addition to glitches, the communication protocol must deal with
several undesired effects due to the displacement of pulses in the signal. Since
sender and receiver do not share a common oscillator, there may be a drift
between the local oscillators. Additionally, the transition between voltage levels
takes varying amounts of time. All undesired behavior caused by these effects is
called jitter.

2.2 Timed Automata

We describe our model as a network of timed automata [2]. We assume famil-
iarity with timed automata and refer the reader to a Uppaal tutorial [3] for
more background. Each automaton consists of a set of locations, representing
discrete control points, which can be labeled with invariants over clock vari-
ables indicating the condition under which the system can stay at that location.
Transitions can be labeled with broadcast synchronization channels over which a
sender (identified by “!”) can force receivers (identified by “?”) to take a transi-
tion. Also, each transition can have an update expression to set clock or integer
variables, and a guard determining its enabledness. Furthermore, a location can
be marked as committed to force the system to immediately leave the location
before time can pass. To improve the readability of complex models, we cut large
automata into smaller ones.

2.3 Related Work

There are several previous formalizations of the FlexRay physical layer proto-
col. Beyer et al. [4] gave the first manual deductive correctness proof. In [12,13],
Schmaltz presented a semi-automatic correctness proof in which the proof obli-
gations are discharged using Isabelle/HOL and the NuSMV model checker. This
proof has also been integrated into larger verified system architectures [9,1].

Vaandrager et al. [14] use Uppaal to derive invariants of the Biphase Mark
physical layer protocol, which are used for semi-automatically proving the for-
mal correctness with the proof assistant PVS. Brown and Pike [6] follow an
alternative approach, where they use the verification tool SAL to increase the
degree of automation in the correctness proofs of the Biphase Mark and the 8N1
protocols. Unlike the FlexRay physical layer protocol, these protocols are not
designed for an unreliable physical environment.

In contrast to all the semi-automatic approaches mentioned above, this paper
presents a fully automatic correctness proof of the FlexRay physical layer proto-
col only using the real-time model checker Uppaal [3]. Furthermore, we consider
a more realistic unreliable physical environment to study the fault tolerance of
the protocol.
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In addition to protocol verification, there are several related works in the more
general setting of hardware verification. Bozga et al. [5] verify asynchronous
circuits with the real-time model checker Kronos, where the low-level timing
behavior of the individual gates is modeled by timed automata. A hierarchical
approach to the verification of asynchronous circuits is described in [15]. By
translating the system model together with a scheduler restricting the temporal
evolution of the system into a communicating sequential processes (CSP) model,
the possible timing behavior of the system is over-approximated to allow the effi-
cient verification using a CSP model checker. The focus of this line of research is
the analysis of asynchronous circuits on a chip, not the communication protocols
considered in this paper.

3 The Protocol Model

We model a scenario in which the sender transmits a formatted bit stream, and
the receiver checks if the format of the stream complies with the standard de-
scribed in [7, Sect. 3.2.1.1] and if all message bits are received correctly. To avoid
unnecessary counter variables that keep track of the current position within the
message, we abstract from the concrete message length: after each transmitted
byte, we let the sender nondeterministically determine whether a further message
byte should follow, thus allowing an arbitrary message length.

3.1 The Sender

The Bit Stream Format. A message is transmitted as a structured stream [7,
Sect. 3.2.1.1] of bit cells as shown in Fig. 2. As stated in Sect. 2.1, in every bit
cell, the bit value is held for eight clock cycles (not shown in the figure).

The start of the stream is the so-called transmission start sequence (TSS),
which consists of a sequence of low bits. It precedes every transmission.

After the TSS, the frame start sequence (FSS) signals the start of a message
transmission. The FSS consists of a single high bit. The receiving controller
accepts a transmission even if the FSS is received zero or two times.

Each message byte is prefixed with a byte start sequence (BSS). The BSS
consists of one high bit followed by one low bit. The high to low transition in
the middle of the BSS is used as a trigger for the bit clock alignment.

At the end of the message, a frame end sequence (FES) is appended. The FES
consists of one low bit followed by one high bit.

High

Low

TSS F
S
S

BSS
1st byte
of data

BSS BSS
last byte
of data

FES

Fig. 2. Format of a message bit stream
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TSS FSS (BSShigh)

SenderCLK?
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samplecounter++

SenderCLK?
TSScount < TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 0,
TSScount++

SenderCLK?
TSScount ≥ TSSlength ∧
samplecounter = 8
samplecounter := 1, Tx := 1

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1, Tx := 1

Fig. 3. Model of the start of the transmission
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SenderCLK?
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SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 1,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, Tx := 0,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 1,
Tx := 1, savedindex := bufferindex + 1,
bufferindex++

SenderCLK?
samplecounter = 8 ∧ bufferindex < 7
samplecounter := 1, savedTx := 0,
Tx := 0, savedindex := bufferindex + 1,
bufferindex++

Fig. 4. Model of the transmission of the message bytes

Sending the Bit Stream. The sending of the bit stream is modeled by the
automaton shown in Fig. 3. The message is generated nondeterministically as
shown in Fig. 4. Also, the sender nondeterministically determines whether a
particular bit should be verified by the receiver. In this case, the value of the
chosen bit is stored in savedTx and its offset within the current byte is stored
in savedindex1. In our model, the variable End is used to signal to the receiver
that that the bit stream is about to end (shown in Fig. 5).

3.2 The Receiver

Voting. In order to reconstruct the bit stream sent by the sender, the receiver
takes several samples from each bit cell. The five most recent samples always form
1 The inital value savedindex = 8 means “no bit to test”.
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(from SendBit)
FESlow FEShigh Done

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8
samplecounter := 1
End := 1, Tx := 1

SenderCLK?
samplecounter < 8
samplecounter++

SenderCLK?
samplecounter = 8

Fig. 5. Model of the end of the transmission
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Fig. 6. Correction of a glitch through majority voting

the so-called voting window.2 In each clock cycle, a voted value, i.e., the value of
the majority of the five samples in the voting window, is computed from these. As
the size of the voting window is odd, there will always be a clear majority.

As depicted in Fig. 6, infrequently occurring glitches are mostly filtered out
directly. However, if a glitch occurs close to a change in the sample sequence,
it leads to a premature or delayed change of the voted value. More precisely, if
the glitch inverts one of the samples of the new value, it takes one more cycle
until the new value becomes the majority in the voting window. On the other
hand, if the glitch inverts one sample of the old value, the value will change one
cycle too early. Such untimely changes of the voting value may also be the result
of jitter, as described in Sect. 4.2. The errors can also occur in combination, as
shown in Fig. 7.
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Fig. 7. Combination of jitter and glitch

Our receiver model always maintains the respective previous four samples and
the sample obtained in the current clock cycle. The variable window0 always
holds the newest value. In every cycle, the values of the window variables are
2 According to the FlexRay standard [7, Sect. 3.2.6], one sample is taken in one sample

clock period, which is derived “from the oscillator clock period directly or by means of
division or multiplication”. Here, a sample clock period of one clock cycle is assumed
in accordance with [4,13,12,1,9].
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Fig. 8. Model of the voting process
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Fig. 9. Model of the strobing process

shifted accordingly, as shown in Fig. 8. If the majority of the window variables
contains a 1, VV is set to 1, and to 0 otherwise. The respective previous value of
VV is stored in OldVV.

Strobing. From each bit cell, only one voted value is used to reassemble the
bit stream. To avoid choosing values that are affected by glitches, the fifth voted
value (computed from samples from the middle of the bit cell) is taken as the
so-called strobed value.

Bit Clock Alignment. In order to identify the (approximate) boundaries
of the bit cells and thus the strobed values, the receiver keeps the variable
strobecounter synchronized to the stream of received voted values.

The bit clock alignment mechanism makes use of the bit stream format. At
the beginning of the transmission and during the byte start sequences, the first
transition of the voted value from high to low is detected and strobecounter is
reset to 2 for the next voted value. Thus, the second recognized voted value of
the bit cell is considered the second voted value of the cell.

If a combination of clock drift and a glitch interferes with the bit clock
alignment mechanism by delaying the recognition of the high to low transition,
strobecounterwill be off by more than 1, thus parts of the next bit cell are also
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WaitForCE
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Fig. 10. Model of the start of the reception
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Fig. 11. Model of the reception of the message bytes

taken into account when computing the strobed value. This situation is shown
in Fig. 7; recall the delay of two cycles introduced by the voting process. The
bit clock alignment can analogously also happen too early.

As shown in Fig. 9, strobecounter has no default value, but is initialized
nondeterministically. When the new voted value, VV, is 0 and the voted value
from the cycle before, OldVV, is 1, and EnableSyncEdgeDetect enables the bit
clock alignment mechanism, strobecounter is reset to 2, as the received 0 is the
first bit of the new bit cell, and the bit clock alignment mechanism is deactivated
using EnableSyncEdgeDetect.

When strobecounter has a value of 5 and channel ValueVoted signals that
the voted value for this cycle of the receiver’s clock is reached, VV is chosen as
the value for bstr. Channel Strobed allows other automata to synchronize on
this event in order to use the new bstr value.

Receiving the Bit Stream. When channel Strobed signals that a new value
has been strobed, the receiver checks if it is consistent with the expected format
of the bit stream, as shown in Fig. 10. As soon as a received value is not the
expected one, the error state DECerr is entered.

The received TSS is accepted if it contains at least TSSmin bits. A further bit
of the TSS is accepted if not more than TSSmax bits have been received before.
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(from CheckFESlow)
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Fig. 12. Model of the end of the reception

During the reception of the TSS or after the reception of a message byte, the
variable EnableSyncEdgeDetect is used, as shown in Fig. 11, to enable the bit
clock alignment mechanism. During the reception of a message byte, the number
of bits received so far within this byte is counted using variable bufferindex.
When savedindex indicates that the current message bit is to be verified, the
received value (stored in bstr) is compared to savedTx. The variable End is
checked to prohibit entering the location Done too early, as shown in Fig. 12.

4 The Hardware Model

In FlexRay networks, each controller has a local oscillator that clocks all local
circuits. The individual controllers run asynchronously and communicate via a
shared bus. In our model, we use registers (standard circuits used to persist
values) to simulate the low-level timing behavior of transmitting bit values from
sender to receiver.

Figure 13 gives an overview. The sender begins a transmission of a bit by
storing its value in a register Tx. The bus content is represented as the output of
register Tx, which is connected to a register Rx on the receiver’s side. Following
[4,13,12,9,1], as proposed by [10], we forward the output of register Rx through
a consecutive register Rxx to suppress metastability problems.

Hardware Model

Clock Clock
Register
Tx

Bus = RxIn

Register
Rx

Rxx

Send Stream Receive Stream

Fig. 13. Overview of the hardware sub-architecture

4.1 Oscillators

We model the local oscillators of the sender and the receiver as automata that
emit tick -events (SenderCLK and ReceiverCLK) which, in turn, are received
by other automata modeling connected circuits. According to the specification,
distributed oscillators may deviate from the standard rate up to a certain bound
[7, Appendix A.1]. Furthermore, as these oscillators are not started at the same
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x ≤ CYCLE MAX

SenderCLK!
x ≥ CYCLE MIN
x := 0

y ≤ CYCLE MAX y ≤ CYCLE MAX

ReceiverCLK!
y := 0

ReceiverCLK!
y ≥ CYCLE MIN
y := 0

Fig. 14. Oscillators for sender and receiver

time, their periods can be shifted arbitrarily. This is modeled by not specifying
a minimum length for the first cycle of the receiver’s oscillator in Fig. 14. Here,
x and y are continuous-valued clock variables.

In our model, we parametrize the length of an ideal clock cycle (which is the
same for each controller) by CYCLE. To model the deviation, we use a parameter
DEVIATION. This gives us a lower and an upper bound for tick-events:

CYCLE MIN = CYCLE− DEVIATION

2
and CYCLE MAX = CYCLE+

DEVIATION

2
.

4.2 Registers

Following the setting of [4,13,12,9,1], we assume a register semantics to model the
timing behavior of the bus which connects the sender and the receiver. Before we
come to the actual transmission of bit values via the bus, we first give a general
description of the low-level timing behavior of registers.

Register Semantics. The behavior of a particular register hardware is de-
scribed in terms of the following parameters:

– SETUP (HOLD) is the setup (hold) time, i.e., the time that the value on the
input of a register is required to be stable before (after) the occurrence of a
tick-event;

– PMIN (PMAX, where PMIN ≤ PMAX), is the minimal (maximal) propagation
delay, i.e., the minimal (maximal) time after which a register changes its
output to an undefined value (to the new value) after the occurrence of a
tick-event.

The register content represents a particular Boolean value using voltage levels:
A value below a certain voltage level is considered as 0 and a voltage above a
certain level is considered as 1. However, there is a certain range of voltage levels
between the two thresholds that cannot be interpreted as any Boolean value.

Fig. 15 illustrates a scenario in which first a register’s input I and, after a
tick-event, also its output R changes from X to Y . Here, τ refers to the time
between two consecutive tick events and Ω indicates an undefined state of the
register’s output.

We assume that the unknown value is stable before τ − SETUP, i.e., before
it could violate the setup times of connected registers in the next cycle. In the
FlexRay context, for a particular controller, all inputs of registers are connected
to circuits that use the same oscillator as the registers. Hence, according to [8,
Sect. 5.2], we assume that all local inputs are stable.
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R
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tick

X Y

ΩX Y

PMIN

PMAX

τ

PMIN − HOLD τ − PMAX− SETUP

SETUP

HOLD

Fig. 15. Value change scenario of a register R

More generally, let R(t) and I(t) be a register’s output and input at a point
of time t, respectively, and let T be the point of time of a tick event, told =
T − τ + PMAX, and tnext = T + τ + PMIN. Furthermore, let there be a point of
time t′ where the register’s input changes, i.e., T − SETUP ≤ t′ ≤ T + HOLD such
that I(t′) �= R(told ). Then, the output of a register at time t, told ≤ t ≤ tnext , is
formally defined as

R(t) =

⎧
⎪⎨

⎪⎩

R(told) told ≤ t ≤ T + PMIN,

Ω T + PMIN < t < T + PMAX,

X T + PMAX ≤ t ≤ tnext ,

where X =

{
I(T ) if ∀t′.(T − SETUP ≤ t′ ≤ T + HOLD) ⇒ (I(t′) = I(T )),
Ω otherwise.

Model of the Bus. Figure 16 shows the automaton modeling the transmission
of a bit value according to the register semantics defined in the beginning of this
section. Recall the structure of the hardware sub-architecture shown in Fig. 13.
In our model, we represent register Tx’s content by a variable Tx, and register
Rx’s input (which also represents the bus’ content) by a variable RxIn. As the
bus value is high whenever it is idle [7, Sect. 3.2.4], RxIn is initialized with 1.

At every tick of the sender’s clock, the variable Tx is checked: if the sender is
still writing the same value to the bus, nothing changes, but if the sender tries to
write a different value to the bus, RxIn changes its value. Here, we represent an
undefined bus content by a value of 2 for RxIn, and use the parameters HLMIN,
HLMAX, LHMIN, and LHMAX to model the delays induced by the hardware: As a
conservative approximation, we assume

HLMIN = LHMIN = PMIN and HLMAX = LHMAX = PMAX.

Model of the Receiving Register. Figure 17 shows the automata modeling
the sampling process on the receiver’s side. The receiver samples a value from
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StableHIGH
C

CheckForLOW
x ≤ HLMIN

ChangeToLOW
x ≤ HLMAX + SETUP

UnstableLOW

StableLOW
C

CheckForHIGH
x ≤ LHMIN

ChangeToHIGH
x ≤ LHMAX + SETUP

UnstableHIGH

SenderCLK?

Tx = 1

Tx = 0
x ≥ HLMIN
RxIn := 2

x ≥ LHMAX + SETUP
RxIn := 0

SenderCLK?

Tx = 0

Tx = 1
x ≥ LHMIN
RxIn := 2

x ≥ LHMAX + SETUP
RxIn := 1

Fig. 16. Model of the bus

WaitForClocktick TryToSample

y ≤ HOLD

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := RxIn

ReceiverCLK?
lasterror ≥ ERRDIST
OldRxIn := 2, lasterror := 0

ReceiverCLK?
lasterror < ERRDIST
OldRxIn := RxIn, lasterror++

y ≥ HOLD ∧ RxIn �= 2 ∧ OldRxIn = RxIn
Rx := RxIn

y ≥ HOLD ∧ (
OldRxIn �= RxIn ∨ RxIn = 2

)

Rx := 1

y ≥ HOLD ∧ (
OldRxIn �= RxIn ∨ RxIn = 2

)

Rx := 0

ConsecutiveRegisterRxx

ReceiverCLK?
Rxx := Rx

Fig. 17. Model of the sampling process

the bus using the register Rx. After exactly HOLD time units following a tick-
event, we update Rx either (1) nondeterministically with 1 or 0 if Rx’s input
RxIn changes or is undefined, or (2) with RxIn otherwise.

Furthermore, for modeling glitches, we introduce a variable lasterror that
counts the number of samples without a glitch. Whenever lasterror ≥ ERRDIST,
the sampling process nondeterministically decides whether the current sample is
affected by a glitch.

5 Model Checking the FlexRay Physical Layer Protocol

In our analysis, we fix values for the model parameters and check several correct-
ness properties (shown in Table 1) using the real-time model checker Uppaal [3].
In a first analysis, we use conservative approximations based on [7,11], which are
listed in Table 2(a). We globally assume a CPU frequency of 80 MHz3.

We initially assume an error distance of four which corresponds to one glitch
in a voting window. This intuitive choice is overly pessimistic: in fact, the exper-
3 Note that 80MHz corresponds to an ideal clock cycle. Recall that every actual clock

cycle of a CPU may deviate up to a certain rate, defined by DEVIATION.
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Table 1. Satisfied correctness properties and corresponding running times of Uppaal
on a computer with an AMD Opteron 2.6 GHz and 4GB RAM

Property MC Time

A<> Receiver Control.TSS 0.65 sec
It is always the case that the reception of the bit stream eventu-
ally starts.

A<> Receiver Control.CheckFESlow 7624.90 sec
It is always the case that the first byte of a message is eventually
correctly received.

A[] !Receiver Control.DECerr 73.08 sec
Invariantly, the received bit stream is in the correct format and
the received message is correct.

A[] (!Deadlock || Receiver Control.Done) 136.47 sec
Invariantly, there is no deadlock before the message is completely
received.

Table 2. Standard values based on conservative approximations of the parameters
taken from the FlexRay standard [7] and the Nangate Open Cell Library [11], as well
as the impact of changed parameters on the tolerable glitches. Here, “1 out of x” stands
for “at most 1 glitch in x consecutive samples” and thus an error distance of x−1, and
“at most y” means “at most y glitches in the overall stream at arbitrary positions”.

(a) Standard parameter values.

Parameter Value Corresponds to

CYCLE 10000 1
80 MHz

= 12.5 ns
DEVIATION 30 ±0.15 %
SETUP 368 460 ps
HOLD 1160 1450 ps
PMIN 12 15 ps
PMAX 1160 1450 ps
ERRDIST 4 1 out of 5

(b) Changed parameter values.

Changed parameter Tolerable glitches

PMAX− PMIN ≤ 6086 1 out of 4
PMAX− PMIN ≤ 6086 at most 2
PMAX− PMIN ≤ 9616 at most 1

DEVIATION ≤ 92 1 out of 4
DEVIATION ≤ 92 at most 2
DEVIATION ≤ 218 at most 1
DEVIATION ≤ 348 none

Voting window size = 3 1 out of 3
Voting window size = 5 1 out of 4
Voting window size = 7 1 out of 5
Voting window size = 9 1 out of 6

iments show that for the standard parameters, we can tolerate an error distance
of three without violating any correctness property.

The impact of changing the hardware parameters PMIN, PMAX, or DEVIATION
on the amount of tolerable glitches (such that the properties from Table 1 are
still preserved) is shown in Table 2(b). Interestingly, this analysis demonstrates
the robustness of the FlexRay physical layer protocol even for more pessimistic
hardware assumptions: beyond our conservative choice of the parameters, there
is still a comfortable safety margin for reasonable error models.

With slightly more elaborate adjustments to the automaton from Fig. 17, we
also investigate an error model with two arbitrary glitches within every sequence
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of samples of a certain length. For instance, assuming the standard parameters
from Table 2(a), it turns out that two glitches in a sequence of up to 82 samples
lead to a violation of the correctness properties. The impact of changing the size
of the voting window is shown in the last four rows of Table 2(b). Here, the error
distance increases linearly in the size of the window.

6 Conclusion

In this paper, we have demonstrated the use of automatic verification to analyze
the fault tolerance of a complex real-time protocol under variations of the design
parameters, the error model, and the hardware parameters. Beyond proving that
the physical layer protocol meets the fault tolerance requirements claimed in the
FlexRay specification, our analysis gives a detailed picture of the impact the
different parameters have on the robustness of the protocol.

An a posteriori analysis, as carried out in this paper, is helpful to understand
the importance of individual design choices and hardware requirements in an
established protocol, and to identify requirements that are too conservative and
can therefore be relaxed. An interesting direction for future research might be to
carry out the analysis a priori, exploring the design space of an as yet unfinished
protocol: model checking variations of the protocol on a parameterized hardware
model, like the one presented in this paper, can help the designer make safe and
robust choices.
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Abstract. TTEthernet is a communication infrastructure for mixed-
criticality systems that integrates dataflow from applications with dif-
ferent criticality levels on a single network. For applications of highest
criticality, TTEthernet provides a synchronization strategy that toler-
ates multiple failures. The resulting fault-tolerant timebase can then be
used for time-triggered communication to ensure temporal partitioning
on the shared network.

In this paper, we present the formal verification of the compression
function which is a core element of the clock synchronization service
of TTEthernet. The compression function is located in the TTEthernet
switches: it collects clock readings from the end systems, performs a fault-
tolerant median calculation, and feedbacks the result to the end systems.
While traditionally the formal proof of these types of algorithms is done
by theorem proving, we successfully use the model checker sal-inf-bmc
incorporating the YICES SMT solver. This approach improves the au-
tomatized verification process and, thus, reduces the manual verification
overhead.

1 Introduction

Modern networked systems host a multitude of applications often with varying
criticality levels. In an on-board network of an airplane, for example, highly crit-
ical flight-management and control applications are implemented as well as less
critical video applications. To ensure independence between these applications,
traditionally a federated network approach is realized in which different applica-
tions use private networks. However, with the increasing number of applications
the federated approach becomes costly and, as a consequence, there is a tendency
throughout many industries to converge from a multitude of heterogeneous fed-
erated networks to an integrated communication infrastructure.

TTEthernet (Time-Triggered Ethernet [1,2]) is such a communication infras-
tructure for mixed-criticality systems. For traffic of highest criticality, TTEther-
net provides time-triggered communication. Time-triggered communication, also
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c© Springer-Verlag Berlin Heidelberg 2010



SMT-Based Formal Verification 149

known as time-division multiple-access (TDMA), is a communication paradigm
in which the local clocks of the communication participants are synchronized,
and frames are dispatched and relayed according a communication schedule de-
fined a priori. Hence, as the local clocks in the participants are synchronized,
the communication schedule is executed synchronously and contentions at the
network are avoided. Time-triggered communication provides therefore strong
temporal partitioning because the possibility that two or more communication
participants access the network at the same point in time can be excluded by
design and enforced by simple guardian mechanisms. The synchronized local
clocks are the fundamental prerequisite for time-triggered communication, and
the correctness of the synchronization algorithms is therefore essential.

The main contribution of this paper is the discussion and formal verification
of the compression function which is a core element of the TTEthernet fault-
tolerant synchronization strategy. We present the verification of several prop-
erties of different characteristics (membership and clock synchronization) and
discuss their different computational overhead.

The subject of clock synchronization is very well understood, with a broad
academic foundation developed as early as in the nineteen-eighties (e.g. [3], [4]).
Our work proves the correctness of a particular implementation of these funda-
mental results. Still, there is also a certain novelty in the compression function:
the compression function runs unsynchronized to the synchronized timebase;
its core functionality is the collection of local views of the global synchronized
timebase and the generation of a consolidated new reference point. The approach
presented in this paper can easily be applied to enhance master-slave based clock
synchronization systems to multi-master systems, in which the compression func-
tion operates as proxy for fault-tolerant clock synchronization.

Formal proofs of this kind of algorithms have been traditionally done by the-
orem proving [5], [6]. In this paper we discuss the application of the SMT-based
verification approach introduced in [7] and [8] to fault-tolerant clock synchro-
nization problems. To our knowledge this is the first time that model-checking
has been applied to the verification of a convergence function such as the fault-
tolerant median.

The formal models are free for download from the SAL wiki1 to foster co-
operation in the current ongoing standardization process of TTEthernet (SAE
AS6802) as well as for upcoming inter-operability and conformance tests. While
this paper discusses the TTEthernet low-level synchronization functions, the
higher-level synchronization strategy focusing on startup/restart is presented
in [9]. Because of space limitations, we present and discuss only parts of the for-
mal model. The full model and a more detailed verification report are described
in [9].

This paper is structured as follows: we give an overview of TTEthernet and an
informal description of the compression function in the next section. Section 3
provides an overview of the formal model. We present the verification procedure
and results in Section 4. Finally, we conclude in Section 5.

1 http://sal-wiki.csl.sri.com
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2 TTEthernet Informal Discussion

2.1 Communication of Synchronization Information

Figure 1 depicts an example TTEthernet network consisting of five end sys-
tems and two redundant communication channels. Channel 1 consists of three
switches, where one of the switches is configured as Compression Master (CM)
and the other switches are configured as Synchronization Clients (SC). Chan-
nel 2 consists of a single switch configured as CM. All end systems are configured
as Synchronization Masters (SM). The synchronization procedure is initiated by
the SMs which send synchronization messages, called Protocol Control Frames
(PCF), to the CMs. The CMs process the proposed PCFs and relay new PCFs
back to the SMs and SCs. SCs will relay the PCFs from the SMs to the CMs and
vice versa but use only the PCFs from the CMs for their own synchronization.

Compression Master 1 
(CM1)

Compression Master 2 
(CM2)

Synchronization Masters

SM1 SM2 SM3 SM4 SM5

Synchronization Client 
(SC1)

Synchronization Client 
(SC2)

C
hannel 1

C
hannel 2

Fig. 1. Example TTEthernet network

TTEthernet implements a so called “permanence function” that compensates
for network jitter of PCFs: as a PCF flows through the network, all devices that
relay the frame add their delay imposed on the PCF into a dedicated field of the
frame. Hence, a receiver can determine the actual latency of a PCF through the
network with negligible error. The permanence function is then a simple method
executed in the receiver to transform network jitter into network latency: (a) we
calculate offline the maximum network latency considering all PCFs; (b) upon
reception of a PCF the receiver artificially delays the PCF for the remaining
difference between this maximum network latency and the actual latency as
transported in the PCF. Hence, the “transmission” of each PCF will always
take the maximum network latency.

To highlight the difference between the point in time of physical reception
and the point in time when the frame is actually used in the CM, we use
the term “permanence point in time” for the latter (see Figure 2). The
permanence function allows us to abstract from network jitter and to treat the
network latency as a constant. Without loss of generality we assume a zero net-
work latency in the formal proofs: at the point in time when a PCF is dispatched
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by a SM it is immediately “permanent” at the CM. The negligible error of
the permanence functions are covered by the modelling of the clock drift. The
automatized formal proof of the permanence function using sal-inf-bmc can
be found in [9].

2.2 Compression Function Informal Description

During synchronized operation mode, the SMs dispatch their PCFs at the same
nominal point in time to the CMs. Due to drifts in the oscillators, the actual
dispatch points in the SMs and the resulting permanence points in time in the
CMs will deviate. Therefore, the CMs implement a so called “compression func-
tion” that runs unsynchronized to the synchronized global time. The compres-
sion function collects the PCFs from different SMs and produces a new PCF
which is sent back to the SMs. The dispatch point in time of this new PCF is
calculated as a function of the relative permanence points in time of the PCFs
from the SMs. This dispatch point in time from the CM is called the “compressed
point in time”. The focus of this paper is to verify the correct relation between
the permanence points in time and the compressed point in time.

The compression function runs unsynchronized to the synchronized timebase.
It is started upon the reception of a PCF, rather than upon the synchronized
local clock in the CM reaching a particular point in time. Therefore, it has to
be guaranteed that faulty SMs that may send early or late will not cause the
compression function to recognize only a subset of PCFs from correct SMs in
the generation of the new PCF.

Figure 2 depicts an example execution of the compression function. In this
example three end systems that are configured as SMs dispatch PCFs, in partic-
ular a special type called Integration Frame (IN), to a switch that is configured
as CM. The depicted deviation of the dispatch points in time stem from the
relative differences in the oscillators of the end systems; in a perfect world, these
dispatch points in time would be perfectly aligned.

CM will use the permanence function discussed previously to derive the per-
manence points in time of the PCFs. The first permanence point in time (p1) will
cause the compression function to start the collection phase. As successive PCFs
become permanent, the CM records their offsets relative to the first permanence
point in time (pi − p1, i > 1) and stores these offsets in a local data structure
that we call the clock synchronization stack. The duration of the collection phase
is given by the following rules, where “observation window” specifies the maxi-
mum deviation of two correct local clocks in the system as measurable by a clock
within the network:

– The first permanence point in time will cause the compression function to
collect the following permanent PCFs for one observation window.

– When the compression function collects at least a second permanent PCF
during the first observation window, the collection phase is prolonged for a
second observation window.
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Fig. 2. Compression function overview, three end systems configured as SM provide
their local clock readings to a switch configured as CM. In the real world the network
jitter is compensated by the permanence function.

– The collection phase will end when the number of permanent PCF collected
during observation window i is equal to the number of permanent PCFs
collected during observation window i−1 (hence, when no new PCF became
permanent for the duration of one observation window). Otherwise collection
will be continued for another observation window.

– The collection phase will stop at the latest after the (k + 1)th observation
window, where k is the configured number of faulty SMs to be tolerated.

After the collection phase the relative permanence points in time of the collected
PCFs are used to determine a correction value for the following delay phase. In
order to minimize the impact of the faulty SMs we use a variant of the fault-
tolerant median (where pi, i ≥ 1 represent the permanence points in time):

– 1 permanence point in time: correction value = 0
– 2 permanence points in time: correction value = p2−p1

2
– 3 permanence points in time: correction value = p2 − p1

– 4 permanence points in time:
correction value = ((p2−p1)+(p3−p1))

2
– 5 permanence points in time: correction value = p3 − p1

– more than 5 permanence points in time: take the average of the (k + 1)th

largest and (k + 1)th smallest inputs, where k is the number of faulty SMs
that have to be tolerated.

In the delay phase, the compression function will wait for

delay = correction value +
(k + 1) ∗ observation window −
collection phase duration

where collection phase duration is the length of the preceding collection phase.
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Fig. 3. State machines for the faulty and the correct dispatch processes as well as for
the compression function

Figure 3 depicts the state machines of the dispatch processes in the SMs and
the state machine for the compression function in the CMs.

The dispatch process is described by a very simple state machine consist-
ing of only two states: wait and dispatch (or faulty wait and faulty dispatch

for faulty components). The dispatch process maintains a local timer variable
that identifies the dispatch point in time. When this dispatch point in time is
reached the dispatch process dispatches the PCF and enters the dispatch state
(or faulty dispatch). Once in dispatch or faulty dispatch, a dispatch process
will remain in that state forever.

The state machine of the compression function consists of the following states:
cm wait, cm collect1, cm collect2, cm convergence, and cm compressed. The com-
pression function starts in the cm wait state and enters the cm collect1 state
when the first PCF becomes permanent. The cm collect1 and cm collect2 rep-
resent the collection phase and cm convergence represents the delay phase of
the compression function as described above. Finally, the compression function
enters the cm compressed state.

We are interested in verifying the correctness of the collection phase as well
as the delay phase in the compression function, which results in the following
four properties:
– agreement: when the compression function collects one permanence point in

time of a PCF sent from a correct SM it will also collect permanence points
in time from all other correct SMs within the same collection phase.

– window: the compressed point in time will be within the interval [k ∗
observation window , (k + 2) ∗ observation window ].

– correction: all correct SMs will perceive the compressed point in time not
more than observation window from when they expect the compressed point
in time.

– termination: the compression function process will produce a result.

3 Formal Model

Figure 4 gives an overview of the formal model used to verify the compression
function. It consists of N modules that represent a dispatch process and the
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Fig. 4. Compression function model overview

compression function. An additional RT (Real-Time) Clock Module manages the
timing in the model: the dispatch and compression modules receive the current
time as an input from the RT Clock module. Furthermore, these modules each
maintain a timeout output reflecting the next point in time when the module
will produce its next event. The RT Clock module receives all timeout outputs
as input and advances time to the smallest timeout value.

Clock drifts resulting in deviations of the local clocks and therefore different
dispatch points in time are modelled by uncertainty intervals, which means that
the end systems will set their new timeout to a non-deterministic position within
parameterizable bounds.

The global data structure “Event Calendar cal” is used to model the flow of a
PCF from the dispatch processes to the compression function. The transmission
of a PCF by a SM is done by adding an event to the event calendar; likewise the
reception of the PCF by the CM is modelled by the consumption of this event.

More detail on the progress of time using calendars as well as the exchange
of messages can be found in [7].

The faulty SMs are simulated by allowing their dispatch points in time to
occur at an arbitrary instant, while a correct SM dispatches its PCF within the
specified uncertainty interval.

In the following we describe some parts of the model in the SAL notation. It
starts with some general definitions.

k: NATURAL = 3;
N: NATURAL = 3*k + 1;
OBSERVATION_WINDOW_ID : TYPE = [1..k+1];

k defines the number of faulty SMs that have to be tolerated and N, the number
of overall SMs required to tolerate the defined number of failures, is then given
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by N=3*k+1. The SMs are represented by the dispatch functions described by the
state machines above. DISPATCH ID identifies the SMs in the system by numbering
them [1..N]. Similarly, OBSERVATION WINDOW ID labels the observation windows
from [1..k+1].

observation_window: REAL = 5;
earliest_correct_dispatch: REAL= (k+1)*observation_window;
latest_correct_dispatch: REAL = earliest_correct_dispatch + observation_window;
end_of_time: REAL = latest_correct_dispatch + ((k+1)+2)*observation_window;

Besides the number of faulty SMs to be tolerated, the length of the ob-
servation window is the only other parameter that has to be assigned by
hand. All other parameters in the system are derived from those two. In this
setup we set observation window=5. As observation window is the only tem-
poral parameter that we assign a particular value, it does not matter what
this value is: 5 represents 5µsec as well as 5sec or any x∗5

y sec, x, y > 0. The
earliest correct dispatch and the latest correct dispatch define the un-
certainty interval when a correct SM dispatches its PCF. The definition of this
interval contributes to the hypothetical worst case, in which the faulty SMs
would send their PCFs in such a way that the collection phase in the compres-
sion function (which lasts k + 1 observation windows at most) could complete
without collecting any PCF stemming from a correct SM. By definition, all cor-
rect SMs will dispatch their PCF within an interval of length observation window.
end of time is used to initialize the timeout variable of the reactive modules. The
compression function is the reactive module that initially waits for the reception
of PCFs. In order to prevent the compression function module from blocking the
progress of time, we initially set its value to the point in time when execution of
the compression function would be finished in the worst case.

Real-time is modelled analogously to [7] using a dedicated real-time clock
module. For the compression function we need additional data structures and
functions in order to collect the permanence point in times of PCFs and to
calculate their fault-tolerant median.

clock_readings: TYPE =
[# valid: ARRAY DISPATCH_ID OF BOOLEAN, value: ARRAY DISPATCH_ID OF TIME #];

clock reading defines the clock synchronization stack, the data-structure that
we use for storing the relative permanence points in time of PCFs that the
compression function receives during its collection phase. empty clock readings

defines the empty clock synchronization stack.

add_clock_reading(cr: clock_readings, i: DISPATCH_ID, v: TIME): clock_readings =
((cr WITH .valid[i] := TRUE) WITH .value[i] := v);

add clock reading specifies a function for collecting values in the clock read-
ings data-structure. The values are added in a stack-like fashion, so the relation
between clock reading entry to SM will be lost. Whenever a new value is added,
valid is set to TRUE and the value field holds the relative difference to the first
permanence point in time p1. The fault-tolerant median calculation is specified
according to the requirements given in the informal discussion.
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ft_median(cr: clock_readings): TIME = % for k=2, N=7
IF cr.valid[7] THEN (cr.value[3] + cr.value[5])/2
...
ELSIF cr.valid[4] THEN (cr.value[2] + cr.value[3])/2
...
ELSE cr.value[1] ENDIF;

The algorithms are modelled as guarded commands of following form:

guard --> list of commands

The correct SMs dispatch their PCF within the uncertainty interval; faulty
SMs may dispatch their PCF at any time. An example guarded command for a
correct SM is given below.

dispatch_state = wait AND dispatch_timeout = time
-->
dispatch_state’ = dispatch; dispatch_pit’ = time;
cal’ = add_event(cal, i, time); dispatch_timeout’ = time+end_of_time;

When SM is in wait state and the RT Module signals that time has reached
its dispatch event, the SM will dispatch its PCF by adding an event to the
calendar. Furthermore, it locally stores the current point in time, which we use
in the formal proof, and sets its timeout output to a high value such that it does
not block time progress.

We describe some core transitions of the compression function module next.
The first transition describes the reception of the first PCF, which starts the
collection phase.

[([] (i:DISPATCH_ID):
event_pending?(cal, i) AND event_time(cal, i) = time AND compression_state = cm_wait

-->
compression_state’ = cm_collect1;
compression_timeout’ = time + (observation_window);
reading_index’ = 2; last_reading_index’ = 2;
membership_new’=[[index:DISPATCH_ID] IF index=i THEN TRUE ELSE membership_new[index] ENDIF];
pit_0’ = time;
clock_stack’=add_clock_reading(clock_stack,reading_index,0);
cal’ = rem_event(cal, i);)

When the compression function is in the cm wait state and a new entry is
added to the calendar, the transition to cm collect1 state is triggered. Note
that we abstract from the transmission delays that would naturally occur in the
TTEthernet network. We justified this abstraction in Section 2.

reading index is used both for counting the number of permanent PCFs and as
an index in the clock synchronization stack, where it points to the next free entry.
last reading index is used to store the number of permanent PCFs collected
until the latest observation window has been started. When the collection phase
is started, the reading index and the last reading index are updated and the
entry in the membership new bitvector for the SM that triggered the transition
is set. pit 0 is used to store the current point in time when the transition is
triggered (which is p1). Note, that in a real implementation this timestamp
would be taken from an internal clock in the CM, rather then the current point
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in real-time, which naturally is not present in any component. However, as we
do not use pit 0 directly, but only relative offsets to it, we conclude that our
modelling does not introduce invalid additional information. Finally, 0 is added
as the first entry to the clock synchronization stack and the entry to the calendar
that triggered the transition is removed from the calendar.

The next transition is triggered at the end of an observation window i (i ≥ 2).

[] compression_state = cm_collect2 AND time = compression_timeout
AND reading_index > last_reading_index AND window_counter < k+1
-->
compression_state’ = cm_collect2; compression_timeout’ = time + observation_window;
last_reading_index’ = reading_index;
window_counter’ = IF window_counter=N THEN window_counter ELSE window_counter+1 ENDIF;

In this transition we check whether the number of permanence points in time
has increased during the last observation window. If so, and it was not the last
observation window yet, we continue the collection for another observation win-
dow. window counter is used to keep track of the number of observation windows.

The next transition is taken when the number of permanence points in time
is equal to the number collected during the previous collection window (hence,
no new PCF has become permanent during the latest observation window), and
at least k + 1 PCFs have been received. The state machine proceeds then to
the cm convergence state. The duration of the delay phase is calculated based
on the relative permanence points in time, and the timeout is set accordingly to
simulate the delay phase.

compression_state=cm_collect2 AND reading_index=last_reading_index
AND time=compression_timeout AND window_counter<k+1 AND reading_index>k+1 %proof only
-->

compression_state’ = cm_convergence; window_counter’ = window_counter;
compression_timeout’= time+ft_median(clock_stack)+(k+1-window_counter)*observation_window;

The compression function will stay in the cm convergence state for the duration
of the delay value.

compression_state = cm_convergence AND time = compression_timeout
-->
compression_state’ = cm_compressed; compressed_true’ = TRUE;

When real-time indicates the timeout of the delay value, the compression func-
tion transitions to the cm compressed state and sets compressed true to TRUE.

Once in the cm compressed state, the compression function will stay in this
state forever, setting the compressed true flag to FALSE immediately after en-
tering. Hence, compressed true marks exactly one instant in real-time, which
is used as the reference for clock correction in the higher-layer synchronization
protocol. This instant marks the compressed point in time (cm compressed pit).

For the proof of termination of the compression function we define two tran-
sitions:

[] compression_state=cm_wait AND time=compression_timeout --> compression_state’=cm_error;
[] compression_state=cm_error --> compression_state’ = cm_error;
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The first transition says that, when the compression function is in cm wait

state for too long it will enter the dedicated error state cm error. The second
transition is there to avoid a deadlock in the error state.

4 Verification Procedure and Results

The proof of the compression function builds on the abstraction method intro-
duced in [7]. In our assessment, we extend this approach to allow a configurable
number of faulty dispatch processes. Furthermore, we add a dedicated error state
that is entered when the compression function is not finished in time. This al-
lows us to also verify a termination property of the compression function. For the
abstraction, we first define abstract system states and the abstract transitions
between them: the composition of the SMs and the CM results in the product
automata of their respective state machines. An abstract system state is a sub-
set of states in the product automata and the abstract transitions are between
these subsets. We prove the correctness of the abstraction (lemma abstract inv),
which is then used in the verification of our properties of interest. The proofs
are done by k-induction.

sal-inf-bmc provides assistance in the construction of the abstraction via
counterexamples. Given that we defined an abstraction consisting out of two
abstract states A1, A2 and an abstract transition from A1 to A2 a typical coun-
terexample during the design phase could be as follows: SAL shows how a tran-
sition in one of the original state machines, say in an SM, imposes an abstract
transition from A1 to an abstract state A2′ other than A2 which may be unde-
fined yet. Resolving this situation can be done by either restricting A1, extending
A2, or introducing a new A2′ with the respective abstract transition.

4.1 Abstraction Description

The system abstraction is depicted in Figure 5.
A 1: This is the initial abstract state when all dispatch functions and the com-
pression function have assigned their local variables as well as the global calendar
to the initial values.
A 2: In this abstract state, at least one of the dispatch functions has dispatched
a PCF modelled by adding the respective entry in the calendar.

A1 A2 A3 A4 A5 A6 A7 A8

A9A
ERR

Fig. 5. System-Level Abstraction
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A 3: In the A 3 abstract state, the compression function has consumed at least
one of the permanent PCFs from the calendar and has started the first observa-
tion window of the collection phase.
A 4: This is the abstract state representing the first observation window of the
collection phase of the compression function.
A 5: In the A 5 abstract state the collection phase has completed the first
observation window. In this state we check whether to continue the collection of
values or to restart the compression function.
A 6: This abstract state, again, represents the collection phase throughout one
particular observation window for observation window i ∈ 2..(k + 1).
A 7: The A 7 abstract state is used to check at the end of each observation
window i ≥ 2, whether more PCFs have become permanent during the latest
observation window i− 1 and whether the collection phase operated already for
(k + 1) observation windows. If the number of permanent PCFs has increased
and the number of observation windows collected so far is below k + 1 then the
abstract state A 6 is entered again. If the number of permanent PCFs has not
increased and the number of permanent PCFs is smaller than k + 1, then the
compression function is restarted. If the number of permanent PCFs has not
increased, but the number of permanent PCFs so far is higher than k + 1 then
the abstract state A 8 is entered. Also, when the collection phase has reached
the end of the (k + 1)th observation window the abstract state A 8 is entered.
A 8: In this abstract state the compression function waits for the duration of the
delay value calculated from values on the clock synchronization stack and the
duration of the collection phase.
A 9: This is the final abstract state.
A ERR: This is the error state entered, when the compression function fails to
terminate within a given timeout.

4.2 Key Disjunctive Invariants and Related Functions

The key in verification of the agreement and timing properties is in relating the
individual states of the SMs to the state in the CM. For the agreement property
this relation is a simple count of those SMs that have dispatched their PCF
to the counter used in the CM. For the timing properties the relation is more
complex as we not only have to formulate the relation based on the number, but
also on the sequence in which the SMs dispatched their PCF.

4.2.1 Invariant for the Agreement Property. The agreement property
can be verified using an invariant that describes the equality: the number
of SMs that have dispatched their PCF is equal to the counter in the CM
(reading index).

reading_index =
IF count_msg(1, cal, list_dispatch_states, list_dispatch_pits,

pit_0, window_counter, old_values)< N
THEN count_msg(1, cal, list_dispatch_states, list_dispatch_pits,

pit_0, window_counter, old_values)+ 1
ELSE N ENDIF
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The count msg function counts those dispatch functions idx that have already
dispatched their PCF (list dispatch states[idx] = dispatch) and which have
been consumed by the compression function (NOT cal.signal[idx]).

4.2.2 Invariant for the Timing Properties. The verification of the win-
dow and correction property is more challenging than for the agreement prop-
erty. Here we not only have to relate the number of SMs to the CM state,
but the sequence in which the SMs dispatched their PCF. Analogously to
the reading index used above, the CM uses the clock synchronization stack
clock stack to locally store the relative differences of the frame permanence
points in time. On the other hand we store the individual dispatch points in
time in the list dispatch pits[i], where i is the index of the SMs.

For the invariant we now have to define how the clock stack relates to the
list dispatch pits[i]:

(FORALL (i:DISPATCH_ID):
IF i = 1 THEN clock_stack.value[i]=0
ELSIF i <= count_memb(1, membership_new)

THEN clock_stack.value[i] = list_dispatch_pits[observed_order[i]]
- list_dispatch_pits[observed_order[1]]

ELSE clock_stack.value[i]=0 ENDIF)

We know that the first entry on the clock synchronization stack will always
be 0. Furthermore, the number of values on the clock synchronization stack is
determined by the number of PCFs received by the SM so far. This number can
be obtained from the membership vector membership new, using a simple count
function (count memb). The ith value on the clock synchronization stack will be
the temporal distance between the ith PCF and the first PCF that has become
permanent.

To determine the first and the ith PCF requires some type of sort proce-
dure on list dispatch pits[i]. As it turns out, this is a little tricky in our
formalism as an explicit sort algorithm works only for a very small number of
values. To overcome this limitation we use a declarative approach: we introduce
observed order as a new array and observed order[i] shall be assigned the in-
dex of the SM that provided the ith PCF. Hence, observed order is not the
sorted version of list dispatch pits, but rather a sorted array of pointers to
list dispatch pits. In SAL this can be done via a non-deterministic selection
(using the IN construct) and a predicate:

observed_order IN {x: ARRAY DISPATCH_ID OF DISPATCH_ID | sort([[i:DISPATCH_ID]
IF NOT membership_new[i] THEN time+1 ELSE list_dispatch_pits[i] ENDIF], x)};

Here we say, that observed order is some array x spanning over the SMs,
which satisfies the sort predicate. The sort predicate simply takes a modified
version of list dispatch pits and x as input. Note that the modification of
list dispatch pits is necessary to exclude PCFs that have become permanent
in a collection phase prior to the latest one.
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sort(unsorted_list: ARRAY DISPATCH_ID OF TIME,
sorted_list: ARRAY DISPATCH_ID OF DISPATCH_ID): BOOLEAN =

(FORALL (i:DISPATCH_ID): i<N =>
unsorted_list[sorted_list[i]] <= unsorted_list[sorted_list[i+1]]) AND

(FORALL (i,j:DISPATCH_ID): sorted_list[i]=sorted_list[j] => i=j);

Finally, sort returns true when its second parameter is an ordered pointer
list.

4.3 Verification Properties and Results

agreement: LEMMA system |- G(compression_state=cm_compressed =>
(FORALL (i:DISPATCH_ID): i<=k OR membership_new[i]));

agreement says that once the compression function has reached the
cm compressed state, all correct SMs are present in the membership new vector.

window: LEMMA system |- G(compression_state=cm_compressed AND compressed_true =>
(FORALL (i:DISPATCH_ID): i<=k OR
(list_dispatch_pits[i]+k*observation_window<=time_out[COMPRESSION_FUNCTION_ID] AND
time_out[COMPRESSION_FUNCTION_ID]<=list_dispatch_pits[i]+(k+2)*observation_window)));

window says that the cm compressed pit occurs in a window of size
2*observation window.

correction: LEMMA system |- G(compression_state=cm_compressed AND compressed_true =>
(FORALL (i:DISPATCH_ID): i<=k OR
(time_out[COMPRESSION_FUNCTION_ID] - list_dispatch_pits[i] + (k+1)*observation_window

<= observation_window) OR
(list_dispatch_pits[i]+ (k+1)*observation_window-time_out[COMPRESSION_FUNCTION_ID]

<= observation_window)));

In a perfect world all sm dispatched pit would occur at the same point
in time resulting in a nominal cm compressed pit of (k+1)*observation window

later. correction says that all SMs will observe the actual cm compressed pit

with a maximum deviation of one observation window from the nominal
cm compressed pit. Hence, all correct SMs will have to correct their local clocks
for a maximum of one observation window.

Note that the window and correction properties do not account for the network
latency and jitter (as these are abstracted by the permanence function). Hence in
the real world the nominal cm compressed pit will occur max transmission delay
later than reflected in the properties above.

termination: LEMMA system |- G(compression_state/=cm_error);

The termination property says that the cm error state will never be reached.
Hence, termination ensures that eventually the cm compressed state is reached
and trivial solutions to the previous properties are excluded.

The results of our model-checking assessment are presented in Table 1, where
N is the number of SMs of which k are faulty. For each scenario we also give the
number of SMT variables and SMT assertions.
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Table 1. Verification results for the compression function properties

Property k N Verif. Time #var #assert k N Verif. Time #var #assert

agreement 1 4 1.65 sec 633 606 2 7 2.58 sec 964 955

window 1 4 1.81 sec 633 720 2 7 7.49 sec 964 1136

correction 1 4 1.80 sec 633 721 2 7 4.07 sec 964 1036

termination 1 4 1.72 sec 633 723 2 7 2.67 sec 964 1134

abstract inv 1 4 6.51 sec 633 727 2 7 2,227.38 sec 964 1036

As depicted, the main computation time is consumed in the verification of the
abstract invariant, while the verification time of the actual properties is small.
Verification runs for k = 3 have been aborted after several hours. Although,
the approach is not scalable for high k, it is sufficient for the verification of
dual fault-tolerance as required in the original TTEthernet specification. The
main reason for this computational complexity is the non-deterministic selection
construct used in the definition of the observed order array, as this results in a
quadratic number of SMT constraints. Table 2, shows the verification results for
a restricted compression function model that only models the membership part.

Table 2. Verification results for membership only

Property k N Verif. Time #var #assert k N Verif. Time #var #assert

agreement 1 4 0.97 sec 509 454 2 7 1.51 sec 766 663
agreement 3 10 2.02 sec 1023 872 4 13 2.51 sec 1280 1081
agreement 5 16 3.13 sec 1537 1290 6 19 3.57 sec 1794 1499

abstract inv 1 4 1.27 sec 509 490 2 7 2.57 sec 766 840
abstract inv 3 10 6.92 sec 1023 1113 4 13 75.35 sec 1280 1386
abstract inv 5 16 508.57 sec 1537 1659 6 19 10,056.97 sec 1794 1932

Again, we see that the main computational complexity is in the verification
of the abstract invariant. Indeed, the membership-only verification allows us to
increase the system size quite significantly from seven to nineteen SMs (with
k = 6).

5 Conclusion

In this paper, we discussed the formal verification of the TTEthernet compres-
sion function, which is essential for its application in safety-critical and mixed-
criticality systems.

We have shown how sal-inf-bmc can be applied to the formal verification of
fault-tolerant convergence functions. Though the overall number of concurrent
processes and in particular the number of faulty processes is limited, our results
are sufficient to argue dual fault tolerance as required by TTEthernet. A crucial
aspect preventing better scalability is the number of SMT constraints generated
which grows quadratically with the number of network components.
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For the verification of complex problems, SAL provides guidance in the de-
velopment of the proof by producing counterexamples. This is a practical and
powerful feature that allows systematically strengthening of the invariant.

Although the formal verification of the full-blown TTEthernet clock synchro-
nization service as a whole is outside the scope of this paper, the compression
function as a core element will be used as a basic building block in future studies.
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Abstract. Embedded networks for chip-to-chip networks are emerging
as communication infrastructure in mobile devices. We present three
novel embedded network protocols: a sliding window protocol, a pro-
tocol for opening and closing connections, and a bandwidth reservation
protocol. The design of these protocols is tailored to the low power and
low cost requirements of mobile devices. The model checker SPIN played
an important role in the design and analysis of these protocols. Large
instances of the protocols could be analyzed successfully using the dis-
tributed model checker DiVinE.

1 Introduction

For certain (e.g., mobile) applications there is too little physical space on the
chip packages to accommodate all the necessary traditionally-parallel interfaces.
Therefore, there is a shift from parallel interfaces towards high-speed serial inter-
faces. This trend is visible in, e.g., computer chips [12,16,18], FPGA chips [1,28],
and mobile device chips [23,15].

High-speed serial links, while very efficient in terms of energy per bit, have
transmission errors which need to be resolved by the protocols above. Moreover,
these links are intrinsically point-to-point, which implies that if multiple devices
need to be connected together, a network topology must be used.

The trade-offs for designing a chip-to-chip network are different from com-
puter networks [7,22], which are often designed for scalability and throughput,
or on-chip networks [4,6,13], which tend to be designed for low cost and power,
but have a much higher throughput due to wires being relatively inexpensive.
A chip-to-chip network is also designed for low cost and power. Moreover, it
must cope with relatively large latencies caused by the transmission serializa-
tion, which puts pressure on buffering, one of the most important cost factors.
Chip-to-chip interconnects are thus typically designed to offer reliable, in-order
communication at the Data Link layer. Additionally, due to the small-scale and
controlled environment, and to avoid retransmission buffers at the Transport
layer, routers do not drop data when their buffers fill up, but apply backpres-
sure instead.

In computer chip networks, the high-level protocols are memory-based and
host-centric to cope with the existing legacy [12,16,18]. In mobile devices, a

S. Kowalewski and M. Roveri (Eds.): FMICS 2010, LNCS 6371, pp. 164–179, 2010.
� Springer-Verlag Berlin Heidelberg 2010



Embedded Network Protocols for Mobile Devices 165

different approach has been taken, in which, due to the trend towards multi-host
systems, the chip-to-chip networks are emerging as flat and non-hierarchical, of-
fering services similar to those in computer networks, such as TCP-like
connection-oriented communication [8,15,21]. A connection-oriented service in-
volves the ability to open connections, which are then used to transfer data,
and close connections, such that ports can be reused by the same application to
communicate to other nodes, or by a different application. Another aspect when
designing chip-to-chip networks for mobile devices is native support for band-
width reservation to enable correctness by a composable system design [8,21].
This is similar to some approaches for on-chip networks [10,14]. However, instead
of a tightly coupled system-wide time-division-multiplexing approach, which is
less suitable in an intrinsically asynchronous network, bandwidth is assumed to
be allocated at each link. Consequently, it needs to be allocated and deallocated
as part of the connection opening and closing stages.

We report on the design and analysis of three core protocols for communi-
cation and connection management. We focus on these protocols because their
design had to be tailored to the low power and low cost requirements, and model
checking played an important role in the design process. We first present a sliding
window protocol for the Data Link layer that has been optimized for the target
domain. We then present a protocol for opening and closing connections, which
takes advantage of in-order delivery in chip-to-chip networks within mobile de-
vices. As a result, the protocol does not use sequence numbers and maximum
segment lifetime as in TCP [19]. Finally, we discuss an extension of this connec-
tion management protocol that includes in-band link-bandwidth reservations.
Due to space restrictions, we cannot explain the protocols in full detail. The
reader is referred to [9] for detailed descriptions of the protocols.

During their design, the protocols were analyzed using the SPIN model checker,
as well as with DiVinE, which distributes the workload of a verification among
multiple compute nodes. DiVinE could verify larger problems than SPIN, while
SPIN’s detailed error trails were used to find flaws in a particular design and cor-
rect them. The use of model checking was crucial in the protocol design. Notably,
through verification we learned that an extra phase is needed for the connection
management protocol, in contrast to TCP’s three-phase connection protocol. Ad-
ditionally, verification guided us in the design of an optimization of bandwidth
(de)allocation to reduce memory overhead.

The protocols were developed in the context of UniPro�, a serial high-speed
interface for interconnecting integrated circuits in mobile phones; it is bound to
become part of millions of mobile phones world-wide. It should be noted that
UniPro� is still under development, and the protocols described in this paper
will undoubtedly be adapted and extended in the near future, or be replaced by
alternative designs, to meet the requirements of the different industrial partners.

2 UniPro�

The diversity and complexity of the development of mobile phones has created
a need for standardization, which is addressed by the Mobile Industry Processor
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Fig. 1. OSI and UniPro� network layers

Interface (MIPI�). MIPI�, which is supported by an alliance of most mobile
industry companies, defines the interface standards for mobile phones features,
like audio, displays and cameras. In particular, there is a need for a general
protocol that is responsible for the communication among applications and de-
vices. This is the responsibility of the UniPro� [15] layer stack. UniPro� can
support networks of up to 128 devices (integrated circuits, camera processor,
displays, baseband, etc). It is a generic hardware- and software-friendly tech-
nology, which can support a diversity of applications. UniPro� offers low-power
modes through the physical layer underneath to minimize power consumption.
Other important requirements are low memory consumption, high speed, relia-
bility and robustness, even in the face of failures in mobile devices, message loss
and crashing applications. Inspired by the new era of multitasking, UniPro� is
ready for upcoming innovations of parallel processing on mobile devices as well.

UniPro� is largely based on the OSI Reference Model. ¿From Fig. 1, one
can observe some differences between the two models. UniPro� partitions the
physical layer in two. The lowest layer is in charge of electrical signaling, line
encoding, etc. (like the physical layer in the OSI model), while the intermediate
layer (Phy Adapter) is responsible for abstracting the different technologies and
combining them in a heterogeneous environment. The Data Link layer ensures
that there is a reliable link between two modules in one hop distance, and that a
frame can be arbitrated and multiplexed corresponding to the specified priorities.
Similar to OSI, the Network layer deals with routing and addressing packets. The
Transport layer defines the quality of a connection and is responsible for the flow
and congestion control of the network. The UniPro� model combines the three
upper layers of the OSI model – Session, Presentation and Application – into a
single one, because it is responsible for connecting the diversity of applications
and modules together rather than for implementing applications. The interface of
the Transport layer has to be simple, so that applications can be easily adapted
to it.

3 Sliding Window Protocol

Errors may occur on the links and routers may get overflowed, so messages can
get lost. As a result, a continuous flow of communication between a sender and a
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receiver (data packets and acknowledgments providing feedback that they have
been received) has to be established by dedicated protocols. Sliding window
protocols (see, e.g., [22]) offer reliable data transmission and control the flow
of messages, accommodating differences in link and processing speeds. Sliding
window variations are used at both the Data Link layer (HDLC) and in the
Transport layer (TCP) of the OSI model.

The data being transferred from a sender to a receiver is fragmented into
packets. The packets carry sequence numbers, which can be seen as a running
index into the buffered packets at the sender, with an extra bit to avoid confusion
between old and new fragments. The receiver sends as acknowledgment (ACK)
the sequence number of a received packet to the sender. It may also send a
negative acknowledgment (NAC) in case of a failure. Sliding window protocols
are typically enhanced with optimizations, e.g., to hide latency of transmission
and increase the network utilization by pipelining techniques. An example is
TCP [5], which in addition uses the maximum packet lifetime and an estimate
of the round trip time [24]. Variations of sliding window protocols have been
studied and formally verified in different ways (see, e.g., the related work section
in [2]).

There are two generic sliding window protocols in the literature [22]. One
version, called go-back-N, is that the receiver ignores all packets after an error
until it receives the correct one; the sender resends all packets that have not
been acknowledged, after a timeout. The second version, called selective repeat,
is that only failed packets are resent; the receiver informs the sender if there is
a failure and on which packet. Go-back-N wastes time, compared to selective
repeat, because the sender needs a timeout to learn about failed packets. On
the other hand, it is simpler and gives less memory overhead at the receiver.
The sliding window protocol (SWP) we developed for the Data Link layer is a
mixture of go-back-N and selective repeat. When the receiver notices a failure, as
in selective repeat, it sends NACi with i the sequence number of the last correct
packet it received. The sender thus gets to know about the failure earlier than
if it had to wait for a timeout. As in go-back-N, the receiver ignores all packets
after an error until it receives the correct one.

The sender’s flow chart is shown in Fig. 2. In general, the sender can send
up to N packets to the network, and it can only send the next one when some
of the packets that it sent are acknowledged by the receiver. It will resend a
packet only if it receives a NAC or after a timeout. The sender needs to store
any two out of three predicates, beginning, on post and current. These are the
basic variables defining the sender’s window of packets which have been sent but
not acknowledged. By maintaining two of these variables for a connection, the
sender can easily derive the third one, because beginning = current − on post .

– beginning: Indicates the first packet that was sent but not acknowledged.
– on post: Indicates the number of the packets waiting for an acknowledgment;

it can be no more than the maximum window size.
– current: Indicates the next packet that will be sent.
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Fig. 3 shows a flow chart of the receiver’s algorithm. The protocol starts
with current = 0, where current indicates the identity of the expected packet.
When the receiver receives a packet, it checks if it is the expected one; if so, it
sends back an acknowledgment ACK i, and waits for the next packet to arrive by
incrementing current. In case an unexpected or garbled packet arrives, it sends
NAC i−1 with the identity of the last correct packet which arrived in order.

The resulting protocol has the advantage of little memory overhead (the same
as go-back-N), while giving a significant recovery time gain compared to go-back-
N. For further details, the reader is referred to [9, Sect. 3].

4 Connection Management Protocol

The connection management protocol (CMP) presented here is based on the
well-known TCP connection protocol, with its three-way handshake, which works
as follows. A client initiates a connection by sending a synchronization request
(SYN) to a server. The server, if readily available, acknowledges the request.
Finally the client sends an acknowledgment back. The client repeats sending a
SYN and the server repeats sending an ACK when a timeout occurs. After re-
ception of a client’s ACK, both end nodes are connected and ready to exchange
data. If a node wants to leave, it informs the other party by sending a finaliza-
tion request (FIN), and waits for an acknowledgment. If this acknowledgment is
delayed, then after a timeout it resends the FIN. After receiving a FIN, a node
can continue to send data until it is also ready to close the connection.
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Fig. 4. Server’s state machine with its current client

To improve power and memory consumption, we make a number of adap-
tations to TCP’s connection management protocol. We aim at minimizing the
number of exchanged messages, memory overhead and completion time. Tables
that hold history information and interpretations whether a delayed message has
become obsolete are excluded. Session identification of a connection and timing
variables are kept to a minimum. Messages may be dropped due to resource
contention, if there is a shortage of buffer space or processing power. However,
the network is designed to deliver messages in order.

Part of the state machine of a server is displayed in Fig. 4 (for the interplay
of a server with a node that is not its client, see [9, Fig. 22]). The initial state is
Listen. The received messages are from its client. The states are as follows:

– Listen: The server is free to accept a new connection and is not busy with
a client. When it receives a SYN from a new client, it sends back an ACK
and proceeds to WaitSynAck.

– WaitSynAck: The server can receive an ACK or a DATA (a message con-
taining data), indicating its client received its ACK and is connected. The
server then moves to Connected. If it receives a FIN, it replies with FIN and
goes back to Listen. The FIN may indicate that the client does not want to
use the connection anymore. The server stays in the same state if it receives
another SYN or a timeout; in both cases it sends ACK to its client.

– Connected: The server is participating in a data exchange. It stays in the
same state if it receives an ACK, DATA or FIN; they are not answered. At
reception of a FIN, it sets got fin = true; (ε∗) means that the server closes
the connection. If the server already received a FIN from its client, it can
reply with FIN and move to Listen. Otherwise, it just moves to Want2Close.

– Want2Close: The server can receive an ACK in case there was a repeated
and delayed ACK from the client. Then the server stays in the same state.
When a FIN arrives, the server answers with FIN and moves to Listen.
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Fig. 5. Client’s state machine with its current server

If the server receives a FIN or (except for state Listen) SYN from a node that
is not its client, it replies with FIN or NAC, resp., and stays in the same state.

Fig. 5 shows a client’s interaction with its server (for the interplay of a client
with a node that is not its server, see [9, Fig. 24]). The initial state is Closed.

– Closed: The client chooses a server and tries to connect to it by sending SYN
and moving to WaitSynAck.

– WaitSynAck: The client expects to receive an ACK, which it answers with
ACK. It may receive a NAC, indicating the server is busy. It is important that
in this case, the client replies with FIN and moves to WaitFinAck (this will
be explained in detail below). SYN is replayed after a timeout. If the client
receives a FIN, this means the server replied to a FIN of an old connection.

– Connected: The client can receive another ACK, after which it sends ACK
back to its server. As this is the state where data exchange is done, the client
generally receives some DATA too. When it does not want to send more data,
it informs the server with a FIN and moves to WaitFinAck. Notice that the
client should not receive any FIN from its server before it sends its own FIN.

– WaitFinAck: The client waits for a FIN, after which it goes to Closed. Apart
from a successful request (through Connected), the client also reaches this
state after it receives a NAC. That means it can receive multiple ACKs and
NACs before it gets a FIN from the server.

In every state a FIN can arrive, as a delayed repeated message from a server of
an old connection. The client ignores such messages.

We explain why the client should send FIN after the server answers with
NAC to a SYN. The other option would be that the client simply stops trying
to connect and moves to Closed. The server is not affected, as at the moment it
answered to the SYN, it was busy with another client and it did not initiate any
new connection. This is a fast and simple way to close the connection. However,
by means of the model checker SPIN, we found a flaw in this idea, depicted by
the scenario in Fig. 6. The client sends two SYNs to the server. While receiving
the first one, the server is busy with another client, and thus answers with NAC.
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Fig. 6. An example where the client closes immediately after a server’s NAC without
going through WaitFinAck

By the second SYN, the server is ready to set up a new connection and replies
with ACK. Then it moves to WaitSynAck, where a timeout occurs, and as a
result it replays ACK. In the meantime, the client has received a NAC and has
moved to the Closed state. As a result, the client may follow up connecting
to another server. Consequently, when the client receives teh first ACK from
the first server, it responds with NAC. As a result, the server moves to Listen
(in the correct version of the protocol this NAC to the server cannot happen,
therefore it is not considered in Fig. 4). The client decides to reconnect to the
server, and receives an ACK from it. However, the received ACK is from the
first connection attempt, and the server is not aware of this new connection,
because the corresponding SYN was lost, due to resource contention. The client
incorrectly assumes it has a connection, and starts sending data to the server.

If we can distinguish SYN messages from different sessions (replayed SYNs are
considered to be in the same session), the problem is solved. A trivial solution
is to keep track of the last session of all servers at the client side and all clients
at the server side. This solution, however, does not scale. Trying to keep track
of all different sessions with only one extra bit is not possible, because servers
and clients can connect to each other multiple times.

By asking the client to close the connection via WaitFinAck, we prevent it
from connecting to another server until it receives the server’s FIN. The main
idea is that the client can only move to the next session when it is certain it
will not receive any more ACKs and NACs from the server for this session.
Once the server sends ACK, it moves to WaitSynAck, and after that, it can
only send ACKs after a timeout, until it gets an answer from the client. Hence
the client receives at least one of the NACs or ACKs before it goes to the next
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session. Once it receives an ACK, it can only receive ACKs until it moves to
the next session. If none of the NACs arrive at the client, it sends SYNs until it
gets an ACK, and then moves to Connected. If a NAC arrives at the client, it
answers ACKs and NACs with a FIN, until it gets a FIN from the server, and
then it moves to Closed. Thus we make sure that both ends absorb all the SYNs,
ACKs and NACs for this session before moving to the next session.

We have simplified the closing of connections by enforcing that the client is
always the first to send a FIN to the server. The server thus always closes before
the client. In addition, the client is the one who requests a new connection.
Therefore, there is no way to mix one session with another. One could claim
that having the client always close first is a limitation of the protocol. This can
be hidden, however, as we could give the server (in Want2Close) the option to
piggyback a flag that it wants to close the connection.

5 Router Management Protocol

We now turn to the router management protocol (RMP) for congestion avoid-
ance, on top of CMP. The protocol is able to avoid overloading paths in the
network by making explicit bandwidth allocations at the routers for every seg-
ment of the path. First we sketch how it works when the bandwidth allocation
succeeds; see Fig. 7 for an illustration of this procedure. The client starts by
sending SYN to the server. To this message it attaches the bandwidth (bw1)
that needs to be reserved. Routers do not make a reservation on receiving this
SYN, but just forward it to the next router or the server. The server sends an
ACK with an aggregate value (bw1+bw2) of the client’s and its own bandwidth.

A router, when receiving an ACK from server to client, first searches if the
triple (client, server, bandwidth) already exists in its memory. If not, and if the
router has sufficient remaining bandwidth, it creates a triple with bandwidth
bw1 + bw2, which reserves this bandwidth to the connection. The connection
is established by the subsequent ACK from client to server, and then data can
be exchanged. The routers wait until they receive a FIN from the server to the
client, indicating the end of the connection on both sides. Then the router checks
if a corresponding triple exists in memory. If so, it reclaims the bandwidth for
this connection and removes the triple from memory.

Suppose a router, when receiving an ACK from server to client, finds it has
insufficient remaining bandwidth. As illustrated in Fig. 8, the router then sends
ERR in the client’s direction without storing the triple. If this ERR gets lost,
the client replays SYN or the server replays ACK after a timeout, invoking
another ERR at the router. When the client finally receives the ERR, it closes
the connection exactly as when it receives a NAC (by sending a FIN and waiting
for the server’s FIN). When a second ACK arrives at the router, the router may
in the meantime have freed adequate bandwidth to serve the connection. Then
the connection can still get established, if the ERR never arrived at the client.

When a connection is being closed, routers must be able to distinguish the
first FIN received from a client and repeated FINs for closing this same connec-
tion. Otherwise routers could reclaim bandwidth for the same closing connection
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multiple times. An easy solution is to let routers store triples (client, server,
bandwidth) until the end of a connection. However, since there can be hundreds
of active connections, this imposes a relatively heavy memory load. Therefore,
in the final version of the protocol we introduced an optimization in which such
triples are only kept in the routers’ memory while setting up and closing the
corresponding connection, and not during data exchange.

When a router receives an ACK from client to server, it looks if there is
a corresponding triple in its memory, and if so, removes this triple. On the
other hand, when a client closes a connection, it attaches the bandwidth of this
connection to FIN, so that routers can restore the triple. To remove this triple
from the routers’ memory again, we add an extra message at the very end of
CMP. After a client has received a FIN from its server, finalizing the closure of
the connection, it sends one extra message back, to inform intermediate routers
that they can remove the corresponding triple.

6 Model Checking Analysis

We applied the model checker SPIN [11] during the design of the SWP, CMP
and RMP protocols. SPIN is widely used to analyze real-life communication
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protocols. The tool can discover potential deadlocks, livelocks or invalid states.
In addition, properties written in LTL (Linear Time Logic) can be checked.

SPIN has a wide range of analysis options, e.g., live simulation, and full scale
or approximate state space analysis. An important characteristic of SPIN specifi-
cations are the dimensions of the various model state variables. These maximum
dimensions need to be chosen carefully, or the corresponding state space will
very quickly grow such that full scale analysis is no longer feasible.

To reduce the relevant state space to a managable size, a wide range of tech-
niques is reported on in the literature [20], but applying them successfully may
require significant expertise and often some amount of experimentation while
“tuning” the model. As a result, memory requirements are frequently the bot-
tleneck in being able to analyze larger protocol instances. It can thus be beneficial
to employ analysis tools using a large distributed memory, provided that both
data and computation can be distributed effectively.

A prominent example in the category of distributed LTL model checkers is
the DiVinE [3] system. As shown in [25], the DiVinE model checker has good
scalability on clusters with a fast interconnect, but can also be applied success-
fully in a high-bandwidth computational grid environment. Unlike sequential
model checkers, which typically use depth-first search, DiVinE uses breadth-
first search (which parallellizes well) and employs a hashing function to evenly
spread the state space and work load over the compute nodes. To facilitate LTL
model checking, which requires a cycle detection algorithm, DiVinE implements
various distributed algorithms. In this paper we used the “OWCTY” algorithm,
which is based on a distributed version of Topological Sort.

DiVinE supports both a native modeling language “DVE” and codes writ-
ten in SPIN’s modeling language Promela. Promela specifications are handled by
DiVinE using the embedded “NIPS” module. NIPS is a complete reimplementa-
tion of the original SPIN tool, by means of a specially developed model-checking
virtual machine [27]. An interesting aspect of this SPIN reimplementation effort
is that the resulting model checking byte code can be optimized off-line by ad-
ditional tools, which can significantly reduce the resulting state space. Practical
examples of these reductions will be discussed below. Instead of using Promela,
the protocols discussed might also have been modeled in DVE, giving an addi-
tional performance gain. However, for pragmatic reasons we chose Promela.

We ran DiVinE on 64 compute nodes of the DAS-3 cluster (www.cs.vu.nl/
das3/) at VU University. The 2.4 GHz AMD Opteron-based nodes are intercon-
nected by a fast Myri-10G network, and have 4 Gigabyte of memory each.

6.1 Model Checking SWP

For SWP, we checked a number of LTL properties that together assert the re-
quired behavior of the protocol, i.e., it should eventually deliver all messages,
in order, without duplication, despite possibly loosing packets. In particular, we
looked at the following LTL properties:
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Table 1. States in the SWP LTL=1 for SPIN and DiVinE/NIPS

Window SPIN states DiVinE/NIPS states
PR/DVR/SCR PR DVR SCR Base

2 1.38 ∗ 105 1.00 ∗ 105 1.56 ∗ 105 1.47 ∗ 106 1.75 ∗ 106 1.75 ∗ 106

3 3.19 ∗ 106 2.00 ∗ 106 3.62 ∗ 106 3.55 ∗ 107 4.44 ∗ 107 4.44 ∗ 107

4 5.11 ∗ 107 2.95 ∗ 107 5.78 ∗ 107 5.82 ∗ 108 7.43 ∗ 108 7.43 ∗ 108

– LTL 1: no message is duplicated
– LTL 2: messages are not reordered
– LTL 3: every data message sent is eventually received

We also included LTL 4, which is a combination of LTL 2 and 3, and LTL 5,
which is an alternative formulation of LTL 3. We will focus on LTL 1 and 5,
being representative for the model checking effort required (e.g., the size of the
resulting state space). For the formulation of these properties, see [9].

With sequential SPIN, we could indeed check all properties. However,
the state space growth when gradually increasing the maximum window size (the
most important model parameter) was considerable. As illustrated in Table 1,
the growth rate is over an order of magnitude for every increment of the window
size. As a result, analyzing the properties for a window size of 4 is already be-
coming difficult, as the state space exceeds available memory (we determined the
largest state space on a special DAS-3 node equipped with more memory than
the 4 GByte available by default). By enabling SPIN’s state compression meth-
ods, the state space capacity can be extended, but the most efficient compression
technique comes at a significant runtime cost – potentially further increasing the
high runtime by a factor of ten of more. It is worth mentioning that the SWP
specification discussed is already optimized using most well-known SPIN state
space reduction techniques available; unoptimized initial versions of the SWP
specification could in fact only be analyzed up to a window size of 2. On the
other hand, a full-scale analysis for a window size of 4 appears reasonable, given
the target setting.

Table 1 also shows the sizes of the state spaces using the SPIN support in
DiVinE. The unoptimized NIPS bytecode (the “Base” version in the table)
induces a much larger state space than SPIN. However, successive bytecode
optimizations by means of the SARN [17] toolset reduce the effective state space
to somewhat below the state space reported by SPIN with its default partial
order optimization enabled. The SARN tools applied are Path Reduction (PR),
Dead Variable Reduction (DVR) and Step Confluence Reduction (SCR). PR
appears to be the optimization with the largest impact, since it most effectively
reduces the number of synchronization points in the model checking byte code.

Fig. 9 shows the effects of state space reduction on the DiVinE running time.
Note that the figure is log-log scaled to account for the wide range in state
spaces (due to static optimization discussed above) and parallel running times.
The figure indicates that DiVinE is able to achieve almost linear speedup up to
32 compute nodes, and for the larger problem sizes up to 64 compute nodes. A
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Table 2. SPIN and DiVinE SWP run times in sec. for large instances (note that state
space volumes are not identical)

Problem Instance SPIN DiVinE DiVinE DiVinE DiVinE
1 node 1 node 4 nodes 16 nodes 64 nodes

SWP max=4,ltl=1 8.8 24.9 7.3 2.1 1.5

max=4,ltl=5 18.2 40.6 11.9 3.3 1.7

max=5,ltl=1 158 448 122 29.5 8.1

max=5,ltl=5 324 819 214 49.9 12.8

similar pattern can be seen in Fig. 10, where the state space variation is induced
by scalings in the maximum window size (and the LTL formula). Finally, Table 2
shows the running times of SPIN and DiVinE, the latter on 1, 4, 16 and 64 nodes.

6.2 Model Checking CMP

For the analysis of CMP, the state machines for the client and server shown
in Sect. 4 were transformed into Promela code. Assertions were added regard-
ing messages that should be impossible to be received in particular states. The
protocol was instantiated with a configuration of two clients making a sequence
of arbitrary connections to two servers. For the initial analysis we used SPIN
in default mode, i.e., checking for possible deadlocks, unreachable code, invalid
end states and assertions. As explained in Sect. 4, this SPIN analysis led to the
detection of a flaw in our original CMP, where the server answered with NAC
to a SYN. The rest of this section discusses the analysis of the corrected CMP.

As an additional CMP model parameter we varied the capacity of the channels
between the client and server processes. Asynchronous communication with the
channel size set to one found no errors, but detected some unreachable code,
which indicates that some valid scenarios may not have been analyzed with a
channel size this small. Parallel performance of the DiVinE analysis of CMP
using channel capacity between two and five is shown in Fig. 11.
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Table 3. SPIN and DiVinE run times for CMP and RMP in sec. for large instances
(note that state space volumes are not identical)

Problem Instance SPIN DiVinE DiVinE DiVinE DiVinE
1 node 1 node 4 nodes 16 nodes 64 nodes

CMP cap=2 103 5.7 2.0 0.9 1.0

cap=3 N/A 47.3 14.1 4.1 1.9

cap=4 N/A 291.7 78.1 20.1 5.7

RMP cap=1 18.4 18.5 5.6 1.7 1.2

cap=2 1470 N/A N/A 116.2 30.6

Table 3 compares the running times of SPIN and DiVinE. The entries marked
N/A could not be completed due to memory shortage. The state space corre-
sponding to the CMP protocol is again very effectively reduced by the SARN
toolset, in particular by its Step Confluence Reduction (SCR) tool. By merg-
ing equivalent sets of states based on program location, SCR here reduces the
state space almost by a factor of 60, allowing DiVinE with NIPS and SARN to
outperform SPIN even on a single compute node, which is rather uncommon.

6.3 Model Checking RMP

For the analysis of RMP, the model of CMP was extended with explicit routing
nodes between a client and server. A fixed configuration of three routing nodes
was used to represent arbitrary setups involving an initial, intermediate, and final
routers. State regarding remaining bandwidth described by the (client, server,
bandwidth) triples was modeled for every router explicitly, and referred to in
assertions for particular states. We used an LTL expression to verify that the
router bandwidth allocation does not exceed capacity (no duplicated bandwidth
allocation) and does not become negative (no duplicated bandwidth releases).
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Parallel performance of a DiVinE analysis of RMP is shown in Fig. 12. As
the figure shows, RMP displays quite extreme effects on the state space when
the model parameter for the channel capacity is scaled up, making a distributed
analysis with DiVinE attractive.

7 Conclusions

In this paper we discussed the design of three embedded networking protocols
that were tailored to the specific resource requirements of novel mobile devices.
We investigated a sliding window protocol, a protocol for connection establish-
ment and a related bandwidth reservation protocol. In designing the protocols,
the SPIN model checking tool was very helpful in preventing errors in the proto-
col descriptions at a very early stage. This should be contrasted with scenarios
where a design is already mostly pinned down or an actual implementation ex-
ists, which first has to be reformulated back into a different modeling language.

In the models we checked deadlock freeness, various assertions on states, as
well as more general properties formulated in LTL. As the protocol designs be-
came more mature, the checking of larger model instances was attempted. The
state space explosion phenomenon forced us to apply a range of SPIN model “op-
timization” techniques to significantly reduce the effective protocol state space.
Unfortunately, this forces a modeler to focus on low-level SPIN implementation
aspects which are mostly irrelevant to the abstract model as such.

Despite extensive state space reductions achieved on the models, several re-
alistic instances still were infeasible for analysis with SPIN, due to the limited
memory capacity. These larger instances were then checked with the distributed
DiVinE tool, which also supports SPIN specifications. This should be weighed
against the limited support for error tracing in the SPIN version of DiVinE;
for effective work with Promela specifications, use of SPIN itself is currently
indispensible. Though DiVinE sequentially runs slower than the highly opti-
mized SPIN tool, given a fast cluster network it exhibits excellent scalability on
large problems, making it a useful option for cluster environments with a large
distributed memory capacity.

An additional advantage of large-scale distributed model checking is that it
can make an approach where model checking is applied to the target application
language (e.g., as in Java PathFinder [26]) able to efficiently deal with realistic
instances, despite the larger state space.
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Abstract. Mutual exclusion protocols are an essential building block
of concurrent systems: indeed, such a protocol is required whenever a
shared resource has to be protected against concurrent non-atomic ac-
cesses. Hence, many variants of mutual exclusion protocols exist in the
shared-memory setting, such as Peterson’s or Dekker’s well-known pro-
tocols. Although the functional correctness of these protocols has been
studied extensively, relatively little attention has been paid to their non-
functional aspects, such as their performance in the long run. In this
paper, we report on experiments with the performance evaluation of mu-
tual exclusion protocols using Interactive Markov Chains. Steady-state
analysis provides an additional criterion for comparing protocols, which
complements the verification of their functional properties. We also care-
fully re-examined the functional properties, whose accurate formulation
as temporal logic formulas in the action-based setting turns out to be
quite involved.

1 Introduction

Mutual exclusion is a long-standing problem in concurrent programming, formu-
lated initially by Dijkstra almost half a century ago [10]. It consists in controlling
the access of concurrent processes to a shared resource such that at most one
process can use the resource at a time and that the execution of the system
is guaranteed to progress. In the shared-memory setting, in which processes
communicate by atomic read and write operations on shared variables, a large
number of protocols implementing mutual exclusion were proposed and studied
in the literature (see, e.g., the surveys in [37,2,42]). Most of the effort has been
concentrated on analyzing the functional correctness of these protocols, either
by hand-written proofs [10,26,5,35,27,40,2,41] or by applying automated rea-
soning and model checking techniques [29,24,9,4]. However, much less attention
has been given to the model-based performance evaluation of these protocols,
most of the existing works dealing with performance measurements of protocol
implementations on specific architectures [43,45].

In this paper, we show how Interactive Markov Chains (Imc) [19] and their
implementation in the Cadp verification toolbox [17] can be applied to the
performance analysis of shared-memory mutual exclusion protocols. We assume
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that only the mean values of actual durations are known, which can be modeled
conveniently using exponentially distributed durations in the Imc setting. If
more concrete duration information is available, this can be encoded using Imcs
by means of phase-type distributions [21], which can be employed as precise
approximations of arbitrary (discrete or continuous) probability distributions.

As high-level specification language for Imcs, we use Lotos NT [6,18], a
process-algebraic language with imperative flavor accepted as input by Cadp.
We study the stochastic behavior of these protocols in the long run by further
transforming the Imcs generated from Lotos NT specifications into continuous-
time Markov chains (in which nondeterminism is solved by a uniform scheduler)
and analyzing them using the Bcg Steady [20] tool of Cadp, which computes
the throughputs of various actions at steady-state. This allows to compare the
performance of various protocols and to study the impact of certain parameters
(e.g., relative speed of processes, fraction of time taken by critical sections, etc.)
on the performance of the system and/or of individual processes. Another useful
measure that can be obtained from steady-state analysis is the mean number of
accesses to shared variables performed by each process [7]. For cache-coherent,
distributed shared memory architectures, this enables to enhance the locality of
a mutual exclusion protocol by making each shared variable local to the process
that accesses it most often.

One advantage of Imcs is that the same specification of a protocol can be
used for both performance evaluation and functional verification [15]. Although
mutual exclusion protocols serve traditionally as basic examples to illustrate the
use of model checkers, it is not obvious to find an accurate description of their
correctness properties in the action-based setting. We revisit these properties and
specify them concisely using Mcl [32], an extension of alternation-free modal
μ-calculus with data-handling constructs and fairness operators accepted as in-
put by the Evaluator 4.0 on-the-fly model checker. We observe that certain
important properties are of linear-time nature, requiring formulas of Lμ2 (the
μ-calculus of alternation depth two) [12] or Actl

∗ [34]. Using Mcl formulas
parameterized by data values, we apply model checking also to determine some
non-functional parameters of the protocols, such as the degree of overtaking be-
tween processes. The results of model checking (e.g., about the starvation of
certain processes) are corroborated by the results of performance evaluation.

The paper is organized as follows. Section 2 defines the terminology, shows the
encoding of mutual exclusion protocols using Lotos NT and how the stochastic
aspects are incorporated to yield Imc models. Section 3 presents the analysis of
the protocols by means of model checking and performance evaluation. Finally,
Section 4 gives some concluding remarks and directions for future work.

2 Background

After recalling the mutual exclusion problem in the shared-memory setting, we
present in this section the modeling of the behavioral and stochastic aspects of
mutual exclusion protocols using Lotos NT.
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2.1 Shared-Memory Mutual Exclusion Protocols

We briefly present here the mutual exclusion problem in the shared-memory
setting as formulated in [2]. Concurrent processes communicate and synchro-
nize only by means of atomic read/write operations on shared variables. Each
process consists of four parts of code, executed cyclically in the following order:
non-critical section, entry section, critical section, and exit section. The shared
resource can be accessed only in the critical section, and the shared variables can
be accessed only in the entry and exit sections. Processes are allowed to stop in
their non-critical section but must leave their critical section in a finite amount
of time. The entry and exit sections must manipulate the shared variables in
such a way that at most one process at a time is in its critical section and the
execution of processes is guaranteed to progress (see Sec. 3.1 for a more precise
formulation of these properties). For simplicity, we consider in this study shared-
memory protocols involving only two processes; as pointed out in [3], any mutual
exclusion protocol for two processes can be generalized to n ≥ 2 processes.

2.2 Modeling Mutual Exclusion Protocols Using LOTOS NT

We specified the mutual exclusion protocols formally using Lotos NT [6,18],
a variant of the E-Lotos [23] standard implemented within Cadp. Lotos NT

tries to combine the best of process-algebraic languages and imperative
programming languages: a user-friendly syntax, common to data types and pro-
cesses; constructed type definitions and pattern-matching; and imperative state-
ments (assignments, conditionals, loops, etc.). Lotos NT is supported by the
Lnt.Open tool, which translates Lotos NT specifications into labeled transi-
tion systems (Ltss) suitable for on-the-fly verification using Cadp.

Figure 1 shows the Lotos NT specification of the protocol proposed by Burns
& Lynch [5], instantiated for two processes. This protocol uses two shared bits,
which we represent as the cells A[0] and A[1] of a two-bit array, in the same
way as [3]. The original pseudo-code of the protocol (see Fig. 1(a)) contains
conditional jump statements, which are translated in Lotos NT using “break”
statements (see Fig. 1(b)). The non-critical and critical sections are modeled
using the (non-synchronized) actions NCS and CS. The read/write operations
on a shared variables are modeled as rendezvous synchronizations on gate A
with a process Var, which models a cell of the two-bit array (see Fig. 1(d)).
Note that process Var is parameterized by a natural number instead of merely a
boolean value; this will allow Var to be reused also for other protocols involving
shared natural numbers.

As in Lotos, emission and reception of values on a gate can take place simul-
taneously, as in the action “A (Read, 0, ?a0, j)” (where the values Read, 0, and
j are emitted and a value is received in variable a0), except that the variables
holding the received values must be previously declared using a “var” statement.
Unlike Lotos, gates are typed in Lotos NT: in process P, the types Pid, Ac-
cess, and Operation denote the communication profiles (i.e., number and types
of the exchanged values) of gates NCS, CS, and A, respectively. To facilitate the
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loop
non-critical section;

L0: A[j] := 0;
if j = 1 and A[0] = 1 then
goto L0

end if;
A[j] := 1;
if j = 1 and A[0] = 1 then
goto L0

end if;
L1: if j = 0 and A[1] = 1 then

goto L1

end if;
critical section;
A[j] := 0

end loop (a)

par A, CS, NCS in
par A in
par

P [NCS, CS, A] (0)
||

P [NCS, CS, A] (1)
end par
||

par
Var [A] (0,0) || Var [A] (1,0)

end par
end par
||

L [A, CS, NCS, MU]
end par (c)

process P [NCS:Pid, CS:Access,
A:Operation] (j:Nat) is

loop var a0, a1:Nat in
NCS (j);
loop L in

A (Write, j, 0, j);
A (Read, 0, ?a0, j);
if j == 0 or a0 == 0 then
A (Write, j, 1, j);
A (Read, 0, ?a0, j);
if j == 0 or a0 == 0 then
break L

end if
end if

end loop;
A (Read, 1, ?a1, j);
while j == 0 and a1 == 1 loop

A (Read, 1, ?a1, j)
end loop;
CS (Enter, j); CS (Leave, j);
A (Write, j, 0, j)

end var end loop
end process (b)

process Var [A:Operation] (ind, val:Nat) is
loop
select

A (Read, ind, val, ?any Nat)
[]

A (Write, ind, ?val, ?any Nat)
end select

end loop
end process (d)

process L [A:Operation, CS:Access, NCS:Pid, MU:Latency] is
loop var ind, pid:Nat in select

A (Read, ?ind, ?any Nat, ?pid); MU (Read, ind, pid)
[]

A (Write, ?ind, ?any Nat, ?pid); MU (Write, ind, pid)
[] ...
CS (Enter, ?pid); MU (Enter, pid)
[]

NCS (?pid); MU (Work, pid)
end select end var end loop

end process (e)

Fig. 1. Burns & Lynch protocol [5] for two processes: (a) Unstructured pseudo-code of
process Pj (j ∈ {0, 1}); (b) Lotos NT code of process Pj ; (c) Lotos NT code of the
systems’ architecture; (d) Lotos NT code of the cell A[ind ] of the shared array; (e)
Lotos NT code of the auxiliary process L for inserting Markov delays.
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specification of temporal properties (see Sec. 3.1), the critical section is split in
two actions and each read/write operation carries the identifier of the underly-
ing process. The Lotos NT specification of process Pj follows very closely the
pseudo-code of the protocol, but makes explicit all read operations on shared
variables before each evaluation of an expression containing these variables. The
architecture of the system (see Fig. 1(c)) shows the interconnection of processes
and shared variables. For all protocols considered, all shared variables are ini-
tialized to 0. The additional process L (see Fig. 1(d)) serves to insert Markov
delays at appropriate places in the model (see Sec. 2.3).

We specified 23 mutual exclusion protocols in Lotos NT following the
scheme shown in Figure 1: Burns & Lynch [5], Craig and Landin & Hagersten
(Clh) [8,28], Dekker [11], Dijkstra [10], Peterson [35], Knuth [26], Lamport [27],
Kessels [25], Mellor-Crummey & Scott (Mcs) [33], Szymanski [40], the black-
white bakery protocol of [41], and twelve protocols generated automatically in [3].
Additionally, we also specified a trivial (incorrect) one-bit protocol for bench-
marking purposes. The total size of the specifications (including comments, and
after factoring common datatypes and processes in separate modules as much
as possible) is about 2850 lines of Lotos NT.

2.3 Transformation to Interactive Markov Chains

The Lotos NT specification of each protocol is transformed into an Interactive
Markov Chain (Imc) by adding Markov delays in a constraint-oriented style [15].
Precisely, we add a concurrent process L to the system consisting of the two pro-
cesses and the shared variables. A skeleton of process L is shown in Figure 1(e).

Because process L is synchronized on all actions A, CS, and NCS, L enforces
that each of these actions is followed by a MU action, which can be renamed into a
stochastic transition once the Lts corresponding to the Lotos NT specification
has been generated. The parameters of action MU allow to distinguish, for each
process, between a read access, a write access, a stay in the critical section, and
a stay in the non-critical section. We exploit these parameters to experiment
with different rates for all of these actions.

Unfortunately, although each process taken separately is deterministic and
never blocks (but rather enters a busy-wait loop), the obtained Imcs contain
nondeterministic choices whenever two concurrent read/write accesses to shared
variables are possible in the same state. To resolve this nondeterminism, we
assume the presence of a uniform scheduler, which chooses equiprobably one of
the two actions (see Sec. 3.2 for details). This assumption is based on the fact
that an uniform scheduler provides the best choice (in the sense of maximising
entropy [38]) when no additional information is available about the choice of
actions performed by the physical system. A more general solution, inspired
by a technique used in the context of Markov decision processes [36], would
be to consider all possible schedulers to identify the interval (minimum and
maximum) of possible throughput values at steady state (an effective procedure
for this analysis in the Imc setting was proposed very recently [44], but is not
yet available as an implementation).
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3 Analysis of Mutual Exclusion Protocols Using CADP

This section is devoted to the automated analysis of the mutual exclusion proto-
cols using the Cadp toolbox [17]. The protocols were analyzed by model check-
ing and performance evaluation, both kinds of analysis being automated using
Svl [16] scripts.

3.1 Model Checking

We expressed the correctness properties of the mutual exclusion protocols
as formulas in the Mcl language [32], which extends the alternation-free μ-
calculus [12] with regular expressions over transition sequences similar to those
of Pdl [13], data-handling constructs inspired from functional programming
languages, and a (generalization of) the infinite looping operator of Pdl-Δ [39].
Mcl allows a concise formulation of temporal properties, especially when these
properties are parameterized by data values, such as the index of processes in
mutual exclusion protocols. The Evaluator 4.0 model checker [32], built us-
ing the Open/Cæsar [14] graph exploration environment of Cadp, implements
an efficient on-the-fly model checking procedure for Mcl, by translating Mcl

formulas into boolean equation systems and solving them on-the-fly using the al-
gorithms of the Cæsar Solve library [31]. The model checker also exhibits full
diagnostics (examples and counterexamples) as subgraphs of the Lts illustrating
the truth value of Mcl formulas.

Mcl is roughly built from three kinds of formulas. First, action formulas A
characterize actions (transition labels) of the Lts, which contain a gate name G
followed by a list of values v1, ..., vn exchanged during the rendezvous on G. An
action formula is built from action patterns and the usual boolean connectors.
An action pattern of the form “{G ?x:T !e where b(x)}” matches every action
of the form “G v1 v2” where v1 is a value of type T that is assigned to vari-
able x, v2 is the value obtained by evaluating the expression e, and the boolean
expression b(v1) evaluates to true. Arbitrary combinations of value matchings
(“!e”) and value extractions (“?x:T ”) are allowed, all variables assigned by value
extraction being exported to the enclosing formula. Second, regular formulas
R characterize sequences of transitions in the Lts. A regular formula is built
from action formulas and (extended) regular expression operators: concatena-
tion (“R1.R2”), choice (“R1|R2”), unbounded iterations (“R∗” and “R+”), and
iterations bounded by counters (“R{n}”). Third, state formulas F characterize
states of the Lts by specifying (finite or infinite) tree-like patterns going out
from these states. A state formula is built from boolean connectors, possibility
(“<R>F”) and necessity (“[R]F”) modalities containing regular formulas, mini-
mal (“mu X.F”) and maximal (“nu X.F”) fixed point operators, quantifiers over
finite domains (“exists x:T.F” and “forall x:T.F”), and the infinite looping oper-
ator (“<R>@”). An informal explanation of the semantics of Mcl state formulas
will be given by means of the examples below.

Mutual exclusion. This essential safety property of mutual exclusion protocols
states that two processes can never execute simultaneously their critical section
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code. It can be expressed in Mcl by a single box modality containing a regular
formula that characterizes the undesirable sequences:

[ true* . { CS !”ENTER” ?j:Nat } . (not { CS !”LEAVE” !j })* .
{ CS !”ENTER” ?k:Nat where k <> j }

] false

This modality forbids the existence of sequences containing the entry of a process
j in the critical section followed by the entry of another process k �= j in the
critical section before process j has left its critical section. Note how the process
index j is extracted from a transition label by the first action predicate “{ CS
!”ENTER” ?j:Nat }” and is used subsequently in the formula.

Livelock freedom. This liveness property1 states that each time a process is in
its entry section, then some process will eventually execute its critical section.
A direct formulation of this property in Mcl yields the formula below:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] mu X . (< true > true and [ not { CS !”ENTER” ?any } ] X)

The minimal fixed point formula binding the X variable expresses the inevitable
execution of some critical section after process Pj executed the first read or write
operation of its entry section. However, this formula is violated by all the pro-
tocols considered, because each time some process decides to stop its execution
(an unrealistic hypothesis if we assume a fair scheduling of processes by the un-
derlying operating system) the other process can spin forever on reading shared
variables. Figure 2(b) illustrates the counterexample of this formula exhibited
by Evaluator 4.0 for Peterson’s protocol. This protocol uses three shared vari-
ables, two of which being encoded as array cells A[0], A[1] and the third one by
a separate variable B. The lasso-shaped diagnostic in Figure 2(b) shows that
after process P1 has executed its entry section and is ready to enter the critical
section (because variable B has value 0) but does not do so, process P0 may spin
forever in the while loop of its entry section.

In fact, a livelock situation occurs when both processes are executing cyclically
at least one operation but none of them is able to progress towards its critical
section. Therefore, an accurate formulation of livelock freedom in Mcl must
forbid the existence of such cycles:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] not < (not { CS ... })* . { ?G:String ... ?k:Nat where G <> ”CS” } .
(not { CS ... })* . { ?G:String ... !1 - k where G <> ”CS” }

> @

1 Although some authors [3] use the term deadlock for this property, we prefer the term
livelock used in [2]. Indeed, in the shared-memory setting involving only atomic read
and write operations, the behavior of the system cannot contain deadlocks (i.e., sink
states in the Lts), since each process can at any time execute some instruction.
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loop
non-critical section;
A[j] := 1;
B := k;
while A[k] = 1

and B = k do
end while;
critical section;
A[j]:= 0

end loop (a)

8 4 0

9 5 1

6 2

7 3

A !READ !1 !1 !0 B !READ !0 !1
NCS !1

B !READ !1 !0 NCS !0 A !WRITE !1 !1 !1
A !WRITE !0 !1 !0 B !WRITE !0 !1

B !WRITE !1 !0 A !READ !0 !0 !1

(b)

01 2

3 4

5 6

7 8

9 10

11 1213 14

15 16

B !READ !1 !0

NCS !0 NCS !1
A !WRITE !0 !1 !0 A !WRITE !1 !1 !1

NCS !1 NCS !0

A !WRITE !1 !1 !1 A !WRITE !0 !1 !0

B !WRITE !0 !1 B !WRITE !1 !0

A !READ !0 !1 !1 A !READ !1 !1 !0          

B !READ !0 !1 B !READ !1 !0A !READ !0 !1 !1 A !READ !1 !1 !0

B !READ !0 !1

(c)

Fig. 2. (a) Peterson’s protocol for process Pj (k = 1 − j); (b) Livelock produced by
spinning of process P0 when process P1 “has decided to stop”; (c) Livelocks produced
after P0 or P1 crashed while executing their entry sections.

The < ... > @ operator, which is the Mcl counterpart of the infinite looping
operator of Pdl-Δ, expresses the existence of an infinite sequence consisting
of the concatenation of subsequences satisfying a regular formula. Note that
the formula above, when translated to plain modal μ-calculus, belongs to the
fragment Lμ2 of alternation depth two [12], because the regular formula inside
the infinite looping operator (which denotes a maximal fixed point) contains
star operators (which denote minimal fixed points). Nevertheless, this formula
is evaluated in linear-time by the algorithm proposed in [32], which generalizes
the detection of accepting cycles in Büchi automata.

We can also observe that (a state-based version of) this formula cannot be
specified in Ltl [30], because it expresses the existence of sequences (denoted by
the < ... > @ operator) starting from various states of the Lts (the states at the
end of the subsequences captured by the [...] modality) and not only from the
initial state of the Lts. However, as it was pointed out in [3], livelock freedom
can be expressed just by forbidding the existence of unfair cycles (assuming that
the initial state of the Lts can be reached from any other state, which holds for
all protocols considered here). Therefore, the box modality can be dropped and
the resulting formula can be expressed in Ltl.

Starvation freedom. The absence of livelocks guarantees the global progress
of the system, but does not ensure the access of individual processes to their
critical sections. Starvation freedom is a stronger property (it implies livelock
freedom), which states that each time a process is in its entry section, then that
process will eventually execute its critical section. It can be expressed in Mcl

as follows:

[ true* . { NCS ?j:Nat } . (not { ?any ?”READ”|”WRITE” ... !j })* .
{ ?any ?”READ”|”WRITE” ... !j }

] not < (not { CS ... !j })* . { ?G:String ... ?k:Nat where G <> ”CS” or k <> j } .
(not { CS ... !j })* . { ?G:String ... !1-k where G <> ”CS” or 1-k <> j }

> @
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The < ... > @ operator describes a cycle containing at least one action performed
by each process, but no entry of process Pj in its critical section. The formula
belongs to Lμ2, but (a state-based version of) it can also be expressed in Ltl in
the same way as livelock freedom.

Bounded overtaking. Even if a mutual exclusion protocol is starvation-free,
it is interesting to know, when a process Pj begins its entry section, how many
times the other process Pk can access its critical section before Pj enters its own
critical section. This information can be determined using Evaluator 4.0 by
checking the following Mcl formula for increasing values of max :

< true* . { NCS !0 } . (not { ?any ?”READ”|”WRITE” ... !0 })* .
{ ?any ?”READ”|”WRITE” ... !0 } .
( (not { CS ?any !0 })* . { ?G:String ... !0 where G <> ”CS” } .

(not { CS ?any !0 })* . { CS !”ENTER” !1 }
) { max }

> true

This formula expresses the existence of a sequence in which process P0 executes
its non-critical section, then the first instruction of its entry section, followed by
max repetitions of a subsequence in which P0 executes some instruction but only
P1 enters its critical section (a symmetric formula must be checked to determine
the overtaking of process P1 by P0). For each starvation-free protocol, there
exists a value of max such that the formula above holds for max and fails for
max + 1. To minimize the number of model checking invocations, one can start
with max = 1 and (if the formula holds for this value) keep doubling it until
finding the first value max ′ for which the formula fails, then use a dichotomic
search to reduce the size of the interval [1,max ′] to 1.

Independent progress. A requirement formulated explicitly by Dijkstra [10]
was that if a process stops (i.e., loops forever) in its non critical section, this must
not affect the access of the other processes to their critical sections. In subsequent
works, this requirement is not mentioned as a property of mutual exclusion pro-
tocols, but is often stated aside in the definition of the framework [5,2]. However,
we believe that this requirement is fundamental (at least from a model checking
point of view), and should be verified separately. In Mcl, it can be expressed
using the following formula:

forall j:Nat among { 0 ... 1 } .
[ true* ] (< { NCS !1-j } > true implies < { ... !j }* . { CS ... !j } > @)

which states that whenever the process Pk (where k = 1−j) is about to enter its
non-critical section, then the other process Pj can freely execute its code. Note
that this formula belongs to Lμ2 and can be also expressed in Actl

∗ but not
in Ltl, because it states the existence of infinite sequences starting from several
(unknown) states of the Lts. As regards expressiveness, Mcl lies between the
Lμ1 and Lμ2 fragments of the modal μ-calculus, and is strictly more expressive
than Ltl, whose model checking problem can be translated into the evaluation
of a single < ... > @ operator that encodes the underlying Büchi automaton.
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loop
non-critical section;
while B != j do
end while;
critical section;
B:= k

end loop (a)

4

051

62 7

3

B !WRITE !1 !0

NCS !1CS !LEAVE !0
NCS !0CS !ENTER !0B !READ !1 !0

B !READ !0 !0NCS !0

(b)

Fig. 3. (a) Trivial one-bit protocol for process Pj (k = 1− j); (b) Counterexample for
the independent progress of P0 when P1 has stopped in its non-critical section

To see that the property of independent progress is not implied by the three
other properties of mutual exclusion protocols, consider the trivial one-bit pro-
tocol shown in Figure 3(a). This simple protocol satisfies mutual exclusion and
starvation freedom, but does not satisfy independent progress because it forces
a strict alternation between the accesses of the two processes to their critical
sections. The evaluation of the formula above on the Lts of the trivial protocol
using Evaluator 4.0 yields the counterexample shown in Figure 3(b), in which
process P0 executes its main loop once but then spins forever in its entry section
because P1 has stopped in its non-critical section. The trivial protocol should
be considered an unacceptable solution to the mutual exclusion problem, since
it was proven in [5] (where independent progress is part of the framework def-
inition) that any livelock-free mutual exclusion protocol must use at least two
shared bits.

Finally, we can remark that the independent progress property cannot be
made stronger without destroying the livelock or starvation freedom of the pro-
tocols: if a process is allowed to stop (e.g., by crashing) outside its non-critical
section, then the other process may spin forever without entering its critical
section. For all protocols considered here, we checked that this indeed holds;
Figure 2(c) shows the diagnostic produced by Evaluator 4.0 illustrating, for
Peterson’s protocol, the livelock of each process when the other one has crashed
after executing the first instruction of its entry section.

Model checking results. Table 1 summarizes the model checking results for
the protocols considered. The generation of the Imcs for all protocols takes about
1 minute and a half on a standard desktop computer. Because the Imcs are small,
the execution of the Svl script (48 lines) implementing the model checking of
all properties on all protocols takes about 10 minutes. All properties have been
checked on-the-fly using Lnt.Open and Evaluator 4.0.

All the protocols considered satisfy the mutual exclusion, livelock freedom,
and (except the trivial) the independent progress properties stated above.
As regards the overtaking of processes, all starvation-free protocols (except
Szymanski’s) are symmetric, the minimal (1) and maximal (4) amount of
overtaking being reached by Knuth’s and by Dekker’s protocol, respectively.
The unbounded overtaking of one process by the other one has been checked by
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Table 1. Model checking results: the first column gives the name of the protocol; the
second column gives the number of shared variables; the third and fourth columns give
the size of the Imc; the fifth column indicates whether the protocol is only livelock-
(L) or livelock- and starvation-free (S); the last two columns give the maximal number
of times process Pj can overtake process Pk in accessing the critical section (Pj/Pk).

Protocol Number of Imc size L/S- Overtaking
(2 processes) variables states transitions free P0/P1 P1/P0

trivial 1 89 130 S 1 1

Burns & Lynch 259 368 L ∞ 3
Szymanski 547 803 S 2 1
2b p1 2 259 369 L ∞ 1
2b p2 271 386 L ∞ 1
2b p3 277 392 L 1 ∞
Dekker 599 856 S 4 4
Knuth 917 1312 S 1 1
3b p1 486 690 S 3 3
3b p2 3 627 879 L ∞ 1
Peterson 407 580 S 2 2
3b c p1 627 884 S 2 2
3b c p2 407 580 S 2 2
3b c p3 363 516 S 2 2

Lamport 1599 2274 L ∞ ∞
Kessels 1073 1502 S 2 2
Clh 690 936 S 2 2
4b p1 4 432 610 L ∞ 1
4b p2 871 1229 S 3 3
4b c p1 1106 1542 L ∞ 1
4b c p2 1106 1542 L 1 ∞
Dijkstra 5 899 1260 L ∞ ∞
Mcs 424 612 S 2 2

B&W Bakery 7 31222 43196 S 2 2

replacing, in the bounded overtaking formula given above, the bounded iteration
operator R{max} by an infinite looping operator <...>@. All livelock-free, but not
starvation-free protocols (except Dijkstra’s and Lamport’s) are asymmetric w.r.t.
overtaking, only one process being able to overtake the other one unboundedly.

3.2 Performance Evaluation

To measure the performance of a mutual exclusion protocol, we compute the
throughput of the critical section, i.e., the steady state probability of being in
the critical section. All delays being equal, the higher the throughput, the more
efficient the protocol, because the longer a process is in the critical section, the
less time it spends executing the protocol or waiting to enter the critical section.

Performance evaluation of an Imc is based on the transformation of the Imc

into a Continuous-Time Markov Chain (Ctmc) extended with probabilistic
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choices. A first step is to transform the Imc into a stochastic Lts by renam-
ing all actions: (1) each action not representing a delay is hidden, i.e., renamed
into the invisible action (written i in Lotos NT and Cadp), and (2) each MU
action is transformed into an exponential delay by associating a rate λ to it,
i.e., renaming it into“rate λ”. Using exponential delays reflects that we make
hypotheses only about the relations between the mean values of the actual du-
rations, because our model-based performance evaluation does assume neither a
particular application nor a particular hardware architecture.

In all our experiments, we kept the rates for accesses to the shared variables
constant: each read access has rate 3000 and each write access has rate 2000,
reflecting that, on average, a write access is generally slower than a read access.
For complex operations, namely fetch-and-store (used by the protocols Clh and
Mcs) and compare-and-swap (used by Mcs), we used the same rate as for a
write access. We also kept the rate for the critical section constant at 100, i.e.,
making the assumption that the critical section contains (on average) several
read and write accesses. Hence, we varied only the delay for the non-critical
section of both processes to compare the protocols in different usage scenarios.

In a second step, the stochastic Lts is minimized for stochastic branching
bisimulation [22]. Unfortunately, this does not yield a Ctmc, because due to
the nondeterminism only some, but not all, of the i actions are eliminated. As
discussed in Section 2.3, this nondeterminism is resolved by assuming an uniform
scheduler. Practically, each nondeterministic choice is replaced by a uniform
probabilistic choice, by renaming all i transitions into “prob 0.5”.

Finally, we compute the throughput of the entries into the critical sections
by both processes in the steady state using the Bcg Steady tool [20], which
is able to handle Ctmcs extended with probabilistic choices. The results of our
experiments are shown in Figures 4 to 6. Because these figures depend on the
arbitraily chosen rates, the concrete values are, although exact up to floating
point errors, less interesting than the relations and tendencies.

The performance evaluation experiments are automated by an Svl script (160
lines); computing all shown performance measures requires less than ten minutes
on a standard computer.

Figure 4 shows the effect of varying the ratio “critical-section-rate / non-
critical-section-rate”. Concerning the global throughput, the results should not
be surprising. A first observation is that the longer the non-critical section with
respect to the critical section (and the accesses to the shared variables), the less
the performance of the protocols differs. Conversely, the largest performance
differences of the protocols are observed if the critical section is longer than the
non-critical section. A second observation is that the complexity of the protocol
(number of shared variables and length of entry and exit sections) impacts its
performance: the most complex protocol (B&W Bakery) is the least efficient,
whereas the trivial one-bit protocol is the most efficient, the second most efficient
being Clh, followed by Peterson’s protocol.
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(a) Global throughput

(b) Throughput of process 0

Fig. 4. Performance when varying the ratio critial-section-rate/non-critical-section-rate

Fig. 5. Relative throughputs (ratio rate critical section/rate non-critical section = 2)
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Concerning the throughput of process 0, the values are wider spread than for
the global throughput. This difference is related to the symmetry concerning
bounded overtaking of the protocols. For symmetric protocols, where the pro-
cesses can overtake each other the same number of times, the throughput of
process 0 is half the global throughput. For asymmetric protocols, the through-
put of process 0 is either higher (if process 0 can overtake process 1 more often)
or lower (if process 1 can overtake process 0 more often) than half the global
throughput. Thus, the highest throughput for process 0 is obtained by some
automatically generated asymmetric protocols (3b p2 and 4b c p1).

Figure 5 shows the throughputs of all protocols, using 50 for the rate of the
non-critical section (thus, the non-critical section is, on average, two times as long
as the critical section). One observes significant differences in the throughputs of
the two processes if and only if the protocol is asymmetric; for these protocols,
the qualitative and quantitative properties are related in the sense that the
process that can overtake the other has a significantly higher throughput.

We also observed that making a protocol symmetric might (slightly) improve
its performance. For instance, the original version of the automatically generated
protocol 3b c p1 as described in [3] is asymmetric: with the same rates as in
Figure 5, the throughput of process 0 (14.7499) is lower than the throughput of
process 1 (15.0387). However, the symmetric version (that was used throughout
this paper) has a higher global throughput of 29.8854 (instead of 29.7886, i.e.,
an increase of 0.3%, to be compared with the 20% performance improvement
between the least and most efficient protocol).

The three plots of Figure 6 show the effect of varying the ratio between the
non-critical section rates of the two processes. In all three plots, for ratio 1,
the rate of the non-critical section is 50 for both processes; towards the left,
process 0 is slowed down (by decreasing the rate of the non-critical section of
process 0); towards the right, process 1 is slowed down (by decreasing the rate
of the non-critical section of process 1).

Figure 6(a) graphically justifies the name “symmetric” protocols: they are
symmetric in the sense that slowing down process 0 has exactly the same effect
on the global throughput as slowing down process 1: in both cases the general
throughput decreases in the same way. Figure 6(b) shows that the situation is
different for asymmetric protocols: slowing down the advantaged process that
can overtake the other one reduces the general throughput more than slowing
down the disadvantaged process that can be overtaken. This seems intuitive, be-
cause slowing down the advantaged process, slows down both processes, whereas
slowing down the disadvantaged process should not impact too much the ad-
vantaged process. Figure 6(c) confirms this intuition. On the one hand, for all
those asymmetric protocols where process 0 can overtake process 1 infinitely,
slowing down process 1 has less impact on the throughput of process 0 than
slowing down process 0. On the other hand, for the two protocols 2b p3 and
4b c p2, where process 0 can be overtaken infinitely by process 1, slowing down
process 1 has more impact on the throughput of process 0 than slowing down
process 0.
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(a) Global throughput for symmetric protocols

(b) Global throughput for asymmetric protocols

(c) Throughput of process 0 for asymmetric protocols

Fig. 6. Performance when varying the ratio ncs-rate-p0/ncs-rate-p1



A Study of Mutual Exclusion Protocols Using CADP 195

4 Conclusion and Future Work

This study aimed at assessing the applicability of model-based approaches for
analyzing the functional behavior and the performance of shared-memory mu-
tual exclusion protocols. As underlying semantic model, we used Imcs [19], which
provide a uniform framework suitable both for model checking and performance
evaluation. We carried out the analysis of 23 protocols using the state-of-the-
art functionalities provided by the Cadp toolbox [17]: formal specification us-
ing the Lotos NT imperative-style process-algebraic language; description of
functional properties using the Mcl data-based temporal language; manipula-
tion of Imcs by minimization and steady-state analysis using the Bcg Min and
Bcg Steady tools; automation of the analysis procedures using Svl scripts.

We attempted to formulate the correctness properties of mutual exclusion
protocols accurately and observed that several of them (livelock and starvation
freedom, independent progress, unbounded overtaking) belong to Lμ2, the μ-
calculus fragment of alternation depth two; however, they can still be expressed
using the infinite looping operator of Pdl-Δ [39], which can be checked in linear-
time [32]. Performance evaluation made it possible to compare the protocols ac-
cording to their efficiency (global and individual throughput of processes) and to
study the effect of varying several parameters (relative speeds of processes, ratio
between the time spent in critical and non-critical sections, etc.). We observed
that symmetric protocols are more robust concerning the difference in execution
speed between processes, which confirms the importance of the symmetry re-
quirement originally formulated by Dijkstra [10]. The quantitative results were
corroborated by those of functional verification, in particular the presence of
(asymmetric) starvation of processes, detected using temporal formulas, was
clearly reflected in the steady-state behavior of the corresponding protocols.

An interesting future work direction is to continue the performance evaluation
study for adaptive mutual exclusion protocols involving n > 2 processes, which
so far were subject only to analytical studies [1]. Another direction would be a
more detailed modeling of the underlying hardware architecture, in particular
non-uniform memory access times. For instance, knowing which process accesses
a variable most frequently might guide the placement of that variable to the
local memory of the appropriate processor in the architecture.
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Jan Camenisch2, Sebastian Mödersheim1, and Dieter Sommer2

1 DTU Informatics, Denmark
samo@imm.dtu.dk

2 IBM Research – Zurich, Switzerland
{jca,dso}@zurich.ibm.com

Abstract. Identity Mixer is an anonymous credential system developed
at IBM that allows users for instance to prove that they are over 18 years
old without revealing their name or birthdate. This privacy-friendly tech-
nology is realized using zero-knowledge proofs. We describe a formal
model of Identity Mixer that is well-suited for automated protocol veri-
fication tools in the spirit of black-box cryptography models.

1 Introduction

Due to the spreading use of electronic communication means, users increasingly
disperse their personal information widely. Users have lost control over their
data, as it is most often not clear who receives and stores which information
and how organizations handle this information, particularly to whom they pass
it on. This situation is aggravated by the increasing easiness to store, distribute,
and profile these data. While on the one hand protecting users’ privacy is very
important, on the other hand, many transactions require authentication, au-
thorization, and accountability. There is seemingly a partial conflict of goals of
properly identifying users while protecting their privacy.

The Identity Mixer system developed by IBM Research – Zurich solves this
contradiction by employing particular non-interactive zero-knowledge proofs and
suitable signature and encryption schemes. For instance, using Identity Mixer to
issue electronic identity credentials, a user is able to prove being at least 18 years
old or living in a certain town—without revealing their name or their precise age
or any other details. The system’s main goal is to provide strong authentication
of users and at the same time to protect the users’ privacy by minimizing the
amount of the users’ information being revealed in an interaction.

Identity Mixer is an implementation of the Camenisch-Lysyanskaya anony-
mous credential system [13], extended by a number additional features aimed
at enabling its use in practice. These features were put forth in a number of
later publications [9,15]. The cryptography behind Identity Mixer is well under-
stood and the basic system got proved secure [13]. However, the extended system
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as implemented has never been proved secure. Indeed, proving security of the
complex and dynamic system resulting from the combination of the many cryp-
tographic building blocks is a challenging task in general. Subtle mistakes in the
design can easily lead to vulnerabilities that can be exploited without breaking
the cryptography. Such mistakes are often hard to find due to the complicated
behavior of distributed systems. Automated verification with model-checking
methods based on perfect cryptography models can help here to discover many
such mistakes and increase the confidence in systems when the verification is
successful, e.g., [4,17]. The goal of this paper is provide a formal model for Iden-
tity Mixer, in particular the zero-knowledge proofs it uses, in a way feasible for
automated protocol verification tools.

While a lot of verification tools exist for protocol verification, the area of zero-
knowledge-proof based system has been started only recently. Backes, Maffei, and
Unruh [7] provide a first attempt to integrate this “cryptographic primitive” into
the verification tool ProVerif [11]. Their model considers non-interactive zero-
knowledge proofs as terms and a set of function symbols representing verification
operations that a verifier can apply to a received proof term. Algebraic properties
ensure that the term resulting from the operations evaluate to true or false
according to whether the zero-knowledge proof term indeed proves the desired
statement. While this gives a highly declarative model of the zero-knowledge
proofs as an abstract primitive, this is hardly feasible in automated verification
tools due to the extensive use of algebraic properties. In fact, even the properties
for the boolean combinations induce an undecidable unification problem, and it
is no wonder that tools that allow for such properties easily run into infinite
loops. As a consequence, Backes et al. [7] uses a very restricted re-encoding
of the algebraic theory in ProVerif, and the authors have eventually moved to
another approach altogether, namely security types [6]. While this is a valuable
complementary approach, the question remains whether we cannot use at all
the existing methods and tools of protocol verification that were so successful
on closely related tasks.

We show that there is indeed a feasible way to model zero-knowledge proofs in
standard black-box protocol verification tools. In a nutshell, the idea to avoid the
difficulties that arise when employing algebraic properties to model statements
that are proved is to use pattern matching. This applies when an honest agent
receives a zero-knowledge proof term. Instead of expressing the verification of this
proof by verification operations, we show how to transform the desired properties
into a pattern that describes the set of zero-knowledge proof terms that the
receiver will accept. This can be done by a simple matching (or unification in
case of symbolic representations) without any algebraic reasoning.

Contributions. The first contribution of this paper is a model of zero-knowledge
proofs that is feasible for automated verification. In fact, the specifications (ex-
cept for privacy goals, which are not considered in this paper) can directly be
run in existing tools without requiring extensions. The second contribution is a
formalization of Identity Mixer in this abstract model, both allowing for verifi-
cation, and also as an overview that abstracts from the underlying cryptography



200 J. Camenisch, S. Mödersheim, and D. Sommer

and some implementation details. The long-term vision here is to design a model
that can be turned into a correct (though maybe not optimized) implementation
by plugging in appropriate cryptographic tools; in fact, a first analysis suggests
that this paper provides the initial step to this idea.

Outline. This paper is organized as follows. In section 2, we summarize the
standard black-box cryptography models of security protocols. In section 3, we
describe our black-box style model of zero-knowledge protocols. In section 4, the
main section, we describe our model of Identity Mixer. In section 5 we present a
concrete application scenario for Identity Mixer and the results of model check-
ing it with the AVISPA tool. In section 6, we conclude with an overview of
experiments, discuss related work, and give an outlook on future work.

2 Preliminaries

Black-Box Cryptography Models. We assume that the reader is familiar with
Dolev-Yao style protocol models, see for instance [25]. We will denote deduction
rules for the intruder similar to the following one for symmetric encryption:

k ∈ DY(M) m ∈ DY(M)
{|m|}k ∈ DY(M)

,

This expresses that an intruder whose knowledge is characterized by a set of
messages M , can take any derivable terms k and m, and derive the symmetric
encryption {|m|}k. What the intruder can derive, DY(M), is the least set closed
under all considered deduction rules. We will later introduce further function
symbols representing several operations in zero-knowledge proofs and similarly
give intruder deduction rules for them. We will also make use of the following
generalization to simplify the presentation. We consider a set of public function
symbols Σp, containing for instance the above {| · |}·, and define the generic rule
(subsuming the above example):

t1 ∈ DY(M) . . . tn ∈ DY(M)
f(t1, . . . , tn) ∈ DY(M)

f ∈ Σp ,

We assume that there can be several intruders that collaborate (which can be
regarded as one intruder acting under different dishonest identities). The model
includes, for instance, that the machines of an actually honest organization were
compromised by the intruder (which may not be immediately obvious) who
can now control the organization’s machines at his will. We do not consider
several intruders that attack each other as (1) the overall goal is to protect and
ensure the guarantees of the honest participants and (2) from that perspective
the collusion of all dishonest participants is the worst case. We denote with a
predicate dishonest(U) that participant U is dishonest.

It is also standard to model a communication medium that is entirely con-
trolled by the intruder (which is again the worst case). Our model is parametrized
over different types of channels that can be used, but this is mainly important
for privacy properties that we do not consider in this paper.
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Honest Agents and Pattern Matching. The behavior of honest agents can be
described by various formalisms such as process calculi or set rewriting as in
the Intermediate Format of the AVISPA platform [3]. The most common way to
describe what messages an agent can receive at a particular point of the protocol
execution is a pattern, i.e., a message term with variables. The variables can be
substituted for an arbitrary value (possibly with a type restriction). For instance,
a message transmission such as

A → B : {|N, {|M |}KAS |}KAB ,

where KAB is a shared key of A and B, KAS is the shared key of A and a
server S and N and M are some nonces, will have the pattern {|N, X |}KAB on
the receiver side for a variable X , because B does not have the shared key and
cannot check the format of that part of the message.

3 Modeling Zero Knowledge

3.1 Communication

Many zero-knowledge protocols are concerned with proving authentication and
they do in fact not make much sense when assuming insecure channels as it is
standard in protocol analysis models. Vice versa, we also cannot assume secure
channels as that would assume authentication already. One may rather think of
a TLS channel without client authentication or a card in a card reader. For a
formal model of such channels see [27].

Identity Mixer, in contrast, can indeed be run over insecure channels: the basic
authentication properties (in terms of ownership of certain credentials) should be
satisfied. This is because the proof of ownership of a credential is always bound
to the knowledge of the user’s master secret that even the issuing party does
not know. However, when doing that, we immediately loose many of the privacy
guarantees, as all actions become observable for an intruder who controls the
network. While in the notation of this paper we do not bother about channels,
in the formal verification we have considered both the pseudonymous-secure case
and the insecure case of communication channels.

3.2 Non-interactive Zero Knowledge Proofs of Knowledge

Zero-knowledge proofs of knowledge [10] are a cryptographic building block that
allow a prover to convince a verifier that he “knows” a secret value (witness) S
such that (S, P ) ∈ R holds for some public relation R ⊆ {0, 1}∗ × {0, 1}∗ and a
public value P . Here “knows” is defined by if the prover is able to convince the
verifier then he is also able to compute S such that (S, P ) ∈ R. Non-interactive
zero-knowledge proofs [12] are a variant where the prover sends the verifier only
a single message (the proof) and thus requires no interaction. Informally, zero-
knowledge means that the verifier cannot compute any information about S from
the proof, P , and R that he could not have computed from P and R alone.
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In practice, non-interactive zero-knowledge proofs (of knowledge) are often
derived from discrete logarithm based proofs protocols (such as the well-known
Schnorr protocol [28]) by applying the Fiat-Shamir heuristic. Here, the challenge
is computed as (cryptographic) hash of the message sent to the verifier instead of
being chosen by the verifier. They are often also called signature of knowledge [16]
as they can also be seen as a signature scheme: by including the message m to
be signed in the input to the hash function used for the Fiat-Shamir heuristic
one can conclude that the entity who has constructed the proof has authorized
m.

We now consider how such non-interactive zero-knowledge proofs can be inte-
grated into our black-box cryptography model, i.e., we assume that an intruder
cannot break the cryptography.

To this end, we model a non-interactive zero-knowledge proof of knowledge
for a relation R and public input P as an abstract message term that has the
following crucial properties:

1. One can compose the term (proof) for P and R only when “knowing” a
secret S such that (S, P ) ∈ R.

2. Given the term, P , and R, one can neither obtain the secret S (nor any
information about it).

3. The prover can include a statement in the proof that is “signed” by the proof,
i.e., the verifier has (transferable) evidence that the person who performed
the zero-knowledge proof authorized the statement.

4. The term identifies what exactly is proved about the secret (and some public
values).

5. The term “behaves” like any other message term, in particular, when the
intruder sees a zero-knowledge proof, he is able to replay or forward that
term arbitrarily.

The Properties 1 and 2 model the cryptographic properties of “proof of knowl-
edge” and “zero-knowledge”. Property 3 models the signature-scheme nature
of the Fiat-Shamir heuristic. Property 4 models that the proof unambiguously
identifies the relation R that is being proved (about the given public P and the
secret S). This is crucial for the model of both honest and dishonest verifiers
that we will discuss shortly. For Property 5 is models the fact that NIZK in the
end are just strings that can be used out of context. We discuss this in more
detail below as well.

Black-Box Model. As in the case of other cryptographic primitives, we use an
“uninterpreted” function symbol representing the operation of performing a zero-
knowledge proof, namely the 4-ary symbol spk (for “signature of knowledge”);
this was inspired by the notation of [16]). In the proof term spk(S; P ; φ; Stmt), S
is a list of secret values that the prover knows, P is a list of public values about
which something is proved, φ is (an identifier of) the relation R and Stmt is an
arbitrary string being signed by the proof.

As an example, let us consider a classical application of zero-knowledge proofs:
a user has a secret S (may be considered a private key) and a server knows a
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corresponding value f(S) for a public function f . The user authenticates itself
by proving the knowledge of S without revealing S. This proof is modeled by
the term

spk(S; f(S); φ; Stmt) ,

where φ is an identifier for the relation R = {(S, P ) : P = f(S) ∧ S ∈ {0, 1}∗},
i.e., the proof proves knowledge of an S that is a pre-image of P = f(S). We
discuss below the precise role of this identifier. For now it suffices that every
proof that occurs in a system specification has a unique identifier. The Stmt can
be an arbitrary message term that is used together with the protocol, however,
as we discuss below, it should contain certain items.

Honest Provers and Verifiers. As the next part of our model, we need to define
how honest agents deal with spk terms during proving and verifying proofs. As
this is basically sending and receiving a message, respectively, let us consider
again how this is done in standard black-box models for, e.g., symmetric cryp-
tography. Basically, since honest agents always execute the protocol to the best
of their knowledge, the terms that they send and receive reflect the ideal pro-
tocol run except for subterms that they cannot control. In particular, receiving
is expressed by a pattern that describes the set of acceptable messages, where
each variable of the pattern can be replaced by an arbitrary message.

Using pattern matching is in fact one of the key ideas of our formal model of
zero-knowledge proofs. In contrast, the previous formal model of Backes et al. [7]
uses algebraic properties to express, roughly speaking, that applying an abstract
verification operator to a proof reduces to valid iff the proof is valid. This alge-
braic reasoning makes automated verification difficult, at least for a large variety
of analysis methods including those used by OFMC and ProVerif, and we see
the main advantage of our model in entirely avoiding the algebraic reasoning by
using pattern matching. We note that in the formal modeling of ordinary encryp-
tion/decryption we have a similar situation: one may either describe decryption
as receipt of terms by an appropriate pattern or instead use algebraic properties
stating that decryption and encryption cancel each other out; the latter model
is usually more complicated to handle and incompatible with many approaches
while all verification tools can easily support pattern matching.

For each zero-knowledge proof we define a proof pattern, i.e., an spk term with
variables that describes the “correct” proofs that an honest verifier accepts. For
the above example of proving the knowledge of a secret S, this pattern can be

spk(X ; f(X ); φ; Stmt) ,

where X is a variable of the pattern that represents a term that the verifier does
not see; here, and in the following, we will use the convention to use calligraphic
variable names for such secrets.

We thus define the “view” of the verifier, describing which aspects of the
message it can observe (and which it cannot). Thus, the verifier’s pattern is the
crucial part in our model of zero-knowledge proofs. We describe a system based
on zero-knowledge proofs in a simple graphical notation close to Alice and Bob
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A B

spk(S; f(S); φ; Stmt) �� spk(X ; P ; φ; Stmt)
| P = f(X )

Fig. 1. An example of our notation for zero-knowledge protocols

notation; Figure 1 shows the message sequence chart for the above identification
example, making explicit the terms sent and received. In this example, the re-
ceiver B initially knows P , and will thus accept only a zero-knowledge proof for
knowing a corresponding secret S (i.e., such that f(S) = P ).

More generally, we write s → t where s is in the column of role A and t
is in the column of role B to denote the following: A constructs and sends the
message s and B will accept any message that has the form t. This is similar to a
classical notation due to Lowe and used in [24]. We also abbreviate the patterns
using equations, e.g., we may write t | X = t′ meaning the substitution of all
occurrences of X in t by t′. We also note that every column represents a variable
scope of its own; each agent can only see the values in its own scope that are not
calligraphic. If the same variable name occurs in two scopes then the protocol
intends them to be the same, but it does not assume that, i.e., we do not a
priori exclude that (due to an attack) there may be a mismatch. However, all
occurrences of a particular variable in one column (role of the protocol) always
shall be the same value.

Dishonest Provers and Verifiers. It is crucial that an intruder (or several dis-
honest agents controlled by the intruder) can act as a normal participant and
perform zero-knowledge proofs about its knowledge, or act as a dishonest server,
accepting proofs. As it is standard in black-box cryptography models, the in-
truder is characterized by a set of rules that express what new messages he can
derive from a given set of messages. For the zero-knowledge proofs we have the
following two rules:

spk(S; P ; φ; Stmt) ∈ DY(M)
〈P, φ, Stmt〉 ∈ DY(M)

and 〈S, P, φ, Stmt〉 ∈ DY(M)
spk(S; P ; φ; Stmt) ∈ DY(M)

,

The first rule tells us that from seeing a zero-knowledge proof, the intruder can
learn the public values, the property proved, and the statement signed—but
not the secret values, of course. Note that we do not need to consider proof
verification for the intruder, since honest agents perform only correct proofs,
and since dishonest agents in our model collaborate and do not try to cheat each
other.

The second rule tells us that the intruder can construct spk terms for any
subterms that he knows. This includes many terms that do not make up valid
zero-knowledge proofs, i.e., when the claimed property φ does not hold for the
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secret and public values involved. In reality, this corresponds to the intruder
sending nonsensical terms instead of a zero-knowledge proof, that have the cor-
rect basic format, but on which the verification will fail. One may rule out such
terms from our model by specializing the intruder rules, but in fact they do
not hurt because honest agents only accept valid zero-knowledge proofs (and
dishonest agents do not need to be convinced).

Proof Identifiers. The proof identifiers φ in the zero-knowledge proofs play the
role of identifying the relation that is being proved. While of course the secret and
public values the prover holds might also satisfy other relations (or properties),
the cryptographic properties of the implementation of a proof hold only for the
specified relation. This becomes also clear in our abstraction, as the following
simple example shows. In Identity Mixer, a user may show for instance that he
or she is over 18 years old. Another service of a deployed system may give a
reduction on an entry fee if one proves to be over 65. Consider a user U who
has shown to be over 18 and who is in fact 70. Obviously, the credential of U in
this proof can also be used to prove that U is over 65. So the over-18 proof must
carry the information that it proves only the over-18 property, not the stronger
over-65 property. Otherwise there would be the danger to misuse proof terms
for getting more information about a person than actually revealed.

Mafia Attacks. A Mafia Attack is a classical man-in-the-middle attack against
zero-knowledge proofs for authentication, where a dishonest verifier I tries to use
the identity of the prover P towards another (honest) verifier V , by forwarding
every message from P to V and vice-versa. In the non-interactive zero-knowledge
world, I can simply forward the entire proof term from P to any V at any time.
A simple way to prevent this attack is to include in the signed statement Stmt
of an spk term the name of the intended verifier. In fact, in Identity Mixer all
proofs implicitly contain the name of the intended verifier.

Replay Attacks. Also, when an intruder has seen a zero-knowledge proof, he can
replay it (to the intended verifier) any number of times. Usually, the concrete ap-
plication will insert into the proved statements also some mechanisms to prevent
replay, e.g., include context information in the message Stmt , so an anonymous
electronic order may contain an order number (and timestamp).

4 Identity Mixer Components

We now describe step-by-step the components of Identity Mixer along with our
formalization. We proceed bottom up, from the smallest units of Identity Mixer
to the largest. In the next section, we then show how these components are used
in concrete example protocols.

The Identity Mixer system defines two kinds of parties: users and creates a
master secret, which it never reveals to any other party.
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Users are known to organizations under pseudonyms and organizations make
statements about users by issuing credentials to the users. Each credential is
bound to the master secret of the user that it is issued to (without the issuer
learning that master secret).

Master Secret. Every user U has a master secret that we denote xU . This mas-
ter secret is crucial because each pseudonym and credential in Identity Mixer
is based on a master secret and we define the ownership of pseudonyms and
credentials as knowledge of their master secrets. We can model x· as a private
function (i.e., the intruder cannot obtain the master secret of a known user).
Note, however, that the function is not a cryptographic operation, but just a
mapping from users to their respective master secrets. (This also reflects the
assumption that every user can have only one master secret.)

Pseudonyms and Domain Pseudonyms. Users interact with organizations under
pseudonyms. We assume that by default users create a fresh pseudonym for every
separate interaction with an organization, so that different interactions cannot
be linked. A pseudonym is related to the master secret of the user. A pseudonym
has the form:

p(xU , R) ,

where R is a random value created by the user (without R, all pseudonyms of a
user would be the same). This allows every user to establish as many different
pseudonyms with an organization as it wishes. There are cases where this is not
desirable and a user should have only one pseudonym for a given domain (e.g., a
set of organizations, identified by a string) so that the user can be anonymous but
not acting under different pseudonyms. This is useful for instance for petitions
where users should state their opinion only once. For this, we use a domain
pseudonym which has the form:

pd(xU , domain) ,

where domain is a string specifying the domain.
Both the functions are public (see section 2), so the intruder can form his own

pseudonyms and domain pseudonyms, but there is no further rule, in particular
one cannot obtain xU from a known pseudonym.

Commitments. In several transactions, we need commitments of the form

commit(R, V ) ,

where V is a value that is committed to, and R is a random number. Also
this function is public, i.e., the intruder can build commitments, but from the
commitment one cannot obtain the committed value V (nor R). Commitments
will be used for dealing with values in a credential that the issuing organization
does not see while proofs have to be made about these values.
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Credentials. Roughly speaking, a credential is a list of attributes signed by the
issuing organization O. We assume, for simplicity, that every organization issues
only one type of credentials. We assume that the public keys of each organization
O, along with a description of the credential type that O issues, are publicly
known. This may include (informal or formal) descriptions of the meaning of
the attributes. In the implementation, all attributes are represented as integers
(or fixed-length sequences of integers), so we shall not distinguish the different
attribute types (like date or string) here, but assume that they are understood
from the credential type (which is determined by the signature of O). Also, a
credential is relative to the master secret xU of a user U , and the ownership of
a credential is defined by the knowledge of the underlying master secret. Thus,
a credential has the form

credxU

O (V1, . . . , VkO ) .

Here, the Vi are the values of the attributes and kO is the number of attributes
contained in credentials issued by O.

The function symbol cred is characterized by two intruder rules. First, from
a credential, the intruder can derive its attributes (but not the master secret):

credxU

O (A) ∈ DY(M)
A ∈ DY(M)

,

where A is any list (a concatenation) of attributes. Second, for every dishonest
organization O the intruder can issue credentials given a commitment by the
user on its master secret.

A ∈ DY(M) commit(R, xU ) ∈ DY(M)
credxU

O (A) ∈ DY(M)
dishonest(O) ,

Relations on Attributes. When using credentials to prove properties about one-
self, Identity Mixer allows the user to hide the attribute and to prove only a
statement about it. For instance, the user could prove to be over 18 years old
according to an electronic passport. More concretely, suppose we have a passport
credxU

O (name, bd, . . .) where name is the bearer’s name, bd is the birthdate etc.
We want to show plusYears(bd, 18) ≤ today where plusYears adds to a date a
given number of years and today is the date of the verification, and ≤ is the
comparison on dates.

This is problematic in two regards. First, if we commit to using concrete
numbers, e.g., setting a birthdate to a concrete date in a scenario, then the
verification result only applies to that particular birthdate which is clearly not
very helpful. Second, we get the problem of dealing with arithmetic in general
(e.g., that from bd1 ≤ bd2 and bd2 ≤ bd3 it immediately needs to follow that
bd1 ≤ bd3 without further proof).

To avoid both problems, we consider only unary relations R(x), e.g., R can be
the “over-18” property of birthdates. (This excludes for instance the proof that
one birthdate is greater than another.) Let R1, . . . , Rn be the set of relations that
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can occur in all zero-knowledge protocols of our verification task. We consider
the 2n equivalence classes of data (recall that we assume just one data type for
attributes), denoted as D0,...,0, . . . , D1,...,1, where

Db1,...,bn = {x | R1(x) ⇐⇒ b1 ∧ . . . ∧ Rn(x) ⇐⇒ bn} .

We do not exclude that one relation may imply another, e.g., R1 may be “over-
18” and R2 may be “over-21”; in this case the equivalence classes D0,1,... are
simply empty.

For the encoding of concrete credential attribute values such as names, dates,
and so on, we use terms of the form val(c, b1, . . . , bn) where val stands for an
abstract value, c is an ordinary constant (so we can have several abstract values
that belong to the same equivalence class) and b1, . . . , bn is the list of booleans
that characterizes the concrete equivalence class.

Let us assume for the concrete age example that there is only one relation
“over-18” and we consider the concrete scenario with the certificate

credxU

O (val(alice , 0), val(aliceBirthday , 1)) ,

i.e., where the name alice does not satisfy “over-18”, but the date of birth does.
(Note that there is only one other reasonable case, namely with val(aliceBirthday ,
0) where alice is a minor.)

Verifiable Encryption. Our model of verifiable encryption does differ somewhat
from standard public-key encryption, namely we will use so-called labels. A label
is a public string that can be attached to a ciphertext when generating it. The
label has the property that (1) a ciphertext cannot be decrypted without the
correct label and (2) the label cannot be modified. Labels are useful for instance
to bind the context to a ciphertext or a policy defining under what circumstances
the third party is expected to decrypt. To model this encryption primitive, we use
terms of the form crypt(k; m; l) where k is the public key of the recipient (usually
a trusted party) m is the encrypted message and l is the encryption label. The
symbol is characterized by three intruder deduction rules. First, crypt is again
a public symbol; the other two are:

crypt(k; m; l) ∈ DY(M)
l ∈ DY(M)

and
crypt(k; m; l) ∈ DY(M) inv(k) ∈ DY(M)

m ∈ DY(M)
,

These rules express that the intruder can see the label from any encryption, and
that he can decrypt the message if he knows the private key inv(k).

Another difference with respect to the standard model of encryption is that
we will use the term in zero-knowledge proofs, e.g., that the encryption indeed
has the form crypt(T ; M ; L) for the trusted third party T that an organization
wants to use and M is, for instance, the attributes of a particular credential.

5 Identity Mixer Protocols in Concrete Scenarios

The components introduced in the previous section can be put together in many
different ways, depending on what scenario shall be addressed. The resulting
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protocols can then be analyzed using automated formal verification tools such
as OFMC [26]. In this section we give an example protocol that uses Identity
Mixer.

We consider a scenario where a user U wants to buy some wine at an online
winery without revealing its personal information. For that, U needs to prove to
the wineshop that it is over 18 years old according to a passport that was issued
by organization I. The passport credential shall have the format (omitting a lot
of common passport fields for simplicity):

credxU

I (Surname,Prename,DateOfBirth) .

We model a statement about an attribute by a relation R indicating the “over-
18” property, so the date of birth of an adult will simply be val(c, 1) where c is an
individual constant (i.e., the birthdate). For instance, U may have the following
concrete credential in its possession:

credxU

I (Smith,Alice, val(c, 1 )) .

The online winery O and the user run a protocol, shown in Figure 2, that requires
the user to prove (1) the possession of a credential C that was issued by I and
has val(B, 1) in the birthdate field; (2) the knowledge of its master secret X to
which C is bound (recall that all expressions that the receiver does not learn
from the zero-knowledge proof are set in calligraphic font); and (3) that the
pseudonym p(X ,R) by which the user introduces itself also contains its master
secret. We denote this proof statement by wine. With the zero-knowledge proof,
the user also signs an order description ORD; we assume that this order contains
a unique order ID that is assigned when U has browsed the offers of the winery
and selected “order”. Such a unique ID (and also a timestamp) trivially prevent
all problems with multiple processing of the same order (due to replay of the
intruder or honest mistakes).

Finally, O also requires a verifiable encryption of the surname and prename
attributes of C for the trusted third party T . This includes an encryption label LO
that identifies the purpose of the verifiable encryption and specifies a condition
under which the encryption may be opened. In this scenario, the label should
include an opening date if the customer did not pay. In case that A never pays
for the order, O can forward the entire zero-knowledge proof and the verifiable
encryption to T . Now T checks whether O’s claim is valid: first it verifies the
zero-knowledge proof and whether the payment conditions (as stated in LO)
were indeed not met by the user (how this is verified is not part of our scenario).
If these checks are successful, T decrypts the verifiable encryption using the label
LO . Hence, according to our convention, the attributes S and P are set here in
italic and not in calligraphic font. The same holds for these two attributes within
the shown credential—because T can also check the zero-knowledge proof. Thus
T can infer the real name of the spk-signer of ORD . Note, however, that T
does not learn any more information than what was intentionally revealed by U ,
namely it does not learn the master secret X , the credential C, or the contained
concrete date of birth B.



210 J. Camenisch, S. Mödersheim, and D. Sommer

U

Prepare order ORD

Select Passport CU = cred
xU
I (S, P, val(B, 1))

Choose random R

Encrypt name E = crypt(pk(T );S, P ;LO)

O

spk(xU , CU ; p(xU , R), E;wine;O,ORD) ��
spk(X , C; p(X ,R), E;wine;O,ORD)

| C = credX
I (S,P, val(B, 1)),

E = crypt(pk(T );S,P;LO)

T if U does not pay the order

spk(X , C; p(X ,R), E;wine;O,ORD)

| C = credX
I (S, P, val(B, 1)),

E = crypt(pk(T );S, P ;LO)

spk(X , C; p(X ,R), E;wine;O,ORD)��

Fig. 2. First scene of the online shopping scenario

In this scene, we have omitted the delivery and payment processes. There
are several possible ways to implement them. One can use verifiably encrypted
orders to a payment organization (like U ’s credit card organization) and a de-
livery company. But one can alternatively use anonymous payment (which can
be realized again using Identity Mixer) and anonymous pickup (which is offered,
e.g., by gas stations in which case a delivery code could be verifiably encrypted
for it).

Verification Goals. We omit here the details of special events that are used in
the formal specification to allow for a declarative specification of the goals, and
just give an informal account of them:

Correct presentation of credentials. First, if an honest O appears to have
received a well-formed order, then there indeed exists a user U (not nec-
essarily honest) who owns the required credential and has submitted the
order. Second, if the honest judge T is convinced that a particular user has
submitted an order, then this is indeed the case, even if O is not honest.

Privacy. Here we consider only some secrecy goals (i.e., safety properties), not
indistinguishability of traces. First, the intruder knows xU iff U is dishon-
est. Nobody ever learns other agents’ credentials or contents that are not
intentionally revealed.

Accountability. After a shop has received an order, there is enough evidence
from which, with the help of T , the identity of the ordering user can be
obtained in case no payment is made.
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Formal Verification Results. All the goals just stated have been formulated
and checked to hold for the given scene with the OFMC tool [26] for at least two
symbolic sessions. Here, a session means that each role like U and O is instanti-
ated with one individual agent (honest or dishonest) who wants to execute the
protocol and symbolic means that we do not specify a concrete instantiation,
but let OFMC consider every possible instantiation of the role names with agent
names. As a result, we can be sure that there is no attack in any scenario with
two sessions. More complicated attacks are thus those that necessarily relate
to at least three individual sessions, for which, besides contrived examples, we
have only examples in parametrized protocols. A major goal of Identity Mixer is
that one cannot observe more information about users than they deliberately re-
leased, including that the different transactions of a user cannot be linked. These
privacy goals are quite difficult to formalize since they are not properties of sin-
gle execution traces but rather based on the question whether the intruder can
observe a difference between certain pairs of traces. In the automated protocol
verification, there are only few approaches that address privacy properties [19].
We therefore do not consider privacy properties formally and just give an infor-
mal account. All an intruder is able to learn from the zero-knowledge proof

spk(S; P ; φ; Stmt) ,

are the public values P , the signed statement Stmt, and the fact that the proved
property φ holds on S and P . The idea is thus that the intruder cannot distin-
guish two such terms that differ only in the S part and this would reflect that the
intruder can only observe those properties that are deliberately released by the
respective participant. Things are indeed tricky, however. Note that throughout
our formalization, for simplicity, we have used deterministic functions, i.e., when
a user performs several times the same zero-knowledge proof or verifiable encryp-
tion with exactly the same arguments, the result will exactly be the same—and
this can indeed be observed. It is not difficult to include a fresh random value into
every relevant function as an additional argument, and this correctly models the
non-deterministic behavior of the real operations. Given non-deterministic func-
tions, one can indeed formally define what it means that two terms are unequal
but not distinguishable for the intruder and based on that prove the privacy. Un-
fortunately, this is beyond the scope of the current automated verification tools.

6 Conclusions

Experimental Results. The goal of our formalization is a model that is well
suited for automated protocol verification tools. We have developed this model in
interaction with experiments on the tool OFMC [26]. However, our formalization
does not dependend on OFMC and we have initial results also with other tools
of the AVIPSA/AVANTSSAR platform [3] (into which OFMC is integrated)
and that share with OFMC the common input languages IF and ASLan. We
have modeled an e-Commerce scenario that uses Identity Mixer protocols as
building blocks as described in Section 5. The tools of the AVISPA platform
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can verify this scenario within minutes. Also, for the variant that ommits the
intended verifier in zero-knowledge proofs the tools can detect the classical Mafia-
attack (cf. Section 3) within seconds.

Related Work. The SPK notation that we have used in this paper was inspired
by the notation for the cryptographic protocols of Camenisch and Stadler [16].
We have slightly adapted the use here, explicitly denoting the values that are
revealed and moreover denoting only those secret values that one must prove
to posses. Another difference is the use of a proof identifier rather than a proof
statement; this is to enable that we can exploit pattern matching in tools. In fact,
one may use as the proof identifier a term that encodes the proof statement in
some way, but the tools cannot interpret these terms (and only check for equality
of these terms). Related to the original notation, Bangerter et al. [8] show how
to derive automated zero-knowledge proofs from this. The modeling of non-
interactive zero-knowledge proofs has independently been studied by Backes et
al. [7]. Their approach is mainly based on algebraic properties: they use explicit
verify-operations that can be applied by the receiver to the received proof terms
and that explicitly check for certain conditions. This algebraic formalization
is very involved and easily leads to non-termination of the verification tool,
ProVerif [11], that they use. To avoid the non-termination, the algebraic theory
has to be carefully adapted and to make this encoding still manageable, it is
generated by a special compiler. For all these difficulties, the authors have turned
to a type-system approach [6].

Li, Zhang, and Deng [23] give a similar formalization of an old version of Iden-
tity Mixer that seems to work fine in ProVerif. Indeed, their model works at a
deeper level of cryptographic detail than that of Backes et al. [7]—which requires
an even more complex algebraic theory. However, Li el al. [23] has a fundamental
mistake in the handling of algebraic properties in verification tools: implicitly, all
function symbols are interpreted in the free algebra in ProVerif and even encod-
ing just those properties of exponentation that are needed for Diffie-Hellman is
far from trivial [22]. For this reason, Li et al. [23] accidentally arrive at a model
that cannot make any progress at all—on which all kinds of safety and privacy
properties trivially hold.

From all this, one may get the wrong impression that algebraic properties
in general thwart practical protocol verification. In fact the noted tools OFMC
and ProVerif can handle algebraic properties and with Maude-NPA there is even
a protocol verifier based on the algebraic specification framework Maude [21].
However, a declarative formalization of zero-knowledge proofs does not fall into
the fragments of algebraic reasoning that can be handled well (such as convergent
rewrite theories), and therefore require a quite technical encoding [7].

Resumee. We thus see as our main contribution to define a model of zero-
knowledge proofs that does not require algebraic properties at all. This is of
big advantage when using the two most successful methods in protocol verifi-
cation: the constraint-based approach [2] implemented in tools like OFMC and
the stateless over-approximation approach of tools like ProVerif. Moreover it
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enables the use of successful tools like SATMC [5] that do not support algebraic
properties at all.

The key idea to achieve that is to use pattern matching to describe the receiv-
ing of zero-knowledge protocols. This is analogous to the problem of modeling
decryption in a Dolev-Yao style black-box model of cryptography: instead of a
property that says that encryption and decryption cancel each other out, we use
pattern matching for decryption, i.e. honest agents accept only messages that are
encrypted with the expected key (plus an appropriate intruder deduction rule for
decrypting messages). We thus obtain a formal model of zero-knowledge proofs
that is both declarative and efficient. This enables us to use zero-knowledge
proofs as a primitive of security protocols in formal verification just like any
other standard cryptographic primitive such as symmetric encryption.

This is practically illustrated by our verification of two scenarios based on
Identity Mixer. In fact, it is a further contribution that we provide a formal model
of Identity Mixer which itself is a building-block for complex applications, e.g. in
e-Commerce and e-Government. This model provides an important intermediate
step between very high-level, technology-neutral specifications such as CARL [14]
and the cryptographic details of the actual Identity Mixer implementation.

We finally note that there have been several proposals for formalizing privacy
goals in the black-box model, see for instance Abadi and Fournet [1]. These
models are quite difficult for automated analysis, though there are some new
ideas [20,19]. Further investigation is left for future work.
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Abstract. Automatic code generation based on Coloured Petri Net
(CPN) models is challenging because CPNs allow for the construction of
abstract models that intermix control flow and data processing, making
translation into conventional programming constructs difficult. We intro-
duce Process-Partitioned CPNs (PP-CPNs) which is a subclass of CPNs
equipped with an explicit separation of process control flow, message
passing, and access to shared and local data. We show how PP-CPNs
caters for a four phase structure-based automatic code generation process
directed by the control flow of processes. The viability of our approach is
demonstrated by applying it to automatically generate an Erlang imple-
mentation of the Dynamic MANET On-demand (DYMO) routing pro-
tocol specified by the Internet Engineering Task Force (IETF).

1 Introduction

The development of concurrent software systems is complex due to the rich
behaviour introduced by concurrency, communication, and non-determinism.
Coloured Petri Nets (CPNs) [9] and CPN Tools [2] (and formal modelling in
general) have been widely used to address these challenges and construct formal
and executable models of system designs with the aim of validating functional
and performance properties prior to implementation [7]. Constructing a formal
model yields important insight into the system design, and is a very helpful ref-
erence artefact when conducting a manual implementation of a software design.
Even so, manual implementation is error-prone and time-consuming, making au-
tomatic code generation [8, Chap. 21] preferable in order to reduce the risk of
introducing errors and to exploit the resources invested in model construction.

Despite the wide use of CPNs and high-level Petri Nets for modelling and de-
sign validation, we are aware of relatively few examples where CPNs have been
used to automatically obtain an implementation of the final software system.
This is in contrast to, e.g., the area of hardware design, where low-level Petri
nets have been widely used to synthesise hardware circuits [17]. A simulation-
based approach to automatic code generation from CPNs has been used in the
projects reported in [13] and [10]. Here, the simulation code for the CPN model
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generated by CPN Tools is extracted, and after undergoing automatic modifica-
tions, e.g., linking the code to external libraries, the generated simulation code
is used as the system implementation. A simulation-based approach is also used
in [14] to generate Java code from a high-level Petri net. The idea of [14] is to
make a class diagram which outlines the classes and method signatures of the
program. From this diagram, classes are generated where the method bodies
are filled with simulator code. The advantage of a simulation-based approach is
that it does not put any additional limitations on the class of models for which
code can be generated. Furthermore, the direct use of the simulation code au-
tomatically ensures that the implementation is behaviourally equivalent to the
underlying model. A main disadvantage is performance. Firstly, the execution
speed is affected because each step in the execution of the program involves the
computation and execution of enabled transitions (as done by a simulator) in or-
der to determine the next state. Secondly, the approach ties the target platform
to that of the simulator which may make the approach impractical for certain
application domains due to resource consumption. As an example, the SML/NJ
compiler used for the simulator in CPN Tools has a large memory footprint mak-
ing it ill-suited for the domain of embedded systems. These disadvantages can
to some extent be overcome using a state-based approach. Here, the state space
of the model is used to control the execution of the program and determine the
next state. This approach assumes that the state space is finite and small.

The disadvantages of simulation- and state-based approaches to code genera-
tion motivate our work on a structure-based approach. The key idea is to exploit
structure in the CPN model, which can be naturally mapped to conventional
programming language constructs. This has the advantage that the structure of
the CPN model becomes clearly recognisable in the generated code, and that the
generated code has a structure closer to code written by a human programmer.
Furthermore, the code generated using a structure-based approach contains no
simulator scheduler to control the execution, thereby improving performance,
and the approach can be made target language independent. Exploiting struc-
ture in CPNs for code generation purposes is challenging since CPNs makes it
possible to model control flow structures, message passing, and data access more
abstractly than supported directly in most programming languages.

To address this, we introduce Process-Partitioned CPNs (PP-CPNs) which
constitute a subclass of CPNs. PP-CPNs contain additional syntactical infor-
mation and semantic restrictions that provide an explicit separation of process
control flow, message passing, and access to data. This is used in a four phase
code generation approach, where the choice of target language is deferred to
the last two phases. Figure 1 shows the four phases in our structure-based code
generation approach for translating a PP-CPN model into code in a target pro-
gramming language. The first phase (1) translates a PP-CPN into a control
flow graph (CFG) for each process subnet, extracting the control flow from the
model. Nodes in a CFG represent statements and directed edges represent jumps
in the control flow. The CFG may also be subject to static analysis, e.g., dead
code elimination. In the second phase (2) the CFG is translated into an abstract
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Fig. 1. Structure-based code generation phases

syntax tree (AST) for a simple intermediate language designed to be abstract
enough that it can be translated into most programming languages (see [4] for
details), and such that it can capture the assumptions made on the target lan-
guage in a generic way. The AST can also be used to recognise common control
structures such as while loops and if-statements. In the third phase (3), the AST
is translated into a syntax tree for the target language (TLST). Finally, in phase
four (4) the TLST is traversed and the target language source code is produced.
The first two phases are target language independent.

To validate our automatic code generation approach, we have implemented
it in a computer tool where Erlang [3] is used as the target language. Erlang
is a concurrency-oriented language developed at Ericsson for reliable and fault-
tolerant concurrent software in telecommunication switches. We report on the use
of the developed approach and supporting computer tool to automatically obtain
an implementation of the Dynamic MANET On-demand (DYMO) protocol [1].
Being able to model an industrial protocol like DYMO demonstrates that PP-
CPNs are sufficiently expressive to model systems occurring in practice. The
definition of PP-CPNs is inspired by [11], where a process-oriented subclass of
CPNs was defined to facilitate partial-order state space reduction.

Outline. Section 2 introduces the basic concepts of PP-CPNs and the associated
syntactical and semantical restrictions. Section 3 formally defines syntactical
PP-CPNs that statically ensures the restrictions introduced in Sect. 2. Section 4
illustrates the four phases of the translation process using an example. In Sect. 5
we explain how our code generation approach has been used to obtain an im-
plementation of the DYMO protocol [1]. We sum up our conclusions in Sect. 6.
This paper is partly based on the thesis [4] (supervised by the authors of this
paper), and an early version has appeared in the technical report [6]. The reader
is assumed to be familiar with the basic notions of high-level Petri nets, i.e., the
combination of Petri nets and a programming language.

Definitions and notation. The formal definition of PP-CPNs use the defi-
nitions and notation of CPNs from [9, Chap. 4] as a basis. Let V be a set of
variables and EXPR a set of expressions. Then for v ∈ V , Type(v) is the type
of the variable v, for e ∈ EXPR, Var(e) is the set of free variables of e, Type(e)
is the type of the expression e, and EXPRV is the set of expressions with free
variables contained in V . For a set S, we denote by NS the multi-set type over
S, i.e., the set of all multi-sets (bags) over S. We define ∪, ∩, −, =, | · |, and
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⊆ (union, intersection, difference, equality, size, and subset) as normal for multi-
sets, and use a notation, where m = n‘a is the multi-set with m(a) = n and
m(b) = 0 for b �= a, and use ++ for union as an alternative symbol.

Definition 1 (Coloured Petri net). A coloured Petri net CPN is a tuple
CPN = (P, T, Σ, V, C, G, E, I) where:

1. P is a finite set of places (by convention drawn as ellipses), and T is a
finite set of transitions (by convention drawn as rectangles),

2. Σ is a set of non-empty colour sets (types), and V is a set of typed vari-
ables such that Type(V ) ⊆ Σ,

3. C : P → Σ is a colour set function that assigns a colour set to each place,
4. G : T → EXPRV is a guard function that assigns a guard (by convention

written in square brackets) to each transition t such that Type(G(t)) = Bool,
5. E : P × T ∪ T × P → EXPRV is an arc expression function with

Type(E(p, t)) = NC(p) and Type(E(t, p)) = NC(p),
6. I : P → EXPR∅ is an initialisation function that assigns an initialisa-

tion expression to each place p such that Type(I(p)) = NC(p). �	
A binding of a set of variables V is a function that maps each variable v ∈ V to an
element (value) of Type(v). An expression e ∈ EXPRV evaluated in a binding
b over V (denoted e〈b〉) is the value obtained by replacing all free occurrences of
v in e by b(v). A binding of a transition t is a binding over the variables Var(t)
of t, and B(t) denotes the set of all bindings for a transition t.

2 Process-Partitioned CPNs and Process Subnets

To introduce and motivate the constructs of PP-CPNs, we use the producer-
consumer system shown in Fig. 2. The figure depicts the initial marking of a
producer-consumer system with two producers (identified using the colours (val-
ues) P(1) and P(2)) and two consumers (identified using the colours C(1) and
C(2)). Data items produced and consumed are modelled as integer values.

A PP-CPN is a union of process subnets each describing the program code
executed by one or more processes. The producer-consumer system consists of
two process subnets: one process subnet (left) modelling the producer, and one
process-subnet (right) modelling the consumer. The transitions of a process sub-
net model the actions of processes, and the process places Ppr model control flow
locations. The transitions and the process places of a process subnet make the
control flow of processes explicit in the model, and from the current marking
(token distribution) it is easy to determine where a process is in its control flow.
The consumer process subnet (right) has three transitions ReceivedData, Con-
sumeEven, and ConsumeOdd modelling the actions of consumer processes, and
process places ConsumerIdle and ConsumerWaiting modelling control flow loca-
tions. ReceivedData is a local place (see below) used by consumers to locally store
a received data item before it is consumed. We have modelled the consumption
of data items using the two transitions ConsumeOdd and ConsumeEven in order
to illustrate how our approach handles branches in the control flow of processes.
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Fig. 2. The producer-consumer PP-CPN model

We introduce a special process colour set (type) τ , and a process variable
function PV . The process variable function provides for each transition a process
variable of type τ which in an occurrence of the transition identifies the process
executing the statement represented by the transition. The variable p of the
colour set PRODUCER used on the arcs connecting process places and transitions
is a process variable which in an occurrence of a binding of a transition identifies
the process executing the action modelled by the transition.

A process subnet has a set of local places Ploc that make explicit data which
is local to a process. The place ProducedData is a local place (representing data
local to a single producer) used to locally store produced data before it is sent
to the consumer. The function ND is used to determine the produced data item.
A process subnet also consists of a set of shared places Pshr and a set of buffer
places Pbuf . Buffer places and shared places constitute the mechanism provided
in PP-CPNs for connecting process subnets and make synchronisation points
explicit. Buffer places correspond to communication channels between processes,
whereas shared places represent memory shared between processes. The place
NextConsumer is a shared place representing shared data between the producer
processes. The colour of the token on the place NextConsumer identifies the
consumer to which a given data item will be sent. The function NC is used to
determine the consumer that will receive the next data item. The place Buffer is
a buffer place connecting the producer process subnet and the consumer process
subnet. It models a buffer for the transmission of data items from producers to
a specific consumer. We define a set of process identification functions PrId =
{PrIdp} on the set of process-, local-, and buffer places that projects multi-sets
of structured types onto the process type, allowing us to project onto the process
identity of tokens on process, local, and buffer places. We refer to tokens residing
on process places as process tokens .

Next, we introduce semantical restrictions on the initial marking and arc ex-
pressions to make local places behave as local variables, shared places behave
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as global variables, and buffer places behave as unordered unicast communica-
tion channels. These semantical requirements are central to our code generation
approach to be presented in Sect. 4.

The first semantical restriction concerns the initial marking. We require that
all processes represented by the subnet start in the same location. This translates
into the existence of single process place pI initially containing a token for each
process, i.e., PrIdp(I(pI)〈〉) = τ . All other process places p are required to be
initially empty which (together with the above requirement) can be expressed as∑

p∈Ppr
PrIdp(I(p)) = τ . The other requirements concerning the initial marking

is that each local place p initially has a token for each process, i.e., PrIdp(I(p)) =
τ ; a shared place p holds exactly one token, i.e., |I(p)〈〉| = 1; and each buffer
place p is initially empty, i.e., I(p)〈〉 = ∅. The requirement on local places reflects
that tokens on such a place represent the current value of a local variable (one for
each process). The requirement on a shared place reflects that the single token
represents the current value of a global variable.

The next requirement concerns the arc expression functions. We require that
the occurrence of transitions preserve the control flow of processes, i.e., that the
tokens removed from process places (when projected to process identities) by a
transition t in a binding b (

∑
p∈Ppr

PrIdp(E(p, t)〈b〉)) is equal to the tokens added
(
∑

p∈Ppr
PrIdp(E(t, p)〈b〉)) when projected to process identities, and that this

equals 1‘b(PV (t)), i.e., exactly one process token corresponding to the process
variable PV (t) of the transition. For a local place, we require that each transition
removes exactly one token from such a place, and that each transition adds
exactly one token (or removes/adds zero tokens in case the transition is not
connected to the place). Also, we require that the process identities of the tokens
added and removed match the binding of the process variable of the transition.
For shared places, we only require that each transition removes exactly one token
and adds exactly one token (or removes/adds zero tokens in case the transition
is not connected to the place). Finally, if a transition t removes tokens from a
buffer place p in binding b (i.e., receives an item from the channel represented by
p), then a single token is removed, and the process identity of the token removed
(PrIdp(E(p, t)〈b〉)) matches the value b(PV (t)) assigned to the process variable.

Finally, we have a requirement for shared and buffer places. The requirement
allows us to calculate enabling for transitions (i.e., execute statements of pro-
cesses) without taking special care of the race conditions that could arise when
accessing buffer and shared places (which can also be accessed by other pro-
cesses). The requirement is that if we have found a binding b of a transition
t that satisfies the enabling condition with respect to local and process places
(i.e., required tokens are available and the guard G(t) of t is satisfied), then for
all shared and buffer places p and colours (tokens) c ∈ C(p), we can find a new
binding b′ such that the token removed from p is c, the guard G(t) of t is satisfied,
and the tokens removed from all other places p′ (E(p′, t)〈b′〉) is equal to those
removed in the original binding E(p′, t)〈b〉. The following definition summarises
the definition of process subnets based on the description above.
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Definition 2 (Process Subnet). A process subnet is a tuple
(CPN, Ppr , Ploc, Pshr, Pbuf , τ, PV, PrId), where:

1. CPN = (Ppr ∪ Ploc ∪ Pshr ∪ Pbuf , T, Σ, V, C, G, E, I) is a CPN cf. Def. 1,
2. Ppr is a set of process places, Ploc is a set of local places, Pshr is a set

of shared places, and Pbuf is a set of buffer places such that Ppr, Ploc,
Pshr, and Pbuf are mutually disjoint,

3. τ ∈ Σ is a process colour set,
4. PV : T → V is a process variable function that assigns a process variable

to each transition t such that Type(PV (t)) = τ ,
5. PrId = {PrIdp : NC(p) → Nτ}p∈Ppr∪Ploc∪Pbuf

is a set of linear process
identification functions that maps multi-sets over C(p) into multi-sets
over τ for each place p ∈ Ppr ∪ Ploc ∪ Pbuf ,

6. The initialisation function I additionally satisfies:
6a. There exists a process place pI ∈ Ppr such that PrIdp(I(pI)〈〉) = τ and∑

p∈Ppr
PrIdp(I(p)) = τ ,

6b. For all p ∈ Ploc : PrIdp(I(p)) = τ , for all p ∈ Pshr : |I(p)〈〉| = 1, and
for all p ∈ Pbuf : I(p)〈〉 = ∅,

7. The arc expression function E additionally satisfies:
7a. For all t ∈ T , b ∈ B(t) :∑

p∈Ppr
PrIdp(E(p, t)〈b〉) =

∑
p∈Ppr

PrIdp(E(t, p)〈b〉) = 1‘(b(PV (t))),
7b. For all p ∈ Ploc, t ∈ T , and b ∈ B(t) :

PrIdp(E(p, t)〈b〉) = PrIdp(E(t, p)〈b〉) ⊆ 1‘(b(PV (t))),
7c. For all p ∈ Pshr , t ∈ T , and b ∈ B(t) : |E(p, t)〈b〉| = |E(t, p)〈b〉| ≤ 1,
7d. For all p ∈ Pbuf , t ∈ T and b ∈ B(t) : PrIdp(E(p, t)〈b〉) ⊆ 1‘(b(PV (t))),

8. Shared places and buffer places are neutral with respect to enabling:
Let t ∈ T , b ∈ B(t) be such that G(t)〈b〉 = true. Then for all p ∈ Pshr ∪
Pbuf , c ∈ C(p) there exists a binding b′ ∈ B(t) such that:
8a. E(p, t)〈b′〉 = 1‘c and G(t)〈b′〉 = true
8b. For all p′ ∈ P − {p} : E(p, t)〈b〉 = E(p, t)〈b′〉 �	

Items (7) and (8) are central to our approach as it allows checking the enabling
of a transition in a process subnet by checking a) if the transition is enabled
when we ignore all arcs from shared and buffer places, and b) if there are tokens
on all incoming buffer places. Hence, enabling becomes monotone, i.e., as soon
as both a) and b) hold for a transition t ∈ T in a binding b ∈ B(t) with
b(PV (t)) = pid , it can only stop holding for t and b if a transition t′ ∈ T is
executed in a binding b′ ∈ B(t′) for which b′(PV (t′)) = pid , i.e., if another
transition is executed for the same process identity. This is shown by applying
(7a), (7b) and (7d) to the requirements. Relaxing (8), i.e., allowing variables in
arc expressions from shared places to affect the enabling of the transition, would
introduce dependency on the value of the token on the shared place, which can
be modified by any other process. Allowing values from buffer places to affect
the enabling of transitions would make enabling no longer dependent only on
presence but also on the received value. Requirement (7d) is necessary as it is
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otherwise possible for a transition with another binding of the process variable
to consume a value deemed available from a buffer.

A PP-CPN is a union of process subnets only intersecting on buffer and shared
places. We do not formally define this union here as it can be obtained by using
the above definition of process subnets in Def. 6 of [11].

3 Syntactical Process Subnets

In general, it is undecidable whether requirements (7) and (8) of Def. 2 are
satisfied since they depend on all possible bindings for a transition (and the
inscription language of CPNs is Turing complete). Hence, for implementation
purposes we introduce sufficient syntactical requirements (which can be statically
checked) that imply that the semantical requirements in Def. 2 are satisfied.

We restrict the colour sets of process places to be equal to the process colour
set τ , and the colour sets of local places Ppr and buffer places Pbufin are required
to be a cartesian product τ × σ of the process colour set and some colour set
σ. This means that the process identity function on process places becomes the
identity function, and for local and buffer places it projects into the first com-
ponent. As a consequence, we require arc expressions to/from process places of
a transition t to have the form 1‘PV (t).1 Also, all variables of a transition must
be bound via input arcs or in the guard, and all dependencies between variables
(except the process variable) must be expressed in the guard. We denote by
InVar(t) the set of free variables appearing on input arcs and guards of a tran-
sition t. We require input arc expressions from local and input buffer places p
to have the form 1‘(PV (t), v(t)(p)) and input arc expression from shared places
to have the form 1‘v(t)(p), where v : T → Ploc ∪ Pbufin ∪ Pshr → V ∪ {⊥} is a
function that assigns a unique non-process variable to be used in the arc expres-
sion from p to t. We define v(t)(p) = ⊥ in case p is not connected to t. Output
arc expressions to local places are required to have the form 1‘(PV (t), e(t, p))
where e(t, p) is an expression over free variables from input arc expressions and
guards, i.e., e(t, p) ∈ EXPRInVar(t). For output arc expressions to shared and
output buffer places we have the same requirement concerning free variables.
Finally, non-process variables in arc expressions from shared places and from
input buffer places cannot be referred to in the guard. Our precise requirements
are given in the following definition.

Definition 3 (Syntactical Process Subnet). A syntactical process sub-
net is a tuple (CPN , Ppr, Ploc, Pshr, Pbuf , τ,PV ,PrId), satisfying:

1. CPN , Ppr, Ploc, Pshr , Pbuf , τ,PV ,PrId) are as defined in items (1)-(6) of
Def. 2, Pbufin ⊆ Pbuf denotes the set of input buffer places, and Pbufout ⊆
Pbuf denotes the set of output buffer places,

1 For the PP-CPN model in Fig. 2 there is not an explicit 1‘ (coefficient) in front of
arc expressions that evaluates to single token as is convention in CPN Tools.
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2. The colour set function C is defined such that:

C(p) =

⎧
⎪⎨

⎪⎩

τ for p ∈ Ppr,

τ × σ for p ∈ Ploc ∪ Pbufin and some σ such that τ × σ ∈ Σ,

σ for p ∈ (Pbufout − Pbufin) ∪ Pshr for some σ ∈ Σ,

3. The process functions PrId = {PrIdp : NC(p) → Nτ}p∈Ppr∪Ploc∪Pbuf
are

defined such that that PrIdp is the identity function for p ∈ Ppr, and PrIdp

projects onto the first component for p ∈ Ploc ∪ Pbuf ,
4. There exists a function pre : T → Ppr mapping transitions to input process

places and a function v : T → Ploc ∪Pbufin ∪Pshr → V ∪{⊥} with v(t)(p) �=
v(t)(p′) or v(t)(p) = v(t)(p′) = ⊥ if p �= p′, assigning unique non-process
variables to all non-process input places such that:

E(p, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1‘(PV (t)) for p = pre(t),
1‘(PV (t), v(t)(p)) for p ∈ Ploc ∪ Pbufin and v(t)(p) �= ⊥,

1‘(v(t)(p)) for p ∈ Pshr and v(t)(p) �= ⊥,

∅ otherwise

5. There exists a function succ : T → Ppr mapping transitions to output process
places and expressions e(t, p) ∈ EXPRInVar(t) of correct type such that:

E(t, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1‘(PV (t)) for p = succ(t),
1‘(PV (t), e(t, p)) for p ∈ Ploc with v(t)(p) �= ⊥,

1‘(e(t, p)) for p ∈ Pshr with v(t)(p) �= ⊥,

e(t, p) for p ∈ Pbufout,

∅ otherwise

6. The guard function additionally satisfies that for all p ∈ Pbufin ∪ Pshr and
transitions t: Var(E(p, t)) ∩ (Var(G(t)) − {PV (t)}) = ∅. �	

We have that a syntactical process subnet also is a process subnet. Requirements
(1)-(6) in Def. 2 are shared via (1) of Def. 3. Items (2) and (3) of Def. 3 comply
with the requirement to the process colour set and the process identification
function in items (3) and (5) of Def. 2. Items (4) and (5) in Def. 3 implies (7a)-
(7d) in Def. 2. Items (4) and (6) in Def. 3 ensures that (8) in Def. 2 holds as all
tokens are consumed using distinct variables that are only made dependent in
the guard, and as the guard cannot include variables bound on arcs from shared
or buffer places, we get the desired result.

4 Translation Process and Phases

We assume that the target language considered has a notion of processes (or
threads) and that it allows for message passing between processes. We do not
assume direct support for shared memory as it can be implemented using a
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separate process and message passing. In addition, we assume that the target
language has conditional jumps and a means for storing data local to a process.
The Erlang programming language (which we shall concentrate on in this paper
as the target language) satisfies these requirements. We assume that the model
consists of syntactical process subnets as defined in Sect. 3).

4.1 Phase 1: Translating the PP-CPN Model to a CFG

The main purpose of this phase is to extract the control flow from the PP-CPN
model and represent it explicitly in a CFG. A CFG is a directed graph in which
arcs correspond to jumps in the control flow and nodes correspond to sequences
of statements to be executed. A CFG is constructed for all process subnets in
the PP-CPN model. In the producer-consumer system two CFGs are generated:
one for the producer process subnet and one for the consumer process subnet.
Figure 3 shows the translated CFG for the consumer process subnet. Transitions
are translated into basic blocks , the nodes in the CFG, yielding three basic blocks
for the producer-consumer system and a special basic block, start, that indicates
where the process starts.

The content of basic blocks depends on connected non-process places. Ba-
sically, arcs from a non-process place correspond to reading a local or shared
variable, or receiving a value from a buffer, and arcs to a non-process place cor-
respond to writing and sending. As all arcs from non-process places are of the
form 1‘(pid, c) or 1‘c where pid is the process variable and c a variable of the
correct type ((4) in Def. 3) and each input arc has a unique variable (also (4)
in Def. 3) an input arc is translated to a Read local (for arcs from local places),
Read shared (for arcs from shared places), or Receive statements (for arcs from
buffer places). Each statement contains the name of the place and a temporary
variable to read the value into. The name of the temporary variable corresponds
to the name of the variable from the PP-CPN model. In Fig. 3, the basic block
ReceiveData contains a statement reading the local variable ReceivedData into
the temporary variable od and a statement receiving a value from Buffer into
the variable d. Analogously, arcs to non-process places are translated into Write
local, Write shared, and Send statements that update variables or transmit values
according to the expressions in the PP-CPN model. In Fig. 3, the basic block
ReceiveData updates the variable ReceivedData with the value of the variable d.

Process places in the PP-CPN model are represented as arcs between basic
blocks. This is possible as we assume that each transition has a unique predecessor

Fig. 3. The CFG of the consumer process
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and successor process place ((4) and (5) in Def. 3), so we create an arc from t to
t′ if succ(t) = pre(t′). The process place with the initial marking τ (from (6a)
in Def. 2) can be considered having an arc from a special transition start adding
all the initial process tokens. In Fig. 3, the basic block ConsumeEven has an arc
to ReceiveData signifying that after executing ConsumeEven, control should flow
to the basic block ReceiveData, and after ReceiveData the program continues to
either ConsumeOdd or ConsumeEven. Arcs of a CFG have a condition indicating
when control can flow via an arc. The arc condition is extracted from the guard
of the destination transition, using true for the absense of a guard. In Fig. 3, the
arc from ConsumeEven to ReceiveData has condition true whereas the arc in the
opposite direction has arc condition even d. We note that the guards should be
evaluated with values of non-process places of the target node, not of the source
node, but because of (4) and (6) in Def. 3 (or, equivalently, (8) from Def. 2),
stating that guards can only depend on values on local places, this evaluation
can be done already at the source node.

4.2 Phase 2: Translating the CFG to an AST

The main purpose of this phase is to translate the CFG into a tree form consist-
ing of nodes representing common programming constructs such as read/write
statements and jump statements. We also parse expressions used in the write
statements and guards into abstract syntax, making subsequent steps indepen-
dent of the inscription language used in the PP-CPN model.

Figure 4 shows a sub-tree of the AST for the producer-consumer example
where only the nodes from the ReceiveData block of the Consumer have been
fully expanded. When building the AST, a process is created for each CFG
process. Figure 4 shows that the program contains two processes (Producer and
Consumer) and a node for the global variable NextConsumer corresponding to the
shared variable NextConsumer. Local variables and buffers are translated into
nodes of the processes (processes can only transmit to a single process subnet
because of (7) in Def. 2 and the fact that process types are unique to process
subnets). In Fig. 4, the buffer place Buffer and the local place ReceivedData are
translated into Buffer and Local variable sub-nodes of the Consumer process.

Each basic block is translated into a subtree of the AST, and the contents of
basic blocks are translated into statements that correspond to the statements
from the basic blocks, except that expressions are parsed into trees. For example,
the Write local expression of the basic block ReceiveData in Fig. 3 is translated
into Write local in the ReceiveData block in the AST in Fig. 4. The actual value
to write (in the CFG just represented as the string d) is parsed into an expres-
sion consisting of the variable d in the AST. Arcs in the CFG are translated into
conditional or unconditional jump statements in the AST. The conditions are
also parsed, as can be seen in the conditional jump from ReceiveData to Con-
sumeOdd. The jump destinations are expressed using pointers rather than names
because variables used in the conditions are in the scope of the destination, and
to keep the flow of control explicit in the AST.
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Fig. 4. The AST for the Receive Data block of the consumer

4.3 Phases 3 and 4: Translating the AST via TLST to Target Code

Phase 3 generates a syntax tree for a concrete target language based on an AST
and phase 4 produces the actual target language code. Figure 5 shows part of
the TLST produced for Erlang from the AST in Fig. 4. We will not go into
details about the constructs, but only discuss some of the higher level concepts
to give an impression of how the AST can be mapped into a TLST. We map
each process into a module in Erlang, which is the primitive for code separation
and processes. In addition to the processes directly represented in the AST in
Fig. 4, we have added three other modules: system, buffer, and shared. The system
module is responsible for setting up the system, instantiating processes, and
making sure that processes have access to shared variables and buffers. The buffer
module is added if a model contains a buffer place, and implements buffers using
Erlang channels in order to be able to check if a buffer has any values available.
The shared module uses processes to implement shared variables on top of the
functional language Erlang. We represent jumps by function application, and
generate a function for each block in the AST. Additionally, we introduce an
environment record for each process to keep track of local variables and buffers.
The environment is created by the start function and is modified and passed on
by each function. Examples of Erlang code are not contained in this paper due
to space limitations. The reader is referred to [4, 6] for examples.

5 Application to the DYMO Protocol

We have implemented our approach in a prototype in Java using the Access/CPN
framework [16]. In addition to evaluate the prototype on smaller examples (such
as the producer-consumer system), we have applied it to a PP-CPN model of the
Dynamic On-demand MANET routing protocol (DYMO) [1]. The protocol is de-
veloped by the Internet Engineering Task Force and is intended for establishing
routes in a mobile ad-hoc network (MANET). The protocol establishes routes
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Fig. 5. Partial TLST for generated Erlang target code

Fig. 6. The Initiator module of the PP-CPN DYMO model

on-demand, i.e., when they are actually needed. The model specifies the route
discovery and route maintenance procedures of DYMO. Route discovery estab-
lishes routes by forwarding and multi-casting of route request messages. Route
maintenance monitors links and uses timeouts to discover loss of connection,
which causes route errors to be multi-casted to all neighbours.

The CPN model of the DYMO protocol [5] was constructed before starting
our work on code generation, and were used to identify and resolve problems in
the protocol specification. The complete PP-CPN model of DYMO consists of
8 modules, 49 places, and 18 transitions, and is thus fairly complex. Figure 6
shows an example module of the PP-CPN model for procedures initiating route
discovery. The module can create a new route request (RREQ) or cancel the
request when the retransmission limit is reached. A detailed description of the
DYMO CPN model can be found in [5].

Generating Erlang code from the DYMO model yields the modules listed in
Table 1. We have listed lines of code (LOC) for each module – in total we generate
563 lines of code. Since we do not support automatic translation of sequential



228 L.M. Kristensen and M. Westergaard

Table 1. Generated Erlang modules for the DYMO Protocol

Module name LOC Sequential functions

system.erl 20 0
buffer.erl 36 0
shared.erl 16 0
initiator.erl 116 1
receiver.erl 116 7
processer.erl 111 4
establishchecker.erl 126 0
network.erl 22 0

Total 563 12

SML to Erlang, we have to manually implement various Erlang expressions and
functions on the basis of the corresponding SML code. Implementing the func-
tions (12 in total) in Erlang is a fairly easy task, and in total we only spent
approximately 12 person-hours on this, including removal of unused extracted
values. This part could be handled automatically by an off-the-shelf SML parser
and code generator, but we have considered it outside the scope of this paper.

In order to execute more than one node running the generated DYMO protocol
implementation, we use a distributed Erlang system which is a mechanism in
Erlang allowing a number of independent Erlang run-time systems (nodes) to
communicate over a network. Each node executes the generated DYMO code.
The processes running the DYMO implementation on different Erlang nodes
do not communicate directly with each other. Instead they communicate via a
network simulator process running on a separate Erlang node. The stub code for
the network simulator is generated directly from the Network process subnet of
the DYMO PP-CPN model. The network simulator process implements a simple
MANET where both unicast and multicast is supported.

To monitor the behaviour of the program, each node prints its own routing
table, which can be inspected to verify that the expected routes were established.
To ensure that all parts of the generated code have been executed, we have tested
the generated DYMO implementation with several different MANET configura-
tions designed to exercise all parts of the code. The generated code established
the correct routes in all cases, which provides confidence in the generated code
and a proof-of-concept of our code generation approach.

6 Conclusions and Future Work

We have introduced the PP-CPN sub-class of CPNs, which forms the basis for
a structure-based approach to automatically generate (Erlang) code from CPN
models. The approach first extracts a control flow graph from the model, and
from the control flow graph constructs an abstract syntax tree for an intermedi-
ate language. From the abstract syntax tree, we generate a syntax tree specific to
the target language, translating generic control structures into language specific
control structures. Furthermore, we have validated that our approach applies to
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real-life examples by applying it to a PP-CPN model of the DYMO protocol con-
sisting of 8 modules, 49 places, and 18 transitions. Using manual inspection and
logging, we have validated that traces in the generated code can be reproduced
in the model and that the calculated routes are correct.

A structural approach to code generation in high-level Petri nets is also ap-
plied in [8]. The focus of [8] is on identifying processes in a Petri net, i.e., parts
of the model that work independently of each other or only have few synchro-
nisation points. Afterwards local variables (i.e., information only used by one
process) and communication channels are found. In comparison, we provide this
information explicitly in the form of the PP-CPN model. In [15], a class of CP-
nets is translated into BPEL (Business Process Execution Language) which is
an XML-based workflow implementation language. In contrast to our work, [15]
focus on the flow of data and not on data processing and the BPEL language
is not aimed at general application development. [12] improves on this by trans-
lating directly to Java by adding a data processing component, but it is very
restricted and does not allow the use of general functions in the data processing
part. Also, the approach [12] is limited to producing Java code, whereas our
approach is target language independent.

One area of future work concerns extending the PP-CPN subclass. One di-
rection is to allow using variables from buffer or shared places in guards. This
complicates the calculation of guards, as the value may change as other process
instances modify/receive values, requiring introduction of a locking mechanism
for shared places. We can easily allow dependence on values from buffer places
as long as all branches from any process place consume the same number of
tokens from all buffer places, as we can just read all values and dispatch ac-
cordingly, allowing us to receive and dispatch a value from a buffer in a single
step as opposed to the two steps required now. Allowing dependencies on input
arcs, at least on arcs from local places, would make the allowed PP-CPN models
more natural. It would also be interesting to look at dynamic instantiation of
processes, which is not overly difficult since we already instantiate processes in
our generated code. This could either be done using a language extension to
PP-CPNs or simply allowing creation of new tokens on process places.

Currently, we do not perform static analysis in phase 1 in our prototype,
making the generated code more verbose than needed and neither do we per-
form control structure recognition, which also makes the generated code a bit
unnatural. It would be interesting to see how the generated code would be af-
fected by actually conducting these steps. We have considered code generation
for Erlang, but all steps until the generation of the target language dependent
syntax tree are target language independent, and it would be interesting to also
experiment with other target languages. A limitation of the current implemen-
tation is that the validation is done in an ad-hoc manner. Future work also
includes formally proving correctness of the translation is correct by, e.g., for-
mally defining our abstract language as represented by ASTs and proving that
the generated abstract code is behaviourally equivalent to the PP-CPN model.
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